WorldWideScience

Sample records for attenuates tissue death

  1. Adipose tissue and muscle attenuation as novel biomarkers predicting mortality in patients with extremity sarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Veld, Joyce; Vossen, Josephina A.; Torriani, Martin; Bredella, Miriam A. [Massachusetts General Hospital and Harvard Medical School, Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Boston, MA (United States); De Amorim Bernstein, Karen [Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Francis H Burr Proton Therapy Center, Boston, MA (United States); Halpern, Elkan F. [Massachusetts General Hospital and Harvard Medical School, Institute of Technology Assessment, Boston, MA (United States)

    2016-12-15

    To assess CT-attenuation of abdominal adipose tissue and psoas muscle as predictors of mortality in patients with sarcomas of the extremities. Our study was IRB approved and HIPAA compliant. The study group comprised 135 patients with history of extremity sarcoma (mean age: 53 ± 17 years) who underwent whole body PET/CT. Abdominal subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and psoas muscle attenuation (HU) was assessed on non-contrast, attenuation-correction CT. Clinical information including survival, tumour stage, sarcoma type, therapy and pre-existing comorbidities were recorded. Cox proportional hazard models were used to determine longitudinal associations between adipose tissue and muscle attenuation and mortality. There were 47 deaths over a mean follow-up period of 20 ± 17 months. Higher SAT and lower psoas attenuation were associated with increased mortality (p = 0.03 and p = 0.005, respectively), which remained significant after adjustment for age, BMI, sex, tumor stage, therapy, and comorbidities (p = 0.002 and p = 0.02, respectively). VAT attenuation was not associated with mortality. Attenuation of SAT and psoas muscle, assessed on non-contrast CT, are predictors of mortality in patients with extremity sarcomas, independent of other established prognostic factors, suggesting that adipose tissue and muscle attenuation could serve as novel biomarkers for mortality in patients with sarcomas. (orig.)

  2. Adipose tissue and muscle attenuation as novel biomarkers predicting mortality in patients with extremity sarcomas

    International Nuclear Information System (INIS)

    Veld, Joyce; Vossen, Josephina A.; Torriani, Martin; Bredella, Miriam A.; De Amorim Bernstein, Karen; Halpern, Elkan F.

    2016-01-01

    To assess CT-attenuation of abdominal adipose tissue and psoas muscle as predictors of mortality in patients with sarcomas of the extremities. Our study was IRB approved and HIPAA compliant. The study group comprised 135 patients with history of extremity sarcoma (mean age: 53 ± 17 years) who underwent whole body PET/CT. Abdominal subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and psoas muscle attenuation (HU) was assessed on non-contrast, attenuation-correction CT. Clinical information including survival, tumour stage, sarcoma type, therapy and pre-existing comorbidities were recorded. Cox proportional hazard models were used to determine longitudinal associations between adipose tissue and muscle attenuation and mortality. There were 47 deaths over a mean follow-up period of 20 ± 17 months. Higher SAT and lower psoas attenuation were associated with increased mortality (p = 0.03 and p = 0.005, respectively), which remained significant after adjustment for age, BMI, sex, tumor stage, therapy, and comorbidities (p = 0.002 and p = 0.02, respectively). VAT attenuation was not associated with mortality. Attenuation of SAT and psoas muscle, assessed on non-contrast CT, are predictors of mortality in patients with extremity sarcomas, independent of other established prognostic factors, suggesting that adipose tissue and muscle attenuation could serve as novel biomarkers for mortality in patients with sarcomas. (orig.)

  3. Lovastatin attenuates ionizing radiation-induced normal tissue damage in vivo

    International Nuclear Information System (INIS)

    Ostrau, Christian; Huelsenbeck, Johannes; Herzog, Melanie; Schad, Arno; Torzewski, Michael; Lackner, Karl J.; Fritz, Gerhard

    2009-01-01

    Background and purpose: HMG-CoA-reductase inhibitors (statins) are widely used lipid-lowering drugs. Moreover, they have pleiotropic effects on cellular stress responses, proliferation and apoptosis in vitro. Here, we investigated whether lovastatin attenuates acute and subchronic ionizing radiation-induced normal tissue toxicity in vivo. Materials and methods: Four hours to 24 h after total body irradiation (6 Gy) of Balb/c mice, acute pro-inflammatory and pro-fibrotic responses were analyzed. To comprise subchronic radiation toxicity, mice were irradiated twice with 2.5 Gy and analyses were performed 3 weeks after the first radiation treatment. Molecular markers of inflammation and fibrosis as well as organ toxicities were measured. Results: Lovastatin attenuated IR-induced activation of NF-κB, mRNA expression of cell adhesion molecules and mRNA expression of pro-inflammatory and pro-fibrotic marker genes (i.e. TNFα, IL-6, TGFβ, CTGF, and type I and type III collagen) in a tissue- and time-dependent manner. γH2AX phosphorylation stimulated by IR was not affected by lovastatin, indicating that the statin has no major impact on the induction of DNA damage in vivo. Radiation-induced thrombopenia was significantly alleviated by lovastatin. Conclusions: Lovastatin inhibits both acute and subchronic IR-induced pro-inflammatory and pro-fibrotic responses and cell death in normal tissue in vivo. Therefore, lovastatin might be useful for selectively attenuating acute and subchronic normal tissue damage caused by radiotherapy.

  4. Attenuation of the gamma rays in tissues

    International Nuclear Information System (INIS)

    Arcos P, A.; Rodriguez N, S.; Pinedo S, A.; Amador V, P.; Chacon R, A.; Vega C, H.R.

    2005-01-01

    The mass and lineal attenuation coefficient and of hepatic tissue, muscular, osseous and of brain before gamma rays of 10 -3 to 10 5 MeV were calculated. For the case of the osseous tissue the calculation was made for the cartilage, the cortical tissue and the bone marrow. During the calculations the elementary composition of the tissues of human origin was used. The calculations include by separate the Photoelectric effect, the Compton scattering and the Pair production, as well as the total. For to establish a comparison with the attenuation capacities, the coefficients of the water, the aluminum and the lead also were calculated. The study was complemented measuring the attenuation coefficient of hepatic tissue of bovine before gamma rays of 0.662 MeV of a source of 137 Cs. The measurement was made through of an experiment of photons transmission through samples frozen of hepatic tissue and with a Geiger-Mueller detector. (Author)

  5. An Aminopyridazine Inhibitor of Death Associated Protein Kinase Attenuates Hypoxia-Ischemia Induced Brain Damage

    Energy Technology Data Exchange (ETDEWEB)

    Velentza, A.V.; Wainwright, M.S.; Zasadzki, M.; Mirzoeva, S.; Haiech, J.; Focia, P.J.; Egli, M.; Watterson, D.M.

    2010-03-08

    Death associated protein kinase (DAPK) is a calcium and calmodulin regulated enzyme that functions early in eukaryotic programmed cell death, or apoptosis. To validate DAPK as a potential drug discovery target for acute brain injury, the first small molecule DAPK inhibitor was synthesized and tested in vivo. A single injection of the aminopyridazine-based inhibitor administered 6 h after injury attenuated brain tissue or neuronal biomarker loss measured, respectively, 1 week and 3 days later. Because aminopyridazine is a privileged structure in neuropharmacology, we determined the high-resolution crystal structure of a binary complex between the kinase domain and a molecular fragment of the DAPK inhibitor. The co-crystal structure describes a structural basis for interaction and provides a firm foundation for structure-assisted design of lead compounds with appropriate molecular properties for future drug development.

  6. Multiple-energy tissue-cancellation applications of a digital beam attenuator to chest radiography

    International Nuclear Information System (INIS)

    Dobbins, J.T. III.

    1985-01-01

    The digitally-formed primary beam attenuator (DBA) spatially modulates the x-ray fluence incident upon the patient to selectively attenuate regions of interest. The DBA attenuating mask is constructed from CeO 2 powder by a modified printing technique and uses image information from an initial low-dose exposure. Two tissue-cancellation imaging techniques are investigated with the DBA: (1) energy-dependent information is used to form a beam attenuator that attenuates specific tissues in the primary x-ray beam for tissue-cancelled film radiography; (2) the beam attenuator is used to improve image signal-to-noise and scattered radiation properties in traditional energy-subtraction tissue-cancellation imaging with digital detectors. The tissue-cancellation techniques in the primary x-ray beam were capable of adequately removing either soft-tissue or bone from the final compensated film radiograph when using a phantom with well defined soft-tissue and bone sections. However, when tried on an anthropomorphic chest phantom the results were adequate for cancellation of large soft tissue structures, but unsatisfactory for cancellation of bony structures such as the ribs, because of the limited spatial frequency content of the attenuating mask. The second technique (with digital detectors) showed improved uniformity of image signal-to-noise and a two-fold increase in soft-tissue nodule contrast due to improved scattered radiation properties. The tissue-cancelled images contained residual image contributions from the presence of the attenuating mask, but this residual may be correctable by future algorithms

  7. Characteristics of liver tissue for attenuate the gamma radiation

    International Nuclear Information System (INIS)

    Arcos P, A.; Rodriguez N, S.; Pinedo S, A.; Amador V, P.; Chacon R, A.; Vega C, H.R.

    2005-01-01

    It was determined the lineal attenuation coefficient of hepatic tissue before gamma radiation of a source of 137 Cs. When exposing organic material before X or gamma radiation fields, part of the energy of the photons is absorbed by the material, while another part crosses it without producing any effect. The quantity of energy that is absorbed is a measure of the dose that receives the material. The three main mechanisms by means of which the gamma rays interacting with the matter are: The Photoelectric Effect, the Compton dispersion and the Even production; the sum of these three processes is translated in the attenuation coefficient of the radiation. In this work we have used hepatic tissue of bovine, as substitute of the human hepatic tissue, and we have measured the lineal attenuation coefficient for photons of 0.662 MeV. Through a series of calculations we have determined the lineal attenuation coefficient for photons from 10 -3 to 10 -5 MeV and the measured coefficient was compared with the one calculated. (Author)

  8. Tauroursodeoxycholic acid attenuates gentamicin-induced cochlear hair cell death in vitro.

    Science.gov (United States)

    Jia, Zhanwei; He, Qiang; Shan, Chunguang; Li, Fengyi

    2018-09-15

    Gentamycin is one of the most clinically used aminoglycoside antibiotics which induce intrinsic apoptosis of hair cells. Tauroursodeoxycholic acid (TUDCA) is known as safe cell-protective agent in disorders associated with apoptosis. We aimed to investigate the protective effects of TUDCA against gentamicin-induced ototoxicity. House Ear Institute-Organ of Corti 1(HEI-OC1) cells and explanted cochlear tissue were treated with gentamicin and TUDCA, followed by serial analyses including cell viability assay, hair cell staining, qPCR, ELISA and western blotting to determine the cell damage by the parameters relevant to cell apoptosis and endoplasmic reticulum stress. TUDCA significantly attenuated gentamicin-induced cell damage in cultured HEI-OC1 cells and explanted cochlear hair cells. TUDCA alleviated gentamicin-induced cell apoptosis, supported by the decreased Bax/Bcl2 ratio compared with that of gentamicin treated alone. TUDCA decreased gentamicin-induced nitric oxide production and protein nitration in both models. In addition, TUDCA suppressed gentamicin-induced endoplasmic reticulum stress as reflected by inversing the expression levels of Binding immunoglobulin protein (Bip), CCAAT/-enhancer-binding protein homologous protein (CHOP) and Caspase 3. TUDCA attenuated gentamicin-induced hair cell death by inhibiting protein nitration activation and ER stress, providing new insights into the new potential therapies for sensorineural deafness. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Scintigraphic measurements of gastric emptying corrected for differences in tissue attenuation

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, J.B.; Hoejgaard, L.; Uhrenholdt, A. (Copenhagen Univ. (Denmark). Hvidovre Hospital)

    1983-10-01

    In order to evaluate the importance of variations in tissue attenuation in scintigraphic measurements of gastric emptying, both in vivo and in vitro measurements of count rates from an encapsulated sup(99m)Tc dose were performed in different parts of the stomach. The obtained individual tissue correction factors were applied in the calculation of gastric emptying rates by gamma camera in healthy volunteers. The results showed that the anterior gamma camera scan without correction for differences in tissue attenuation underestimated the gastric emptying rate by 11% if the results were expressed as percentage meal emptied over 60 minutes.

  10. Attenuation of the gamma rays in tissues; Atenuacion de los rayos gamma en tejidos

    Energy Technology Data Exchange (ETDEWEB)

    Arcos P, A.; Rodriguez N, S.; Pinedo S, A.; Amador V, P.; Chacon R, A.; Vega C, H.R. [Unidad Academica de Estudios Nucleares, Cipres 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2005-07-01

    The mass and lineal attenuation coefficient and of hepatic tissue, muscular, osseous and of brain before gamma rays of 10{sup -3} to 10{sup 5} MeV were calculated. For the case of the osseous tissue the calculation was made for the cartilage, the cortical tissue and the bone marrow. During the calculations the elementary composition of the tissues of human origin was used. The calculations include by separate the Photoelectric effect, the Compton scattering and the Pair production, as well as the total. For to establish a comparison with the attenuation capacities, the coefficients of the water, the aluminum and the lead also were calculated. The study was complemented measuring the attenuation coefficient of hepatic tissue of bovine before gamma rays of 0.662 MeV of a source of {sup 137} Cs. The measurement was made through of an experiment of photons transmission through samples frozen of hepatic tissue and with a Geiger-Mueller detector. (Author)

  11. Increased tissue oxygenation explains the attenuation of hyperemia upon repetitive pneumatic compression of the lower leg.

    Science.gov (United States)

    Messere, Alessandro; Ceravolo, Gianluca; Franco, Walter; Maffiodo, Daniela; Ferraresi, Carlo; Roatta, Silvestro

    2017-12-01

    The rapid hyperemia evoked by muscle compression is short lived and was recently shown to undergo a rapid decrease even in spite of continuing mechanical stimulation. The present study aims at investigating the mechanisms underlying this attenuation, which include local metabolic mechanisms, desensitization of mechanosensitive pathways, and reduced efficacy of the muscle pump. In 10 healthy subjects, short sequences of mechanical compressions ( n = 3-6; 150 mmHg) of the lower leg were delivered at different interstimulus intervals (ranging from 20 to 160 s) through a customized pneumatic device. Hemodynamic monitoring included near-infrared spectroscopy, detecting tissue oxygenation and blood volume in calf muscles, and simultaneous echo-Doppler measurement of arterial (superficial femoral artery) and venous (femoral vein) blood flow. The results indicate that 1 ) a long-lasting (>100 s) increase in local tissue oxygenation follows compression-induced hyperemia, 2 ) compression-induced hyperemia exhibits different patterns of attenuation depending on the interstimulus interval, 3 ) the amplitude of the hyperemia is not correlated with the amount of blood volume displaced by the compression, and 4 ) the extent of attenuation negatively correlates with tissue oxygenation ( r  = -0,78, P < 0.05). Increased tissue oxygenation appears to be the key factor for the attenuation of hyperemia upon repetitive compressive stimulation. Tissue oxygenation monitoring is suggested as a useful integration in medical treatments aimed at improving local circulation by repetitive tissue compression. NEW & NOTEWORTHY This study shows that 1 ) the hyperemia induced by muscle compression produces a long-lasting increase in tissue oxygenation, 2 ) the hyperemia produced by subsequent muscle compressions exhibits different patterns of attenuation at different interstimulus intervals, and 3 ) the extent of attenuation of the compression-induced hyperemia is proportional to the level of

  12. Egr3 dependent sympathetic target tissue innervation in the absence of neuron death.

    Directory of Open Access Journals (Sweden)

    Lin Li

    Full Text Available Nerve Growth Factor (NGF is a target tissue derived neurotrophin required for normal sympathetic neuron survival and target tissue innervation. NGF signaling regulates gene expression in sympathetic neurons, which in turn mediates critical aspects of neuron survival, axon extension and terminal axon branching during sympathetic nervous system (SNS development. Egr3 is a transcription factor regulated by NGF signaling in sympathetic neurons that is essential for normal SNS development. Germline Egr3-deficient mice have physiologic dysautonomia characterized by apoptotic sympathetic neuron death and abnormal innervation to many target tissues. The extent to which sympathetic innervation abnormalities in the absence of Egr3 is caused by altered innervation or by neuron death during development is unknown. Using Bax-deficient mice to abrogate apoptotic sympathetic neuron death in vivo, we show that Egr3 has an essential role in target tissue innervation in the absence of neuron death. Sympathetic target tissue innervation is abnormal in many target tissues in the absence of neuron death, and like NGF, Egr3 also appears to effect target tissue innervation heterogeneously. In some tissues, such as heart, spleen, bowel, kidney, pineal gland and the eye, Egr3 is essential for normal innervation, whereas in other tissues such as lung, stomach, pancreas and liver, Egr3 appears to have little role in innervation. Moreover, in salivary glands and heart, two tissues where Egr3 has an essential role in sympathetic innervation, NGF and NT-3 are expressed normally in the absence of Egr3 indicating that abnormal target tissue innervation is not due to deregulation of these neurotrophins in target tissues. Taken together, these results clearly demonstrate a role for Egr3 in mediating sympathetic target tissue innervation that is independent of neuron survival or neurotrophin deregulation.

  13. Added soft tissue contrast using signal attenuation and the fractal dimension for optical coherence tomography images of porcine arterial tissue

    International Nuclear Information System (INIS)

    Flueraru, C; Mao, Y; Chang, S; Popescu, D P; Sowa, M G

    2010-01-01

    Optical coherence tomography (OCT) images of left-descending coronary tissues harvested from three porcine specimens were acquired with a home-build swept-source OCT setup. Despite the fact that OCT is capable of acquiring high resolution circumferential images of vessels, many distinct histological features of a vessel have comparable optical properties leading to poor contrast in OCT images. Two classification methods were tested in this report for the purpose of enhancing contrast between soft-tissue components of porcine coronary vessels. One method involved analyzing the attenuation of the OCT signal as a function of light penetration into the tissue. We demonstrated that by analyzing the signal attenuation in this manner we were able to differentiate two media sub-layers with different orientations of the smooth muscle cells. The other classification method used in our study was fractal analysis. Fractal analysis was implemented in a box-counting (fractal dimension) image-processing code and was used as a tool to differentiate and quantify variations in tissue texture at various locations in the OCT images. The calculated average fractal dimensions had different values in distinct regions of interest (ROI) within the imaged coronary samples. When compared to the results obtained by using the attenuation of the OCT signal, the method of fractal analysis demonstrated better classification potential for distinguishing amongst the tissue ROI.

  14. Soft tissue conduction as a possible contributor to the limited attenuation provided by hearing protection devices

    Directory of Open Access Journals (Sweden)

    Shai Chordekar

    2016-01-01

    Full Text Available Context: Damage to the auditory system by loud sounds can be avoided by hearing protection devices (HPDs such as earmuffs, earplugs, or both for maximum attenuation. However, the attenuation can be limited by air conduction (AC leakage around the earplugs and earmuffs by the occlusion effect (OE and by skull vibrations initiating bone conduction (BC. Aims: To assess maximum attenuation by HPDs and possible flanking pathways to the inner ear. Subjects and Methods: AC attenuation and resulting thresholds were assessed using the real ear attenuation at threshold (REAT procedure on 15 normal-hearing participants in four free-field conditions: (a unprotected ears, (b ears covered with earmuffs, (c ears blocked with deeply inserted customized earplugs, and (d ears blocked with both earplugs and earmuffs. BC thresholds were assessed with and without earplugs to assess the OE. Results: Addition of earmuffs to earplugs did not cause significantly greater attenuation than earplugs alone, confirming minimal AC leakage through the external meatus and the absence of the OE. Maximum REATs ranged between 40 and 46 dB, leading to thresholds of 46–54 dB HL. Furthermore, calculation of the acoustic impedance mismatch between air and bone predicted at least 60 dB attenuation of BC. Conclusion: Results do not support the notion that skull vibrations (BC contributed to the limited attenuation provided by traditional HPDs. An alternative explanation, supported by experimental evidence, suggests transmission of sound to inner ear via non-osseous pathways such as skin, soft tissues, and fluid. Because the acoustic impedance mismatch between air and soft tissues is smaller than that between air and bone, air-borne sounds would be transmitted to soft tissues more effectively than to bone, and therefore less attenuation is expected through soft tissue sound conduction. This can contribute to the limited attenuation provided by traditional HPDs. The present study

  15. Taxifolin synergizes Andrographolide-induced cell death by attenuation of autophagy and augmentation of caspase dependent and independent cell death in HeLa cells.

    Directory of Open Access Journals (Sweden)

    Mazen Alzaharna

    Full Text Available Andrographolide (Andro has emerged recently as a potential and effective anticancer agent with induction of apoptosis in some cancer cell lines while induction of G2/M arrest with weak apoptosis in others. Few studies have proved that Andro is also effective in combination therapy. The flavonoid Taxifolin (Taxi has showed anti-oxidant and antiproliferative effects against different cancer cells. Therefore, the present study investigated the cytotoxic effects of Andro alone or in combination with Taxi on HeLa cells. The combination of Andro with Taxi was synergistic at all tested concentrations and combination ratios. Andro alone induced caspase-dependent apoptosis which was enhanced by the combination with Taxi and attenuated partly by using Z-Vad-Fmk. Andro induced a protective reactive oxygen species (ROS-dependent autophagy which was attenuated by Taxi. The activation of p53 was involved in Andro-induced autophagy where the use of Taxi or pifithrin-α (PFT-α decreased it while the activation of JNK was involved in the cell death of HeLa cells but not in the induction of autophagy. The mitochondrial outer-membrane permeabilization (MOMP plays an important role in Andro-induced cell death in HeLa cells. Andro alone increased the MOMP which was further increased in the case of combination. This led to the increase in AIF and cytochrome c release from mitochondria which consequently increased caspase-dependent and independent cell death. In conclusion, Andro induced a protective autophagy in HeLa cells which was reduced by Taxi and the cell death was increased by increasing the MOMP and subsequently the caspase-dependent and independent cell death.

  16. Taxifolin synergizes Andrographolide-induced cell death by attenuation of autophagy and augmentation of caspase dependent and independent cell death in HeLa cells

    Science.gov (United States)

    Alzaharna, Mazen; Alqouqa, Iyad; Cheung, Hon-Yeung

    2017-01-01

    Andrographolide (Andro) has emerged recently as a potential and effective anticancer agent with induction of apoptosis in some cancer cell lines while induction of G2/M arrest with weak apoptosis in others. Few studies have proved that Andro is also effective in combination therapy. The flavonoid Taxifolin (Taxi) has showed anti-oxidant and antiproliferative effects against different cancer cells. Therefore, the present study investigated the cytotoxic effects of Andro alone or in combination with Taxi on HeLa cells. The combination of Andro with Taxi was synergistic at all tested concentrations and combination ratios. Andro alone induced caspase-dependent apoptosis which was enhanced by the combination with Taxi and attenuated partly by using Z-Vad-Fmk. Andro induced a protective reactive oxygen species (ROS)-dependent autophagy which was attenuated by Taxi. The activation of p53 was involved in Andro-induced autophagy where the use of Taxi or pifithrin-α (PFT-α) decreased it while the activation of JNK was involved in the cell death of HeLa cells but not in the induction of autophagy. The mitochondrial outer-membrane permeabilization (MOMP) plays an important role in Andro-induced cell death in HeLa cells. Andro alone increased the MOMP which was further increased in the case of combination. This led to the increase in AIF and cytochrome c release from mitochondria which consequently increased caspase-dependent and independent cell death. In conclusion, Andro induced a protective autophagy in HeLa cells which was reduced by Taxi and the cell death was increased by increasing the MOMP and subsequently the caspase-dependent and independent cell death. PMID:28182713

  17. GSK-3β Inhibition Attenuates LPS-Induced Death but Aggravates Radiation-Induced Death via Down-Regulation of IL-6

    Directory of Open Access Journals (Sweden)

    Bailong Li

    2013-12-01

    Full Text Available Background: Exposure of high dose ionizing radiation is lethal. Signal pathways involved in radiation biology reaction still remain illdefined. Lipopolysaccharides (LPS, the ligands of Toll-like receptor 4(TLR4, could elicit strong immune responses. Glycogen synthase kinase-3β(GSK-3β promotes the production of inflammatory molecules and cell migration. Inhibition of GSK-3β provides protection against inflammation in animal models. The aim of the study was to investigate role of GSK-3β in LPS shock and ionizing radiation. Methods: WT or IL-6-/-mice or cells were pretreated with SB216763, a GSK-3β inhibitor, and survival of the mice was determined. Cell viability was assayed by Cell Counting Kit. Apoptosis was assayed by Annexin V-PI double staining. Serum concentrations of IL-6 and TNF-α were determined by ELISA. Results: SB216763 attenuated LPS induced mice or cell death but aggravated radiation induced mice or cell death. SB216763 reduced IL-6, but not TNF-α levels in vivo. IL-6-/- mice were more resistant to LPS-induced death but less resistant to radiation-induced death than wild type mice. Conclusions: Inhibition of GSK-3β conferred resistance to LPS shock but fostered death induced by ionizing radiation. Inhibition of GSK-3β was effective by reducing IL-6.

  18. ADAM28 is expressed by epithelial cells in human normal tissues and protects from C1q-induced cell death.

    Science.gov (United States)

    Miyamae, Yuka; Mochizuki, Satsuki; Shimoda, Masayuki; Ohara, Kentaro; Abe, Hitoshi; Yamashita, Shuji; Kazuno, Saiko; Ohtsuka, Takashi; Ochiai, Hiroki; Kitagawa, Yuko; Okada, Yasunori

    2016-05-01

    ADAM28 (disintegrin and metalloproteinase 28), which was originally reported to be lymphocyte-specific, is over-expressed by carcinoma cells and plays a key role in cell proliferation and progression in human lung and breast carcinomas. We studied ADAM28 expression in human normal tissues and examined its biological function. By using antibodies specific to ADAM28, ADAM28 was immunolocalized mainly to epithelial cells in several tissues, including epididymis, bronchus and stomach, whereas lymphocytes in lymph nodes and spleen were negligibly immunostained. RT-PCR, immunoblotting and ELISA analyses confirmed the expression in these tissues, and low or negligible expression by lymphocytes was found in the lymph node and spleen. C1q was identified as a candidate ADAM28-binding protein from a human lung cDNA library by yeast two-hybrid system, and specific binding was demonstrated by binding assays, immunoprecipitation and surface plasmon resonance. C1q treatment of normal bronchial epithelial BEAS-2B and NHBE cells, both of which showed low-level expression of ADAM28, caused apoptosis through activation of p38 and caspase-3, and cell death with autophagy through accumulation of LC3-II and autophagosomes, respectively. C1q-induced cell death was attenuated by treatment of the cells with antibodies against the C1q receptor gC1qR/p33 or cC1qR/calreticulin. Treatment of C1q with recombinant ADAM28 prior to addition to culture media reduced C1q-induced cell death, and knockdown of ADAM28 using siRNAs increased cell death. These data demonstrate that ADAM28 is expressed by epithelial cells of several normal organs, and suggest that ADAM28 plays a role in cell survival by suppression of C1q-induced cytotoxicity in bronchial epithelial cells. © 2016 Federation of European Biochemical Societies.

  19. The primary mechanism of attenuation of bacillus Calmette–Guérin is a loss of secreted lytic function required for invasion of lung interstitial tissue

    Science.gov (United States)

    Hsu, Tsungda; Hingley-Wilson, Suzanne M.; Chen, Bing; Chen, Mei; Dai, Annie Z.; Morin, Paul M.; Marks, Carolyn B.; Padiyar, Jeevan; Goulding, Celia; Gingery, Mari; Eisenberg, David; Russell, Robert G.; Derrick, Steven C.; Collins, Frank M.; Morris, Sheldon L.; King, C. Harold; Jacobs, William R.

    2003-01-01

    Tuberculosis remains a leading cause of death worldwide, despite the availability of effective chemotherapy and a vaccine. Bacillus Calmette–Guérin (BCG), the tuberculosis vaccine, is an attenuated mutant of Mycobacterium bovis that was isolated after serial subcultures, yet the functional basis for this attenuation has never been elucidated. A single region (RD1), which is absent in all BCG substrains, was deleted from virulent M. bovis and Mycobacterium tuberculosis strains, and the resulting ΔRD1 mutants were significantly attenuated for virulence in both immunocompromised and immunocompetent mice. The M. tuberculosis ΔRD1 mutants were also shown to protect mice against aerosol challenge, in a similar manner to BCG. Interestingly, the ΔRD1 mutants failed to cause cytolysis of pneumocytes, a phenotype that had been previously used to distinguish virulent M. tuberculosis from BCG. A specific transposon mutation, which disrupts the Rv3874 Rv3875 (cfp-10 esat-6) operon of RD1, also caused loss of the cytolytic phenotype in both pneumocytes and macrophages. This mutation resulted in the attenuation of virulence in mice, as the result of reduced tissue invasiveness. Moreover, specific deletion of each transcriptional unit of RD1 revealed that three independent transcriptional units are required for virulence, two of which are involved in the secretion of ESAT-6 (6-kDa early secretory antigenic target). We conclude that the primary attenuating mechanism of bacillus Calmette–Guérin is the loss of cytolytic activity mediated by secreted ESAT-6, which results in reduced tissue invasiveness. PMID:14557547

  20. Comparison of Ultrasound Attenuation and Backscatter Estimates in Layered Tissue-Mimicking Phantoms among Three Clinical Scanners

    Science.gov (United States)

    Nam, Kibo; Rosado-Mendez, Ivan M.; Wirtzfeld, Lauren A.; Ghoshal, Goutam; Pawlicki, Alexander D.; Madsen, Ernest L.; Lavarello, Roberto J.; Oelze, Michael L.; Zagzebski, James A.; O’Brien, William D.; Hall, Timothy J.

    2013-01-01

    Backscatter and attenuation coefficient estimates are needed in many quantitative ultrasound strategies. In clinical applications, these parameters may not be easily obtained because of variations in scattering by tissues overlying a region of interest (ROI). The goal of this study is to assess the accuracy of backscatter and attenuation estimates for regions distal to nonuniform layers of tissue-mimicking materials. In addition, this work compares results of these estimates for “layered” phantoms scanned using different clinical ultrasound machines. Two tissue-mimicking phantoms were constructed, each exhibiting depth-dependent variations in attenuation or backscatter. The phantoms were scanned with three ultrasound imaging systems, acquiring radio frequency echo data for offline analysis. The attenuation coefficient and the backscatter coefficient (BSC) for sections of the phantoms were estimated using the reference phantom method. Properties of each layer were also measured with laboratory techniques on test samples manufactured during the construction of the phantom. Estimates of the attenuation coefficient versus frequency slope, α0, using backscatter data from the different systems agreed to within 0.24 dB/cm-MHz. Bias in the α0 estimates varied with the location of the ROI. BSC estimates for phantom sections whose locations ranged from 0 to 7 cm from the transducer agreed among the different systems and with theoretical predictions, with a mean bias error of 1.01 dB over the used bandwidths. This study demonstrates that attenuation and BSCs can be accurately estimated in layered inhomogeneous media using pulse-echo data from clinical imaging systems. PMID:23160474

  1. White matter segmentation by estimating tissue optical attenuation from volumetric OCT massive histology of whole rodent brains

    Science.gov (United States)

    Lefebvre, Joël.; Castonguay, Alexandre; Lesage, Frédéric

    2017-02-01

    A whole rodent brain was imaged using an automated massive histology setup and an Optical Coherence Tomography (OCT) microscope. Thousands of OCT volumetric tiles were acquired, each covering a size of about 2.5x2.5x0.8 mm3 with a sampling resolution of 4.9x4.9x6.5 microns. This paper shows the techniques for reconstruction, attenuation compensation and segmentation of the sliced brains. The tile positions within the mosaic were evaluated using a displacement model of the motorized stage and pairwise coregistration. Volume blending was then performed by solving the 3D Laplace equation, and consecutive slices were assembled using the cross-correlation of their 2D image gradient. This reconstruction algorithm resulted in a 3D map of optical reflectivity for the whole brain at micrometric resolution. OCT tissue slices were then used to estimate the local attenuation coefficient based on a single scattering photon model. The attenuation map obtained exhibits a high contrast for all white matter fibres, regardless of their orientation. The tissue optical attenuation from the intrinsic OCT reflectivity contributes to better white matter tissue segmentation. The combined 3D maps of reflectivity and attenuation is a step toward the study of white matter at a microscopic scale for the whole brain in small animals.

  2. Characteristics of liver tissue for attenuate the gamma radiation; Caracteristicas del tejido hepatico para atenuar la radiacion gamma

    Energy Technology Data Exchange (ETDEWEB)

    Arcos P, A.; Rodriguez N, S.; Pinedo S, A.; Amador V, P.; Chacon R, A.; Vega C, H.R. [Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2005-07-01

    It was determined the lineal attenuation coefficient of hepatic tissue before gamma radiation of a source of {sup 137} Cs. When exposing organic material before X or gamma radiation fields, part of the energy of the photons is absorbed by the material, while another part crosses it without producing any effect. The quantity of energy that is absorbed is a measure of the dose that receives the material. The three main mechanisms by means of which the gamma rays interacting with the matter are: The Photoelectric Effect, the Compton dispersion and the Even production; the sum of these three processes is translated in the attenuation coefficient of the radiation. In this work we have used hepatic tissue of bovine, as substitute of the human hepatic tissue, and we have measured the lineal attenuation coefficient for photons of 0.662 MeV. Through a series of calculations we have determined the lineal attenuation coefficient for photons from 10{sup -3} to 10{sup -5} MeV and the measured coefficient was compared with the one calculated. (Author)

  3. Modeling the relative impact of capsular tissue effects on implanted glucose sensor time lag and signal attenuation.

    Science.gov (United States)

    Novak, Matthew T; Yuan, Fan; Reichert, William M

    2010-10-01

    Little is known mechanistically about why implanted glucose sensors lag behind blood glucose levels in both the time to peak sensor response and the magnitude of peak sensor response. A mathematical model of glucose transport from capillaries through surrounding tissue to the sensor surface was constructed to address how different aspects of the tissue affect glucose transport to an implanted sensor. Physiologically relevant values of capsule diffusion coefficient, capsule porosity, cellular glucose consumption, capsule thickness, and subcutaneous vessel density were used as inputs to create simulated sensor traces that mimic experimental instances of time lag and concentration attenuation relative to a given blood glucose profile. Using logarithmic sensitivity analysis, each parameter was analyzed to study the effect of these variables on both lag and attenuation. Results identify capsule thickness as the strongest determinant of sensor time lag, while subcutaneous vessel density and capsule porosity had the largest effects on attenuation of glucose that reaches the sensor surface. These findings provide mechanistic insight for the rational design of sensor modifications that may alleviate the deleterious consequences of tissue effects on implanted sensor performance.

  4. Effects of attenuation map accuracy on attenuation-corrected micro-SPECT images

    NARCIS (Netherlands)

    Wu, C.; Gratama van Andel, H.A.; Laverman, P.; Boerman, O.C.; Beekman, F.J.

    2013-01-01

    Background In single-photon emission computed tomography (SPECT), attenuation of photon flux in tissue affects quantitative accuracy of reconstructed images. Attenuation maps derived from X-ray computed tomography (CT) can be employed for attenuation correction. The attenuation coefficients as well

  5. SU-F-T-46: The Effect of Inter-Seed Attenuation and Tissue Composition in Prostate 125I Brachytherapy Dose Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, K; Araki, F; Ohno, T [Kumamoto University, Kumamoto, Kumamoto (Japan)

    2016-06-15

    Purpose: To investigate the difference of dose distributions with/without the effect of inter-seed attenuation and tissue compositions in prostate {sup 125}I brachytherapy dose calculations, using Monte Carlo simulations of Particle and Heavy Ion Transport code System (PHITS). Methods: The dose distributions in {sup 125}I prostate brachytherapy were calculated using PHITS for non-simultaneous and simultaneous alignments of STM1251 sources in water or prostate phantom for six patients. The PHITS input file was created from DICOM-RT file which includes source coordinates and structures for clinical target volume (CTV) and organs at risk (OARs) of urethra and rectum, using in-house Matlab software. Photon and electron cutoff energies were set to 1 keV and 100 MeV, respectively. The dose distributions were calculated with the kerma approximation and the voxel size of 1 × 1 × 1 mm{sup 3}. The number of incident photon was set to be the statistical uncertainty (1σ) of less than 1%. The effect of inter-seed attenuation and prostate tissue compositions was evaluated from dose volume histograms (DVHs) for each structure, by comparing to results of the AAPM TG-43 dose calculation (without the effect of inter-seed attenuation and prostate tissue compositions). Results: The dose reduction due to the inter-seed attenuation by source capsules was approximately 2% for CTV and OARs compared to those of TG-43. In additions, by considering prostate tissue composition, the D{sub 90} and V{sub 100} of CTV reduced by 6% and 1%, respectively. Conclusion: It needs to consider the dose reduction due to the inter-seed attenuation and tissue composition in prostate {sup 125}I brachytherapy dose calculations.

  6. Linear attenuation coefficients of tissues from 1 keV to 150 keV

    Science.gov (United States)

    Böke, Aysun

    2014-09-01

    The linear attenuation coefficients and three interaction processes have been computed for liver, kidney, muscle, fat and for a range of x-ray energies from 1 keV to 150 keV. Molecular photoelectric absorption cross sections were calculated from atomic cross section data. Total coherent (Rayleigh) and incoherent (Compton) scattering cross sections were obtained by numerical integration over combinations of F2m(x) with the Thomson formula and Sm(x) with the Klein-Nishina formula, respectively. For the coherent (Rayleigh) scattering cross section calculations, molecular form factors were obtained from recent experimental data in the literature for values of xelements involved in tissue composition is 5 for liver, 47 for kidney, 44 for muscle and 3 for fat. The results are compared with previously published experimental and theoretical linear attenuation coefficients. In general, good agreement is obtained. The molecular form factors and scattering functions and cross sections are incorporated into a Monte Carlo program. The energy distributions of x-ray photons scattered from tissues have been simulated and the results are presented.

  7. Attenuation of oxidative neuronal cell death by coffee phenolic phytochemicals

    International Nuclear Information System (INIS)

    Cho, Eun Sun; Jang, Young Jin; Hwang, Mun Kyung; Kang, Nam Joo; Lee, Ki Won; Lee, Hyong Joo

    2009-01-01

    Neurodegenerative disorders such as Alzheimer's disease (AD) are strongly associated with oxidative stress, which is induced by reactive oxygen species (ROS) including hydrogen peroxide (H 2 O 2 ). Recent studies suggest that moderate coffee consumption may reduce the risk of neurodegenerative diseases such as AD, but the molecular mechanisms underlying this effect remain to be clarified. In this study, we investigated the protective effects of chlorogenic acid (5-O-caffeoylquinic acid; CGA), a major phenolic phytochemical found in instant decaffeinated coffee (IDC), and IDC against oxidative PC12 neuronal cell death. IDC (1 and 5 μg/ml) or CGA (1 and 5 μM) attenuated H 2 O 2 -induced PC12 cell death. H 2 O 2 -induced nuclear condensation and DNA fragmentation were strongly inhibited by pretreatment with IDC or CGA. Pretreatment with IDC or CGA also inhibited the H 2 O 2 -induced cleavage of poly(ADP-ribose) polymerase (PARP), and downregulation of Bcl-X L and caspase-3. The accumulation of intracellular ROS in H 2 O 2 -treated PC12 cells was dose-dependently diminished by IDC or CGA. The activation of c-Jun N-terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) by H 2 O 2 in PC12 cells was also inhibited by IDC or CGA. Collectively, these results indicate that IDC and CGA protect PC12 cells from H 2 O 2 -induced apoptosis by blocking the accumulation of intracellular ROS and the activation of MAPKs

  8. Coniferyl aldehyde attenuates radiation enteropathy by inhibiting cell death and promoting endothelial cell function.

    Science.gov (United States)

    Jeong, Ye-Ji; Jung, Myung Gu; Son, Yeonghoon; Jang, Jun-Ho; Lee, Yoon-Jin; Kim, Sung-Ho; Ko, Young-Gyo; Lee, Yun-Sil; Lee, Hae-June

    2015-01-01

    Radiation enteropathy is a common complication in cancer patients. The aim of this study was to investigate whether radiation-induced intestinal injury could be alleviated by coniferyl aldehyde (CA), an HSF1-inducing agent that increases cellular HSP70 expression. We systemically administered CA to mice with radiation enteropathy following abdominal irradiation (IR) to demonstrate the protective effects of CA against radiation-induced gastrointestinal injury. CA clearly alleviated acute radiation-induced intestinal damage, as reflected by the histopathological data and it also attenuated sub-acute enteritis. CA prevented intestinal crypt cell death and protected the microvasculature in the lamina propria during the acute and sub-acute phases of damage. CA induced HSF1 and HSP70 expression in both intestinal epithelial cells and endothelial cells in vitro. Additionally, CA protected against not only the apoptotic cell death of both endothelial and epithelial cells but also the loss of endothelial cell function following IR, indicating that CA has beneficial effects on the intestine. Our results provide novel insight into the effects of CA and suggest its role as a therapeutic candidate for radiation-induced enteropathy due to its ability to promote rapid re-proliferation of the intestinal epithelium by the synergic effects of the inhibition of cell death and the promotion of endothelial cell function.

  9. Dietary Quercetin Attenuates Adipose Tissue Expansion and Inflammation and Alters Adipocyte Morphology in a Tissue-Specific Manner

    Science.gov (United States)

    Forney, Laura A.; Lenard, Natalie R.; Stewart, Laura K.

    2018-01-01

    Chronic inflammation in adipose tissue may contribute to depot-specific adipose tissue expansion, leading to obesity and insulin resistance. Dietary supplementation with quercetin or botanical extracts containing quercetin attenuates high fat diet (HFD)-induced obesity and insulin resistance and decreases inflammation. Here, we determined the effects of quercetin and red onion extract (ROE) containing quercetin on subcutaneous (inguinal, IWAT) vs. visceral (epididymal, EWAT) white adipose tissue morphology and inflammation in mice fed low fat, high fat, high fat plus 50 μg/day quercetin or high fat plus ROE containing 50 μg/day quercetin equivalents for 9 weeks. Quercetin and ROE similarly ameliorated HFD-induced increases in adipocyte size and decreases in adipocyte number in IWAT and EWAT. Furthermore, quercetin and ROE induced alterations in adipocyte morphology in IWAT. Quercetin and ROE similarly decreased HFD-induced IWAT inflammation. However, quercetin and red onion differentially affected HFD-induced EWAT inflammation, with quercetin decreasing and REO increasing inflammatory marker gene expression. Quercetin and REO also differentially regulated circulating adipokine levels. These results show that quercetin or botanical extracts containing quercetin induce white adipose tissue remodeling which may occur through inflammatory-related mechanisms. PMID:29562620

  10. Dietary Quercetin Attenuates Adipose Tissue Expansion and Inflammation and Alters Adipocyte Morphology in a Tissue-Specific Manner

    Directory of Open Access Journals (Sweden)

    Laura A. Forney

    2018-03-01

    Full Text Available Chronic inflammation in adipose tissue may contribute to depot-specific adipose tissue expansion, leading to obesity and insulin resistance. Dietary supplementation with quercetin or botanical extracts containing quercetin attenuates high fat diet (HFD-induced obesity and insulin resistance and decreases inflammation. Here, we determined the effects of quercetin and red onion extract (ROE containing quercetin on subcutaneous (inguinal, IWAT vs. visceral (epididymal, EWAT white adipose tissue morphology and inflammation in mice fed low fat, high fat, high fat plus 50 μg/day quercetin or high fat plus ROE containing 50 μg/day quercetin equivalents for 9 weeks. Quercetin and ROE similarly ameliorated HFD-induced increases in adipocyte size and decreases in adipocyte number in IWAT and EWAT. Furthermore, quercetin and ROE induced alterations in adipocyte morphology in IWAT. Quercetin and ROE similarly decreased HFD-induced IWAT inflammation. However, quercetin and red onion differentially affected HFD-induced EWAT inflammation, with quercetin decreasing and REO increasing inflammatory marker gene expression. Quercetin and REO also differentially regulated circulating adipokine levels. These results show that quercetin or botanical extracts containing quercetin induce white adipose tissue remodeling which may occur through inflammatory-related mechanisms.

  11. Attenuation of oxidative neuronal cell death by coffee phenolic phytochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Eun Sun; Jang, Young Jin [Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Hwang, Mun Kyung; Kang, Nam Joo [Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701 (Korea, Republic of); Lee, Ki Won [Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701 (Korea, Republic of)], E-mail: kiwon@konkuk.ac.kr; Lee, Hyong Joo [Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of)], E-mail: leehyjo@snu.ac.kr

    2009-02-10

    Neurodegenerative disorders such as Alzheimer's disease (AD) are strongly associated with oxidative stress, which is induced by reactive oxygen species (ROS) including hydrogen peroxide (H{sub 2}O{sub 2}). Recent studies suggest that moderate coffee consumption may reduce the risk of neurodegenerative diseases such as AD, but the molecular mechanisms underlying this effect remain to be clarified. In this study, we investigated the protective effects of chlorogenic acid (5-O-caffeoylquinic acid; CGA), a major phenolic phytochemical found in instant decaffeinated coffee (IDC), and IDC against oxidative PC12 neuronal cell death. IDC (1 and 5 {mu}g/ml) or CGA (1 and 5 {mu}M) attenuated H{sub 2}O{sub 2}-induced PC12 cell death. H{sub 2}O{sub 2}-induced nuclear condensation and DNA fragmentation were strongly inhibited by pretreatment with IDC or CGA. Pretreatment with IDC or CGA also inhibited the H{sub 2}O{sub 2}-induced cleavage of poly(ADP-ribose) polymerase (PARP), and downregulation of Bcl-X{sub L} and caspase-3. The accumulation of intracellular ROS in H{sub 2}O{sub 2}-treated PC12 cells was dose-dependently diminished by IDC or CGA. The activation of c-Jun N-terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) by H{sub 2}O{sub 2} in PC12 cells was also inhibited by IDC or CGA. Collectively, these results indicate that IDC and CGA protect PC12 cells from H{sub 2}O{sub 2}-induced apoptosis by blocking the accumulation of intracellular ROS and the activation of MAPKs.

  12. MRI-guided attenuation correction in whole-body PET/MR. Assessment of the effect of bone attenuation

    International Nuclear Information System (INIS)

    Akbarzadeh, A.; Ay, M.R.; Ahmadian, A.; Riahi Alam, N.; Zaidi, H.

    2013-01-01

    Hybrid positron emission tomography (PET)/MRI presents many advantages in comparison with its counterpart PET/CT in terms of improved soft-tissue contrast, decrease in radiation exposure, and truly simultaneous and multi-parametric imaging capabilities. However, the lack of well-established methodology for MR-based attenuation correction is hampering further development and wider acceptance of this technology. We assess the impact of ignoring bone attenuation and using different tissue classes for generation of the attenuation map on the accuracy of attenuation correction of PET data. This work was performed using simulation studies based on the XCAT phantom and clinical input data. For the latter, PET and CT images of patients were used as input for the analytic simulation model using realistic activity distributions where CT-based attenuation correction was utilized as reference for comparison. For both phantom and clinical studies, the reference attenuation map was classified into various numbers of tissue classes to produce three (air, soft tissue and lung), four (air, lungs, soft tissue and cortical bones) and five (air, lungs, soft tissue, cortical bones and spongeous bones) class attenuation maps. The phantom studies demonstrated that ignoring bone increases the relative error by up to 6.8% in the body and up to 31.0% for bony regions. Likewise, the simulated clinical studies showed that the mean relative error reached 15% for lesions located in the body and 30.7% for lesions located in bones, when neglecting bones. These results demonstrate an underestimation of about 30% of tracer uptake when neglecting bone, which in turn imposes substantial loss of quantitative accuracy for PET images produced by hybrid PET/MRI systems. Considering bones in the attenuation map will considerably improve the accuracy of MR-guided attenuation correction in hybrid PET/MR to enable quantitative PET imaging on hybrid PET/MR technologies. (author)

  13. Attenuated Mycobacterium tuberculosis SO2 vaccine candidate is unable to induce cell death.

    Directory of Open Access Journals (Sweden)

    Adriana Aporta

    Full Text Available It has been proposed that Mycobacterium tuberculosis virulent strains inhibit apoptosis and trigger cell death by necrosis of host macrophages to evade innate immunity, while non-virulent strains induce typical apoptosis activating a protective host response. As part of the characterization of a novel tuberculosis vaccine candidate, the M. tuberculosis phoP mutant SO2, we sought to evaluate its potential to induce host cell death. The parental M. tuberculosis MT103 strain and the current vaccine against tuberculosis Bacillus Calmette-Guérin (BCG were used as comparators in mouse models in vitro and in vivo. Our data reveal that attenuated SO2 was unable to induce apoptotic events neither in mouse macrophages in vitro nor during lung infection in vivo. In contrast, virulent MT103 triggers typical apoptotic events with phosphatidylserine exposure, caspase-3 activation and nuclear condensation and fragmentation. BCG strain behaved like SO2 and did not induce apoptosis. A clonogenic survival assay confirmed that viability of BCG- or SO2-infected macrophages was unaffected. Our results discard apoptosis as the protective mechanism induced by SO2 vaccine and provide evidence for positive correlation between classical apoptosis induction and virulent strains, suggesting apoptosis as a possible virulence determinant during M. tuberculosis infection.

  14. Giardia duodenalis infection reduces granulocyte infiltration in an in vivo model of bacterial toxin-induced colitis and attenuates inflammation in human intestinal tissue.

    Directory of Open Access Journals (Sweden)

    James A Cotton

    Full Text Available Giardia duodenalis (syn. G. intestinalis, G. lamblia is a predominant cause of waterborne diarrheal disease that may lead to post-infectious functional gastrointestinal disorders. Although Giardia-infected individuals could carry as much as 106 trophozoites per centimetre of gut, their intestinal mucosa is devoid of overt signs of inflammation. Recent studies have shown that in endemic countries where bacterial infectious diseases are common, Giardia infections can protect against the development of diarrheal disease and fever. Conversely, separate observations have indicated Giardia infections may enhance the severity of diarrheal disease from a co-infecting pathogen. Polymorphonuclear leukocytes or neutrophils (PMNs are granulocytic, innate immune cells characteristic of acute intestinal inflammatory responses against bacterial pathogens that contribute to the development of diarrheal disease following recruitment into intestinal tissues. Giardia cathepsin B cysteine proteases have been shown to attenuate PMN chemotaxis towards IL-8/CXCL8, suggesting Giardia targets PMN accumulation. However, the ability of Giardia infections to attenuate PMN accumulation in vivo and how in turn this effect may alter the host inflammatory response in the intestine has yet to be demonstrated. Herein, we report that Giardia infection attenuates granulocyte tissue infiltration induced by intra-rectal instillation of Clostridium difficile toxin A and B in an isolate-dependent manner. This attenuation of granulocyte infiltration into colonic tissues paralled decreased expression of several cytokines associated with the recruitment of PMNs. Giardia trophozoite isolates that attenuated granulocyte infiltration in vivo also decreased protein expression of cytokines released from inflamed mucosal biopsy tissues collected from patients with active Crohn's disease, including several cytokines associated with PMN recruitment. These results demonstrate for the first time

  15. RIP3 attenuates the pancreatic damage induced by deletion of ATG7.

    Science.gov (United States)

    Zhou, Xiaodong; Xie, Li; Xia, Leizhou; Bergmann, Frank; Büchler, Markus W; Kroemer, Guido; Hackert, Thilo; Fortunato, Franco

    2017-07-13

    Invalidation of pancreatic autophagy entails pancreatic atrophy, endocrine and exocrine insufficiency and pancreatitis. The aim of this study was to investigate whether depletion of Rip3, which is involved in necroptotic signaling, may attenuate the pancreatic atrophy and pancreatitis resulting from autophagy inhibition. Autophagy and necroptosis signaling were evaluated in mice lacking expression of Rip3 in all organs and Atg7 in the pancreas. Acinar cell death, inflammation and fibrosis were evaluated by using of a compendium of immunofluorescence methods and immunoblots. Mice deficient for pancreatic Atg7 developed acute pancreatitis, which progressed to chronic pancreatitis. This phenotype reduces autophagy, increase apoptosis and necroptosis, inflammation and fibrosis, as well as premature death of the animals. Knockout of Rip3 exacerbated the apoptotic death of acinar cells, increased tissue damage, reduced macrophage infiltration and further accelerated the death of the mice with Atg7-deficient pancreas. The pancreatic degeneration induced by autophagy inhibition was exacerbated by Rip3 deletion.

  16. Use of Tissue-Specific MicroRNA to Control Pathology of Wild-Type Adenovirus without Attenuation of Its Ability to Kill Cancer Cells

    NARCIS (Netherlands)

    Cawood, R.; Chen, H.H.; Carroll, F.; Bazan-Peregrino, M.; Rooijen, van N.; Seymour, L.W.

    2009-01-01

    Replicating viruses have broad applications in biomedicine, notably in cancer virotherapy and in the design of attenuated vaccines; however, uncontrolled virus replication in vulnerable tissues can give pathology and often restricts the use of potent strains. Increased knowledge of tissue-selective

  17. Activating AMP-activated protein kinase by an α1 selective activator compound 13 attenuates dexamethasone-induced osteoblast cell death

    International Nuclear Information System (INIS)

    Guo, Shiguang; Mao, Li; Ji, Feng; Wang, Shouguo; Xie, Yue; Fei, Haodong; Wang, Xiao-dong

    2016-01-01

    Excessive glucocorticoid (GC) usage may lead to non-traumatic femoral head osteonecrosis. Dexamethasone (Dex) exerts cytotoxic effect to cultured osteoblasts. Here, we investigated the potential activity of Compound 13 (C13), a novel α1 selective AMP-activated protein kinase (AMPK) activator, against the process. Our data revealed that C13 pretreatment significantly attenuated Dex-induced apoptosis and necrosis in both osteoblastic-like MC3T3-E1 cells and primary murine osteoblasts. AMPK activation mediated C13′ cytoprotective effect in osteoblasts. The AMPK inhibitor Compound C, shRNA-mediated knockdown of AMPKα1, or dominant negative mutation of AMPKα1 (T172A) almost abolished C13-induced AMPK activation and its pro-survival effect in osteoblasts. On the other hand, forced AMPK activation by adding AMPK activator A-769662 or exogenous expression a constitutively-active (ca) AMPKα1 (T172D) mimicked C13's actions and inhibited Dex-induced osteoblast cell death. Meanwhile, A-769662 or ca-AMPKα1 almost nullified C13's activity in osteoblast. Further studies showed that C13 activated AMPK-dependent nicotinamide adenine dinucleotide phosphate (NADPH) pathway to inhibit Dex-induced reactive oxygen species (ROS) production in MC3T3-E1 cells and primary murine osteoblasts. Such effects by C13 were almost reversed by Compound C or AMPKα1 depletion/mutation. Together, these results suggest that C13 alleviates Dex-induced osteoblast cell death via activating AMPK signaling pathway. - Highlights: • Compound 13 (C13) attenuates dexamethasone (Dex)-induced osteoblast cell death. • C13-induced cytoprotective effect against Dex in osteoblasts requires AMPK activation. • Forced AMPK activation protects osteoblasts from Dex, nullifying C13's activities. • C13 increases NADPH activity and inhibits Dex-induced oxidative stress in osteoblasts.

  18. Activating AMP-activated protein kinase by an α1 selective activator compound 13 attenuates dexamethasone-induced osteoblast cell death

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Shiguang [Department of Intensive Care Unit, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an (China); Mao, Li [Department of Endocrinology, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an (China); Ji, Feng, E-mail: huaiaifengjidr@163.com [Department of Orthopedics, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an (China); Wang, Shouguo; Xie, Yue; Fei, Haodong [Department of Orthopedics, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an (China); Wang, Xiao-dong, E-mail: xiaodongwangsz@163.com [The Center of Diagnosis and Treatment for Children' s Bone Diseases, The Children' s Hospital Affiliated to Soochow University, Suzhou (China)

    2016-03-18

    Excessive glucocorticoid (GC) usage may lead to non-traumatic femoral head osteonecrosis. Dexamethasone (Dex) exerts cytotoxic effect to cultured osteoblasts. Here, we investigated the potential activity of Compound 13 (C13), a novel α1 selective AMP-activated protein kinase (AMPK) activator, against the process. Our data revealed that C13 pretreatment significantly attenuated Dex-induced apoptosis and necrosis in both osteoblastic-like MC3T3-E1 cells and primary murine osteoblasts. AMPK activation mediated C13′ cytoprotective effect in osteoblasts. The AMPK inhibitor Compound C, shRNA-mediated knockdown of AMPKα1, or dominant negative mutation of AMPKα1 (T172A) almost abolished C13-induced AMPK activation and its pro-survival effect in osteoblasts. On the other hand, forced AMPK activation by adding AMPK activator A-769662 or exogenous expression a constitutively-active (ca) AMPKα1 (T172D) mimicked C13's actions and inhibited Dex-induced osteoblast cell death. Meanwhile, A-769662 or ca-AMPKα1 almost nullified C13's activity in osteoblast. Further studies showed that C13 activated AMPK-dependent nicotinamide adenine dinucleotide phosphate (NADPH) pathway to inhibit Dex-induced reactive oxygen species (ROS) production in MC3T3-E1 cells and primary murine osteoblasts. Such effects by C13 were almost reversed by Compound C or AMPKα1 depletion/mutation. Together, these results suggest that C13 alleviates Dex-induced osteoblast cell death via activating AMPK signaling pathway. - Highlights: • Compound 13 (C13) attenuates dexamethasone (Dex)-induced osteoblast cell death. • C13-induced cytoprotective effect against Dex in osteoblasts requires AMPK activation. • Forced AMPK activation protects osteoblasts from Dex, nullifying C13's activities. • C13 increases NADPH activity and inhibits Dex-induced oxidative stress in osteoblasts.

  19. The risk of sudden death in sport in patients with signs of connective tissue dysplasia (literature review

    Directory of Open Access Journals (Sweden)

    Nekhanevych O.B.

    2013-03-01

    Full Text Available Literature review indicates that, despite the disclosure of a number of causes and mechanisms of sudden death in people performing physical activities, this issue remains relevant today. The main cause of sudden death in sport is pathological conditions and heart diseases. Par¬ticular risk group during follow-up over persons involved in physical activity are those with the presence of small anomalies; this may be a ma¬nifestation of connective tissue dysplasia. With all the variety of affected organs and systems in patients with connective tissue dysplasia, cardio¬vascular disorders are the leading pathology determining the quality and pro¬gnosis of life.

  20. Attenuated hypocholesterolemia following severe trauma signals risk for late ventilator-associated pneumonia, ventilator dependency, and death: a retrospective study of consecutive patients

    Directory of Open Access Journals (Sweden)

    Chirichella Thomas J

    2011-03-01

    Full Text Available Abstract Background Post-traumatic ventilator-associated pneumonia (VAP is a substantial clinical problem that increases hospital costs and typically adds to the duration of mechanical ventilation. We evaluated the impact of VAP on ventilator days. We also assessed 48-hour total blood cholesterol (TC and other potential risk factors for the development of VAP. Methods We performed a retrospective study of consecutive trauma patients requiring emergency tracheal intubation and evaluated TC, age, gender, ethanol status, smoker status, injury mechanism, chest injury, brain injury, Injury Severity Score (ISS, shock, day-one hypoxemia, and RBC transfusion as potential risks for VAP. Results The 152 patients had ISS 28.1, brain injury 68.4%, VAP 50.0%, ventilator days 14.3, and death 9.9%. Ventilator days were increased with late VAP (p Conclusions Severe traumatic injury produced substantial hypocholesterolemia that is greater with chest injury, shock, and RBC transfusion, but less with brain injury. Total blood cholesterol tended to decrease with increasing injury severity. However, attenuated hypocholesterolemia (ISS ≥ 20-&-TC ≥ 90 mg/dL represents a unique response that can occur with critical injury. Attenuated hypocholesterolemia signals early risk for late VAP, ventilator dependency, and death.

  1. FNDC5 attenuates adipose tissue inflammation and insulin resistance via AMPK-mediated macrophage polarization in obesity.

    Science.gov (United States)

    Xiong, Xiao-Qing; Geng, Zhi; Zhou, Bing; Zhang, Feng; Han, Ying; Zhou, Ye-Bo; Wang, Jue-Jin; Gao, Xing-Ya; Chen, Qi; Li, Yue-Hua; Kang, Yu-Ming; Zhu, Guo-Qing

    2018-06-01

    Obesity-induced chronic inflammation is critical in the pathogenesis of insulin resistance, and the recruitment and proinflammatory activation of adipose tissue macrophages (ATMs) is important for the development of this process. Here, we examined the effects of fibronectin type III domain-containing 5 (FNDC5) on inflammation and insulin resistance in high-fat diet-induced obese mice. Male wild-type (WT) and FNDC5 -/- mice were fed with standard chow (Ctrl) or high fat diet (HFD) for 20 weeks to induce obesity and insulin resistance. Firstly, effects of FNDC5 gene deletion on obesity, insulin resistance, macrophage accumulation and polarization and adipose tissue inflammation were determined in mice. Secondly, the macrophage polarity shift was further examined with flow cytometry in isolated stromal vascular fraction (SVF). Thirdly, the effects of exogenous FNDC5 on lipopolysaccharide (LPS)-induced macrophage polarization, inflammation and the underlying signaling mechanism were investigated in RAW264.7 macrophages and primary mouse peritoneal cavity macrophages (PMs). Finally, the therapeutic effects of FNDC5 overexpression were examined in HFD-induced obese WT and FNDC5 -/- mice. FNDC5 gene deletion aggravated obesity, insulin resistance, fat accumulation and inflammation accompanied with enhanced AMPK inhibition, macrophages recruitment and M1 polarization in mice fed with HFD. Exogenous FNDC5 inhibited LPS-induced M1 macrophage polarization and inflammatory cytokine production via AMPK phosphorylation in both RAW264.7 macrophages and PMs. FNDC5 overexpression attenuated insulin resistance, AMPK inhibition, M1 macrophage polarization and inflammatory cytokine production in adipose tissue of obese WT and FNDC5 -/- mice. FNDC5 attenuates adipose tissue inflammation and insulin resistance via AMPK-mediated macrophage polarization in HFD-induced obesity. FNDC5 plays several beneficial roles in obesity and may be used as a therapeutic regimen for preventing

  2. Rapid intra-operative diagnosis of kidney cancer by attenuated total reflection infrared spectroscopy of tissue smears.

    Science.gov (United States)

    Pucetaite, Milda; Velicka, Martynas; Urboniene, Vidita; Ceponkus, Justinas; Bandzeviciute, Rimante; Jankevicius, Feliksas; Zelvys, Arunas; Sablinskas, Valdas; Steiner, Gerald

    2018-01-09

    Herein, a technique to analyze air-dried kidney tissue impression smears by means of attenuated total reflection infrared (ATR-IR) spectroscopy is presented. Spectral tumor markers-absorption bands of glycogen-are identified in the ATR-IR spectra of the kidney tissue smear samples. Thin kidney tissue cryo-sections currently used for IR spectroscopic analysis lack such spectral markers as the sample preparation causes irreversible molecular changes in the tissue. In particular, freeze-thaw cycle results in degradation of the glycogen and reduction or complete dissolution of its content. Supervised spectral classification was applied to the recorded spectra of the smears and the test spectra were classified with a high accuracy of 92% for normal tissue and 94% for tumor tissue, respectively. For further development, we propose that combination of the method with optical fiber ATR probes could potentially be used for rapid real-time intra-operative tissue analysis without interfering with either the established protocols of pathological examination or the ordinary workflow of operating surgeon. Such approach could ensure easier transition of the method to clinical applications where it may complement the results of gold standard histopathology examination and aid in more precise resection of kidney tumors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients.

    Science.gov (United States)

    Burger, C; Goerres, G; Schoenes, S; Buck, A; Lonn, A H R; Von Schulthess, G K

    2002-07-01

    The CT data acquired in combined PET/CT studies provide a fast and essentially noiseless source for the correction of photon attenuation in PET emission data. To this end, the CT values relating to attenuation of photons in the range of 40-140 keV must be transformed into linear attenuation coefficients at the PET energy of 511 keV. As attenuation depends on photon energy and the absorbing material, an accurate theoretical relation cannot be devised. The transformation implemented in the Discovery LS PET/CT scanner (GE Medical Systems, Milwaukee, Wis.) uses a bilinear function based on the attenuation of water and cortical bone at the CT and PET energies. The purpose of this study was to compare this transformation with experimental CT values and corresponding PET attenuation coefficients. In 14 patients, quantitative PET attenuation maps were calculated from germanium-68 transmission scans, and resolution-matched CT images were generated. A total of 114 volumes of interest were defined and the average PET attenuation coefficients and CT values measured. From the CT values the predicted PET attenuation coefficients were calculated using the bilinear transformation. When the transformation was based on the narrow-beam attenuation coefficient of water at 511 keV (0.096 cm(-1)), the predicted attenuation coefficients were higher in soft tissue than the measured values. This bias was reduced by replacing 0.096 cm(-1) in the transformation by the linear attenuation coefficient of 0.093 cm(-1) obtained from germanium-68 transmission scans. An analysis of the corrected emission activities shows that the resulting transformation is essentially equivalent to the transmission-based attenuation correction for human tissue. For non-human material, however, it may assign inaccurate attenuation coefficients which will also affect the correction in neighbouring tissue.

  4. Prolonged superficial local cryotherapy attenuates microcirculatory impairment, regional inflammation, and muscle necrosis after closed soft tissue injury in rats.

    Science.gov (United States)

    Schaser, Klaus-Dieter; Disch, Alexander C; Stover, John F; Lauffer, Annette; Bail, Herman J; Mittlmeier, Thomas

    2007-01-01

    Closed soft tissue injury induces progressive microvascular dysfunction and regional inflammation. The authors tested the hypothesis that adverse trauma-induced effects can be reduced by local cooling. While superficial cooling reduces swelling, pain, and cellular oxygen demand, the effects of cryotherapy on posttraumatic microcirculation are incompletely understood. Controlled laboratory study. After a standardized closed soft tissue injury to the left tibial compartment, male rats were randomly subjected to percutaneous perfusion for 6 hours with 0.9% NaCL (controls; room temperature) or cold NaCL (cryotherapy; 8 degrees C) (n = 7 per group). Uninjured rats served as shams (n = 7). Microcirculatory changes and leukocyte adherence were determined by intravital microscopy. Intramuscular pressure was measured, and invasion of granulocytes and macrophages was assessed by immunohistochemistry. Edema and tissue damage was quantified by gravimetry and decreased desmin staining. Closed soft tissue injury significantly decreased functional capillary density (240 +/- 12 cm(-1)); increased microvascular permeability (0.75 +/- 0.03), endothelial leukocyte adherence (995 +/- 77/cm(2)), granulocyte (182.0 +/- 25.5/mm(2)) and macrophage infiltration, edema formation, and myonecrosis (ratio: 2.95 +/- 0.45) within the left extensor digitorum longus muscle. Cryotherapy for 6 hours significantly restored diminished functional capillary density (393 +/- 35), markedly decreased elevated intramuscular pressure, reduced the number of adhering (462 +/- 188/cm(2)) and invading granulocytes (119 +/- 28), and attenuated tissue damage (ratio: 1.7 +/- 0.17). The hypothesis that prolonged cooling reduces posttraumatic microvascular dysfunction, inflammation, and structural impairment was confirmed. These results may have therapeutic implications as cryotherapy after closed soft tissue injury is a valuable therapeutic approach to improve nutritive perfusion and attenuate leukocyte

  5. ALKBH7 drives a tissue and sex-specific necrotic cell death response following alkylation-induced damage

    Science.gov (United States)

    Jordan, Jennifer J; Chhim, Sophea; Margulies, Carrie M; Allocca, Mariacarmela; Bronson, Roderick T; Klungland, Arne; Samson, Leona D; Fu, Dragony

    2017-01-01

    Regulated necrosis has emerged as a major cell death mechanism in response to different forms of physiological and pharmacological stress. The AlkB homolog 7 (ALKBH7) protein is required for regulated cellular necrosis in response to chemotherapeutic alkylating agents but its role within a whole organism is unknown. Here, we show that ALKBH7 modulates alkylation-induced cellular death through a tissue and sex-specific mechanism. At the whole-animal level, we find that ALKBH7 deficiency confers increased resistance to MMS-induced toxicity in male but not female mice. Moreover, ALKBH7-deficient mice exhibit protection against alkylation-mediated cytotoxicity in retinal photoreceptor and cerebellar granule cells, two cell types that undergo necrotic death through the initiation of the base excision repair pathway and hyperactivation of the PARP1/ARTD1 enzyme. Notably, the protection against alkylation-induced cerebellar degeneration is specific to ALKBH7-deficient male but not female mice. Our results uncover an in vivo role for ALKBH7 in mediating a sexually dimorphic tissue response to alkylation damage that could influence individual responses to chemotherapies based upon alkylating agents. PMID:28726787

  6. Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation.

    Science.gov (United States)

    Carrascal, Carolina Amador; Aristizabal, Sara; Greenleaf, James F; Urban, Matthew W

    2016-02-01

    Elasticity is measured by shear wave elasticity imaging (SWEI) methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study, the effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency, and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using fast object-oriented C++ ultrasound simulator (FOCUS) and shear wave simulations using finite-element-model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results: The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40%-90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, and the resulting Pearson's correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (phase aberration and attenuation case), measured phase screen, (only phase aberration case), and FOCUS/FEM model (only attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation.

  7. A novel approach for studying programmed cell death in living plant tissues

    DEFF Research Database (Denmark)

    Mark, Christina

    to traditional approaches. Future applications of this type of setup could be used for other types of plant tissues such as leaves or germinating embryos for studying the effects of e.g. biotic and abiotic stresses or for screening of compounds for biological effects. Due to the ease of use and many......Programmed cell death (PCD) is a highly regulated process in which cells are killed as part of developmental programmes or as defence mechanisms against pathogens, but the process is less well understood in plant cells compared to animal cells. Reactive oxygen species (ROS) are involved in PCD...... in plants, but the relationship between and mechanisms behind ROS and PCDhas not yet been fully elucidated due to the involvement of complex signalling networks. Elucidation of these mechanisms and signalling pathways will allow manipulation of cell death in plants, which could help to improve yield...

  8. Extraction of optical scattering parameters and attenuation compensation in optical coherence tomography images of multi-layered tissue structures

    DEFF Research Database (Denmark)

    Thrane, Lars; Frosz, Michael Henoch; Tycho, Andreas

    2004-01-01

    A recently developed analytical optical coherence tomography (OCT) model [Thrane et al., J. Opt. Soc. Am. A 17, 484 (2000)] allows the extraction of optical scattering parameters from OCT images, thereby permitting attenuation compensation in those images. By expanding this theoretical model, we...... have developed a new method for extracting optical scattering parameters from multilayered tissue structures in vivo. To verify this, we used a Monte Carlo (MC) OCT model as a numerical phantom to simulate the OCT signal for het-erogeneous multilayered tissue. Excellent agreement between the extracted......, and the results hold promise for expanding the functional imaging capabilities of OCT....

  9. In vitro study of the effects of ultrasound-mediated glycerol on optical attenuation of human normal and cancerous esophageal tissues with optical coherence tomography

    International Nuclear Information System (INIS)

    Zhang, Y Q; Wei, H J; Guo, Z Y; Gu, H M; Guo, X; Zhu, Z G; Yang, H Q; Xie, S S

    2013-01-01

    Previous studies from our group have demonstrated that glucose solution can induce optical clearing enhancement of esophageal tissues with optical coherence tomography (OCT). The aims of this study were to evaluate the optical clearing effects of ultrasound-mediated optical clearing agents (OCAs) and to find more effective methods to distinguish human normal esophageal tissues (NE) and cancerous esophageal tissues (CE). Here we used the OCT technique to investigate the optical attenuation of NE and CE in vitro after treatment with 30% glycerol alone and glycerol combined with ultrasound, respectively. Experimental results showed that the averaged attenuation coefficient of CE was significantly larger than that of NE. The maximal decreases of averaged attenuation coefficients of NE and CE were approximately 48.7% and 36.2% after treatment with 30% glycerol alone, and they were significantly lower than those treated with 30% glycerol and ultrasound (57.5% in NE and 44.8% in CE). Moreover, after treatment with 30% glycerol alone, the averaged attenuation coefficients of NE and CE reached their minima in about 80 min and 65 min, respectively. The times were much shorter in NE and CE after treatment with glycerol with ultrasound, being about 62 min and 50 min, respectively. The results suggest that there is a significant difference in the optical properties of NE and CE, and that OCT with an ultrasound–OCAs combination has the ability to distinguish CE from NE. (paper)

  10. Fibroblast Growth Factor 21 Deficiency Attenuates Experimental Colitis-Induced Adipose Tissue Lipolysis

    Directory of Open Access Journals (Sweden)

    Liming Liu

    2017-01-01

    Full Text Available Aims. Nutrient deficiencies are common in patients with inflammatory bowel disease (IBD. Adipose tissue plays a critical role in regulating energy balance. Fibroblast growth factor 21 (FGF21 is an important endocrine metabolic regulator with emerging beneficial roles in lipid homeostasis. We investigated the impact of FGF21 in experimental colitis-induced epididymal white adipose tissue (eWAT lipolysis. Methods. Mice were given 2.5% dextran sulfate sodium (DSS ad libitum for 7 days to induce colitis. The role of FGF21 was investigated using antibody neutralization or knockout (KO mice. Lipolysis index and adipose lipolytic enzymes were determined. In addition, 3T3-L1 cells were pretreated with IL-6, followed by recombinant human FGF21 (rhFGF21 treatment; lipolysis was assessed. Results. DSS markedly decreased eWAT/body weight ratio and increased serum concentrations of free fatty acid (FFA and glycerol, indicating increased adipose tissue lipolysis. eWAT intracellular lipolytic enzyme expression/activation was significantly increased. These alterations were significantly attenuated in FGF21 KO mice and by circulating FGF21 neutralization. Moreover, DSS treatment markedly increased serum IL-6 and FGF21 levels. IL-6 pretreatment was necessary for the stimulatory effect of FGF21 on adipose lipolysis in 3T3-L1 cells. Conclusions. Our results demonstrate that experimental colitis induces eWAT lipolysis via an IL-6/FGF21-mediated signaling pathway.

  11. Cell Death-Associated Ribosomal RNA Cleavage in Postmortem Tissues and Its Forensic Applications.

    Science.gov (United States)

    Kim, Ji Yeon; Kim, Yunmi; Cha, Hyo Kyeong; Lim, Hye Young; Kim, Hyungsub; Chung, Sooyoung; Hwang, Juck-Joon; Park, Seong Hwan; Son, Gi Hoon

    2017-06-30

    Estimation of postmortem interval (PMI) is a key issue in the field of forensic pathology. With the availability of quantitative analysis of RNA levels in postmortem tissues, several studies have assessed the postmortem degradation of constitutively expressed RNA species to estimate PMI. However, conventional RNA quantification as well as biochemical and physiological changes employed thus far have limitations related to standardization or normalization. The present study focuses on an interesting feature of the subdomains of certain RNA species, in which they are site-specifically cleaved during apoptotic cell death. We found that the D8 divergent domain of ribosomal RNA (rRNA) bearing cell death-related cleavage sites was rapidly removed during postmortem RNA degradation. In contrast to the fragile domain, the 5' terminal region of 28S rRNA was remarkably stable during the postmortem period. Importantly, the differences in the degradation rates between the two domains in mammalian 28S rRNA were highly proportional to increasing PMI with a significant linear correlation observed in mice as well as human autopsy tissues. In conclusion, we demonstrate that comparison of the degradation rates between domains of a single RNA species provides quantitative information on postmortem degradation states, which can be applied for the estimation of PMI.

  12. Inhibiting c-Jun N-terminal kinase partially attenuates caffeine-dependent cell death without alleviating the caffeine-induced reduction in mitochondrial respiration in C2C12 skeletal myotubes

    International Nuclear Information System (INIS)

    Downs, R.M.; Hughes, M.A.; Kinsey, S.T.; Johnson, M.C.; Baumgarner, B.L.

    2016-01-01

    Caffeine is a widely consumed stimulant that has previously been shown to promote cytotoxic stress and even cell death in numerous mammalian cell lines. Thus far there is little information available regarding the toxicity of caffeine in skeletal muscle cells. Our preliminary data revealed that treating C2C12 myotubes with 5 mM caffeine for 6 h increased nuclear fragmentation and reduced basal and maximal oxygen consumption rate (OCR) in skeletal myotubes. The purpose of this study was to further elucidate the pathways by which caffeine increased cell death and reduced mitochondrial respiration. We specifically examined the role of c-Jun N-terminal kinase (JNK), which has previously been shown to simultaneously increase caspase-dependent cell death and reduce mitochondrial respiration in other mammalian cell lines. We found that caffeine promoted a dose-dependent increase in cell death in multinucleated myotubes but did not in mononucleated myoblasts. The addition of 10 μM Z-DEVD-FMK, a specific inhibitor of executioner caspases, completely inhibited caffeine-dependent cell death. Further, the addition of 400 μM dantrolene, a specific ryanodine receptor (RYR) inhibitor, prevented the caffeine-dependent increase in cell death and the reduction in basal and maximal OCR. We also discovered that caffeine treatment significantly increased the phosphorylation of JNK and that the addition of 30 μM SP600125 (JNKi), a specific JNK inhibitor, partially attenuated caffeine-induced cell death without preventing the caffeine-dependent reduction in basal and maximal OCR. Our results suggest that JNK partially mediates the increase in caspase-dependent cell death but does not contribute to reduced mitochondrial respiration in caffeine-treated skeletal muscle cells. We conclude that caffeine increased cell death and reduced mitochondrial respiration in a calcium-dependent manner by activating the RYR and promoting reticular calcium release. - Highlights: • Caffeine

  13. Curcumin Attenuates Staurosporine-Mediated Death of Retinal Ganglion Cells

    OpenAIRE

    Burugula, Balabharathi; Ganesh, Bhagyalaxmi S.; Chintala, Shravan K.

    2011-01-01

    The functional effect of curcumin, a free radical scavenger and an herbal medicine from Indian yellow curry spice, Curcuma longa, on protease-mediated retinal ganglion cell death was investigated. These results show, for the first time, that curcumin indeed prevents the protease-mediated death of RGCs, both in vitro and in vivo.

  14. In vivo evidence of methamphetamine induced attenuation of brain tissue oxygenation as measured by EPR oximetry

    Science.gov (United States)

    Weaver, John; Yang, Yirong; Purvis, Rebecca; Weatherwax, Theodore; Rosen, Gerald M.; Liu, Ke Jian

    2014-01-01

    Abuse of methamphetamine (METH) is a major and significant societal problem in the US, as a number of studies have suggested that METH is associated with increased cerebrovascular events, hemorrhage or vasospasm. Although cellular and molecular mechanisms involved in METH-induced toxicity are not completely understood, changes in brain O2 may play an important role and contribute to METH-induced neurotoxicity including dopaminergic receptor degradation. Given that O2 is the terminal electron acceptor for many enzymes that are important in brain function, the impact of METH on brain tissue pO2 in vivo remains largely uncharacterized. This study investigated striatal tissue pO2 changes in male C57BL/6 mice (16–20g) following METH administration using EPR oximetry, a highly sensitive modality to measure pO2 in vivo, in situ and in real time. We demonstrate that 20 min after a single injection of METH (8 mg/kg i.v.), the striatal pO2 was reduced to 81% of the pretreatment level and exposure to METH for 3 consecutive days further attenuated striatal pO2 to 64%. More importantly, pO2 did not recover fully to control levels even 24 hrs after administration of a single dose of METH. and continual exposure to METH exacerbates the condition. We also show a reduction in cerebral blood flow associated with a decreased brain pO2 indicating an ischemic condition. Our findings suggests that administration of METH can attenuate brain tissue pO2, which may lead to hypoxic insult, thus a risk factor for METH-induced brain injury and the development of stroke in young adults. PMID:24412707

  15. Meaning and death-thought accessibility.

    Science.gov (United States)

    Van Tongeren, Daryl R; Green, Jeffrey D

    2018-01-01

    Meaning is a central feature in human life, but death can disrupt a sense of meaning. Two experiments tested the hypothesis that meaning in life and meaning in death are distinct types of meaning when mortality is salient and differentially affect death-thought accessibility (DTA). In Experiment 1, imagining a specific scenario in which meaning is preserved beyond death reduced DTA relative to a standard mortality salience prime; moreover, these effects were not due to changes in self-esteem. In Experiment 2, imagining a meaningful life when mortality is salient elicited greater DTA, whereas imagining meaning in death elicited less DTA. Imbuing death with meaning attenuates DTA, whereas meaning in life increases DTA. © 2017 The British Psychological Society.

  16. Activity deprivation induces neuronal cell death: mediation by tissue-type plasminogen activator.

    Directory of Open Access Journals (Sweden)

    Eldi Schonfeld-Dado

    Full Text Available Spontaneous activity is an essential attribute of neuronal networks and plays a critical role in their development and maintenance. Upon blockade of activity with tetrodotoxin (TTX, neurons degenerate slowly and die in a manner resembling neurodegenerative diseases-induced neuronal cell death. The molecular cascade leading to this type of slow cell death is not entirely clear. Primary post-natal cortical neurons were exposed to TTX for up to two weeks, followed by molecular, biochemical and immunefluorescence analysis. The expression of the neuronal marker, neuron specific enolase (NSE, was down-regulated, as expected, but surprisingly, there was a concomitant and striking elevation in expression of tissue-type plasminogen activator (tPA. Immunofluorescence analysis indicated that tPA was highly elevated inside affected neurons. Transfection of an endogenous tPA inhibitor, plasminogen activator inhibitor-1 (PAI-1, protected the TTX-exposed neurons from dying. These results indicate that tPA is a pivotal player in slowly progressing activity deprivation-induced neurodegeneration.

  17. In vivo evidence of methamphetamine induced attenuation of brain tissue oxygenation as measured by EPR oximetry

    International Nuclear Information System (INIS)

    Weaver, John; Yang, Yirong; Purvis, Rebecca; Weatherwax, Theodore; Rosen, Gerald M.; Liu, Ke Jian

    2014-01-01

    Abuse of methamphetamine (METH) is a major and significant societal problem in the US, as a number of studies have suggested that METH is associated with increased cerebrovascular events, hemorrhage or vasospasm. Although cellular and molecular mechanisms involved in METH-induced toxicity are not completely understood, changes in brain O 2 may play an important role and contribute to METH-induced neurotoxicity including dopaminergic receptor degradation. Given that O 2 is the terminal electron acceptor for many enzymes that are important in brain function, the impact of METH on brain tissue pO 2 in vivo remains largely uncharacterized. This study investigated striatal tissue pO 2 changes in male C57BL/6 mice (16–20 g) following METH administration using EPR oximetry, a highly sensitive modality to measure pO 2 in vivo, in situ and in real time. We demonstrate that 20 min after a single injection of METH (8 mg/kg i.v.), the striatal pO 2 was reduced to 81% of the pretreatment level and exposure to METH for 3 consecutive days further attenuated striatal pO 2 to 64%. More importantly, pO 2 did not recover fully to control levels even 24 h after administration of a single dose of METH and continual exposure to METH exacerbates the condition. We also show a reduction in cerebral blood flow associated with a decreased brain pO 2 indicating an ischemic condition. Our findings suggests that administration of METH can attenuate brain tissue pO 2 , which may lead to hypoxic insult, thus a risk factor for METH-induced brain injury and the development of stroke in young adults. - Highlights: • Explored striatal tissue pO 2 in vivo after METH administration by EPR oximetry. • pO 2 was reduced by 81% after a single dose and 64% after 3 consecutive daily doses. • pO 2 did not recover fully to control levels even 24 h after a single dose. • Decrease in brain tissue pO 2 may be associated with a decrease in CBF. • Administration of methamphetamine may lead to hypoxic

  18. In vivo evidence of methamphetamine induced attenuation of brain tissue oxygenation as measured by EPR oximetry

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, John, E-mail: jmweaver@salud.unm.edu [Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Yang, Yirong [Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Purvis, Rebecca [Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Weatherwax, Theodore [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Rosen, Gerald M. [Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, MD 21201 (United States); Center for EPR Imaging In Vivo Physiology, University of Maryland, Baltimore, MD 21201 (United States); Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201 (United States); Liu, Ke Jian [Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States)

    2014-03-01

    Abuse of methamphetamine (METH) is a major and significant societal problem in the US, as a number of studies have suggested that METH is associated with increased cerebrovascular events, hemorrhage or vasospasm. Although cellular and molecular mechanisms involved in METH-induced toxicity are not completely understood, changes in brain O{sub 2} may play an important role and contribute to METH-induced neurotoxicity including dopaminergic receptor degradation. Given that O{sub 2} is the terminal electron acceptor for many enzymes that are important in brain function, the impact of METH on brain tissue pO{sub 2}in vivo remains largely uncharacterized. This study investigated striatal tissue pO{sub 2} changes in male C57BL/6 mice (16–20 g) following METH administration using EPR oximetry, a highly sensitive modality to measure pO{sub 2}in vivo, in situ and in real time. We demonstrate that 20 min after a single injection of METH (8 mg/kg i.v.), the striatal pO{sub 2} was reduced to 81% of the pretreatment level and exposure to METH for 3 consecutive days further attenuated striatal pO{sub 2} to 64%. More importantly, pO{sub 2} did not recover fully to control levels even 24 h after administration of a single dose of METH and continual exposure to METH exacerbates the condition. We also show a reduction in cerebral blood flow associated with a decreased brain pO{sub 2} indicating an ischemic condition. Our findings suggests that administration of METH can attenuate brain tissue pO{sub 2}, which may lead to hypoxic insult, thus a risk factor for METH-induced brain injury and the development of stroke in young adults. - Highlights: • Explored striatal tissue pO{sub 2}in vivo after METH administration by EPR oximetry. • pO{sub 2} was reduced by 81% after a single dose and 64% after 3 consecutive daily doses. • pO{sub 2} did not recover fully to control levels even 24 h after a single dose. • Decrease in brain tissue pO{sub 2} may be associated with a decrease in

  19. Docetaxel-induced prostate cancer cell death involves concomitant activation of caspase and lysosomal pathways and is attenuated by LEDGF/p75

    Directory of Open Access Journals (Sweden)

    Leoh Lai

    2009-08-01

    Full Text Available Abstract Background Hormone-refractory prostate cancer (HRPC is characterized by poor response to chemotherapy and high mortality, particularly among African American men when compared to other racial/ethnic groups. It is generally accepted that docetaxel, the standard of care for chemotherapy of HRPC, primarily exerts tumor cell death by inducing mitotic catastrophe and caspase-dependent apoptosis following inhibition of microtubule depolymerization. However, there is a gap in our knowledge of mechanistic events underlying docetaxel-induced caspase-independent cell death, and the genes that antagonize this process. This knowledge is important for circumventing HRPC chemoresistance and reducing disparities in prostate cancer mortality. Results We investigated mechanistic events associated with docetaxel-induced death in HRPC cell lines using various approaches that distinguish caspase-dependent from caspase-independent cell death. Docetaxel induced both mitotic catastrophe and caspase-dependent apoptosis at various concentrations. However, caspase activity was not essential for docetaxel-induced cytotoxicity since cell death associated with lysosomal membrane permeabilization still occurred in the presence of caspase inhibitors. Partial inhibition of docetaxel-induced cytotoxicity was observed after inhibition of cathepsin B, but not inhibition of cathepsins D and L, suggesting that docetaxel induces caspase-independent, lysosomal cell death. Simultaneous inhibition of caspases and cathepsin B dramatically reduced docetaxel-induced cell death. Ectopic expression of lens epithelium-derived growth factor p75 (LEDGF/p75, a stress survival autoantigen and transcription co-activator, attenuated docetaxel-induced lysosomal destabilization and cell death. Interestingly, LEDGF/p75 overexpression did not protect cells against DTX-induced mitotic catastrophe, and against apoptosis induced by tumor necrosis factor related apoptosis inducing ligand (TRAIL

  20. JNK Controls the Onset of Mitosis in Planarian Stem Cells and Triggers Apoptotic Cell Death Required for Regeneration and Remodeling

    Science.gov (United States)

    Almuedo-Castillo, María; Crespo, Xenia; Seebeck, Florian; Bartscherer, Kerstin; Salò, Emili; Adell, Teresa

    2014-01-01

    Regeneration of lost tissues depends on the precise interpretation of molecular signals that control and coordinate the onset of proliferation, cellular differentiation and cell death. However, the nature of those molecular signals and the mechanisms that integrate the cellular responses remain largely unknown. The planarian flatworm is a unique model in which regeneration and tissue renewal can be comprehensively studied in vivo. The presence of a population of adult pluripotent stem cells combined with the ability to decode signaling after wounding enable planarians to regenerate a complete, correctly proportioned animal within a few days after any kind of amputation, and to adapt their size to nutritional changes without compromising functionality. Here, we demonstrate that the stress-activated c-jun–NH2–kinase (JNK) links wound-induced apoptosis to the stem cell response during planarian regeneration. We show that JNK modulates the expression of wound-related genes, triggers apoptosis and attenuates the onset of mitosis in stem cells specifically after tissue loss. Furthermore, in pre-existing body regions, JNK activity is required to establish a positive balance between cell death and stem cell proliferation to enable tissue renewal, remodeling and the maintenance of proportionality. During homeostatic degrowth, JNK RNAi blocks apoptosis, resulting in impaired organ remodeling and rescaling. Our findings indicate that JNK-dependent apoptotic cell death is crucial to coordinate tissue renewal and remodeling required to regenerate and to maintain a correctly proportioned animal. Hence, JNK might act as a hub, translating wound signals into apoptotic cell death, controlled stem cell proliferation and differentiation, all of which are required to coordinate regeneration and tissue renewal. PMID:24922054

  1. Losartan Attenuates Degradation of Aorta and Lung Tissue Micromechanics in a Mouse Model of Severe Marfan Syndrome.

    Science.gov (United States)

    Lee, Jia-Jye; Galatioto, Josephine; Rao, Satish; Ramirez, Francesco; Costa, Kevin D

    2016-10-01

    Marfan syndrome (MFS) is an autosomal dominant disease of the connective tissue due to mutations in the fibrillin-1 gene (FBN1). This study aimed at characterizing microelastic properties of the ascending aortic wall and lung parenchyma tissues from wild type (WT) and age-matched Fbn1 hypomorphic mice (Fbn1(mgR/mgR) mice) to identify tissue-specific biomechanical effects of aging and disease in MFS. Atomic force microscopy was used to indent lung parenchyma and aortic wall tissues, using Hybrid Eshelby Decomposition analysis to extract layer-specific properties of the intima and media. The intima stiffened with age and was not different between WT and Fbn1(mgR/mgR) tissues, whereas the media layer of MFS aortas showed progressive structural and mechanical degradation with a modulus that was 50% softer than WT by 3.5 months of age. Similarly, MFS mice displayed progressive structural and mechanical deterioration of lung tissue, which was over 85% softer than WT by 3.5 months of age. Chronic treatment with the angiotensin type I receptor antagonist, losartan, attenuated the aorta and lung tissue degradation, resulting in structural and mechanical properties not significantly different from age-matched WT controls. By revealing micromechanical softening of elastin-rich aorta and lung tissues with disease progression in fibrillin-1 deficient mice, our findings support the use of losartan as a prophylactic treatment that may abrogate the life-threatening symptoms of MFS.

  2. Bronchus-associated lymphoid tissue (BALT) lymphoma of the lung showing mosaic pattern of inhomogeneous attenuation on thin-section CT: a case report

    International Nuclear Information System (INIS)

    Lee, In Jae; Kim, Sung Hwan; Koo, Soo Hyun; Kim, Hyun Beom; Hwang, Dae Hyun; Lee, Kwan Seop; Lee, Yul; Jang, Kee Taek; Kim, Duck Hwan

    2000-01-01

    The authors present a case of histologically proven bronchus-associated lymphoid tissue (BALT) lymphoma of the lung in a patient with primary Sjogren's syndrome that manifested on thin-section CT scan as a mosaic pattern of inhomogeneous attenuation due to mixed small airway and infiltrative abnormalities

  3. N-acetylcysteine attenuates hexavalent chromium-induced hypersensitivity through inhibition of cell death, ROS-related signaling and cytokine expression.

    Directory of Open Access Journals (Sweden)

    Yu-Hsuan Lee

    Full Text Available Chromium hypersensitivity (chromium-induced allergic contact dermatitis is an important issue in occupational skin disease. Hexavalent chromium (Cr (VI can activate the Akt, Nuclear factor κB (NF-κB, and Mitogen-activated protein kinase (MAPK pathways and induce cell death, via the effects of reactive oxygen species (ROS. Recently, cell death stimuli have been proposed to regulate the release of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α and interleukin-1 (IL-1. However, the exact effects of ROS on the signaling molecules and cytotoxicity involved in Cr(VI-induced hypersensitivity have not yet been fully demonstrated. N-acetylcysteine (NAC could increase glutathione levels in the skin and act as an antioxidant. In this study, we investigated the effects of NAC on attenuating the Cr(VI-triggered ROS signaling in both normal keratinocyte cells (HaCaT cells and a guinea pig (GP model. The results showed the induction of apoptosis, autophagy and ROS were observed after different concentrations of Cr(VI treatment. HaCaT cells pretreated with NAC exhibited a decrease in apoptosis and autophagy, which could affect cell viability. In addition, Cr (VI activated the Akt, NF-κB and MAPK pathways thereby increasing IL-1α and TNF-α production. However, all of these stimulation phenomena could be inhibited by NAC in both of in vitro and in vivo studies. These novel findings indicate that NAC may prevent the development of chromium hypersensitivity by inhibiting of ROS-induced cell death and cytokine expression.

  4. Whole-body PET/MRI: The effect of bone attenuation during MR-based attenuation correction in oncology imaging

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, M.C., E-mail: marianne.aznar@regionh.dk [Department of Oncology, Section of Radiotherapy 3994, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen (Denmark); Sersar, R., E-mail: rachidadk@hotmail.com [DTU Informatics, Technical University of Denmark, Kongens Lyngby (Denmark); Saabye, J., E-mail: julie_saa@hotmail.com [DTU Informatics, Technical University of Denmark, Kongens Lyngby (Denmark); Ladefoged, C.N., E-mail: claesnl@gmail.com [Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen (Denmark); Andersen, F.L., E-mail: Flemming.Andersen@regionh.dk [Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen (Denmark); Rasmussen, J.H., E-mail: jacobrasmu@gmail.com [Department of Oncology, Section of Radiotherapy 3994, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen (Denmark); Löfgren, J., E-mail: Johan.Loefgren@regionh.dk [Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen (Denmark); Beyer, T., E-mail: thomas.beyer@meduniwien.ac.at [Centre for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna (Austria)

    2014-07-15

    Purpose: In combined PET/MRI standard PET attenuation correction (AC) is based on tissue segmentation following dedicated MR sequencing and, typically, bone tissue is not represented. We evaluate PET quantification in whole-body (WB)-PET/MRI following MR-AC without considering bone attenuation and then investigate different strategies to account for bone tissue in clinical PET/MR imaging. To this purpose, bone tissue representation was extracted from separate CT images, and different bone representations were simulated from hypothetically derived MR-based bone classifications. Methods: Twenty oncology patients referred for a PET/CT were injected with either [18F]-FDG or [18F]-NaF and imaged on PET/CT (Biograph TruePoint/mCT, Siemens) and PET/MRI (mMR, Siemens) following a standard single-injection, dual-imaging clinical WB-protocol. Routine MR-AC was based on in-/opposed-phase MR imaging (orgMR-AC). PET(/MRI) images were reconstructed (AW-OSEM, 3 iterations, 21 subsets, 4 mm Gaussian) following routine MR-AC and MR-AC based on four modified attenuation maps. These modified attenuation maps were created for each patient by non-linear co-registration of the CT images to the orgMR-AC images, and adding CT bone mask values representing cortical bone: 1200 HU (cortCT), spongiosa bone: 350 HU (spongCT), average CT value (meanCT) and original CT values (orgCT). Relative difference images of the PET following AC using the modified attenuation maps were compared. SUVmean was calculated in anatomical reference regions and for PET-positive lesions. Results: The relative differences in SUVmean across patients following orgMR-AC and orgCT in soft tissue lesions and in bone lesions were similar (range: 0.0% to −22.5%), with an average underestimation of SUVmean of 7.2% and 10.0%, respectively when using orgMR-AC. In bone lesions, spongCT values were closest to orgCT (median bias of 1.3%, range: –9.0% to 13.5%) while the overestimation of SUVmean with respect to orgCT was

  5. Bronchus-associated lymphoid tissue (BALT) lymphoma of the lung showing mosaic pattern of inhomogeneous attenuation on thin-section CT: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In Jae; Kim, Sung Hwan; Koo, Soo Hyun; Kim, Hyun Beom; Hwang, Dae Hyun; Lee, Kwan Seop; Lee, Yul; Jang, Kee Taek; Kim, Duck Hwan [Hallym University Sacred Heart Hospital, Anyang (Korea, Republic of)

    2000-09-01

    The authors present a case of histologically proven bronchus-associated lymphoid tissue (BALT) lymphoma of the lung in a patient with primary Sjogren's syndrome that manifested on thin-section CT scan as a mosaic pattern of inhomogeneous attenuation due to mixed small airway and infiltrative abnormalities.

  6. Deconvolution based attenuation correction for time-of-flight positron emission tomography

    Science.gov (United States)

    Lee, Nam-Yong

    2017-10-01

    For an accurate quantitative reconstruction of the radioactive tracer distribution in positron emission tomography (PET), we need to take into account the attenuation of the photons by the tissues. For this purpose, we propose an attenuation correction method for the case when a direct measurement of the attenuation distribution in the tissues is not available. The proposed method can determine the attenuation factor up to a constant multiple by exploiting the consistency condition that the exact deconvolution of noise-free time-of-flight (TOF) sinogram must satisfy. Simulation studies shows that the proposed method corrects attenuation artifacts quite accurately for TOF sinograms of a wide range of temporal resolutions and noise levels, and improves the image reconstruction for TOF sinograms of higher temporal resolutions by providing more accurate attenuation correction.

  7. Fuzzy clustering-based segmented attenuation correction in whole-body PET

    CERN Document Server

    Zaidi, H; Boudraa, A; Slosman, DO

    2001-01-01

    Segmented-based attenuation correction is now a widely accepted technique to reduce noise contribution of measured attenuation correction. In this paper, we present a new method for segmenting transmission images in positron emission tomography. This reduces the noise on the correction maps while still correcting for differing attenuation coefficients of specific tissues. Based on the Fuzzy C-Means (FCM) algorithm, the method segments the PET transmission images into a given number of clusters to extract specific areas of differing attenuation such as air, the lungs and soft tissue, preceded by a median filtering procedure. The reconstructed transmission image voxels are therefore segmented into populations of uniform attenuation based on the human anatomy. The clustering procedure starts with an over-specified number of clusters followed by a merging process to group clusters with similar properties and remove some undesired substructures using anatomical knowledge. The method is unsupervised, adaptive and a...

  8. Ultrasound fields in an attenuating medium

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Gandhi,, D; O'Brien,, W.D., Jr.

    1993-01-01

    of the rectangles and sums all contributions to arrive at the spatial impulse response for the aperture and field point. This approach makes it possible to model all transducer apertures, and the program can readily calculate the emitted, pulse-echo and continuous wave field. Attenuation is included by splitting...... it into a frequency dependent part and frequency independent part. The latter results in an attenuation factor that is multiplied onto the responses from the individual elements, and the frequency dependent part is handled by attenuating the basic one-dimensional pulse. The influence on ultrasound fields from......Ultrasound fields propagating in tissue will undergo changes in shape not only due to diffraction, but also due to the frequency dependent attenuation. Linear fields can be fairly well predicted for a non-attenuating medium like water by using the Tupholme-Stepanishen method for calculating...

  9. Staurosporine induces different cell death forms in cultured rat astrocytes

    International Nuclear Information System (INIS)

    Simenc, Janez; Lipnik-Stangelj, Metoda

    2012-01-01

    Astroglial cells are frequently involved in malignant transformation. Besides apoptosis, necroptosis, a different form of regulated cell death, seems to be related with glioblastoma genesis, proliferation, angiogenesis and invasion. In the present work we elucidated mechanisms of necroptosis in cultured astrocytes, and compared them with apoptosis, caused by staurosporine. Cultured rat cortical astrocytes were used for a cell death studies. Cell death was induced by different concentrations of staurosporine, and modified by inhibitors of apoptosis (z-vad-fmk) and necroptosis (nec-1). Different forms of a cell death were detected using flow cytometry. We showed that staurosporine, depending on concentration, induces both, apoptosis as well as necroptosis. Treatment with 10 −7 M staurosporine increased apoptosis of astrocytes after the regeneration in a staurosporine free medium. When caspases were inhibited, apoptosis was attenuated, while necroptosis was slightly increased. Treatment with 10 −6 M staurosporine induced necroptosis that occurred after the regeneration of astrocytes in a staurosporine free medium, as well as without regeneration period. Necroptosis was significantly attenuated by nec-1 which inhibits RIP1 kinase. On the other hand, the inhibition of caspases had no effect on necroptosis. Furthermore, staurosporine activated RIP1 kinase increased the production of reactive oxygen species, while an antioxidant BHA significantly attenuated necroptosis. Staurosporine can induce apoptosis and/or necroptosis in cultured astrocytes via different signalling pathways. Distinction between different forms of cell death is crucial in the studies of therapy-induced necroptosis

  10. Fat Attenuation at CT in Anorexia Nervosa

    Science.gov (United States)

    Gill, Corey M.; Torriani, Martin; Murphy, Rachel; Harris, Tamara B.; Miller, Karen K.; Klibanski, Anne

    2016-01-01

    Purpose To investigate the composition, cross-sectional area (CSA), and hormonal correlates of different fat depots in women with anorexia nervosa (AN) and control subjects with normal weights to find out whether patients with AN have lower fat CSA but higher attenuation than did control subjects and whether these changes may be mediated by gonadal steroids, cortisol, and thyroid hormones. Materials and Methods This study was institutional review board approved and HIPAA compliant. Written informed consent was obtained. Forty premenopausal women with AN and 40 normal-weight women of comparable age (mean age ± standard deviation, 26 years ± 5) were studied. All individuals underwent computed tomography of the abdomen and thigh with a calibration phantom. Abdominal subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), thigh SAT, and thigh intermuscular adipose tissue CSA and attenuation were quantified. Serum estradiol, thyroid hormones, and urinary free cortisol levels were assessed. Variables were compared by using analysis of variance. Associations were examined by using linear regression analysis. Results Women with AN had higher fat attenuation than did control subjects (−100.1 to −46.7 HU vs −117.6 to −61.8 HU, P < .0001), despite lower fat CSA (2.0–62.8 cm2 vs 5.5–185.9 cm2, P < .0001). VAT attenuation but not CSA was inversely associated with lowest prior lifetime body mass index in AN (r = −0.71, P = .006). Serum estradiol levels were inversely associated with fat attenuation (r = −0.34 to −0.61, P = .03 to <.0001) and were positively associated with fat CSA of all compartments (r = 0.42–0.64, P = .007 to <.0001). Thyroxine levels and urinary free cortisol levels were positively associated with thigh SAT attenuation (r = 0.64 [P = .006] and r = 0.68 [P = .0004], respectively) and were inversely associated with abdominal SAT and VAT CSA (r = −0.44 to −0.58, P = .04 to .02). Conclusion Women with AN have differences in fat

  11. Correlation of the myocardial perfusion corrected by attenuation with the coronariography. Preliminary results

    International Nuclear Information System (INIS)

    Garcia C, S.E.; Garcia O, R.

    2005-01-01

    The attenuation that suffers the radiation in the soft tissues of the hinders the appropriate interpretation of the myocardial perfusion studies, for what have been implemented attenuation correction systems to reduce the attenuation for soft tissues and to provide myocardial perfusion images more accurate in the diagnosis of coronary illness. The objective was to evaluate the utility of an attenuation correction system (with source of Gadolinium 153) to minimize the devices that look like true defects of myocardial perfusion, caused by soft tissues (mammary tissue, thoracic wall, abdomen, left hemi diaphragm), and to compare those interpretations of the studies with the interpretations of the corresponding coronariographies. The method consists of 95 electronic files which were revised with the concept of heart catheterization, being identified 20 patients from the masculine sex to those that underwent coronariography among May 1999 and December 2002, and that they had study of myocardial perfusion in a maximum period of 3 months foresaw to the invasive procedure. (Author)

  12. Qualitative evaluation of Chang method of attenuation correction on heart SPECT by using custom made heart phantom

    International Nuclear Information System (INIS)

    Takavar, A.; Eftekhari, M.; Beiki, D.; Saghari, M.; Mostaghim, N.; Sohrabi, M.

    2003-01-01

    SPECT detects γ- rays from administrated radiopharmaceutical within the patient body. γ-rays pass through different tissues before reaching detectors and are attenuated. Attenuation can cause artifacts; therefore different and used to minimize attenuation effects. In our study efficacy of Chang method was evaluated for attenuation purpose, using a custom made heart phantom. Due to different tissues surrounding heart, evaluation is not uniform more over activity distribution around heart is also non- uniform. In Chang method distribution of radioactivity and attenuation due to the surrounding tissue is considered uniform. Our phantom is a piece of plastic producing similar SPECT image as left ventricle. A dual head, ADAC system was used in our study. Images were taken by 180 d ig C (limited angle) and 360 d ig C (total rotation). Images are compared with and without attenuation correction. Our results indicate that Chang attenuation correction method is not capable of eliminating attenuation artifact completely in particular attenuation effects caused by breast

  13. Attenuation correction for SPECT

    International Nuclear Information System (INIS)

    Hosoba, Minoru

    1986-01-01

    Attenuation correction is required for the reconstruction of a quantitative SPECT image. A new method for detecting body contours, which are important for the correction of tissue attenuation, is presented. The effect of body contours, detected by the newly developed method, on the reconstructed images was evaluated using various techniques for attenuation correction. The count rates in the specified region of interest in the phantom image by the Radial Post Correction (RPC) method, the Weighted Back Projection (WBP) method, Chang's method were strongly affected by the accuracy of the contours, as compared to those by Sorenson's method. To evaluate the effect of non-uniform attenuators on the cardiac SPECT, computer simulation experiments were performed using two types of models, the uniform attenuator model (UAM) and the non-uniform attenuator model (NUAM). The RPC method showed the lowest relative percent error (%ERROR) in UAM (11 %). However, 20 to 30 percent increase in %ERROR was observed for NUAM reconstructed with the RPC, WBP, and Chang's methods. Introducing an average attenuation coefficient (0.12/cm for Tc-99m and 0.14/cm for Tl-201) in the RPC method decreased %ERROR to the levels for UAM. Finally, a comparison between images, which were obtained by 180 deg and 360 deg scans and reconstructed from the RPC method, showed that the degree of the distortion of the contour of the simulated ventricles in the 180 deg scan was 15 % higher than that in the 360 deg scan. (Namekawa, K.)

  14. Pentraxin-3 as a marker of disease severity and risk of death in patients with necrotizing soft tissue infections

    DEFF Research Database (Denmark)

    Hansen, Marco Bo; Rasmussen, Lars Simon; Garred, Peter

    2016-01-01

    BACKGROUND: New biomarkers are needed to assess the severity of necrotizing soft tissue infection (NSTI) at an early stage and to individualize treatment strategies. We assessed pentraxin-3 (PTX3) as a marker of disease severity and risk of death in patients with NSTI. METHODS: We conducted a pro...

  15. Monitoring programmed cell death of living plant tissues in microfluidics using electrochemical and optical techniques

    DEFF Research Database (Denmark)

    Mark, Christina; Zor, Kinga; Heiskanen, Arto

    such as redox activity, O2 and H2O2 concentration, pH, cell viability and release of target enzymes such as α-amylase. We have optimised an intracellular, whole-cell redox activity assay[3] that detects changes in redox activity in barley aleurone layer during PCD. The assay uses a double mediator......This project focuses on developing and applying a tissue culture system with electrochemical and optical detection techniques for tissue culture of barley aleurone layer to increase understanding of the underlying mechanisms of programmed cell death (PCD) in plants. The major advantage......-system to electrochemically measure redox activity via changes in the NADP:NADPH ratio. Experiments show that redox activity changes depend on phytohormone activation or inactivation of aleurone layer metabolism and subsequent PCD. We have also successfully detected PCD induced by phytohormones in barley aleurone layer using...

  16. A three-protein biomarker panel assessed in diagnostic tissue predicts death from prostate cancer for men with localized disease

    International Nuclear Information System (INIS)

    Severi, Gianluca; FitzGerald, Liesel M; Muller, David C; Pedersen, John; Longano, Anthony; Southey, Melissa C; Hopper, John L; English, Dallas R; Giles, Graham G; Mills, John

    2014-01-01

    Only a minority of prostate cancers lead to death. Because no tissue biomarkers of aggressiveness other than Gleason score are available at diagnosis, many nonlethal cancers are treated aggressively. We evaluated whether a panel of biomarkers, associated with a range of disease outcomes in previous studies, could predict death from prostate cancer for men with localized disease. Using a case-only design, subjects were identified from three Australian epidemiological studies. Men who had died of their disease, “cases” (N = 83), were matched to “referents” (N = 232), those who had not died of prostate cancer, using incidence density sampling. Diagnostic tissue was retrieved to assess expression of AZGP1, MUC1, NKX3.1, p53, and PTEN by semiquantitative immunohistochemistry (IHC). Poisson regression was used to estimate mortality rate ratios (MRRs) adjusted for age, Gleason score, and stage and to estimate survival probabilities. Expression of MUC1 and p53 was associated with increased mortality (MRR 2.51, 95% CI 1.14–5.54, P = 0.02 and 3.08, 95% CI 1.41–6.95, P = 0.005, respectively), whereas AZGP1 expression was associated with decreased mortality (MRR 0.44, 95% CI 0.20–0.96, P = 0.04). Analyzing all markers under a combined model indicated that the three markers were independent predictors of prostate cancer death and survival. For men with localized disease at diagnosis, assessment of AZGP1, MUC1, and p53 expression in diagnostic tissue by IHC could potentially improve estimates of risk of dying from prostate cancer based only on Gleason score and clinical stage

  17. Potential and Actual Neonatal Organ and Tissue Donation After Circulatory Determination of Death.

    Science.gov (United States)

    Stiers, Justin; Aguayo, Cecile; Siatta, Angela; Presson, Angela P; Perez, Richard; DiGeronimo, Robert

    2015-07-01

    The need for transplants continues to exceed organ and tissue donor availability. Although recent surgical advances have resulted in successful transplants using very small pediatric donors, including neonates, the actual practice of neonatal organ donation after circulatory determination of death (DCDD) remains uncommon. To describe the percentage of neonates potentially eligible for DCDD, including those who underwent successful donation, and reasons for ineligibility in those who did not in a single neonatal intensive care unit (NICU). We obtained data from the Children's Hospital Neonatal Database and Intermountain Donor Services (IDS) organ procurement records. The 136 deaths that occurred in the NICU of the Primary Children's Hospital, Salt Lake City, Utah, from January 1, 2010, through May 7, 2013, were reviewed retrospectively from January 12 through July 1, 2014, to determine potential eligibility for DCDD as determined by IDS minimum eligibility criteria (requirement of life-sustaining interventions and weight >2 kg). For patients who did not undergo DCDD, we reviewed records to determine the reasons for ineligibility. Potential eligibility for DCDD among neonates who died in the study NICU. Of 136 deaths in the NICU, 60 (44.1%) met criteria for DCDD; however, fewer than 10% were referred appropriately to the regional organ procurement organization for evaluation. Forty-five neonates (33.1%) ultimately died within 90 minutes of withdrawal of life-sustaining interventions and thus would have been eligible for organ donation based on warm ischemic time. The most common causes of death among the 60 potentially eligible neonatal donors were neonatal encephalopathy (n = 17) and multiple congenital anomalies (n = 14). Nonreferral or late referral by the medical team was the most frequent reason for donor ineligibility, including 49 neonates (36.0%). Overall, only 4 neonates (2.9%) underwent successful DCDD. Although almost half of all neonatal deaths

  18. Performance Evaluation of the Spectral Centroid Downshift Method for Attenuation Estimation

    OpenAIRE

    Samimi, Kayvan; Varghese, Tomy

    2015-01-01

    Estimation of frequency-dependent ultrasonic attenuation is an important aspect of tissue characterization. Along with other acoustic parameters studied in quantitative ultrasound, the attenuation coefficient can be used to differentiate normal and pathological tissue. The spectral centroid downshift (CDS) method is one the most common frequency-domain approaches applied to this problem. In this study, a statistical analysis of this method’s performance was carried out based on a parametric m...

  19. MR-based attenuation correction in brain PET based on UTE sequences

    Energy Technology Data Exchange (ETDEWEB)

    Cabello, Jorge; Nekolla, Stephan G; Ziegler, Sibylle I [Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München (Germany)

    2014-07-29

    Attenuation correction (AC) in brain PET/MR has recently emerged as one of the challenging tasks in the PET/MR field. It has been shown that to ignore the attenuation produced by bone can lead to errors ranging from 5-30% in regions close to bone structures. Since the information provided by the MR signal is not directly related to tissue attenuation, alternative methods have to be developed. Signal from bone tissue is difficult to measure given its short transverse relaxation time (T2). Ultrashort-echo time (UTE) pulse sequences were developed to measure signal from tissues with short T2. A combination of two consecutive UTE echoes has been used in several works to measure signal from bone tissue. The first echo is able to measure signal from bone tissue in addition to soft tissue, while the second echo contains most of the soft tissue contained in the first echo but not bone. In this work we extract the attenuation information from the difference between the logarithm of two images obtained after applying two consecutive UTE pulse sequences using the mMR scanner (Siemens Healthcare). Subsequently, image processing techniques are applied to reduce the noise and extract air cavities within the head. The resulting image is converted to linear attenuation coefficients, generating what is known as µ-map, to be used during reconstruction. For comparison purposes PET/CT scans of the same patients were acquired prior to the PET/MR scan. Additional µ-maps obtained for comparison were extracted from a Dixon sequence (used in clinical routine) and an additional µ-map calculated by the scanner based on UTE pulse sequences. Preliminary quantitative results measured in the cerebellum, using the value obtained with CT-based AC as reference, show differences of 34% without AC, 13% using the Dixon-based and UTE-based provided by the scanner, and 0.8% with the AC strategy presented here.

  20. Anterior wrist and medial malleolus as the novel sites of tissue selection: a retrospective study on electric shock death through the hand-to-foot circuit pathway.

    Science.gov (United States)

    Xu, Guangtao; Su, Ruibing; Lv, Junyao; Hu, Bo; Gu, Huan; Li, Xianxian; Gu, Jiang; Yu, Xiaojun

    2017-05-01

    Our previous work demonstrated that characteristic changes could occur in the anterior wrist and medial malleolus in electric deaths through the hand-to-foot electric circuit pathway in an electric shock rat model. However, whether the same phenomenon occurs in humans is unknown. The aim of the present retrospective study was to ascertain whether the anterior wrist and medial malleolus could also be selected as the promising and significant sites in electric death through the hand-to-foot circuit pathway. Nineteen human cases from the autopsy and one clinical survivor who sustained a severe electric shock through the hand-to-foot circuit pathway were analyzed. Additional ten autopsy patients who died from traffic accidents and sudden cardiac attacks were used as the control group. Histopathological changes in the soft tissues of the anterior wrist and medial malleolus in all autopsy patients, as well as the electric current pathway of the survivor, were observed. The results showed that the nuclear polarizations in the anterior wrist and medial malleolus soft tissues of the electric death were extremely noticeable as compared with the controls. The most severe electrical injury in the survivor occurred in the anterior wrist. These findings suggest that the soft tissues of the anterior wrist and/or the medial malleolus as the narrowest parts of the limbs could be used as the complementary sites for tissue selection and considered as necessary locations for examinations to assess the electric death in medicolegal identification.

  1. Use of tissue-specific microRNA to control pathology of wild-type adenovirus without attenuation of its ability to kill cancer cells.

    Science.gov (United States)

    Cawood, Ryan; Chen, Hannah H; Carroll, Fionnadh; Bazan-Peregrino, Miriam; van Rooijen, Nico; Seymour, Leonard W

    2009-05-01

    Replicating viruses have broad applications in biomedicine, notably in cancer virotherapy and in the design of attenuated vaccines; however, uncontrolled virus replication in vulnerable tissues can give pathology and often restricts the use of potent strains. Increased knowledge of tissue-selective microRNA expression now affords the possibility of engineering replicating viruses that are attenuated at the RNA level in sites of potential pathology, but retain wild-type replication activity at sites not expressing the relevant microRNA. To assess the usefulness of this approach for the DNA virus adenovirus, we have engineered a hepatocyte-safe wild-type adenovirus 5 (Ad5), which normally mediates significant toxicity and is potentially lethal in mice. To do this, we have included binding sites for hepatocyte-selective microRNA mir-122 within the 3' UTR of the E1A transcription cassette. Imaging versions of these viruses, produced by fusing E1A with luciferase, showed that inclusion of mir-122 binding sites caused up to 80-fold decreased hepatic expression of E1A following intravenous delivery to mice. Animals administered a ten-times lethal dose of wild-type Ad5 (5x10(10) viral particles/mouse) showed substantial hepatic genome replication and extensive liver pathology, while inclusion of 4 microRNA binding sites decreased replication 50-fold and virtually abrogated liver toxicity. This modified wild-type virus retained full activity within cancer cells and provided a potent, liver-safe oncolytic virus. In addition to providing many potent new viruses for cancer virotherapy, microRNA control of virus replication should provide a new strategy for designing safe attenuated vaccines applied across a broad range of viral diseases.

  2. Dealing with the problem of non-specific in situ mRNA hybridization signals associated with plant tissues undergoing programmed cell death

    Directory of Open Access Journals (Sweden)

    Jokela Anne

    2010-02-01

    Full Text Available Abstract Background In situ hybridization is a general molecular method typically used for the localization of mRNA transcripts in plants. The method provides a valuable tool to unravel the connection between gene expression and anatomy, especially in species such as pines which show large genome size and shortage of sequence information. Results In the present study, expression of the catalase gene (CAT related to the scavenging of reactive oxygen species (ROS and the polyamine metabolism related genes, diamine oxidase (DAO and arginine decarboxylase (ADC, were localized in developing Scots pine (Pinus sylvestris L. seeds. In addition to specific signals from target mRNAs, the probes continually hybridized non-specifically in the embryo surrounding region (ESR of the megagametophyte tissue, in the remnants of the degenerated suspensors as well as in the cells of the nucellar layers, i.e. tissues exposed to cell death processes and extensive nucleic acid fragmentation during Scots pine seed development. Conclusions In plants, cell death is an integral part of both development and defence, and hence it is a common phenomenon in all stages of the life cycle. Our results suggest that extensive nucleic acid fragmentation during cell death processes can be a considerable source of non-specific signals in traditional in situ mRNA hybridization. Thus, the visualization of potential nucleic acid fragmentation simultaneously with the in situ mRNA hybridization assay may be necessary to ensure the correct interpretation of the signals in the case of non-specific hybridization of probes in plant tissues.

  3. Variability in Immunohistochemical Detection of Programmed Death Ligand 1 (PD-L1) in Cancer Tissue Types

    Science.gov (United States)

    Scognamiglio, Giosuè; De Chiara, Anna; Di Bonito, Maurizio; Tatangelo, Fabiana; Losito, Nunzia Simona; Anniciello, Annamaria; De Cecio, Rossella; D’Alterio, Crescenzo; Scala, Stefania; Cantile, Monica; Botti, Gerardo

    2016-01-01

    In normal cell physiology, programmed death 1 (PD-1) and its ligand, PD-L1, play an immunoregulatory role in T-cell activation, tolerance, and immune-mediated tissue damage. The PD-1/PD-L1 pathway also plays a critical role in immune escape of tumor cells and has been demonstrated to correlate with a poor prognosis of patients with several types of cancer. However, recent reports have revealed that the immunohistochemical (IHC) expression of the PD-L1 in tumor cells is not uniform for the use of different antibodies clones, with variable specificity, often doubtful topographical localization, and with a score not uniquely defined. The purpose of this study was to analyze the IHC expression of PD-L1 on a large series of several human tumors to correctly define its staining in different tumor tissues. PMID:27213372

  4. Quantitative Evaluation of Segmentation- and Atlas-Based Attenuation Correction for PET/MR on Pediatric Patients.

    Science.gov (United States)

    Bezrukov, Ilja; Schmidt, Holger; Gatidis, Sergios; Mantlik, Frédéric; Schäfer, Jürgen F; Schwenzer, Nina; Pichler, Bernd J

    2015-07-01

    Pediatric imaging is regarded as a key application for combined PET/MR imaging systems. Because existing MR-based attenuation-correction methods were not designed specifically for pediatric patients, we assessed the impact of 2 potentially influential factors: inter- and intrapatient variability of attenuation coefficients and anatomic variability. Furthermore, we evaluated the quantification accuracy of 3 methods for MR-based attenuation correction without (SEGbase) and with bone prediction using an adult and a pediatric atlas (SEGwBONEad and SEGwBONEpe, respectively) on PET data of pediatric patients. The variability of attenuation coefficients between and within pediatric (5-17 y, n = 17) and adult (27-66 y, n = 16) patient collectives was assessed on volumes of interest (VOIs) in CT datasets for different tissue types. Anatomic variability was assessed on SEGwBONEad/pe attenuation maps by computing mean differences to CT-based attenuation maps for regions of bone tissue, lungs, and soft tissue. PET quantification was evaluated on VOIs with physiologic uptake and on 80% isocontour VOIs with elevated uptake in the thorax and abdomen/pelvis. Inter- and intrapatient variability of the bias was assessed for each VOI group and method. Statistically significant differences in mean VOI Hounsfield unit values and linear attenuation coefficients between adult and pediatric collectives were found in the lungs and femur. The prediction of attenuation maps using the pediatric atlas showed a reduced error in bone tissue and better delineation of bone structure. Evaluation of PET quantification accuracy showed statistically significant mean errors in mean standardized uptake values of -14% ± 5% and -23% ± 6% in bone marrow and femur-adjacent VOIs with physiologic uptake for SEGbase, which could be reduced to 0% ± 4% and -1% ± 5% using SEGwBONEpe attenuation maps. Bias in soft-tissue VOIs was less than 5% for all methods. Lung VOIs showed high SDs in the range of 15% for

  5. Necromechanics: Death-induced changes in the mechanical properties of human tissues.

    Science.gov (United States)

    Martins, Pedro A L S; Ferreira, Francisca; Natal Jorge, Renato; Parente, Marco; Santos, Agostinho

    2015-05-01

    After the death phenomenon, the rigor mortis development, characterized by body stiffening, is one of the most evident changes that occur in the body. In this work, the development of rigor mortis was assessed using a skinfold caliper in human cadavers and in live people to measure the deformation in the biceps brachii muscle in response to the force applied by the device. Additionally, to simulate the measurements with the finite element method, a two-dimensional model of an arm section was used. As a result of the experimental procedure, a decrease in deformation with increasing postmortem time was observed, which corresponds to an increase in rigidity. As expected, the deformations for the live subjects were higher. The finite element method analysis showed a correlation between the c1 parameter of the neo-Hookean model in the 4- to 8-h postmortem interval. This was accomplished by adjusting the c1 material parameter in order to simulate the measured experimental displacement. Despite being a preliminary study, the obtained results show that combining the proposed experimental procedure with a numerical technique can be very useful in the study of the postmortem mechanical modifications of human tissues. Moreover, the use of data from living subjects allows us to estimate the time of death paving the way to establish this process as an alternative to the existing techniques. This solution constitutes a portable, non-invasive method of estimating the postmortem interval with direct quantitative measurements using a skinfold caliper. The tools and methods described can be used to investigate the subject and to gain epidemiologic knowledge on rigor mortis phenomenon. © IMechE 2015.

  6. Mesenchymal stromal cell-derived extracellular vesicles attenuate lung ischemia-reperfusion injury and enhance reconditioning of donor lungs after circulatory death.

    Science.gov (United States)

    Stone, Matthew L; Zhao, Yunge; Robert Smith, J; Weiss, Mark L; Kron, Irving L; Laubach, Victor E; Sharma, Ashish K

    2017-12-21

    Lung ischemia-reperfusion (IR) injury after transplantation as well as acute shortage of suitable donor lungs are two critical issues impacting lung transplant patients. This study investigates the anti-inflammatory and immunomodulatory role of human mesenchymal stromal cells (MSCs) and MSC-derived extracellular vesicles (EVs) to attenuate lung IR injury and improve of ex-vivo lung perfusion (EVLP)-mediated rehabilitation in donation after circulatory death (DCD) lungs. C57BL/6 wild-type (WT) mice underwent sham surgery or lung IR using an in vivo hilar-ligation model with or without MSCs or EVs. In vitro studies used primary iNKT cells and macrophages (MH-S cells) were exposed to hypoxia/reoxygenation with/without co-cultures with MSCs or EVs. Also, separate groups of WT mice underwent euthanasia and 1 h of warm ischemia and stored at 4 °C for 1 h followed by 1 h of normothermic EVLP using Steen solution or Steen solution containing MSCs or EVs. Lungs from MSCs or EV-treated mice had significant attenuation of lung dysfunction and injury (decreased edema, neutrophil infiltration and myeloperoxidase levels) compared to IR alone. A significant decrease in proinflammatory cytokines (IL-17, TNF-α, CXCL1 and HMGB1) and upregulation of keratinocyte growth factor, prostaglandin E2 and IL-10 occurred in the BAL fluid from MSC or EV-treated mice after IR compared to IR alone. Furthermore, MSCs or EVs significantly downregulated iNKT cell-produced IL-17 and macrophage-produced HMGB1 and TNF-α after hypoxia/reoxygenation. Finally, EVLP of DCD lungs with Steen solution including MSCs or EVs provided significantly enhanced protection versus Steen solution alone. Co-cultures of MSCs or EVs with lung endothelial cells prevents neutrophil transendothelial migration after exposure to hypoxia/reoxygenation and TNF-α/HMGB1 cytomix. These results suggest that MSC-derived EVs can attenuate lung inflammation and injury after IR as well as enhance EVLP-mediated reconditioning of

  7. Minocycline attenuates both OGD-induced HMGB1 release and HMGB1-induced cell death in ischemic neuronal injury in PC12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Kiyoshi [Division of Laboratory and Vascular Medicine, Field of Cardiovascular and Respiratory Disorders, Department of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Department of Neurosurgery, Omuta City General Hospital, 2-19-1 Takarazaka, Omuta-City, Fukuoka 836-8567 (Japan); Kawahara, Ko-ichi; Biswas, Kamal Krishna; Ito, Takashi [Division of Laboratory and Vascular Medicine, Field of Cardiovascular and Respiratory Disorders, Department of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Tancharoen, Salunya [Department of Pharmacology, Faculty of Dentistry, Mahidol University, 6 Yothe Rd., Rajthevee Bangkok 10400 (Thailand); Morimoto, Yoko [Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Matsuda, Fumiyo [Division of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8560 (Japan); Oyama, Yoko; Takenouchi, Kazunori [Division of Laboratory and Vascular Medicine, Field of Cardiovascular and Respiratory Disorders, Department of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Miura, Naoki [Laboratory of Veterinary Diagnostic Imaging, Department of Veterinary Medicine, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065 (Japan); Arimura, Noboru; Nawa, Yuko; Meng, Xiaojie; Shrestha, Binita; Arimura, Shinichiro [Division of Laboratory and Vascular Medicine, Field of Cardiovascular and Respiratory Disorders, Department of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); and others

    2009-07-24

    High mobility group box-1 (HMGB1), a non-histone DNA-binding protein, is massively released into the extracellular space from neuronal cells after ischemic insult and exacerbates brain tissue damage in rats. Minocycline is a semisynthetic second-generation tetracycline antibiotic which has recently been shown to be a promising neuroprotective agent. In this study, we found that minocycline inhibited HMGB1 release in oxygen-glucose deprivation (OGD)-treated PC12 cells and triggered the activation of p38mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases (ERK1/2). The ERK kinase (MEK)1/2 inhibitor U-0126 and p38MAPK inhibitor SB203580 blocked HMGB1 release in response to OGD. Furthermore, HMGB1 triggered cell death in a dose-dependent fashion. Minocycline significantly rescued HMGB1-induced cell death in a dose-dependent manner. In light of recent observations as well as the good safety profile of minocycline in humans, we propose that minocycline might play a potent neuroprotective role through the inhibition of HMGB1-induced neuronal cell death in cerebral infarction.

  8. Minocycline attenuates both OGD-induced HMGB1 release and HMGB1-induced cell death in ischemic neuronal injury in PC12 cells

    International Nuclear Information System (INIS)

    Kikuchi, Kiyoshi; Kawahara, Ko-ichi; Biswas, Kamal Krishna; Ito, Takashi; Tancharoen, Salunya; Morimoto, Yoko; Matsuda, Fumiyo; Oyama, Yoko; Takenouchi, Kazunori; Miura, Naoki; Arimura, Noboru; Nawa, Yuko; Meng, Xiaojie; Shrestha, Binita; Arimura, Shinichiro

    2009-01-01

    High mobility group box-1 (HMGB1), a non-histone DNA-binding protein, is massively released into the extracellular space from neuronal cells after ischemic insult and exacerbates brain tissue damage in rats. Minocycline is a semisynthetic second-generation tetracycline antibiotic which has recently been shown to be a promising neuroprotective agent. In this study, we found that minocycline inhibited HMGB1 release in oxygen-glucose deprivation (OGD)-treated PC12 cells and triggered the activation of p38mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases (ERK1/2). The ERK kinase (MEK)1/2 inhibitor U-0126 and p38MAPK inhibitor SB203580 blocked HMGB1 release in response to OGD. Furthermore, HMGB1 triggered cell death in a dose-dependent fashion. Minocycline significantly rescued HMGB1-induced cell death in a dose-dependent manner. In light of recent observations as well as the good safety profile of minocycline in humans, we propose that minocycline might play a potent neuroprotective role through the inhibition of HMGB1-induced neuronal cell death in cerebral infarction.

  9. Wound trauma mediated inflammatory signaling attenuates a tissue regenerative response in MRL/MpJ mice

    Directory of Open Access Journals (Sweden)

    Elster Eric A

    2010-05-01

    Full Text Available Abstract Background Severe trauma can induce pathophysiological responses that have marked inflammatory components. The development of systemic inflammation following severe thermal injury has been implicated in immune dysfunction, delayed wound healing, multi-system organ failure and increased mortality. Methods In this study, we examined the impact of thermal injury-induced systemic inflammation on the healing response of a secondary wound in the MRL/MpJ mouse model, which was anatomically remote from the primary site of trauma, a wound that typically undergoes scarless healing in this specific strain. Ear-hole wounds in MRL/MpJ mice have previously displayed accelerated healing and tissue regeneration in the absence of a secondary insult. Results Severe thermal injury in addition to distal ear-hole wounds induced marked local and systemic inflammatory responses in the lungs and significantly augmented the expression of inflammatory mediators in the ear tissue. By day 14, 61% of the ear-hole wounds from thermally injured mice demonstrated extensive inflammation with marked inflammatory cell infiltration, extensive ulceration, and various level of necrosis to the point where a large percentage (38% had to be euthanized early during the study due to extensive necrosis, inflammation and ear deformation. By day 35, ear-hole wounds in mice not subjected to thermal injury were completely closed, while the ear-hole wounds in thermally injured mice exhibited less inflammation and necrosis and only closed partially (62%. Thermal injury resulted in marked increases in serum levels of IL-6, TNFα, KC (CXCL1, and MIP-2α (CXCL2. Interestingly, attenuated early ear wound healing in the thermally injured mouse resulted in incomplete tissue regeneration in addition to a marked inflammatory response, as evidenced by the histological appearance of the wound and increased transcription of potent inflammatory mediators. Conclusion These findings suggest that the

  10. Magnetic resonance imaging-guided attenuation and scatter corrections in three-dimensional brain positron emission tomography

    CERN Document Server

    Zaidi, H; Slosman, D O

    2003-01-01

    Reliable attenuation correction represents an essential component of the long chain of modules required for the reconstruction of artifact-free, quantitative brain positron emission tomography (PET) images. In this work we demonstrate the proof of principle of segmented magnetic resonance imaging (MRI)-guided attenuation and scatter corrections in 3D brain PET. We have developed a method for attenuation correction based on registered T1-weighted MRI, eliminating the need of an additional transmission (TX) scan. The MR images were realigned to preliminary reconstructions of PET data using an automatic algorithm and then segmented by means of a fuzzy clustering technique which identifies tissues of significantly different density and composition. The voxels belonging to different regions were classified into air, skull, brain tissue and nasal sinuses. These voxels were then assigned theoretical tissue-dependent attenuation coefficients as reported in the ICRU 44 report followed by Gaussian smoothing and additio...

  11. Exercise Training Attenuates the Dysregulated Expression of Adipokines and Oxidative Stress in White Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Takuya Sakurai

    2017-01-01

    Full Text Available Obesity-induced inflammatory changes in white adipose tissue (WAT, which caused dysregulated expression of inflammation-related adipokines involving tumor necrosis factor-α and monocyte chemoattractant protein-1, contribute to the development of insulin resistance. Moreover, current literature reports state that WAT generates reactive oxygen species (ROS, and the enhanced production of ROS in obese WAT has been closely associated with the dysregulated expression of adipokines in WAT. Therefore, the reduction in excess WAT and oxidative stress that results from obesity is thought to be one of the important strategies in preventing and improving lifestyle-related diseases. Exercise training (TR not only brings about a decrease in WAT mass but also attenuates obesity-induced dysregulated expression of the adipokines in WAT. Furthermore, some reports indicate that TR affects the generation of oxidative stress in WAT. This review outlines the impact of TR on the expression of inflammation-related adipokines and oxidative stress in WAT.

  12. CTRP7 deletion attenuates obesity-linked glucose intolerance, adipose tissue inflammation, and hepatic stress.

    Science.gov (United States)

    Petersen, Pia S; Lei, Xia; Wolf, Risa M; Rodriguez, Susana; Tan, Stefanie Y; Little, Hannah C; Schweitzer, Michael A; Magnuson, Thomas H; Steele, Kimberley E; Wong, G William

    2017-04-01

    Chronic low-grade inflammation and cellular stress are important contributors to obesity-linked metabolic dysfunction. Here, we uncover an immune-metabolic role for C1q/TNF-related protein 7 (CTRP7), a secretory protein of the C1q family with previously unknown function. In obese humans, circulating CTRP7 levels were markedly elevated and positively correlated with body mass index, glucose, insulin, insulin resistance index, hemoglobin A1c, and triglyceride levels. Expression of CTRP7 in liver was also significantly upregulated in obese humans and positively correlated with gluconeogenic genes. In mice, Ctrp7 expression was differentially modulated in various tissues by fasting and refeeding and by diet-induced obesity. A genetic loss-of-function mouse model was used to determine the requirement of CTRP7 for metabolic homeostasis. When fed a control low-fat diet, male or female mice lacking CTRP7 were indistinguishable from wild-type littermates. In obese male mice consuming a high-fat diet, however, CTRP7 deficiency attenuated insulin resistance and enhanced glucose tolerance, effects that were independent of body weight, metabolic rate, and physical activity level. Improved glucose metabolism in CTRP7-deficient mice was associated with reduced adipose tissue inflammation, as well as decreased liver fibrosis and cellular oxidative and endoplasmic reticulum stress. These results provide a link between elevated CTRP7 levels and impaired glucose metabolism, frequently associated with obesity. Inhibiting CTRP7 action may confer beneficial metabolic outcomes in the setting of obesity and diabetes. Copyright © 2017 the American Physiological Society.

  13. The serine protease inhibitor TLCK attenuates intrinsic death pathways in neurons upstream of mitochondrial demise.

    Science.gov (United States)

    Reuther, C; Ganjam, G K; Dolga, A M; Culmsee, C

    2014-11-01

    It is well-established that activation of proteases, such as caspases, calpains and cathepsins are essential components in signaling pathways of programmed cell death (PCD). Although these proteases have also been linked to mechanisms of neuronal cell death, they are dispensable in paradigms of intrinsic death pathways, e.g. induced by oxidative stress. However, emerging evidence implicated a particular role for serine proteases in mechanisms of PCD in neurons. Here, we investigated the role of trypsin-like serine proteases in a model of glutamate toxicity in HT-22 cells. In these cells glutamate induces oxytosis, a form of caspase-independent cell death that involves activation of the pro-apoptotic protein BH3 interacting-domain death agonist (Bid), leading to mitochondrial demise and ensuing cell death. In this model system, the trypsin-like serine protease inhibitor Nα-tosyl-l-lysine chloromethyl ketone hydrochloride (TLCK) inhibited mitochondrial damage and cell death. Mitochondrial morphology alterations, the impairment of the mitochondrial membrane potential and ATP depletion were prevented and, moreover, lipid peroxidation induced by glutamate was completely abolished. Strikingly, truncated Bid-induced cell death was not affected by TLCK, suggesting a detrimental activity of serine proteases upstream of Bid activation and mitochondrial demise. In summary, this study demonstrates the protective effect of serine protease inhibition by TLCK against oxytosis-induced mitochondrial damage and cell death. These findings indicate that TLCK-sensitive serine proteases play a crucial role in cell death mechanisms upstream of mitochondrial demise and thus, may serve as therapeutic targets in diseases, where oxidative stress and intrinsic pathways of PCD mediate neuronal cell death.

  14. Resveratrol attenuates methylglyoxal-induced mitochondrial dysfunction and apoptosis by Sestrin2 induction

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Kyuhwa; Seo, Suho; Han, Jae Yun; Ki, Sung Hwan; Shin, Sang Mi, E-mail: smshin@chosun.ac.kr

    2014-10-15

    Methylglyoxal is found in high levels in the blood and other tissues of diabetic patients and exerts deleterious effects on cells and tissues. Previously, we reported that resveratrol, a polyphenol in grapes, induced the expression of Sestrin2 (SESN2), a novel antioxidant protein, and inhibited hepatic lipogenesis. This study investigated whether resveratrol protects cells from the methylglyoxal-induced toxicity via SESN2 induction. Methylglyoxal significantly induced cell death in HepG2 cells. However, cells pretreated with resveratrol were rescued from methylglyoxal-induced apoptosis. Resveratrol attenuated glutathione (GSH) depletion and ROS production promoted by methylglyoxal. Moreover, mitochondrial damage was observed by methylglyoxal treatment, but resveratrol restored mitochondrial function, as evidenced by the observed lack of mitochondrial permeability transition and increased ADP/ATP ratio. Resveratrol treatment inhibited SESN2 depletion elicited by methylglyoxal. SESN2 overexpression repressed methylglyoxal-induced mitochondrial dysfunction and apoptosis. Likewise, rotenone-induced cytotoxicity was not observed in SESN2 overexpressed cells. Furthermore, siRNA knockdown of SESN2 reduced the ability of resveratrol to prevent methylglyoxal-induced mitochondrial permeability transition. In addition, when mice were exposed to methylglyoxal after infection of Ad-SESN2, the plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and GSH depletion by methylglyoxal in liver was reduced in Ad-SESN2 infected mice. Our results demonstrated that resveratrol is capable of protecting cells from methylglyoxal-induced mitochondrial dysfunction and oxidative stress via SESN2 induction. - Highlights: • Resveratrol decreased methylglyoxal-induced apoptosis. • Resveratrol attenuated GSH depletion and ROS production promoted by methylglyoxal. • Resveratrol restored the mitochondrial function by Sestrin2 induction. • Induction of Sestrin2

  15. Resveratrol attenuates methylglyoxal-induced mitochondrial dysfunction and apoptosis by Sestrin2 induction

    International Nuclear Information System (INIS)

    Seo, Kyuhwa; Seo, Suho; Han, Jae Yun; Ki, Sung Hwan; Shin, Sang Mi

    2014-01-01

    Methylglyoxal is found in high levels in the blood and other tissues of diabetic patients and exerts deleterious effects on cells and tissues. Previously, we reported that resveratrol, a polyphenol in grapes, induced the expression of Sestrin2 (SESN2), a novel antioxidant protein, and inhibited hepatic lipogenesis. This study investigated whether resveratrol protects cells from the methylglyoxal-induced toxicity via SESN2 induction. Methylglyoxal significantly induced cell death in HepG2 cells. However, cells pretreated with resveratrol were rescued from methylglyoxal-induced apoptosis. Resveratrol attenuated glutathione (GSH) depletion and ROS production promoted by methylglyoxal. Moreover, mitochondrial damage was observed by methylglyoxal treatment, but resveratrol restored mitochondrial function, as evidenced by the observed lack of mitochondrial permeability transition and increased ADP/ATP ratio. Resveratrol treatment inhibited SESN2 depletion elicited by methylglyoxal. SESN2 overexpression repressed methylglyoxal-induced mitochondrial dysfunction and apoptosis. Likewise, rotenone-induced cytotoxicity was not observed in SESN2 overexpressed cells. Furthermore, siRNA knockdown of SESN2 reduced the ability of resveratrol to prevent methylglyoxal-induced mitochondrial permeability transition. In addition, when mice were exposed to methylglyoxal after infection of Ad-SESN2, the plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and GSH depletion by methylglyoxal in liver was reduced in Ad-SESN2 infected mice. Our results demonstrated that resveratrol is capable of protecting cells from methylglyoxal-induced mitochondrial dysfunction and oxidative stress via SESN2 induction. - Highlights: • Resveratrol decreased methylglyoxal-induced apoptosis. • Resveratrol attenuated GSH depletion and ROS production promoted by methylglyoxal. • Resveratrol restored the mitochondrial function by Sestrin2 induction. • Induction of Sestrin2

  16. Correction for tissue attenuation in radionuclide gastric emptying studies: a comparison of a lateral image method and a geometric mean method

    Energy Technology Data Exchange (ETDEWEB)

    Collins, P.J.; Chatterton, B.E. (Royal Adelaide Hospital (Australia)); Horowitz, M.; Shearman, D.J.C. (Adelaide Univ. (Australia). Dept. of Medicine)

    1984-08-01

    Variation in depth of radionuclide within the stomach may result in significant errors in the measurement of gastric emptying if no attempt is made to correct for gamma-ray attenuation by the patient's tissues. A method of attenuation correction, which uses a single posteriorly located scintillation camera and correction factors derived from a lateral image of the stomach, was compared with a two-camera geometric mean method, in phantom studies and in five volunteer subjects. A meal of 100 g of ground beef containing /sup 99/Tcsup(m)-chicken liver, and 150 ml of water was used in the in vivo studies. In all subjects the geometric mean data showed that solid food emptied in two phases: an initial lag period, followed by a linear emptying phase. Using the geometric mean data as a standard, the anterior camera overestimated the 50% emptying time (T/sub 50/) by an average of 15% (range 5-18) and the posterior camera underestimated this parameter by 15% (4-22). The posterior data, corrected for attenuation using the lateral image method, underestimated the T/sub 50/ by 2% (-7 to +7). The difference in the distances of the proximal and distal stomach from the posterior detector was large in all subjects (mean 5.7 cm, range 3.9-7.4).

  17. Postmortem mRNA expression patterns in left ventricular myocardial tissues and their implications for forensic diagnosis of sudden cardiac death.

    Science.gov (United States)

    Son, Gi Hoon; Park, Seong Hwan; Kim, Yunmi; Kim, Ji Yeon; Kim, Jin Wook; Chung, Sooyoung; Kim, Yu-Hoon; Kim, Hyun; Hwang, Juck-Joon; Seo, Joong-Seok

    2014-03-01

    Sudden cardiac death (SCD), which is primarily caused by lethal heart disorders resulting in structural and arrhythmogenic abnormalities, is one of the prevalent modes of death in most developed countries. Myocardial ischemia, mainly due to coronary artery disease, is the most common type of heart disease leading to SCD. However, postmortem diagnosis of SCD is frequently complicated by obscure histological evidence. Here, we show that certain mRNA species, namely those encoding hemoglobin A1/2 and B (Hba1/2 and Hbb, respectively) as well as pyruvate dehydrogenase kinase 4 (Pdk4), exhibit distinct postmortem expression patterns in the left ventricular free wall of SCD subjects when compared with their expression patterns in the corresponding tissues from control subjects with non-cardiac causes of death. Hba1/2 and Hbb mRNA expression levels were higher in ischemic SCD cases with acute myocardial infarction or ischemic heart disease without recent infarction, and even in cardiac death subjects without apparent pathological signs of heart injuries, than control subjects. By contrast, Pdk4 mRNA was expressed at lower levels in SCD subjects. In conclusion, we found that altered myocardial Hba1/2, Hbb, and Pdk4 mRNA expression patterns can be employed as molecular signatures of fatal cardiac dysfunction to forensically implicate SCD as the primary cause of death.

  18. Extra-Virgin Olive Oil with Natural Phenolic Content Exerts an Anti-Inflammatory Effect in Adipose Tissue and Attenuates the Severity of Atherosclerotic Lesions in Ldlr-/-.Leiden Mice.

    Science.gov (United States)

    Luque-Sierra, Amparo; Alvarez-Amor, Leticia; Kleemann, Robert; Martín, Franz; Varela, Lourdes M

    2018-05-15

    The present study investigates the effect of olive oils with different phenolic content in high-fat diets (HFDs) on hypertrophy and inflammation in adipose tissue and associated atherosclerosis, in the context of obesity. Ldlr-/-.Leiden mice were fed three different HFDs for 32 weeks and were compared with mice fed the standard low-fat diet (LFD). The different fats provided in the HFDs were lard (HFD-L), extra-virgin olive oil (EVOO; 79 mg kg -1 of phenolic compounds, HFD-EVOO), or EVOO rich in phenolic compounds (OL, 444 mg kg -1 of phenolic compounds, HFD-OL). All HFD-fed mice became obese, but only HFD-L-induced adipocyte hypertrophy. HFD-EVOO mice exhibited the greatest levels of Adiponectin in adipose tissue and presented atherosclerotic lesions similar to the LFD group, with a very low count of monocyte/macrophage compared with HFD-L and HFD-OL mice. Enrichment of the phenolic content of olive oil reduced the secretion of nitrites/nitrates in the aorta, but atherosclerosis was not attenuated in HFD-OL mice compared to other HFD mice. Consumption of olive oil with a natural content of phenolic compounds attenuates adipose tissue hypertrophy and inflammation and exerts antiatherosclerotic effects in mice. A higher phenolic content of olive oil did not provide further benefits in the prevention of atherosclerosis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Intracoronary imaging using attenuation-compensated optical coherence tomography allows better visualisation of coronary artery diseases

    Energy Technology Data Exchange (ETDEWEB)

    Foin, Nicolas, E-mail: nicolas.foin@gmail.com [International Centre for Circulatory Health, Imperial College London, W2 1LA London (United Kingdom); Mari, Jean Martial [University College London, London (United Kingdom); Nijjer, Sukhjinder; Sen, Sayan; Petraco, Ricardo [International Centre for Circulatory Health, Imperial College London, W2 1LA London (United Kingdom); Ghione, Matteo; Di Mario, Carlo [Biomedical Research Unit, Royal Brompton Hospital, London (United Kingdom); Davies, Justin E. [International Centre for Circulatory Health, Imperial College London, W2 1LA London (United Kingdom); Girard, Michaël J.A. [Department of Bioengineering, National University of Singapore (Singapore); Singapore Eye Research Institute (Singapore)

    2013-05-15

    Purpose: To allow an accurate diagnosis of coronary artery diseases by enhancing optical coherence tomography (OCT) images of atheromatous plaques using a novel automated attenuation compensation technique. Background: One of the major drawbacks of coronary OCT imaging is the rapid attenuation of the OCT signal, limiting penetration in tissue to only few millimetres. Visualisation of deeper anatomy is however critical for accurate assessment of plaque burden in-vivo. Methods: A compensation algorithm, previously developed to correct for light attenuation in soft tissues and to enhance contrast in ophthalmic OCT images, was applied to intracoronary plaque imaging using spectral-domain OCT. Results: Application of the compensation algorithm significantly increased tissue contrast in the vessel wall and atherosclerotic plaque boundaries. Contrast enhancement allows a better differentiation of plaque morphology, which is particularly important for the identification of lipid rich fibro atheromatous plaques and to guide decision on treatment strategy. Conclusion: The analysis of arterial vessel structure clinically captured with OCT is improved when used in conjunction with automated attenuation compensation. This approach may improve the OCT-based interpretation of coronary plaque morphology in clinical practice.

  20. Neuroprotective effects of curcumin on endothelin-1 mediated cell death in hippocampal neurons.

    Science.gov (United States)

    Stankowska, Dorota L; Krishnamoorthy, Vignesh R; Ellis, Dorette Z; Krishnamoorthy, Raghu R

    2017-06-01

    Alzheimer's disease is a progressive neurodegenerative disease characterized by loss of hippocampal neurons leading to memory deficits and cognitive decline. Studies suggest that levels of the vasoactive peptide endothelin-1 (ET-1) are increased in the brain tissue of Alzheimer's patients. Curcumin, the main ingredient of the spice turmeric, has been shown to have anti-inflammatory, anti-cancer, and neuroprotective effects. However, the mechanisms underlying some of these beneficial effects are not completely understood. The objective of this study was to determine if curcumin could protect hippocampal neurons from ET-1 mediated cell death and examine the involvement of c-Jun in this pathway. Primary hippocampal neurons from rat pups were isolated using a previously published protocol. Viability of the cells was measured by the live/dead assay. Immunoblot and immunohistochemical analyses were performed to analyze c-Jun levels in hippocampal neurons treated with either ET-1 or a combination of ET-1 and curcumin. Apoptotic changes were evaluated by immunoblot detection of cleaved caspase-3, cleaved fodrin, and a caspase 3/7 activation assay. ET-1 treatment produced a 2-fold increase in the levels of c-Jun as determined by an immunoblot analysis in hippocampal neurons. Co-treatment with curcumin significantly attenuated the ET-1 mediated increase in c-Jun levels. ET-1 caused increased neuronal cell death of hippocampal neurons indicated by elevation of cleaved caspase-3, cleaved fodrin and an increased activity of caspases 3 and 7 which was attenuated by co-treatment with curcumin. Blockade of JNK, an upstream effector of c-Jun by specific inhibitor SP600125 did not fully protect from ET-1 mediated activation of pro-apoptotic enzymes in primary hippocampal cells. Our data suggests that one mechanism by which curcumin protects against ET-1-mediated cell death is through blocking an increase in c-Jun levels. Other possible mechanisms include decreasing pro

  1. Performance evaluation of the spectral centroid downshift method for attenuation estimation.

    Science.gov (United States)

    Samimi, Kayvan; Varghese, Tomy

    2015-05-01

    Estimation of frequency-dependent ultrasonic attenuation is an important aspect of tissue characterization. Along with other acoustic parameters studied in quantitative ultrasound, the attenuation coefficient can be used to differentiate normal and pathological tissue. The spectral centroid downshift (CDS) method is one the most common frequencydomain approaches applied to this problem. In this study, a statistical analysis of this method's performance was carried out based on a parametric model of the signal power spectrum in the presence of electronic noise. The parametric model used for the power spectrum of received RF data assumes a Gaussian spectral profile for the transmit pulse, and incorporates effects of attenuation, windowing, and electronic noise. Spectral moments were calculated and used to estimate second-order centroid statistics. A theoretical expression for the variance of a maximum likelihood estimator of attenuation coefficient was derived in terms of the centroid statistics and other model parameters, such as transmit pulse center frequency and bandwidth, RF data window length, SNR, and number of regression points. Theoretically predicted estimation variances were compared with experimentally estimated variances on RF data sets from both computer-simulated and physical tissue-mimicking phantoms. Scan parameter ranges for this study were electronic SNR from 10 to 70 dB, transmit pulse standard deviation from 0.5 to 4.1 MHz, transmit pulse center frequency from 2 to 8 MHz, and data window length from 3 to 17 mm. Acceptable agreement was observed between theoretical predictions and experimentally estimated values with differences smaller than 0.05 dB/cm/MHz across the parameter ranges investigated. This model helps predict the best attenuation estimation variance achievable with the CDS method, in terms of said scan parameters.

  2. Nutritional leucine supplementation attenuates cardiac failure in tumour-bearing cachectic animals.

    Science.gov (United States)

    Toneto, Aline Tatiane; Ferreira Ramos, Luiz Alberto; Salomão, Emilianne Miguel; Tomasin, Rebeka; Aereas, Miguel Arcanjo; Gomes-Marcondes, Maria Cristina Cintra

    2016-12-01

    The condition known as cachexia presents in most patients with malignant tumours, leading to a poor quality of life and premature death. Although the cancer-cachexia state primarily affects skeletal muscle, possible damage in the cardiac muscle remains to be better characterized and elucidated. Leucine, which is a branched chain amino acid, is very useful for preserving lean body mass. Thus, this amino acid has been studied as a coadjuvant therapy in cachectic cancer patients, but whether this treatment attenuates the effects of cachexia and improves cardiac function remains poorly understood. Therefore, using an experimental cancer-cachexia model, we evaluated whether leucine supplementation ameliorates cachexia in the heart. Male Wistar rats were fed either a leucine-rich or a normoprotein diet and implanted or not with subcutaneous Walker-256 carcinoma. During the cachectic stage (approximately 21 days after tumour implantation), when the tumour mass was greater than 10% of body weight, the rats were subjected to an electrocardiogram analysis to evaluate the heart rate, QT-c, and T wave amplitude. The myocardial tissues were assayed for proteolytic enzymes (chymotrypsin, alkaline phosphatase, cathepsin, and calpain), cardiomyopathy biomarkers (myeloperoxidase, tissue inhibitor of metalloproteinases, and total plasminogen activator inhibitor 1), and caspase-8, -9, -3, and -7 activity. Both groups of tumour-bearing rats, especially the untreated group, had electrocardiography alterations that were suggestive of ischemia, dilated cardiomyopathy, and sudden death risk. Additionally, the rats in the untreated tumour-bearing group but not their leucine-supplemented littermates exhibited remarkable increases in chymotrypsin activity and all three heart failure biomarkers analysed, including an increase in caspase-3 and -7 activity. Our data suggest that a leucine-rich diet could modulate heart damage, cardiomyocyte proteolysis, and apoptosis driven by cancer

  3. Tissue-specific methylation of human insulin gene and PCR assay for monitoring beta cell death.

    Directory of Open Access Journals (Sweden)

    Mohamed I Husseiny

    Full Text Available The onset of metabolic dysregulation in type 1 diabetes (T1D occurs after autoimmune destruction of the majority of pancreatic insulin-producing beta cells. We previously demonstrated that the DNA encoding the insulin gene is uniquely unmethylated in these cells and then developed a methylation-specific PCR (MSP assay to identify circulating beta cell DNA in streptozotocin-treated mice prior to the rise in blood glucose. The current study extends to autoimmune non-obese diabetic (NOD mice and humans, showing in NOD mice that beta cell death occurs six weeks before the rise in blood sugar and coincides with the onset of islet infiltration by immune cells, demonstrating the utility of MSP for monitoring T1D. We previously reported unique patterns of methylation of the human insulin gene, and now extend this to other human tissues. The methylation patterns of the human insulin promoter, intron 1, exon 2, and intron 2 were determined in several normal human tissues. Similar to our previous report, the human insulin promoter was unmethylated in beta cells, but methylated in all other tissues tested. In contrast, intron 1, exon 2 and intron 2 did not exhibit any tissue-specific DNA methylation pattern. Subsequently, a human MSP assay was developed based on the methylation pattern of the insulin promoter and human islet DNA was successfully detected in circulation of T1D patients after islet transplantation therapy. Signal levels of normal controls and pre-transplant samples were shown to be similar, but increased dramatically after islet transplantation. In plasma the signal declines with time but in whole blood remains elevated for at least two weeks, indicating that association of beta cell DNA with blood cells prolongs the signal. This assay provides an effective method to monitor beta cell destruction in early T1D and in islet transplantation therapy.

  4. Progression of thanatophagy in cadaver brain and heart tissues

    Directory of Open Access Journals (Sweden)

    Gulnaz T. Javan

    2016-03-01

    Full Text Available Autophagy is an evolutionarily conserved catabolic process for maintaining cellular homeostasis during both normal and stress conditions. Metabolic reprogramming in tissues of dead bodies is inevitable due to chronic ischemia and nutrient deprivation, which are well-known features that stimulate autophagy. Currently, it is not fully elucidated whether postmortem autophagy, also known as thanatophagy, occurs in dead bodies is a function of the time of death. In this study, we tested the hypothesis that thanatophagy would increase in proportion to time elapsed since death for tissues collected from cadavers. Brain and heart tissue from corpses at different time intervals after death were analyzed by Western blot. Densitometry analysis demonstrated that thanatophagy occurred in a manner that was dependent on the time of death. The autophagy-associated proteins, LC3 II, p62, Beclin-1 and Atg7, increased in a time-dependent manner in heart tissues. A potent inducer of autophagy, BNIP3, decreased in the heart tissues as time of death increased, whereas the protein levels increased in brain tissues. However, there was no expression of BNIP3 at extended postmortem intervals in both brain and heart samples. Collectively, the present study demonstrates for the first time that thanatophagy occurs in brain and heart tissues of cadavers in a time-dependent manner. Further, our data suggest that cerebral thanatophagy may occur in a Beclin-1- independent manner. This unprecedented study provides potential insight into thanatophagy as a novel method for the estimation of the time of death in criminal investigationsAbstract: Autophagy is an evolutionarily conserved catabolic process for maintaining cellular homeostasis during both normal and stress conditions. Metabolic reprogramming in tissues of dead bodies is inevitable due to chronic ischemia and nutrient deprivation, which are well-known features that stimulate autophagy. Currently, it is not fully

  5. Bias atlases for segmentation-based PET attenuation correction using PET-CT and MR.

    Science.gov (United States)

    Ouyang, Jinsong; Chun, Se Young; Petibon, Yoann; Bonab, Ali A; Alpert, Nathaniel; Fakhri, Georges El

    2013-10-01

    This study was to obtain voxel-wise PET accuracy and precision using tissue-segmentation for attenuation correction. We applied multiple thresholds to the CTs of 23 patients to classify tissues. For six of the 23 patients, MR images were also acquired. The MR fat/in-phase ratio images were used for fat segmentation. Segmented tissue classes were used to create attenuation maps, which were used for attenuation correction in PET reconstruction. PET bias images were then computed using the PET reconstructed with the original CT as the reference. We registered the CTs for all the patients and transformed the corresponding bias images accordingly. We then obtained the mean and standard deviation bias atlas using all the registered bias images. Our CT-based study shows that four-class segmentation (air, lungs, fat, other tissues), which is available on most PET-MR scanners, yields 15.1%, 4.1%, 6.6%, and 12.9% RMSE bias in lungs, fat, non-fat soft-tissues, and bones, respectively. An accurate fat identification is achievable using fat/in-phase MR images. Furthermore, we have found that three-class segmentation (air, lungs, other tissues) yields less than 5% standard deviation of bias within the heart, liver, and kidneys. This implies that three-class segmentation can be sufficient to achieve small variation of bias for imaging these three organs. Finally, we have found that inter- and intra-patient lung density variations contribute almost equally to the overall standard deviation of bias within the lungs.

  6. Ebselen pretreatment attenuates ischemia/reperfusion injury and prevents hyperglycemia by improving hepatic insulin signaling and β-cell survival in gerbils.

    Science.gov (United States)

    Park, S; Kang, S; Kim, D S; Shin, B K; Moon, N R; Daily, J W

    2014-08-01

    Transient carotid artery occlusion causes ischemia/reperfusion (I/R) injury resulting in neuron and pancreatic β-cell death with consequential post-stroke hyperglycemia, which can lead to diabetes and may accelerate the development of Alzheimer's disease. Antioxidants have been shown to protect against the I/R injury and destruction of neurons. However, it is unknown whether the protection against I/R injury extends to the pancreatic β-cells. Therefore, we investigated whether treatment with ebselen, a glutathione peroxidase mimic, prevents neuronal and β-cell death following I/R in gerbils susceptible to stroke. After 28 days post artery occlusion, there was widespread neuronal cell death in the CA1 of the hippocampus and elevated IL-1β and TNF-α levels. Pretreatment with ebselen prevented the death by 56% and attenuated neurological damage (abnormal eyelid drooping, hair bristling, muscle tone, flexor reflex, posture, and walking patterns). Ischemic gerbils also exhibited impaired glucose tolerance and insulin sensitivity which induced post-stroke hyperglycemia associated with decreased β-cell mass due to increased β-cell apoptosis. Ebselen prevented the increased β-cell apoptosis, possibly by decreasing IL-1β and TNF-α in islets. Ischemia also attenuated hepatic insulin signaling, and expression of GLUT2 and glucokinase, whereas ebselen prevented the attenuation and suppressed gluconeogenesis by decreasing PEPCK expression. In conclusion, antioxidant protection by ebselen attenuated I/R injury of neurons and pancreatic β-cells and prevented subsequent impairment of glucose regulation that could lead to diabetes and Alzheimer's disease.

  7. Agmatine Attenuates Brain Edema and Apoptotic Cell Death after Traumatic Brain Injury.

    Science.gov (United States)

    Kim, Jae Young; Lee, Yong Woo; Kim, Jae Hwan; Lee, Won Taek; Park, Kyung Ah; Lee, Jong Eun

    2015-07-01

    Traumatic brain injury (TBI) is associated with poor neurological outcome, including necrosis and brain edema. In this study, we investigated whether agmatine treatment reduces edema and apoptotic cell death after TBI. TBI was produced by cold injury to the cerebral primary motor cortex of rats. Agmatine was administered 30 min after injury and once daily until the end of the experiment. Animals were sacrificed for analysis at 1, 2, or 7 days after the injury. Various neurological analyses were performed to investigate disruption of the blood-brain barrier (BBB) and neurological dysfunction after TBI. To examine the extent of brain edema after TBI, the expression of aquaporins (AQPs), phosphorylation of mitogen-activated protein kinases (MAPKs), and nuclear translocation of nuclear factor-κB (NF-κB) were investigated. Our findings demonstrated that agmatine treatment significantly reduces brain edema after TBI by suppressing the expression of AQP1, 4, and 9. In addition, agmatine treatment significantly reduced apoptotic cell death by suppressing the phosphorylation of MAPKs and by increasing the nuclear translocation of NF-κB after TBI. These results suggest that agmatine treatment may have therapeutic potential for brain edema and neural cell death in various central nervous system diseases.

  8. Stem cell death and survival in heart regeneration and repair.

    Science.gov (United States)

    Abdelwahid, Eltyeb; Kalvelyte, Audrone; Stulpinas, Aurimas; de Carvalho, Katherine Athayde Teixeira; Guarita-Souza, Luiz Cesar; Foldes, Gabor

    2016-03-01

    Cardiovascular diseases are major causes of mortality and morbidity. Cardiomyocyte apoptosis disrupts cardiac function and leads to cardiac decompensation and terminal heart failure. Delineating the regulatory signaling pathways that orchestrate cell survival in the heart has significant therapeutic implications. Cardiac tissue has limited capacity to regenerate and repair. Stem cell therapy is a successful approach for repairing and regenerating ischemic cardiac tissue; however, transplanted cells display very high death percentage, a problem that affects success of tissue regeneration. Stem cells display multipotency or pluripotency and undergo self-renewal, however these events are negatively influenced by upregulation of cell death machinery that induces the significant decrease in survival and differentiation signals upon cardiovascular injury. While efforts to identify cell types and molecular pathways that promote cardiac tissue regeneration have been productive, studies that focus on blocking the extensive cell death after transplantation are limited. The control of cell death includes multiple networks rather than one crucial pathway, which underlies the challenge of identifying the interaction between various cellular and biochemical components. This review is aimed at exploiting the molecular mechanisms by which stem cells resist death signals to develop into mature and healthy cardiac cells. Specifically, we focus on a number of factors that control death and survival of stem cells upon transplantation and ultimately affect cardiac regeneration. We also discuss potential survival enhancing strategies and how they could be meaningful in the design of targeted therapies that improve cardiac function.

  9. A virtual sinogram method to reduce dental metallic implant artefacts in computed tomography-based attenuation correction for PET

    NARCIS (Netherlands)

    Abdoli, Mehrsima; Ay, Mohammad Reza; Ahmadian, Alireza; Zaidi, Habib

    Objective Attenuation correction of PET data requires accurate determination of the attenuation map (mu map), which represents the spatial distribution of linear attenuation coefficients of different tissues at 511 keV. The presence of high-density metallic dental filling material in head and neck

  10. Berberine, a natural antidiabetes drug, attenuates glucose neurotoxicity and promotes Nrf2-related neurite outgrowth

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Ya-Yun [Department of Pharmacology, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Tseng, Yu-Ting [Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Lo, Yi-Ching, E-mail: yichlo@kmu.edu.tw [Department of Pharmacology, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China)

    2013-11-01

    Reactive oxygen intermediates production and apoptotic damage induced by high glucose are major causes of neuronal damage in diabetic neuropathy. Berberine (BBR), a natural antidiabetes drug with PI3K-activating activity, holds promise for diabetes because of its dual antioxidant and anti-apoptotic activities. We have previously reported that BBR attenuated H{sub 2}O{sub 2} neurotoxicity via activating the PI3K/Akt/Nrf2-dependent pathway. In this study, we further explored the novel protective mechanism of BBR on high glucose-induced apoptotic death and neurite damage of SH-SY5Y cells. Results indicated BBR (0.1–10 nM) significantly attenuated reactive oxygen species (ROS) production, nucleus condensation, and apoptotic death in high glucose-treated cells. However, AG1024, an inhibitor of insulin growth factor-1 (IGF-1) receptor, significantly abolished BBR protection against high glucose-induced neuronal death. BBR also increased Bcl-2 expression and decreased cytochrome c release. High glucose down-regulated IGF-1 receptor and phosphorylation of Akt and GSK-3β, the effects of which were attenuated by BBR treatment. BBR also activated nuclear erythroid 2-related factor 2 (Nrf2), the key antioxidative transcription factor, which is accompanied with up-regulation of hemeoxygenase-1 (HO-1). Furthermore, BBR markedly enhanced nerve growth factor (NGF) expression and promoted neurite outgrowth in high glucose-treated cells. To further determine the role of the Nrf2 in BBR neuroprotection, RNA interference directed against Nrf2 was used. Results indicated Nrf2 siRNA abolished BBR-induced HO-1, NGF, neurite outgrowth and ROS decrease. In conclusion, BBR attenuated high glucose-induced neurotoxicity, and we are the first to reveal this novel mechanism of BBR as an Nrf2 activator against glucose neurotoxicity, providing another potential therapeutic use of BBR on the treatment of diabetic complications. - Highlights: • BBR attenuates high glucose-induced ROS

  11. Berberine, a natural antidiabetes drug, attenuates glucose neurotoxicity and promotes Nrf2-related neurite outgrowth

    International Nuclear Information System (INIS)

    Hsu, Ya-Yun; Tseng, Yu-Ting; Lo, Yi-Ching

    2013-01-01

    Reactive oxygen intermediates production and apoptotic damage induced by high glucose are major causes of neuronal damage in diabetic neuropathy. Berberine (BBR), a natural antidiabetes drug with PI3K-activating activity, holds promise for diabetes because of its dual antioxidant and anti-apoptotic activities. We have previously reported that BBR attenuated H 2 O 2 neurotoxicity via activating the PI3K/Akt/Nrf2-dependent pathway. In this study, we further explored the novel protective mechanism of BBR on high glucose-induced apoptotic death and neurite damage of SH-SY5Y cells. Results indicated BBR (0.1–10 nM) significantly attenuated reactive oxygen species (ROS) production, nucleus condensation, and apoptotic death in high glucose-treated cells. However, AG1024, an inhibitor of insulin growth factor-1 (IGF-1) receptor, significantly abolished BBR protection against high glucose-induced neuronal death. BBR also increased Bcl-2 expression and decreased cytochrome c release. High glucose down-regulated IGF-1 receptor and phosphorylation of Akt and GSK-3β, the effects of which were attenuated by BBR treatment. BBR also activated nuclear erythroid 2-related factor 2 (Nrf2), the key antioxidative transcription factor, which is accompanied with up-regulation of hemeoxygenase-1 (HO-1). Furthermore, BBR markedly enhanced nerve growth factor (NGF) expression and promoted neurite outgrowth in high glucose-treated cells. To further determine the role of the Nrf2 in BBR neuroprotection, RNA interference directed against Nrf2 was used. Results indicated Nrf2 siRNA abolished BBR-induced HO-1, NGF, neurite outgrowth and ROS decrease. In conclusion, BBR attenuated high glucose-induced neurotoxicity, and we are the first to reveal this novel mechanism of BBR as an Nrf2 activator against glucose neurotoxicity, providing another potential therapeutic use of BBR on the treatment of diabetic complications. - Highlights: • BBR attenuates high glucose-induced ROS production and

  12. Oral Uncaria rhynchophylla (UR) reduces kainic acid-induced epileptic seizures and neuronal death accompanied by attenuating glial cell proliferation and S100B proteins in rats.

    Science.gov (United States)

    Lin, Yi-Wen; Hsieh, Ching-Liang

    2011-05-17

    Epilepsy is a common clinical syndrome with recurrent neuronal discharges in cerebral cortex and hippocampus. Here we aim to determine the protective role of Uncaria rhynchophylla (UR), an herbal drug belong to Traditional Chinese Medicine (TCM), on epileptic rats. To address this issue, we tested the effect of UR on kainic acid (KA)-induced epileptic seizures and further investigate the underlying mechanisms. Oral UR successfully decreased neuronal death and discharges in hippocampal CA1 pyramidal neurons. The population spikes (PSs) were decreased from 4.1 ± 0.4 mV to 2.1 ± 0.3 mV in KA-induced epileptic seizures and UR-treated groups, respectively. Oral UR protected animals from neuronal death induced by KA treatment (from 34 ± 4.6 to 191.7 ± 48.6 neurons/field) through attenuating glial cell proliferation and S100B protein expression but not GABAA and TRPV1 receptors. The above results provide detail mechanisms underlying the neuroprotective action of UR on KA-induced epileptic seizure in hippocampal CA1 neurons. Crown Copyright © 2011. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Attenuation correction for the NIH ATLAS small animal PET scanner

    CERN Document Server

    Yao, Rutao; Liow, JeihSan; Seidel, Jurgen

    2003-01-01

    We evaluated two methods of attenuation correction for the NIH ATLAS small animal PET scanner: 1) a CT-based method that derives 511 keV attenuation coefficients (mu) by extrapolation from spatially registered CT images; and 2) an analytic method based on the body outline of emission images and an empirical mu. A specially fabricated attenuation calibration phantom with cylindrical inserts that mimic different body tissues was used to derive the relationship to convert CT values to (I for PET. The methods were applied to three test data sets: 1) a uniform cylinder phantom, 2) the attenuation calibration phantom, and 3) a mouse injected with left bracket **1**8F right bracket FDG. The CT-based attenuation correction factors were larger in non-uniform regions of the imaging subject, e.g. mouse head, than the analytic method. The two methods had similar correction factors for regions with uniform density and detectable emission source distributions.

  14. Docosahexaenoic acid counteracts attenuation of CD95-induced cell death by inorganic mercury

    Energy Technology Data Exchange (ETDEWEB)

    Gill, Randall [Department of Immunology and Microbiology, Wayne State University, Detroit MI (United States); Lanni, Lydia; Jen, K.-L. Catherine [Department of Nutrition and Food Science, Wayne State University, Detroit MI (United States); McCabe, Michael J. [Department of Environmental Medicine, University of Rochester, Rochester NY (United States); Rosenspire, Allen, E-mail: arosenspire@wayne.edu [Department of Immunology and Microbiology, Wayne State University, Detroit MI (United States)

    2015-01-01

    In the United States the principal environmental exposure to mercury is through dietary consumption of sea food. Although the mechanism by which low levels of mercury affect the nervous system is not well established, epidemiological studies suggest that low level exposure of pregnant women to dietary mercury can adversely impact cognitive development in their children, but that Docosahexaenoic acid (DHA), the most prominent n-polyunsaturated fatty acid (n-PUFA) present in fish may counteract negative effects of mercury on the nervous system. Aside from effects on the nervous system, epidemiological and animal studies have also suggested that low level mercury exposure may be a risk factor for autoimmune disease. However unlike the nervous system where a mechanism linking mercury to impaired cognitive development remains elusive, we have previously suggested a potential mechanism linking low level mercury exposures to immune system dysfunction and autoimmunity. In the immune system it is well established that disruption of CD95 mediated apoptosis leads to autoimmune disease. We have previously shown in vitro as well as in vivo that in lymphocytes burdened with low levels of mercury, CD95 mediated cell death is impaired. In this report we now show that DHA counteracts the negative effect of mercury on CD95 signaling in T lymphocytes. T cells which have been pre-exposed to DHA are able to cleave pro-caspase 3 and efficiently signal programmed cell death through the CD95 signaling pathway, whether or not they are burdened with low levels of mercury. Thus DHA may lower the risk of autoimmune disease after low level mercury exposures. - Highlights: • Inorganic mercury (Hg{sup 2+}) interferes with CD95 mediated cell death in Jurkat T cells • DHA restores the ability of CD95 to signal cell death in Hg{sup 2+} intoxicated T cells • The restoration of CD95 mediated cell death by DHA is correlated with increased activation of Caspase 3.

  15. Docosahexaenoic acid counteracts attenuation of CD95-induced cell death by inorganic mercury

    International Nuclear Information System (INIS)

    Gill, Randall; Lanni, Lydia; Jen, K.-L. Catherine; McCabe, Michael J.; Rosenspire, Allen

    2015-01-01

    In the United States the principal environmental exposure to mercury is through dietary consumption of sea food. Although the mechanism by which low levels of mercury affect the nervous system is not well established, epidemiological studies suggest that low level exposure of pregnant women to dietary mercury can adversely impact cognitive development in their children, but that Docosahexaenoic acid (DHA), the most prominent n-polyunsaturated fatty acid (n-PUFA) present in fish may counteract negative effects of mercury on the nervous system. Aside from effects on the nervous system, epidemiological and animal studies have also suggested that low level mercury exposure may be a risk factor for autoimmune disease. However unlike the nervous system where a mechanism linking mercury to impaired cognitive development remains elusive, we have previously suggested a potential mechanism linking low level mercury exposures to immune system dysfunction and autoimmunity. In the immune system it is well established that disruption of CD95 mediated apoptosis leads to autoimmune disease. We have previously shown in vitro as well as in vivo that in lymphocytes burdened with low levels of mercury, CD95 mediated cell death is impaired. In this report we now show that DHA counteracts the negative effect of mercury on CD95 signaling in T lymphocytes. T cells which have been pre-exposed to DHA are able to cleave pro-caspase 3 and efficiently signal programmed cell death through the CD95 signaling pathway, whether or not they are burdened with low levels of mercury. Thus DHA may lower the risk of autoimmune disease after low level mercury exposures. - Highlights: • Inorganic mercury (Hg 2+ ) interferes with CD95 mediated cell death in Jurkat T cells • DHA restores the ability of CD95 to signal cell death in Hg 2+ intoxicated T cells • The restoration of CD95 mediated cell death by DHA is correlated with increased activation of Caspase 3

  16. Description and assessment of a registration-based approach to include bones for attenuation correction of whole-body PET/MRI.

    Science.gov (United States)

    Marshall, Harry R; Patrick, John; Laidley, David; Prato, Frank S; Butler, John; Théberge, Jean; Thompson, R Terry; Stodilka, Robert Z

    2013-08-01

    Attenuation correction for whole-body PET/MRI is challenging. Most commercial systems compute the attenuation map from MRI using a four-tissue segmentation approach. Bones, the most electron-dense tissue, are neglected because they are difficult to segment. In this work, the authors build on this segmentation approach by adding bones using a registration technique and assessing its performance on human PET images. Twelve oncology patients were imaged with FDG PET/CT and MRI using a Turbo-FLASH pulse sequence. A database of 121 attenuation correction quality CT scans was also collected. Each patient MRI was compared to the CT database via weighted heuristic measures to find the "most similar" CT in terms of body geometry. The similar CT was aligned to the MRI with a deformable registration method. Two MRI-based attenuation maps were computed. One was a standard four-tissue segmentation (air, lung, fat, and lean tissue) using basic image processing techniques. The other was identical, except the bones from the aligned CT were added. The PET data were reconstructed with the patient's CT-based attenuation map (the silver standard) and both MRI-based attenuation maps. The relative errors of the MRI-based attenuation corrections were computed in 14 standardized volumes of interest, in lesions, and over whole tissues. The squared Pearson correlation coefficient was also calculated over whole tissues. Statistical testing was done with ANOVAs and paired t-tests. The MRI-based attenuation correction ignoring bone had relative errors ranging from -37% to -8% in volumes of interest containing bone. By including bone, the magnitude of the relative error was reduced in all cases (pbone was improved from a mean of -7.5% to 2% (pbone reduced the magnitude of relative error in three cases (pbone slightly increased relative error in lung from 7.7% to 8.0% (p=0.002), in fat from 8.5% to 9.2% (pbone from -14.6% to 1.3% (pbone was included or not. The approach to include bones in MRI

  17. Anti-human tissue factor antibody ameliorated intestinal ischemia reperfusion-induced acute lung injury in human tissue factor knock-in mice.

    Directory of Open Access Journals (Sweden)

    Xiaolin He

    Full Text Available BACKGROUND: Interaction between the coagulation and inflammation systems plays an important role in the development of acute respiratory distress syndrome (ARDS. Anti-coagulation is an attractive option for ARDS treatment, and this has promoted development of new antibodies. However, preclinical trials for these antibodies are often limited by the high cost and availability of non-human primates. In the present study, we developed a novel alternative method to test the role of a humanized anti-tissue factor mAb in acute lung injury with transgenic mice. METHODOLOGY/PRINCIPAL FINDINGS: Human tissue factor knock-in (hTF-KI transgenic mice and a novel humanized anti-human tissue factor mAb (anti-hTF mAb, CNTO859 were developed. The hTF-KI mice showed a normal and functional expression of hTF. The anti-hTF mAb specifically blocked the pro-coagulation activity of brain extracts from the hTF-KI mice and human, but not from wild type mice. An extrapulmonary ARDS model was used by intestinal ischemia-reperfusion. Significant lung tissue damage in hTF-KI mice was observed after 2 h reperfusion. Administration of CNTO859 (5 mg/kg, i.v. attenuated the severity of lung tissue injury, decreased the total cell counts and protein concentration in bronchoalveolar lavage fluid, and reduced Evans blue leakage. In addition, the treatment significantly reduced alveolar fibrin deposition, and decreased tissue factor and plasminogen activator inhibitor-1 activity in the serum. This treatment also down-regulated cytokine expression and reduced cell death in the lung. CONCLUSIONS: This novel anti-hTF antibody showed beneficial effects on intestinal ischemia-reperfusion induced acute lung injury, which merits further investigation for clinical usage. In addition, the use of knock-in transgenic mice to test the efficacy of antibodies against human-specific proteins is a novel strategy for preclinical studies.

  18. Deletion of AMPKα1 attenuates the anticontractile effect of perivascular adipose tissue (PVAT) and reduces adiponectin release.

    Science.gov (United States)

    Almabrouk, Tarek A M; Ugusman, Azizah B; Katwan, Omar J; Salt, Ian P; Kennedy, Simon

    2017-10-01

    Perivascular adipose tissue (PVAT) surrounds most blood vessels and secretes numerous active substances, including adiponectin, which produce a net anticontractile effect in healthy individuals. AMPK is a key mediator of cellular energy balance and may mediate the vascular effects of adiponectin. In this study, we investigated the role of AMPK within PVAT in mediating the anticontractile effect of PVAT. Endothelium-denuded aortic rings from wild-type (WT; Sv129) and α 1 AMPK knockout (KO) mice were mounted on a wire myograph. Dose-response curves to the AMPK-independent vasodilator cromakalim were studied in vessels with and without PVAT, and effect of pre-incubation with conditioned media and adiponectin on relaxation was also studied. The effect of AMPKα1 KO on the secretory profile of PVAT was assessed by elisa. Thoracic aortic PVAT from KO mice was morphologically indistinct from that of WT and primarily composed of brown adipose tissue. PVAT augmented relaxation to cromakalim in WT but not KO aortic rings. Addition of WT PVAT augmented relaxation in KO aortic rings but KO PVAT had no effect in WT rings. PVAT from KO mice secreted significantly less adiponectin and addition of adiponectin to either KO or WT aortic rings without PVAT augmented relaxation to cromakalim. An adiponectin blocking peptide significantly attenuated relaxation in WT rings with PVAT but not in KO rings. AMPKα1 has a critical role in maintaining the anticontractile actions of PVAT; an effect independent of the endothelium but likely mediated through altered adiponectin secretion or sensitivity. This article is part of a themed section on Molecular Mechanisms Regulating Perivascular Adipose Tissue - Potential Pharmacological Targets? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.20/issuetoc. © 2016 The British Pharmacological Society.

  19. Evaluation of tissue-equivalent materials to be used as human brain tissue substitute in dosimetry for diagnostic radiology

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, C.C., E-mail: cassio.c.ferreira@gmail.co [Departamento de Fisica, Universidade Federal de Sergipe, Postal Code 353, Sergipe-SE 49100-000 (Brazil); Ximenes Filho, R.E.M., E-mail: raimundoximenes@hotmail.co [Departamento de Fisica, Universidade Federal de Sergipe, Postal Code 353, Sergipe-SE 49100-000 (Brazil); Vieira, J.W., E-mail: jwvieira@br.inter.ne [Centro Federal de Educacao Tecnologica de Pernambuco (CEFET-PE), Av. Professor Luiz Freire, 500 Curado, CEP 50740-540, Recife (Brazil); Escola Politecnica de Pernambuco, Universidade de Pernambuco (EPP/UPE), Rua Benfica, 455, Madalena, CEP 50720-001, Recife (Brazil); Tomal, A., E-mail: alessandratomal@pg.ffclrp.usp.b [Departamento de Fisica e Matematica, FFCLRP, Universidade de Sao Paulo, Ribeirao Preto-SP 14040-90 (Brazil); Poletti, M.E., E-mail: poletti@ffclrp.usp.b [Departamento de Fisica e Matematica, FFCLRP, Universidade de Sao Paulo, Ribeirao Preto-SP 14040-90 (Brazil); Garcia, C.A.B., E-mail: cgarcia@ufs.b [Departamento de Quimica, Universidade Federal de Sergipe, Postal Code 353, Sergipe-SE 49100-000 (Brazil); Maia, A.F., E-mail: afmaia@ufs.b [Departamento de Fisica, Universidade Federal de Sergipe, Postal Code 353, Sergipe-SE 49100-000 (Brazil)

    2010-08-15

    Tissue-equivalent materials to be used as substitutes for human brain tissue in dosimetry for diagnostic radiology have been investigated in terms of calculated total mass attenuation coefficient ({mu}/{rho}), calculated mass energy-absorption coefficient ({mu}{sub en}/{rho}) and absorbed dose. Measured linear attenuation coefficients ({mu}) have been used for benchmarking the calculated total mass attenuation coefficient ({mu}/{rho}). The materials examined were bolus, nylon (registered) , orange articulation wax, red articulation wax, PMMA (polymethylmethacrylate), bees wax, paraffin I, paraffin II, pitch and water. The results show that water is the best substitute for brain among the materials investigated. The average percentage differences between the calculated {mu}/{rho} and {mu}{sub en}/{rho} coefficients for water and those for brain were 1.0% and 2.5%, respectively. Absorbed doses determined by Monte Carlo methods confirm water as being the best brain substitute to be used in dosimetry for diagnostic radiology, showing maximum difference of 0.01%. Additionally this study showed that PMMA, a material often used for the manufacturing of head phantoms for computed tomography, cannot be considered to be a suitable substitute for human brain tissue in dosimetry.

  20. BAG3 promoted starvation-induced apoptosis of thyroid cancer cells via attenuation of autophagy.

    Science.gov (United States)

    Li, Si; Zhang, Hai-Yan; Wang, Tian; Meng, Xin; Zong, Zhi-Hong; Kong, De-Hui; Wang, Hua-Qin; Du, Zhen-Xian

    2014-11-01

    BAG3 plays a regulatory role in a number of cellular processes. Recent studies have attracted much attention on its role in activation of selective autophagy. In addition, we have very recently reported that BAG3 is implicated in a BECN1-independent autophagy, namely noncanonical autophagy. The current study aimed to investigate the potential involvement of BAG3 in canonical autophagy triggered by Earle's Balanced Salt Solution (EBSS) starvation. Replacement of complete medium with EBSS was used to trigger canonical autophagy. BAG3 expression was measured using real-time RT-PCR and Western blot. Autophagy was monitored using LC3-II transition and p62/SQSTM1 accumulation by Western blot, as well as punctate distribution of LC3 by immunofluorescence staining. Cell growth and apoptotic cell death was investigated using real-time cell analyzer and flowcytometry, respectively. BAG3 expression was potently reduced by EBSS starvation. Forced expression of BAG3 suppressed autophagy and promoted apoptotic cell death of thyroid cancer cells elicited by starvation. In addition, in the presence of autophagy inhibitor, the enhancing effect of BAG3 on apoptotic cell death was attenuated. These results suggest that BAG3 promotes apoptotic cell death in starved thyroid cancer cells, at least in part by autophagy attenuation.

  1. Safety and efficacy of an attenuated Chinese QX-like infectious bronchitis virus strain as a candidate vaccine.

    Science.gov (United States)

    Zhao, Ye; Cheng, Jin-long; Liu, Xiao-yu; Zhao, Jing; Hu, Yan-xin; Zhang, Guo-zhong

    2015-10-22

    Infectious bronchitis (IB) is a highly contagious respiratory and urogenital disease of chickens caused by infectious bronchitis virus (IBV). This disease is of considerable economic importance and is primarily controlled through biosecurity and immunization with live attenuated and inactivated IB vaccines of various serotypes. In the present study, we tested the safety and efficacy of an attenuated predominant Chinese QX-like IBV strain. The results revealed that the attenuated strain has a clear decrease in pathogenicity for specific-pathogen-free (SPF) chickens compared with the parent strain. Strain YN-inoculated birds had clinical signs of varying severity with 30% mortality, while the attenuated group appeared healthy, with less tissue damage. The attenuated strain also had relatively low tissue replication rates and higher antibody levels. The superior protective efficacy of the attenuated strain was observed when vaccinated birds were challenged with a homologous or heterologous field IBV strain, indicating the potential of the attenuated YN (aYN) as a vaccine. Producing a vaccine targeting the abundant serotype in China is essential to reducing the economic impact of IB on the poultry industry. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Nigella sativa oil attenuates chronic nephrotoxicity induced by oral sodium nitrite: Effects on tissue fibrosis and apoptosis.

    Science.gov (United States)

    Al-Gayyar, Mohammed M H; Hassan, Hanan M; Alyoussef, Abdullah; Abbas, Ahmed; Darweish, Mohamed M; El-Hawwary, Amany A

    2016-03-01

    Sodium nitrite, a food preservative, has been reported to increase oxidative stress indicators such as lipid peroxidation, which can affect different organs including the kidney. Here, we investigated the toxic effects of oral sodium nitrite on kidney function in rats and evaluated potential protective effects of Nigella sativa oil (NSO). Seventy adult male Sprague-Dawley rats received 80 mg/kg sodium nitrite orally in the presence or absence of NSO (2.5, 5, and 10 ml/kg) for 12 weeks. Morphological changes were assessed by hematoxylin and eosin, Mallory trichome, and periodic acid-Schiff staining. Renal tissues were used for measurements of oxidative stress markers, C-reactive protein, cytochrome C oxidase, transforming growth factor (TGF)-beta1, monocyte chemotactic protein (MCP)-1, pJNK/JNK, and caspase-3. NSO significantly reduced sodium nitrite-induced elevation in serum urea and creatinine, as well as increasing normal appearance of renal tissue. NSO also prevented reductions in glycogen levels caused by sodium nitrite alone. Moreover, NSO treatment resulted in dose-dependent significant reductions in fibrosis markers after sodium nitrite-induced 3- and 2.7-fold increase in MCP-1 and TGF-beta1, respectively. Finally, NSO partially reduced the elevated caspase-3 and pJNK/JNK. NSO ameliorates sodium nitrite-induced nephrotoxicity through blocking oxidative stress, attenuation of fibrosis/inflammation, restoration of glycogen level, amelioration of cytochrome C oxidase, and inhibition of apoptosis.

  3. Myostatin Attenuation In Vivo Reduces Adiposity, but Activates Adipogenesis.

    Science.gov (United States)

    Li, Naisi; Yang, Qiyuan; Walker, Ryan G; Thompson, Thomas B; Du, Min; Rodgers, Buel D

    2016-01-01

    A potentially novel approach for treating obesity includes attenuating myostatin as this increases muscle mass and decreases fat mass. Notwithstanding, conflicting studies report that myostatin stimulates or inhibits adipogenesis and it is unknown whether reduced adiposity with myostatin attenuation results from changes in fat deposition or adipogenesis. We therefore quantified changes in the stem, transit amplifying and progenitor cell pool in white adipose tissue (WAT) and brown adipose tissue (BAT) using label-retaining wild-type and mstn(-/-) (Jekyll) mice. Muscle mass was larger in Jekyll mice, WAT and BAT mass was smaller and label induction was equal in all tissues from both wild-type and Jekyll mice. The number of label-retaining cells, however, dissipated quicker in WAT and BAT of Jekyll mice and was only 25% and 17%, respectively, of wild-type cell counts 1 month after induction. Adipose cell density was significantly higher in Jekyll mice and increased over time concomitant with label-retaining cell disappearance, which is consistent with enhanced expansion and differentiation of the stem, transit amplifying and progenitor pool. Stromal vascular cells from Jekyll WAT and BAT differentiated into mature adipocytes at a faster rate than wild-type cells and although Jekyll WAT cells also proliferated quicker in vitro, those from BAT did not. Differentiation marker expression in vitro, however, suggests that mstn(-/-) BAT preadipocytes are far more sensitive to the suppressive effects of myostatin. These results suggest that myostatin attenuation stimulates adipogenesis in vivo and that the reduced adiposity in mstn(-/-) animals results from nutrient partitioning away from fat and in support of muscle.

  4. Short-term weight loss attenuates local tissue inflammation and improves insulin sensitivity without affecting adipose inflammation in obese mice.

    Science.gov (United States)

    Jung, Dae Young; Ko, Hwi Jin; Lichtman, Eben I; Lee, Eunjung; Lawton, Elizabeth; Ong, Helena; Yu, Kristine; Azuma, Yoshihiro; Friedline, Randall H; Lee, Ki Won; Kim, Jason K

    2013-05-01

    Obesity is a major cause of insulin resistance, and weight loss is shown to improve glucose homeostasis. But the underlying mechanism and the role of inflammation remain unclear. Male C57BL/6 mice were fed a high-fat diet (HFD) for 12 wk. After HFD, weight loss was induced by changing to a low-fat diet (LFD) or exercise with continuous HFD. The weight loss effects on energy balance and insulin sensitivity were determined using metabolic cages and hyperinsulinemic euglycemic clamps in awake mice. Diet and exercise intervention for 3 wk caused a modest weight loss and improved glucose homeostasis. Weight loss dramatically reduced local inflammation in skeletal muscle, liver, and heart but not in adipose tissue. Exercise-mediated weight loss increased muscle glucose metabolism without affecting Akt phosphorylation or lipid levels. LFD-mediated weight loss reduced lipid levels and improved insulin sensitivity selectively in liver. Both weight loss interventions improved cardiac glucose metabolism. These results demonstrate that a short-term weight loss with exercise or diet intervention attenuates obesity-induced local inflammation and selectively improves insulin sensitivity in skeletal muscle and liver. Our findings suggest that local factors, not adipose tissue inflammation, are involved in the beneficial effects of weight loss on glucose homeostasis.

  5. Engineering a Light-Attenuating Artificial Iris

    Science.gov (United States)

    Shareef, Farah J.; Sun, Shan; Kotecha, Mrignayani; Kassem, Iris; Azar, Dimitri; Cho, Michael

    2016-01-01

    Purpose Discomfort from light exposure leads to photophobia, glare, and poor vision in patients with congenital or trauma-induced iris damage. Commercial artificial iris lenses are static in nature to provide aesthetics without restoring the natural iris's dynamic response to light. A new photo-responsive artificial iris was therefore developed using a photochromic material with self-adaptive light transmission properties and encased in a transparent biocompatible polymer matrix. Methods The implantable artificial iris was designed and engineered using Photopia, a class of photo-responsive materials (termed naphthopyrans) embedded in polyethylene. Photopia was reshaped into annular disks that were spin-coated with polydimethylsiloxane (PDMS) to form our artificial iris lens of controlled thickness. Results Activated by UV and blue light in approximately 5 seconds with complete reversal in less than 1 minute, the artificial iris demonstrates graded attenuation of up to 40% of visible and 60% of UV light. There optical characteristics are suitable to reversibly regulate the incident light intensity. In vitro cell culture experiments showed up to 60% cell death within 10 days of exposure to Photopia, but no significant cell death observed when cultured with the artificial iris with protective encapsulation. Nuclear magnetic resonance spectroscopy confirmed these results as there was no apparent leakage of potentially toxic photochromic material from the ophthalmic device. Conclusions Our artificial iris lens mimics the functionality of the natural iris by attenuating light intensity entering the eye with its rapid reversible change in opacity and thus potentially providing an improved treatment option for patients with iris damage. PMID:27116547

  6. Engineering a Light-Attenuating Artificial Iris.

    Science.gov (United States)

    Shareef, Farah J; Sun, Shan; Kotecha, Mrignayani; Kassem, Iris; Azar, Dimitri; Cho, Michael

    2016-04-01

    Discomfort from light exposure leads to photophobia, glare, and poor vision in patients with congenital or trauma-induced iris damage. Commercial artificial iris lenses are static in nature to provide aesthetics without restoring the natural iris's dynamic response to light. A new photo-responsive artificial iris was therefore developed using a photochromic material with self-adaptive light transmission properties and encased in a transparent biocompatible polymer matrix. The implantable artificial iris was designed and engineered using Photopia, a class of photo-responsive materials (termed naphthopyrans) embedded in polyethylene. Photopia was reshaped into annular disks that were spin-coated with polydimethylsiloxane (PDMS) to form our artificial iris lens of controlled thickness. Activated by UV and blue light in approximately 5 seconds with complete reversal in less than 1 minute, the artificial iris demonstrates graded attenuation of up to 40% of visible and 60% of UV light. There optical characteristics are suitable to reversibly regulate the incident light intensity. In vitro cell culture experiments showed up to 60% cell death within 10 days of exposure to Photopia, but no significant cell death observed when cultured with the artificial iris with protective encapsulation. Nuclear magnetic resonance spectroscopy confirmed these results as there was no apparent leakage of potentially toxic photochromic material from the ophthalmic device. Our artificial iris lens mimics the functionality of the natural iris by attenuating light intensity entering the eye with its rapid reversible change in opacity and thus potentially providing an improved treatment option for patients with iris damage.

  7. C/EBPβ LIP augments cell death by inducing osteoglycin.

    Science.gov (United States)

    Wassermann-Dozorets, Rina; Rubinstein, Menachem

    2017-04-06

    Many types of tumor cell are devoid of the extracellular matrix proteoglycan osteoglycin (Ogn), but its role in tumor biology is poorly studied. Here we show that RNAi of Ogn attenuates stress-triggered cell death, whereas its overexpression increases cell death. We found that the transcription factor C/EBPβ regulates the expression of Ogn. C/EBPβ is expressed as a full-length, active form (LAP) and as a truncated, dominant-negative form (LIP), and the LIP/LAP ratio is positively correlated with the extent of cell death under stress. For example, we reported that drug-resistant tumor cells lack LIP altogether, and its supplementation abolished their resistance to chemotherapy and to endoplasmic reticulum (ER) stress. Here we further show that elevated LIP/LAP ratio robustly increased Ogn expression and cell death under stress by modulating the mitogen-activated protein kinase/activator protein 1 pathway (MAPK/AP-1). Our findings suggest that LIP deficiency renders tumor cell resistant to ER stress by preventing the induction of Ogn.

  8. A proposal for PET/MRI attenuation correction with μ-values measured using a fixed-position radiation source and MRI segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Hiroshi, E-mail: kwgc@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Hirano, Yoshiyuki, E-mail: yhirano@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Yoshida, Eiji, E-mail: rush@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kershaw, Jeff, E-mail: len@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Shiraishi, Takahiro, E-mail: tshira@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Suga, Mikio, E-mail: mikio.suga@faculty.chiba-u.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Graduate School of Engineering of Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Ikoma, Yoko, E-mail: ikoma@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Obata, Takayuki, E-mail: t_obata@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Ito, Hiroshi, E-mail: hito@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Yamaya, Taiga, E-mail: taiga@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2014-01-11

    Several MRI-based attenuation correction methods have been reported for PET/MRI; these methods are expected to make efficient use of high-quality anatomical MRIs and reduce the radiation dose for PET/MRI scanning. The accuracy of the attenuation map (μ-map) from an MRI depends on the accuracy of tissue segmentation and the attenuation coefficients to be assigned (μ-values). In this study, we proposed an MRI-based μ-value estimation method with a non-rotational radiation source to construct a suitable μ-map for PET/MRI. The proposed method uses an accurately segmented tissue map, the partial path length of each tissue, and detected intensities of attenuated radiation from a fixed-position (rather than a rotating) radiation source to obtain the μ-map. We estimated the partial path length from a virtual blank scan of fixed-point radiation with the same scanner geometry using the known tissue map from MRI. The μ-values of every tissue were estimated by inverting a linear relationship involving the partial path lengths and measured radioactivity intensity. Validation of the proposed method was performed by calculating a fixed- point data set based upon real a real transmission scan. The root-mean-square error between the μ-values derived from a conventional transmission scan and those obtained with our proposed method were 2.4±1.4%, 17.4±9.1% and 6.6±4.3% for brain, bone and soft tissue other than brain, respectively. Although the error estimates for bone and soft tissue are not insignificant, the method we propose is able to estimate the brain μ-value accurately and it is this factor that most strongly affects the quantitative value of PET images because of the large volumetric ratio of the brain. -- Highlights: • An MRI-derived µ-map for the attenuation correction of PET images is proposed. • Method relies on segmentation of MRI and a fixed-point source transmission scan. • Tissue segmentation reduces the number of unknown µ-values. • Method

  9. A proposal for PET/MRI attenuation correction with μ-values measured using a fixed-position radiation source and MRI segmentation

    International Nuclear Information System (INIS)

    Kawaguchi, Hiroshi; Hirano, Yoshiyuki; Yoshida, Eiji; Kershaw, Jeff; Shiraishi, Takahiro; Suga, Mikio; Ikoma, Yoko; Obata, Takayuki; Ito, Hiroshi; Yamaya, Taiga

    2014-01-01

    Several MRI-based attenuation correction methods have been reported for PET/MRI; these methods are expected to make efficient use of high-quality anatomical MRIs and reduce the radiation dose for PET/MRI scanning. The accuracy of the attenuation map (μ-map) from an MRI depends on the accuracy of tissue segmentation and the attenuation coefficients to be assigned (μ-values). In this study, we proposed an MRI-based μ-value estimation method with a non-rotational radiation source to construct a suitable μ-map for PET/MRI. The proposed method uses an accurately segmented tissue map, the partial path length of each tissue, and detected intensities of attenuated radiation from a fixed-position (rather than a rotating) radiation source to obtain the μ-map. We estimated the partial path length from a virtual blank scan of fixed-point radiation with the same scanner geometry using the known tissue map from MRI. The μ-values of every tissue were estimated by inverting a linear relationship involving the partial path lengths and measured radioactivity intensity. Validation of the proposed method was performed by calculating a fixed- point data set based upon real a real transmission scan. The root-mean-square error between the μ-values derived from a conventional transmission scan and those obtained with our proposed method were 2.4±1.4%, 17.4±9.1% and 6.6±4.3% for brain, bone and soft tissue other than brain, respectively. Although the error estimates for bone and soft tissue are not insignificant, the method we propose is able to estimate the brain μ-value accurately and it is this factor that most strongly affects the quantitative value of PET images because of the large volumetric ratio of the brain. -- Highlights: • An MRI-derived µ-map for the attenuation correction of PET images is proposed. • Method relies on segmentation of MRI and a fixed-point source transmission scan. • Tissue segmentation reduces the number of unknown µ-values. • Method

  10. Zinc release contributes to hypoglycemia-induced neuronal death.

    Science.gov (United States)

    Suh, Sang Won; Garnier, Philippe; Aoyama, Koji; Chen, Yongmei; Swanson, Raymond A

    2004-08-01

    Neurons exposed to zinc exhibit activation of poly(ADP-ribose) polymerase-1 (PARP-1), an enzyme that normally participates in DNA repair but promotes cell death when extensively activated. Endogenous, vesicular zinc in brain is released to the extracellular space under conditions causing neuronal depolarization. Here, we used a rat model of insulin-induced hypoglycemia to assess the role of zinc release in PARP-1 activation and neuronal death after severe hypoglycemia. Zinc staining with N-(6-methoxy-8-quinolyl)-para-toluenesulfonamide (TSQ) showed depletion of presynaptic vesicular zinc from hippocampal mossy fiber terminals and accumulation of weakly bound zinc in hippocampal CA1 cell bodies after severe hypoglycemia. Intracerebroventricular injection of the zinc chelator calcium ethylene-diamine tetraacetic acid (CaEDTA) blocked the zinc accumulation and significantly reduced hypoglycemia-induced neuronal death. CaEDTA also attenuated the accumulation of poly(ADP-ribose), the enzymatic product of PARP-1, in hippocampal neurons. These results suggest that zinc translocation is an intermediary step linking hypoglycemia to PARP-1 activation and neuronal death.

  11. Precisely Tracking Childhood Death.

    Science.gov (United States)

    Farag, Tamer H; Koplan, Jeffrey P; Breiman, Robert F; Madhi, Shabir A; Heaton, Penny M; Mundel, Trevor; Ordi, Jaume; Bassat, Quique; Menendez, Clara; Dowell, Scott F

    2017-07-01

    Little is known about the specific causes of neonatal and under-five childhood death in high-mortality geographic regions due to a lack of primary data and dependence on inaccurate tools, such as verbal autopsy. To meet the ambitious new Sustainable Development Goal 3.2 to eliminate preventable child mortality in every country, better approaches are needed to precisely determine specific causes of death so that prevention and treatment interventions can be strengthened and focused. Minimally invasive tissue sampling (MITS) is a technique that uses needle-based postmortem sampling, followed by advanced histopathology and microbiology to definitely determine cause of death. The Bill & Melinda Gates Foundation is supporting a new surveillance system called the Child Health and Mortality Prevention Surveillance network, which will determine cause of death using MITS in combination with other information, and yield cause-specific population-based mortality rates, eventually in up to 12-15 sites in sub-Saharan Africa and south Asia. However, the Gates Foundation funding alone is not enough. We call on governments, other funders, and international stakeholders to expand the use of pathology-based cause of death determination to provide the information needed to end preventable childhood mortality.

  12. Spectral detector CT-derived virtual non-contrast images: comparison of attenuation values with unenhanced CT.

    Science.gov (United States)

    Ananthakrishnan, Lakshmi; Rajiah, Prabhakar; Ahn, Richard; Rassouli, Negin; Xi, Yin; Soesbe, Todd C; Lewis, Matthew A; Lenkinski, Robert E; Leyendecker, John R; Abbara, Suhny

    2017-03-01

    To assess virtual non-contrast (VNC) images obtained on a detection-based spectral detector CT scanner and determine how attenuation on VNC images derived from various phases of enhanced CT compare to those obtained from true unenhanced images. In this HIPAA compliant, IRB approved prospective multi-institutional study, 46 patients underwent pre- and post-contrast imaging on a prototype dual-layer spectral detector CT between October 2013 and November 2015, yielding 84 unenhanced and VNC pairs (25 arterial, 39 portal venous/nephrographic, 20 urographic). Mean attenuation was measured by one of three readers in the liver, spleen, kidneys, psoas muscle, abdominal aorta, and subcutaneous fat. Equivalence testing was used to determine if the mean difference between unenhanced and VNC attenuation was less than 5, 10, or 15 HU. VNC image quality was assessed on a 5 point scale. Mean difference between unenhanced and VNC attenuation was VNC attenuation were equivalent in all tissues except fat using a threshold of VNC overestimated the HU relative to unenhanced images. VNC image quality was rated as excellent or good in 84% of arterial phase and 85% of nephrographic phase cases, but only 40% of urographic phase. VNC images derived from novel dual layer spectral detector CT demonstrate attenuation values similar to unenhanced images in all tissues evaluated except for subcutaneous fat. Further study is needed to determine if attenuation thresholds currently used clinically for common pathology should be adjusted, particularly for lesions containing fat.

  13. Zinc promotes the death of hypoxic astrocytes by upregulating hypoxia-induced hypoxia-inducible factor-1alpha expression via poly(ADP-ribose) polymerase-1.

    Science.gov (United States)

    Pan, Rong; Chen, Chen; Liu, Wen-Lan; Liu, Ke-Jian

    2013-07-01

    Pathological release of excess zinc ions has been implicated in ischemic brain cell death. However, the underlying mechanisms remain to be elucidated. In stroke, ischemia-induced zinc release and hypoxia-inducible factor-1 (HIF-1) accumulation concurrently occur in the ischemic tissue. The present study tests the hypothesis that the presence of high intracellular zinc concentration is a major cause of modifications to PARP-1 and HIF-1α during hypoxia, which significantly contributes to cell death during ischemia. Primary cortical astrocytes and C8-D1A cells were exposed to different concentrations of zinc chloride. Cell death rate and protein expression of HIF-1 and Poly(ADP-ribose) polymerase (PARP)-1 were examined after 3-h hypoxic treatment. Although 3-h hypoxia or 100 μM of zinc alone did not induce noticeable cytotoxicity, their combination led to a dramatic increase in astrocytic cell death in a zinc-concentration-dependent manner. Exposure of astrocytes to hypoxia for 3 h remarkably increased the levels of intracellular zinc and HIF-1α protein, which was further augmented by added exogenous zinc. Notably, HIF-1α knockdown blocked zinc-induced astrocyte death. Moreover, knockdown of PARP-1, another important protein in the response of hypoxia, attenuated the overexpression of HIF-1α and reduced the cell death rate. Our studies show that zinc promotes hypoxic cell death through overexpression of the hypoxia response factor HIF-1α via the cell fate determine factor PARP-1 modification, which provides a novel mechanism for zinc-mediated ischemic brain injury. © 2013 John Wiley & Sons Ltd.

  14. alpha-Toxin is a mediator of Staphylococcus aureus-induced cell death and activates caspases via the intrinsic death pathway independently of death receptor signaling

    NARCIS (Netherlands)

    Bantel, H; Sinha, B; Domschke, W; Peters, Georg; Schulze-Osthoff, K; Jänicke, R U

    2001-01-01

    Infections with Staphylococcus aureus, a common inducer of septic and toxic shock, often result in tissue damage and death of various cell types. Although S. aureus was suggested to induce apoptosis, the underlying signal transduction pathways remained elusive. We show that caspase activation and

  15. Acute Ethanol Gavage Attenuates Hemorrhage/Resuscitation-Induced Hepatic Oxidative Stress in Rats

    Directory of Open Access Journals (Sweden)

    B. Relja

    2012-01-01

    Full Text Available Acute ethanol intoxication increases the production of reactive oxygen species (ROS. Hemorrhagic shock with subsequent resuscitation (H/R also induces ROS resulting in cellular and hepatic damage in vivo. We examined the role of acute ethanol intoxication upon oxidative stress and subsequent hepatic cell death after H/R. 14 h before H/R, rats were gavaged with single dose of ethanol or saline (5 g/kg, EtOH and ctrl; H/R_EtOH or H/R_ctrl, resp.. Then, rats were hemorrhaged to a mean arterial blood pressure of 30±2 mmHg for 60 min and resuscitated. Two control groups underwent surgical procedures without H/R (sham_ctrl and sham_EtOH, resp.. Liver tissues were harvested at 2, 24, and 72 h after resuscitation. EtOH-gavage induced histological picture of acute fatty liver. Hepatic oxidative (4-hydroxynonenal, 4-HNE and nitrosative (3-nitrotyrosine, 3-NT stress were significantly reduced in EtOH-gavaged rats compared to controls after H/R. Proapoptotic caspase-8 and Bax expressions were markedly diminished in EtOH-gavaged animals compared with controls 2 h after resuscitation. EtOH-gavage increased antiapoptotic Bcl-2 gene expression compared with controls 2 h after resuscitation. iNOS protein expression increased following H/R but was attenuated in EtOH-gavaged animals after H/R. Taken together, the data suggest that acute EtOH-gavage may attenuate H/R-induced oxidative stress thereby reducing cellular injury in rat liver.

  16. Effective x-ray attenuation measurements with full field digital mammography

    International Nuclear Information System (INIS)

    Heine, John J.; Behera, Madhusmita

    2006-01-01

    This work shows that effective x-ray attenuation coefficients may be estimated by applying Beer's Law to phantom image data acquired with the General Electric Senographe 2000D full field digital mammography system. Theoretical developments are provided indicating that an approximate form of the Beer's relation holds for polychromatic x-ray beams. The theoretical values were compared with experimentally determined measured values, which were estimated at various detector locations. The measured effective attenuation coefficients are in agreement with those estimated with theoretical developments and numerical integration. The work shows that the measured quantities show little spatial variation. The main ideas are demonstrated with polymethylmethacrylate and breast tissue equivalent phantom imaging experiments. The work suggests that the effective attenuation coefficients may be used as known values for radiometric standardization applications that compensate for the image acquisition influences. The work indicates that it is possible to make quantitative attenuation coefficient measurements from a system designed for clinical purposes

  17. Yellow Fever Virus Vaccine–associated Deaths in Young Women 1

    OpenAIRE

    Seligman, Stephen J.

    2011-01-01

    Yellow fever vaccine–associated viscerotropic disease is a rare sequela of live-attenuated virus vaccine. Elderly persons and persons who have had thymectomies have increased susceptibility. A review of published and other data suggested a higher than expected number of deaths from yellow fever vaccine–associated viscerotropic disease among women 19–34 years of age without known immunodeficiency.

  18. Correlation of the myocardial perfusion corrected by attenuation with the coronariography. Preliminary results; Correlacion de la perfusion miocardica corregida por atenuacion con la coronariografia

    Energy Technology Data Exchange (ETDEWEB)

    Garcia C, S.E.; Garcia O, R. [Servicio de Medicina Nuclear, Centro Medico ABC, Campis Observatorio, IAP (Mexico)

    2005-07-01

    The attenuation that suffers the radiation in the soft tissues of the hinders the appropriate interpretation of the myocardial perfusion studies, for what have been implemented attenuation correction systems to reduce the attenuation for soft tissues and to provide myocardial perfusion images more accurate in the diagnosis of coronary illness. The objective was to evaluate the utility of an attenuation correction system (with source of Gadolinium 153) to minimize the devices that look like true defects of myocardial perfusion, caused by soft tissues (mammary tissue, thoracic wall, abdomen, left hemi diaphragm), and to compare those interpretations of the studies with the interpretations of the corresponding coronariographies. The method consists of 95 electronic files which were revised with the concept of heart catheterization, being identified 20 patients from the masculine sex to those that underwent coronariography among May 1999 and December 2002, and that they had study of myocardial perfusion in a maximum period of 3 months foresaw to the invasive procedure. (Author)

  19. The Study on the Attenuation of X-ray and Imaging Quality by Contents in Stomach

    International Nuclear Information System (INIS)

    Dong, Kyung Rae; Ji, Youn Sang; Kim, Chang Bok; Choi, Seong Kwan; Moon, Sang In; Dieter, Kevin

    2009-01-01

    This study examined the change in the attenuation of X-rays with the ROI (Region of Interest) in DR (Digital Radiography) according to the stomach contents by manufacturing a tissue equivalent material phantom to simulate real stomach tissue based on the assumption that there is some attenuation of X-rays and a difference in imaging quality according to the stomach contents. The transit dosage by the attenuation of X-rays decreased with increasing protein thickness, which altered the average ROI values in the film and DR images. A comparison of the change in average ROI values of the film and DR image showed that the image in film caused larger density changes with varying thickness of protein than the image by DR. The results indicate that NPO (nothing by mouth) is more important in film system than in DR system.

  20. The Study on the Attenuation of X-ray and Imaging Quality by Contents in Stomach

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Kyung Rae; Ji, Youn Sang; Kim, Chang Bok; Choi, Seong Kwan; Moon, Sang In [Dept. of Radiological Technology, Gwangju Health College University, Gwangju (Korea, Republic of); Dieter, Kevin [Dept. of Physical Therapy, Gwangju Health College University, Gwangju (Korea, Republic of)

    2009-03-15

    This study examined the change in the attenuation of X-rays with the ROI (Region of Interest) in DR (Digital Radiography) according to the stomach contents by manufacturing a tissue equivalent material phantom to simulate real stomach tissue based on the assumption that there is some attenuation of X-rays and a difference in imaging quality according to the stomach contents. The transit dosage by the attenuation of X-rays decreased with increasing protein thickness, which altered the average ROI values in the film and DR images. A comparison of the change in average ROI values of the film and DR image showed that the image in film caused larger density changes with varying thickness of protein than the image by DR. The results indicate that NPO (nothing by mouth) is more important in film system than in DR system.

  1. Crystalline structure of pulverized dental calculus induces cell death in oral epithelial cells.

    Science.gov (United States)

    Ziauddin, S M; Yoshimura, A; Montenegro Raudales, J L; Ozaki, Y; Higuchi, K; Ukai, T; Kaneko, T; Miyazaki, T; Latz, E; Hara, Y

    2018-06-01

    Dental calculus is a mineralized deposit attached to the tooth surface. We have shown that cellular uptake of dental calculus triggers nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation, leading to the processing of the interleukin-1β precursor into its mature form in mouse and human phagocytes. The activation of the NLRP3 inflammasome also induced a lytic form of programmed cell death, pyroptosis, in these cells. However, the effects of dental calculus on other cell types in periodontal tissue have not been investigated. The aim of this study was to determine whether dental calculus can induce cell death in oral epithelial cells. HSC-2 human oral squamous carcinoma cells, HOMK107 human primary oral epithelial cells and immortalized mouse macrophages were exposed to dental calculus or 1 of its components, hydroxyapatite crystals. For inhibition assays, the cells were exposed to dental calculus in the presence or absence of cytochalasin D (endocytosis inhibitor), z-YVAD-fmk (caspase-1 inhibitor) or glyburide (NLRP3 inflammasome inhibitor). Cytotoxicity was determined by measuring lactate dehydrogenase (LDH) release and staining with propidium iodide. Tumor necrosis factor-α production was quantified by enzyme-linked immunosorbent assay. Oral epithelial barrier function was examined by permeability assay. Dental calculus induced cell death in HSC-2 cells, as judged by LDH release and propidium iodide staining. Dental calculus also induced LDH release from HOMK107 cells. Following heat treatment, dental calculus lost its capacity to induce tumor necrosis factor-α in mouse macrophages, but could induce LDH release in HSC-2 cells, indicating a major role of inorganic components in cell death. Hydroxyapatite crystals also induced cell death in both HSC-2 and HOMK107 cells, as judged by LDH release, indicating the capacity of crystal particles to induce cell death. Cell death induced by dental

  2. Importance of tissue biopsy in suicidal hanging deaths

    Directory of Open Access Journals (Sweden)

    Manal S. Bamousa

    2015-12-01

    The total number of cases was 62; 85.5% of the deceased were males, while 15% were females. The majority of cases (53% were among the age group of 20–30 years. Hemorrhage of the sternocleidomastoid muscle and carotid intimal tear were both found in 90% of cases. Thyroid congestion was detected in 91%, and Hashimoto’s thyroiditis was diagnosed in 2% of studied cases. The study discusses the importance of biopsy examination in hanging deaths and compares its results with other similar previous studies.

  3. Morphologic categorization of cell death induced by mild hyperthermia and comparison with death induced by ionizing radiation and cytotoxic drugs

    International Nuclear Information System (INIS)

    Allan, D.J.; Harmon, B.V.

    1986-01-01

    This paper presents a summary of the morphological categorization of cell death, results of two in vivo studies on the cell death induced by mild hyperthermia in rat small intestine and mouse mastocytoma, and a comparison of the cell death induced by hyperthermia, radiation and cytotoxic drugs. Two distinct forms of cell death, apoptosis and necrosis, can be recognized on morphologic grounds. Apoptosis appears to be a process of active cellular self-destruction to which a biologically meaningful role can usually be attributed, whereas necrosis is a passive degenerative phenomenon that results from irreversible cellular injury. Light and transmission electron microscopic studies showed that lower body hyperthermia (43 degrees C for 30 min) induced only apoptosis of intestinal epithelial cells, and of lymphocytes, plasma cells, and eosinophils. In the mastocytoma, hyperthermia (43 degrees C for 15 min) produced widespread tumor necrosis and also enhanced apoptosis of tumor cells. Ionizing radiation and cytotoxic drugs are also known to induce apoptosis in a variety of tissues. It is attractive to speculate that DNA damage by each agent is the common event which triggers the same process of active cellular self-destruction that characteristically effects selective cell deletion in normal tissue homeostasis

  4. Vision 20/20: Magnetic resonance imaging-guided attenuation correction in PET/MRI: Challenges, solutions, and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Mehranian, Abolfazl; Arabi, Hossein [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva CH-1211 (Switzerland); Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva CH-1211 (Switzerland); Geneva Neuroscience Centre, University of Geneva, Geneva CH-1205 (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, Groningen 9700 RB (Netherlands)

    2016-03-15

    Attenuation correction is an essential component of the long chain of data correction techniques required to achieve the full potential of quantitative positron emission tomography (PET) imaging. The development of combined PET/magnetic resonance imaging (MRI) systems mandated the widespread interest in developing novel strategies for deriving accurate attenuation maps with the aim to improve the quantitative accuracy of these emerging hybrid imaging systems. The attenuation map in PET/MRI should ideally be derived from anatomical MR images; however, MRI intensities reflect proton density and relaxation time properties of biological tissues rather than their electron density and photon attenuation properties. Therefore, in contrast to PET/computed tomography, there is a lack of standardized global mapping between the intensities of MRI signal and linear attenuation coefficients at 511 keV. Moreover, in standard MRI sequences, bones and lung tissues do not produce measurable signals owing to their low proton density and short transverse relaxation times. MR images are also inevitably subject to artifacts that degrade their quality, thus compromising their applicability for the task of attenuation correction in PET/MRI. MRI-guided attenuation correction strategies can be classified in three broad categories: (i) segmentation-based approaches, (ii) atlas-registration and machine learning methods, and (iii) emission/transmission-based approaches. This paper summarizes past and current state-of-the-art developments and latest advances in PET/MRI attenuation correction. The advantages and drawbacks of each approach for addressing the challenges of MR-based attenuation correction are comprehensively described. The opportunities brought by both MRI and PET imaging modalities for deriving accurate attenuation maps and improving PET quantification will be elaborated. Future prospects and potential clinical applications of these techniques and their integration in commercial

  5. Changes in the rate of proliferation in normal tissues after irradiation

    International Nuclear Information System (INIS)

    Denekamp, J.

    1975-01-01

    In tissues where reproductive cell death is known to cause the functional tissue damage (e.g., intestine and skin), repopulation becomes important only after the death of the radiation-damaged cells. Since these tissues have a fairly rapid turnover, this can occur within a short period of time and can assist in the healing of tissues during fractionated therapy. However, in tissues which express their damage late, such as the lung, it is very unlikely that repopulation will be stimulated before cell death is manifested and this does not occur during the period over which fractionated radiotherapy is administered. Although repopulation may be of no importance in these tissues, e.g., lungs and kidneys, there appears to be some other ''repair'' process which requires additional radiation dose to be administered to achieve the same endpoint if the overall time is increased

  6. Psychosocial functioning and intelligence both partly explain socioeconomic inequalities in premature death. A population-based male cohort study.

    Directory of Open Access Journals (Sweden)

    Daniel Falkstedt

    Full Text Available The possible contributions of psychosocial functioning and intelligence differences to socioeconomic status (SES-related inequalities in premature death were investigated. None of the previous studies focusing on inequalities in mortality has included measures of both psychosocial functioning and intelligence.The study was based on a cohort of 49 321 men born 1949-1951 from the general community in Sweden. Data on psychosocial functioning and intelligence from military conscription at ∼18 years of age were linked with register data on education, occupational class, and income at 35-39 years of age. Psychosocial functioning was rated by psychologists as a summary measure of differences in level of activity, power of initiative, independence, and emotional stability. Intelligence was measured through a multidimensional test. Causes of death between 40 and 57 years of age were followed in registers.The estimated inequalities in all-cause mortality by education and occupational class were attenuated with 32% (95% confidence interval: 20-45% and 41% (29-52% after adjustments for individual psychological differences; both psychosocial functioning and intelligence contributed to account for the inequalities. The inequalities in cardiovascular and injury mortality were attenuated by as much as 51% (24-76% and 52% (35-68% after the same adjustments, and the inequalities in alcohol-related mortality were attenuated by up to 33% (8-59%. Less of the inequalities were accounted for when those were measured by level of income, with which intelligence had a weaker correlation. The small SES-related inequalities in cancer mortality were not attenuated by adjustment for intelligence.Differences in psychosocial functioning and intelligence might both contribute to the explanation of observed SES-related inequalities in premature death, but the magnitude of their contributions likely varies with measure of socioeconomic status and cause of death. Both

  7. Tissue Plasminogen Activator (tPA) Mediates Neurotoxin-Induced Cell Death and Microglial Activation

    National Research Council Canada - National Science Library

    Tsirka, Styliani-Anna

    2000-01-01

    .... In mice lacking tPA (tPA-/-), neurons are resistant to neurotoxic death. Delivery of tPA into tPA mice restores susceptibility to neuronal death, indicating that tPA is neurotoxic in the context of excitotoxic injury...

  8. Tissue Plasminogen Activator (tPA) Mediates Neurotoxin-Induced Cell Death and Microglial Activation

    National Research Council Canada - National Science Library

    Tsirka, Styliani-Anna

    2001-01-01

    .... In mice lacking tPA (tPA-/1), neurons are resistant to neurotoxic death. Delivery of tPA into tpA-/- mice restores susceptibility to neuronal death, indicating that tPA is neurotoxic in the context of excitotoxic injury...

  9. MG132, a proteasome inhibitor, induces human pulmonary fibroblast cell death via increasing ROS levels and GSH depletion.

    Science.gov (United States)

    Park, Woo Hyun; Kim, Suhn Hee

    2012-04-01

    MG132 as a proteasome inhibitor can induce apoptotic cell death in lung cancer cells. However, little is known about the toxicological cellular effects of MG132 on normal primary lung cells. Here, we investigated the effects of N-acetyl cysteine (NAC) and vitamin C (well known antioxidants) or L-buthionine sulfoximine (BSO; an inhibitor of GSH synthesis) on MG132-treated human pulmonary fibroblast (HPF) cells in relation to cell death, reactive oxygen species (ROS) and glutathione (GSH). MG132 induced growth inhibition and death in HPF cells, accompanied by the loss of mitochondrial membrane potential (MMP; ∆ψm). MG132 increased ROS levels and GSH-depleted cell numbers in HPF cells. Both antioxidants, NAC and vitamin C, prevented growth inhibition, death and MMP (∆ψm) loss in MG132-treated HPF cells and also attenuated ROS levels in these cells. BSO showed a strong increase in ROS levels in MG132-treated HPF cells and slightly enhanced the growth inhibition, cell death, MMP (∆ψm) loss and GSH depletion. In addition, NAC decreased anonymous ubiquitinated protein levels in MG132-treated HPF cells. Furthermore, superoxide dismutase (SOD) 2, catalase (CTX) and GSH peroxidase (GPX) siRNAs enhanced HPF cell death by MG132, which was not correlated with ROS and GSH level changes. In conclusion, MG132 induced the growth inhibition and death of HPF cells, which were accompanied by increasing ROS levels and GSH depletion. Both NAC and vitamin C attenuated HPF cell death by MG132, whereas BSO slightly enhanced the death.

  10. Anterior wrist and medial malleolus: the optimal sites for tissue selection in electric death through hand-to-foot circuit pathway.

    Science.gov (United States)

    Xu, Guangtao; Su, Ruibing; Lv, Junyao; Lai, Xiaoping; Li, Xianxian; Wu, Jiayan; Hu, Bo; Xu, Long; Shen, Ruilin; Gu, Jiang; Yu, Xiaojun

    2017-03-01

    Specific morphological changes may be absent in some cases of electrocution shocked by the voltage of 220 V or lower. In this study, we attempted to demonstrate that the anterior wrist and medial malleolus were the optimal sites with promising and significant changes in electric death through the hand-to-foot circuit pathway. We established an electric shock rat model and observed histopathologic changes in the anterior wrist and medial malleolus. The results showed that the current intensities in the left anterior wrist and right medial malleolus were remarkably higher than those in the other sites, and the nuclei long/short (L/S) axis ratios of the arterial endotheliocyte and the skeletal muscle cell in these two areas were significantly higher than those in other parts of the body. These findings suggested that the anterior wrist and/or medial malleolus soft tissues as the narrowest parts of the limbs could be used as promising and useful sites for the assessment of electrical shock death, especially in forensic pathologic evaluation.

  11. Programmed cell death during quinoa perisperm development.

    Science.gov (United States)

    López-Fernández, María Paula; Maldonado, Sara

    2013-08-01

    At seed maturity, quinoa (Chenopodium quinoa Willd.) perisperm consists of uniform, non-living, thin-walled cells full of starch grains. The objective of the present study was to study quinoa perisperm development and describe the programme of cell death that affects the entire tissue. A number of parameters typically measured during programmed cell death (PCD), such as cellular morphological changes in nuclei and cytoplasm, endoreduplication, DNA fragmentation, and the participation of nucleases and caspase-like proteases in nucleus dismantling, were evaluated; morphological changes in cytoplasm included subcellular aspects related to starch accumulation. This study proved that, following fertilization, the perisperm of quinoa simultaneously accumulates storage reserves and degenerates, both processes mediated by a programme of developmentally controlled cell death. The novel findings regarding perisperm development provide a starting point for further research in the Amaranthaceae genera, such as comparing seeds with and without perisperm, and specifying phylogeny and evolution within this taxon. Wherever possible and appropriate, differences between quinoa perisperm and grass starchy endosperm--a morphologically and functionally similar, although genetically different tissue--were highlighted and discussed.

  12. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016 (China); Wang, Jianwei, E-mail: wangjianwei1968@gmail.com [Department of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016 (China); Gu, Tieguang [Endocrinology and Metabolism Group, Sydney Institute of Health Sciences, Sydney, NSW 2000 Australia (Australia); Yamahara, Johji [Pharmafood Institute, Kyoto 602-8136 (Japan); Li, Yuhao, E-mail: yuhao@sitcm.edu.au [Endocrinology and Metabolism Group, Sydney Institute of Health Sciences, Sydney, NSW 2000 Australia (Australia)

    2014-06-01

    Oleanolic acid, a triterpenoid contained in more than 1620 plants including various fruits and foodstuffs, has numerous metabolic effects, such as hepatoprotection. However, its underlying mechanisms remain poorly understood. Adipose tissue insulin resistance (Adipo-IR) may contribute to the development and progress of metabolic abnormalities through release of excessive free fatty acids from adipose tissue. This study investigated the effect of oleanolic acid on Adipo-IR. The results showed that supplement with oleanolic acid (25 mg/kg, once daily, by oral gavage) over 10 weeks attenuated liquid fructose-induced increase in plasma insulin concentration and the homeostasis model assessment of insulin resistance (HOMA-IR) index in rats. Simultaneously, oleanolic acid reversed the increase in the Adipo-IR index and plasma non-esterified fatty acid concentrations during the oral glucose tolerance test assessment. In white adipose tissue, oleanolic acid enhanced mRNA expression of the genes encoding insulin receptor, insulin receptor substrate (IRS)-1 and phosphatidylinositol 3-kinase. At the protein level, oleanolic acid upregulated total IRS-1 expression, suppressed the increased phosphorylated IRS-1 at serine-307, and restored the increased phosphorylated IRS-1 to total IRS-1 ratio. In contrast, phosphorylated Akt to total Akt ratio was increased. Furthermore, oleanolic acid reversed fructose-induced decrease in phosphorylated-Akt/Akt protein to plasma insulin concentration ratio. However, oleanolic acid did not affect IRS-2 mRNA expression. Therefore, these results suggest that oleanolic acid supplement ameliorates fructose-induced Adipo-IR in rats via the IRS-1/phosphatidylinositol 3-kinase/Akt pathway. Our findings may provide new insights into the mechanisms of metabolic actions of oleanolic acid. - Highlights: • Adipose insulin resistance (Adipo-IR) contributes to metabolic abnormalities. • We investigated the effect of oleanolic acid (OA) on adipo-IR in

  13. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats

    International Nuclear Information System (INIS)

    Li, Ying; Wang, Jianwei; Gu, Tieguang; Yamahara, Johji; Li, Yuhao

    2014-01-01

    Oleanolic acid, a triterpenoid contained in more than 1620 plants including various fruits and foodstuffs, has numerous metabolic effects, such as hepatoprotection. However, its underlying mechanisms remain poorly understood. Adipose tissue insulin resistance (Adipo-IR) may contribute to the development and progress of metabolic abnormalities through release of excessive free fatty acids from adipose tissue. This study investigated the effect of oleanolic acid on Adipo-IR. The results showed that supplement with oleanolic acid (25 mg/kg, once daily, by oral gavage) over 10 weeks attenuated liquid fructose-induced increase in plasma insulin concentration and the homeostasis model assessment of insulin resistance (HOMA-IR) index in rats. Simultaneously, oleanolic acid reversed the increase in the Adipo-IR index and plasma non-esterified fatty acid concentrations during the oral glucose tolerance test assessment. In white adipose tissue, oleanolic acid enhanced mRNA expression of the genes encoding insulin receptor, insulin receptor substrate (IRS)-1 and phosphatidylinositol 3-kinase. At the protein level, oleanolic acid upregulated total IRS-1 expression, suppressed the increased phosphorylated IRS-1 at serine-307, and restored the increased phosphorylated IRS-1 to total IRS-1 ratio. In contrast, phosphorylated Akt to total Akt ratio was increased. Furthermore, oleanolic acid reversed fructose-induced decrease in phosphorylated-Akt/Akt protein to plasma insulin concentration ratio. However, oleanolic acid did not affect IRS-2 mRNA expression. Therefore, these results suggest that oleanolic acid supplement ameliorates fructose-induced Adipo-IR in rats via the IRS-1/phosphatidylinositol 3-kinase/Akt pathway. Our findings may provide new insights into the mechanisms of metabolic actions of oleanolic acid. - Highlights: • Adipose insulin resistance (Adipo-IR) contributes to metabolic abnormalities. • We investigated the effect of oleanolic acid (OA) on adipo-IR in

  14. Pathogenesis of virulent and attenuated foot-and-mouth disease virus in cattle.

    Science.gov (United States)

    Arzt, Jonathan; Pacheco, Juan M; Stenfeldt, Carolina; Rodriguez, Luis L

    2017-05-02

    Understanding the mechanisms of attenuation and virulence of foot-and-mouth disease virus (FMDV) in the natural host species is critical for development of next-generation countermeasures such as live-attenuated vaccines. Functional genomics analyses of FMDV have identified few virulence factors of which the leader proteinase (L pro ) is the most thoroughly investigated. Previous work from our laboratory has characterized host factors in cattle inoculated with virulent FMDV and attenuated mutant strains with transposon insertions within L pro . In the current study, the characteristics defining virulence of FMDV in cattle were further investigated by comparing the pathogenesis of a mutant, attenuated strain (FMDV-Mut) to the parental, virulent virus from which the mutant was derived (FMDV-WT). The only difference between the two viruses was an insertion mutation in the inter-AUG region of the leader proteinase of FMDV-Mut. All cattle were infected by simulated-natural, aerosol inoculation. Both viruses were demonstrated to establish primary infection in the nasopharyngeal mucosa with subsequent dissemination to the lungs. Immunomicroscopic localization of FMDV antigens indicated that both viruses infected superficial epithelial cells of the nasopharynx and lungs. The critical differences between the two viruses were a more rapid establishment of infection by FMDV-WT and quantitatively greater virus loads in secretions and infected tissues compared to FMDV-Mut. The slower replicating FMDV-Mut established a subclinical infection that was limited to respiratory epithelial sites, whereas the faster replication of FMDV-WT facilitated establishment of viremia, systemic dissemination of infection, and clinical disease. The mutant FMDV was capable of achieving all the same early pathogenesis landmarks as FMDV-WT, but was unable to establish systemic infection. The precise mechanism of attenuation remains undetermined; but current data suggests that the impaired replication

  15. Effects of chronic exposure of hydroxychloroquine/ chloroquine on the risk of cancer, metastasis, and death: a population-based cohort study on patients with connective tissue diseases

    Directory of Open Access Journals (Sweden)

    Fardet L

    2017-11-01

    Full Text Available L Fardet,1–3 I Nazareth,1 I Petersen1 1Department of Primary Care and Population Health, University College London, UK; 2Department of Dermatology, Henri Mondor Hospital AP-HP, Créteil, France; 3Equipe d’Accueil 7379 EpiDermE, Université Paris Est Créteil, Créteil, France Background: Hydroxychloroquine and chloroquine may reduce the risk of cancer as they inhibit autophagy, in particular, in people with connective tissue diseases.Methods: The hazard ratios of cancers, metastases, and death were assessed in adults with connective tissue diseases prescribed hydroxychloroquine/chloroquine for at least 1 year in comparison with unexposed individuals with the same underlying conditions. A competing risk survival regression analysis was performed. Data were extracted from the Health Improvement Network UK primary care database.Results: Eight thousand nine hundred and ninety-nine individuals exposed to hydroxychloroquine (98.6% or chloroquine (1.4% and 24,118 unexposed individuals were included in the study (median age: 56 [45–66] years, women: 76.8%. When compared to the unexposed group, individuals exposed to hydroxychloroquine/chloroquine were not at lower risk of non-skin cancers (adjusted sub-distribution hazard ratio [sHR]: 1.04 [0.92–1.18], p=0.54, hematological malignancies (adjusted sHR: 1.00 [0.73–1.38], p=0.99, or skin cancers (adjusted sHR: 0.92 [0.78–1.07], p=0.26. The risk of metastasis was not significantly different between the two groups. However, it was significantly lower during the exposure period when compared with the unexposed (adjusted sHR: 0.64 [0.44–0.95] for the overall population and 0.61 [0.38–1.00] for those diagnosed with incident cancers. The risk of death was also significantly lower in those exposed to hydroxychloroquine/chloroquine (adjusted HR: 0.90 [0.81–1.00] in the overall population and 0.78 [0.64–0.96] in those diagnosed with incident cancer.Conclusion: Individuals on long-term exposure

  16. Programmed Cell Death and Postharvest Deterioration of Horticultural Produce

    NARCIS (Netherlands)

    Woltering, E.J.; Iakimova, E.T.

    2010-01-01

    Programmed cell death (PCD) is a process where cells or tissues are broken down in an orderly and predictable manner, whereby nutrients are re-used by other cells, tissues or plant parts. The process of (petal) senescence shows many similarities to autophagic PCD in animal cells including a massive

  17. Melatonin Modulates Neuronal Cell Death Induced by Endoplasmic Reticulum Stress under Insulin Resistance Condition.

    Science.gov (United States)

    Song, Juhyun; Kim, Oh Yoen

    2017-06-10

    Insulin resistance (IR) is an important stress factor in the central nervous system, thereby aggravating neuropathogenesis and triggering cognitive decline. Melatonin, which is an antioxidant phytochemical and synthesized by the pineal gland, has multiple functions in cellular responses such as apoptosis and survival against stress. This study investigated whether melatonin modulates the signaling of neuronal cell death induced by endoplasmic reticulum (ER) stress under IR condition using SH-SY5Y neuroblastoma cells. Apoptosis cell death signaling markers (cleaved Poly [ADP-ribose] polymerase 1 (PARP), p53, and Bax) and ER stress markers (phosphorylated eIF2α (p-eIF2α), ATF4, CHOP, p-IRE1 , and spliced XBP1 (sXBP1)) were measured using reverse transcription-PCR, quantitative PCR, and western blottings. Immunofluorescence staining was also performed for p-ASK1 and p-IRE1 . The mRNA or protein expressions of cell death signaling markers and ER stress markers were increased under IR condition, but significantly attenuated by melatonin treatment. Insulin-induced activation of ASK1 ( p-ASK1 ) was also dose dependently attenuated by melatonin treatment. The regulatory effect of melatonin on neuronal cells under IR condition was associated with ASK1 signaling. In conclusion, the result suggested that melatonin may alleviate ER stress under IR condition, thereby regulating neuronal cell death signaling.

  18. PPAR-alpha agonist treatment increases trefoil factor family-3 expression and attenuates apoptosis in the liver tissue of bile duct-ligated rats.

    Science.gov (United States)

    Karakan, Tarkan; Kerem, Mustafa; Cindoruk, Mehmet; Engin, Doruk; Alper, Murat; Akın, Okan

    2013-01-01

    Peroxisome proliferators-activated receptor alpha activation modulates cholesterol metabolism and suppresses bile acid synthesis. The trefoil factor family comprises mucin-associated proteins that increase the viscosity of mucins and help protect epithelial linings from insults. We evaluated the effect of short-term administration of fenofibrate, a peroxisome proliferators activated receptor alpha agonist, on trefoil factor family-3 expression, degree of apoptosis, generation of free radicals, and levels of proinflammatory cytokines in the liver tissue of bile duct-ligated rats. Forty male Wistar rats were randomly divided into four groups: 1 = sham operated, 2 = bile duct ligation, 3 = bile duct-ligated + vehicle (gum Arabic), and 4 = bile duct-ligated + fenofibrate (100 mg/kg/day). All rats were sacrificed on the 7 th day after obtaining blood samples and liver tissue. Liver function tests, tumor necrosis factor-alpha and interleukin 1 beta in serum, and trefoil factor family-3 mRNA expression, degree of apoptosis (TUNEL) and tissue malondialdehyde (malondialdehyde, end-product of lipid peroxidation by reactive oxygen species) in liver tissue were evaluated. Fenofibrate administration significantly reduced serum total bilirubin, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, gamma-glutamyl transferase, and tumor necrosis factor-alpha and interleukin-1β levels. Apoptosis and malondialdehyde were significantly reduced in the fenofibrate group. Trefoil factor family-3 expression increased with fenofibrate treatment in bile duct-ligated rats. The peroxisome proliferators-activated receptor alpha agonist fenofibrate significantly increased trefoil factor family-3 expression and decreased apoptosis and lipid peroxidation in the liver and attenuated serum levels of proinflammatory cytokines in bile duct-ligated rats. Further studies are needed to determine the protective role of fenofibrate in human cholestatic disorders.

  19. Quantification of numerical aperture-dependence of the OCT attenuation coefficient (Conference Presentation)

    Science.gov (United States)

    Peinado, Liliana M.; Bloemen, Paul R.; Almasian, Mitra; van Leeuwen, Ton G.; Faber, Dirk J.

    2016-03-01

    Despite the improvements in early cancer diagnosis, adequate diagnostic tools for early staging of bladder cancer tumors are lacking [1]. MEMS-probes based on optical coherence tomography (OCT) provide cross-sectional imaging with a high-spatial resolution at a high-imaging speed, improving visualization of cancerous tissue [2-3]. Additionally, studies show that the measurement of localized attenuation coefficient allows discrimination between healthy and cancerous tissue [4]. We have designed a new miniaturized MEMS-probe based on OCT that will optimize early diagnosis by improving functional visualization of suspicious lesions in bladder. During the optical design phase of the probe, we have studied the effect of the numerical aperture (NA) on the OCT signal attenuation. For this study, we have employed an InnerVision Santec OCT system with several numerical apertures (25mm, 40mm, 60mm, 100mm, 150mm and 200mm using achromatic lenses). The change in attenuation coefficient was studied using 15 dilutions of intralipid ranging between 6*10-5 volume% and 20 volume%. We obtained the attenuation coefficient from the OCT images at several fixed positions of the focuses using established OCT models (e.g. single scattering with known confocal point spread function (PSF) [5] and multiple scattering using the Extended Huygens Fresnel model [6]). As a result, a non-linear increase of the scattering coefficient as a function of intralipid concentration (due to dependent scattering) was obtained for all numerical apertures. For all intralipid samples, the measured attenuation coefficient decreased with a decrease in NA. Our results suggest a non-negligible influence of the NA on the measured attenuation coefficient. [1] Khochikar MV. Rationale for an early detection program for bladder cancer. Indian J Urol 2011 Apr-Jun; 27(2): 218-225. [2] Sun J and Xie H. Review Article MEMS-Based Endoscopic Optical Coherence Tomography. IJO 2011, Article ID 825629, 12 pages. doi:10

  20. Preliminary characterization of a death-related gene in silkworm ...

    African Journals Online (AJOL)

    Through RT-PCR analysis of death-related protein gene in different tissues and different developmental stage of B. mori, it showed the distributed condition of the gene. It was widely expressed in various tissues and mainly expressed in testis, malphigian vessels, posterior intestine, silk gland. Meanwhile, it was widely ...

  1. Influence of attenuation correction and reconstruction techniques on the detection of hypoperfused lesions in brain SPECT studies

    International Nuclear Information System (INIS)

    Ghoorun, S.; Groenewald, W.A.; Baete, K.; Nuyts, J.; Dupont, P.

    2004-01-01

    Full text: Aim: To study the influence of attenuation correction and the reconstruction technique on the detection of hypoperfused lesions in brain SPECT imaging, Material and Methods: A simulation experiment was used in which the effects of attenuation and reconstruction were decoupled, A high resolution SPECT phantom was constructed using the BrainWeb database, In this phantom, activity values were assigned to grey and white matter (ratio 4:1) and scaled to obtain counts of the same magnitude as in clinical practice, The true attenuation map was generated by assigning attenuation coefficients to each tissue class (grey and white matter, cerebral spinal fluid, skull, soft and fatty tissue and air) to create a non-uniform attenuation map, The uniform attenuation map was calculated using an attenuation coefficient of 0.15 cm-1, Hypoperfused lesions of varying intensities and sizes were added. The phantom was then projected as typical SPECT projection data, taking into account attenuation and collimator blurring with the addition of Poisson noise, The projection data was reconstructed using four different methods of reconstruction: (1) filtered backprojection (FBP) with the uniform attenuation map; (2) FBP using the true attenuation map; (3) ordered subset expectation maximization (OSEM) (equivalent to 423 iterations) with a uniform attenuation map; and (4) OSEM with a true attenuation map. Different Gaussian postsmooth kernels were applied to the reconstructed images. Results: The analysis of the reconstructed data was performed using figures of merit such as signal to noise ratio (SNR), bias and variance. The results illustrated that uniform attenuation correction offered slight deterioration (less than 2%) with regard to SNR when compared to the ideal attenuation map. which in reality is not known. The iterative techniques produced superior signal to noise ratios (increase of 5 - 20 % depending on the lesion and the postsmooth) in comparison to the FBP methods

  2. Inflammatory cytokines protect retinal pigment epithelial cells from oxidative stress-induced death

    DEFF Research Database (Denmark)

    Juel, Helene B; Faber, Carsten; Svendsen, Signe Goul

    2013-01-01

    -mediated induction of the anti-oxidative stress response, upregulating protective anti-oxidant pathway(s). These findings suggest caution for the clinical use of anti-inflammatory agents in the management of immune-associated eye diseases such as age-related macular degeneration....... protected from cell death by the addition of PCM. This protection was conferred, at least in part, by IFNγ and TNFα. Cell death induced by H2O2 or NaIO3 was preceded by mitochondrial dysfunction and by p62 upregulation, both of which were attenuated by PCM and/or by IFNγ+TNFα. RPE cells co...

  3. Generalized Beer-Lambert model for near-infrared light propagation in thick biological tissues

    Science.gov (United States)

    Bhatt, Manish; Ayyalasomayajula, Kalyan R.; Yalavarthy, Phaneendra K.

    2016-07-01

    The attenuation of near-infrared (NIR) light intensity as it propagates in a turbid medium like biological tissue is described by modified the Beer-Lambert law (MBLL). The MBLL is generally used to quantify the changes in tissue chromophore concentrations for NIR spectroscopic data analysis. Even though MBLL is effective in terms of providing qualitative comparison, it suffers from its applicability across tissue types and tissue dimensions. In this work, we introduce Lambert-W function-based modeling for light propagation in biological tissues, which is a generalized version of the Beer-Lambert model. The proposed modeling provides parametrization of tissue properties, which includes two attenuation coefficients μ0 and η. We validated our model against the Monte Carlo simulation, which is the gold standard for modeling NIR light propagation in biological tissue. We included numerous human and animal tissues to validate the proposed empirical model, including an inhomogeneous adult human head model. The proposed model, which has a closed form (analytical), is first of its kind in providing accurate modeling of NIR light propagation in biological tissues.

  4. Attenuation coefficient of the light in skin of BALB/c and C57BL/6 mice

    Science.gov (United States)

    Silva, C. R.; Camargo, C. F. M.; Aureliano, D. P.; De Pretto, L. R.; Freitas, A. Z.; Ribeiro, M. S.

    2015-06-01

    Optical properties of the biological tissue play an important role to a correct use of optical techniques for therapy and diagnosis. The mice skin presents morphological differences due to characteristics such as gender, body mass and age. Murine models are frequently used in pre-clinical trials in optical therapy and diagnosis. Therefore, the assessment of the skin tissue in animal models is needed for a proper understanding of how light interacts with skin. Noninvasive techniques such as optical coherence tomography (OCT) have been used to obtain optical information of the tissue, as the attenuation coefficient, with the advantage of obtaining sectional images in real time. In this study, eight female BALB/c albino mice (twenty-four weeks old) and eight male C57BL/6 black mice (eight weeks old) were used to measure the attenuation coefficient of the light in the skin, utilizing the OCT technique, aiming to check for influence of the aging process. Two moments were assessed twenty-two weeks apart from each other. Our data show that the aging process significantly affects the light attenuation coefficient in mice skin. Twenty-two weeks after, statistical significant differences were observed between groups within a same strain. We conclude that light attenuation coefficient of mice skin may be influenced by factors such as disorganization of the dermis. Morphological aspects of skin should be taken into account in studies that involve optical strategies in murine models.

  5. Neutrophil depletion reduces edema formation and tissue loss following traumatic brain injury in mice

    Directory of Open Access Journals (Sweden)

    Kenne Ellinor

    2012-01-01

    Full Text Available Abstract Background Brain edema as a result of secondary injury following traumatic brain injury (TBI is a major clinical concern. Neutrophils are known to cause increased vascular permeability leading to edema formation in peripheral tissue, but their role in the pathology following TBI remains unclear. Methods In this study we used controlled cortical impact (CCI as a model for TBI and investigated the role of neutrophils in the response to injury. The outcome of mice that were depleted of neutrophils using an anti-Gr-1 antibody was compared to that in mice with intact neutrophil count. The effect of neutrophil depletion on blood-brain barrier function was assessed by Evan's blue dye extravasation, and analysis of brain water content was used as a measurement of brain edema formation (24 and 48 hours after CCI. Lesion volume was measured 7 and 14 days after CCI. Immunohistochemistry was used to assess cell death, using a marker for cleaved caspase-3 at 24 hours after injury, and microglial/macrophage activation 7 days after CCI. Data were analyzed using Mann-Whitney test for non-parametric data. Results Neutrophil depletion did not significantly affect Evan's blue extravasation at any time-point after CCI. However, neutrophil-depleted mice exhibited a decreased water content both at 24 and 48 hours after CCI indicating reduced edema formation. Furthermore, brain tissue loss was attenuated in neutropenic mice at 7 and 14 days after injury. Additionally, these mice had a significantly reduced number of activated microglia/macrophages 7 days after CCI, and of cleaved caspase-3 positive cells 24 h after injury. Conclusion Our results suggest that neutrophils are involved in the edema formation, but not the extravasation of large proteins, as well as contributing to cell death and tissue loss following TBI in mice.

  6. Muscle Attenuation Is Associated With Newly Developed Hypertension in Men of African Ancestry.

    Science.gov (United States)

    Zhao, Qian; Zmuda, Joseph M; Kuipers, Allison L; Bunker, Clareann H; Patrick, Alan L; Youk, Ada O; Miljkovic, Iva

    2017-05-01

    Increased ectopic adipose tissue infiltration in skeletal muscle is associated with insulin resistance and diabetes mellitus. We evaluated whether change in skeletal muscle adiposity predicts subsequent development of hypertension in men of African ancestry, a population sample understudied in previous studies. In the Tobago Health Study, a prospective longitudinal study among men of African ancestry (age range 40-91 years), calf intermuscular adipose tissue, and skeletal muscle attenuation were measured with computed tomography. Hypertension was defined as a systolic blood pressure ≥140 mm Hg, or a diastolic blood pressure ≥90 mm Hg, or receiving antihypertensive medications. Logistic regression was performed with adjustment for age, insulin resistance, baseline and 6-year change in body mass index, baseline and 6-year change in waist circumference, and other potential confounding factors. Among 746 normotensive men at baseline, 321 (43%) developed hypertension during the mean 6.2 years of follow-up. Decreased skeletal muscle attenuation was associated with newly developed hypertension after adjustment for baseline and 6-year change of body mass index (odds ratio [95% confidence interval] per SD, 1.3 [1.0-1.6]) or baseline and 6-year change of waist circumference (odds ratio [95% confidence interval] per SD, 1.3 [1.0-1.6]). No association was observed between increased intermuscular adipose tissue and hypertension. Our novel findings show that decreased muscle attenuation is associated with newly developed hypertension among men of African ancestry, independent of general and central adiposity and insulin resistance. Further studies are needed to adjust for inflammation, visceral and other ectopic adipose tissue depots, and to confirm our findings in other population samples. © 2017 American Heart Association, Inc.

  7. Application of infrared spectroscopy for diagnosis of kidney tumor tissue

    OpenAIRE

    Bandzevičiūtė, Rimantė

    2016-01-01

    Application of Infrared Spectroscopy for Diagnosis of Kidney Tumor Tissue It is possible to apply the technique of an attenuated total reflection of infrared radiation (ATR IR) for the characterisation of the removed tissues during the surgery. Application of this method for interstitium of the removed tissue does not require any specific sample preparation. For this reason ATR IR technique applied for the interstitium allows to get information about tissues immediately after surgical operati...

  8. Transglutaminase induction by various cell death and apoptosis pathways.

    Science.gov (United States)

    Fesus, L; Madi, A; Balajthy, Z; Nemes, Z; Szondy, Z

    1996-10-31

    Clarification of the molecular details of forms of natural cell death, including apoptosis, has become one of the most challenging issues of contemporary biomedical sciences. One of the effector elements of various cell death pathways is the covalent cross-linking of cellular proteins by transglutaminases. This review will discuss the accumulating data related to the induction and regulation of these enzymes, particularly of tissue type transglutaminase, in the molecular program of cell death. A wide range of signalling pathways can lead to the parallel induction of apoptosis and transglutaminase, providing a handle for better understanding the exact molecular interactions responsible for the mechanism of regulated cell death.

  9. Comparing 511 keV Attenuation Maps Obtained from Different Energy Mapping Methods for CT Based Attenuation Correction of PET Data

    Directory of Open Access Journals (Sweden)

    Maryam Shirmohammad

    2008-06-01

    of  K 2 HPO 4 the  three  methods;   hybrid   scaling/segmentation, bilinear and dual energy produced the lowest relative difference of  10.91, 10.88 and 5%, respectively. For patients it was found that for soft tissues all the mentioned energy  mapping  methods  produce  acceptable  attenuation  map  at  511  keV.  The  relative  difference  of  scaling,  segmentation,  hybrid,  and  bilinear  methods  compared  to  TX  method  was  6.95,  4.51,  7,  and  6.45%  respectively.  For bony tissues, the quantitative analysis  showed that  scaling and segmentation  method  produce high relative difference of 26 and 23.2%, respectively and the relative difference of hybrid and  bilinear in comparison to TX method was 10.7 and 20%, respectively.   Discussion and Conclusion:  Based on the result obtained from these two studies it can be concluded  that for soft tissues all energy mapping methods yield acceptable results while for bony tissues all the  mentioned methods except the scaling and segmentation yield acceptable results.

  10. A Java-platform software for the evaluation of mass attenuation and ...

    African Journals Online (AJOL)

    A computer software was written for the evaluation of mass attenuation coefficient (μ/ρ) and mass energy-absorption coefficient (μ /ρ) for body tissues and substitutes of arbitrary elemental composition and en percentage-by-weight of elemental constituents using the Java development platform which could run on any ...

  11. Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues

    Science.gov (United States)

    Tzoumas, Stratis; Nunes, Antonio; Olefir, Ivan; Stangl, Stefan; Symvoulidis, Panagiotis; Glasl, Sarah; Bayer, Christine; Multhoff, Gabriele; Ntziachristos, Vasilis

    2016-06-01

    Light propagating in tissue attains a spectrum that varies with location due to wavelength-dependent fluence attenuation, an effect that causes spectral corruption. Spectral corruption has limited the quantification accuracy of optical and optoacoustic spectroscopic methods, and impeded the goal of imaging blood oxygen saturation (sO2) deep in tissues; a critical goal for the assessment of oxygenation in physiological processes and disease. Here we describe light fluence in the spectral domain and introduce eigenspectra multispectral optoacoustic tomography (eMSOT) to account for wavelength-dependent light attenuation, and estimate blood sO2 within deep tissue. We validate eMSOT in simulations, phantoms and animal measurements and spatially resolve sO2 in muscle and tumours, validating our measurements with histology data. eMSOT shows substantial sO2 accuracy enhancement over previous optoacoustic methods, potentially serving as a valuable tool for imaging tissue pathophysiology.

  12. Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues.

    Science.gov (United States)

    Tzoumas, Stratis; Nunes, Antonio; Olefir, Ivan; Stangl, Stefan; Symvoulidis, Panagiotis; Glasl, Sarah; Bayer, Christine; Multhoff, Gabriele; Ntziachristos, Vasilis

    2016-06-30

    Light propagating in tissue attains a spectrum that varies with location due to wavelength-dependent fluence attenuation, an effect that causes spectral corruption. Spectral corruption has limited the quantification accuracy of optical and optoacoustic spectroscopic methods, and impeded the goal of imaging blood oxygen saturation (sO2) deep in tissues; a critical goal for the assessment of oxygenation in physiological processes and disease. Here we describe light fluence in the spectral domain and introduce eigenspectra multispectral optoacoustic tomography (eMSOT) to account for wavelength-dependent light attenuation, and estimate blood sO2 within deep tissue. We validate eMSOT in simulations, phantoms and animal measurements and spatially resolve sO2 in muscle and tumours, validating our measurements with histology data. eMSOT shows substantial sO2 accuracy enhancement over previous optoacoustic methods, potentially serving as a valuable tool for imaging tissue pathophysiology.

  13. Death and Death Anxiety

    OpenAIRE

    Gonca Karakus; Zehra Ozturk; Lut Tamam

    2012-01-01

    Although death and life concepts seem so different from each other, some believe that death and life as a whole that death is accepted as the goal of life and death completes life. In different cultures, societies and disciplines, there have been very different definitions of death which changes according to personality, age, religion and cultural status of the individual. Attitudes towards death vary dramatically according to individuals. As for the death anxiety, it is a feeling which start...

  14. The use of coroner's autopsy reports to validate the use of targeted swabbing rather than tissue collection for rapid confirmation of virological causes of sudden death in the community.

    Science.gov (United States)

    Moore, Catherine; Jones, Rachel

    2015-02-01

    In this study, coroner's autopsy reports were used to validate results obtained from respiratory virus screening of swabs rather than tissue collected during autopsy in cases of adult death of unknown cause. Coroner's autopsy samples collected for respiratory virus screening between October 2010 and February 2011, were identified. Autopsy reports were requested from cases positive for a virus. Each report was reviewed to correlate findings at autopsy with the virology result and to determine whether the virus found was listed as a contributing factor in the death. Sixty-four coroner's autopsy cases were identified and a respiratory virus was found in 25 cases. Influenza A(H1N1)pdm09 virus was found most frequently, then RSV and influenza B with a dual influenza A and B infection and a parainfluenza type 1. Where multiple sites were swabbed, the virus was detected in all sites. Autopsy reports for 12 cases were obtained each reporting findings consistent with respiratory infection. Influenza A was always listed as a contributing factor in the death whereas RSV was listed once and influenza B was omitted in one case. The quality of the reports was variable and full histology was less likely to be performed in the elderly. While coroner's reports supported the use of swabbing rather than tissue collection, the lack of consistency and omission of the virology findings as contributing factors to death means that the burden of viruses on mortality statistics will remain under-estimated particularly in the elderly. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Magnetic resonance imaging-guided attenuation correction of positron emission tomography data in PET/MRI

    OpenAIRE

    Izquierdo-Garcia, David; Catana, Ciprian

    2016-01-01

    Attenuation correction (AC) is one of the most important challenges in the recently introduced combined positron emission tomography/magnetic resonance imaging (PET/MR) scanners. PET/MR AC (MR-AC) approaches aim to develop methods that allow accurate estimation of the linear attenuation coefficients (LACs) of the tissues and other components located in the PET field of view (FoV). MR-AC methods can be divided into three main categories: segmentation-, atlas- and PET-based. This review aims to...

  16. Two forensic autopsy cases of death due to upper gastrointestinal hemorrhage: a comparison of postmortem computed tomography and autopsy findings.

    Science.gov (United States)

    Suzuki, Hideto; Hasegawa, Iwao; Hoshino, Norio; Fukunaga, Tatsushige

    2015-05-01

    In this report, we describe two autopsy cases of death due to upper gastrointestinal hemorrhage (Case 1: gastric ulcer, Case 2: aortoduodenal fistula). Postmortem computed tomography (CT) images from both cases revealed pooling of gastric fluid, which contained high attenuation areas, although these images also mirrored the different sources of the gastrointestinal hemorrhage. Fluid collection was observed in the small intestine for both cases, although the high attenuation areas were only remarkable in Case 2. The autopsy in Case 1 revealed a peptic ulcer, with small vessels exposed on the surface of the ulcer. Melena was also observed throughout the intestine, although clotting was only observed inside the stomach. The autopsy in Case 2 revealed diffuse massive clotting from the stomach to the upper portion of the ileum, which was due to a primary aortoduodenal fistula. Given our autopsy findings, the extent of the high attenuation areas in the digestive tract during postmortem CT scanning may be correlated with the speed of the gastrointestinal hemorrhage before death. Carefully evaluating the radiodensity of the gastrointestinal contents during postmortem CT scanning may indicate the primary site of the hemorrhage before the autopsy, thereby facilitating the accurate identification of the cause of death during forensic autopsy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. PPARgamma activation attenuates T-lymphocyte-dependent inflammation of adipose tissue and development of insulin resistance in obese mice

    Directory of Open Access Journals (Sweden)

    Unger Thomas

    2010-10-01

    Full Text Available Abstract Background Inflammation of adipose tissue (AT has been recently accepted as a first step towards obesity-mediated insulin resistance. We could previously show that mice fed with high fat diet (HFD develop systemic insulin resistance (IR and glucose intolerance (GI associated with CD4-positive T-lymphocyte infiltration into visceral AT. These T-lymphocytes, when enriched in AT, participate in the development of fat tissue inflammation and subsequent recruitment of proinflammatory macrophages. The aim of this work was to elucidate the action of the insulin sensitizing PPARgamma on T-lymphocyte infiltration during development of IR, and comparison of the PPARgamma-mediated anti-inflammatory effects of rosiglitazone and telmisartan in diet-induced obesity model (DIO-model in mice. Methods In order to investigate the molecular mechanisms underlying early development of systemic insulin resistance and glucose intolerance male C57BL/6J mice were fed with high fat diet (HFD for 10-weeks in parallel to the pharmacological intervention with rosiglitazone, telmisartan, or vehicle. Results Both rosiglitazone and telmisartan were able to reduce T-lymphocyte infiltration into AT analyzed by quantitative analysis of the T-cell marker CD3gamma and the chemokine SDF1alpha. Subsequently, both PPARgamma agonists were able to attenuate macrophage infiltration into AT, measured by the reduction of MCP1 and F4/80 expression. In parallel to the reduction of AT-inflammation, ligand-activated PPARgamma improved diet-induced IR and GI. Conclusion Together the present study demonstrates a close connection between PPARgamma-mediated anti-inflammation in AT and systemic improvement of glucose metabolism identifying T-lymphocytes as one cellular mediator of PPARgamma´s action.

  18. Sudden unexpected death associated with lymphocytic thyroiditis

    DEFF Research Database (Denmark)

    Vestergaard, Vibeke; Drostrup, Dorthe Høj; Thomsen, Jørgen L

    2007-01-01

    A forensic autopsy study comprising 125 cases was carried out retrospectively in order to evaluate pathological changes in the thyroid gland in different groups of death. The five groups selected consecutively were: (i) opiate addicts who died from an overdose, (ii) alcoholics who died as a result...... of their alcohol abuse, (iii) cases of fatal poisoning other than opiate addicts, (iv) unknown cause of death and (v) controls without prior disease. Tissue samples from the thyroid gland were cut and stained with haematoxylin and eosin and van Gieson. Histology examinations were subsequently performed blind...... infiltration of the thyroid parenchyma in five of the 124 cases, of which four belonged in the group of 'unknown cause of death'. This discovery leads to reflections regarding lymphocytic thyroiditis as a cause of death, either by itself or in combination with other disorders. Silent (painless) thyroiditis...

  19. Antisporozoite antibodies in mice immunized with irradiation-attenuated Plasmodium berghei sporozoites

    International Nuclear Information System (INIS)

    Hansen, R.; Silva, S.de; Strickland, G.T.

    1979-01-01

    Sera from NMRI/NIH mice were tested for the presence of IgM and IgG anti-sporozoite antibodies using the indirect fluorescent antibody test (IFAT). Both IgM and IgG antibody titres were related to the number of immunizations with irradiation-attenuated Plasmodium berghei sporozoites, and protection from challenge with subsequent non-attenuated sporozoites correlated with the pre-challenge antibody titre. Sera taken five days following challenge showed marked reductions in antibody titres, except for the group receiving the maximum (four) immunizations. Groups immunized with frozen sporozoites or mosquito tissue antigen developed neither antibodies to sporozoites nor protective immunity; nor did animals infected with parasitized blood. However, sera from mice immunized four times with attenuated sporozoites demonstrated IFA titres to blood-stage antigens. The results showed that both IgM and IgG anti-sporozoite antibodies could be detected in mice immunized with attenuated-sporozoites by IFAT, and that the antibody titres correlated with protective immunity. Cross reaction with blood-stage antigens occurred, but the test should still prove useful. (author)

  20. Self-affirmation attenuates death-thought accessibility after mortality salience, but not among a high post-traumatic stress sample.

    Science.gov (United States)

    Vail, Kenneth E; Morgan, Adrienne; Kahle, Lauren

    2018-01-01

    According to anxiety buffer disruption theory (ABDT), people function effectively in the world, in part, by relying on anxiety-buffer systems to protect against death awareness; however, traumatic experiences can overwhelm and disrupt those anxiety-buffer systems, leaving people unprotected from death awareness and at increased risk for the major symptom clusters of posttraumatic stress disorder (PTSD). Based on that idea, it was hypothesized that (a) when posttraumatic stress symptoms are low, self-affirmation (a known worldview/self-esteem based anxiety-buffer) should prevent mortality reminders from causing increased death-thought accessibility (DTA); but that (b) when posttraumatic stress symptoms are high (indicating anxiety-buffer disruption), self-affirmation should fail to prevent mortality reminders from increasing DTA. To test these hypotheses, participants identified in a general population prescreen assessment as "low posttraumatic-stress symptom" (n = 222) and "high posttraumatic-stress symptom" (n = 210) were reminded of death (vs. control topic), prompted to engage in a self-affirmation (vs. nonself-affirmation) task, and then asked to complete a standard assessment of death-thought accessibility (DTA). The hypotheses were confirmed, revealing that posttraumatic stress symptoms were associated with the ineffectiveness of anxiety-buffer system in protecting against increased death awareness. The present findings support of a foundational concept of ABDT, and point to new insights about the nature of PTSD and its treatment, because failure to manage death awareness is known to cause anxiety and exacerbate anxiety-related disorders (e.g., PTSD). (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  1. Assessment of programmed death-ligand 1 expression and tumor-associated immune cells in pediatric cancer tissues.

    Science.gov (United States)

    Majzner, Robbie G; Simon, Jason S; Grosso, Joseph F; Martinez, Daniel; Pawel, Bruce R; Santi, Mariarita; Merchant, Melinda S; Geoerger, Birgit; Hezam, Imene; Marty, Virginie; Vielh, Phillippe; Daugaard, Mads; Sorensen, Poul H; Mackall, Crystal L; Maris, John M

    2017-10-01

    Programmed death 1 (PD-1) signaling in the tumor microenvironment dampens immune responses to cancer, and blocking this axis induces antitumor effects in several malignancies. Clinical studies of PD-1 blockade are only now being initiated in pediatric patients, and little is known regarding programmed death-ligand 1 (PD-L1) expression in common childhood cancers. The authors characterized PD-L1 expression and tumor-associated immune cells (TAICs) (lymphocytes and macrophages) in common pediatric cancers. Whole slide sections and tissue microarrays were evaluated by immunohistochemistry for PD-L1 expression and for the presence of TAICs. TAICs were also screened for PD-L1 expression. Thirty-nine of 451 evaluable tumors (9%) expressed PD-L1 in at least 1% of tumor cells. The highest frequency histotypes comprised Burkitt lymphoma (80%; 8 of 10 tumors), glioblastoma multiforme (36%; 5 of 14 tumors), and neuroblastoma (14%; 17 of 118 tumors). PD-L1 staining was associated with inferior survival among patients with neuroblastoma (P = .004). Seventy-four percent of tumors contained lymphocytes and/or macrophages. Macrophages were significantly more likely to be identified in PD-L1-positive versus PD-L1-negative tumors (P cancers exhibit PD-L1 expression, whereas a much larger fraction demonstrates infiltration with tumor-associated lymphocytes. PD-L1 expression may be a biomarker for poor outcome in neuroblastoma. Further preclinical and clinical investigation will define the predictive nature of PD-L1 expression in childhood cancers both at diagnosis and after exposure to chemoradiotherapy. Cancer 2017;123:3807-3815. © 2017 American Cancer Society. © 2017 American Cancer Society.

  2. Low skeletal muscle radiation attenuation and visceral adiposity are associated with overall survival and surgical site infections in patients with pancreatic cancer.

    Science.gov (United States)

    van Dijk, David P J; Bakens, Maikel J A M; Coolsen, Mariëlle M E; Rensen, Sander S; van Dam, Ronald M; Bours, Martijn J L; Weijenberg, Matty P; Dejong, Cornelis H C; Olde Damink, Steven W M

    2017-04-01

    Cancer cachexia and skeletal muscle wasting are related to poor survival. In this study, quantitative body composition measurements using computed tomography (CT) were investigated in relation to survival, post-operative complications, and surgical site infections in surgical patients with cancer of the head of the pancreas. A prospective cohort of 199 patients with cancer of the head of the pancreas was analysed by CT imaging at the L3 level to determine (i) muscle radiation attenuation (average Hounsfield units of total L3 skeletal muscle); (ii) visceral adipose tissue area; (iii) subcutaneous adipose tissue area; (iv) intermuscular adipose tissue area; and (v) skeletal muscle area. Sex-specific cut-offs were determined at the lower tertile for muscle radiation attenuation and skeletal muscle area and the higher tertile for adipose tissues. These variables of body composition were related to overall survival, severe post-operative complications (Dindo-Clavien ≥ 3), and surgical site infections (wounds inspected daily by an independent trial nurse) using Cox-regression analysis and multivariable logistic regression analysis, respectively. Low muscle radiation attenuation was associated with shorter survival in comparison with moderate and high muscle radiation attenuation [median survival 10.8 (95% CI: 8.8-12.8) vs. 17.4 (95% CI: 14.7-20.1), and 18.5 (95% CI: 9.2-27.8) months, respectively; P site infection rate, OR: 2.4 (95% CI: 1.1-5.3; P = 0.027). Low muscle radiation attenuation was associated with reduced survival, and high visceral adiposity was associated with an increase in surgical site infections. The strong correlation between muscle radiation attenuation and intermuscular adipose tissue suggests the presence of ectopic fat in muscle, warranting further investigation. CT image analysis could be implemented in pre-operative risk assessment to assist in treatment decision-making. © 2016 The Authors. Journal of Cachexia, Sarcopenia and Muscle

  3. Non-Canonical Cell Death Induced by p53

    Directory of Open Access Journals (Sweden)

    Atul Ranjan

    2016-12-01

    Full Text Available Programmed cell death is a vital biological process for multicellular organisms to maintain cellular homeostasis, which is regulated in a complex manner. Over the past several years, apart from apoptosis, which is the principal mechanism of caspase-dependent cell death, research on non-apoptotic forms of programmed cell death has gained momentum. p53 is a well characterized tumor suppressor that controls cell proliferation and apoptosis and has also been linked to non-apoptotic, non-canonical cell death mechanisms. p53 impacts these non-canonical forms of cell death through transcriptional regulation of its downstream targets, as well as direct interactions with key players involved in these mechanisms, in a cell type- or tissue context-dependent manner. In this review article, we summarize and discuss the involvement of p53 in several non-canonical modes of cell death, including caspase-independent apoptosis (CIA, ferroptosis, necroptosis, autophagic cell death, mitotic catastrophe, paraptosis, and pyroptosis, as well as its role in efferocytosis which is the process of clearing dead or dying cells.

  4. Cytogenetic analysis after evaluation of 750 fetal deaths : proposal for diagnostic workup

    NARCIS (Netherlands)

    Korteweg, Fleurisca J.; Bouman, Katelijne; Erwich, Jan Jaap H. M.; Timmer, Albertus; Veeger, Nic J. G. M.; Ravise, Joke M.; Nijman, Thomas H.; Holm, Andjozien P.

    OBJECTIVE: To estimate success rates for cytogenetic analysis in different tissues after intrauterine fetal death, and study selection criteria and value of cytogenetic testing in determining cause of death. METHODS: Cytogenetic analyses and the value of this test in determining cause by a

  5. Vanillin attenuates negative effects of ultraviolet A on the stemness of human adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Lee, Sang Yeol; Park, See-Hyoung; Kim, Mi Ok; Lim, Inhwan; Kang, Mingyeong; Oh, Sae Woong; Jung, Kwangseon; Jo, Dong Gyu; Cho, Il-Hoon; Lee, Jongsung

    2016-10-01

    Ultraviolet A (UVA) irradiation induces various changes in cell biology. The objective of this study was to determine the effect of vanillin on UVA irradiation-induced damages in the stemness properties of human adipose tissue-derived mesenchymal stem cells (hAMSCs). UVA-antagonizing mechanisms of vanillin were also examined. The results revealed that vanillin attenuated UVA-induced reduction of the proliferative potential and stemness of hAMSCs evidenced by increased proliferative activity in BrdU incorporation assay and upregulation of stemness-related genes (OCT4, NANOG and SOX2) in response to vanillin treatment. UVA-induced reduction in mRNA level of hypoxia-inducible factor (HIF)-1α was significantly recovered by vanillin. In addition, the antagonizing effect of vanillin on UVA was found to be mediated by reduced production of PGE2 through inhibiting JNK and p38 MAPK. Taken together, these findings showed that vanillin could improve the reduced stemness of hAMSCs induced by UVA. The effect of vanillin is mediated by upregulating HIF-1α via inhibiting PGE2-cAMP signaling. Therefore, vanillin might be used as an antagonizing agent to mitigate the effects of UVA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. An Actomyosin-Arf-GEF Negative Feedback Loop for Tissue Elongation under Stress.

    Science.gov (United States)

    West, Junior J; Zulueta-Coarasa, Teresa; Maier, Janna A; Lee, Donghoon M; Bruce, Ashley E E; Fernandez-Gonzalez, Rodrigo; Harris, Tony J C

    2017-08-07

    In response to a pulling force, a material can elongate, hold fast, or fracture. During animal development, multi-cellular contraction of one region often stretches neighboring tissue. Such local contraction occurs by induced actomyosin activity, but molecular mechanisms are unknown for regulating the physical properties of connected tissue for elongation under stress. We show that cytohesins, and their Arf small G protein guanine nucleotide exchange activity, are required for tissues to elongate under stress during both Drosophila dorsal closure (DC) and zebrafish epiboly. In Drosophila, protein localization, laser ablation, and genetic interaction studies indicate that the cytohesin Steppke reduces tissue tension by inhibiting actomyosin activity at adherens junctions. Without Steppke, embryogenesis fails, with epidermal distortions and tears resulting from myosin misregulation. Remarkably, actomyosin network assembly is necessary and sufficient for local Steppke accumulation, where live imaging shows Steppke recruitment within minutes. This rapid negative feedback loop provides a molecular mechanism for attenuating the main tension generator of animal tissues. Such attenuation relaxes tissues and allows orderly elongation under stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Improved UTE-based attenuation correction for cranial PET-MR using dynamic magnetic field monitoring

    International Nuclear Information System (INIS)

    Aitken, A. P.; Giese, D.; Tsoumpas, C.; Schleyer, P.; Kozerke, S.; Prieto, C.; Schaeffter, T.

    2014-01-01

    Purpose: Ultrashort echo time (UTE) MRI has been proposed as a way to produce segmented attenuation maps for PET, as it provides contrast between bone, air, and soft tissue. However, UTE sequences require samples to be acquired during rapidly changing gradient fields, which makes the resulting images prone to eddy current artifacts. In this work it is demonstrated that this can lead to misclassification of tissues in segmented attenuation maps (AC maps) and that these effects can be corrected for by measuring the true k-space trajectories using a magnetic field camera. Methods: The k-space trajectories during a dual echo UTE sequence were measured using a dynamic magnetic field camera. UTE images were reconstructed using nominal trajectories and again using the measured trajectories. A numerical phantom was used to demonstrate the effect of reconstructing with incorrect trajectories. Images of an ovine leg phantom were reconstructed and segmented and the resulting attenuation maps were compared to a segmented map derived from a CT scan of the same phantom, using the Dice similarity measure. The feasibility of the proposed method was demonstrated inin vivo cranial imaging in five healthy volunteers. Simulated PET data were generated for one volunteer to show the impact of misclassifications on the PET reconstruction. Results: Images of the numerical phantom exhibited blurring and edge artifacts on the bone–tissue and air–tissue interfaces when nominal k-space trajectories were used, leading to misclassification of soft tissue as bone and misclassification of bone as air. Images of the tissue phantom and thein vivo cranial images exhibited the same artifacts. The artifacts were greatly reduced when the measured trajectories were used. For the tissue phantom, the Dice coefficient for bone in MR relative to CT was 0.616 using the nominal trajectories and 0.814 using the measured trajectories. The Dice coefficients for soft tissue were 0.933 and 0.934 for the

  8. Interventional Vitamin C-A Strategy for Attenuation of Coagulopathy and Inflammation in Hemorrhagic Trauma and Shock

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-15-2-0064 TITLE: Interventional Vitamin C -A Strategy for Attenuation of Coagulopathy and Inflammation in Hemorrhagic...COVERED 30 Sep 2016 - 29 Sep 2017 4. TITLE AND SUBTITLE Interventional Vitamin C -A Strategy for Attenuation of Coagulopathy and Inflammation in...high dose parenteral vitamin C (VitC) in a swine model of combined hemorrhagic shock and tissue trauma that simulates the course of a combat casualty

  9. MR-based attenuation correction for PET/MRI neurological studies with continuous-valued attenuation coefficients for bone through a conversion from R2* to CT-Hounsfield units.

    Science.gov (United States)

    Juttukonda, Meher R; Mersereau, Bryant G; Chen, Yasheng; Su, Yi; Rubin, Brian G; Benzinger, Tammie L S; Lalush, David S; An, Hongyu

    2015-05-15

    MR-based correction for photon attenuation in PET/MRI remains challenging, particularly for neurological applications requiring quantitation of data. Existing methods are either not sufficiently accurate or are limited by the computation time required. The goal of this study was to develop an MR-based attenuation correction method that accurately separates bone tissue from air and provides continuous-valued attenuation coefficients for bone. PET/MRI and CT datasets were obtained from 98 subjects (mean age [±SD]: 66yrs [±9.8], 57 females) using an IRB-approved protocol and with informed consent. Subjects were injected with 352±29MBq of (18)F-Florbetapir tracer, and PET acquisitions were begun either immediately or 50min after injection. CT images of the head were acquired separately using a PET/CT system. Dual echo ultrashort echo-time (UTE) images and two-point Dixon images were acquired. Regions of air were segmented via a threshold of the voxel-wise multiplicative inverse of the UTE echo 1 image. Regions of bone were segmented via a threshold of the R2* image computed from the UTE echo 1 and UTE echo 2 images. Regions of fat and soft tissue were segmented using fat and water images decomposed from the Dixon images. Air, fat, and soft tissue were assigned linear attenuation coefficients (LACs) of 0, 0.092, and 0.1cm(-1), respectively. LACs for bone were derived from a regression analysis between corresponding R2* and CT values. PET images were reconstructed using the gold standard CT method and the proposed CAR-RiDR method. The RiDR segmentation method produces mean Dice coefficient±SD across subjects of 0.75±0.05 for bone and 0.60±0.08 for air. The CAR model for bone LACs greatly improves accuracy in estimating CT values (28.2%±3.0 mean error) compared to the use of a constant CT value (46.9%±5.8, punits. From our analysis, we conclude that the proposed method closely approaches (<3% error) the gold standard CT-scaled method in PET reconstruction accuracy

  10. A Tissue Engineered Model of Aging: Interdependence and Cooperative Effects in Failing Tissues.

    Science.gov (United States)

    Acun, A; Vural, D C; Zorlutuna, P

    2017-07-11

    Aging remains a fundamental open problem in modern biology. Although there exist a number of theories on aging on the cellular scale, nearly nothing is known about how microscopic failures cascade to macroscopic failures of tissues, organs and ultimately the organism. The goal of this work is to bridge microscopic cell failure to macroscopic manifestations of aging. We use tissue engineered constructs to control the cellular-level damage and cell-cell distance in individual tissues to establish the role of complex interdependence and interactions between cells in aging tissues. We found that while microscopic mechanisms drive aging, the interdependency between cells plays a major role in tissue death, providing evidence on how cellular aging is connected to its higher systemic consequences.

  11. Scientific innovation's two Valleys of Death: how blood and tissue banks can help to bridge the gap.

    Science.gov (United States)

    Thompson, Sean D A

    2014-12-01

    Most biomedical basic research in the United States takes place at universities and research institutes and is funded by federal grants. Basic research is awarded billions of federal dollars every year, enabling new discoveries and greater understanding of the fundamental science that makes new innovations and therapies possible. However, when basic research yields an invention of practical use and the research evolves from basic to applied, the playing field changes. Pre-technology licensing federal dollars all but disappear, and innovations rely predominantly on private funding to support the full path from bench to bedside. It is along this path that the scientific advance faces two Valleys of Death. These sometimes insurmountable development stages are the product of the innovation's inherent financial, business and investment risks. Well-planned and executed in vivo studies using quality biological materials demonstrating proof-of-concept is often the key to bridging these gaps, and blood and tissue banks offer unique services and resources to enable this process.

  12. Tissue mimicking materials for a multi-imaging modality prostate phantom

    International Nuclear Information System (INIS)

    D'Souza, Warren D.; Madsen, Ernest L.; Unal, Orhan; Vigen, Karl K.; Frank, Gary R.; Thomadsen, Bruce R.

    2001-01-01

    Materials that simultaneously mimic soft tissue in vivo for magnetic resonance imaging (MRI), ultrasound (US), and computed tomography (CT) for use in a prostate phantom have been developed. Prostate and muscle mimicking materials contain water, agarose, lipid particles, protein, Cu ++ , EDTA, glass beads, and thimerosal (preservative). Fat was mimicked with safflower oil suffusing a random mesh (network) of polyurethane. Phantom material properties were measured at 22 deg. C. (22 deg. C is a typical room temperature at which phantoms are used.) The values of material properties should match, as well as possible, the values for tissues at body temperature, 37 deg. C. For MRI, the primary properties of interest are T1 and T2 relaxations times, for US they are the attenuation coefficient, propagation speed, and backscatter, and for CT, the x-ray attenuation. Considering the large number of parameters to be mimicked, rather good agreement was found with actual tissue values obtained from the literature. Using published values for prostate parenchyma, T1 and T2 at 37 deg. C and 40 MHz are estimated to be about 1100 and 98 ms, respectively. The CT number for in vivo prostate is estimated to be 45 HU (Hounsfield units). The prostate mimicking material has a T1 of 937 ms and a T2 of 88 ms at 22 deg. C and 40 MHz; the propagation speed and attenuation coefficient slope are 1540 m/s and 0.36 dB/cm/MHz, respectively, and the CT number of tissue mimicking prostate is 43 HU. Tissue mimicking (TM) muscle differs from TM prostate in the amount of dry weight agarose, Cu ++ , EDTA, and the quality and quantity of glass beads. The 18 μm glass beads used in TM muscle increase US backscatter and US attenuation; the presence of the beads also has some effect on T1 but no effect on T2. The composition of tissue-mimicking materials developed is such that different versions can be placed in direct contact with one another in a phantom with no long term change in US, MRI, or CT

  13. Ursodeoxycholic acid suppresses mitochondria-dependent programmed cell death induced by sodium nitroprusside in SH-SY5Y cells

    International Nuclear Information System (INIS)

    Chun, Hong Sung; Low, Walter C.

    2012-01-01

    Although ursodeoxycholic acid (UDCA) and its highly water-soluble formula (Yoo's solution; YS) have been shown to prevent neuronal damage, the effects of UDCA or YS against Parkinson's disease (PD)-related dopaminergic cell death has not been studied. This study investigated the protective effects of UDCA and YS on sodium nitroprusside (SNP)-induced cytotoxicity in human dopaminergic SH-SY5Y cells. Both UDCA (50–200 μM) and YS (100–200 μM) dose-dependently prevented SNP (1 mM)-induced cell death. Results showed that both UDCA and YS effectively attenuated the production of total reactive oxygen species (ROS), peroxynitrite (ONOO − ) and nitric oxide (NO), and markedly inhibited the mitochondrial membrane potential (MMP) loss and intracellular reduced glutathione (GSH) depletion. SNP-induced programmed cell death events, such as nuclear fragmentation, caspase-3/7 and -9 activation, Bcl-2/Bax ratio decrease, and cytochrome c release, were significantly attenuated by both UDCA and YS. Furthermore, selective inhibitor of phosphatidylinositiol-3-kinase (PI3K), LY294002, and Akt/PKB inhibitor, triciribine, reversed the preventive effects of UDCA on the SNP-induced cytotoxicity and Bax translocation. These results suggest that UDCA can protect SH-SY5Y cells under programmed cell death process by regulating PI3K-Akt/PKB pathways.

  14. Inhibitory effect of live-attenuated Listeria monocytogenes-based vaccines expressing MIA gene on malignant melanoma.

    Science.gov (United States)

    Qian, Yue; Zhang, Na; Jiang, Ping; Chen, Siyuan; Chu, Shujuan; Hamze, Firas; Wu, Yan; Luo, Qin; Feng, Aiping

    2012-08-01

    Listeria monocytogenes (LM), a Gram-positive facultative intracellular bacterium, can be used as an effective exogenous antigen expression vector in tumor-target therapy. But for successful clinical application, it is necessary to construct attenuated LM stain that is safe yet retains the potency of LM based on the full virulent pathogen. In this study, attenuated LM and recombinants of LM expressing melanoma inhibitory activity (MIA) were constructed successfully. The median lethal dose (LD(50)) and invasion efficiency of attenuated LM strains were detected. The recombinants were utilized for immunotherapy of animal model of B16F10 melanoma. The level of MIA mRNA expression in tumor tissue was detected by using real-time polymerase chain reaction (PCR) with specific sequence, meanwhile the anti-tumor immune response was assayed by flow cytometric analysis and enzyme-linked immunosorbent spot (ELISPOT) assay. The results showed the toxicity and invasiveness of attenuated LM were decreased as compared with LM, and attenuated LM expressing MIA, especially the double-genes attenuated LM recombinant, could significantly induce anti-tumor immune response and inhibit tumor growth. This study implicates attenuated LM may be a safer and more effective vector for immunotherapy of melanoma.

  15. DNA Protecting Activities of Nymphaea nouchali (Burm. f Flower Extract Attenuate t-BHP-Induced Oxidative Stress Cell Death through Nrf2-Mediated Induction of Heme Oxygenase-1 Expression by Activating MAP-Kinases

    Directory of Open Access Journals (Sweden)

    Md Badrul Alam

    2017-09-01

    Full Text Available This study was performed to investigate the antioxidant activities of Nymphaea nouchali flower (NNF extract and the underlying mechanism using RAW 264.7 cells. The presence of gallic acid, catechin, epicatechin, epigallocatechin, epicatechin gallate, caffeic acid, quercetin, and apigenin in the NNF was confirmed by high-performance liquid chromatography (HPLC. The extract had a very potent capacity to scavenge numerous free radicals. NNF extract was also able to prevent DNA damage and quench cellular reactive oxygen species (ROS generation induced by tert-Butyl hydroperoxide (t-BHP with no signs of toxicity. The NNF extract was able to augment the expression of both primary and phase II detoxifying enzyme, resulting in combat the oxidative stress. This is accomplished by phosphorylation of mitogen-activated protein kinase (MAP kinase (p38 kinase and extracellular signal-regulated kinase (ERK followed by enhancing the nuclear translocation of the nuclear factor erythroid 2-related factor 2 (Nrf2. This attenuates cellular ROS generation and confers protection from cell death. Altogether, the results of current study revealed that Nymphaea nouchali flower could be a source of natural phytochemicals that could lead to the development of new therapeutic agents for preventing oxidative stress associated diseases and attenuating disease progression.

  16. Tissue Engineering Strategies for Myocardial Regeneration: Acellular Versus Cellular Scaffolds?

    Science.gov (United States)

    Domenech, Maribella; Polo-Corrales, Lilliana; Ramirez-Vick, Jaime E; Freytes, Donald O

    2016-12-01

    Heart disease remains one of the leading causes of death in industrialized nations with myocardial infarction (MI) contributing to at least one fifth of the reported deaths. The hypoxic environment eventually leads to cellular death and scar tissue formation. The scar tissue that forms is not mechanically functional and often leads to myocardial remodeling and eventual heart failure. Tissue engineering and regenerative medicine principles provide an alternative approach to restoring myocardial function by designing constructs that will restore the mechanical function of the heart. In this review, we will describe the cellular events that take place after an MI and describe current treatments. We will also describe how biomaterials, alone or in combination with a cellular component, have been used to engineer suitable myocardium replacement constructs and how new advanced culture systems will be required to achieve clinical success.

  17. Intermittent fasting attenuates inflammasome activity in ischemic stroke.

    Science.gov (United States)

    Fann, David Yang-Wei; Santro, Tomislav; Manzanero, Silvia; Widiapradja, Alexander; Cheng, Yi-Lin; Lee, Seung-Yoon; Chunduri, Prasad; Jo, Dong-Gyu; Stranahan, Alexis M; Mattson, Mark P; Arumugam, Thiruma V

    2014-07-01

    Recent findings have revealed a novel inflammatory mechanism that contributes to tissue injury in cerebral ischemia mediated by multi-protein complexes termed inflammasomes. Intermittent fasting (IF) can decrease the levels of pro-inflammatory cytokines in the periphery and brain. Here we investigated the impact of IF (16h of food deprivation daily) for 4months on NLRP1 and NLRP3 inflammasome activities following cerebral ischemia. Ischemic stroke was induced in C57BL/6J mice by middle cerebral artery occlusion, followed by reperfusion (I/R). IF decreased the activation of NF-κB and MAPK signaling pathways, the expression of NLRP1 and NLRP3 inflammasome proteins, and both IL-1β and IL-18 in the ischemic brain tissue. These findings demonstrate that IF can attenuate the inflammatory response and tissue damage following ischemic stroke by a mechanism involving suppression of NLRP1 and NLRP3 inflammasome activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Attenuation correction in positron emission tomography: Quality control and performance evaluation

    International Nuclear Information System (INIS)

    Nalis, J.; Courbon, F.; Brillouet, S.; Marre, D.; Serre, D.; Colin, V.; Caselles, O.; Flouzat, G.

    2007-01-01

    Objective: The aim of this study is to evaluate the performance of the Computed Tomography based Attenuation Correction (CTAC) for Positron Emission Tomography (PET) data. Attenuation maps containing linear attenuation coefficients at 511 keV (LAC 511 keV ) are calculated by trilinear conversion of Hounsfield Units (HU) obtained from CT slices after matrix size-reduction and Gaussian filtering. Our work focusses on this trilinear conversion. Materials and methods: CT slices of an electron density phantom. composed of 17 cylindrical inserts made of different tissue-equivalent materials, were acquired using a Discovery ST4 PET-CT. Data were processed with a customized version of CT quality control software, giving automatically the experimental conversion function: LAC 511 keV =f(HU). Furthermore, data from patient datasets were assessed using both smoothed CT slices and attenuation maps. Results: LAC 511 keV extracted from phantom data are in good correlation with the expected theoretical values, except for the standard 10 mm diameter dense bone insert, where the obtained CTAC values are underestimated, Assuming a sample size issue, similar acquisitions were performed with a special 30 mm-diameter dense bone insert, confirming the underestimation as a consequence of the sample size. (authors)

  19. Drosophila Ninjurin A induces nonapoptotic cell death.

    Directory of Open Access Journals (Sweden)

    Sarah Broderick

    Full Text Available Ninjurins are conserved transmembrane proteins that are upregulated across species in response to injury and stress. Their biological functions are not understood, in part because there have been few in vivo studies of their function. We analyzed the expression and function of one of three Drosophila Ninjurins, NijA. We found that NijA protein is redistributed to the cell surface in larval immune tissues after septic injury and is upregulated by the Toll pathway. We generated a null mutant of NijA, which displayed no detectable phenotype. In ectopic expression studies, NijA induced cell death, as evidenced by cell loss and acridine orange staining. These dying cells did not display hallmarks of apoptotic cells including TUNEL staining and inhibition by p35, indicating that NijA induced nonapoptotic cell death. In cell culture, NijA also induced cell death, which appeared to be cell autonomous. These in vivo studies identify a new role for the Ninjurin family in inducing nonapoptotic cell death.

  20. Morphological classification of plant cell deaths.

    Science.gov (United States)

    van Doorn, W G; Beers, E P; Dangl, J L; Franklin-Tong, V E; Gallois, P; Hara-Nishimura, I; Jones, A M; Kawai-Yamada, M; Lam, E; Mundy, J; Mur, L A J; Petersen, M; Smertenko, A; Taliansky, M; Van Breusegem, F; Wolpert, T; Woltering, E; Zhivotovsky, B; Bozhkov, P V

    2011-08-01

    Programmed cell death (PCD) is an integral part of plant development and of responses to abiotic stress or pathogens. Although the morphology of plant PCD is, in some cases, well characterised and molecular mechanisms controlling plant PCD are beginning to emerge, there is still confusion about the classification of PCD in plants. Here we suggest a classification based on morphological criteria. According to this classification, the use of the term 'apoptosis' is not justified in plants, but at least two classes of PCD can be distinguished: vacuolar cell death and necrosis. During vacuolar cell death, the cell contents are removed by a combination of autophagy-like process and release of hydrolases from collapsed lytic vacuoles. Necrosis is characterised by early rupture of the plasma membrane, shrinkage of the protoplast and absence of vacuolar cell death features. Vacuolar cell death is common during tissue and organ formation and elimination, whereas necrosis is typically found under abiotic stress. Some examples of plant PCD cannot be ascribed to either major class and are therefore classified as separate modalities. These are PCD associated with the hypersensitive response to biotrophic pathogens, which can express features of both necrosis and vacuolar cell death, PCD in starchy cereal endosperm and during self-incompatibility. The present classification is not static, but will be subject to further revision, especially when specific biochemical pathways are better defined.

  1. An evaluation of the effects of long term cryopreservation, cause of death, and time between death and donation on heart valve leaflet viability

    International Nuclear Information System (INIS)

    Strachan, K.

    1999-01-01

    The protocol for cryopreservation of allograft heart valves at the Donor Tissue Bank of Victoria was based on validation studies on the viability of the heart valve leaflets at the time of processing. The heart block is removed within 24 hours of death and the aor-tic and pulmonary valves trimmed immediately following retrieval. Following this processing, the valves are incubated in antibiotics at 30 degree C for 6 to 8 hours before being frozen in 10% DMSO at a controlled rate. A sample of tricuspid valve leaflet is placed in Krebs solution at the time of trimfning and is used for viability studies. Leaflet viability studies have been perfon-ned on all heart valves retrieved from 1993 to the present day at the Donor Tissue Bank of Victoria. Viability involves a qualitative assessment of the cellular outgrowth by leaflet fibroblasts, this assessment ranging from '-' for no outgrowth to '++++' for maximum outgrowth. Surgeons do not request valves with any particular viability and will use them whether they are viable or not. This evaluation was to determine the effects of long-term cryopreservation, cause of death, and also time lapse of heart removal following death on the viability of the retrieved leaflets. The aim of investigating the effects of long-term cryopreservation was to determine whether there was any correlation between initial viability and viability following storage for several months to several years. It was also decided to investigate whether there was any correlation between time length between death and heart retrieval and the viability. It was also thought that the cause of death may have had an effect on the viability, for example, did death by carbon monoxide poisoning have an effect on the viability of heart valve cells. Heart valves, which had been cryopreserved but could not be transplanted for various reasons were used to study the effects of cryopreservation in this study. These were thawed according to protocol and a sample of the valve

  2. CT after gastrectomy for gastric carcinoma : significance of soft tissue surrounding the celiac axis

    International Nuclear Information System (INIS)

    Baek, Seung Yon; Kim, Hae Young; Choi, Hye Young; Lee, Sun Wha; Ko, Eun Joo; Lee, Myung Sook

    1997-01-01

    To evaluate whether soft tissue surrounding the celiac axis, as seen on abdominal CT imaging after gastrectomy for gastric carcinoma, should be considered as the recurrence of carcinoma or postoperative change. One hundred and forty-one abdominal CT examinations of 71 patients who had undergone subtotal or total gastrectomy for gastric carcinoma were included in our study. Conventional CT scans were obtained with 1cm thickness and interval from the diaphragm to the kidneys after contrast enhancement. It was considered that carcinoma had not recurred if findings were negative on UGI series, endoscopy with biopsy and a normal level of carcinoembryonic antigen except for soft tissue surrounding the celiac axis on abdominal CT. We then divided subjects into a recurrence group(N=20) and normal group(N=51) and on initial follow-up CT(FU-CT), analyzed the incidence, margin, shape, extent, degree and pattern of attenuation of the soft tissue surrounding the celiac axis in both groups. Since the second FU-CT examination, we observed changes in the soft tissue surrounding the celiac axis. On initial follow-up CT, at mean 308 days after surgery, fifty-five percent(39/71) of total patients (70%(14/20) of the recurrence group and 49%(25/51) of the normal group) showed soft tissue surrounding the celiac axis. The margin was distinct in 12(86%) of the recurrence group and indistinct in 21(84%) of the normal group(p<0.001). Twelve (86%) of the recurrence group showed a nodular or confluent nodular shape and 21(84%) of the normal group showed a permeative shape (p<0.001). Extent was unilateral in eight (57%) of the recurrence group and bilateral in 16(64%) of the normal group. Attenuation was similar to that of the spleen and muscle in seven(50%) of the recurrence group and was similar to that of muscle in 18(72%) of the normal group. The pattern of attenuation was homogeneous in 13(93%) of the recurrence group and 21(84%) of the normal group. There was no significant difference in

  3. A study on dose attenuation in bone density when TBI using diode detector and TLD

    International Nuclear Information System (INIS)

    Im, Hyun Sil; Lee, Jung Jin; Jang, Ahn Ki; KIm, Wan Sun

    2003-01-01

    Uniform dose distribution of the whole body is essential factor for the total body irradiation(TBI). In order to achieved this goal, we used to compensation filter to compensate body contour irregularity and thickness differences. But we can not compensate components of body, namely lung or bone. The purpose of this study is evaluation of dose attenuation in bone tissue when TBI using diode detectors and TLD system. The object of this study were 5 patients who undergo TBI at our hospital. Dosimetry system were diode detectors and TLD system. Treatment method was bilateral and delivered 10 MV X-ray from linear accelerator. Measurement points were head, neck, pelvis, knees and ankles. TLD used two patients and diode detectors used three patients. Results are as followed. All measured dose value were normalized skin dose. TLD dosimetry : Measured skin dose of head, neck, pelvis, knees and ankles were 92.78±3.3, 104.34±2.3, 98.03±1.4, 99.9±2.53, 98.17±0.56 respectably. Measured mid-depth dose of pelvis, knees and ankles were 86±1.82, 93.24±2.53, 91.50±2.84 respectably. There were 6.67%-11.65% dose attenuation at mid-depth in pelvis, knees and ankles. Diode detector : Measured skin dose of head, neck, pelvis, knees and ankles were 95.23±1.18, 98.33±0.6, 93.5±1.5, 87.3±1.5, 86.90±1.16 respectably. There were 4.53%-12.6% dose attenuation at mid-depth in pelvis, knees and ankles. We concluded that dose measurement with TLD or diode detector was inevitable when TBI treatment. Considered dose attenuation in bone tissue, We must have adequately deduction of compensator thickness that body portion involved bone tissue.

  4. Antioxidant supplementation decreases the cell death rate in the prostatic stromal tissue of long-term castrated rats

    Directory of Open Access Journals (Sweden)

    Guilherme Fartes

    2012-06-01

    Full Text Available OBJECTIVE: The purpose of this study was to compare the effects of castration on cell death rate of the adult rat prostates and to evaluate the benefic action of alpha tocopherol supplementation to avoid apoptosis post-orchiectomy. MATERIAL AND METHODS: Thirty male Wistar rats weighing 250-300g were divided into three groups: group I - they were subjected to bilateral orchiectomy and sacrificed eight weeks after the procedure; group II - subjected to bilateral orchiectomy and alpha-tocopherol supplementation for four weeks preceding the procedure; and group III - subjected to bilateral orchiectomy and alpha-tocopherol supplementation for four weeks preceding the procedure and for eight weeks afterwards. At the end of the experiment, the prostatectomy was performed in all rats. The presence of oxidative stress was determined by assaying the blood level of 8-isoprostane and the occurrence of apoptosis was evaluated by identification of active caspase-3 through immunohistochemical analysis. RESULTS: The statistic analysis of active caspase-3 showed that in the long-term castrated group the detection was higher than in groups were the alpha-tocopherol was supplemented (p=0.007. Analysis of 8-isoprostane levels showed higher concentrations of reactive oxygen species in group I compared to other groups (p<0.05. Groups II and III presented active caspase-3 lower than in group I (p<0.05. CONCLUSION: Our exploratory analyses demonstrate a method to study the aging process and its influence on oxidative stress of prostatic tissue and cells death rate. Based on our results we can suggest that alpha tocopherol supplementation can decrease the apoptotic process as well as the oxidative stress levels induced by androgen deprivation of the prostate gland.

  5. Fatal laboratory-acquired infection with an attenuated Yersinia pestis Strain--Chicago, Illinois, 2009.

    Science.gov (United States)

    2011-02-25

    On September 18, 2009, the Chicago Department of Public Health (CDPH) was notified by a local hospital of a suspected case of fatal laboratory-acquired infection with Yersinia pestis, the causative agent of plague. The patient, a researcher in a university laboratory, had been working along with other members of the laboratory group with a pigmentation-negative (pgm-) attenuated Y. pestis strain (KIM D27). The strain had not been known to have caused laboratory-acquired infections or human fatalities. Other researchers in a separate university laboratory facility in the same building had contact with a virulent Y. pestis strain (CO92) that is considered a select biologic agent; however, the pgm- attenuated KIM D27 is excluded from the National Select Agent Registry. The university, CDPH, the Illinois Department of Public Health (IDPH), and CDC conducted an investigation to ascertain the cause of death. This report summarizes the results of that investigation, which determined that the cause of death likely was an unrecognized occupational exposure (route unknown) to Y. pestis, leading to septic shock. Y. pestis was isolated from premortem blood cultures. Polymerase chain reaction (PCR) identified the clinical isolate as a pgm- strain of Y. pestis. Postmortem examination revealed no evidence of pneumonic plague. A postmortem diagnosis of hereditary hemochromatosis was made on the basis of histopathologic, laboratory, and genetic testing. One possible explanation for the unexpected fatal outcome in this patient is that hemochromatosis-induced iron overload might have provided the infecting KIM D27 strain, which is attenuated as a result of defects in its ability to acquire iron, with sufficient iron to overcome its iron-acquisition defects and become virulent. Researchers should adhere to recommended biosafety practices when handling any live bacterial cultures, even attenuated strains, and institutional biosafety committees should implement and maintain effective

  6. Mitochondrial apoptotic pathways induced by Drosophila programmed cell death regulators

    International Nuclear Information System (INIS)

    Claveria, Cristina; Torres, Miguel

    2003-01-01

    Multicellular organisms eliminate unwanted or damaged cells by cell death, a process essential to the maintenance of tissue homeostasis. Cell death is a tightly regulated event, whose alteration by excess or defect is involved in the pathogenesis of many diseases such as cancer, autoimmune syndromes, and neurodegenerative processes. Studies in model organisms, especially in the nematode Caenorhabditis elegans, have been crucial in identifying the key molecules implicated in the regulation and execution of programmed cell death. In contrast, the study of cell death in Drosophila melanogaster, often an excellent model organism, has identified regulators and mechanisms not obviously conserved in other metazoans. Recent molecular and cellular analyses suggest, however, that the mechanisms of action of the main programmed cell death regulators in Drosophila include a canonical mitochondrial pathway

  7. Nuclear DAMP complex-mediated RAGE-dependent macrophage cell death

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ruochan [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Department of Infectious Diseases and State Key Lab of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); Fu, Sha; Fan, Xue-Gong [Department of Infectious Diseases and State Key Lab of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); Lotze, Michael T.; Zeh, Herbert J. [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Tang, Daolin, E-mail: tangd2@upmc.edu [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Kang, Rui, E-mail: kangr@upmc.edu [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 (United States)

    2015-03-13

    High mobility group box 1 (HMGB1), histone, and DNA are essential nuclear components involved in the regulation of chromosome structure and function. In addition to their nuclear function, these molecules act as damage-associated molecular patterns (DAMPs) alone or together when released extracellularly. The synergistic effect of these nuclear DNA-HMGB1-histone complexes as DAMP complexes (nDCs) on immune cells remains largely unexplored. Here, we demonstrate that nDCs limit survival of macrophages (e.g., RAW264.7 and peritoneal macrophages) but not cancer cells (e.g., HCT116, HepG2 and Hepa1-6). nDCs promote production of inflammatory tumor necrosis factor α (TNFα) release, triggering reactive oxygen species-dependent apoptosis and necrosis. Moreover, the receptor for advanced glycation end products (RAGE), but not toll-like receptor (TLR)-4 and TLR-2, was required for Akt-dependent TNFα release and subsequent cell death following treatment with nDCs. Genetic depletion of RAGE by RNAi, antioxidant N-Acetyl-L-cysteine, and TNFα neutralizing antibody significantly attenuated nDC-induced cell death. These findings provide evidence supporting novel signaling mechanisms linking nDCs and inflammation in macrophage cell death. - Highlights: • Nuclear DAMP complexes (nDCs) selectively induce cell death in macrophages, but not cancer cells. • TNFα-mediated oxidative stress is required for nDC-induced death. • RAGE-mediated Akt activation is required for nDC-induced TNFα release. • Blocking RAGE and TNFα inhibits nDC-induced macrophage cell death.

  8. CT findings as confirmatory criteria of brain death

    International Nuclear Information System (INIS)

    Shiogai, Toshiyuki; Takeuchi, Kazuo

    1983-01-01

    The absence of cerebral circulation and electrocerebral silence have served as an accurate index of irreversible brain death. It is proposed that computed tomography (CT) findings be evaluated as confirmatory criteria of brain death. To this end, CT evaluation of 14 patients satisfying the conventional criteria of brain death was performed. A CT finding of severe compression or dissappearance of the ventricular system, or so called ''brain tamponade'', was seen in 7 (50 %) of the 14 patients. Enhanced contrast CT, especially dynamic CT, usually distinctly reveals the cerebral vessels whenever the cerebral blood flow is preserved; conversely, the lack of enhanced brain structures, even comparing attenuation values, indicates the absence of cerebral blood flow. In 7 (70 %) of 10 patients, however, there was enhanced contrast of vascular brain structures, especially the circle of Willis, major cerebral arteries, choroid plexuses, and venous sinuses. It is suggested that this result is due to the improvement of demonstrability by CT. The usefulness of CT in the confirmation of brain death lies in visualization of the pathological changes associated with a dead brain, such as ''brain tamponade'', and the lack of enhanced contrast indicating the absence of cerebral blood flow. The latter point is still problematic as angiography revealed an extremely low cerebral blood flow in a few cases of ''dead brain'' patients. It is recommended that cerebral blood flow in brain death be evaluated by dynamic CT scanning and correlated with other methods of cerebral blood flow determination (e.g., intravenous digital subtraction angiography). (Author)

  9. CT findings as confirmatory criteria of brain death

    Energy Technology Data Exchange (ETDEWEB)

    Shiogai, Toshiyuki; Takeuchi, Kazuo (Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine)

    1983-12-01

    The absence of cerebral circulation and electrocerebral silence have served as an accurate index of irreversible brain death. It is proposed that computed tomography (CT) findings be evaluated as confirmatory criteria of brain death. To this end, CT evaluation of 14 patients satisfying the conventional criteria of brain death was performed. A CT finding of severe compression or dissappearance of the ventricular system, or so called ''brain tamponade'', was seen in 7 (50 %) of the 14 patients. Enhanced contrast CT, especially dynamic CT, usually distinctly reveals the cerebral vessels whenever the cerebral blood flow is preserved; conversely, the lack of enhanced brain structures, even comparing attenuation values, indicates the absence of cerebral blood flow. In 7 (70 %) of 10 patients, however, there was enhanced contrast of vascular brain structures, especially the circle of Willis, major cerebral arteries, choroid plexuses, and venous sinuses. It is suggested that this result is due to the improvement of demonstrability by CT. The usefulness of CT in the confirmation of brain death lies in visualization of the pathological changes associated with a dead brain, such as ''brain tamponade'', and the lack of enhanced contrast indicating the absence of cerebral blood flow. The latter point is still problematic as angiography revealed an extremely low cerebral blood flow in a few cases of ''dead brain'' patients. It is recommended that cerebral blood flow in brain death be evaluated by dynamic CT scanning and correlated with other methods of cerebral blood flow determination (e.g., intravenous digital subtraction angiography).

  10. Reporting detection of Chlamydia trachomatis DNA in tissues of neonatal death cases

    Directory of Open Access Journals (Sweden)

    Maria Hernandez Trejo

    2014-04-01

    Full Text Available OBJECTIVE: to determine whether C. trachomatis was present in neonates with infection, but without an isolated pathogen, who died during the first week of life. METHODS: early neonatal death cases whose causes of death had been previously adjudicated by the institutional mortality committee were randomly selected. End-point and real-time polymerase chain reaction of the C. trachomatis omp1 gene was used to blindly identify the presence of chlamydial DNA in the paraffinized samples of five organs (from authorized autopsies of each of the dead neonates. Additionally, differential diagnoses were conducted by amplifying a fragment of the 16S rRNA of Mycoplasma spp. RESULTS: in five cases (35.7%, C. trachomatis DNA was found in one or more organs. Severe neonatal infection was present in three cases; one of them corresponded to genotype D of C. trachomatis. Interestingly, another case fulfilled the same criteria but had a positive polymerase chain reaction for Mycoplasma hominis, a pathogen known to produce sepsis in newborns. CONCLUSION: the use of molecular biology techniques in these cases of early infant mortality demonstrated that C. trachomatis could play a role in the development of severe infection and in early neonatal death, similarly to that observed with Mycoplasma hominis. Further study is required to determine the pathogenesis of this perinatal infection.

  11. Bone Tissue Donation: Tendency and Hurdles.

    Science.gov (United States)

    El Hage, S; Dos Santos, M J; de Moraes, E L; de Barros E Silva, L B

    2018-03-01

    The aim of this study was to identify the percentage of bone tissue donation in a brain death situation and the tendency of donation rate of this tissue in an organ procurement organization in the county of Sao Paulo from 2001 to 2016. It is a retrospective and quantitative study, based on the Organ and Tissue Donation Term of donors who died of brain death between 2001 and 2016. A logistic regression model was applied, and the odds of donation were identified throughout the years, regarding the odds ratio different from zero. Finally, it was measured the accuracy of the odds ratio through the confidence interval. The analysis has shown a significant change on the trend of bone donation (P 1, indicating that the donation rate has increased. However, the percentage of growth is still considered low. The study evidences a growth trend regarding the donation of bone tissue, but the percentage is still too low to adequately meet the demand of patients who need this modality of therapeutic intervention. It is believed that educational campaigns of donation are not emphasizing the donation of tissues for transplantation, which may be directly impacting their consent rates. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Purified rutin and rutin-rich asparagus attenuates disease severity and tissue damage following dextran sodium sulfate-induced colitis.

    Science.gov (United States)

    Power, Krista A; Lu, Jenifer T; Monk, Jennifer M; Lepp, Dion; Wu, Wenqing; Zhang, Claire; Liu, Ronghua; Tsao, Rong; Robinson, Lindsay E; Wood, Geoffrey A; Wolyn, David J

    2016-11-01

    This study investigated the effects of cooked whole asparagus (ASP) versus its equivalent level of purified flavonoid glycoside, rutin (RUT), on dextran sodium sulfate (DSS)-induced colitis and subsequent colitis recovery in mice. C57BL/6 male mice were fed an AIN-93G basal diet (BD), or BD supplemented with 2% cooked ASP or 0.025% RUT for 2 wks prior to and during colitis induction with 2% DSS in water for 7 days, followed by 5 days colitis recovery. In colitic mice, both ASP and RUT upregulated mediators of improved barrier integrity and enhanced mucosal injury repair (e.g. Muc1, IL-22, Rho-A, Rac1, and Reg3γ), increased the proportion of mouse survival, and improved disease activity index. RUT had the greatest effect in attenuating DSS-induced colonic damage indicated by increased crypt and goblet cell restitution, reduced colonic myeloperoxidase, as well as attenuated DSS-induced microbial dysbiosis (reduced Enterobacteriaceae and Bacteroides, and increased unassigned Clostridales, Oscillospira, Lactobacillus, and Bifidobacterium). These findings demonstrate that dietary cooked ASP and its flavonoid glycoside, RUT, may be useful in attenuating colitis severity by modulating the colonic microenvironment resulting in reduced colonic inflammation, promotion of colonic mucosal injury repair, and attenuation of colitis-associated microbial dysbiosis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Beam Attenuators and the Risk of Unrecognized Large-Fraction Irradiation of Critical Tissues

    International Nuclear Information System (INIS)

    Luka, S.; Marks, J.E.

    2015-01-01

    The use of radiation beam attenuators led to radiation injury of the spinal cord in one patient and of the peripheral nerve in another due to unsuspected large-fraction irradiation. The anatomic distribution of radiation dose was reconstructed in the sagittal plane for the patient who developed radiation myelopathy and in the axial plane for the patient who developed peripheral neuropathy. The actual dose delivered to the injured structure in each patient was taken from the dose distribution and recorded along with the time, number of fractions, and dose per fraction. The patient who developed radiation myelopathy received a total of 46.5 Gy in twenty-three 2.1 Gy fractions in 31 days to the upper cervical spinal cord where the thickness of the neck was less than the central axis thickness due to cervical lordosis and absence of a posterior compensating filter. The patient who developed peripheral neuropathy received 55 Gy in twenty-five 2.2 Gy fractions in 50 days to the femoral nerve using bolus over the groins and an anterior one-half value layer Cerrobend pelvic block to bias the dose anteriorly. Compensating filters and other beam attenuators should be used with caution because they may result in unsuspected large-fraction irradiation and total doses of radiation that exceed the tolerance of critical structures.

  14. Beam Attenuators and the Risk of Unrecognized Large-Fraction Irradiation of Critical Tissues

    Energy Technology Data Exchange (ETDEWEB)

    Luka, S.; Marks, J.E.

    2015-01-15

    The use of radiation beam attenuators led to radiation injury of the spinal cord in one patient and of the peripheral nerve in another due to unsuspected large-fraction irradiation. The anatomic distribution of radiation dose was reconstructed in the sagittal plane for the patient who developed radiation myelopathy and in the axial plane for the patient who developed peripheral neuropathy. The actual dose delivered to the injured structure in each patient was taken from the dose distribution and recorded along with the time, number of fractions, and dose per fraction. The patient who developed radiation myelopathy received a total of 46.5 Gy in twenty-three 2.1 Gy fractions in 31 days to the upper cervical spinal cord where the thickness of the neck was less than the central axis thickness due to cervical lordosis and absence of a posterior compensating filter. The patient who developed peripheral neuropathy received 55 Gy in twenty-five 2.2 Gy fractions in 50 days to the femoral nerve using bolus over the groins and an anterior one-half value layer Cerrobend pelvic block to bias the dose anteriorly. Compensating filters and other beam attenuators should be used with caution because they may result in unsuspected large-fraction irradiation and total doses of radiation that exceed the tolerance of critical structures.

  15. Pathophysiological mechanisms of death resistance in colorectal carcinoma.

    Science.gov (United States)

    Huang, Ching-Ying; Yu, Linda Chia-Hui

    2015-11-07

    Colon cancers develop adaptive mechanisms to survive under extreme conditions and display hallmarks of unlimited proliferation and resistance to cell death. The deregulation of cell death is a key factor that contributes to chemoresistance in tumors. In a physiological context, balance between cell proliferation and death, and protection against cell damage are fundamental processes for maintaining gut epithelial homeostasis. The mechanisms underlying anti-death cytoprotection and tumor resistance often bear common pathways, and although distinguishing them would be a challenge, it would also provide an opportunity to develop advanced anti-cancer therapeutics. This review will outline cell death pathways (i.e., apoptosis, necrosis, and necroptosis), and discuss cytoprotective strategies in normal intestinal epithelium and death resistance mechanisms of colon tumor. In colorectal cancers, the intracellular mechanisms of death resistance include the direct alteration of apoptotic and necroptotic machinery and the upstream events modulating death effectors such as tumor suppressor gene inactivation and pro-survival signaling pathways. The autocrine, paracrine and exogenous factors within a tumor microenvironment can also instigate resistance against apoptotic and necroptotic cell death in colon cancers through changes in receptor signaling or transporter uptake. The roles of cyclooxygenase-2/prostaglandin E2, growth factors, glucose, and bacterial lipopolysaccharides in colorectal cancer will be highlighted. Targeting anti-death pathways in the colon cancer tissue might be a promising approach outside of anti-proliferation and anti-angiogenesis strategies for developing novel drugs to treat refractory tumors.

  16. Effects of chronic exposure of hydroxychloroquine/chloroquine on the risk of cancer, metastasis, and death: a population-based cohort study on patients with connective tissue diseases.

    Science.gov (United States)

    Fardet, L; Nazareth, I; Petersen, I

    2017-01-01

    Hydroxychloroquine and chloroquine may reduce the risk of cancer as they inhibit autophagy, in particular, in people with connective tissue diseases. The hazard ratios of cancers, metastases, and death were assessed in adults with connective tissue diseases prescribed hydroxychloroquine/chloroquine for at least 1 year in comparison with unexposed individuals with the same underlying conditions. A competing risk survival regression analysis was performed. Data were extracted from the Health Improvement Network UK primary care database. Eight thousand nine hundred and ninety-nine individuals exposed to hydroxychloroquine (98.6%) or chloroquine (1.4%) and 24,118 unexposed individuals were included in the study (median age: 56 [45-66] years, women: 76.8%). When compared to the unexposed group, individuals exposed to hydroxychloroquine/chloroquine were not at lower risk of non-skin cancers (adjusted sub-distribution hazard ratio [sHR]: 1.04 [0.92-1.18], p =0.54), hematological malignancies (adjusted sHR: 1.00 [0.73-1.38], p =0.99), or skin cancers (adjusted sHR: 0.92 [0.78-1.07], p =0.26). The risk of metastasis was not significantly different between the two groups. However, it was significantly lower during the exposure period when compared with the unexposed (adjusted sHR: 0.64 [0.44-0.95] for the overall population and 0.61 [0.38-1.00] for those diagnosed with incident cancers). The risk of death was also significantly lower in those exposed to hydroxychloroquine/chloroquine (adjusted HR: 0.90 [0.81-1.00] in the overall population and 0.78 [0.64-0.96] in those diagnosed with incident cancer). Individuals on long-term exposure to hydroxychloroquine/chloroquine are not at lower risk of cancer. However, hydroxychloroquine/chloroquine may lower the risk of metastatic cancer and death.

  17. In vitro and in vivo study of endothelial cells radio-induced death modulation by Sphingosine-1-Phosphate

    International Nuclear Information System (INIS)

    Bonnaud, St.

    2007-01-01

    Protecting the vasculature from radiation-induced death is a major concern in tissue radioprotection. Developing a model of endothelial cells radiosensitivity, we proved that HMEC-1 undergo 2 waves of death after exposure to 15 Gy: an early pre mitotic apoptosis dependent of ceramide generation and a delayed DNA damage-induced mitotic death. Sphingosine-1-Phosphate (S1P), a ceramide antagonist, protects HMEC-1 only from early apoptosis, but not from mitotic death. We confirmed in vivo the S1P radioprotection from ceramide-mediated radio-induced apoptosis, and that S1P radioprotection is partially mediated by S1Ps receptors. Segregation between these 2 types of death may give the opportunity to define a new class of radioprotectors for normal tissue where quiescent endothelium represent the most sensitive target, while excluding malignant tumor containing pro-proliferating angiogenic endothelial cells, sensitive to mitotic death. (author)

  18. Temperature Measurements of the Low-Attenuation Radiographic Ice Ball During CT-Guided Renal Cryoablation

    International Nuclear Information System (INIS)

    Permpongkosol, Sompol; Link, Richard E.; Kavoussi, Louis R.; Solomon, Stephen B.

    2008-01-01

    During renal cryoablation a low-attenuation area on CT develops around the cryoprobe. Knowledge of the temperature of the growing low-attenuation area can guide therapy and ensure lethal temperatures. Herein, we report thermocouple results and correlating CT images during the development of the low-attenuation 'radiographic ice ball.' Five patients who underwent percutaneous CT-guided renal cryoablation were identified who had thermocouples inserted and serial intraprocedural CT images that included images with thermocouple measurements of 0 o and sub-0 o C. Thermocouples had been percutaneously placed just beyond the edge of the tumors either to ensure adequate cooling or to ensure safety to adjacent critical structures. Renal cryotherapy under CT guidance produced a growing low-attenuation area corresponding to the radiographic ice ball. When the thermocouple measured 0 o C, CT images showed the thermocouple tip at the edge of the low-attenuation ice ball. At lower temperatures the tip was within the low-attenuation ice ball. We conclude that knowledge of the temperature at the ice ball edge during cryoablation can be used to predict the extent of tissue necrosis and thus provide an estimate of cryotherapy effectiveness during the procedure. Further work is necessary to establish a firm relationship between the thermal conditions and the zone of damage

  19. Strain-time cell death threshold for skeletal muscle in a tissue-engineered model system for deep tissue injury

    NARCIS (Netherlands)

    Gefen, A.; Nierop, van B.J.; Bader, D.L.; Oomens, C.W.J.

    2008-01-01

    Deep tissue injury (DTI) is a severe pressure ulcer that results from sustained deformation of muscle tissue overlying bony prominences. In order to understand the etiology of DTI, it is essential to determine the tolerance of muscle cells to large mechanical strains. In this study, a new

  20. Polyurethane as a base for a family of tissue equivalent materials

    International Nuclear Information System (INIS)

    Griffith, R.V.

    1980-01-01

    Recent experience gained in the selection of tissue equivalent materials for the construction of whole body counting phantoms has shown that commercially available polyurethane can be used as a base for a variety of tissue equivalent materials. Tissues simulated include lung, adipose, muscle, cartilage and rib bone. When selecting tissue equivalent materials it is important to understand what tissue properties must be simulated. Materials that simply simulate the linear attenuation of low energy photons for example, are not very likely to simulate neutron interaction properties accurately. With this in mind, we have developed more than one simulation composition for a given tissue, depending on the purpose to which the simulant is to be applied. Simple simulation of linear attenuation can be achieved by addition of carefully measured amounts of higher Z material, such as calcium carbonate to the polyurethane. However, the simulation necessary for medical scanning purposes, or for use in mixed radiation fields requires more complex formulations to yield proper material density, hydrogen and nitrogen content, electron density, and effective atomic number. Though polyurethane has limitations for simulation of tissues that differ markedly from its inherent composition (such as compacted bone), it is safe and easily used in modestly equipped laboratories. The simulants are durable and generally flexible. They can also be easily cast in irregular shapes to simulate specific organ geometries. (author)

  1. Acute tissue death (white syndrome) affects the microenvironment of tabular Acropora corals

    DEFF Research Database (Denmark)

    Andersen, Sandra Breum; Vestergaard, Maj; Ainsworth, Tracy D.

    2010-01-01

    White syndrome (WS) is a collective term for coral diseases that cause acute tissue loss, resulting in apparently healthy tissue bordering on exposed skeleton. In this study, the microenvironmental condition and tissue structure of WS-affected tabular acroporid corals were assessed by O2...... microelectrodes and histological techniques. The high spatial resolution of the microelectrode measurements enabled an evaluation of the extent of physiological changes at, and 2 cm away from, the WS border. Respiration of the coral host was decreased on the skeleton-tissue border but was comparable...... to that of healthy corals only 2 cm away from the border. Histological data, however, showed a decrease in mesogloea thickness on and 2 cm away from the WS border, which correlates with a previously observed allocation of photoassimilates away from the WS border. We suggest that there are colony-wide negative...

  2. Influence of postmortem time on the outcome of blood cultures among cadaveric tissue donors.

    Science.gov (United States)

    Saegeman, V; Verhaegen, J; Lismont, D; Verduyckt, B; De Rijdt, T; Ectors, N

    2009-02-01

    Tissue banks provide tissues of human cadaver donors for transplantation. The maximal time limit for tissue retrieval has been set at 24 h postmortem. This study aimed at evaluating the evidence for this limit from a microbiological point of view. The delay of growth in postmortem blood cultures, the identification of the species isolated and clinical/environmental factors were investigated among 100 potential tissue donors. No significant difference was found in the rate of donors with grown blood cultures within (25/65=38%) compared with after (24/65=37%) 24 h of death. Coagulase-negative staphylococci and gastro-intestinal microorganisms were isolated within and after 24 h of death. Two factors--antimicrobial therapy and "delay before body cooling"--were significantly inversely related with donors' blood culture results. From a microbiological point of view, there is no evidence for avoiding tissue retrieval among donors after 24 h of death.

  3. Adipose tissue and skeletal muscle blood flow during mental stress

    Energy Technology Data Exchange (ETDEWEB)

    Linde, B.; Hjemdahl, P.; Freyschuss, U.; Juhlin-Dannfelt, A.

    1989-01-01

    Mental stress (a modified Stroop color word conflict test (CWT)) increased adipose tissue blood flow (ATBF; 133Xe clearance) by 70% and reduced adipose tissue vascular resistance (ATR) by 25% in healthy male volunteers. The vasculatures of adipose tissue (abdomen as well as thigh), skeletal muscle of the calf (133Xe clearance), and the entire calf (venous occlusion plethysmography) responded similarly. Arterial epinephrine (Epi) and glycerol levels were approximately doubled by stress. Beta-Blockade by metoprolol (beta 1-selective) or propranolol (nonselective) attenuated CWT-induced tachycardia similarly. Metoprolol attenuated stress-induced vasodilation in the calf and tended to do so in adipose tissue. Propranolol abolished vasodilation in the calf and resulted in vasoconstriction during CWT in adipose tissue. Decreases in ATR, but not in skeletal muscle or calf vascular resistances, were correlated to increases in arterial plasma glycerol (r = -0.42, P less than 0.05), whereas decreases in skeletal muscle and calf vascular resistances, but not in ATR, were correlated to increases in arterial Epi levels (r = -0.69, P less than 0.01; and r = -0.43, P less than 0.05, respectively). The results suggest that mental stress increases nutritive blood flow in adipose tissue and skeletal muscle considerably, both through the elevation of perfusion pressure and via vasodilatation. Withdrawal of vasoconstrictor nerve activity, vascular beta 2-adrenoceptor stimulation by circulating Epi, and metabolic mechanisms (in adipose tissue) may contribute to the vasodilatation.

  4. Adipose tissue and skeletal muscle blood flow during mental stress

    International Nuclear Information System (INIS)

    Linde, B.; Hjemdahl, P.; Freyschuss, U.; Juhlin-Dannfelt, A.

    1989-01-01

    Mental stress [a modified Stroop color word conflict test (CWT)] increased adipose tissue blood flow (ATBF; 133Xe clearance) by 70% and reduced adipose tissue vascular resistance (ATR) by 25% in healthy male volunteers. The vasculatures of adipose tissue (abdomen as well as thigh), skeletal muscle of the calf (133Xe clearance), and the entire calf (venous occlusion plethysmography) responded similarly. Arterial epinephrine (Epi) and glycerol levels were approximately doubled by stress. Beta-Blockade by metoprolol (beta 1-selective) or propranolol (nonselective) attenuated CWT-induced tachycardia similarly. Metoprolol attenuated stress-induced vasodilation in the calf and tended to do so in adipose tissue. Propranolol abolished vasodilation in the calf and resulted in vasoconstriction during CWT in adipose tissue. Decreases in ATR, but not in skeletal muscle or calf vascular resistances, were correlated to increases in arterial plasma glycerol (r = -0.42, P less than 0.05), whereas decreases in skeletal muscle and calf vascular resistances, but not in ATR, were correlated to increases in arterial Epi levels (r = -0.69, P less than 0.01; and r = -0.43, P less than 0.05, respectively). The results suggest that mental stress increases nutritive blood flow in adipose tissue and skeletal muscle considerably, both through the elevation of perfusion pressure and via vasodilatation. Withdrawal of vasoconstrictor nerve activity, vascular beta 2-adrenoceptor stimulation by circulating Epi, and metabolic mechanisms (in adipose tissue) may contribute to the vasodilatation

  5. Manufacture and characterization of breast tissue phantoms for emulating benign lesions

    Science.gov (United States)

    Villamarín, J. A.; Rojas, M. A.; Potosi, O. M.; Narváez-Semanate, J. L.; Gaviria, C.

    2017-11-01

    Phantoms elaboration has turned a very important field of study during the last decades due to its applications in medicine. These objects are capable of emulating or mimicking acoustically biological tissues in which parameters like speed of sound (SOS) and attenuation are successfully attained. However, these materials are expensive depending on their characteristics (USD 460.00 - 6000.00) and is difficult to have precise measurements because of their composition. This paper presents the elaboration and characterization of low cost ( USD $25.00) breast phantoms which emulate histological normality and pathological conditions in order to support algorithm calibration procedures in imaging diagnosis. Quantitative ultrasound (QUS) was applied to estimate SOS and attenuation values for breast tissue (background) and benign lesions (fibroadenoma and cysts). Results showed values of the SOS and attenuation for the background between 1410 - 1450 m/s and 0.40 - 0.55 dB/cm at 1 MHz sampling frequency, respectively. On the other hand, the SOS obtained for the lesions ranges from 1350 to 1700 m/s and attenuation values between 0.50 - 1.80 dB/cm at 1 MHz. Finally, the fabricated phantoms allowed for obtaining ultrasonograms comparable with real ones whose acoustic parameters are in agree with those reported in the literature.

  6. Dynamics of anisotropic tissue growth

    Energy Technology Data Exchange (ETDEWEB)

    Bittig, Thomas; Juelicher, Frank [Max Planck Institute for the Physics of Complex Systems, Noethnitzer Strasse 38, 01187 Dresden (Germany); Wartlick, Ortrud; Kicheva, Anna; Gonzalez-Gaitan, Marcos [Department of Biochemistry and Department of Molecular Biology, Geneva University, Sciences II, Quai Ernest-Ansermet 30, 1211 Geneva 4 (Switzerland)], E-mail: Marcos.Gonzalez@biochem.unige.ch, E-mail: julicher@pks.mpg.de

    2008-06-15

    We study the mechanics of tissue growth via cell division and cell death (apoptosis). The rearrangements of cells can on large scales and times be captured by a continuum theory which describes the tissue as an effective viscous material with active stresses generated by cell division. We study the effects of anisotropies of cell division on cell rearrangements and show that average cellular trajectories exhibit anisotropic scaling behaviors. If cell division and apoptosis balance, there is no net growth, but for anisotropic cell division the tissue undergoes spontaneous shear deformations. Our description is relevant for the study of developing tissues such as the imaginal disks of the fruit fly Drosophila melanogaster, which grow anisotropically.

  7. Interdependent self-construals mitigate the fear of death and augment the willingness to become a martyr.

    Science.gov (United States)

    Orehek, Edward; Sasota, Jo A; Kruglanski, Arie W; Dechesne, Mark; Ridgeway, Leianna

    2014-08-01

    Humans are motivated by a quest for significance that is threatened by the inevitability of death. However, individuals with interdependent self-construals, self-representations that reflect embeddedness with and connection to others, are able to extend themselves through time and space through their linkage to a larger social group. The present set of 5 experiments tested the hypotheses that individuals primed with an interdependent self-construal would fear death less and would be more willing to face harm for the sake of the group than individuals with an independent self-construal, that is, self-representations that reflect autonomy and independence from others ("I have self-control"). The results show that interdependent self-construals, compared to independent self-construals, attenuate death anxiety, reduce the avoidance of death, increase the approach to death-related stimuli, induce a greater willingness to become a martyr, and induce a greater willingness to sacrifice the self for other members of important groups.

  8. Pathologic bladder microenvironment attenuates smooth muscle differentiation of skin derived precursor cells: implications for tissue regeneration.

    Directory of Open Access Journals (Sweden)

    Cornelia Tolg

    Full Text Available Smooth muscle cell containing organs (bladder, heart, blood vessels are damaged by a variety of pathological conditions necessitating surgery or organ replacement. Currently, regeneration of contractile tissues is hampered by lack of functional smooth muscle cells. Multipotent skin derived progenitor cells (SKPs can easily be isolated from adult skin and can be differentiated in vitro into contractile smooth muscle cells by exposure to FBS. Here we demonstrate an inhibitory effect of a pathologic contractile organ microenvironment on smooth muscle cell differentiation of SKPs. In vivo, urinary bladder strain induces microenvironmental changes leading to de-differentiation of fully differentiated bladder smooth muscle cells. Co-culture of SKPs with organoids isolated from ex vivo stretched bladders or exposure of SKPs to diffusible factors released by stretched bladders (e.g. bFGF suppresses expression of smooth muscle markers (alpha SMactin, calponin, myocardin, myosin heavy chain as demonstrated by qPCR and immunofluorescent staining. Rapamycin, an inhibitor of mTOR signalling, previously observed to prevent bladder strain induced de-differentiation of fully differentiated smooth muscle cells in vitro, inhibits FBS-induced smooth muscle cell differentiation of undifferentiated SKPs. These results suggest that intended precursor cell differentiation may be paradoxically suppressed by the disease context for which regeneration may be required. Organ-specific microenvironment contexts, particularly prevailing disease, may play a significant role in modulating or attenuating an intended stem cell phenotypic fate, possibly explaining the variable and inefficient differentiation of stem cell constructs in in vivo settings. These observations must be considered in drafting any regeneration strategies.

  9. Quantitative assessment of optical properties in healthy cartilage and repair tissue by optical coherence tomography and histology (Conference Presentation)

    Science.gov (United States)

    Jansen, Sanne M. A.; Cernohorsky, Paul; de Bruin, Daniel M.; van der Pol, Edwin; Savci-Heijink, Cemile D.; Strackee, Simon D.; Faber, Dirk J.; van Leeuwen, Ton G.

    2016-02-01

    Quantification of the OCT signal is an important step toward clinical implementation of a diagnostic tool in cartilage imaging. Discrimination of structural cartilage differences in patients with osteoarthritis is critical, yet challenging. This study assesses the variation in the optical attenuation coefficient (μOCT) between healthy cartilage, repair tissue, bone and layers within repair tissue in a controlled setting. OCT and histology was used to assess goat talus articular surfaces in which central osteochondral defects were created. Exact matches of OCT and histology were selected for research. μOCT measurements were taken from healthy cartilage, repair tissue and bone. Measured μOCT in healthy cartilage was higher compared to both repair tissue and bone tissue. Two possible mechanisms for the difference in attenuation were investigated. We studied morphological parameters in terms of nucleus count, nucleus size and inter-nucleus distance. Collagen content in healthy cartilage and repair tissue was assessed using polarization microscopy. Quantitative analysis of the nuclei did not demonstrate a difference in nucleus size and count between healthy cartilage and repair tissue. In healthy cartilage, cells were spaced farther apart and had a lower variation in local nuclear density compared to repair tissue. Polarization microscopy suggested higher collagen content in healthy cartilage compared to repair tissue. μOCT measurements can distinguish between healthy cartilage, repair tissue and bone. Results suggest that cartilage OCT attenuation measurements could be of great impact in clinical diagnostics of osteoarthritis.

  10. Subject-specific bone attenuation correction for brain PET/MR: can ZTE-MRI substitute CT scan accurately?

    Science.gov (United States)

    Khalifé, Maya; Fernandez, Brice; Jaubert, Olivier; Soussan, Michael; Brulon, Vincent; Buvat, Irène; Comtat, Claude

    2017-10-01

    In brain PET/MR applications, accurate attenuation maps are required for accurate PET image quantification. An implemented attenuation correction (AC) method for brain imaging is the single-atlas approach that estimates an AC map from an averaged CT template. As an alternative, we propose to use a zero echo time (ZTE) pulse sequence to segment bone, air and soft tissue. A linear relationship between histogram normalized ZTE intensity and measured CT density in Hounsfield units (HU ) in bone has been established thanks to a CT-MR database of 16 patients. Continuous AC maps were computed based on the segmented ZTE by setting a fixed linear attenuation coefficient (LAC) to air and soft tissue and by using the linear relationship to generate continuous μ values for the bone. Additionally, for the purpose of comparison, four other AC maps were generated: a ZTE derived AC map with a fixed LAC for the bone, an AC map based on the single-atlas approach as provided by the PET/MR manufacturer, a soft-tissue only AC map and, finally, the CT derived attenuation map used as the gold standard (CTAC). All these AC maps were used with different levels of smoothing for PET image reconstruction with and without time-of-flight (TOF). The subject-specific AC map generated by combining ZTE-based segmentation and linear scaling of the normalized ZTE signal into HU was found to be a good substitute for the measured CTAC map in brain PET/MR when used with a Gaussian smoothing kernel of 4~mm corresponding to the PET scanner intrinsic resolution. As expected TOF reduces AC error regardless of the AC method. The continuous ZTE-AC performed better than the other alternative MR derived AC methods, reducing the quantification error between the MRAC corrected PET image and the reference CTAC corrected PET image.

  11. Determination of tissue equivalent materials of a physical 8-year-old phantom for use in computed tomography

    International Nuclear Information System (INIS)

    Akhlaghi, Parisa; Miri Hakimabad, Hashem; Rafat Motavalli, Laleh

    2015-01-01

    This paper reports on the methodology applied to select suitable tissue equivalent materials of an 8-year phantom for use in computed tomography (CT) examinations. To find the appropriate tissue substitutes, first physical properties (physical density, electronic density, effective atomic number, mass attenuation coefficient and CT number) of different materials were studied. Results showed that, the physical properties of water and polyurethane (as soft tissue), B-100 and polyvinyl chloride (PVC) (as bone) and polyurethane foam (as lung) agree more with those of original tissues. Then in the next step, the absorbed doses in the location of 25 thermoluminescent dosimeters (TLDs) as well as dose distribution in one slice of phantom were calculated for original and these proposed materials by Monte Carlo simulation at different tube voltages. The comparisons suggested that at tube voltages of 80 and 100 kVp using B-100 as bone, water as soft tissue and polyurethane foam as lung is suitable for dosimetric study in pediatric CT examinations. In addition, it was concluded that by considering just the mass attenuation coefficient of different materials, the appropriate tissue equivalent substitutes in each desired X-ray energy range could be found. - Highlights: • A methodology to select tissue equivalent materials for use in CT was proposed. • Physical properties of different materials were studied. • TLDs dose and dose distribution were calculated for original and proposed materials. • B-100 as bone, and water as soft tissue are best substitute materials at 80 kVp. • Mass attenuation coefficient is determinant for selecting best tissue substitutes

  12. MR Imaging-Guided Attenuation Correction of PET Data in PET/MR Imaging.

    Science.gov (United States)

    Izquierdo-Garcia, David; Catana, Ciprian

    2016-04-01

    Attenuation correction (AC) is one of the most important challenges in the recently introduced combined PET/magnetic resonance (MR) scanners. PET/MR AC (MR-AC) approaches aim to develop methods that allow accurate estimation of the linear attenuation coefficients of the tissues and other components located in the PET field of view. MR-AC methods can be divided into 3 categories: segmentation, atlas, and PET based. This review provides a comprehensive list of the state-of-the-art MR-AC approaches and their pros and cons. The main sources of artifacts are presented. Finally, this review discusses the current status of MR-AC approaches for clinical applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Verification of photon attenuation characteristics for 3D printer based small animal lung model

    International Nuclear Information System (INIS)

    Lee, Se Ho; Lee, Seung Wook; Han, Su Chul; Park, Seung Woo

    2016-01-01

    Since it is difficult to measure absorbed dose to mice in vivo, replica mice are mostly used as alternative. In this study, realistic mouse phantom was fabricated by using 3D printer (object500 connex3, Stratasys, USA). Elemental inks as material of 3D printer were selected corresponding to mouse tissue. To represent lung, selected material was partially used with air layer. In order to verify material equivalent, super-flex bolus was simply compared to verify photon attenuation characteristics. In the case of lung, Hounsfield unit (HU) of the phantom were compared with a live mouse. In this study, we fabricated mouse phantom by using 3D printer, and practically verified photon attenuation characteristics. The fabricated phantom shows tissue equivalence as well as similar geometry with live mouse. As more and more growing of 3D printer technique, 3D printer based small preclinical animal phantom would increase reliability of verification of absorbed dose in small animal for preclinical study

  14. Verification of photon attenuation characteristics for 3D printer based small animal lung model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Se Ho; Lee, Seung Wook [Pusan National University, Busan (Korea, Republic of); Han, Su Chul; Park, Seung Woo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2016-05-15

    Since it is difficult to measure absorbed dose to mice in vivo, replica mice are mostly used as alternative. In this study, realistic mouse phantom was fabricated by using 3D printer (object500 connex3, Stratasys, USA). Elemental inks as material of 3D printer were selected corresponding to mouse tissue. To represent lung, selected material was partially used with air layer. In order to verify material equivalent, super-flex bolus was simply compared to verify photon attenuation characteristics. In the case of lung, Hounsfield unit (HU) of the phantom were compared with a live mouse. In this study, we fabricated mouse phantom by using 3D printer, and practically verified photon attenuation characteristics. The fabricated phantom shows tissue equivalence as well as similar geometry with live mouse. As more and more growing of 3D printer technique, 3D printer based small preclinical animal phantom would increase reliability of verification of absorbed dose in small animal for preclinical study.

  15. Granulocyte colony stimulating factor attenuates inflammation in a mouse model of amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Giniatullina Raisa

    2011-06-01

    Full Text Available Abstract Background Granulocyte colony stimulating factor (GCSF is protective in animal models of various neurodegenerative diseases. We investigated whether pegfilgrastim, GCSF with sustained action, is protective in a mouse model of amyotrophic lateral sclerosis (ALS. ALS is a fatal neurodegenerative disease with manifestations of upper and lower motoneuron death and muscle atrophy accompanied by inflammation in the CNS and periphery. Methods Human mutant G93A superoxide dismutase (SOD1 ALS mice were treated with pegfilgrastim starting at the presymptomatic stage and continued until the end stage. After long-term pegfilgrastim treatment, the inflammation status was defined in the spinal cord and peripheral tissues including hematopoietic organs and muscle. The effect of GCSF on spinal cord neuron survival and microglia, bone marrow and spleen monocyte activation was assessed in vitro. Results Long-term pegfilgrastim treatment prolonged mutant SOD1 mice survival and attenuated both astro- and microgliosis in the spinal cord. Pegfilgrastim in SOD1 mice modulated the inflammatory cell populations in the bone marrow and spleen and reduced the production of pro-inflammatory cytokine in monocytes and microglia. The mobilization of hematopoietic stem cells into the circulation was restored back to basal level after long-term pegfilgrastim treatment in SOD1 mice while the storage of Ly6C expressing monocytes in the bone marrow and spleen remained elevated. After pegfilgrastim treatment, an increased proportion of these cells in the degenerative muscle was detected at the end stage of ALS. Conclusions GCSF attenuated inflammation in the CNS and the periphery in a mouse model of ALS and thereby delayed the progression of the disease. This mechanism of action targeting inflammation provides a new perspective of the usage of GCSF in the treatment of ALS.

  16. Assessment of endothelial function and myocardial flow reserve using 15O-water PET without attenuation correction

    International Nuclear Information System (INIS)

    Tuffier, Stephane; Joubert, Michael; Bailliez, Alban; Legallois, Damien; Belin, Annette; Redonnet, Michel; Agostini, Denis; Manrique, Alain

    2016-01-01

    Myocardial blood flow (MBF) measurement using positron emission tomography (PET) from the washout rate of 15 O-water is theoretically independent of tissue attenuation. The aim of this study was to evaluate the impact of not using attenuation correction in the assessment of coronary endothelial function and myocardial flow reserve (MFR) using 15 O-water PET. We retrospectively processed 70 consecutive 15 O-water PET examinations obtained at rest and during cold pressor testing (CPT) in patients with dilated cardiomyopathy (n = 58), or at rest and during adenosine infusion in heart transplant recipients (n = 12). Data were reconstructed with attenuation correction (AC) and without attenuation correction (NAC) using filtered backprojection, and MBF was quantified using a single compartmental model. The agreement between AC and NAC data was assessed using Lin's concordance correlation coefficient followed by Bland-Altman plot analysis. Regarding endothelial function, NAC PET showed poor reproducibility and poor agreement with AC PET data. Conversely, NAC PET demonstrated high reproducibility and a strong agreement with AC PET for the assessment of MFR. Non-attenuation-corrected 15 O-water PET provided an accurate measurement of MFR compared to attenuation-corrected PET. However, non-attenuation-corrected PET data were less effective for the assessment of endothelial function using CPT in this population. (orig.)

  17. Control algorithms for dynamic attenuators

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Scott S., E-mail: sshsieh@stanford.edu [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Pelc, Norbert J. [Department of Radiology, Stanford University, Stanford California 94305 and Department of Bioengineering, Stanford University, Stanford, California 94305 (United States)

    2014-06-15

    Purpose: The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator. Methods: The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not requirea priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen. Results: The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current

  18. Control algorithms for dynamic attenuators

    International Nuclear Information System (INIS)

    Hsieh, Scott S.; Pelc, Norbert J.

    2014-01-01

    Purpose: The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator. Methods: The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not requirea priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen. Results: The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current

  19. Control algorithms for dynamic attenuators.

    Science.gov (United States)

    Hsieh, Scott S; Pelc, Norbert J

    2014-06-01

    The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator. The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not require a priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen. The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current modulation) without

  20. Food restriction attenuates oxidative stress in brown adipose tissue of striped hamsters acclimated to a warm temperature.

    Science.gov (United States)

    Zhang, Ji-Ying; Zhao, Xiao-Ya; Wang, Gui-Ying; Wang, Chun-Ming; Zhao, Zhi-Jun

    2016-05-01

    It has been suggested that the up-regulation of uncoupling proteins (UCPs) decreases reactive oxygen species (ROS) production, in which case there should be a negative relationship between UCPs expression and ROS levels. In this study, the effects of temperature and food restriction on ROS levels and metabolic rate, UCP1 mRNA expression and antioxidant levels were examined in the brown adipose tissue (BAT) of the striped hamsters (Cricetulus barabensis). The metabolic rate and food intake of hamsters which had been restricted to 80% of ad libitum food intake, and acclimated to a warm temperature (30°C), decreased significantly compared to a control group. Hydrogen peroxide (H2O2) levels were 42.9% lower in food restricted hamsters than in the control. Malonadialdehyde (MDA) levels of hamsters acclimated to 30°C that were fed ad libitum were significantly higher than those of the control group, but 60.1% lower than hamsters that had been acclimated to the same temperature but subject to food restriction. There were significantly positive correlations between H2O2 and, MDA levels, catalase activity, and total antioxidant capacity. Cytochrome c oxidase activity and UCP1 mRNA expression significantly decreased in food restricted hamsters compared to the control. These results suggest that warmer temperatures increase oxidative stress in BAT by causing the down-regulation of UCP1 expression and decreased antioxidant activity, but food restriction may attenuate the effects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. A new mixture for tissue compensator: recipe and dosimetry

    International Nuclear Information System (INIS)

    Zhu, L.; Perkins, A.; Millar, R.M.

    2000-01-01

    Full text: Target coverage and dose distribution can be improved by using a tissue compensator. A new mixture of steel shot and wax for tissue compensator was investigated for use at the William Buckland Radiotherapy Centre. The new compensator material is composed of 20 parts of steel shot and 1 part of white wax and is reusable. The attenuation coefficient for this new mixture was measured. The compensator used for dosimetry study was designed using the PLATO RTS1.8 planning system (Nucletron International BV, The Netherlands). An exported file for the compensator can be read by the OSCITOME (Kuiper Medical Instruments, The Netherlands) which creates the compensator mould. Measured profiles in water were compared with those calculated from the planning system. Measurements were carried using 6MV and 18MV photon beams on Varian linacs. Experimental results indicated that the attenuation coefficients are field size and depth dependent. The averages over field size and depth are 0.020±0.001mm -1 and 0.015±0.001mm -1 for 6MV and 18 MV respectively. A tissue compensator with many steps allowing different beam attenuation was designed and made to compare experimental profiles with those calculated by the planning system for 6MV. It was found that the difference between measured and calculated doses are less than 0.5% at the central axis and the differences are slightly larger at sites 5cm off-central axis. A penumbra difference was about 2mm. For the reproducibility of the manufacturing process, it was found that the variation in the transmission factor for a tissue compensator produced by five physicists using this new mixture is less than 2%. Copyright (2000) Australasian College of Physical Scientists and Engineers in Medicine

  2. Relative Tissue Factor Deficiency Attenuates Ventilator-Induced Coagulopathy but Does Not Protect against Ventilator-Induced Lung Injury in Mice

    Directory of Open Access Journals (Sweden)

    Esther K. Wolthuis

    2012-01-01

    Full Text Available Preventing tissue-factor-(TF- mediated systemic coagulopathy improves outcome in models of sepsis. Preventing TF-mediated pulmonary coagulopathy could attenuate ventilator-induced lung injury (VILI. We investigated the effect of relative TF deficiency on pulmonary coagulopathy and inflammation in a murine model of VILI. Heterozygous TF knockout (TF+/− mice and their wild-type (TF+/+ littermates were sedated (controls or sedated, tracheotomized, and mechanically ventilated with either low or high tidal volumes for 5 hours. Mechanical ventilation resulted in pulmonary coagulopathy and inflammation, with more injury after mechanical ventilation with higher tidal volumes. Compared with TF+/+ mice, TF+/− mice demonstrated significantly lower pulmonary thrombin-antithrombin complex levels in both ventilation groups. There were, however, no differences in lung wet-to-dry ratio, BALF total protein levels, neutrophil influx, and lung histopathology scores between TF+/− and TF+/+ mice. Notably, pulmonary levels of cytokines were significantly higher in TF+/− as compared to TF+/+ mice. Systemic levels of cytokines were not altered by the relative absence of TF. TF deficiency is associated with decreased pulmonary coagulation independent of the ventilation strategy. However, relative TF deficiency does not reduce VILI and actually results in higher pulmonary levels of inflammatory mediators.

  3. The miR9863 family regulates distinct Mla alleles in barley to attenuate NLR receptor-triggered disease resistance and cell-death signaling.

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2014-12-01

    Full Text Available Barley (Hordeum vulgare L. Mla alleles encode coiled-coil (CC, nucleotide binding, leucine-rich repeat (NB-LRR receptors that trigger isolate-specific immune responses against the powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh. How Mla or NB-LRR genes in grass species are regulated at post-transcriptional level is not clear. The microRNA family, miR9863, comprises four members that differentially regulate distinct Mla alleles in barley. We show that miR9863 members guide the cleavage of Mla1 transcripts in barley, and block or reduce the accumulation of MLA1 protein in the heterologous Nicotiana benthamiana expression system. Regulation specificity is determined by variation in a unique single-nucleotide-polymorphism (SNP in mature miR9863 family members and two SNPs in the Mla miR9863-binding site that separates these alleles into three groups. Further, we demonstrate that 22-nt miR9863s trigger the biogenesis of 21-nt phased siRNAs (phasiRNAs and together these sRNAs form a feed-forward regulation network for repressing the expression of group I Mla alleles. Overexpression of miR9863 members specifically attenuates MLA1, but not MLA10-triggered disease resistance and cell-death signaling. We propose a key role of the miR9863 family in dampening immune response signaling triggered by a group of MLA immune receptors in barley.

  4. Case-crossover analysis of heat-coded deaths and vulnerable subpopulations: Oklahoma, 1990-2011

    Science.gov (United States)

    Moore, Brianna F.; Brooke Anderson, G.; Johnson, Matthew G.; Brown, Sheryll; Bradley, Kristy K.; Magzamen, Sheryl

    2017-11-01

    The extent of the association between temperature and heat-coded deaths, for which heat is the primary cause of death, remains largely unknown. We explored the association between temperature and heat-coded deaths and potential interactions with various demographic and environmental factors. A total of 335 heat-coded deaths that occurred in Oklahoma from 1990 through 2011 were identified using heat-related International Classification of Diseases codes, cause-of-death nomenclature, and narrative descriptions. Conditional logistic regression models examined the association between temperature and heat index on heat-coded deaths. Interaction by demographic factors (age, sex, marital status, living alone, outdoor/heavy labor occupations) and environmental factors (ozone, PM10, PM2.5) was also explored. Temperatures ≥99 °F (the median value) were associated with approximately five times higher odds of a heat-coded death as compared to temperatures effect estimates were attenuated when exposure to heat was characterized by heat index. The interaction results suggest that effect of temperature on heat-coded deaths may depend on sex and occupation. For example, the odds of a heat-coded death among outdoor/heavy labor workers exposed to temperatures ≥99 °F was greater than expected based on the sum of the individual effects (observed OR = 14.0, 95% CI 2.7, 72.0; expected OR = 4.1 [2.8 + 2.3-1.0]). Our results highlight the extent of the association between temperature and heat-coded deaths and emphasize the need for a comprehensive, multisource definition of heat-coded deaths. Furthermore, based on the interaction results, we recommend that states implement or expand heat safety programs to protect vulnerable subpopulations, such as outdoor workers.

  5. Photon attenuation by intensifying screens

    International Nuclear Information System (INIS)

    Holje, G.

    1983-01-01

    The photon attenuation by intensifying screens of different chemical composition has been determined. The attenuation of photons between 20 keV and 120 keV was measured by use of a multi-channel analyzer and a broad bremsstrahlung distribution. The attenuation by the intensifying screens was hereby determined simultaneously at many different monoenergetic photon energies. Experimentally determined attenuations were found to agree well with attenuation calculated from mass attenuation coefficients. The attenuation by the screens was also determined at various bremsstrahlung distributions, simulating those occurring behind the patient in various diagnostic X-ray examinations. The high attenuation in some of the intensifying screens form the basis for an analysis of the construction of asymmetric screen pairs. Single screen systems are suggested as a favourable alternative to thick screen pair systems. (Author)

  6. Shielding data for hadron-therapy ion accelerators: Attenuation of secondary radiation in concrete

    CERN Document Server

    Agosteo, S; Sagia, E; Silari, M

    2014-01-01

    The secondary radiation field produced by seven different ion species (from hydrogen to nitrogen), impinging onto thick targets made of either iron or ICRU tissue, was simulated with the FLUKA Monte Carlo code, and transported through thick concrete shields: the ambient dose equivalent was estimated and shielding parameters evaluated. The energy for each ion beam was set in order to reach a maximum penetration in ICRU tissue of 290 mm (equivalent to the therapeutic range of 430 MeV/amu carbon ions). Source terms and attenuation lengths are given as a function of emission angle and ion species, along with fits to the Monte Carlo data, for shallow depth and deep penetration in the shield. Trends of source terms and attenuation lengths as a function of neutron emission angle and ion species impinging on tar- get are discussed. A comparison of double differential distributions of neutrons with results from similar simulation works reported in the literature is also included. The aim of this work is to provide shi...

  7. Tracer attenuation in groundwater

    Science.gov (United States)

    Cvetkovic, Vladimir

    2011-12-01

    The self-purifying capacity of aquifers strongly depends on the attenuation of waterborne contaminants, i.e., irreversible loss of contaminant mass on a given scale as a result of coupled transport and transformation processes. A general formulation of tracer attenuation in groundwater is presented. Basic sensitivities of attenuation to macrodispersion and retention are illustrated for a few typical retention mechanisms. Tracer recovery is suggested as an experimental proxy for attenuation. Unique experimental data of tracer recovery in crystalline rock compare favorably with the theoretical model that is based on diffusion-controlled retention. Non-Fickian hydrodynamic transport has potentially a large impact on field-scale attenuation of dissolved contaminants.

  8. [Sudden Cardiac Death of Young Persons: Risk Factors, Causes, Morphological Equivalents].

    Science.gov (United States)

    Shilova, M A; Mamedov, M N

    2015-01-01

    The article contains literature review on the problem of causes of sudden cardiac death (SCD) among young people as well as results of author's own retrospective study of deaths of persons before 39 years based on forensic autopsies performed during 10 year period. The study of structure and dynamics of causes of death, its risk factors and the role of connective tissue dysplasia in development of terminal symptomocomlexes allowed to establish that main mechanism of SCD in young people was arrhythmogenic developing as a response to provoking factors--physical effort, psychoemotional stress, consumption of light alcoholic beverages.

  9. Evaluation of Sinus/Edge-Corrected Zero-Echo-Time-Based Attenuation Correction in Brain PET/MRI.

    Science.gov (United States)

    Yang, Jaewon; Wiesinger, Florian; Kaushik, Sandeep; Shanbhag, Dattesh; Hope, Thomas A; Larson, Peder E Z; Seo, Youngho

    2017-11-01

    In brain PET/MRI, the major challenge of zero-echo-time (ZTE)-based attenuation correction (ZTAC) is the misclassification of air/tissue/bone mixtures or their boundaries. Our study aimed to evaluate a sinus/edge-corrected (SEC) ZTAC (ZTAC SEC ), relative to an uncorrected (UC) ZTAC (ZTAC UC ) and a CT atlas-based attenuation correction (ATAC). Methods: Whole-body 18 F-FDG PET/MRI scans were obtained for 12 patients after PET/CT scans. Only data acquired at a bed station that included the head were used for this study. Using PET data from PET/MRI, we applied ZTAC UC , ZTAC SEC , ATAC, and reference CT-based attenuation correction (CTAC) to PET attenuation correction. For ZTAC UC , the bias-corrected and normalized ZTE was converted to pseudo-CT with air (-1,000 HU for ZTE 0.75), and bone (-2,000 × [ZTE - 1] + 42 HU for 0.2 ≤ ZTE ≤ 0.75). Afterward, in the pseudo-CT, sinus/edges were automatically estimated as a binary mask through morphologic processing and edge detection. In the binary mask, the overestimated values were rescaled below 42 HU for ZTAC SEC For ATAC, the atlas deformed to MR in-phase was segmented to air, inner air, soft tissue, and continuous bone. For the quantitative evaluation, PET mean uptake values were measured in twenty 1-mL volumes of interest distributed throughout brain tissues. The PET uptake was compared using a paired t test. An error histogram was used to show the distribution of voxel-based PET uptake differences. Results: Compared with CTAC, ZTAC SEC achieved the overall PET quantification accuracy (0.2% ± 2.4%, P = 0.23) similar to CTAC, in comparison with ZTAC UC (5.6% ± 3.5%, P PET quantification in brain PET/MRI, comparable to the accuracy achieved by CTAC, particularly in the cerebellum. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  10. Computed tomography (CT) of cervical lymph nodes in patients with oral cancer. Comparison of low-attenuation areas in lymph nodes on CT images with pathological findings

    International Nuclear Information System (INIS)

    Fukunari, Fumiko; Okamura, Kazuhiko; Yuasa, Kenji; Kagawa, Toyohiro; Zeze, Ryousuke

    2008-01-01

    The objective of this study was to clarify the histopathological features of low-attenuation areas in computed tomography (CT) images of cervical metastatic and benign lymph nodes in patients with oral squamous cell carcinoma (SCC). CT images of 230 lymph nodes from 37 patients with oral SCC were classified into four categories and compared with histopathological findings. Metastatic lymph nodes were evaluated in terms of focal necrosis, keratinization, fibrous tissue, and the proportion of the lymph node showing focal necrosis. Benign lymph nodes were evaluated in terms of adipose tissue, follicular hyperplasia, sinus histiocytosis, hyperemia, focal hemorrhaging, and the amount of adipose tissue. Histopathologically, all 13 metastatic lymph nodes with rim enhancement on CT images included focal necrosis. However, most of the lymph nodes showed no focal necrosis. In addition, tumor cells, keratinization, and fibrous tissue were observed in the lymph nodes. Of the 26 metastatic lymph nodes with a heterogeneous appearance on CT images, four did not show focal necrosis. These lymph nodes showed keratinization or accumulation of lymph fluid. Histopathologically, 20 of 24 benign lymph nodes with a heterogeneous appearance on CT images (83.3%) had accompanying adipose tissue. Focal necrosis was the most important factor contributing to low attenuation in metastatic lymph nodes. However, other factors, such as tumor cells, keratinization, fibrous tissue, and accumulation of lymph fluid, also contributed. In benign lymph nodes, the presence of adipose tissue was a contributing factor in low-attenuation areas, as was focal hemorrhaging. (author)

  11. Peritoneal fluid causing inferior attenuation on SPECT thallium-201 myocardial imaging in women

    International Nuclear Information System (INIS)

    Rab, S.T.; Alazraki, N.P.; Guertler-Krawczynska, E.

    1988-01-01

    On SPECT thallium images, myocardial left ventricular (LV) anterior wall attenuation due to breast tissue is common in women. In contrast, in men, inferior wall counts are normally decreased compared to anterior counts. The purpose of this report is to describe cases of inferior wall attenuation of counts in women caused by peritoneal fluid, not myocardial disease. Twelve consecutive SPECT thallium myocardial studies performed in women on peritoneal dialysis, being evaluated for kidney transplant, were included in this study. For all studies, 3.5 mCi 201Tl were injected intravenously. Thirty-two images were acquired over 180 degrees (45 degrees RAO progressing to 45 degrees LPO) at 40 sec per stop. SPECT images were reviewed in short axis, horizontal long and vertical long axes. Data were also displayed in bullseye format with quantitative comparison to gender-matched normal files. Ten of 12 female patients studied had inferior wall defects on images, confirmed by bullseye display. All patients had approximately 2 liters of peritoneal fluid. Review of planar rotational views showed diaphragm elevation and fluid margin attenuations affecting left ventricular inferior wall. Thus, peritoneal fluid is a cause of inferior attenuation on 201Tl cardiac imaging

  12. Attenuation of monkeypox virus by deletion of genomic regions

    Science.gov (United States)

    Lopera, Juan G.; Falendysz, Elizabeth A.; Rocke, Tonie E.; Osorio, Jorge E.

    2015-01-01

    Monkeypox virus (MPXV) is an emerging pathogen from Africa that causes disease similar to smallpox. Two clades with different geographic distributions and virulence have been described. Here, we utilized bioinformatic tools to identify genomic regions in MPXV containing multiple virulence genes and explored their roles in pathogenicity; two selected regions were then deleted singularly or in combination. In vitro and in vivostudies indicated that these regions play a significant role in MPXV replication, tissue spread, and mortality in mice. Interestingly, while deletion of either region led to decreased virulence in mice, one region had no effect on in vitro replication. Deletion of both regions simultaneously also reduced cell culture replication and significantly increased the attenuation in vivo over either single deletion. Attenuated MPXV with genomic deletions present a safe and efficacious tool in the study of MPX pathogenesis and in the identification of genetic factors associated with virulence.

  13. Cell Death and Heart Failure in Obesity: Role of Uncoupling Proteins

    Directory of Open Access Journals (Sweden)

    Angélica Ruiz-Ramírez

    2016-01-01

    Full Text Available Metabolic diseases such as obesity, metabolic syndrome, and type II diabetes are often characterized by increased reactive oxygen species (ROS generation in mitochondrial respiratory complexes, associated with fat accumulation in cardiomyocytes, skeletal muscle, and hepatocytes. Several rodents studies showed that lipid accumulation in cardiac myocytes produces lipotoxicity that causes apoptosis and leads to heart failure, a dynamic pathological process. Meanwhile, several tissues including cardiac tissue develop an adaptive mechanism against oxidative stress and lipotoxicity by overexpressing uncoupling proteins (UCPs, specific mitochondrial membrane proteins. In heart from rodent and human with obesity, UCP2 and UCP3 may protect cardiomyocytes from death and from a state progressing to heart failure by downregulating programmed cell death. UCP activation may affect cytochrome c and proapoptotic protein release from mitochondria by reducing ROS generation and apoptotic cell death. Therefore the aim of this review is to discuss recent findings regarding the role that UCPs play in cardiomyocyte survival by protecting against ROS generation and maintaining bioenergetic metabolism homeostasis to promote heart protection.

  14. Cdk1, PKCδ and calcineurin-mediated Drp1 pathway contributes to mitochondrial fission-induced cardiomyocyte death

    International Nuclear Information System (INIS)

    Zaja, Ivan; Bai, Xiaowen; Liu, Yanan; Kikuchi, Chika; Dosenovic, Svjetlana; Yan, Yasheng; Canfield, Scott G.; Bosnjak, Zeljko J.

    2014-01-01

    Highlights: • Drp1-mediated increased mitochondrial fission but not fusion is involved the cardiomyocyte death during anoxia-reoxygenation injury. • Reactive oxygen species are upstream initiators of mitochondrial fission. • Increased mitochondrial fission is resulted from Cdk1-, PKCδ-, and calcineurin-mediated Drp1 pathways. - Abstract: Myocardial ischemia–reperfusion (I/R) injury is one of the leading causes of death and disability worldwide. Mitochondrial fission has been shown to be involved in cardiomyocyte death. However, molecular machinery involved in mitochondrial fission during I/R injury has not yet been completely understood. In this study we aimed to investigate molecular mechanisms of controlling activation of dynamin-related protein 1 (Drp1, a key protein in mitochondrial fission) during anoxia-reoxygenation (A/R) injury of HL1 cardiomyocytes. A/R injury induced cardiomyocyte death accompanied by the increases of mitochondrial fission, reactive oxygen species (ROS) production and activated Drp1 (pSer616 Drp1), and decrease of inactivated Drp1 (pSer637 Drp1) while mitochondrial fusion protein levels were not significantly changed. Blocking Drp1 activity with mitochondrial division inhibitor mdivi1 attenuated cell death, mitochondrial fission, and Drp1 activation after A/R. Trolox, a ROS scavenger, decreased pSer616 Drp1 level and mitochondrial fission after A/R. Immunoprecipitation assay further indicates that cyclin dependent kinase 1 (Cdk1) and protein kinase C isoform delta (PKCδ) bind Drp1, thus increasing mitochondrial fission. Inhibiting Cdk1 and PKCδ attenuated the increases in pSer616 Drp1, mitochondrial fission, and cardiomyocyte death. FK506, a calcineurin inhibitor, blocked the decrease in expression of inactivated pSer637 Drp1 and mitochondrial fission. Our findings reveal the following novel molecular mechanisms controlling mitochondrial fission during A/R injury of cardiomyocytes: (1) ROS are upstream initiators of

  15. Cdk1, PKCδ and calcineurin-mediated Drp1 pathway contributes to mitochondrial fission-induced cardiomyocyte death

    Energy Technology Data Exchange (ETDEWEB)

    Zaja, Ivan [Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226 (United States); Bai, Xiaowen, E-mail: xibai@mcw.edu [Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226 (United States); Liu, Yanan; Kikuchi, Chika; Dosenovic, Svjetlana; Yan, Yasheng; Canfield, Scott G. [Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226 (United States); Bosnjak, Zeljko J. [Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226 (United States); Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226 (United States)

    2014-10-31

    Highlights: • Drp1-mediated increased mitochondrial fission but not fusion is involved the cardiomyocyte death during anoxia-reoxygenation injury. • Reactive oxygen species are upstream initiators of mitochondrial fission. • Increased mitochondrial fission is resulted from Cdk1-, PKCδ-, and calcineurin-mediated Drp1 pathways. - Abstract: Myocardial ischemia–reperfusion (I/R) injury is one of the leading causes of death and disability worldwide. Mitochondrial fission has been shown to be involved in cardiomyocyte death. However, molecular machinery involved in mitochondrial fission during I/R injury has not yet been completely understood. In this study we aimed to investigate molecular mechanisms of controlling activation of dynamin-related protein 1 (Drp1, a key protein in mitochondrial fission) during anoxia-reoxygenation (A/R) injury of HL1 cardiomyocytes. A/R injury induced cardiomyocyte death accompanied by the increases of mitochondrial fission, reactive oxygen species (ROS) production and activated Drp1 (pSer616 Drp1), and decrease of inactivated Drp1 (pSer637 Drp1) while mitochondrial fusion protein levels were not significantly changed. Blocking Drp1 activity with mitochondrial division inhibitor mdivi1 attenuated cell death, mitochondrial fission, and Drp1 activation after A/R. Trolox, a ROS scavenger, decreased pSer616 Drp1 level and mitochondrial fission after A/R. Immunoprecipitation assay further indicates that cyclin dependent kinase 1 (Cdk1) and protein kinase C isoform delta (PKCδ) bind Drp1, thus increasing mitochondrial fission. Inhibiting Cdk1 and PKCδ attenuated the increases in pSer616 Drp1, mitochondrial fission, and cardiomyocyte death. FK506, a calcineurin inhibitor, blocked the decrease in expression of inactivated pSer637 Drp1 and mitochondrial fission. Our findings reveal the following novel molecular mechanisms controlling mitochondrial fission during A/R injury of cardiomyocytes: (1) ROS are upstream initiators of

  16. Direct Reconstruction of CT-based Attenuation Correction Images for PET with Cluster-Based Penalties

    Science.gov (United States)

    Kim, Soo Mee; Alessio, Adam M.; De Man, Bruno; Asma, Evren; Kinahan, Paul E.

    2015-01-01

    Extremely low-dose CT acquisitions for the purpose of PET attenuation correction will have a high level of noise and biasing artifacts due to factors such as photon starvation. This work explores a priori knowledge appropriate for CT iterative image reconstruction for PET attenuation correction. We investigate the maximum a posteriori (MAP) framework with cluster-based, multinomial priors for the direct reconstruction of the PET attenuation map. The objective function for direct iterative attenuation map reconstruction was modeled as a Poisson log-likelihood with prior terms consisting of quadratic (Q) and mixture (M) distributions. The attenuation map is assumed to have values in 4 clusters: air+background, lung, soft tissue, and bone. Under this assumption, the MP was a mixture probability density function consisting of one exponential and three Gaussian distributions. The relative proportion of each cluster was jointly estimated during each voxel update of direct iterative coordinate decent (dICD) method. Noise-free data were generated from NCAT phantom and Poisson noise was added. Reconstruction with FBP (ramp filter) was performed on the noise-free (ground truth) and noisy data. For the noisy data, dICD reconstruction was performed with the combination of different prior strength parameters (β and γ) of Q- and M-penalties. The combined quadratic and mixture penalties reduces the RMSE by 18.7% compared to post-smoothed iterative reconstruction and only 0.7% compared to quadratic alone. For direct PET attenuation map reconstruction from ultra-low dose CT acquisitions, the combination of quadratic and mixture priors offers regularization of both variance and bias and is a potential method to derive attenuation maps with negligible patient dose. However, the small improvement in quantitative accuracy relative to the substantial increase in algorithm complexity does not currently justify the use of mixture-based PET attenuation priors for reconstruction of CT

  17. Mechanism of attenuation of a chimeric influenza A/B transfectant virus.

    Science.gov (United States)

    Luo, G; Bergmann, M; Garcia-Sastre, A; Palese, P

    1992-08-01

    The ribonucleoprotein transfection system for influenza virus allowed us to construct an influenza A virus containing a chimeric neuraminidase (NA) gene in which the noncoding sequence is derived from the NS gene of influenza B virus (T. Muster, E. K. Subbarao, M. Enami, B. P. Murphy, and P. Palese, Proc. Natl. Acad. Sci. USA 88:5177-5181, 1991). This transfectant virus is attenuated in mice and grows to lower titers in tissue culture than wild-type virus. Since such a virus has characteristics desirable for a live attenuated vaccine strain, attempts were made to characterize this virus at the molecular level. Our analysis suggests that the attenuation of the virus is due to changes in the cis signal sequences, which resulted in a reduction of transcription and replication of the chimeric NA gene. The major finding concerns a sixfold reduction in NA-specific viral RNA in the virion, causing a reduction in the ratio of infectious particles to physical particles compared with the ratio in wild-type virus. Although the NA-specific mRNA level is also reduced in transfectant virus-infected cells, it does not appear to contribute to the attenuation characteristics of the virus. The levels of the other RNAs and their expression appear to be unchanged for the transfectant virus. It is suggested that downregulation of the synthesis of one viral RNA segment leads to the generation of defective viruses during each replication cycle. We believe that this represents a general principle for attenuation which may be applied to other segmented viruses containing either single-stranded or double-stranded RNA.

  18. Distinct mortality profile in systemic sclerosis: a death certificate study in Rio de Janeiro, Brazil (2006-2015) using a multiple causes of death analysis.

    Science.gov (United States)

    de Rezende, Rodrigo Poubel Vieira; Gismondi, Ronaldo Altenburg; Maleh, Haim Cesar; de Miranda Coelho, Elisa Mendes; Vieira, Carol Sartori; Rosa, Maria Luiza Garcia; Mocarzel, Luis Otavio

    2017-12-16

    The objective of this study was to assess the mortality profile related to SSc in the state of Rio de Janeiro, Brazil. We retrospectively examined all registered deaths in the region (2006-2015 period) in which the diagnosis of SSc was mentioned on any line of the death certificates (underlying cause of death [UCD], n = 223; non-UCD, n = 151). Besides the analysis of gender, age, and the causes of death, we also compared the mortality from UCDs between individuals whose death causes included SSc (cases) and those whose death causes did not include SSc (deceased controls). For the latter comparison, we used the mortality odds ratio to approximate the cause-specific standardized mortality ratio. We identified 1495 death causes among the 374 SSc cases. The mean age at death of the SSc cases (85% women) was significantly lower than that of the controls (n = 1,294,117) (58.7 vs. 65.5 years, respectively). The main death causes were circulatory system diseases, infections, and respiratory diseases (36%, 34%, and 21% of SSc cases, respectively). Compared to the deceased controls, there were proportionally more deaths among the SSc cases from pulmonary arterial hypertension, lung fibrosis, septicemia, gastrointestinal hemorrhage, other systemic connective tissue diseases, and heart failure (for death age causes in this predominantly non-Caucasian sample of SSc patients. Of interest, the percentage of infection-related deaths in our report was about three times higher than that in SSc studies with predominantly Caucasian populations.

  19. The establishment of animal model of radiation-skin-burn and its changes of tissue metabolism

    International Nuclear Information System (INIS)

    Lu Xingan; Wu Shiliang; Wang Xiuzhen; Zhou Yinghui; Feng Yizhong; Tian Ye; Peng Miao

    2001-01-01

    The biochemistry metabolic changes of the tissues induced by 60 Co γ radiation or by accelerator β radiation on the animal local tissues were observed. The experiment results were shown as follows: (1) 60 Co γ radiation can induce the metabolic changes of the local tissue and led to ulcer or death. (2) Accelerator β radiation at the same dose of γ radiation can only produce ulcer but no death. (3) The biochemistry metabolic changes of the tissues induced by 60 Co γ radiation are similar to that by β radiation, but as a radiation-burn animal model, the latter is better

  20. Effect of Graphite Concentration on Shear-Wave Speed in Gelatin-Based Tissue-Mimicking Phantoms

    Science.gov (United States)

    Anderson, Pamela G.; Rouze, Ned C.; Palmeri, Mark L.

    2011-01-01

    Elasticity-based imaging modalities are becoming popular diagnostic tools in clinical practice. Gelatin-based, tissue mimicking phantoms that contain graphite as the acoustic scattering material are commonly used in testing and validating elasticity-imaging methods to quantify tissue stiffness. The gelatin bloom strength and concentration are used to control phantom stiffness. While it is known that graphite concentration can be modulated to control acoustic attenuation, the impact of graphite concentrationon phantom elasticity has not been characterized in these gelatin phantoms. This work investigates the impact of graphite concentration on phantom shear stiffness as characterized by shear-wave speed measurements using impulsive acoustic-radiation-force excitations. Phantom shear-wave speed increased by 0.83 (m/s)/(dB/(cm MHz)) when increasing the attenuation coefficient slope of the phantom material through increasing graphite concentration. Therefore, gelatin-phantom stiffness can be affected by the conventional ways that attenuation is modulated through graphite concentration in these phantoms. PMID:21710828

  1. Comparison of Positron Emission Tomography Quantification Using Magnetic Resonance- and Computed Tomography-Based Attenuation Correction in Physiological Tissues and Lesions: A Whole-Body Positron Emission Tomography/Magnetic Resonance Study in 66 Patients.

    Science.gov (United States)

    Seith, Ferdinand; Gatidis, Sergios; Schmidt, Holger; Bezrukov, Ilja; la Fougère, Christian; Nikolaou, Konstantin; Pfannenberg, Christina; Schwenzer, Nina

    2016-01-01

    Attenuation correction (AC) in fully integrated positron emission tomography (PET)/magnetic resonance (MR) systems plays a key role for the quantification of tracer uptake. The aim of this prospective study was to assess the accuracy of standardized uptake value (SUV) quantification using MR-based AC in direct comparison with computed tomography (CT)-based AC of the same PET data set on a large patient population. Sixty-six patients (22 female; mean [SD], 61 [11] years) were examined by means of combined PET/CT and PET/MR (11C-choline, 18F-FDG, or 68Ga-DOTATATE) subsequently. Positron emission tomography images from PET/MR examinations were corrected with MR-derived AC based on tissue segmentation (PET(MR)). The same PET data were corrected using CT-based attenuation maps (μ-maps) derived from PET/CT after nonrigid registration of the CT to the MR-based μ-map (PET(MRCT)). Positron emission tomography SUVs were quantified placing regions of interest or volumes of interest in 6 different body regions as well as PET-avid lesions, respectively. The relative differences of quantitative PET values when using MR-based AC versus CT-based AC were varying depending on the organs and body regions assessed. In detail, the mean (SD) relative differences of PET SUVs were as follows: -7.8% (11.5%), blood pool; -3.6% (5.8%), spleen; -4.4% (5.6%)/-4.1% (6.2%), liver; -0.6% (5.0%), muscle; -1.3% (6.3%), fat; -40.0% (18.7%), bone; 1.6% (4.4%), liver lesions; -6.2% (6.8%), bone lesions; and -1.9% (6.2%), soft tissue lesions. In 10 liver lesions, distinct overestimations greater than 5% were found (up to 10%). In addition, overestimations were found in 2 bone lesions and 1 soft tissue lesion adjacent to the lung (up to 28.0%). Results obtained using different PET tracers show that MR-based AC is accurate in most tissue types, with SUV deviations generally of less than 10%. In bone, however, underestimations can be pronounced, potentially leading to inaccurate SUV quantifications. In

  2. Dimethylsulfoniopropionate in six species of giant clams and the evolution of dimethylsulfide after death

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.W.; Hill, S.D. [Michigan State Univ., East Lansing, MI (United States). Dept. of Zoology; Dacey, J.W.H. [Woods Hole Oceanographic Inst., Woods Hole, MA (United States). Dept. of Biology; Edward, A. [Micronesia College, Pohnpei (Micronesia, Federated States); Hicks, W.A. [Michigan State Univ., East Lansing, MI (United States). Dept. of Bioichemistry and Molecular Biology

    2004-05-01

    Dimethylsulfoniopropionate (DMSP) could accumulate in large concentrations in animals living symbiotically with algae. The giant clam family Tridacnidae accumulates DMSP because they have a symbiotic relationship with dinoflagellates (or zooxanthellae). In this study, well preserved clam tissues from the western Pacific Islands were analyzed to provide definitive evidence of DMSP in the tissues. Six of the common species in the Tridacnidae family were examined. The objective was to test the hypothesis that dimethyl sulfide (DMS) is released from clam tissues soon after death due to the breakdown of DMSP tissue. In particular, it determined if DMS is responsible for the problem of potent odours and off-taste that have hindered the commercial success of giant clams mariculture. Gas chromatography and mass spectrometry was used in this study to measure DMSP concentrations in siphonal mantle, byssal mantle, adductor muscle and gill tissues. The formation of DMS by tissues after death was documented. It was suggested that since giant clams associate with dinoflagellates, they could accumulate DMSP to high concentrations which could affect multiple properties and functions. It was concluded that the perishability of giant clam tissues is most likely due to the high concentrations of DMS produced one day post mortem. 15 refs., 2 tabs., 4 figs.

  3. Oral Administration of p-Hydroxycinnamic Acid Attenuates Atopic Dermatitis by Downregulating Th1 and Th2 Cytokine Production and Keratinocyte Activation.

    Directory of Open Access Journals (Sweden)

    Hyun-Su Lee

    Full Text Available Atopic dermatitis (AD is a complex disease that is caused by various factors, including environmental change, genetic defects, and immune imbalance. We previously showed that p-hydroxycinnamic acid (HCA isolated from the roots of Curcuma longa inhibits T-cell activation without inducing cell death. Here, we demonstrated that oral administration of HCA in a mouse model of ear AD attenuates the following local and systemic AD manifestations: ear thickening, immune-cell infiltration, production of AD-promoting immunoregulatory cytokines in ear tissues, increased spleen and draining lymph node size and weight, increased pro-inflammatory cytokine production by draining lymph nodes, and elevated serum immunoglobulin production. HCA treatment of CD4+ T cells in vitro suppressed their proliferation and differentiation into Th1 or Th2 and their Th1 and Th2 cytokine production. HCA treatment of keratinocytes lowered their production of the pro-inflammatory cytokines that drive either Th1 or Th2 responses in AD. Thus, HCA may be of therapeutic potential for AD as it acts by suppressing keratinocyte activation and downregulating T-cell differentiation and cytokine production.

  4. Menadione triggers cell death through ROS-dependent mechanisms involving PARP activation without requiring apoptosis.

    Science.gov (United States)

    Loor, Gabriel; Kondapalli, Jyothisri; Schriewer, Jacqueline M; Chandel, Navdeep S; Vanden Hoek, Terry L; Schumacker, Paul T

    2010-12-15

    Low levels of reactive oxygen species (ROS) can function as redox-active signaling messengers, whereas high levels of ROS induce cellular damage. Menadione generates ROS through redox cycling, and high concentrations trigger cell death. Previous work suggests that menadione triggers cytochrome c release from mitochondria, whereas other studies implicate the activation of the mitochondrial permeability transition pore as the mediator of cell death. We investigated menadione-induced cell death in genetically modified cells lacking specific death-associated proteins. In cardiomyocytes, oxidant stress was assessed using the redox sensor RoGFP, expressed in the cytosol or the mitochondrial matrix. Menadione elicited rapid oxidation in both compartments, whereas it decreased mitochondrial potential and triggered cytochrome c redistribution to the cytosol. Cell death was attenuated by N-acetylcysteine and exogenous glutathione or by overexpression of cytosolic or mitochondria-targeted catalase. By contrast, no protection was observed in cells overexpressing Cu,Zn-SOD or Mn-SOD. Overexpression of antiapoptotic Bcl-X(L) protected against staurosporine-induced cell death, but it failed to confer protection against menadione. Genetic deletion of Bax and Bak, cytochrome c, cyclophilin D, or caspase-9 conferred no protection against menadione-induced cell death. However, cells lacking PARP-1 showed a significant decrease in menadione-induced cell death. Thus, menadione induces cell death through the generation of oxidant stress in multiple subcellular compartments, yet cytochrome c, Bax/Bak, caspase-9, and cyclophilin D are dispensable for cell death in this model. These studies suggest that multiple redundant cell death pathways are activated by menadione, but that PARP plays an essential role in mediating each of them. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. P2X7 receptor-mediated PARP1 activity regulates astroglial death in the rat hippocampus following status epilepticus

    Directory of Open Access Journals (Sweden)

    Ji Yang eKim

    2015-09-01

    Full Text Available Poly(ADP-ribose polymerase-1 (PARP1 plays a regulatory role in apoptosis, necrosis, and other cellular processes after injury. Recently, we revealed that PARP1 regulates the differential neuronal/astroglial responses to pilocarpine-induced status epilepticus (SE in the distinct brain regions. In addition, P2X7 receptor (P2X7R, an ATP-gated ion channel, activation accelerates astroglial apoptosis, while it attenuates clasmatodendrosis (lysosome-derived autophagic astroglial death. Therefore, we investigated whether P2X7R regulates regional specific astroglial PARP1 expression/activation in response to SE. In the present study, P2X7R activation exacerbates SE-induced astroglial apoptosis, while P2X7R inhibition attenuates it accompanied by increasing PARP1 activity in the molecular layer of the dentate gyrus following SE. In the CA1 region, however, P2X7R inhibition deteriorates SE-induced clasmatodendrosis via PARP1 activation following SE. Taken together, our findings suggest that P2X7R function may affect SE-induced astroglial death by regulating PARP1 activation/expression in regional-specific manner. Therefore, the selective modulation of P2X7R-mediated PARP1 functions may be a considerable strategy for controls in various types of cell deaths.

  6. Human amyloidogenic light chain proteins result in cardiac dysfunction, cell death, and early mortality in zebrafish.

    Science.gov (United States)

    Mishra, Shikha; Guan, Jian; Plovie, Eva; Seldin, David C; Connors, Lawreen H; Merlini, Giampaolo; Falk, Rodney H; MacRae, Calum A; Liao, Ronglih

    2013-07-01

    Systemic amyloid light-chain (AL) amyloidosis is associated with rapidly progressive and fatal cardiomyopathy resulting from the direct cardiotoxic effects of circulating AL light chain (AL-LC) proteins and the indirect effects of AL fibril tissue infiltration. Cardiac amyloidosis is resistant to standard heart failure therapies, and, to date, there are limited treatment options for these patients. The mechanisms underlying the development of cardiac amyloidosis and AL-LC cardiotoxicity are largely unknown, and their study has been limited by the lack of a suitable in vivo model system. Here, we establish an in vivo zebrafish model of human AL-LC-induced cardiotoxicity. AL-LC isolated from AL cardiomyopathy patients or control nonamyloidogenic LC protein isolated from multiple myeloma patients (Con-LC) was directly injected into the circulation of zebrafish at 48 h postfertilization. AL-LC injection resulted in impaired cardiac function, pericardial edema, and increased cell death relative to Con-LC, culminating in compromised survival with 100% mortality within 2 wk, independent of AL fibril deposition. Prior work has implicated noncanonical p38 MAPK activation in the pathogenesis of AL-LC-induced cardiotoxicity, and p38 MAPK inhibition via SB-203580 rescued AL-LC-induced cardiac dysfunction and cell death and attenuated mortality in zebrafish. This in vivo zebrafish model of AL-LC cardiotoxicity demonstrates that antagonism of p38 MAPK within the AL-LC cardiotoxic signaling response may serve to improve cardiac function and mortality in AL cardiomyopathy. Furthermore, this in vivo model system will allow for further study of the molecular underpinnings of AL cardiotoxicity and identification of novel therapeutic strategies.

  7. Mechanical Characterization of Tissue-Engineered Cartilage Using Microscopic Magnetic Resonance Elastography

    Science.gov (United States)

    Yin, Ziying; Schmid, Thomas M.; Yasar, Temel K.; Liu, Yifei; Royston, Thomas J.

    2014-01-01

    Knowledge of mechanical properties of tissue-engineered cartilage is essential for the optimization of cartilage tissue engineering strategies. Microscopic magnetic resonance elastography (μMRE) is a recently developed MR-based technique that can nondestructively visualize shear wave motion. From the observed wave pattern in MR phase images the tissue mechanical properties (e.g., shear modulus or stiffness) can be extracted. For quantification of the dynamic shear properties of small and stiff tissue-engineered cartilage, μMRE needs to be performed at frequencies in the kilohertz range. However, at frequencies greater than 1 kHz shear waves are rapidly attenuated in soft tissues. In this study μMRE, with geometric focusing, was used to overcome the rapid wave attenuation at high frequencies, enabling the measurement of the shear modulus of tissue-engineered cartilage. This methodology was first tested at a frequency of 5 kHz using a model system composed of alginate beads embedded in agarose, and then applied to evaluate extracellular matrix development in a chondrocyte pellet over a 3-week culture period. The shear stiffness in the pellet was found to increase over time (from 6.4 to 16.4 kPa), and the increase was correlated with both the proteoglycan content and the collagen content of the chondrocyte pellets (R2=0.776 and 0.724, respectively). Our study demonstrates that μMRE when performed with geometric focusing can be used to calculate and map the shear properties within tissue-engineered cartilage during its development. PMID:24266395

  8. Skeletal muscle proteins: a new approach to delimitate the time since death.

    Science.gov (United States)

    Foditsch, Elena Esra; Saenger, Alexandra Maria; Monticelli, Fabio Carlo

    2016-03-01

    Skeletal muscle tissue is proposed as a forensic model tissue with strong potential, as it is easily accessible and its true-to-life state structure and function is well known. Despite this strong potential, skeletal muscle degradation studies are rare. The aim of this study was to test if a skeletal muscle-based protein analysis is applicable to delimitate the time since death. Under standard conditions, two pigs were stored either at 22 °C for 5 days or 4 °C for 21 days. Their Mm. biceps femori were sampled periodically for analyses of ten skeletal muscle proteins postmortem. All analyzed proteins can serve as markers for a delimitation of the time since death. Desmin, nebulin, titin, and SERCA 1 displayed distinct protein patterns at certain points of time. The other five proteins, α-actinin, calsequestrin-1, laminin, troponin T-C, and SERCA 2, showed no degradation patterns within the analyzed postmortem time frame. Referring to specific skeletal muscle proteins, results showed short-term stabilities for just a minority of analyzed proteins, while the majority of investigated proteins displayed characteristics as long-term markers. Due to specific patterns and the possibility to determine definite constraints of the presence, absence, or pattern alterations of single proteins, the feasibility of porcine skeletal muscle as forensic model tissue is outlined and the potential of skeletal muscle as forensic model tissue is underlined, especially with respect to later postmortem phases, which so far lack feasible methods to delimitate the time since death.

  9. Focal attenuation of specific electroencephalographic power over the right parahippocampal region during transcerebral copper screening in living subjects and hemispheric asymmetric voltages in fixed brain tissue.

    Science.gov (United States)

    Rouleau, Nicolas; Lehman, Brendan; Persinger, Michael A

    2016-08-01

    Covering the heads of human volunteers with a toque lined with copper mesh compared to no mesh resulted in significant diminishments in quantitative electroencephalographic power within theta and beta-gamma bands over the right caudal hemisphere. The effect was most evident in women compared to men. The significant attenuation of power was verified by LORETA (low resolution electromagnetic tomography) within the parahippocampal region of the right hemisphere. Direct measurements of frequency-dependent voltages of coronal section preserved in ethanol-formalin-acetic acid from our human brain collection revealed consistently elevated power (0.2μV(2)Hz(-1)) in right hemispheric structures compared to left. The discrepancy was most pronounced in the grey (cortical) matter of the right parahippocampal region. Probing the superficial convexities of the cerebrum in an unsectioned human brain demonstrated rostrocaudal differences in hemispheric spectral power density asymmetries, particularly over caudal and parahippocampal regions, which were altered as a function of the chemical and spatial contexts imposed upon the tissue. These results indicate that the heterogeneous response of the human cerebrum to covering of the head by a thin conductor could reflect an intrinsic structure and unique electrical property of the (entorhinal) cortices of the right caudal hemisphere that persists in fixed tissue. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Attenuative effects of G-CSF in radiation induced intestinal injury

    International Nuclear Information System (INIS)

    Kim, Joong Sun; Gong, Eun Ji; Kim, Sung Dae; Heo, Kyu; Ryoo, Seung Bum; Yang, Kwang Mo

    2011-01-01

    Granulocyte colony stimulating factor (G-CSF) has been reported to protect from radiationinduced myelosuppression. Growing evidence suggests that G-CSF also has many important non-hematopoietic functions in other tissues, including the intestine (Kim et al., 2010; Kim et al., 2011). However, little is known about the influence of G-CSF on intestinal injury. Examination 12 hours after radiation (5 Gy) revealed that the G-CSF treated mice were significantly protected from apoptosis of jejunal crypt, compared with radiation controls. G-CSF treatment attenuated intestinal morphological changes such as decreased survival crypt, the number of villi, villous shortening, crypt depth and length of basal lamina of 10 enterocytes compared with the radiation control 3.5 days after radiation (10 Gy). G-CSF attenuated the change of peripheral blood from radiation-induced myelosuppression and displayed attenuation of mortality in lethally-irradiated (10 Gy) mice. The present results support the suggestion that G-CSF administrated prior to radiation plays an important role in the survival of irradiated mice, possibly due to the protection of hematopoietic cells and intestinal stem cells against radiation. The results indicate that G-CSF protects from radiation-mediated intestinal damage and from hematopoietic injury. G-CSF treatment may be useful clinically in the prevention of injury following radiation.

  11. Partial protection of baboons against Schistosoma mansoni using radiation-attenuated cryopreserved schistosomula

    International Nuclear Information System (INIS)

    James, E.R.; Dobinson, A.R.; Otieno, M.; Monorei, J.; Else, J.G.

    1986-01-01

    Three groups of five baboons were vaccinated in Kenya using three doses of 10,000 viable cryopreserved schistosomula attenuated with either 10, 20 or 60 krad 60 co-irradiation. The results from perfusion indicated reductions in worm burdens in the 10, 20 and 60 krad vaccinated groups of 18%, 23% and 20% respectively, none of which was statistically significant. No stunting of adult worms could be demonstrated in any of the groups. Mean tissue egg burdens were higher in all vaccinated groups and consequently egg production per worm pair was also higher than in the challenge controls. The logistics of preparing and delivering a cryopreserved radiation-attenuated vaccine were amply demonstrated; however, in this study the levels of protection achieved were not statistically significant; possible reasons for this are discussed. (author)

  12. Assessment of endothelial function and myocardial flow reserve using {sup 15}O-water PET without attenuation correction

    Energy Technology Data Exchange (ETDEWEB)

    Tuffier, Stephane; Joubert, Michael; Bailliez, Alban [EA 4650, Normandie Universite, Caen (France); Legallois, Damien [EA 4650, Normandie Universite, Caen (France); Caen University Hospital, Department of Cardiology, Caen (France); Belin, Annette [Caen University Hospital, Department of Cardiac Surgery, Caen (France); Redonnet, Michel [Rouen University Hospital, Department of Cardiac Surgery, Rouen (France); Agostini, Denis [EA 4650, Normandie Universite, Caen (France); Caen University Hospital, Department of Nuclear Medicine, Caen (France); Manrique, Alain [EA 4650, Normandie Universite, Caen (France); Caen University Hospital, Department of Nuclear Medicine, Caen (France); Cyceron PET Centre, Caen (France)

    2016-02-15

    Myocardial blood flow (MBF) measurement using positron emission tomography (PET) from the washout rate of {sup 15}O-water is theoretically independent of tissue attenuation. The aim of this study was to evaluate the impact of not using attenuation correction in the assessment of coronary endothelial function and myocardial flow reserve (MFR) using {sup 15}O-water PET. We retrospectively processed 70 consecutive {sup 15}O-water PET examinations obtained at rest and during cold pressor testing (CPT) in patients with dilated cardiomyopathy (n = 58), or at rest and during adenosine infusion in heart transplant recipients (n = 12). Data were reconstructed with attenuation correction (AC) and without attenuation correction (NAC) using filtered backprojection, and MBF was quantified using a single compartmental model. The agreement between AC and NAC data was assessed using Lin's concordance correlation coefficient followed by Bland-Altman plot analysis. Regarding endothelial function, NAC PET showed poor reproducibility and poor agreement with AC PET data. Conversely, NAC PET demonstrated high reproducibility and a strong agreement with AC PET for the assessment of MFR. Non-attenuation-corrected {sup 15}O-water PET provided an accurate measurement of MFR compared to attenuation-corrected PET. However, non-attenuation-corrected PET data were less effective for the assessment of endothelial function using CPT in this population. (orig.)

  13. Births and deaths including fetal deaths

    Data.gov (United States)

    U.S. Department of Health & Human Services — Access to a variety of United States birth and death files including fetal deaths: Birth Files, 1968-2009; 1995-2005; Fetal death file, 1982-2005; Mortality files,...

  14. Gain attenuation of gated framing camera

    International Nuclear Information System (INIS)

    Xiao Shali; Liu Shenye; Cao Zhurong; Li Hang; Zhang Haiying; Yuan Zheng; Wang Liwei

    2009-01-01

    The theoretic model of framing camera's gain attenuation is analyzed. The exponential attenuation curve of the gain along the pulse propagation time is simulated. An experiment to measure the coefficient of gain attenuation based on the gain attenuation theory is designed. Experiment result shows that the gain follows an exponential attenuation rule with a quotient of 0.0249 nm -1 , the attenuation coefficient of the pulse is 0.00356 mm -1 . The loss of the pulse propagation along the MCP stripline is the leading reason of gain attenuation. But in the figure of a single stripline, the gain dose not follow the rule of exponential attenuation completely, instead, there is a gain increase at the stripline bottom. That is caused by the reflection of the pulse. The reflectance is about 24.2%. Combining the experiment and theory, which design of the stripline MCP can improved the gain attenuation. (authors)

  15. Andrographolide Induces Autophagic Cell Death and Inhibits Invasion and Metastasis of Human Osteosarcoma Cells in An Autophagy-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2017-11-01

    Full Text Available Background/Aims: Osteosarcoma (OS is the most common primary malignant tumor of bone tissue. Although treatment effectiveness has improved, the OS survival rate has fluctuated in recent years. Andrographolide (AG has been reported to have antitumor activity against a variety of tumors. Our aim was to investigate the effects and potential mechanisms of AG in human osteosarcoma. Methods: Cell viability and morphological changes were assessed by MTT and live/dead assays. Apoptosis was detected using Annexin V-FITC/PI double staining, DAPI, and caspase-3 assays. Autophagy was detected with mRFP-GFP-LC3 adenovirus transfection and western blot. Cell migration and invasion were detected by wound healing assay and Transwell® experiments. Results: AG dose-dependently reduced the viability of osteosarcoma cells. No increase in apoptosis was detected in AG-treated human OS MG-63 and U-2OS cells, and the pan-caspase inhibitor z-VAD did not attenuate AG-induced cell death. However, AG induced autophagy by suppressing PI3K/Akt/mTOR and enhancing JNK signaling pathways. 3-MA and Beclin-1 siRNA could reverse the cytotoxic effects of AG. In addition, AG inhibited the invasion and metastasis of OS, and this effect could be reversed with Beclin-1 siRNA. Conclusion: AG inhibits viability and induces autophagic death in OS cells. AG-induced autophagy inhibits the invasion and metastasis of OS.

  16. Interaction between dietary marine-derived n-3 fatty acids intake and J-point elevation on the risk of cardiac death: a 24-year follow-up of Japanese men.

    Science.gov (United States)

    Hisamatsu, Takashi; Miura, Katsuyuki; Ohkubo, Takayoshi; Yamamoto, Takashi; Fujiyoshi, Akira; Miyagawa, Naoko; Kadota, Aya; Takashima, Naoyuki; Okuda, Nagako; Matsumura, Yasuhiro; Yoshita, Katsushi; Kita, Yoshikuni; Murakami, Yoshitaka; Nakamura, Yasuyuki; Okamura, Tomonori; Horie, Minoru; Okayama, Akira; Ueshima, Hirotsugu

    2013-07-01

    Higher marine-derived n-3 fatty acids (MDn3FAs) intake reduces the risk of sudden cardiac death via antiarrhythmic effects. The article evaluates whether MDn3FAs intake attenuates the increased risk of cardiac death associated with J-point elevation (JPE), characterised by an elevation of QRS-ST junction (J-point) ≥0.1 mV on electrocardiography. A prospective population-based cohort study. The National Survey on Circulatory Disorders and the National Nutrition Survey of Japan. A total of 4348 community-dwelling men (mean age 49.3 years), without cardiovascular diseases at baseline, from randomly selected areas across Japan. Cardiac death (200 men) during the 24-year follow-up. Dietary MDn3FAs intake was assessed using a dietary method to estimate individual intake of household-based weighed food records for 3 days. Cox models were used to calculate HRs and 95% CIs adjusted for possible confounding factors. JPE was present in 340 participants (7.8%). The median daily intake of MDn3FAs was 0.35%kcal (0.92 g/day). The risk of cardiac death was significantly higher in participants with JPE than in those without JPE in the low intake group (death was statistically significant (p=0.006). The increased risk of cardiac death associated with JPE may be attenuated by higher dietary MDn3FAs intake.

  17. Staging Death, Translating Death, Rehearsing Death: A Photographer’s Apprenticeship in Dying

    Directory of Open Access Journals (Sweden)

    Daniela Fargione

    2010-10-01

    Full Text Available The preponderance of death imagery in the mass media and a recent interest of photography in the practice of death suggest the need to reevaluate our approach to death and dying, especially when violence is involved. This essay is a case study of History of Violence, Claudio Cravero's last photographic project. His collection of "portraits" reproduce apparent dead bodies, mostly attacked in their own domestic spheres, but neither the perpetrator of death (a mysterious murderer?, nor the weapon used (an omnipresent knife, should be considered as main focal points of the artist's inquiry. The undoubtful protagonist of these photographs, instead, is the light, that illuminates fear: not of death itself, rather of the obnoxious indifference to it, as the result of generalized death imagery saturation.     The staged apparent death displayed in Cravero's photographs serve both as a memento mori and as a strategy to come to terms with the idea of death. In short, it is an apprentship in dying through a domesticating translation practice. Eventually, Cravero's History of Violence offers a complex reflection on the interplay between each individual story and macrolevel social History, thus providing some hypotheses of where violence and death fit in that odd geometry of time and space that we call life.

  18. Vitamins C and E attenuate lipid dystrophy in tissues of rats ...

    African Journals Online (AJOL)

    To investigate the effects of aluminum chloride (AlCl3) in the deviation of tissue lipid profiles and ways to reduce its effect using antioxidant vitamins C and E, thirty-six male albino rats (120-150g) were divided into six groups with six rats each. Group (1) received normal saline and served as control, Group (2) was ...

  19. PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration

    Directory of Open Access Journals (Sweden)

    Alexander Jonathan S

    2010-12-01

    Full Text Available Abstract The normal function of poly (ADP-ribose polymerase-1 (PARP-1 is the routine repair of DNA damage by adding poly (ADP ribose polymers in response to a variety of cellular stresses. Recently, it has become widely appreciated that PARP-1 also participates in diverse physiological and pathological functions from cell survival to several forms of cell death and has been implicated in gene transcription, immune responses, inflammation, learning, memory, synaptic functions, angiogenesis and aging. In the CNS, PARP inhibition attenuates injury in pathologies like cerebral ischemia, trauma and excitotoxicity demonstrating a central role of PARP-1 in these pathologies. PARP-1 is also a preferred substrate for several 'suicidal' proteases and the proteolytic action of suicidal proteases (caspases, calpains, cathepsins, granzymes and matrix metalloproteinases (MMPs on PARP-1 produces several specific proteolytic cleavage fragments with different molecular weights. These PARP-1 signature fragments are recognized biomarkers for specific patterns of protease activity in unique cell death programs. This review focuses on specific suicidal proteases active towards PARP-1 to generate signature PARP-1 fragments that can identify key proteases and particular forms of cell death involved in pathophysiology. The roles played by some of the PARP-1 fragments and their associated binding partners in the control of different forms of cell death are also discussed.

  20. Physical Activity Attenuates Total and Cardiovascular Mortality Associated With Physical Disability: A National Cohort of Older Adults.

    Science.gov (United States)

    Martinez-Gomez, David; Guallar-Castillon, Pilar; Higueras-Fresnillo, Sara; Garcia-Esquinas, Esther; Lopez-Garcia, Esther; Bandinelli, Stefania; Rodríguez-Artalejo, Fernando

    2018-01-16

    Regular physical activity (PA) has been shown to protect against disability onset but, once the disability is present, it is unclear if PA might attenuate its harmful health consequences. Thus, we examined if mortality risk associated with physical disability can be offset by PA among older adults. We used data from a cohort of 3,752 individuals representative of the noninstitutionalized population aged 60 years and older in Spain. In 2000-2001, participants self-reported both PA levels (inactive, occasionally, monthly, weekly) and five physical disabilities (agility, mobility, global daily activities, instrumental activities of daily living, and self-care). Individuals were prospectively followed through 2014 to assess incident deaths. The mean follow-up was 10.8 years, with a total of 1,727 deaths, 638 of them due to cardiovascular disease (CVD). All disability types were associated with higher total and CVD mortality. Being physically active (ie, doing any PA) was associated with a statistically significant 26%-37% and 35%-50% lower risk of total and CVD death, respectively, across types of disability. As compared with those being physically active and without disability, those who were inactive and had a disability showed the highest mortality risk from total (hazard ratios from 1.52 to 1.90 across disabilities, all p disability. In older adults, PA could attenuate the increased risk of mortality associated with physical disability. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Protection of dichlorvos induced oxidative stress and nigrostriatal neuronal death by chronic Coenzyme Q10 pretreatment

    International Nuclear Information System (INIS)

    Binukumar, BK; Gupta, Nidhi; Bal, Amanjit; Gill, Kiran Dip

    2011-01-01

    Numerous epidemiological studies have shown an association between pesticide exposure and increased risk of developing Parkinson's diseases. Oxidative stress generated as a result of mitochondrial dysfunction has been implicated as an important factor in the etiology of Parkinson's disease. Previously, we reported that chronic dichlorvos exposure causes mitochondrial impairments and nigrostriatal neuronal death in rats. The present study was designed to test whether Coenzyme Q 10 (CoQ 10 ) administration has any neuroprotective effect against dichlorvos mediated nigrostriatal neuronal death, α-synuclein aggregation, and motor dysfunction. Male albino rats were administered dichlorvos by subcutaneous injection at a dose of 2.5 mg/kg body weight over a period of 12 weeks. Results obtained there after showed that dichlorvos exposure leads to enhanced mitochondrial ROS production, α-synuclein aggregation, decreased dopamine and its metabolite levels resulting in nigrostriatal neurodegeneration. Pretreatment by Coenzyme Q 10 (4.5 mg/kg ip for 12 weeks) to dichlorvos treated animals significantly attenuated the extent of nigrostriatal neuronal damage, in terms of decreased ROS production, increased dopamine and its metabolite levels, and restoration of motor dysfunction when compared to dichlorvos treated animals. Thus, the present study shows that Coenzyme Q 10 administration may attenuate dichlorvos induced nigrostriatal neurodegeneration, α-synuclein aggregation and motor dysfunction by virtue of its antioxidant action. - Highlights: → CoQ 10 administration attenuates dichlorvos induced nigrostriatal neurodegenaration. → CoQ 10 pre treatment leads to preservation of TH-IR neurons. → CoQ 10 may decrease oxidative damage and α-synuclin aggregation. → CoQ 10 treatment enhances motor function and protects rats from catalepsy.

  2. Huperzine A attenuates hepatic ischemia reperfusion injury via anti-oxidative and anti-apoptotic pathways.

    Science.gov (United States)

    Xu, Zhe; Wang, Yang

    2014-08-01

    Hepatic ischemia reperfusion (HI/R) injury may occur during liver transplantation and remains a serious concern in clinical practice. Huperzine A (HupA), an alkaloid isolated from the Chinese traditional medicine Huperzia serrata, has been demonstrated to possess anti‑oxidative and anti‑apoptotic properties. In the present study, a rat model of HI/R was established by clamping the hepatic artery, the hepatoportal vein and the bile duct with a vascular clamp for 30 min followed by reperfusion for 6 h under anesthesia. HupA was injected into the tail vein 5 min prior to the induction of HI/R at doses of 167 and 500 µg/kg. The histopathological assessment of the liver was performed using hematoxylin and eosin staining. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were assayed in the serum samples. The tissue levels of superoxide dismutase (SOD), catalase (CAT), malondiadehyde (MDA) and glutathione (GSH) were also measured spectrophotometrically. Furthermore, the protein expression of caspase‑3, Bcl‑2 and Bax in hepatic tissues was detected via western blot analysis. Treatment of Wistar rats with HupA at doses of 167 and 500 µg/kg markedly attenuated HI/R injury as observed histologically. In addition, the significant reductions of serum ALT and AST were observed in HupA‑treated ischemic rats. Furthermore, HupA treatment enhanced the activity of hepatic tissue SOD, CAT and GSH, but decreased the MDA tissue content. Western blot analysis revealed elevated levels of Bcl‑2 expression but decreased Bax and caspase‑3 tissue expression at the protein level in the HupA‑treated group. The present data suggest that HupA attenuates the HI/R injury of rats through its anti‑oxidative and anti‑apoptotic signaling pathways.

  3. Sudden death caused by 1,1-difluoroethane inhalation.

    Science.gov (United States)

    Xiong, Zhenggang; Avella, Joseph; Wetli, Charles V

    2004-05-01

    A 20-year-old man was found dead on the floor next to a computer, with a nearly full can of "CRC Duster" dust remover located next to the deceased on the floor, and an empty can of the same product on the computer desk. Toxicologic evaluation using either gas chromatography/mass spectrometry (GC/MS) or gas chromatography/flame ionization detector (GC/FID) method identified the active ingredient 1,1-difluoroethane (Freon 152a) in all tissues analyzed. Tissue distribution studies revealed highest concentration in central blood, lung, and liver. It is believed that the 1,1-difluoroethane inhalation was the cause of death.

  4. Differential CT Attenuation of Metabolically Active and Inactive Adipose Tissues — Preliminary Findings

    Science.gov (United States)

    Hu, Houchun H.; Chung, Sandra A.; Nayak, Krishna S.; Jackson, Hollie A.; Gilsanz, Vicente

    2010-01-01

    This study investigates differences in CT Hounsfield units (HUs) between metabolically active (brown fat) and inactive adipose tissues (white fat) due to variations in their densities. PET/CT data from 101 pediatric and adolescent patients were analyzed. Regions of metabolically active and inactive adipose tissues were identified and standard uptake values (SUVs) and HUs were measured. HUs of active brown fat were more positive (p<0.001) than inactive fat (−62.4±5.3 versus −86.7±7.0) and the difference was observed in both males and females. PMID:21245691

  5. Establishing Early Functional Perfusion and Structure in Tissue Engineered Cardiac Constructs.

    Science.gov (United States)

    Wang, Bo; Patnaik, Sourav S; Brazile, Bryn; Butler, J Ryan; Claude, Andrew; Zhang, Ge; Guan, Jianjun; Hong, Yi; Liao, Jun

    2015-01-01

    Myocardial infarction (MI) causes massive heart muscle death and remains a leading cause of death in the world. Cardiac tissue engineering aims to replace the infarcted tissues with functional engineered heart muscles or revitalize the infarcted heart by delivering cells, bioactive factors, and/or biomaterials. One major challenge of cardiac tissue engineering and regeneration is the establishment of functional perfusion and structure to achieve timely angiogenesis and effective vascularization, which are essential to the survival of thick implants and the integration of repaired tissue with host heart. In this paper, we review four major approaches to promoting angiogenesis and vascularization in cardiac tissue engineering and regeneration: delivery of pro-angiogenic factors/molecules, direct cell implantation/cell sheet grafting, fabrication of prevascularized cardiac constructs, and the use of bioreactors to promote angiogenesis and vascularization. We further provide a detailed review and discussion on the early perfusion design in nature-derived biomaterials, synthetic biodegradable polymers, tissue-derived acellular scaffolds/whole hearts, and hydrogel derived from extracellular matrix. A better understanding of the current approaches and their advantages, limitations, and hurdles could be useful for developing better materials for future clinical applications.

  6. Soluble guanylate cyclase stimulation prevents fibrotic tissue remodeling and improves survival in salt-sensitive Dahl rats.

    Directory of Open Access Journals (Sweden)

    Sandra Geschka

    Full Text Available A direct pharmacological stimulation of soluble guanylate cyclase (sGC is an emerging therapeutic approach to the management of various cardiovascular disorders associated with endothelial dysfunction. Novel sGC stimulators, including riociguat (BAY 63-2521, have a dual mode of action: They sensitize sGC to endogenously produced nitric oxide (NO and also directly stimulate sGC independently of NO. Little is known about their effects on tissue remodeling and degeneration and survival in experimental malignant hypertension.Mortality, hemodynamics and biomarkers of tissue remodeling and degeneration were assessed in Dahl salt-sensitive rats maintained on a high salt diet and treated with riociguat (3 or 10 mg/kg/d for 14 weeks. Riociguat markedly attenuated systemic hypertension, improved systolic heart function and increased survival from 33% to 85%. Histological examination of the heart and kidneys revealed that riociguat significantly ameliorated fibrotic tissue remodeling and degeneration. Correspondingly, mRNA expression of the pro-fibrotic biomarkers osteopontin (OPN, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1 and plasminogen activator inhibitor-1 (PAI-1 in the myocardium and the renal cortex was attenuated by riociguat. In addition, riociguat reduced plasma and urinary levels of OPN, TIMP-1, and PAI-1.Stimulation of sGC by riociguat markedly improves survival and attenuates systemic hypertension and systolic dysfunction, as well as fibrotic tissue remodeling in the myocardium and the renal cortex in a rodent model of pressure and volume overload. These findings suggest a therapeutic potential of sGC stimulators in diseases associated with impaired cardiovascular and renal functions.

  7. Influence of breast composition and interseed attenuation in dose calculations for post-implant assessment of permanent breast 103Pd seed implant

    International Nuclear Information System (INIS)

    Afsharpour, Hossein; Beaulieu, Luc; Pignol, Jean-Philippe; Keller, Brian; Carrier, Jean-Francois; Reniers, Brigitte; Verhaegen, Frank

    2010-01-01

    The impact of tissue heterogeneity and interseed attenuation is studied in post-implant evaluation of five clinical permanent breast 103 Pd seed implants using the Monte Carlo (MC) dose calculation method. Dose metrics for the target (PTV) as well as an organ at risk (skin) are used to visualize the differences between a TG43-like MC method and more accurate MC methods capable of considering the breast tissue heterogeneity as well as the interseed attenuation. PTV dose is reduced when using a breast tissue model instead of water in MC calculations while the dose to the skin is increased. Furthermore, we investigate the effect of varying the glandular/adipose proportion of the breast tissue on dose distributions. The dose to the PTV (skin) decreases (increases) with the increasing adipose proportion inside the breast. In a complete geometry and compared to a TG43-like situation, the average PTV D 90 reduction varies from 3.9% in a glandular breast to 35.5% when the breast consists entirely of adipose. The skin D 10 increases by 28.2% in an entirely adipose breast. The results of this work show the importance of an accurate and patient-dependent breast tissue model to be used in the dosimetry for this kind of low energy implant.

  8. Improvement of quantitation in SPECT: Attenuation and scatter correction using non-uniform attenuation data

    International Nuclear Information System (INIS)

    Mukai, T.; Torizuka, K.; Douglass, K.H.; Wagner, H.N.

    1985-01-01

    Quantitative assessment of tracer distribution with single photon emission computed tomography (SPECT) is difficult because of attenuation and scattering of gamma rays within the object. A method considering the source geometry was developed, and effects of attenuation and scatter on SPECT quantitation were studied using phantoms with non-uniform attenuation. The distribution of attenuation coefficients (μ) within the source were obtained by transmission CT. The attenuation correction was performed by an iterative reprojection technique. The scatter correction was done by convolution of the attenuation corrected image and an appropriate filter made by line source studies. The filter characteristics depended on μ and SPEC measurement at each pixel. The SPECT obtained by this method showed the most reasonable results than the images reconstructed by other methods. The scatter correction could compensate completely for a 28% scatter components from a long line source, and a 61% component for thick and extended source. Consideration of source geometries was necessary for effective corrections. The present method is expected to be valuable for the quantitative assessment of regional tracer activity

  9. Sulfuretin Attenuates MPP+-Induced Neurotoxicity through Akt/GSK3β and ERK Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Ramesh Pariyar

    2017-12-01

    Full Text Available Parkinson’s disease (PD is the second most common neurodegenerative disease. It is caused by the death of dopaminergic neurons in the substantia nigra pars compacta. Oxidative stress and mitochondrial dysfunction contribute to the loss of dopaminergic neurons in PD. Sulfuretin is a potent antioxidant that is reported to be beneficial in the treatment of neurodegenerative diseases. In this study, we examined the protective effect of sulfuretin against 1-methyl-4-phenyl pyridinium (MPP+-induced cell model of PD in SH-SY5Y cells and the underlying molecular mechanisms. Sulfuretin significantly decreased MPP+-induced apoptotic cell death, accompanied by a reduction in caspase 3 activity and polyADP-ribose polymerase (PARP cleavage. Furthermore, it attenuated MPP+-induced production of intracellular reactive oxygen species (ROS and disruption of mitochondrial membrane potential (MMP. Consistently, sulfuretin decreased p53 expression and the Bax/Bcl-2 ratio. Moreover, sulfuretin significantly increased the phosphorylation of Akt, GSK3β, and ERK. Pharmacological inhibitors of PI3K/Akt and ERK abolished the cytoprotective effects of sulfuretin against MPP+. An inhibitor of GSK3β mimicked sulfuretin-induced protection against MPP+. Taken together, these results suggest that sulfuretin significantly attenuates MPP+-induced neurotoxicity through Akt/GSK3β and ERK signaling pathways in SH-SY5Y cells. Our findings suggest that sulfuretin might be one of the potential candidates for the treatment of PD.

  10. Combined subchronic fluoride-lead intoxication and its attenuation with the help of a complex of bioprotectors.

    Science.gov (United States)

    Katsnelson, B A; Privalova, L I; Kireyeva, Y P; Yeremenko, O S; Sutunkova, M P; Valamina, I E; Varaksin, A N; Panov, V G; Kazmer, J I

    2012-01-01

    Combined toxicity of lead and fluoride has been studied insufficiently, and there is no known information about attempts to inhibit it with any bioprotectors. Lead acetate and sodium fluoride, administered separately or in combination, were injected i.p. to rats at isoeffective sublethal doses 3 times a week for 6 weeks. Some of the rats were exposed to the same combination against the background of oral administration of a bioprotector complex (BPC) comprising pectin, glutamate, and multivitamin/multimineral preparations. Following exposure, functional and biochemical indices and histopathological examinations of the femur of exposed and control rats were evaluated for signs of toxicity. We have shown that with regard to a number of effects on the organism level the combined toxicity of lead and fluoride may be evaluated as additive or even superadditive, but lead reduces fluoride accumulation in the bone, and pathological changes in the bone tissue proved to be less marked for combined exposure compared with separate exposures. The BPC has been demonstrated to attenuate a range of the combined harmful effects of lead and fluoride, including those on the bone tissue. In spite of the fact that fluoride and lead may reciprocally attenuate their harmful effects on the bone tissue in case of combined exposure, they prove to be more toxic for soft tissues just in combination than when administered separately. The development of combined intoxication may be substantially inhibited by means of the tested set of innocuous biologically active agents.

  11. A novel power spectrum calculation method using phase-compensation and weighted averaging for the estimation of ultrasound attenuation.

    Science.gov (United States)

    Heo, Seo Weon; Kim, Hyungsuk

    2010-05-01

    An estimation of ultrasound attenuation in soft tissues is critical in the quantitative ultrasound analysis since it is not only related to the estimations of other ultrasound parameters, such as speed of sound, integrated scatterers, or scatterer size, but also provides pathological information of the scanned tissue. However, estimation performances of ultrasound attenuation are intimately tied to the accurate extraction of spectral information from the backscattered radiofrequency (RF) signals. In this paper, we propose two novel techniques for calculating a block power spectrum from the backscattered ultrasound signals. These are based on the phase-compensation of each RF segment using the normalized cross-correlation to minimize estimation errors due to phase variations, and the weighted averaging technique to maximize the signal-to-noise ratio (SNR). The simulation results with uniform numerical phantoms demonstrate that the proposed method estimates local attenuation coefficients within 1.57% of the actual values while the conventional methods estimate those within 2.96%. The proposed method is especially effective when we deal with the signal reflected from the deeper depth where the SNR level is lower or when the gated window contains a small number of signal samples. Experimental results, performed at 5MHz, were obtained with a one-dimensional 128 elements array, using the tissue-mimicking phantoms also show that the proposed method provides better estimation results (within 3.04% of the actual value) with smaller estimation variances compared to the conventional methods (within 5.93%) for all cases considered. Copyright 2009 Elsevier B.V. All rights reserved.

  12. Neonatal Death

    Science.gov (United States)

    ... Home > Complications & Loss > Loss & grief > Neonatal death Neonatal death E-mail to a friend Please fill in ... cope with your baby’s death. What is neonatal death? Neonatal death is when a baby dies in ...

  13. Thermoacoustic tomography for an integro-differential wave equation modeling attenuation

    Science.gov (United States)

    Acosta, Sebastián; Palacios, Benjamín

    2018-02-01

    In this article we study the inverse problem of thermoacoustic tomography (TAT) on a medium with attenuation represented by a time-convolution (or memory) term, and whose consideration is motivated by the modeling of ultrasound waves in heterogeneous tissue via fractional derivatives with spatially dependent parameters. Under the assumption of being able to measure data on the whole boundary, we prove uniqueness and stability, and propose a convergent reconstruction method for a class of smooth variable sound speeds. By a suitable modification of the time reversal technique, we obtain a Neumann series reconstruction formula.

  14. The role of fat tissues in the diagnosis of musculoskeletal imaging

    International Nuclear Information System (INIS)

    Kim, Sue Yon; Park, Ji Seon; Ryu, Kyung Nam; Jin, Wook

    2007-01-01

    Fat tissue is a unique component of the soft tissue, and this fat tissue lies primarily in the spaces beneath the normal subcutaneous tissue, and within or around the organs. An entire lesion, or just a part of it, can be composed of these fat tissues. Therefore, it plays an important role in the diagnostic workup of suspected musculoskeletal diseases as well as in the differentiation between them. Fat tissue is shown as low density on plain radiographs, decreased attenuation on CT images, high signal intensity on T1-weighted images and it is hypoechoic on sonography. Because of its distinctive features, fat tissue is easy to verify on various modalities. In addition, recent image studies like fat-suppressed imaging and STIR imaging provide more precise information of the lesion that involve fat tissue. In this article, we have reviewed the differentiation of musculoskeletal diseases, including the various tumorous lesion and tumor-like lesions involving the fat tissue

  15. Proliferation and cell death in an experimental model of brain tissue heterotopia in the lung Proliferação e morte celular na heterotopia encefálica experimental

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Veiga Quemelo

    2010-08-01

    Full Text Available PURPOSE: To investigate the proliferation and neuronal death in brain tissue heterotopia in the lung in an experimental model during both fetal and neonatal periods. METHODS: Twenty four pregnant female Swiss mice were used to induce brain tissue heterotopia on the 15th gestational day. Briefly, the brain of one fetus of each dam was extracted, disaggregated and injected into the right hemithorax of siblings. Six of these fetuses with pulmonary brain tissue implantation (PBI were collected on the 18th gestational day (group E18 and six other on the 8th postnatal day (group P8. Immunohistochemical staining for PCNA and Bcl2 were used to assess proliferation and cell death. RESULTS: PCNA Labelling Index (LI in heterotopic brain tissue was greater in fetal than postnatal period (E18 > P8 (pOBJETIVO: Investigar a proliferação e morte neuronal na heterotopia encefálica pulmonar em modelo experimental durante o período fetal e neonatal. MÉTODOS: Foram utilizados 24 camundongos Swiss fêmeas prenhes para induzir a heterotopia encefálica no pulmão. O tecido encefálico de um feto de cada fêmea prenha foi removido, picotado e injetado no pulmão dos irmãos. Seis fetos com Implantação Encefálica Pulmonar (IEP foram coletados no 18º dia gestacional (grupo E18 e seis outros fetos no 8º dia pós-natal (grupo P8. Foi realizada a reação Imuno-histoquímica para PCNA e Bcl2 para analisar a proliferação e morte celular. RESULTADOS: O índice de marcação (IM para PCNA era maior no período fetal quando comparado com o período pós-natal (E8 > P18 (p<0,05 e a imunomarcação para o anticorpo Bcl2 não apresentou diferença. CONCLUSÃO: A proliferação celular foi mantida no tecido heterotópico encefálico, embora a apoptose também foi observada.

  16. Necrotising soft tissue infection following mastectomy

    Directory of Open Access Journals (Sweden)

    Jackson P

    2010-03-01

    Full Text Available Necrotising fasciitis is a rare but rapidly progressive soft tissue disease which can lead to extensive necrosis, systemic sepsis and death. Including this case, only 7 other cases have been reported in the world literature with only 2 others affecting the patient post mastectomy.This 59 year old Caucasian lady presented with severe soft tissue infection soon after mastectomy, which was successfully treated with a combination of debridement, triangulation, VAC© dressing and skin grafting.Necrotising soft tissue infections following mastectomy are rapidly progressive and potentially extremely serious. It is essential that a high index of clinical suspicion is maintained together with prompt aggressive treatment in a multidisciplinary environment to prevent worsening physical and psychological sequelae.

  17. Death Cafe.

    Science.gov (United States)

    Miles, Lizzy; Corr, Charles A

    2017-06-01

    This article explains the meaning of the phrase Death Cafe and describes what typically occurs at a Death Cafe gathering. The article traces the history of the Death Cafe movement, explores some reasons why people take part in a Death Cafe gathering, and gives examples of what individuals think they might derive from their participation. In addition, this article notes similarities between the Death Cafe movement and three other developments in the field of death, dying, and bereavement. Finally, this article identifies two provisional lessons that can be drawn from Death Cafe gatherings and the Death Cafe movement itself.

  18. Bees’ Honey Attenuation of Metanil-Yellow-Induced Hepatotoxicity in Rats

    Directory of Open Access Journals (Sweden)

    Abdulrahman L. Al-Malki

    2013-01-01

    Full Text Available The present study aims to investigate the protective effect of bees’ honey against metanil-yellow-induced hepatotoxicity in rats. Rats were divided into 7 groups: control group; three groups treated with 50, 100, and 200 mg/kg metanil yellow, and three groups treated with metanil yellow plus 2.5 mg·kg-1·day-1 bees’ honey for 8 weeks. The obtained data showed that the antioxidant/anti-inflammatory activity of bees’ honey reduced the oxidative stress in the liver tissue and downregulated the inflammatory markers. In addition, the elevated levels of AGE and the activated NF-κB in the metanil-yellow-treated animals were significantly attenuated. Moreover, the levels of TNF-α and IL-1β were significantly attenuated as a result of bees’ honey administration. Furthermore, the histopathological examination of the liver showed that bees’ honey reduced fatty degeneration, cytoplasmic vacuolization, and necrosis in metanil-yellow-treated rats. In conclusion, the obtained data suggest that bees’ honey has hepatoprotective effect on acute liver injuries induced by metanil-yellow in vivo, and the results suggested that the effect of bees’ honey against metanil yellow-induced liver damage is related to its antioxidant/anti-inflammatory properties which attenuate the activation of NF-κB and its controlled genes like TNF-α and IL-1β.

  19. Minocycline attenuates noise-induced hearing loss in rats.

    Science.gov (United States)

    Zhang, Jing; Song, Yong-Li; Tian, Ke-Yong; Qiu, Jian-Hua

    2017-02-03

    Noise-induced hearing loss (NIHL) is a serious health concern and prevention of hair cell death or therapeutic intervention at the early stage of NIHL is critical to preserve hearing. Minocycline is a semi-synthetic derivative of tetracycline and has been shown to have otoprotective effects in ototoxic drug-induced hearing impairment, however, whether minocycline can protect against NIHL has not been investigated. The present study demonstrated elevated ABR (auditory brainstem response) thresholds and outer hair cell loss following traumatic noise exposure, which was mitigated by intraperitoneal administration of minocycline (45mg/kg/d) for 5 consecutive days. In conclusion, the present study demonstrated that minocycline, a clinically approved drug with a good safety profile, can attenuate NIHL in rats and may potentially be used for treatment of hearing loss in clinic. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Oleuropein isolated from Fraxinus rhynchophylla inhibits glutamate-induced neuronal cell death by attenuating mitochondrial dysfunction.

    Science.gov (United States)

    Kim, Mi Hye; Min, Ju-Sik; Lee, Joon Yeop; Chae, Unbin; Yang, Eun-Ju; Song, Kyung-Sik; Lee, Hyun-Shik; Lee, Hong Jun; Lee, Sang-Rae; Lee, Dong-Seok

    2017-04-27

    Glutamate-induced neurotoxicity is related to excessive oxidative stress accumulation and results in the increase of neuronal cell death. In addition, glutamate has been reported to lead to neurodegenerative diseases, including Parkinson's and Alzheimer's diseases.It is well known that Fraxinus rhynchophylla contains a significant level of oleuropein (Ole), which exerts various pharmacological effects. However, the mechanism of neuroprotective effects of Ole is still poorly defined. In this study, we aimed to investigate whether Ole prevents glutamate-induced toxicity in HT-22 hippocampal neuronal cells. The exposure of the glutamate treatment caused neuronal cell death through an alteration of Bax/Bcl-2 expression and translocation of mitochondrial apoptosis-inducing factor (AIF) to the cytoplasm of HT-22 cells. In addition, glutamate induced an increase in dephosphorylation of dynamin-related protein 1 (Drp1), mitochondrial fragmentation, and mitochondrial dysfunction. The pretreatment of Ole decreased Bax expression, increased Bcl-2 expression, and inhibited the translocation of mitochondrial AIF to the cytoplasm. Furthermore, Ole amended a glutamate-induced mitochondrial dynamic imbalance and reduced the number of cells with fragmented mitochondria, regulating the phosphorylation of Drp1 at amino acid residue serine 637. In conclusion, our results show that Ole has a preventive effect against glutamate-induced toxicity in HT-22 hippocampal neuronal cells. Therefore, these data imply that Ole may be an efficient approach for the treatment of neurodegenerative diseases.

  1. CT findings of pulmonary mucosa-associated lymphoid tissue lymphoma

    International Nuclear Information System (INIS)

    Zhang Weidong; Guan Yubao; Li Chuanxing; Wu Peihong

    2010-01-01

    Objective: To study the CT findings of pulmonary mucosa-associated lymphoid tissue (MALT) lymphoma. Methods: The CT examinations of 12 patients with pathologically proven pulmonary MALT lymphoma were reviewed retrospectively. Evaluated imaging findings included number, distribution, shape, attenuation and other associated findings of each lesion were evaluated. Results: Thirty-two pulmonary lesions, including consolidations, masses, nodules and lesions with ground glass attenuation, were identified in 12 patients. Multiple lesions were founded in 10 of 12 patients and solitary lesion in 2 patients. Multiple lesions found in one lung in 2 patients, and multiple lesions found in both lungs in 8 patients. Ten cases demonstrated 21 consolidation lesions with air bronchogram, and one of the ten cases demonstrated two lesions with airway dilatation. Three cases demonstrated 5 masses or nodular lesions, 3 of these 5 lesions showed air bronchogram. Two cases demonstrated 6 ground glass attenuation lesions. One case showed mediastinal and hilar lymphadenopathy. Conclusion: Pulmonary MALT lymphoma usually appears as multiple bilateral consolidations, masses, nodules with air bronchogram or lesions with ground- glass attenuation at CT imaging. The imaging findings described above and with an indolent clinical course may suggest the diagnosis of pulmonary MALT lymphoma. (authors)

  2. Melatonin alleviates inflammasome-induced pyroptosis through inhibiting NF-κB/GSDMD signal in mice adipose tissue.

    Science.gov (United States)

    Liu, Zhenjiang; Gan, Lu; Xu, Yatao; Luo, Dan; Ren, Qian; Wu, Song; Sun, Chao

    2017-08-01

    Pyroptosis is a proinflammatory form of cell death that is associated with pathogenesis of many chronic inflammatory diseases. Melatonin is substantially reported to possess anti-inflammatory properties by inhibiting inflammasome activation. However, the effects of melatonin on inflammasome-induced pyroptosis in adipocytes remain elusive. Here, we demonstrated that melatonin alleviated lipopolysaccharides (LPS)-induced inflammation and NLRP3 inflammasome formation in mice adipose tissue. The NLRP3 inflammasome-mediated pyroptosis was also inhibited by melatonin in adipocytes. Further analysis revealed that gasdermin D (GSDMD), the key executioner of pyroptosis, was the target for melatonin inhibition of adipocyte pyroptosis. Importantly, we determined that nuclear factor κB (NF-κB) signal was required for the GSDMD-mediated pyroptosis in adipocytes. We also confirmed that melatonin alleviated adipocyte pyroptosis by transcriptional suppression of GSDMD. Moreover, GSDMD physically interacted with interferon regulatory factor 7 (IRF7) and subsequently formed a complex to promote adipocyte pyroptosis. Melatonin also attenuated NLRP3 inflammasome activation and pyroptosis, which was induced by LPS or obesity. In summary, our results demonstrate that melatonin alleviates inflammasome-induced pyroptosis by blocking NF-κB/GSDMD signal in mice adipose tissue. Our data reveal a novel function of melatonin on adipocyte pyroptosis, suggesting a new potential therapy for melatonin to prevent and treat obesity caused systemic inflammatory response. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Public education and misinformation on brain death in mainstream media.

    Science.gov (United States)

    Lewis, Ariane; Lord, Aaron S; Czeisler, Barry M; Caplan, Arthur

    2016-09-01

    We sought to evaluate the caliber of education mainstream media provides the public about brain death. We reviewed articles published prior to July 31, 2015, on the most shared/heavily trafficked mainstream media websites of 2014 using the names of patients from two highly publicized brain death cases, "Jahi McMath" and "Marlise Muñoz." We reviewed 208 unique articles. The subject was referred to as being "alive" or on "life support" in 72% (149) of the articles, 97% (144) of which also described the subject as being brain dead. A definition of brain death was provided in 4% (9) of the articles. Only 7% (14) of the articles noted that organ support should be discontinued after brain death declaration unless a family has agreed to organ donation. Reference was made to well-known cases of patients in persistent vegetative states in 16% (34) of articles and 47% (16) of these implied both patients were in the same clinical state. Mainstream media provides poor education to the public on brain death. Because public understanding of brain death impacts organ and tissue donation, it is important for physicians, organ procurement organizations, and transplant coordinators to improve public education on this topic. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Forkhead Box O6 (FoxO6) Depletion Attenuates Hepatic Gluconeogenesis and Protects against Fat-induced Glucose Disorder in Mice*

    Science.gov (United States)

    Calabuig-Navarro, Virtu; Yamauchi, Jun; Lee, Sojin; Zhang, Ting; Liu, Yun-Zi; Sadlek, Kelsey; Coudriet, Gina M.; Piganelli, Jon D.; Jiang, Chun-Lei; Miller, Rita; Lowe, Mark; Harashima, Hideyoshi; Dong, H. Henry

    2015-01-01

    Excessive endogenous glucose production contributes to fasting hyperglycemia in diabetes. FoxO6 is a distinct member of the FoxO subfamily. To elucidate the role of FoxO6 in hepatic gluconeogenesis and assess its contribution to the pathogenesis of fasting hyperglycemia in diabetes, we generated FoxO6 knock-out (FoxO6-KO) mice followed by determining the effect of FoxO6 loss-of-function on hepatic gluconeogenesis under physiological and pathological conditions. FoxO6 depletion attenuated hepatic gluconeogenesis and lowered fasting glycemia in FoxO6-KO mice. FoxO6-deficient primary hepatocytes were associated with reduced capacities to produce glucose in response to glucagon. When fed a high fat diet, FoxO6-KO mice exhibited significantly enhanced glucose tolerance and reduced blood glucose levels accompanied by improved insulin sensitivity. These effects correlated with attenuated hepatic gluconeogenesis in FoxO6-KO mice. In contrast, wild-type littermates developed fat-induced glucose intolerance with a concomitant induction of fasting hyperinsulinemia and hyperglycemia. Furthermore, FoxO6-KO mice displayed significantly diminished macrophage infiltration into liver and adipose tissues, correlating with the reduction of macrophage expression of C-C chemokine receptor 2 (CCR2), a factor that is critical for regulating macrophage recruitment in peripheral tissues. Our data indicate that FoxO6 depletion protected against diet-induced glucose intolerance and insulin resistance by attenuating hepatic gluconeogenesis and curbing macrophage infiltration in liver and adipose tissues in mice. PMID:25944898

  5. X-ray phase-contrast tomosynthesis for improved breast tissue discrimination

    International Nuclear Information System (INIS)

    Schleede, Simone; Bech, Martin; Grandl, Susanne; Sztrókay, Aniko; Herzen, Julia; Mayr, Doris; Stockmar, Marco; Potdevin, Guillaume

    2014-01-01

    Purpose: Attenuation-based tomosynthesis has proven to successfully resolve the glandular tissue overlap present in mammography. However, the ability of tomosynthesis to differentiate tumorous and glandular tissue remains limited, due to the small differences in X-ray attenuation in breast tissue. One possibility to overcome this limitation and to further increase the diagnostic value of tomosynthesis exams, is the application of recently developed grating-based phase-contrast methods, which provide complementary information on the phase shift and the local scattering power of the sample. In this study, we report on first phase-contrast breast tomosynthesis results of a mastectomy sample slice with an invasive ductal carcinoma. Material and methods: A slice of a mastectomy sample with histologically proven invasive ductal cancer was imaged at the synchrotron radiation source ESRF (Grenoble, France). We used a two-grating interferometer setup at the ninth fractional Talbot distance and with an X-ray energy of 23 keV. In grating interferometry absorption, differential phase, and scattering images are recorded simultaneously. The tomosynthesis scan comprises 61 projections. Multimodal tomosynthesis results were reconstructed using a standard filtered back-projection approach. Our findings are supported by a comparison of tomographic views to histopathology. Results: Phase-contrast tomosynthesis combines the advantage of improved soft-tissue discrimination in phase-contrast imaging with the ability of tomosynthesis to provide a third dimension so that improved feature visibility is not hampered by superposition artifacts. Our results indicate superior diagnostic value due to the depth resolution supplied in tomosynthesis imaging; a region of necrotic tissue that is obscured in a projection image can clearly be depicted in one single tomosynthesis slice. Compared to absorption tomosynthesis alone, soft tissue contrast is significantly enhanced in phase

  6. X-ray phase-contrast tomosynthesis for improved breast tissue discrimination.

    Science.gov (United States)

    Schleede, Simone; Bech, Martin; Grandl, Susanne; Sztrókay, Aniko; Herzen, Julia; Mayr, Doris; Stockmar, Marco; Potdevin, Guillaume; Zanette, Irene; Rack, Alexander; Weitkamp, Timm; Pfeiffer, Franz

    2014-03-01

    Attenuation-based tomosynthesis has proven to successfully resolve the glandular tissue overlap present in mammography. However, the ability of tomosynthesis to differentiate tumorous and glandular tissue remains limited, due to the small differences in X-ray attenuation in breast tissue. One possibility to overcome this limitation and to further increase the diagnostic value of tomosynthesis exams, is the application of recently developed grating-based phase-contrast methods, which provide complementary information on the phase shift and the local scattering power of the sample. In this study, we report on first phase-contrast breast tomosynthesis results of a mastectomy sample slice with an invasive ductal carcinoma. A slice of a mastectomy sample with histologically proven invasive ductal cancer was imaged at the synchrotron radiation source ESRF (Grenoble, France). We used a two-grating interferometer setup at the ninth fractional Talbot distance and with an X-ray energy of 23 keV. In grating interferometry absorption, differential phase, and scattering images are recorded simultaneously. The tomosynthesis scan comprises 61 projections. Multimodal tomosynthesis results were reconstructed using a standard filtered back-projection approach. Our findings are supported by a comparison of tomographic views to histopathology. Phase-contrast tomosynthesis combines the advantage of improved soft-tissue discrimination in phase-contrast imaging with the ability of tomosynthesis to provide a third dimension so that improved feature visibility is not hampered by superposition artifacts. Our results indicate superior diagnostic value due to the depth resolution supplied in tomosynthesis imaging; a region of necrotic tissue that is obscured in a projection image can clearly be depicted in one single tomosynthesis slice. Compared to absorption tomosynthesis alone, soft tissue contrast is significantly enhanced in phase-contrast tomosynthesis views, where fibrous structures

  7. [Real-time PCR in rapid diagnosis of Aeromonas hydrophila necrotizing soft tissue infections].

    Science.gov (United States)

    Kohayagawa, Yoshitaka; Izumi, Yoko; Ushita, Misuzu; Niinou, Norio; Koshizaki, Masayuki; Yamamori, Yuji; Kaneko, Sakae; Fukushima, Hiroshi

    2009-11-01

    We report a case of rapidly progressive necrotizing soft tissue infection and sepsis followed by a patient's death. We suspected Vibrio vulnificus infection because the patient's underlying disease was cirrhosis and the course extremely rapid. No microbe had been detected at death. We extracted DNA from a blood culture bottle. SYBR green I real-time PCR was conducted but could not detect V. vulnificus vvh in the DNA sample. Aeromonas hydrophila was cultured and identified in blood and necrotized tissue samples. Real-time PCR was conducted to detect A. hydrophila ahh1, AHCYTOEN and aerA in the DNA sample extracted from the blood culture bottle and an isolated necrotized tissue strain, but only ahh1 was positive. High-mortality in necrotizing soft tissue infections makes it is crucial to quickly detect V. vulnificus and A. hydrophila. We found real-time PCR for vvh, ahh1, AHCYTOEN, and aerA useful in detecting V. vulnificus and A. hydrophila in necrotizing soft tissue infections.

  8. Tylvalosin exhibits anti-inflammatory property and attenuates acute lung injury in different models possibly through suppression of NF-κB activation.

    Science.gov (United States)

    Zhao, Zhanzhong; Tang, Xiangfang; Zhao, Xinghui; Zhang, Minhong; Zhang, Weijian; Hou, Shaohua; Yuan, Weifeng; Zhang, Hongfu; Shi, Lijun; Jia, Hong; Liang, Lin; Lai, Zhi; Gao, Junfeng; Zhang, Keyu; Fu, Ling; Chen, Wei

    2014-07-01

    Tylvalosin, a new broad-spectrum, third-generation macrolides, may exert a variety of pharmacological activities. Here, we report on its anti-oxidative and anti-inflammatory activity in RAW 264.7 macrophages and mouse treated with lipopolysaccharide (LPS) as well as piglet challenged with porcine reproductive and respiratory syndrome virus (PRRSV). Tylvalosin treatment markedly decreased IL-8, IL-6, IL-1β, PGE2, TNF-α and NO levels in vitro and in vivo. LPS and PRRSV-induced reactive oxygen species (ROS) production, and the lipid peroxidation in mice lung tissues reduced after tylvalosin treatments. In mouse acute lung injury model induced by LPS, tylvalosin administration significantly attenuated tissues injury, and reduced the inflammatory cells recruitment and activation. The evaluated phospholipase A2 (PLA2) activity and the increased expressions of cPLA2-IVA, p-cPLA2-IVA and sPLA2-IVE were lowered by tylvalosin. Consistent with the mouse results, tylvalosin pretreatment attenuated piglet lung scores with improved growth performance and normal rectal temperature in piglet model induced by PRRSV. Furthermore, tylvalosin attenuated the IκBα phosphorylation and degradation, and blocked the NF-κB p65 translocation. These results indicate that in addition to its direct antimicrobial effect, tylvalosin exhibits anti-inflammatory property and attenuates acute lung injury through suppression of NF-κB activation. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Determination of the tissue inhomogeneity correction in high dose rate Brachytherapy for Iridium-192 source

    Directory of Open Access Journals (Sweden)

    Barlanka Ravikumar

    2012-01-01

    Full Text Available In Brachytherapy treatment planning, the effects of tissue heterogeneities are commonly neglected due to lack of accurate, general and fast three-dimensional (3D dose-computational algorithms. In performing dose calculations, it is assumed that the tumor and surrounding tissues constitute a uniform, homogeneous medium equivalent to water. In the recent past, three-dimensional computed tomography (3D-CT based treatment planning for Brachytherapy applications has been popularly adopted. However, most of the current commercially available planning systems do not provide the heterogeneity corrections for Brachytherapy dosimetry. In the present study, we have measured and quantified the impact of inhomogeneity caused by different tissues with a 0.015 cc ion chamber. Measurements were carried out in wax phantom which was employed to measure the heterogeneity. Iridium-192 (192 Ir source from high dose rate (HDR Brachytherapy machine was used as the radiation source. The reduction of dose due to tissue inhomogeneity was measured as the ratio of dose measured with different types of inhomogeneity (bone, spleen, liver, muscle and lung to dose measured with homogeneous medium for different distances. It was observed that different tissues attenuate differently, with bone tissue showing maximum attenuation value and lung tissue resulting minimum value and rest of the tissues giving values lying in between those of bone and lung. It was also found that inhomogeneity at short distance is considerably more than that at larger distances.

  10. Blockade of P2X7 receptors or pannexin-1 channels similarly attenuates postischemic damage.

    Science.gov (United States)

    Cisneros-Mejorado, Abraham; Gottlieb, Miroslav; Cavaliere, Fabio; Magnus, Tim; Koch-Nolte, Friederich; Scemes, Eliana; Pérez-Samartín, Alberto; Matute, Carlos

    2015-05-01

    The role of P2X7 receptors and pannexin-1 channels in ischemic damage remains controversial. Here, we analyzed their contribution to postanoxic depolarization after ischemia in cultured neurons and in brain slices. We observed that pharmacological blockade of P2X7 receptors or pannexin-1 channels delayed the onset of postanoxic currents and reduced their slope, and that simultaneous inhibition did not further enhance the effects of blocking either one. These results were confirmed in acute cortical slices from P2X7 and pannexin-1 knockout mice. Oxygen-glucose deprivation in cortical organotypic cultures caused neuronal death that was reduced with P2X7 and pannexin-1 blockers as well as in organotypic cultures derived from mice lacking P2X7 and pannexin 1. Subsequently, we used transient middle cerebral artery occlusion to monitor the neuroprotective effect of those drugs in vivo. We found that P2X7 and pannexin-1 antagonists, and their ablation in knockout mice, substantially attenuated the motor symptoms and reduced the infarct volume to ~50% of that in vehicle-treated or wild-type animals. These results show that P2X7 receptors and pannexin-1 channels are major mediators of postanoxic depolarization in neurons and of brain damage after ischemia, and that they operate in the same deleterious signaling cascade leading to neuronal and tissue demise.

  11. Competing causes of death: a death certificate study

    NARCIS (Netherlands)

    Mackenbach, J. P.; Kunst, A. E.; Lautenbach, H.; Oei, Y. B.; Bijlsma, F.

    1997-01-01

    BACKGROUND: Despite the widespread interest in competing causes of death, empirical information on interrelationships between causes of death is scarce. We have used death certificate information to estimate the prevalence of competing causes of death at the moment of dying from specific underlying

  12. Zn/Ga−DFO iron–chelating complex attenuates the inflammatory process in a mouse model of asthma

    Directory of Open Access Journals (Sweden)

    Haim Bibi

    2014-01-01

    Conclusion: In this mouse model of allergic asthma, Zn/Ga−DFO attenuated allergic airway inflammation. The beneficial effects of treatment were in accord with iron overload abatement in asthmatic lungs by Zn/Ga−DFO. The findings in both cellular and tissue levels supported the existence of a significant anti-inflammatory effect of Zn/Ga−DFO.

  13. Bee waxes: a model of characterization for using as base simulator tissue in teletherapy with photons

    International Nuclear Information System (INIS)

    Silva, Rogerio Matias Vidal da; Souza, Divanizia do Nascimento

    2011-01-01

    This paper presents a model of characterization and selection of bee waxes which makes possible to certify the usage viability of that base simulator tissue in the manufacture of appropriated objects for external radiotherapy with mega volt photon beams. The work was divide into three stages, where was evaluated physical and chemical properties besides the aspects related to the capacity of beam attenuation. All the process was carefully accompanied related to the wax origin such as the bee specimen and the flora surrounding the beehives. The chemical composition of the waxes is similar to others simulators usually used in radiotherapy. The behavior of mass attenuation coefficient in the radiotherapeutic energy range is comparable to other simulators, and consequently to the soft tissue. The proposed model is efficient and allows the affirmative that the usage of determined bee wax as base simulator tissue is convenient

  14. Dusp6 attenuates Ras/MAPK signaling to limit zebrafish heart regeneration.

    Science.gov (United States)

    Missinato, Maria A; Saydmohammed, Manush; Zuppo, Daniel A; Rao, Krithika S; Opie, Graham W; Kühn, Bernhard; Tsang, Michael

    2018-03-06

    Zebrafish regenerate cardiac tissue through proliferation of pre-existing cardiomyocytes and neovascularization. Secreted growth factors such as FGFs, IGF, PDGFs and Neuregulin play essential roles in stimulating cardiomyocyte proliferation. These factors activate the Ras/MAPK pathway, which is tightly controlled by the feedback attenuator Dual specificity phosphatase 6 (Dusp6), an ERK phosphatase. Here, we show that suppressing Dusp6 function enhances cardiac regeneration. Inactivation of Dusp6 by small molecules or by gene inactivation increased cardiomyocyte proliferation, coronary angiogenesis, and reduced fibrosis after ventricular resection. Inhibition of Erbb or PDGF receptor signaling suppressed cardiac regeneration in wild-type zebrafish, but had a milder effect on regeneration in dusp6 mutants. Moreover, in rat primary cardiomyocytes, NRG1-stimulated proliferation can be enhanced upon chemical inhibition of Dusp6 with BCI. Our results suggest that Dusp6 attenuates Ras/MAPK signaling during regeneration and that suppressing Dusp6 can enhance cardiac repair. © 2018. Published by The Company of Biologists Ltd.

  15. Fluoxetine Prevents Oligodendrocyte Cell Death by Inhibiting Microglia Activation after Spinal Cord Injury

    Science.gov (United States)

    Lee, Jee Y.; Kang, So R.

    2015-01-01

    Abstract Oligodendrocyte cell death and axon demyelination after spinal cord injury (SCI) are known to be important secondary injuries contributing to permanent neurological disability. Thus, blocking oligodendrocyte cell death should be considered for therapeutic intervention after SCI. Here, we demonstrated that fluoxetine, an antidepressant drug, alleviates oligodendrocyte cell death by inhibiting microglia activation after SCI. After injury at the T9 level with a Precision Systems and Instrumentation (Lexington, KY) device, fluoxetine (10 mg/kg, intraperitoneal) was administered once a day for the indicated time points. Immunostaining with CD11b (OX-42) antibody and quantification analysis showed that microglia activation was significantly inhibited by fluoxetine at 5 days after injury. Fluoxetine also significantly inhibited activation of p38 mitogen-activated protein kinase (p38-MAPK) and expression of pro-nerve growth factor (pro-NGF), which is known to mediate oligodendrocyte cell death through the p75 neurotrophin receptor after SCI. In addition, fluoxetine attenuated activation of Ras homolog gene family member A and decreased the level of phosphorylated c-Jun and, ultimately, alleviated caspase-3 activation and significantly reduced cell death of oligodendrocytes at 5 days after SCI. Further, the decrease of myelin basic protein, myelin loss, and axon loss in white matter was also significantly blocked by fluoxetine, as compared to vehicle control. These results suggest that fluoxetine inhibits oligodendrocyte cell death by inhibiting microglia activation and p38-MAPK activation, followed by pro-NGF production after SCI, and provide a potential usage of fluoxetine for a therapeutic agent after acute SCI in humans. PMID:25366938

  16. Curcumin attenuates paraquat-induced cell death in human neuroblastoma cells through modulating oxidative stress and autophagy.

    Science.gov (United States)

    Jaroonwitchawan, Thiranut; Chaicharoenaudomrung, Nipha; Namkaew, Jirapat; Noisa, Parinya

    2017-01-01

    Paraquat is a neurotoxic agent, and oxidative stress plays an important role in neuronal cell death after paraquat exposure. In this study, we assessed the neuroprotective effect of curcumin against paraquat and explored the underlying mechanisms of curcumin in vitro. Curcumin treatment prevented paraquat-induced reactive oxygen species (ROS) and apoptotic cell death. Curcumin also exerted a neuroprotective effect by increasing the expression of anti-apoptotic and antioxidant genes. The pretreatment of curcumin significantly decreased gene expression and protein production of amyloid precursor protein. The activation of autophagy process was found defective in paraquat-induced cells, indicated by the accumulation and reduction of LC3I/II. Noteworthy, curcumin restored LC3I/II expression after the pretreatment. Collectively, curcumin demonstrated as a prominent suppressor of ROS, and could reverse autophagy induction in SH-SY5Y cells. The consequences of this were the reduction of APP production and prevention of SH-SY5Y cells from apoptosis. Altogether, curcumin potentially serves as a therapeutic agent of neurodegenerative diseases, associated with ROS overproduction and autophagy dysfunction. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Generation of a Four-Class Attenuation Map for MRI-Based Attenuation Correction of PET Data in the Head Area Using a Novel Combination of STE/Dixon-MRI and FCM Clustering.

    Science.gov (United States)

    Khateri, Parisa; Saligheh Rad, Hamidreza; Jafari, Amir Homayoun; Fathi Kazerooni, Anahita; Akbarzadeh, Afshin; Shojae Moghadam, Mohsen; Aryan, Arvin; Ghafarian, Pardis; Ay, Mohammad Reza

    2015-12-01

    The aim of this study is to generate a four-class magnetic resonance imaging (MRI)-based attenuation map (μ-map) for attenuation correction of positron emission tomography (PET) data of the head area using a novel combination of short echo time (STE)/Dixon-MRI and a dedicated image segmentation method. MR images of the head area were acquired using STE and two-point Dixon sequences. μ-maps were derived from MRI images based on a fuzzy C-means (FCM) clustering method along with morphologic operations. Quantitative assessment was performed to evaluate generated MRI-based μ-maps compared to X-ray computed tomography (CT)-based μ-maps. The voxel-by-voxel comparison of MR-based and CT-based segmentation results yielded an average of more than 95 % for accuracy and specificity in the cortical bone, soft tissue, and air region. MRI-based μ-maps show a high correlation with those derived from CT scans (R (2) > 0.95). Results indicate that STE/Dixon-MRI data in combination with FCM-based segmentation yields precise MR-based μ-maps for PET attenuation correction in hybrid PET/MRI systems.

  18. Biomaterials in myocardial tissue engineering

    Science.gov (United States)

    Reis, Lewis A.; Chiu, Loraine L. Y.; Feric, Nicole; Fu, Lara; Radisic, Milica

    2016-01-01

    Cardiovascular disease is the leading cause of death in the developed world, and as such there is a pressing need for treatment options. Cardiac tissue engineering emerged from the need to develop alternate sources and methods of replacing tissue damaged by cardiovascular diseases, as the ultimate treatment option for many who suffer from end-stage heart failure is a heart transplant. In this review we focus on biomaterial approaches to augment injured or impaired myocardium with specific emphasis on: the design criteria for these biomaterials; the types of scaffolds—composed of natural or synthetic biomaterials, or decellularized extracellular matrix—that have been used to develop cardiac patches and tissue models; methods to vascularize scaffolds and engineered tissue, and finally injectable biomaterials (hydrogels)designed for endogenous repair, exogenous repair or as bulking agents to maintain ventricular geometry post-infarct. The challenges facing the field and obstacles that must be overcome to develop truly clinically viable cardiac therapies are also discussed. PMID:25066525

  19. Contrasting properties of zinc oxide nanoparticles and titanium dioxide nanoparticles for optical coherence tomography imaging of human normal endometrium tissues and uterine leiomyoma tissues in ex vivo study combined with microneedle

    Science.gov (United States)

    Gu, P. C.; Ye, M.; Wei, H. J.; Wu, G. Y.; Guo, Z. Y.; Yang, H. Q.; He, Y. H.; Xie, S. S.; Zhou, L. P.

    2016-05-01

    The aims of this study were to monitor and contrast the diffusion of zinc oxide (ZnO) and titanium dioxide (TiO2) nanoparticles’ (NPs) penetration and accumulation in human normal endometrium (NE) tissues and uterine leiomyoma (UL) tissues combined with microneedles (MN) in vitro using optical coherence tomography (OCT) and diffuse reflectance (DR) spectral. Continuous OCT and DR spectra monitoring showed that, after application of ZnO or TiO2 NPs, the OCT signal intensities of NE and UL both increase with time, and the TiO2 NPs tend to produce a greater signal enhancement than ZnO NPs in the same type of tissue. And for the same type of NPs, they penetrate faster in NE tissue compared with UL tissue. In addition, the use of MN can significantly enhance the penetration of topically applied ZnO or TiO2 NPs in the tissue. The attenuation coefficients of NE tissue are about 5.01  ±  0.35 mm-1 for ZnO NPs treatment at 195 min and 4.62  ±  0.29 mm-1 for ZnO NPs/MN at 179 min, 4.73  ±  0.30 mm-1 for TiO2 NPs at 183 min, 4.05  ±  0.25 mm-1 for TiO2 NPs/MN at 147 min when the penetration process reached the stable state. And the attenuation coefficients of UL tissue are about 5.0  ±  0.34 mm-1 for ZnO NP treatment at 191 min and 4.20  ±  0.26 mm-1 for ZnO NPs/MN at 169 min, 4.33  ±  0.27 mm-1 for TiO2 NPs at 176 min, 3.53  ±  0.20 mm-1 for TiO2 NPs/MN at 141 min when the penetration process reached the stable state. This suggests that TiO2 NPs penetrate faster and reach the maximum amount of penetration earlier than ZnO NPs with the same condition. The results of attenuation coefficients and reflectance intensity of NE and UL tissue suggests that the accumulation of the TiO2 or ZnO NPs in both NE and UL tissue greatly influenced the tissue optical properties.

  20. Contrasting properties of zinc oxide nanoparticles and titanium dioxide nanoparticles for optical coherence tomography imaging of human normal endometrium tissues and uterine leiomyoma tissues in ex vivo study combined with microneedle

    International Nuclear Information System (INIS)

    Gu, P C; Wei, H J; Guo, Z Y; Zhou, L P; Ye, M; Wu, G Y; Yang, H Q; Xie, S S; He, Y H

    2016-01-01

    The aims of this study were to monitor and contrast the diffusion of zinc oxide (ZnO) and titanium dioxide (TiO 2 ) nanoparticles’ (NPs) penetration and accumulation in human normal endometrium (NE) tissues and uterine leiomyoma (UL) tissues combined with microneedles (MN) in vitro using optical coherence tomography (OCT) and diffuse reflectance (DR) spectral. Continuous OCT and DR spectra monitoring showed that, after application of ZnO or TiO 2 NPs, the OCT signal intensities of NE and UL both increase with time, and the TiO 2 NPs tend to produce a greater signal enhancement than ZnO NPs in the same type of tissue. And for the same type of NPs, they penetrate faster in NE tissue compared with UL tissue. In addition, the use of MN can significantly enhance the penetration of topically applied ZnO or TiO 2 NPs in the tissue. The attenuation coefficients of NE tissue are about 5.01  ±  0.35 mm −1 for ZnO NPs treatment at 195 min and 4.62  ±  0.29 mm −1 for ZnO NPs/MN at 179 min, 4.73  ±  0.30 mm −1 for TiO 2 NPs at 183 min, 4.05  ±  0.25 mm −1 for TiO 2 NPs/MN at 147 min when the penetration process reached the stable state. And the attenuation coefficients of UL tissue are about 5.0  ±  0.34 mm −1 for ZnO NP treatment at 191 min and 4.20  ±  0.26 mm −1 for ZnO NPs/MN at 169 min, 4.33  ±  0.27 mm −1 for TiO 2 NPs at 176 min, 3.53  ±  0.20 mm −1 for TiO 2 NPs/MN at 141 min when the penetration process reached the stable state. This suggests that TiO 2 NPs penetrate faster and reach the maximum amount of penetration earlier than ZnO NPs with the same condition. The results of attenuation coefficients and reflectance intensity of NE and UL tissue suggests that the accumulation of the TiO 2 or ZnO NPs in both NE and UL tissue greatly influenced the tissue optical properties. (paper)

  1. Human skeletal muscles replaced to a high degree by white adipose tissue.

    Science.gov (United States)

    Ina, Keisuke; Kitamura, Hirokazu; Masaki, Takayuki; Tatsukawa, Shuji; Yoshimatsu, Hironobu; Fujikura, Yoshihisa

    2011-02-01

    Extreme replacement of skeletal muscles by adipose tissue was found in an 86-year old Japanese male cadaver during dissection practice for medical students at Oita University School of Medicine. Especially, the bilateral sartorius muscles looked overall like adipose tissue. The man had suffered from diabetes mellitus, renal failure, hypertension and hypothyroidism before his death. He was also an alcohol drinker. He had been bedridden late in life. The cause of death was renal failure. In microscopy, the adipose tissue-like sartorius muscle was shown to consist of leptin-positive adipocytes with a small number of degenerated muscle fibers. Fatty replacement, or fatty degeneration, appears to result from endocrine and metabolic disorders, and being bedridden leads to muscle atrophy and damage, although the origin of the adipocytes which emerged in the degenerated muscles is unknown.

  2. Landing gear noise attenuation

    Science.gov (United States)

    Moe, Jeffrey W. (Inventor); Whitmire, Julia (Inventor); Kwan, Hwa-Wan (Inventor); Abeysinghe, Amal (Inventor)

    2011-01-01

    A landing gear noise attenuator mitigates noise generated by airframe deployable landing gear. The noise attenuator can have a first position when the landing gear is in its deployed or down position, and a second position when the landing gear is in its up or stowed position. The noise attenuator may be an inflatable fairing that does not compromise limited space constraints associated with landing gear retraction and stowage. A truck fairing mounted under a truck beam can have a compliant edge to allow for non-destructive impingement of a deflected fire during certain conditions.

  3. Ezrin dephosphorylation/downregulation contributes to ursolic acid-mediated cell death in human leukemia cells

    International Nuclear Information System (INIS)

    Li, G; Zhou, T; Liu, L; Chen, J; Zhao, Z; Peng, Y; Li, P; Gao, N

    2013-01-01

    Ezrin links the actin filaments with the cell membrane and has a functional role in the apoptotic process. It appears clear that ezrin is directly associated with Fas, leading to activation of caspase cascade and cell death. However, the exact role of ezrin in ursolic acid (UA)-induced apoptosis remains unclear. In this study, we show for the first time that UA induces apoptosis in both transformed and primary leukemia cells through dephosphorylation/downregulation of ezrin, association and polarized colocalization of Fas and ezrin, as well as formation of death-inducing signaling complex. These events are dependent on Rho-ROCK1 signaling pathway. Knockdown of ezrin enhanced cell death mediated by UA, whereas overexpression of ezrin attenuated UA-induced apoptosis. Our in vivo study also showed that UA-mediated inhibition of tumor growth of mouse leukemia xenograft model is in association with the dephosphorylation/downregulation of ezrin. Such findings suggest that the cytoskeletal protein ezrin may represent an attractive target for UA-mediated lethality in human leukemia cells

  4. Effects of Re-heating Tissue Samples to Core Body Temperature on High-Velocity Ballistic Projectile-tissue Interactions.

    Science.gov (United States)

    Humphrey, Caitlin; Henneberg, Maciej; Wachsberger, Christian; Maiden, Nicholas; Kumaratilake, Jaliya

    2017-11-01

    Damage produced by high-speed projectiles on organic tissue will depend on the physical properties of the tissues. Conditioning organic tissue samples to human core body temperature (37°C) prior to conducting ballistic experiments enables their behavior to closely mimic that of living tissues. To minimize autolytic changes after death, the tissues are refrigerated soon after their removal from the body and re-heated to 37°C prior to testing. This research investigates whether heating 50-mm-cube samples of porcine liver, kidney, and heart to 37°C for varying durations (maximum 7 h) can affect the penetration response of a high-speed, steel sphere projectile. Longer conditioning times for heart and liver resulted in a slight loss of velocity/energy of the projectile, but the reverse effect occurred for the kidney. Possible reasons for these trends include autolytic changes causing softening (heart and liver) and dehydration causing an increase in density (kidney). © 2017 American Academy of Forensic Sciences.

  5. Penetration of UV-A, UV-B, blue, and red light into leaf tissues of pecan measured by a fiber optic microprobe system

    Science.gov (United States)

    Qi, Yadong; Bai, Shuju; Vogelmann, Thomas C.; Heisler, Gordon M.

    2003-11-01

    The depth of light penetration from the adaxial surfaces of the mature leaves of pecan (Carya illinoensis) was measured using a fiber optic microprobe system at four wavelengths: UV-B (310nm), UV-A (360 nm), blue light (430nm), and red light (680nm). The average thickness of the leaf adaxial epidermal layer was 15um and the total leaf thickness was 219um. The patterns of the light attenuation by the leaf tissues exhibited strong wavelength dependence. The leaf adaxial epidermal layer was chiefly responsible for absorbing the UV-A UV-B radiation. About 98% of 310 nm light was steeply attenuated within the first 5 um of the adaxial epidermis; thus, very little UV-B radiation was transmitted to the mesophyll tissues where contain photosynthetically sensitive sites. The adaxial epidermis also attenuated 96% of the UV-A radiation. In contrast, the blue and red light penetrated much deeper and was gradually attenutated by the leaves. The mesophyll tissues attenuated 17% of the blue light and 42% of the red light, which were available for photosynthesis use. Since the epidermal layer absorbed nearly all UV-B light, it acted as an effective filter screening out the harmful radiation and protecting photosynthetically sensitive tissues from the UV-B damage. Therefore, the epidermal function of the UV-B screening effectiveness can be regarded as one of the UV-B protection mechanisms in pecan.

  6. Magnetic resonance imaging-guided attenuation correction of positron emission tomography data in PET/MRI

    Science.gov (United States)

    Izquierdo-Garcia, David; Catana, Ciprian

    2018-01-01

    Synopsis Attenuation correction (AC) is one of the most important challenges in the recently introduced combined positron emission tomography/magnetic resonance imaging (PET/MR) scanners. PET/MR AC (MR-AC) approaches aim to develop methods that allow accurate estimation of the linear attenuation coefficients (LACs) of the tissues and other components located in the PET field of view (FoV). MR-AC methods can be divided into three main categories: segmentation-, atlas- and PET-based. This review aims to provide a comprehensive list of the state of the art MR-AC approaches as well as their pros and cons. The main sources of artifacts such as body-truncation, metallic implants and hardware correction will be presented. Finally, this review will discuss the current status of MR-AC approaches for clinical applications. PMID:26952727

  7. Olmesartan Attenuates Tacrolimus-Induced Biochemical and Ultrastructural Changes in Rat Kidney Tissue

    Directory of Open Access Journals (Sweden)

    Naif O. Al-Harbi

    2014-01-01

    Full Text Available Tacrolimus, a calcineurin inhibitor, is clinically used as an immunosuppressive agent in organ transplantation, but its use is limited due to its marked nephrotoxicity. The present study investigated the effect of olmesartan (angiotensin receptor blocker on tacrolimus-induced nephrotoxicity in rats. A total of 24 rats were divided into four groups, which included control, tacrolimus, tacrolimus + olmesartan, and olmesartan groups. Tacrolimus-induced nephrotoxicity was assessed biochemically and histopathologically. Tacrolimus significantly increased BUN and creatinine level. Treatment with olmesartan reversed tacrolimus-induced changes in the biochemical markers (BUN and creatinine of nephrotoxicity. Tacrolimus significantly decreased GSH level and catalase activity while increasing MDA level. Olmesartan also attenuated the effects of tacrolimus on MDA, GSH, and catalase. In tacrolimus group histological examination showed marked changes in renal tubule, mitochondria, and podocyte processes. Histopathological and ultrastructural studies showed that treatment with olmesartan prevented tacrolimus-induced renal damage. These results suggest that olmesartan has protective effects on tacrolimus-induced nephrotoxicity, implying that RAS might be playing role in tacrolimus-induced nephrotoxicity.

  8. [F-18]2-fluoro-2-deoxyglucose (FDG) positron emission tomography after limb salvage surgery: post-surgical appearance, attenuation correction and local complications

    Energy Technology Data Exchange (ETDEWEB)

    Gelfand, Michael J.; Sharp, Susan E. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Nuclear Medicine Division, Cincinnati, OH (United States)

    2015-08-15

    Metal endoprostheses and internal fixation devices cause significant artifacts on CT after limb salvage surgery; positron emission tomography (PET) images should be evaluated for artifacts. (1) To describe [F-18]2-fluoro-2-deoxyglucose (FDG) PET uptake patterns after limb salvage surgery. (2) To determine whether metal endoprostheses and fixation hardware cause significant artifacts on CT attenuation-corrected PET that interfere with diagnostic use of PET/CT after limb salvage surgery. We reviewed 92 studies from 18 patients ages 5-21 years. Diagnoses were osteogenic sarcoma in 14, Ewing sarcoma in 3, and malignant peripheral nerve sheath tumor originating in bone in 1. Nine patients had distal femur/knee endoprostheses, five had lower-extremity bone allografts secured by large metal plates and four had upper-extremity limb salvage procedures. Maximum standardized uptake value was calculated at lower-extremity soft-tissue-endoprosthesis interfaces. In 15 patients with PET/CT imaging, the first PET/CT scan after limb salvage surgery was reviewed for metal artifacts on CT images and for artifacts at locations on PET corresponding to the CT metal artifacts. Increased FDG uptake was consistently present at soft-tissue interfaces with endoprostheses, allografts and internal fixation devices, with little or no FDG uptake at cemented endoprosthesis-bone interfaces. Maximum standardized uptake value at margins of femur/knee endoprostheses ranged from 1.4 to 5.7. In four patients with distal femur/knee endoprostheses, minimal artifact was noted on attenuation-corrected PET images, but image interpretation was not affected. In the other 11 patients who had CT attenuation correction, we detected no artifacts caused by the attenuation correction. CT attenuation correction did not cause artifacts that affected interpretation of attenuation-corrected PET images. (orig.)

  9. [F-18]2-fluoro-2-deoxyglucose (FDG) positron emission tomography after limb salvage surgery: post-surgical appearance, attenuation correction and local complications

    International Nuclear Information System (INIS)

    Gelfand, Michael J.; Sharp, Susan E.

    2015-01-01

    Metal endoprostheses and internal fixation devices cause significant artifacts on CT after limb salvage surgery; positron emission tomography (PET) images should be evaluated for artifacts. (1) To describe [F-18]2-fluoro-2-deoxyglucose (FDG) PET uptake patterns after limb salvage surgery. (2) To determine whether metal endoprostheses and fixation hardware cause significant artifacts on CT attenuation-corrected PET that interfere with diagnostic use of PET/CT after limb salvage surgery. We reviewed 92 studies from 18 patients ages 5-21 years. Diagnoses were osteogenic sarcoma in 14, Ewing sarcoma in 3, and malignant peripheral nerve sheath tumor originating in bone in 1. Nine patients had distal femur/knee endoprostheses, five had lower-extremity bone allografts secured by large metal plates and four had upper-extremity limb salvage procedures. Maximum standardized uptake value was calculated at lower-extremity soft-tissue-endoprosthesis interfaces. In 15 patients with PET/CT imaging, the first PET/CT scan after limb salvage surgery was reviewed for metal artifacts on CT images and for artifacts at locations on PET corresponding to the CT metal artifacts. Increased FDG uptake was consistently present at soft-tissue interfaces with endoprostheses, allografts and internal fixation devices, with little or no FDG uptake at cemented endoprosthesis-bone interfaces. Maximum standardized uptake value at margins of femur/knee endoprostheses ranged from 1.4 to 5.7. In four patients with distal femur/knee endoprostheses, minimal artifact was noted on attenuation-corrected PET images, but image interpretation was not affected. In the other 11 patients who had CT attenuation correction, we detected no artifacts caused by the attenuation correction. CT attenuation correction did not cause artifacts that affected interpretation of attenuation-corrected PET images. (orig.)

  10. Imaging of cerebral ischemic edema and neuronal death

    Energy Technology Data Exchange (ETDEWEB)

    Kummer, Ruediger von [Universitaetsklinikum Carl Gustav Carus, Institut fuer Diagnostische und Interventionelle Neuroradiologie, Dresden (Germany); Dzialowski, Imanuel [Elblandklinikum Meissen, Neurologische Rehabilitationsklinik Grossenhain, Meissen (Germany)

    2017-06-15

    In acute cerebral ischemia, the assessment of irreversible injury is crucial for treatment decisions and the patient's prognosis. There is still uncertainty how imaging can safely differentiate reversible from irreversible ischemic brain tissue in the acute phase of stroke. We have searched PubMed and Google Scholar for experimental and clinical papers describing the pathology and pathophysiology of cerebral ischemia under controlled conditions. Within the first 6 h of stroke onset, ischemic cell injury is subtle and hard to recognize under the microscope. Functional impairment is obvious, but can be induced by ischemic blood flow allowing recovery with flow restoration. The critical cerebral blood flow (CBF) threshold for irreversible injury is ∝15 ml/100 g x min. Below this threshold, ischemic brain tissue takes up water in case of any residual capillary flow (ionic edema). Because tissue water content is linearly related to X-ray attenuation, computed tomography (CT) can detect and measure ionic edema and, thus, determine ischemic brain infarction. In contrast, diffusion-weighted magnetic resonance imaging (DWI) detects cytotoxic edema that develops at higher thresholds of ischemic CBF and is thus highly sensitive for milder levels of brain ischemia, but not specific for irreversible brain tissue injury. CT and MRI are complimentary in the detection of ischemic stroke pathology and are valuable for treatment decisions. (orig.)

  11. Method and system for in vivo measurement of bone tissue using a two level energy source

    International Nuclear Information System (INIS)

    Fletcher, J.C.; Cameron, J.R.; Judy, P.F.

    1976-01-01

    Methods and apparatus are provided for radiologically determining the bone mineral content of living human bone tissue independently of the concurrent presence of adipose and other soft tissues. A target section of the body of the subject is irradiated with a beam of penetrative radiations of preselected energy to determine the attenuation of such beam with respect to the intensity of each of two radiations of different predetermined energy levels. The resulting measurements are then employed to determine bone mineral content according to the following relationship: I = (I 0 ) exp [(μBM/sup M/BM) - (μST/sup M/ST)] wherein I 0 is the unattentuated intensity of the radiations in the beam, μ is the mass attenuation coefficient, M is mass in g/cm 2

  12. Sulfated caffeic acid dehydropolymer attenuates elastase and cigarette smoke extract-induced emphysema in rats: sustained activity and a need of pulmonary delivery.

    Science.gov (United States)

    Saluja, Bhawana; Li, Hua; Desai, Umesh R; Voelkel, Norbert F; Sakagami, Masahiro

    2014-08-01

    Although emphysema destroys alveolar structures progressively and causes death eventually, no drug has been discovered to prevent, intervene, and/or resolve this life-threatening disease. We recently reported that sulfated caffeic acid dehydropolymer CDSO3 is a novel potent triple-action inhibitor of elastolysis, oxidation, and inflammation in vitro, and therefore, a potential anti-emphysema agent. However, the in vivo therapeutic potency, duration and mode of actions, and effective route remain to be demonstrated. Emphysema was induced in rats with human sputum elastase (HSE) combined with cigarette smoke extract (CSE). CDSO3 at 5, 30, or 100 μg/kg was dosed to the lung or injected subcutaneously at 2, 6, or 24 h before or 1 or 24 h or 1 week after the HSE/CSE instillation. At 1 h or 48 h or on day 21-22 or day 28, lungs were examined for airway-to-blood injurious barrier damage; their elastolytic, oxidative, and inflammatory activities; lung luminal leukocytes infiltration; functional treadmill exercise endurance; and/or morphological airspace enlargement. CDSO3, when dosed to the lung at 30 or 100 μg/kg, but not via systemic subcutaneous injection, significantly (43-93 %) attenuated HSE/CSE-induced (1) barrier damage measured by luminal hemorrhage and protein leak; (2) elastolytic, oxidative, and inflammatory activities measured with elastase, reduced glutathione, and TNFα levels, respectively; (3) luminal neutrophil infiltration and tissue myeloperoxidase activity; (4) functional impairment of exercise endurance; and (5) airspace enlargement, in both preventive and interventional dosing protocols. Notably, the effects were shown to last for 24 h at the greater 100-μg/kg dose, and the 1-week-delayed administration was also capable of attenuating the development of emphysema. CDSO3 is a novel, potent, long-acting, nonpeptidic macromolecule that inhibits HSE/CSE-induced elastolysis, oxidation, and inflammation in the lung and thereby attenuates the development

  13. Application of the ultrasound hyperthermia model for a multi-layered tissue system

    International Nuclear Information System (INIS)

    Loerincz, A

    2004-01-01

    This work models the thermal effect of several planar transducers targeting the tumour interactively in a ceramics-coupling-skin-muscle-tumour system. The most important inputs of the model include the following: emitted electric output, J/s; mechanical efficiency, %; number of transducers, pieces; surface area of the transducer, m 2 ; area, m 2 and temperature, K of the cooling surface, attenuation coefficients, Np/cm MHz; specific heats, J/gK; densities, g/cm 3 ; heat conductivities, J/msK; sound velocities m/s; flow rate of blood in the tissues, ml/gtissue/min; sound path in the tissues and in the blood flowing through the tissues, m. From the inputs, a number of intermediate data are determined, e.g. the geometry of the irradiated bodies that are in the path of ultrasound, acoustic hardness, Pas/m; sound reflection and sound transmission occurring at the interfaces, Np; heat exchanger wall thickness of the irradiated bodies, m; heat dissipation and heat exchanger surface areas, m 2 ; flow rate of blood in the tissues located in the path of ultrasound, ml/tissue mass in g/min; and the sound attenuation of the tissues, Np. The amount of generated heat, K/s decreased by the heat energy transported, J/s to the surrounding tissues by blood and heat conductivity, and the actual temperature, K of the irradiated tissue are the output parameters calculated by the model. The output results are available in the form of functions. The expected temperature of the target area, K can be set to either the denaturation temperature or to the respiratory decomposition temperature (43.5 deg. C) without damaging the surrounding tissues by setting in the following parameters properly: electric output power, W; the number and surface area, m 2 of the transducers; the area, m 2 and temperature, K of the cooling surfaces. After further development, the model will be suitable for handling more than three tissue layers, increased blood flow rates different angles of incidence, and

  14. Enhanced replication of attenuated HSV-1 in irradiated human glioma xenografts

    International Nuclear Information System (INIS)

    Advani, Sunil J.; Kataoka, Yasushi; Sibley, Greg S.; Song, Paul Y.; Hallahan, Dennis E.; Roizman, Bernard; Weichselbaum, Ralph R.

    1997-01-01

    Purpose: Previously we had shown that combining ionizing radiation (IR) with attenuated replication competent HSV-1 (R3616) significantly increased glioma xenograft eradication compared to IR or virus alone. One hypothesis is that IR induces cell factors that contribute to augment viral replication thereby increasing the efficacy of attenuated HSV-1. The purpose of this study was to examine if IR altered viral replication of attenuated HSV-1 in glioma xenografts Material and Methods: Human U-87MG glioma cells were grown in the hindlimb of athymic mice and grown to >200 mm 3 . Tumors were infected with 2x10 7 plaque forming units (pfu) of R3616 ( γ1 34.5 - ) or R7020 (multimutated, γ1 34.5 + ) on day 0 and irradiated with 20 Gy on day 1 and 25 Gy on day 2. Tumors were harvested 3, 5, 7, and 14 days after viral injection. Tumors were homogenized and sonnicated. Serial dilutions of tumor extract were overlaid on Vero cells to determine the number of pfu. In addition, in-situ hybridization to HSV-1 DNA was performed on tumors harvested at day 7. Results: In-situ hybridization revealed larger numbers of glial cells infected with HSV along with a greater distribution in the irradiated tumors compared to non-irradiated tumors. We next quantified viral particles in infected tumors +/- IR: Conclusion: Herein we demonstrate radiation enhanced viral replication as one of the interactive effects of combining IR and attenuated HSV in treating glioma xenografts and a potential therapeutic motif in the treatment of gliomas. To reduce normal tissue toxicity of HSV in glioma therapy, viruses must be attenuated. However, attenuating the virus compromises its replication and thus its potential efficacy. Our results indicate that IR augments the amount of virus recovered from human glioma xenografts for up to 3 days post IR. The results do not appear to be related to a specific mutation in the herpes genome but rather to herpes viruses in general. Yields of R7020 were greater than R

  15. The control and execution of programmed cell death

    International Nuclear Information System (INIS)

    Begum, R.; Pathak, N.; Hasnain, S.E.; Sah, N.K.; Athar, M.

    1999-01-01

    Apoptosis or programmed cell death is a highly conserved genetically controlled response of metazoan cells to commit suicide. Non apoptotic programmed cell death seems to operate in single celled eukaryotes implying that evolution of PCD has preceded the evolution of multicellularity. PCD plays a crucial role in the regulation of cellular and tissue homeostasis and any aberrations in apoptosis leads to several diseases including cancer, neurodegenerative disorders and AIDS. The mechanisms by which apoptosis is controlled are varied. In some cells, members of bcl-2 family or p53 are crucial for regulating the apoptosis programme, whereas in other cells Fas ligand is more important. bcl-2 family members have a prime role in the regulation of cell death at all stages including development, whereas cell death during development is independent of p53. bcl-2 family members being localized on the outer mitochondrial membrane, control the mitochondrial homeostasis and cytochrome c redistribution and thereby regulate the cell death process. p53 promotes DNA damage mediated cell death after growth arrest and failed DNA repair. Caspases play a key role in the execution of cell death by mediating highly specific cleavages of crucial cellular proteins collectively manifesting the apoptotic phenotype. Protein inhibitors like crm A, p35 and IAPs could prevent/control apoptosis induced by a broad array of cell death stimuli by several mechanisms specially interfering in caspase activation or caspase activity. Among endonucleases, caspase activated DNase (CAD) plays a crucial role in DNA fragmentation, a biochemical hallmark of apoptosis. As regulation of cell death seems to be as complex as regulation of cell proliferation, multiple kinase mediated regulatory mechanisms might control the apoptotic process. Thus, in spite of intensive research over the past few years, the field of apoptosis still remains fertile to unravel among others, the molecular mechanisms of cytochrome c

  16. The control and execution of programmed cell death

    Energy Technology Data Exchange (ETDEWEB)

    Begum, R.; Pathak, N.; Hasnain, S.E.; Sah, N.K. [National Inst. of Immunology, New Delhi (India). Eukaryotic Gene Expression Lab.; Taneja, T.K.; Mohan, M. [National Inst. of Immunology, New Delhi (India). Eukaryotic Gene Expression Lab.]|[Dept. of Medical Elementology and Toxicology, New Delhi (India); Athar, M. [Dept. of Medical Elementology and Toxicology, New Delhi (India)

    1999-07-01

    Apoptosis or programmed cell death is a highly conserved genetically controlled response of metazoan cells to commit suicide. Non apoptotic programmed cell death seems to operate in single celled eukaryotes implying that evolution of PCD has preceded the evolution of multicellularity. PCD plays a crucial role in the regulation of cellular and tissue homeostasis and any aberrations in apoptosis leads to several diseases including cancer, neurodegenerative disorders and AIDS. The mechanisms by which apoptosis is controlled are varied. In some cells, members of bcl-2 family or p53 are crucial for regulating the apoptosis programme, whereas in other cells Fas ligand is more important. bcl-2 family members have a prime role in the regulation of cell death at all stages including development, whereas cell death during development is independent of p53. bcl-2 family members being localized on the outer mitochondrial membrane, control the mitochondrial homeostasis and cytochrome c redistribution and thereby regulate the cell death process. p53 promotes DNA damage mediated cell death after growth arrest and failed DNA repair. Caspases play a key role in the execution of cell death by mediating highly specific cleavages of crucial cellular proteins collectivley manifesting the apoptotic phenotype. Protein inhibitors like crm A, p35 and IAPs could prevent/control apoptosis induced by a broad array of cell death stimuli by several mechanisms specially interfering in caspase activation or caspase activity. Among endonucleases, caspase activated DNase (CAD) plays a crucial role in DNA fragmentation, a biochemical hallmark of apoptosis. As regulation of cell death seems to be as complex as regulation of cell proliferation, multiple kinase mediated regulatory mechanisms might control the apoptotic process. Thus, in spite of intensive research over the past few years, the field of apoptosis still remains fertile to unravel among others, the molecular mechanisms of cytochrome c

  17. Death following traumatic brain injury in Drosophila is associated with intestinal barrier dysfunction

    Science.gov (United States)

    Katzenberger, Rebeccah J; Chtarbanova, Stanislava; Rimkus, Stacey A; Fischer, Julie A; Kaur, Gulpreet; Seppala, Jocelyn M; Swanson, Laura C; Zajac, Jocelyn E; Ganetzky, Barry; Wassarman, David A

    2015-01-01

    Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Unfavorable TBI outcomes result from primary mechanical injuries to the brain and ensuing secondary non-mechanical injuries that are not limited to the brain. Our genome-wide association study of Drosophila melanogaster revealed that the probability of death following TBI is associated with single nucleotide polymorphisms in genes involved in tissue barrier function and glucose homeostasis. We found that TBI causes intestinal and blood–brain barrier dysfunction and that intestinal barrier dysfunction is highly correlated with the probability of death. Furthermore, we found that ingestion of glucose after a primary injury increases the probability of death through a secondary injury mechanism that exacerbates intestinal barrier dysfunction. Our results indicate that natural variation in the probability of death following TBI is due in part to genetic differences that affect intestinal barrier dysfunction. DOI: http://dx.doi.org/10.7554/eLife.04790.001 PMID:25742603

  18. Deliberating death.

    Science.gov (United States)

    Landes, Scott D

    2010-01-01

    Utilizing a particular case study of a woman attempting to come to terms with her death, this article explores the difficult metaphors of death present within the Christian tradition. Tracing a Christian understanding of death back to the work of Augustine, the case study is utilized to highlight the difficulties presented by past and present theology embracing ideas of punishment within death. Following the trajectory of the case study, alternative understandings of death present in recent Christian theology and within Native American spirituality are presented in an attempt to find room for a fuller meaning of death post-reconciliation, but premortem.

  19. miR-Let7A Controls the Cell Death and Tight Junction Density of Brain Endothelial Cells under High Glucose Condition.

    Science.gov (United States)

    Song, Juhyun; Yoon, So Ra; Kim, Oh Yoen

    2017-01-01

    Hyperglycemia-induced stress in the brain of patients with diabetes triggers the disruption of blood-brain barrier (BBB), leading to diverse neurological diseases including stroke and dementia. Recently, the role of microRNA becomes an interest in the research for deciphering the mechanism of brain endothelial cell damage under hyperglycemia. Therefore, we investigated whether mircoRNA Let7A (miR-Let7A) controls the damage of brain endothelial (bEnd.3) cells against high glucose condition. Cell viability, cell death marker expressions (p-53, Bax, and cleaved poly ADP-ribose polymerase), the loss of tight junction proteins (ZO-1 and claudin-5), proinflammatory response (interleukin-6, tumor necrosis factor- α ), inducible nitric oxide synthase, and nitrite production were confirmed using MTT, reverse transcription-PCR, quantitative-PCR, Western blotting, immunofluorescence, and Griess reagent assay. miR-Let7A overexpression significantly prevented cell death and loss of tight junction proteins and attenuated proinflammatory response and nitrite production in the bEnd.3 cells under high glucose condition. Taken together, we suggest that miR-Let7A may attenuate brain endothelial cell damage by controlling cell death signaling, loss of tight junction proteins, and proinflammatory response against high glucose stress. In the future, the manipulation of miR-Let7A may be a novel solution in controlling BBB disruption which leads to the central nervous system diseases.

  20. Early maternal death due to acute encephalitis

    Directory of Open Access Journals (Sweden)

    M Vidanapathirana

    2014-03-01

    Full Text Available Maternal death in an unmarried woman poses a medico-legal challenge. A 24-year-old unmarried schoolteacher, residing at a boarding place, had been admitted to hospital in a state of cardiac arrest. At the autopsy, mild to moderate congestion of subarachnoid vessels and oedema of the brain was noted. An un-interfered foetus of 15 weeks with an intact sac and placental tissues were seen. Genital tract injuries were not present. Histopathological examination showed diffuse perivascular cuffing by mononuclear cells suggestive of viral encephalitis, considering the circumstances of death and the social stigma of pregnancy in this unmarried teacher, the possibility of attempted suicide by ingestion of a poison was considered. Abrus precatorius (olinda seeds commonly found in the area is known to produce acute encephalitis as well as haemorrhagic gastroenteritis and pulmonary congestion was also considered as a possible cause for this unusual presentation

  1. Effective preexposure and postexposure prophylaxis of rabies with a highly attenuated recombinant rabies virus.

    Science.gov (United States)

    Faber, Milosz; Li, Jianwei; Kean, Rhonda B; Hooper, D Craig; Alugupalli, Kishore R; Dietzschold, Bernhard

    2009-07-07

    Rabies remains an important public health problem with more than 95% of all human rabies cases caused by exposure to rabid dogs in areas where effective, inexpensive vaccines are unavailable. Because of their ability to induce strong innate and adaptive immune responses capable of clearing the infection from the CNS after a single immunization, live-attenuated rabies virus (RV) vaccines could be particularly useful not only for the global eradication of canine rabies but also for late-stage rabies postexposure prophylaxis of humans. To overcome concerns regarding the safety of live-attenuated RV vaccines, we developed the highly attenuated triple RV G variant, SPBAANGAS-GAS-GAS. In contrast to most attenuated recombinant RVs generated thus far, SPBAANGAS-GAS-GAS is completely nonpathogenic after intracranial infection of mice that are either developmentally immunocompromised (e.g., 5-day-old mice) or have inherited deficits in immune function (e.g., antibody production or type I IFN signaling), as well as normal adult animals. In addition, SPBAANGAS-GAS-GAS induces immune mechanisms capable of containing a CNS infection with pathogenic RV, thereby preventing lethal rabies encephalopathy. The lack of pathogenicity together with excellent immunogenicity and the capacity to deliver immune effectors to CNS tissues makes SPBAANGAS-GAS-GAS a promising vaccine candidate for both the preexposure and postexposure prophylaxis of rabies.

  2. Forkhead Box O6 (FoxO6) Depletion Attenuates Hepatic Gluconeogenesis and Protects against Fat-induced Glucose Disorder in Mice.

    Science.gov (United States)

    Calabuig-Navarro, Virtu; Yamauchi, Jun; Lee, Sojin; Zhang, Ting; Liu, Yun-Zi; Sadlek, Kelsey; Coudriet, Gina M; Piganelli, Jon D; Jiang, Chun-Lei; Miller, Rita; Lowe, Mark; Harashima, Hideyoshi; Dong, H Henry

    2015-06-19

    Excessive endogenous glucose production contributes to fasting hyperglycemia in diabetes. FoxO6 is a distinct member of the FoxO subfamily. To elucidate the role of FoxO6 in hepatic gluconeogenesis and assess its contribution to the pathogenesis of fasting hyperglycemia in diabetes, we generated FoxO6 knock-out (FoxO6-KO) mice followed by determining the effect of FoxO6 loss-of-function on hepatic gluconeogenesis under physiological and pathological conditions. FoxO6 depletion attenuated hepatic gluconeogenesis and lowered fasting glycemia in FoxO6-KO mice. FoxO6-deficient primary hepatocytes were associated with reduced capacities to produce glucose in response to glucagon. When fed a high fat diet, FoxO6-KO mice exhibited significantly enhanced glucose tolerance and reduced blood glucose levels accompanied by improved insulin sensitivity. These effects correlated with attenuated hepatic gluconeogenesis in FoxO6-KO mice. In contrast, wild-type littermates developed fat-induced glucose intolerance with a concomitant induction of fasting hyperinsulinemia and hyperglycemia. Furthermore, FoxO6-KO mice displayed significantly diminished macrophage infiltration into liver and adipose tissues, correlating with the reduction of macrophage expression of C-C chemokine receptor 2 (CCR2), a factor that is critical for regulating macrophage recruitment in peripheral tissues. Our data indicate that FoxO6 depletion protected against diet-induced glucose intolerance and insulin resistance by attenuating hepatic gluconeogenesis and curbing macrophage infiltration in liver and adipose tissues in mice. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. The Fas/Fas ligand death receptor pathway contributes to phenylalanine-induced apoptosis in cortical neurons.

    Directory of Open Access Journals (Sweden)

    Xiaodong Huang

    Full Text Available Phenylketonuria (PKU, an autosomal recessive disorder of amino acid metabolism caused by mutations in the phenylalanine hydroxylase (PAH gene, leads to childhood mental retardation by exposing neurons to cytotoxic levels of phenylalanine (Phe. A recent study showed that the mitochondria-mediated (intrinsic apoptotic pathway is involved in Phe-induced apoptosis in cultured cortical neurons, but it is not known if the death receptor (extrinsic apoptotic pathway and endoplasmic reticulum (ER stress-associated apoptosis also contribute to neurodegeneration in PKU. To answer this question, we used specific inhibitors to block each apoptotic pathway in cortical neurons under neurotoxic levels of Phe. The caspase-8 inhibitor Z-IETD-FMK strongly attenuated apoptosis in Phe-treated neurons (0.9 mM, 18 h, suggesting involvement of the Fas receptor (FasR-mediated cell death receptor pathway in Phe toxicity. In addition, Phe significantly increased cell surface Fas expression and formation of the Fas/FasL complex. Blocking Fas/FasL signaling using an anti-Fas antibody markedly inhibited apoptosis caused by Phe. In contrast, blocking the ER stress-induced cell death pathway with salubrinal had no effect on apoptosis in Phe-treated cortical neurons. These experiments demonstrate that the Fas death receptor pathway contributes to Phe-induced apoptosis and suggest that inhibition of the death receptor pathway may be a novel target for neuroprotection in PKU patients.

  4. Akebia saponin PA induces autophagic and apoptotic cell death in AGS human gastric cancer cells.

    Science.gov (United States)

    Xu, Mei-Ying; Lee, Dong Hwa; Joo, Eun Ji; Son, Kun Ho; Kim, Yeong Shik

    2013-09-01

    In this study, we investigated the anticancer mechanism of akebia saponin PA (AS), a natural product isolated from Dipsacus asperoides in human gastric cancer cell lines. It was shown that AS-induced cell death is caused by autophagy and apoptosis in AGS cells. The apoptosis-inducing effect of AS was characterized by annexin V/propidium (PI) staining, increase of sub-G1 phase and caspase-3 activation, while the autophagy-inducing effect was indicated by the formation of cytoplasmic vacuoles and microtubule-associated protein 1 light chain-3 II (LC3-II) conversion. The autophagy inhibitor bafilomycin A1 (BaF1) decreased AS-induced cell death and caspase-3 activation, but caspase-3 inhibitor Ac-DEVD-CHO did not affect LC3-II accumulation or AS-induced cell viability, suggesting that AS induces autophagic cell death and autophagy contributes to caspase-3-dependent apoptosis. Furthermore, AS activated p38/c-Jun N-terminal kinase (JNK), which could be inhibited by BaF1, and caspase-3 activation was attenuated by both SB202190 and SP600125, indicating that AS-induced autophagy promotes mitogen-activated protein kinases (MAPKs)-mediated apoptosis. Taken together, these results demonstrate that AS induces autophagic and apoptotic cell death and autophagy plays the main role in akebia saponin PA-induced cell death. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Sulforaphane Prevents Angiotensin II-Induced Testicular Cell Death via Activation of NRF2

    Directory of Open Access Journals (Sweden)

    Yonggang Wang

    2017-01-01

    Full Text Available Although angiotensin II (Ang II was reported to facilitate sperm motility and intratesticular sperm transport, recent findings shed light on the efficacy of Ang II in stimulating inflammatory events in testicular peritubular cells, effect of which may play a role in male infertility. It is still unknown whether Ang II can induce testicular apoptotic cell death, which may be a more direct action of Ang II in male infertility. Therefore, the present study aims to determine whether Ang II can induce testicular apoptotic cell death and whether this action can be prevented by sulforaphane (SFN via activating nuclear factor (erythroid-derived 2-like 2 (NRF2, the governor of antioxidant-redox signalling. Eight-week-old male C57BL/6J wild type (WT and Nrf2 gene knockout mice were treated with Ang II, in the presence or absence of SFN. In WT mice, SFN activated testicular NRF2 expression and function, along with a marked attenuation in Ang II-induced testicular oxidative stress, inflammation, endoplasmic reticulum stress, and apoptotic cell death. Deletion of the Nrf2 gene led to a complete abolishment of these efficacies of SFN. The present study indicated that Ang II may result in testicular apoptotic cell death, which can be prevented by SFN via the activation of NRF2.

  6. Wld(S reduces paraquat-induced cytotoxicity via SIRT1 in non-neuronal cells by attenuating the depletion of NAD.

    Directory of Open Access Journals (Sweden)

    Qiujing Yu

    Full Text Available Wld(S is a fusion protein with NAD synthesis activity, and has been reported to protect axonal and synaptic compartments of neurons from various mechanical, genetic and chemical insults. However, whether Wld(S can protect non-neuronal cells against toxic chemicals is largely unknown. Here we found that Wld(S significantly reduced the cytotoxicity of bipyridylium herbicides paraquat and diquat in mouse embryonic fibroblasts, but had no effect on the cytotoxicity induced by chromium (VI, hydrogen peroxide, etoposide, tunicamycin or brefeldin A. Wld(S also slowed down the death of mice induced by intraperitoneal injection of paraquat. Further studies demonstrated that Wld(S markedly attenuated mitochondrial injury including disruption of mitochondrial membrane potential, structural damage and decline of ATP induced by paraquat. Disruption of the NAD synthesis activity of Wld(S by an H112A or F116S point mutation resulted in loss of its protective function against paraquat-induced cell death. Furthermore, Wld(S delayed the decrease of intracellular NAD levels induced by paraquat. Similarly, treatment with NAD or its precursor nicotinamide mononucleotide attenuated paraquat-induced cytotoxicity and decline of ATP and NAD levels. In addition, we showed that SIRT1 was required for both exogenous NAD and Wld(S-mediated cellular protection against paraquat. These findings suggest that NAD and SIRT1 mediate the protective function of Wld(S against the cytotoxicity induced by paraquat, which provides new clues for the mechanisms underlying the protective function of Wld(S in both neuronal and non-neuronal cells, and implies that attenuation of NAD depletion may be effective to alleviate paraquat poisoning.

  7. Attenuation of UV-B exposure-induced inflammation by abalone hypobranchial gland and gill extracts.

    Science.gov (United States)

    Kuanpradit, Chitraporn; Jaisin, Yamaratee; Jungudomjaroen, Sumon; Akter Mitu, Shahida; Puttikamonkul, Srisombat; Sobhon, Prasert; Cummins, Scott F

    2017-05-01

    Exposure to solar ultraviolet B (UV-B) is a known causative factor for many skin complications such as wrinkles, black spots, shedding and inflammation. Within the wavelengths 280‑320 nm, UV-B can penetrate to the epidermal level. This investigation aimed to test whether extracts from the tropical abalone [Haliotis asinina (H. asinina)] mucus-secreting tissues, the hypobranchial gland (HBG) and gills, were able to attenuate the inflammatory process, using the human keratinocyte HaCaT cell line. Cytotoxicity of abalone tissue extracts was determined using an AlamarBlue viability assay. Results showed that HaCaT cells could survive when incubated in crude HBG and gill extracts at concentrations between abalone extract from both the HBG and gill (0, 0.1, 2.5, 5 µg/ml). A significant increase in cell viability was observed (P2.5 µg/ml extract showed a significant decrease in intensity for COX‑2, phospho‑p38 and phospho‑SPK/JNK. The present study demonstrated that abalone extracts from the HGB and gill can attenuate inflammatory proteins triggered by UV-B. Hence, the contents of abalone extract, including cellmetabolites and peptides, may provide new agents for skin anti‑inflammation, preventing damage due to UV-B.

  8. Tissue depletion of taurine accelerates skeletal muscle senescence and leads to early death in mice.

    Directory of Open Access Journals (Sweden)

    Takashi Ito

    Full Text Available Taurine (2-aminoethanesulfonic acid is found in milimolar concentrations in mammalian tissues. One of its main functions is osmoregulation; however, it also exhibits cytoprotective activity by diminishing injury caused by stress and disease. Taurine depletion is associated with several defects, many of which are found in the aging animal, suggesting that taurine might exert anti-aging actions. Therefore, in the present study, we examined the hypothesis that taurine depletion accelerates aging by reducing longevity and accelerating aging-associated tissue damage. Tissue taurine depletion in taurine transporter knockout (TauTKO mouse was found to shorten lifespan and accelerate skeletal muscle histological and functional defects, including an increase in central nuclei containing myotubes, a reduction in mitochondrial complex 1 activity and an induction in an aging biomarker, Cyclin-dependent kinase 4 inhibitor A (p16INK4a. Tissue taurine depletion also enhances unfolded protein response (UPR, which may be associated with an improvement in protein folding by taurine. Our data reveal that tissue taurine depletion affects longevity and cellular senescence; an effect possibly linked to a disturbance in protein folding.

  9. DNA-repair, cell killing and normal tissue damage

    International Nuclear Information System (INIS)

    Dahm-Daphi, J.; Dikomey, E.; Brammer, I.

    1998-01-01

    Background: Side effects of radiotherapy in normal tissue is determined by a variety of factors of which cellular and genetic contributions are described here. Material and methods: Review. Results: Normal tissue damage after irradiation is largely due to loss of cellular proliferative capacity. This can be due to mitotic cell death, apoptosis, or terminal differentiation. Dead or differentiated cells release cytokines which additionally modulate the tissue response. DNA damage, in particular non-reparable or misrepaired double-strand breaks are considered the basic lesion leading to G1-arrest and ultimately to cell inactivation. Conclusion: Evidence for genetic bases of normal tissue response, cell killing and DNA-repair capacity is presented. However, a direct link of all 3 endpoints has not yet been proved directly. (orig.) [de

  10. Potentiation of ghrelin signaling attenuates cancer anorexia–cachexia and prolongs survival

    Science.gov (United States)

    Fujitsuka, N; Asakawa, A; Uezono, Y; Minami, K; Yamaguchi, T; Niijima, A; Yada, T; Maejima, Y; Sedbazar, U; Sakai, T; Hattori, T; Kase, Y; Inui, A

    2011-01-01

    Cancer anorexia–cachexia syndrome is characterized by decreased food intake, weight loss, muscle tissue wasting and psychological distress, and this syndrome is a major source of increased morbidity and mortality in cancer patients. This study aimed to clarify the gut–brain peptides involved in the pathogenesis of the syndrome and determine effective treatment for cancer anorexia–cachexia. We show that both ghrelin insufficiency and resistance were observed in tumor-bearing rats. Corticotropin-releasing factor (CRF) decreased the plasma level of acyl ghrelin, and its receptor antagonist, α-helical CRF, increased food intake of these rats. The serotonin 2c receptor (5-HT2cR) antagonist SB242084 decreased hypothalamic CRF level and improved anorexia, gastrointestinal (GI) dysmotility and body weight loss. The ghrelin receptor antagonist (D-Lys3)-GHRP-6 worsened anorexia and hastened death in tumor-bearing rats. Ghrelin attenuated anorexia–cachexia in the short term, but failed to prolong survival, as did SB242084 administration. In addition, the herbal medicine rikkunshito improved anorexia, GI dysmotility, muscle wasting, and anxiety-related behavior and prolonged survival in animals and patients with cancer. The appetite-stimulating effect of rikkunshito was blocked by (D-Lys3)-GHRP-6. Active components of rikkunshito, hesperidin and atractylodin, potentiated ghrelin secretion and receptor signaling, respectively, and atractylodin prolonged survival in tumor-bearing rats. Our study demonstrates that the integrated mechanism underlying cancer anorexia–cachexia involves lowered ghrelin signaling due to excessive hypothalamic interactions of 5-HT with CRF through the 5-HT2cR. Potentiation of ghrelin receptor signaling may be an attractive treatment for anorexia, muscle wasting and prolong survival in patients with cancer anorexia–cachexia. PMID:22832525

  11. Dengue Deaths in Puerto Rico: Lessons Learned from the 2007 Epidemic

    Science.gov (United States)

    Tomashek, Kay M.; Gregory, Christopher J.; Rivera Sánchez, Aidsa; Bartek, Matthew A.; Garcia Rivera, Enid J.; Hunsperger, Elizabeth; Muñoz-Jordán, Jorge L.; Sun, Wellington

    2012-01-01

    Background The incidence and severity of dengue in Latin America has increased substantially in recent decades and data from Puerto Rico suggests an increase in severe cases. Successful clinical management of severe dengue requires early recognition and supportive care. Methods Fatal cases were identified among suspected dengue cases reported to two disease surveillance systems and from death certificates. To be included, fatal cases had to have specimen submitted for dengue diagnostic testing including nucleic acid amplification for dengue virus (DENV) in serum or tissue, immunohistochemical testing of tissue, and immunoassay detection of anti-DENV IgM from serum. Medical records from laboratory-positive dengue fatal case-patients were reviewed to identify possible determinants for death. Results Among 10,576 reported dengue cases, 40 suspect fatal cases were identified, of which 11 were laboratory-positive, 14 were laboratory-negative, and 15 laboratory-indeterminate. The median age of laboratory-positive case-patients was 26 years (range 5 months to 78 years), including five children aged Dengue was listed on the death certificate in only 5 instances. Conclusions During a dengue epidemic in an endemic area, none of the 11 laboratory-positive case-patients who died were managed according to current WHO Guidelines. Management issues identified in this case-series included failure to recognize warning signs for severe dengue and shock, prolonged ED stays, and infrequent patient monitoring. PMID:22530072

  12. Human Traumatic Brain Injury Results in Oligodendrocyte Death and Increases the Number of Oligodendrocyte Progenitor Cells.

    Science.gov (United States)

    Flygt, Johanna; Gumucio, Astrid; Ingelsson, Martin; Skoglund, Karin; Holm, Jonatan; Alafuzoff, Irina; Marklund, Niklas

    2016-06-01

    Oligodendrocyte (OL) death may contribute to white matter pathology, a common cause of network dysfunction and persistent cognitive problems in patients with traumatic brain injury (TBI). Oligodendrocyte progenitor cells (OPCs) persist throughout the adult CNS and may replace dead OLs. OL death and OPCs were analyzed by immunohistochemistry of human brain tissue samples, surgically removed due to life-threatening contusions and/or focal brain swelling at 60.6 ± 75 hours (range 4-192 hours) postinjury in 10 severe TBI patients (age 51.7 ± 18.5 years). Control brain tissue was obtained postmortem from 5 age-matched patients without CNS disorders. TUNEL and CC1 co-labeling was used to analyze apoptotic OLs, which were increased in injured brain tissue (p The OPC markers Olig2, A2B5, NG2, and PDGFR-α were used. In contrast to the number of single-labeled Olig2, A2B5, NG2, and PDGFR-α-positive cells, numbers of Olig2 and A2B5 co-labeled cells were increased in TBI samples (p human TBI results in OL death and increases in OPCs postinjury, which may influence white matter function following TBI. © 2016 American Association of Neuropathologists, Inc. All rights reserved.

  13. Selective inhibition of iNOS attenuates trauma-hemorrhage/resuscitation-induced hepatic injury.

    Science.gov (United States)

    Kan, Wen-Hong; Hsu, Jun-Te; Schwacha, Martin G; Choudhry, Mashkoor A; Raju, Raghavan; Bland, Kirby I; Chaudry, Irshad H

    2008-10-01

    Although trauma-hemorrhage produces tissue hypoxia, systemic inflammatory response and organ dysfunction, the mechanisms responsible for these alterations are not clear. Using a potent selective inducible nitric oxide (NO) synthase inhibitor, N-[3-(aminomethyl) benzyl]acetamidine (1400W), and a nonselective NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME), we investigated whether inducible NO synthase plays any role in producing hepatic injury, inflammation, and changes of protein expression following trauma-hemorrhage. To investigate this, male Sprague-Dawley rats were subjected to midline laparotomy and hemorrhagic shock (mean blood pressure 35-40 mmHg for approximately 90 min) followed by fluid resuscitation. Animals were treated with either vehicle (DMSO) or 1400W (10 mg/kg body wt ip), or L-NAME (30 mg/kg iv), 30 min before resuscitation and killed 2 h after resuscitation. Trauma-hemorrhage/resuscitation induced a marked hypotension and increase in markers of hepatic injury (i.e., plasma alpha-glutathione S-transferase, tissue myeloperoxidase activity, and nitrotyrosine formation). Hepatic expression of iNOS, hypoxia-inducible factor-1alpha, ICAM-1, IL-6, TNF-alpha, and neutrophil chemoattractant (cytokine-induced neutrophil chemoattractant-1 and macrophage inflammatory protein-2) protein levels were also markedly increased following trauma-hemorrhage/resuscitation. Administration of the iNOS inhibitor 1400W significantly attenuated hypotension and expression of these mediators of hepatic injury induced by trauma-hemorrhage/resuscitation. However, administration of L-NAME could not attenuate hepatic dysfunction and tissue injury mediated by trauma-hemorrhage, although it improved mean blood pressure as did 1400W. These results indicate that increased expression of iNOS following trauma-hemorrhage plays an important role in the induction of hepatic damage under such conditions.

  14. Attenuation correction for renal scintigraphy with 99mTc - DMSA: comparison between Raynaud and the geometric mean methods

    International Nuclear Information System (INIS)

    Argenta, J.; Brambilla, C.R.; Marques da Silva, A.M.

    2009-01-01

    The evaluation of the index of renal function (IF) requires soft-tissue attenuation correction. This paper investigates the impact over the IF, when attenuation correction is applied using the Raynaud method and the geometric mean method in renal planar scintigraphy, using posterior and anterior views. The study was conducted with Monte Carlo simulated images of five GSF family voxel phantoms with different relative uptakes in each kidney from normal (50% -50%) to pathological (10% -90%). The results showed that Raynaud method corrects more efficiently the cases where the renal depth is close to the value of the standard phantom. The geometric mean method showed similar results to the Raynaud method for Baby, Child and Golem. For Helga and Donna models, the errors were above 20%, increasing with relative uptake. Further studies should be conducted to assess the influences of the standard phantom in the correcting attenuation methods. (author)

  15. Attenuation correction for renal scintigraphy with 99mTc-DMSA: analysis between Raynaud and the geometric mean methods

    International Nuclear Information System (INIS)

    Argenta, Jackson; Brambilla, Claudia R.; Silva, Ana Maria M. da

    2010-01-01

    The evaluation of the index of renal function (IF) requires soft-tissue attenuation correction. This paper investigates the impact over the IF, when attenuation correction is applied using the Raynaud method and the Geometric Mean method in renal planar scintigraphy, using posterior and anterior views. The study was conducted with Monte Carlo simulated images of five GSF family voxel phantoms with different relative uptakes in each kidney from normal (50% -50%) to pathological (10% -90%). The results showed that Raynaud method corrects more efficiently the cases where the renal depth is close to the value of the standard phantom. The geometric mean method showed similar results to the Raynaud method for Baby, Child and Golem. For Helga and Donna models, the errors were above 20%, increasing with relative uptake. Further studies should be conducted to assess the influences of the standard phantom in the correcting attenuation methods. (author)

  16. Photon beam dose distributions for patients with implanted temporary tissue expanders

    Science.gov (United States)

    Asena, A.; Kairn, T.; Crowe, S. B.; Trapp, J. V.

    2015-01-01

    This study examines the effects of temporary tissue expanders (TTEs) on the dose distributions of photon beams in breast cancer radiotherapy treatments. EBT2 radiochromic film and ion chamber measurements were taken to quantify the attenuation and backscatter effects of the inhomogeneity. Results illustrate that the internal magnetic port present in a tissue expander causes a dose reduction of approximately 25% in photon tangent fields immediately downstream of the implant. It was also shown that the silicone elastomer shell of the tissue expander reduced the dose to the target volume by as much as 8%. This work demonstrates the importance for an accurately modelled high-density implant in the treatment planning system for post-mastectomy breast cancer patients.

  17. Radiation-induced interphase death observed in human T-cell lymphoma cells established as a nude mouse tumor line

    International Nuclear Information System (INIS)

    Igarashi, T.; Yoshida, S.; Miyamoto, T.

    1990-01-01

    Interphase death of cells occurs physiologically in healthy animal tissues as well as in tissues pathologically injured by radiation or drugs. An active self-destruction process has been found to play a major role in the interphase death of highly radiosensitive cells. However, the mechanism of this radiation-induced interphase death in human lymphoma has not yet been studied in detail. In the present study, we examined a lymphoma derived from a child lymphoblastic lymphoma bearing CD1, CD4, and CD8 antigens and established in nude mice. Low-dose x-irradiation of this lymphoma induced interphase cell death with characteristic morphological and biological changes of an active self-destruction process, i.e., changes in cell surface appearance seen using scanning electron microscopy and nuclear fragmentation accompanied with an increase in free DNA. The process was proved to require protein synthesis. It was concluded that the radiosensitivity of this T-cell lymphoma of common thymic type is mainly due to the occurrence of the active self-destruction process

  18. Mechanism of death at high temperatures in Helix and Patella

    Energy Technology Data Exchange (ETDEWEB)

    Grainger, J N.R.

    1975-10-01

    In Patella vulgata and Helix aspersa which had been killed by exposure to high temperatures, the rates of oxygen consumption of gill, foot muscle and hepatopancreas are remarkably steady when measured at lower temperatures, although the absolute levels are in some cases different from normal animals. These tissues are thus substantially metabolically intact in heat dead individuals. In Helix there is a fall in blood sodium and a rise in blood potassium during heat death. In Patella there is a marked rise in blood Na/sup +/ and a consequent disturbance of the Na/sup +//K/sup +/ ratio. These ionic disturbances are thought to be a prime cause of heat death. The significance of the results is discussed.

  19. Changes in body composition and muscle attenuation during taxane-based chemotherapy in patients with metastatic breast cancer.

    Science.gov (United States)

    Rier, Hánah N; Jager, Agnes; Sleijfer, Stefan; van Rosmalen, Joost; Kock, Marc C J M; Levin, Mark-David

    2018-02-01

    Body composition parameters including low muscle mass, muscle attenuation (which reflects muscle quality) and adipose tissue measurements have emerged as prognostic factors in cancer patients. However, knowledge regarding the possibility of excessive muscle loss during specific systemic therapies is unknown. We describe the changes in body composition and muscle attenuation (MA) during taxane- and anthracycline-based regimens and its association with overall survival (OS) in metastatic breast cancer patients. The lumbar skeletal muscle index (LSMI) was used as marker of muscle mass. LSMI, MA, subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT) and intramuscular adipose tissue (IMAT) were measured before and after first-line treatment with paclitaxel (n = 73) or 5-fluorouracil-doxorubicin-cyclophosphamide (FAC) (n = 25) using CT-images. Determinants of the change of LSMI and MA were analyzed using multiple linear regression. OS was assessed using Cox proportional hazard models. MA significantly decreased during paclitaxel treatment (- 0.9 HU, p = 0.03). LSMI (p = 0.40), SAT (p = 0.75), VAT (p = 0.84) and IMAT (p = 0.10) remained stable. No significant alterations in body composition parameters during FAC-treatment were observed. Previous (neo-)adjuvant chemotherapy contributed to larger loss of MA during the current treatment. Body composition changes during chemotherapy were not associated with OS. MA decreased during treatment with paclitaxel, while muscle mass was stable. Body composition changes are not associated with survival in the absence of progressive disease.

  20. The effect of magnetic nanoparticles on the acoustic properties of tissue-mimicking agar-gel phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Józefczak, A., E-mail: aras@amu.edu.pl [Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Poznań (Poland); Kaczmarek, K. [Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Poznań (Poland); Kubovčíková, M. [Institute of Experimental Physics, Slovak Academy of Sciences, Košice (Slovakia); Rozynek, Z.; Hornowski, T. [Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Poznań (Poland)

    2017-06-01

    In ultrasonic hyperthermia, ultrasound-induced heating is achieved by the absorption of wave energy and its conversion into heat. The effectiveness of ultrasounds can be improved by using sonosensitisers that greatly attenuate ultrasonic waves and then dissipate the acquired energy in the form of heat. One possible candidate for such a sonosensitiser are superparamagnetic iron oxide nanoparticles. Here, we used magnetic nanoparticles embedded in a tissue-mimicking agar-gel matrix. Such tissue-mimicking phantoms possess acoustic properties similar to those of real tissues, and are used as a tool for performance testing and optimisation of medical ultrasound systems. In this work, we studied the effect of magnetic nanoparticles on the acoustic properties of agar-gel phantoms, including the attenuation of ultrasonic waves. - Highlights: • Ultrasonic insertion technique is used to study acoustic properties of agar-gel phantoms with and without magnetic particles. • The addition of magnetic nanoparticles improves effectiveness of ultrasound heating in agar phantoms. • Acoustics properties of a pure agar-gel phantom are altered by adding nanoparticles.

  1. Attenuation correction with region growing method used in the positron emission mammography imaging system

    Science.gov (United States)

    Gu, Xiao-Yue; Li, Lin; Yin, Peng-Fei; Yun, Ming-Kai; Chai, Pei; Huang, Xian-Chao; Sun, Xiao-Li; Wei, Long

    2015-10-01

    The Positron Emission Mammography imaging system (PEMi) provides a novel nuclear diagnosis method dedicated for breast imaging. With a better resolution than whole body PET, PEMi can detect millimeter-sized breast tumors. To address the requirement of semi-quantitative analysis with a radiotracer concentration map of the breast, a new attenuation correction method based on a three-dimensional seeded region growing image segmentation (3DSRG-AC) method has been developed. The method gives a 3D connected region as the segmentation result instead of image slices. The continuity property of the segmentation result makes this new method free of activity variation of breast tissues. The threshold value chosen is the key process for the segmentation method. The first valley in the grey level histogram of the reconstruction image is set as the lower threshold, which works well in clinical application. Results show that attenuation correction for PEMi improves the image quality and the quantitative accuracy of radioactivity distribution determination. Attenuation correction also improves the probability of detecting small and early breast tumors. Supported by Knowledge Innovation Project of The Chinese Academy of Sciences (KJCX2-EW-N06)

  2. Phase-Contrast Hounsfield Units of Fixated and Non-Fixated Soft-Tissue Samples

    Science.gov (United States)

    Willner, Marian; Fior, Gabriel; Marschner, Mathias; Birnbacher, Lorenz; Schock, Jonathan; Braun, Christian; Fingerle, Alexander A.; Noël, Peter B.; Rummeny, Ernst J.; Pfeiffer, Franz; Herzen, Julia

    2015-01-01

    X-ray phase-contrast imaging is a novel technology that achieves high soft-tissue contrast. Although its clinical impact is still under investigation, the technique may potentially improve clinical diagnostics. In conventional attenuation-based X-ray computed tomography, radiological diagnostics are quantified by Hounsfield units. Corresponding Hounsfield units for phase-contrast imaging have been recently introduced, enabling a setup-independent comparison and standardized interpretation of imaging results. Thus far, the experimental values of few tissue types have been reported; these values have been determined from fixated tissue samples. This study presents phase-contrast Hounsfield units for various types of non-fixated human soft tissues. A large variety of tissue specimens ranging from adipose, muscle and connective tissues to liver, kidney and pancreas tissues were imaged by a grating interferometer with a rotating-anode X-ray tube and a photon-counting detector. Furthermore, we investigated the effects of formalin fixation on the quantitative phase-contrast imaging results. PMID:26322638

  3. Agmatine attenuates silica-induced pulmonary fibrosis.

    Science.gov (United States)

    El-Agamy, D S; Sharawy, M H; Ammar, E M

    2014-06-01

    There is a large body of evidence that nitric oxide (NO) formation is implicated in mediating silica-induced pulmonary fibrosis. As a reactive free radical, NO may not only contribute to lung parenchymal tissue injury but also has the ability to combine with superoxide and form a highly reactive toxic species peroxynitrite that can induce extensive cellular toxicity in the lung tissues. This study aimed to explore the effect of agmatine, a known NO synthase inhibitor, on silica-induced pulmonary fibrosis in rats. Male Sprague Dawley rats were treated with agmatine for 60 days following a single intranasal instillation of silica suspension (50 mg in 0.1 ml saline/rat). The results revealed that agmatine attenuated silica-induced lung inflammation as it decreased the lung wet/dry weight ratio, protein concentration, and the accumulation of the inflammatory cells in the bronchoalveolar lavage fluid. Agmatine showed antifibrotic activity as it decreased total hydroxyproline content of the lung and reduced silica-mediated lung inflammation and fibrosis in lung histopathological specimen. In addition, agmatine significantly increased superoxide dismutase (p Agmatine also reduced silica-induced overproduction of pulmonary nitrite/nitrate as well as tumor necrosis factor α. Collectively, these results demonstrate the protective effects of agmatine against the silica-induced lung fibrosis that may be attributed to its ability to counteract the NO production, lipid peroxidation, and regulate cytokine effects. © The Author(s) 2014.

  4. UCP1 induction during recruitment of brown adipocytes in white adipose tissue is dependent on cyclooxygenase activity

    DEFF Research Database (Denmark)

    Madsen, Lise; Pedersen, Lone M; Lillefosse, Haldis Haukaas

    2010-01-01

    attenuated diet-induced UCP1 expression and increased energy efficiency and adipose tissue mass in obesity-resistant mice kept at thermoneutrality. CONCLUSIONS/SIGNIFICANCE: Our findings provide evidence that induction of UCP1 expression in white adipose tissue, but not in classic interscapular brown adipose...... tissue is dependent on cyclooxygenase activity. Our results indicate that cyclooxygenase-dependent induction of UCP1 expression in white adipose tissues is important for diet-induced thermogenesis providing support for a surprising role of COX activity in the control of energy balance and obesity...

  5. A unifying mechanism for cancer cell death through ion channel activation by HAMLET.

    Science.gov (United States)

    Storm, Petter; Klausen, Thomas Kjaer; Trulsson, Maria; Ho C S, James; Dosnon, Marion; Westergren, Tomas; Chao, Yinxia; Rydström, Anna; Yang, Henry; Pedersen, Stine Falsig; Svanborg, Catharina

    2013-01-01

    Ion channels and ion fluxes control many aspects of tissue homeostasis. During oncogenic transformation, critical ion channel functions may be perturbed but conserved tumor specific ion fluxes remain to be defined. Here we used the tumoricidal protein-lipid complex HAMLET as a probe to identify ion fluxes involved in tumor cell death. We show that HAMLET activates a non-selective cation current, which reached a magnitude of 2.74±0.88 nA within 1.43±0.13 min from HAMLET application. Rapid ion fluxes were essential for HAMLET-induced carcinoma cell death as inhibitors (amiloride, BaCl2), preventing the changes in free cellular Na(+) and K(+) concentrations also prevented essential steps accompanying carcinoma cell death, including changes in morphology, uptake, global transcription, and MAP kinase activation. Through global transcriptional analysis and phosphorylation arrays, a strong ion flux dependent p38 MAPK response was detected and inhibition of p38 signaling delayed HAMLET-induced death. Healthy, differentiated cells were resistant to HAMLET challenge, which was accompanied by innate immunity rather than p38-activation. The results suggest, for the first time, a unifying mechanism for the initiation of HAMLET's broad and rapid lethal effect on tumor cells. These findings are particularly significant in view of HAMLET's documented therapeutic efficacy in human studies and animal models. The results also suggest that HAMLET offers a two-tiered therapeutic approach, killing cancer cells while stimulating an innate immune response in surrounding healthy tissues.

  6. Life Experience with Death: Relation to Death Attitudes and to the Use of Death-Related Memories

    Science.gov (United States)

    Bluck, Susan; Dirk, Judith; Mackay, Michael M.; Hux, Ashley

    2008-01-01

    The study examines the relation of death experience to death attitudes and to autobiographical memory use. Participants (N = 52) completed standard death attitude measures and wrote narratives about a death-related autobiographical memory and (for comparison) a memory of a low point. Self-ratings of the memory narratives were used to assess their…

  7. The effect of nonlinear propagation on heating of tissue: A numerical model of diagnostic ultrasound beams

    Science.gov (United States)

    Cahill, Mark D.; Humphrey, Victor F.; Doody, Claire

    2000-07-01

    Thermal safety indices for diagnostic ultrasound beams are calculated under the assumption that the sound propagates under linear conditions. A non-axisymmetric finite difference model is used to solve the KZK equation, and so to model the beam of a diagnostic scanner in pulsed Doppler mode. Beams from both a uniform focused rectangular source and a linear array are considered. Calculations are performed in water, and in attenuating media with tissue-like characteristics. Attenuating media are found to exhibit significant nonlinear effects for finite-amplitude beams. The resulting loss of intensity by the beam is then used as the source term in a model of tissue heating to estimate the maximum temperature rises. These are compared with the thermal indices, derived from the properties of the water-propagated beams.

  8. Characterization of southern yellow pine bark layers by Attenuated Total Reflectance (ATR) and Fourier Transform Infrared (FT-IR) Spectroscopy

    Science.gov (United States)

    Thomas L. Eberhardt

    2009-01-01

    The outer bark (rhytidome) of the southern yellow pines is a complex structure comprised of alternating layers of obliterated phloem and periderm tissues, with the latter comprised of three layers, those being phellem, phellogen, and phelloderm. An attenuated total reflectance (ATR) sampling accessory, coupled with a Fourier transform infrared (FTIR) spectrometer,...

  9. Measured attenuation correction methods

    International Nuclear Information System (INIS)

    Ostertag, H.; Kuebler, W.K.; Doll, J.; Lorenz, W.J.

    1989-01-01

    Accurate attenuation correction is a prerequisite for the determination of exact local radioactivity concentrations in positron emission tomography. Attenuation correction factors range from 4-5 in brain studies to 50-100 in whole body measurements. This report gives an overview of the different methods of determining the attenuation correction factors by transmission measurements using an external positron emitting source. The long-lived generator nuclide 68 Ge/ 68 Ga is commonly used for this purpose. The additional patient dose from the transmission source is usually a small fraction of the dose due to the subsequent emission measurement. Ring-shaped transmission sources as well as rotating point or line sources are employed in modern positron tomographs. By masking a rotating line or point source, random and scattered events in the transmission scans can be effectively suppressed. The problems of measured attenuation correction are discussed: Transmission/emission mismatch, random and scattered event contamination, counting statistics, transmission/emission scatter compensation, transmission scan after administration of activity to the patient. By using a double masking technique simultaneous emission and transmission scans become feasible. (orig.)

  10. On the accuracy and reproducibility of a novel probabilistic atlas-based generation for calculation of head attenuation maps on integrated PET/MR scanners.

    Science.gov (United States)

    Chen, Kevin T; Izquierdo-Garcia, David; Poynton, Clare B; Chonde, Daniel B; Catana, Ciprian

    2017-03-01

    To propose an MR-based method for generating continuous-valued head attenuation maps and to assess its accuracy and reproducibility. Demonstrating that novel MR-based photon attenuation correction methods are both accurate and reproducible is essential prior to using them routinely in research and clinical studies on integrated PET/MR scanners. Continuous-valued linear attenuation coefficient maps ("μ-maps") were generated by combining atlases that provided the prior probability of voxel positions belonging to a certain tissue class (air, soft tissue, or bone) and an MR intensity-based likelihood classifier to produce posterior probability maps of tissue classes. These probabilities were used as weights to generate the μ-maps. The accuracy of this probabilistic atlas-based continuous-valued μ-map ("PAC-map") generation method was assessed by calculating the voxel-wise absolute relative change (RC) between the MR-based and scaled CT-based attenuation-corrected PET images. To assess reproducibility, we performed pair-wise comparisons of the RC values obtained from the PET images reconstructed using the μ-maps generated from the data acquired at three time points. The proposed method produced continuous-valued μ-maps that qualitatively reflected the variable anatomy in patients with brain tumor and agreed well with the scaled CT-based μ-maps. The absolute RC comparing the resulting PET volumes was 1.76 ± 2.33 %, quantitatively demonstrating that the method is accurate. Additionally, we also showed that the method is highly reproducible, the mean RC value for the PET images reconstructed using the μ-maps obtained at the three visits being 0.65 ± 0.95 %. Accurate and highly reproducible continuous-valued head μ-maps can be generated from MR data using a probabilistic atlas-based approach.

  11. On the accuracy and reproducibility of a novel probabilistic atlas-based generation for calculation of head attenuation maps on integrated PET/MR scanners

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kevin T. [Massachusetts General Hospital and Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, MA (United States); Massachusetts Institute of Technology, Division of Health Sciences and Technology, Cambridge, MA (United States); Izquierdo-Garcia, David; Catana, Ciprian [Massachusetts General Hospital and Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, MA (United States); Poynton, Clare B. [Massachusetts General Hospital and Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, MA (United States); Massachusetts General Hospital, Department of Psychiatry, Boston, MA (United States); University of California, San Francisco, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Chonde, Daniel B. [Massachusetts General Hospital and Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, MA (United States); Harvard University, Program in Biophysics, Cambridge, MA (United States)

    2017-03-15

    To propose an MR-based method for generating continuous-valued head attenuation maps and to assess its accuracy and reproducibility. Demonstrating that novel MR-based photon attenuation correction methods are both accurate and reproducible is essential prior to using them routinely in research and clinical studies on integrated PET/MR scanners. Continuous-valued linear attenuation coefficient maps (''μ-maps'') were generated by combining atlases that provided the prior probability of voxel positions belonging to a certain tissue class (air, soft tissue, or bone) and an MR intensity-based likelihood classifier to produce posterior probability maps of tissue classes. These probabilities were used as weights to generate the μ-maps. The accuracy of this probabilistic atlas-based continuous-valued μ-map (''PAC-map'') generation method was assessed by calculating the voxel-wise absolute relative change (RC) between the MR-based and scaled CT-based attenuation-corrected PET images. To assess reproducibility, we performed pair-wise comparisons of the RC values obtained from the PET images reconstructed using the μ-maps generated from the data acquired at three time points. The proposed method produced continuous-valued μ-maps that qualitatively reflected the variable anatomy in patients with brain tumor and agreed well with the scaled CT-based μ-maps. The absolute RC comparing the resulting PET volumes was 1.76 ± 2.33 %, quantitatively demonstrating that the method is accurate. Additionally, we also showed that the method is highly reproducible, the mean RC value for the PET images reconstructed using the μ-maps obtained at the three visits being 0.65 ± 0.95 %. Accurate and highly reproducible continuous-valued head μ-maps can be generated from MR data using a probabilistic atlas-based approach. (orig.)

  12. Mass attenuation and mass energy absorption coefficients for 10 keV to 10 MeV photons; Coefficients d'attenuation massique et d'absorption massique en energie pour les photons de 10 keV a 10 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Joffre, H; Pages, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    In this report are given the elements allowing the definition of the values of mass attenuation coefficients and mass energy absorption coefficients for some elements and mixtures, necessary for the study of tissue equivalent materials, for photons in the energy range 10 keV to 10 MeV. After a short reminding of the definitions of the two coefficients, follows, in table form, a compilation of these coefficients, as a function of energy, for simple elements, for certain mineral compounds, organic compounds, gases and particularly of soft tissues. (author) [French] Dans ce rapport, sont donnes les elements permettant de determiner les valeurs des coefficients d'attenuation massique et d'absorption massique en energie pour certains elements et melanges necessaires a l'etude des materiaux equivalents aux tissus pour les photons dans le domaine d'energie allant de 10 keV a 10 MeV. Apres un bref rappel des definitions des deux coefficients, suit, sous forme de tableaux, un recueil de ces coefficients, en fonction de l'energie, pour les elements simples, certains composes mineraux, composes organiques, gaz, et, particulierement, pour les tissus mous. (auteur)

  13. Noncancer death for medical diagnostic X-ray workers in China, 1950-1995

    International Nuclear Information System (INIS)

    Jia Weihua; Wang Jixian; Li Benxiao; Zhao Yongcheng; Zhang Jingyuan

    2002-01-01

    Objective: To investigate occupational radiation exposure effects on human non-cancer diseases. Methods: A cohort study for medical diagnostic X-ray workers and medical workers who never engaged in X-ray work was carried out. Results: The significantly enhanced noncancer deaths for X-ray workers were showed as follows: ischemic heart disease, RR was 1.39 ( P < 0.01 ); cerebrovascular disease, RR = 1.36 ( P < 0.01 ); aplastic anemia, RR = 10.35 (P < 0.01 ); disease of the nervous system, RR = 2.06 (P < 0.01); disease of the skin and subcutaneous tissues, RR = 3.23 (P < 0.05). Conclusions: Long-term occupational X-ray irradiation can enhance the overall risk of deaths, in which, risk for heart disease, cerebrovascular disease and aplastic anemia deaths may significantly related to the occupational exposure

  14. Resveratrol attenuates intermittent hypoxia-induced macrophage migration to visceral white adipose tissue and insulin resistance in male mice.

    Science.gov (United States)

    Carreras, Alba; Zhang, Shelley X L; Almendros, Isaac; Wang, Yang; Peris, Eduard; Qiao, Zhuanhong; Gozal, David

    2015-02-01

    Chronic intermittent hypoxia during sleep (IH), as occurs in sleep apnea, promotes systemic insulin resistance. Resveratrol (Resv) has been reported to ameliorate high-fat diet-induced obesity, inflammation, and insulin resistance. To examine the effect of Resv on IH-induced metabolic dysfunction, male mice were subjected to IH or room air conditions for 8 weeks and treated with either Resv or vehicle (Veh). Fasting plasma levels of glucose, insulin, and leptin were obtained, homeostatic model assessment of insulin resistance index levels were calculated, and insulin sensitivity tests (phosphorylated AKT [also known as protein kinase B]/total AKT) were performed in 2 visceral white adipose tissue (VWAT) depots (epididymal [Epi] and mesenteric [Mes]) along with flow cytometry assessments for VWAT macrophages and phenotypes (M1 and M2). IH-Veh and IH-Resv mice showed initial reductions in food intake with later recovery, with resultant lower body weights after 8 weeks but with IH-Resv showing better increases in body weight vs IH-Veh. IH-Veh and IH-Resv mice exhibited lower fasting glucose levels, but only IH-Veh had increased homeostatic model assessment of insulin resistance index vs all 3 other groups. Leptin levels were preserved in IH-Veh but were significantly lower in IH-Resv. Reduced VWAT phosphorylated-AKT/AKT responses to insulin emerged in both Mes and Epi in IH-Veh but normalized in IH-Resv. Increases total macrophage counts and in M1 to M2 ratios occurred in IH-Veh Mes and Epi compared all other 3 groups. Thus, Resv ameliorates food intake and weight gain during IH exposures and markedly attenuates VWAT inflammation and insulin resistance, thereby providing a potentially useful adjunctive therapy for metabolic morbidity in the context of sleep apnea.

  15. Intraoperative Detection of Cell Injury and Cell Death with an 800 nm Near-Infrared Fluorescent Annexin V Derivative

    Science.gov (United States)

    Ohnishi, Shunsuke; Vanderheyden, Jean-Luc; Tanaka, Eiichi; Patel, Bhavesh; De Grand, Alec; Laurence, Rita G.; Yamashita, Kenichiro; Frangioni, John V.

    2008-01-01

    The intraoperative detection of cell injury and cell death is fundamental to human surgeries such as organ transplantation and resection. Because of low autofluorescence background and relatively high tissue penetration, invisible light in the 800 nm region provides sensitive detection of disease pathology without changing the appearance of the surgical field. In order to provide surgeons with real-time intraoperative detection of cell injury and death after ischemia/reperfusion (I/R), we have developed a bioactive derivative of human annexin V (annexin800), which fluoresces at 800 nm. Total fluorescence yield, as a function of bioactivity, was optimized in vitro, and final performance was assessed in vivo. In liver, intestine and heart animal models of I/R, an optimal signal to background ratio was obtained 30 min after intravenous injection of annexin800, and histology confirmed concordance between planar reflectance images and actual deep tissue injury. In summary, annexin800 permits sensitive, real-time detection of cell injury and cell death after I/R in the intraoperative setting, and can be used during a variety of surgeries for rapid assessment of tissue and organ status. PMID:16869796

  16. Mycophenolate mofetil attenuates pulmonary arterial hypertension in rats

    International Nuclear Information System (INIS)

    Suzuki, Chihiro; Takahashi, Masafumi; Morimoto, Hajime; Izawa, Atsushi; Ise, Hirohiko; Hongo, Minoru; Hoshikawa, Yasushi; Ito, Takayuki; Miyashita, Hiroshi; Kobayashi, Eiji; Shimada, Kazuyuki; Ikeda, Uichi

    2006-01-01

    Pulmonary arterial hypertension (PAH) is characterized by abnormal proliferation of smooth muscle cells (SMCs), leading to occlusion of pulmonary arterioles, right ventricular (RV) hypertrophy, and death. We investigated whether mycophenolate mofetil (MMF), a potent immunosuppresssant, prevents the development of monocrotaline (MCT)-induced PAH in rats. MMF effectively decreased RV systolic pressure and RV hypertrophy, and reduced the medial thickness of pulmonary arteries. MMF significantly inhibited the number of proliferating cell nuclear antigen (PCNA)-positive cells, infiltration of macrophages, and expression of P-selectin and interleukin-6 on the endothelium of pulmonary arteries. The infiltration of T cells and mast cells was not affected by MMF. In vitro experiments revealed that mycophenolic acid (MPA), an active metabolite of MMF, dose-dependently inhibited proliferation of human pulmonary arterial SMCs. MMF attenuated the development of PAH through its anti-inflammatory and anti-proliferative properties. These findings provide new insight into the potential role of immunosuppressants in the treatment of PAH

  17. Attenuation coefficients of soils

    International Nuclear Information System (INIS)

    Martini, E.; Naziry, M.J.

    1989-01-01

    As a prerequisite to the interpretation of gamma-spectrometric in situ measurements of activity concentrations of soil radionuclides the attenuation of 60 to 1332 keV gamma radiation by soil samples varying in water content and density has been investigated. A useful empirical equation could be set up to describe the dependence of the mass attenuation coefficient upon photon energy for soil with a mean water content of 10%, with the results comparing well with data in the literature. The mean density of soil in the GDR was estimated at 1.6 g/cm 3 . This value was used to derive the linear attenuation coefficients, their range of variation being 10%. 7 figs., 5 tabs. (author)

  18. In vivo dosimetric impact of breast tissue expanders on post-mastectomy radiotherapy

    International Nuclear Information System (INIS)

    Gee, Harriet E.; Bignell, Fiona; Odgers, David; Gill, Simran; Martin, Darren; Toohey, Joanne; Carroll, Susan

    2016-01-01

    Temporary tissue expanders with metallic ports for gradual saline injection are increasingly employed to facilitate breast reconstruction after post-mastectomy radiotherapy (PMRT). Treatment beams therefore pass through a high-density rare-earth magnet. Measurements ex vivo suggest attenuation of dose to the skin and chest wall at clinical risk of relapse. The purpose of the study was to quantify the resulting dose reduction in vivo, compared with treatment planning system (TPS). Sixteen patients receiving PMRT had in vivo dosimetry prospectively performed with ethics board approval. Port was located within the expanded chest wall using the planning CT scan. Strips of radiochromic film were laid on the skin surface underneath the bolus. To aid interpretation, ex vivo measurements were also performed, including comparison with TPS predictions. An average 7% reduction in dose to skin surface was measured in 15 of 16 patients. This was reproducibly located in the ‘shadow’ of the magnet, corresponding to each of the paths of the medial and lateral tangents. The average area was 1.07 cm2 (range 0.39 cm2 to 2.36 cm2). Ex vivo measurements confirmed attenuation of the beam in the shadow of the port. The surface area of the ‘cold-spot’ varied with angle of the beam relative to the metallic port. Dose attenuation in vivo differed from that predicted by the TPS. Dose is attenuated in the ‘shadow’ of the tissue expander port in patients receiving PMRT. This is likely to be clinically insignificant for most, but centres should undertake appropriate measurements before utilising TPS predictions.

  19. Mechanically driven interface propagation in biological tissues

    International Nuclear Information System (INIS)

    Ranft, Jonas; Joanny, Jean-François; Aliee, Maryam; Jülicher, Frank; Prost, Jacques

    2014-01-01

    Many biological tissues consist of more than one cell type. We study the dynamics of an interface between two different cell populations as it occurs during the growth of a tumor in a healthy host tissue. Recent work suggests that the rates of cell division and cell death are under mechanical control, characterized by a homeostatic pressure. The difference in the homeostatic pressures of two cell types drives the propagation of the interface, corresponding to the invasion of one cell type into the other. We derive a front propagation equation that takes into account the coupling between cell number balance and tissue mechanics. We show that in addition to pulled fronts, pushed-front solutions occur as a result of convection driven by mechanics. (paper)

  20. Molecular mechanisms of Ebola virus pathogenesis: focus on cell death.

    Science.gov (United States)

    Falasca, L; Agrati, C; Petrosillo, N; Di Caro, A; Capobianchi, M R; Ippolito, G; Piacentini, M

    2015-08-01

    Ebola virus (EBOV) belongs to the Filoviridae family and is responsible for a severe disease characterized by the sudden onset of fever and malaise accompanied by other non-specific signs and symptoms; in 30-50% of cases hemorrhagic symptoms are present. Multiorgan dysfunction occurs in severe forms with a mortality up to 90%. The EBOV first attacks macrophages and dendritic immune cells. The innate immune reaction is characterized by a cytokine storm, with secretion of numerous pro-inflammatory cytokines, which induces a huge number of contradictory signals and hurts the immune cells, as well as other tissues. Other highly pathogenic viruses also trigger cytokine storms, but Filoviruses are thought to be particularly lethal because they affect a wide array of tissues. In addition to the immune system, EBOV attacks the spleen and kidneys, where it kills cells that help the body to regulate its fluid and chemical balance and that make proteins that help the blood to clot. In addition, EBOV causes liver, lungs and kidneys to shut down their functions and the blood vessels to leak fluid into surrounding tissues. In this review, we analyze the molecular mechanisms at the basis of Ebola pathogenesis with a particular focus on the cell death pathways induced by the virus. We also discuss how the treatment of the infection can benefit from the recent experience of blocking/modulating cell death in human degenerative diseases.

  1. MR/PET quantification tools: Registration, segmentation, classification, and MR-based attenuation correction

    Science.gov (United States)

    Fei, Baowei; Yang, Xiaofeng; Nye, Jonathon A.; Aarsvold, John N.; Raghunath, Nivedita; Cervo, Morgan; Stark, Rebecca; Meltzer, Carolyn C.; Votaw, John R.

    2012-01-01

    Purpose: Combined MR/PET is a relatively new, hybrid imaging modality. A human MR/PET prototype system consisting of a Siemens 3T Trio MR and brain PET insert was installed and tested at our institution. Its present design does not offer measured attenuation correction (AC) using traditional transmission imaging. This study is the development of quantification tools including MR-based AC for quantification in combined MR/PET for brain imaging. Methods: The developed quantification tools include image registration, segmentation, classification, and MR-based AC. These components were integrated into a single scheme for processing MR/PET data. The segmentation method is multiscale and based on the Radon transform of brain MR images. It was developed to segment the skull on T1-weighted MR images. A modified fuzzy C-means classification scheme was developed to classify brain tissue into gray matter, white matter, and cerebrospinal fluid. Classified tissue is assigned an attenuation coefficient so that AC factors can be generated. PET emission data are then reconstructed using a three-dimensional ordered sets expectation maximization method with the MR-based AC map. Ten subjects had separate MR and PET scans. The PET with [11C]PIB was acquired using a high-resolution research tomography (HRRT) PET. MR-based AC was compared with transmission (TX)-based AC on the HRRT. Seventeen volumes of interest were drawn manually on each subject image to compare the PET activities between the MR-based and TX-based AC methods. Results: For skull segmentation, the overlap ratio between our segmented results and the ground truth is 85.2 ± 2.6%. Attenuation correction results from the ten subjects show that the difference between the MR and TX-based methods was <6.5%. Conclusions: MR-based AC compared favorably with conventional transmission-based AC. Quantitative tools including registration, segmentation, classification, and MR-based AC have been developed for use in combined MR

  2. MR/PET quantification tools: Registration, segmentation, classification, and MR-based attenuation correction

    Energy Technology Data Exchange (ETDEWEB)

    Fei, Baowei, E-mail: bfei@emory.edu [Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1841 Clifton Road Northeast, Atlanta, Georgia 30329 (United States); Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia 30322 (United States); Department of Mathematics and Computer Sciences, Emory University, Atlanta, Georgia 30322 (United States); Yang, Xiaofeng; Nye, Jonathon A.; Raghunath, Nivedita; Votaw, John R. [Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30329 (United States); Aarsvold, John N. [Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30329 (United States); Nuclear Medicine Service, Atlanta Veterans Affairs Medical Center, Atlanta, Georgia 30033 (United States); Cervo, Morgan; Stark, Rebecca [The Medical Physics Graduate Program in the George W. Woodruff School, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Meltzer, Carolyn C. [Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30329 (United States); Department of Neurology and Department of Psychiatry and Behavior Sciences, Emory University School of Medicine, Atlanta, Georgia 30322 (United States)

    2012-10-15

    Purpose: Combined MR/PET is a relatively new, hybrid imaging modality. A human MR/PET prototype system consisting of a Siemens 3T Trio MR and brain PET insert was installed and tested at our institution. Its present design does not offer measured attenuation correction (AC) using traditional transmission imaging. This study is the development of quantification tools including MR-based AC for quantification in combined MR/PET for brain imaging. Methods: The developed quantification tools include image registration, segmentation, classification, and MR-based AC. These components were integrated into a single scheme for processing MR/PET data. The segmentation method is multiscale and based on the Radon transform of brain MR images. It was developed to segment the skull on T1-weighted MR images. A modified fuzzy C-means classification scheme was developed to classify brain tissue into gray matter, white matter, and cerebrospinal fluid. Classified tissue is assigned an attenuation coefficient so that AC factors can be generated. PET emission data are then reconstructed using a three-dimensional ordered sets expectation maximization method with the MR-based AC map. Ten subjects had separate MR and PET scans. The PET with [{sup 11}C]PIB was acquired using a high-resolution research tomography (HRRT) PET. MR-based AC was compared with transmission (TX)-based AC on the HRRT. Seventeen volumes of interest were drawn manually on each subject image to compare the PET activities between the MR-based and TX-based AC methods. Results: For skull segmentation, the overlap ratio between our segmented results and the ground truth is 85.2 ± 2.6%. Attenuation correction results from the ten subjects show that the difference between the MR and TX-based methods was <6.5%. Conclusions: MR-based AC compared favorably with conventional transmission-based AC. Quantitative tools including registration, segmentation, classification, and MR-based AC have been developed for use in combined MR/PET.

  3. MR/PET quantification tools: Registration, segmentation, classification, and MR-based attenuation correction

    International Nuclear Information System (INIS)

    Fei, Baowei; Yang, Xiaofeng; Nye, Jonathon A.; Raghunath, Nivedita; Votaw, John R.; Aarsvold, John N.; Cervo, Morgan; Stark, Rebecca; Meltzer, Carolyn C.

    2012-01-01

    Purpose: Combined MR/PET is a relatively new, hybrid imaging modality. A human MR/PET prototype system consisting of a Siemens 3T Trio MR and brain PET insert was installed and tested at our institution. Its present design does not offer measured attenuation correction (AC) using traditional transmission imaging. This study is the development of quantification tools including MR-based AC for quantification in combined MR/PET for brain imaging. Methods: The developed quantification tools include image registration, segmentation, classification, and MR-based AC. These components were integrated into a single scheme for processing MR/PET data. The segmentation method is multiscale and based on the Radon transform of brain MR images. It was developed to segment the skull on T1-weighted MR images. A modified fuzzy C-means classification scheme was developed to classify brain tissue into gray matter, white matter, and cerebrospinal fluid. Classified tissue is assigned an attenuation coefficient so that AC factors can be generated. PET emission data are then reconstructed using a three-dimensional ordered sets expectation maximization method with the MR-based AC map. Ten subjects had separate MR and PET scans. The PET with ["1"1C]PIB was acquired using a high-resolution research tomography (HRRT) PET. MR-based AC was compared with transmission (TX)-based AC on the HRRT. Seventeen volumes of interest were drawn manually on each subject image to compare the PET activities between the MR-based and TX-based AC methods. Results: For skull segmentation, the overlap ratio between our segmented results and the ground truth is 85.2 ± 2.6%. Attenuation correction results from the ten subjects show that the difference between the MR and TX-based methods was <6.5%. Conclusions: MR-based AC compared favorably with conventional transmission-based AC. Quantitative tools including registration, segmentation, classification, and MR-based AC have been developed for use in combined MR/PET.

  4. Targeting MTA1/HIF-1alpha Signaling by Pterostilbene in Combination with Histone Deacetylase Inhibitor Attenuates Prostate Cancer Progression (Open Access)

    Science.gov (United States)

    2017-08-30

    expression and acts synergistically with an androgen receptor antagonist to inhibit prostate cancer cell proliferation. Mol. Cancer Ther. 6:51–60. 25...2673 Introduction Prostate cancer (PCa) is the second most common cause of cancer - related death in men in the USA because of advanced castrate...signaling by pterostilbene in combination with histone deacetylase inhibitor attenuates prostate cancer progression Nasir A. Butt1,2, Avinash Kumar1,3

  5. Computer-controlled attenuator.

    Science.gov (United States)

    Mitov, D; Grozev, Z

    1991-01-01

    Various possibilities for applying electronic computer-controlled attenuators for the automation of physiological experiments are considered. A detailed description is given of the design of a 4-channel computer-controlled attenuator, in two of the channels of which the output signal can change by a linear step, in the other two channels--by a logarithmic step. This, together with the existence of additional programmable timers, allows to automate a wide range of studies in different spheres of physiology and psychophysics, including vision and hearing.

  6. Hop/STI1 modulates retinal proliferation and cell death independent of PrPC

    International Nuclear Information System (INIS)

    Arruda-Carvalho, Maithe; Njaine, Brian; Silveira, Mariana S.; Linden, Rafael; Chiarini, Luciana B.

    2007-01-01

    Hop/STI1 is a co-chaperone adaptor protein for Hsp70/Hsp90 complexes. Hop/STI1 is found extracellularly and modulates cell death and differentiation through interaction with the prion protein (PrP C ). Here, we investigated the expression of hop/STI1 and its role upon cell proliferation and cell death in the developing retina. Hop/STI1 is more expressed in developing rat retina than in the mature tissue. Hop/STI1 blocks retinal cell death in the neuroblastic layer (NBL) in a PrP C dependent manner, but failed to protect ganglion cells against axotomy-induced cell death. An antibody raised against hop/STI1 (α-STI1) blocked both ganglion cell and NBL cell death independent of PrP C . cAMP/PKA, ERK, PI3K and PKC signaling pathways were not involved in these effects. Hop/STI1 treatment reduced proliferation, while α-STI1 increased proliferation in the developing retina, both independent of PrP C . We conclude that hop/STI1 can modulate both proliferation and cell death in the developing retina independent of PrP C

  7. Prophylactic Treatment with Cerium Oxide Nanoparticles Attenuate Hepatic Ischemia Reperfusion Injury in Sprague Dawley Rats

    Directory of Open Access Journals (Sweden)

    Nandini D.P.K. Manne

    2017-07-01

    Full Text Available Background: Hepatic ischemia reperfusion is one the main causes for graft failure following transplantation. Although, the molecular events that lead to hepatic failure following ischemia reperfusion (IR are diverse and complex, previous studies have shown that excessive formation of reactive oxygen species (ROS are responsible for hepatic IR injury. Cerium oxide (CeO2 nanoparticles have been previously shown to act as an anti-oxidant and anti-inflammatory agent. Here, we evaluated the protective effects of CeO2 nanoparticles on hepatic ischemia reperfusion injury. Methods: Male Sprague Dawley rats were randomly assigned to one of the four groups: Control, CeO2 nanoparticle only, hepatic ischemia reperfusion (IR group and hepatic ischemia reperfusion (IR plus CeO2 nanoparticle group (IR+ CeO2. Partial warm hepatic ischemia was induced in left lateral and median lobes for 1h, followed by 6h of reperfusion. Animals were sacrificed after 6h of reperfusion and blood and tissue samples were collected and processed for various biochemical experiments. Results: Prophylactic treatment with CeO2 nanoparticles (0.5mg/kg i.v (IR+CeO2 group 1 hour prior to hepatic ischemia and subsequent reperfusion injury lead to a decrease in serum levels of alanine aminotransaminase and lactate dehydrogenase at 6 hours after reperfusion. These changes were accompanied by significant decrease in hepatocyte necrosis along with reduction in several serum inflammatory markers such as macrophage derived chemokine, macrophage inflammatory protein-2, KC/GRO, myoglobin and plasminogen activator inhibitor-1. However, immunoblotting demonstrated no significant changes in the levels of apoptosis related protein markers such as bax, bcl2 and caspase 3 in IR and IR+ CeO2 groups at 6 hours suggesting necrosis as the main pathway for hepatocyte death. Conclusion: Taken together, these data suggest that CeO2 nanoparticles attenuate IR induced cell death and can be used as a prophylactic

  8. Joint estimation of activity and attenuation for PET using pragmatic MR-based prior: application to clinical TOF PET/MR whole-body data for FDG and non-FDG tracers

    Science.gov (United States)

    Ahn, Sangtae; Cheng, Lishui; Shanbhag, Dattesh D.; Qian, Hua; Kaushik, Sandeep S.; Jansen, Floris P.; Wiesinger, Florian

    2018-02-01

    Accurate and robust attenuation correction remains challenging in hybrid PET/MR particularly for torsos because it is difficult to segment bones, lungs and internal air in MR images. Additionally, MR suffers from susceptibility artifacts when a metallic implant is present. Recently, joint estimation (JE) of activity and attenuation based on PET data, also known as maximum likelihood reconstruction of activity and attenuation, has gained considerable interest because of (1) its promise to address the challenges in MR-based attenuation correction (MRAC), and (2) recent advances in time-of-flight (TOF) technology, which is known to be the key to the success of JE. In this paper, we implement a JE algorithm using an MR-based prior and evaluate the algorithm using whole-body PET/MR patient data, for both FDG and non-FDG tracers, acquired from GE SIGNA PET/MR scanners with TOF capability. The weight of the MR-based prior is spatially modulated, based on MR signal strength, to control the balance between MRAC and JE. Large prior weights are used in strong MR signal regions such as soft tissue and fat (i.e. MR tissue classification with a high degree of certainty) and small weights are used in low MR signal regions (i.e. MR tissue classification with a low degree of certainty). The MR-based prior is pragmatic in the sense that it is convex and does not require training or population statistics while exploiting synergies between MRAC and JE. We demonstrate the JE algorithm has the potential to improve the robustness and accuracy of MRAC by recovering the attenuation of metallic implants, internal air and some bones and by better delineating lung boundaries, not only for FDG but also for more specific non-FDG tracers such as 68Ga-DOTATOC and 18F-Fluoride.

  9. Love is a battlefield: programmed cell death during fertilization.

    Science.gov (United States)

    Heydlauff, Juliane; Groß-Hardt, Rita

    2014-03-01

    Plant development and growth is sustained by the constant generation of tremendous amounts of cells, which become integrated into various types of tissues and organs. What is all too often overlooked is that this thriving life also requires the targeted degeneration of selected cells, which undergo cell death according to genetically encoded programmes or environmental stimuli. The side-by-side existence of generation and demise is particularly evident in the haploid phase of the flowering plants cycle. Here, the lifespan of terminally differentiated accessory cells contrasts with that of germ cells, which by definition live on to form the next generation. In fact, with research in recent years it is becoming increasingly clear that the gametophytes of flowering plants constitute an attractive and powerful system for investigating the molecular mechanisms underlying selective cell death.

  10. Cell death in the pathogenesis of systemic lupus erythematosus and lupus nephritis.

    Science.gov (United States)

    Mistry, Pragnesh; Kaplan, Mariana J

    2017-12-01

    Nephritis is one of the most severe complications of systemic lupus erythematosus (SLE). One key characteristic of lupus nephritis (LN) is the deposition of immune complexes containing nucleic acids and/or proteins binding to nucleic acids and autoantibodies recognizing these molecules. A variety of cell death processes are implicated in the generation and externalization of modified nuclear autoantigens and in the development of LN. Among these processes, apoptosis, primary and secondary necrosis, NETosis, necroptosis, pyroptosis, and autophagy have been proposed to play roles in tissue damage and immune dysregulation. Cell death occurs in healthy individuals during conditions of homeostasis yet autoimmunity does not develop, at least in part, because of rapid clearance of dying cells. In SLE, accelerated cell death combined with a clearance deficiency may lead to the accumulation and externalization of nuclear autoantigens and to autoantibody production. In addition, specific types of cell death may modify autoantigens and alter their immunogenicity. These modified molecules may then become novel targets of the immune system and promote autoimmune responses in predisposed hosts. In this review, we examine various cell death pathways and discuss how enhanced cell death, impaired clearance, and post-translational modifications of proteins could contribute to the development of lupus nephritis. Published by Elsevier Inc.

  11. Static Magnetic Field Attenuates Lipopolysaccharide-Induced Inflammation in Pulp Cells by Affecting Cell Membrane Stability

    Directory of Open Access Journals (Sweden)

    Sung-Chih Hsieh

    2015-01-01

    Full Text Available One of the causes of dental pulpitis is lipopolysaccharide- (LPS- induced inflammatory response. Following pulp tissue inflammation, odontoblasts, dental pulp cells (DPCs, and dental pulp stem cells (DPSCs will activate and repair damaged tissue to maintain homeostasis. However, when LPS infection is too serious, dental repair is impossible and disease may progress to irreversible pulpitis. Therefore, the aim of this study was to examine whether static magnetic field (SMF can attenuate inflammatory response of dental pulp cells challenged with LPS. In methodology, dental pulp cells were isolated from extracted teeth. The population of DPSCs in the cultured DPCs was identified by phenotypes and multilineage differentiation. The effects of 0.4 T SMF on DPCs were observed through MTT assay and fluorescent anisotropy assay. Our results showed that the SMF exposure had no effect on surface markers or multilineage differentiation capability. However, SMF exposure increases cell viability by 15%. In addition, SMF increased cell membrane rigidity which is directly related to higher fluorescent anisotropy. In the LPS-challenged condition, DPCs treated with SMF demonstrated a higher tolerance to LPS-induced inflammatory response when compared to untreated controls. According to these results, we suggest that 0.4 T SMF attenuates LPS-induced inflammatory response to DPCs by changing cell membrane stability.

  12. Apoptotic Cell Death Induced by Resveratrol Is Partially Mediated by the Autophagy Pathway in Human Ovarian Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Fangfang Lang

    Full Text Available Resveratrol (trans-3,4,5'-trihydroxystilbene is an active compound in food, such as red grapes, peanuts, and berries. Resveratrol exhibits an anticancer effect on various human cancer cells. However, the mechanism of resveratrol-induced anti-cancer effect at the molecular level remains to be elucidated. In this study, the mechanism underlying the anti-cancer effect of resveratrol in human ovarian cancer cells (OVCAR-3 and Caov-3 was investigated using various molecular biology techniques, such as flow cytometry, western blotting, and RNA interference, with a major focus on the potential role of autophagy in resveratrol-induced apoptotic cell death. We demonstrated that resveratrol induced reactive oxygen species (ROS generation, which triggers autophagy and subsequent apoptotic cell death. Resveratrol induced ATG5 expression and promoted LC3 cleavage. The apoptotic cell death induced by resveratrol was attenuated by both pharmacological and genetic inhibition of autophagy. The autophagy inhibitor chloroquine, which functions at the late stage of autophagy, significantly reduced resveratrol-induced cell death and caspase 3 activity in human ovarian cancer cells. We also demonstrated that targeting ATG5 by siRNA also suppressed resveratrol-induced apoptotic cell death. Thus, we concluded that a common pathway between autophagy and apoptosis exists in resveratrol-induced cell death in OVCAR-3 human ovarian cancer cells.

  13. Attenuation in Superconducting Circular Waveguides

    Directory of Open Access Journals (Sweden)

    K. H. Yeap

    2016-09-01

    Full Text Available We present an analysis on wave propagation in superconducting circular waveguides. In order to account for the presence of quasiparticles in the intragap states of a superconductor, we employ the characteristic equation derived from the extended Mattis-Bardeen theory to compute the values of the complex conductivity. To calculate the attenuation in a circular waveguide, the tangential fields at the boundary of the wall are first matched with the electrical properties (which includes the complex conductivity of the wall material. The matching of fields with the electrical properties results in a set of transcendental equations which is able to accurately describe the propagation constant of the fields. Our results show that although the attenuation in the superconducting waveguide above cutoff (but below the gap frequency is finite, it is considerably lower than that in a normal waveguide. Above the gap frequency, however, the attenuation in the superconducting waveguide increases sharply. The attenuation eventually surpasses that in a normal waveguide. As frequency increases above the gap frequency, Cooper pairs break into quasiparticles. Hence, we attribute the sharp rise in attenuation to the increase in random collision of the quasiparticles with the lattice structure.

  14. Radiofrequency attenuator and method

    Science.gov (United States)

    Warner, Benjamin P [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM; Burrell, Anthony K [Los Alamos, NM; Agrawal, Anoop [Tucson, AZ; Hall, Simon B [Palmerston North, NZ

    2009-01-20

    Radiofrequency attenuator and method. The attenuator includes a pair of transparent windows. A chamber between the windows is filled with molten salt. Preferred molten salts include quarternary ammonium cations and fluorine-containing anions such as tetrafluoroborate (BF.sub.4.sup.-), hexafluorophosphate (PF.sub.6.sup.-), hexafluoroarsenate (AsF.sub.6.sup.-), trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Radicals or radical cations may be added to or electrochemically generated in the molten salt to enhance the RF attenuation.

  15. Blockade of Death Ligand TRAIL Inhibits Renal Ischemia Reperfusion Injury

    International Nuclear Information System (INIS)

    Adachi, Takaomi; Sugiyama, Noriyuki; Gondai, Tatsuro; Yagita, Hideo; Yokoyama, Takahiko

    2013-01-01

    Renal ischemia-reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI). Many investigators have reported that cell death via apoptosis significantly contributed to the pathophysiology of renal IRI. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor superfamily, and induces apoptosis and inflammation. However, the role of TRAIL in renal IRI is unclear. Here, we investigated whether TRAIL contributes to renal IRI and whether TRAIL blockade could attenuate renal IRI. AKI was induced by unilateral clamping of the renal pedicle for 60 min in male FVB/N mice. We found that the expression of TRAIL and its receptors were highly upregulated in renal tubular cells in renal IRI. Neutralizing anti-TRAIL antibody or its control IgG was given 24 hr before ischemia and a half-dose booster injection was administered into the peritoneal cavity immediately after reperfusion. We found that TRAIL blockade inhibited tubular apoptosis and reduced the accumulation of neutrophils and macrophages. Furthermore, TRAIL blockade attenuated renal fibrosis and atrophy after IRI. In conclusion, our study suggests that TRAIL is a critical pathogenic factor in renal IRI, and that TRAIL could be a new therapeutic target for the prevention of renal IRI

  16. Filipendula ulmaria extracts attenuate cisplatin-induced liver and kidney oxidative stress in rats: In vivo investigation and LC-MS analysis.

    Science.gov (United States)

    Katanić, Jelena; Matić, Sanja; Pferschy-Wenzig, Eva-Maria; Kretschmer, Nadine; Boroja, Tatjana; Mihailović, Vladimir; Stanković, Vesna; Stanković, Nevena; Mladenović, Milan; Stanić, Snežana; Mihailović, Mirjana; Bauer, Rudolf

    2017-01-01

    Filipendula ulmaria, known as meadowsweet, is a perennial herb found in wild and cultivated habitats in Europe and Asia. Usage of F. ulmaria in traditional medicine is based on diuretic, astringent, antirheumatic, and anti-inflammatory properties of this plant. Exposure to cisplatin at a dose of 7.5 mg/kg caused significant increase in serum parameters of liver and kidneys function and tissue oxidative stress markers along with some histopathological changes in liver and kidney tissues of experimental rats, as well as high level of genotoxicity. Administration of F. ulmaria extracts in three different concentrations (100, 200, and 400 mg/kg/day) for 10 days resulted in a reduction of oxidative stress in tissues and decrease of serum parameters. Moreover, tested extracts attenuated the genotoxicity of cisplatin in reverse dose-dependent manner. F. ulmaria extracts had no in vitro cytotoxic activity at all applied concentrations (IC 50  > 50 μg/mL). Tested extracts, rich in polyphenolic compounds, attenuate cisplatin-induced liver and kidney oxidative stress, reduce tissue damage, and enhance the antioxidative status of experimental animals during cisplatin application. Therefore, F. ulmaria extracts may be used as supportive agent for the prevention and amelioration of cisplatin side effects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Quality insights of university teachers on dying, death, and death education.

    Science.gov (United States)

    Mak, Mui-Hing June

    One of the main responsibilities of teachers is to help individual students cope with life difficulties such as grief following a death. However, very little research explores teachers' views on death, dying, and how they handle grief and loss in schools. This study aims to explore university teachers' knowledge and attitudes on dying, death, and death education. Fifteen university teachers were recruited using a qualitative method. This study reveals that most teachers' views on death and related issues are largely affected by their death experiences, religious beliefs, professional background, and the mass media. Although they have a general negative response toward death and dying, some teachers begin to affirm their meanings of life and death. Most teachers agree that they do not feel adequate about managing and teaching on life and death issues, so they strongly support including death education in the formal programs in Hong Kong.

  18. Edaravone attenuates neuronal apoptosis in hypoxic-ischemic brain damage rat model via suppression of TRAIL signaling pathway.

    Science.gov (United States)

    Li, Chunyi; Mo, Zhihuai; Lei, Junjie; Li, Huiqing; Fu, Ruying; Huang, Yanxia; Luo, Shijian; Zhang, Lei

    2018-06-01

    Edaravone is a new type of oxygen free radical scavenger and able to attenuate various brain damage including hypoxic-ischemic brain damage (HIBD). This study was aimed at investigating the neuroprotective mechanism of edaravone in rat hypoxic-ischemic brain damage model and its correlation with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling pathway. 75 seven-day-old Sprague-Dawley neonatal rats were equally divided into three groups: sham-operated group (sham), HIBD group and HIBD rats injected with edaravone (HIBD + EDA) group. Neurological severity and space cognitive ability of rats in each group were evaluated using Longa neurological severity score and Morris water maze testing. TUNEL assay and flow cytometry were used to determine brain cell apoptosis. Western blot was used to estimate the expression level of death receptor-5 (DR5), Fas-associated protein with death domain (FADD), caspase 8, B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein (Bax). In addition, immunofluorescence was performed to detect caspase 3. Edaravone reduced neurofunctional damage caused by HIBD and improved the cognitive capability of rats. The above experiment results suggested that edaravone could down-regulate the expression of active caspase 3 protein, thereby relieving neuronal apoptosis. Taken together, edaravone could attenuate neuronal apoptosis in rat hypoxic-ischemic brain damage model via suppression of TRAIL signaling pathway, which also suggested that edaravone might be an effective therapeutic strategy for HIBD clinical treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Delivery of Adipose-Derived Stem Cells Attenuates Adipose Tissue Inflammation and Insulin Resistance in Obese Mice Through Remodeling Macrophage Phenotypes.

    Science.gov (United States)

    Shang, Qianwen; Bai, Yang; Wang, Guannan; Song, Qiang; Guo, Chun; Zhang, Lining; Wang, Qun

    2015-09-01

    Adipose-derived stem cells (ADSCs) have been used to control several autoimmune or inflammatory diseases due to immunosuppressive properties, but their role in obesity-associated inflammation remains unestablished. This study aims to evaluate the effects of ADSCs on obesity-induced white adipose tissue (WAT) inflammation and insulin resistance. We found that diet-induced obesity caused a remarkable reduction of ADSC fraction in mouse WAT. Delivery of lean mouse-derived ADSCs, which could successfully locate into WAT of obese mice, substantially improved insulin action and metabolic homeostasis of obese mice. ADSC treatment not only reduced adipocyte hypertrophy but also attenuated WAT inflammation by reducing crown-like structures of macrophages and tumor necrosis factor (TNF)-α secretion. Importantly, ADSC treatment remodeled the phenotypes of adipose-resident macrophages from proinflammatory M1 toward anti-inflammatory M2-like subtypes, as characterized by decreased MHC class II-expressing but increased interleukin (IL)-10-producing macrophages together with low expression of TNF-α and IL-12. Coculture of ADSCs through the transwell or conditional medium with induced M1 macrophages also reproduced the phenotypic switch toward M2-like macrophages, which was substantiated by elevated arginase 1, declined inducible nitric oxide synthase, inhibition of NF-κB activity, and activation of STAT3/STAT6. Taken together, our data support that ADSC supplement in obese mice could sustain IL-10-producing M2-like macrophages in WAT through paracrine action, thereby suggesting the crucial role of ADSCs in resolving WAT inflammation, maintaining adipose homeostasis, and proposing a potential ADSC-based approach for the treatment of obesity-related diseases.

  20. PET/MR brain imaging: evaluation of clinical UTE-based attenuation correction

    International Nuclear Information System (INIS)

    Aasheim, Lars Birger; Karlberg, Anna; Goa, Paal Erik; Haaberg, Asta; Soerhaug, Sveinung; Fagerli, Unn-Merete; Eikenes, Live

    2015-01-01

    One of the greatest challenges in PET/MR imaging is that of accurate MR-based attenuation correction (AC) of the acquired PET data, which must be solved if the PET/MR modality is to reach its full potential. The aim of this study was to investigate the performance of Siemens' most recent version (VB20P) of MR-based AC of head PET data, by comparing it to CT-based AC. Methods: 18 F-FDG PET data from seven lymphoma and twelve lung cancer patients examined with a Biograph mMR PET/MR system were reconstructed with both CT-based and MR-based AC, avoiding sources of error arising when comparing PET data from different systems. The resulting images were compared quantitatively by measuring changes in mean SUV in ten different brain regions in both hemispheres, as well as the brainstem. In addition, the attenuation maps (μ maps) were compared regarding volume and localization of cranial bone. The UTE μ maps clearly overestimate the amount of bone in the neck, while slightly underestimating the amount of bone in the cranium, and the localization of bone in the cranial region also differ from the CT μ maps. In air/tissue interfaces in the sinuses and ears, the MRAC method struggles to correctly classify the different tissues. The misclassification of tissue is most likely caused by a combination of artefacts and the insufficiency of the UTE method to accurately separate bone. Quantitatively, this results in a combination of overestimation (0.5-3.6 %) and underestimation (2.7-5.2 %) of PET activity throughout the brain, depending on the proximity to the inaccurate regions. Our results indicate that the performance of the UTE method as implemented in VB20P is close to the theoretical maximum of such an MRAC method in the brain, while it does not perform satisfactorily in the neck or face/nasal area. Further improvement of the UTE MRAC or other available methods for more accurate segmentation of bone should be incorporated. (orig.)

  1. Understanding cell cycle and cell death regulation provides novel weapons against human diseases.

    Science.gov (United States)

    Wiman, K G; Zhivotovsky, B

    2017-05-01

    Cell division, cell differentiation and cell death are the three principal physiological processes that regulate tissue homoeostasis in multicellular organisms. The growth and survival of cells as well as the integrity of the genome are regulated by a complex network of pathways, in which cell cycle checkpoints, DNA repair and programmed cell death have critical roles. Disruption of genomic integrity and impaired regulation of cell death may both lead to uncontrolled cell growth. Compromised cell death can also favour genomic instability. It is becoming increasingly clear that dysregulation of cell cycle and cell death processes plays an important role in the development of major disorders such as cancer, cardiovascular disease, infection, inflammation and neurodegenerative diseases. Research achievements in these fields have led to the development of novel approaches for treatment of various conditions associated with abnormalities in the regulation of cell cycle progression or cell death. A better understanding of how cellular life-and-death processes are regulated is essential for this development. To highlight these important advances, the Third Nobel Conference entitled 'The Cell Cycle and Cell Death in Disease' was organized at Karolinska Institutet in 2016. In this review we will summarize current understanding of cell cycle progression and cell death and discuss some of the recent advances in therapeutic applications in pathological conditions such as cancer, neurological disorders and inflammation. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  2. Schistosoma mansoni: migration potential of normal and radiation attenuated parasites in naive guinea pigs

    International Nuclear Information System (INIS)

    Kamiya, H.; McLaren, D.J.

    1987-01-01

    Compressed tissue autoradiography using [75Se]selenomethionine labelled parasites has been used to investigate the migration potential of normal and radiation attenuated cercariae of Schistosoma mansoni in naive guinea pigs. By Day 14 after infection. 44% of normal parasites were detected as reduced silver foci in the liver; this value corresponded well with the number of liver parasites recovered by retrograde perfusion of the hepatic portal system on Day 42 (42% of the challenge). In contrast, cercariae subjected to 50 krad of gamma irradiation failed to migrate out of the skin. The migration capacity of 20 krad irradiated parasites was less severely affected in that about half of the challenge parasites reached the lungs, but virtually none moved to the liver. These data are discussed in relation to the kinetics of immunity induced in guinea pigs by infection or vaccination with normal or radiation attenuated parasites

  3. The LCLS Gas Attenuator Revisited

    International Nuclear Information System (INIS)

    Ryutov, D

    2005-01-01

    In the report ''X-ray attenuation cell'' [1] a preliminary analysis of the gas attenuator for the Linac Coherent Light Source (LCLS) was presented. This analysis was carried out for extremely stringent set of specifications. In particular, a very large diameter for the unobstructed beam was set (1 cm) to accommodate the spontaneous radiation; the attenuator was supposed to cover the whole range of energies of the coherent radiation, from 800 eV to 8000 eV; the maximum attenuation was set at the level of 10 4 ; the use of solid attenuators was not allowed, as well as the use of rotating shutters. The need to reach a sufficient absorption at the high-energy end of the spectrum predetermined the choice of Xe as the working gas (in order to have a reasonable absorption at a not-too-high pressure). A sophisticated differential pumping system that included a Penning-type ion pump was suggested in order to minimize the gas leak into the undulator/accelerator part of the facility. A high cost of xenon meant also that an efficient (and expensive) gas-recovery system would have to be installed. The main parameter that determined the high cost and the complexity of the system was a large radius of the orifice. The present viewpoint allows for much smaller size of the orifice, r 0 = 1.5 mm. (1) The use of solid attenuators is also allowed (R.M. Bionta, private communication). It is, therefore, worthwhile to reconsider various parameters of the gas attenuator for these much less stringent conditions. This brief study should be considered as a physics input for the engineering design. As a working gas we consider now the argon, which, on the one hand, provides a reasonable absorption lengths and, on the other hand, is inexpensive enough to be exhausted into the atmosphere (no recovery). The absorption properties of argon are illustrated by Fig.1 where the attenuation factor A is shown for various beam energies, based on Ref. [2]. The other relevant parameters for argon are

  4. Trends, productivity losses, and associated medical conditions among toxoplasmosis deaths in the United States, 2000-2010.

    Science.gov (United States)

    Cummings, Patricia L; Kuo, Tony; Javanbakht, Marjan; Sorvillo, Frank

    2014-11-01

    Few studies have quantified toxoplasmosis mortality, associated medical conditions, and productivity losses in the United States. We examined national multiple cause of death data and estimated productivity losses caused by toxoplasmosis during 2000-2010. A matched case-control analysis examined associations between comorbid medical conditions and toxoplasmosis deaths. In total, 789 toxoplasmosis deaths were identified during the 11-year study period. Blacks and Hispanics had the highest toxoplasmosis mortality compared with whites. Several medical conditions were associated with toxoplasmosis deaths, including human immunodeficiency virus (HIV), lymphoma, leukemia, and connective tissue disorders. The number of toxoplasmosis deaths with an HIV codiagnosis declined from 2000 to 2010; the numbers without such a codiagnosis remained static. Cumulative disease-related productivity losses for the 11-year period were nearly $815 million. Although toxoplasmosis mortality has declined in the last decade, the infection remains costly and is an important cause of preventable death among non-HIV subgroups. © The American Society of Tropical Medicine and Hygiene.

  5. Lactobacillus rhamnosus GR-1 Ameliorates Escherichia coli-Induced Inflammation and Cell Damage via Attenuation of ASC-Independent NLRP3 Inflammasome Activation.

    Science.gov (United States)

    Wu, Qiong; Liu, Ming-Chao; Yang, Jun; Wang, Jiu-Feng; Zhu, Yao-Hong

    2016-02-15

    Escherichia coli is a major environmental pathogen causing bovine mastitis, which leads to mammary tissue damage and cell death. We explored the effects of the probiotic Lactobacillus rhamnosus GR-1 on ameliorating E. coli-induced inflammation and cell damage in primary bovine mammary epithelial cells (BMECs). Increased Toll-like receptor 4 (TLR4), NOD1, and NOD2 mRNA expression was observed following E. coli challenge, but this increase was attenuated by L. rhamnosus GR-1 pretreatment. Immunofluorescence and Western blot analyses revealed that L. rhamnosus GR-1 pretreatment decreased the E. coli-induced increases in the expression of the NOD-like receptor family member pyrin domain-containing protein 3 (NLRP3) and the serine protease caspase 1. However, expression of the adaptor protein apoptosis-associated speck-like protein (ASC, encoded by the Pycard gene) was decreased during E. coli infection, even with L. rhamnosus GR-1 pretreatment. Pretreatment with L. rhamnosus GR-1 counteracted the E. coli-induced increases in interleukin-1β (IL-1β), -6, -8, and -18 and tumor necrosis factor alpha mRNA expression but upregulated IL-10 mRNA expression. Our data indicate that L. rhamnosus GR-1 reduces the adhesion of E. coli to BMECs, subsequently ameliorating E. coli-induced disruption of cellular morphology and ultrastructure and limiting detrimental inflammatory responses, partly via promoting TLR2 and NOD1 synergism and attenuating ASC-independent NLRP3 inflammasome activation. Although the residual pathogenic activity of L. rhamnosus, the dosage regimen, and the means of probiotic supplementation in cattle remain undefined, our data enhance our understanding of the mechanism of action of this candidate probiotic, allowing for development of specific probiotic-based therapies and strategies for preventing pathogenic infection of the bovine mammary gland. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Newcastle disease virus-attenuated vaccine co-contaminated with fowl adenovirus and chicken infectious anemia virus results in inclusion body hepatitis-hydropericardium syndrome in poultry.

    Science.gov (United States)

    Su, Qi; Li, Yang; Meng, Fanfeng; Cui, Zhizhong; Chang, Shuang; Zhao, Peng

    2018-05-01

    Inclusion body hepatitis-hydropericardium syndrome (IBH-HPS) induced by fowl adenovirus type 4 (FAdV-4) has caused huge economic losses to the poultry industry of China, but the source of infection for different flocks, especially flocks with high biological safety conditions, has remained unclear. This study tested the pathogenicity of Newcastle disease virus (NDV)-attenuated vaccine from a large-scale poultry farm in China where IBH-HPS had appeared with high mortality. Analysis revealed that the NDV-attenuated vaccine in use from the abovementioned poultry farm was simultaneously contaminated with FAdV-4 and chicken infectious anemia virus (CIAV). The FAdV and CIAV isolated from the vaccine were purified for the artificial preparation of an NDV-attenuated vaccine singly contaminated with FAdV or CIAV, or simultaneously contaminated with both of them. Seven-day-old specific pathogen-free chicks were inoculated with the artificially prepared contaminated vaccines and tested for corresponding indices. The experiments showed that no hydropericardium syndrome (HPS) and corresponding death occurred after administering the NDV-attenuated vaccine singly contaminated with FAdV or CIAV, but a mortality of 75% with IBH-HPS was commonly found in birds after administering the NDV-attenuated vaccine co-contaminated with FAdV and CIAV. In conclusion, this study found the co-contamination of FAdV-4 and CIAV in the same attenuated vaccine and confirmed that such a contaminated attenuated vaccine was a significant source of infection for outbreaks of IBH-HPS in some flocks. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Caffeic acid, morin hydrate and quercetin partially attenuate sulfur mustard-induced cell death by inhibiting the lipoxygenase pathway.

    Science.gov (United States)

    Kim, Shin; Jeong, Kwang-Joon; Cho, Sung Kweon; Park, Joo-Won; Park, Woo-Jae

    2016-11-01

    Sulfur mustard (SM) is an alkylating agent, which has been used as in chemical warfare in a number of conflicts. As the generation of reactive oxygen species (ROS), and adducts in DNA and proteins have been suggested as the mechanism underlying SM‑induced cytotoxicity, the present study screened several antioxidant candidates, including tannic acid, deferoxamine mesylate, trolox, vitamin C, ellagic acid and caffeic acid (CA) to assess their potential as therapeutic agents for SM‑induced cell death. Among several antioxidants, CA partially alleviated SM‑induced cell death in a dose‑dependent manner. Although CA treatment decreased the phosphorylation of p38 mitogen‑activated protein (MAP) kinase and p53, p38 MAP kinase inhibition by SB203580 did not affect SM‑induced cell death. As CA has also been reported as a 15‑lipoxygenase (15‑LOX) inhibitor, the role of 15‑LOX in SM‑induced cytotoxicity was also examined. Similar to the results observed with CA, treatment with PD146176, a specific 15‑LOX inhibitor, decreased SM‑induced cytotoxicity, accompanied by decreases in the production of tumor necrosis factor‑α and 15‑hydroxyeicosatetraenoic acid. Furthermore, the present study investigated the protective effects of two natural 15‑LOX inhibitors, morin hydrate and quercetin, in SM‑induced cytotoxicity. As expected, these inhibitors had similar protective effects against SM‑induced cytotoxicity. These antioxidants also reduced the generation of ROS and nitrate/nitrite. Therefore, the results of the present study indicated that the natural products, CA, quercetin and morin hydrate, offer potential as adjuvant therapeutic agents for SM‑induced toxicity, not only by reducing inflammation mediated by the p38 and LOX signaling pathways, but also by decreasing the generation of ROS and nitrate/nitrite.

  8. Maximum likelihood estimation of the attenuated ultrasound pulse

    DEFF Research Database (Denmark)

    Rasmussen, Klaus Bolding

    1994-01-01

    The attenuated ultrasound pulse is divided into two parts: a stationary basic pulse and a nonstationary attenuation pulse. A standard ARMA model is used for the basic pulse, and a nonstandard ARMA model is derived for the attenuation pulse. The maximum likelihood estimator of the attenuated...

  9. Statin use and risk of disease recurrence and death after radical prostatectomy.

    Science.gov (United States)

    Keskiväli, Teemu; Kujala, Paula; Visakorpi, Tapio; Tammela, Teuvo L J; Murtola, Teemu J

    2016-04-01

    Statins have been linked with improved prostate cancer survival and lower risk of recurrence in men treated with radiation therapy. However, the association is unclear for surgically-treated men. We studied the risk of prostate cancer recurrence and death by statin usage after radical prostatectomy in a cohort of prostate cancer patients treated with radical prostatectomy. A cohort of 1,314 men who underwent curative-intent radical prostatectomy at the Tampere University Hospital, Tampere, Finland during 1995-2009 were linked to national prescription database to obtain detailed information on statin purchases. The risk of PSA recurrence and death (overall and prostate cancer-specific) by statin use before and after the surgery were evaluated using Cox regression with model adjustment for tumor characteristics, total cholesterol and simultaneous use of antidiabetic and antihypertensive drugs. Tissue expression of putative prognostic markers were measured from a subgroup of 323 men. During the median follow-up of 8.6 years after surgery 484 men recurred, while 244 men died (32 due to prostate cancer). In general statin use before or after prostatectomy was not associated with risk of disease recurrence or death. Tissue expression of Ki-67 and ERG modified the association between statin use and risk of disease recurrence; the risk estimates were lower in men with Ki-67 expression above the median (P for interaction 0.001 and 0.004 for statin use before and after prostatectomy, respectively) and no ERG expression in the tumor tissue (P for interaction 0.006 and 0.011). Statin use generally did not affect prostate cancer prognosis after prostatectomy. The effect on disease recurrence may depend on tumor properties, such as proliferation activity. Thus possible future prospective studies should recognize and enroll subgroups of prostate cancer patients most likely to benefit from statins. © 2015 Wiley Periodicals, Inc.

  10. Caspase-2-dependent dendritic cell death, maturation, and priming of T cells in response to Brucella abortus infection.

    Directory of Open Access Journals (Sweden)

    Xinna Li

    Full Text Available Smooth virulent Brucella abortus strain 2308 (S2308 causes zoonotic brucellosis in cattle and humans. Rough B. abortus strain RB51, derived from S2308, is a live attenuated cattle vaccine strain licensed in the USA and many other countries. Our previous report indicated that RB51, but not S2308, induces a caspase-2-dependent apoptotic and necrotic macrophage cell death. Dendritic cells (DCs are professional antigen presenting cells critical for bridging innate and adaptive immune responses. In contrast to Brucella-infected macrophages, here we report that S2308 induced higher levels of apoptotic and necrotic cell death in wild type bone marrow-derived DCs (WT BMDCs than RB51. The RB51 and S2308-induced BMDC cell death was regulated by caspase-2, indicated by the minimal cell death in RB51 and S2308-infected BMDCs isolated from caspase-2 knockout mice (Casp2KO BMDCs. More S2308 bacteria were taken up by Casp2KO BMDCs than wild type BMDCs. Higher levels of S2308 and RB51 cells were found in infected Casp2KO BMDCs compared to infected WT BMDCs at different time points. RB51-infected wild type BMDCs were mature and activated as shown by significantly up-regulated expression of CD40, CD80, CD86, MHC-I, and MHC-II. RB51 induced the production of cytokines TNF-α, IL-6, IFN-γ and IL12/IL23p40 in infected BMDCs. RB51-infected WT BMDCs also stimulated the proliferation of CD4(+ and CD8(+ T cells compared to uninfected WT BMDCs. However, the maturation, activation, and cytokine secretion are significantly impaired in Casp2KO BMDCs infected with RB51 or Salmonella (control. S2308-infected WT and Casp2KO BMDCs were not activated and could not induce cytokine production. These results demonstrated that virulent smooth strain S2308 induced more apoptotic and necrotic dendritic cell death than live attenuated rough vaccine strain RB51; however, RB51, but not its parent strain S2308, induced caspase-2-mediated DC maturation, cytokine production, antigen

  11. Exploring children's understanding of death: through drawings and the Death Concept Questionnaire.

    Science.gov (United States)

    Bonoti, Fotini; Leondari, Angeliki; Mastora, Adelais

    2013-01-01

    To investigate whether children's understanding of the concept of death varies as a function of death experience and age, 52 children aged 7, 9, and 11 years (26 had a personal death experience), drew a picture reflecting the meaning of the word death and completed the Death Concept Questionnaire for examination of Human and Animal Death. The results showed that the 2 methodological tools used offered complementary information and that children's understanding of death is related both to age and past experience. Children with death experience seem to have a more realistic understanding of death than their inexperienced age-mates. As regards to the effect of age, our findings support the assumption that the different components of death develop through different processes.

  12. Improving the quantitative accuracy of optical-emission computed tomography by incorporating an attenuation correction: application to HIF1 imaging

    Science.gov (United States)

    Kim, E.; Bowsher, J.; Thomas, A. S.; Sakhalkar, H.; Dewhirst, M.; Oldham, M.

    2008-10-01

    Optical computed tomography (optical-CT) and optical-emission computed tomography (optical-ECT) are new techniques for imaging the 3D structure and function (including gene expression) of whole unsectioned tissue samples. This work presents a method of improving the quantitative accuracy of optical-ECT by correcting for the 'self'-attenuation of photons emitted within the sample. The correction is analogous to a method commonly applied in single-photon-emission computed tomography reconstruction. The performance of the correction method was investigated by application to a transparent cylindrical gelatin phantom, containing a known distribution of attenuation (a central ink-doped gelatine core) and a known distribution of fluorescing fibres. Attenuation corrected and uncorrected optical-ECT images were reconstructed on the phantom to enable an evaluation of the effectiveness of the correction. Significant attenuation artefacts were observed in the uncorrected images where the central fibre appeared ~24% less intense due to greater attenuation from the surrounding ink-doped gelatin. This artefact was almost completely removed in the attenuation-corrected image, where the central fibre was within ~4% of the others. The successful phantom test enabled application of attenuation correction to optical-ECT images of an unsectioned human breast xenograft tumour grown subcutaneously on the hind leg of a nude mouse. This tumour cell line had been genetically labelled (pre-implantation) with fluorescent reporter genes such that all viable tumour cells expressed constitutive red fluorescent protein and hypoxia-inducible factor 1 transcription-produced green fluorescent protein. In addition to the fluorescent reporter labelling of gene expression, the tumour microvasculature was labelled by a light-absorbing vasculature contrast agent delivered in vivo by tail-vein injection. Optical-CT transmission images yielded high-resolution 3D images of the absorbing contrast agent, and

  13. Improving the quantitative accuracy of optical-emission computed tomography by incorporating an attenuation correction: application to HIF1 imaging

    International Nuclear Information System (INIS)

    Kim, E; Bowsher, J; Thomas, A S; Sakhalkar, H; Dewhirst, M; Oldham, M

    2008-01-01

    Optical computed tomography (optical-CT) and optical-emission computed tomography (optical-ECT) are new techniques for imaging the 3D structure and function (including gene expression) of whole unsectioned tissue samples. This work presents a method of improving the quantitative accuracy of optical-ECT by correcting for the 'self'-attenuation of photons emitted within the sample. The correction is analogous to a method commonly applied in single-photon-emission computed tomography reconstruction. The performance of the correction method was investigated by application to a transparent cylindrical gelatin phantom, containing a known distribution of attenuation (a central ink-doped gelatine core) and a known distribution of fluorescing fibres. Attenuation corrected and uncorrected optical-ECT images were reconstructed on the phantom to enable an evaluation of the effectiveness of the correction. Significant attenuation artefacts were observed in the uncorrected images where the central fibre appeared ∼24% less intense due to greater attenuation from the surrounding ink-doped gelatin. This artefact was almost completely removed in the attenuation-corrected image, where the central fibre was within ∼4% of the others. The successful phantom test enabled application of attenuation correction to optical-ECT images of an unsectioned human breast xenograft tumour grown subcutaneously on the hind leg of a nude mouse. This tumour cell line had been genetically labelled (pre-implantation) with fluorescent reporter genes such that all viable tumour cells expressed constitutive red fluorescent protein and hypoxia-inducible factor 1 transcription-produced green fluorescent protein. In addition to the fluorescent reporter labelling of gene expression, the tumour microvasculature was labelled by a light-absorbing vasculature contrast agent delivered in vivo by tail-vein injection. Optical-CT transmission images yielded high-resolution 3D images of the absorbing contrast agent

  14. Compensation for nonuniform attenuation in SPECT brain imaging

    International Nuclear Information System (INIS)

    Glick, S.J.; King, M.A.; Pan, T.S.; Soares, E.J.

    1996-01-01

    Accurate compensation for photon attenuation is needed to perform quantitative brain single-photon-emission computed tomographic (SPECT) imaging. Bellini's attenuation-compensation method has been used with a nonuniform attenuation map to account for the nonuniform attenuation properties of the head. Simulation studies using a three-dimensional (3-D) digitized anthropomorphic brain phantom were conducted to compare quantitative accuracy of reconstructions obtained with the nonuniform Bellini method to that obtained with the Chang method and to iterative reconstruction using maximum-likelihood expectation maximization (ML-EM). Using the Chang method and assuming the head to be a uniform attenuator gave reconstructions with an average bias of approximately 6-8%, whereas using the Bellini or the iterative ML-EM method with a nonuniform attenuation map gave an average bias of approximately 1%. The computation time required to implement nonuniform attenuation compensation with the Bellini algorithm is approximately equivalent to the time required to perform one iteration of ML-EM. Thus, using the Bellini method with a nonuniform attenuation map provides accurate compensation for photon attenuation within the head, and the method can be implemented in computation times suitable for routine clinical use

  15. Virtual non-contrast in second-generation, dual-energy computed tomography: Reliability of attenuation values

    International Nuclear Information System (INIS)

    Toepker, Michael; Moritz, Thomas; Krauss, Bernhard; Weber, Michael; Euller, Gordon; Mang, Thomas; Wolf, Florian; Herold, Christian J.; Ringl, Helmut

    2012-01-01

    Purpose: To evaluate the reliability of attenuation values in virtual non-contrast images (VNC) reconstructed from contrast-enhanced, dual-energy scans performed on a second-generation dual-energy CT scanner, compared to single-energy, non-contrast images (TNC). Materials and methods: Sixteen phantoms containing a mixture of contrast agent and water at different attenuations (0–1400 HU) were investigated on a Definition Flash-CT scanner using a single-energy scan at 120 kV and a DE-CT protocol (100 kV/SN140 kV). For clinical assessment, 86 patients who received a dual-phase CT, containing an unenhanced single-energy scan at 120 kV and a contrast enhanced (110 ml Iomeron 400 mg/ml; 4 ml/s) DE-CT (100 kV/SN140 kV) in an arterial (n = 43) or a venous phase, were retrospectively analyzed. Mean attenuation was measured within regions of interest of the phantoms and in different tissue types of the patients within the corresponding VNC and TNC images. Paired t-tests and Pearson correlation were used for statistical analysis. Results: For all phantoms, mean attenuation in VNC was 5.3 ± 18.4 HU, with respect to water. In 86 patients overall, 2637 regions were measured in TNC and VNC images, with a mean difference between TNC and VNC of −3.6 ± 8.3 HU. In 91.5% (n = 2412) of all cases, absolute differences between TNC and VNC were under 15 HU, and, in 75.3% (n = 1986), differences were under 10 HU. Conclusions: Second-generation dual-energy CT based VNC images provide attenuation values close to those of TNC. To avoid possible outliers multiple measurements are recommended especially for measurements in the spleen, the mesenteric fat, and the aorta.

  16. Virtual non-contrast in second-generation, dual-energy computed tomography: reliability of attenuation values.

    Science.gov (United States)

    Toepker, Michael; Moritz, Thomas; Krauss, Bernhard; Weber, Michael; Euller, Gordon; Mang, Thomas; Wolf, Florian; Herold, Christian J; Ringl, Helmut

    2012-03-01

    To evaluate the reliability of attenuation values in virtual non-contrast images (VNC) reconstructed from contrast-enhanced, dual-energy scans performed on a second-generation dual-energy CT scanner, compared to single-energy, non-contrast images (TNC). Sixteen phantoms containing a mixture of contrast agent and water at different attenuations (0-1400 HU) were investigated on a Definition Flash-CT scanner using a single-energy scan at 120 kV and a DE-CT protocol (100 kV/SN140 kV). For clinical assessment, 86 patients who received a dual-phase CT, containing an unenhanced single-energy scan at 120 kV and a contrast enhanced (110 ml Iomeron 400 mg/ml; 4 ml/s) DE-CT (100 kV/SN140 kV) in an arterial (n=43) or a venous phase, were retrospectively analyzed. Mean attenuation was measured within regions of interest of the phantoms and in different tissue types of the patients within the corresponding VNC and TNC images. Paired t-tests and Pearson correlation were used for statistical analysis. For all phantoms, mean attenuation in VNC was 5.3±18.4 HU, with respect to water. In 86 patients overall, 2637 regions were measured in TNC and VNC images, with a mean difference between TNC and VNC of -3.6±8.3 HU. In 91.5% (n=2412) of all cases, absolute differences between TNC and VNC were under 15HU, and, in 75.3% (n=1986), differences were under 10 HU. Second-generation dual-energy CT based VNC images provide attenuation values close to those of TNC. To avoid possible outliers multiple measurements are recommended especially for measurements in the spleen, the mesenteric fat, and the aorta. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death.

    Science.gov (United States)

    Narayanan, Kannan Badri; Ali, Manaf; Barclay, Barry J; Cheng, Qiang Shawn; D'Abronzo, Leandro; Dornetshuber-Fleiss, Rita; Ghosh, Paramita M; Gonzalez Guzman, Michael J; Lee, Tae-Jin; Leung, Po Sing; Li, Lin; Luanpitpong, Suidjit; Ratovitski, Edward; Rojanasakul, Yon; Romano, Maria Fiammetta; Romano, Simona; Sinha, Ranjeet K; Yedjou, Clement; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Brown, Dustin G; Ryan, Elizabeth P; Colacci, Annamaria; Hamid, Roslida A; Mondello, Chiara; Raju, Jayadev; Salem, Hosni K; Woodrick, Jordan; Scovassi, A Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Kim, Seo Yun; Bisson, William H; Lowe, Leroy; Park, Hyun Ho

    2015-06-01

    Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Side effects of ionizing radiation on healthy tissues and organs at risk

    International Nuclear Information System (INIS)

    Cosset, J.M.

    2010-01-01

    Ionizing radiations induce cell death, causing deterministic or stochastic side-effects. This paper briefly summarizes the biological mechanisms of early and late side-effects of ionizing radiations on healthy tissue. (author)

  19. Attenuation of cold stress-induced exacerbation of cardiac and adipose tissue pathology and metabolic disorders in a rat model of metabolic syndrome by the glucocorticoid receptor antagonist RU486.

    Science.gov (United States)

    Nagasawa, K; Matsuura, N; Takeshita, Y; Ito, S; Sano, Y; Yamada, Y; Uchinaka, A; Murohara, T; Nagata, K

    2016-04-25

    Chronic stress affects the central nervous system as well as endocrine, metabolic and immune systems. However, the effects of cold stress on cardiovascular and metabolic disorders in metabolic syndrome (MetS) have remained unclear. We recently characterized DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats, derived from a cross between Dahl salt-sensitive and Zucker rats, as a new animal model of MetS. We have now investigated the effects of chronic cold stress and glucocorticoid receptor (GR) blockade on cardiac and adipose tissue pathology as well as on metabolic parameters in this model. DS/obese rats were exposed to cold stress (immersion in ice-cold water to a depth of 1-2 cm for 2 h per day) with or without subcutaneous injection of the GR antagonist RU486 (2 mg kg(-1)day(-1)) for 4 weeks beginning at 9 weeks of age. Age-matched homozygous lean (DahlS.Z-Lepr(+)/Lepr(+)) littermates served as a control. Chronic cold stress exacerbated hypertension as well as left ventricular (LV) hypertrophy, fibrosis and diastolic dysfunction in DS/obese rats in a manner sensitive to RU486 treatment. Cold stress with or without RU486 did not affect body weight or fat mass. In contrast, cold stress further increased cardiac oxidative stress as well as macrophage infiltration and proinflammatory gene expression in LV and visceral fat tissue, with all of these effects being attenuated by RU486. Cold stress also further increased GR and 11β-hydroxysteroid dehydrogenase type 1 mRNA and protein abundance in LV and visceral adipose tissue, and these effects were again inhibited by RU486. In addition, RU486 ameliorated the stress-induced aggravation of dyslipidemia, glucose intolerance and insulin resistance in DS/obese rats. Our results implicate GR signaling in cold stress-induced exacerbation of cardiac and adipose tissue pathology as well as of abnormal glucose and lipid metabolism in a rat model of MetS.

  20. Attenuation correction for hybrid MR/PET scanners: a comparison study

    Energy Technology Data Exchange (ETDEWEB)

    Rota Kops, Elena [Forschungszentrum Jülich GmbH, Jülich (Germany); Ribeiro, Andre Santos [Imperial College London, London (United Kingdom); Caldeira, Liliana [Forschungszentrum Jülich GmbH, Jülich (Germany); Hautzel, Hubertus [Heinrich-Heine-University Düsseldorf, Düsseldorf (Germany); Lukas, Mathias [Technische Universitaet Muenchen, Munich (Germany); Antoch, Gerald [Heinrich-Heine-University Düsseldorf, Düsseldorf (Germany); Lerche, Christoph; Shah, Jon [Forschungszentrum Jülich GmbH, Jülich (Germany)

    2015-05-18

    Attenuation correction of PET data acquired in hybrid MR/PET scanners is still a challenge. Different methods have been adopted by several groups to obtain reliable attenuation maps (mu-maps). In this study we compare three methods: MGH, UCL, Neural-Network. The MGH method is based on an MR/CT template obtained with the SPM8 software. The UCL method uses a database of MR/CT pairs. Both generate mu-maps from MP-RAGE images. The feed-forward neural-network from Juelich (NN-Juelich) requires two UTE images; it generates segmented mu-maps. Data from eight subjects (S1-S8) measured in the Siemens 3T MR-BrainPET scanner were used. Corresponding CT images were acquired. The resulting mu-maps were compared against the CT-based mu-maps for each subject and method. Overlapped voxels and Dice similarity coefficients, D, for bone, soft-tissue and air regions, and relative differences images were calculated. The true positive (TP) recognized voxels for the whole head were 79.9% (NN-Juelich, S7) to 92.1% (UCL method, S1). D values of the bone were D=0.65 (NN-Juelich, S1) to D=0.87 (UCL method, S1). For S8 the MHG method failed (TP=76.4%; D=0.46 for bone). D values shared a common tendency in all subjects and methods to recognize soft-tissue as bone. The relative difference images showed a variation of -10.9% - +10.1%; for S8 and MHG method the values were -24.5% and +14.2%. A preliminary comparison of three methods for generation of mu-maps for MR/PET scanners is presented. The continuous methods (MGH, UCL) seem to generate reliable mu-maps, whilst the binary method seems to need further improvement. Future work will include more subjects, the reconstruction of corresponding PET data and their comparison.

  1. Attenuation correction for hybrid MR/PET scanners: a comparison study

    International Nuclear Information System (INIS)

    Rota Kops, Elena; Ribeiro, Andre Santos; Caldeira, Liliana; Hautzel, Hubertus; Lukas, Mathias; Antoch, Gerald; Lerche, Christoph; Shah, Jon

    2015-01-01

    Attenuation correction of PET data acquired in hybrid MR/PET scanners is still a challenge. Different methods have been adopted by several groups to obtain reliable attenuation maps (mu-maps). In this study we compare three methods: MGH, UCL, Neural-Network. The MGH method is based on an MR/CT template obtained with the SPM8 software. The UCL method uses a database of MR/CT pairs. Both generate mu-maps from MP-RAGE images. The feed-forward neural-network from Juelich (NN-Juelich) requires two UTE images; it generates segmented mu-maps. Data from eight subjects (S1-S8) measured in the Siemens 3T MR-BrainPET scanner were used. Corresponding CT images were acquired. The resulting mu-maps were compared against the CT-based mu-maps for each subject and method. Overlapped voxels and Dice similarity coefficients, D, for bone, soft-tissue and air regions, and relative differences images were calculated. The true positive (TP) recognized voxels for the whole head were 79.9% (NN-Juelich, S7) to 92.1% (UCL method, S1). D values of the bone were D=0.65 (NN-Juelich, S1) to D=0.87 (UCL method, S1). For S8 the MHG method failed (TP=76.4%; D=0.46 for bone). D values shared a common tendency in all subjects and methods to recognize soft-tissue as bone. The relative difference images showed a variation of -10.9% - +10.1%; for S8 and MHG method the values were -24.5% and +14.2%. A preliminary comparison of three methods for generation of mu-maps for MR/PET scanners is presented. The continuous methods (MGH, UCL) seem to generate reliable mu-maps, whilst the binary method seems to need further improvement. Future work will include more subjects, the reconstruction of corresponding PET data and their comparison.

  2. Attenuation of Vrancea events revisited

    International Nuclear Information System (INIS)

    Radulian, M.; Popa, M.; Grecu, B.; Panza, G.F.

    2003-11-01

    New aspects of the frequency-dependent attenuation of the seismic waves traveling from Vrancea subcrustal sources toward NW (Transylvanian Basin) and SE (Romanian Plain) are evidenced by the recent experimental data made available by the CALIXTO'99 tomography experiment. The observations validate the previous theoretical computations performed for the assessment, by means of a deterministic approach, of the seismic hazard in Romania. They reveal an essential aspect of the seismic ground motion attenuation, that has important implications on the probabilistic assessment of seismic hazard from Vrancea intermediate-depth earthquakes. The attenuation toward NW is shown to be a much stronger frequency-dependent effect than the attenuation toward SE and the seismic hazard computed by the deterministic approach fits satisfactorily well the observed ground motion distribution in the low-frequency band (< 1 Hz). The apparent contradiction with the historically-based intensity maps arises mainly from a systematic difference in the vulnerability (buildings eigenperiod) of the buildings in the intra- and extra-Carpathians regions. (author)

  3. Propofol prevents autophagic cell death following oxygen and glucose deprivation in PC12 cells and cerebral ischemia-reperfusion injury in rats.

    Directory of Open Access Journals (Sweden)

    Derong Cui

    Full Text Available Propofol exerts protective effects on neuronal cells, in part through the inhibition of programmed cell death. Autophagic cell death is a type of programmed cell death that plays elusive roles in controlling neuronal damage and metabolic homeostasis. We therefore studied whether propofol could attenuate the formation of autophagosomes, and if so, whether the inhibition of autophagic cell death mediates the neuroprotective effects observed with propofol.The cell model was established by depriving the cells of oxygen and glucose (OGD for 6 hours, and the rat model of ischemia was introduced by a transient two-vessel occlusion for 10 minutes. Transmission electron microscopy (TEM revealed that the formation of autophagosomes and autolysosomes in both neuronal PC12 cells and pyramidal rat hippocampal neurons after respective OGD and ischemia/reperfusion (I/R insults. A western blot analysis revealed that the autophagy-related proteins, such as microtubule-associated protein 1 light chain 3 (LC3-II, Beclin-1 and class III PI3K, were also increased accordingly, but cytoprotective Bcl-2 protein was decreased. The negative effects of OGD and I/R, including the formation of autophagosomes and autolysosomes, the increase in LC3-II, Beclin-1 and class III PI3K expression and the decline in Bcl-2 production were all inhibited by propofol and specific inhibitors of autophagy, such as 3-methyladenine (3-MA, LY294002 and Bafilomycin A1 (Baf,. Furthermore, in vitro OGD cultures and in vivo I/R rats showed an increase in cell survival following the administration of propofol, as assessed by an MTT assay or histochemical analyses.Our data suggest that propofol can markedly attenuate autophagic processes via the decreased expression of autophagy-related proteins in vitro and in vivo. This inhibition improves cell survival, which provides a novel explanation for the pleiotropic effects of propofol that benefit the nervous system.

  4. Determination of the attenuation map in emission tomography

    CERN Document Server

    Zaidi, H

    2002-01-01

    Reliable attenuation correction methods for quantitative emission computed tomography (ECT) require accurate delineation of the body contour and often necessitate knowledge of internal anatomical structure. Two broad classes of methods have been used to calculate the attenuation map referred to as "transmissionless" and transmission-based attenuation correction techniques. While calculated attenuation correction belonging to the first class of methods is appropriate for brain studies, more adequate methods must be performed in clinical applications where the attenuation coefficient distribution is not known a priori, and for areas of inhomogeneous attenuation such as the chest. Measured attenuation correction overcomes this problem and utilizes different approaches to determine this map including transmission scanning, segmented magnetic resonance images or appropriately scaled X-ray CT scans acquired either independently on separate or simultaneously on multimodality imaging systems. Combination of data acqu...

  5. Redefining Death

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The results of 20 years of research on brain death will be released to the public, the Chinese Ministry of Health reported in early April. A special ministry team has drafted the criteria for brain death in Criteria for the Diagnosis of Brain Death in Adults (Revised Edition) and Technical Specifications for the Diagnosis

  6. Photobiomodulation reduces photoreceptor death and regulates cytoprotection in early states of P23H retinal dystrophy

    Science.gov (United States)

    Kirk, Diana K.; Gopalakrishnan, Sandeep; Schmitt, Heather; Abroe, Betsy; Stoehr, Michele; Dubis, Adam; Carroll, Joseph; Stone, Jonathan; Valter, Krisztina; Eells, Janis

    2013-03-01

    Irradiation by light in the far-red to near-infrared (NIR) region of the spectrum (photobiomodulation, PBM) has been demonstrated to attenuate the severity of neurodegenerative disease in experimental and clinical studies. The purpose of this study was to test the hypothesis that 670 nm PBM would protect against the loss of retinal function and improve photoreceptor survival in a rodent model of retinitis pigmentosa, the P23H transgenic rat. P23H rat pups were treated once per day with a 670 nm LED array (180 sec treatments at 50 mW/cm2; fluence 9 joules/cm2) (Quantum Devices Inc., Barneveld WI) from postnatal day (p) 16-20 or from p10-20. Sham-treated rats were restrained, but not exposed to NIR light. The status of the retina was determined at p22 by assessment of mitochondrial function, oxidative stress and cell death. In a second series of studies, retinal status was assessed at p30 by measuring photoreceptor function by ERG and retinal morphology by Spectral Domain Optical Coherence Tomography (SD-OCT). 670 nm PBM increased retinal mitochondrial cytochrome oxidase activity and upregulated the retina's production of the key mitochondrial antioxidant enzyme, MnSOD. PBM also attenuated photoreceptor cell loss and improved photoreceptor function. PBM protects photoreceptors in the developing P23H retina, by augmenting mitochondrial function and stimulating antioxidant protective pathways. Photobiomodulation may have therapeutic potential, where mitochondrial damage is a step in the death of photoreceptors.

  7. Tat-antioxidant 1 protects against stress-induced hippocampal HT-22 cells death and attenuate ischaemic insult in animal model.

    Science.gov (United States)

    Kim, So Mi; Hwang, In Koo; Yoo, Dae Young; Eum, Won Sik; Kim, Dae Won; Shin, Min Jea; Ahn, Eun Hee; Jo, Hyo Sang; Ryu, Eun Ji; Yong, Ji In; Cho, Sung-Woo; Kwon, Oh-Shin; Lee, Keun Wook; Cho, Yoon Shin; Han, Kyu Hyung; Park, Jinseu; Choi, Soo Young

    2015-06-01

    Oxidative stress-induced reactive oxygen species (ROS) are responsible for various neuronal diseases. Antioxidant 1 (Atox1) regulates copper homoeostasis and promotes cellular antioxidant defence against toxins generated by ROS. The roles of Atox1 protein in ischaemia, however, remain unclear. In this study, we generated a protein transduction domain fused Tat-Atox1 and examined the roles of Tat-Atox1 in oxidative stress-induced hippocampal HT-22 cell death and an ischaemic injury animal model. Tat-Atox1 effectively transduced into HT-22 cells and it protected cells against the effects of hydrogen peroxide (H2O2)-induced toxicity including increasing of ROS levels and DNA fragmentation. At the same time, Tat-Atox1 regulated cellular survival signalling such as p53, Bad/Bcl-2, Akt and mitogen-activate protein kinases (MAPKs). In the animal ischaemia model, transduced Tat-Atox1 protected against neuronal cell death in the hippocampal CA1 region. In addition, Tat-Atox1 significantly decreased the activation of astrocytes and microglia as well as lipid peroxidation in the CA1 region after ischaemic insult. Taken together, these results indicate that transduced Tat-Atox1 protects against oxidative stress-induced HT-22 cell death and against neuronal damage in animal ischaemia model. Therefore, we suggest that Tat-Atox1 has potential as a therapeutic agent for the treatment of oxidative stress-induced ischaemic damage. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  8. X-ray-induced cell death by apoptosis in the immature rat cerebellum

    International Nuclear Information System (INIS)

    Harmon, B.V.; Allan, D.J.

    1988-01-01

    The cells of the external granular layer (EGL) of the developing cerebellum are known to be particularly sensitive to radiation. In the past, changes induced in this layer by irradiation have been referred to by non-specific terms such as pyknotic cells and the mode of cell death has been assumed to be necrosis. However, in published light micrographs of these dying cells, the appearance is suggestive of apoptosis, a distinctive mode of cell death which occurs spontaneously in normal adult and embryonic tissues and can also be triggered by certain pathological stimuli. This light and transmission electron microscopic study of control and irradiated (7 h post-irradiation) rat cerebellum from 18 day fetuses and 5 day-old neonates showed that the cell death was effected by apoptosis. The apoptosis was markedly enhanced by x-irradiation and quantification of the cell death in the EGL of 5 day-old rats exposed to 4, 8, 25, 100, and 400 cGy x-irradiation demonstrated that there was a positive dose response relationship. The extent of cell death by apoptosis which was 0.2% in control, ranged from 0.8% after 4 cGy to 62.3% after 400 cGy x-irradiation. The recognition that cell death by apoptosis can be a major component of x-irradiation damage has important implications for radiobiological studies

  9. Nitrosothiol signaling and protein nitrosation in cell death.

    Science.gov (United States)

    Iyer, Anand Krishnan V; Rojanasakul, Yon; Azad, Neelam

    2014-11-15

    Nitric oxide, a reactive free radical, is an important signaling molecule that can lead to a plethora of cellular effects affecting homeostasis. A well-established mechanism by which NO manifests its effect on cellular functions is the post-translational chemical modification of cysteine thiols in substrate proteins by a process known as S-nitrosation. Studies that investigate regulation of cellular functions through NO have increasingly established S-nitrosation as the primary modulatory mechanism in their respective systems. There has been a substantial increase in the number of reports citing various candidate proteins undergoing S-nitrosation, which affects cell-death and -survival pathways in a number of tissues including heart, lung, brain and blood. With an exponentially growing list of proteins being identified as substrates for S-nitrosation, it is important to assimilate this information in different cell/tissue systems in order to gain an overall view of protein regulation of both individual proteins and a class of protein substrates. This will allow for broad mapping of proteins as a function of S-nitrosation, and help delineate their global effects on pathophysiological responses including cell death and survival. This information will not only provide a much better understanding of overall functional relevance of NO in the context of various disease states, it will also facilitate the generation of novel therapeutics to combat specific diseases that are driven by NO-mediated S-nitrosation. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. [Ill-defined causes of death and unattended deaths, Brazil, 2003].

    Science.gov (United States)

    Santo, Augusto Hasiak

    2008-01-01

    We studied the distribution of deaths from ill-defined causes that occurred in Brazil during 2003, from which was identified the proportion of unattended deaths. Data were obtained from the Mortality Information System, coordinated by the Ministry of Health. Causes of death included in "Chapter XVIII - Symptoms, signs and abnormal clinical and laboratory findings, not classified elsewhere" of the International Statistical Classification of Diseases and Related Health Problems, tenth revision, were considered ill-defined, among which the category R98 identified "unattended deaths". In Brazil during 2003 the underlying causes of 13.3% of deaths were included in the Chapter of ill-defined causes, and the highest proportions of these deaths occurred in the Northeast and North Regions. Considering the total deaths from ill-defined causes, 53 % correspond to unattended deaths. This proportion increased to over 70% in the states of Maranhão, Piauí, Rio Grande do Norte, Pernambuco, Bahia, Paraíba and Alagoas. Due to the decentralized structure of data collection in the country, we believe that the municipalities bear the major responsibility, followed by the states, for upgrading the quality of mortality statistics.

  11. Vacuolar processing enzyme in plant programmed cell death

    Directory of Open Access Journals (Sweden)

    Noriyuki eHatsugai

    2015-04-01

    Full Text Available Vacuolar processing enzyme (VPE is a cysteine proteinase originally identified as the proteinase responsible for the maturation and activation of vacuolar proteins in plants, and it is known to be an orthologue of animal asparaginyl endopeptidase (AEP/VPE/legumain. VPE has been shown to exhibit enzymatic properties similar to that of caspase 1, which is a cysteine protease that mediates the programmed cell death (PCD pathway in animals. Although there is limited sequence identity between VPE and caspase 1, their predicted three-dimensional structures revealed that the essential amino-acid residues for these enzymes form similar pockets for the substrate peptide YVAD. In contrast to the cytosolic localization of caspases, VPE is localized in vacuoles. VPE provokes vacuolar rupture, initiating the proteolytic cascade leading to PCD in the plant immune response. It has become apparent that the VPE-dependent PCD pathway is involved not only in the immune response, but also in the responses to a variety of stress inducers and in the development of various tissues. This review summarizes the current knowledge on the contribution of VPE to plant PCD and its role in vacuole-mediated cell death, and it also compares VPE with the animal cell death executor caspase 1.

  12. Attenuation of Pathogenic Immune Responses during Infection with Human and Simian Immunodeficiency Virus (HIV/SIV) by the Tetracycline Derivative Minocycline

    Science.gov (United States)

    Drewes, Julia L.; Szeto, Gregory L.; Engle, Elizabeth L.; Liao, Zhaohao; Shearer, Gene M.; Zink, M. Christine; Graham, David R.

    2014-01-01

    HIV immune pathogenesis is postulated to involve two major mechanisms: 1) chronic innate immune responses that drive T cell activation and apoptosis and 2) induction of immune regulators that suppress T cell function and proliferation. Both arms are elevated chronically in lymphoid tissues of non-natural hosts, which ultimately develop AIDS. However, these mechanisms are not elevated chronically in natural hosts of SIV infection that avert immune pathogenesis despite similarly high viral loads. In this study we investigated whether minocycline could modulate these pathogenic antiviral responses in non-natural hosts of HIV and SIV. We found that minocycline attenuated in vitro induction of type I interferon (IFN) and the IFN-stimulated genes indoleamine 2,3-dioxygenase (IDO1) and TNF-related apoptosis inducing ligand (TRAIL) in human plasmacytoid dendritic cells and PBMCs exposed to aldrithiol-2 inactivated HIV or infectious influenza virus. Activation-induced TRAIL and expression of cytotoxic T-lymphocyte antigen 4 (CTLA-4) in isolated CD4+ T cells were also reduced by minocycline. Translation of these in vitro findings to in vivo effects, however, were mixed as minocycline significantly reduced markers of activation and activation-induced cell death (CD25, Fas, caspase-3) but did not affect expression of IFNβ or the IFN-stimulated genes IDO1, FasL, or Mx in the spleens of chronically SIV-infected pigtailed macaques. TRAIL expression, reflecting the mixed effects of minocycline on activation and type I IFN stimuli, was reduced by half, but this change was not significant. These results show that minocycline administered after infection may protect against aspects of activation-induced cell death during HIV/SIV immune disease, but that in vitro effects of minocycline on type I IFN responses are not recapitulated in a rapid progressor model in vivo. PMID:24732038

  13. Sumoylation of IkB attenuates NF-kB-induced nitrosative stress at rostral ventrolateral medulla and cardiovascular depression in experimental brain death.

    Science.gov (United States)

    Tsai, Ching-Yi; Li, Faith C H; Wu, Carol H Y; Chang, Alice Y W; Chan, Samuel H H

    2016-09-22

    Small ubiquitin-related modifier (SUMO) is a group of proteins that participates in post-translational modifications. One known SUMO target is the transcription factor nuclear factor-kB (NF-kB) that plays a pivotal role in many disease processes; sumoylation inactivates NF-kB by conjugation with inhibitors of NF-kB (IkB). Our laboratory demonstrated previously that transcriptional upregulation of nitric oxide synthase II (NOS II) by NF-kB, leading to nitrosative stress by the formation of peroxynitrite in the rostral ventrolateral medulla (RVLM), underpins the defunct brain stem cardiovascular regulation that precedes brain death. Based on an experimental endotoxemia model, this study evaluated the hypothesis that sumoylation plays a pro-life role in brain death by interacting with the NF-kB/NOS II/peroxynitrite signaling pathway in the RVLM. In Sprague-Dawley rats, intravenous administration of Escherichia coli lipopolysaccharide (LPS; 10 mg kg -1 ) elicited an augmentation of SUMO-1 and ubiquitin-conjugase 9 (Ubc9) mRNA or protein levels, alongside SUMO-1-conjugated proteins in the RVLM. Immunoneutralization of SUMO-1 or Ubc9 in the RVLM significantly potentiated the already diminished sumoylation of IkBα and intensified NF-kB activation and NOS II/peroxynitrite expression in this brain stem substrate, together with exacerbated fatality, cardiovascular depression and reduction of an experimental index of a life-and-death signal detected from arterial pressure that disappears in comatose patients signifying failure of brain stem cardiovascular regulation before brain death. We conclude that sumoylation of IkB in the RVLM ameliorates the defunct brain stem cardiovascular regulation that underpins brain death in our experimental endotoxemia modal by reducing nitrosative stress via inhibition of IkB degradation that diminishes the induction of the NF-kB/NOS II/peroxynitrite signaling cascade.

  14. An acoustic eikonal equation for attenuating VTI media

    KAUST Repository

    Hao, Qi

    2016-09-06

    We present an acoustic eikonal equation governing the complex-valued travel time of P-waves in attenuating, transversely isotropic media with a vertical symmetry axis (VTI). This equation is based on the assumption that the Pwave complex-valued travel time is independent of the Swave velocity parameter v in Thomsen\\'s notation and the attenuation coefficient A in the Thomsen-type notation for attenuating VTI media. We combine perturbation theory and Shanks transform to develop practical approximations to the attenuating acoustic eikonal equation, capable of admitting analytical description of the attenuation in homogeneous media. For a horizontal, attenuating VTI layer, we also derive non-hyperbolic approximations for the real and imaginary parts of the complex-valued reflection travel time.

  15. Calcium regulates cell death in cancer: Roles of the mitochondria and mitochondria-associated membranes (MAMs).

    Science.gov (United States)

    Danese, Alberto; Patergnani, Simone; Bonora, Massimo; Wieckowski, Mariusz R; Previati, Maurizio; Giorgi, Carlotta; Pinton, Paolo

    2017-08-01

    Until 1972, the term 'apoptosis' was used to differentiate the programmed cell death that naturally occurs in organismal development from the acute tissue death referred to as necrosis. Many studies on cell death and programmed cell death have been published and most are, at least to some degree, related to cancer. Some key proteins and molecular pathways implicated in cell death have been analyzed, whereas others are still being actively researched; therefore, an increasing number of cellular compartments and organelles are being implicated in cell death and cancer. Here, we discuss the mitochondria and subdomains of the endoplasmic reticulum (ER) that interact with mitochondria, the mitochondria-associated membranes (MAMs), which have been identified as critical hubs in the regulation of cell death and tumor growth. MAMs-dependent calcium (Ca 2+ ) release from the ER allows selective Ca 2+ uptake by the mitochondria. The perturbation of Ca 2+ homeostasis in cancer cells is correlated with sustained cell proliferation and the inhibition of cell death through the modulation of Ca 2+ signaling. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The national DBS brain tissue network pilot study: need for more tissue and more standardization.

    Science.gov (United States)

    Vedam-Mai, V; Krock, N; Ullman, M; Foote, K D; Shain, W; Smith, K; Yachnis, A T; Steindler, D; Reynolds, B; Merritt, S; Pagan, F; Marjama-Lyons, J; Hogarth, P; Resnick, A S; Zeilman, P; Okun, M S

    2011-08-01

    Over 70,000 DBS devices have been implanted worldwide; however, there remains a paucity of well-characterized post-mortem DBS brains available to researchers. We propose that the overall understanding of DBS can be improved through the establishment of a Deep Brain Stimulation-Brain Tissue Network (DBS-BTN), which will further our understanding of DBS and brain function. The objectives of the tissue bank are twofold: (a) to provide a complete (clinical, imaging and pathological) database for DBS brain tissue samples, and (b) to make available DBS tissue samples to researchers, which will help our understanding of disease and underlying brain circuitry. Standard operating procedures for processing DBS brains were developed as part of the pilot project. Complete data files were created for individual patients and included demographic information, clinical information, imaging data, pathology, and DBS lead locations/settings. 19 DBS brains were collected from 11 geographically dispersed centers from across the U.S. The average age at the time of death was 69.3 years (51-92, with a standard deviation or SD of 10.13). The male:female ratio was almost 3:1. Average post-mortem interval from death to brain collection was 10.6 h (SD of 7.17). The DBS targets included: subthalamic nucleus, globus pallidus interna, and ventralis intermedius nucleus of the thalamus. In 16.7% of cases the clinical diagnosis failed to match the pathological diagnosis. We provide neuropathological findings from the cohort, and perilead responses to DBS. One of the most important observations made in this pilot study was the missing data, which was approximately 25% of all available data fields. Preliminary results demonstrated the feasibility and utility of creating a National DBS-BTN resource for the scientific community. We plan to improve our techniques to remedy omitted clinical/research data, and expand the Network to include a larger donor pool. We will enhance sample preparation to

  17. Application of linear discriminant analysis and Attenuated Total Reflectance Fourier Transform Infrared microspectroscopy for diagnosis of colon cancer.

    Science.gov (United States)

    Khanmohammadi, Mohammadreza; Bagheri Garmarudi, Amir; Samani, Simin; Ghasemi, Keyvan; Ashuri, Ahmad

    2011-06-01

    Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) microspectroscopy was applied for detection of colon cancer according to the spectral features of colon tissues. Supervised classification models can be trained to identify the tissue type based on the spectroscopic fingerprint. A total of 78 colon tissues were used in spectroscopy studies. Major spectral differences were observed in 1,740-900 cm(-1) spectral region. Several chemometric methods such as analysis of variance (ANOVA), cluster analysis (CA) and linear discriminate analysis (LDA) were applied for classification of IR spectra. Utilizing the chemometric techniques, clear and reproducible differences were observed between the spectra of normal and cancer cases, suggesting that infrared microspectroscopy in conjunction with spectral data processing would be useful for diagnostic classification. Using LDA technique, the spectra were classified into cancer and normal tissue classes with an accuracy of 95.8%. The sensitivity and specificity was 100 and 93.1%, respectively.

  18. Towards Implementing an MR-based PET Attenuation Correction Method for Neurological Studies on the MR-PET Brain Prototype

    Science.gov (United States)

    Catana, Ciprian; van der Kouwe, Andre; Benner, Thomas; Michel, Christian J.; Hamm, Michael; Fenchel, Matthias; Fischl, Bruce; Rosen, Bruce; Schmand, Matthias; Sorensen, A. Gregory

    2013-01-01

    A number of factors have to be considered for implementing an accurate attenuation correction (AC) in a combined MR-PET scanner. In this work, some of these challenges were investigated and an AC method based entirely on the MR data obtained with a single dedicated sequence was developed and used for neurological studies performed with the MR-PET human brain scanner prototype. Methods The focus was on the bone/air segmentation problem, the bone linear attenuation coefficient selection and the RF coil positioning. The impact of these factors on the PET data quantification was studied in simulations and experimental measurements performed on the combined MR-PET scanner. A novel dual-echo ultra-short echo time (DUTE) MR sequence was proposed for head imaging. Simultaneous MR-PET data were acquired and the PET images reconstructed using the proposed MR-DUTE-based AC method were compared with the PET images reconstructed using a CT-based AC. Results Our data suggest that incorrectly accounting for the bone tissue attenuation can lead to large underestimations (>20%) of the radiotracer concentration in the cortex. Assigning a linear attenuation coefficient of 0.143 or 0.151 cm−1 to bone tissue appears to give the best trade-off between bias and variability in the resulting images. Not identifying the internal air cavities introduces large overestimations (>20%) in adjacent structures. Based on these results, the segmented CT AC method was established as the “silver standard” for the segmented MR-based AC method. Particular to an integrated MR-PET scanner, ignoring the RF coil attenuation can cause large underestimations (i.e. up to 50%) in the reconstructed images. Furthermore, the coil location in the PET field of view has to be accurately known. Good quality bone/air segmentation can be performed using the DUTE data. The PET images obtained using the MR-DUTE- and CT-based AC methods compare favorably in most of the brain structures. Conclusion An MR-DUTE-based AC

  19. Toward implementing an MRI-based PET attenuation-correction method for neurologic studies on the MR-PET brain prototype.

    Science.gov (United States)

    Catana, Ciprian; van der Kouwe, Andre; Benner, Thomas; Michel, Christian J; Hamm, Michael; Fenchel, Matthias; Fischl, Bruce; Rosen, Bruce; Schmand, Matthias; Sorensen, A Gregory

    2010-09-01

    Several factors have to be considered for implementing an accurate attenuation-correction (AC) method in a combined MR-PET scanner. In this work, some of these challenges were investigated, and an AC method based entirely on the MRI data obtained with a single dedicated sequence was developed and used for neurologic studies performed with the MR-PET human brain scanner prototype. The focus was on the problem of bone-air segmentation, selection of the linear attenuation coefficient for bone, and positioning of the radiofrequency coil. The impact of these factors on PET data quantification was studied in simulations and experimental measurements performed on the combined MR-PET scanner. A novel dual-echo ultrashort echo time (DUTE) MRI sequence was proposed for head imaging. Simultaneous MR-PET data were acquired, and the PET images reconstructed using the proposed DUTE MRI-based AC method were compared with the PET images that had been reconstructed using a CT-based AC method. Our data suggest that incorrectly accounting for the bone tissue attenuation can lead to large underestimations (>20%) of the radiotracer concentration in the cortex. Assigning a linear attenuation coefficient of 0.143 or 0.151 cm(-1) to bone tissue appears to give the best trade-off between bias and variability in the resulting images. Not identifying the internal air cavities introduces large overestimations (>20%) in adjacent structures. On the basis of these results, the segmented CT AC method was established as the silver standard for the segmented MRI-based AC method. For an integrated MR-PET scanner, in particular, ignoring the radiofrequency coil attenuation can cause large underestimations (i.e.,

  20. Ultrasonic attenuation in superconducting zinc

    International Nuclear Information System (INIS)

    Auluck, S.

    1978-01-01

    The differences in the Zn ultrasonic attenuation data of different workers are analyzed. The superconducting energy gaps deduced from our analysis of the ultrasonic-attenuation data of Cleavelin and Marshall are consistent with the gaps deduced from the knowledge of the Fermi surface and the electron-phonon mass enhancement factor

  1. Use of proteinase K for RT-PCR of cytokine mRNA in formalin fixed tissue

    DEFF Research Database (Denmark)

    Davies, G N; Bevan, I S; Banner, Jytte

    1996-01-01

    Fresh tissue from cases of sudden infant death syndrome is becoming increasingly scarce and therefore researchers interesting in studying the aetiology of this syndrome have had to resort to archival tissue, usually in the form of paraffin wax sections. A simple method for isolating mRNA from for...

  2. Uric Acid Secretion from Adipose Tissue and Its Increase in Obesity*

    Science.gov (United States)

    Tsushima, Yu; Nishizawa, Hitoshi; Tochino, Yoshihiro; Nakatsuji, Hideaki; Sekimoto, Ryohei; Nagao, Hirofumi; Shirakura, Takashi; Kato, Kenta; Imaizumi, Keiichiro; Takahashi, Hiroyuki; Tamura, Mizuho; Maeda, Norikazu; Funahashi, Tohru; Shimomura, Iichiro

    2013-01-01

    Obesity is often accompanied by hyperuricemia. However, purine metabolism in various tissues, especially regarding uric acid production, has not been fully elucidated. Here we report, using mouse models, that adipose tissue could produce and secrete uric acid through xanthine oxidoreductase (XOR) and that the production was enhanced in obesity. Plasma uric acid was elevated in obese mice and attenuated by administration of the XOR inhibitor febuxostat. Adipose tissue was one of major organs that had abundant expression and activities of XOR, and adipose tissues in obese mice had higher XOR activities than those in control mice. 3T3-L1 and mouse primary mature adipocytes produced and secreted uric acid into culture medium. The secretion was inhibited by febuxostat in a dose-dependent manner or by gene knockdown of XOR. Surgical ischemia in adipose tissue increased local uric acid production and secretion via XOR, with a subsequent increase in circulating uric acid levels. Uric acid secretion from whole adipose tissue was increased in obese mice, and uric acid secretion from 3T3-L1 adipocytes was increased under hypoxia. Our results suggest that purine catabolism in adipose tissue could be enhanced in obesity. PMID:23913681

  3. Significance of Lead Residues in Mallard Tissues

    Science.gov (United States)

    Longcore, J.R.; Locke, L.N.; Bagley, George E.; Andrews, R.

    1974-01-01

    Tissues of adult, lead-dosed mallards that either died or were sacrificed were analyzed for lead. Lead levels in brains, tibiae, and breast muscle of ducks that died and in tibiae of ducks that were sacrificed increased significantly from dosage until death. Lead in the heart, lung, and blood from sacrificed ducks decreased significantly from dosage until death. Lead concentrations in tissues from ducks in the two groups were not significantly different except for the liver, kidney, and lung. Average lead levels in the livers and kidneys of ducks that died were significantly higher than those in ducks that were sacrificed. The mean concentration of lead in the lungs of the ducks sacrificed was significantly higher than the mean level in the lungs of ducks that died. Measurements of the lead concentrations in this study, when compared with lead levels reported in the literature for avian and non-avian species, showed that arbitrary diagnostic levels indicating lead poisoning could be set. In mallard ducks, lead levels exceeding 3 ppm in the brain, 6 to 20 ppm in the kidney or liver, or 10 ppm in clotted blood from the heart indicated acute exposure to lead.

  4. Trends, Productivity Losses, and Associated Medical Conditions Among Toxoplasmosis Deaths in the United States, 2000–2010

    Science.gov (United States)

    Cummings, Patricia L.; Kuo, Tony; Javanbakht, Marjan; Sorvillo, Frank

    2014-01-01

    Few studies have quantified toxoplasmosis mortality, associated medical conditions, and productivity losses in the United States. We examined national multiple cause of death data and estimated productivity losses caused by toxoplasmosis during 2000–2010. A matched case–control analysis examined associations between comorbid medical conditions and toxoplasmosis deaths. In total, 789 toxoplasmosis deaths were identified during the 11-year study period. Blacks and Hispanics had the highest toxoplasmosis mortality compared with whites. Several medical conditions were associated with toxoplasmosis deaths, including human immunodeficiency virus (HIV), lymphoma, leukemia, and connective tissue disorders. The number of toxoplasmosis deaths with an HIV codiagnosis declined from 2000 to 2010; the numbers without such a codiagnosis remained static. Cumulative disease-related productivity losses for the 11-year period were nearly $815 million. Although toxoplasmosis mortality has declined in the last decade, the infection remains costly and is an important cause of preventable death among non-HIV subgroups. PMID:25200264

  5. Pioglitazone Attenuates Vascular Fibrosis in Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Dengfeng Gao

    2012-01-01

    Full Text Available Objective. We sought to investigate whether the peroxisome proliferator-activated receptor-γ (PPAR-γ ligand pioglitazone can attenuate vascular fibrosis in spontaneously hypertensive rats (SHRs and explore the possible molecular mechanisms. Methods. SHRs (8-week-old males were randomly divided into 3 groups (n=8 each for treatment: pioglitazone (10 mg/kg/day, hydralazine (25 mg/kg/day, or saline. Normal male Wistar Kyoto (WKY rats (n=8 served as normal controls. Twelve weeks later, we evaluated the effect of pioglitazone on vascular fibrosis by Masson’s trichrome and immunohistochemical staining of collagen III and real-time RT-PCR analysis of collagen I, III and fibronectin mRNA.Vascular expression of PPAR-γ and connective tissue growth factor (CTGF and transforming growth factor-β (TGF-β expression were evaluated by immunohistochemical staining, western blot analysis, and real-time RT-PCR. Results. Pioglitazone and hydralazine treatment significantly decreased systolic blood pressure in SHRs. Masson’s trichrome staining for collagen III and real-time RT-PCR analysis of collagen I, III and fibronectin mRNA indicated that pioglitazone significantly inhibited extracellular matrix production in the aorta. Compared with Wistar Kyoto rats, SHRs showed significantly increased vascular CTGF expression. Pioglitazone treatment significantly increased PPAR-γ expression and inhibited CTGF expression but had no effect on TGF-β expression. Conclusions. The results indicate that pioglitazone attenuated vascular fibrosis in SHRs by inhibiting CTGF expression in a TGF-β-independent mechanism.

  6. Religiosity and the Construction of Death in Turkish Death Announcements, 1970-2009

    Science.gov (United States)

    Ergin, Murat

    2012-01-01

    Death and rituals performed after death reflect and reproduce social distinctions despite death's popular reputation as a great leveler. This study examines expressions of religiosity and constructions of death in Turkish death announcements, paying particular attention to gendered, ethnic, and temporal variations as well as markers of status and…

  7. Zero-Echo-Time and Dixon Deep Pseudo-CT (ZeDD CT): Direct Generation of Pseudo-CT Images for Pelvic PET/MRI Attenuation Correction Using Deep Convolutional Neural Networks with Multiparametric MRI.

    Science.gov (United States)

    Leynes, Andrew P; Yang, Jaewon; Wiesinger, Florian; Kaushik, Sandeep S; Shanbhag, Dattesh D; Seo, Youngho; Hope, Thomas A; Larson, Peder E Z

    2018-05-01

    Accurate quantification of uptake on PET images depends on accurate attenuation correction in reconstruction. Current MR-based attenuation correction methods for body PET use a fat and water map derived from a 2-echo Dixon MRI sequence in which bone is neglected. Ultrashort-echo-time or zero-echo-time (ZTE) pulse sequences can capture bone information. We propose the use of patient-specific multiparametric MRI consisting of Dixon MRI and proton-density-weighted ZTE MRI to directly synthesize pseudo-CT images with a deep learning model: we call this method ZTE and Dixon deep pseudo-CT (ZeDD CT). Methods: Twenty-six patients were scanned using an integrated 3-T time-of-flight PET/MRI system. Helical CT images of the patients were acquired separately. A deep convolutional neural network was trained to transform ZTE and Dixon MR images into pseudo-CT images. Ten patients were used for model training, and 16 patients were used for evaluation. Bone and soft-tissue lesions were identified, and the SUV max was measured. The root-mean-squared error (RMSE) was used to compare the MR-based attenuation correction with the ground-truth CT attenuation correction. Results: In total, 30 bone lesions and 60 soft-tissue lesions were evaluated. The RMSE in PET quantification was reduced by a factor of 4 for bone lesions (10.24% for Dixon PET and 2.68% for ZeDD PET) and by a factor of 1.5 for soft-tissue lesions (6.24% for Dixon PET and 4.07% for ZeDD PET). Conclusion: ZeDD CT produces natural-looking and quantitatively accurate pseudo-CT images and reduces error in pelvic PET/MRI attenuation correction compared with standard methods. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  8. ENHANCEMENTS TO NATURAL ATTENUATION: SELECTED CASE STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Vangelas, K; W. H. Albright, W; E. S. Becvar, E; C. H. Benson, C; T. O. Early, T; E. Hood, E; P. M. Jardine, P; M. Lorah, M; E. Majche, E; D. Major, D; W. J. Waugh, W; G. Wein, G; O. R. West, O

    2007-05-15

    In 2003 the US Department of Energy (DOE) embarked on a project to explore an innovative approach to remediation of subsurface contaminant plumes that focused on introducing mechanisms for augmenting natural attenuation to achieve site closure. Termed enhanced attenuation (EA), this approach has drawn its inspiration from the concept of monitored natural attenuation (MNA).

  9. On social death: ostracism and the accessibility of death thoughts.

    Science.gov (United States)

    Steele, Caroline; Kidd, David C; Castano, Emanuele

    2015-01-01

    Being rejected, excluded, or simply ignored is a painful experience. Ostracism researchers have shown its powerful negative consequences (Williams, 2007), and sociologists have referred to such experiences as social death (Bauman, 1992). Is this is just a metaphor or does being ostracized make death more salient in people's minds? An experiment was conducted in which participants experienced ostracism or inclusion using the Cyberball manipulation, and the accessibility of death-related thoughts was measured via a word-stem completion puzzle. Results showed enhanced death-thought accessibility in the ostracism condition, as well as a negative effect of dispositional self-esteem on the accessibility of death-related thoughts.

  10. Recombinant human tissue factor pathway inhibitor exerts anticoagulant, anti-inflammatory and antimicrobial effects in murine pneumococcal pneumonia

    NARCIS (Netherlands)

    van den Boogaard, F. E.; Brands, X.; Schultz, M. J.; Levi, M. [=Marcel M.; Roelofs, J. J. T. H.; van 't Veer, C.; van der Poll, T.

    2011-01-01

    Background: Streptococcus (S.) pneumoniae is the most common causative pathogen in community-acquired pneumonia and a major cause of sepsis. Recombinant human tissue factor pathway inhibitor (rh-TFPI) attenuates sepsis-induced coagulation and has been evaluated in clinical trials involving patients

  11. ONC201: Stressing tumors to death.

    Science.gov (United States)

    Endo Greer, Yoshimi; Lipkowitz, Stanley

    2016-02-16

    The small molecule ONC201 was identified in a screen for compounds that would induce expression of the gene encoding tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in tumors and thus cause an autocrine- or paracrine-induced death in tumor cells. Two Research Articles in this issue of Science Signaling by Ishizawa et al. and Kline et al. describe how ONC201 can also trigger cytotoxicity by inducing a stress response. The mechanisms of the stress response induced differ between hematological malignancies and solid tumors, highlighting the complexity of ONC201-induced toxicity and raising intriguing issues of tissue-specific pathways activated by the drug. Copyright © 2016, American Association for the Advancement of Science.

  12. Only in dying, life: programmed cell death during plant development.

    Science.gov (United States)

    Van Hautegem, Tom; Waters, Andrew J; Goodrich, Justin; Nowack, Moritz K

    2015-02-01

    Programmed cell death (PCD) is a fundamental process of life. During the evolution of multicellular organisms, the actively controlled demise of cells has been recruited to fulfil a multitude of functions in development, differentiation, tissue homeostasis, and immune systems. In this review we discuss some of the multiple cases of PCD that occur as integral parts of plant development in a remarkable variety of cell types, tissues, and organs. Although research in the last decade has discovered a number of PCD regulators, mediators, and executers, we are still only beginning to understand the mechanistic complexity that tightly controls preparation, initiation, and execution of PCD as a process that is indispensable for successful vegetative and reproductive development of plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Bacteriophage-resistant mutants in Yersinia pestis: identification of phage receptors and attenuation for mice.

    Directory of Open Access Journals (Sweden)

    Andrey A Filippov

    Full Text Available BACKGROUND: Bacteriophages specific for Yersinia pestis are routinely used for plague diagnostics and could be an alternative to antibiotics in case of drug-resistant plague. A major concern of bacteriophage therapy is the emergence of phage-resistant mutants. The use of phage cocktails can overcome this problem but only if the phages exploit different receptors. Some phage-resistant mutants lose virulence and therefore should not complicate bacteriophage therapy. METHODOLOGY/PRINCIPAL FINDINGS: The purpose of this work was to identify Y. pestis phage receptors using site-directed mutagenesis and trans-complementation and to determine potential attenuation of phage-resistant mutants for mice. Six receptors for eight phages were found in different parts of the lipopolysaccharide (LPS inner and outer core. The receptor for R phage was localized beyond the LPS core. Most spontaneous and defined phage-resistant mutants of Y. pestis were attenuated, showing increase in LD₅₀ and time to death. The loss of different LPS core biosynthesis enzymes resulted in the reduction of Y. pestis virulence and there was a correlation between the degree of core truncation and the impact on virulence. The yrbH and waaA mutants completely lost their virulence. CONCLUSIONS/SIGNIFICANCE: We identified Y. pestis receptors for eight bacteriophages. Nine phages together use at least seven different Y. pestis receptors that makes some of them promising for formulation of plague therapeutic cocktails. Most phage-resistant Y. pestis mutants become attenuated and thus should not pose a serious problem for bacteriophage therapy of plague. LPS is a critical virulence factor of Y. pestis.

  14. Self-attenuation factors in gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Korun, M.

    1999-01-01

    The relation between the self-attenuation factors and the distribution function describing the number of photons detected in the full-energy peaks, as a function of their path length in the sample is presented. The relations between the self-attenuation factor and the moments of the distribution function, the average path length and the variance are also presented. The use of these relations is illustrated by applying them to self-attenuation factors describing attenuation in cylindrical samples. The results of the calculations are compared with the measured average path lengths and discussed in terms of the properties of the distribution function. (author)

  15. Microfluidic monitoring of programmed cell death in living plant seed tissue

    DEFF Research Database (Denmark)

    Mark, Christina; Heiskanen, Arto; Zor, Kinga

    , et al., (2006), BioEssays, 28, p. 1091). Microfluidic cell culture enables in vitro experiments to approach in vivo conditions. Combining microfluidics with the Lab-On-a-Chip concept allows implementing a wide range of assays for real-time monitoring of effects in a biological system of factors...... such as concentration of selected compounds, external pH, oxygen consumption, redox state and cell viability. The aleurone layer of the barley seed is a 2-3 single cell type thick tissue that can be dissected from the embryo and starchy endosperm. During incubation in vitro this mechanically very robust maintains...

  16. Light attenuation in estuarine mangrove lakes

    Science.gov (United States)

    Frankovich, Thomas A.; Rudnick, David T.; Fourqurean, James W.

    2017-01-01

    Submerged aquatic vegetation (SAV) cover has declined in brackish lakes in the southern Everglades characterized by low water transparencies, emphasizing the need to evaluate the suitability of the aquatic medium for SAV growth and to identify the light attenuating components that contribute most to light attenuation. Underwater attenuation of downwards irradiance of photosynthetically active radiation (PAR) was determined over a three year period at 42 sites in shallow (freshwater flow into these areas may dilute CDOM concentrations and improve the salinity and light climate for SAV communities.

  17. Toyocamycin attenuates free fatty acid-induced hepatic steatosis and apoptosis in cultured hepatocytes and ameliorates nonalcoholic fatty liver disease in mice.

    Science.gov (United States)

    Takahara, Ikuko; Akazawa, Yuko; Tabuchi, Maiko; Matsuda, Katsuya; Miyaaki, Hisamitsu; Kido, Youko; Kanda, Yasuko; Taura, Naota; Ohnita, Ken; Takeshima, Fuminao; Sakai, Yusuke; Eguchi, Susumu; Nakashima, Masahiro; Nakao, Kazuhiko

    2017-01-01

    A high serum level of saturated free fatty acids (FFAs) is associated with the development of nonalcoholic fatty liver disease (NAFLD). X-box binding protein-1 (XBP-1) is activated by FFA treatment upon splicing. XBP-1 is a transcription factor induced by the endoplasmic reticulum (ER) stress sensor endoribonuclease inositol-requiring enzyme 1 alpha (IRE1α). However, the role of XBP-1 in NAFLD remains relatively unexplored. Toyocamycin was recently reported to attenuate the activation of XBP-1, possibly by inducing a conformational change in IRE1α. In this study, we examined the effect of toyocamycin on hepatocyte lipoapoptosis and steatosis. We also explored the effects of toyocamycin in a mouse model of NAFLD. Huh-7 cells and isolated rat primary hepatocytes were treated with palmitic acid (PA), which is a saturated FFA, in the presence or absence of toyocamycin. In addition, male C57BL/6J mice were fed a diet rich in saturated fat, fructose, and cholesterol (FFC) for 4 months, after which the effect of toyocamycin was assessed. Toyocamycin attenuated FFA-induced steatosis. It also significantly reduced PA-induced hepatocyte lipoapoptosis. In addition, toyocamycin reduced the expression of cytosine-cytosine-adenosine-adenosine-thymidine enhancer-binding protein homologous protein (CHOP), which is a key player in ER stress-mediated apoptosis, as well as its downstream cell death modulator, death receptor 5. In the in vivo study, toyocamycin ameliorated the liver injury caused by FFC-induced NAFLD. It also reduced hepatic steatosis and the expression of lipogenic genes. The data we obtained suggest that toyocamycin attenuates hepatocyte lipogenesis and ameliorates NAFLD in vivo and may therefore be beneficial in the treatment of NAFLD in humans.

  18. Combined effects of starvation and butyrate on autophagy-dependent gingival epithelial cell death.

    Science.gov (United States)

    Evans, M; Murofushi, T; Tsuda, H; Mikami, Y; Zhao, N; Ochiai, K; Kurita-Ochiai, T; Yamamoto, M; Otsuka, K; Suzuki, N

    2017-06-01

    induced LC3B production and the induction was attenuated by AMPK inhibition. LC3B knockdown, in turn, significantly decreased butyrate-induced cell death. Therefore, AMPK-dependent LC3B induction apparently plays an important role in butyrate-induced cell death. There was a lack of correspondence between the levels of AMPK activation and LC3B induction; this may reflect the histone deacetylase-inhibitory capacity of butyrate on histone proteins. Taken together, starvation and butyrate exposure promote autophagy via AMPK signaling, while the histone deacetylase-inhibitory effects of butyrate alter chromatin to transcriptionally active state, resulting in strong LC3B induction and subsequent cell death. These findings may help improve the understanding of the cellular processes underlying periodontal disease initiation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Brain donation procedures in the Sudden Death Brain Bank in Edinburgh.

    Science.gov (United States)

    Smith, Colin; Millar, Tracey

    2018-01-01

    Brain banks typically receive donations through premortem consent procedures, often through disease-specific patient cohorts, such as dementia. While some control cases can be obtained through this route, access to age-matched control tissues, and some chronic neurologic conditions, particularly psychiatric disorders, can be challenging. The Edinburgh Sudden Death Brain Bank was established to try and increase access to control cases across all ages, and also access to psychiatric disorders through suicides. This chapter outlines the processes for establishing donations through medicolegal postmortems, which, although often with a prolonged postmortem interval, can provide high-quality well-characterized postmortem brain tissue to the neuroscience research community. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. X- and γ-ray interaction characteristics of Griffith, Alderson, Frigerio, Goodman and Rossi tissue substitutes

    International Nuclear Information System (INIS)

    Singh, V. P.; Badiger, N. M.; Vega C, H. R.

    2015-10-01

    Detailed information of radiation interaction, exposure and dose delivery to tissue substitutes is necessary for various branches of radiation physics. In the present investigation X- and γ-ray interaction characteristics of some tissue substitutes such as Griffith, Alderson, Frigerio, Goodman and Rossi have been studied and compared with standard tissues. Effective atomic numbers and air-kerma have been computed using mass attenuation coefficients and mass energy-absorption coefficients, respectively. Energy-absorption buildup factors for photon energy 0.015 to 15 MeV up to 40 mean free path were calculated using G-P fitting method. These investigations provide further information on the X- and γ-ray interaction of tissue substitutes for various applications in radiation physics and medical physics. (Author)

  1. X- and γ-ray interaction characteristics of Griffith, Alderson, Frigerio, Goodman and Rossi tissue substitutes

    Energy Technology Data Exchange (ETDEWEB)

    Singh, V. P.; Badiger, N. M. [Karnatak University, Department of Physics, Dharwad-580003, Karnataka (India); Vega C, H. R., E-mail: kudphyvps@rediffmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)

    2015-10-15

    Detailed information of radiation interaction, exposure and dose delivery to tissue substitutes is necessary for various branches of radiation physics. In the present investigation X- and γ-ray interaction characteristics of some tissue substitutes such as Griffith, Alderson, Frigerio, Goodman and Rossi have been studied and compared with standard tissues. Effective atomic numbers and air-kerma have been computed using mass attenuation coefficients and mass energy-absorption coefficients, respectively. Energy-absorption buildup factors for photon energy 0.015 to 15 MeV up to 40 mean free path were calculated using G-P fitting method. These investigations provide further information on the X- and γ-ray interaction of tissue substitutes for various applications in radiation physics and medical physics. (Author)

  2. Believing and perceiving: authorship belief modulates sensory attenuation.

    Directory of Open Access Journals (Sweden)

    Andrea Desantis

    Full Text Available Sensory attenuation refers to the observation that self-generated stimuli are attenuated, both in terms of their phenomenology and their cortical response compared to the same stimuli when generated externally. Accordingly, it has been assumed that sensory attenuation might help individuals to determine whether a sensory event was caused by themselves or not. In the present study, we investigated whether this dependency is reciprocal, namely whether sensory attenuation is modulated by prior beliefs of authorship. Participants had to judge the loudness of auditory effects that they believed were either self-generated or triggered by another person. However, in reality, the sounds were always triggered by the participants' actions. Participants perceived the tones' loudness attenuated when they believed that the sounds were self-generated compared to when they believed that they were generated by another person. Sensory attenuation is considered to contribute to the emergence of people's belief of authorship. Our results suggest that sensory attenuation is also a consequence of prior belief about the causal link between an action and a sensory change in the environment.

  3. Radiation-attenuated vaccine for lungworm disease

    International Nuclear Information System (INIS)

    Singh, C.M.

    1977-01-01

    The work done at the Indian Veternary Research Institute, Izatnagar, on the development of a vaccine for lungworm diseases is reported. Research work done includes: (1) studies on the epidemiology and the incidence of the lungworm infections, (ii) studies on the radiation-attenuated lungworm Dictyocaulus filaria vaccine, (iii) studies on other parasites using ionizing radiation, (iv) incidence of lungworm infection in sheep in Jammu and Kashmir State, (v) suitable dose of gamma radiation for attenuation, (vi) laboratory studies with radiation-attenuated D. filaria vaccine, (vii) serology of D. filaria infection, (viii) field trials with the radiation-attenuated vaccine, (ix) immune response of previously exposed lambs to vaccination, (x) comparative susceptibility of sheep and goats to infection with D. filaria, (xi) quantitative studies of D. filaria in lambs and (xii) production and supply of lungworm vaccine. (A.K.)

  4. Analysis of biological samples by x-ray attenuation measurements

    International Nuclear Information System (INIS)

    Cesareo, R.

    1988-01-01

    Over the last few years there has been an increasing interest in X-ray attenuation measurements, mainly due to the enormous development of computer assisted tomography (CAT). With CAT, analytical information concerning the density and the mean atomic number distributions in a sample is deduced from a large number of attenuation measurements. Particular transmission methods developed, based on the differential attenuation method are discussed. The theoretical background for attenuation of radiation and for differential attenuation of radiation is given. Details about the generation of monoenergetic X-rays are discussed. Applications of attenuation measurements in the field of Medicine are presented

  5. Nitrate decreases xanthine oxidoreductase-mediated nitrite reductase activity and attenuates vascular and blood pressure responses to nitrite.

    Science.gov (United States)

    Damacena-Angelis, Célio; Oliveira-Paula, Gustavo H; Pinheiro, Lucas C; Crevelin, Eduardo J; Portella, Rafael L; Moraes, Luiz Alberto B; Tanus-Santos, Jose E

    2017-08-01

    Nitrite and nitrate restore deficient endogenous nitric oxide (NO) production as they are converted back to NO, and therefore complement the classic enzymatic NO synthesis. Circulating nitrate and nitrite must cross membrane barriers to produce their effects and increased nitrate concentrations may attenuate the nitrite influx into cells, decreasing NO generation from nitrite. Moreover, xanthine oxidoreductase (XOR) mediates NO formation from nitrite and nitrate. However, no study has examined whether nitrate attenuates XOR-mediated NO generation from nitrite. We hypothesized that nitrate attenuates the vascular and blood pressure responses to nitrite either by interfering with nitrite influx into vascular tissue, or by competing with nitrite for XOR, thus inhibiting XOR-mediated NO generation. We used two independent vascular function assays in rats (aortic ring preparations and isolated mesenteric arterial bed perfusion) to examine the effects of sodium nitrate on the concentration-dependent responses to sodium nitrite. Both assays showed that nitrate attenuated the vascular responses to nitrite. Conversely, the aortic responses to the NO donor DETANONOate were not affected by sodium nitrate. Further confirming these results, we found that nitrate attenuated the acute blood pressure lowering effects of increasing doses of nitrite infused intravenously in freely moving rats. The possibility that nitrate could compete with nitrite and decrease nitrite influx into cells was tested by measuring the accumulation of nitrogen-15-labeled nitrite ( 15 N-nitrite) by aortic rings using ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS). Nitrate exerted no effect on aortic accumulation of 15 N-nitrite. Next, we used chemiluminescence-based NO detection to examine whether nitrate attenuates XOR-mediated nitrite reductase activity. Nitrate significantly shifted the Michaelis Menten saturation curve to the right, with a 3-fold increase in the

  6. Unfocused beam patterns in nonattenuating and attenuating fluids

    International Nuclear Information System (INIS)

    Goldstein, Albert

    2004-01-01

    The most important aspect of an ultrasound measuring system is knowledge of the transducer beam pattern. At all depths accurate single integral equations have been derived for the full beam pattern of steady state unfocused circular flat piston sources radiating into nonattenuating and attenuating fluids. The axial depth of the beginning of the unattenuated beam pattern far field is found to be at 6.41Y 0 . The unattenuated single integral equations are identical to a Jinc function directivity term at this and deeper depths. For attenuating fluids values of α and z are found that permit the attenuated axial pressure to be represented by a plane wave multiplicative exponential attenuation factor. This knowledge will aid in the experimental design of highly accurate attenuation measurements. Accurate single integral equations for the attenuated full beam pattern are derived using complex Bessel functions

  7. The relative contributions of scatter and attenuation corrections toward improved brain SPECT quantification

    International Nuclear Information System (INIS)

    Stodilka, Robert Z.; Msaki, Peter; Prato, Frank S.; Nicholson, Richard L.; Kemp, B.J.

    1998-01-01

    Mounting evidence indicates that scatter and attenuation are major confounds to objective diagnosis of brain disease by quantitative SPECT. There is considerable debate, however, as to the relative importance of scatter correction (SC) and attenuation correction (AC), and how they should be implemented. The efficacy of SC and AC for 99m Tc brain SPECT was evaluated using a two-compartment fully tissue-equivalent anthropomorphic head phantom. Four correction schemes were implemented: uniform broad-beam AC, non-uniform broad-beam AC, uniform SC+AC, and non-uniform SC+AC. SC was based on non-stationary deconvolution scatter subtraction, modified to incorporate a priori knowledge of either the head contour (uniform SC) or transmission map (non-uniform SC). The quantitative accuracy of the correction schemes was evaluated in terms of contrast recovery, relative quantification (cortical:cerebellar activity), uniformity ((coefficient of variation of 230 macro-voxels) x100%), and bias (relative to a calibration scan). Our results were: uniform broad-beam (μ=0.12cm -1 ) AC (the most popular correction): 71% contrast recovery, 112% relative quantification, 7.0% uniformity, +23% bias. Non-uniform broad-beam (soft tissue μ=0.12cm -1 ) AC: 73%, 114%, 6.0%, +21%, respectively. Uniform SC+AC: 90%, 99%, 4.9%, +12%, respectively. Non-uniform SC+AC: 93%, 101%, 4.0%, +10%, respectively. SC and AC achieved the best quantification; however, non-uniform corrections produce only small improvements over their uniform counterparts. SC+AC was found to be superior to AC; this advantage is distinct and consistent across all four quantification indices. (author)

  8. Late calcium EDTA rescues hippocampal CA1 neurons from global ischemia-induced death.

    Science.gov (United States)

    Calderone, Agata; Jover, Teresa; Mashiko, Toshihiro; Noh, Kyung-min; Tanaka, Hidenobu; Bennett, Michael V L; Zukin, R Suzanne

    2004-11-03

    Transient global ischemia induces a delayed rise in intracellular Zn2+, which may be mediated via glutamate receptor 2 (GluR2)-lacking AMPA receptors (AMPARs), and selective, delayed death of hippocampal CA1 neurons. The molecular mechanisms underlying Zn2+ toxicity in vivo are not well delineated. Here we show the striking finding that intraventricular injection of the high-affinity Zn2+ chelator calcium EDTA (CaEDTA) at 30 min before ischemia (early CaEDTA) or at 48-60 hr (late CaEDTA), but not 3-6 hr, after ischemia, afforded robust protection of CA1 neurons in approximately 50% (late CaEDTA) to 75% (early CaEDTA) of animals. We also show that Zn2+ acts via temporally distinct mechanisms to promote neuronal death. Early CaEDTA attenuated ischemia-induced GluR2 mRNA and protein downregulation (and, by inference, formation of Zn2+-permeable AMPARs), the delayed rise in Zn2+, and neuronal death. These findings suggest that Zn2+ acts at step(s) upstream from GluR2 gene downregulation and implicate Zn2+ in transcriptional regulation and/or GluR2 mRNA stability. Early CaEDTA also blocked mitochondrial release of cytochrome c and Smac/DIABLO (second mitochondria-derived activator of caspases/direct inhibitor of apoptosis protein-binding protein with low pI), caspase-3 activity (but not procaspase-3 cleavage), p75NTR induction, and DNA fragmentation. These findings indicate that CaEDTA preserves the functional integrity of the mitochondrial outer membrane and arrests the caspase death cascade. Late injection of CaEDTA at a time when GluR2 is downregulated and caspase is activated inhibited the delayed rise in Zn2+, p75NTR induction, DNA fragmentation, and cell death. The finding of neuroprotection by late CaEDTA administration has striking implications for intervention in the delayed neuronal death associated with global ischemia.

  9. An explanation and analysis of how world religions formulate their ethical decisions on withdrawing treatment and determining death

    OpenAIRE

    Setta, Susan M; Shemie, Sam D

    2015-01-01

    Introduction This paper explores definitions of death from the perspectives of several world and indigenous religions, with practical application for health care providers in relation to end of life decisions and organ and tissue donation after death. It provides background material on several traditions and explains how different religions derive their conclusions for end of life decisions from the ethical guidelines they proffer. Methods Research took several forms beginning with a review o...

  10. High-speed photography of plasma during excimer laser-tissue interaction

    International Nuclear Information System (INIS)

    Murray, Andrea K; Dickinson, Mark R

    2004-01-01

    During high fluence laser-tissue interaction, ablation of tissue occurs, debris is removed from the ablation site and is then ejected at high velocity. This debris may be observed as a combination of luminous plasma and non-luminous plume, both of which have the potential to shield the ablation site. This study examined the role of ablation debris in shielding the tissue and determined its effects on the ablation rate over a range of laser pulse energies, pulse repetition rates and pulse numbers for dentine; the velocity differences between hard and soft tissues were also examined. High-speed photography was carried out at up to 1 x 10 8 frames per second. A maximum velocity of 2.58 ± 0.52 x 10 4 m s -1 was recorded for dentine debris within the first 10 ns following ejection. The maximum duration of tissue shielding due to a single pulse, determined by attenuation of a probe beam, was found to be ∼7 ms, ∼80 μs of which was due to luminous plasma and the remainder due to the non-luminous plume

  11. Human soft tissue analysis using x-ray or gamma-ray techniques

    International Nuclear Information System (INIS)

    Theodorakou, C; Farquharson, M J

    2008-01-01

    This topical review is intended to describe the x-ray techniques used for human soft tissue analysis. X-ray techniques have been applied to human soft tissue characterization and interesting results have been presented over the last few decades. The motivation behind such studies is to provide improved patient outcome by using the data obtained to better understand a disease process and improve diagnosis. An overview of theoretical background as well as a complete set of references is presented. For each study, a brief summary of the methodology and results is given. The x-ray techniques include x-ray diffraction, x-ray fluorescence, Compton scattering, Compton to coherent scattering ratio and attenuation measurements. The soft tissues that have been classified using x-rays or gamma rays include brain, breast, colon, fat, kidney, liver, lung, muscle, prostate, skin, thyroid and uterus. (topical review)

  12. Comparison of death certificate and autopsy diagnoses - Hiroshima. [Cause of death

    Energy Technology Data Exchange (ETDEWEB)

    Stone, R S; Anderson, Jr, P S

    1960-09-14

    In this report evaluation of the death certificates has been on the basis of comparison with recorded autopsy diagnoses without review of the latter. An attempt has been made to evaluate limitations inherent in this method. The cases analyzed here represent the ABCC Hiroshima autopsy series from 1949 through 1959. Post mortem examinations on stillbirths and neonatal deaths that were collected during the years 1948 through 1953 were excluded from consideration because such cases are not pertinent to the general problems under study. With this limitation 1304 cases were available for matching. In 139 of these cases the death certificates were not available through the mechanisms of the overall study, so 1165 cases remained. Before comparisons are made the most important questions that must be answered about the materials and methods of the present investigation are: (1) is the autopsy-death certificate series a representative sample of all deaths in the population; (2) are the autopsy diagnoses correct; (3) are the death certificates properly understood and coded; and (4) are biologically meaningful groupings chosen for comparison between autopsy cause of death and death certificate cause of death. Because it is not possible to provide exact answers to all of these questions the doubt that they raise must be admitted but evaluated in the perspective of that part of the answer which is known.

  13. Treatment with a JNK inhibitor increases, whereas treatment with a p38 inhibitor decreases, H2O2-induced calf pulmonary arterial endothelial cell death.

    Science.gov (United States)

    Park, Woo Hyun

    2017-08-01

    Oxidative stress induces apoptosis in endothelial cells (ECs). Reactive oxygen species (ROS) promote cell death by regulating the activity of various mitogen-activated protein kinases (MAPKs) in ECs. The present study investigated the effects of MAPK inhibitors on cell survival and glutathione (GSH) levels upon H 2 O 2 treatment in calf pulmonary artery ECs (CPAECs). H 2 O 2 treatment inhibited the growth and induced the death of CPAECs, as well as causing GSH depletion and the loss of mitochondrial membrane potential (MMP). While treatment with the MEK or JNK inhibitor impaired the growth of H 2 O 2 -treated CPAECs, treatment with the p38 inhibitor attenuated this inhibition of growth. Additionally, JNK inhibitor treatment increased the proportion of sub-G 1 phase cells in H 2 O 2 -treated CPAECs and further decreased the MMP. However, treatment with a p38 inhibitor reversed the effects of H 2 O 2 treatment on cell growth and the MMP. Similarly, JNK inhibitor treatment further increased, whereas p38 inhibitor treatment decreased, the proportion of GSH-depleted cells in H 2 O 2 -treated CPAECs. Each of the MAPK inhibitors affected cell survival, and ROS or GSH levels differently in H 2 O 2 -untreated, control CPAECs. The data suggest that the exposure of CPAECs to H 2 O 2 caused the cell growth inhibition and cell death through GSH depletion. Furthermore, JNK inhibitor treatment further enhanced, whereas p38 inhibitors attenuated, these effects. Thus, the results of the present study suggest a specific protective role for the p38 inhibitor, and not the JNK inhibitor, against H 2 O 2 -induced cell growth inhibition and cell death.

  14. Niacin increases adiponectin and decreases adipose tissue inflammation in high fat diet-fed mice.

    Directory of Open Access Journals (Sweden)

    Desiree Wanders

    Full Text Available To determine the effects of niacin on adiponectin and markers of adipose tissue inflammation in a mouse model of obesity.Male C57BL/6 mice were placed on a control or high-fat diet (HFD and were maintained on such diets for the duration of the study. After 6 weeks on the control or high fat diets, vehicle or niacin treatments were initiated and maintained for 5 weeks. Identical studies were conducted concurrently in HCA2 (-/- (niacin receptor(-/- mice.Niacin increased serum concentrations of the anti-inflammatory adipokine, adiponectin by 21% in HFD-fed wild-type mice, but had no effect on lean wild-type or lean or HFD-fed HCA2 (-/- mice. Niacin increased adiponectin gene and protein expression in the HFD-fed wild-type mice only. The increases in adiponectin serum concentrations, gene and protein expression occurred independently of changes in expression of PPARγ C/EBPα or SREBP-1c (key transcription factors known to positively regulate adiponectin gene transcription in the adipose tissue. Further, niacin had no effect on adipose tissue expression of ERp44, Ero1-Lα, or DsbA-L (key ER chaperones involved in adiponectin production and secretion. However, niacin treatment attenuated HFD-induced increases in adipose tissue gene expression of MCP-1 and IL-1β in the wild-type HFD-fed mice. Niacin also reduced the expression of the pro-inflammatory M1 macrophage marker CD11c in HFD-fed wild-type mice.Niacin treatment attenuates obesity-induced adipose tissue inflammation through increased adiponectin and anti-inflammatory cytokine expression and reduced pro-inflammatory cytokine expression in a niacin receptor-dependent manner.

  15. A 'beautiful death': mortality, death, and holidays in a Mexican municipality.

    Science.gov (United States)

    Wilches-Gutiérrez, José L; Arenas-Monreal, Luz; Paulo-Maya, Alfredo; Peláez-Ballestas, Ingris; Idrovo, Alvaro J

    2012-03-01

    Several studies have reported increased mortality during holidays. Using a cultural epidemiological, sequential mixed-methods approach, this study explored holiday-related trends using mortality data from Yautepec (Morelos, Mexico) collected between 1986 and 2008 (N=5027 deaths). This analysis found that mortality increased on Christmas Day and All Saints' Day. Mortality increased on Candlemas Day among women, and increased on New Year's Day among men. More deaths caused by cardiovascular disease among women and traumatic injuries among men occurred during holidays than in non-holiday periods. To ascertain the elements comprising the health/illness/death process in the context of a holiday in this municipality, we conducted semi-structured interviews in March and April 2009 with relatives of seven individuals who had died during holidays in the previous 4 years (N=11); data from these interviews were analyzed from a grounded theory perspective to ascertain common conceptual themes. The "beautiful death" emerged as the main concept in the interpretation of death; this concept was related to the expectation of a good death and the particularly special nature of death during a holiday because of the involvement of religious entities, such as God, the Virgin Mary, and/or a saint, at the moment of death. Quantitative and qualitative results provided information about the important effects of holidays, culture, and religious belief on mortality patterns within a Mexican context, and contributed to a better understanding of the relationships among mortality, the nature of death, and holidays. Our results suggest that, in the studied region, death can be interpreted as a "beautiful process". More research is needed to explore this process in other similar contexts and to address topics related to the care and attention given the dying person and the expectation of a good death. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. BRAIN DEATH DIAGNOSIS

    Directory of Open Access Journals (Sweden)

    Calixto Machado

    2009-10-01

    Full Text Available Brain death (BD diagnosis should be established based on the following set of principles, i.e. excluding major confusing factors, identifying the cause of coma, determining irreversibility, and precisely testing brainstem reflexes at all levels of the brainstem. Nonetheless, most criteria for BD diagnosis do not mention that this is not the only way of diagnosing death. The Cuban Commission for the Determination of Death has emphasized the aforesaid three possible situations for diagnosing death: a outside intensive care environment (without life support physicians apply the cardio-circulatory and respiratory criteria; b in forensic medicine circumstances, physicians utilize cadaveric signs (they do not even need a stethoscope; c in the intensive care environment (with life support when cardiorespiratory arrest occurs physicians utilize the cardio-circulatory and respiratory criteria. This methodology of diagnosing death, based on finding any of the death signs, is not related to the concept that there are different types of death. The irreversible loss of cardio-circulatory and respiratory functions can only cause death when ischemia and anoxia are prolonged enough to produce an irreversible destruction of the brain. The sign of irreversible loss of brain functions, that is to say BD diagnosis, is fully reviewed.

  17. Fuselage panel noise attenuation by piezoelectric switching control

    International Nuclear Information System (INIS)

    Makihara, Kanjuro; Onoda, Junjiro; Minesugi, Kenji; Miyakawa, Takeya

    2010-01-01

    This paper describes a problem that we encountered in our noise attenuation project and our solution for it. We intend to attenuate low-frequency noise that transmits through aircraft fuselage panels. Our method of noise attenuation is implemented with a piezoelectric semi-active system having a selective switch instead of an active energy-supply system. The semi-active controller is based on the predicted sound pressure distribution obtained from acoustic emission analysis. Experiments and numerical simulations demonstrate that the semi-active method attenuates acoustic levels of not only the simple monochromatic noise but also of broadband noise. We reveal that tuning the electrical parameters in the circuit is the key to effective noise attenuation, to overcome the acoustic excitation problem due to sharp switching actions, as well as to control chattering problems. The results obtained from this investigation provide meaningful insights into designing noise attenuation systems for comfortable aircraft cabin environments

  18. Dexmedetomidine attenuates H2O2-induced cell death in human osteoblasts.

    Science.gov (United States)

    Yoon, Ji-Young; Park, Jeong-Hoon; Kim, Eun-Jung; Park, Bong-Soo; Yoon, Ji-Uk; Shin, Sang-Wook; Kim, Do-Wan

    2016-12-01

    Reactive oxygen species play critical roles in homeostasis and cell signaling. Dexmedetomidine, a specific agonist of the α 2 -adrenoceptor, has been commonly used for sedation, and it has been reported to have a protective effect against oxidative stress. In this study, we investigated whether dexmedetomidine has a protective effect against H 2 O 2 -induced oxidative stress and the mechanism of H 2 O 2 -induced cell death in normal human fetal osteoblast (hFOB) cells. Cells were divided into three groups: control group-cells were incubated in normoxia without dexmedetomidine, hydrogen peroxide (H 2 O 2 ) group-cells were exposed to H 2 O 2 (200 µM) for 2 h, and Dex/H 2 O 2 group-cells were pretreated with dexmedetomidine (5 µM) for 2 h then exposed to H 2 O 2 (200 µM) for 2 h. Cell viability and apoptosis were evaluated. Osteoblast maturation was determined by assaying bone nodular mineralization. Expression levels of bone-related proteins were determined by western blot. Cell viability was significantly decreased in the H 2 O 2 group compared with the control group, and this effect was improved by dexmedetomidine. The Hoechst 33342 and Annexin-V FITC/PI staining revealed that dexmedetomidine effectively decreased H 2 O 2 -induced hFOB cell apoptosis. Dexmedetomidine enhanced the mineralization of hFOB cells when compared to the H 2 O 2 group. In western blot analysis, bone-related protein was increased in the Dex/H 2 O 2 group. We demonstrated the potential therapeutic value of dexmedetomidine in H 2 O 2 -induced oxidative stress by inhibiting apoptosis and enhancing osteoblast activity. Additionally, the current investigation could be evidence to support the antioxidant potential of dexmedetomidine in vitro.

  19. Contribution to regularizing iterative method development for attenuation correction in gamma emission tomography

    International Nuclear Information System (INIS)

    Cao, A.

    1981-07-01

    This study is concerned with the transverse axial gamma emission tomography. The problem of self-attenuation of radiations in biologic tissues is raised. The regularizing iterative method is developed, as a reconstruction method of 3 dimensional images. The different steps from acquisition to results, necessary to its application, are described. Organigrams relative to each step are explained. Comparison notion between two reconstruction methods is introduced. Some methods used for the comparison or to bring about the characteristics of a reconstruction technique are defined. The studies realized to test the regularizing iterative method are presented and results are analyzed [fr

  20. Possible Mechanisms Involved in Attenuation of Lipopolysaccharide-Induced Memory Deficits by Methyl Jasmonate in Mice.

    Science.gov (United States)

    Eduviere, Anthony Taghogho; Umukoro, Solomon; Adeoluwa, Olusegun A; Omogbiya, Itivere Adrian; Aluko, Oritoke Modupe

    2016-12-01

    This present study was carried out to investigate the likely mechanisms by which methyl jasmonate (MJ), 'an agent widely used in aromatherapy for neurological disorders, attenuates lipopolysaccharide (LPS)-induced memory deficits in mice. Mice were given intraperitoneal administration of LPS (250 µg/kg) alone or in combination with MJ (10-40 mg/kg), donepezil, DP (1 mg/kg), or vehicle for 7 successive days. Thereafter, memory was assessed using object recognition test (ORT). Acetylcholinesterase and myeloperoxidase activities were estimated in brain tissue homogenates. Brain levels of nitric oxide and markers of oxidative stress as well as histopathologic changes of the prefrontal cortex and cornu ammonis 1 (CA1) of the hippocampal region were also assessed. MJ (10-40 mg/kg) attenuated LPS-induced memory impairment in ORT. Moreover, the increased brain activities of acetylcholinesterase and myeloperoxidase enzymes were suppressed by MJ when compared with control (p memory deficits via mechanisms related to inhibition of acetylcholinesterase, myeloperoxidase, oxidative stress and neuronal degeneration.

  1. Vaccination of chicks against Plasmodium gallinaceum by erythrocytic and exoerythrocytic parasites attenuated by gamma irradiation

    International Nuclear Information System (INIS)

    Hughes, H.P.A.; Dixon, B.

    1980-01-01

    Plasmodium gallinaceum-infected blood which received up to 24 krad during exposure to gamma-rays from a cobalt-60 source produced infections of normal course and duration when injected into chickens. The prepatent period advanced with increasing exposure of infected blood to radiation, suggesting some degree of attenuation. At 26, 28 and 30 krad, the infections were transient and the parasites were morphologically abnormal. It is thought that the amount of radiation required to render the parasites non-viable is about 45 krad for an inoculum of 10 6 parasites. There is evidence that exoerythrocytic stages may be more susceptible to gamma-rays than are blood parasites. Chickens were inoculated three times, over a period of four weeks, with vaccines prepared from gamma-irradiated infected blood and brain tissue. Half the birds which had been inoculated with attenuated parasitized blood exhibited mild infections during vaccination, and they were the only birds to show at challenge immunity to both homologous blood and exoerythrocytic parasites. (author)

  2. sigma receptor ligands attenuate N-methyl-D-aspartate cytotoxicity in dopaminergic neurons of mesencephalic slice cultures.

    Science.gov (United States)

    Shimazu, S; Katsuki, H; Takenaka, C; Tomita, M; Kume, T; Kaneko, S; Akaike, A

    2000-01-28

    We investigated the potential neuroprotective effects of several sigma receptor ligands in organotypic midbrain slice cultures as an excitotoxicity model system. When challenged with 100-microM N-methyl-D-aspartate (NMDA) for 24 h, dopaminergic neurons in midbrain slice cultures degenerated, and this was prevented by (5R, 10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,b]-cyclohepten-5, 10-imine (MK-801; 1-10 microM). Concomitant application of ifenprodil (1-10 microM) or haloperidol (1-10 microM), both of which are high-affinity sigma receptor ligands, significantly attenuated the neurotoxicity of 100 microM NMDA. The sigma(1) receptor-selective ligand (+)-N-allylnormetazocine ((+)-SKF 10047; 1-10 microM) was also effective in attenuating the toxicity of NMDA. The effect of R(-)-N-(3-phenyl-1-propyl)-1-phenyl-2-aminopropane hydrochloride ((-)-PPAP), a sigma receptor ligand with negligible affinity for the phencyclidine site of NMDA receptors, was also examined. (-)-PPAP (3-100 microM) caused a concentration-dependent reduction of NMDA cytotoxicity, with significant protection at concentrations of 30 and 100 microM. In contrast, (+)-SKF 10047 (10 microM) and (-)-PPAP (100 microM) showed no protective effects against cell death induced by the Ca(2+) ionophore ionomycin (1-3 microM). These results indicate that sigma receptor ligands attenuate the cytotoxic effects of NMDA on midbrain dopaminergic neurons, possibly via inhibition of NMDA receptor functions.

  3. Method and system for in vivo measurement of bone tissue using a two level energy source

    Science.gov (United States)

    Cameron, J. R.; Judy, P. F. (Inventor)

    1976-01-01

    Methods and apparatus are provided for radiologically determining the bone mineral content of living human bone tissue independently of the concurrent presence of adipose and other soft tissues. A target section of the body of the subject is irradiated with a beam of penetrative radiations of preselected energy to determine the attenuation of such beam with respect to the intensity of each of two radiations of different predetermined energy levels. The resulting measurements are then employed to determine bone mineral content.

  4. Acrolein-induced cell death in PC12 cells: role of mitochondria-mediated oxidative stress.

    Science.gov (United States)

    Luo, Jian; Robinson, J Paul; Shi, Riyi

    2005-12-01

    Oxidative stress has been implicated in acrolein cytotoxicity in various cell types, including mammalian spinal cord tissue. In this study we report that acrolein also decreases PC12 cell viability in a reactive oxygen species (ROS)-dependent manner. Specifically, acrolein-induced cell death, mainly necrosis, is accompanied by the accumulation of cellular ROS. Elevating ROS scavengers can alleviate acrolein-induced cell death. Furthermore, we show that exposure to acrolein leads to mitochondrial dysfunction, denoted by the loss of mitochondrial transmembrane potential, reduction of cellular oxygen consumption, and decrease of ATP level. This raises the possibility that the cellular accumulation of ROS could result from the increased production of ROS in the mitochondria of PC12 cells as a result of exposure to acrolein. The acrolein-induced significant decrease of ATP production in mitochondria may also explain why necrosis, not apoptosis, is the dominant type of cell death. In conclusion, our data suggest that one possible mechanism of acrolein-induced cell death could be through mitochondria as its initial target. The subsequent increase of ROS then inflicts cell death and further worsens mitochondria function. Such mechanism may play an important role in CNS trauma and neurodegenerative diseases.

  5. Blockade of maitotoxin-induced oncotic cell death reveals zeiosis

    Directory of Open Access Journals (Sweden)

    Schilling William P

    2002-01-01

    Full Text Available Abstract Background Maitotoxin (MTX initiates cell death by sequentially activating 1 Ca2+ influx via non-selective cation channels, 2 uptake of vital dyes via formation of large pores, and 3 release of lactate dehydrogenase, an indication of cell lysis. MTX also causes formation of membrane blebs, which dramatically dilate during the cytolysis phase. To determine the role of phospholipase C (PLC in the cell death cascade, U73122, a specific inhibitor of PLC, and U73343, an inactive analog, were examined on MTX-induced responses in bovine aortic endothelial cells. Results Addition of either U73122 or U73343, prior to MTX, produced a concentration-dependent inhibition of the cell death cascade (IC50 ≈ 1.9 and 0.66 μM, respectively suggesting that the effect of these agents was independent of PLC. Addition of U73343 shortly after MTX, prevented or attenuated the effects of the toxin, but addition at later times had little or no effect. Time-lapse videomicroscopy showed that U73343 dramatically altered the blebbing profile of MTX-treated cells. Specifically, U73343 blocked bleb dilation and converted the initial blebbing event into "zeiosis", a type of membrane blebbing commonly associated with apoptosis. Cells challenged with MTX and rescued by subsequent addition of U73343, showed enhanced caspase-3 activity 48 hr after the initial insult, consistent with activation of the apoptotic program. Conclusions Within minutes of MTX addition, endothelial cells die by oncosis. Rescue by addition of U73343 shortly after MTX showed that a small percentage of cells are destined to die by oncosis, but that a larger percentage survive; cells that survive the initial insult exhibit zeiosis and may ultimately die by apoptotic mechanisms.

  6. The Phagocytic Function of Macrophage-Enforcing Innate Immunity and Tissue Homeostasis

    Directory of Open Access Journals (Sweden)

    Daisuke Hirayama

    2017-12-01

    Full Text Available Macrophages are effector cells of the innate immune system that phagocytose bacteria and secrete both pro-inflammatory and antimicrobial mediators. In addition, macrophages play an important role in eliminating diseased and damaged cells through their programmed cell death. Generally, macrophages ingest and degrade dead cells, debris, tumor cells, and foreign materials. They promote homeostasis by responding to internal and external changes within the body, not only as phagocytes, but also through trophic, regulatory, and repair functions. Recent studies demonstrated that macrophages differentiate from hematopoietic stem cell-derived monocytes and embryonic yolk sac macrophages. The latter mainly give rise to tissue macrophages. Macrophages exist in all vertebrate tissues and have dual functions in host protection and tissue injury, which are maintained at a fine balance. Tissue macrophages have heterogeneous phenotypes in different tissue environments. In this review, we focused on the phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis for a better understanding of the role of tissue macrophages in several pathological conditions.

  7. Methamphetamine-induced neurotoxicity is attenuated in transgenic mice with a null mutation for interleukin-6.

    Science.gov (United States)

    Ladenheim, B; Krasnova, I N; Deng, X; Oyler, J M; Polettini, A; Moran, T H; Huestis, M A; Cadet, J L

    2000-12-01

    Increasing evidence implicates apoptosis as a major mechanism of cell death in methamphetamine (METH) neurotoxicity. The involvement of a neuroimmune component in apoptotic cell death after injury or chemical damage suggests that cytokines may play a role in METH effects. In the present study, we examined if the absence of IL-6 in knockout (IL-6-/-) mice could provide protection against METH-induced neurotoxicity. Administration of METH resulted in a significant reduction of [(125)I]RTI-121-labeled dopamine transporters in the caudate-putamen (CPu) and cortex as well as depletion of dopamine in the CPu and frontal cortex of wild-type mice. However, these METH-induced effects were significantly attenuated in IL-6-/- animals. METH also caused a decrease in serotonin levels in the CPu and hippocampus of wild-type mice, but no reduction was observed in IL-6-/- animals. Moreover, METH induced decreases in [(125)I]RTI-55-labeled serotonin transporters in the hippocampal CA3 region and in the substantia nigra-reticulata but increases in serotonin transporters in the CPu and cingulate cortex in wild-type animals, all of which were attenuated in IL-6-/- mice. Additionally, METH caused increased gliosis in the CPu and cortices of wild-type mice as measured by [(3)H]PK-11195 binding; this gliotic response was almost completely inhibited in IL-6-/- animals. There was also significant protection against METH-induced DNA fragmentation, measured by the number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeled (TUNEL) cells in the cortices. The protective effects against METH toxicity observed in the IL-6-/- mice were not caused by differences in temperature elevation or in METH accumulation in wild-type and mutant animals. Therefore, these observations support the proposition that IL-6 may play an important role in the neurotoxicity of METH.

  8. Apoptosis-like death in bacteria induced by HAMLET, a human milk lipid-protein complex.

    Science.gov (United States)

    Hakansson, Anders P; Roche-Hakansson, Hazeline; Mossberg, Ann-Kristin; Svanborg, Catharina

    2011-03-10

    Apoptosis is the primary means for eliminating unwanted cells in multicellular organisms in order to preserve tissue homeostasis and function. It is characterized by distinct changes in the morphology of the dying cell that are orchestrated by a series of discrete biochemical events. Although there is evidence of primitive forms of programmed cell death also in prokaryotes, no information is available to suggest that prokaryotic death displays mechanistic similarities to the highly regulated programmed death of eukaryotic cells. In this study we compared the characteristics of tumor and bacterial cell death induced by HAMLET, a human milk complex of alpha-lactalbumin and oleic acid. We show that HAMLET-treated bacteria undergo cell death with mechanistic and morphologic similarities to apoptotic death of tumor cells. In Jurkat cells and Streptococcus pneumoniae death was accompanied by apoptosis-like morphology such as cell shrinkage, DNA condensation, and DNA degradation into high molecular weight fragments of similar sizes, detected by field inverse gel electrophoresis. HAMLET was internalized into tumor cells and associated with mitochondria, causing a rapid depolarization of the mitochondrial membrane and bound to and induced depolarization of the pneumococcal membrane with similar kinetic and magnitude as in mitochondria. Membrane depolarization in both systems required calcium transport, and both tumor cells and bacteria were found to require serine protease activity (but not caspase activity) to execute cell death. Our results suggest that many of the morphological changes and biochemical responses associated with apoptosis are present in prokaryotes. Identifying the mechanisms of bacterial cell death has the potential to reveal novel targets for future antimicrobial therapy and to further our understanding of core activation mechanisms of cell death in eukaryote cells.

  9. Studies on the virulence and attenuation of Trypanosoma cruzi using immunodeficient animals

    Directory of Open Access Journals (Sweden)

    Basombrío Miguel Ángel

    2000-01-01

    Full Text Available Tissue invasion and pathology by Trypanosoma cruzi result from an interaction between parasite virulence and host immunity. Successive in vivo generations of the parasite select populations with increasing ability to invade the host. Conversely, prolonged in vitro selection of the parasite produces attenuated sublines with low infectivity for mammals. One such subline (TCC clone has been extensively used in our laboratory as experimental vaccine and tested in comparative experiments with its virulent ancestor (TUL. The experiments here reviewed aimed at the use of immunodeficient mice for testing the infectivity of TCC parasites. It has not been possible to obtain virulent, revertant sublines by prolonged passaged in such mice.

  10. Elastic wave attenuation in rocks containing fluids

    International Nuclear Information System (INIS)

    Berryman, J.G.

    1986-01-01

    The low-frequency limit of Biot's theory of fluid-saturated porous media predicts that the coefficients for viscous attenuation of shear waves and of the fast compressional wave are proportional to the fluid permeability. Although the observed attenuation is generally in qualitative agreement with the theory, the magnitude of the observed attenuation coefficient in rocks is often more than an order of magnitude higher than expected. This apparent dilemma can be resolved without invoking other attenuation mechanisms if the intrinsic permeability of the rock is inhomogeneous and varies widely in magnitude. A simple calculation of the overall behavior of a layered porous material using local-flow Biot theory shows that the effective permeability for attenuation is the mean of the constituent permeabilities while the effective permeability for fluid flow is the harmonic mean. When the range of variation in the local permeability is one or more orders of magnitude, this difference in averaging method can easily explain some of the observed discrepancies

  11. Estimating Rain Attenuation In Satellite Communication Links

    Science.gov (United States)

    Manning, R. M.

    1991-01-01

    Attenuation computed with help of statistical model and meteorological data. NASA Lewis Research Center Satellite Link Attenuation Model (SLAM) program QuickBASIC computer program evaluating static and dynamic statistical assessment of impact of rain attenuation on communication link established between Earth terminal and geosynchronous satellite. Application in specification, design, and assessment of satellite communication links for any terminal location in continental United States. Written in Microsoft QuickBASIC.

  12. Radiography after unexpected death in infants and children compared to autopsy

    International Nuclear Information System (INIS)

    Lange, Charlotte de; Stake, Gunnar; Vege, Aashild

    2007-01-01

    Postmortem radiography may reveal skeletal and soft-tissue abnormalities of importance for the diagnosis of cause of death. To review the radiographs of children under 3 years of age who had died suddenly and unexpectedly. To compare the radiological and autopsy findings evaluating possible differences in children dying of SIDS and of an explainable cause. A total of 110 consecutive skeletal surveys performed between 1998 and 2002 were reviewed. All but one were performed before autopsy and comprised AP views of the appendicular and axial skeleton and thorax/abdomen, lateral views of the axial skeleton and thorax, and two oblique views of the ribs. Radiography and autopsy findings were compared. Causes of death were classified as SIDS/borderline SIDS (n = 52) and non-SIDS (n = 58), with one case of abuse. In 102 infants there were 150 pathological findings, 88 involving the chest, 24 skeletal, and 38 miscellaneous findings. The radiological-pathological agreement was poor concerning pulmonary findings. Skeletal findings were sometimes important for the final diagnosis. Radiography revealed many skeletal and soft-tissue findings. Pulmonary pathology was most frequently found, but showed poor agreement with autopsy findings. Recognizing skeletal findings related to abuse is important, as these may escape recognition at autopsy. (orig.)

  13. Low-frequency quantitative ultrasound imaging of cell death in vivo

    International Nuclear Information System (INIS)

    Sadeghi-Naini, Ali; Falou, Omar; Czarnota, Gregory J.; Papanicolau, Naum; Tadayyon, Hadi; Lee, Justin; Zubovits, Judit; Sadeghian, Alireza; Karshafian, Raffi; Al-Mahrouki, Azza; Giles, Anoja; Kolios, Michael C.

    2013-01-01

    addition to high-frequency ultrasound, can detect tissue changes associated with cell death in vivo in response to cancer treatments

  14. Low-frequency quantitative ultrasound imaging of cell death in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi-Naini, Ali; Falou, Omar; Czarnota, Gregory J. [Imaging Research – Physical Science, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada); Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada); Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Department of Radiation Oncology, Faculty of Medicine, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Papanicolau, Naum; Tadayyon, Hadi [Imaging Research – Physical Science, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada and Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Lee, Justin [Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada and Department of Radiation Oncology, Faculty of Medicine, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Zubovits, Judit [Department of Pathology, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada); Sadeghian, Alireza [Department of Computer Science, Ryerson University, Toronto, Ontario M5B 2K3 (Canada); Karshafian, Raffi [Department of Physics, Ryerson University, Toronto, Ontario M5B 2K3 (Canada); Al-Mahrouki, Azza; Giles, Anoja [Imaging Research – Physical Science, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada and Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada); Kolios, Michael C. [Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario M4N 3M5, Canada and Department of Physics, Ryerson University, Toronto, Ontario M5B 2K3 (Canada)

    2013-08-15

    , in addition to high-frequency ultrasound, can detect tissue changes associated with cell death in vivo in response to cancer treatments.

  15. Survey of public knowledge in tissue banking in Malaysia

    International Nuclear Information System (INIS)

    Norimah Yusof; Asnah Hassan

    1998-01-01

    A survey was conducted with the objective to determine the level of public knowledge and awareness in tissue banking. From 233 respondents of 62.2% male and 37.8% female, only 44.6% have heard about tissue banking in Malaysia, mainly from newspapers and mass media, and only 11.6% realised the existence of the two tissue banks i.e at MINT, Bangi and USM, Kubang Kerian. However, higher percentage of respondents were aware of donation for both organs (56.2%) and tissues (51.1%). When asked about donating, 54.5% were willing to donate after death and surprisingly only 39.9% as life donors. On the contrary, 71.7% were willing to accept tissue grafts for clinical treatment and transplantation. The findings suggest that more aggressive publicity on tissue banking is necessary and more detailed information have to be made known especially regarding the 'fatwa' in particular for the Muslims and the Human Tissue Act 1974 for the general public. This may lead to even better response to the tissue donation programme which is being planned. Most of the respondents congratulated both tissue banks in our effort to develop indigenous expertise in this interesting new venture with high appreciation to our social and welfare obligations

  16. An acoustic eikonal equation for attenuating orthorhombic media

    KAUST Repository

    Hao, Qi

    2017-04-06

    Attenuating orthorhombic models are often used to describe the azimuthal variation of the seismic wave velocity and amplitude in finely layered hydrocarbon reservoirs with vertical fractures. In addition to the P-wave related medium parameters, shear wave parameters are also present in the complex eikonal equation needed to describe the P-wave complex-valued traveltime in an attenuating orthorhombic medium, which increases the complexity of using the P-wave traveltime to invert for the medium parameters in practice. Here, we use the acoustic assumption to derive an acoustic eikonal equation that approximately governs the complex-valued traveltime of P-waves in an attenuating orthorhombic medium. For a homogeneous attenuating orthorhombic media, we solve the eikonal equation using a combination of the perturbation method and Shanks transform. For a horizontal attenuating orthorhombic layer, both the real and imaginary part of the complex-valued reflection traveltime have nonhyperbolic behaviors in terms of the source-receiver offset. Similar to the roles of normal moveout (NMO) velocity and anellipticity, the attenuation NMO velocity and the attenuation anellipticity characterize the variation of the imaginary part of the complex-valued reflection traveltime around zero source-receiver offset.

  17. A novel neuron-enriched protein SDIM1 is down regulated in Alzheimer's brains and attenuates cell death induced by DNAJB4 over-expression in neuro-progenitor cells

    Directory of Open Access Journals (Sweden)

    Lei Joy X

    2011-01-01

    Full Text Available Abstract Background Molecular changes in multiple biological processes contribute to the development of chronic neurodegeneration such as late onset Alzheimer's disease (LOAD. To discover how these changes are reflected at the level of gene expression, we used a subtractive transcription-based amplification of mRNA procedure to identify novel genes that have altered expression levels in the brains of Alzheimer's disease (AD patients. Among the genes altered in expression level in AD brains was a transcript encoding a novel protein, SDIM1, that contains 146 amino acids, including a typical signal peptide and two transmembrane domains. Here we examined its biochemical properties and putative roles in neuroprotection/neurodegeneration. Results QRT-PCR analysis of additional AD and control post-mortem human brains showed that the SDIM1 transcript was indeed significantly down regulated in all AD brains. SDIM1 is more abundant in NT2 neurons than astrocytes and present throughout the cytoplasm and neural processes, but not in the nuclei. In NT2 neurons, it is highly responsive to stress conditions mimicking insults that may cause neurodegeneration in AD brains. For example, SDIM1 was significantly down regulated 2 h after oxygen-glucose deprivation (OGD, though had recovered 16 h later, and also appeared significantly up regulated compared to untreated NT2 neurons. Overexpression of SDIM1 in neuro-progenitor cells improved cells' ability to survive after injurious insults and its downregulation accelerated cell death induced by OGD. Yeast two-hybrid screening and co-immunoprecipitation approaches revealed, both in vitro and in vivo, an interaction between SDIM1 and DNAJB4, a heat shock protein hsp40 homolog, recently known as an enhancer of apoptosis that also interacts with the mu opioid receptor in human brain. Overexpression of DNAJB4 alone significantly reduced cell viability and SDIM1 co-overexpression was capable of attenuating the cell death

  18. /sup 239/PuO/sub 2/ aerosol inhalation with emphasis on pulmonary connective tissue modifications

    Energy Technology Data Exchange (ETDEWEB)

    Metivier, H; Masse, R; Nobil' e, D; Lafuma, J

    1975-09-01

    Inhalation studies were undertaken in which plutonium dioxide (/sup 239/PuO/sub 2/) was administered to either unanesthetized Wistar rats or anaesthetized baboons. In both groups of animals some deaths occurred from acute lung damage resulting from cell necrosis particularly to vascular tissue followed by alveolar oedema. At later stages, marked interstitial pneumonitis and interstitial fibrosis occurred and deaths resulted from respiratory insufficiency preceded by high arterial blood pCO/sub 2/ and low pO/sub 2/. In rats as many as 50% of the animals finally developed lung neoplasms but only two such tumors were found in baboons. Attempts were made to correlate biochemical parameters with observed tissue damage and animal mortality.

  19. Hippocampal Dysfunction Provoked by Mercury Chloride Exposure: Evaluation of Cognitive Impairment, Oxidative Stress, Tissue Injury and Nature of Cell Death

    Directory of Open Access Journals (Sweden)

    Walessa Alana Bragança Aragão

    2018-01-01

    Full Text Available Mercury (Hg is a highly toxic metal, which can be found in its inorganic form in the environment. This form presents lower liposolubility and lower absorption in the body. In order to elucidate the possible toxicity of inorganic Hg in the hippocampus, we investigated the potential of low doses of mercury chloride (HgCl2 to promote hippocampal dysfunction by employing a chronic exposure model. For this, 56 rats were exposed to HgCl2 (0.375 mg/kg/day via the oral route for 45 days. After the exposure period, the animals were submitted to the cognitive test of fear memory. The hippocampus was collected for the measurement of total Hg levels, analysis of oxidative stress, and evaluation of cytotoxicity, apoptosis, and tissue injury. It was observed that chronic exposure to inorganic Hg promotes an increase in mercury levels in this region and damage to short- and long-term memory. Furthermore, we found that this exposure model provoked oxidative stress, which led to cytotoxicity and cell death by apoptosis, affecting astrocytes and neurons in the hippocampus. Our study demonstrated that inorganic Hg, even with its low liposolubility, is able to produce deleterious effects in the central nervous system, resulting in cognitive impairment and hippocampal damage when administered for a long time at low doses in rats.

  20. Fibroblast growth factor 21 attenuates hepatic fibrogenesis through TGF-β/smad2/3 and NF-κB signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Pengfei; Zhang, Yingjie; Liu, Yunye; Yuan, Qingyan; Song, Liying; Liu, Mingyao; Liu, Zhihang; Yang, Yongbi; Li, Junyan; Li, Deshan, E-mail: deshanli@163.com; Ren, Guiping, E-mail: renguiping@126.com

    2016-01-01

    Fibroblast growth factor 21 (FGF-21) is a secreted protein, which has anti-diabetic and lipocaic effects, but its ability to protect against hepatic fibrosis has not been studied. In this study, we investigated the ability of FGF-21 to attenuate dimethylnitrosamine (DMN)-induced hepatic fibrogenesis in mice and the mechanism of its action. Hepatic fibrosis was induced by injection of DMN, FGF-21 was administered to the mice once daily in association with DMN injection till the end of the experiment. Histopathological examination, tissue 4-hydroxyproline content and expressions of smooth muscle α-actin (α-SMA) and collagen I were measured to assess hepatic fibrosis. Ethanol/PDGF-BB-activated hepatic stellate cells (HSCs) were used to understand the mechanisms of FGF-21 inhibited hepatic fibrogenesis. Results showed that FGF-21 treatment attenuated hepatic fibrogenesis and was associated with a significant decrease in intrahepatic fibrogenesis, 4-hydroxyproline accumulation, α-SMA expression and collagen I deposition. FGF-21 treatment inhibited the activation of HSCs via down-regulating the expression of TGF-β, NF-κB nuclear translocation, phosphorylation levels of smad2/3 and IκBα. Besides, FGF-21 treatment caused activated HSC apoptosis with increasing expression of Caspase-3, and decreased the ratio of Bcl-2 to Bax. In conclusion, FGF-21 attenuates hepatic fibrogenesis and inhibits the activation of HSC warranting the use of FGF-21 as a potential therapeutic agent in the treatment of hepatic fibrosis. - Highlights: • Fibroblast growth factor 21 attenuates hepatic fibrogenesis. • Fibroblast growth factor 21 attenuates hepatic fibrogenesis via TGF-β/smad2/3 signaling pathways. • Fibroblast growth factor 21 attenuates hepatic fibrogenesis via NF-κB signaling pathways.