WorldWideScience

Sample records for attenuates renal hypertrophy

  1. Valsartan attenuates cardiac and renal hypertrophy in rats with experimental cardiorenal syndrome possibly through down-regulating galectin-3 signaling.

    Science.gov (United States)

    Zhang, M-J; Gu, Y; Wang, H; Zhu, P-F; Liu, X-Y; Wu, J

    2016-01-01

    Aortocaval fistula (AV) induced chronic volume overload in rats with preexisting mild renal dysfunction (right kidney remove: UNX) could mimic the type 4 cardiorenal syndrome (CRS): chronic renocardiac syndrome. Galectin-3, a β-galactoside binding lectin, is an emerging biomarker in cardiovascular as well as renal diseases. We observed the impact of valsartan on cardiac and renal hypertrophy and galectin-3 changes in this model. Adult male Sprague-Dawley (SD) rats (200-250 g) were divided into S (Sham, n = 7), M (UNX+AV, n = 7) and M+V (UNX+AV+valsartan, n = 7) groups. Eight weeks later, cardiac function was measured by echocardiography. Renal outcome was measured by glomerular filtration rate, effective renal plasma flow, renal blood flow and 24 hours albuminuria. Immunohistochemistry and real-time PCR were used to evaluate the expressions of galectin-3 in heart and renal. Cardiac hypertrophy and renal hypertrophy as well as cardiac enlargement were evidenced in this AV shunt induced chronic volume overload rat model with preexisting mild renal dysfunction. Cardiac and renal hypertrophy were significantly attenuated but cardiac enlargement was unaffected by valsartan independent of its blood pressure lowering effect. 24 hours urine albumin was significantly increased, which was significantly reduced by valsartan in this model. Immunohistochemistry and real-time PCR evidenced significantly up-regulated galectin-3 expression in heart and kidney and borderline increased myocardial collagen I expression, which tended to be lower post valsartan treatment. Up-regulated galectin-3 signaling might also be involved in the pathogenesis in this CRS model. The beneficial effects of valsartan in terms of attenuating cardiac and renal hypertrophy and reducing 24 hours albumin in this model might partly be mediated through down-regulating galectin-3 signal pathway.

  2. Cinnamaldehyde impairs high glucose-induced hypertrophy in renal interstitial fibroblasts

    International Nuclear Information System (INIS)

    Chao, Louis Kuoping; Chang, W.-T.; Shih, Y.-W.; Huang, J.-S.

    2010-01-01

    Cinnamaldehyde is a major and a bioactive compound isolated from the leaves of Cinnamomum osmophloeum kaneh. To explore whether cinnamaldehyde was linked to altered high glucose (HG)-mediated renal tubulointerstitial fibrosis in diabetic nephropathy (DN), the molecular mechanisms of cinnamaldehyde responsible for inhibition of HG-induced hypertrophy in renal interstitial fibroblasts were examined. We found that cinnamaldehyde caused inhibition of HG-induced cellular mitogenesis rather than cell death by either necrosis or apoptosis. There were no changes in caspase 3 activity, cleaved poly(ADP-ribose) polymerase (PARP) protein expression, and mitochondrial cytochrome c release in HG or cinnamaldehyde treatments in these cells. HG-induced extracellular signal-regulated kinase (ERK)/c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (MAPK) (but not the Janus kinase 2/signal transducers and activators of transcription) activation was markedly blocked by cinnamaldehyde. The ability of cinnamaldehyde to inhibit HG-induced hypertrophy was verified by the observation that it significantly decreased cell size, cellular hypertrophy index, and protein levels of collagen IV, fibronectin, and α-smooth muscle actin (α-SMA). The results obtained in this study suggest that cinnamaldehyde treatment of renal interstitial fibroblasts that have been stimulated by HG reduces their ability to proliferate and hypertrophy through mechanisms that may be dependent on inactivation of the ERK/JNK/p38 MAPK pathway.

  3. Deletion of Interleukin-6 Attenuates Pressure Overload-Induced Left Ventricular Hypertrophy and Dysfunction

    Science.gov (United States)

    Afzal, Muhammad R.; Samanta, Anweshan; Xuan, Yu-Ting; Girgis, Magdy; Elias, Harold K; Zhu, Yanqing; Davani, Arash; Yang, Yanjuan; Chen, Xing; Ye, Sheng; Wang, Ou-Li; Chen, Lei; Hauptman, Jeryl; Vincent, Robert J.; Dawn, Buddhadeb

    2016-01-01

    Rationale The role of interleukin (IL)-6 in the pathogenesis of cardiac myocyte hypertrophy remains controversial. Objective To conclusively determine whether IL-6 signaling is essential for the development of pressure overload-induced left ventricular (LV) hypertrophy, and to elucidate the underlying molecular pathways. Methods and Results Wild-type (WT) and IL-6 knockout (IL-6−/−) mice underwent sham surgery or transverse aortic constriction (TAC) to induce pressure overload. Serial echocardiograms and terminal hemodynamic studies revealed attenuated LV hypertrophy and superior preservation of LV function in IL-6−/− mice after TAC. The extents of LV remodeling, fibrosis, and apoptosis were reduced in IL-6−/− hearts after TAC. Transcriptional and protein assays of myocardial tissue identified CaMKII and STAT3 activation as important underlying mechanisms during cardiac hypertrophy induced by TAC. The involvement of these pathways in myocyte hypertrophy was verified in isolated cardiac myocytes from WT and IL-6−/− mice exposed to pro-hypertrophy agents. Furthermore, overexpression of CaMKII in H9c2 cells increased STAT3 phosphorylation, and exposure of H9c2 cells to IL-6 resulted in STAT3 activation that was attenuated by CaMKII inhibition. Together these results identify the importance of CaMKII-dependent activation of STAT3 during cardiac myocyte hypertrophy via IL-6 signaling. Conclusions Genetic deletion of IL-6 attenuates TAC-induced LV hypertrophy and dysfunction, indicating a critical role played by IL-6 in the pathogenesis of LV hypertrophy in response to pressure overload. CaMKII plays an important role in IL-6-induced STAT3 activation and consequent cardiac myocyte hypertrophy. These findings may have significant therapeutic implications for LV hypertrophy and failure in patients with hypertension. PMID:27126808

  4. Factors Influencing the Increase in Na-K-ATPase in Compensatory Renal Hypertrophy

    Science.gov (United States)

    Epstein, Franklin H.; Charney, Alan N.; Silva, Patricio

    1978-01-01

    An increase in Na-K-ATPase in kidney homogenates usually accompanies compensatory renal hypertrophy. While it may be evident in both the cortex and medulla of the kidney, it is most marked in the outer medulla and may be present only in that region. The increase in enzyme activity does not depend on an intact adrenal cortex and can be elicited in the absence of adrenal glucocorticoids. It is not seen in the form of renal hypertrophy produced by potassium depletion, in which the transport of sodium and potassium by the kidney is not increased. When present in compensatory renal growth, the enzyme change is correlated with an increase in the reabsorption of sodium, or the excretion of potassium, or both, per unit of renal tissue. It proceeds in the presence of either, but not in the absence of both. PMID:216164

  5. Chronic infusion of enalaprilat into hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension and cardiac hypertrophy by restoring neurotransmitters and cytokines

    International Nuclear Information System (INIS)

    Kang, Yu-Ming; Zhang, Dong-Mei; Yu, Xiao-Jing; Yang, Qing; Qi, Jie; Su, Qing; Suo, Yu-Ping; Yue, Li-Ying; Zhu, Guo-Qing; Qin, Da-Nian

    2014-01-01

    The renin–angiotensin system (RAS) in the brain is involved in the pathogenesis of hypertension. We hypothesized that inhibition of angiotensin-converting enzyme (ACE) in the hypothalamic paraventricular nucleus (PVN) attenuates angiotensin II (ANG II)-induced hypertension via restoring neurotransmitters and cytokines. Rats underwent subcutaneous infusions of ANG II or saline and bilateral PVN infusions of ACE inhibitor enalaprilat (ENL, 2.5 μg/h) or vehicle for 4 weeks. ANG II infusion resulted in higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and mRNA expressions of cardiac atrial natriuretic peptide and beta-myosin heavy chain. These ANG II-infused rats had higher PVN levels of glutamate, norepinephrine, tyrosine hydroxylase, pro-inflammatory cytokines (PICs) and the chemokine monocyte chemoattractant protein-1, and lower PVN levels of gamma-aminobutyric acid, interleukin (IL)-10 and the 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma levels of PICs, norepinephrine and aldosterone, and lower plasma IL-10, and higher renal sympathetic nerve activity. However, PVN treatment with ENL attenuated these changes. PVN microinjection of ANG II induced increases in IL-1β and IL-6, and a decrease in IL-10 in the PVN, and pretreatment with angiotensin II type 1 receptor (AT1-R) antagonist losartan attenuated these changes. These findings suggest that ANG II infusion induces an imbalance between excitatory and inhibitory neurotransmitters and an imbalance between pro- and anti-inflammatory cytokines in the PVN, and PVN inhibition of the RAS restores neurotransmitters and cytokines in the PVN, thereby attenuating ANG II-induced hypertension and cardiac hypertrophy. - Highlights: • Chronic ANG II infusion results in sympathetic hyperactivity and cardiac hypertrophy. • PVN inhibition of ACE

  6. Chronic infusion of enalaprilat into hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension and cardiac hypertrophy by restoring neurotransmitters and cytokines

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Zhang, Dong-Mei [Department of Physiology, Dalian Medical University, Dalian 116044 (China); Yu, Xiao-Jing; Yang, Qing; Qi, Jie; Su, Qing [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Suo, Yu-Ping [Department of Obstetrics and Gynecology, Shanxi Provincial People' s Hospital, Taiyuan 030012 (China); Yue, Li-Ying [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Zhu, Guo-Qing [Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029 (China); Qin, Da-Nian, E-mail: dnqin@stu.edu.cn [Department of Physiology, Shantou University Medical College, Shantou 515041 (China)

    2014-02-01

    The renin–angiotensin system (RAS) in the brain is involved in the pathogenesis of hypertension. We hypothesized that inhibition of angiotensin-converting enzyme (ACE) in the hypothalamic paraventricular nucleus (PVN) attenuates angiotensin II (ANG II)-induced hypertension via restoring neurotransmitters and cytokines. Rats underwent subcutaneous infusions of ANG II or saline and bilateral PVN infusions of ACE inhibitor enalaprilat (ENL, 2.5 μg/h) or vehicle for 4 weeks. ANG II infusion resulted in higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and mRNA expressions of cardiac atrial natriuretic peptide and beta-myosin heavy chain. These ANG II-infused rats had higher PVN levels of glutamate, norepinephrine, tyrosine hydroxylase, pro-inflammatory cytokines (PICs) and the chemokine monocyte chemoattractant protein-1, and lower PVN levels of gamma-aminobutyric acid, interleukin (IL)-10 and the 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma levels of PICs, norepinephrine and aldosterone, and lower plasma IL-10, and higher renal sympathetic nerve activity. However, PVN treatment with ENL attenuated these changes. PVN microinjection of ANG II induced increases in IL-1β and IL-6, and a decrease in IL-10 in the PVN, and pretreatment with angiotensin II type 1 receptor (AT1-R) antagonist losartan attenuated these changes. These findings suggest that ANG II infusion induces an imbalance between excitatory and inhibitory neurotransmitters and an imbalance between pro- and anti-inflammatory cytokines in the PVN, and PVN inhibition of the RAS restores neurotransmitters and cytokines in the PVN, thereby attenuating ANG II-induced hypertension and cardiac hypertrophy. - Highlights: • Chronic ANG II infusion results in sympathetic hyperactivity and cardiac hypertrophy. • PVN inhibition of ACE

  7. Renal ornithine decarboxylase activity, polyamines, and compensatory renal hypertrophy in the rat

    International Nuclear Information System (INIS)

    Humphreys, M.H.; Etheredge, S.B.; Lin, Shanyan; Ribstein, J.; Marton, L.J.

    1988-01-01

    The authors determined the role of ornithine decarboxylase (ODC) in compensatory renal hypertrophy (CRH) by relating renal ODC activity and polyamine content to kidney size, expressed as a percent of body weight, 1 wk after unilateral nephrectomy (UN). In normal rats, renal ODC activity increased after UN; 1 wk later the remaining kidney weight had increased. Renal concentration of putrescine, the product of ODC's decarboxylation of ornithine, was increased 3, 8, and 48 h after UN, but concentrations of polyamines synthesized later in the pathway, spermidine and spermine, were not appreciably affected. Pretreatment with difluoromethylornithine (DFMO), an irreversible inhibitor of ODC inhibited both base-line renal ODC activity and putrescine concentration as well as increases stimulated by UN, although concentrations of spermidine and spermine were not decreased. In hypophysectomized rats, both increased renal ODC activity and CRH occurred as well, indicating that these two consequences of UN do not require intact pituitary function. Thus stimulation of renal ODC activity and putrescine content do not appear critical to the process of CRH after UN

  8. Inhibition of Uncoupling Protein 2 Attenuates Cardiac Hypertrophy Induced by Transverse Aortic Constriction in Mice

    Directory of Open Access Journals (Sweden)

    Xiao-Bing Ji

    2015-07-01

    Full Text Available Background: Uncoupling protein 2 (UCP2 is critical in regulating energy metabolism. Due to the significant change in energy metabolism of myocardium upon pressure overload, we hypothesize that UCP2 could contribute to the etiology of cardiac hypertrophy. Methods: Adult male C57BL/6J mice were subjected to pressure overload by using transverse aortic constriction (TAC, and then received genipin (a UCP2 selective inhibitor; 25 mg/kg/d, ip or vehicle for three weeks prior to histologic assessment of myocardial hypertrophy. ATP concentration, ROS level, and myocardial apoptosis were also examined. A parallel set of experiments was also conducted in UCP2-/- mice. Results: TAC induced left ventricular hypertrophy, as reflected by increased ventricular weight/thickness and increased size of myocardial cell (vs. sham controls. ATP concentration was decreased; ROS level was increased. Apoptosis and fibrosis markers were increased. TAC increased mitochondrial UCP2 expression in the myocardium at both mRNA and protein levels. Genipin treatment attenuated cardiac hypertrophy and the histologic/biochemical changes described above. Hypertrophy and associated changes induced by TAC in UCP2-/- mice were much less pronounced than in WT mice. Conclusions: Blocking UCP2 expression attenuates cardiac hypertrophy induced by pressure overload.

  9. Inhibition of NF-κB activity in the hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by modulating cytokines and attenuating oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiao-Jing [Department of Physiology and Pathophysiology, Xi' an Jiaotong University School of Basic Medical Sciences, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China); Zhang, Dong-Mei [Department of Physiology, Dalian Medical University, Dalian 116044 (China); Jia, Lin-Lin; Qi, Jie; Song, Xin-Ai; Tan, Hong [Department of Physiology and Pathophysiology, Xi' an Jiaotong University School of Basic Medical Sciences, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China); Cui, Wei [Department of Endocrinology and Metabolism, First Affiliated Hospital of Xi' an Jiaotong University, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China); Chen, Wensheng [Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi' an 710032 (China); Zhu, Guo-Qing [Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029 (China); Qin, Da-Nian, E-mail: dnqin@stu.edu.cn [Department of Physiology, Shantou University Medical College, Shantou 515041 (China); Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn [Department of Physiology and Pathophysiology, Xi' an Jiaotong University School of Basic Medical Sciences, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China)

    2015-05-01

    We hypothesized that chronic inhibition of NF-κB activity in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), attenuating nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase in the PVN of young spontaneously hypertensive rats (SHR). Young normotensive Wistar–Kyoto (WKY) and SHR rats received bilateral PVN infusions with NF–κB inhibitor pyrrolidine dithiocarbamate (PDTC) or vehicle for 4 weeks. SHR rats had higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, cardiomyocyte diameters of the left cardiac ventricle, and mRNA expressions of cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC). These SHR rats had higher PVN levels of proinflammatory cytokines (PICs), reactive oxygen species (ROS), the chemokine monocyte chemoattractant protein-1 (MCP-1), NAD(P)H oxidase activity, mRNA expression of NOX-2 and NOX-4, and lower PVN IL-10, and higher plasma levels of PICs and NE, and lower plasma IL-10. PVN infusion of NF-κB inhibitor PDTC attenuated all these changes. These findings suggest that NF-κB activation in the PVN increases sympathoexcitation and hypertensive response, which are associated with the increases of PICs and oxidative stress in the PVN; PVN inhibition of NF-κB activity attenuates PICs and oxidative stress in the PVN, thereby attenuates hypertension and cardiac hypertrophy. - Highlights: • Spontaneously hypertensive rats exhibit neurohormonal excitation in the PVN. • PVN inhibition of NF-κB attenuates hypertension-induced cardiac hypertrophy. • PVN inhibition of NF-κB attenuates hypertension-induced neurohormonal excitation. • PVN inhibition of NF-κB attenuates hypertension-induced imbalance of cytokines

  10. Effect of taurine on advanced glycation end products-induced hypertrophy in renal tubular epithelial cells

    International Nuclear Information System (INIS)

    Huang, J.-S.; Chuang, L.-Y.; Guh, J.-Y.; Yang, Y.-L.; Hsu, M.-S.

    2008-01-01

    Mounting evidence indicates that advanced glycation end products (AGE) play a major role in the development of diabetic nephropathy (DN). Taurine is a well documented antioxidant agent. To explore whether taurine was linked to altered AGE-mediated renal tubulointerstitial fibrosis in DN, we examined the molecular mechanisms of taurine responsible for inhibition of AGE-induced hypertrophy in renal tubular epithelial cells. We found that AGE (but not non-glycated BSA) caused inhibition of cellular mitogenesis rather than cell death by either necrosis or apoptosis. There were no changes in caspase 3 activity, bcl-2 protein expression, and mitochondrial cytochrome c release in BSA, AGE, or the antioxidant taurine treatments in these cells. AGE-induced the Raf-1/extracellular signal-regulated kinase (ERK) activation was markedly blocked by taurine. Furthermore, taurine, the Raf-1 kinase inhibitor GW5074, and the ERK kinase inhibitor PD98059 may have the ability to induce cellular proliferation and cell cycle progression from AGE-treated cells. The ability of taurine, GW5074, or PD98059 to inhibit AGE-induced hypertrophy was verified by the observation that it significantly decreased cell size, cellular hypertrophy index, and protein levels of RAGE, p27 Kip1 , collagen IV, and fibronectin. The results obtained in this study suggest that taurine may serve as the potential anti-fibrotic activity in DN through mechanism dependent of its Raf-1/ERK inactivation in AGE-induced hypertrophy in renal tubular epithelial cells

  11. Renal sympathetic denervation attenuates hypertension and vascular remodeling in renovascular hypertensive rats.

    Science.gov (United States)

    Li, Peng; Huang, Pei-Pei; Yang, Yun; Liu, Chi; Lu, Yan; Wang, Fang; Sun, Wei; Kong, Xiang-Qing

    2017-01-01

    Li P, Huang P, Yang Y, Liu C, Lu Y, Wang F, Sun W, Kong X. Renal sympathetic denervation attenuates hypertension and vascular remodeling in renovascular hypertensive rats. J Appl Physiol 122: 121-129, 2017. First published October 14, 2016; doi:10.1152/japplphysiol.01019.2015-Sympathetic activity is enhanced in patients with essential or secondary hypertension, as well as in various hypertensive animal models. Therapeutic targeting of sympathetic activation is considered an effective antihypertensive strategy. We hypothesized that renal sympathetic denervation (RSD) attenuates hypertension and improves vascular remodeling and renal disease in the 2-kidney, 1-clip (2K1C) rat model. Rats underwent 2K1C modeling or sham surgery; then rats underwent RSD or sham surgery 4 wk later, thus resulting in four groups (normotensive-sham, normotensive-RSD, 2K1C-sham, and 2K1C-RSD). Norepinephrine was measured by ELISA. Echocardiography was used to assess heart function. Fibrosis and apoptosis were assessed by Masson and TUNEL staining. Changes in mean arterial blood pressure in response to hexamethonium and plasma norepinephrine levels were used to evaluate basal sympathetic nerve activity. The 2K1C modeling success rate was 86.8%. RSD reversed the elevated systolic blood pressure induced by 2K1C, but had no effect on body weight. Compared with rats in the 2K1C-sham group, rats in the 2K1C-RSD group showed lower left ventricular mass/body weight ratio, interventricular septal thickness in diastole, left ventricular end-systolic diameter, and left ventricular posterior wall thickness in systole, whereas fractional shortening and ejection fraction were higher. Right kidney apoptosis and left kidney hypertrophy were not changed by RSD. Arterial fibrosis was lower in animals in the 2K1C-RSD group compared with those in the 2K1C-sham group. RSD reduced plasma norepinephrine and basal sympathetic activity in rats in the 2K1C-RSD group compared with rats in the 2K1C-sham group. These

  12. Cardiac ankyrin repeat protein attenuates cardiac hypertrophy by inhibition of ERK1/2 and TGF-β signaling pathways.

    Directory of Open Access Journals (Sweden)

    Yao Song

    Full Text Available AIMS: It has been reported that cardiac ankyrin repeat protein is associated with heart development and diseases. This study is aimed to investigate the role of CARP in heart hypertrophy in vivo. METHODS AND RESULTS: We generated a cardiac-specific CARP-overexpressing transgenic mouse. Although such animals did not display any overt physiological abnormality, they developed less cardiac hypertrophy in response to pressure overload than did wildtype mice, as indicated by heart weight/body weight ratios, echocardiographic and histological analyses, and expression of hypertrophic markers. These mice also exhibited less cardiac hypertrophy after infusion of isoproterenol. To gain a molecular insight into how CARP attenuated heart hypertrophy, we examined expression of the mitogen-activated protein kinase cascade and found that the concentrations of phosphorylated ERK1/2 and MEK were markedly reduced in the hearts of transgenic mice subjected to pressure overload. In addition, the expressions of TGF-β and phosphorylated Smad3 were significantly downregulated in the hearts of CARP Tg mice in response to pressure overload. Furthermore, addition of human TGF-β1 could reverse the inhibitory effect of CARP on the hypertrophic response induced by phenylephrine in cardiomyocytes. It was also evidenced that the inhibitory effect of CARP on cardiac hypertrophy was not attributed to apoptosis. CONCLUSION: CARP attenuates cardiac hypertrophy, in which the ERK and TGF-β pathways may be involved. Our findings highlight the significance of CARP as an anti-hypertrophic factor in therapy of cardiac hypertrophy.

  13. Resistance training-induced changes in integrated myofibrillar protein synthesis are related to hypertrophy only after attenuation of muscle damage.

    Science.gov (United States)

    Damas, Felipe; Phillips, Stuart M; Libardi, Cleiton A; Vechin, Felipe C; Lixandrão, Manoel E; Jannig, Paulo R; Costa, Luiz A R; Bacurau, Aline V; Snijders, Tim; Parise, Gianni; Tricoli, Valmor; Roschel, Hamilton; Ugrinowitsch, Carlos

    2016-09-15

    Skeletal muscle hypertrophy is one of the main outcomes from resistance training (RT), but how it is modulated throughout training is still unknown. We show that changes in myofibrillar protein synthesis (MyoPS) after an initial resistance exercise (RE) bout in the first week of RT (T1) were greater than those seen post-RE at the third (T2) and tenth week (T3) of RT, with values being similar at T2 and T3. Muscle damage (Z-band streaming) was the highest during post-RE recovery at T1, lower at T2 and minimal at T3. When muscle damage was the highest, so was the integrated MyoPS (at T1), but neither were related to hypertrophy; however, integrated MyoPS at T2 and T3 were correlated with hypertrophy. We conclude that muscle hypertrophy is the result of accumulated intermittent increases in MyoPS mainly after a progressive attenuation of muscle damage. Skeletal muscle hypertrophy is one of the main outcomes of resistance training (RT), but how hypertrophy is modulated and the mechanisms regulating it are still unknown. To investigate how muscle hypertrophy is modulated through RT, we measured day-to-day integrated myofibrillar protein synthesis (MyoPS) using deuterium oxide and assessed muscle damage at the beginning (T1), at 3 weeks (T2) and at 10 weeks of RT (T3). Ten young men (27 (1) years, mean (SEM)) had muscle biopsies (vastus lateralis) taken to measure integrated MyoPS and muscle damage (Z-band streaming and indirect parameters) before, and 24 h and 48 h post resistance exercise (post-RE) at T1, T2 and T3. Fibre cross-sectional area (fCSA) was evaluated using biopsies at T1, T2 and T3. Increases in fCSA were observed only at T3 (P = 0.017). Changes in MyoPS post-RE at T1, T2 and T3 were greater at T1 (P Muscle damage was the highest during post-RE recovery at T1, attenuated at T2 and further attenuated at T3. The change in MyoPS post-RE at both T2 and T3, but not at T1, was strongly correlated (r ≈ 0.9, P muscle hypertrophy. Initial Myo

  14. Transcriptional activation of ribosomal RNA genes during compensatory renal hypertrophy

    International Nuclear Information System (INIS)

    Ouellette, A.J.; Moonka, R.; Zelenetz, A.; Malt, R.A.

    1986-01-01

    The overall rate of rDNA transcription increases by 50% during the first 24 hours of compensatory renal hypertrophy in the mouse. To study mechanisms of ribosome accumulation after uninephrectomy, transcription rates were measured in isolated kidneys by transcriptional runoff. 32 P-labeled nascent transcripts were hybridized to blots containing linearized, denatured cloned rDNA, and hybridization was quantitated autoradiographically and by direct counting. Overall transcriptional activity of rDNA was increased by 30% above control levels at 6 hrs after nephrectomy and by 50% at 12, 18, and 24 hrs after operation. Hybridizing RNA was insensitive to inhibiby alpha-amanitin, and no hybridization was detected to vector DNA. Thus, accelerated rDNA transcription is one regulatory element in the accretion of ribosomes in renal growth, and the regulatory event is an early event. Mechanisms of activation may include enhanced transcription of active genes or induction of inactive DNA

  15. Heat shock transcription factor 1-deficiency attenuates overloading-associated hypertrophy of mouse soleus muscle.

    Science.gov (United States)

    Koya, Tomoyuki; Nishizawa, Sono; Ohno, Yoshitaka; Goto, Ayumi; Ikuta, Akihiro; Suzuki, Miho; Ohira, Tomotaka; Egawa, Tatsuro; Nakai, Akira; Sugiura, Takao; Ohira, Yoshinobu; Yoshioka, Toshitada; Beppu, Moroe; Goto, Katsumasa

    2013-01-01

    Hypertrophic stimuli, such as mechanical stress and overloading, induce stress response, which is mediated by heat shock transcription factor 1 (HSF1), and up-regulate heat shock proteins (HSPs) in mammalian skeletal muscles. Therefore, HSF1-associated stress response may play a key role in loading-associated skeletal muscle hypertrophy. The purpose of this study was to investigate the effects of HSF1-deficiency on skeletal muscle hypertrophy caused by overloading. Functional overloading on the left soleus was performed by cutting the distal tendons of gastrocnemius and plantaris muscles for 4 weeks. The right muscle served as the control. Soleus muscles from both hindlimbs were dissected 2 and 4 weeks after the operation. Hypertrophy of soleus muscle in HSF1-null mice was partially inhibited, compared with that in wild-type (C57BL/6J) mice. Absence of HSF1 partially attenuated the increase of muscle wet weight and fiber cross-sectional area of overloaded soleus muscle. Population of Pax7-positive muscle satellite cells in HSF1-null mice was significantly less than that in wild-type mice following 2 weeks of overloading (pmuscle hypertrophy might be attributed to the greater and prolonged enhancement of IL-6 expression. HSF1 and/or HSF1-mediated stress response may, in part, play a key role in loading-induced skeletal muscle hypertrophy.

  16. Andrographolide ameliorates diabetic nephropathy by attenuating hyperglycemia-mediated renal oxidative stress and inflammation via Akt/NF-κB pathway.

    Science.gov (United States)

    Ji, Xiaoqian; Li, Changzheng; Ou, Yitao; Li, Ning; Yuan, Kai; Yang, Guizhi; Chen, Xiaoyan; Yang, Zhicheng; Liu, Bing; Cheung, Wai W; Wang, Lijing; Huang, Ren; Lan, Tian

    2016-12-05

    Diabetic nephropathy (DN) is characterized by proliferation of mesangial cells, mesangial hypertrophy and extracellular matrix (ECM) accumulation. Our recent study found that andrographolide inhibited high glucose-induced mesangial cell proliferation and fibronectin expression through inhibition of AP-1 pathway. However, whether andrographolide has reno-protective roles in DN has not been fully elucidated. Here, we studied the pharmacological effects of andrographolide against the progression of DN and high glucose-induced mesangial dysfunction. Diabetes was induced in C57BL/6 mice by intraperitoneal injection of streptozotocin (STZ). After 1 weeks after STZ injection, normal diet was substituted with a high-fat diet (HFD). Diabetic mice were intraperitoneal injected with andrographolide (2 mg/kg, twice a week). After 8 weeks, functional and histological analyses were carried out. Parallel experiments uncovering the molecular mechanism by which andrographolide prevents from DN was performed in mesangial cells. Andrographolide inhibited the increases in fasting blood glucose, triglyceride, kidney/body weight ratio, blood urea nitrogen, serum creatinine and 24-h albuminuria in diabetic mice. Andrographolide also prevented renal hypertrophy and ECM accumulation. Furthermore, andrographolide markedly attenuated NOX1 expression, ROS production and pro-inflammatory cytokines as well. Additionally, andrographolide inhibited Akt/NF-κB signaling pathway. These results demonstrate that andrographolide is protective against the progression of experimental DN by inhibiting renal oxidative stress, inflammation and fibrosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Reactive Hypertrophy of an Accessory Spleen Mimicking Tumour Recurrence of Metastatic Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Christin Tjaden

    2011-01-01

    Full Text Available De novo occurrence of an accessory spleen after splenectomy is worth noting for two reasons. First, it is known that splenectomy can cause reactive hypertrophy of initially inactive and macroscopically invisible splenic tissue. Second, it can mimic tumour recurrence in situations in which splenectomy has been performed for oncological reasons. This might cause difficulties in differential diagnosis and the clinical decision for reoperation. We report the case of a patient with suspected recurrence of renal cell carcinoma after total pancreatectomy and splenectomy for metastatic renal cell carcinoma, which finally revealed an accessory spleen as the morphological correlate of the newly diagnosed mass in the left retroperitoneum.

  18. Inhibition of TNF-α in hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by inhibiting neurohormonal excitation in spontaneously hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xin-Ai; Jia, Lin-Lin [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Cui, Wei [Department of Endocrinology and Metabolism, First Affiliated Hospital of Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Zhang, Meng [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Chen, Wensheng [Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi' an 710032 (China); Yuan, Zu-Yi [Department of Cardiovascular Medicine, First Affiliated Hospital of Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Guo, Jing [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Li, Hui-Hua [Key Laboratory of Remodeling-related Cardiovascular Diseases, Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069 (China); Zhu, Guo-Qing [Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029 (China); Liu, Hao, E-mail: haoliu75@163.com [Department of Neurosurgery, First Affiliated Hospital of Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China)

    2014-11-15

    We hypothesized that chronic inhibition of tumor necrosis factor-alpha (TNF-α) in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), decreasing nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase activities, as well as restoring the neurotransmitters balance in the PVN of spontaneously hypertensive rats (SHR). Adult normotensive Wistar–Kyoto (WKY) and SHR rats received bilateral PVN infusion of a TNF-α blocker (pentoxifylline or etanercept) or vehicle for 4 weeks. SHR rats showed higher mean arterial pressure and cardiac hypertrophy compared with WKY rats, as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC) mRNA expressions. Compared with WKY rats, SHR rats had higher PVN levels of tyrosine hydroxylase, PICs, the chemokine monocyte chemoattractant protein-1 (MCP-1), NF-κB p65 activity, mRNA expressions of NOX-2 and NOX-4, and lower PVN levels of IL-10 and 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma norepinephrine. PVN infusion of pentoxifylline or etanercept attenuated all these changes in SHR rats. These findings suggest that SHR rats have an imbalance between excitatory and inhibitory neurotransmitters, as well as an imbalance between pro- and anti-inflammatory cytokines in the PVN; and chronic inhibition of TNF-α in the PVN delays the progression of hypertension by restoring the balances of neurotransmitters and cytokines in the PVN, and attenuating PVN NF-κB p65 activity and oxidative stress, thereby attenuating hypertension-induced sympathetic hyperactivity and cardiac hypertrophy. - Highlights: • Spontaneously hypertensive rats exhibit neurohormonal excitation in the PVN. • PVN inhibition of

  19. Histone deacetylase inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats.

    Science.gov (United States)

    Lee, Eunjo; Song, Min-Ji; Lee, Hae-Ahm; Kang, Seol-Hee; Kim, Mina; Yang, Eun Kyoung; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung; Kim, Inkyeom

    2016-09-01

    CG200745 is a novel inhibitor of histone deacetylases (HDACs), initially developed for treatment of various hematological and solid cancers. Because it is water-soluble, it can be administered orally. We hypothesized that the HDAC inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in deoxycorticosterone acetate (DOCA)-induced hypertensive rats. For establishment of hypertension, 40 mg/kg of DOCA was subcutaneously injected four times weekly into Sprague-Dawley rats. All the rats used in this study including those in the sham group had been unilaterally nephrectomized and allowed free access to drinking water containing 1% NaCl. Systolic blood pressure was measured by the tail-cuff method. Blood chemistry including sodium, potassium, glucose, triglyceride, and cholesterol levels was analyzed. Sections of the heart were visualized after trichrome and hematoxylin and eosin stain. The expression of hypertrophic genes such as atrial natriuretic peptide A (Nppa) and atrial natriuretic peptide B (Nppb) in addition to fibrotic genes such as Collagen-1, Collagen-3, connective tissue growth factor (Ctgf), and Fibronectin were measured by quantitative real-time PCR (qRT-PCR). Injection of DOCA increased systolic blood pressure, heart weight, and cardiac fibrosis, which was attenuated by CG200745. Neither DOCA nor CG200745 affected body weight, vascular contraction and relaxation responses, and blood chemistry. Injection of DOCA increased expression of both hypertrophic and fibrotic genes, which was abrogated by CG200745. These results indicate that CG200745 attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats.

  20. Novel Sulfur Metabolites of Garlic Attenuate Cardiac Hypertrophy and Remodeling through Induction of Na+/K+-ATPase Expression.

    Science.gov (United States)

    Khatua, Tarak N; Borkar, Roshan M; Mohammed, Soheb A; Dinda, Amit K; Srinivas, R; Banerjee, Sanjay K

    2017-01-01

    Epidemiologic studies show an inverse correlation between garlic consumption and progression of cardiovascular disease. However, the molecular basis for the beneficial effect of garlic on the heart is not known. Therefore, the objective of the present study was to (1) investigate the effect of raw garlic on isoproterenol (Iso) induced cardiac hypertrophy (2) find the active metabolites of garlic responsible for the beneficial effect. Cardiac hypertrophy was induced in rats by subcutaneous single injection of Iso 5 mg kg -1 day -1 for 15 days and the effect of garlic (250 mg/kg/day orally) was evaluated. Garlic metabolites in in vivo were identified by LC/MS study. The effect of garlic and its metabolites were evaluated against hypertrophy in H9C2 cells. Garlic normalized cardiac oxidative stress after Iso administration. Cardiac pathology and mitochondrial enzyme activities were improved in hypertrophy heart after garlic administration. Decreased Na + /K + -ATPase protein level that observed in hypertrophy heart was increased after garlic administration. We identified three garlic metabolites in rat serum. To confirm the role of garlic metabolites on cardiac hypertrophy, Na + /K + -ATPase expression and intracellular calcium levels were measured after treating H9C2 cells with raw garlic and two of its active metabolites, allyl methyl sulfide and allyl methyl sulfoxide. Raw garlic and both metabolites increased Na + /K + -ATPase protein level and decreased intracellular calcium levels and cell size in Iso treated H9C2 cells. This antihypertrophic effect of garlic and its sulfur metabolites were lost in H9C2 cells in presence of Na + /K + -ATPase inhibitor. In conclusion, garlic and its active metabolites increased Na + /K + -ATPase in rat heart, and attenuated cardiac hypertrophy and associated remodeling. Our data suggest that identified new garlic metabolites may be useful for therapeutic intervention against cardiac hypertrophy.

  1. Novel resveratrol analogues attenuate renal ischemic injury in rats

    Science.gov (United States)

    Khader, Adam; Yang, Weng-Lang; Kuncewitch, Michael; Prince, Jose M.; Marambaud, Philippe; Nicastro, Jeffrey; Coppa, Gene F.; Wang, Ping

    2014-01-01

    Background Renal ischemia-reperfusion (I/R) is a severe clinical complication with no specific treatment. Resveratrol has been shown as a promising experimental agent in renal I/R due to its effect on cellular energy metabolism, oxidative stress, and inflammation. Recently, we identified two biologically active resveratrol analogues (RSVAs), RSVA405 and RSVA314. We hypothesized that both RSAVs would attenuate I/R-induced renal injury. Methods Adult male rats were subjected to renal I/R through bilateral renal pedicle clamping for 60 min, followed by reperfusion. RSVA405 (3 mg/kg BW), RSVA314 (3 mg/kg BW), or vehicle (10% DMSO and 33% Solutol in PBS) was administered by intraperitoneal injection 1 h prior to ischemia. Blood and renal tissues were collected 24 h after I/R for evaluation. Results Administration of RSVA405 and RSVA314 significantly reduced the serum levels of renal dysfunction and injury markers, including creatinine, blood urea nitrogen, aspartate aminotransferase, and lactate dehydrogenase, compared to vehicle. The protective effect of RSVA405 and RSVA314 was also reflected on histologic evaluation. Both RSVAs reduced the number of apoptotic cells by more than 60% as determined by TUNEL assay, compared to vehicle. The renal ATP levels of the vehicle group was decreased to 52.4% of control, while those of the RSVA405 and RSVA314 groups were restored to 72.3% and 79.6% of control, respectively. Both RSVAs significantly reduced the protein expression of inducible nitric oxide synthase and nitrotyrosine, and the mRNA levels of TNF-α, IL-6 and IL-1β. Conclusions RSVA405 and RSVA314 attenuate I/R-induced renal injury through the modulation of energy metabolism, oxidative stress, and inflammation. PMID:25214260

  2. Histone deacetylase inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats

    OpenAIRE

    Lee, Eunjo; Song, Min-ji; Lee, Hae-Ahm; Kang, Seol-Hee; Kim, Mina; Yang, Eun Kyoung; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung; Kim, Inkyeom

    2016-01-01

    CG200745 is a novel inhibitor of histone deacetylases (HDACs), initially developed for treatment of various hematological and solid cancers. Because it is water-soluble, it can be administered orally. We hypothesized that the HDAC inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in deoxycorticosterone acetate (DOCA)-induced hypertensive rats. For establishment of hypertension, 40 mg/kg of DOCA was subcutaneously injected four times weekly into Sprague-Dawley rats. All the rats...

  3. Matrilin-3 chondrodysplasia mutations cause attenuated chondrogenesis, premature hypertrophy and aberrant response to TGF-β in chondroprogenitor cells.

    Science.gov (United States)

    Jayasuriya, Chathuraka T; Zhou, Fiona H; Pei, Ming; Wang, Zhengke; Lemme, Nicholas J; Haines, Paul; Chen, Qian

    2014-08-21

    Studies have shown that mutations in the matrilin-3 gene (MATN3) are associated with multiple epiphyseal dysplasia (MED) and spondyloepimetaphyseal dysplasia (SEMD). We tested whether MATN3 mutations affect the differentiation of chondroprogenitor and/or mesenchymal stem cells, which are precursors to chondrocytes. ATDC5 chondroprogenitors stably expressing wild-type (WT) MATN3 underwent spontaneous chondrogenesis. Expression of chondrogenic markers collagen II and aggrecan was inhibited in chondroprogenitors carrying the MED or SEMD MATN3 mutations. Hypertrophic marker collagen X remained attenuated in WT MATN3 chondroprogenitors, whereas its expression was elevated in chondroprogenitors expressing the MED or SEMD mutant MATN3 gene suggesting that these mutations inhibit chondrogenesis but promote hypertrophy. TGF-β treatment failed to rescue chondrogenesis markers but dramatically increased collagen X mRNA expression in mutant MATN3 expressing chondroprogenitors. Synovium derived mesenchymal stem cells harboring the SEMD mutation exhibited lower glycosaminoglycan content than those of WT MATN3 in response to TGF-β. Our results suggest that the properties of progenitor cells harboring MATN3 chondrodysplasia mutations were altered, as evidenced by attenuated chondrogenesis and premature hypertrophy. TGF-β treatment failed to completely rescue chondrogenesis but instead induced hypertrophy in mutant MATN3 chondroprogenitors. Our data suggest that chondroprogenitor cells should be considered as a potential target of chondrodysplasia therapy.

  4. Matrilin-3 Chondrodysplasia Mutations Cause Attenuated Chondrogenesis, Premature Hypertrophy and Aberrant Response to TGF-β in Chondroprogenitor Cells

    Directory of Open Access Journals (Sweden)

    Chathuraka T. Jayasuriya

    2014-08-01

    Full Text Available Studies have shown that mutations in the matrilin-3 gene (MATN3 are associated with multiple epiphyseal dysplasia (MED and spondyloepimetaphyseal dysplasia (SEMD. We tested whether MATN3 mutations affect the differentiation of chondroprogenitor and/or mesenchymal stem cells, which are precursors to chondrocytes. ATDC5 chondroprogenitors stably expressing wild-type (WT MATN3 underwent spontaneous chondrogenesis. Expression of chondrogenic markers collagen II and aggrecan was inhibited in chondroprogenitors carrying the MED or SEMD MATN3 mutations. Hypertrophic marker collagen X remained attenuated in WT MATN3 chondroprogenitors, whereas its expression was elevated in chondroprogenitors expressing the MED or SEMD mutant MATN3 gene suggesting that these mutations inhibit chondrogenesis but promote hypertrophy. TGF-β treatment failed to rescue chondrogenesis markers but dramatically increased collagen X mRNA expression in mutant MATN3 expressing chondroprogenitors. Synovium derived mesenchymal stem cells harboring the SEMD mutation exhibited lower glycosaminoglycan content than those of WT MATN3 in response to TGF-β. Our results suggest that the properties of progenitor cells harboring MATN3 chondrodysplasia mutations were altered, as evidenced by attenuated chondrogenesis and premature hypertrophy. TGF-β treatment failed to completely rescue chondrogenesis but instead induced hypertrophy in mutant MATN3 chondroprogenitors. Our data suggest that chondroprogenitor cells should be considered as a potential target of chondrodysplasia therapy.

  5. Compensatory renal hypertrophy and the handling of an acute nephrotoxicant in a model of aging.

    Science.gov (United States)

    Oliveira, Cláudia S; Joshee, Lucy; Zalups, Rudolfs K; Bridges, Christy C

    2016-03-01

    Aging often results in progressive losses of functioning nephrons, which can lead to a significant reduction in overall renal function. Because of age-related pathological changes, the remaining functional nephrons within aged kidneys may be unable to fully counteract physiological and/or toxicological challenges. We hypothesized that when the total functional renal mass of aged rats is reduced by 50%, the nephrons within the remnant kidney do not fully undergo the functional and physiological changes that are necessary to maintain normal fluid and solute homeostasis. We also tested the hypothesis that the disposition and handling of a nephrotoxicant are altered significantly in aged kidneys following an acute, 50% reduction in functional renal mass. To test these hypotheses, we examined molecular indices of renal cellular hypertrophy and the disposition of inorganic mercury (Hg(2+)), a model nephrotoxicant, in young control, young uninephrectomized (NPX), aged control and aged NPX Wistar rats. We found that the process of aging reduces the ability of the remnant kidney to undergo compensatory renal growth. In addition, we found that an additional reduction in renal mass in aged animals alters the disposition of Hg(2+) and potentially alters the risk of renal intoxication by this nephrotoxicant. To our knowledge, this study represents the first report of the handling of a nephrotoxicant in an aged animal following a 50% reduction in functional renal mass. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Attenuation values of renal parenchyma in virtual noncontrast images acquired from multiphase renal dual-energy CT: Comparison with standard noncontrast CT.

    Science.gov (United States)

    Lin, Yuan-Mao; Chiou, Yi-You; Wu, Mei-Han; Huang, Shan-Su; Shen, Shu-Huei

    2018-04-01

    To compare the renal parenchyma attenuation of virtual noncontrast (VNC) images derived from multiphase renal dual-energy computed tomography (DECT) with standard noncontrast (SNC) images, and to determine the optimum phase for VNC images. Twenty-nine men and 16 women (mean age, 61 ± 13 years; range, 37-89 years) underwent dynamic renal DECT (100/Sn140 kVp) were included in this institutional review board-approved retrospective study. There were four phases of the scan, which included noncontrast, corticomedullary (CMP), nephrographic (NP), and excretory phases (EP). The VNC images was generated from CMP, NP and EP. CT numbers of SNC images and VNC images of each phases were measured in the renal cortex and medulla. Mean standard deviation of subcutaneous fat was measured as image noise on SNC and VNC images. Radiation dose was recorded and potential radiation dose reduction was estimated. Results were tested for statistical significance using the unpaired t-test and agreement using Bland-Altman plot analysis. The difference in mean attenuation between SNC and each phase of VNC images were ≤4 HU. The mean attenuation of renal cortex and medulla was 33.2 ± 4.4 HU, and 34.2 ± 4.8 HU in SNC, 33.6 ± 7.6 HU and 31.1 ± 8.3 HU in VNC of CMP, 34.8 ± 8.6 HU and 35.6 ± 8.5 HU in VNC of NP, 31.5 ± 7.6 HU and 32.4 ± 7.5 HU in VNC of EP. In VNC of CMP, the attenuation of the cortex was higher than the medulla (p VNC of NP, the attenuation of renal cortex was higher than SNC (p VNC of EP, the attenuation of cortex and medulla were lower than SNC (p VNC images from multiphase renal DECT were similar to SNC images. Using the nephrographic phase can gives more comparable VNC images to SNC images in renal parenchyma than other phases. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Kaempferol Attenuates Cardiac Hypertrophy via Regulation of ASK1/MAPK Signaling Pathway and Oxidative Stress.

    Science.gov (United States)

    Feng, Hong; Cao, Jianlei; Zhang, Guangyu; Wang, Yanggan

    2017-07-01

    Kaempferol has been demonstrated to provide benefits for the treatment of atherosclerosis, coronary heart disease, hyperlipidemia, and diabetes through its antioxidant and anti-inflammatory properties. However, its role in cardiac hypertrophy remains to be elucidated. The aim of our study was to investigate the effects of kaempferol on cardiac hypertrophy and the underlying mechanism. Mice subjected to aorta banding were treated with or without kaempferol (100 mg/kg/d, p. o.) for 6 weeks. Echocardiography was performed to evaluate cardiac function. Mice hearts were collected for pathological observation and molecular mechanism investigation. H9c2 cardiomyocytes were stimulated with or without phenylephrine for in vitro study. Kaempferol significantly attenuated cardiac hypertrophy induced by aorta banding as evidenced by decreased cardiomyocyte areas and interstitial fibrosis, accompanied with improved cardiac functions and decreased apoptosis. The ASK1/MAPK signaling pathways (JNK1/2 and p38) were markedly activated in the aorta banding mouse heart but inhibited by kaempferol treatment. In in vitro experiments, kaempferol also inhibited the activity of ASK1/JNK1/2/p38 signaling pathway and the enlargement of H9c2 cardiomyocytes. Furthermore, our study revealed that kaempferol could protect the mouse heart and H9c2 cells from pathological oxidative stress. Our investigation indicated that treatment with kaempferol protects against cardiac hypertrophy, and its cardioprotection may be partially explained by the inhibition of the ASK1/MAPK signaling pathway and the regulation of oxidative stress. Georg Thieme Verlag KG Stuttgart · New York.

  8. Benazepril inhibited the NF-κB and TGF-β networking on LV hypertrophy in rats.

    Science.gov (United States)

    Yan, Shi-Hai; Zhao, Ning-Wei; Zhu, Xuan-Xuan; Wang, Qiong; Wang, Hai-Dan; Fu, Rui; Sun, Yuan; Li, Qi-Yi

    2013-05-01

    Benazepril, an angiotensin-converting enzyme (ACE) inhibitor, has been used to treat hypertension, congestive heart failure, and chronic renal failure. However, its biological activity and mechanism of action in inflammation are not fully identified. The present study was designed to determine the in vivo anti-inflammatory effects of benazepril on LV hypertrophy in rats. LV hypertrophy was produced in rats by abdominal aortic coarctation. They were then divided into the following groups: sham operation; LV hypertrophy; LV hypertrophy+benazepril (1mg/kg in a gavage, once a day for 4 weeks). Both morphological assays (hemodynamic and hemorheological measurement; LV hypertrophy assessment), and molecular assays (protein levels of Collagen type I/III, TNF-α and VCAM-1; TGF-β gene expression; NF-κB or Smad activation; intracellular ROS production) were performed. The following effects were observed in rats treated with benazepril: (1) marked improvements in hemodynamic and hemorheological parameters; (2) significant reductions in LV hypertrophy, dilatation and fibrosis; (3) significantly attenuated protein levels of Collagen type I/III, TGF-β, TNF-α and VCAM-1, NF-κB or Smad activation, as well as intracellular ROS production. These results suggest that the anti-inflammatory properties of benazepril may be ascribed to their down-regulation of both NF-κB and TGF-β signaling pathways by acting on the intracellular ROS production in rats with LV hypertrophy, thus supporting the use of benazepril as an anti-inflammatory agent. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Secoisolariciresinol diglucoside attenuates cardiac hypertrophy and oxidative stress in monocrotaline-induced right heart dysfunction.

    Science.gov (United States)

    Puukila, Stephanie; Fernandes, Rafael Oliveira; Türck, Patrick; Carraro, Cristina Campos; Bonetto, Jéssica Hellen Poletto; de Lima-Seolin, Bruna Gazzi; da Rosa Araujo, Alex Sander; Belló-Klein, Adriane; Boreham, Douglas; Khaper, Neelam

    2017-08-01

    Pulmonary arterial hypertension (PAH) occurs when remodeling of pulmonary vessels leads to increased pulmonary vascular resistance resulting in increased pulmonary arterial pressure. Increased pulmonary arterial pressure results in right ventricle hypertrophy and eventually heart failure. Oxidative stress has been implicated in the pathogenesis of PAH and may play a role in the regulation of cellular signaling involved in cardiac response to pressure overload. Secoisolariciresinol diglucoside (SDG), a component from flaxseed, has been shown to reduce cardiac oxidative stress in various pathophysiological conditions. We investigated the potential protective effects of SDG in a monocrotaline-induced model of PAH. Five- to six-week-old male Wistar rats were given a single intraperitoneal injection of monocrotaline (60 mg/kg) and sacrificed 21 days later where heart, lung, and plasma were collected. SDG (25 mg/kg) was given via gavage as either a 21-day co-treatment or pre-treatment of 14 days before monocrotaline administration and continued for 21 days. Monocrotaline led to right ventricle hypertrophy, increased lipid peroxidation, and elevated plasma levels of alanine transaminase (ALT) and aspartate transaminase (AST). Co-treatment with SDG did not attenuate hypertrophy or ALT and AST levels but decreased reactive oxygen species (ROS) levels and catalase and superoxide dismutase activity compared to the monocrotaline-treated group. Pre-treatment with SDG decreased right ventricle hypertrophy, ROS levels, lipid peroxidation, catalase, superoxide dismutase, and glutathione peroxidase activity and plasma levels of ALT and AST when compared to the monocrotaline group. These findings indicate that pre-treatment with SDG provided better protection than co-treatment in this model of right heart dysfunction, suggesting an important role for SDG in PAH and right ventricular remodeling.

  10. Allopurinol attenuates rhabdomyolysis-associated acute kidney injury: Renal and muscular protection.

    Science.gov (United States)

    Gois, Pedro H F; Canale, Daniele; Volpini, Rildo A; Ferreira, Daniela; Veras, Mariana M; Andrade-Oliveira, Vinicius; Câmara, Niels O S; Shimizu, Maria H M; Seguro, Antonio C

    2016-12-01

    Acute kidney injury (AKI) is the most severe complication of rhabdomyolysis. Allopurinol (Allo), a xanthine oxidase inhibitor, has been in the spotlight in the last decade due to new therapeutic applications related to its potent antioxidant effect. The aim of this study was to evaluate the efficacy of Allo in the prevention and treatment of rhabdomyolysis-associated AKI. Male Wistar rats were divided into five groups: saline control group; prophylactic Allo (300mg/L of drinking water, 7 days); glycerol (50%, 5ml/kg, IM); prophylactic Allo + glycerol; and therapeutic Allo (50mg/Kg, IV, 30min after glycerol injection) + glycerol. Glycerol-injected rats showed markedly reduced glomerular filtration rate associated with renal vasoconstriction, renal tubular damage, increased oxidative stress, apoptosis and inflammation. Allo ameliorated all these alterations. We found 8-isoprostane-PGF 2a (F2-IsoP) as a main factor involved in the oxidative stress-mediated renal vasoconstriction following rhabdomyolysis. Allo reduced F2-IsoP renal expression and restored renal blood flow. Allo also reduced oxidative stress in the damaged muscle, attenuated muscle lesion/inflammation and accelerated muscular recovery. Moreover, we showed new insights into the pathogenesis of rhabdomyolysis-associated AKI, whereas Allo treatment reduced renal inflammation by decreasing renal tissue uric acid levels and consequently inhibiting the inflammasome cascade. Allo treatment attenuates renal dysfunction in a model of rhabdomyolysis-associated AKI by reducing oxidative stress (systemic, renal and muscular), apoptosis and inflammation. This may represent a new therapeutic approach for rhabdomyolysis-associated AKI - a new use for an old and widely available medication. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Temperature Measurements of the Low-Attenuation Radiographic Ice Ball During CT-Guided Renal Cryoablation

    International Nuclear Information System (INIS)

    Permpongkosol, Sompol; Link, Richard E.; Kavoussi, Louis R.; Solomon, Stephen B.

    2008-01-01

    During renal cryoablation a low-attenuation area on CT develops around the cryoprobe. Knowledge of the temperature of the growing low-attenuation area can guide therapy and ensure lethal temperatures. Herein, we report thermocouple results and correlating CT images during the development of the low-attenuation 'radiographic ice ball.' Five patients who underwent percutaneous CT-guided renal cryoablation were identified who had thermocouples inserted and serial intraprocedural CT images that included images with thermocouple measurements of 0 o and sub-0 o C. Thermocouples had been percutaneously placed just beyond the edge of the tumors either to ensure adequate cooling or to ensure safety to adjacent critical structures. Renal cryotherapy under CT guidance produced a growing low-attenuation area corresponding to the radiographic ice ball. When the thermocouple measured 0 o C, CT images showed the thermocouple tip at the edge of the low-attenuation ice ball. At lower temperatures the tip was within the low-attenuation ice ball. We conclude that knowledge of the temperature at the ice ball edge during cryoablation can be used to predict the extent of tissue necrosis and thus provide an estimate of cryotherapy effectiveness during the procedure. Further work is necessary to establish a firm relationship between the thermal conditions and the zone of damage

  12. Alveolar architecture of clear cell renal carcinomas (≤5.0 cm) show high attenuation on dynamic CT scanning

    International Nuclear Information System (INIS)

    Fujimoto, Hiroyuki; Wakao, Fumihiko; Moriyama, Noriyuki; Tobisu, Kenichi; Kakizoe, Tadao; Sakamoto, Michiie

    1999-01-01

    To establish the correlation between tumor appearance on CT and tumor histology in renal cell carcinomas. The density and attenuation patterns of 96 renal cell carcinomas, each ≤5 cm in greatest diameter, were studied by non-enhanced CT and early and late after bolus injection of contrast medium using dynamic CT. The density and attenuation patterns and pathological maps of each tumor were individually correlated. High attenuated areas were present in 72 of the 96 tumors on early enhanced dynamic CT scanning. All 72 high attenuated areas were of the clear cell renal cell carcinoma and had alveolar architecture. The remaining 24 tumors that did not demonstrate high attenuated foci on early enhanced scanning included three clear cell, nine granular cell, six papillary, five chromophobe and one collecting duct type. With respect to tumor architecture, all clear cell tumors of alveolar architecture demonstrated high attenuation on early enhanced scanning. Clear cell renal cell carcinomas of alveolar architecture show high attenuation on early enhanced dynamic CT scanning. A larger number of patients are indispensable to obtaining clear results. However, these findings seem to be an important clue to the diagnosis of renal cell carcinomas as having an alveolar structure. (author)

  13. Diabetic kidney lesions of GIPRdn transgenic mice: podocyte hypertrophy and thickening of the GBM precede glomerular hypertrophy and glomerulosclerosis.

    Science.gov (United States)

    Herbach, Nadja; Schairer, Irene; Blutke, Andreas; Kautz, Sabine; Siebert, Angela; Göke, Burkhard; Wolf, Eckhard; Wanke, Ruediger

    2009-04-01

    Diabetic nephropathy is the leading cause of end-stage renal disease and the largest contributor to the total cost of diabetes care. Rodent models are excellent tools to gain more insight into the pathogenesis of diabetic nephropathy. In the present study, we characterize the age-related sequence of diabetes-associated kidney lesions in GIPR(dn) transgenic mice, a novel mouse model of early-onset diabetes mellitus. Clinical-chemical analyses as well as qualitative and quantitative morphological analyses of the kidneys of GIPR(dn) transgenic animals and nontransgenic littermate controls were performed at 3, 8, 20, and 28 wk of age. Early renal changes of transgenic mice consisted of podocyte hypertrophy, reduced numerical volume density of podocytes in glomeruli, and homogenous thickening of the glomerular basement membrane, followed by renal and glomerular hypertrophy as well as mesangial expansion and matrix accumulation. At 28 wk of age, glomerular damage was most prominent, including advanced glomerulosclerosis, tubulointerstitial lesions, and proteinuria. Real-time PCR demonstrated increased glomerular expression of Col4a1, Fn1, and Tgfb1. Immunohistochemistry revealed increased mesangial deposition of collagen type IV, fibronectin, and laminin. The present study shows that GIPR(dn) transgenic mice exhibit renal changes that closely resemble diabetes-associated kidney alterations in humans. Data particularly from male transgenic mice indicate that podocyte hypertrophy is directly linked to hyperglycemia, without the influence of mechanical stress. GIPR(dn) transgenic mice are considered an excellent new tool to study the mechanisms involved in onset and progression of diabetic nephropathy.

  14. G protein-coupled receptor 56 regulates mechanical overload-induced muscle hypertrophy.

    Science.gov (United States)

    White, James P; Wrann, Christiane D; Rao, Rajesh R; Nair, Sreekumaran K; Jedrychowski, Mark P; You, Jae-Sung; Martínez-Redondo, Vicente; Gygi, Steven P; Ruas, Jorge L; Hornberger, Troy A; Wu, Zhidan; Glass, David J; Piao, Xianhua; Spiegelman, Bruce M

    2014-11-04

    Peroxisome proliferator-activated receptor gamma coactivator 1-alpha 4 (PGC-1α4) is a protein isoform derived by alternative splicing of the PGC1α mRNA and has been shown to promote muscle hypertrophy. We show here that G protein-coupled receptor 56 (GPR56) is a transcriptional target of PGC-1α4 and is induced in humans by resistance exercise. Furthermore, the anabolic effects of PGC-1α4 in cultured murine muscle cells are dependent on GPR56 signaling, because knockdown of GPR56 attenuates PGC-1α4-induced muscle hypertrophy in vitro. Forced expression of GPR56 results in myotube hypertrophy through the expression of insulin-like growth factor 1, which is dependent on Gα12/13 signaling. A murine model of overload-induced muscle hypertrophy is associated with increased expression of both GPR56 and its ligand collagen type III, whereas genetic ablation of GPR56 expression attenuates overload-induced muscle hypertrophy and associated anabolic signaling. These data illustrate a signaling pathway through GPR56 which regulates muscle hypertrophy associated with resistance/loading-type exercise.

  15. Gastrodin Inhibits Store-Operated Ca2+ Entry and Alleviates Cardiac Hypertrophy

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Yao

    2017-04-01

    Full Text Available Cardiac hypertrophy is a major risk factor for heart failure, which are among the leading causes of human death. Gastrodin is a small molecule that has been used clinically to treat neurological and vascular diseases for many years without safety issues. In the present study, we examined protective effect of gastrodin against cardiac hypertrophy and explored the underlying mechanism. Phenylephrine and angiotensin II were used to induce cardiac hypertrophy in a mouse model and a cultured cardiomyocyte model. Gastrodin was found to alleviate the cardiac hypertrophy in both models. Mechanistically, gastrodin attenuated the store-operated Ca2+ entry (SOCE by reducing the expression of STIM1 and Orai1, two key proteins in SOCE, in animal models as well as in cultured cardiomyocyte model. Furthermore, suppressing SOCE by RO2959, Orai1-siRNAs or STIM1-siRNAs markedly attenuated the phenylephrine-induced hypertrophy in cultured cardiomyocyte model. Together, these results showed that gastrodin inhibited cardiac hypertrophy and it also reduced the SOCE via its action on the expression of STIM1 and Orai1. Furthermore, suppression of SOCE could reduce the phenylephrine-induced cardiomyocyte hypertrophy, suggesting that SOCE-STIM1-Orai1 is located upstream of hypertrophy.

  16. Endoplasmic Reticulum Chaperon Tauroursodeoxycholic Acid Attenuates Aldosterone-Infused Renal Injury

    Directory of Open Access Journals (Sweden)

    Honglei Guo

    2016-01-01

    Full Text Available Aldosterone (Aldo is critically involved in the development of renal injury via the production of reactive oxygen species and inflammation. Endoplasmic reticulum (ER stress is also evoked in Aldo-induced renal injury. In the present study, we investigated the role of ER stress in inflammation-mediated renal injury in Aldo-infused mice. C57BL/6J mice were randomized to receive treatment for 4 weeks as follows: vehicle infusion, Aldo infusion, vehicle infusion plus tauroursodeoxycholic acid (TUDCA, and Aldo infusion plus TUDCA. The effect of TUDCA on the Aldo-infused inflammatory response and renal injury was investigated using periodic acid-Schiff staining, real-time PCR, Western blot, and ELISA. We demonstrate that Aldo leads to impaired renal function and inhibition of ER stress via TUDCA attenuates renal fibrosis. This was indicated by decreased collagen I, collagen IV, fibronectin, and TGF-β expression, as well as the downregulation of the expression of Nlrp3 inflammasome markers, Nlrp3, ASC, IL-1β, and IL-18. This paper presents an important role for ER stress on the renal inflammatory response to Aldo. Additionally, the inhibition of ER stress by TUDCA negatively regulates the levels of these inflammatory molecules in the context of Aldo.

  17. Renal papillary attenuation differences between primary and recurrent idiopathic calcium stone disease patients.

    Science.gov (United States)

    Cakiroglu, B; Eyyupoglu, S E; Tas, T; Esen, T; Acar, O; Aksoy, S H

    2014-06-01

    The aim of this paper was to investigate whether renal papillae of patients with nephrolithiasis are more radiodense than that of control patients and to evaluate the predictability of urolithiasis using papillary density differences between stone and non-stone formers. Renal papillary Hounsfield Unit (HU) measurements were conducted at the level of upper pole, middle region and lower pole of both kidneys in a total of 126 primary (group 1), 133 recurrent (group 2) stone disease patients and 108 controls (group 3). Mean patient age did not differ significantly between groups (P>0.05). Mean stone diameters (±SD) were 5.0±3.1 mm (3-9 mm) and 6.1±3.3 mm (3-15 mm) for primary and recurrent groups, respectively and group distributions and variances were similar (P>0.05). Mean papillary attenuation values (±SD) were 27.26±9.30 (4.00-56.00) in group 1, 30.42±9.88 (12.00-64.00) in group 2 and 25.83±2.72 (20.30-32.56) in the control group. The difference between the mean papillary attenuation value of the primary stone disease group and the control group was statistically insignificant (P=0.104). When the control group and the recurrent stone group was compared without variances, in terms of the mean renal papillary attenuation value, a statistical significance was achieved (P=0.000). With increasing renal papillary HU values, the risk of recurrent calcium stone disease is increased.

  18. Prior intake of Brazil nuts attenuates renal injury induced by ischemia and reperfusion

    Directory of Open Access Journals (Sweden)

    Natassia Alberici Anselmo

    2018-04-01

    Full Text Available ABSTRACT Introduction: Ischemia-reperfusion (IR injury results from inflammation and oxidative stress, among other factors. Because of its anti-inflammatory and antioxidant properties, the Brazil nut (BN might attenuate IR renal injury. Objective: The aim of the present study was to investigate whether the intake of BN prevents or reduces IR kidney injury and inflammation, improving renal function and decreasing oxidative stress. Methods: Male Wistar rats were distributed into six groups (N=6/group: SHAM (control, SHAM treated with 75 or 150 mg of BN, IR, and IR treated with 75 or 150 mg of BN. The IR procedure consisted of right nephrectomy and occlusion of the left renal artery with a non-traumatic vascular clamp for 30 min. BN was given daily and individually for 7 days before surgery (SHAM or IR and maintained until animal sacrifice (48h after surgery. We evaluated the following parameters: plasma creatinine, urea, and phosphorus; proteinuria, urinary output, and creatinine clearance; plasmatic TBARS and TEAC; kidney expression of iNOS and nitrotyrosine, and macrophage influx. Results: Pre-treatment with 75 mg of BN attenuated IR-induced renal changes, with elevation of creatinine clearance and urinary output, reducing proteinuria, urea, and plasmatic phosphorus as well as reducing kidney expression of iNOS, nitrotyrosine, and macrophage influx. Conclusion: Low intake of BN prior to IR-induced kidney injury improves renal function by inhibition of macrophage infiltration and oxidative stress.

  19. Podocyte hypertrophy precedes apoptosis under experimental diabetic conditions.

    Science.gov (United States)

    Lee, Sun Ha; Moon, Sung Jin; Paeng, Jisun; Kang, Hye-Young; Nam, Bo Young; Kim, Seonghun; Kim, Chan Ho; Lee, Mi Jung; Oh, Hyung Jung; Park, Jung Tak; Han, Seung Hyeok; Yoo, Tae-Hyun; Kang, Shin-Wook

    2015-08-01

    Podocyte hypertrophy and apoptosis are two hallmarks of diabetic glomeruli, but the sequence in which these processes occur remains a matter of debate. Here we investigated the effects of inhibiting hypertrophy on apoptosis, and vice versa, in both podocytes and glomeruli, under diabetic conditions. Hypertrophy and apoptosis were inhibited using an epidermal growth factor receptor inhibitor (PKI 166) and a pan-caspase inhibitor (zAsp-DCB), respectively. We observed significant increases in the protein expression of p27, p21, phospho-eukaryotic elongation factor 4E-binding protein 1, and phospho-p70 S6 ribosomal protein kinase, in both cultured podocytes exposed to high-glucose (HG) medium, and streptozotocin-induced diabetes mellitus (DM) rat glomeruli. These increases were significantly inhibited by PKI 166, but not by zAsp-DCB. In addition, the amount of protein per cell, the relative cell size, and the glomerular volume were all significantly increased under diabetic conditions, and these changes were also blocked by treatment with PKI 166, but not zAsp-DCB. Increased protein expression of cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase, together with increased Bax/Bcl-2 ratios, were also observed in HG-stimulated podocytes and DM glomeruli. Treatment with either zAsp-DCB or PKI 166 resulted in a significant attenuation of these effects. Both PKI 166 and zAsp-DCB also inhibited the increase in number of apoptotic cells, as assessed by Hoechst 33342 staining and TUNEL assay. Under diabetic conditions, inhibition of podocyte hypertrophy results in attenuated apoptosis, whereas blocking apoptosis has no effect on podocyte hypertrophy, suggesting that podocyte hypertrophy precedes apoptosis.

  20. Renal denervation attenuates NADPH oxidase-mediated oxidative stress and hypertension in rats with hydronephrosis.

    Science.gov (United States)

    Peleli, Maria; Al-Mashhadi, Ammar; Yang, Ting; Larsson, Erik; Wåhlin, Nils; Jensen, Boye L; G Persson, A Erik; Carlström, Mattias

    2016-01-01

    Hydronephrosis is associated with the development of salt-sensitive hypertension. Studies have suggested that increased sympathetic nerve activity and oxidative stress play important roles in hypertension and the modulation of salt sensitivity. The present study primarily aimed to examine the role of renal sympathetic nerve activity in the development of hypertension in rats with hydronephrosis. In addition, we aimed to investigate if NADPH oxidase (NOX) function could be affected by renal denervation. Partial unilateral ureteral obstruction (PUUO) was created in 3-wk-old rats to induce hydronephrosis. Sham surgery or renal denervation was performed at the same time. Blood pressure was measured during normal, high-, and low-salt diets. The renal excretion pattern, NOX activity, and expression as well as components of the renin-angiotensin-aldosterone system were characterized after treatment with the normal salt diet. On the normal salt diet, rats in the PUUO group had elevated blood pressure compared with control rats (115 ± 3 vs. 87 ± 1 mmHg, P < 0.05) and displayed increased urine production and lower urine osmolality. The blood pressure change in response to salt loading (salt sensitivity) was more pronounced in the PUUO group compared with the control group (15 ± 2 vs. 5 ± 1 mmHg, P < 0.05). Renal denervation in PUUO rats attenuated both hypertension (97 ± 3 mmHg) and salt sensitivity (5 ± 1 mmHg, P < 0.05) and normalized the renal excretion pattern, whereas the degree of renal fibrosis and inflammation was not changed. NOX activity and expression as well as renin and ANG II type 1A receptor expression were increased in the renal cortex from PUUO rats and normalized by denervation. Plasma Na(+) and K(+) levels were elevated in PUUO rats and normalized after renal denervation. Finally, denervation in PUUO rats was also associated with reduced NOX expression, superoxide production, and fibrosis in the heart. In conclusion, renal denervation attenuates

  1. Multiple low-dose radiation prevents type 2 diabetes-induced renal damage through attenuation of dyslipidemia and insulin resistance and subsequent renal inflammation and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Minglong Shao

    Full Text Available Dyslipidemia and lipotoxicity-induced insulin resistance, inflammation and oxidative stress are the key pathogeneses of renal damage in type 2 diabetes. Increasing evidence shows that whole-body low dose radiation (LDR plays a critical role in attenuating insulin resistance, inflammation and oxidative stress.The aims of the present study were to investigate whether LDR can prevent type 2 diabetes-induced renal damage and the underlying mechanisms.Mice were fed with a high-fat diet (HFD, 40% of calories from fat for 12 weeks to induce obesity followed by a single intraperitoneal injection of streptozotocin (STZ, 50 mg/kg to develop a type 2 diabetic mouse model. The mice were exposed to LDR at different doses (25, 50 and 75 mGy for 4 or 8 weeks along with HFD treatment. At each time-point, the kidney weight, renal function, blood glucose level and insulin resistance were examined. The pathological changes, renal lipid profiles, inflammation, oxidative stress and fibrosis were also measured.HFD/STZ-induced type 2 diabetic mice exhibited severe pathological changes in the kidney and renal dysfunction. Exposure of the mice to LDR for 4 weeks, especially at 50 and 75 mGy, significantly improved lipid profiles, insulin sensitivity and protein kinase B activation, meanwhile, attenuated inflammation and oxidative stress in the diabetic kidney. The LDR-induced anti-oxidative effect was associated with up-regulation of renal nuclear factor E2-related factor-2 (Nrf-2 expression and function. However, the above beneficial effects were weakened once LDR treatment was extended to 8 weeks.These results suggest that LDR exposure significantly prevented type 2 diabetes-induced kidney injury characterized by renal dysfunction and pathological changes. The protective mechanisms of LDR are complicated but may be mainly attributed to the attenuation of dyslipidemia and the subsequent lipotoxicity-induced insulin resistance, inflammation and oxidative stress.

  2. Attenuation correction for renal scintigraphy with 99mTc - DMSA: comparison between Raynaud and the geometric mean methods

    International Nuclear Information System (INIS)

    Argenta, J.; Brambilla, C.R.; Marques da Silva, A.M.

    2009-01-01

    The evaluation of the index of renal function (IF) requires soft-tissue attenuation correction. This paper investigates the impact over the IF, when attenuation correction is applied using the Raynaud method and the geometric mean method in renal planar scintigraphy, using posterior and anterior views. The study was conducted with Monte Carlo simulated images of five GSF family voxel phantoms with different relative uptakes in each kidney from normal (50% -50%) to pathological (10% -90%). The results showed that Raynaud method corrects more efficiently the cases where the renal depth is close to the value of the standard phantom. The geometric mean method showed similar results to the Raynaud method for Baby, Child and Golem. For Helga and Donna models, the errors were above 20%, increasing with relative uptake. Further studies should be conducted to assess the influences of the standard phantom in the correcting attenuation methods. (author)

  3. Attenuation correction for renal scintigraphy with 99mTc-DMSA: analysis between Raynaud and the geometric mean methods

    International Nuclear Information System (INIS)

    Argenta, Jackson; Brambilla, Claudia R.; Silva, Ana Maria M. da

    2010-01-01

    The evaluation of the index of renal function (IF) requires soft-tissue attenuation correction. This paper investigates the impact over the IF, when attenuation correction is applied using the Raynaud method and the Geometric Mean method in renal planar scintigraphy, using posterior and anterior views. The study was conducted with Monte Carlo simulated images of five GSF family voxel phantoms with different relative uptakes in each kidney from normal (50% -50%) to pathological (10% -90%). The results showed that Raynaud method corrects more efficiently the cases where the renal depth is close to the value of the standard phantom. The geometric mean method showed similar results to the Raynaud method for Baby, Child and Golem. For Helga and Donna models, the errors were above 20%, increasing with relative uptake. Further studies should be conducted to assess the influences of the standard phantom in the correcting attenuation methods. (author)

  4. Taxifolin protects against cardiac hypertrophy and fibrosis during biomechanical stress of pressure overload

    International Nuclear Information System (INIS)

    Guo, Haipeng; Zhang, Xin; Cui, Yuqian; Zhou, Heng; Xu, Dachun; Shan, Tichao; Zhang, Fan; Guo, Yuan; Chen, Yuguo; Wu, Dawei

    2015-01-01

    Cardiac hypertrophy is a key pathophysiological component to biomechanical stress, which has been considered to be an independent and predictive risk factor for adverse cardiovascular events. Taxifolin (TAX) is a typical plant flavonoid, which has long been used clinically for treatment of cardiovascular and cerebrovascular diseases. However, very little is known about whether TAX can influence the development of cardiac hypertrophy. In vitro studies, we found that TAX concentration-dependently inhibited angiotensin II (Ang II) induced hypertrophy and protein synthesis in cardiac myocytes. Then we established a mouse model by transverse aortic constriction (TAC) to further confirm our findings. It was demonstrated that TAX prevented pressure overload induced cardiac hypertrophy in mice, as assessed by ventricular mass/body weight, echocardiographic parameters, myocyte cross-sectional area, and the expression of ANP, BNP and β-MHC. The excess production of reactive oxygen species (ROS) played critical role in the development of cardiac hypertrophy. TAX arrested oxidative stress and decreased the expression of 4-HNE induced by pressure overload. Moreover, TAX negatively modulated TAC-induced phosphorylation of ERK1/2 and JNK1/2. Further studies showed that TAX significantly attenuated left ventricular fibrosis and collagen synthesis through abrogating the phosphorylation of Smad2 and Smad2/3 nuclear translocation. These results demonstrated that TAX could inhibit cardiac hypertrophy and attenuate ventricular fibrosis after pressure overload. These beneficial effects were at least through the inhibition of the excess production of ROS, ERK1/2, JNK1/2 and Smad signaling pathways. Therefore, TAX might be a potential candidate for the treatment of cardiac hypertrophy and fibrosis. - Highlights: • We focus on the protective effect of taxifolin on cardiac remodeling. • Taxifolin inhibited cardiac hypertrophy and attenuated ventricular fibrosis. • Taxifolin

  5. Taxifolin protects against cardiac hypertrophy and fibrosis during biomechanical stress of pressure overload

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Haipeng; Zhang, Xin [Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan (China); Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China); Cui, Yuqian [Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China); Zhou, Heng [Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan (China); Xu, Dachun [Department of Cardiology, Shanghai Tenth People' s Hospital of Tongji University, Shanghai (China); Shan, Tichao; Zhang, Fan [Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan (China); Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China); Guo, Yuan [Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China); Chen, Yuguo, E-mail: chen919085@163.com [Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China); Department of Emergency, Qilu Hospital of Shandong University, Jinan (China); Wu, Dawei, E-mail: wdwu55@163.com [Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan (China); Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China)

    2015-09-01

    Cardiac hypertrophy is a key pathophysiological component to biomechanical stress, which has been considered to be an independent and predictive risk factor for adverse cardiovascular events. Taxifolin (TAX) is a typical plant flavonoid, which has long been used clinically for treatment of cardiovascular and cerebrovascular diseases. However, very little is known about whether TAX can influence the development of cardiac hypertrophy. In vitro studies, we found that TAX concentration-dependently inhibited angiotensin II (Ang II) induced hypertrophy and protein synthesis in cardiac myocytes. Then we established a mouse model by transverse aortic constriction (TAC) to further confirm our findings. It was demonstrated that TAX prevented pressure overload induced cardiac hypertrophy in mice, as assessed by ventricular mass/body weight, echocardiographic parameters, myocyte cross-sectional area, and the expression of ANP, BNP and β-MHC. The excess production of reactive oxygen species (ROS) played critical role in the development of cardiac hypertrophy. TAX arrested oxidative stress and decreased the expression of 4-HNE induced by pressure overload. Moreover, TAX negatively modulated TAC-induced phosphorylation of ERK1/2 and JNK1/2. Further studies showed that TAX significantly attenuated left ventricular fibrosis and collagen synthesis through abrogating the phosphorylation of Smad2 and Smad2/3 nuclear translocation. These results demonstrated that TAX could inhibit cardiac hypertrophy and attenuate ventricular fibrosis after pressure overload. These beneficial effects were at least through the inhibition of the excess production of ROS, ERK1/2, JNK1/2 and Smad signaling pathways. Therefore, TAX might be a potential candidate for the treatment of cardiac hypertrophy and fibrosis. - Highlights: • We focus on the protective effect of taxifolin on cardiac remodeling. • Taxifolin inhibited cardiac hypertrophy and attenuated ventricular fibrosis. • Taxifolin

  6. Brazilian red propolis attenuates hypertension and renal damage in 5/6 renal ablation model.

    Directory of Open Access Journals (Sweden)

    Flávio Teles

    Full Text Available The pathogenic role of inflammation and oxidative stress in chronic kidney disease (CKD is well known. Anti-inflammatories and antioxidant drugs has demonstrated significant renoprotection in experimental nephropathies. Moreover, the inclusion of natural antioxidants derived from food and herbal extracts (such as polyphenols, curcumin and lycopene as an adjuvant therapy for slowing CKD progression has been largely tested. Brazilian propolis is a honeybee product, whose anti-inflammatory, antimicrobial and antioxidant effects have been widely shown in models of sepsis, cancer, skin irritation and liver fibrosis. Furthermore, previous studies demonstrated that this compound promotes vasodilation and reduces hypertension. However, potential renoprotective effects of propolis in CKD have never been investigated. The aim of this study was to evaluate the effects of a subtype of Brazilian propolis, the Red Propolis (RP, in the 5/6 renal ablation model (Nx. Adult male Wistar rats underwent Nx and were divided into untreated (Nx and RP-treated (Nx+RP groups, after 30 days of surgery; when rats already exhibited marked hypertension and proteinuria. Animals were observed for 90 days from the surgery day, when Nx+RP group showed significant reduction of hypertension, proteinuria, serum creatinine retention, glomerulosclerosis, renal macrophage infiltration and oxidative stress, compared to age-matched untreated Nx rats, which worsened progressively over time. In conclusion, RP treatment attenuated hypertension and structural renal damage in Nx model. Reduction of renal inflammation and oxidative stress could be a plausible mechanism to explain this renoprotection.

  7. Sinomenine attenuates renal fibrosis through Nrf2-mediated inhibition of oxidative stress and TGFβ signaling

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Tian [School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009 (China); Yin, Shasha; Yang, Jun; Zhang, Qin; Liu, Yangyang [Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing 210093 (China); Huang, Fengjie, E-mail: hfj@cpu.edu.cn [School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009 (China); Cao, Wangsen, E-mail: wangsencao@nju.edu.cn [Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing 210093 (China)

    2016-08-01

    Renal fibrosis is the common feature of chronic kidney disease and mainly mediated by TGFβ-associated pro-fibrogenic signaling, which causes excessive extracellular matrix accumulation and successive loss of kidney functions. Sinomenine (SIN), an alkaloid derived from medicinal herb extensively used in treatment of rheumatoid arthritis and various inflammatory disorders, displays renal protective properties in experimental animals; however its pharmacological potency against renal fibrosis is not explored. In this study we report that SIN possesses strong anti-renal fibrosis functions in kidney cell and in mouse fibrotic kidney. SIN beneficially modulated the pro-fibrogenic protein expression in TGFβ-treated kidney cells and attenuated the renal fibrotic pathogenesis incurred by unilateral ureteral obstruction (UUO), which correlated with its activation of Nrf2 signaling - the key defender against oxidative stress with anti-fibrotic potentials. Further investigation on its regulation of Nrf2 downstream events revealed that SIN significantly balanced oxidative stress via improving the expression and activity of anti-oxidant and detoxifying enzymes, and interrupted the pro-fibrogenic signaling of TGFβ/Smad and Wnt/β-catenin. Even more impressively SIN achieved its anti-fibrotic activities in an Nrf2-dependent manner, suggesting that SIN regulation of Nrf2-associated anti-fibrotic activities constitutes a critical component of SIN's renoprotective functions. Collectively our studies have demonstrated a novel anti-fibrotic property of SIN and its upstream events and provided a molecular basis for SIN's potential applications in treatment of renal fibrosis-associated kidney disorders. - Highlights: • Sinomenine has strong potency of inhibiting renal fibrosis in UUO mouse kidney. • Sinomenine attenuates the expression of profibrogenic proteins. • Sinomenine balances renal fibrosis-associated oxidative stress. • Sinomenine mitigates profibrogenic

  8. Exercise training attenuates chemoreflex-mediated reductions of renal blood flow in heart failure.

    Science.gov (United States)

    Marcus, Noah J; Pügge, Carolin; Mediratta, Jai; Schiller, Alicia M; Del Rio, Rodrigo; Zucker, Irving H; Schultz, Harold D

    2015-07-15

    In chronic heart failure (CHF), carotid body chemoreceptor (CBC) activity is increased and contributes to increased tonic and hypoxia-evoked elevation in renal sympathetic nerve activity (RSNA). Elevated RSNA and reduced renal perfusion may contribute to development of the cardio-renal syndrome in CHF. Exercise training (EXT) has been shown to abrogate CBC-mediated increases in RSNA in experimental heart failure; however, the effect of EXT on CBC control of renal blood flow (RBF) is undetermined. We hypothesized that CBCs contribute to tonic reductions in RBF in CHF, that stimulation of the CBC with hypoxia would result in exaggerated reductions in RBF, and that these responses would be attenuated with EXT. RBF was measured in CHF-sedentary (SED), CHF-EXT, CHF-carotid body denervation (CBD), and CHF-renal denervation (RDNX) groups. We measured RBF at rest and in response to hypoxia (FiO2 10%). All animals exhibited similar reductions in ejection fraction and fractional shortening as well as increases in ventricular systolic and diastolic volumes. Resting RBF was lower in CHF-SED (29 ± 2 ml/min) than in CHF-EXT animals (46 ± 2 ml/min, P < 0.05) or in CHF-CBD animals (42 ± 6 ml/min, P < 0.05). In CHF-SED, RBF decreased during hypoxia, and this was prevented in CHF-EXT animals. Both CBD and RDNX abolished the RBF response to hypoxia in CHF. Mean arterial pressure increased in response to hypoxia in CHF-SED, but was prevented by EXT, CBD, and RDNX. EXT is effective in attenuating chemoreflex-mediated tonic and hypoxia-evoked reductions in RBF in CHF. Copyright © 2015 the American Physiological Society.

  9. Energy-Specific Optimization of Attenuation Thresholds for Low-Energy Virtual Monoenergetic Images in Renal Lesion Evaluation.

    Science.gov (United States)

    Patel, Bhavik N; Farjat, Alfredo; Schabel, Christoph; Duvnjak, Petar; Mileto, Achille; Ramirez-Giraldo, Juan Carlos; Marin, Daniele

    2018-05-01

    The purpose of this study was to determine in vitro and in vivo the optimal threshold for renal lesion vascularity at low-energy (40-60 keV) virtual monoenergetic imaging. A rod simulating unenhanced renal parenchymal attenuation (35 HU) was fitted with a syringe containing water. Three iodinated solutions (0.38, 0.57, and 0.76 mg I/mL) were inserted into another rod that simulated enhanced renal parenchyma (180 HU). Rods were inserted into cylindric phantoms of three different body sizes and scanned with single- and dual-energy MDCT. In addition, 102 patients (32 men, 70 women; mean age, 66.8 ± 12.9 [SD] years) with 112 renal lesions (67 nonvascular, 45 vascular) measuring 1.1-8.9 cm underwent single-energy unenhanced and contrast-enhanced dual-energy CT. Optimal threshold attenuation values that differentiated vascular from nonvascular lesions at 40-60 keV were determined. Mean optimal threshold values were 30.2 ± 3.6 (standard error), 20.9 ± 1.3, and 16.1 ± 1.0 HU in the phantom, and 35.9 ± 3.6, 25.4 ± 1.8, and 17.8 ± 1.8 HU in the patients at 40, 50, and 60 keV. Sensitivity and specificity for the thresholds did not change significantly between low-energy and 70-keV virtual monoenergetic imaging (sensitivity, 87-98%; specificity, 90-91%). The AUC from 40 to 70 keV was 0.96 (95% CI, 0.93-0.99) to 0.98 (95% CI, 0.95-1.00). Low-energy virtual monoenergetic imaging at energy-specific optimized attenuation thresholds can be used for reliable characterization of renal lesions.

  10. Phlorizin Prevents Glomerular Hyperfiltration but not Hypertrophy in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Slava Malatiali

    2008-01-01

    Full Text Available The relationships of renal and glomerular hypertrophies to development of hyperfiltration and proteinuria early in streptozotocin-induced diabetes were explored. Control, diabetic, phlorizin-treated controls, and diabetic male Fischer rats were used. Phlorizin (an Na+-glucose cotransport inhibitor was given at a dose sufficient to normalize blood glucose. Inulin clearance (Cinulin and protein excretion rate (PER were measured. For morphometry, kidney sections were stained with periodic acid Schiff. At one week, diabetes PER increased 2.8-folds (P<.001, Cinulin increased 80% (P<.01. Kidney wet and dry weights increased 10%–12% (P<.05, and glomerular tuft area increased 9.3% (P<.001. Phlorizin prevented proteinuria, hyperfiltration, and kidney hypertrophy, but not glomerular hypertrophy. Thus, hyperfiltration, proteinuria, and whole kidney hypertrophy were related to hyperglycemia but not to glomerular growth. Diabetic glomerular hypertrophy constitutes an early event in the progression of glomerular pathology which occurs in the absence of mesangial expansion and persists even after changes in protein excretion and GFR are reversed through glycemic control.

  11. Molecular mechanisms of renal aging.

    Science.gov (United States)

    Schmitt, Roland; Melk, Anette

    2017-09-01

    Epidemiologic, clinical, and molecular evidence suggest that aging is a major contributor to the increasing incidence of acute kidney injury and chronic kidney disease. The aging kidney undergoes complex changes that predispose to renal pathology. The underlying molecular mechanisms could be the target of therapeutic strategies in the future. Here, we summarize recent insight into cellular and molecular processes that have been shown to contribute to the renal aging phenotype.The main clinical finding of renal aging is the decrease in glomerular filtration rate, and its structural correlate is the loss of functioning nephrons. Mechanistically, this has been linked to different processes, such as podocyte hypertrophy, glomerulosclerosis, tubular atrophy, and gradual microvascular rarefaction. Renal functional recovery after an episode of acute kidney injury is significantly worse in elderly patients. This decreased regenerative potential, which is a hallmark of the aging process, may be caused by cellular senescence. Accumulation of senescent cells could explain insufficient repair and functional loss, a view that has been strengthened by recent studies showing that removal of senescent cells results in attenuation of renal aging. Other potential mechanisms are alterations in autophagy as an important component of a disturbed renal stress response and functional differences in the inflammatory system. Promising therapeutic measures to counteract these age-related problems include mimetics of caloric restriction, pharmacologic renin-angiotensin-aldosterone system inhibition, and novel strategies of senotherapy with the goal of reducing the number of senescent cells to decrease aging-related disease in the kidney. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  12. Renal denervation in a patient with Alport syndrome and rejected renal allograft

    OpenAIRE

    Raju, Narayana; Lloyd, Vincent; Yalagudri, Sachin; Das, Bharati; Ravikishore, A.G.

    2015-01-01

    Renal denervation is a new intervention to treat resistant hypertension. By applying radiofrequency (RF) to renal arteries, sympathetic nerves in adventitia layer of vascular wall can be denervated. Sympathetic hyperactivity is an important contributory factor in hypertension of hemodialysis patients. Hyperactive sympathetic nervous system aggravates hypertension and it can cause complications like left ventricular hypertrophy, heart failure, arrhythmias and atherogenesis. Our report illustra...

  13. Resveratrol prevents angiotensin II-induced hypertrophy of vascular smooth muscle cells through the transactivation of growth factor receptors.

    Science.gov (United States)

    Hossain, Ekhtear; Anand-Srivastava, Madhu B

    2017-08-01

    We previously showed that augmented levels of endogenous angiotensin II (AngII) contribute to vascular smooth muscle cell (VSMC) hypertrophy through the transactivation of growth factor receptors in spontaneously hypertensive rats. Resveratrol (RV), a polyphenolic component of red wine, has also been shown to attenuate AngII-evoked VSMC hypertrophy; however, the molecular mechanism mediating this response is obscure. The present study was therefore undertaken to examine whether RV could prevent AngII-induced VSMC hypertrophy through the transactivation of growth factor receptor and associated signaling pathways. AngII treatment of VSMC enhanced the protein synthesis that was attenuated towards control levels by RV pretreatment as well as by the inhibitors of NADPH oxidase, c-Src, and growth factor receptors. Furthermore, RV pretreatment also inhibited enhanced levels of superoxide anion, NADPH oxidase activity, increased expression of NADPH oxidase subunits, and phosphorylation of c-Src, EGF-R, PDGE-R, ERK1/2, and AKT1/2. In conclusion, these results indicate that RV attenuates AngII-induced VSMC hypertrophy through the inhibition of enhanced oxidative stress and activation of c-Src, growth factor receptors, and MAPK/AKT signaling. We suggest that RV could be used as a therapeutic agent in the treatment of vascular complications associated with hypertension and hypertrophy.

  14. Renal Effects and Underlying Molecular Mechanisms of Long-Term Salt Content Diets in Spontaneously Hypertensive Rats

    Science.gov (United States)

    Berger, Rebeca Caldeira Machado; Vassallo, Paula Frizera; Crajoinas, Renato de Oliveira; Oliveira, Marilene Luzia; Martins, Flávia Letícia; Nogueira, Breno Valentim; Motta-Santos, Daisy; Araújo, Isabella Binotti; Forechi, Ludimila; Girardi, Adriana Castello Costa; Santos, Robson Augusto Souza; Mill, José Geraldo

    2015-01-01

    Several evidences have shown that salt excess is an important determinant of cardiovascular and renal derangement in hypertension. The present study aimed to investigate the renal effects of chronic high or low salt intake in the context of hypertension and to elucidate the molecular mechanisms underlying such effects. To this end, newly weaned male SHR were fed with diets only differing in NaCl content: normal salt (NS: 0.3%), low salt (LS: 0.03%), and high salt diet (HS: 3%) until 7 months of age. Analysis of renal function, morphology, and evaluation of the expression of the main molecular components involved in the renal handling of albumin, including podocyte slit-diaphragm proteins and proximal tubule endocytic receptors were performed. The relationship between diets and the balance of the renal angiotensin-converting enzyme (ACE) and ACE2 enzymes was also examined. HS produced glomerular hypertrophy and decreased ACE2 and nephrin expressions, loss of morphological integrity of the podocyte processes, and increased proteinuria, characterized by loss of albumin and high molecular weight proteins. Conversely, severe hypertension was attenuated and renal dysfunction was prevented by LS since proteinuria was much lower than in the NS SHRs. This was associated with a decrease in kidney ACE/ACE2 protein and activity ratio and increased cubilin renal expression. Taken together, these results suggest that LS attenuates hypertension progression in SHRs and preserves renal function. The mechanisms partially explaining these findings include modulation of the intrarenal ACE/ACE2 balance and the increased cubilin expression. Importantly, HS worsens hypertensive kidney injury and decreases the expression nephrin, a key component of the slit diaphragm. PMID:26495970

  15. Renal Effects and Underlying Molecular Mechanisms of Long-Term Salt Content Diets in Spontaneously Hypertensive Rats.

    Directory of Open Access Journals (Sweden)

    Rebeca Caldeira Machado Berger

    Full Text Available Several evidences have shown that salt excess is an important determinant of cardiovascular and renal derangement in hypertension. The present study aimed to investigate the renal effects of chronic high or low salt intake in the context of hypertension and to elucidate the molecular mechanisms underlying such effects. To this end, newly weaned male SHR were fed with diets only differing in NaCl content: normal salt (NS: 0.3%, low salt (LS: 0.03%, and high salt diet (HS: 3% until 7 months of age. Analysis of renal function, morphology, and evaluation of the expression of the main molecular components involved in the renal handling of albumin, including podocyte slit-diaphragm proteins and proximal tubule endocytic receptors were performed. The relationship between diets and the balance of the renal angiotensin-converting enzyme (ACE and ACE2 enzymes was also examined. HS produced glomerular hypertrophy and decreased ACE2 and nephrin expressions, loss of morphological integrity of the podocyte processes, and increased proteinuria, characterized by loss of albumin and high molecular weight proteins. Conversely, severe hypertension was attenuated and renal dysfunction was prevented by LS since proteinuria was much lower than in the NS SHRs. This was associated with a decrease in kidney ACE/ACE2 protein and activity ratio and increased cubilin renal expression. Taken together, these results suggest that LS attenuates hypertension progression in SHRs and preserves renal function. The mechanisms partially explaining these findings include modulation of the intrarenal ACE/ACE2 balance and the increased cubilin expression. Importantly, HS worsens hypertensive kidney injury and decreases the expression nephrin, a key component of the slit diaphragm.

  16. Analysis of renal blood flow and renal volume in normal fetuses and in fetuses with a solitary functioning kidney.

    Science.gov (United States)

    Hindryckx, An; Raaijmakers, Anke; Levtchenko, Elena; Allegaert, Karel; De Catte, Luc

    2017-12-01

    To evaluate renal blood flow and renal volume for the prediction of postnatal renal function in fetuses with solitary functioning kidney (SFK). Seventy-four SFK fetuses (unilateral renal agenesis [12], multicystic dysplastic kidney [36], and severe renal dysplasia [26]) were compared with 58 healthy fetuses. Peak systolic velocity (PSV), pulsatility index (PI), and resistance index (RI) of the renal artery (RA) were measured; 2D and 3D (VOCAL) volumes were calculated. Renal length and glomerular filtration rate (GFR) were obtained in SFK children (2 years). Compared with the control group, the PSV RA was significantly lower in nonfunctioning kidneys and significantly higher in SFK. Volume measurements indicated a significantly larger volume of SFK compared with healthy kidneys. All but 4 children had GFR above 70 mL/min/1.73 m 2 , and compensatory hypertrophy was present in 69% at 2 years. PSV RA and SFK volume correlated with postnatal renal hypertrophy. No correlation between prenatal and postnatal SFK volume and GFR at 2 years was demonstrated. Low PSV RA might have a predictive value for diagnosing a nonfunctioning kidney in fetuses with a SFK. We demonstrated a higher PSV RA and larger renal volume in the SFK compared with healthy kidneys. © 2017 John Wiley & Sons, Ltd.

  17. Melatonin attenuates angiotensin II-induced cardiomyocyte hypertrophy through the CyPA/CD147 signaling pathway.

    Science.gov (United States)

    Su, Hongyan; Li, Jingyuan; Chen, Tongshuai; Li, Na; Xiao, Jie; Wang, Shujian; Guo, Xiaobin; Yang, Yi; Bu, Peili

    2016-11-01

    Melatonin is well known for its cardioprotective effects; however, whether melatonin exerts therapeutic effects on cardiomyocyte hypertrophy remains to be investigated, as do the mechanisms underlying these effects, if they exist. Cyclophilin A (CyPA) and its corresponding receptor, CD147, which exists in a variety of cells, play crucial roles in modulating reactive oxygen species (ROS) production. In this study, we explored the role of the CyPA/CD147 signaling pathway in angiotensin II (Ang II)-induced cardiomyocyte hypertrophy and the protective effects exerted by melatonin against Ang II-induced injury in cultured H9C2 cells. Cyclosporine A, a specific CyPA/CD147 signaling pathway inhibitor, was used to manipulate CyPA/CD147 activity. H9C2 cells were then subjected to Ang II or CyPA treatment in either the absence or presence of melatonin. Our results indicate that Ang II induces cardiomyocyte hypertrophy through the CyPA/CD147 signaling pathway and promotes ROS production, which can be blocked by melatonin pretreatment in a concentration-dependent manner, in cultured H9C2 cells and that CyPA/CD147 signaling pathway inhibition protects against Ang II-induced cardiomyocyte hypertrophy. The protective effects of melatonin against Ang II-induced cardiomyocyte hypertrophy depend at least partially on CyPA/CD147 inhibition.

  18. Capillary/myocyte mismatch in the heart in renal failure--a role for erythropoietin?

    Science.gov (United States)

    Amann, K; Buzello, M; Simonaviciene, A; Miltenberger-Miltenyi, G; Koch, A; Nabokov, A; Gross, M L; Gless, B; Mall, G; Ritz, E

    2000-07-01

    Chronic renal failure is characterized by remodeling of the heart with left ventricular hypertrophy (increasing oxygen demand) and capillary deficit leading to capillary/myocyte mismatch (decreasing oxygen supply). Erythropoietin (Epo) has known angiogenic properties causing endothelial cell activation, migration and sprouting, mediated at least in part via the JAK/STAT (Janus kinase/signal transducers and activators of transcription) pathway. In uraemic cardiac hypertrophy the presence of diminished capillary supply implies that capillary growth does not keep pace with development of hypertrophy. To investigate whether this was due to a deficit of the angiogenic hormone Epo we examined whether Epo levels are altered and whether an increase in haematocrit by administration of rhEpo influences capillary supply, i.e. capillary/myocyte mismatch in experimental renal failure. Male Spraque-Dawley rats were either subjected to partial renal ablation or sham operation. Only modest amounts of renal tissue were removed so that the rats were not anemic. Subgroups of rats received either human (rh)Epo alone or in combination with unspecific antihypertensive treatment (dihydralazine plus furosemide) in order to control the Epo induced rise in blood pressure. Capillary supply was measured stereologically as capillary length per volume myocardium using the orientator method. Capillary length density was reduced by approximately 25% after partial renal ablation (3237+/-601 vs 4293+/-501 mm/mm(3) in controls). It was not statistically different in animals with partial renal ablation+rhEpo+antihypertensive treatment (3620+/-828 mm/mm(3)) compared to partial ablation alone. The study shows that lack of Epo does not cause, or contribute to, the deficit of capillary growth in the hypertrophied left ventricle of rats with renal failure. In addition, a rise in haematocrit is not accompanied by beneficial effects on alterations of cardiovascular structure in experimental renal failure.

  19. Herbal Supplement Ameliorates Cardiac Hypertrophy in Rats with CCl4-Induced Liver Cirrhosis

    Directory of Open Access Journals (Sweden)

    Ping-Chun Li

    2012-01-01

    Full Text Available We used the carbon tetrachloride (CCl4 induced liver cirrhosis model to test the molecular mechanism of action involved in cirrhosis-associated cardiac hypertrophy and the effectiveness of Ocimum gratissimum extract (OGE and silymarin against cardiac hypertrophy. We treated male wistar rats with CCl4 and either OGE (0.02 g/kg B.W. or 0.04 g/kg B.W. or silymarin (0.2 g/kg B.W.. Cardiac eccentric hypertrophy was induced by CCl4 along with cirrhosis and increased expression of cardiac hypertrophy related genes NFAT, TAGA4, and NBP, and the interleukin-6 (IL-6 signaling pathway related genes MEK5, ERK5, JAK, and STAT3. OGE or silymarin co-treatment attenuated CCl4-induced cardiac abnormalities, and lowered expression of genes which were elevated by this hepatotoxin. Our results suggest that the IL-6 signaling pathway may be related to CCl4-induced cardiac hypertrophy. OGE and silymarin were able to lower liver fibrosis, which reduces the chance of cardiac hypertrophy perhaps by lowering the expressions of IL-6 signaling pathway related genes. We conclude that treatment of cirrhosis using herbal supplements is a viable option for protecting cardiac tissues against cirrhosis-related cardiac hypertrophy.

  20. Skeletal muscle function and hypertrophy are diminished in old age.

    NARCIS (Netherlands)

    Degens, H.; Alway, S.E.

    2003-01-01

    Muscle loss occurs during aging. To investigate whether the hypertrophic response is attenuated at old age, we used male Fischer 344 (26 months old; n = 5) and Fischer 344 x Brown Norway rats (6, 9, and 33 months old; n = 8, 10, and 6, respectively). Hypertrophy of the left plantaris muscle was

  1. De Novo Collapsing Glomerulopathy in a Renal Allograft Recipient

    Directory of Open Access Journals (Sweden)

    Kanodia K

    2008-01-01

    Full Text Available Collapsing glomerulopathy (CG, characterized histologically by segmental/global glomerular capillary collapse, podocyte hypertrophy and hypercellularity and tubulo-interstitial injury; is characterized clinically by massive proteinuria and rapid progressive renal failure. CG is known to recur in renal allograft and rarely de novo. We report de novo CG 3 years post-transplant in a patient who received renal allograft from haplo-identical type donor.

  2. Pediatric renal leukemia: spectrum of CT imaging findings

    International Nuclear Information System (INIS)

    Hilmes, Melissa A.; Dillman, Jonathan R.; Mody, Rajen J.; Strouse, Peter J.

    2008-01-01

    The kidneys are a site of extramedullary leukemic disease that can be readily detected by CT. To demonstrate the spectrum of CT findings in children with renal leukemic involvement. Twelve children were identified retrospectively as having renal leukemic involvement by contrast-enhanced CT of the abdomen. Contrast-enhanced CT images through the kidneys of each patient were reviewed by two pediatric radiologists. Pertinent imaging findings and renal lengths were documented. The electronic medical record was accessed to obtain relevant clinical and pathologic information. Five patients with renal leukemic involvement presented with multiple bilateral low-attenuation masses, while three patients demonstrated large areas of wedge-shaped and geographic low attenuation. Four other patients presented with unique imaging findings, including a solitary unilateral low-attenuation mass, solitary bilateral low-attenuation masses, multiple bilateral low-attenuation masses including unilateral large conglomerate masses, and bilateral areas of ill-defined parenchymal low attenuation. Two patients showed unilateral nephromegaly, while eight other patients showed bilateral nephromegaly. Two patients had normal size kidneys. Two patients had elevated serum creatinine concentrations at the time of imaging. Renal leukemic involvement in children can present with a variety of CT imaging findings. Focal renal abnormalities as well as nephromegaly are frequently observed. Most commonly, renal leukemic involvement does not appear to impair renal function. (orig.)

  3. Pediatric renal leukemia: spectrum of CT imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Hilmes, Melissa A. [University of Michigan Health System, C.S. Mott Children' s Hospital, Section of Pediatric Radiology, Ann Arbor, MI (United States); Vanderbilt University Children' s Hospital, Section of Pediatric Radiology, Nashville, TN (United States); Dillman, Jonathan R. [University of Michigan Health System, C.S. Mott Children' s Hospital, Section of Pediatric Radiology, Ann Arbor, MI (United States); University of Michigan Health System, Department of Radiology, Ann Arbor, MI (United States); Mody, Rajen J. [University of Michigan Health System, C.S. Mott Children' s Hospital, Division of Pediatric Hematology-Oncology and Bone Marrow Transplantation, Ann Arbor, MI (United States); Strouse, Peter J. [University of Michigan Health System, C.S. Mott Children' s Hospital, Section of Pediatric Radiology, Ann Arbor, MI (United States)

    2008-04-15

    The kidneys are a site of extramedullary leukemic disease that can be readily detected by CT. To demonstrate the spectrum of CT findings in children with renal leukemic involvement. Twelve children were identified retrospectively as having renal leukemic involvement by contrast-enhanced CT of the abdomen. Contrast-enhanced CT images through the kidneys of each patient were reviewed by two pediatric radiologists. Pertinent imaging findings and renal lengths were documented. The electronic medical record was accessed to obtain relevant clinical and pathologic information. Five patients with renal leukemic involvement presented with multiple bilateral low-attenuation masses, while three patients demonstrated large areas of wedge-shaped and geographic low attenuation. Four other patients presented with unique imaging findings, including a solitary unilateral low-attenuation mass, solitary bilateral low-attenuation masses, multiple bilateral low-attenuation masses including unilateral large conglomerate masses, and bilateral areas of ill-defined parenchymal low attenuation. Two patients showed unilateral nephromegaly, while eight other patients showed bilateral nephromegaly. Two patients had normal size kidneys. Two patients had elevated serum creatinine concentrations at the time of imaging. Renal leukemic involvement in children can present with a variety of CT imaging findings. Focal renal abnormalities as well as nephromegaly are frequently observed. Most commonly, renal leukemic involvement does not appear to impair renal function. (orig.)

  4. Melatonin protects against myocardial hypertrophy induced by lipopolysaccharide.

    Science.gov (United States)

    Lu, Qi; Yi, Xin; Cheng, Xiang; Sun, Xiaohui; Yang, Xiangjun

    2015-04-01

    Melatonin is thought to have the ability of antiatherogenic, antioxidant, and vasodilatory. It is not only a promising protective in acute myocardial infarction but is also a useful tool in the treatment of pathological remodeling. However, its role in myocardial hypertrophy remains unclear. In this study, we investigated the protective effects of melatonin on myocardial hypertrophy induced by lipopolysaccharide (LPS) and to identify their precise mechanisms. The cultured myocardial cell was divided into six groups: control group, LPS group, LPS + ethanol (4%), LPS + melatonin (1.5 mg/ml) group, LPS + melatonin (3 mg/ml) group, and LPS + melatonin (6 mg/ml) group. The morphologic change of myocardial cell was observed by inverted phase contrast microscope. The protein level of myocardial cell was measured by Coomassie brilliant blue protein kit. The secretion level of tumor necrosis factor-α (TNF-α) was evaluated by enzyme-linked immunosorbent assay (ELISA). Ca(2+) transient in Fura-2/AM-loaded cells was measured by Till image system. The expression of Ca(2+)/calmodulin-dependent kinase II (CaMKII) and calcineurin (CaN) was measured by Western blot analysis. Our data demonstrated that LPS induced myocardial hypertrophy, promoted the secretion levels of TNF-α, and increased Ca(2+) transient level and the expression of CaMKII and CaN. Administration of melatonin 30 min prior to LPS stimulation dose-dependently attenuated myocardial hypertrophy. In conclusion, the results revealed that melatonin had the potential to protect against myocardial hypertrophy induced by LPS in vitro through downregulation of the TNF-α expression and retains the intracellular Ca(2+) homeostasis.

  5. Cardiovascular and Renal Effects of Birdseed Associated with Aerobic Exercise in Rats.

    Science.gov (United States)

    Passos, Clévia Santos; Ribeiro, Rosemara Silva; Rosa, Thiago Santos; Neves, Rodrigo Vanerson Passos; Costa, Fernando; Ginoza, Milton; Boim, Mirian Aparecida

    2016-10-01

    Phalaris canariensis L. (Pc), known as birdseed, is rich in tryptophan. The aqueous extract of Pc (AEPc) treatment reduced systolic blood pressure (SBP) in spontaneously hypertensive rats (SHR) via mechanisms mediated by the tryptophan metabolizing enzyme indoleamine 2,3-dioxygenase (IDO). Hypertension is a risk factor to cardiovascular and renal diseases. Considering that physical exercise improves hypertension and cardiovascular function, the aim of this study was to evaluate whether the benefits of exercise (Ex) would be enhanced by concomitant AEPc treatment (400 mg·kg·d p.o.). Vascular reactivity was assessed in aorta rings from SHR treated with AEPc for 4 wk. Training intensity was based on maximal lactate steady state obtained during the 2-wk adaptation period in a treadmill running. Then exercised (60 min running, five times per week during 8 wk) or sedentary SHR were untreated or treated with AEPc during 8 wk. SBP was estimated by plethysmograph. Heart mass and body mass were used to obtain the index of cardiac hypertrophy. Glucose tolerance test was evaluated by oral glucose overload, and the mRNA expressions of indoleamine 2,3-dioxygenase, interleukin 1β (IL-1β), and IL-10 in the kidney were obtained by real time polymerase chain reaction. AEPc induced endothelial-mediated vascular relaxation. AEPc or Ex alone reduced SBP, the index of cardiac hypertrophy and ventricular fibrosis, improved glucose metabolism, and attenuated proteinuria and the renal expression of the proinflammatory IL-1β with an overexpression in the anti-inflammatory IL-10. AEPc potentiated the benefits of the Ex on the cardiovascular system, metabolic parameters, and renal inflammation. Birdseed reduced cardiovascular risk related to hypertension and had positive effects when associated to physical exercise.

  6. Chronic Administration of Oil Palm (Elaeis guineensis Leaves Extract Attenuates Hyperglycaemic-Induced Oxidative Stress and Improves Renal Histopathology and Function in Experimental Diabetes

    Directory of Open Access Journals (Sweden)

    Varatharajan Rajavel

    2012-01-01

    Full Text Available Oil palm (Elaeis guineensis leaves extract (OPLE has antioxidant properties and because oxidative stress contributes to the pathogenesis of diabetic nephropathy (DN, we tested the hypothesis that OPLE prevents diabetes renal oxidative stress, attenuating injury. Sprague-Dawley rats received OPLE (200 and 500 mg kg−1 for 4 and 12 weeks after diabetes induction (streptozotocin 60 mg kg−1. Blood glucose level, body and kidney weights, urine flow rate (UFR, glomerular filtration rate (GFR, and proteinuria were assessed. Oxidative stress variables such as 8-hydroxy-2′-deoxyguanosine (8-OHdG, glutathione (GSH, and lipid peroxides (LPO were quantified. Renal morphology was analysed, and plasma transforming growth factor-beta1 (TGF-β1 was measured. Diabetic rats demonstrated increase in blood glucose and decreased body and increased kidney weights. Renal dysfunction (proteinuria, elevations in UFR and GFR was observed in association with increases in LPO, 8-OHdG, and TGF-β1 and a decrease in GSH. Histological evaluation of diabetic kidney demonstrated glomerulosclerosis and tubulointerstitial fibrosis. OPLE attenuated renal dysfunction, improved oxidative stress markers, and reduced renal pathology in diabetic animals. These results suggest OPLE improves renal dysfunction and pathology in diabetes by reducing oxidative stress; furthermore, the protective effect of OPLE against renal damage in diabetes depends on the dose of OPLE as well as progression of DN.

  7. Sepsis patients' renal manifestation on contrast-enhanced CT

    International Nuclear Information System (INIS)

    Sasaguri, K.; Yamaguchi, K.; Nakazono, T.; Mizuguchi, M.; Irie, H.

    2016-01-01

    Aim: To evaluate renal volume and attenuation changes in patients with sepsis on contrast-enhanced computed tomography (CT) with respect to the severity of sepsis. Materials and methods: Forty-four patients with sepsis who underwent CT before and after the onset of sepsis were retrospectively analysed. Renal volume and CT attenuation value of the renal cortex on contrast-enhanced CT were measured for each patient and changes in renal volume and CT attenuation value from before to after the onset of sepsis were calculated. The changes were correlated with the severity of sepsis (Sepsis-related Organ Failure Assessment [SOFA] score). The time course of the renal volume and CT attenuation changes were also evaluated. Results: Renal volume increased by 17.6% and CT attenuation value decreased by 19% after the onset of sepsis with statistically significant differences (p<0.001 for both renal volume and CT attenuation changes). The renal volume and CT attenuation changes had significant correlations with the SOFA score (r=0.36, p=0.018 and −0.43, p=0.005, respectively). The time course of the renal volume and CT attenuation changes seemed to be gradual compared to that of the SOFA score and to lag behind the peak of the SOFA score. Conclusion: In patients with sepsis, the renal volume increases and the CT attenuation value decreases in proportion to the severity of sepsis. The changes may lag behind the peak of severity of sepsis and can be observed for a relatively long time after a patient's recovery from sepsis. - Highlights: • The renal volume increases and the renal enhancement on contrast-enhanced CT decreases in patients with sepsis. • The degrees of these changes are correlated with severity of sepsis. • These changes may lag behind the peak of severity of sepsis and last for a long time after a patient's recovery from sepsis.

  8. Renal denervation in a patient with Alport syndrome and rejected renal allograft

    Directory of Open Access Journals (Sweden)

    Narayana Raju

    2015-12-01

    Full Text Available Renal denervation is a new intervention to treat resistant hypertension. By applying radiofrequency (RF to renal arteries, sympathetic nerves in adventitia layer of vascular wall can be denervated. Sympathetic hyperactivity is an important contributory factor in hypertension of hemodialysis patients. Hyperactive sympathetic nervous system aggravates hypertension and it can cause complications like left ventricular hypertrophy, heart failure, arrhythmias and atherogenesis. Our report illustrates the use of renal denervation using conventional RF catheter for uncontrolled hypertension in a patient with Alport syndrome and rejected renal allograft. Progressive and sustained reduction of blood pressure was obtained post-procedure and at 24 months follow-up with antihypertensives decreased from 6 to 2 per day, thereby demonstrating the safety, feasibility, and efficacy of the procedure. There are some reports available on the usefulness of this technique in hemodialysis patients; however, there are no studies of renal denervation in patients with Alport syndrome and failed allograft situation.

  9. Renal denervation in a patient with Alport syndrome and rejected renal allograft.

    Science.gov (United States)

    Raju, Narayana; Lloyd, Vincent; Yalagudri, Sachin; Das, Bharati; Ravikishore, A G

    2015-12-01

    Renal denervation is a new intervention to treat resistant hypertension. By applying radiofrequency (RF) to renal arteries, sympathetic nerves in adventitia layer of vascular wall can be denervated. Sympathetic hyperactivity is an important contributory factor in hypertension of hemodialysis patients. Hyperactive sympathetic nervous system aggravates hypertension and it can cause complications like left ventricular hypertrophy, heart failure, arrhythmias and atherogenesis. Our report illustrates the use of renal denervation using conventional RF catheter for uncontrolled hypertension in a patient with Alport syndrome and rejected renal allograft. Progressive and sustained reduction of blood pressure was obtained post-procedure and at 24 months follow-up with antihypertensives decreased from 6 to 2 per day, thereby demonstrating the safety, feasibility, and efficacy of the procedure. There are some reports available on the usefulness of this technique in hemodialysis patients; however, there are no studies of renal denervation in patients with Alport syndrome and failed allograft situation. Copyright © 2015 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.

  10. Spiral CT in kidney: assumption of renal function by objective evaluation of renal cortical enhancement

    International Nuclear Information System (INIS)

    Choi, Bo Yoon; Lee, Jong Seok; Lee, Joon Woo; Myung, Jae Sung; Sim, Jung Suk; Seong, Chang Kyu; Kim, Seung Hyup; Choi, Guk Myeong; Chi, Seong Whi

    2000-01-01

    To correlate the degree of renal cortical enhancement, objectively evaluated by means of spiral CT with the serum level of creatinine, and to determine the extent to which this degree of enhancement may be used to detect renal parenchymal disease. Eighty patients (M:F = 50:30; age + 25-19, (mean 53) years) with available serum level of creatinine who underwent spiral CT between September and October 1999 were included in this study. In fifty patients the findings suggested hepatic or biliary diseases such as hepatoma, biliary cancer, or stone, while in thirty, renal diseases such as cyst, hematoma, or stone appeared to be present. Spiral CT imaging of the cortical phase was obtained at 30-40 seconds after the injection of 120 ml of non-ionic media at a rate of 3 ml/sec. The degree of renal cortical enhancement was calculated by dividing the CT attenuation number of renal cortex at the level of the renal hilum by the CT attenuation number of aorta at the same level. The degree of renal cortical enhancement was compared with the serum level of creatinine, and the degree of renal cortical enhancement in renal parenchymal disease with that of the normal group. Among eighty patients there were five with renal parenchymal disease and 75 with normal renal function. The ratio of the CT attenuation number of renal cortex to that of aorta at the level of the renal hilum ranged between 0.49 and 0.99 (mean, 0.79; standard deviation, 0.15). while the serum level of creatinine ranged between 0.6 and 3.2 mg/dl. There was significant correlation (coefficient of -0.346) and a statistically significant probability of 0.002 between the ratio of the CT attenuation numbers and the serum level of creatinine. There was a significant difference (statistically significant probability of less than 0.01) between those with renal parenchymal disease and the normal group. The use of spiral CT to measure the degree of renal cortical enhancement provides not only an effective index for

  11. PARP Inhibition Attenuates Histopathological Lesion in Ischemia/Reperfusion Renal Mouse Model after Cold Prolonged Ischemia

    Directory of Open Access Journals (Sweden)

    Raimundo M. G. del Moral

    2013-01-01

    Full Text Available We test the hypothesis that PARP inhibition can decrease acute tubular necrosis (ATN and other renal lesions related to prolonged cold ischemia/reperfusion (IR in kidneys preserved at 4°C in University of Wisconsin (UW solution. Material and Methods. We used 30 male Parp1+/+ wild-type and 15 male Parp10/0 knockout C57BL/6 mice. Fifteen of these wild-type mice were pretreated with 3,4-dihydro-5-[4-(1-piperidinylbutoxyl]-1(2H-isoquinolinone (DPQ at a concentration of 15 mg/kg body weight, used as PARP inhibitor. Subgroups of mice were established (A: IR 45 min/6 h; B: IR + 48 h in UW solution; and C: IR + 48 h in UW solution plus DPQ. We processed samples for morphological, immunohistochemical, ultrastructural, and western-blotting studies. Results. Prolonged cold ischemia time in UW solution increased PARP-1 expression and kidney injury. Preconditioning with PARP inhibitor DPQ plus DPQ supplementation in UW solution decreased PARP-1 nuclear expression in renal tubules and renal damage. Parp10/0 knockout mice were more resistant to IR-induced renal lesion. In conclusion, PARP inhibition attenuates ATN and other IR-related renal lesions in mouse kidneys under prolonged cold storage in UW solution. If confirmed, these data suggest that pharmacological manipulation of PARP activity may have salutary effects in cold-stored organs at transplantation.

  12. An examination on the correction of attenuation for calculating the renal RI accumulation

    International Nuclear Information System (INIS)

    Onoue, Koichi; Tachibana, Keizo; Maeda, Yoshihiro; Yanoo, Sanae; Morishita, Etsuko; Kawanaka, Masahiro; Kashiwagi, Toru; Fukuchi, Minoru

    1999-01-01

    An examination was made on the attenuation coefficients for calculation of true renal accumulation rate together with the precision of measurement of depth in the kidney. Kidney phantom for attenuation coefficients was a 20 x 20 cm cube where water was filled and radioactivity source of 99m Tc was placed at various depths. Radioactivity was measured by four kinds of scinti-camera with the collimator LEGP and LEHR. The phantom for radioactivity accumulation in the kidney was a 10 x 5 x 1, 3 or 5 cm box where 99m Tc solution of the standard 30 MBq was filled, and subjected to radioactivity measurement from various angles. Phantom radioactivity was found corrected by the effective attenuation coefficient, 0.131 cm, within the range of 98-114% of the standard counts. The precision of measurement of the depth was examined in sideways scintigrams obtained in clinical practice and was found to have the deviation of 1.1 cm as the mean of maximum ones and the variation coefficient of 7.1%. Measured depth was found to be well correlated with estimated ones by the method of Tonnesen or Ito which had the maximum deviation of 5.4 or 3.5 cm, respectively. (K.H.)

  13. Periodontitis and myocardial hypertrophy.

    Science.gov (United States)

    Suzuki, Jun-Ichi; Sato, Hiroki; Kaneko, Makoto; Yoshida, Asuka; Aoyama, Norio; Akimoto, Shouta; Wakayama, Kouji; Kumagai, Hidetoshi; Ikeda, Yuichi; Akazawa, Hiroshi; Izumi, Yuichi; Isobe, Mitsuaki; Komuro, Issei

    2017-04-01

    There is a deep relationship between cardiovascular disease and periodontitis. It has been reported that myocardial hypertrophy may be affected by periodontitis in clinical settings. Although these clinical observations had some study limitations, they strongly suggest a direct association between severity of periodontitis and left ventricular hypertrophy. However, the detailed mechanisms between myocardial hypertrophy and periodontitis have not yet been elucidated. Recently, we demonstrated that periodontal bacteria infection is closely related to myocardial hypertrophy. In murine transverse aortic constriction models, a periodontal pathogen, Aggregatibacter actinomycetemcomitans markedly enhanced cardiac hypertrophy with matrix metalloproteinase-2 activation, while another pathogen Porphyromonas gingivalis (P.g.) did not accelerate these pathological changes. In the isoproterenol-induced myocardial hypertrophy model, P.g. induced myocardial hypertrophy through Toll-like receptor-2 signaling. From our results and other reports, regulation of chronic inflammation induced by periodontitis may have a key role in the treatment of myocardial hypertrophy. In this article, we review the pathophysiological mechanism between myocardial hypertrophy and periodontitis.

  14. Sildenafil attenuates pulmonary inflammation and fibrin deposition, mortality and right ventricular hypertrophy in neonatal hyperoxic lung injury

    Directory of Open Access Journals (Sweden)

    Boersma Hester

    2009-04-01

    Full Text Available Abstract Background Phosphodiesterase-5 inhibition with sildenafil has been used to treat severe pulmonary hypertension and bronchopulmonary dysplasia (BPD, a chronic lung disease in very preterm infants who were mechanically ventilated for respiratory distress syndrome. Methods Sildenafil treatment was investigated in 2 models of experimental BPD: a lethal neonatal model, in which rat pups were continuously exposed to hyperoxia and treated daily with sildenafil (50–150 mg/kg body weight/day; injected subcutaneously and a neonatal lung injury-recovery model in which rat pups were exposed to hyperoxia for 9 days, followed by 9 days of recovery in room air and started sildenafil treatment on day 6 of hyperoxia exposure. Parameters investigated include survival, histopathology, fibrin deposition, alveolar vascular leakage, right ventricular hypertrophy, and differential mRNA expression in lung and heart tissue. Results Prophylactic treatment with an optimal dose of sildenafil (2 × 50 mg/kg/day significantly increased lung cGMP levels, prolonged median survival, reduced fibrin deposition, total protein content in bronchoalveolar lavage fluid, inflammation and septum thickness. Treatment with sildenafil partially corrected the differential mRNA expression of amphiregulin, plasminogen activator inhibitor-1, fibroblast growth factor receptor-4 and vascular endothelial growth factor receptor-2 in the lung and of brain and c-type natriuretic peptides and the natriuretic peptide receptors NPR-A, -B, and -C in the right ventricle. In the lethal and injury-recovery model we demonstrated improved alveolarization and angiogenesis by attenuating mean linear intercept and arteriolar wall thickness and increasing pulmonary blood vessel density, and right ventricular hypertrophy (RVH. Conclusion Sildenafil treatment, started simultaneously with exposure to hyperoxia after birth, prolongs survival, increases pulmonary cGMP levels, reduces the pulmonary

  15. Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats

    Directory of Open Access Journals (Sweden)

    Xue-ying Chang

    2017-01-01

    Full Text Available Background. This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. Methods. 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d, 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS/p38 mitogen activated protein kinase (p38MAPK pathway was determined to explore the potential mechanism. Results. Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA and creatinine levels, malonaldehyde (MDA content, and superoxide dismutase (SOD activity in serum and the increases of calcium and alkaline phosphatase (ALP activity in the aorta (P<0.05 and attenuated calcification and calcium accumulation in the medial layer of vasculature in histopathology. Western blot analysis showed that iNOS/p38MAPK pathway was normalized by the quercetin supplementation. Conclusions. Quercetin exerted a protective effect on vascular calcification in adenine-induced chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway.

  16. Left ventricular hypertrophy in renal failure review | Arodiwe ...

    African Journals Online (AJOL)

    Renal failure is becoming increasingly common in our enironment. Advances in management like availability of dialysis and transplantation is prolonging the live of patients. As a consequence complication are increasingly being encountered. Cardiovascular complication is one of the commonest; and left ventricular ...

  17. Macrophage-stimulating protein attenuates gentamicin-induced inflammation and apoptosis in human renal proximal tubular epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ko Eun [Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Eun Young [Department of Physiology, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Chang Seong; Choi, Joon Seok; Bae, Eun Hui; Ma, Seong Kwon [Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Kyung Keun [Department of Pharmacology, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Lee, Jong Un [Department of Physiology, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Soo Wan, E-mail: skimw@chonnam.ac.kr [Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of)

    2013-05-10

    Highlights: •MSP/RON system is activated in rat kidney damaged by gentamicin. •MSP inhibits GM-induced cellular apoptosis and inflammation in HK-2 cells. •MSP attenuates GM-induced activation of MAPKs and NF-κB pathways in HK-2 cells. -- Abstract: The present study aimed to investigate whether macrophage-stimulating protein (MSP) treatment attenuates renal apoptosis and inflammation in gentamicin (GM)-induced tubule injury and its underlying molecular mechanisms. To examine changes in MSP and its receptor, recepteur d’origine nantais (RON) in GM-induced nephropathy, rats were injected with GM for 7 days. Human renal proximal tubular epithelial (HK-2) cells were incubated with GM for 24 h in the presence of different concentrations of MSP and cell viability was measured by MTT assay. Apoptosis was determined by flow cytometry of cells stained with fluorescein isothiocyanate-conjugated annexin V protein and propidium iodide. Expression of Bcl-2, Bax, caspase-3, cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS), nuclear factor-kappa B (NF-κB), IκB-α, and mitogen-activated protein kinases (MAPKs) was analyzed by semiquantitative immunoblotting. MSP and RON expression was significantly greater in GM-treated rats, than in untreated controls. GM-treatment reduced HK-2 cell viability, an effect that was counteracted by MSP. Flow cytometry and DAPI staining revealed GM-induced apoptosis was prevented by MSP. GM reduced expression of anti-apoptotic protein Bcl-2 and induced expression of Bax and cleaved caspase 3; these effects and GM-induced expression of COX-2 and iNOS were also attenuated by MSP. GM caused MSP-reversible induction of phospho-ERK, phospho-JNK, and phospho-p38. GM induced NF-κB activation and degradation of IκB-α; the increase in nuclear NF-κB was blocked by inhibitors of ERK, JNK, p-38, or MSP pretreatment. These findings suggest that MSP attenuates GM-induced inflammation and apoptosis by inhibition of the MAPKs

  18. Restoration of Circulating MFGE8 (Milk Fat Globule-EGF Factor 8) Attenuates Cardiac Hypertrophy Through Inhibition of Akt Pathway.

    Science.gov (United States)

    Deng, Ke-Qiong; Li, Jing; She, Zhi-Gang; Gong, Jun; Cheng, Wen-Lin; Gong, Fu-Han; Zhu, Xue-Yong; Zhang, Yan; Wang, Zhihua; Li, Hongliang

    2017-10-01

    Cardiac hypertrophy occurs in response to numerous stimuli like neurohumoral stress, pressure overload, infection, and injury, and leads to heart failure. Mfge8 (milk fat globule-EGF factor 8) is a secreted protein involved in various human diseases, but its regulation and function during cardiac hypertrophy remain unexplored. Here, we found that circulating MFGE8 levels declined significantly in failing hearts from patients with dilated cardiomyopathy. Correlation analyses revealed that circulating MFGE8 levels were negatively correlated with the severity of cardiac dysfunction and remodeling in affected patients. Deleting Mfge8 in mice maintained normal heart function at basal level but substantially exacerbated the hypertrophic enlargement of cardiomyocytes, reprogramming of pathological genes, contractile dysfunction, and myocardial fibrosis after aortic banding surgery. In contrast, cardiac-specific Mfge8 overexpression in transgenic mice significantly blunted aortic banding-induced cardiac hypertrophy. Whereas MAPK (mitogen-activated protein kinase) pathways were unaffected in either Mfge8 -knockout or Mfge8 -overexpressing mice, the activated Akt/PKB (protein kinase B)-Gsk-3β (glycogen synthase kinase-3β)/mTOR (mammalian target of rapamycin) pathway after aortic banding was significantly potentiated by Mfge8 deficiency but suppressed by Mfge8 overexpression. Inhibition of Akt with MK-2206 blocked the prohypertrophic effects of Mfge8 deficiency in angiotensin II-treated neonatal rat cardiomyocytes. Finally, administering a recombinant human MFGE8 in mice in vivo alleviated cardiac hypertrophy induced by aortic banding. Our findings indicate that Mfge8 is an endogenous negative regulator of pathological cardiac hypertrophy and may, thus, have potential both as a novel biomarker and as a therapeutic target for treatment of cardiac hypertrophy. © 2017 American Heart Association, Inc.

  19. Role of Oxidative Stress in Thyroid Hormone-Induced Cardiomyocyte Hypertrophy and Associated Cardiac Dysfunction: An Undisclosed Story

    Directory of Open Access Journals (Sweden)

    Mohammad T. Elnakish

    2015-01-01

    Full Text Available Cardiac hypertrophy is the most documented cardiomyopathy following hyperthyroidism in experimental animals. Thyroid hormone-induced cardiac hypertrophy is described as a relative ventricular hypertrophy that encompasses the whole heart and is linked with contractile abnormalities in both right and left ventricles. The increase in oxidative stress that takes place in experimental hyperthyroidism proposes that reactive oxygen species are key players in the cardiomyopathy frequently reported in this endocrine disorder. The goal of this review is to shed light on the effects of thyroid hormones on the development of oxidative stress in the heart along with the subsequent cellular and molecular changes. In particular, we will review the role of thyroid hormone-induced oxidative stress in the development of cardiomyocyte hypertrophy and associated cardiac dysfunction, as well as the potential effectiveness of antioxidant treatments in attenuating these hyperthyroidism-induced abnormalities in experimental animal models.

  20. Renal protein synthesis in diabetes mellitus: effects of insulin and insulin-like growth factor I

    International Nuclear Information System (INIS)

    Barac-Nieto, M.; Lui, S.M.; Spitzer, A.

    1991-01-01

    Is increased synthesis of proteins responsible for the hypertrophy of kidney cells in diabetes mellitus? Does the lack of insulin, and/or the effect of insulin-like growth factor I (IGFI) on renal tubule protein synthesis play a role in diabetic renal hypertrophy? To answer these questions, we determined the rates of 3H-valine incorporation into tubule proteins and the valine-tRNA specific activity, in the presence or absence of insulin and/or IGFI, in proximal tubule suspension isolated from kidneys of streptozotocin diabetic and control rats. The rate of protein synthesis increased, while the stimulatory effects of insulin and IGFI on tubule protein synthesis were reduced, early (96 hours) after induction of experimental diabetes. Thus, hypertrophy of the kidneys in experimental diabetes mellitus is associated with increases in protein synthesis, rather than with decreases in protein degradation. Factor(s) other than the lack of insulin, or the effects of IGFI, must be responsible for the high rate of protein synthesis present in the hypertrophying tubules of diabetic rats

  1. Mechanisms of HO-1 mediated attenuation of renal immune injury: a gene profiling study.

    Science.gov (United States)

    Duann, Pu; Lianos, Elias A

    2011-10-01

    Using a mouse model of immune injury directed against the renal glomerular vasculature and resembling human forms of glomerulonephritis (GN), we assessed the effect of targeted expression of the cytoprotective enzyme heme oxygenase (HO)-1. A human (h) HO-1 complementary DNAN (cDNA) sequence was targeted to glomerular epithelial cells (GECs) using a GEC-specific murine nephrin promoter. Injury by administration of antibody against the glomerular basement membrane (anti-GBM) to transgenic (TG) mice with GEC-targeted hHO-1 was attenuated compared with wild-type (WT) controls. To explore changes in the expression of genes that could mediate this salutary effect, we performed gene expression profiling using a microarray analysis of RNA isolated from the renal cortex of WT or TG mice with or without anti-GBM antibody-induced injury. Significant increases in expression were detected in 9 major histocompatibility complex (MHC)-class II genes, 2 interferon-γ (IFN-γ)-inducible guanosine triphosphate (GTP)ases, and 3 genes of the ubiquitin-proteasome system. The increase in MHC-class II and proteasome gene expression in TG mice with injury was validated by real-time polymerase chain reaction (PCR) or Western blot analysis. The observations point to novel mechanisms underlying the cytoprotective effect of HO-1 in renal immune injury. Copyright © 2011. Published by Mosby, Inc.

  2. Akt1 deficiency diminishes skeletal muscle hypertrophy by reducing satellite cell proliferation.

    Science.gov (United States)

    Moriya, Nobuki; Miyazaki, Mitsunori

    2018-02-14

    Skeletal muscle mass is determined by the net dynamic balance between protein synthesis and degradation. Although the Akt/mechanistic target of rapamycin (mTOR)-dependent pathway plays an important role in promoting protein synthesis and subsequent skeletal muscle hypertrophy, the precise molecular regulation of mTOR activity by the upstream protein kinase Akt is largely unknown. In addition, the activation of satellite cells has been indicated as a key regulator of muscle mass. However, the requirement of satellite cells for load-induced skeletal muscle hypertrophy is still under intense debate. In this study, female germline Akt1 knockout (KO) mice were used to examine whether Akt1 deficiency attenuates load-induced skeletal muscle hypertrophy through suppressing mTOR-dependent signaling and satellite cell proliferation. Akt1 KO mice showed a blunted hypertrophic response of skeletal muscle, with a diminished rate of satellite cell proliferation following mechanical overload. In contrast, Akt1 deficiency did not affect the load-induced activation of mTOR signaling and the subsequent enhanced rate of protein synthesis in skeletal muscle. These observations suggest that the load-induced activation of mTOR signaling occurs independently of Akt1 regulation and that Akt1 plays a critical role in regulating satellite cell proliferation during load-induced muscle hypertrophy.

  3. Induction of HO-1 by carbon monoxide releasing molecule-2 attenuates thrombin-induced COX-2 expression and hypertrophy in primary human cardiomyocytes

    International Nuclear Information System (INIS)

    Chien, Peter Tzu-Yu; Lin, Chih-Chung; Hsiao, Li-Der; Yang, Chuen-Mao

    2015-01-01

    Carbon monoxide (CO) is one of the cytoprotective byproducts of heme oxygenase (HO)-1 and exerts anti-inflammatory action in various models. However, the detailed mechanisms underlying CO-induced HO-1 expression in primary human cardiomyocytes remain largely unidentified. We used primary left ventricle myocytes as a model and applied CO releasing molecule (CORM)-2 to investigate the relationship of CO and HO-1 expression. We herein used Western blot, real-time PCR, promoter activity and EIA to investigate the role of HO-1 expression protecting against thrombin-mediated responses. We found that thrombin-induced COX-2 expression, PGE 2 release and cardiomyocyte hypertrophy markers (increase in ANF/BNP, α-actin expression and cell surface area) was attenuated by pretreatment with CORM-2 which was partially reversed by hemoglobin (Hb) or ZnPP (an inhibitor of HO-1 activity), suggesting that HO-1/CO system may be of clinical importance to ameliorate heart failure through inhibition of inflammatory responses. CORM-2-induced HO-1 protein expression, mRNA and promoter was attenuated by pretreatment with the inhibitors of Pyk2 (PF431396), PDGFR (AG1296), PI3K (LY294002), Akt (SH-5), p38 (SB202530), JNK1/2 (SP600125), FoxO1 (AS1842856) and Sp1 (mithramycin A). The involvement of these signaling components was further confirmed by transfection with respective siRNAs, consistent with those of pharmacological inhibitors. These results suggested that CORM-2-induced HO-1 expression is mediated through a Pyk2/PDGFR/PI3K/Akt/FoxO1/Sp1-dependent manner and exerts a cytoprotective effect in human cardiomyocytes. - Graphical abstract: In summary, CORM-2 treatment induces Pyk2 transactivated PDGFR, which induces PI3K/Akt/MAPK activation, and then recruits Sp1/Foxo1 transcriptional factors to regulate HO-1 gene expression in primary human cardiomyocytes. - Highlights: • CORM-2 induces HO-1 expression. • Pyk2-dependent PDGFR activates PI3K/Akt/MAPK pathway in CORM-2-induced HO-1

  4. Induction of HO-1 by carbon monoxide releasing molecule-2 attenuates thrombin-induced COX-2 expression and hypertrophy in primary human cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Chien, Peter Tzu-Yu [Department of Physiology and Pharmacology and Health Ageing Research Center, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan (China); Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan (China); Lin, Chih-Chung; Hsiao, Li-Der [Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan (China); Yang, Chuen-Mao, E-mail: chuenmao@mail.cgu.edu.tw [Department of Physiology and Pharmacology and Health Ageing Research Center, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan (China); Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan (China); Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan (China)

    2015-12-01

    Carbon monoxide (CO) is one of the cytoprotective byproducts of heme oxygenase (HO)-1 and exerts anti-inflammatory action in various models. However, the detailed mechanisms underlying CO-induced HO-1 expression in primary human cardiomyocytes remain largely unidentified. We used primary left ventricle myocytes as a model and applied CO releasing molecule (CORM)-2 to investigate the relationship of CO and HO-1 expression. We herein used Western blot, real-time PCR, promoter activity and EIA to investigate the role of HO-1 expression protecting against thrombin-mediated responses. We found that thrombin-induced COX-2 expression, PGE{sub 2} release and cardiomyocyte hypertrophy markers (increase in ANF/BNP, α-actin expression and cell surface area) was attenuated by pretreatment with CORM-2 which was partially reversed by hemoglobin (Hb) or ZnPP (an inhibitor of HO-1 activity), suggesting that HO-1/CO system may be of clinical importance to ameliorate heart failure through inhibition of inflammatory responses. CORM-2-induced HO-1 protein expression, mRNA and promoter was attenuated by pretreatment with the inhibitors of Pyk2 (PF431396), PDGFR (AG1296), PI3K (LY294002), Akt (SH-5), p38 (SB202530), JNK1/2 (SP600125), FoxO1 (AS1842856) and Sp1 (mithramycin A). The involvement of these signaling components was further confirmed by transfection with respective siRNAs, consistent with those of pharmacological inhibitors. These results suggested that CORM-2-induced HO-1 expression is mediated through a Pyk2/PDGFR/PI3K/Akt/FoxO1/Sp1-dependent manner and exerts a cytoprotective effect in human cardiomyocytes. - Graphical abstract: In summary, CORM-2 treatment induces Pyk2 transactivated PDGFR, which induces PI3K/Akt/MAPK activation, and then recruits Sp1/Foxo1 transcriptional factors to regulate HO-1 gene expression in primary human cardiomyocytes. - Highlights: • CORM-2 induces HO-1 expression. • Pyk2-dependent PDGFR activates PI3K/Akt/MAPK pathway in CORM-2-induced HO

  5. Dual Gas Treatment With Hydrogen and Carbon Monoxide Attenuates Oxidative Stress and Protects From Renal Ischemia-Reperfusion Injury.

    Science.gov (United States)

    Nishida, T; Hayashi, T; Inamoto, T; Kato, R; Ibuki, N; Takahara, K; Takai, T; Yoshikawa, Y; Uchimoto, T; Saito, K; Tanda, N; Kouno, J; Minami, K; Uehara, H; Hirano, H; Nomi, H; Okada, Y; Azuma, H

    Hydrogen (H 2 ) and carbon monoxide (CO) gas are both reported to reduce reactive oxygen species and alleviate tissue ischemia-reperfusion (I-R) injury. The present study was conducted to evaluate the effects of a mixture of H 2 gas and CO gas (dual gas) in comparison with hydrogen gas (H 2 : 2%) alone on I-R renal injury (composition of dual gas; N 2 : 77.8%; O 2 : 20.9%; H 2 : 1.30%; CO: 250 parts per million). Adult male Sprague-Dawley rats (body weight 250-280 g) were divided into 5 groups: (1) sham operation control, (2) dual gas inhalation (dual treatment) without I-R treatment, (3) I-R renal injury, (4) H 2 gas alone inhalation (H 2 treatment) with I-R renal injury, and (5) dual treatment with I-R renal injury. I-R renal injury was induced by clamping the left renal artery and vein for 45 minutes followed by reperfusion, and then contralateral nephrectomy was performed 2 weeks later. Renal function was markedly decreased at 24 hours after reperfusion, and thereafter the effects of dual gas were assessed by histologic examination and determination of the superoxide radical, together with functional and molecular analyses. Pathologic examination of the kidney of I-R rats revealed severe renal damage. Importantly, cytoprotective effects of the dual treatment in comparison with H 2 treatment and I-R renal injury were observed in terms of superoxide radical scavenging activity and histochemical features. Rats given dual treatment and I-R renal injury showed significant decreases in blood urea nitrogen. Increased expression of several inflammatory cytokines (tumor necrosis factor-α, interleukin-6, intracellular adhesion molecule-1, nuclear factor-κB, hypoxia inducible factor-1α, and heme oxygenase-1) was attenuated by the dual treatment. Dual gas inhalation decreases oxidative stress and markedly improves I-R-induced renal injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Tangshen Formula Attenuates Diabetic Nephropathy by Promoting ABCA1-Mediated Renal Cholesterol Efflux in db/db Mice.

    Science.gov (United States)

    Liu, Peng; Peng, Liang; Zhang, Haojun; Tang, Patrick Ming-Kuen; Zhao, Tingting; Yan, Meihua; Zhao, Hailing; Huang, Xiaoru; Lan, Huiyao; Li, Ping

    2018-01-01

    The commonly prescribed Tangshen Formula (TSF) is a traditional Chinese formulation that has been shown to reduce plasma lipid metabolism and proteinuria and improve the estimated glomerular filtration rate (eGFR) in patients with diabetic kidney disease. This study investigated the underlying mechanism whereby TSF regulates renal lipid accumulation and ameliorates diabetic renal injuries in spontaneous diabetic db/db mice and in vitro in sodium palmitate (PA)-stimulated and Abca1-SiRNA-transfected mouse tubular epithelial cells (mTECs). The results revealed that TSF treatment significantly ameliorated the renal injuries by lowering urinary albumin excretion and improving renal tissue injuries in diabetic (db/db) mice. Interestingly, the treatment with TSF also resulted in decreased cholesterol levels in the renal tissues of db/db mice, which was associated with increased expression of the peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α), the Liver X receptors (LXR), and ATP-binding cassette subfamily A member 1 (ABCA1), suggesting that TSF might attenuate diabetic kidney injury via a mechanism associated with improving cholesterol efflux in the diabetic kidney. This was investigated in vitro in mTECs, and the results showed that TSF reduced the PA-stimulated cholesterol accumulation in mTECs. Mechanistically, the addition of TSF was capable of reversing PA-induced downregulation of PGC-1α, LXR, and ABCA1 expression and cholesterol accumulation in mTECs, suggesting that TSF might act the protection via the PGC-1α-LXR-ABCA1 pathway to improve the cholesterol efflux in the renal tissues of db/db mice. This was further confirmed by silencing ABCA1 to block the promotive effect of TSF on cholesterol efflux in vitro . In conclusion, TSF might ameliorate diabetic kidney injuries by promoting ABCA1-mediated renal cholesterol efflux.

  7. A novel chalcone derivative attenuates the diabetes-induced renal injury via inhibition of high glucose-mediated inflammatory response and macrophage infiltration

    International Nuclear Information System (INIS)

    Fang, Qilu; Zhao, Leping; Wang, Yi; Zhang, Yali; Li, Zhaoyu; Pan, Yong; Kanchana, Karvannan; Wang, Jingying; Tong, Chao; Li, Dan; Liang, Guang

    2015-01-01

    Inflammation plays a central role in the development and progression of diabetic nephropathy (DN). Researches on novel anti-inflammatory agents may offer new opportunities for the treatment of DN. We previously found a chalcone derivative L6H21 could inhibit LPS-induced cytokine release from macrophages. The aim of this study was to investigate whether L6H21 could ameliorate the high glucose-mediated inflammation in NRK-52E cells and attenuate the inflammation-mediated renal injury. According to the results, L6H21 showed a great inhibitory effect on the expression of pro-inflammatory cytokines, cell adhesion molecules, chemokines, and macrophage adhesion via down-regulation of NF-κB/MAPKs activity in high glucose-stimulated renal NRK-52E cells. Further, in vivo oral administration with L6H21 at a dosage of 20 mg/kg/2 days showed a decreased expression of pro-inflammatory cytokines, cell adhesion molecules, which subsequently contributed to the inhibition on renal macrophage infiltration, the reduction of serum creatinine and BUN levels, and the improvement on the fibrosis and pathological changes in the renal tissues of diabetic mice. These findings provided that chalcone derived L6H21 may be a promising anti-inflammatory agent and have the potential in the therapy of diabetic nephropathy, and importantly, MAPK/NF-κB signaling system may be a novel therapeutic target for human DN in the future. - Highlights: • Inflammation plays a central role in the development of diabetic nephropathy. • Compound L6H21 reduced the high glucose-mediated inflammation in NRK-52E cells. • Compound L6H21 attenuated the inflammation-mediated renal injury. • L6H21 exhibited anti-inflammatory effects via inactivation of NF-κB/MAPKs. • MAPKs/NF-κB may be a novel therapeutic target in diabetic nephropathy treatment

  8. A novel chalcone derivative attenuates the diabetes-induced renal injury via inhibition of high glucose-mediated inflammatory response and macrophage infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Qilu [Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Zhao, Leping [Department of Pharmacy, the Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang (China); Wang, Yi; Zhang, Yali [Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Li, Zhaoyu [Department of International High School, Shanghai Jiaotong University Nanyang Affiliated (Kunshan) School, Minhang District, Shanghai (China); Pan, Yong; Kanchana, Karvannan; Wang, Jingying; Tong, Chao [Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Li, Dan, E-mail: yqyyld@163.com [Department of Nephrology, the Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang (China); Liang, Guang, E-mail: wzmcliangguang@163.com [Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China)

    2015-01-15

    Inflammation plays a central role in the development and progression of diabetic nephropathy (DN). Researches on novel anti-inflammatory agents may offer new opportunities for the treatment of DN. We previously found a chalcone derivative L6H21 could inhibit LPS-induced cytokine release from macrophages. The aim of this study was to investigate whether L6H21 could ameliorate the high glucose-mediated inflammation in NRK-52E cells and attenuate the inflammation-mediated renal injury. According to the results, L6H21 showed a great inhibitory effect on the expression of pro-inflammatory cytokines, cell adhesion molecules, chemokines, and macrophage adhesion via down-regulation of NF-κB/MAPKs activity in high glucose-stimulated renal NRK-52E cells. Further, in vivo oral administration with L6H21 at a dosage of 20 mg/kg/2 days showed a decreased expression of pro-inflammatory cytokines, cell adhesion molecules, which subsequently contributed to the inhibition on renal macrophage infiltration, the reduction of serum creatinine and BUN levels, and the improvement on the fibrosis and pathological changes in the renal tissues of diabetic mice. These findings provided that chalcone derived L6H21 may be a promising anti-inflammatory agent and have the potential in the therapy of diabetic nephropathy, and importantly, MAPK/NF-κB signaling system may be a novel therapeutic target for human DN in the future. - Highlights: • Inflammation plays a central role in the development of diabetic nephropathy. • Compound L6H21 reduced the high glucose-mediated inflammation in NRK-52E cells. • Compound L6H21 attenuated the inflammation-mediated renal injury. • L6H21 exhibited anti-inflammatory effects via inactivation of NF-κB/MAPKs. • MAPKs/NF-κB may be a novel therapeutic target in diabetic nephropathy treatment.

  9. Nanotized PPARα Overexpression Targeted to Hypertrophied Myocardium Improves Cardiac Function by Attenuating the p53-GSK3β-Mediated Mitochondrial Death Pathway.

    Science.gov (United States)

    Rana, Santanu; Datta, Ritwik; Chaudhuri, Ratul Datta; Chatterjee, Emeli; Chawla-Sarkar, Mamta; Sarkar, Sagartirtha

    2018-05-09

    Metabolic remodeling of cardiac muscles during pathological hypertrophy is characterized by downregulation of fatty acid oxidation (FAO) regulator, peroxisome proliferator-activated receptor alpha (PPARα). Thereby, we hypothesized that a cardiac-specific induction of PPARα might restore the FAO-related protein expression and resultant energy deficit. In the present study, consequences of PPARα augmentation were evaluated for amelioration of chronic oxidative stress, myocyte apoptosis, and cardiac function during pathological cardiac hypertrophy. Nanotized PPARα overexpression targeted to myocardium was done by a stearic acid-modified carboxymethyl-chitosan (CMC) conjugated to a 20-mer myocyte-targeted peptide (CMCP). Overexpression of PPARα ameliorated pathological hypertrophy and improved cardiac function. Augmented PPARα in hypertrophied myocytes revealed downregulated p53 acetylation (lys 382), leading to reduced apoptosis. Such cells showed increased binding of PPARα with p53 that in turn reduced interaction of p53 with glycogen synthase kinase-3β (GSK3β), which upregulated inactive phospho-GSK3β (serine [Ser]9) expression within mitochondrial protein fraction. Altogether, the altered molecular milieu in PPARα-overexpressed hypertrophy groups restored mitochondrial structure and function both in vitro and in vivo. Cardiomyocyte-targeted overexpression of a protein of interest (PPARα) by nanotized plasmid has been described for the first time in this study. Our data provide a novel insight towards regression of pathological hypertrophy by ameliorating mitochondrial oxidative stress in targeted PPARα-overexpressed myocardium. PPARα-overexpression during pathological hypertrophy showed substantial betterment of mitochondrial structure and function, along with downregulated apoptosis. Myocardium-targeted overexpression of PPARα during pathological cardiac hypertrophy led to an overall improvement of cardiac energy deficit and subsequent cardiac

  10. High density renal medulla on unenhanced CT : significance and relation with hydration status

    International Nuclear Information System (INIS)

    Lee, Eun Jung; Kim, Hyun Suk; Oh, Kyung Seung; Kim, Jong Min; Kim, Sung Min; Jung, Gyoo Sik; Huh, Jin Do; Joh, Young Duk

    1999-01-01

    To assess the effect of hydration status on renal medullary attenuation and to evaluate the incidence of dense renal medulla, as seen on unenhanced CT. We prospectively studied unenhanced CT scans of 12 healthy volunteers. Obtained done after 10 hours and 15 hours of dehydration and after oral intake of 2L of water. BUN/Cr, urine specific gravity, urine osmole and hematocrit were evaluated after 10 hours of dehydration. CT images were reviewed for the presence of dense renal medulla and differential attenuation of dense renal and isodense medulla and cortex at the same level. The density changes of renal medulla after hydration were evaluated. and CT findings were compared with the results of biochemical studies. In addition, we retrospectively reviewed the CT scans of 200 consecutive patients for evaluation of the incidence of dense renal medulla. In 8 of 12 volunteers, dense renal medulla was seen on CT scan after dehydration. Mean attenuation was 71.3±10.42HU after 10 hours of dehydration, 68.6±13.54HU after 15 hours, and 34.5±11.47HU after hydration. No significant attenuation differences were detected between 10 hours and 15 hours of dehydration, but significantly lower attenuation values were noted after hydration. For isodense medulla, the mean attenuation value was 35.7±7.9HU after 10 hours of dehydration, 39.58±9.66HU after 15 hours, and 36.58±7.77HU after hydration. The mean attenuation values of cortex were 35.9±5.95HU after 10 hours of dehydration. 37.58±5.95HU after 15 hours, and 37.08±9.75HU after hydration. With regard not only to duration of dehydration, but also ti hydration, no differences in attenuation values were noted for renal cortex or isodense renal medulla. However, higher density was noted in dense renal medulla than in isodense medulla or cortex for the same duration of dehydration. After hydration, complete resolution was seen at five of eight sites and incomplete resolution at three of eight sites. There was no correlation

  11. Growth speed in patients with chronic renal failure undergoing to renal transplantation between 2000 and 2009 in the Hospital Nacional de Ninos: research protocol

    International Nuclear Information System (INIS)

    Arroyo Molina, Ana Victoria

    2013-01-01

    The growth speed was investigated in children with chronic renal failure after renal transplantation, in the Hospital Nacional de Ninos during the study period January 2000-December 2009. Factors that have influenced are analyzed: age of onset of renal disease, etiology of renal disease, metabolic acidosis, anemia, renal osteodystrophy, episodes of infection and rejection. Besides, on the growth rate and expected family size, to intervene or prevent them in future cases. Also, the use that has given in the hospital to growth hormone, before and after renal transplantation is determined to eventually use parallel therapies to the transplantation. An echocardiographic study is recommended to perform as part of the treatment of chronic renal failure to identify the existence of left ventricular hypertrophy and heart failure, which may occur as a result of complications of the failure [es

  12. DMSA scan nomograms for renal length and area: Related to patient age and to body weight, height or surface area

    International Nuclear Information System (INIS)

    Hassan, I.M.; Que, L.; Rutland, M.D.

    2002-01-01

    Aim: To create nomograms for renal size as measured from DMSA renal studies, and to test the nomograms for their ability to separate normal from abnormal kidneys. Method: Renal length was measured from posterior oblique views and renal area from posterior views. Results from 253 patients with bilateral normal kidneys were used to create nomograms for renal size relative to patient age, body height, weight or body surface area (BSA). The nomograms enclosed 95% of the normal kidneys, thus indicating the range for 95% confidence limits, and hence the specificity. Each nomogram was then tested against 46 hypertrophied kidneys and 46 damaged kidneys. Results: The results from nomograms of renal length and renal area, compared to age, body height, body weight and BSA are presented. For each nomogram, the range is presented as a fraction of the mean value, and the number of abnormal kidneys (hypertrophied or damaged) outside the normal range is presented as a percentage (indicating the sensitivity). Conclusion: Renal Area was no better than renal length for detecting abnormal kidneys. Patient age was the least useful method of normalisation. BSA normalisation produced the best results most frequently (narrower ranges and highest detection of abnormal kidneys)

  13. Congenital obstructive posterior urethral membranes and recurrent urinary tract infection: a rare case of congenital hypertrophy of the verumontanum

    Directory of Open Access Journals (Sweden)

    Diana Bancin

    2015-03-01

    Full Text Available Congenital obstructive posterior urethral membranes (COPUM is a complex disease closely related to several pathological changes in kidney development and function, as a result of urinary reflux since in utero. This congenital anomaly of urinary tract potentially causes hydroureteronephrosis that is often associated with recurrent urinary tract infections and, ultimately, one of the most common causes of end-stage renal disease in children.1,2 Congenital hypertrophy of the verumontanum as part of COPUM is very rare. Only a few reports have been written on congenital hypertrophy of the vermontanum causing congenital obstructive uropathy.3-6

  14. Protocatechuic aldehyde attenuates cisplatin-induced acute kidney injury by suppressing Nox-mediated oxidative stress and renal inflammation

    Directory of Open Access Journals (Sweden)

    Li Gao

    2016-12-01

    Full Text Available Cisplatin is a classic chemotherapeutic agent widely used to treat different types of cancers including ovarian, head and neck, testicular and uterine cervical carcinomas. However, cisplatin induces acute kidney injury by directly triggering an excessive inflammatory response, oxidative stress and programmed cell death of renal tubular epithelial cells. All of which lead to higher mortality rates in patients. In this study we examined the protective effect of protocatechuic aldehyde (PA in vitro in cisplatin-treated tubular epithelial cells and in vivo in cisplatin nephropathy. PA is a monomer of Traditional Chinese Medicine isolated from the root of S. miltiorrhiza. Results show that PA prevented cisplatin-induced decline of renal function and histological damage, which was confirmed by attenuation of KIM1 in both mRNA and protein levels. Moreover, PA reduced renal inflammation by suppressing oxidative stress and programmed cell death in response to cisplatin, which was further evidenced by in vitro data. Of note, PA suppressed NAPDH oxidases, including Nox2 and Nox4, in a dosage-dependent manner. Moreover, silencing Nox4, but not Nox2, removed the inhibitory effect of PA on cisplatin-induced renal injury, indicating that Nox4 may play a pivotal role in mediating the protective effect of PA in cisplatin-induced acute kidney injury. Collectively, our data indicate that PA largely blocked cisplatin-induced acute kidney injury by suppressing Nox-mediated oxidative stress and renal inflammation without compromising anti-tumor activity of cisplatin. These findings suggest that PA and its derivatives may serve as potential protective agents for cancer patients with cisplatin treatment.

  15. How does pressure overload cause cardiac hypertrophy and dysfunction? High-ouabain affinity cardiac Na+ pumps are crucial.

    Science.gov (United States)

    Blaustein, Mordecai P

    2017-11-01

    Left ventricular hypertrophy is frequently observed in hypertensive patients and is believed to be due to the pressure overload and cardiomyocyte stretch. Three recent reports on mice with genetically engineered Na + pumps, however, have demonstrated that cardiac ouabain-sensitive α 2 -Na + pumps play a key role in the pathogenesis of transaortic constriction-induced hypertrophy. Hypertrophy was delayed/attenuated in mice with mutant, ouabain-resistant α 2 -Na + pumps and in mice with cardiac-selective knockout or transgenic overexpression of α 2 -Na + pumps. The latter, seemingly paradoxical, findings can be explained by comparing the numbers of available (ouabain-free) high-affinity (α 2 ) ouabain-binding sites in wild-type, knockout, and transgenic hearts. Conversely, hypertrophy was accelerated in α 2 -ouabain-resistant (R) mice in which the normally ouabain-resistant α 1 -Na + pumps were mutated to an ouabain-sensitive (S) form (α 1 S/S α 2 R/R or "SWAP" vs. wild-type or α 1 R/R α 2 S/S mice). Furthermore, transaortic constriction-induced hypertrophy in SWAP mice was prevented/reversed by immunoneutralizing circulating endogenous ouabain (EO). These findings show that EO and its receptor, ouabain-sensitive α 2 , are critical factors in pressure overload-induced cardiac hypertrophy. This complements reports linking elevated plasma EO to hypertension, cardiac hypertrophy, and failure in humans and elucidates the underappreciated role of the EO-Na + pump pathway in cardiovascular disease. Copyright © 2017 the American Physiological Society.

  16. The characterization of small hypoattenuating renal masses on contrast-enhanced CT☆

    Science.gov (United States)

    Patel, Neesha S.; Poder, Liina; Wang, Zhen J.; Yeh, Benjamin M.; Qayyum, Aliya; Jin, Hua; Coakley, Fergus V.

    2011-01-01

    Purpose To determine if small hypoattenuating renal masses can be characterized as simple cysts or renal cell carcinomas on contrast-enhanced computed tomography (CT). Materials and methods We retrospectively identified 20 small (≤1.5 cm) hypoattenuating renal masses seen on contrast enhanced CT, consisting of 14 simple cysts and six renal cell carcinomas. Three independent readers recorded subjective visual impression (five-point scale from 1=definitely fluid to 5=definitely solid), CT attenuation, border (well circumscribed or ill defined), and shape (ovoid or irregular) for each lesion. Results The overall area under the receiver operator characteristic curves for subjective visual impression, CT attenuation, border, and shape were 0.97, 0.82, 0.59, and 0.55, respectively. Using dichotomized ratings (1–2=cyst and 3–5=carcinoma), subjective impression had a sensitivity and specificity of 100% and 79–100%, respectively, for the diagnosis of renal cell carcinoma. Using a threshold of 50 Hounsfield Units (HU) or more, CT attenuation had a sensitivity and specificity of 100% and 43–64%, respectively. Conclusion Small hypoattenuating renal masses can be characterized with reasonable accuracy by subjective impression and CT attenuation; lesions that appear solid on visual inspection or have an attenuation value of 50 HU or more are likely to be renal cell carcinoma. © 2009 Elsevier Inc. All rights reserved. PMID:19559352

  17. Egr-1 mediated cardiac miR-99 family expression diverges physiological hypertrophy from pathological hypertrophy.

    Science.gov (United States)

    Ramasamy, Subbiah; Velmurugan, Ganesan; Rekha, Balakrishnan; Anusha, Sivakumar; Shanmugha Rajan, K; Shanmugarajan, Suresh; Ramprasath, Tharmarajan; Gopal, Pandi; Tomar, Dhanendra; Karthik, Karuppusamy V; Verma, Suresh Kumar; Garikipati, Venkata Naga Srikanth; Sudarsan, Rajan

    2018-04-01

    The physiological cardiac hypertrophy is an adaptive condition without myocyte cell death, while pathological hypertrophy is a maladaptive condition associated with myocyte cell death. This study explores the miRNome of α-2M-induced physiologically hypertrophied cardiomyocytes and the role of miRNA-99 family during cardiac hypertrophy. Physiological and pathological cardiac hypertrophy was induced in H9c2 cardiomyoblast cell lines using α-2M and isoproterenol respectively. Total RNA isolation and small RNA sequencing were executed for physiological hypertrophy model. The differentially expressed miRNAs and its target mRNAs were validated in animal models. Transcription factor binding sites were predicted in the promoter of specific miRNAs and validated by ChIP-PCR. Subsequently, the selected miRNA was functionally characterized by overexpression and silencing. The effects of silencing of upstream regulator and downstream target gene were studied. Analysis of small RNA reads revealed the differential expression of a large set of miRNAs during hypertrophy, of which miR-99 family was highly downregulated upon α-2M treatment. However, this miR-99 family expression was upregulated during pathological hypertrophy and confirmed in animal models. ChIP-PCR confirms the binding of Egr-1 transcription factor to the miR-99 promoter. Further, silencing of Egr-1 decreased the expression of miR-99. The overexpression or silencing of miR-99 diverges the physiological hypertrophy to pathological hypertrophy and vice versa by regulating Akt-1 pathway. Silencing of Akt-1 replicates the effect of overexpression of miR-99. The results proved Egr-1 mediated regulation of miR-99 family that plays a key role in determining the fate of cardiac hypertrophy by regulating Akt-1 signaling. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Zinc-finger protein 418 overexpression protects against cardiac hypertrophy and fibrosis.

    Directory of Open Access Journals (Sweden)

    Liming Pan

    Full Text Available This study aimed to investigated the effect and mechanism of zinc-finger protein 418 (ZNF418 on cardiac hypertrophy caused by aortic banding (AB, phenylephrine (PE or angiotensin II (Ang II in vivo and in vitro.The expression of ZNF418 in hearts of patients with dilated cardiomyopathy (DCM or hypertrophic cardiomyopathy (HCM and AB-induced cardiac hypertrophy mice, as well as in Ang II- or PE-induced hypertrophic primary cardiomyocytes was detected by western blotting. Then, the expression of ZNF418 was up-regulated or down-regulated in AB-induced cardiac hypertrophy mice and Ang II -induced hypertrophic primary cardiomyocytes. The hypertrophic responses and fibrosis were evaluated by echocardiography and histological analysis. The mRNA levels of hypertrophy markers and fibrotic markers were detected by RT-qPCR. Furthermore, the phosphorylation and total levels of c-Jun were measured by western blotting.ZNF418 was markedly down-regulated in hearts of cardiac hypertrophy and hypertrophic primary cardiomyocytes. Down-regulated ZNF418 exacerbated the myocyte size and fibrosis, moreover increased the mRNA levels of ANP, BNP, β-MHC, MCIP1.4, collagen 1a, collagen III, MMP-2 and fibronection in hearts of AB-treated ZNF418 knockout mice or Ang II-treated cardiomyocytes with AdshZNF418. Conversely, these hypertrophic responses were reduced in the ZNF418 transgenic (TG mice treated by AB and the AdZNF418-transfected primary cardiomyocytes treated by Ang II. Additionally, the deficiency of ZNF418 enhanced the phosphorylation level of c-jun, and overexpression of ZNF418 suppressed the phosphorylation level of c-jun in vivo and in vitro.ZNF418 maybe attenuate hypertrophic responses by inhibiting the activity of c-jun/AP-1.

  19. Improved bioavailability of targeted Curcumin delivery efficiently regressed cardiac hypertrophy by modulating apoptotic load within cardiac microenvironment

    International Nuclear Information System (INIS)

    Ray, Aramita; Rana, Santanu; Banerjee, Durba; Mitra, Arkadeep; Datta, Ritwik; Naskar, Shaon; Sarkar, Sagartirtha

    2016-01-01

    Cardiomyocyte apoptosis acts as a prime modulator of cardiac hypertrophy leading to heart failure, a major cause of human mortality worldwide. Recent therapeutic interventions have focussed on translational applications of diverse pharmaceutical regimes among which, Curcumin (from Curcuma longa) is known to have an anti-hypertrophic potential but with limited pharmacological efficacies due to low aqueous solubility and poor bioavailability. In this study, Curcumin encapsulated by carboxymethyl chitosan (CMC) nanoparticle conjugated to a myocyte specific homing peptide was successfully delivered in bioactive form to pathological myocardium for effective regression of cardiac hypertrophy in a rat (Rattus norvegicus) model. Targeted nanotization showed higher cardiac bioavailability of Curcumin at a low dose of 5 mg/kg body weight compared to free Curcumin at 35 mg/kg body weight. Moreover, Curcumin/CMC-peptide treatment during hypertrophy significantly improved cardiac function by downregulating expression of hypertrophy marker genes (ANF, β-MHC), apoptotic mediators (Bax, Cytochrome-c) and activity of apoptotic markers (Caspase 3 and PARP); whereas free Curcumin in much higher dose showed minimal improvement during compromised cardiac function. Targeted Curcumin treatment significantly lowered p53 expression and activation in diseased myocardium via inhibited interaction of p53 with p300-HAT. Thus attenuated acetylation of p53 facilitated p53 ubiquitination and reduced the apoptotic load in hypertrophied cardiomyocytes; thereby limiting cardiomyocytes' need to enter the regeneration cycle during hypertrophy. This study elucidates for the first time an efficient targeted delivery regimen for Curcumin and also attributes towards probable mechanistic insight into its therapeutic potential as a cardio-protective agent for regression of cardiac hypertrophy. - Highlights: • Cardiomyocyte targeted Curcumin/CMC-peptide increases bioavailability of the drug.

  20. Triptolide Upregulates Myocardial Forkhead Helix Transcription Factor p3 Expression and Attenuates Cardiac Hypertrophy

    Science.gov (United States)

    Ding, Yuan-Yuan; Li, Jing-Mei; Guo, Feng-Jie; Liu, Ya; Tong, Yang-Fei; Pan, Xi-Chun; Lu, Xiao-Lan; Ye, Wen; Chen, Xiao-Hong; Zhang, Hai-Gang

    2016-01-01

    The forkhead/winged helix transcription factor (Fox) p3 can regulate the expression of various genes, and it has been reported that the transfer of Foxp3-positive T cells could ameliorate cardiac hypertrophy and fibrosis. Triptolide (TP) can elevate the expression of Foxp3, but its effects on cardiac hypertrophy remain unclear. In the present study, neonatal rat ventricular myocytes (NRVM) were isolated and stimulated with angiotensin II (1 μmol/L) to induce hypertrophic response. The expression of Foxp3 in NRVM was observed by using immunofluorescence assay. Fifty mice were randomly divided into five groups and received vehicle (control), isoproterenol (Iso, 5 mg/kg, s.c.), one of three doses of TP (10, 30, or 90 μg/kg, i.p.) for 14 days, respectively. The pathological morphology changes were observed after Hematoxylin and eosin, lectin and Masson’s trichrome staining. The levels of serum brain natriuretic peptide (BNP) and troponin I were determined by enzyme-linked immunosorbent assay and chemiluminescence, respectively. The mRNA and protein expressions of α- myosin heavy chain (MHC), β-MHC and Foxp3 were determined using real-time PCR and immunohistochemistry, respectively. It was shown that TP (1, 3, 10 μg/L) treatment significantly decreased cell size, mRNA and protein expression of β-MHC, and upregulated Foxp3 expression in NRVM. TP also decreased heart weight index, left ventricular weight index and, improved myocardial injury and fibrosis; and decreased the cross-scetional area of the myocardium, serum cardiac troponin and BNP. Additionally, TP markedly reduced the mRNA and protein expression of myocardial β-MHC and elevated the mRNA and protein expression of α-MHC and Foxp3 in a dose-dependent manner. In conclusion, TP can effectively ameliorate myocardial damage and inhibit cardiac hypertrophy, which is at least partly related to the elevation of Foxp3 expression in cardiomyocytes. PMID:27965581

  1. Effect of vildagliptin, a dipeptidyl peptidase 4 inhibitor, on cardiac hypertrophy induced by chronic beta-adrenergic stimulation in rats

    Science.gov (United States)

    2014-01-01

    Background Heart failure with left ventricular (LV) hypertrophy is often associated with insulin resistance and inflammation. Recent studies have shown that dipeptidyl peptidase 4 (DPP4) inhibitors improve glucose metabolism and inflammatory status. We therefore evaluated whether vildagliptin, a DPP4 inhibitor, prevents LV hypertrophy and improves diastolic function in isoproterenol-treated rats. Methods Male Wistar rats received vehicle (n = 20), subcutaneous isoproterenol (2.4 mg/kg/day, n = 20) (ISO), subcutaneous isoproterenol (2.4 mg/kg/day + oral vildagliptin (30 mg/kg/day, n = 20) (ISO-VL), or vehicle + oral vildagliptin (30 mg/kg/day, n = 20) (vehicle-VL) for 7 days. Results Blood pressure was similar among the four groups, whereas LV hypertrophy was significantly decreased in the ISO-VL group compared with the ISO group (heart weight/body weight, vehicle: 3.2 ± 0.40, ISO: 4.43 ± 0.39, ISO-VL: 4.14 ± 0.29, vehicle-VL: 3.16 ± 0.16, p vildagliptin lowered the elevated LV end-diastolic pressure observed in the ISO group, but other parameters regarding LV diastolic function such as the decreased minimum dp/dt were not ameliorated in the ISO-VL group. Histological analysis showed that vildagliptin attenuated the increased cardiomyocyte hypertrophy and perivascular fibrosis, but it did not affect angiogenesis in cardiac tissue. In the ISO-VL group, quantitative PCR showed attenuation of increased mRNA expression of tumor necrosis factor-α, interleukin-6, insulin-like growth factor-l, and restoration of decreased mRNA expression of glucose transporter type 4. Conclusions Vildagliptin may prevent LV hypertrophy caused by continuous exposure to isoproterenol in rats. PMID:24521405

  2. Heat-processed ginseng saponin ameliorates the adenine-induced renal failure in rats

    OpenAIRE

    Kim, Eun Jin; Oh, Hyun-A; Choi, Hyuck Jai; Park, Jeong Hill; Kim, Dong-Hyun; Kim, Nam Jae

    2013-01-01

    To evaluate the effect of the saponin of heat-processed ginseng (Sun ginseng, SG), we investigated the protective effect of SG total saponin fraction against adenine-induced chronic renal failure in rats. SG saponin significantly decreased the levels of urea nitrogen and creatinine in the serum, but increased the urinary excretion of urea nitrogen and creatinine, indicating an improvement of renal function. SG saponin also inhibited adenine-induced kidney hypertrophy and edema. SG saponin red...

  3. Ischemic preconditioning effect of prodromal angina is attenuated in acute myocardial infarction patients with hypertensive left ventricular hypertrophy

    International Nuclear Information System (INIS)

    Takeuchi, Toshiharu; Kikuchi, Kenjiro; Hasebe, Naoyuki; Ishii, Yoshinao

    2011-01-01

    Several animal experiments on acute myocardial infarction (AMI) have shown that the cardioprotective effects of ischemic preconditioning are more significant in hypertensive subjects. However, because there are no clinical data on the impact of hypertension on ischemic preconditioning in patients with AMI, whether clinical ischemic preconditioning of prodromal angina was beneficial in AMI patients with hypertension was investigated in the present study. 125 patients with a first anterior AMI who had undergone successful reperfusion therapy were divided into 2 groups, with or without hypertension, and into 2 further subgroups based on the presence or absence of prodromal angina. Dual-isotope (thallium-201(TL)/Tc-99m pyrophosphate) single-photon emission computed tomography (SPECT) was performed within 1 week of reperfusion therapy. Left ventricular (LV) function and LV mass index (LVMI) were measured by left ventriculography and echocardiography, respectively. In patients without hypertension, prodromal angina resulted in significantly less myocardial damage on TL-SPECT, better LV ejection fraction and a greater myocardial blush grade compared to patients without prodromal angina. However, these cardioprotective effects of prodromal angina were significantly diminished in hypertensive patients. Importantly, the myocardial salvage effects of prodromal angina showed a significant negative correlation with LVMI, which was significantly greater in hypertensive patients. The cardioprotective effects of prodromal angina were attenuated in patients with hypertension. Hypertensive LV hypertrophy may crucially limit the effects of ischemic preconditioning in AMI. (author)

  4. Quantitative computer-aided diagnostic algorithm for automated detection of peak lesion attenuation in differentiating clear cell from papillary and chromophobe renal cell carcinoma, oncocytoma, and fat-poor angiomyolipoma on multiphasic multidetector computed tomography.

    Science.gov (United States)

    Coy, Heidi; Young, Jonathan R; Douek, Michael L; Brown, Matthew S; Sayre, James; Raman, Steven S

    2017-07-01

    To evaluate the performance of a novel, quantitative computer-aided diagnostic (CAD) algorithm on four-phase multidetector computed tomography (MDCT) to detect peak lesion attenuation to enable differentiation of clear cell renal cell carcinoma (ccRCC) from chromophobe RCC (chRCC), papillary RCC (pRCC), oncocytoma, and fat-poor angiomyolipoma (fp-AML). We queried our clinical databases to obtain a cohort of histologically proven renal masses with preoperative MDCT with four phases [unenhanced (U), corticomedullary (CM), nephrographic (NP), and excretory (E)]. A whole lesion 3D contour was obtained in all four phases. The CAD algorithm determined a region of interest (ROI) of peak lesion attenuation within the 3D lesion contour. For comparison, a manual ROI was separately placed in the most enhancing portion of the lesion by visual inspection for a reference standard, and in uninvolved renal cortex. Relative lesion attenuation for both CAD and manual methods was obtained by normalizing the CAD peak lesion attenuation ROI (and the reference standard manually placed ROI) to uninvolved renal cortex with the formula [(peak lesion attenuation ROI - cortex ROI)/cortex ROI] × 100%. ROC analysis and area under the curve (AUC) were used to assess diagnostic performance. Bland-Altman analysis was used to compare peak ROI between CAD and manual method. The study cohort comprised 200 patients with 200 unique renal masses: 106 (53%) ccRCC, 32 (16%) oncocytomas, 18 (9%) chRCCs, 34 (17%) pRCCs, and 10 (5%) fp-AMLs. In the CM phase, CAD-derived ROI enabled characterization of ccRCC from chRCC, pRCC, oncocytoma, and fp-AML with AUCs of 0.850 (95% CI 0.732-0.968), 0.959 (95% CI 0.930-0.989), 0.792 (95% CI 0.716-0.869), and 0.825 (95% CI 0.703-0.948), respectively. On Bland-Altman analysis, there was excellent agreement of CAD and manual methods with mean differences between 14 and 26 HU in each phase. A novel, quantitative CAD algorithm enabled robust peak HU lesion detection

  5. Perinatal DDT Exposure Induces Hypertension and Cardiac Hypertrophy in Adult Mice.

    Science.gov (United States)

    La Merrill, Michele A; Sethi, Sunjay; Benard, Ludovic; Moshier, Erin; Haraldsson, Borje; Buettner, Christoph

    2016-11-01

    Dichlorodiphenyltrichloroethane (DDT) was used extensively to control malaria, typhus, body lice, and bubonic plague worldwide, until countries began restricting its use in the 1970s. However, the use of DDT to control vector-borne diseases continues in developing countries. Prenatal DDT exposure is associated with elevated blood pressure in humans. We hypothesized that perinatal DDT exposure causes hypertension in adult mice. DDT was administered to C57BL/6J dams from gestational day 11.5 to postnatal day 5. Blood pressure (BP) and myocardial wall thickness were measured in male and female adult offspring. Adult mice were treated with an angiotensin converting enzyme (ACE) inhibitor, captopril, to evaluate sensitivity to amelioration of DDT-associated hypertension by ACE inhibition. We further assessed the influence of DDT exposure on the expression of mRNAs that regulate BP through renal ion transport. Adult mice perinatally exposed to DDT exhibited chronically increased systolic BP, increased myocardial wall thickness, and elevated expression of mRNAs of several renal ion transporters. Captopril completely reversed hypertension in mice perinatally exposed to DDT. These data demonstrate that perinatal exposure to DDT causes hypertension and cardiac hypertrophy in adult offspring. A key mechanism underpinning this hypertension is an overactivated renin angiotensin system because ACE inhibition reverses the hypertension induced by perinatal DDT exposure. Citation: La Merrill M, Sethi S, Benard L, Moshier E, Haraldsson B, Buettner C. 2016. Perinatal DDT exposure induces hypertension and cardiac hypertrophy in adult mice. Environ Health Perspect 124:1722-1727; http://dx.doi.org/10.1289/EHP164.

  6. Development of chronic heart failure in a young woman with hypertension associated with renal artery stenosis with preserved renal function

    DEFF Research Database (Denmark)

    Byrne, Christina; Abdulla, Jawdat

    2014-01-01

    A 33-year-old woman with presumed essential hypertension and symptoms equivalent to New York Heart Association class II was suspected of heart failure and referred to echocardiography. The patient's ECG showed a left bundle branch block. Electrolytes, serum creatinine and estimated-glomerular fil......A 33-year-old woman with presumed essential hypertension and symptoms equivalent to New York Heart Association class II was suspected of heart failure and referred to echocardiography. The patient's ECG showed a left bundle branch block. Electrolytes, serum creatinine and estimated......-glomerular filtration rate as well as urine test for protein were all normal. The patient had no peripheral oedema. The transthoracic echocardiography confirmed systolic and diastolic dysfunction and an ejection fraction of 25% and left ventricular hypertrophy. Ultrasound of renal arteries and renal CT angiography...... (renal CTA) revealed a significant stenosis and an aneurysm corresponding to the right renal artery with challenges to traditional interventions....

  7. Effects of renal denervation on tubular sodium handling in rats with CBL-induced liver cirrhosis

    DEFF Research Database (Denmark)

    Jonassen, T.E.; Brond, L.; Torp, M.

    2003-01-01

    This study was designed to examine the effect of bilateral renal denervation (DNX) on thick ascending limb of Henle's loop (TAL) function in rats with liver cirrhosis induced by common bile duct ligation (CBL). The CBL rats had, as previously shown, sodium retention associated with hypertrophy...... renal sympathetic nerve activity known to be present in CBL rats plays a significant role in the formation of sodium retention by stimulating sodium reabsorption in the TAL via increased renal abundance of NKCC2....

  8. Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy

    Science.gov (United States)

    Fry, Christopher S.; Lee, Jonah D.; Jackson, Janna R.; Kirby, Tyler J.; Stasko, Shawn A.; Liu, Honglu; Dupont-Versteegden, Esther E.; McCarthy, John J.; Peterson, Charlotte A.

    2014-01-01

    Our aim in the current study was to determine the necessity of satellite cells for long-term muscle growth and maintenance. We utilized a transgenic Pax7-DTA mouse model, allowing for the conditional depletion of > 90% of satellite cells with tamoxifen treatment. Synergist ablation surgery, where removal of synergist muscles places functional overload on the plantaris, was used to stimulate robust hypertrophy. Following 8 wk of overload, satellite cell-depleted muscle demonstrated an accumulation of extracellular matrix (ECM) and fibroblast expansion that resulted in reduced specific force of the plantaris. Although the early growth response was normal, an attenuation of hypertrophy measured by both muscle wet weight and fiber cross-sectional area occurred in satellite cell-depleted muscle. Isolated primary myogenic progenitor cells (MPCs) negatively regulated fibroblast ECM mRNA expression in vitro, suggesting a novel role for activated satellite cells/MPCs in muscle adaptation. These results provide evidence that satellite cells regulate the muscle environment during growth.—Fry, C. S., Lee, J. D., Jackson, J. R., Kirby, T. J., Stasko, S. A., Liu, H., Dupont-Versteegden, E. E., McCarthy, J. J., Peterson, C. A. Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy. PMID:24376025

  9. TVP1022 attenuates cardiac remodeling and kidney dysfunction in experimental volume overload-induced congestive heart failure.

    Science.gov (United States)

    Abassi, Zaid A; Barac, Yaron D; Kostin, Sawa; Roguin, Ariel; Ovcharenko, Elena; Awad, Hoda; Blank, Ayelet; Bar-Am, Orit; Amit, Tamar; Schaper, Jutta; Youdim, Moussa; Binah, Ofer

    2011-07-01

    Despite the availability of many pharmacological and mechanical therapies, the mortality rate among patients with congestive heart failure (CHF) remains high. We tested the hypothesis that TVP1022 (the S-isomer of rasagiline; Azilect), a neuroprotective and cytoprotective molecule, is also cardioprotective in the settings of experimental CHF in rats. In rats with volume overload-induced CHF, we investigated the therapeutic efficacy of TVP1022 (7.5 mg/kg) on cardiac function, structure, biomarkers, and kidney function. Treatment with TVP1022 for 7 days before CHF induction prevented the increase in left ventricular end-diastolic area and end-systolic area, and the decrease in fractional shortening measured 14 days after CHF induction. Additionally, TVP1022 pretreatment attenuated CHF-induced cardiomyocyte hypertrophy, fibrosis, plasma and ventricular B-type natriuretic peptide levels, and reactive oxygen species expression. Further, in CHF rats, TVP1022 decreased cytochrome c and caspase 3 expression, thereby contributing to the cardioprotective efficacy of the drug. TVP1022 also enhanced the urinary Na(+) excretion and improved the glomerular filtration rate. Similar cardioprotective effects were obtained when TVP1022 was given to rats after CHF induction. TVP1022 attenuated the adverse functional, structural, and molecular alterations in CHF, rendering this drug a promising candidate for improving cardiac and renal function in this disease state.

  10. [Asymmetric hypertrophy of the masticatory muscles].

    Science.gov (United States)

    Arzul, L; Corre, P; Khonsari, R H; Mercier, J-M; Piot, B

    2012-06-01

    Hypertrophy of the masticatory muscles most commonly affects the masseter. Less common cases of isolated or associated temporalis hypertrophy are also reported. Parafunctional habits, and more precisely bruxism, can favor the onset of the hypertrophy. This condition is generally idiopathic and can require both medical and/or surgical management. A 29-year-old patient was referred to our department for an asymmetric swelling of the masticatory muscles. Physical examination revealed a bilateral hypertrophy of the masticatory muscles, predominantly affecting the right temporalis and the left masseter. Major bruxism was assessed by premature dental wearing. The additional examinations confirmed the isolated muscle hypertrophy. Benign asymmetric hypertrophy of the masticatory muscles promoted by bruxism was diagnosed. Treatment with injections of type A botulinum toxin was conducted in association with a splint and relaxation. Its effectiveness has been observed at six months. Few cases of unilateral or bilateral temporalis hypertrophy have been reported, added to the more common isolated masseter muscles hypertrophy. The diagnosis requires to rule out secondary hypertrophies and tumors using Magnetic Resonance Imaging. The condition is thought to be favoured by parafunctional habits such as bruxism. The conservative treatment consists in reducing the volume of the masticatory muscles using intramuscular injections of type A botulinum toxin. Other potential conservative treatments are wearing splints and muscle relaxant drugs. Surgical procedures aiming to reduce the muscle volume and/or the bone volume (mandibular gonioplasty) can be proposed. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  11. Role of IGF-I in follistatin-induced skeletal muscle hypertrophy.

    Science.gov (United States)

    Barbé, Caroline; Kalista, Stéphanie; Loumaye, Audrey; Ritvos, Olli; Lause, Pascale; Ferracin, Benjamin; Thissen, Jean-Paul

    2015-09-15

    Follistatin, a physiological inhibitor of myostatin, induces a dramatic increase in skeletal muscle mass, requiring the type 1 IGF-I receptor/Akt/mTOR pathway. The aim of the present study was to investigate the role of IGF-I and insulin, two ligands of the IGF-I receptor, in the follistatin hypertrophic action on skeletal muscle. In a first step, we showed that follistatin increases muscle mass while being associated with a downregulation of muscle IGF-I expression. In addition, follistatin retained its full hypertrophic effect toward muscle in hypophysectomized animals despite very low concentrations of circulating and muscle IGF-I. Furthermore, follistatin did not increase muscle sensitivity to IGF-I in stimulating phosphorylation of Akt but, surprisingly, decreased it once hypertrophy was present. Taken together, these observations indicate that increased muscle IGF-I production or sensitivity does not contribute to the muscle hypertrophy caused by follistatin. Unlike low IGF-I, low insulin, as obtained by streptozotocin injection, attenuated the hypertrophic action of follistatin on skeletal muscle. Moreover, the full anabolic response to follistatin was restored in this condition by insulin but also by IGF-I infusion. Therefore, follistatin-induced muscle hypertrophy requires the activation of the insulin/IGF-I pathway by either insulin or IGF-I. When insulin or IGF-I alone is missing, follistatin retains its full anabolic effect, but when both are deficient, as in streptozotocin-treated animals, follistatin fails to stimulate muscle growth. Copyright © 2015 the American Physiological Society.

  12. Attenuation of oxidative stress and inflammation by gravinol in high glucose-exposed renal tubular epithelial cells

    International Nuclear Information System (INIS)

    Kim, You Jung; Kim, Young Ae; Yokozawa, Takako

    2010-01-01

    Gravinol, a proanthocyanidin from grape seeds, has polyphenolic properties with powerful anti-oxidative effects. Although, increasing evidence strongly suggests that polyphenolic antioxidants suppress diabetic nephropathy that is causally associated with oxidative stress and inflammation, gravinol's protective action against diabetic nephropathy has not been fully explored to date. In the current study, we investigated the protective action of gravinol against oxidative stress and inflammation using the experimental diabetic nephropathy cell model, high glucose-exposed renal tubular epithelial cells. To elucidate the underlying actions of gravinol, several oxidative and inflammatory markers were estimated. Included are measurements of lipid peroxidation, total reactive species (RS), superoxide (·O 2 ), nitric oxide (NO·), and peroxynitrite (ONOO - ), as well as nuclear factor-kappa B (NF-κB) nuclear translocation. Results indicate that gravinol had a potent inhibitory action against lipid peroxidation, total RS, ·O 2 , NO·, ONOO - , the reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio and more importantly, against NF-κB nuclear translocation. We propose that gravinol's strong protective effect against high glucose-induced renal tubular epithelial cell damage attenuates diabetic nephropathy by suppressing oxidative stress and inflammation.

  13. Short-Term Caloric Restriction Suppresses Cardiac Oxidative Stress and Hypertrophy Caused by Chronic Pressure Overload.

    Science.gov (United States)

    Kobara, Miyuki; Furumori-Yukiya, Akiko; Kitamura, Miho; Matsumura, Mihoko; Ohigashi, Makoto; Toba, Hiroe; Nakata, Tetsuo

    2015-08-01

    Caloric restriction (CR) prevents senescent changes, in which reactive oxygen species (ROS) have a critical role. Left ventricular (LV) hypertrophy is a risk factor for cardiovascular diseases. We examined whether CR alters cardiac redox state and hypertrophy from chronic pressure overload. Male c57BL6 mice were subjected to ascending aortic constriction (AAC) with ad libitum caloric intake (AL + AAC group) or 40% restricted caloric intake (CR + AAC group). CR was initiated 2 weeks before AAC and was continued for 4 weeks. Two weeks after constriction, AAC increased LV wall thickness, impaired transmitral flow velocity, and augmented myocyte hypertrophy and fibrosis, in association with enhancement of BNP and collagen III expressions in the AL + AAC group. In the AL + AAC group, oxidative stress in cardiac tissue and mitochondria were enhanced, and NADPH oxidase activity and mitochondrial ROS production were elevated. These changes were significantly attenuated in the CR + AAC group. Additionally, in antioxidant systems, myocardial glutathione peroxidase and superoxide dismutase activities were enhanced in the CR + AAC group. Chronic pressure overload increased cardiac oxidative damage, in association with cardiac hypertrophy and fibrosis. Short-term CR suppressed oxidative stress and improved cardiac function, suggesting that short-term CR could be a useful strategy to prevent pressure overload-induced cardiac injury. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Deficiency of cardiac Acyl-CoA synthetase-1 induces diastolic dysfunction, but pathologic hypertrophy is reversed by rapamycin

    DEFF Research Database (Denmark)

    Paul, David S; Grevengoed, Trisha J; Pascual, Florencia

    2014-01-01

    In mice with temporally-induced cardiac-specific deficiency of acyl-CoA synthetase-1 (Acsl1(H-/-)), the heart is unable to oxidize long-chain fatty acids and relies primarily on glucose for energy. These metabolic changes result in the development of both a spontaneous cardiac hypertrophy...... and B-type natriuretic peptide. mTOR activation of the related Acsl3 gene, usually associated with pathologic hypertrophy, was also attenuated in the Acsl1(H-/-) hearts, indicating that alternative pathways of fatty acid activation did not compensate for the loss of Acsl1. Compared to controls, Acsl1(H......-/-) hearts exhibited an 8-fold higher uptake of 2-deoxy[1-(14)C]glucose and a 35% lower uptake of the fatty acid analog 2-bromo[1-(14)C]palmitate. These data indicate that Acsl1-deficiency causes diastolic dysfunction and that mTOR activation is linked to the development of cardiac hypertrophy in Acsl1(H...

  15. Age features of myocardial remodeling in men with ischemic chronic heart failure and renal dysfunction

    Directory of Open Access Journals (Sweden)

    D. A. Lashkul

    2014-04-01

    Full Text Available In recent years, medicine has faced the problem of "dual epidemic" of heart and kidney failure. Regardless of the degree of heart failure, chronic kidney disease increases the risk of death and cardiac decompensation. Left ventricular hypertrophy (LVH is a well known option of cardiac remodeling and it has higher prevalence among people with impaired renal function. Types of myocardial remodeling identify mortality risk of patients with cardiovascular complications. We know that gender and age are important risk factors for cardiovascular disease. However, in most studies structural remodeling of the myocardium was analyzed without sex and age characteristics. The aim of research is to study the age features of the formation of different types of myocardial remodeling in men with ischemic chronic heart failure and renal dysfunction. Materials and methods. To investigate the age characteristics of cardiac remodeling in men with ischemic chronic heart failure and renal dysfunction structural and functional remodeling of left ventricular myocardium was studied in 277 men (mean age 58,1±9,3 years using Doppler echocardiography. Depending on the glomerular filtration rate, patients were divided into 3 groups: 58 with normal GFR (>90 ml/min/1.73m2, 182 with a slight decrease in GFR (60-90 ml/min/1.73m2 and 37 with moderately reduced GFR (<60 ml/min/1.73m2. Echocardiography was performed using the General Electric VIVID 3 system (General Electric Healthcare, USA with the 2.5–3.5 MHz transducer and Doppler technique. Descriptive statistics are presented as mean±standard deviation for continuous variables and as percentages for categorical variables. Depending on the distribution of the analyzed parameters unpaired Student's t-test or U-Mann-Whitney test were used. Comparisons among all groups for baseline clinical variables were performed with the Pearson χ2 or Fisher exact test for categorical variables. Differences were considered reliable for

  16. Renal protection in diabetes--an emerging role for calcium antagonists

    DEFF Research Database (Denmark)

    Parving, H H; Tarnow, L; Rossing, P

    1997-01-01

    The combination of diabetes and hypertension increases the changes of progressive renal disorder and ultimately renal failure. Roughly 40% of all diabetics, whether insulin dependent or not, develop diabetic nephropathy. Diabetic nephropathy is the single most important cause of end-stage renal...... disease in the western world and accounts for more than a quarter of all end-stage renal diseases. It is also a major cause of increased morbidity and mortality in diabetic patients. Increased arterial blood pressure is an early and common phenomenon in incipient and overt diabetic nephropathy...... the ability to retard renal growth and possibly to attenuate mesangial entrapment of macromolecules and to attenuate the mitogenic effects of diverse growth factors. Calcium antagonists (except the old short-acting dihydropyridine drugs) reduce microalbuminuria and preserve kidney function in diabetic...

  17. Proximal tubular hypertrophy and enlarged glomerular and proximal tubular urinary space in obese subjects with proteinuria.

    Directory of Open Access Journals (Sweden)

    Ana Tobar

    Full Text Available BACKGROUND: Obesity is associated with glomerular hyperfiltration, increased proximal tubular sodium reabsorption, glomerular enlargement and renal hypertrophy. A single experimental study reported an increased glomerular urinary space in obese dogs. Whether proximal tubular volume is increased in obese subjects and whether their glomerular and tubular urinary spaces are enlarged is unknown. OBJECTIVE: To determine whether proximal tubules and glomerular and tubular urinary space are enlarged in obese subjects with proteinuria and glomerular hyperfiltration. METHODS: Kidney biopsies from 11 non-diabetic obese with proteinuria and 14 non-diabetic lean patients with a creatinine clearance above 50 ml/min and with mild or no interstitial fibrosis were retrospectively analyzed using morphometric methods. The cross-sectional area of the proximal tubular epithelium and lumen, the volume of the glomerular tuft and of Bowman's space and the nuclei number per tubular profile were estimated. RESULTS: Creatinine clearance was higher in the obese than in the lean group (P=0.03. Proteinuria was similarly increased in both groups. Compared to the lean group, the obese group displayed a 104% higher glomerular tuft volume (P=0.001, a 94% higher Bowman's space volume (P=0.003, a 33% higher cross-sectional area of the proximal tubular epithelium (P=0.02 and a 54% higher cross-sectional area of the proximal tubular lumen (P=0.01. The nuclei number per proximal tubular profile was similar in both groups, suggesting that the increase in tubular volume is due to hypertrophy and not to hyperplasia. CONCLUSIONS: Obesity-related glomerular hyperfiltration is associated with proximal tubular epithelial hypertrophy and increased glomerular and tubular urinary space volume in subjects with proteinuria. The expanded glomerular and urinary space is probably a direct consequence of glomerular hyperfiltration. These effects may be involved in the pathogenesis of obesity

  18. Genetics Home Reference: myostatin-related muscle hypertrophy

    Science.gov (United States)

    ... Twitter Home Health Conditions Myostatin-related muscle hypertrophy Myostatin-related muscle hypertrophy Printable PDF Open All Close ... Javascript to view the expand/collapse boxes. Description Myostatin-related muscle hypertrophy is a rare condition characterized ...

  19. Inhibition of p38 MAPK attenuates renal atrophy and fibrosis in a murine renal artery stenosis model.

    Science.gov (United States)

    Wang, Diping; Warner, Gina M; Yin, Ping; Knudsen, Bruce E; Cheng, Jingfei; Butters, Kim A; Lien, Karen R; Gray, Catherine E; Garovic, Vesna D; Lerman, Lilach O; Textor, Stephen C; Nath, Karl A; Simari, Robert D; Grande, Joseph P

    2013-04-01

    Renal artery stenosis (RAS) is an important cause of chronic renal dysfunction. Recent studies have underscored a critical role for CCL2 (MCP-1)-mediated inflammation in the progression of chronic renal damage in RAS and other chronic renal diseases. In vitro studies have implicated p38 MAPK as a critical intermediate for the production of CCL2. However, a potential role of p38 signaling in the development and progression of chronic renal disease in RAS has not been previously defined. We sought to test the hypothesis that inhibition of p38 MAPK ameliorates chronic renal injury in mice with RAS. We established a murine RAS model by placing a cuff on the right renal artery and treated mice with the p38 inhibitor SB203580 or vehicle for 2 wk. In mice treated with vehicle, the cuffed kidney developed interstitial fibrosis, tubular atrophy, and interstitial inflammation. In mice treated with SB203580, the RAS-induced renal atrophy was reduced (70% vs. 39%, P < 0.05). SB203580 also reduced interstitial inflammation and extracellular matrix deposition but had no effect on the development of hypertension. SB203580 partially blocked the induction of CCL2, CCL7 (MCP-3), CC chemokine receptor 2 (CCR2), and collagen 4 mRNA expression in the cuffed kidneys. In vitro, blockade of p38 hindered both TNF-α and TGF-β-induced CCL2 upregulation. Based on these observations, we conclude that p38 MAPK plays a critical role in the induction of CCL2/CCL7/CCR2 system and the development of interstitial inflammation in RAS.

  20. Compensatory Hypertrophy of Skeletal Muscle: Contractile Characteristics

    Science.gov (United States)

    Ianuzzo, C. D.; Chen, V.

    1977-01-01

    Describes an experiment using rats that demonstrates contractile characteristics of normal and hypertrophied muscle. Compensatory hypertrophy of the plantaris muscle is induced by surgical removal of the synergistic gastrocnemium muscle. Includes methods for determination of contractile properties of normal and hypertrophied muscle and…

  1. Blockade of Death Ligand TRAIL Inhibits Renal Ischemia Reperfusion Injury

    International Nuclear Information System (INIS)

    Adachi, Takaomi; Sugiyama, Noriyuki; Gondai, Tatsuro; Yagita, Hideo; Yokoyama, Takahiko

    2013-01-01

    Renal ischemia-reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI). Many investigators have reported that cell death via apoptosis significantly contributed to the pathophysiology of renal IRI. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor superfamily, and induces apoptosis and inflammation. However, the role of TRAIL in renal IRI is unclear. Here, we investigated whether TRAIL contributes to renal IRI and whether TRAIL blockade could attenuate renal IRI. AKI was induced by unilateral clamping of the renal pedicle for 60 min in male FVB/N mice. We found that the expression of TRAIL and its receptors were highly upregulated in renal tubular cells in renal IRI. Neutralizing anti-TRAIL antibody or its control IgG was given 24 hr before ischemia and a half-dose booster injection was administered into the peritoneal cavity immediately after reperfusion. We found that TRAIL blockade inhibited tubular apoptosis and reduced the accumulation of neutrophils and macrophages. Furthermore, TRAIL blockade attenuated renal fibrosis and atrophy after IRI. In conclusion, our study suggests that TRAIL is a critical pathogenic factor in renal IRI, and that TRAIL could be a new therapeutic target for the prevention of renal IRI

  2. Different renal phenotypes in related adult males with Fabry disease with the same classic genotype.

    Science.gov (United States)

    Mignani, Renzo; Moschella, Mariarita; Cenacchi, Giovanna; Donati, Ilaria; Flachi, Marta; Grimaldi, Daniela; Cerretani, Davide; Giovanni, Paola De; Montevecchi, Marcello; Rigotti, Angelo; Ravasio, Alessandro

    2017-07-01

    Fabry disease related patients with classical mutation usually exhibit similar severe phenotype especially concerning renal manifestation. A dry blood spot screening (DBS) and the DNA analysis has been performed in a 48-year-old man (Patient 1) because of paresthesia. The DBS revealed absent leukocyte α -Gal A enzyme activity while DNA analysis identified the I354K mutation. Serum creatinine and e-GFR were in normal range and also albuminuria and proteinuria were absent. The brain MRI showed ischemic lesions and a diffuse focus of gliosis in the white matter, while the echocardiogram showed a left ventricular hypertrophy. The renal biopsy performed in the case index showed a massive deposition of zebra bodies. By a familiar investigation, it was recognized that his brother (Patient 2) died 2 years before from sudden death syndrome at the age of 49. He had suffered sporadic and undiagnosed pain at the extremities, a prior cataract, bilateral neurosensorial hearing loss and left ventricular hypertrophy on Echocardiogram. His previous laboratory examinations revealed a normal serum creatinine and the absence of proteinuria. Pedigree analysis of the brothers revealed a high disease burden among family members, with an affected cousin (Patient 3) who progressed early to end-stage renal disease (ESRD) that required renal transplantation. Here we describe the clinical history of three adult male members of the same family with the same genotype who manifested different presentation and progression of the disease, particularly concerning the renal involvement.

  3. Low Protein Diet Inhibits Uric Acid Synthesis and Attenuates Renal Damage in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Jianmin Ran

    2014-01-01

    Full Text Available Aim. Several studies indicated that hyperuricemia may link to the worsening of diabetic nephropathy (DN. Meanwhile, low protein diet (LPD retards exacerbation of renal damage in chronic kidney disease. We then assessed whether LPD influences uric acid metabolism and benefits the progression of DN in streptozotocin- (STZ- induced diabetic rats. Methods. STZ-induced and control rats were both fed with LPD (5% and normal protein diet (18%, respectively, for 12 weeks. Vital signs, blood and urinary samples for UA metabolism were taken and analyzed every 3 weeks. Kidneys were removed at the end of the experiment. Results. Diabetic rats developed into constantly high levels of serum UA (SUA, creatinine (SCr and 24 h amounts of urinary albumin excretion (UAE, creatintine (UCr, urea nitrogen (UUN, and uric acid (UUA. LPD significantly decreased SUA, UAE, and blood glucose, yet left SCr, UCr, and UUN unchanged. A stepwise regression showed that high UUA is an independent risk factor for DN. LPD remarkably ameliorated degrees of enlarged glomeruli, proliferated mesangial cells, and hyaline-degenerated tubular epithelial cells in diabetic rats. Expression of TNF-α in tubulointerstitium significantly decreased in LPD-fed diabetic rats. Conclusion. LPD inhibits endogenous uric acid synthesis and might accordingly attenuate renal damage in STZ-induced diabetic rats.

  4. Cardiac and renal damage in the elderly hypertensive

    Directory of Open Access Journals (Sweden)

    Jean Ribstein

    2002-03-01

    Full Text Available In the elderly patient with essential hypertension of long duration or de novo systolic hypertension, the prevalence of co-morbid conditions, be they apparent or not, the burden of associated diseases and the alteration in nutritional status and lifestyle, result in specific problems with regards to hypertension-related target organ damage. Accumulating data suggest that left ventricular (LV remodelling is a common finding in the nor-motensive elderly, and that LV hypertrophy (LVH will herald the development of heart failure in a fraction of patients with either systolic/diastolic or isolated systolic hypertension. Increased arterial stiffness, as well as impaired myocardial relaxation, reduced early diastolic filling and decreased ?-adrenergic responsiveness, contribute to the large prevalence of abnormalities in LV function in the elderly hypertensive. The response to exercise is clearly attenuated, and coronary heart disease, although highly prevalent, may be misdiagnosed because symptoms are altered. The elderly hypertensive is exquisitely sensitive to both volume depletion and excessive sodium intake, due to a marked sodium sensitivity of blood pressure (BP. A decline in renal blood flow and glomerular filtration rate (GFR is a common finding in the elderly. Although structural alterations attributed to age and hypertension may differ, hypertension is often looked upon as an accelerated form of ageing with regards to the heart and the kidney. Lifestyle modifications and initial monotherapy with a low-dose diuretic are warranted in the elderly hypertensive with no co-morbidity; a variety of specific approaches are considered when associated clinical conditions are present. Blockers of the renin-angiotensin system (RAS may be the preferred first-line agents in many patients with cardiac or renal damage.

  5. Low-intensity interval exercise training attenuates coronary vascular dysfunction and preserves Ca2+-sensitive K+ current in miniature swine with LV hypertrophy

    Science.gov (United States)

    Tharp, Darla L.; Ivey, Jan R.; Ganjam, Venkataseshu K.; Bowles, Douglas K.

    2011-01-01

    Coronary vascular dysfunction has been observed in several models of heart failure (HF). Recent evidence indicates that exercise training is beneficial for patients with HF, but the precise intensity and underlying mechanisms are unknown. Left ventricular (LV) hypertrophy can play a significant role in the development of HF; therefore, the purpose of this study was to assess the effects of low-intensity interval exercise training on coronary vascular function in sedentary (HF) and exercise trained (HF-TR) aortic-banded miniature swine displaying LV hypertrophy. Six months postsurgery, in vivo coronary vascular responses to endothelin-1 (ET-1) and adenosine were measured in the left anterior descending coronary artery. Baseline and maximal coronary vascular conductance were similar between all groups. ET-1-induced reductions in coronary vascular conductance (P < 0.05) were greater in HF vs. sedentary control and HF-TR groups. Pretreatment with the ET type A (ETA) receptor blocker BQ-123 prevented ET-1 hypersensitivity in HF animals. Whole cell voltage clamp was used to characterize composite K+ currents (IK+) in coronary smooth muscle cells. Raising internal Ca2+ from 200 to 500 nM increased Ca2+-sensitive K+ current in HF-TR and control, but not HF animals. In conclusion, an ETA-receptor-mediated hypersensitivity to ET-1, elevated resting LV wall tension, and decreased coronary smooth muscle cell Ca2+-sensitive IK+ was found in sedentary animals with LV hypertrophy. Low-intensity interval exercise training preserved normal coronary vascular function and smooth muscle cell Ca2+-sensitive IK+, illustrating a potential mechanism underlying coronary vascular dysfunction in a large-animal model of LV hypertrophy. Our results demonstrate the potential clinical impact of exercise on coronary vascular function in HF patients displaying pathological LV hypertrophy. PMID:21841018

  6. Compensative hypertrophy of the kidney

    International Nuclear Information System (INIS)

    Raynaud, C.

    1976-01-01

    Several measurement methods are available to practitioners to reveal a compensative hypertrophy. Mensuration of the kidney has the advantage of simplicity but is in fact an unreliable and inaccurate method. Separate clearances in their traditional form have never entered into routine use because of the disadvantages of ureteral catheterism. The use of radioactive tracers avoids this drawback, but clearances calculated in this way are only valid in the absence of obstructive urinary disorders. Solutions have been proposed, but the values obtained are no longer identical with the clearances. The Hg uptake test quantifies quite accurately the function of each kidney. From the results obtained a complete compensative hypertrophy developed on a healthy kidney and an incomplete compensative hypertrophy developed on the diseased kidney have been described. In each of these situations the degree to which compensative hypertrophy develops seems to be fixed at a given level peculiar to each patient [fr

  7. Muscle Plasticity and β2-Adrenergic Receptors: Adaptive Responses of β2-Adrenergic Receptor Expression to Muscle Hypertrophy and Atrophy

    OpenAIRE

    Shogo Sato; Ken Shirato; Kaoru Tachiyashiki; Kazuhiko Imaizumi

    2011-01-01

    We discuss the functional roles of β2-adrenergic receptors in skeletal muscle hypertrophy and atrophy as well as the adaptive responses of β2-adrenergic receptor expression to anabolic and catabolic conditions. β2-Adrenergic receptor stimulation using anabolic drugs increases muscle mass by promoting muscle protein synthesis and/or attenuating protein degradation. These effects are prevented ...

  8. Persistent renal enhancement after intra-arterial versus intravenous iodixanol administration

    International Nuclear Information System (INIS)

    Chou, Shinn-Huey; Wang, Zhen J.; Kuo, Jonathan; Cabarrus, Miguel; Fu Yanjun; Aslam, Rizwan; Yee, Judy; Zimmet, Jeffrey M.; Shunk, Kendrick; Elicker, Brett; Yeh, Benjamin M.

    2011-01-01

    Purpose: To examine the clinical significance of persistent renal enhancement after iodixanol administration. Methods: We retrospectively studied 166 consecutive patients who underwent non-enhanced abdominopelvic CT within 7 days after receiving intra-arterial (n = 99) or intravenous (n = 67) iodixanol. Renal attenuation was measured for each non-enhanced CT scan. Persistent renal enhancement was defined as CT attenuation >55 Hounsfield units (HU). Contrast-induced nephropathy (CIN) was defined as a rise in serum creatinine >0.5 mg/dL within 5 days after contrast administration. Results: While the intensity and frequency of persistent renal enhancement was higher after intra-arterial (mean CT attenuation of 73.7 HU, seen in 54 of 99 patients, or 55%) than intravenous contrast material administration (51.8 HU, seen in 21 of 67, or 31%, p < 0.005), a multivariate regression model showed that the independent predictors of persistent renal enhancement were a shorter time interval until the subsequent non-enhanced CT (p < 0.001); higher contrast dose (p < 0.001); higher baseline serum creatinine (p < 0.01); and older age (p < 0.05). The route of contrast administration was not a predictor of persistent renal enhancement in this model. Contrast-induced nephropathy was noted in 9 patients who received intra-arterial (9%) versus 3 who received intravenous iodixanol (4%), and was more common in patients with persistent renal enhancement (p < 0.01). Conclusion: Persistent renal enhancement at follow-up non-contrast CT suggests a greater risk for contrast-induced nephropathy, but the increased frequency of striking renal enhancement in patients who received intra-arterial rather than intravenous contrast material also reflects the larger doses of contrast and shorter time to subsequent follow-up CT scanning for such patients.

  9. The clinical factors associated with benign renal tumors

    International Nuclear Information System (INIS)

    Yamashita, Ryo; Nakamura, Masafumi; Matsuzaki, Masato; Matsui, Takashi; Yamaguchi, Raizo; Niwakawa, Masashi; Tobisu, Kenichi; Asakura, Koiku; Ito, Ichiro

    2009-01-01

    In this study, we sought to define the incidence of benign renal tumors in our institute and to clarify the clinical factors associated with benign renal tumors, in order to assist in forming preoperative differential diagnoses. From October 2002 to July 2007, we performed 157 nephrectomies in patients preoperatively diagnosed with renal cell carcinoma. We chose 81 tumors, all of which were less than 5 cm, for further study. We reviewed double-phase helical CT imaging retrospectively, specifically focusing on attenuation patterns and homogeneity. We also compared clinical factors, including age, sex and tumor size, between the benign and malignant renal tumors. The patient's median age was 67 years (mean age, 63 years), and the median tumor diameter was 3.0 cm (mean, 3.2 cm). Benign renal tumors were found in 10 (12%) of the 81 tumors; these included seven cases of oncocytoma and three cases of angiomyolipoma with minimal fat. Several factors were significant clinical determinants of differentiation between benign and malignant renal tumors: homogeneity in CT, female gender, and small tumor size all predominated in cases of benign tumors. Attenuation pattern in CT, however, was not a significant factor (p=0.344). When a patient, especially a female, presents with a small and homogeneous renal tumor, careful consideration should be given to the possibility of a benign process, which needs further consideration before performing excessive surgery. (author)

  10. Gender and post-ischemic recovery of hypertrophied rat hearts

    Directory of Open Access Journals (Sweden)

    Popov Kirill M

    2006-03-01

    Full Text Available Abstract Background Gender influences the cardiac response to prolonged increases in workload, with differences at structural, functional, and molecular levels. However, it is unknown if post-ischemic function or metabolism of female hypertrophied hearts differ from male hypertrophied hearts. Thus, we tested the hypothesis that gender influences post-ischemic function of pressure-overload hypertrophied hearts and determined if the effect of gender on post-ischemic outcome could be explained by differences in metabolism, especially the catabolic fate of glucose. Methods Function and metabolism of isolated working hearts from sham-operated and aortic-constricted male and female Sprague-Dawley rats before and after 20 min of no-flow ischemia (N = 17 to 27 per group were compared. Parallel series of hearts were perfused with Krebs-Henseleit solution containing 5.5 mM [5-3H/U-14C]-glucose, 1.2 mM [1-14C]-palmitate, 0.5 mM [U-14C]-lactate, and 100 mU/L insulin to measure glycolysis and glucose oxidation in one series and oxidation of palmitate and lactate in the second. Statistical analysis was performed using two-way analysis of variance. The sequential rejective Bonferroni procedure was used to correct for multiple comparisons and tests. Results Female gender negatively influenced post-ischemic function of non-hypertrophied hearts, but did not significantly influence function of hypertrophied hearts after ischemia such that mass-corrected hypertrophied heart function did not differ between genders. Before ischemia, glycolysis was accelerated in hypertrophied hearts, but to a greater extent in males, and did not differ between male and female non-hypertrophied hearts. Glycolysis fell in all groups after ischemia, except in non-hypertrophied female hearts, with the reduction in glycolysis after ischemia being greatest in males. Post-ischemic glycolytic rates were, therefore, similarly accelerated in hypertrophied male and female hearts and higher in

  11. Role of bone marrow-derived CD11c+ dendritic cells in systolic overload-induced left ventricular inflammation, fibrosis and hypertrophy.

    Science.gov (United States)

    Wang, Huan; Kwak, Dongmin; Fassett, John; Liu, Xiaohong; Yao, Wu; Weng, Xinyu; Xu, Xin; Xu, Yawei; Bache, Robert J; Mueller, Daniel L; Chen, Yingjie

    2017-05-01

    Inflammatory responses play an important role in the development of left ventricular (LV) hypertrophy and dysfunction. Recent studies demonstrated that increased T-cell infiltration and T-cell activation contribute to LV hypertrophy and dysfunction. Dendritic cells (DCs) are professional antigen-presenting cells that orchestrate immune responses, especially by modulating T-cell function. In this study, we investigated the role of bone marrow-derived CD11c + DCs in transverse aortic constriction (TAC)-induced LV fibrosis and hypertrophy in mice. We observed that TAC increased the number of CD11c + cells and the percentage of CD11c + MHCII + (major histocompatibility complex class II molecule positive) DCs in the LV, spleen and peripheral blood in mice. Using bone marrow chimeras and an inducible CD11c + DC ablation model, we found that depletion of bone marrow-derived CD11c + DCs significantly attenuated LV fibrosis and hypertrophy in mice exposed to 24 weeks of moderate TAC. CD11c + DC ablation significantly reduced TAC-induced myocardial inflammation as indicated by reduced myocardial CD45 + cells, CD11b + cells, CD8 + T cells and activated effector CD8 + CD44 + T cells in LV tissues. Moreover, pulsing of autologous DCs with LV homogenates from TAC mice promoted T-cell proliferation. These data indicate that bone marrow-derived CD11c + DCs play a maladaptive role in hemodynamic overload-induced cardiac inflammation, hypertrophy and fibrosis through the presentation of cardiac self-antigens to T cells.

  12. Dipyridamole-thallium tests are predictive of severe cardiac arrhythmias in patients with left ventricular hypertrophy

    International Nuclear Information System (INIS)

    Saragoca, M.A.; Canziani, M.E.; Gil, M.A.; Castiglioni, M.L.; Cassiolato, J.L.; Barbieri, A.; Lima, V.C.; Draibe, S.A.; Martinez, E.E.

    1991-01-01

    In a population of patients with chronic renal failure (CRF) and a high prevalence of left ventricular hypertrophy (LVH) undergoing chronic hemodialysis, the authors investigated the association between the results of dipyridamole-thallium tests (DTTs) and the occurrence of ventricular arrhythmias. They observed a positive significant association between positive DTTs and the occurrence of severe forms of ventricular arrhythmias. A significant association was also observed between the presence of severe LVH and the occurrence of severe ventricular arrhythmias. However, no association was found between the presence of LVH and the positivity of the DTT. As most of their patients with positive DTTs had unimpaired coronary circulations, they conclude that positive DTTs, although falsely indicative of impaired myocardial blood supply, does have an important clinical relevance, indicating increased risk of morbidity (and, possibly, mortality) due to ventricular arrhythmias in a population of CRF patients submitted to chronic renal function replacement program

  13. Inhibiting aerobic glycolysis suppresses renal interstitial fibroblast activation and renal fibrosis.

    Science.gov (United States)

    Ding, Hao; Jiang, Lei; Xu, Jing; Bai, Feng; Zhou, Yang; Yuan, Qi; Luo, Jing; Zen, Ke; Yang, Junwei

    2017-09-01

    Chronic kidney diseases generally lead to renal fibrosis. Despite great progress having been made in identifying molecular mediators of fibrosis, the mechanism that governs renal fibrosis remains unclear, and so far no effective therapeutic antifibrosis strategy is available. Here we demonstrated that a switch of metabolism from oxidative phosphorylation to aerobic glycolysis (Warburg effect) in renal fibroblasts was the primary feature of fibroblast activation during renal fibrosis and that suppressing renal fibroblast aerobic glycolysis could significantly reduce renal fibrosis. Both gene and protein assay showed that the expression of glycolysis enzymes was upregulated in mouse kidneys with unilateral ureter obstruction (UUO) surgery or in transforming growth factor-β1 (TGF-β1)-treated renal interstitial fibroblasts. Aerobic glycolysis flux, indicated by glucose uptake and lactate production, was increased in mouse kidney with UUO nephropathy or TGF-β1-treated renal interstitial fibroblasts and positively correlated with fibrosis process. In line with this, we found that increasing aerobic glycolysis can remarkably induce myofibroblast activation while aerobic glycolysis inhibitors shikonin and 2-deoxyglucose attenuate UUO-induced mouse renal fibrosis and TGF-β1-stimulated myofibroblast activation. Furthermore, mechanistic study indicated that shikonin inhibits renal aerobic glycolysis via reducing phosphorylation of pyruvate kinase type M2, a rate-limiting glycolytic enzyme associated with cell reliance on aerobic glycolysis. In conclusion, our findings demonstrate the critical role of aerobic glycolysis in renal fibrosis and support treatment with aerobic glycolysis inhibitors as a potential antifibrotic strategy. Copyright © 2017 the American Physiological Society.

  14. The role of satellite cells in muscle hypertrophy.

    Science.gov (United States)

    Blaauw, Bert; Reggiani, Carlo

    2014-02-01

    The role of satellite cells in muscle hypertrophy has long been a debated issue. In the late 1980s it was shown that proteins remain close to the myonucleus responsible for its synthesis, giving rise to the idea of a nuclear domain. This, together with the observation that during various models of muscle hypertrophy there is an activation of the muscle stem cells, i.e. satellite cells, lead to the idea that satellite cell activation is required for muscle hypertrophy. Thus, satellite cells are not only responsible for muscle repair and regeneration, but also for hypertrophic growth. Further support for this line of thinking was obtained after studies showing that irradiation of skeletal muscle, and therefore elimination of all satellite cells, completely prevented overload-induced hypertrophy. Recently however, using different transgenic approaches, it has become clear that muscle hypertrophy can occur without a contribution of satellite cells, even though in most situations of muscle hypertrophy satellite cells are activated. In this review we will discuss the contribution of satellite cells, and other muscle-resident stem cells, to muscle hypertrophy both in mice as well as in humans.

  15. CT of the renal infarction

    International Nuclear Information System (INIS)

    Tazawa, Satoru; Ito, Hisao; Tange, Isamu

    1984-01-01

    We have five cases of the global renal infarction, four of which resulted from post-transarterial embolization(TAE) of the hypernephroma, the remaining one was probably caused by the cardiac disease. Generally speaking, CE-CT is useful for the diagnosis of the acute renal infarction, because the ''rim sign'' which represents viable subcapsular parenchyma is helpful for the diagnosis. It seems that band-like enhancement from the renal sinus to the periphery in the low-attenuation-parenchyma on CE-CT, named as ''band sign'', is useful for the diagnosis. ''Band sign'' may also be valuable for distinguishing the neoplastic area from the non-neoplastic one after TAE of the hypernephroma. (author)

  16. Raf-mediated cardiac hypertrophy in adult Drosophila

    Directory of Open Access Journals (Sweden)

    Lin Yu

    2013-07-01

    In response to stress and extracellular signals, the heart undergoes a process called cardiac hypertrophy during which cardiomyocytes increase in size. If untreated, cardiac hypertrophy can progress to overt heart failure that causes significant morbidity and mortality. The identification of molecular signals that cause or modify cardiomyopathies is necessary to understand how the normal heart progresses to cardiac hypertrophy and heart failure. Receptor tyrosine kinase (RTK signaling is essential for normal human cardiac function, and the inhibition of RTKs can cause dilated cardiomyopathies. However, neither investigations of activated RTK signaling pathways nor the characterization of hypertrophic cardiomyopathy in the adult fly heart has been previously described. Therefore, we developed strategies using Drosophila as a model to circumvent some of the complexities associated with mammalian models of cardiovascular disease. Transgenes encoding activated EGFRA887T, Ras85DV12 and Ras85DV12S35, which preferentially signal to Raf, or constitutively active human or fly Raf caused hypertrophic cardiomyopathy as determined by decreased end diastolic lumen dimensions, abnormal cardiomyocyte fiber morphology and increased heart wall thicknesses. There were no changes in cardiomyocyte cell numbers. Additionally, activated Raf also induced an increase in cardiomyocyte ploidy compared with control hearts. However, preventing increases in cardiomyocyte ploidy using fizzy-related (Fzr RNAi did not rescue Raf-mediated cardiac hypertrophy, suggesting that Raf-mediated polyploidization is not required for cardiac hypertrophy. Similar to mammals, the cardiac-specific expression of RNAi directed against MEK or ERK rescued Raf-mediated cardiac hypertrophy. However, the cardiac-specific expression of activated ERKD334N, which promotes hyperplasia in non-cardiac tissues, did not cause myocyte hypertrophy. These results suggest that ERK is necessary, but not sufficient, for Raf

  17. Imoxin attenuates high fructose-induced oxidative stress and apoptosis in renal epithelial cells via downregulation of protein kinase R pathway.

    Science.gov (United States)

    Kalra, Jaspreet; Mangali, Suresh Babu; Bhat, Audesh; Dhar, Indu; Udumula, Mary Priyanka; Dhar, Arti

    2018-02-11

    Double-stranded RNA (dsRNA)-activated protein kinase R (PKR), a ubiquitously expressed serine/threonine kinase, is a key inducer of inflammation, insulin resistance, and glucose homeostasis in obesity. Recent studies have demonstrated that PKR can respond to metabolic stress in mice as well as in humans. However, the underlying molecular mechanism is not fully understood. The aim of this study was to examine the effect of high fructose (HF) in cultured renal tubular epithelial cells (NRK-52E) derived from rat kidney and to investigate whether inhibition of PKR could prevent any deleterious effects of HF in these cells. PKR expression was determined by immunofluorescence staining and Western blotting. Oxidative damage and apoptosis were measured by flow cytometry. HF-treated renal cells developed a significant increase in PKR expression. A significant increase in reactive oxygen species generation and apoptosis was also observed in HF-treated cultured renal epithelial cells. All these effects of HF were attenuated by a selective PKR inhibitor, imoxin (C16). In conclusion, our study demonstrates PKR induces oxidative stress and apoptosis, is a significant contributor involved in vascular complications and is a possible mediator of HF-induced hypertension. Inhibition of PKR pathway can be used as a therapeutic strategy for the treatment of cardiovascular and metabolic disorders. © 2018 Société Française de Pharmacologie et de Thérapeutique.

  18. Glyoxalase-1 overexpression reduces endothelial dysfunction and attenuates early renal impairment in a rat model of diabetes

    DEFF Research Database (Denmark)

    Brouwers, Olaf; Niessen, Petra M G; Miyata, Toshio

    2014-01-01

    AIMS/HYPOTHESIS: In diabetes, advanced glycation end-products (AGEs) and the AGE precursor methylglyoxal (MGO) are associated with endothelial dysfunction and the development of microvascular complications. In this study we used a rat model of diabetes, in which rats transgenically overexpressed...... the MGO-detoxifying enzyme glyoxalase-I (GLO-I), to determine the impact of intracellular glycation on vascular function and the development of early renal changes in diabetes. METHODS: Wild-type and Glo1-overexpressing rats were rendered diabetic for a period of 24 weeks by intravenous injection...... podocyte number and diabetes-induced elevation of urinary markers albumin, osteopontin, kidney-inflammation-molecule-1 and nephrin) were attenuated by Glo1 overexpression. In line with this, downregulation of Glo1 in cultured endothelial cells resulted in increased expression of inflammation...

  19. [Effects of qishenyiqi gutta pills on calcium/calmodulin dependent protein kinase II in rats with renal hypertension].

    Science.gov (United States)

    Zhang, Xiao-ying; Wei, Wan-lin; Shu, Chang-cheng; Zhang, Ling; Tian, Guo-xiang

    2013-02-05

    To explore the effects of qishenyiqi gutta pills on myocardial hypertrophy of left ventricle and calcium/calmodulin dependent protein kinase II (CAMK II) in rats with renal hypertension and elucidate its intervention mechanism for myocardial hypertrophy. A total of 50 Wistar rats were randomly divided into 5 groups of sham-operation, control, high-dose qishenyiqi gutta pills, low-dose qishenyiqi gutta pills and valsartan (n = 10 each). The rat model of myocardial hypertrophy with renal hypertension was established by the 2-kidney 1-clip (2K1C) method. The experimental animals were divided into control, high-dose, low-dose and valsartan groups. At Week 5 postoperation, valsartan group received an oral dose of valsartan (30 mg×kg(-1)×d(-1)), high-dose and low-dose groups took qishenyiqi gutta pills (250 and 125 mg×kg(-1)×d(-1)) while sham-operation and control groups had the same dose of normal saline solution. Tail arterial pressure was detected weekly and continued for 8 weeks. At the end of Week 12, the animals were sacrificed to harvest myocardial tissue of left ventricle for detecting left ventricular mass index (LVMI). The collagen volume fraction (CVF) of myocardium was examined by Van Gieson staining, the activities of superoxide dismutase (SOD) and reactive oxygen species (ROS) were detected by enzyme-linked immunosorbent assay (ELISA) and the expression of CAMK II was detected by immunohistochemistry and Western blot. (1) Blood pressures were significantly higher in high-dose, low-dose and control groups than those in sham-operation and valsartan groups ((167.66 ± 11.48), (166.72 ± 13.51), (174.34 ± 14.52) vs (119.57 ± 6.30), (131.80 ± 12.49) mm Hg, P pills may retard myocardial hypertrophy of left ventricle in rats with renal hypertension. And the mechanism is probably be correlated with its antioxidant activity and inhibited expression of myocardial CAMK II.

  20. Acute renal haemodynamic and renin-angiotensin system responses to graded renal artery stenosis in the dog.

    Science.gov (United States)

    Anderson, W P; Johnston, C I; Korner, P I

    1979-01-01

    1. The acute renal haemodynamic and renin-angiotensin system responses to graded renal artery stenosis were studied in chronically instrumented, unanaesthetized dogs. 2. Stenosis was induced over 30 sec by inflation of a cuff around the renal artery to lower distal pressure to 60, 40 or 20 mmHg, with stenosis maintained for 1 hr. This resulted in an immediate fall in renal vascular resistance, but over the next 5--30 min both resistance and renal artery pressure were restored back towards prestenosis values. Only transient increases in systemic arterial blood pressure and plasma renin and angiotensin levels were seen with the two milder stenoses. Despite restoration of renal artery pressure, renal blood flow remained reduced at all grades of stenosis. 3. Pre-treatment with angiotensin I converting enzyme inhibitor or sarosine1, isoleucone8 angiotensin II greatly attenuated or abolished the restoration of renal artery pressure and renal vascular resistance after stenosis, and plasma renin and angiotensin II levels remained high. Renal dilatation was indefinitely maintained, but the normal restoration of resistance and pressure could be simulated by infusing angiotensin II into the renal artery. 4. The effective resistance to blood flow by the stenosis did not remain constant but varied with changes in the renal vascular resistance. PMID:219182

  1. Tc-99m-DMSA renal uptake rate and renal volume of elderly persons

    International Nuclear Information System (INIS)

    Ohishi, Yukihiko; Machida, Toyohei; Kido, Akira

    1987-01-01

    Renal function of erderly persons was evaluated by the radionuclide renal function test based on the renal uptake rate and the renal volume determined by Tc-99m-DMSA transectional tomographic images using single photon emission computed tomography (SPECT). Forty-three erderly cases (13 healthy persons and 30 patients with various types of renal disorders) aged between 60 and 87 on an average of 70 were studied and compared with results obtained from 20 healthy adults (18 - 45 years old). Renal volume was calculated from the summation of voxels in the region districted by equi-count threshold level (percentage to maximum count) on each section of the SPECT image. Attenuation correction was made by GE-STAR protocol utilizing Sorrenson's precorrection method. The renal uptake rate was expressed as a percentage of the total radioactivity detected within the renal volume, against an amount of dose injected. In the 26 kidneys of 13 healthy elderly persons, Tc-99m-DMSA renal uptake was 23 ± 5 %, which was significantly lower (p < 0.01) than that of healthy adults being 27 ± 2 %. A correlation coefficient between renal volume and uptake of 79 kidneys of 43 elderly persons was 0.5081 (p < 0.01). Creatinine clearance (Ccr) was better correlated with the total renal uptake (r = 0.6471, p < 0.01) than with the total renal volume (r = 0.3592, p < 0.01). This method is considered to be useful for clinical purpose as a test of renal function for elderly persons since it requires neither blood nor urine samples. (author)

  2. Mycophenolate mofetil attenuates pulmonary arterial hypertension in rats

    International Nuclear Information System (INIS)

    Suzuki, Chihiro; Takahashi, Masafumi; Morimoto, Hajime; Izawa, Atsushi; Ise, Hirohiko; Hongo, Minoru; Hoshikawa, Yasushi; Ito, Takayuki; Miyashita, Hiroshi; Kobayashi, Eiji; Shimada, Kazuyuki; Ikeda, Uichi

    2006-01-01

    Pulmonary arterial hypertension (PAH) is characterized by abnormal proliferation of smooth muscle cells (SMCs), leading to occlusion of pulmonary arterioles, right ventricular (RV) hypertrophy, and death. We investigated whether mycophenolate mofetil (MMF), a potent immunosuppresssant, prevents the development of monocrotaline (MCT)-induced PAH in rats. MMF effectively decreased RV systolic pressure and RV hypertrophy, and reduced the medial thickness of pulmonary arteries. MMF significantly inhibited the number of proliferating cell nuclear antigen (PCNA)-positive cells, infiltration of macrophages, and expression of P-selectin and interleukin-6 on the endothelium of pulmonary arteries. The infiltration of T cells and mast cells was not affected by MMF. In vitro experiments revealed that mycophenolic acid (MPA), an active metabolite of MMF, dose-dependently inhibited proliferation of human pulmonary arterial SMCs. MMF attenuated the development of PAH through its anti-inflammatory and anti-proliferative properties. These findings provide new insight into the potential role of immunosuppressants in the treatment of PAH

  3. Relationship between plasma xanthine oxidoreductase activity and left ventricular ejection fraction and hypertrophy among cardiac patients.

    Directory of Open Access Journals (Sweden)

    Yuki Fujimura

    Full Text Available Xanthine oxidoreductase (XOR, which catalyzes purine catabolism, has two interconvertible forms, xanthine dehydrogenase and xanthine oxidase, the latter of which produces superoxide during uric acid (UA synthesis. An association between plasma XOR activity and cardiovascular and renal outcomes has been previously suggested. We investigated the potential association between cardiac parameters and plasma XOR activity among cardiology patients.Plasma XOR activity was measured by [13C2,15N2]xanthine coupled with liquid chromatography/triplequadrupole mass spectrometry. Among 270 patients who were not taking UA-lowering drugs, XOR activity was associated with body mass index (BMI, alanine aminotransferase (ALT, HbA1c and renal function. Although XOR activity was not associated with serum UA overall, patients with chronic kidney disease (CKD, those with higher XOR activity had higher serum UA among patients without CKD. Compared with patients with the lowest XOR activity quartile, those with higher three XOR activity quartiles more frequently had left ventricular hypertrophy. In addition, plasma XOR activity showed a U-shaped association with low left ventricular ejection fraction (LVEF and increased plasma B-type natriuretic peptide (BNP levels, and these associations were independent of age, gender, BMI, ALT, HbA1C, serum UA, and CKD stages.Among cardiac patients, left ventricular hypertrophy, low LVEF, and increased BNP were significantly associated with plasma XOR activity independent of various confounding factors. Whether pharmaceutical modification of plasma XOR activity might inhibit cardiac remodeling and improve cardiovascular outcome should be investigated in future studies.

  4. Growth speed in patients with chronic renal failure undergoing to renal transplantation between 2000 and 2009 in the Hospital Nacional de Ninos: research protocol; Velocidad de crecimiento en pacientes con insuficiencia renal cronica sometidos a trasplante renal entre el ano 2000 y el 2009 en el Hospital Nacional de Ninos: protocolo de investigacion

    Energy Technology Data Exchange (ETDEWEB)

    Arroyo Molina, Ana Victoria

    2013-07-01

    The growth speed was investigated in children with chronic renal failure after renal transplantation, in the Hospital Nacional de Ninos during the study period January 2000-December 2009. Factors that have influenced are analyzed: age of onset of renal disease, etiology of renal disease, metabolic acidosis, anemia, renal osteodystrophy, episodes of infection and rejection. Besides, on the growth rate and expected family size, to intervene or prevent them in future cases. Also, the use that has given in the hospital to growth hormone, before and after renal transplantation is determined to eventually use parallel therapies to the transplantation. An echocardiographic study is recommended to perform as part of the treatment of chronic renal failure to identify the existence of left ventricular hypertrophy and heart failure, which may occur as a result of complications of the failure [Spanish] La velocidad del crecimiento fue investigada en ninos con insuficiencia renal cronica despues del transplante renal, en el Hospital Nacional de Ninos durante el periodo de estudio enero 2000-diciembre 2009. Factores que han influido son analizados: edad de inicio de la enfermedad renal, etiologia de la enfermedad renal, la acidosis metabolica, la anemia, la osteodistrofia renal, los episodios de infecciones y rechazos. Ademas, sobre la velocidad de crecimiento y la talla familiar esperada, para intervenir en ellos o prevenirlos en casos futuros. Tambien, el uso que se ha dado en el hospital a la hormona de crecimiento, tanto antes como despues del transplante renal es determinado para eventualmente utilizar terapias paralelas al transplante, fueron determinadas. Un estudio ecocardiografico es recomendado realizar como parte del tratamiento de la insuficiencia renal cronica para identificar la existencia de hipertrofia ventricular izquierda e insuficiencia cardiaca, que pueden ocurrir como consecuencia de las complicaciones de la insuficiencia.

  5. Gallic acid prevents isoproterenol-induced cardiac hypertrophy and fibrosis through regulation of JNK2 signaling and Smad3 binding activity

    Science.gov (United States)

    Ryu, Yuhee; Jin, Li; Kee, Hae Jin; Piao, Zhe Hao; Cho, Jae Yeong; Kim, Gwi Ran; Choi, Sin Young; Lin, Ming Quan; Jeong, Myung Ho

    2016-01-01

    Gallic acid, a type of phenolic acid, has been shown to have beneficial effects in inflammation, vascular calcification, and metabolic diseases. The present study was aimed at determining the effect and regulatory mechanism of gallic acid in cardiac hypertrophy and fibrosis. Cardiac hypertrophy was induced by isoproterenol (ISP) in mice and primary neonatal cardiomyocytes. Gallic acid pretreatment attenuated concentric cardiac hypertrophy. It downregulated the expression of atrial natriuretic peptide, brain natriuretic peptide, and beta-myosin heavy chain in vivo and in vitro. Moreover, it prevented interstitial collagen deposition and expression of fibrosis-associated genes. Upregulation of collagen type I by Smad3 overexpression was observed in cardiac myoblast H9c2 cells but not in cardiac fibroblasts. Gallic acid reduced the DNA binding activity of phosphorylated Smad3 in Smad binding sites of collagen type I promoter in rat cardiac fibroblasts. Furthermore, it decreased the ISP-induced phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular signal regulated kinase (ERK) protein in mice. JNK2 overexpression reduced collagen type I and Smad3 expression as well as GATA4 expression in H9c2 cells and cardiac fibroblasts. Gallic acid might be a novel therapeutic agent for the prevention of cardiac hypertrophy and fibrosis by regulating the JNK2 and Smad3 signaling pathway. PMID:27703224

  6. A Systems Biology Approach to Investigating Sex Differences in Cardiac Hypertrophy.

    Science.gov (United States)

    Harrington, Josephine; Fillmore, Natasha; Gao, Shouguo; Yang, Yanqin; Zhang, Xue; Liu, Poching; Stoehr, Andrea; Chen, Ye; Springer, Danielle; Zhu, Jun; Wang, Xujing; Murphy, Elizabeth

    2017-08-19

    Heart failure preceded by hypertrophy is a leading cause of death, and sex differences in hypertrophy are well known, although the basis for these sex differences is poorly understood. This study used a systems biology approach to investigate mechanisms underlying sex differences in cardiac hypertrophy. Male and female mice were treated for 2 and 3 weeks with angiotensin II to induce hypertrophy. Sex differences in cardiac hypertrophy were apparent after 3 weeks of treatment. RNA sequencing was performed on hearts, and sex differences in mRNA expression at baseline and following hypertrophy were observed, as well as within-sex differences between baseline and hypertrophy. Sex differences in mRNA were substantial at baseline and reduced somewhat with hypertrophy, as the mRNA differences induced by hypertrophy tended to overwhelm the sex differences. We performed an integrative analysis to identify mRNA networks that were differentially regulated in the 2 sexes by hypertrophy and obtained a network centered on PPARα (peroxisome proliferator-activated receptor α). Mouse experiments further showed that acute inhibition of PPARα blocked sex differences in the development of hypertrophy. The data in this study suggest that PPARα is involved in the sex-dimorphic regulation of cardiac hypertrophy. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  7. Vitamin D treatment attenuates cardiac FGF23/FGFR4 signaling and hypertrophy in uremic rats.

    Science.gov (United States)

    Leifheit-Nestler, Maren; Grabner, Alexander; Hermann, Laura; Richter, Beatrice; Schmitz, Karin; Fischer, Dagmar-Christiane; Yanucil, Christopher; Faul, Christian; Haffner, Dieter

    2017-09-01

    Vitamin D deficiency and excess of circulating fibroblast growth factor 23 (FGF23) contribute to cardiovascular mortality in patients with chronic kidney disease (CKD). FGF23 activates FGF receptor 4 and (FGFR4) calcineurin/nuclear factor of activated T cells (NFAT) signaling in cardiac myocytes, thereby causing left ventricular hypertrophy (LVH). Here, we determined if 1,25-dihydroxyvitamin D (calcitriol) inhibits FGF23-induced cardiac signaling and LVH. 5/6 nephrectomized (5/6 Nx) rats were treated with different doses of calcitriol for 4 or 10 weeks and cardiac expression of FGF23/FGFR4 and activation of calcineurin/NFAT as well as LVH were analyzed. FGFR4 activation and hypertrophic cell growth were studied in cultured cardiac myocytes that were co-treated with FGF23 and calcitriol. In 5/6Nx rats with LVH, we detected elevated FGF23 expression in bone and myocardium, increased cardiac expression of FGFR4 and elevated cardiac activation of calcineurin/NFAT signaling. Cardiac expression levels of FGF23 and FGFR4 significantly correlated with the presence of LVH in uremic rats. Treatment with calcitriol reduced LVH as well as cardiac FGFR4 expression and calcineurin/NFAT activation. Bone and cardiac FGF23 expression were further stimulated by calcitriol in a dose-dependent manner, but levels of intact cardiac FGF23 protein were suppressed by high-dose calcitriol. In cultured cardiac myocytes, co-treatment with calcitriol blocked FGF23-induced activation of FGFR4 and hypertrophic cell growth. Our data suggest that in CKD, cardioprotective effects of calcitriol stem from its inhibitory actions on the cardiac FGF23/FGFR4 system, and based on their counterbalancing effects on cardiac myocytes, high FGF23 and low calcitriol synergistically contribute to cardiac hypertrophy. © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  8. Postural control in women with breast hypertrophy

    Directory of Open Access Journals (Sweden)

    Alessandra Ferreira Barbosa

    2012-07-01

    Full Text Available OBJECTIVES: The consequences of breast hypertrophy have been described based on the alteration of body mass distribution, leading to an impact on psychological and physical aspects. The principles of motor control suggest that breast hypertrophy can lead to sensorimotor alterations and the impairment of body balance due to postural misalignment. The aim of this study is to evaluate the postural control of women with breast hypertrophy under different sensory information conditions. METHOD: This cross-sectional study included 14 women with breast hypertrophy and 14 without breast hypertrophy, and the mean ages of the groups were 39 ±15 years and 39±16 years, respectively. A force platform was used to assess the sensory systems that contribute to postural control: somatosensory, visual and vestibular. Four postural conditions were sequentially tested: eyes open and fixed platform, eyes closed and fixed platform, eyes open and mobile platform, and eyes closed and mobile platform. The data were processed, and variables related to the center of pressure were analyzed for each condition. The Kruskal-Wallis test was used to compare the conditions between the groups for the area of center of pressure displacement and the velocity of center of pressure displacement in the anterior-posterior and medial-lateral directions. The alpha level error was set at 0.05. RESULTS: Women with breast hypertrophy presented an area that was significantly higher for three out of four conditions and a higher velocity of center of pressure displacement in the anterior-posterior direction under two conditions: eyes open and mobile platform and eyes closed and mobile platform. CONCLUSIONS: Women with breast hypertrophy have altered postural control, which was demonstrated by the higher area and velocity of center of pressure displacement.

  9. Aging-associated renal disease in mice is fructokinase dependent.

    Science.gov (United States)

    Roncal-Jimenez, Carlos A; Ishimoto, Takuji; Lanaspa, Miguel A; Milagres, Tamara; Hernando, Ana Andres; Jensen, Thomas; Miyazaki, Makoto; Doke, Tomohito; Hayasaki, Takahiro; Nakagawa, Takahiko; Marumaya, Shoichi; Long, David A; Garcia, Gabriela E; Kuwabara, Masanari; Sánchez-Lozada, Laura G; Kang, Duk-Hee; Johnson, Richard J

    2016-10-01

    Aging-associated kidney disease is usually considered a degenerative process associated with aging. Recently, it has been shown that animals can produce fructose endogenously, and that this can be a mechanism for causing kidney damage in diabetic nephropathy and in association with recurrent dehydration. We therefore hypothesized that low-level metabolism of endogenous fructose might play a role in aging-associated kidney disease. Wild-type and fructokinase knockout mice were fed a normal diet for 2 yr that had minimal (renal injury was amplified by provision of high-salt diet for 3 wk, as noted by the presence of glomerular hypertrophy, mesangial matrix expansion, and alpha smooth muscle actin expression, and with segmental thrombi. Fructokinase knockout mice were protected from renal injury both at baseline and after high salt intake (3 wk) compared with wild-type mice. This was associated with higher levels of active (phosphorylated serine 1177) endothelial nitric oxide synthase in their kidneys. These studies suggest that aging-associated renal disease might be due to activation of specific metabolic pathways that could theoretically be targeted therapeutically, and raise the hypothesis that aging-associated renal injury may represent a disease process as opposed to normal age-related degeneration.

  10. Progressive glomerulosclerosis and renal failure following perinatal gamma radiation in the beagle

    International Nuclear Information System (INIS)

    Jaenke, R.S.; Phemister, R.D.; Norrdin, R.W.

    1980-01-01

    The renal effects of whole body irradiation in the perinatal period were studied in the dog. Ninety-three dogs received a single sublethal exposure in the range of 270 to 435 R in either late gestation (55 days postcoitus) or early postnatal life (2 days postpartum) and were sacrificed at 70 days, 2, or 4 years of age. Early renal lesions in 70-day-old irradiated dogs were characterized by arrested glomerular maturation and degeneration resulting in reduced functional renal mass. Mature glomeruli exhibited mesangial proliferation. At 2 and 4 years of age, surviving irradiated dogs exhibited sever renal disease associated with progressive glomerular damage which was characterized by mesangial proliferation and compression of capillary lumina, epithelial degeneration and focal capsular adhesions, and ultimately obliterative glomerulosclerosis. Twenty-one of the 93 irradiated dogs died in renal failure before 4 years of age with advanced glomerulosclerosis. The phatogenesis of this progressive renal lesion may be related to the interaction of three specific factors. These include (1) the effect of direct radiation damage to mature kidney components; (2) the loss of outer cortical nephrons resulting in increased work load of the surviving nephrons; and (3) the effect of compensatory hypertrophy related to the loss of renal parenchyma as the rapid growth rates associated with kidney maturation

  11. Low-intensity interval exercise training attenuates coronary vascular dysfunction and preserves Ca²⁺-sensitive K⁺ current in miniature swine with LV hypertrophy.

    Science.gov (United States)

    Emter, Craig A; Tharp, Darla L; Ivey, Jan R; Ganjam, Venkataseshu K; Bowles, Douglas K

    2011-10-01

    Coronary vascular dysfunction has been observed in several models of heart failure (HF). Recent evidence indicates that exercise training is beneficial for patients with HF, but the precise intensity and underlying mechanisms are unknown. Left ventricular (LV) hypertrophy can play a significant role in the development of HF; therefore, the purpose of this study was to assess the effects of low-intensity interval exercise training on coronary vascular function in sedentary (HF) and exercise trained (HF-TR) aortic-banded miniature swine displaying LV hypertrophy. Six months postsurgery, in vivo coronary vascular responses to endothelin-1 (ET-1) and adenosine were measured in the left anterior descending coronary artery. Baseline and maximal coronary vascular conductance were similar between all groups. ET-1-induced reductions in coronary vascular conductance (P < 0.05) were greater in HF vs. sedentary control and HF-TR groups. Pretreatment with the ET type A (ET(A)) receptor blocker BQ-123 prevented ET-1 hypersensitivity in HF animals. Whole cell voltage clamp was used to characterize composite K(+) currents (I(K(+))) in coronary smooth muscle cells. Raising internal Ca(2+) from 200 to 500 nM increased Ca(2+)-sensitive K(+) current in HF-TR and control, but not HF animals. In conclusion, an ET(A)-receptor-mediated hypersensitivity to ET-1, elevated resting LV wall tension, and decreased coronary smooth muscle cell Ca(2+)-sensitive I(K(+)) was found in sedentary animals with LV hypertrophy. Low-intensity interval exercise training preserved normal coronary vascular function and smooth muscle cell Ca(2+)-sensitive I(K(+)), illustrating a potential mechanism underlying coronary vascular dysfunction in a large-animal model of LV hypertrophy. Our results demonstrate the potential clinical impact of exercise on coronary vascular function in HF patients displaying pathological LV hypertrophy.

  12. The anti-inflammatory and antifibrotic effects of Coreopsis tinctoria Nutt on high-glucose-fat diet and streptozotocin-induced diabetic renal damage in rats.

    Science.gov (United States)

    Yao, Lan; Li, Linlin; Li, Xinxia; Li, Hui; Zhang, Yujie; Zhang, Rui; Wang, Jian; Mao, Xinmin

    2015-09-07

    Diabetic nephropathy is a serious complication of diabetes whose development process is associated with inflammation, renal hypertrophy, and fibrosis. Coreopsis tinctoria Nutt, traditionally used as a healthcare tea, has anti-inflammatory, anti-hyperlipidemia, and glycemic regulation activities. The aim of our study was to investigate the renal protective effect of ethyl acetate extract of C. tinctoria Nutt (AC) on high-glucose-fat diet and streptozotocin (STZ)-induced diabetic rats. A diabetic rat model was induced by high-glucose-fat diet and intraperitoneal injection of 35 mg/kg STZ. After treatment with AC at a daily dose of 150, 300 or, 600 mg/kg for 4 weeks, metabolic and renal function parameters of serum and urine were examined. Degree of renal damage, renal proinflammatory cytokines, and fibrotic protein expression were analyzed by histopathology and immunohistochemistry. Renal AMP-activated protein kinase (AMPK) and transforming growth factor (TGF)-β1/Smad signaling pathway were determined by western blotting. Diabetic rats showed obvious renal dysfunction, inflammation and fibrosis. However, AC significantly reduced levels of blood glucose, total cholesterol, triglyceride, blood urea nitrogen, serum creatinine and urinary albumin, as well as expression of kidney proinflammatory cytokines of monocyte chemoattractant protein-1 and intercellular adhesion molecule-1. AC also ameliorated renal hypertrophy and fibrosis by reducing fibronectin and collagen IV and suppressing the TGF-β1/Smad signaling pathway. Meanwhile, AMPKα as a protective cytokine was markedly stimulated by AC. In summary, AC controls blood glucose, inhibits inflammatory and fibrotic processes, suppresses the TGF-β1/Smad signaling pathway, and activates phosphorylation of AMPKα in the kidneys, which confirms the protective effects of AC in the early stage of diabetic kidney disease.

  13. Empagliflozin lessened cardiac injury and reduced visceral adipocyte hypertrophy in prediabetic rats with metabolic syndrome.

    Science.gov (United States)

    Kusaka, Hiroaki; Koibuchi, Nobutaka; Hasegawa, Yu; Ogawa, Hisao; Kim-Mitsuyama, Shokei

    2016-11-11

    The potential benefit of SGLT2 inhibitors in metabolic syndrome is with prediabetic stage unclear. This work was undertaken to investigate the non-glycemic effect of empagliflozin on metabolic syndrome rats with prediabetes. SHR/NDmcr-cp(+/+) rats (SHRcp), a model of metabolic syndrome with prediabetes, were given empagliflozin for 10 weeks to examine the effects on urinary sodium and water balance, visceral and subcutaneous adipocyte, and cardiac injury. Further, the effect of empagliflozin on blood pressure and autonomic nervous system was continuously investigated by using radiotelemetry system. Empagliflozin significantly reduced urinary sodium and water balance of SHRcp only within 1 week of the treatment, but later than 1 week did not alter them throughout the treatment. Empagliflozin significantly reduced body weight of SHRcp, which was mainly attributed to the significant reduction of subcutaneous fat mass. Empagliflozin significantly reduced the size of visceral adipocytes and increased the number of smaller size of adipocytes, which was associated with the attenuation of oxidative stress. Empagliflozin ameliorated cardiac hypertrophy and fibrosis of SHRcp, in association with the attenuation of cardiac oxidative stress and inflammation. However, empagliflozin did not significantly change blood pressure, heart rate, sympathetic activity, or baroreceptor function, as evidenced by radiotelemetry analysis. Our present work provided the evidence that SGLT2 inhibition reduced visceral adipocytes hypertrophy and ameliorated cardiac injury in prediabetic metabolic syndrome rat, independently of diuretic effect or blood pressure lowering effect. Thus, SGLT2 inhibition seems to be a promising therapeutic strategy for prediabetic metabolic syndrome.

  14. Mechanisms for altered carnitine content in hypertrophied rat hearts

    International Nuclear Information System (INIS)

    Reibel, D.K.; O'Rourke, B.; Foster, K.A.

    1987-01-01

    Carnitine levels are reduced in hypertrophied hearts of rats subjected to aortic constriction (banding) and evaluated in hypertrophied hearts of spontaneously hypertensive rats (SHR). In an attempt to determine the mechanisms for these alterations, L-[ 14 C]carnitine transport was examined in isolated perfused hearts. Total carnitine uptake was significantly reduced by ∼20% in hypertrophied hearts of banded rats at all perfusate carnitine concentrations employed. The reduction in total uptake was due to a 40% reduction in carrier-mediated carnitine uptake with no difference in uptake by diffusion. In contrast, carnitine uptake was not altered in isolated hypertrophied hearts of SHR. However, serum carnitine levels were elevated in SHR, which could result in increased myocardial carnitine uptake in vivo. The data suggest that altered carnitine content in hypertrophied hearts of aortic-banded rats is due to an alteration in the carrier-mediated carnitine transport system in the myocardium. However, altered carnitine content in hypertrophied hearts of SHR is not due to a change in the carnitine transport system per se but may rather be due to a change in serum carnitine levels

  15. Enhanced expression of Gqα and PLC-β1 proteins contributes to vascular smooth muscle cell hypertrophy in SHR: role of endogenous angiotensin II and endothelin-1.

    Science.gov (United States)

    Atef, Mohammed Emehdi; Anand-Srivastava, Madhu B

    2014-07-01

    Vascular Gqα signaling has been shown to contribute to cardiac hypertrophy. In addition, angiotensin II (ANG II) was shown to induce vascular smooth muscle cell (VSMC) hypertrophy through Gqα signaling; however, the studies on the role of Gqα and PLC-β1 proteins in VSMC hypertrophy in animal model are lacking. The present study was therefore undertaken to examine the role of Gqα/PLC-β1 proteins and the signaling pathways in VSMC hypertrophy using spontaneously hypertensive rats (SHR). VSMC from 16-wk-old SHR and not from 12-wk-old SHR exhibited enhanced levels of Gqα/PLC-β1 proteins compared with age-matched Wistar-Kyoto (WKY) rats as determined by Western blotting. However, protein synthesis as determined by [(3)H]leucine incorporation was significantly enhanced in VSMC from both 12- and 16-wk-old SHR compared with VSMC from age-matched WKY rats. Furthermore, the knockdown of Gqα/PLC-β1 in VSMC from 16-wk-old SHR by antisense and small interfering RNA resulted in attenuation of protein synthesis. In addition, the enhanced expression of Gqα/PLC-β1 proteins, enhanced phosphorylation of ERK1/2, and enhanced protein synthesis in VSMC from SHR were attenuated by the ANG II AT1 and endothelin-1 (ET-1) ETA receptor antagonists losartan and BQ123, respectively, but not by the ETB receptor antagonist BQ788. In addition, PD98059 decreased the enhanced expression of Gqα/PLC-β1 and protein synthesis in VSMC from SHR. These results suggest that the enhanced levels of endogenous ANG II and ET-1 through the activation of AT1 and ETA receptors, respectively, and MAP kinase signaling, enhanced the expression of Gqα/PLC-β1 proteins in VSMC from 16-wk-old SHR and result in VSMC hypertrophy. Copyright © 2014 the American Physiological Society.

  16. Exogenous L-Arginine Attenuates the Effects of Angiotensin II on Renal Hemodynamics and the Pressure Natriuresis-Diuresis Relationship

    Science.gov (United States)

    Das, Satarupa; Mattson, David L.

    2014-01-01

    SUMMARY Administration of exogenous L-Arginine (L-Arg) attenuates Angiotensin II (AngII)-mediated hypertension and kidney disease in rats. The present study assessed renal hemodynamics and pressure-diuresis-natriuresis in anesthetized rats infused with vehicle, AngII (20 ng/kg/min, iv) or AngII + L-Arg (300 µg/kg/min, iv). Increasing renal perfusion pressure (RPP) from approximately 100 to 140 mmHg resulted in a 9–10 fold increase in urine flow and sodium excretion rate in control animals. In comparison, AngII infusion significantly reduced renal blood flow (RBF) and glomerular filtration rate (GFR) by 40–42% and blunted the pressure-dependent increase in urine flow and sodium excretion rate by 54–58% at elevated RPP. Supplementation of L-Arg reversed the vasoconstrictor effects of AngII and restored pressure-dependent diuresis to levels not significantly different from control rats. Experiments in isolated aortic rings were performed to assess L-Arg effects on the vasculature. Dose-dependent contraction to AngII (10−10M to 10−7M) was observed with a maximal force equal to 27±3% of the response to 10−5M phenylephrine. Contraction to 10−7M AngII was blunted by 75±3% with 10−4M L-Arg. The influence of L-Arg to blunt AngII mediated contraction was eliminated by endothelial denudation or incubation with nitric oxide synthase inhibitors. Moreover, the addition of 10−3M cationic or neutral amino acids, which compete with L-Arg for cellular uptake, blocked the effect of L-Arg. Anionic amino acids did not influence the effects of L-Arg on AngII-mediated contraction. These studies indicate that L-Arg blunts AngII-mediated vascular contraction by an endothelial- and NOS-dependent mechanism involving cellular uptake of L-Arg. PMID:24472006

  17. Renal and perirenal non-Hodgkin's lymphoma: CT findings

    International Nuclear Information System (INIS)

    Lee, Seon Kyu; Kim, Seung Hyup; Lee, Goo; Choi, Byeung In; Han, Man Chung

    1992-01-01

    CT findings of 19 kidneys in 12 patients with renal and perirenal non-Hodgkin's lymphoma were retrospectively reviewed to determine distinguishing characteristic and specific findings. CT manifestation of the renal and perirenal lymphoma included multiple nodules in five kidneys(26.3%), trans-capsular infiltration in three kidneys(15.8%), trans-sinus infiltration in nine kidneys(47.4%) and diffuse infiltration in two kidneys(10.5%). Perirenal changes were thickening of the renal fascia in ten kidneys(52.6%) and crescent lesion of low attenuation in the subcapsular area in five kidneys(26.3%) Retroperitoneal lymphadenopathy was evident in eleven patient(57.9%). Renal calyceal dilatation without renal pelvic dilatation(selective calycelal dilatation) was noted in three kidneys. Familiarity with these CT findings of renal and perirenal lymphoma may be helpful in the diagnosis and management of patient with non-Hodgkin's lymphoma

  18. Cordyceps sinensis attenuates renal fibrosis and suppresses BAG3 induction in obstructed rat kidney.

    Science.gov (United States)

    Du, Feng; Li, Si; Wang, Tian; Zhang, Hai-Yan; Zong, Zhi-Hong; Du, Zhen-Xian; Li, De-Tian; Wang, Hua-Qin; Liu, Bo; Miao, Jia-Ning; Bian, Xiao-Hui

    2015-01-01

    BAG3 regulates a number of cellular processes, including cell proliferation, apoptosis, adhesion and migration, and epithelial-mesenchymal transition (EMT). However, the role of BAG3 in renal tubular EMT and renal interstitial fibrosis remains elusive. This study aimed to examine the dynamic expression of BAG3 during renal fibrosis, and to investigate the efficacy of Cordyceps sinensis (C. sinensis) on renal fibrosis. A rat model of unilateral ureteral obstruction (UUO) was established, and the expression of BAG3 and α-SMA, and the efficacy of C. sinensis on renal fibrosis induced by UUO were examined. The results showed that UUO led to collagen accumulation, which was significantly suppressed by C. sinensis. UUO increased the expression of BAG3 and α-SMA, a mesenchymal marker, while UUO induced BAG3 and α-SMA expression was significantly inhibited by C. sinensis. In addition, immunohistochemical staining demonstrated that BAG3 immunoreactivity was restricted to tubular epithelium. In conclusion, BAG3 is a potential target for the prevention and/or treatment of renal fibrosis, and C. Sinensis is a promising agent for renal fibrosis.

  19. Loss of microRNA-22 prevents high-fat diet induced dyslipidemia and increases energy expenditure without affecting cardiac hypertrophy.

    Science.gov (United States)

    Diniz, Gabriela Placoná; Huang, Zhan-Peng; Liu, Jianming; Chen, Jinghai; Ding, Jian; Fonseca, Renata Inzinna; Barreto-Chaves, Maria Luiza; Donato, Jose; Hu, Xiaoyun; Wang, Da-Zhi

    2017-12-15

    Obesity is associated with development of diverse diseases, including cardiovascular diseases and dyslipidemia. MiRNA-22 (miR-22) is a critical regulator of cardiac function and targets genes involved in metabolic processes. Previously, we generated miR-22 null mice and we showed that loss of miR-22 blunted cardiac hypertrophy induced by mechanohormornal stress. In the present study, we examined the role of miR-22 in the cardiac and metabolic alterations promoted by high-fat (HF) diet. We found that loss of miR-22 attenuated the gain of fat mass and prevented dyslipidemia induced by HF diet, although the body weight gain, or glucose intolerance and insulin resistance did not seem to be affected. Mechanistically, loss of miR-22 attenuated the increased expression of genes involved in lipogenesis and inflammation mediated by HF diet. Similarly, we found that miR-22 mediates metabolic alterations and inflammation induced by obesity in the liver. However, loss of miR-22 did not appear to alter HF diet induced cardiac hypertrophy or fibrosis in the heart. Our study therefore establishes miR-22 as an important regulator of dyslipidemia and suggests it may serve as a potential candidate in the treatment of dyslipidemia associated with obesity. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  20. Altered carnitine transport in pressure-overload hypertrophied rat hearts

    International Nuclear Information System (INIS)

    O'Rourke, B.; Foster, K.; Reibel, D.K.

    1986-01-01

    The authors have previously observed reduced carnitine levels in hypertrophied hearts of rats subjected to aortic constriction. In an attempt to determine the mechanism for reduced myocardial carnitine content, carnitine transport was examined in isolated perfused hearts. Hearts were excised from sham-operated and aortic-constricted rats 3 weeks following surgery and perfused at 60 mm Hg aortic pressure with buffer containing various concentrations of L- 14 C-carnitine. Carnitine uptake by control and hypertrophied hearts was linear throughout 30 minutes of perfusion with 40 μM carnitine. Total carnitine uptake was significantly reduced by 25% in hypertrophied hearts at each time point examined. The reduction in uptake by hypertrophied hearts was also evident when hearts were perfused with 100 or 200 μM carnitine. When 0.05 mM mersalyl acid was included in the buffer to inhibit the carrier-mediated component of transport, no difference in carnitine uptake was observed indicating that the transport of carnitine by diffusion was unaltered in the hypertrophied myocardium. Carrier-mediated carnitine uptake (total uptake - uptake by diffusion) was significantly reduced by approximately 40% in hypertrophied hearts at all concentrations examined. Thus, the reduction in carnitine content in the pressure-overload hypertrophied rat heart appears to be due to a reduction in carrier-mediated carnitine uptake by the heart

  1. Effects of chronic Akt/mTOR inhibition by rapamycin on mechanical overload-induced hypertrophy and myosin heavy chain transition in masseter muscle.

    Science.gov (United States)

    Umeki, Daisuke; Ohnuki, Yoshiki; Mototani, Yasumasa; Shiozawa, Kouichi; Fujita, Takayuki; Nakamura, Yoshiki; Saeki, Yasutake; Okumura, Satoshi

    2013-01-01

    To examine the effects of the Akt/mammalian target of rapamycin (mTOR) pathway on masseter muscle hypertrophy and myosin heavy chain (MHC) transition in response to mechanical overload, we analyzed the effects of bite-opening (BO) on the hypertrophy and MHC composition of masseter muscle of BO-rats treated or not treated with rapamycin (RAPA), a selective mTOR inhibitor. The masseter muscle weight in BO-rats was significantly greater than that in controls, and this increase was attenuated by RAPA treatment. Expression of slow-twitch MHC isoforms was significantly increased in BO-rats with/without RAPA treatment, compared with controls, but the magnitude of the increase was much smaller in RAPA-treated BO-rats. Phosphorylation of p44/42 MAPK (ERK1/2), which preserves fast-twitch MHC isoforms in skeletal muscle, was significantly decreased in BO-rats, but the decrease was abrogated by RAPA treatment. Calcineurin signaling is known to be important for masseter muscle hypertrophy and fast-to-slow MHC isoform transition, but expression of known calcineurin activity modulators was unaffected by RAPA treatment. Taken together, these results indicate that the Akt/mTOR pathway is involved in both development of masseter muscle hypertrophy and fast-to-slow MHC isoform transition in response to mechanical overload with inhibition of the ERK1/2 pathway and operates independently of the calcineurin pathway.

  2. Accuracy of contrast-enhanced dual-energy MDCT for the assessment of iodine uptake in renal lesions.

    Science.gov (United States)

    Mileto, Achille; Marin, Daniele; Ramirez-Giraldo, Juan Carlos; Scribano, Emanuele; Krauss, Bernhard; Mazziotti, Silvio; Ascenti, Giorgio

    2014-05-01

    The objective of our study was to assess the accuracy of iodine-related attenuation and iodine quantification as imaging biomarkers of iodine uptake in renal lesions on a single-phase nephrographic image with dual-energy MDCT. Fifty-nine patients (41 men, 18 women; age range, 28-84 years) with 80 renal lesions underwent contrast-enhanced dual-energy CT during the nephrographic phase of enhancement. Renal lesions were characterized as enhancing or nonenhancing on color-coded iodine overlay maps using iodine-related attenuation (in Hounsfield units) and iodine quantification (in milligrams per milliliter). For iodine-related attenuation the iodine uptake thresholds of 15 and 20 HU were tested; a threshold of 0.5 mg/mL was used for iodine quantification. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of iodine-related attenuation and iodine quantification were calculated from chi-square tests of contingency with histopathology or imaging follow-up as the reference standard. The 95% CIs were calculated from binomial expression. Differences in sensitivity and specificity were assessed by means of McNemar analysis. A significant difference in sensitivity and specificity was found between iodine-related attenuation with the thresholds of 15 HU (sensitivity, 91.4%; specificity, 93.3%; PPV, 91.4%; NPV, 93.3%) and 20 HU (sensitivity, 77.1%; specificity, 100%; PPV, 100%; NPV, 84.9%) (p = 0.008) and between iodine quantification (sensitivity, 100%; specificity, 97.7%; PPV, 97.2%; NPV, 100%) and iodine-related attenuation with a threshold of 20 HU (p = 0.004). No significant difference in sensitivity and specificity was found between iodine quantification and iodine-related attenuation with a threshold of 15 HU. Contrast-enhanced dual-energy MDCT with iodine-related attenuation and iodine quantification allows accurate evaluation of iodine uptake in renal lesions on a single-phase nephrographic image.

  3. MURC/Cavin-4 facilitates recruitment of ERK to caveolae and concentric cardiac hypertrophy induced by α1-adrenergic receptors.

    Science.gov (United States)

    Ogata, Takehiro; Naito, Daisuke; Nakanishi, Naohiko; Hayashi, Yukiko K; Taniguchi, Takuya; Miyagawa, Kotaro; Hamaoka, Tetsuro; Maruyama, Naoki; Matoba, Satoaki; Ikeda, Koji; Yamada, Hiroyuki; Oh, Hidemasa; Ueyama, Tomomi

    2014-03-11

    The actions of catecholamines on adrenergic receptors (ARs) induce sympathetic responses, and sustained activation of the sympathetic nervous system results in disrupted circulatory homeostasis. In cardiomyocytes, α1-ARs localize to flask-shaped membrane microdomains known as "caveolae." Caveolae require both caveolin and cavin proteins for their biogenesis and function. However, the functional roles and molecular interactions of caveolar components in cardiomyocytes are poorly understood. Here, we showed that muscle-restricted coiled-coil protein (MURC)/Cavin-4 regulated α1-AR-induced cardiomyocyte hypertrophy through enhancement of ERK1/2 activation in caveolae. MURC/Cavin-4 was expressed in the caveolae and T tubules of cardiomyocytes. MURC/Cavin-4 overexpression distended the caveolae, whereas MURC/Cavin-4 was not essential for their formation. MURC/Cavin-4 deficiency attenuated cardiac hypertrophy induced by α1-AR stimulation in the presence of caveolae. Interestingly, MURC/Cavin-4 bound to α1A- and α1B-ARs as well as ERK1/2 in caveolae, and spatiotemporally modulated MEK/ERK signaling in response to α1-AR stimulation. Thus, MURC/Cavin-4 facilitates ERK1/2 recruitment to caveolae and efficient α1-AR signaling mediated by caveolae in cardiomyocytes, which provides a unique insight into the molecular mechanisms underlying caveola-mediated signaling in cardiac hypertrophy.

  4. Isolated unilateral temporalis muscle hypertrophy in a child: a case report with literature review

    OpenAIRE

    Ranasinghe, Jagath C.; Wickramasinghe, Chandani; Rodrigo, Ganganath

    2018-01-01

    Background Temporalis muscle hypertrophy is a rare entity of masticatory muscle hypertrophy. All types of masticatory muscle hypertrophies have been documented of which temporalis muscle hypertrophy is one. Temporalis muscle hypertrophy is most commonly bilateral and usually associated with other types of masticatory muscles hypertrophy such as masseter or pterygoid hypertrophy. However, isolated unilateral temporalis muscle hypertrophy is extremely rare and only 9 cases have been reported to...

  5. Combining new tools to assess renal function and morphology: a holistic approach to study the effects of aging and a congenital nephron deficit.

    Science.gov (United States)

    Geraci, Stefania; Chacon-Caldera, Jorge; Cullen-McEwen, Luise; Schad, Lothar R; Sticht, Carsten; Puelles, Victor G; Bertram, John F; Gretz, Norbert

    2017-09-01

    Recently, new methods for assessing renal function in conscious mice (transcutaneous assessment) and for counting and sizing all glomeruli in whole kidneys (MRI) have been described. In the present study, these methods were used to assess renal structure and function in aging mice, and in mice born with a congenital low-nephron endowment. Age-related nephron loss was analyzed in adult C57BL/6 mice (10-50 wk of age), and congenital nephron deficit was assessed in glial cell line-derived neurotrophic factor heterozygous (GDNF HET)-null mutant mice. Renal function was measured through the transcutaneous quantitation of fluorescein isothiocyanate-sinistrin half-life ( t 1/2 ) in conscious mice. MRI was used to image, count, and size cationic-ferritin labeled glomeruli in whole kidneys ex vivo. Design-based stereology was used to validate the MRI measurements of glomerular number and mean volume. In adult C57BL/6 mice, older age was associated with fewer and larger glomeruli, and a rightward shift in the glomerular size distribution. These changes coincided with a decrease in renal function. GNDF HET mice had a congenital nephron deficit that was associated with glomerular hypertrophy and exacerbated by aging. These findings suggest that glomerular hypertrophy and hyperfiltration are compensatory processes that can occur in conjunction with both age-related nephron loss and congenital nephron deficiency. The combination of measurement of renal function in conscious animals and quantitation of glomerular number, volume, and volume distribution provides a powerful new tool for investigating aspects of renal aging and functional changes. Copyright © 2017 the American Physiological Society.

  6. Structural and functional changes of the heart in patients with chronic ischemic heart failure, associated with renal dysfunction

    Directory of Open Access Journals (Sweden)

    D. A. Lashkul

    2014-04-01

    Full Text Available Kidney disease is a frequent complication of congestive heart failure (CHF and may contribute to the progression of ventricular dysfunction. Regardless of the degree of heart failure, chronic kidney disease (CKD increases the risk of death and cardiac decompensation. Left ventricular hypertrophy (LVH is a known parameter of cardiac remodelling and has a higher prevalence and incidence among people with impaired kidney function. LVH is an early subclinical marker of cardiovascular disease and heart failure risk, and is probably an intermediary step in the pathway leading from kidney dysfunction to heart failure and its complications. The effects of CKD on other left ventricular and myocardial parameters, however, have been less characterized. The aim of the study was to examine the structural and functional changes, geometric remodeling of the heart in patients with ischemic chronic heart failure, being hospitalized, according to the presence of renal dysfunction. Materials and methods. The study involved 333 patients with ischemic CHF (277 men and 56 women, mean age 59,3±9,4 years. The functional class of heart failure was assessed on the recommendations of the New York Heart Association (NYHA. The etiology of heart failure in 288 (86.5% patients had a combination of coronary artery disease and essential hypertension, in 45 (13.5% – only CAD. 1 FC of heart failure was diagnosed in 9 (2.7% patients, 2 FC - in 106 (31.8%, 3 FC - in 199 (59.8% and 4 FC - 19 (5.7% patients. Diabetes was in 61 (18.3%, myocardial infarction history was in 240 (72.1% patients. Depending on the glomerular filtration rate, patients were divided into 3 groups: 72 with normal GFR (>90 ml/min/1.73m2, 218 with a slight decrease in GFR (60-90 ml/min/1.73m2 and 43 with moderate reduced GFR (<60 ml/min/1.73m2. Echocardiography was performed using the General Electric VIVID 3 system (General Electric Healthcare, USA with the 2.5–3.5 MHz transducer and Doppler technique

  7. The Influence of Protein Supplementation on Muscle Hypertrophy

    Science.gov (United States)

    Fardi, A.; Welis, W.

    2018-04-01

    The problem of this study was the lack of knowledge about nutrition, so the use of protein supplements to support the occurrence of muscle hypertrophy is not optimal. The use of natural supplements is a substitute of the manufacturer's supplements. The purpose of this study was to determine the effect of natural protein supplementation to muscle hypertrophy.The method of the research was a quasi experiment. There are 26 subject and were divided two group. Instrument of this research is to use tape measure and skinfold to measure muscle rim and thickness of fat in arm and thigh muscle. Then to calculate the circumference of the arm and thigh muscles used the formula MTC - (3.14 x TSF). MTC is the arm muscle or thigh muscle and TSF is the thickness of the muscles of the arm or thigh muscles. Data analysis technique used was t test at 5% significant level. The result of the research showed that average score of arm muscle hypertrophy at pretest control group was 255.61 + 17.69 mm and posttest average score was 263.48.58 + 17.21 mm and average score of thigh muscle hypertrophy at pretest control group was 458.32 + 8.72 mm and posttest average score was 468.78 + 11.54 mm. Average score of arm muscle hypertrophy at pretest experiment group was 252.67 + 16.05 mm and posttest average score was 274.58 ± 16.89 mm and average score of thigh muscle hypertrophy at pretest experiment group was 459.49 ± 6.99 mm and posttest average score was 478.70 + 9.05 mm. It can be concluded that there was a significant effect of natural protein supplementation on muscle hypertrophy.

  8. Punica granatum improves renal function in gentamicin-induced nephropathy in rats via attenuation of oxidative stress.

    Science.gov (United States)

    Mestry, Snehal N; Gawali, Nitin B; Pai, Sarayu A; Gursahani, Malvika S; Dhodi, Jayesh B; Munshi, Renuka; Juvekar, Archana R

    2018-03-16

    Gentamicin is widely used as an antibiotic for the treatment of gram negative infections. Evidences indicates that oxidative stress is involved in gentamicin-induced nephrotoxicity. In Ayurvedic medicine, Punica granatum Linn. is considered as 'a pharmacy unto itself". It has been claimed in traditional literature, to treat various kidney ailments due to its antioxidant potential. To explore the possible mechanism of action of methanolic extract of P.granatum leaves (MPGL) in exerting a protective effect on gentamicin-induced nephropathy. Animals were administered with gentamicin (80 mg/kg/day i.m.) and simultaneously with MPGL (100, 200 and 400 mg/kg p.o.) or metformin (100 mg/kg p.o.) for 8 days. A satellite group was employed in order to check for reversibility of nephrotoxic effects post discontinuation of gentamicin administration. At the end of the study, all the rats were sacrificed and serum-urine parameters were investigated. Antioxidant enzymes and tumor necrosis factor alpha (TNF-α) levels were determined in the kidney tissues along with histopathological examination of kidneys. Increase in serum creatinine, urea, TNF-α, lipid peroxidation along with fall in the antioxidant enzymes activity and degeneration of tubules, arterioles as revealed by histopathological examination confirmed the manifestation of nephrotoxicity caused due to gentamicin. Simultaneous administration of MPGL and gentamicin protected kidneys against nephrotoxic effects of gentamicin as evidenced from normalization of renal function parameters and amelioration of histopathological changes. Data suggests that MPGL attenuated oxidative stress associated renal injury by preserving antioxidant enzymes, reducing lipid peroxidation and inhibiting inflammatory mediators such as TNF-α. Copyright © 2017 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.

  9. Pentoxifylline Attenuates Cardiac Remodeling Induced by Tobacco Smoke Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Minicucci, Marcos; Oliveira, Fernando; Santos, Priscila; Polegato, Bertha; Roscani, Meliza; Fernandes, Ana Angelica; Lustosa, Beatriz; Paiva, Sergio; Zornoff, Leonardo; Azevedo, Paula, E-mail: paulasa@fmb.unesp.br [Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, São Paulo, SP (Brazil)

    2016-05-15

    Tobacco smoke exposure is an important risk factor for cardiac remodeling. Under this condition, inflammation, oxidative stress, energy metabolism abnormalities, apoptosis, and hypertrophy are present. Pentoxifylline has anti‑inflammatory, anti-apoptotic, anti-thrombotic and anti-proliferative properties. The present study tested the hypothesis that pentoxifylline would attenuate cardiac remodeling induced by smoking. Wistar rats were distributed in four groups: Control (C), Pentoxifylline (PX), Tobacco Smoke (TS), and PX-TS. After two months, echocardiography, invasive blood pressure measurement, biochemical, and histological studies were performed. The groups were compared by two-way ANOVA with a significance level of 5%. TS increased left atrium diameter and area, which was attenuated by PX. In the isolated heart study, TS lowered the positive derivate (+dp/dt), and this was attenuated by PX. The antioxidants enzyme superoxide dismutase and glutathione peroxidase were decreased in the TS group; PX recovered these activities. TS increased lactate dehydrogenase (LDH) and decreased 3-hydroxyacyl Coenzyme A dehydrogenases (OH-DHA) and citrate synthase (CS). PX attenuated LDH, 3-OH-DHA and CS alterations in TS-PX group. TS increased IL-10, ICAM-1, and caspase-3. PX did not influence these variables. TS induced cardiac remodeling, associated with increased inflammation, oxidative stress, apoptosis, and changed energy metabolism. PX attenuated cardiac remodeling by reducing oxidative stress and improving cardiac bioenergetics, but did not act upon cardiac cytokines and apoptosis.

  10. Time course of gene expression during mouse skeletal muscle hypertrophy.

    Science.gov (United States)

    Chaillou, Thomas; Lee, Jonah D; England, Jonathan H; Esser, Karyn A; McCarthy, John J

    2013-10-01

    The purpose of this study was to perform a comprehensive transcriptome analysis during skeletal muscle hypertrophy to identify signaling pathways that are operative throughout the hypertrophic response. Global gene expression patterns were determined from microarray results on days 1, 3, 5, 7, 10, and 14 during plantaris muscle hypertrophy induced by synergist ablation in adult mice. Principal component analysis and the number of differentially expressed genes (cutoffs ≥2-fold increase or ≥50% decrease compared with control muscle) revealed three gene expression patterns during overload-induced hypertrophy: early (1 day), intermediate (3, 5, and 7 days), and late (10 and 14 days) patterns. Based on the robust changes in total RNA content and in the number of differentially expressed genes, we focused our attention on the intermediate gene expression pattern. Ingenuity Pathway Analysis revealed a downregulation of genes encoding components of the branched-chain amino acid degradation pathway during hypertrophy. Among these genes, five were predicted by Ingenuity Pathway Analysis or previously shown to be regulated by the transcription factor Kruppel-like factor-15, which was also downregulated during hypertrophy. Moreover, the integrin-linked kinase signaling pathway was activated during hypertrophy, and the downregulation of muscle-specific micro-RNA-1 correlated with the upregulation of five predicted targets associated with the integrin-linked kinase pathway. In conclusion, we identified two novel pathways that may be involved in muscle hypertrophy, as well as two upstream regulators (Kruppel-like factor-15 and micro-RNA-1) that provide targets for future studies investigating the importance of these pathways in muscle hypertrophy.

  11. Renal Denervation to Modify Hypertension and the Heart Failure State.

    Science.gov (United States)

    Zhong, Ming; Kim, Luke K; Swaminathan, Rajesh V; Feldman, Dmitriy N

    2017-07-01

    Sympathetic overactivation of renal afferent and efferent nerves have been implicated in the development and maintenance of several cardiovascular disease states, including resistant hypertension and heart failure with both reduced and preserved systolic function. With the development of minimally invasive catheter-based techniques, percutaneous renal denervation has become a safe and effective method of attenuating sympathetic overactivation. Percutaneous renal denervation, therefore, has the potential to modify and treat hypertension and congestive heart failure. Although future randomized controlled studies are needed to definitively prove its efficacy, renal denervation has the potential to change the way we view and treat cardiovascular disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Neurogenic muscle hypertrophy in a 12-year-old girl.

    Science.gov (United States)

    Zutelija Fattorini, Matija; Gagro, Alenka; Dapic, Tomislav; Krakar, Goran; Marjanovic, Josip

    2017-01-01

    Muscular hypertrophy secondary to denervation is very rare, but well-documented phenomena in adults. This is the first report of a child with neurogenic unilateral hypertrophy due to S1 radiculopathy. A 12-year-old girl presented with left calf hypertrophy and negative history of low back pain or trauma. The serum creatinine kinase level and inflammatory markers were normal. Magnetic resonance imaging showed muscle hypertrophy of the left gastrocnemius and revealed a protruded lumbar disc at the L5-S1 level. The protruded disc abuts the S1 root on the left side. Electromyography showed mild left S1 radiculopathy. Passive stretching and work load might clarify the origin of neurogenic hypertrophy but there is still a need for further evidence. Clinical, laboratory, magnetic resonance imaging and electromyography findings showed that S1 radiculopathy could be a cause of unilateral calf swelling in youth even in the absence of a history of back or leg pain. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  13. Diagnostic electrocardiographic dyad criteria of emphysema in left ventricular hypertrophy.

    Science.gov (United States)

    Lanjewar, Swapnil S; Chhabra, Lovely; Chaubey, Vinod K; Joshi, Saurabh; Kulkarni, Ganesh; Kothagundla, Chandrasekhar; Kaul, Sudesh; Spodick, David H

    2013-01-01

    The electrocardiographic diagnostic dyad of emphysema, namely a combination of the frontal vertical P-vector and a narrow QRS duration, can serve as a quasidiagnostic marker for emphysema, with specificity close to 100%. We postulated that the presence of left ventricular hypertrophy in emphysema may affect the sensitivity of this electrocardiographic criterion given that left ventricular hypertrophy generates prominent left ventricular forces and may increase the QRS duration. We reviewed the electrocardiograms and echocardiograms for 73 patients with emphysema. The patients were divided into two groups based on the presence or absence of echocardiographic evidence of left ventricular hypertrophy. The P-vector, QRS duration, and forced expiratory volume in one second (FEV1) were computed and compared between the two subgroups. There was no statistically significant difference in qualitative lung function (FEV1) between the subgroups. There was no statistically significant difference in mean P-vector between the subgroups. The mean QRS duration was significantly longer in patients with left ventricular hypertrophy as compared with those without left ventricular hypertrophy. The presence of left ventricular hypertrophy may not affect the sensitivity of the P-vector verticalization when used as a lone criterion for diagnosing emphysema. However, the presence of left ventricular hypertrophy may significantly reduce the sensitivity of the electrocardiographic diagnostic dyad in emphysema, as it causes a widening of the QRS duration.

  14. Renal Atrophy Secondary to Chemoradiotherapy of Abdominal Malignancies

    International Nuclear Information System (INIS)

    Yang, Gary Y.; May, Kilian Salerno; Iyer, Renuka V.; Chandrasekhar, Rameela M.A.; Wilding, Gregory E.; McCloskey, Susan A.; Khushalani, Nikhil I.; Yendamuri, Saikrishna S.; Gibbs, John F.; Fakih, Marwan; Thomas, Charles R.

    2010-01-01

    Purpose: To identify factors predictive of renal atrophy after chemoradiotherapy of gastrointestinal malignancies. Methods and Materials: Patients who received chemotherapy and abdominal radiotherapy (RT) between 2002 and 2008 were identified for this study evaluating change in kidney size and function after RT. Imaging and biochemical data were obtained before and after RT in 6-month intervals. Kidney size was defined by craniocaudal measurement on CT images. The primarily irradiated kidney (PK) was defined as the kidney that received the greater mean kidney dose. Receiver operating characteristic (ROC) curves were generated to predict risk for renal atrophy. Results: Of 130 patients, median age was 64 years, and 51.5% were male. Most primary disease sites were pancreas and periampullary tumors (77.7%). Median follow-up was 9.4 months. Creatinine clearance declined 20.89%, and size of the PK decreased 4.67% 1 year after completion of chemoradiation. Compensatory hypertrophy of the non-PK was not seen. Percentage volumes of the PK receiving ≥10 Gy (V 10 ), 15 Gy (V 15 ), and 20 Gy (V 20 ) were significantly associated with renal atrophy 1 year after RT (p = 0.0030, 0.0029, and 0.0028, respectively). Areas under the ROC curves for V 10 , V 15 , and V 20 to predict >5% decrease in PK size were 0.760, 0.760, and 0.762, respectively. Conclusions: Significant detriments in PK size and renal function were seen after abdominal RT. The V 10 , V 15 , and V 20 were predictive of risk for PK atrophy 1 year after RT. Analyses suggest the association of lower-dose renal irradiation with subsequent development of renal atrophy.

  15. Soccer Attenuates the Asymmetry of Rectus Abdominis Muscle Observed in Non-Athletes

    Science.gov (United States)

    Idoate, Fernando; Calbet, Jose A. L.; Izquierdo, Mikel; Sanchis-Moysi, Joaquin

    2011-01-01

    Purpose To determine the volume and degree of asymmetry of the rectus abdominis muscle (RA) in professional soccer players. Methods The volume of the RA was determined using magnetic resonance imaging (MRI) in 15 professional male soccer players and 6 non-active male control subjects. Results Soccer players had 26% greater RA volume than controls (Psoccer players (P = 0.42) and in controls (P = 0.75) (Dominant/non-dominant = 0.99, in both groups). Segmental analysis showed a progressive increase in the degree of side-to-side asymmetry from the first lumbar disc to the pubic symphysis in soccer players (r = 0.80, Psoccer players, although this trend was not statistically significant (P = 0.14). Conclusions Professional soccer is associated with marked hypertrophy of the rectus abdominis muscle, which achieves a volume that is 26% greater than in non-active controls. Soccer induces the hypertrophy of the non-dominant side in proximal regions and the dominant side in regions closer to pubic symphysis, which attenuates the pattern of asymmetry of rectus abdominis observed in non-active population. It remains to be determined whether the hypertrophy of rectus abdominis in soccer players modifies the risk of injury. PMID:21541351

  16. Dual energy MDCT assessment of renal lesions: an overview

    International Nuclear Information System (INIS)

    Mileto, Achille; Marin, Daniele; Nelson, Rendon C.; Boll, Daniel T.; Ascenti, Giorgio

    2014-01-01

    With the expansion of cross-sectional imaging, the number of renal lesions that are incidentally discovered has increased. Multidetector CT (MDCT) is the investigation of choice for characterising and staging renal lesions. Although a definitive diagnosis can be confidently posed for most of them, a number of renal lesions remain indeterminate following MDCT. Further imaging tests are therefore needed, with subsequent increase of healthcare costs, radiation exposure, and patient anxiety. By addressing most of the issues with conventional MDCT imaging, dual-energy MDCT can improve the diagnosis of renal lesions and, potentially, may represent a paradigm shift from a merely attenuation-based to a material-specific spectral imaging investigation. The purpose of this review is to provide an overview of current clinical applications of dual-energy CT in the evaluation of renal lesions. Key Points. (orig.)

  17. Dual energy MDCT assessment of renal lesions: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Mileto, Achille [Duke University Medical Center, Department of Radiology, Durham, NC (United States); University of Messina, Department of Biomedical Sciences and Morphologic and Functional Imaging, Policlinico ' ' G. Martino' ' , Messina (Italy); Marin, Daniele; Nelson, Rendon C.; Boll, Daniel T. [Duke University Medical Center, Department of Radiology, Durham, NC (United States); Ascenti, Giorgio [University of Messina, Department of Biomedical Sciences and Morphologic and Functional Imaging, Policlinico ' ' G. Martino' ' , Messina (Italy)

    2014-02-15

    With the expansion of cross-sectional imaging, the number of renal lesions that are incidentally discovered has increased. Multidetector CT (MDCT) is the investigation of choice for characterising and staging renal lesions. Although a definitive diagnosis can be confidently posed for most of them, a number of renal lesions remain indeterminate following MDCT. Further imaging tests are therefore needed, with subsequent increase of healthcare costs, radiation exposure, and patient anxiety. By addressing most of the issues with conventional MDCT imaging, dual-energy MDCT can improve the diagnosis of renal lesions and, potentially, may represent a paradigm shift from a merely attenuation-based to a material-specific spectral imaging investigation. The purpose of this review is to provide an overview of current clinical applications of dual-energy CT in the evaluation of renal lesions. Key Points. (orig.)

  18. Fatty acid utilization in pressure-overload hypertrophied rat hearts

    International Nuclear Information System (INIS)

    Reibel, D.K.; O'Rourke, B.

    1986-01-01

    The authors have previously shown that the levels of total tissue coenzyme A and carnitine are reduced in hypertrophied hearts of rats subjected to aortic constriction. It was therefore of interest to determine if these changes were associated with alterations in fatty acid oxidation by the hypertrophied myocardium. Hearts were excised from sham-operated and aortic-constricted rats and perfused at 10 cm H 2 O left atrial filling pressure with a ventricular afterload of 80 cm of H 2 O with buffer containing 1.2 mM 14 C-linoleate. Heart rate and peak systolic pressure were not different in control and hypertrophied hearts. 14 CO 2 production was linear in both groups of hearts between 10 and 30 minutes of perfusion. The rate of fatty acid oxidation determined by 14 CO 2 production during this time was 0.728 +/- 0.06 μmoles/min/g dry in control hearts and 0.710 +/- 0.02 μmoles/min/g dry in hypertrophied hearts. Comparable rates of fatty acid oxidation were associated with comparable rates of O 2 consumption in the two groups of hearts (39.06 +/- 3.50 and 36.78 +/- 2.39 μmoles/g dry/min for control and hypertrophied hearts, respectively). The data indicate that the ability of the hypertrophied heart to oxidize fatty acids under these perfusion conditions is not impaired in spite of significant reductions in tissue levels of coenzyme A and carnitine

  19. Muscular and systemic correlates of resistance training-induced muscle hypertrophy.

    Science.gov (United States)

    Mitchell, Cameron J; Churchward-Venne, Tyler A; Bellamy, Leeann; Parise, Gianni; Baker, Steven K; Phillips, Stuart M

    2013-01-01

    To determine relationships between post-exercise changes in systemic [testosterone, growth hormone (GH), insulin like grow factor 1 (IGF-1) and interleukin 6 (IL-6)], or intramuscular [skeletal muscle androgen receptor (AR) protein content and p70S6K phosphorylation status] factors in a moderately-sized cohort of young men exhibiting divergent resistance training-mediated muscle hypertrophy. Twenty three adult males completed 4 sessions•wk⁻¹ of resistance training for 16 wk. Muscle biopsies were obtained before and after the training period and acutely 1 and 5 h after the first training session. Serum hormones and cytokines were measured immediately, 15, 30 and 60 minutes following the first and last training sessions of the study. Mean fiber area increased by 20% (range: -7 to 80%; P<0.001). Protein content of the AR was unchanged with training (fold change = 1.17 ± 0.61; P=0.19); however, there was a significant correlation between the changes in AR content and fiber area (r=0.60, P=0.023). Phosphorylation of p70S6K was elevated 5 hours following exercise, which was correlated with gains in mean fiber area (r=0.54, P=0.007). There was no relationship between the magnitude of the pre- or post-training exercise-induced changes in free testosterone, GH, or IGF-1 concentration and muscle fiber hypertrophy; however, the magnitude of the post exercise IL-6 response was correlated with muscle hypertrophy (r=0.48, P=0.019). Post-exercise increases in circulating hormones are not related to hypertrophy following training. Exercise-induced changes in IL-6 correlated with hypertrophy, but the mechanism for the role of IL-6 in hypertrophy is not known. Acute increases, in p70S6K phosphorylation and changes in muscle AR protein content correlated with muscle hypertrophy implicating intramuscular rather than systemic processes in mediating hypertrophy.

  20. Diagnostic electrocardiographic dyad criteria of emphysema in left ventricular hypertrophy

    Directory of Open Access Journals (Sweden)

    Lanjewar SS

    2013-11-01

    Full Text Available Swapnil S Lanjewar,1 Lovely Chhabra,1 Vinod K Chaubey,1 Saurabh Joshi,1 Ganesh Kulkarni,1 Chandrasekhar Kothagundla,1 Sudesh Kaul,1 David H Spodick21Department of Internal Medicine, 2Department of Cardiovascular Medicine, Saint Vincent Hospital, University of Massachusetts Medical School, Worcester, MA, USABackground: The electrocardiographic diagnostic dyad of emphysema, namely a combination of the frontal vertical P-vector and a narrow QRS duration, can serve as a quasidiagnostic marker for emphysema, with specificity close to 100%. We postulated that the presence of left ventricular hypertrophy in emphysema may affect the sensitivity of this electrocardiographic criterion given that left ventricular hypertrophy generates prominent left ventricular forces and may increase the QRS duration.Methods: We reviewed the electrocardiograms and echocardiograms for 73 patients with emphysema. The patients were divided into two groups based on the presence or absence of echocardiographic evidence of left ventricular hypertrophy. The P-vector, QRS duration, and forced expiratory volume in one second (FEV1 were computed and compared between the two subgroups.Results: There was no statistically significant difference in qualitative lung function (FEV1 between the subgroups. There was no statistically significant difference in mean P-vector between the subgroups. The mean QRS duration was significantly longer in patients with left ventricular hypertrophy as compared with those without left ventricular hypertrophy.Conclusion: The presence of left ventricular hypertrophy may not affect the sensitivity of the P-vector verticalization when used as a lone criterion for diagnosing emphysema. However, the presence of left ventricular hypertrophy may significantly reduce the sensitivity of the electrocardiographic diagnostic dyad in emphysema, as it causes a widening of the QRS duration.Keywords: emphysema, electrocardiogram, left ventricular hypertrophy, chronic

  1. Inhibition of WISE preserves renal allograft function.

    Science.gov (United States)

    Qian, Xueming; Yuan, Xiaodong; Vonderfecht, Steven; Ge, Xupeng; Lee, Jae; Jurisch, Anke; Zhang, Li; You, Andrew; Fitzpatrick, Vincent D; Williams, Alexia; Valente, Eliane G; Pretorius, Jim; Stevens, Jennitte L; Tipton, Barbara; Winters, Aaron G; Graham, Kevin; Harriss, Lindsey; Baker, Daniel M; Damore, Michael; Salimi-Moosavi, Hossein; Gao, Yongming; Elkhal, Abdallah; Paszty, Chris; Simonet, W Scott; Richards, William G; Tullius, Stefan G

    2013-01-01

    Wnt-modulator in surface ectoderm (WISE) is a secreted modulator of Wnt signaling expressed in the adult kidney. Activation of Wnt signaling has been observed in renal transplants developing interstitial fibrosis and tubular atrophy; however, whether WISE contributes to chronic changes is not well understood. Here, we found moderate to high expression of WISE mRNA in a rat model of renal transplantation and in kidneys from normal rats. Treatment with a neutralizing antibody against WISE improved proteinuria and graft function, which correlated with higher levels of β-catenin protein in kidney allografts. In addition, treatment with the anti-WISE antibody reduced infiltration of CD68(+) macrophages and CD8(+) T cells, attenuated glomerular and interstitial injury, and decreased biomarkers of renal injury. This treatment reduced expression of genes involved in immune responses and in fibrogenic pathways. In summary, WISE contributes to renal dysfunction by promoting tubular atrophy and interstitial fibrosis.

  2. Pharmacological targeting of CDK9 in cardiac hypertrophy.

    Science.gov (United States)

    Krystof, Vladimír; Chamrád, Ivo; Jorda, Radek; Kohoutek, Jirí

    2010-07-01

    Cardiac hypertrophy allows the heart to adapt to workload, but persistent or unphysiological stimulus can result in pump failure. Cardiac hypertrophy is characterized by an increase in the size of differentiated cardiac myocytes. At the molecular level, growth of cells is linked to intensive transcription and translation. Several cyclin-dependent kinases (CDKs) have been identified as principal regulators of transcription, and among these CDK9 is directly associated with cardiac hypertrophy. CDK9 phosphorylates the C-terminal domain of RNA polymerase II and thus stimulates the elongation phase of transcription. Chronic activation of CDK9 causes not only cardiac myocyte enlargement but also confers predisposition to heart failure. Due to the long interest of molecular oncologists and medicinal chemists in CDKs as potential targets of anticancer drugs, a portfolio of small-molecule inhibitors of CDK9 is available. Recent determination of CDK9's crystal structure now allows the development of selective inhibitors and their further optimization in terms of biochemical potency and selectivity. CDK9 may therefore constitute a novel target for drugs against cardiac hypertrophy.

  3. Systematic review of the synergist muscle ablation model for compensatory hypertrophy.

    Science.gov (United States)

    Terena, Stella Maris Lins; Fernandes, Kristianne Porta Santos; Bussadori, Sandra Kalill; Deana, Alessandro Melo; Mesquita-Ferrari, Raquel Agnelli

    2017-02-01

    The aim was to evaluate the effectiveness of the experimental synergists muscle ablation model to promote muscle hypertrophy, determine the period of greatest hypertrophy and its influence on muscle fiber types and determine differences in bilateral and unilateral removal to reduce the number of animals used in this model. Following the application of the eligibility criteria for the mechanical overload of the plantar muscle in rats, nineteen papers were included in the review. The results reveal a greatest hypertrophy occurring between days 12 and 15, and based on the findings, synergist muscle ablation is an efficient model for achieving rapid hypertrophy and the contralateral limb can be used as there was no difference between unilateral and bilateral surgery, which reduces the number of animals used in this model. This model differs from other overload models (exercise and training) regarding the characteristics involved in the hypertrophy process (acute) and result in a chronic muscle adaptation with selective regulation and modification of fast-twitch fibers in skeletal muscle. This is an efficient and rapid model for compensatory hypertrophy.

  4. Chronic high-fat diet-induced obesity decreased survival and increased hypertrophy of rats with experimental eccentric hypertrophy from chronic aortic regurgitation.

    Science.gov (United States)

    Dhahri, Wahiba; Drolet, Marie-Claude; Roussel, Elise; Couet, Jacques; Arsenault, Marie

    2014-09-24

    The composition of a diet can influence myocardial metabolism and development of left ventricular hypertrophy (LVH). The impact of a high-fat diet in chronic left ventricular volume overload (VO) causing eccentric LVH is unknown. This study examined the effects of chronic ingestion of a high-fat diet in rats with chronic VO caused by severe aortic valve regurgitation (AR) on LVH, function and on myocardial energetics and survival. Male Wistar rats were divided in four groups: Shams on control or high-fat (HF) diet (15 rats/group) and AR rats fed with the same diets (ARC (n = 56) and ARHF (n = 32)). HF diet was started one week before AR induction and the protocol was stopped 30 weeks later. As expected, AR caused significant LV dilation and hypertrophy and this was exacerbated in the ARHF group. Moreover, survival in the ARHF group was significantly decreased compared the ARC group. Although the sham animals on HF also developed significant obesity compared to those on control diet, this was not associated with heart hypertrophy. The HF diet in AR rats partially countered the expected shift in myocardial energy substrate preference usually observed in heart hypertrophy (from fatty acids towards glucose). Systolic function was decreased in AR rats but HF diet had no impact on this parameter. The response to HF diet of different fatty acid oxidation markers as well as the increase in glucose transporter-4 translocation to the plasma membrane compared to ARC was blunted in AR animals compared to those on control diet. HF diet for 30 weeks decreased survival of AR rats and worsened eccentric hypertrophy without affecting systolic function. The expected adaptation of myocardial energetics to volume-overload left ventricle hypertrophy in AR animals seemed to be impaired by the high-fat diet suggesting less metabolic flexibility.

  5. Renal denervation attenuates NADPH oxidase-mediated oxidative stress and hypertension in rats with hydronephrosis

    DEFF Research Database (Denmark)

    Peleli, Maria; Al-Mashhadi, Ammar; Yang, Ting

    2016-01-01

    Hydronephrosis is associated with development of salt-sensitive hypertension. Studies suggest that increased sympathetic nerve activity (SNA) and oxidative stress play important roles in renovascular hypertension. This study aimed to investigate the link between renal SNA and NADPH oxidase (NOX......) regulation in the development of hypertension in rats with hydronephrosis. Hydronephrosis was induced by partial unilateral ureteral obstruction (PUUO) in young rats. Sham surgery or renal denervation was performed at the same time. Blood pressure was measured during normal, high and low salt diets. Renal...

  6. Protective effect of Urtica dioica L. on renal ischemia/reperfusion injury in rat.

    Science.gov (United States)

    Sayhan, Mustafa Burak; Kanter, Mehmet; Oguz, Serhat; Erboga, Mustafa

    2012-12-01

    Renal ischemia-reperfusion (I/R) injury may occur after renal transplantation, thoracoabdominal aortic surgery, and renal artery interventions. This study was designed to investigate the effect of Urtica dioica L. (UD), in I/R induced renal injury. A total of 32 male Sprague-Dawley rats were divided into four groups: control, UD alone, I/R and I/R + UD; each group contain 8 animals. A rat model of renal I/R injury was induced by 45-min occlusion of the bilateral renal pedicles and 24-h reperfusion. In the UD group, 3 days before I/R, UD (2 ml/kg/day intraperitoneal) was administered by gastric gavage. All animals were sacrificed at the end of reperfusion and kidney tissues samples were obtained for histopathological investigation in all groups. To date, no more histopathological changes on intestinal I/R injury in rats by UD treatment have been reported. Renal I/R caused severe histopathological injury including tubular damage, atrophy dilatation, loss of brush border and hydropic epithelial cell degenerations, renal corpuscle atrophy, glomerular shrinkage, markedly focal mononuclear cell infiltrations in the kidney. UD treatment significantly attenuated the severity of intestinal I/R injury and significantly lowered tubulointerstitial damage score than the I/R group. The number of PCNA and TUNEL positive cells in the control and UD alone groups was negligible. When kidney sections were PCNA and TUNEL stained, there was a clear increase in the number of positive cells in the I/R group rats in the renal cortical tissues. However, there is a significant reduction in the activity of PCNA and TUNEL in kidney tissue of renal injury induced by renal I/R with UD therapy. Our results suggest that administration of UD attenuates renal I/R injury. These results suggest that UD treatment has a protective effect against renal damage induced by renal I/R. This protective effect is possibly due to its ability to inhibit I/R induced renal damage, apoptosis and cell proliferation.

  7. CT findings of transfusional hemosiderosis in patients with chronic renal failure : clinical correlation

    International Nuclear Information System (INIS)

    Park, Tae Joon; Lee, Hae Kyung; Hong, Hyun Sook; Kim, Gun Woo; Kim, Hyung Hwan; Choi, Gyo Chang; Kwon, Kui Hyang; Choi, Deuk Lin

    1997-01-01

    The purpose of this study is to evaluate whether there is any correlation between the CT features of hemosiderosis and clinical findings in patients with chronic renal failure who have received multiple blood transfusion. Among chronic renal failure patients who had undergone long-tern dialysis and received multiple blood transfusions, CT findings in 16 cases in which increased liver attenuation was seen on images obtained for other purpose, were analyzed by three radiologic specialists. The attenuation values of liver, spleen and pancreas compared with that of back muscle were correlated with the amount and duration of transfusion, and blood ferritin level. There is no correlation between the CT features of hemosiderosis and clinical findings. In patients with chronic renal failure and no clinical symptoms, the status of iron overload was relatively easily detected on CT. Close observation of CT findings is thus thought to prevent significant permanent functional deformity of organs in patients with chronic renal failure who have received multiple blood transfusions. (author). 14 refs., 1 tab., 1 fig

  8. Experimental study on irradiation injury of the kidneys. II. Cardiovascular changes following renal irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, S; Fuzikawa, K; Nishimori, I; Tsuda, N; Miyagawa, N [Nagasaki Univ. (Japan). School of Medicine

    1976-09-01

    In order to investigate irradiation injury of the kidney and effect of injured kidney on the whole body, especially cardiovascular changes, a single kidney was extracted from Wistar female rats and only the remaining kidney was irradiated with a great amount of radiation in 4000 R dose experimentally. After seven weeks of irradiation, atrophy and involution of the highest region of the kidney were found. Histologically, fibrous proliferation of interstice accompanied with atrophy of the renal tubule, and slightly increased nuclei and lobulation of the glomerulus were recognized. After 15 weeks of irradiation, atrophy and involution of the whole kidney were found. Histologically, fibrous proliferation of interstice in the kidney accompanied with a high degree of atrophy of the renal tubule, marked increase and lobulation of mesangium ground substance of the glomerulus and mild hypertrophy of arteriole were recognized. Mild degeneration of myocardium was recognized. In the long-term cases passing 29 and 34 weeks after irradiation, blood pressure just before slaughter rose to 250 mmHg. The kidney showed malignant nephrosclerosis-like lesion, and panarteritis was found in the mesentery and peri-pancreatic artery. In the heart, hypertonic myocardosis was recognized. A rise of blood pressure which was observed in this experiment occurred in circulation degenerations resulted from the secondary hypertrophy of the blood vessels accompanied with fibrous proliferation of the interstice which appeared after degeneration of renal tubule. It was thought that panarteritis of cardiovascular system of the whole body, especially mesentery and peri-pancreatic artery, and fibrinoid degeneration of arteriole of the kidney were due to hypertension and angiopathic factors (non-vasopressor extracts from the injured kidney).

  9. Determination of representative renal depth for accurate attenuation corred in measurement of glomerular filtration rate in transplanted kidney

    International Nuclear Information System (INIS)

    Oh, Soon Nam; Kim, Sung Hoon; Rha, Sung Eun; Chung, Yong An; Yoo, Ie Ryung; Sohn, Hyung Sun; Lee, Sung Young; Chung, Soo Kyo

    2002-01-01

    To measure reliable glomerular filtration rate by using the representative values of transplanted renal depths, which are measured with ultrasonography. We included 54 patients (26 men, 28 women), with having both renal scintigraphy and ultrasonography after renal transplantation. We measured DFR with Gates' method using the renal depth measured by ultrasonography, and median and mean ones in each patient. We compared GFR derived from ultrasonography-measured renal depth with GFR derived from median and mean renal depths. The correlation coefficients were obtained among GFR derived from ultrasonography-measured renal depths, median and mean renal depth under linear regression analysis. We determined whether GFR derived from median or mean renal depth could substitute GFR derived from ultrasonography-measured renal depth with Bland-Altman method. We analyze the expected errors of the GFR using representative renal depth in terms of age, sex, weight, height, creatinine value, and body surface. The transplanted renal depths range from 3.20 cm to 5.96 cm. The mean value and standard deviation of renal depths measured by ultrasonography are 4.09±0.65 cm in men, and 4.24±0.78 cm in women. The median value of renal depths measured by ultrasonography is 4.36 cm in men and 4.14 cm in women. The GFR derived from median renal depth is more consistent with GFR derived from ultrasonography-measured renal depth than GFR derived from mean renal depth. Differences of GFR derived from median and ultrasonography-measured renal depth are not significantly different in the groups classified with creatinine value, age, sex, height, weight and body surface. When median value is adapted as a representative renal depth, we could obtain reliable GFR in transplanted kidney simply

  10. RSK3 is required for concentric myocyte hypertrophy in an activated Raf1 model for Noonan syndrome.

    Science.gov (United States)

    Passariello, Catherine L; Martinez, Eliana C; Thakur, Hrishikesh; Cesareo, Maria; Li, Jinliang; Kapiloff, Michael S

    2016-04-01

    Noonan syndrome (NS) is a congenital disorder resulting from mutations of the Ras-Raf signaling pathway. Hypertrophic cardiomyopathy associated with RAF1 "RASopathy" mutations is a major risk factor for heart failure and death in NS and has been attributed to activation of MEK1/2-ERK1/2 mitogen-activated protein kinases. We recently discovered that type 3 p90 ribosomal S6 kinase (RSK3) is an ERK effector that is required, like ERK1/2, for concentric myocyte hypertrophy in response to pathological stress such as pressure overload. In order to test whether RSK3 also contributes to NS-associated hypertrophic cardiomyopathy, RSK3 knock-out mice were crossed with mice bearing the Raf1(L613V) human NS mutation. We confirmed that Raf1(L613V) knock-in confers a NS-like phenotype, including cardiac hypertrophy. Active RSK3 was increased in Raf1(L613V) mice. Constitutive RSK3 gene deletion prevented the Raf1(L613V)-dependent concentric growth in width of the cardiac myocyte and attenuated cardiac hypertrophy in female mice. These results are consistent with RSK3 being an important mediator of ERK1/2-dependent growth in RASopathy. In conjunction with previously published data showing that RSK3 is important for pathological remodeling of the heart, these data suggest that targeting of this downstream MAP-kinase pathway effector should be considered in the treatment of RASopathy-associated hypertrophic cardiomyopathy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Compensatory Structural and Functional Adaptation after Radical Nephrectomy for Renal Cell Carcinoma According to Preoperative Stage of Chronic Kidney Disease.

    Science.gov (United States)

    Choi, Don Kyoung; Jung, Se Bin; Park, Bong Hee; Jeong, Byong Chang; Seo, Seong Il; Jeon, Seong Soo; Lee, Hyun Moo; Choi, Han-Yong; Jeon, Hwang Gyun

    2015-10-01

    We investigated structural hypertrophy and functional hyperfiltration as compensatory adaptations after radical nephrectomy in patients with renal cell carcinoma according to the preoperative chronic kidney disease stage. We retrospectively identified 543 patients who underwent radical nephrectomy for renal cell carcinoma between 1997 and 2012. Patients were classified according to preoperative glomerular filtration rate as no chronic kidney disease--glomerular filtration rate 90 ml/minute/1.73 m(2) or greater (230, 42.4%), chronic kidney disease stage II--glomerular filtration rate 60 to less than 90 ml/minute/1.73 m(2) (227, 41.8%) and chronic kidney disease stage III--glomerular filtration rate 30 to less than 60 ml/minute/1.73 m(2) (86, 15.8%). Computerized tomography performed within 2 months before surgery and 1 year after surgery was used to assess functional renal volume for measuring the degree of hypertrophy of the remnant kidney, and the preoperative and postoperative glomerular filtration rate per unit volume of functional renal volume was used to calculate the degree of hyperfiltration. Among all patients (mean age 56.0 years) mean preoperative glomerular filtration rate, functional renal volume and glomerular filtration rate/functional renal volume were 83.2 ml/minute/1.73 m(2), 340.6 cm(3) and 0.25 ml/minute/1.73 m(2)/cm(3), respectively. The percent reduction in glomerular filtration rate was statistically significant according to chronic kidney disease stage (no chronic kidney disease 31.2% vs stage II 26.5% vs stage III 12.8%, p kidney was not statistically significant (no chronic kidney disease 18.5% vs stage II 17.3% vs stage III 16.5%, p=0.250). The change in glomerular filtration rate/functional renal volume was statistically significant (no chronic kidney disease 18.5% vs stage II 20.1% vs stage III 45.9%, p chronic kidney disease stage (p <0.001). Patients with a lower preoperative glomerular filtration rate had a smaller reduction in

  12. Muscular and systemic correlates of resistance training-induced muscle hypertrophy.

    Directory of Open Access Journals (Sweden)

    Cameron J Mitchell

    Full Text Available PURPOSE: To determine relationships between post-exercise changes in systemic [testosterone, growth hormone (GH, insulin like grow factor 1 (IGF-1 and interleukin 6 (IL-6], or intramuscular [skeletal muscle androgen receptor (AR protein content and p70S6K phosphorylation status] factors in a moderately-sized cohort of young men exhibiting divergent resistance training-mediated muscle hypertrophy. METHODS: Twenty three adult males completed 4 sessions•wk⁻¹ of resistance training for 16 wk. Muscle biopsies were obtained before and after the training period and acutely 1 and 5 h after the first training session. Serum hormones and cytokines were measured immediately, 15, 30 and 60 minutes following the first and last training sessions of the study. RESULTS: Mean fiber area increased by 20% (range: -7 to 80%; P<0.001. Protein content of the AR was unchanged with training (fold change = 1.17 ± 0.61; P=0.19; however, there was a significant correlation between the changes in AR content and fiber area (r=0.60, P=0.023. Phosphorylation of p70S6K was elevated 5 hours following exercise, which was correlated with gains in mean fiber area (r=0.54, P=0.007. There was no relationship between the magnitude of the pre- or post-training exercise-induced changes in free testosterone, GH, or IGF-1 concentration and muscle fiber hypertrophy; however, the magnitude of the post exercise IL-6 response was correlated with muscle hypertrophy (r=0.48, P=0.019. CONCLUSION: Post-exercise increases in circulating hormones are not related to hypertrophy following training. Exercise-induced changes in IL-6 correlated with hypertrophy, but the mechanism for the role of IL-6 in hypertrophy is not known. Acute increases, in p70S6K phosphorylation and changes in muscle AR protein content correlated with muscle hypertrophy implicating intramuscular rather than systemic processes in mediating hypertrophy.

  13. Systematic review of the synergist muscle ablation model for compensatory hypertrophy

    Directory of Open Access Journals (Sweden)

    Stella Maris Lins Terena

    Full Text Available Summary Objective: The aim was to evaluate the effectiveness of the experimental synergists muscle ablation model to promote muscle hypertrophy, determine the period of greatest hypertrophy and its influence on muscle fiber types and determine differences in bilateral and unilateral removal to reduce the number of animals used in this model. Method: Following the application of the eligibility criteria for the mechanical overload of the plantar muscle in rats, nineteen papers were included in the review. Results: The results reveal a greatest hypertrophy occurring between days 12 and 15, and based on the findings, synergist muscle ablation is an efficient model for achieving rapid hypertrophy and the contralateral limb can be used as there was no difference between unilateral and bilateral surgery, which reduces the number of animals used in this model. Conclusion: This model differs from other overload models (exercise and training regarding the characteristics involved in the hypertrophy process (acute and result in a chronic muscle adaptation with selective regulation and modification of fast-twitch fibers in skeletal muscle. This is an efficient and rapid model for compensatory hypertrophy.

  14. Exogenous cathepsin V protein protects human cardiomyocytes HCM from angiotensin Ⅱ-Induced hypertrophy.

    Science.gov (United States)

    Huang, Kun; Gao, Lu; Yang, Ming; Wang, Jiliang; Wang, Zheng; Wang, Lin; Wang, Guobin; Li, Huili

    2017-08-01

    Angiotensin (Ang) Ⅱ-induced cardiac hypertrophy can deteriorate to heart failure, a leading cause of mortality. Endogenous Cathepsin V (CTSV) has been reported to be cardioprotective against hypertrophy. However, little is known about the effect of exogenous CTSV on cardiac hypertrophy. We used the human cardiomyocytes HCM as a cell model to investigate the effects of exogenous CTSV on Ang Ⅱ-induced cardiac cell hypertrophy. Cell surface area and expression of classical markers of hypertrophy were analyzed. We further explored the mechanism of CTSV cardioprotective by assessing the levels and activities of PI3K/Akt/mTOR and MAPK signaling pathway proteins. We found that pre-treating cardiomyocytes with CTSV could significantly inhibit Ang Ⅱ-induced hypertrophy. The mRNA expression of hypertrophy markers ANP, BNP and β-MHC was obviously elevated in Ang Ⅱ-treated cardiac cells. Whereas, exogenous CTSV effectively halted this elevation. Further study revealed that the protective effects of exogenous CTSV might be mediated by repressing the phosphorylation of proteins in the PI3K/Akt/mTOR and MAPK pathways. Based on our results, we concluded that exogenous CTSV inhibited Ang Ⅱ-induced hypertrophy in HCM cells by inhibiting PI3K/Akt/mTOR. This study provides experimental evidence for the application of CTSV protein for the treatment of cardiac hypertrophy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Solving the cardiac hypertrophy riddle: The angiotensin II-mechanical stress connection.

    Science.gov (United States)

    Zablocki, Daniela; Sadoshima, Junichi

    2013-11-08

    A series of studies conducted 20 years ago, documenting the cardiac hypertrophy phenotype and its underlying signaling mechanism induced by angiotensin II (Ang II) and mechanical stress, showed a remarkable similarity between the effect of the Gαq agonist and that of mechanical forces on cardiac hypertrophy. Subsequent studies confirmed the involvement of autocrine/paracrine mechanisms, including stretch-induced release of Ang II in load-induced cardiac hypertrophy. Recent studies showed that the Ang II type 1 (AT1) receptor is also directly activated by mechanical forces, suggesting that AT1 receptors play an important role in mediating load-induced cardiac hypertrophy through both ligand- and mechanical stress-dependent mechanisms.

  16. Association of Ugrp2 gene polymorphisms with adenoid hypertrophy in the pediatric population.

    Science.gov (United States)

    Atilla, Mahmut Huntürk; Özdaş, Sibel; Özdaş, Talih; Baştimur, Sibel; Muz, Sami Engin; Öz, Işılay; Kurt, Kenan; İzbirak, Afife; Babademez, Mehmet Ali; Vatandaş, Nilgün

    2017-08-01

    Adenoid hypertrophy is a condition that presents itself as the chronic enlargement of adenoid tissues; it is frequently observed in the pediatric population. The Ugrp2 gene, a member of the secretoglobin superfamily, encodes a low-molecular weight protein that functions in the differentiation of upper airway epithelial cells. However, little is known about the association of Ugrp2 genetic variations with adenoid hypertrophy. The aim of this study is to investigate the association of single nucleotide polymorphisms in the Ugrp2 gene with adenoid hypertrophy and its related phenotypes. A total of 219 children, comprising 114 patients suffering from adenoid hypertrophy and 105 healthy patients without adenoid hypertrophy, were enrolled in this study. Genotypes of the Ugrp2 gene were determined by DNA sequencing. We identified four single nucleotide polymorphisms (IVS1-189G>A, IVS1-89T>G, c.201delC, and IVS2-15G>A) in the Ugrp2 gene. Our genotype analysis showed that the Ugrp2 (IVS1-89T>G) TG and (c.201delC) CdelC genotypes and their minor alleles were associated with a considerable increase in the risk of adenoid hypertrophy compared with the controls (p=0.012, p=0.009, p=0.013, and p=0.037, respectively). Furthermore, Ugrp2 (GTdelCG, GTdelCA) haplotypes were significantly associated with adenoid hypertrophy (four single nucleotide polymorphisms ordered from 5' to 3'; p=0.0001). Polymorfism-Polymorfism interaction analysis indicated a strong interaction between combined genotypes of the Ugrp2 gene contributing to adenoid hypertrophy, as well as an increased chance of its diagnosis (p<0.0001). In addition, diplotypes carrying the mutant Ugrp2 (c.201delC) allele were strongly associated with an increased risk of adenoid hypertrophy with asthma and adenoid hypertrophy with allergies (p=0.003 and p=0.0007, respectively). Some single nucleotide polymorphisms and their combinations in the Ugrp2 gene are associated with an increased risk of developing adenoid hypertrophy

  17. The endoplasmic reticulum stress-autophagy pathway is involved in apelin-13-induced cardiomyocyte hypertrophy in vitro

    Institute of Scientific and Technical Information of China (English)

    Feng XIE; Di WU; Shi-fang HUANG; Jian-gang CAO; He-ning LI; Lu HE; Mei-qing LIU; Lan-fang LI; Lin-xi CHEN

    2017-01-01

    Apelin is the endogenous ligand for the G protein-coupled receptor APJ,and plays important roles in the cardiovascular system.Our previous studies showed that apelin-13 promotes the hypertrophy of H9c2 rat cardiomyocytes through the PI3K-autophagy pathway.The aim of this study was to explore what roles ER stress and autophagy played in apelin-13-induced hypertrophy of cardiomyocytes in vitro.Treatment of H9c2 cells with apelin-13 (0.001-2 μJmol/L) dose-dependently increased the production of ROS and the expression levels of NADPH oxidase 4 (NOX4).Knockdown of Nox4 with siRNAs effectively prevented the reduction of GSH/GSSG ratio in apelin-13-treated cells.Furthermore,apelin-13 treatment dose-dependently increased the expression of Bip and CHOP,two ER stress markers,in the cells.Knockdown of APJ or Nox4 with the corresponding siRNAs,or application of NADPH inhibitor DPI blocked apelin-13-induced increases in Bip and CHOP expression.Moreover,apelin-13 treatment increased the formation of autophagosome and ER fragments and the LC3 puncta in the ER of the cells.Knockdown of APJ,Nox4,Bip or CHOP with the corresponding siRNAs,or application of DPI or salubrinal attenuated apelin-13-induced overexpression of LC3-Ⅱ/Ⅰ and beclin 1.Finally,knockdown of Nox4,Bip or CHOP with the corresponding siRNAs,or application of salubrinal significantly suppressed apelin-13-induced increases in the cell diameter,volume and protein contents.Our results demonstrate that ER stress-autophagy is involved in apelin-13-induced H9c2 cell hypertrophy.

  18. Extra-Esophageal Pepsin from Stomach Refluxate Promoted Tonsil Hypertrophy.

    Directory of Open Access Journals (Sweden)

    Jin Hyun Kim

    Full Text Available Gastroesophageal reflux is associated with numerous pathologic conditions of the upper aerodigestive tract. Gastric pepsin within reflux contributes to immunologic reactions in the tonsil. In this study, we aimed to find the relationships between pepsin and tonsillar hypertrophy.We explored the notion whether tonsillar hypertrophy was due to pepsin-mediated gastric reflux in tonsil hypertrophy. Fifty-four children with tonsil hypertrophy and 30 adults with tonsillitis were recruited before surgical treatment. Blood and tonsil tissues from each patient were harvested for analysis of changes in lymphocyte and macrophage numbers coupled with histological and biochemical analysis. Pepsin was expressed at different levels in tonsil tissues from each tonsillar hypertrophy. Pepsin-positive cells were found in the crypt epithelium, surrounding the lymphoid follicle with developing fibrosis, and also surrounding the lymphoid follicle that faced the crypt. And also, pepsin staining was well correlated with damaged tonsillar squamous epithelium and TGF-β1 and iNOS expression in the tonsil section. In addition, pepsin and TGF-β1-positive cells were co-localized with CD68-positive cells in the crypt and surrounding germinal centers. In comparison of macrophage responsiveness to pepsin, peripheral blood mononuclear cells (PBMNCs were noticeably larger in the presence of activated pepsin in the child group. Furthermore, CD11c and CD163-positive cells were significantly increased by activated pepsin. However, this was not seen for the culture of PBMNCs from the adult group.The lymphocytes and monocytes are in a highly proliferative state in the tonsillar hypertrophy and associated with increased expression of pro-inflammatory factors as a result of exposure to stomach reflux pepsin.

  19. Painful unilateral temporalis muscle enlargement: reactive masticatory muscle hypertrophy.

    Science.gov (United States)

    Katsetos, Christos D; Bianchi, Michael A; Jaffery, Fizza; Koutzaki, Sirma; Zarella, Mark; Slater, Robert

    2014-06-01

    An instance of isolated unilateral temporalis muscle hypertrophy (reactive masticatory muscle hypertrophy with fiber type 1 predominance) confirmed by muscle biopsy with histochemical fiber typing and image analysis in a 62 year-old man is reported. The patient presented with bruxism and a painful swelling of the temple. Absence of asymmetry or other abnormalities of the craniofacial skeleton was confirmed by magnetic resonance imaging and cephalometric analyses. The patient achieved symptomatic improvement only after undergoing botulinum toxin injections. Muscle biopsy is key in the diagnosis of reactive masticatory muscle hypertrophy and its distinction from masticatory muscle myopathy (hypertrophic branchial myopathy) and other non-reactive causes of painful asymmetric temporalis muscle enlargement.

  20. Soccer attenuates the asymmetry of rectus abdominis muscle observed in non-athletes.

    Directory of Open Access Journals (Sweden)

    Fernando Idoate

    Full Text Available PURPOSE: To determine the volume and degree of asymmetry of the rectus abdominis muscle (RA in professional soccer players. METHODS: The volume of the RA was determined using magnetic resonance imaging (MRI in 15 professional male soccer players and 6 non-active male control subjects. RESULTS: Soccer players had 26% greater RA volume than controls (P<0.05, due to hypertrophy of both the dominant (28% greater volume, P<0.05 and non-dominant (25% greater volume, P<0.01 sides, after adjusting for age, length of the RA muscle and body mass index (BMI as covariates. Total volume of the dominant side was similar to the contralateral in soccer players (P = 0.42 and in controls (P = 0.75 (Dominant/non-dominant = 0.99, in both groups. Segmental analysis showed a progressive increase in the degree of side-to-side asymmetry from the first lumbar disc to the pubic symphysis in soccer players (r = 0.80, P<0.05 and in controls (r = 0.75, P<0.05. The slope of the relationship was lower in soccer players, although this trend was not statistically significant (P = 0.14. CONCLUSIONS: Professional soccer is associated with marked hypertrophy of the rectus abdominis muscle, which achieves a volume that is 26% greater than in non-active controls. Soccer induces the hypertrophy of the non-dominant side in proximal regions and the dominant side in regions closer to pubic symphysis, which attenuates the pattern of asymmetry of rectus abdominis observed in non-active population. It remains to be determined whether the hypertrophy of rectus abdominis in soccer players modifies the risk of injury.

  1. Left Ventricular Hypertrophy in Pediatric Hypertension: A Mini Review

    Directory of Open Access Journals (Sweden)

    Robert P. Woroniecki

    2017-05-01

    Full Text Available Adults with arterial hypertension (HTN have stroke, myocardial infarction, end-stage renal disease (ESRD, or die at higher rates than those without. In children, HTN leads to target organ damage, which includes kidney, brain, eye, blood vessels, and heart, which precedes “hard outcomes” observed in adults. Left ventricular hypertrophy (LVH or an anatomic and pathologic increase in left ventricular mass (LVM in response to the HTN is a pediatric surrogate marker for HTN-induced morbidity and mortality in adults. This mini review discusses current definitions, clinically relevant methods of LVM measurements and normalization methods, its epidemiology, management, and issue of reversibility in children with HTN. Pediatric definition of LVH and abnormal LVM is not uniformed. With multiple definitions, prevalence of pediatric HTN-induced LVH is difficult to ascertain. In addition while in adults cardiac magnetic resonance imaging is considered “the gold standard” for LVM and LVH determination, pediatric data are limited to “special populations”: ESRD, transplant, and obese children. We summarize available data on pediatric LVH treatment and reversibility and offer future directions in addressing LVH in children with HTN.

  2. Isolated unilateral temporalis muscle hypertrophy in a child: a case report with literature review.

    Science.gov (United States)

    Ranasinghe, Jagath C; Wickramasinghe, Chandani; Rodrigo, Ganganath

    2018-02-19

    Temporalis muscle hypertrophy is a rare entity of masticatory muscle hypertrophy. All types of masticatory muscle hypertrophies have been documented of which temporalis muscle hypertrophy is one. Temporalis muscle hypertrophy is most commonly bilateral and usually associated with other types of masticatory muscles hypertrophy such as masseter or pterygoid hypertrophy. However, isolated unilateral temporalis muscle hypertrophy is extremely rare and only 9 cases have been reported to date in English literature since 1990 with only two patients less than 18 years. There is no exact etiology identified and the diagnosis is made by muscle biopsy combined with imaging study to exclude other possibilities. Age at presentation is ranges from 15 to 65 years with involvement of both sexes. We report the youngest child who is a seven year old girl with right side isolated unilateral temporalis muscle hypertrophy. In this patient, we discuss the youngest child with isolated unilateral temporalis muscle hypertrophy and literature review to date. The patient is a seven year old female presenting with painless swelling of the right temporalis muscle. There had no features of inflammation, trauma, neoplasm or history of parafunctions such as bruxism. The child was not complaining significantly headache or visual disturbances as well. She had undergone radiological assessment with ultrasound scan and contrast MRI. The diagnosis was confirmed by muscle biopsy which shows normal muscle architecture. She was managed conservatively with regular follow up. Isolated unilateral temporalis muscle hypertrophy is extremely rare in children. However this case raises the importance of considering alternative diagnoses despite the condition being rare in the pediatric population.

  3. Protein-energy malnutrition during early gestation in sheep blunts fetal renal vascular and nephron development and compromises adult renal function.

    Science.gov (United States)

    Lloyd, Louise J; Foster, Thomas; Rhodes, Phillip; Rhind, Stewart M; Gardner, David S

    2012-01-15

    A nutritionally poor maternal diet can reduce nephron endowment and pre-empt premature expression of markers for chronic renal disease in the offspring. A mechanistic pathway from variation in maternal diet through altered fetal renal development to compromised adult kidney structure and function with adult-onset obesity has not been described. We show that maternal protein-energy malnutrition in sheep blunts nephrogenic potential in the 0.44 gestation (65 days gestation, term ∼147 days) fetus by increasing apoptosis and decreasing angiogenesis in the nephrogenic zone, effects that were more marked in male fetuses. As adults, the low-protein-exposed sheep had reduced glomerular number and microvascular rarefaction in their kidneys compensated for, respectively, by glomerular hypertrophy and increased angiogenic support. In this study, the long-term mild anatomical deficits in the kidney would have remained asymptomatic in the lean state, but when superimposed on the broad metabolic challenge that obesity represents then microalbuminuria and blunted bilateral renal function revealed a long-term physiological compromise, that is only predicted to worsen with age. In conclusion, maternal protein-energy malnutrition specifically impacts fetal kidney vascular development and prevents full functionality of the adult kidney being achieved; these residual deficits are predicted to significantly increase the expected incidence of chronic kidney disease in prenatally undernourished individuals especially when coupled with a Western obesogenic environment.

  4. Andrographis paniculata extract attenuates pathological cardiac hypertrophy and apoptosis in high-fat diet fed mice.

    Science.gov (United States)

    Hsieh, You-Liang; Shibu, Marthandam Asokan; Lii, Chong-Kuei; Viswanadha, Vijaya Padma; Lin, Yi-Lin; Lai, Chao-Hung; Chen, Yu-Feng; Lin, Kuan-Ho; Kuo, Wei-Wen; Huang, Chih-Yang

    2016-11-04

    Andrographis paniculata (Burm. f.) Nees (Acanthaceae) has a considerable medicinal reputation in most parts of Asia as a potent medicine in the treatment of Endocrine disorders, inflammation and hypertension. Water extract of A. paniculata and its active constituent andrographolide are known to possess anti-inflammatory and anti-apoptotic effects. Our aim is to identify whether A. paniculata extract could protect myocardial damage in high-fat diet induced obese mice. The test mice were divided into three groups fed either with normal chow or with high fat diet (obese) or with high fat diet treated with A. paniculata extract (2g/kg/day, through gavage, for a week). We found that the myocardial inflammation pathway related proteins were increased in the obese mouse which potentially contributes to cardiac hypertrophy and myocardial apoptosis. But feeding with A. paniculata extract showed significant inhibition on the effects of high fat diet. Our study strongly suggests that supplementation of A. paniculata extract can be used for prevention and treatment of cardiovascular disease in obese patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Global microRNA profiles and signaling pathways in the development of cardiac hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Feng, H.J.; Ouyang, W.; Liu, J.H.; Sun, Y.G.; Hu, R.; Huang, L.H.; Xian, J.L. [Southern Medical University, Department of Nuclear Medicine, Zhujiang Hospital, Guangzhou, China, Department of Nuclear Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou (China); Jing, C.F.; Zhou, M.J. [Sun Yat-Sen University, South China Sea Marine Biotechnology, National Engineering Research Center, Guangzhou, China, National Engineering Research Center, South China Sea Marine Biotechnology, Sun Yat-Sen University, Guangzhou (China)

    2014-04-11

    Hypertrophy is a major predictor of progressive heart disease and has an adverse prognosis. MicroRNAs (miRNAs) that accumulate during the course of cardiac hypertrophy may participate in the process. However, the nature of any interaction between a hypertrophy-specific signaling pathway and aberrant expression of miRNAs remains unclear. In this study, Spague Dawley male rats were treated with transverse aortic constriction (TAC) surgery to mimic pathological hypertrophy. Hearts were isolated from TAC and sham operated rats (n=5 for each group at 5, 10, 15, and 20 days after surgery) for miRNA microarray assay. The miRNAs dysexpressed during hypertrophy were further analyzed using a combination of bioinformatics algorithms in order to predict possible targets. Increased expression of the target genes identified in diverse signaling pathways was also analyzed. Two sets of miRNAs were identified, showing different expression patterns during hypertrophy. Bioinformatics analysis suggested the miRNAs may regulate multiple hypertrophy-specific signaling pathways by targeting the member genes and the interaction of miRNA and mRNA might form a network that leads to cardiac hypertrophy. In addition, the multifold changes in several miRNAs suggested that upregulation of rno-miR-331*, rno-miR-3596b, rno-miR-3557-5p and downregulation of rno-miR-10a, miR-221, miR-190, miR-451 could be seen as biomarkers of prognosis in clinical therapy of heart failure. This study described, for the first time, a potential mechanism of cardiac hypertrophy involving multiple signaling pathways that control up- and downregulation of miRNAs. It represents a first step in the systematic discovery of miRNA function in cardiovascular hypertrophy.

  6. Aerobic exercise protects against pressure overload-induced cardiac dysfunction and hypertrophy via β3-AR-nNOS-NO activation

    Science.gov (United States)

    Li, Wenju; Li, Xiaoli; Zheng, Qiangsun; Niu, Xiaolin

    2017-01-01

    Aerobic exercise confers sustainable protection against cardiac hypertrophy and heart failure (HF). Nitric oxide synthase (NOS) and nitric oxide (NO) are known to play an important role in exercise-mediated cardioprotection, but the mechanism of NOS/NO stimulation during exercise remains unclear. The aim of this study is to determine the role of β3-adrenergic receptors (β3-ARs), NOS activation, and NO metabolites (nitrite and nitrosothiols) in the sustained cardioprotective effects of aerobic exercise. An HF model was constructed by transverse aortic constriction (TAC). Animals were treated with either moderate aerobic exercise by swimming for 9 weeks and/or the β3-AR-specific inhibitor SR59230A at 0.1 mg/kg/hour one day after TAC operation. Myocardial fibrosis, myocyte size, plasma catecholamine (CA) level, cardiac function and geometry were assessed using Masson’s trichrome staining, FITC-labeled wheat germ agglutinin staining, enzyme-linked immuno sorbent assay (ELISA) and echocardiography, respectively. Western blot analysis was performed to elucidate the expression of target proteins. The concentration of myocardial NO production was evaluated using the nitrate reductase method. Myocardial oxidative stress was assessed by detecting the concentration of myocardial super oxidative dismutase (SOD), malonyldialdehyde (MDA), and reactive oxygen species (ROS). Aerobic exercise training improved dilated left ventricular function and partially attenuated the degree of cardiac hypertrophy and fibrosis in TAC mice. Moreover, the increased expression of β3-AR, activation of neuronal NOS (nNOS), and production of NO were detected after aerobic exercise training in TAC mice. However, selective inhibition of β3-AR by SR59230A abolished the upregulation and activation of nNOS induced NO production. Furthermore, aerobic exercise training decreased the myocardial ROS and MDA contents and increased myocardial levels of SOD; both effects were partially attenuated by SR

  7. Aerobic exercise protects against pressure overload-induced cardiac dysfunction and hypertrophy via β3-AR-nNOS-NO activation.

    Science.gov (United States)

    Wang, Bin; Xu, Ming; Li, Wenju; Li, Xiaoli; Zheng, Qiangsun; Niu, Xiaolin

    2017-01-01

    Aerobic exercise confers sustainable protection against cardiac hypertrophy and heart failure (HF). Nitric oxide synthase (NOS) and nitric oxide (NO) are known to play an important role in exercise-mediated cardioprotection, but the mechanism of NOS/NO stimulation during exercise remains unclear. The aim of this study is to determine the role of β3-adrenergic receptors (β3-ARs), NOS activation, and NO metabolites (nitrite and nitrosothiols) in the sustained cardioprotective effects of aerobic exercise. An HF model was constructed by transverse aortic constriction (TAC). Animals were treated with either moderate aerobic exercise by swimming for 9 weeks and/or the β3-AR-specific inhibitor SR59230A at 0.1 mg/kg/hour one day after TAC operation. Myocardial fibrosis, myocyte size, plasma catecholamine (CA) level, cardiac function and geometry were assessed using Masson's trichrome staining, FITC-labeled wheat germ agglutinin staining, enzyme-linked immuno sorbent assay (ELISA) and echocardiography, respectively. Western blot analysis was performed to elucidate the expression of target proteins. The concentration of myocardial NO production was evaluated using the nitrate reductase method. Myocardial oxidative stress was assessed by detecting the concentration of myocardial super oxidative dismutase (SOD), malonyldialdehyde (MDA), and reactive oxygen species (ROS). Aerobic exercise training improved dilated left ventricular function and partially attenuated the degree of cardiac hypertrophy and fibrosis in TAC mice. Moreover, the increased expression of β3-AR, activation of neuronal NOS (nNOS), and production of NO were detected after aerobic exercise training in TAC mice. However, selective inhibition of β3-AR by SR59230A abolished the upregulation and activation of nNOS induced NO production. Furthermore, aerobic exercise training decreased the myocardial ROS and MDA contents and increased myocardial levels of SOD; both effects were partially attenuated by SR59230

  8. Vildagliptin restores renal myogenic function and attenuates renal sclerosis independently of effects on blood glucose or proteinuria in Zucker Diabetic Fatty rat

    NARCIS (Netherlands)

    Vavrinec, Peter; Henning, Robert H.; Landheer, Sjoerd W.; Wang, Yumei; Deelman, Leo E.; van Dokkum, Richard P. E.; Buikema, Hendrik

    Type 2 diabetes mellitus (T2DM) is associated with risk for chronic kidney disease (CKD), which is associated with a decrease in renal myogenic tone - part of renal autoregulatory mechanisms. Novel class of drugs used for the treatment of T2DM, dipeptidyl peptidase-4 (DPP-4) inhibitors, have

  9. Effect of hepatocyte growth factor and angiotensin II on rat cardiomyocyte hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ai-Lan [Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou (China); Ou, Cai-Wen [The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou (China); He, Zhao-Chu [Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou (China); Liu, Qi-Cai [Experimental Medical Research Center, Guangzhou Medical University, Guangzhou (China); Dong, Qi [Department of Physiology, Guangzhou Medical University, Guangzhou (China); Chen, Min-Sheng [Guangzhou Key Laboratory of Cardiovascular Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou (China)

    2012-10-15

    Angiotensin II (Ang II) plays an important role in cardiomyocyte hypertrophy. The combined effect of hepatocyte growth factor (HGF) and Ang II on cardiomyocytes is unknown. The present study was designed to determine the effect of HGF on cardiomyocyte hypertrophy and to explore the combined effect of HGF and Ang II on cardiomyocyte hypertrophy. Primary cardiomyocytes were isolated from neonatal rat hearts and cultured in vitro. Cells were treated with Ang II (1 µM) alone, HGF (10 ng/mL) alone, and Ang II (1 µM) plus HGF (10 ng/mL) for 24, 48, and 72 h. The amount of [{sup 3}H]-leucine incorporation was then measured to evaluate protein synthesis. The mRNA levels of β-myosin heavy chain and atrial natriuretic factor were determined by real-time PCR to evaluate the presence of fetal phenotypes of gene expression. The cell size of cardiomyocytes was also studied. Ang II (1 µM) increased cardiomyocyte hypertrophy. Similar to Ang II, treatment with 1 µM HGF promoted cardiomyocyte hypertrophy. Moreover, the combination of 1 µM Ang II and 10 ng/mL HGF clearly induced a combined pro-hypertrophy effect on cardiomyocytes. The present study demonstrates for the first time a novel, combined effect of HGF and Ang II in promoting cardiomyocyte hypertrophy.

  10. Blueberry Anthocyanins-Enriched Extracts Attenuate Cyclophosphamide-Induced Cardiac Injury.

    Directory of Open Access Journals (Sweden)

    Yunen Liu

    Full Text Available We sought to explore the effect of blueberry anthocyanins-enriched extracts (BAE on cyclophosphamide (CTX-induced cardiac injury. The rats were divided randomly into five groups including normal control, CTX 100 mg/kg, BAE 80mg/kg, CTX+BAE 20mg/kg and CTX+BAE 80mg/kg groups. The rats in the three BAE-treated groups were administered BAE for four weeks. Seven days after BAE administration, rats in CTX group and two BAE-treated groups were intraperitoneally injected with a single dose of 100 mg/kg CTX. Cardiac injury was assessed using physiological parameters, Echo, morphological staining, real-time PCR and western blot. In addition, cardiotoxicity indices, inflammatory cytokines expression and oxidative stress markers were also detected. Four weeks 20mg/kg and 80mg/kg dose of BAE treatment following CTX exposure attenuated mean arterial blood pressure, heart rate and activities of heart enzymes, improved cardiac dysfunction, left ventricular hypertrophy and fibrosis. Importantly, BAE also attenuated CTX-induced LV leukocyte infiltration and inflammatory cytokines expression, ameliorated oxidative stress as well as cardiomyocyte apoptosis. In conclusion, BAE attenuated the CTX-induced cardiac injury and the protective mechanisms were related closely to the anti-inflammatory, antioxidant and anti-inflammatory characteristics of BAE.

  11. Attenuation changes of the normal and ischemic canine kidney

    International Nuclear Information System (INIS)

    Jaschke, W.; Lipton, M.J.; Boyd, D.P.; Cann, C.; Strauss, L.; Sievers, R.S.; California Univ., San Francisco

    1985-01-01

    The potential of CT scanning to explore total and regional renal blood flow was evaluated in a dog model with unilateral renal artery stenosis (n=7, reduction of renal blood flow: 32-75% of base line flow). Attenuation versus time curves were generated for the renal cortex and medulla, as well as for the aorta and renal vein. A fast CT scanner was used which allowed for up to 24 scans/minute at the same level (slice thickness: 10 mm). A total of 10 ml contrast medim was injected into a peripheral vein for each scan series taken. During baseline conditions, the curve of the renal cortex and medulla demonstrated 2 peaks. The first peak was mainly related to early vascular enhancement, whereas the second peak corresponded mainly to the appearance of contrast medium in the distal convolutes and collecting ducts. Ischemia of the kidney resulted in a reduction of the first peak and a flattening of the leading edge slope. Transport of contrast medium through the extravascular compartments of the kidney was delayed during ischemia. Relative renal blood flow was obtained from the CT data by dividing peak enhancement by rise-time as assessed from the cortical curve. All measurements were related to baseline flow and validated by flow measurements using radioactive labeled microspheres (n=5). Correlation was found to be r=0.97. (orig.)

  12. HSF1 and NF-κB p65 participate in the process of exercise preconditioning attenuating pressure overload-induced pathological cardiac hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tongyi [Department of Cardiothoracic Surgery, No. 401 Hospital of PLA, Qingdao (China); Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China); Zhang, Ben [Centre of Cardiovascular Surgery, Guangzhou General Hospital of Guangzhou Military Region, Guangzhou (China); Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China); Yang, Fan; Cai, Chengliang; Wang, Guokun [Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China); Han, Qingqi, E-mail: handoctor@gmail.com [Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China); Zou, Liangjian, E-mail: zouliangjiansh@gmail.com [Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China)

    2015-05-08

    Pathological cardiac hypertrophy, often accompanied by hypertension, aortic stenosis and valvular defects, is typically associated with myocyte remodeling and cardiac dysfunction. Exercise preconditioning (EP) has been proven to enhance the tolerance of the myocardium to cardiac ischemia-reperfusion injury. However, the effects of EP in pathological cardiac hypertrophy are rarely reported. 10-wk-old male Sprague–Dawley rats (n = 80) were randomly divided into four groups: sham, TAC, EP + sham and EP + TAC. Two EP groups were subjected to 4 weeks of treadmill training, and the EP + TAC and TAC groups were followed by TAC operations. The sham and EP + sham groups underwent the same operation without aortic constriction. Eight weeks after the surgery, we evaluated the effects of EP by echocardiography, morphology, and histology and observed the expressions of the associated proteins. Compared with the respective control groups, hypertrophy-related indicators were significantly increased in the TAC and EP + TAC groups (p < 0.05). However, between the TAC and EP + TAC groups, all of these changes were effectively inhibited by EP treatment (p < 0.05). Furthermore, EP treatment upregulated the expression of HSF1 and HSP70, increased the HSF1 levels in the nuclear fraction, inhibited the expression of the NF-κB p65 subunit, decreased the NF-κB p65 subunit levels in the nuclear fraction, and reduced the IL2 levels in the myocardia of rats. EP could effectively reduce the cardiac hypertrophic responses induced by TAC and may play a protective role by upregulating the expressions of HSF1 and HSP70, activating HSF1 and then inhibiting the expression of NF-κB p65 and nuclear translocation. - Highlights: • EP could effectively reduce the cardiac hypertrophic responses induced by TAC. • EP may play a protective role by upregulating the expressions of HSF1 and HSP70 and then activating HSF1. • EP may play a protective role by inhibiting the expression

  13. Myocardial hypertrophy in the recipient with twin-to-twin transfusion syndrome

    DEFF Research Database (Denmark)

    Jeppesen, D.L.; Jorgensen, F.S.; Pryds, O.A.

    2008-01-01

    pressure measurements revealed persistent systemic hypertension. Biventricular hypertrophy was demonstrated by echocardiography. Blood pressure normalised after treatment with Nifedipine and the cardiac hypertrophy subsided over the following weeks. A potential contributing mechanism is intrauterine...

  14. 19-Hydroxyeicosatetraenoic acid and isoniazid protect against angiotensin II-induced cardiac hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Elkhatali, Samya; El-Sherbeni, Ahmed A.; Elshenawy, Osama H. [Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada); Abdelhamid, Ghada [Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Helwan (Egypt); El-Kadi, Ayman O.S., E-mail: aelkadi@ualberta.ca [Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada)

    2015-12-15

    We have recently demonstrated that 19-hydroxyeicosatetraenoic acid (19-HETE) is the major subterminal-HETE formed in the heart tissue, and its formation was decreased during cardiac hypertrophy. In the current study, we examined whether 19-HETE confers cardioprotection against angiotensin II (Ang II)-induced cardiac hypertrophy. The effect of Ang II, with and without 19-HETE (20 μM), on the development of cellular hypertrophy in cardiomyocyte RL-14 cells was assessed by real-time PCR. Also, cardiac hypertrophy was induced in Sprague–Dawley rats by Ang II, and the effect of increasing 19-HETE by isoniazid (INH; 200 mg/kg/day) was assessed by heart weight and echocardiography. Also, alterations in cardiac cytochrome P450 (CYP) and their associated arachidonic acid (AA) metabolites were determined by real-time PCR, Western blotting and liquid-chromatography–mass-spectrometry. Our results demonstrated that 19-HETE conferred a cardioprotective effect against Ang II-induced cellular hypertrophy in vitro, as indicated by the significant reduction in β/α-myosin heavy chain ratio. In vivo, INH improved heart dimensions, and reversed the increase in heart weight to tibia length ratio caused by Ang II. We found a significant increase in cardiac 19-HETE, as well as a significant reduction in AA and its metabolite, 20-HETE. In conclusion, 19-HETE, incubated with cardiomyocytes in vitro or induced in the heart by INH in vivo, provides cardioprotection against Ang II-induced hypertrophy. This further confirms the role of CYP, and their associated AA metabolites in the development of cardiac hypertrophy. - Highlights: • We found 19-hydroxy arachidonic acid to protect cardiomyocytes from hypertrophy. • We validated the use of isoniazid as a cardiac 19-hydroxy arachidonic acid inducer. • We found isoniazid to increase protective and inhibit toxic eicosanoides. • We found isoniazid to protect against angiotensin-induced cardiac hypertrophy. • This will help to

  15. Pharmacological investigations of Punica granatum in glycerol-induced acute renal failure in rats.

    Science.gov (United States)

    Singh, Amrit Pal; Singh, Amteshwar Jaggi; Singh, Nirmal

    2011-09-01

    The present study was designed to investigate the ameliorative potential and possible mechanism of hydroalcoholic extract of flowers of P. granatum in glycerol-induced acute renal failure (ARF) in rats. The rats were subjected to rhabdomyolytic ARF by single intramuscular injection of hypertonic glycerol (50% v/v; 8 ml/kg) and the animals were sacrificed after 24 hours of glycerol injection. The plasma creatinine, blood urea nitrogen, creatinine clearance, and histopathological studies were performed to assess the degree of renal injury. Pretreatment with hydroalcoholic extract of flowers of P. granatum (125 and 250 mg/kg p.o. twice daily for 3 days) significantly attenuated hypertonic glycerol-induced renal dysfunction in a dose-dependent manner. BADGE (Bisphenol-A-diglycidyl ether) (30 mg/kg), a peroxisome proliferator-activated receptor (PPAR)-γ antagonist, and N(omega)-nitro-l-arginine-methyl ester (L-NAME) (10, 20, and 40 mg/kg), nitric oxide synthase inhibitor, were employed to explore the mechanism of renoprotective effects of Punica granatum. Administration of BADGE (30 mg/kg) and L-NAME (40 mg/kg) abolished the beneficial effects of P. granatum in glycerol-induced renal dysfunction. Hydroalcoholic extract of flowers of P. granatum has ameliorative potential in attenuating myoglobinuric renal failure and its renoprotective effects involve activation of PPAR-γ and nitric oxide-dependent signaling pathway.

  16. Health-related quality of life among children with adenoid hypertrophy in Xi'an, China.

    Science.gov (United States)

    Jiang, Xun; Ren, Xiaoyong; Liu, Haiqin; Tian, Jiao; Du, Chunyan; Luo, Huanan; Cheng, Ying; Shang, Lei

    2015-12-01

    The aim of this study was to investigate the health-related quality of life (HRQOL) in 5-7-year-old children diagnosed with adenoid hypertrophy and the impact of adenoid hypertrophy on affected families. This is a cross-sectional case-control study evaluating 5-7-year-old children with adenoid hypertrophy (n=195), 5-7-year-old healthy children (n=156), and associated caregivers (parents and/or grandparents). A Chinese version of the PedsQL™ 4.0 Generic Core Scale was used to assess childhood HRQOL, and a Chinese version of the Family Impact Module (FIM) was used to assess the impact of adenoid hypertrophy on family members. HRQOL scores were compared between the children with adenoid hypertrophy and healthy children. In addition, a multiple step-wise regression with demographic variables of children and their caregivers, family economic status, and caregiver's HRQOL as independent variables were referenced to determine the factors that may influence HRQOL in children with adenoid hypertrophy. Children with adenoid hypertrophy showed significantly lower physical, emotional, social, and school functioning scores than healthy children (pchildren with adenoid hypertrophy also scored significantly lower than caregivers for healthy children on physical, emotional, social, cognitive, and communication functioning (pchildren also exhibited significantly higher levels of worry than healthy children (pchildren's age, children's relation with caregivers, caregiver's educational level, caregiver's own HRQOL, and the size of adenoid may all influence the HRQOL in children with adenoid hypertrophy (pchildren and their caregivers, and may negatively influence family functioning. In addition, caregivers' social characteristics may also significantly affect the HRQOL in children with adenoid hypertrophy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Renal expression of FGF23 in progressive renal disease of diabetes and the effect of ACE inhibitor.

    Directory of Open Access Journals (Sweden)

    Cristina Zanchi

    Full Text Available Fibroblast growth factor 23 (FGF23 is a phosphaturic hormone mainly produced by bone that acts in the kidney through FGF receptors and Klotho. Here we investigated whether the kidney was an additional source of FGF23 during renal disease using a model of type 2 diabetic nephropathy. Renal expression of FGF23 and Klotho was assessed in Zucker diabetic fatty (ZDF and control lean rats at 2, 4, 6, 8 months of age. To evaluate whether the renoprotective effect of angiotensin converting enzyme (ACE inhibitor in this model was associated with changes in FGF23 and Klotho, ZDF rats received ramipril from 4, when proteinuric, to 8 months of age. FGF23 mRNA was not detectable in the kidney of lean rats, nor of ZDF rats at 2 months of age. FGF23 became measurable in the kidney of diabetic rats at 4 months and significantly increased thereafter. FGF23 protein localized in proximal and distal tubules. Renal Klotho mRNA and protein decreased during time in ZDF rats. As renal disease progressed, serum phosphate levels increased in parallel with decline of fractional phosphorus excretion. Ramipril limited proteinuria and renal injury, attenuated renal FGF23 upregulation and ameliorated Klotho expression. Ramipril normalized serum phosphate levels and tended to increase fractional phosphorus excretion. These data indicate that during progressive renal disease the kidney is a site of FGF23 production which is limited by ACE inhibition. Interfering pharmacologically with the delicate balance of FGF23 and phosphorus in diabetes may have implications in clinics.

  18. Satellite cell depletion prevents fiber hypertrophy in skeletal muscle.

    Science.gov (United States)

    Egner, Ingrid M; Bruusgaard, Jo C; Gundersen, Kristian

    2016-08-15

    The largest mammalian cells are the muscle fibers, and they have multiple nuclei to support their large cytoplasmic volumes. During hypertrophic growth, new myonuclei are recruited from satellite stem cells into the fiber syncytia, but it was recently suggested that such recruitment is not obligatory: overload hypertrophy after synergist ablation of the plantaris muscle appeared normal in transgenic mice in which most of the satellite cells were abolished. When we essentially repeated these experiments analyzing the muscles by immunohistochemistry and in vivo and ex vivo imaging, we found that overload hypertrophy was prevented in the satellite cell-deficient mice, in both the plantaris and the extensor digitorum longus muscles. We attribute the previous findings to a reliance on muscle mass as a proxy for fiber hypertrophy, and to the inclusion of a significant number of regenerating fibers in the analysis. We discuss that there is currently no model in which functional, sustainable hypertrophy has been unequivocally demonstrated in the absence of satellite cells; an exception is re-growth, which can occur using previously recruited myonuclei without addition of new myonuclei. © 2016. Published by The Company of Biologists Ltd.

  19. X-ray attenuation of the liver and kidney in cats considered at varying risk of hepatic lipidosis.

    Science.gov (United States)

    Lam, Richard; Niessen, Stijn J; Lamb, Christopher R

    2014-01-01

    X-ray attenuation of the liver has been measured using computed tomography (CT) and reported to decrease in cats with experimentally induced hepatic lipidosis. To assess the clinical utility of this technique, medical records and noncontrast CT scans of a series of cats were retrospectively reviewed. A total of 112 cats met inclusion criteria and were stratified into three hepatic lipidosis risk groups. Group 1 cats were considered low-risk based on no history of inappetence or weight loss, and normal serum chemistry values; Group 2 cats were considered intermediate risk based on weight loss, serum hepatic enzymes above normal limits, or reasonably controlled diabetes mellitus; and Group 3 cats were considered high risk based on poorly controlled diabetes mellitus due to hypersomatotropism. Mean CT attenuation values (Hounsfield units, HU) were measured using regions of interest placed within the liver and cranial pole of the right kidney. Hepatic and renal attenuation were weakly positively correlated with each other (r = 0.2, P = 0.03) and weakly negatively correlated with body weight (r = -0.21, P = 0.05, and r = -0.34, P = 0.001, respectively). Mean (SD) hepatic and renal cortical attenuation values were 70.7 (8.7) HU and 49.6 (9.2) HU for Group 1 cats, 71.4 (7.9) HU and 48.6 (9.1) HU for Group 2, and 68.9 (7.6) HU and 47.6 (7.2) HU for Group 3. There were no significant differences in hepatic or renal attenuation among groups. Findings indicated that CT measures of X-ray attenuation in the liver and kidney may not be accurate predictors of naturally occurring hepatic lipidosis in cats. © 2013 American College of Veterinary Radiology.

  20. 99mTc-DMSA assessment of unilateral renal function: comparative study of two methods

    International Nuclear Information System (INIS)

    Llamas, J.M.; Torres, M.; Mallol, J.; Latre, J.M.; Martinez Paredes, M.; Carreras, J.L.

    1987-01-01

    Results obtained with two different methods of assessing unilateral renal function by measuring the percentage of relative uptake following the administration of a tracing dose of Tc 99m -DMSA are compared in a sample of 40 patients with various conditions. As a reference test, I 131 -hippurate 1'-2' relative uptake, corrected by normalized background and attenuation, was employed. Tc 99m -DMSA relative uptake was determined at 24 hours using the following methods: 1) Percentage of accumulated counts over each renal area in relation to the total, for two minutes, corrected by normalized background and attenuation. 2) Percentage of accumulated counts over each renal area in relation to the total, obtained from the geometrical mean value of accumulated counts in AP and PA projections. A correlation analysis between the two methods, and between these and the reference test, were performed. Good correlations among them (r=0,98 between double-image DMS and Hippurate; p<0,001 in all cases) were found. (author)

  1. Effect of strength training on regional hypertrophy of the elbow flexor muscles.

    Science.gov (United States)

    Drummond, Marcos D M; Szmuchrowski, Leszek A; Goulart, Karine N O; Couto, Bruno P

    2016-10-01

    Muscle hypertrophy is the main structural adaptation to strength training. We investigated the chronic effects of strength training on muscle hypertrophy in different regions of the elbow flexor muscles. Eleven untrained men (21.8 ± 1.62 years) underwent magnetic resonance imaging to determine the proximal, medial, distal, and mean cross-sectional areas (CSA) of the elbow flexors. The volunteers completed 12 weeks of strength training. The training protocol consisted of 4 sets of 8-10 maximum repetitions of unilateral elbow flexion. The interval between sets was 120 s. The training frequency was 3 sessions per week. The magnetic resonance images verified the presence of significant and similar hypertrophy in the distal, medial, and proximal portions of the elbow flexor muscles. Muscle hypertrophy may be assessed using only the medial CSA. We should not expect different degrees of hypertrophy among the regions of the elbow flexor muscles. Muscle Nerve 54: 750-755, 2016. © 2016 Wiley Periodicals, Inc.

  2. Negative feedback regulation of Homer 1a on norepinephrine-dependent cardiac hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Chiarello, Carmelina; Bortoloso, Elena; Carpi, Andrea; Furlan, Sandra; Volpe, Pompeo, E-mail: pompeo.volpe@unipd.it

    2013-07-15

    Homers are scaffolding proteins that modulate diverse cell functions being able to assemble signalling complexes. In this study, the presence, sub-cellular distribution and function of Homer 1 was investigated. Homer 1a and Homer 1b/c are constitutively expressed in cardiac muscle of both mouse and rat and in HL-1 cells, a cardiac cell line. As judged by confocal immunofluorescence microscopy, Homer 1a displays sarcomeric and peri-nuclear localization. In cardiomyocytes and cultured HL-1 cells, the hypertrophic agonist norepinephrine (NE) induces α{sub 1}-adrenergic specific Homer 1a over-expression, with a two-to-three-fold increase within 1 h, and no up-regulation of Homer 1b/c, as judged by Western blot and qPCR. In HL-1 cells, plasmid-driven over-expression of Homer 1a partially antagonizes activation of ERK phosphorylation and ANF up-regulation, two well-established, early markers of hypertrophy. At the morphometric level, NE-induced increase of cell size is likewise and partially counteracted by exogenous Homer 1a. Under the same experimental conditions, Homer 1b/c does not have any effect on ANF up-regulation nor on cell hypertrophy. Thus, Homer 1a up-regulation is associated to early stages of cardiac hypertrophy and appears to play a negative feedback regulation on molecular transducers of hypertrophy. -- Highlights: • Homer 1a is constitutively expressed in cardiac tissue. • In HL-1 cells, norepinephrine activates signaling pathways leading to hypertrophy. • Homer 1a up-regulation is an early event of norepinephrine-induced hypertrophy. • Homer 1a plays a negative feedback regulation modulating pathological hypertrophy. • Over-expression of Homer 1a per se does not induce hypertrophy.

  3. Negative feedback regulation of Homer 1a on norepinephrine-dependent cardiac hypertrophy

    International Nuclear Information System (INIS)

    Chiarello, Carmelina; Bortoloso, Elena; Carpi, Andrea; Furlan, Sandra; Volpe, Pompeo

    2013-01-01

    Homers are scaffolding proteins that modulate diverse cell functions being able to assemble signalling complexes. In this study, the presence, sub-cellular distribution and function of Homer 1 was investigated. Homer 1a and Homer 1b/c are constitutively expressed in cardiac muscle of both mouse and rat and in HL-1 cells, a cardiac cell line. As judged by confocal immunofluorescence microscopy, Homer 1a displays sarcomeric and peri-nuclear localization. In cardiomyocytes and cultured HL-1 cells, the hypertrophic agonist norepinephrine (NE) induces α 1 -adrenergic specific Homer 1a over-expression, with a two-to-three-fold increase within 1 h, and no up-regulation of Homer 1b/c, as judged by Western blot and qPCR. In HL-1 cells, plasmid-driven over-expression of Homer 1a partially antagonizes activation of ERK phosphorylation and ANF up-regulation, two well-established, early markers of hypertrophy. At the morphometric level, NE-induced increase of cell size is likewise and partially counteracted by exogenous Homer 1a. Under the same experimental conditions, Homer 1b/c does not have any effect on ANF up-regulation nor on cell hypertrophy. Thus, Homer 1a up-regulation is associated to early stages of cardiac hypertrophy and appears to play a negative feedback regulation on molecular transducers of hypertrophy. -- Highlights: • Homer 1a is constitutively expressed in cardiac tissue. • In HL-1 cells, norepinephrine activates signaling pathways leading to hypertrophy. • Homer 1a up-regulation is an early event of norepinephrine-induced hypertrophy. • Homer 1a plays a negative feedback regulation modulating pathological hypertrophy. • Over-expression of Homer 1a per se does not induce hypertrophy

  4. Inhibition of IκB Kinase at 24 Hours After Acute Kidney Injury Improves Recovery of Renal Function and Attenuates Fibrosis.

    Science.gov (United States)

    Johnson, Florence L; Patel, Nimesh S A; Purvis, Gareth S D; Chiazza, Fausto; Chen, Jianmin; Sordi, Regina; Hache, Guillaume; Merezhko, Viktoria V; Collino, Massimo; Yaqoob, Muhammed M; Thiemermann, Christoph

    2017-07-03

    Acute kidney injury (AKI) is a major risk factor for the development of chronic kidney disease. Nuclear factor-κB is a nuclear transcription factor activated post-ischemia, responsible for the transcription of proinflammatory proteins. The role of nuclear factor-κB in the renal fibrosis post-AKI is unknown. We used a rat model of AKI caused by unilateral nephrectomy plus contralateral ischemia (30 minutes) and reperfusion injury (up to 28 days) to show impairment of renal function (peak: 24 hours), activation of nuclear factor-κB (peak: 48 hours), and fibrosis (28 days). In humans, AKI is diagnosed by a rise in serum creatinine. We have discovered that the IκB kinase inhibitor IKK16 (even when given at peak serum creatinine) still improved functional and structural recovery and reduced myofibroblast formation, macrophage infiltration, transforming growth factor-β expression, and Smad2/3 phosphorylation. AKI resulted in fibrosis within 28 days (Sirius red staining, expression of fibronectin), which was abolished by IKK16. To confirm the efficacy of IKK16 in a more severe model of fibrosis, animals were subject to 14 days of unilateral ureteral obstruction, resulting in tubulointerstitial fibrosis, myofibroblast formation, and macrophage infiltration, all of which were attenuated by IKK16. Inhibition of IκB kinase at peak creatinine improves functional recovery, reduces further injury, and prevents fibrosis. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  5. Effective fiber hypertrophy in satellite cell-depleted skeletal muscle

    Science.gov (United States)

    McCarthy, John J.; Mula, Jyothi; Miyazaki, Mitsunori; Erfani, Rod; Garrison, Kelcye; Farooqui, Amreen B.; Srikuea, Ratchakrit; Lawson, Benjamin A.; Grimes, Barry; Keller, Charles; Van Zant, Gary; Campbell, Kenneth S.; Esser, Karyn A.; Dupont-Versteegden, Esther E.; Peterson, Charlotte A.

    2011-01-01

    An important unresolved question in skeletal muscle plasticity is whether satellite cells are necessary for muscle fiber hypertrophy. To address this issue, a novel mouse strain (Pax7-DTA) was created which enabled the conditional ablation of >90% of satellite cells in mature skeletal muscle following tamoxifen administration. To test the hypothesis that satellite cells are necessary for skeletal muscle hypertrophy, the plantaris muscle of adult Pax7-DTA mice was subjected to mechanical overload by surgical removal of the synergist muscle. Following two weeks of overload, satellite cell-depleted muscle showed the same increases in muscle mass (approximately twofold) and fiber cross-sectional area with hypertrophy as observed in the vehicle-treated group. The typical increase in myonuclei with hypertrophy was absent in satellite cell-depleted fibers, resulting in expansion of the myonuclear domain. Consistent with lack of nuclear addition to enlarged fibers, long-term BrdU labeling showed a significant reduction in the number of BrdU-positive myonuclei in satellite cell-depleted muscle compared with vehicle-treated muscle. Single fiber functional analyses showed no difference in specific force, Ca2+ sensitivity, rate of cross-bridge cycling and cooperativity between hypertrophied fibers from vehicle and tamoxifen-treated groups. Although a small component of the hypertrophic response, both fiber hyperplasia and regeneration were significantly blunted following satellite cell depletion, indicating a distinct requirement for satellite cells during these processes. These results provide convincing evidence that skeletal muscle fibers are capable of mounting a robust hypertrophic response to mechanical overload that is not dependent on satellite cells. PMID:21828094

  6. TGF-β/Smad signaling in renal fibrosis

    Directory of Open Access Journals (Sweden)

    Xiao-Ming eMeng

    2015-03-01

    Full Text Available TGF-β (transforming growth factor-β is well identified as a central mediator in renal fibrosis. TGF-β initiates canonical and non-canonical pathways to exert multiple biological effects. Among them, Smad signaling is recognized as a major pathway of TGF- signaling in progressive renal fibrosis. During fibrogenesis, Smad3 is highly activated, which is associated with the down-regulation of an inhibitory Smad7 via an ubiquitin E3-ligases-dependent degradation mechanism. The equilibrium shift between Smad3 and Smad7 leads to accumulation and activation of myofibroblasts, overproduction of ECM (extracellular matrix, and reduction in ECM degradation in the diseased kidney. Therefore, overexpression of Smad7 has been shown to be a therapeutic agent for renal fibrosis in various models of kidney diseases. In contrast, another downstream effecter of TGF-β/Smad signaling pathway, Smad2, exerts its renal protective role by counter-regulating the Smad3. Furthermore, recent studies demonstrated that Smad3 mediates renal fibrosis by down-regulating miR-29 and miR-200 but up-regulating miR-21 and miR-192. Thus, overexpression of miR-29 and miR-200 or down-regulation of miR-21 and miR-192 is capable of attenuating Smad3-mediated renal fibrosis in various mouse models of chronic kidney diseases. Taken together, TGF-/Smad signaling plays an important role in renal fibrosis. Targeting TGF-β/Smad3 signaling may represent a specific and effective therapy for chronic kidney diseases associated with renal fibrosis.

  7. Ischemic preconditioning provides both acute and delayed protection against renal ischemia and reperfusion injury in mice.

    Science.gov (United States)

    Joo, Jin Deok; Kim, Mihwa; D'Agati, Vivette D; Lee, H Thomas

    2006-11-01

    Acute as well as delayed ischemic preconditioning (IPC) provides protection against cardiac and neuronal ischemia reperfusion (IR) injury. This study determined whether delayed preconditioning occurs in the kidney and further elucidated the mechanisms of renal IPC in mice. Mice were subjected to IPC (four cycles of 5 min of ischemia and reperfusion) and then to 30 min of renal ischemia either 15 min (acute IPC) or 24 h (delayed IPC) later. Both acute and delayed renal IPC provided powerful protection against renal IR injury. Inhibition of Akt but not extracellular signal-regulated kinase phosphorylation prevented the protection that was afforded by acute IPC. Neither extracellular signal-regulated kinase nor Akt inhibition prevented protection that was afforded by delayed renal IPC. Pretreatment with an antioxidant, N-(2-mercaptopropionyl)-glycine, to scavenge free radicals prevented the protection that was provided by acute but not delayed renal IPC. Inhibition of protein kinase C or pertussis toxin-sensitive G-proteins attenuated protection from both acute and delayed renal IPC. Delayed renal IPC increased inducible nitric oxide synthase (iNOS) as well as heat-shock protein 27 synthesis, and the renal protective effects of delayed preconditioning were attenuated by a selective inhibitor of iNOS (l-N(6)[1-iminoethyl]lysine). Moreover, delayed IPC was not observed in iNOS knockout mice. Both acute and delayed IPC were independent of A(1) adenosine receptors (AR) as a selective A(1)AR antagonist failed to block preconditioning and acute and delayed preconditioning occurred in mice that lacked A(1)AR. Therefore, this study demonstrated that acute or delayed IPC provides renal protection against IR injury in mice but involves distinct signaling pathways.

  8. MicroRNA-1 overexpression blunts cardiomyocyte hypertrophy elicited by thyroid hormone.

    Science.gov (United States)

    Diniz, Gabriela Placoná; Lino, Caroline Antunes; Moreno, Camila Rodrigues; Senger, Nathalia; Barreto-Chaves, Maria Luiza Morais

    2017-12-01

    It is well-known that increased thyroid hormone (TH) levels induce cardiomyocyte growth. MicroRNAs (miRNAs) have been identified as key players in cardiomyocyte hypertrophy, which is associated with increased risk of heart failure. In this study, we evaluated the miR-1 expression in TH-induced cardiac hypertrophy, as well as the potential involvement of miR-1 in cardiomyocyte hypertrophy elicited by TH in vitro. The possible role of type 1 angiotensin II receptor (AT1R) in the effect promoted by TH in miR-1 expression was also evaluated. Neonatal rat cardiac myocytes (NRCMs) were treated with T 3 for 24 hr and Wistar rats were subjected to hyperthyroidism for 14 days combined or not with AT1R blocker. Real Time RT-PCR analysis indicated that miR-1 expression was decreased in cardiac hypertrophy in response to TH in vitro and in vivo, and this effect was unchanged by AT1R blocker. In addition, HDAC4, which is target of miR-1, was increased in NRCMs after T 3 treatment. A gain-of-function study revealed that overexpression of miR-1 prevented T 3 -induced cardiomyocyte hypertrophy and reduced HADC4 mRNA levels in NRCMs. In vivo experiments confirmed the downregulation of miR-1 in cardiac tissue from hyperthyroid animals, which was accompanied by increased HDAC4 mRNA levels. In addition, HDAC inhibitor prevented T 3 -induced cardiomyocyte hypertrophy. Our data reveal a new mechanistic insight into cardiomyocyte growth in response to TH, suggesting that miR-1 plays a role in cardiomyocyte hypertrophy induced by TH potentially via targeting HADC4. © 2017 Wiley Periodicals, Inc.

  9. Left ventricular hypertrophy in children, adolescents and young adults with sickle cell anemia

    Directory of Open Access Journals (Sweden)

    Gustavo Baptista de Almeida Faro

    2015-10-01

    Full Text Available OBJECTIVE: The aims of this study were to estimate the frequency of left ventricular hypertrophy and to identify variables associated with this condition in under 25-year-old patients with sickle cell anemia.METHODS: A cross-sectional study was performed of children, adolescents and young adults with sickle cell anemia submitted to a transthoracic Doppler echocardiography. The mass of the left ventricle was determined by the formula of Devereux et al. with correction for height, and the percentile curves of gender and age were applied. Individuals with rheumatic and congenital heart disease were excluded. The patients were divided into two groups according to the presence or absence of left ventricular hypertrophy and compared according to clinical, echocardiographic and laboratory variables.RESULTS: A total of 37.6% of the patients had left ventricular hypertrophy in this sample. There was no difference between the groups of patients with and without hypertrophy according to pathological history or clinical characteristics, except possibly for the use of hydroxyurea, more often used in the group without left ventricular hypertrophy. Patients with left ventricular hypertrophy presented larger left atria and lower hemoglobin and hematocrit levels, reticulocyte index and a higher albumin:creatinine ratio in urine.CONCLUSION: Left ventricular hypertrophy was observed in more than one-third of the young patients with sickle cell anemia with this finding being inversely correlated to the hemoglobin and hematocrit levels, and reticulocyte index and directly associated to a higher albumin/creatinine ratio. It is possible that hydroxyurea had had a protective effect on the development of left ventricular hypertrophy.

  10. Thin-plate spline analysis of craniofacial morphology in subjects with adenoid or tonsillar hypertrophy.

    Science.gov (United States)

    Baroni, Michela; Ballanti, Fabiana; Polimeni, Antonella; Franchi, Lorenzo; Cozza, Paola

    2011-04-01

    To compare the skeletal features of subjects with adenoid hypertrophy with those of children with tonsillar hypertrophy using thin-plate spline (TPS) analysis. A group of 20 subjects (9 girls and 11 boys; mean age 8.4 ± 0.9 years) with adenoid hypertrophy (AG) was compared with a group of 20 subjects (10 girls and 10 boys; mean age 8.2 ± 1.1 years) with tonsillar hypertrophy (TG). Craniofacial morphology was analyzed on the lateral cephalograms of the subjects in both groups by means of TPS analysis. A cross-sectional comparison was performed on both size and shape differences between the two groups. AG exhibited statistically significant shape and size differences in craniofacial configuration with respect to TG. Subjects with adenoid hypertrophy showed an upward dislocation of the anterior region of the maxilla, a more downward/backward position of the anterior region of the mandibular body and an upward/backward displacement of the condylar region. Conversely, subjects with tonsillar hypertrophy showed a downward dislocation of the anterior region of the maxilla, a more upward/forward position of the anterior region of the mandibular body and a downward/forward displacement of the condylar region. Subjects with adenoid hypertrophy exhibited features suggesting a more retrognathic mandible while subjects with tonsillar hypertrophy showed features suggesting a more prognathic mandible. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Extra-Virgin Olive Oil with Natural Phenolic Content Exerts an Anti-Inflammatory Effect in Adipose Tissue and Attenuates the Severity of Atherosclerotic Lesions in Ldlr-/-.Leiden Mice.

    Science.gov (United States)

    Luque-Sierra, Amparo; Alvarez-Amor, Leticia; Kleemann, Robert; Martín, Franz; Varela, Lourdes M

    2018-05-15

    The present study investigates the effect of olive oils with different phenolic content in high-fat diets (HFDs) on hypertrophy and inflammation in adipose tissue and associated atherosclerosis, in the context of obesity. Ldlr-/-.Leiden mice were fed three different HFDs for 32 weeks and were compared with mice fed the standard low-fat diet (LFD). The different fats provided in the HFDs were lard (HFD-L), extra-virgin olive oil (EVOO; 79 mg kg -1 of phenolic compounds, HFD-EVOO), or EVOO rich in phenolic compounds (OL, 444 mg kg -1 of phenolic compounds, HFD-OL). All HFD-fed mice became obese, but only HFD-L-induced adipocyte hypertrophy. HFD-EVOO mice exhibited the greatest levels of Adiponectin in adipose tissue and presented atherosclerotic lesions similar to the LFD group, with a very low count of monocyte/macrophage compared with HFD-L and HFD-OL mice. Enrichment of the phenolic content of olive oil reduced the secretion of nitrites/nitrates in the aorta, but atherosclerosis was not attenuated in HFD-OL mice compared to other HFD mice. Consumption of olive oil with a natural content of phenolic compounds attenuates adipose tissue hypertrophy and inflammation and exerts antiatherosclerotic effects in mice. A higher phenolic content of olive oil did not provide further benefits in the prevention of atherosclerosis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Imaging of Myocardial Fibrosis in Patients with End-Stage Renal Disease: Current Limitations and Future Possibilities

    Directory of Open Access Journals (Sweden)

    M. P. M. Graham-Brown

    2017-01-01

    Full Text Available Cardiovascular disease in patients with end-stage renal disease (ESRD is driven by a different set of processes than in the general population. These processes lead to pathological changes in cardiac structure and function that include the development of left ventricular hypertrophy and left ventricular dilatation and the development of myocardial fibrosis. Reduction in left ventricular hypertrophy has been the established goal of many interventional trials in patients with chronic kidney disease, but a recent systematic review has questioned whether reduction of left ventricular hypertrophy improves cardiovascular mortality as previously thought. The development of novel imaging biomarkers that link to cardiovascular outcomes and that are specific to the disease processes in ESRD is therefore required. Postmortem studies of patients with ESRD on hemodialysis have shown that the extent of myocardial fibrosis is strongly linked to cardiovascular death and accurate imaging of myocardial fibrosis would be an attractive target as an imaging biomarker. In this article we will discuss the current imaging methods available to measure myocardial fibrosis in patients with ESRD, the reliability of the techniques, specific challenges and important limitations in patients with ESRD, and how to further develop the techniques we have so they are sufficiently robust for use in future clinical trials.

  13. [Obstructive sleep apnea-hypopnea syndrome in children: beyond adenotonsillar hypertrophy].

    Science.gov (United States)

    Esteller, Eduard

    2015-01-01

    The prevalence of obstructive sleep apnea-hypopnea syndrome in the general childhood population is 1-2% and the most common cause is adenotonsillar hypertrophy. However, beyond adenotonsillar hypertrophy, there are other highly prevalent causes of this syndrome in children. The causes are often multifactorial and include muscular hypotonia, dentofacial abnormalities, soft tissue hypertrophy of the airway, and neurological disorders). Collaboration between different specialties involved in the care of these children is essential, given the wide variability of conditions and how frequently different factors are involved in their genesis, as well as the different treatments to be applied. We carried out a wide literature review of other causes of obstructive sleep apnea-hypopnea syndrome in children, beyond adenotonsillar hypertrophy. We organised the prevalence of this syndrome in each pathology and the reasons that cause it, as well as their interactions and management, in a consistent manner. Copyright © 2014 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.

  14. Effect of risedronate on bone in renal transplant recipients.

    Science.gov (United States)

    Coco, Maria; Pullman, James; Cohen, Hillel W; Lee, Sally; Shapiro, Craig; Solorzano, Clemencia; Greenstein, Stuart; Glicklich, Daniel

    2012-08-01

    Bisphosphonates may prevent or treat the bone loss promoted by the immunosuppressive regimens used in renal transplantation. Risedronate is a commonly used third-generation amino-bisphosphonate, but little is known about its effects on the bone health of renal transplant recipients. We randomly assigned 42 new living-donor kidney recipients to either 35 mg of risedronate weekly or placebo for 12 months. We obtained bone biopsies at the time of renal transplant and after 12 months of protocol treatment. Treatment with risedronate did not affect bone mineral density (BMD) in the overall cohort. In subgroup analyses, it tended to preserve BMD in female participants but did not significantly affect the BMD of male participants. Risedronate did associate with increased osteoid volume and trabecular thickness in male participants, however. There was no evidence for the development of adynamic bone disease. In summary, further study is needed before the use of prophylactic bisphosphonates to attenuate bone loss can be recommended in renal transplant recipients.

  15. Unusual finding in pediatric Churg-Strauss: renal lesions on CT

    International Nuclear Information System (INIS)

    Oldan, Jorge; McCauley, Roy; Pilichowska, Monica; Milner, Lawrence; Lopez-Benitez, Jorge M.

    2011-01-01

    After a 19-year-old female experienced several weeks of unrelieved fevers, an abdominal CT revealed multiple low-attenuation renal lesions. As the differential included lymphoma, infections and infarcts, a core biopsy of the kidney was performed, which revealed changes consistent with Churg-Strauss syndrome. (orig.)

  16. Unusual finding in pediatric Churg-Strauss: renal lesions on CT

    Energy Technology Data Exchange (ETDEWEB)

    Oldan, Jorge; McCauley, Roy [Tufts Medical Center, Department of Radiology, Boston, MA (United States); Pilichowska, Monica [Tufts Medical Center, Department of Pathology, Boston, MA (United States); Milner, Lawrence [Tufts Medical Center, Department of Nephrology, Boston, MA (United States); Lopez-Benitez, Jorge M [Tufts Medical Center, Department of Rheumatology, Boston, MA (United States)

    2011-08-15

    After a 19-year-old female experienced several weeks of unrelieved fevers, an abdominal CT revealed multiple low-attenuation renal lesions. As the differential included lymphoma, infections and infarcts, a core biopsy of the kidney was performed, which revealed changes consistent with Churg-Strauss syndrome. (orig.)

  17. The metabolic and temporal basis of muscle hypertrophy in response to resistance exercise.

    Science.gov (United States)

    Brook, Matthew S; Wilkinson, Daniel J; Smith, Kenneth; Atherton, Philip J

    2016-09-01

    Constituting ∼40% of body mass, skeletal muscle has essential locomotory and metabolic functions. As such, an insight into the control of muscle mass is of great importance for maintaining health and quality-of-life into older age, under conditions of cachectic disease and with rehabilitation. In healthy weight-bearing individuals, muscle mass is maintained by the equilibrium between muscle protein synthesis (MPS) and muscle protein breakdown; when this balance tips in favour of MPS hypertrophy occurs. Despite considerable research into pharmacological/nutraceutical interventions, resistance exercise training (RE-T) remains the most potent stimulator of MPS and hypertrophy (in the majority of individuals). However, the mechanism(s) and time course of hypertrophic responses to RE-T remain poorly understood. We would suggest that available data are very much in favour of the notion that the majority of hypertrophy occurs in the early phases of RE-T (though still controversial to some) and that, for the most part, continued gains are hard to come by. Whilst the mechanisms of muscle hypertrophy represent the culmination of mechanical, auto/paracrine and endocrine events, the measurement of MPS remains a cornerstone for understanding the control of hypertrophy - mainly because it is the underlying driving force behind skeletal muscle hypertrophy. Development of sophisticated isotopic techniques (i.e. deuterium oxide) that lend to longer term insight into the control of hypertrophy by sustained RE-T will be paramount in providing insights into the metabolic and temporal regulation of hypertrophy. Such technologies will have broad application in muscle mass intervention for both athletes and for mitigating disease/age-related cachexia and sarcopenia, alike.

  18. Matrix metalloproteinase-2 plays a critical role in overload induced skeletal muscle hypertrophy.

    Science.gov (United States)

    Zhang, Qia; Joshi, Sunil K; Lovett, David H; Zhang, Bryon; Bodine, Sue; Kim, Hubert T; Liu, Xuhui

    2014-01-01

    extracellular matrix (ECM) components are instrumental in maintaining homeostasis and muscle fiber functional integrity. Skeletal muscle hypertrophy is associated with ECM remodeling. Specifically, recent studies have reported the involvement of matrix metalloproteinases (MMPs) in muscle ECM remodeling. However, the functional role of MMPs in muscle hypertrophy remains largely unknown. in this study, we examined the role of MMP-2 in skeletal muscle hypertrophy using a previously validated method where the plantaris muscle of mice were subjected to mechanical overload due to the surgical removal of synergist muscles (gastrocnemius and soleus). following two weeks of overload, we observed a significant increase in MMP-2 activity and up-regulation of ECM components and remodeling enzymes in the plantaris muscles of wild-type mice. However, MMP-2 knockout mice developed significantly less hypertrophy and ECM remodeling in response to overload compared to their wild-type littermates. Investigation of protein synthesis rate and Akt/mTOR signaling revealed no difference between wild-type and MMP-2 knockout mice, suggesting that a difference in hypertrophy was independent of protein synthesis. taken together, our results suggest that MMP-2 is a key mediator of ECM remodeling in the setting of skeletal muscle hypertrophy.

  19. Eccentric and concentric cardiac hypertrophy induced by exercise training: microRNAs and molecular determinants.

    Science.gov (United States)

    Fernandes, T; Soci, U P R; Oliveira, E M

    2011-09-01

    Among the molecular, biochemical and cellular processes that orchestrate the development of the different phenotypes of cardiac hypertrophy in response to physiological stimuli or pathological insults, the specific contribution of exercise training has recently become appreciated. Physiological cardiac hypertrophy involves complex cardiac remodeling that occurs as an adaptive response to static or dynamic chronic exercise, but the stimuli and molecular mechanisms underlying transduction of the hemodynamic overload into myocardial growth are poorly understood. This review summarizes the physiological stimuli that induce concentric and eccentric physiological hypertrophy, and discusses the molecular mechanisms, sarcomeric organization, and signaling pathway involved, also showing that the cardiac markers of pathological hypertrophy (atrial natriuretic factor, β-myosin heavy chain and α-skeletal actin) are not increased. There is no fibrosis and no cardiac dysfunction in eccentric or concentric hypertrophy induced by exercise training. Therefore, the renin-angiotensin system has been implicated as one of the regulatory mechanisms for the control of cardiac function and structure. Here, we show that the angiotensin II type 1 (AT1) receptor is locally activated in pathological and physiological cardiac hypertrophy, although with exercise training it can be stimulated independently of the involvement of angiotensin II. Recently, microRNAs (miRs) have been investigated as a possible therapeutic approach since they regulate the translation of the target mRNAs involved in cardiac hypertrophy; however, miRs in relation to physiological hypertrophy have not been extensively investigated. We summarize here profiling studies that have examined miRs in pathological and physiological cardiac hypertrophy. An understanding of physiological cardiac remodeling may provide a strategy to improve ventricular function in cardiac dysfunction.

  20. Eccentric and concentric cardiac hypertrophy induced by exercise training: microRNAs and molecular determinants

    Directory of Open Access Journals (Sweden)

    T. Fernandes

    2011-09-01

    Full Text Available Among the molecular, biochemical and cellular processes that orchestrate the development of the different phenotypes of cardiac hypertrophy in response to physiological stimuli or pathological insults, the specific contribution of exercise training has recently become appreciated. Physiological cardiac hypertrophy involves complex cardiac remodeling that occurs as an adaptive response to static or dynamic chronic exercise, but the stimuli and molecular mechanisms underlying transduction of the hemodynamic overload into myocardial growth are poorly understood. This review summarizes the physiological stimuli that induce concentric and eccentric physiological hypertrophy, and discusses the molecular mechanisms, sarcomeric organization, and signaling pathway involved, also showing that the cardiac markers of pathological hypertrophy (atrial natriuretic factor, β-myosin heavy chain and α-skeletal actin are not increased. There is no fibrosis and no cardiac dysfunction in eccentric or concentric hypertrophy induced by exercise training. Therefore, the renin-angiotensin system has been implicated as one of the regulatory mechanisms for the control of cardiac function and structure. Here, we show that the angiotensin II type 1 (AT1 receptor is locally activated in pathological and physiological cardiac hypertrophy, although with exercise training it can be stimulated independently of the involvement of angiotensin II. Recently, microRNAs (miRs have been investigated as a possible therapeutic approach since they regulate the translation of the target mRNAs involved in cardiac hypertrophy; however, miRs in relation to physiological hypertrophy have not been extensively investigated. We summarize here profiling studies that have examined miRs in pathological and physiological cardiac hypertrophy. An understanding of physiological cardiac remodeling may provide a strategy to improve ventricular function in cardiac dysfunction.

  1. Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats.

    Science.gov (United States)

    Chang, Xue-Ying; Cui, Lei; Wang, Xing-Zhi; Zhang, Lei; Zhu, Dan; Zhou, Xiao-Rong; Hao, Li-Rong

    2017-01-01

    This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d), 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS)/p38 mitogen activated protein kinase (p38MAPK) pathway was determined to explore the potential mechanism. Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA) and creatinine levels, malonaldehyde (MDA) content, and superoxide dismutase (SOD) activity in serum and the increases of calcium and alkaline phosphatase (ALP) activity in the aorta ( P chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway.

  2. Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats

    Science.gov (United States)

    Chang, Xue-ying; Cui, Lei; Wang, Xing-zhi; Zhang, Lei; Zhu, Dan

    2017-01-01

    Background This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. Methods 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d), 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS)/p38 mitogen activated protein kinase (p38MAPK) pathway was determined to explore the potential mechanism. Results Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA) and creatinine levels, malonaldehyde (MDA) content, and superoxide dismutase (SOD) activity in serum and the increases of calcium and alkaline phosphatase (ALP) activity in the aorta (P chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway. PMID:28691026

  3. Prolonged hypobaric hypoxemia attenuates vasopressin secretion and renal response to osmostimulation in men

    DEFF Research Database (Denmark)

    Bestle, Morten H; Olsen, Niels Vidiendal; Poulsen, Troels D

    2002-01-01

    Effects of hypobaric hypoxemia on endocrine and renal parameters of body fluid homeostasis were investigated in eight normal men during a sojourn of 8 days at an altitude of 4,559 m. Endocrine and renal responses to an osmotic stimulus (5% hypertonic saline, 3.6 ml/kg over 1 h) were investigated...... at sea level and on day 6 at altitude. Several days of hypobaric hypoxemia reduced body weight (-2.1 +/- 0.4 kg), increased plasma osmolality (+5.3 +/- 1.4 mosmol/kgH(2)O), elevated blood pressure (+12 +/- 1 mmHg), reduced creatinine clearance (122 +/- 6 to 96 +/- 10 ml/min), inhibited the renin system...

  4. Requirement of myomaker-mediated stem cell fusion for skeletal muscle hypertrophy.

    Science.gov (United States)

    Goh, Qingnian; Millay, Douglas P

    2017-02-10

    Fusion of skeletal muscle stem/progenitor cells is required for proper development and regeneration, however the significance of this process during adult muscle hypertrophy has not been explored. In response to muscle overload after synergist ablation in mice, we show that myomaker, a muscle specific membrane protein essential for myoblast fusion, is activated mainly in muscle progenitors and not myofibers. We rendered muscle progenitors fusion-incompetent through genetic deletion of myomaker in muscle stem cells and observed a complete reduction of overload-induced hypertrophy. This blunted hypertrophic response was associated with a reduction in Akt and p70s6k signaling and protein synthesis, suggesting a link between myonuclear accretion and activation of pro-hypertrophic pathways. Furthermore, fusion-incompetent muscle exhibited increased fibrosis after muscle overload, indicating a protective role for normal stem cell activity in reducing myofiber strain associated with hypertrophy. These findings reveal an essential contribution of myomaker-mediated stem cell fusion during physiological adult muscle hypertrophy.

  5. Pulmonary complications in renal transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung Bin; Choi, Yo Won; Jeon, Seok Chol; Park, Choong Ki; Lee, Seung Rho; Hahm, Chang Kok; Joo, Kyung Bin [Hanyang University College of Medicine, Seoul (Korea, Republic of)

    2003-04-01

    To evaluate the radiographic and CT findings of pulmonary complications other than pulmonary edema arising from renal transplantation. Among 393 patients who had undergone renal transplantation at our hospital during a previous ten-year period, 23 with pulmonary complications other than pulmonary edema were included in this study. The complications involved were infection caused by CMV (n=6), bacteria (n=4), fungus (n=4), tuberculosis (n=2), varicella (n=1) or chlamydia (n=1), and malignancy involving lung cancer (n=4) or Kaposi's sarcoma (n=1). Two chest radiologists reviewed all images. The complications manifesting mainly as pulmonary nodules were lung cancer (4/4), tuberculosis (1/2), and Kaposi's sarcoma (1/1). Pulmonary consolidation was a main feature in bacterial infection (4/4), fungal infection (3/4), tuberculosis (1/2), chlamydial infection (1/1), and varicellar pneumonia (1/1). Ground-glass attenuation was a main CT feature in CMV pneumonia (4/6), and increased interstitial making was a predominant radiographic feature in CMV pneumonia (2/6). The main radiologic features described above can be helpful for differential diagnosis of the pulmonary complications of renal transplantation.

  6. Antioxidant treatment attenuates lactate production in diabetic nephropathy

    DEFF Research Database (Denmark)

    Laustsen, Christoffer; Nielsen, Per Mose; Stokholm Nørlinger, Thomas

    2017-01-01

    -IDEAL spiral sequence. Untreated diabetic rats showed increased renal lactate production compared with that shown by the controls. However, chronic TEMPOL treatment significantly attenuated diabetes-induced lactate production. No significant effects of diabetes or TEMPOL were observed on [13C]alanine levels......, indicating an intact glucose-alanine cycle, or [13C]bicarbonate, indicating normal flux through the Krebs cycle. In conclusion, this study demonstrates that diabetes-induced pseudohypoxia, as indicated by an increased lactate-to-pyruvate ratio, is significantly attenuated by antioxidant treatment......The early progression of diabetic nephropathy is notoriously difficult to detect and quantify before the occurrence of substantial histological damage. Recently, hyperpolarized [1-13C]pyruvate has demonstrated increased lactate production in the kidney early after the onset of diabetes, implying...

  7. Renal lesions associated with autoimmune pancreatitis: CT findings

    International Nuclear Information System (INIS)

    Triantopoulou, Charikleia; Maniatis, Petros; Siafas, Ioannis; Papailiou, John; Malachias, George; Anastopoulos, John

    2010-01-01

    Background: Autoimmune pancreatitis (AIP) is a chronic inflammatory condition characterized by IgG4-positive plasma cells. Recent evidence suggests that it is a systemic disease affecting various organs. Tubulointerstitial nephritis has been reported in association with AIP. Purpose: To investigate the incidence and types of renal involvement in patients with AIP. Material and Methods: Eighteen patients with no history of renal disease and a diagnosis of AIP (on the basis of histopathologic findings or a combination of characteristic imaging features, increased serum IgG4 levels, and response to steroid treatment) were included. All patients underwent computed tomography (CT) imaging and follow-up ranged from 6 months to 2 years. CT images were reviewed for the presence of renal lesions. Results: Seven patients had renal involvement (38.8%). None of the lesions was visible on non-contrast-enhanced CT scan. Parenchymal lesions appeared as multiple nodules showing decreased enhancement (four cases). Pyelonephritis, lymphoma, and metastases were considered in the differential diagnosis. An ill-defined low-attenuation mass-like lesion was found in one patient, while diffuse thickening of the renal pelvis wall was evident in the last two cases. Renal lesions regressed in all patients after steroid treatment, the larger one leaving a fibrous cortical scar. Conclusion: Different types of renal lesions in patients with AIP are relatively common, appearing as multiple nodules with decreased enhancement. These findings support the proposed concept of an IgG4-related systemic disease. Autoimmune disease should be suspected in cases of renal involvement in association with pancreatic focal or diffuse enlargement.

  8. Renal lesions associated with autoimmune pancreatitis: CT findings

    Energy Technology Data Exchange (ETDEWEB)

    Triantopoulou, Charikleia; Maniatis, Petros; Siafas, Ioannis; Papailiou, John (CT and Radiology Dept., ' Konstantopouleion' General Hospital, Athens (Greece)), e-mail: ctriantopoulou@gmail.com; Malachias, George; Anastopoulos, John (Radiology Dept., ' Sismanogleio' General Hospital, Athens (Greece))

    2010-07-15

    Background: Autoimmune pancreatitis (AIP) is a chronic inflammatory condition characterized by IgG4-positive plasma cells. Recent evidence suggests that it is a systemic disease affecting various organs. Tubulointerstitial nephritis has been reported in association with AIP. Purpose: To investigate the incidence and types of renal involvement in patients with AIP. Material and Methods: Eighteen patients with no history of renal disease and a diagnosis of AIP (on the basis of histopathologic findings or a combination of characteristic imaging features, increased serum IgG4 levels, and response to steroid treatment) were included. All patients underwent computed tomography (CT) imaging and follow-up ranged from 6 months to 2 years. CT images were reviewed for the presence of renal lesions. Results: Seven patients had renal involvement (38.8%). None of the lesions was visible on non-contrast-enhanced CT scan. Parenchymal lesions appeared as multiple nodules showing decreased enhancement (four cases). Pyelonephritis, lymphoma, and metastases were considered in the differential diagnosis. An ill-defined low-attenuation mass-like lesion was found in one patient, while diffuse thickening of the renal pelvis wall was evident in the last two cases. Renal lesions regressed in all patients after steroid treatment, the larger one leaving a fibrous cortical scar. Conclusion: Different types of renal lesions in patients with AIP are relatively common, appearing as multiple nodules with decreased enhancement. These findings support the proposed concept of an IgG4-related systemic disease. Autoimmune disease should be suspected in cases of renal involvement in association with pancreatic focal or diffuse enlargement.

  9. Antifibrillatory effects of renal denervation on ventricular fibrillation in a canine model of pacing-induced heart failure.

    Science.gov (United States)

    Luo, Qingzhi; Jin, Qi; Zhang, Ning; Huang, Shangwei; Han, Yanxin; Lin, Changjian; Ling, Tianyou; Chen, Kang; Pan, Wenqi; Wu, Liqun

    2018-01-01

    What is the central question of this study? In the present study, we investigated the effects of renal denervation on the vulnerability to ventricular fibrillation and the ventricular electrical properties in a rapid pacing-induced heart failure canine model. What is the main finding and its importance? Renal denervation significantly attenuated the process of heart failure and improved left ventricular systolic dysfunction, stabilized ventricular electrophysiological properties and decreased the vulnerability of the heart to ventricular fibrillation during heart failure. Thus, renal denervation can attenuate ventricular electrical remodelling and exert a potential antifibrillatory action in a pacing-induced heart failure canine model. In this study, we investigated the effects of renal denervation (RDN) on the vulnerability to ventricular fibrillation (VF) and the ventricular electrical properties in a canine model of pacing-induced heart failure (HF). Eighteen beagles were divided into the following three groups: control (n = 6), HF (n = 6) and HF+RDN (n = 6). Heart failure was induced by rapid right ventricular pacing. Renal denervation was performed simultaneously with the pacemaker implantation in the HF+RDN group. A 64-unipolar basket catheter was used to perform global endocardial mapping of the left ventricle. The restitution properties and dispersion of refractoriness were estimated from the activation recovery intervals (ARIs) by a pacing protocol. The VF threshold (VFT) was defined as the maximal pacing cycle length required to induce VF using a specific pacing protocol. The defibrillation threshold (DFT) was measured by an up-down algorithm. Renal denervation partly restored left ventricular systolic function and attenuated the process of HF. Compared with the control group, the VFT in the HF group was decreased by 27% (106 ± 8.0 versus 135 ± 10 ms, P Renal denervation significantly flattened the ventricular ARI restitution curve by 15% (1

  10. Myocardial uptake of thallium-201 in rat with cardiac hypertrophy

    International Nuclear Information System (INIS)

    Torii, Yukio; Adachi, Haruhiko; Kizu, Akira; Nakagawa, Masao; Ijichi, Hamao

    1985-01-01

    The thallium-201 (TL) has been used in order to diagnose myocardial infarction and ischemia. Although it is well known that TL distributes in the myocardium in proportion to the distribution of coronary blood flow, the biological property of TL in the loaded myocardium remains unclear. We studied the myocardial uptake of TL in rat with cardiac hypertrophy. Experiments were performed in 30 anesthetized rats devided into 3 groups; control group (C,N=14), hypertrophy group (H,N=6) and diltiazem group (D, 0.3 mg/kg/min. IV. N=10). Cardiac hypertrophy was produced with the banding of the ascending aorta. Myocardial blood flow (MBF) was measured by microspheres labeled with Strontium-85. Cardiac weight was increased in H, and both MBF and TL uptake were proportionally increased. MBF was negatively correlated with the extraction fraction in C (r=-0.71), in H (r=-0.66) and in D (r=-0.85), and this relationship in H was significantly different from it in C (p<0.05), but not in D. From these results, we concluded that TL uptake in H is not always dependant on MBF and affected by the altered metabolism of hypertrophied myocardium. (author)

  11. [Impacts of physical exercise on remodeling and hypertrophy of skeletal muscle.

    Science.gov (United States)

    Sakashita, Yoshihiro; Uchida, Takayuki; Nikawa, Takeshi

    The skeletal muscle has high sensitivity for the mechanical stress. Because it is enlarged by training, whereas it is easily withered by lack of exercise. When we exercise, skeletal muscle cells per se sense mechanical loading, and muscular remodeling and the muscular hypertrophy occur. It has been revealed that the intracellular signaling through PGC-1α participates in the remodeling of the skeletal muscle, while PGC-1α4, an isoform of PGC-1α, and the dystrophin-glycoprotein complex play important roles in muscular hypertrophy. This review describes the impact of physical exercise gives on the remodeling and hypertrophy of muscle through the signaling.

  12. Post-exercise blood flow restriction attenuates hyperemia similarly in males and females.

    Science.gov (United States)

    Dankel, Scott J; Mouser, J Grant; Jessee, Matthew B; Mattocks, Kevin T; Buckner, Samuel L; Loenneke, Jeremy P

    2017-08-01

    Our laboratory recently demonstrated that post-exercise blood flow restriction attenuated muscle hypertrophy only in females, which we hypothesized may be due to alterations in post-exercise blood flow. The aim of this study is to test our previous hypothesis that sex differences in blood flow would exist when employing the same protocol. Twenty-two untrained individuals (12 females; 10 males) performed two exercise sessions, each involving one set of elbow flexion exercise to volitional failure on the right arm. The experimental condition had blood flow restriction applied for a 3 min post-exercise period, whereas the control condition did not. Blood flow was measured using an ultrasound at the brachial artery and was taken 1 and 4 min post-exercise. This corresponded to 1 min post inflation and 1 min post deflation in the experimental condition. There were no differences in the alterations in blood flow between the control and experimental conditions when examined across sex. Increases in blood flow [mean (standard deviation)] were as follows: males 1 min [control 764 (577) %; experimental 113 (108) %], males 4 min [control 346 (313) %; experimental 449 (371) %], females 1 min [control 558 (367) %; experimental 87 (105) %], and females 4 min [control 191 (183) %; experimental 328 (223) %]. It does not appear that the sex-specific attenuation of muscle hypertrophy we observed previously can be attributed to different alterations in post-exercise blood flow. Future studies may wish to replicate our previous training study, or examine alternative mechanisms which may be sex specific.

  13. Local renin–angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy

    OpenAIRE

    Kobori, H; Ichihara, A; Miyashita, Y; Hayashi, M; Saruta, T

    1999-01-01

    We have reported previously that thyroid hormone activates the circulating and tissue renin–angiotensin systems without involving the sympathetic nervous system, which contributes to cardiac hypertrophy in hyperthyroidism. This study examined whether the circulating or tissue renin–angiotensin system plays the principal role in hyperthyroidism-induced cardiac hypertrophy. The circulating renin–angiotensin system in Sprague–Dawley rats was fixed by chronic angiotensin II infusion (40 ng/ min, ...

  14. Optimized contrast volume for dynamic CT angiography in renal transplant patients using a multiphase CT protocol

    International Nuclear Information System (INIS)

    Helck, A.; Bamberg, F.; Sommer, W.H.; Wessely, M.; Becker, C.; Clevert, D.A.; Notohamiprodjo, M.; Reiser, M.; Nikolaou, K.

    2011-01-01

    Objectives: To study the feasibility of an optimized multiphase renal-CT-angiography (MP-CTA) protocol in patients with history of renal transplantation compared with Doppler-ultrasound (DUS). Methods: 36 Patients underwent both DUS and time-resolved, MP-CTA (12 phases), with a mean contrast-volume of 34.4 ± 5.1 ml. Quality of MP-CTA was assessed quantitatively (vascular attenuation) and qualitatively (grades 1–4, 1 = best). For the assessment of clinical value of MP-CTA, cases were grouped into normal, macrovascular (arterial/venous) and microvascular complications (parenchymal perfusion defect). DUS served as the standard of reference. Results: Using the best of 12 phases in each patient, optimal attenuation was 353 ± 111 HU, 337 ± 98 HU and 164 ± 51 HU in the iliac arteries, renal arteries, and renal veins, respectively. Mean image quality was 1.1 ± 0.3 (n = 36) and 2.1 ± 0.6 (n = 30) for the transplant renal arteries and veins, respectively. Six renal veins were non-diagnostic in MP-CTA. In 36 patients, MP-CTA showed 13 vascular complications and 10 parenchymal perfusion defects. DUS was not assessable in eight patients. Overall, MP-CTA showed 15 cases with pathology (42%) not identifiable with DUS. The mean effective radiation dose of the MP-CTA protocol was 13.5 ± 5.2 mSv. Conclusion: MP-CTA can be sufficiently performed with reduced contrast volume at reasonable radiation dose in renal transplant patients, providing substantially higher diagnostic yield than DUS.

  15. Characterization of renal hyperemia in portal hypertensive rats

    International Nuclear Information System (INIS)

    Premen, A.J.; Banchs, V.; Go, V.L.W.; Benoit, J.N.; Granger, D.N.

    1986-01-01

    In anesthetized sham-operated control (C) and portal vein stenosed (PVS) rats, renal blood flow (RBF) was measured with radioactive microspheres on days 2, 4, 6, 8, and 10 following surgery. On day 2, only a small increase in RBF (19%) was produced in PVS versus C rats. However, by day 4, a significant increase in RBF (35%) was observed in PVS versus C animals. By day 6, the renal hyperemia in PVS rats reached a maximal value that was 42% higher than in C rats. Thereafter (on days 8 and 10), the renal hyperemia remained at the maximal value. In a separate group of 10-day PVS rats, glucagon antiserum failed to attenuate the 44% increase in RBF observed in PVS versus C rats. Radioimmunoassay of C and PVS plasma (10-day samples) revealed that vasoactive intestinal polypeptide, substance P, cholecystokinin/gastrin, neurotensin, pancreatic polypeptide, beta-endorphin, and peptide histidine-isoleucine amide are not elevated in arterial plasma of PVS rats. These data indicate that the renal hyperemia induced by chronic portal hypertension is manifested within 4 days after the hypertensive insult. Our studies also suggest that at least 9 blood-borne gastrointestinal peptides are not directly involved in the renal response to portal vein stenosis

  16. Characterization of renal hyperemia in portal hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Premen, A.J.; Banchs, V.; Go, V.L.W.; Benoit, J.N.; Granger, D.N.

    1986-03-01

    In anesthetized sham-operated control (C) and portal vein stenosed (PVS) rats, renal blood flow (RBF) was measured with radioactive microspheres on days 2, 4, 6, 8, and 10 following surgery. On day 2, only a small increase in RBF (19%) was produced in PVS versus C rats. However, by day 4, a significant increase in RBF (35%) was observed in PVS versus C animals. By day 6, the renal hyperemia in PVS rats reached a maximal value that was 42% higher than in C rats. Thereafter (on days 8 and 10), the renal hyperemia remained at the maximal value. In a separate group of 10-day PVS rats, glucagon antiserum failed to attenuate the 44% increase in RBF observed in PVS versus C rats. Radioimmunoassay of C and PVS plasma (10-day samples) revealed that vasoactive intestinal polypeptide, substance P, cholecystokinin/gastrin, neurotensin, pancreatic polypeptide, beta-endorphin, and peptide histidine-isoleucine amide are not elevated in arterial plasma of PVS rats. These data indicate that the renal hyperemia induced by chronic portal hypertension is manifested within 4 days after the hypertensive insult. Our studies also suggest that at least 9 blood-borne gastrointestinal peptides are not directly involved in the renal response to portal vein stenosis.

  17. Dietary nitrate attenuates renal ischemia-reperfusion injuries by modulation of immune responses and reduction of oxidative stress.

    Science.gov (United States)

    Yang, Ting; Zhang, Xing-Mei; Tarnawski, Laura; Peleli, Maria; Zhuge, Zhengbing; Terrando, Niccolo; Harris, Robert A; Olofsson, Peder S; Larsson, Erik; Persson, A Erik G; Lundberg, Jon O; Weitzberg, Eddie; Carlstrom, Mattias

    2017-10-01

    Ischemia-reperfusion (IR) injury involves complex pathological processes in which reduction of nitric oxide (NO) bioavailability is suggested as a key factor. Inorganic nitrate can form NO in vivo via NO synthase-independent pathways and may thus provide beneficial effects during IR. Herein we evaluated the effects of dietary nitrate supplementation in a renal IR model. Male mice (C57BL/6J) were fed nitrate-supplemented chow (1.0mmol/kg/day) or standard chow for two weeks prior to 30min ischemia and during the reperfusion period. Unilateral renal IR caused profound tubular and glomerular damage in the ischemic kidney. Renal function, assessed by plasma creatinine levels, glomerular filtration rate and renal plasma flow, was also impaired after IR. All these pathologies were significantly improved by nitrate. Mechanistically, nitrate treatment reduced renal superoxide generation, pro-inflammatory cytokines (IL-1β, IL-6 and IL-12 p70) and macrophage infiltration in the kidney. Moreover, nitrate reduced mRNA expression of pro-inflammatory cytokines and chemo attractors, while increasing anti-inflammatory cytokines in the injured kidney. In another cohort of mice, two weeks of nitrate supplementation lowered superoxide generation and IL-6 expression in bone marrow-derived macrophages. Our study demonstrates protective effect of dietary nitrate in renal IR injury that may be mediated via modulation of oxidative stress and inflammatory responses. These novel findings suggest that nitrate supplementation deserve further exploration as a potential treatment in patients at high risk of renal IR injury. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Tamoxifen attenuates development of lithium-induced nephrogenic diabetes insipidus in rats

    DEFF Research Database (Denmark)

    Tingskov, Stine Julie; Hu, Shan; Frøkiær, Jorgen

    2018-01-01

    of aquaporin-2 (AQP2), which are essential for water reabsorption of tubular fluid in the collecting duct. Sex hormones have previously been shown to affect the regulation of AQP2, so we tested whether tamoxifen (TAM), a selective estrogen receptor modulator, would attenuate lithium-induced alterations...... on renal water homeostasis. Rats were treated for 14 days with lithium and TAM treatment was initiated one week after onset of lithium administration. Lithium treatment resulted in severe polyuria and reduced AQP2 expression, which was ameliorated by TAM. Consistent with this, TAM attenuated downregulation...... of AQP2 and increased phosphorylation of the cAMP responsive element binding protein (CREB), which induced AQP2 expression, in freshly isolated inner medullary collecting duct suspension prepared from lithium-treated rats. In conclusion, TAM attenuated dose-dependently polyuria, impaired urine...

  19. Multi-detector CT urography: effect of oral hydration and contrast medium volume on renal parenchymal enhancement and urinary tract opacification - a quantitative and qualitative analysis

    International Nuclear Information System (INIS)

    Szolar, Dieter H.; Tillich, Manfred; Preidler, Klaus W.

    2010-01-01

    To assess the effect of oral hydration and contrast-medium volume on renal enhancement and urinary tract opacification in multi-detector CT urography. A total of 192 patients were assigned to different protocols with varying doses of contrast agent with and without oral hydration. The attenuation was measured in the renal parenchyma in the unenhanced, nephrographic and excretory phase, and in the urinary tract in excretory phase imaging, respectively. Opacification of the urinary tract was graded on volume rendered images. Oral hydration did not significantly alter renal parenchymal enhancement in both the nephrographic and the excretory phase (p > 0.001), but significantly decreased mean attenuation of the urinary tract in the excretory phase (p ≤ 0.001), and improved continuous opacification of all ureter segments (p < 0.01). Higher volumes of contrast medium improved renal parenchymal enhancement (p ≤ 0.001) and continuous opacification of the urinary tract (p ≤ 0.01). Oral hydration leads to lower attenuation values in the urinary tract but improves the continuous opacification of the tract. Increase in contrast medium volume leads to higher renal parenchymal enhancement as well as to an increased continuous opacification of the urinary tract. Decrease in contrast medium volume cannot be compensated for by oral hydration in terms of parenchymal enhancement. (orig.)

  20. Isolated papillary muscle hypertrophy: A gap in our knowledge of hypertrophic cardiomyopathy?

    Science.gov (United States)

    Ferreira, Catarina; Delgado, Carlos; Vázquez, María; Trinidad, Carmen; Vilar, Manuel

    2014-06-01

    Increased thickness of left ventricular walls is the predominant characteristic and one of the diagnostic criteria of hypertrophic cardiomyopathy (HCM). This case illustrates an uncommon but important finding of isolated hypertrophy of the papillary muscles (PMs), observed in a young woman in whom an abnormal electrocardiogram was initially detected. During the investigation isolated PM hypertrophy was identified. The structural characteristics of the PMs have received scant attention in this setting and there is little information in the literature on this entity, whose real prevalence and clinical significance remain to be determined. The available information relates solitary PM hypertrophy with an early form or a different pattern of HCM. In this case PM hypertrophy was only detected due to the finding of an abnormal electrocardiogram, which prompted further diagnostic tests and a search for possible etiologies. Copyright © 2013 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  1. Transcription Factors in Heart: Promising Therapeutic Targets in Cardiac Hypertrophy

    OpenAIRE

    Kohli, Shrey; Ahuja, Suchit; Rani, Vibha

    2011-01-01

    Regulation of gene expression is central to cell growth, differentiation and diseases. Context specific and signal dependent regulation of gene expression is achieved to a large part by transcription factors. Cardiac transcription factors regulate heart development and are also involved in stress regulation of the adult heart, which may lead to cardiac hypertrophy. Hypertrophy of cardiac myocytes is an outcome of the imbalance between prohypertrophic factors and anti-hypertrophic factors. Thi...

  2. Limited Relationship of Voltage Criteria for Electrocardiogram Left Ventricular Hypertrophy to Cardiovascular Mortality.

    Science.gov (United States)

    Ha, Le Dung; Elbadawi, Ayman; Froelicher, Victor F

    2018-01-01

    Numerous methods have been proposed for diagnosing left ventricular hypertrophy using the electrocardiogram. They have limited sensitivity for recognizing pathological hypertrophy, at least in part due to their inability to distinguish pathological from physiological hypertrophy. Our objective is to compare the major electrocardiogram-left ventricular hypertrophy criteria using cardiovascular mortality as a surrogate for pathological hypertrophy. This study was a retrospective analysis of 16,253 veterans electrocardiogram-left ventricular hypertrophy, and there were 744 cardiovascular deaths (annual cardiovascular mortality 0.25%). Receiver operating characteristic analysis demonstrated that the greatest area under the curve (AUC) for classification of cardiovascular death was obtained using the Romhilt-Estes score (0.63; 95% confidence interval, 0.61-0.65). Most of the voltage-only criteria had nondiagnostic area under the curves, with the Cornell being the best at 0.59 (95% confidence interval, 0.57-0.62). When the components of the Romhilt-Estes score were examined using step-wise Wald analysis, the voltage criteria dropped from the model. The Romhilt-Estes score ≥ 4, the Cornell, and the Peguero had the highest association with cardiovascular mortality (adjusted hazard ratios 2.2, 2.0, and 2.1, consecutively). None of the electrocardiogram leads with voltage criteria exhibited sufficient classification power for clinical use. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. The potential of dual-energy virtual monochromatic imaging in reducing renal cyst pseudoenhancement. A phantom study

    International Nuclear Information System (INIS)

    Yamada, Sachiko; Ueguchi, Takashi; Ukai, Isao; Nagai, Yumiko; Yamakawa, Masanobu; Shimosegawa, Eku; Shimazu, Takeshi; Hatazawa, Jun

    2012-01-01

    Renal cyst pseudoenhancement, an artifactual increase of computed tomography (CT) attenuation for cysts with increased iodine concentrations in the renal parenchyma, complicates the classification of cysts and may thus lead to the mischaracterization of a benign non-enhancing lesion as an enhancing mass. The purpose of this study was to use a phantom model to assess the ability of dual-energy virtual monochromatic imaging to reduce renal pseudoenhancement. A water-filled cylindrical cyst model suspended in varying concentrations of iodine solution, to simulate varying levels of parenchymal enhancement, was scanned with a dual-energy CT scanner using the following three scanning protocols with different combinations of tube voltage: 80 and 140 kV; 80 and 140 kV with tin filter; and 100 and 140 kV with tin filter. Virtual monochromatic images were then synthesized for each dual-energy scan. Single-energy scan with a tube voltage of 120 kV was also performed to obtain polychromatic images as controls. Mean attenuation values (in Hounsfield units) of cyst proxies were measured on both polychromatic and virtual monochromatic images. Pseudoenhancement was considered to be present when the cyst attenuation level increased by more than 10 HU (Hounsfield Unit) as the background iodine concentration increased from 0.0% to 0.4%, 1.5%, or 2.5%. Our results revealed that pseudoenhancement was not observed on any of the monochromatic images, but appeared on polychromatic images at a background iodine concentration of 2.5%. We thus conclude that dual-energy virtual monochromatic images have a potential to reduce renal pseudoenhancement. (author)

  4. Attenuation of hyperlipidemia- and diabetes-induced early-stage apoptosis and late-stage renal dysfunction via administration of fibroblast growth factor-21 is associated with suppression of renal inflammation.

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    Full Text Available BACKGROUND: Lipotoxicity is a key feature of the pathogenesis of diabetic kidney disease, and is attributed to excessive lipid accumulation (hyperlipidemia. Increasing evidence suggests that fibroblast growth factor (FGF21 has a crucial role in lipid metabolism under diabetic conditions. OBJECTIVE: The present study investigated whether FGF21 can prevent hyperlipidemia- or diabetes-induced renal damage, and if so, the possible mechanism. METHODS: Mice were injected with free fatty acids (FFAs, 10 mg/10 g body weight or streptozotocin (150 mg/kg to establish a lipotoxic model or type 1 diabetic model, respectively. Simultaneously the mice were treated with FGF21 (100 µg/kg for 10 or 80 days. The kidney weight-to-tibia length ratio and renal function were assessed. Systematic and renal lipid levels were detected by ELISA and Oil Red O staining. Renal apoptosis was examined by TUNEL assay. Inflammation, oxidative stress, and fibrosis were assessed by Western blot. RESULTS: Acute FFA administration and chronic diabetes were associated with lower kidney-to-tibia length ratio, higher lipid levels, severe renal apoptosis and renal dysfunction. Obvious inflammation, oxidative stress and fibrosis also observed in the kidney of both mice models. Deletion of the fgf21 gene further enhanced the above pathological changes, which were significantly prevented by administration of exogenous FGF21. CONCLUSION: These results suggest that FFA administration and diabetes induced renal damage, which was further enhanced in FGF21 knock-out mice. Administration of FGF21 significantly prevented both FFA- and diabetes-induced renal damage partially by decreasing renal lipid accumulation and suppressing inflammation, oxidative stress, and fibrosis.

  5. Renal Protective Effect of Xiao-Chai-Hu-Tang on Diabetic Nephropathy of Type 1-Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Chun-Ching Lin

    2012-01-01

    Full Text Available Xiao-Chai-Hu-Tang (XCHT, a traditional Chinese medicine formula consisting of seven medicinal plants, is used in the treatment of various diseases. We show here that XCHT could protect type-1 diabetic mice against diabetic nephropathy, using streptozotocin (STZ-induced diabetic mice and high-glucose (HG-exposed rat mesangial cell (RMC as models. Following 4 weeks of oral administration with XCHT, renal functions and renal hypertrophy significantly improved in the STZ-diabetic mice, while serum glucose was only moderately reduced compared to vehicle treatment. Treatment with XCHT in the STZ-diabetic mice and HG-exposed RMC resulted in a decrease in expression levels of TGF-β1, fibronectin, and collagen IV, with concomitant increase in BMP-7 expression. Data from DPPH assay, DHE stain, and CM-H2DCFDA analysis indicated that XCHT could scavenge free radicals and inhibit high-glucose-induced ROS in RMCs. Taken together, these results suggest that treatment with XCHT can improve renal functions in STZ-diabetic mice, an effect that is potentially mediated through decreasing oxidative stress and production of TGF-β1, fibronectin, and collagen IV in the kidney during development of diabetic nephropathy. XCHT, therefore merits further investigation for application to improve renal functions in diabetic disorders.

  6. Renal denervation after Symplicity HTN-3: an update.

    Science.gov (United States)

    Persu, Alexandre; Jin, Yu; Fadl Elmula, Fadl Elmula Mohamed; Jacobs, Lotte; Renkin, Jean; Kjeldsen, Sverre

    2014-08-01

    After three years of excessive confidence, overoptimistic expectations and performance of 15 to 20,000 renal denervation procedures in Europe, the failure of a single well-designed US trial--Symplicity HTN-3--to meet its primary efficacy endpoint has cast doubt on renal denervation as a whole. The use of a sound methodology, including randomisation and blinded endpoint assessment was enough to see the typical 25-30 mmHg systolic blood pressure decrease observed after renal denervation melt down to less than 3 mmHg, the rest being likely explained by Hawthorne and placebo effects, attenuation of white coat effect, regression to the mean and other physician and patient-related biases. The modest blood pressure benefit directly assignable to renal denervation should be balanced with unresolved safety issues, such as potentially increased risk of renal artery stenosis after the procedure (more than ten cases reported up to now, most of them in 2014), unclear long-term impact on renal function and lack of morbidity-mortality data. Accordingly, there is no doubt that renal denervation is not ready for clinical use. Still, renal denervation is supported by a strong rationale and is occasionally followed by major blood pressure responses in at-risk patients who may otherwise have remained uncontrolled. Upcoming research programmes should focus on identification of those few patients with truly resistant hypertension who may derive a substantial benefit from the technique, within the context of well-designed randomised trials and independent registries. While electrical stimulation of baroreceptors and other interventional treatments of hypertension are already "knocking at the door", the premature and uncontrolled dissemination of renal denervation should remain an example of what should not be done, and trigger radical changes in evaluation processes of new devices by national and European health authorities.

  7. Congenital hypertrophy of multiple intrinsic muscles of the foot.

    Science.gov (United States)

    Shiraishi, Tomohiro; Park, Susam; Niu, Atushi; Hasegawa, Hiromi

    2014-12-01

    Congenital hypertrophy of a single intrinsic muscle of the foot is rare, and as far as we know, only six cases have been reported. We describe a case of congenital anomaly that showed hypertrophy of multiple intrinsic muscles of the foot; the affected muscles were all the intrinsic muscles of the foot except the extensor digitorum brevis or extensor hallucis. Other tissues such as adipose tissue, nervous tissue, or osseous tissue showed no abnormalities. To reduce the volume of the foot we removed parts of the enlarged muscles.

  8. The impact of non-dipper circadian rhythm of blood pressure on left ventricular hypertrophy in patients with non-dialysis chronic kidney disease.

    Science.gov (United States)

    Che, Xiajing; Mou, Shan; Zhang, Weiming; Zhang, Minfang; Gu, Leyi; Yan, Yucheng; Ying, Hua; Hu, Chunhua; Qian, Jiaqi; Ni, Zhaohui

    2017-04-01

    Objective The aim of this study was to investigate the correlation between non-dipper circadian rhythm of blood pressure (BP) and left ventricular hypertrophy (LVH) in patients with chronic kidney disease (CKD). Methods and results All 257 patients with stage 1 to 5 CKD were enrolled in the study and classified into a CKD1-3 group and a CKD4-5 group according to renal function. The parameters and circadian rhythm of BP were measured by a GE Marquette Tonoport V Eng dynamic sphygmomanometer, and cardiac structure was examined by echocardiography. The incidence of abnormal circadian BP rhythm (non-dipper rhythm) was quite high (75.4% in all enrolled patients and 71.3% in the patients with normal BP levels) in CKD patients and increased with the deterioration of renal function. Changes of cardiac structure such as LVH in patients with non-dipper BP were more distinct than in patients with dipper BP. The development of left ventricular mass index (LVMI) correlated positively with the incidence of non-dipper BP rhythm. Multiple regression analysis showed that 24-h systolic BP (β = 0.417, P circadian rhythm of blood pressure was quite high in CKD patients and increased with the deterioration of renal function. Non-dipper circadian rhythm of BP is closely related with LVMI.

  9. Alterations in NO/ROS ratio and expression of Trx1 and Prdx2 in isoproterenol-induced cardiac hypertrophy

    Institute of Scientific and Technical Information of China (English)

    Hao Su; Marco Pistolozzi; Xingjuan Shi; Xiaoou Sun; Wen Tan

    2017-01-01

    The development of cardiac hypertrophy is a complicated process,which undergoes a transition from compensatory hypertrophy to heart failure,and the identification of new biomarkers and targets for this disease is greatly needed.Here we investigated the development of isoproterenol (ISO)-induced cardiac hypertrophy in an in vitro experimental model.After the induction of hypertrophy with ISO treatment in H9c2 cells,cell surface area,cell viability,cellular reactive oxygen species (ROS),and nitric oxide (NO) levels were tested.Our data showed that the cell viability,mitochondrial membrane potential,and NO/ROS balance varied during the development of cardiac hypertrophy in H9c2 cells.It was also found that the expression of thioredoxin1 (Trx1) and peroxiredoxin2 (Prdx2) was decreased during the cardiac hypertrophy of H9c2 cells.These results suggest a critical role for Trx1 and Prdx2 in the cardiac hypertrophy of H9c2 cells and in the transition from compensated hypertrophy to de-compensated hypertrophy in H9c2 cells,and our findings may have important implications for the management of this disease.

  10. Attenuation-corrected radionuclide differential glomerular filtration: Using a bilateral slant hole collimator for determining depth of kidneys

    International Nuclear Information System (INIS)

    Lasher, J.C.; Kopp, D.T.; Lancaster, J.L.; Blumhardt, R.

    1986-01-01

    There has recently been considerable interest in measuring differential renal function utilizing radionuclide attenuation correction techniques. One popular method is that of estimating kidney depth from the patient's weight-to-height ratio. A recent publication showed that renal depth can also be accurately determined using measurements from lateral views of each kidney. The authors have developed a third radionculide method using a bilateral slant-hole collimator (SHC) that is capable of obtaining the depth of both kidneys without repositioning the camera. This method makes use of the fact that two unique projections of each kidney are simultaneously acquired along spatial angles. The depth of each kidney used in the attenuation correction calculation can be easily obtained trigometrically using this known angle and the distance of the collimator from the patient

  11. Dyrk1A-ASF-CaMKIIδ Signaling Is Involved in Valsartan Inhibition of Cardiac Hypertrophy in Renovascular Hypertensive Rats.

    Science.gov (United States)

    Yao, Jian; Qin, Xiaotong; Zhu, Jianhua; Sheng, Hongzhuan

    2016-01-01

    It is known that the expression, activity and alternative splicing of Ca2+/calmodulin-dependent protein kinase IIδ (CaMKIIδ) are dysregulated in the cardiac remodeling process. Recently, we found a further signaling pathway, by which dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A) regulates the alternative splicing of CaMKIIδ via the alternative splicing factor (ASF), i.e., Dyrk1A-ASF-CaMKIIδ. In this study, we aimed to investigate whether Dyrk1A-ASF-CaMKIIδ signaling was involved in valsartan inhibition of cardiac hypertrophy in renovascular hypertensive rats. Rats were subjected to two kidney-one clip (2K1C) surgery and then treated with valsartan (30 mg/kg/day) for 8 weeks. Hypertrophic parameter analysis was then performed. Western blot analysis was used to determine the protein expression of Dyrk1A and ASF and RT-PCR was used to analyze the alternative splicing of CaMKIIδ in the left ventricular (LV) sample. Valsartan attenuated cardiac hypertrophy in 2K1C rats but without impairment of cardiac systolic function. Increased protein expression of Dyrk1A and decreased protein expression of ASF were observed in the LV sample of 2K1C rats. Treatment of 2K1C rats with valsartan reversed the changes in Dyrk1A and ASF expression in the LV sample. Valsartan adjusted the 2K1C-induced imbalance in alternative splicing of CaMKIIδ by upregulating the mRNA expression of CaMKIIδC and downregulating the mRNA expression of CaMKIIδA and CaMKIIδB. Valsartan inhibition of cardiac hypertrophy in renovascular hypertensive rats was mediated, at least partly, by Dyrk1A-ASF-CaMKIIδ signaling. © 2015 S. Karger AG, Basel.

  12. [A girl with congenital hemifacial hypertrophy

    NARCIS (Netherlands)

    Broeke, S.M. van den; Wolvius, E.B.; Adrichem, L.N. van; Baat, C. de

    2006-01-01

    A girl with congenital hemifacial hypertrophy had been observed and treated by a multidisciplinary team for craniofacial disorders in an academic medical centre since birth. At the age of 8 she was treated on account of considerable facial asymmetry and multiple intraoral problems. The two-step

  13. Changes in muscle fiber contractility and extracellular matrix production during skeletal muscle hypertrophy.

    Science.gov (United States)

    Mendias, Christopher L; Schwartz, Andrew J; Grekin, Jeremy A; Gumucio, Jonathan P; Sugg, Kristoffer B

    2017-03-01

    Skeletal muscle can adapt to increased mechanical loads by undergoing hypertrophy. Transient reductions in whole muscle force production have been reported during the onset of hypertrophy, but contractile changes in individual muscle fibers have not been previously studied. Additionally, the extracellular matrix (ECM) stores and transmits forces from muscle fibers to tendons and bones, and determining how the ECM changes during hypertrophy is important in understanding the adaptation of muscle tissue to mechanical loading. Using the synergist ablation model, we sought to measure changes in muscle fiber contractility, collagen content, and cross-linking, and in the expression of several genes and activation of signaling proteins that regulate critical components of myogenesis and ECM synthesis and remodeling during muscle hypertrophy. Tissues were harvested 3, 7, and 28 days after induction of hypertrophy, and nonoverloaded rats served as controls. Muscle fiber specific force (sF o ), which is the maximum isometric force normalized to cross-sectional area, was reduced 3 and 7 days after the onset of mechanical overload, but returned to control levels by 28 days. Collagen abundance displayed a similar pattern of change. Nearly a quarter of the transcriptome changed over the course of overload, as well as the activation of signaling pathways related to hypertrophy and atrophy. Overall, this study provides insight into fundamental mechanisms of muscle and ECM growth, and indicates that although muscle fibers appear to have completed remodeling and regeneration 1 mo after synergist ablation, the ECM continues to be actively remodeling at this time point. NEW & NOTEWORTHY This study utilized a rat synergist ablation model to integrate changes in single muscle fiber contractility, extracellular matrix composition, activation of important signaling pathways in muscle adaption, and corresponding changes in the muscle transcriptome to provide novel insight into the basic

  14. Dahuang Fuzi Decoction Attenuates Renal Fibrosis and Ameliorates Mitochondrial Dysfunction in Chronic Aristolochic Acid Nephropathy

    Directory of Open Access Journals (Sweden)

    Guang-xing Shui

    2017-01-01

    Full Text Available Objectives. The effects of the traditional formula Dahuang Fuzi Decoction (DFD on chronic aristolochic acid nephropathy (AAN in mice and its underlying mechanisms were studied. Methods. Mice were randomly divided into the following six groups: the control group, the model group (AAN, the saline-treated group (AAN + vehicle, the normal dose DFD-treated group (AAN + NDFD, the high dose DFD-treated group (AAN + HDFD, and the rosiglitazone treated group (AAN + Rosi. After treating for 8 weeks, 24 h urine and blood samples were collected and the mice sacrificed to study the biochemical parameters associated with renal function. The samples were analyzed for renal fibrosis and mitochondrial dysfunction (MtD markers. To achieve that, collagen III, collagen I, mitochondrial DNA copy numbers (mtDNA, mitochondrial membrane potential (MMP, ATP content, and ROS production were evaluated. Results. Our results showed that proteinuria, kidney function, and the renal pathological characteristics were improved by DFD and rosiglitazone. The expression of collagen III and collagen I decreased after treating with either DFD or rosiglitazone. Mitochondrial dysfunction based on the increase in ROS production, decrease in mitochondrial DNA copy numbers, and reduction of MMP and ATP content was improved by DFD and rosiglitazone. Conclusions. DFD could protect against renal impairments and ameliorate mitochondrial dysfunction in chronic AAN mice.

  15. The effect of inter-set rest intervals on resistance exercise-induced muscle hypertrophy.

    Science.gov (United States)

    Henselmans, Menno; Schoenfeld, Brad J

    2014-12-01

    Due to a scarcity of longitudinal trials directly measuring changes in muscle girth, previous recommendations for inter-set rest intervals in resistance training programs designed to stimulate muscular hypertrophy were primarily based on the post-exercise endocrinological response and other mechanisms theoretically related to muscle growth. New research regarding the effects of inter-set rest interval manipulation on resistance training-induced muscular hypertrophy is reviewed here to evaluate current practices and provide directions for future research. Of the studies measuring long-term muscle hypertrophy in groups employing different rest intervals, none have found superior muscle growth in the shorter compared with the longer rest interval group and one study has found the opposite. Rest intervals less than 1 minute can result in acute increases in serum growth hormone levels and these rest intervals also decrease the serum testosterone to cortisol ratio. Long-term adaptations may abate the post-exercise endocrinological response and the relationship between the transient change in hormonal production and chronic muscular hypertrophy is highly contentious and appears to be weak. The relationship between the rest interval-mediated effect on immune system response, muscle damage, metabolic stress, or energy production capacity and muscle hypertrophy is still ambiguous and largely theoretical. In conclusion, the literature does not support the hypothesis that training for muscle hypertrophy requires shorter rest intervals than training for strength development or that predetermined rest intervals are preferable to auto-regulated rest periods in this regard.

  16. Attenuated renal and intestinal injury after use of a mini-cardiopulmonary bypass system

    NARCIS (Netherlands)

    Huybregts, Rien A. J. M.; Morariu, Aurora M.; Rakhorst, Gerhard; Spiegelenberg, Stefan R.; Romijn, Hans W. A.; de Vroege, Roel; van Oeveren, Willem

    Background. Transient, subclinical myocardial, renal, intestinal, and hepatic tissue injury and impaired homeostasis is detectable even in low-risk patients undergoing conventional cardiopulmonary bypass (CPB). Small extracorporeal closed circuits with low priming volumes and optimized perfusion

  17. Nutritional status, functional capacity and exercise rehabilitation in end-stage renal disease.

    Science.gov (United States)

    Mercer, T H; Koufaki, P; Naish, P F

    2004-05-01

    A significant percentage of patients with end-stage renal disease are malnourished and/or muscle wasted. Uremia is associated with decreased protein synthesis and increased protein degradation. Fortunately, nutritional status has been shown to be a modifiable risk factor in the dialysis population. It has long been proposed that exercise could positively alter the protein synthesis-degradation balance. Resistance training had been considered as the only form of exercise likely to induce anabolism in renal failure patients. However, a small, but growing, body of evidence indicates that for some dialysis patients, favourable improvements in muscle atrophy and fibre hypertrophy can be achieved via predominantly aerobic exercise training. Moreover, some studies tentatively suggest that nutritional status, as measured by SGA, can also be modestly improved by modes and patterns of exercise training that have been shown to also increase muscle fibre cross-sectional area and improve functional capacity. Functional capacity tests can augment the information content of basic nutritional status assessments of dialysis patients and as such are recommended for routine inclusion as a feature of all nutritional status assessments.

  18. Glomerular hypertrophy in subjects with low nephron number: contributions of sex, body size and race.

    Science.gov (United States)

    Puelles, Victor G; Douglas-Denton, Rebecca N; Zimanyi, Monika A; Armitage, James A; Hughson, Michael D; Kerr, Peter G; Bertram, John F

    2014-09-01

    We have shown that low nephron number (Nglom) is a strong determinant of individual glomerular volume (IGV) in male Americans. However, whether the same pattern is present in female Americans remains unclear. The contributions of body surface area (BSA) and race to IGV in the context of Nglom also require further evaluation. Kidneys without overt renal disease were collected at autopsy in Mississippi, USA. The extremes of female Nglom were used to define high and low Nglom for both sexes. Nglom and IGV were estimated by design-based stereology. A total of 24 African and Caucasian American females (n = 12 per race; 6 per Nglom extreme) were included. These subjects were subsequently matched to 24 comparable males by age and Nglom and to 18 additional males by age, Nglom and BSA. IGV average and variance were very similar in female African and Caucasian Americans with high and low Nglom. Males with low Nglom from both races showed greater IGV average and variance than comparable females matched by age and Nglom. These differences in IGV between sexes were not observed in Caucasian Americans with low Nglom that were matched by age, Nglom and BSA. In contrast, glomeruli from African Americans were larger than those from Caucasian Americans, especially in subjects with high Nglom. While female Americans with low Nglom did not show glomerular hypertrophy, comparable males with low Nglom showed marked glomerular hypertrophy that was closely associated with high BSA. Glomerular size in African Americans may be confounded by multiple additional factors. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  19. Tissue characteristics in left ventricular hypertrophy using magnetic resonance imaging

    International Nuclear Information System (INIS)

    Yoshida, Shigeru; Ueno, Yuji; Arita, Mikio; Nishio, Ichiro; Masuyama, Yoshiaki

    1988-01-01

    For 15 normotensive patients with asymmetric septal hypertrophy (ASH), 10 hypertensive patients with concentric hypertrophy (CH), and five normal subjects (N), we examined changes in myocardial T 1 and T 2 values related to the cardiac cycle. The usefulness of those values in differentiating diseases with left ventricular hypertrophy was evaluated. Left ventricular (LV) short-axis spin echo images and inversion recovery images were obtained at endsystolic and diastolic cardiac phases, and T 1 and T 2 images were calculated. The regional wall thickness (WT) and T 1 and T 2 values were measured in the anterior septum, anterior wall, lateral wall, posterior wall and posterior septum. Myocardial T 1 and T 2 values were significantly decreased in systole (T 1 : 185.6±37.9 msec, T 2 : 24.4±6.3 msec, mean±SD) compared to those in diastole (T 1 : 249.2±56.7 msec, T 2 : 31.7±9.4 msec). In both the ASH and CH groups, significant correlations were observed between diastolic T 1 values and WT (ASH: r = 0.80, p 2 values and WT (ASH: r = 0.58, p 1 values in the ASH group (343.4±40.5 msec) were significantly higher than those of the CH group (247.3±21.4 msec), although the mean wall thickness values were similar in both groups. The T 1 /WT and T 2 /WT were significantly lower in the CH group than those in the ASH and N groups. In conclusion, myocardial T 1 and T 2 values were related not only to the cardiac cycle, but to wall thickness and to types of hypertrophy. The T 1 and T 2 values may be useful for distinguishing hypertrophic cardiomyopathy from hypertrophy due to hypertension. (author)

  20. Association of myocardial cell necrosis with experimental cardiac hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Revis, N W; Cameron, A J.V.

    1979-01-01

    Cardiac hypertrophy was induced in rabbits by injecting thyroxime or isoprenaline, or by surgically constricting the abdominal aorta. An increase in heart weight was associated with a change in the ratios of bound to free forms of five lysosomal enzymes, a change in serum creatine phosphokinase and lactate dehydrogenase, and a change in the morphology of the myocardial cells. Isoprenaline treatment for 5 days induced a maximal change in heart weight, in the ratio of lysosomal enzymes, and in the serum enzymes. Thyroxine treatment was required for 15 days before maximal changes in heart weight, ratio, and serum enzymes were observed. In contrast, coarctation of the aorta caused a progressive change in heart weight, in the ratio of lysosomal enzymes, and in serum enzymes. These results suggest that necrosis of the myocardial cells does indeed accompany cardiac hypertrophy. It was further observed that autophagosomes, degenerating mitochondria in the myocardial cells during the induction of cardiac hypertrophy, and myofibril lysis were found, all of which confirms the suggestion of myocardial cell necrosis in the experimentally enlarged heart.

  1. Hepcidin as a Major Component of Renal Antibacterial Defenses against Uropathogenic Escherichia coli

    Science.gov (United States)

    Houamel, Dounia; Ducrot, Nicolas; Lefebvre, Thibaud; Daher, Raed; Moulouel, Boualem; Sari, Marie-Agnes; Letteron, Philippe; Lyoumi, Said; Millot, Sarah; Tourret, Jerome; Bouvet, Odile; Vaulont, Sophie; Vandewalle, Alain; Denamur, Erick; Puy, Hervé; Beaumont, Carole; Gouya, Laurent

    2016-01-01

    The iron-regulatory peptide hepcidin exhibits antimicrobial activity. Having previously shown hepcidin expression in the kidney, we addressed its role in urinary tract infection (UTI), which remains largely unknown. Experimental UTI was induced in wild-type (WT) and hepcidin-knockout (Hepc−/−) mice using the uropathogenic Escherichia coli CFT073 strain. Compared with infected WT mice, infected Hepc−/− mice showed a dramatic increase in renal bacterial load. Moreover, bacterial invasion was significantly dampened by the pretreatment of WT mice with hepcidin. Infected Hepc−/− mice exhibited decreased iron accumulation in the renal medulla and significant attenuation of the renal inflammatory response. Notably, we demonstrated in vitro bacteriostatic activity of hepcidin against CFT073. Furthermore, CFT073 repressed renal hepcidin, both in vivo and in cultured renal cells, and reduced phosphorylation of SMAD kinase in vivo, suggesting a bacterial strategy to escape the antimicrobial activities of hepcidin. In conclusion, we provide new mechanisms by which hepcidin contributes to renal host defense and suggest that targeting hepcidin offers a strategy to prevent bacterial invasion. PMID:26293821

  2. Experimental and clinical study of cardiac hypertrophy by thallium-201 myocardial scintigraphy

    International Nuclear Information System (INIS)

    Torii, Yukio

    1983-01-01

    I studied experimentally the myocardial uptake of 201 Tl in cardiac hypertrophy in rat, and clinically evaluated cardiac shape and dimension in the patients with various types of cardiac hypertrophy. Experimentally, both myocardial blood flow (MBF) and Tl uptake were increased with cardiac weight. There were negative correlations between the extraction fraction and MBF. Tl uptake in Hypertrophy is not always dependent on MBF and affected by the altered metabolism of hypertrophied myocardium. Clinical study was performed in 29 normal subjects and in 90 patients with heart disease. The measurements of left ventricular (LV) size by Tl scintigraphy were well correlated with them by echocardiography. Aortic stenosis and hypertensive heart disease showed thick wall and spherical shape. Both mitral (MR) and aortic (AR) regurgitation showed ventricular dilatation, spherical shape (in chronic MR) and ellipsoid shape (in acute MR and in AR). Decreased ventricular size but normal shape was observed in mitral stenosis and cor pulmonale. Hypertrophic cardiomyopathy showed thick wall with asymmetric septal hypertrophy, while congestive cardiomyopathy showed thin wall with marked ventricular dilatation and spherical shape. I conclude that heart disease has characteristic figures in dimension and shape which may be reflecting cardiac performance or compensating for the load to the heart, and that 201 Tl scintigraphy is useful evaluating cardiac morphology as well as in diagnosing myocardial ischemia. (J.P.N.)

  3. Extracellular signal-regulated kinases 1/2 as regulators of cardiac hypertrophy

    Directory of Open Access Journals (Sweden)

    Michael eMutlak

    2015-07-01

    Full Text Available Cardiac hypertrophy results from increased mechanical load on the heart and through the actions of local and systemic neuro-humoral factors, cytokines and growth factors. These mechanical and neuroendocrine effectors act through stretch, G protein-coupled receptors and tyrosine kinases to induce the activation of a myriad of intracellular signaling pathways including the extracellular signal-regulated kinases 1/2 (ERK1/2. Since most stimuli that provoke myocardial hypertrophy also elicit an acute phosphorylation of the threonine-glutamate-tyrosine (TEY motif within the activation loops of ERK1 and ERK2 kinases, resulting in their activation, ERKs have long been considered promotors of cardiac hypertrophy. Several mouse models were generated in order to directly understand the causal role of ERK1/2 activation in the heart. These models include direct manipulation of ERK1/2 such as overexpression, mutagenesis or knockout models, manipulations of upstream kinases such as MEK1 and manipulations of the phosphatases that depohosphorylate ERK1/2 such as DUSP6. The emerging understanding from these studies, as will be discussed here, is more complex than originally considered. While there is little doubt that ERK1/2 activation or the lack of it modulates the hypertrophic process or the type of hypertrophy that develops, it appears that not all ERK1/2 activation events are the same. While much has been learned, some questions remain regarding the exact role of ERK1/2 in the heart, the upstream events that result in ERK1/2 activation and the downstream effector in hypertrophy.

  4. Association between routine and standardized blood pressure measurements and left ventricular hypertrophy among patients on hemodialysis.

    Science.gov (United States)

    Khangura, Jaspreet; Culleton, Bruce F; Manns, Braden J; Zhang, Jianguo; Barnieh, Lianne; Walsh, Michael; Klarenbach, Scott W; Tonelli, Marcello; Sarna, Magdalena; Hemmelgarn, Brenda R

    2010-06-24

    Left ventricular (LV) hypertrophy is common among patients on hemodialysis. While a relationship between blood pressure (BP) and LV hypertrophy has been established, it is unclear which BP measurement method is the strongest correlate of LV hypertrophy. We sought to determine agreement between various blood pressure measurement methods, as well as identify which method was the strongest correlate of LV hypertrophy among patients on hemodialysis. This was a post-hoc analysis of data from a randomized controlled trial. We evaluated the agreement between seven BP measurement methods: standardized measurement at baseline; single pre- and post-dialysis, as well as mean intra-dialytic measurement at baseline; and cumulative pre-, intra- and post-dialysis readings (an average of 12 monthly readings based on a single day per month). Agreement was assessed using Lin's concordance correlation coefficient (CCC) and the Bland Altman method. Association between BP measurement method and LV hypertrophy on baseline cardiac MRI was determined using receiver operating characteristic curves and area under the curve (AUC). Agreement between BP measurement methods in the 39 patients on hemodialysis varied considerably, from a CCC of 0.35 to 0.94, with overlapping 95% confidence intervals. Pre-dialysis measurements were the weakest predictors of LV hypertrophy while standardized, post- and inter-dialytic measurements had similar and strong (AUC 0.79 to 0.80) predictive power for LV hypertrophy. A single standardized BP has strong predictive power for LV hypertrophy and performs just as well as more resource intensive cumulative measurements, whereas pre-dialysis blood pressure measurements have the weakest predictive power for LV hypertrophy. Current guidelines, which recommend using pre-dialysis measurements, should be revisited to confirm these results.

  5. Effect of dexamethasone on perioperative renal function impairment during cardiac surgery with cardiopulmonary bypass

    NARCIS (Netherlands)

    Loef, BG; Henning, RH; Epema, AH; Rietman, GW; van Oeveren, W; Navis, GJ; Ebels, T

    2004-01-01

    Background. In cardiac surgery with cardiopulmonary bypass (CPB), corticosteroids are administered to attenuate the physiological changes caused by the systemic inflammatory response. The effects of corticosteroids on CPB-associated renal damage have not been documented. The purpose of this study

  6. Exploring Regulatory Mechanisms of Atrial Myocyte Hypertrophy of Mitral Regurgitation through Gene Expression Profiling Analysis: Role of NFAT in Cardiac Hypertrophy.

    Directory of Open Access Journals (Sweden)

    Tzu-Hao Chang

    Full Text Available Left atrial enlargement in mitral regurgitation (MR predicts a poor prognosis. The regulatory mechanisms of atrial myocyte hypertrophy of MR patients remain unknown.This study comprised 14 patients with MR, 7 patients with aortic valve disease (AVD, and 6 purchased samples from normal subjects (NC. We used microarrays, enrichment analysis and quantitative RT-PCR to study the gene expression profiles in the left atria. Microarray results showed that 112 genes were differentially up-regulated and 132 genes were differentially down-regulated in the left atria between MR patients and NC. Enrichment analysis of differentially expressed genes demonstrated that "NFAT in cardiac hypertrophy" pathway was not only one of the significant associated canonical pathways, but also the only one predicted with a non-zero score of 1.34 (i.e. activated through Ingenuity Pathway Analysis molecule activity predictor. Ingenuity Pathway Analysis Global Molecular Network analysis exhibited that the highest score network also showed high association with cardiac related pathways and functions. Therefore, 5 NFAT associated genes (PPP3R1, PPP3CB, CAMK1, MEF2C, PLCE1 were studies for validation. The mRNA expressions of PPP3CB and MEF2C were significantly up-regulated, and CAMK1 and PPP3R1 were significantly down-regulated in MR patients compared to NC. Moreover, MR patients had significantly increased mRNA levels of PPP3CB, MEF2C and PLCE1 compared to AVD patients. The atrial myocyte size of MR patients significantly exceeded that of the AVD patients and NC.Differentially expressed genes in the "NFAT in cardiac hypertrophy" pathway may play a critical role in the atrial myocyte hypertrophy of MR patients.

  7. Second statement of the working group on electrocardiographic diagnosis of left ventricular hypertrophy

    DEFF Research Database (Denmark)

    Bacharova, Ljuba; Estes, E Harvey; Bang, Lia E

    2011-01-01

    The Working Group on Electrocardiographic Diagnosis of Left Ventricular Hypertrophy, appointed by the Editor of the Journal of Electrocardiology, presents the alternative conceptual model for the ECG diagnosis of left ventricular hypertrophy (LVH). It is stressed that ECG is a record of electrica...

  8. Breast Hypertrophy, Reduction Mammaplasty, and Body Image.

    Science.gov (United States)

    Fonseca, Cristiane Costa; Veiga, Daniela Francescato; Garcia, Edgard da Silva; Cabral, Isaías Vieira; de Carvalho, Monique Maçais; de Brito, Maria José Azevedo; Ferreira, Lydia Masako

    2018-02-07

    Body image dissatisfaction is one of the major factors that motivate patients to undergo plastic surgery. However, few studies have associated body satisfaction with reduction mammaplasty. The aim of this study was to evaluate the impact of breast hypertrophy and reduction mammaplasty on body image. Breast hypertrophy patients, with reduction mammaplasty already scheduled between June 2013 and December 2015 (mammaplasty group, MG), were prospectively evaluated through the body dysmorphic disorder examination (BDDE), body investment scale (BIS), and breast evaluation questionnaire (BEQ55) tools. Women with normal-sized breasts were also evaluated as study controls (normal-sized breast group, NSBG). All the participants were interviewed at the initial assessment and after six months. Data were analyzed before and after six months. Each group consisted of 103 women. The MG group had a significant improvement in BDDE, BIS, and BEQ55 scores six months postoperatively (P ≤ 0.001 for the three instruments), whereas the NSBG group showed no alteration in results over time (P = 0.876; P = 0.442; and P = 0.184, respectively). In the intergroup comparison it was observed that the MG group began to invest more in the body, similarly to the NSBG group, and surpassed the level of satisfaction and body image that the women of the NSBG group had after the surgery. Reduction mammaplasty promoted improvement in body image of women with breast hypertrophy. © 2018 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com

  9. Capillarization and vascular endothelial growth factor expression in hypertrophying anterior latissimus dorsi muscle of the Japanese quail.

    NARCIS (Netherlands)

    Degens, H.; Anderson, R.K.; Alway, S.E.

    2003-01-01

    Hypertrophy may increase the diffusion distances from capillaries to the interior of the muscle fibers. We hypothesized that capillary proliferation occurs during hypertrophy, which is accompanied by an up-regulation of vascular endothelial growth factor (VEGF). Hypertrophy of the left anterior

  10. Body-building without power training : Endogenously regulated pectoral muscle hypertrophy in confined shorebirds

    NARCIS (Netherlands)

    Dietz, MW; Piersma, T; Dekinga, A

    1999-01-01

    Shorebirds such as red knots Calidris canutus routinely make migratory flights of 3000 km or more. Previous studies on this species, based on compositional analyses, suggest extensive pectoral muscle hypertrophy in addition to fat storage before take-off. Such hypertrophy could be due to power

  11. Association between routine and standardized blood pressure measurements and left ventricular hypertrophy among patients on hemodialysis

    Directory of Open Access Journals (Sweden)

    Walsh Michael

    2010-06-01

    Full Text Available Abstract Background Left ventricular (LV hypertrophy is common among patients on hemodialysis. While a relationship between blood pressure (BP and LV hypertrophy has been established, it is unclear which BP measurement method is the strongest correlate of LV hypertrophy. We sought to determine agreement between various blood pressure measurement methods, as well as identify which method was the strongest correlate of LV hypertrophy among patients on hemodialysis. Methods This was a post-hoc analysis of data from a randomized controlled trial. We evaluated the agreement between seven BP measurement methods: standardized measurement at baseline; single pre- and post-dialysis, as well as mean intra-dialytic measurement at baseline; and cumulative pre-, intra- and post-dialysis readings (an average of 12 monthly readings based on a single day per month. Agreement was assessed using Lin's concordance correlation coefficient (CCC and the Bland Altman method. Association between BP measurement method and LV hypertrophy on baseline cardiac MRI was determined using receiver operating characteristic curves and area under the curve (AUC. Results Agreement between BP measurement methods in the 39 patients on hemodialysis varied considerably, from a CCC of 0.35 to 0.94, with overlapping 95% confidence intervals. Pre-dialysis measurements were the weakest predictors of LV hypertrophy while standardized, post- and inter-dialytic measurements had similar and strong (AUC 0.79 to 0.80 predictive power for LV hypertrophy. Conclusions A single standardized BP has strong predictive power for LV hypertrophy and performs just as well as more resource intensive cumulative measurements, whereas pre-dialysis blood pressure measurements have the weakest predictive power for LV hypertrophy. Current guidelines, which recommend using pre-dialysis measurements, should be revisited to confirm these results.

  12. Gallic acid attenuates calcium calmodulin-dependent kinase II-induced apoptosis in spontaneously hypertensive rats.

    Science.gov (United States)

    Jin, Li; Piao, Zhe Hao; Liu, Chun Ping; Sun, Simei; Liu, Bin; Kim, Gwi Ran; Choi, Sin Young; Ryu, Yuhee; Kee, Hae Jin; Jeong, Myung Ho

    2018-03-01

    Hypertension causes cardiac hypertrophy and leads to heart failure. Apoptotic cells are common in hypertensive hearts. Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) is associated with apoptosis. We recently demonstrated that gallic acid reduces nitric oxide synthase inhibition-induced hypertension. Gallic acid is a trihydroxybenzoic acid and has been shown to have beneficial effects, such as anti-cancer, anti-calcification and anti-oxidant activity. The purpose of this study was to determine whether gallic acid regulates cardiac hypertrophy and apoptosis in essential hypertension. Gallic acid significantly lowered systolic and diastolic blood pressure in spontaneously hypertensive rats (SHRs). Wheat germ agglutinin (WGA) and H&E staining revealed that gallic acid reduced cardiac enlargement in SHRs. Gallic acid treatment decreased cardiac hypertrophy marker genes, including atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), in SHRs. The four isoforms, α, β, δ and γ, of CaMKII were increased in SHRs and were significantly reduced by gallic acid administration. Gallic acid reduced cleaved caspase-3 protein as well as bax, p53 and p300 mRNA levels in SHRs. CaMKII δ overexpression induced bax and p53 expression, which was attenuated by gallic acid treatment in H9c2 cells. Gallic acid treatment reduced DNA fragmentation and the TUNEL positive cells induced by angiotensin II. Taken together, gallic acid could be a novel therapeutic for the treatment of hypertension through suppression of CaMKII δ-induced apoptosis. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  13. Left ventricular hypertrophy : virtuous intentions, malign consequences

    NARCIS (Netherlands)

    Pokharel, S; Sharma, UC; Pinto, YM

    Left ventricular hypertrophy (LVH) is currently the focus of intense cardiovascular research, with the resultant rapid evolution of novel concepts relating to its exceedingly complex pathophysiology. In addition to the alterations in signal transduction and disturbances in Ca2+ homeostasis, there

  14. Left ventricular hypertrophy: virtuous intentions, malign consequences

    NARCIS (Netherlands)

    Pokharel, Saraswati; Sharma, Umesh C.; Pinto, Yigal M.

    2003-01-01

    Left ventricular hypertrophy (LVH) is currently the focus of intense cardiovascular research, with the resultant rapid evolution of novel concepts relating to its exceedingly complex pathophysiology. In addition to the alterations in signal transduction and disturbances in Ca(2+) homeostasis, there

  15. Glycogen synthase kinase-3 inhibition attenuates fibroblast activation and development of fibrosis following renal ischemia-reperfusion in mice

    Directory of Open Access Journals (Sweden)

    Shailendra P. Singh

    2015-08-01

    Full Text Available Glycogen synthase kinase-3β (GSK3β is a serine/threonine protein kinase that plays an important role in renal tubular injury and regeneration in acute kidney injury. However, its role in the development of renal fibrosis, often a long-term consequence of acute kidney injury, is unknown. Using a mouse model of renal fibrosis induced by ischemia-reperfusion injury, we demonstrate increased GSK3β expression and activity in fibrotic kidneys, and its presence in myofibroblasts in addition to tubular epithelial cells. Pharmacological inhibition of GSK3 using TDZD-8 starting before or after ischemia-reperfusion significantly suppressed renal fibrosis by reducing the myofibroblast population, collagen-1 and fibronectin deposition, inflammatory cytokines, and macrophage infiltration. GSK3 inhibition in vivo reduced TGF-β1, SMAD3 activation and plasminogen activator inhibitor-1 levels. Consistently in vitro, TGF-β1 treatment increased GSK3β expression and GSK3 inhibition abolished TGF-β1-induced SMAD3 activation and α-smooth muscle actin (α-SMA expression in cultured renal fibroblasts. Importantly, overexpression of constitutively active GSK3β stimulated α-SMA expression even in the absence of TGF-β1 treatment. These results suggest that TGF-β regulates GSK3β, which in turn is important for TGF-β–SMAD3 signaling and fibroblast-to-myofibroblast differentiation. Overall, these studies demonstrate that GSK3 could promote renal fibrosis by activation of TGF-β signaling and the use of GSK3 inhibitors might represent a novel therapeutic approach for progressive renal fibrosis that develops as a consequence of acute kidney injury.

  16. Thyroid hormone-induced hypertrophy in mesenchymal stem cell chondrogenesis is mediated by bone morphogenetic protein-4.

    Science.gov (United States)

    Karl, Alexandra; Olbrich, Norman; Pfeifer, Christian; Berner, Arne; Zellner, Johannes; Kujat, Richard; Angele, Peter; Nerlich, Michael; Mueller, Michael B

    2014-01-01

    Chondrogenic differentiating mesenchymal stem cells (MSCs) express markers of hypertrophic growth plate chondrocytes. As hypertrophic cartilage undergoes ossification, this is a concern for the application of MSCs in articular cartilage tissue engineering. To identify mechanisms that elicit this phenomenon, we used an in vitro hypertrophy model of chondrifying MSCs for differential gene expression analysis and functional experiments with the focus on bone morphogenetic protein (BMP) signaling. Hypertrophy was induced in chondrogenic MSC pellet cultures by transforming growth factor β (TGFβ) and dexamethasone withdrawal and addition of triiodothyronine. Differential gene expression analysis of BMPs and their receptors was performed. Based on these results, the in vitro hypertrophy model was used to investigate the effect of recombinant BMP4 and the BMP inhibitor Noggin. The enhancement of hypertrophy could be shown clearly by an increased cell size, alkaline phosphatase activity, and collagen type X deposition. Upon induction of hypertrophy, BMP4 and the BMP receptor 1B were upregulated. Addition of BMP4 further enhanced hypertrophy in the absence, but not in the presence of TGFβ and dexamethasone. Thyroid hormone induced hypertrophy by upregulation of BMP4 and this induced enhancement of hypertrophy could be blocked by the BMP antagonist Noggin. BMP signaling is an important modulator of the late differentiation stages in MSC chondrogenesis and the thyroid hormone induces this pathway. As cartilage tissue engineering constructs will be exposed to this factor in vivo, this study provides important insight into the biology of MSC-based cartilage. Furthermore, the possibility to engineer hypertrophic cartilage may be helpful for critical bone defect repair.

  17. AMPKγ3 is dispensable for skeletal muscle hypertrophy induced by functional overload.

    Science.gov (United States)

    Riedl, Isabelle; Osler, Megan E; Björnholm, Marie; Egan, Brendan; Nader, Gustavo A; Chibalin, Alexander V; Zierath, Juleen R

    2016-03-15

    Mechanisms regulating skeletal muscle growth involve a balance between the activity of serine/threonine protein kinases, including the mammalian target of rapamycin (mTOR) and 5'-AMP-activated protein kinase (AMPK). The contribution of different AMPK subunits to the regulation of cell growth size remains inadequately characterized. Using AMPKγ3 mutant-overexpressing transgenic Tg-Prkag3(225Q) and AMPKγ3-knockout (Prkag3(-/-)) mice, we investigated the requirement for the AMPKγ3 isoform in functional overload-induced muscle hypertrophy. Although the genetic disruption of the γ3 isoform did not impair muscle growth, control sham-operated AMPKγ3-transgenic mice displayed heavier plantaris muscles in response to overload hypertrophy and underwent smaller mass gain and lower Igf1 expression compared with wild-type littermates. The mTOR signaling pathway was upregulated with functional overload but unchanged between genetically modified animals and wild-type littermates. Differences in AMPK-related signaling pathways between transgenic, knockout, and wild-type mice did not impact muscle hypertrophy. Glycogen content was increased following overload in wild-type mice. In conclusion, our functional, transcriptional, and signaling data provide evidence against the involvement of the AMPKγ3 isoform in the regulation of skeletal muscle hypertrophy. Thus, the AMPKγ3 isoform is dispensable for functional overload-induced muscle growth. Mechanical loading can override signaling pathways that act as negative effectors of mTOR signaling and consequently promote skeletal muscle hypertrophy. Copyright © 2016 the American Physiological Society.

  18. Transcriptional profiling of rat skeletal muscle hypertrophy under restriction of blood flow.

    Science.gov (United States)

    Xu, Shouyu; Liu, Xueyun; Chen, Zhenhuang; Li, Gaoquan; Chen, Qin; Zhou, Guoqing; Ma, Ruijie; Yao, Xinmiao; Huang, Xiao

    2016-12-15

    Blood flow restriction (BFR) under low-intensity resistance training (LIRT) can produce similar effects upon muscles to that of high-intensity resistance training (HIRT) while overcoming many of the restrictions to HIRT that occurs in a clinical setting. However, the potential molecular mechanisms of BFR induced muscle hypertrophy remain largely unknown. Here, using a BFR rat model, we aim to better elucidate the mechanisms regulating muscle hypertrophy as induced by BFR and reveal possible clinical therapeutic targets for atrophy cases. We performed genome wide screening with microarray analysis to identify unique differentially expressed genes during rat muscle hypertrophy. We then successfully separated the differentially expressed genes from BRF treated soleus samples by comparing the Affymetrix rat Genome U34 2.0 array with the control. Using qRT-PCR and immunohistochemistry (IHC) we also analyzed other related differentially expressed genes. Results suggested that muscle hypertrophy induced by BFR is essentially regulated by the rate of protein turnover. Specifically, PI3K/AKT and MAPK pathways act as positive regulators in controlling protein synthesis where ubiquitin-proteasome acts as a negative regulator. This represents the first general genome wide level investigation of the gene expression profile in the rat soleus after BFR treatment. This may aid our understanding of the molecular mechanisms regulating and controlling muscle hypertrophy and provide support to the BFR strategies aiming to prevent muscle atrophy in a clinical setting. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Alpha8 Integrin (Itga8 Signalling Attenuates Chronic Renal Interstitial Fibrosis by Reducing Fibroblast Activation, Not by Interfering with Regulation of Cell Turnover.

    Directory of Open Access Journals (Sweden)

    Ines Marek

    Full Text Available The α8 integrin (Itga8 chain contributes to the regulation of cell proliferation and apoptosis in renal glomerular cells. In unilateral ureteral obstruction Itga8 is de novo expressed in the tubulointerstitium and a deficiency of Itga8 results in more severe renal fibrosis after unilateral ureteral obstruction. We hypothesized that the increased tubulointerstitial damage after unilateral ureteral obstruction observed in mice deficient for Itga8 is associated with altered tubulointerstitial cell turnover and apoptotic mechanisms resulting from the lack of Itga8 in cells of the tubulointerstitium. Induction of unilateral ureteral obstruction was achieved by ligation of the right ureter in mice lacking Itga8. Unilateral ureteral obstruction increased proliferation and apoptosis rates of tubuloepithelial and interstitial cells, however, no differences were observed in the tubulointerstitium of mice lacking Itga8 and wild type controls regarding fibroblast or proliferating cell numbers as well as markers of endoplasmic reticulum stress and apoptosis after unilateral ureteral obstruction. In contrast, unilateral ureteral obstruction in mice lacking Itga8 led to more pronounced tubulointerstitial cell activation i.e. to the appearance of more phospho-SMAD2/3-positive cells and more α-smooth muscle actin-positive cells in the tubulointerstitium. Furthermore, a more severe macrophage and T-cell infiltration was observed in these animals compared to controls. Thus, Itga8 seems to attenuate tubulointerstitial fibrosis in unilateral ureteral obstruction not via regulation of cell turnover, but via regulation of TGF-β signalling, fibroblast activation and/or immune cell infiltration.

  20. N-acetylcysteine reduces the renal oxidative stress and apoptosis induced by hemorrhagic shock.

    Science.gov (United States)

    Moreira, Miriam Aparecida; Irigoyen, Maria Claudia; Saad, Karen Ruggeri; Saad, Paulo Fernandes; Koike, Marcia Kiyomi; Montero, Edna Frasson de Souza; Martins, José Luiz

    2016-06-01

    Renal ischemia/reperfusion injury induced by hemorrhagic shock (HS) and subsequent fluid resuscitation is a common cause of acute renal failure. The objective of this study was to evaluate the effect of combining N-acetylcysteine (NAC) with fluid resuscitation on renal injury in rats that underwent HS. Two groups of male Wistar rats were induced to controlled HS at 35 mm Hg mean arterial pressure for 60 min. After this period, the HS and fluid resuscitation (HS/R) group was resuscitated with lactate containing 50% of the blood that was withdrawn. The HS/R + NAC group was resuscitated with Ringer's lactate combined with 150 mg/kg of NAC and blood. The sham group animals were catheterized but were not subjected to shock. All animals were kept under anesthesia and euthanized after 120 min of fluid resuscitation or observation. Animals treated with NAC presented attenuation of histologic lesions, reduced oxidative stress, and apoptosis markers when compared with animals from the HS/R group. The serum creatinine was similar in all the groups. NAC is a promising drug for combining with fluid resuscitation to attenuate the kidney injury associated with HS. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Biomechanical implications of skeletal muscle hypertrophy and atrophy: a musculoskeletal model

    Directory of Open Access Journals (Sweden)

    Andrew D. Vigotsky

    2015-11-01

    Full Text Available Muscle hypertrophy and atrophy occur frequently as a result of mechanical loading or unloading, with implications for clinical, general, and athletic populations. The effects of muscle hypertrophy and atrophy on force production and joint moments have been previously described. However, there is a paucity of research showing how hypertrophy and atrophy may affect moment arm (MA lengths. The purpose of this model was to describe the mathematical relationship between the anatomical cross-sectional area (ACSA of a muscle and its MA length. In the model, the ACSAs of the biceps brachii and brachialis were altered to hypertrophy up to twice their original size and to atrophy to one-half of their original size. The change in MA length was found to be proportional to the arcsine of the square root of the change in ACSA. This change in MA length may be a small but important contributor to strength, especially in sports that require large joint moments at slow joint angular velocities, such as powerlifting. The paradoxical implications of the increase in MA are discussed, as physiological factors influencing muscle contraction velocity appear to favor a smaller MA length for high velocity movements but a larger muscle MA length for low velocity, high force movements.

  2. Identification of Tisp40 as an Essential Regulator of Renal Tubulointerstitial Fibrosis via TGF-β/Smads Pathway

    Directory of Open Access Journals (Sweden)

    Cheng-cheng Xiao

    2017-06-01

    Full Text Available Background: Tisp40, a transcription factor of the CREB/CREM family, is involved in cell proliferation, differentiation and other biological functions, but its role in renal tubulointerstitial fibrosis is unknown. Methods: In our study, we investigated the effects of Tisp40 on extracellular matrix (ECM accumulation, epithelial-mesenchymal transition (EMT and the underlying molecular mechanisms in transforming growth factor-β (TGF-β-stimulated TCMK-1 cells by quantitative real-time polymerase chain reaction (qPCR, Western blot analysis and immunofluorescence in vitro, and further explored the role of Tisp40 on renal fibrosis induced by ischemia-reperfusion (I/R by qPCR, Western blot analysis, hydroxyproline analysis, Masson trichrome staining and immunohistochemistry staining in vivo. Results: The data showed that Tisp40 was upregulated in a model of renal fibrosis induced by I/R injury (IRI. Upon IRI, Tisp40-deficient mice showed attenuated renal fibrosis compared with wild-type mice. Furthermore, the expression of α-smooth muscle actin, E-cadherin, fibronectin, and collagen I was suppressed. Tisp40 overexpression aggravated ECM accumulation and EMT in the TGF-β-stimulated TCMK-1 cell line, whereas the opposite occurred in cells treated with small interfering RNA (siRNA targeting Tisp40. Importantly, it is changes in the Smad pathway that attenuate renal fibrosis. Conclusion: These findings suggest that Tisp40 plays a critical role in the TGF-β/ Smads pathway involved in this process. Hence, Tisp40 could be a useful therapeutic target in the fight against renal tubulointerstitial fibrosis.

  3. Late renal dysfunction in adult survivors of bone marrow transplantation

    International Nuclear Information System (INIS)

    Lawton, C.A.; Cohen, E.P.; Barber-Derus, S.W.; Murray, K.J.; Ash, R.C.; Casper, J.T.; Moulder, J.E.

    1991-01-01

    Until recently long-term renal toxicity has not been considered a major late complication of bone marrow transplantation (BMT). Late renal dysfunction has been described in a pediatric population status post-BMT which was attributable to the radiation in the preparatory regimen. A thorough review of adults with this type of late renal dysfunction has not previously been described. Fourteen of 103 evaluable adult patients undergoing allogeneic (96) or autologous (7) bone marrow transplantation, predominantly for leukemia and lymphomas, at the Medical College of Wisconsin (Milwaukee, WI) have had a syndrome of renal insufficiency characterized by increased serum creatinine, decreased glomerular filtration rate, anemia, and hypertension. This syndrome developed at a median of 9 months (range, 4.5 to 26 months) posttransplantation in the absence of specific identifiable causes. The cumulative probability of having this renal dysfunction is 20% at 1 year. Renal biopsies performed on seven of these cases showed the endothelium widely separated from the basement membrane, extreme thickening of the glomerular basement membrane, and microthrombi. Previous chemotherapy, antibiotics, and antifungals as well as cyclosporin may add to and possibly potentiate a primary chemoradiation marrow transplant renal injury, but this clinical syndrome is most analogous to clinical and experimental models of radiation nephritis. This late marrow transplant-associated nephritis should be recognized as a potentially limiting factor in the use of some intensive chemoradiation conditioning regimens used for BMT. Some selective attenuation of the radiation to the kidneys may decrease the incidence of this renal dysfunction

  4. VO(2peak), myocardial hypertrophy, and myocardial blood flow in endurance-trained men.

    Science.gov (United States)

    Laaksonen, Marko S; Heinonen, Ilkka; Luotolahti, Matti; Knuuti, Juhani; Kalliokoski, Kari K

    2014-08-01

    Endurance training induces cardiovascular and metabolic adaptations, leading to enhanced endurance capacity and exercise performance. Previous human studies have shown contradictory results in functional myocardial vascular adaptations to exercise training, and we hypothesized that this may be related to different degrees of hypertrophy in the trained heart. We studied the interrelationships between peak aerobic power (V˙O2peak), myocardial blood flow (MBF) at rest and during adenosine-induced vasodilation, and parameters of myocardial hypertrophy in endurance-trained (ET, n = 31) and untrained (n = 17) subjects. MBF and myocardial hypertrophy were studied using positron emission tomography and echocardiography, respectively. Both V˙O2peak (P negatively with adenosine-stimulated MBF, but when LV mass was taken into account as a partial correlate, this correlation disappeared. The present results show that increased LV mass in ET subjects explains the reduced hyperemic myocardial perfusion in this subject population and suggests that excessive LV hypertrophy has negative effect on cardiac blood flow capacity.

  5. Renin-angiotensin system (RAS) blockade attenuates growth and metastatic potential of renal cell carcinoma in mice.

    Science.gov (United States)

    Araújo, Wedson F; Naves, Marcelo A; Ravanini, Juliana N; Schor, Nestor; Teixeira, Vicente P C

    2015-09-01

    Renal cell carcinoma (RCC) is the most frequent type of cancer among renal neoplasms in adults and responds poorly to radiotherapy and chemotherapy. There is evidence that blockade of the renin-angiotensin system (RAS) might have antineoplastic effects. The aim of this study was to investigate the effects of RAS blockade on RCC in a murine model. Murine renal cancer cells (Renca) were injected (1 × 10(5)) into the subcapsular space of the left kidney of BALB/c mice (8 wk of age). The animals were divided into 4 groups: a control group (no treatment), angiotensin-receptor blockers group (losartan 100mg/kg/d), angiotensin-converting enzyme inhibitor group (captopril 10mg/kg/d), and angiotensin-receptor blockers +angiotensin-converting enzyme inhibitor group (losartan 100mg/kg/d +captopril 10mg/kg/d). The animals received the drugs by gavage for 21 days after inoculation, beginning 2 days before tumor induction, and were then euthanized. After killing the animals, the kidneys and lungs were removed, weighed, and processed for histopathological and immunohistochemical analyses. Angiogenesis and vascular microvessels were assessed with the antibodies anti-vascular endothelial growth factor and anti-CD34. Angiotensin II-inoculated animals developed renal tumors. Treated animals presented smaller tumors, regardless of the therapeutic regimen, and far fewer lung metastases in both quantity and dimension compared with the controls. The expression of vascular endothelial growth factor and CD34 were significantly decreased in renal tumors of treated animals compared with the controls. Our findings suggest that blockade of RAS decreases tumor proliferation and metastatic capacity of RCC in this experimental model. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Unilateral hypertrophy of tensor fascia lata: a soft tissue tumor simulator

    Energy Technology Data Exchange (ETDEWEB)

    Ilaslan, H. [Department of Radiology, Mayo Clinic, 200 First Street, 55905, SW Rochester, MN (United States); Department of Radiology A21, Cleveland Clinic, Cleveland, OH (United States); Wenger, D.E. [Department of Radiology, Mayo Clinic, 200 First Street, 55905, SW Rochester, MN (United States); Shives, T.C. [Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN (United States); Unni, K.K. [Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN (United States)

    2003-11-01

    To describe the imaging findings in eight cases of unilateral tensor fascia lata (TFL) hypertrophy presenting as soft tissue masses. Imaging studies and medical charts of eight patients were reviewed retrospectively. The imaging studies included five radiographs, five computed tomography (CT) and six magnetic resonance imaging (MRI) examinations. The majority of patients (seven of eight) presented with a palpable proximal anterior thigh mass. One patient was asymptomatic and incidentally diagnosed. There were six females and two males. Ages ranged from 27 to 86 years old (mean 61). MRI and CT showed unilateral enlargement of the TFL muscle in all cases. TFL muscle hypertrophy is an uncommon clinical entity, which can simulate a soft tissue tumor. The characteristic appearance on CT or MRI allows a confident diagnosis of muscle hypertrophy to be made, avoiding unnecessary biopsy or surgical intervention. (orig.)

  7. Unilateral hypertrophy of tensor fascia lata: a soft tissue tumor simulator

    International Nuclear Information System (INIS)

    Ilaslan, H.; Wenger, D.E.; Shives, T.C.; Unni, K.K.

    2003-01-01

    To describe the imaging findings in eight cases of unilateral tensor fascia lata (TFL) hypertrophy presenting as soft tissue masses. Imaging studies and medical charts of eight patients were reviewed retrospectively. The imaging studies included five radiographs, five computed tomography (CT) and six magnetic resonance imaging (MRI) examinations. The majority of patients (seven of eight) presented with a palpable proximal anterior thigh mass. One patient was asymptomatic and incidentally diagnosed. There were six females and two males. Ages ranged from 27 to 86 years old (mean 61). MRI and CT showed unilateral enlargement of the TFL muscle in all cases. TFL muscle hypertrophy is an uncommon clinical entity, which can simulate a soft tissue tumor. The characteristic appearance on CT or MRI allows a confident diagnosis of muscle hypertrophy to be made, avoiding unnecessary biopsy or surgical intervention. (orig.)

  8. Repeated blood flow restriction induces muscle fiber hypertrophy.

    Science.gov (United States)

    Sudo, Mizuki; Ando, Soichi; Kano, Yutaka

    2017-02-01

    We recently developed an animal model to investigate the effects of eccentric contraction (ECC) and blood flow restriction (BFR) on muscle tissue at the cellular level. This study clarified the effects of repeated BFR, ECC, and BFR combined with ECC (BFR+ECC) on muscle fiber hypertrophy. Male Wistar rats were assigned to 3 groups: BFR, ECC, and BFR+ECC. The contralateral leg in the BFR group served as a control (CONT). Muscle fiber cross-sectional area (CSA) of the tibialis anterior was determined after the respective treatments for 6 weeks. CSA was greater in the BFR+ECC group than in the CONT (P muscle fiber hypertrophy at the cellular level. Muscle Nerve 55: 274-276, 2017. © 2016 Wiley Periodicals, Inc.

  9. GSK-3β/NFAT Signaling Is Involved in Testosterone-Induced Cardiac Myocyte Hypertrophy.

    Directory of Open Access Journals (Sweden)

    Javier Duran

    Full Text Available Testosterone induces cardiac hypertrophy through a mechanism that involves a concerted crosstalk between cytosolic and nuclear signaling pathways. Nuclear factor of activated T-cells (NFAT is associated with the promotion of cardiac hypertrophy, glycogen synthase kinase-3β (GSK-3β is considered to function as a negative regulator, mainly by modulating NFAT activity. However, the role played by calcineurin-NFAT and GSK-3β signaling in testosterone-induced cardiac hypertrophy has remained unknown. Here, we determined that testosterone stimulates cardiac myocyte hypertrophy through NFAT activation and GSK-3β inhibition. Testosterone increased the activity of NFAT-luciferase (NFAT-Luc in a time- and dose-dependent manner, with the activity peaking after 24 h of stimulation with 100 nM testosterone. NFAT-Luc activity induced by testosterone was blocked by the calcineurin inhibitors FK506 and cyclosporine A and by 11R-VIVIT, a specific peptide inhibitor of NFAT. Conversely, testosterone inhibited GSK-3β activity as determined by increased GSK-3β phosphorylation at Ser9 and β-catenin protein accumulation, and also by reduction in β-catenin phosphorylation at residues Ser33, Ser37, and Thr41. GSK-3β inhibition with 1-azakenpaullone or a GSK-3β-targeting siRNA increased NFAT-Luc activity, whereas overexpression of a constitutively active GSK-3β mutant (GSK-3βS9A inhibited NFAT-Luc activation mediated by testosterone. Testosterone-induced cardiac myocyte hypertrophy was established by increased cardiac myocyte size and [3H]-leucine incorporation (as a measurement of cellular protein synthesis. Calcineurin-NFAT inhibition abolished and GSK-3β inhibition promoted the hypertrophy stimulated by testosterone. GSK-3β activation by GSK-3βS9A blocked the increase of hypertrophic markers induced by testosterone. Moreover, inhibition of intracellular androgen receptor prevented testosterone-induced NFAT-Luc activation. Collectively, these results

  10. CNS sites activated by renal pelvic epithelial sodium channels (ENaCs) in response to hypertonic saline in awake rats.

    Science.gov (United States)

    Goodwill, Vanessa S; Terrill, Christopher; Hopewood, Ian; Loewy, Arthur D; Knuepfer, Mark M

    2017-05-01

    In some patients, renal nerve denervation has been reported to be an effective treatment for essential hypertension. Considerable evidence suggests that afferent renal nerves (ARN) and sodium balance play important roles in the development and maintenance of high blood pressure. ARN are sensitive to sodium concentrations in the renal pelvis. To better understand the role of ARN, we infused isotonic or hypertonic NaCl (308 or 500mOsm) into the left renal pelvis of conscious rats for two 2hours while recording arterial pressure and heart rate. Subsequently, brain tissue was analyzed for immunohistochemical detection of the protein Fos, a marker for neuronal activation. Fos-immunoreactive neurons were identified in numerous sites in the forebrain and brainstem. These areas included the nucleus tractus solitarius (NTS), the lateral parabrachial nucleus, the paraventricular nucleus of the hypothalamus (PVH) and the supraoptic nucleus (SON). The most effective stimulus was 500mOsm NaCl. Activation of these sites was attenuated or prevented by administration of benzamil (1μM) or amiloride (10μM) into the renal pelvis concomitantly with hypertonic saline. In anesthetized rats, infusion of hypertonic saline but not isotonic saline into the renal pelvis elevated ARN activity and this increase was attenuated by simultaneous infusion of benzamil or amiloride. We propose that renal pelvic epithelial sodium channels (ENaCs) play a role in activation of ARN and, via central visceral afferent circuits, this system modulates fluid volume and peripheral blood pressure. These pathways may contribute to the development of hypertension. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Cardiac and renal antioxidant enzymes and effects of tempol in hyperthyroid rats.

    Science.gov (United States)

    Moreno, Juan Manuel; Rodríguez Gómez, Isabel; Wangensteen, Rosemary; Osuna, Antonio; Bueno, Pablo; Vargas, Félix

    2005-11-01

    This study evaluated the activity of cardiac and renal antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), and glutathione reductase (GR)] and whether chronic treatment with tempol, a cell membrane-permeable SOD mimetic, ameliorates the hypertension of hyperthyroidism. Two experiments were performed. In experiment I, the following four groups of male Wistar rats were used: control group and three groups that received thyroxine (T4) at 10, 50, or 75 microg x rat(-1) x day(-1). In experiment II, tempol was orally administered (18 mg x kg(-1) x day(-1)) to control and T4-treated (75 microg x rat(-1) x day(-1)) rats. All treatments were maintained for 6 wk. Body weight, tail systolic blood pressure (BP), and heart rate were measured one time a week, and direct BP and morphological, metabolic, plasma, and renal variables were measured at the end of the experiment. Enzymatic activities were measured in renal cortex and medulla and right and left ventricles. In renal cortex, SOD activity was decreased in the T4-75 group, and there was a dose-related increase in CAT activity and decrease in GPX and GR activities in T4-treated groups. Activity of all antioxidant enzymes was reduced in left ventricle in T4-50 and T4-75 groups and in right ventricle in the T4-75 group. Tempol reduced BP, plasma malondialdehyde, and total urinary excretion of F2 isoprostanes in hypertensive hyperthyroid rats but not in controls. Tempol did not improve cardiac hypertrophy, proteinuria, or creatinine clearance in hyperthyroid rats. In conclusion, the results obtained indicate that the activity of SOD, GPX, and GR in renal and cardiac tissues is decreased in hyperthyroidism and that antioxidant treatment with tempol ameliorates T4-induced hypertension.

  12. Reduced kidney lipoprotein lipase and renal tubule triglyceride accumulation in cisplatin-mediated acute kidney injury

    NARCIS (Netherlands)

    Li, Shenyang; Nagothu, K.; Ranganathan, G.; Ali, S.M.; Shank, B.; Gokden, N.; Ayyadevara, S.; Megysi, J.; Olivecrona, G.; Chugh, S.S.; Kersten, A.H.; Portilla, D.

    2012-01-01

    Peroxisome proliferator-activated receptor-a (PPARa) activation attenuates cisplatin (CP)-mediated acute kidney injury by increasing fatty acid oxidation, but mechanisms leading to reduced renal triglyceride (TG) accumulation could also contribute. Here, we investigated the effects of PPARa and CP

  13. BAG3 regulates ECM accumulation in renal proximal tubular cells induced by TGF-β1.

    Science.gov (United States)

    Du, Feng; Li, Si; Wang, Tian; Zhang, Hai-Yan; Li, De-Tian; Du, Zhen-Xian; Wang, Hua-Qin; Wang, Yan-Qiu

    2015-01-01

    Previously we have demonstrated that Bcl-2-associated athanogene 3 (BAG3) is increased in renal fibrosis using a rat unilateral ureteral obstruction model. The current study investigated the role of BAG3 in renal fibrosis using transforming growth factor (TGF)-β1-treated human proximal tubular epithelial (HK-2) cells. An upregulation of BAG3 in vitro models was observed, which correlated with the increased synthesis of extracellular matrix (ECM) proteins and expression of tissue-type plasminogen activator inhibitor (PAI)-1. Blockade of BAG3 induction by shorting hairpin RNA suppressed the expression of ECM proteins but had no effect on PAI-1 expression induced by TGF-β1. Forced overexpression of BAG3 selectively increased collagens. TGF-β1-induced BAG3 expression in HK-2 cells was attenuated by ERK1/2 and JNK MAPK inhibitors. In addition, forced BAG3 overexpression blocked attenuation of collagens expression by ERK1/2 and JNK inhibitors. These data suggest that ERK1/2 and JNK signaling events are involved in modulating the expression of BAG3, which would ultimately contribute to renal fibrosis by enhancing the synthesis and deposition of ECM proteins.

  14. SIRT1 may play a crucial role in overload-induced hypertrophy of skeletal muscle.

    Science.gov (United States)

    Koltai, Erika; Bori, Zoltán; Chabert, Clovis; Dubouchaud, Hervé; Naito, Hisashi; Machida, Shuichi; Davies, Kelvin Ja; Murlasits, Zsolt; Fry, Andrew C; Boldogh, Istvan; Radak, Zsolt

    2017-06-01

    Silent mating type information regulation 2 homologue 1 (SIRT1) activity and content increased significantly in overload-induced hypertrophy. SIRT1-mediated signalling through Akt, the endothelial nitric oxide synthase mediated pathway, regulates anabolic process in the hypertrophy of skeletal muscle. The regulation of catabolic signalling via forkhead box O 1 and protein ubiquitination is SIRT1 dependent. Overload-induced changes in microRNA levels regulate SIRT1 and insulin-like growth factor 1 signalling. Significant skeletal muscle mass guarantees functional wellbeing and is important for high level performance in many sports. Although the molecular mechanism for skeletal muscle hypertrophy has been well studied, it still is not completely understood. In the present study, we used a functional overload model to induce plantaris muscle hypertrophy by surgically removing the soleus and gastrocnemius muscles in rats. Two weeks of muscle ablation resulted in a 40% increase in muscle mass, which was associated with a significant increase in silent mating type information regulation 2 homologue 1 (SIRT1) content and activity (P overload-induced hypertrophy. These findings, along with the well-known regulatory roles that SIRT1 plays in modulating both anabolic and catabolic pathways, allow us to propose the hypothesis that SIRT1 may actually play a crucial causal role in overload-induced hypertrophy of skeletal muscle. This hypothesis will now require rigorous direct and functional testing. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  15. Curcumin Inhibits Chondrocyte Hypertrophy of Mesenchymal Stem Cells through IHH and Notch Signaling Pathways.

    Science.gov (United States)

    Cao, Zhen; Dou, Ce; Dong, Shiwu

    2017-01-01

    Using tissue engineering technique to repair cartilage damage caused by osteoarthritis is a promising strategy. However, the regenerated tissue usually is fibrous cartilage, which has poor mechanical characteristics compared to hyaline cartilage. Chondrocyte hypertrophy plays an important role in this process. Thus, it is very important to find out a suitable way to maintain the phenotype of chondrocytes and inhibit chondrocyte hypertrophy. Curcumin deriving from turmeric was reported with anti-inflammatory and anti-tumor pharmacological effects. However, the role of curcumin in metabolism of chondrocytes, especially in the chondrocyte hypertrophy remains unclear. Mesenchymal stem cells (MSCs) are widely used in cartilage tissue engineering as seed cells. So we investigated the effect of curcumin on chondrogenesis and chondrocyte hypertrophy in MSCs through examination of cell viability, glycosaminoglycan synthesis and specific gene expression. We found curcumin had no effect on expression of chondrogenic markers including Sox9 and Col2a1 while hypertrophic markers including Runx2 and Col10a1 were down-regulated. Further exploration showed that curcumin inhibited chondrocyte hypertrophy through Indian hedgehog homolog (IHH) and Notch signalings. Our results indicated curcumin was a potential agent in modulating cartilage homeostasis and maintaining chondrocyte phenotype.

  16. Demeclocycline Attenuates Hyponatremia by Reducing Aquaporin-2 Expression in the Renal Inner Medulla

    DEFF Research Database (Denmark)

    Kortenoeven, Marleen L. A.; Sinke, Anne P.; Hadrup, Niels

    2013-01-01

    Binding of vasopressin to its type-2 receptor in renal collecting ducts induces cAMP signaling, transcription and translocation of aquaporin-2 (AQP2) water channels to the plasma membrane and water reabsorption from the pro-urine. Demeclocycline is currently used to treat hyponatremia in patients...

  17. Allopurinol attenuates acute kidney injury following Bothrops jararaca envenomation.

    Directory of Open Access Journals (Sweden)

    Pedro Henrique França Gois

    2017-11-01

    Full Text Available Snakebites have been recognized as a neglected public health problem in several tropical and subtropical countries. Bothrops snakebites frequently complicate with acute kidney injury (AKI with relevant morbidity and mortality. To date, the only treatment available for Bothrops envenomation is the intravenous administration of antivenom despite its several limitations. Therefore, the study of novel therapies in Bothrops envenomation is compelling. The aim of this study was to evaluate the protective effect of Allopurinol (Allo in an experimental model of Bothrops jararaca venom (BJ-associated AKI. Five groups of Wistar rats were studied: Sham, Allo, BJ, BJ+Allo, BJ+ipAllo. BJ (0.25 mg/kg was intravenously injected during 40'. Saline at same dose and infusion rate was administered to Sham and Allo groups. Allo and BJ+Allo groups received Allo (300 mg/L in the drinking water 7 days prior to Saline or BJ infusion respectively. BJ+ipAllo rats received intraperitoneal Allo (25 mg/Kg 40' after BJ infusion. BJ rats showed markedly reduced glomerular filtration rate (GFR, inulin clearance associated with intense renal vasoconstriction, hemolysis, hemoglobinuria, reduced glutathione and increased systemic and renal markers of nitro-oxidative stress (Nitrotyrosine. Allo ameliorated GFR, renal blood flow (RBF, renal vascular resistance and arterial lactate levels. In addition, Allo was associated with increased serum glutathione as well as reduced levels of plasma and renal Nitrotyrosine. Our data show that Allo attenuated BJ-associated AKI, reduced oxidative stress, improved renal hemodynamics and organ perfusion. It might represent a novel adjuvant approach for Bothrops envenomation, a new use for an old and widely available drug.

  18. Allopurinol attenuates acute kidney injury following Bothrops jararaca envenomation

    Science.gov (United States)

    Martines, Monique Silva; Ferreira, Daniela; Volpini, Rildo; Canale, Daniele; Malaque, Ceila; Crajoinas, Renato; Girardi, Adriana Castello Costa; Massola Shimizu, Maria Heloisa; Seguro, Antonio Carlos

    2017-01-01

    Snakebites have been recognized as a neglected public health problem in several tropical and subtropical countries. Bothrops snakebites frequently complicate with acute kidney injury (AKI) with relevant morbidity and mortality. To date, the only treatment available for Bothrops envenomation is the intravenous administration of antivenom despite its several limitations. Therefore, the study of novel therapies in Bothrops envenomation is compelling. The aim of this study was to evaluate the protective effect of Allopurinol (Allo) in an experimental model of Bothrops jararaca venom (BJ)-associated AKI. Five groups of Wistar rats were studied: Sham, Allo, BJ, BJ+Allo, BJ+ipAllo. BJ (0.25 mg/kg) was intravenously injected during 40’. Saline at same dose and infusion rate was administered to Sham and Allo groups. Allo and BJ+Allo groups received Allo (300 mg/L) in the drinking water 7 days prior to Saline or BJ infusion respectively. BJ+ipAllo rats received intraperitoneal Allo (25 mg/Kg) 40’ after BJ infusion. BJ rats showed markedly reduced glomerular filtration rate (GFR, inulin clearance) associated with intense renal vasoconstriction, hemolysis, hemoglobinuria, reduced glutathione and increased systemic and renal markers of nitro-oxidative stress (Nitrotyrosine). Allo ameliorated GFR, renal blood flow (RBF), renal vascular resistance and arterial lactate levels. In addition, Allo was associated with increased serum glutathione as well as reduced levels of plasma and renal Nitrotyrosine. Our data show that Allo attenuated BJ-associated AKI, reduced oxidative stress, improved renal hemodynamics and organ perfusion. It might represent a novel adjuvant approach for Bothrops envenomation, a new use for an old and widely available drug. PMID:29155815

  19. Epidermal growth factor receptor inhibitor PKI-166 governs cardiovascular protection without beneficial effects on the kidney in hypertensive 5/6 nephrectomized rats.

    Science.gov (United States)

    Ulu, Nadir; Mulder, Gemma M; Vavrinec, Peter; Landheer, Sjoerd W; Duman-Dalkilic, Basak; Gurdal, Hakan; Goris, Maaike; Duin, Marry; van Dokkum, Richard P E; Buikema, Hendrik; van Goor, Harry; Henning, Robert H

    2013-06-01

    Transactivation of epidermal growth factor receptor (EGFR) signaling by G protein-coupled receptors has been implicated in several cardiovascular (CV) conditions, including hypertension, heart failure, and cardiac and vascular hypertrophy. However, the therapeutic potential of EGFR inhibition in these conditions is currently unknown. The main objective of the present study was to investigate cardiac, vascular, and renal effects of EGFR inhibition by 4-[4-[[(1R)-1-phenylethyl]amino]-7H-pyrrolo[2,3-d]pyrimidin-6-yl]phenol (PKI-166) in the hypertensive chronic kidney disease model. Rats underwent 5/6 nephrectomy (5/6Nx) and were treated with PKI-166, lisinopril or vehicle from week 6 after disease induction until week 12. Sham animals received either PKI-166 or vehicle. Treatment with PKI-166 did not affect the development of the characteristic renal features in 5/6Nx, including proteinuria, diminished creatinine clearance, and increased glomerulosclerosis, whereas these were attenuated by lisinopril. Despite absence of effects on progressive renal damage, PKI-166 attenuated the progression of hypertension and maintained cardiac function (left ventricle end-diastolic pressure) to a similar extent as lisinopril. Also, PKI-166 attenuated the increase in phosphorylated EGFR in the heart as induced by 5/6Nx. Moreover, PKI-166 and lisinopril restored the impaired contraction of isolated thoracic aortic rings to phenylephrine and angiotensin II and impaired myogenic constriction of small mesenteric arteries in 5/6Nx rats. Blockade of the EGFR displays a CV benefit independent of limiting the progression of renal injury. Our findings extend the evidence on EGFR signaling as a target in CV disorders.

  20. Neonatal irradiation nephropathy in the growing dog. I. Renal morphological and functional adaptations following neonatal, sublethal, whole-body irradiation

    International Nuclear Information System (INIS)

    Wilke, W.L.; Phemister, R.D.; Jaenke, R.S.

    1979-01-01

    Sixty beagles were used to study the effects of exposure to 330 R 60 Co γ radiation (bilateral, whole-body) at 2 days of age on renal functional and morphological development in the growing dog. A significant deficit in grams kidney per kilogram body weight was found in irradiated dogs at 50 days of age (P < 0.05), but not at 125 or 200 days of age. Glomerular filtration rate (GFR) per kilogram body weight and GFR per gram kidney were not significantly different between irradiated and nonirradiated dogs at 50, 125, or 200 days of age, but blood urea nitrogen (BUN) was significantly elevated in irradiated dogs throughout this period (P < 0.05). The fractional distribution of intracortical renal blood flow, as determined by radiolabeled microspheres, to the outermost cortex was found to be reduced in irradiated animals at all ages evaluated (P < 0.05). The fractional blood flow to the outermost renal cortex was negatively correlated with BUN in both irradiated (P < 0.05) and nonirradiated (P < 0.05) animals. Based on prior demonstrations of reductions in nephron numbers following similar irradiation, these data indicate increases in mean single nephron GFR and nephronal hypertrophy in the kidneys of the neonatally irradiated dog. The renal functional and morphological adaptations are sufficient to maintain adequate renal function in growing, neonatally irradiated dogs. The BUN elevations in irradiated dogs are believed to be related to changes in intracortical renal blood flow, rather than indicating renal insufficiency. The possible importance of the functional and morphological adaptations to the subsequent development of chronic renal failure in neonatally irradiated animals is discussed

  1. Preservation of renal blood flow by the antioxidant EUK-134 in LPS-treated pigs.

    Science.gov (United States)

    Magder, Sheldon; Parthenis, Dimitrios G; Ghouleh, Imad Al

    2015-03-25

    Sepsis is associated with an increase in reactive oxygen species (ROS), however, the precise role of ROS in the septic process remains unknown. We hypothesized that treatment with EUK-134 (manganese-3-methoxy N,N'-bis(salicyclidene)ethylene-diamine chloride), a compound with superoxide dismutase and catalase activity, attenuates the vascular manifestations of sepsis in vivo. Pigs were instrumented to measure cardiac output and blood flow in renal, superior mesenteric and femoral arteries, and portal vein. Animals were treated with saline (control), lipopolysaccharide (LPS; 10 µg·kg-1·h-1), EUK-134, or EUK-134 plus LPS. Results show that an LPS-induced increase in pulmonary artery pressure (PAP) as well as a trend towards lower blood pressure (BP) were both attenuated by EUK-134. Renal blood flow decreased with LPS whereas superior mesenteric, portal and femoral flows did not change. Importantly, EUK-134 decreased the LPS-induced fall in renal blood flow and this was associated with a corresponding decrease in LPS-induced protein nitrotyrosinylation in the kidney. PO2, pH, base excess and systemic vascular resistance fell with LPS and were unaltered by EUK-134. EUK-134 also had no effect on LPS-associated increase in CO. Interestingly, EUK-134 alone resulted in higher CO, BP, PAP, mean circulatory filling pressure, and portal flow than controls. Taken together, these data support a protective role for EUK-134 in the renal circulation in sepsis.

  2. Hypertrophy of cultured bovine aortic endothelium following irradiation

    International Nuclear Information System (INIS)

    Rosen, E.M.; Vinter, D.W.; Goldberg, I.D.

    1989-01-01

    The vascular endothelium is a vital multifunctional tissue which covers the entire luminal surface of the circulatory system. Loss of continuity of the endothelial lining normally results in cell migration and proliferation to make up for cell loss and to ensure that exposure of the thrombogenic subendothelium to platelets and clotting factors is minimized. We showed that ionizing radiation (400-3000 cGy) causes dose-dependent cell loss from confluent monolayer cultures of bovine aortic endothelium, which cannot immediately be compensated by cell proliferation. Within 24 h, the remaining attached cells undergo substantial somatic hypertrophy (evidenced by increased protein content, cell volume, and attachment area) but remain diploid. If cell loss is not excessive, monolayer continuity is restored within several days. Although reduced protein degradation may contribute, most of the protein accumulation is due to synthesis of new protein. Unlike endothelium, irradiation of smooth muscle cultures causes neither cell loss nor increased protein synthesis. Hypertrophy of irradiated endothelial cells appears to be a consequence of a proliferative stimulus (cell loss) in a population of cells which is unable to divide. It can be modulated by replating irradiated cells at different densities. We suggest that endothelial hypertrophy is an early vascular homeostatic response before clonal proliferation of surviving cells or repopulation by cells from outside of the irradiated field can compensate for cell loss

  3. Hypertrophy of proximal tubular epithelial cells induced by low pH in vitro is independent of ammoniagenesis.

    Science.gov (United States)

    Bevington, A; Millwater, C J; Walls, J

    1994-01-01

    Metabolic acidosis can lead to tubular hypertrophy in vivo. This is thought to arise from stimulation of renal production of ammonia, a known hypertrophic agent. To examine this effect in vitro, confluent opossum (OK) proximal tubular epithelial cells were cultured at acidic pH (7.21 +/- 0.02) or at control pH (7.37 +/- 0.01) for 4 days. Protein content was 9% higher at acidic pH whereas DNA content was unaffected. The resulting increase in mean cell size (protein/DNA ratio) was 10% but correlated inversely with the mass of cells in control wells, varying from +48% at low cell mass to -14% at high cell mass. In contrast, low pH decreased 3H-thymidine incorporation by 9%. However, ammonia production was unaffected. These changes in protein/DNA ratio and 3H-thymidine incorporation cannot therefore be attributed to acid-induced ammoniagenesis and imply that low pH exerts a more direct effect on tubular cell growth than previously envisaged.

  4. Co-inhibition of Angiotensin II Receptor and Endothelin-1 Attenuates Renal Injury in Unilateral Ureteral Obstructed Mice

    Directory of Open Access Journals (Sweden)

    Yoon-Kyung Chang

    2016-07-01

    Full Text Available Background/Aims: Both endothelin-1 (ET-1 and the renin-angiotensin system (RAS may play important roles in renal fibrosis in the obstructed kidney. However, there have been few clear demonstrations of a relationship between their activation and additive or synergistic roles in renal fibrosis. We investigated the protective roles and relationship between renal RAS and ET-1 in unilateral ureteral obstruction (UUO mice. Methods: 8-week-old male C57BL/6 mice were divided into seven groups: sham, bosentan+sham, valsartan+sham, vehicle+UUO, bosentan+UUO, valsartan+UUO, and valsartan+bosentan+UUO. Valsartan and bosentan were administered orally using an NG tube (valsartan 10 mg/kg/day, bosentan 100 mg/kg/day for 8 days, after which the molecular and structural kidney parameters were evaluated. Bosentan treatment elevated plasma renin activity, renal renin, and AT1R expression in UUO mice. Results: Although valsartan decreased plasma ET-1 in these mice, it did not affect ET(A or ET(B in their kidneys. Co-treatment with valsartan and bosentan decreased ET-1 in these mice compared to the single treatments. Bosentan, but not valsartan, elevated eNOS expression in their kidneys. Co-treatment with valsartan and bosentan reduced TGF-β, α-SMA, and collagen IV expression, and the Masson's trichrome stained area in their kidneys. Conclusions: Bosentan and valsartan acted complementarily, and co-treatment with both drugs had an additive protective effect against renal fibrosis.

  5. Myocardial hypertrophy and intracardial hemodynamics in children with bicuspid aortic valve

    Directory of Open Access Journals (Sweden)

    А. V. Kamenshchyk

    2017-08-01

    Full Text Available Bicuspid aortic valve is one of the most common congenital heart diseases with low manifestation in childhood and severe consequences in adults that determines the importance in early diagnostics of myocardial changes in this anomaly. According to the literature the polymorphisms in the genes of NFATC family could result both in impaired embriogenetic valves formation and development of postnatal myocardial hypertrophy. The aim of the study was to detect the early changes of intracardial hemodynamics at aortic valve in children with bicuspid aortic valve (BAV and establish their interrelations to the signs of myocardial hypertrophy in these children. Materials and methods: Dopplerograhphic study of basic intracardiac hemodynamics parameters in 38 children with BAV and in 28 children of control group was conducted. The results were processed statistically by Student’s t-test, correlation analysis and multiple regression. Results: In the result of study the moderate concentric left ventricle myocardial hypertrophy development was detected in 62 % of children with BAV which is accompanying to significant increasing of blood flow velocity and pressure gradient at aortic valve. There were not established significant correlations between the parameters of hemodynamics at valve and left ventricle’s posterior wall depth and septum depth whereas the highest inputs of these values were obtained in the left ventricle systolic dimension and volume and less in the hypertrophic signs. Conclusions: In children with BAV the moderate concentric myocardial hypertrophy with significant changes of intracardial hemodynamics at aortic valve takes place with the highest inputs in left ventricle volumetric values The obtained data serves as a substantiation for the treatment and prevention of it further development. bicuspid aortic valve; children; heart hypertrophy; dopplerechocardiography; hemodynamics; regression analysis

  6. Apelin and APJ orchestrate complex tissue-specific control of cardiomyocyte hypertrophy and contractility in the hypertrophy-heart failure transition.

    Science.gov (United States)

    Parikh, Victoria Nicole; Liu, Jing; Shang, Ching; Woods, Christopher; Chang, Alex Chia Yu; Zhao, Mingming; Charo, David N; Grunwald, Zachary; Huang, Yong; Seo, Kinya; Tsao, Philip S; Bernstein, Daniel; Ruiz-Lozano, Pilar; Quertermous, Thomas; Ashley, Euan A

    2018-05-18

    The G protein coupled receptor APJ is a promising therapeutic target for heart failure. Constitutive deletion of APJ in the mouse is protective against the hypertrophy-heart failure transition via elimination of ligand-independent, β-arrestin dependent stretch transduction. However, the cellular origin of this stretch transduction and the details of its interaction with apelin signaling remain unknown. We generated mice with conditional elimination of APJ in the endothelium (APJ endo-/- ) and myocardium (APJ myo-/- ). No baseline difference was observed in LV function in APJ endo-/- , APJ myo-/- or controls (APJ endo+/+ , APJ myo+/+ ). After exposure to transaortic constriction (TAC), APJ endo-/- animals developed left ventricular failure while APJ myo-/- were protected. At the cellular level, carbon fiber stretch of freshly isolated single cardiomyocytes demonstrated decreased contractile response to stretch in APJ -/- cardiomyocytes compared to APJ +/+ cardiomyocytes. Calcium transient did not change with stretch in either APJ -/- or APJ +/+ cardiomyocytes. Application of apelin to APJ +/+ cardiomyocytes resulted in decreased calcium transient. Further, hearts of mice treated with apelin exhibited decreased phosphorylation at Troponin I (cTnI) N-terminal residues (Ser 22,23), consistent with increased calcium sensitivity. These data establish that APJ stretch transduction is mediated specifically by myocardial APJ, that APJ is necessary for stretch-induced increases in contractility, and that apelin opposes APJ's stretch-mediated hypertrophy signaling by lowering calcium transient while maintaining contractility through myofilament calcium sensitization. These findings underscore apelin's unique potential as a therapeutic agent that can simultaneously support cardiac function and protect against the hypertrophy-heart failure transition.

  7. Association of heart failure hospitalizations with combined electrocardiography and echocardiography criteria for left ventricular hypertrophy

    DEFF Research Database (Denmark)

    Gerdts, Eva; Okin, Peter M; Boman, Kurt

    2012-01-01

    The value of performing echocardiography in hypertensive patients with electrocardiographic left ventricular hypertrophy (LVH) is uncertain.......The value of performing echocardiography in hypertensive patients with electrocardiographic left ventricular hypertrophy (LVH) is uncertain....

  8. Bilateral uric acid nephrolithiasis and ureteral hypertrophy in a free-ranging river otter (Lontra canadensis)

    Science.gov (United States)

    Grove, Robert A.; Bildfell, Rob; Henny, Charles J.; Buhler, D.R.

    2003-01-01

    We report the first case of uric acid nephrolithiasis in a free-ranging river otter (Lontra canadensis). A 7 yr old male river otter collected from the Skagit River of western Washington (USA) had bilateral nephrolithiasis and severely enlarged ureters (one of 305 examined [0.33%]). The uroliths were 97% uric acid and 3% protein. Microscopic changes in the kidney were confined to expansion of renal calyces, minor loss of medullary tissue, and multifocal atrophy of the cortical tubules. No inflammation was observed in either kidney or the ureters. The ureters were enlarged due to marked hypertrophy of smooth muscle plus dilation of the lumen. Fusion of the major calyces into a single ureteral lumen was several cm distal to that of two adult male otters used as histopathologic control specimens. This case report is part of a large contaminant study of river otters collected from Oregon and Washington. It is important to understand diseases and lesions of the otter as part of our overall evaluation of this population.

  9. Effect of prophylactic digitalization on the development of myocardial hypertrophy.

    Science.gov (United States)

    Cutilletta, A F; Rudnik, M; Arcilla, R A; Straube, R

    1977-11-01

    The effect of prophylactic digitalization on the development of left ventricular hypertrophy was studied in adult rats. Digitoxin, 0.1 mg/100 g body wt or solvent was given daily for 1 wk prior to either aortic constriction or sham operation and was continued until the animals were killed, either 1 or 4 wk after surgery. A hemodynamic study was done in those animals killed 1 wk after surgery; hearts of all animals were examined for evidence of myocardial hypertrophy. Constriction of the ascending aorta had no significant effect on cardiac output but did reduce peak flow velocity and flow acceleration. An increase in left ventricular mass, RNA, and hydroxyproline was found in the animals with aortic constriction. Digitoxin treatment did not alter peak flow velocity or flow acceleration, but did significantly increase isovolumic (dP/dt)P-1. Digitoxin had no effect on body weight, heart weight, RNA, or hydroxyproline in either the sham-operated animals or in the animals with aortic constriction. Therefore, despite plasma digitoxin levels sufficient to affect myocardial contractility, left ventricular hypertrophy still developed after aortic constriction.

  10. Malondialdehyde in benign prostate hypertrophy: a useful marker?

    Directory of Open Access Journals (Sweden)

    Rosaria Alba Merendino

    2003-01-01

    Full Text Available Benign prostate hypertrophy (BPH is the most common benign tumor in men due to obstruction of the urethra and, finally, uremia. Malondialdehyde (MDA is a product derived from peroxidation of polyunsaturated fatty acids and related esters. Evaluation of MDA in serum represents a non-invasive biomarker of oxidative stress. Prostate-specific antigen (PSA is a sensitive marker for prostatic hypertrophy and cancer. We analyzed MDA serum levels to evaluate the oxidative stress in BPH. To this end, 22 BPH patients and 22 healthy donors were enrolled. Data show an increase of MDA level in BPH patients and a positive correlation between PSA and MDA levels. In conclusion, we describe a previously unknown relationship between PSA and MDA as an index of inflammation and oxidative stress in BPH.

  11. Cytoskeletal role in the transition from compensated to decompensated hypertrophy during adult canine left ventricular pressure overloading

    Science.gov (United States)

    Tagawa, H.; Koide, M.; Sato, H.; Zile, M. R.; Carabello, B. A.; Cooper, G. 4th

    1998-01-01

    Increased microtubule density causes cardiocyte contractile dysfunction in right ventricular (RV) pressure-overload hypertrophy, and these linked phenotypic and contractile abnormalities persist and progress during the transition to failure. Although more severe in cells from failing than hypertrophied RVs, the mechanical defects are normalized in each case by microtubule depolymerization. To define the role of increased microtubule density in left ventricular (LV) pressure-overload hypertrophy and failure, in a given LV we examined ventricular mechanics, sarcomere mechanics, and free tubulin and microtubule levels in control dogs and in dogs with aortic stenosis both with LV hypertrophy alone and with initially compensated hypertrophy that had progressed to LV muscle failure. In comparing initial values with those at study 8 weeks later, dogs with hypertrophy alone had a very substantial increase in LV mass but preservation of a normal ejection fraction and mean systolic wall stress. Dogs with hypertrophy and associated failure had a substantial but lesser increase in LV mass and a reduction in ejection fraction, as well as a marked increase in mean systolic wall stress. Cardiocyte contractile function was equivalent, and unaffected by microtubule depolymerization, in cells from control LVs and those with compensated hypertrophy. In contrast, cardiocyte contractile function in cells from failing LVs was quite depressed but was normalized by microtubule depolymerization. Microtubules were increased only in failing LVs. These contractile and cytoskeletal changes, when assayed longitudinally in a given dog by biopsy, appeared in failing ventricles only when wall stress began to increase and function began to decrease. Thus, the microtubule-based cardiocyte contractile dysfunction characteristic of pressure-hypertrophied myocardium, originally described in the RV, obtains equally in the LV but is shown here to have a specific association with increased wall stress.

  12. Cyclin D2 is a critical mediator of exercise-induced cardiac hypertrophy.

    Science.gov (United States)

    Luckey, Stephen W; Haines, Chris D; Konhilas, John P; Luczak, Elizabeth D; Messmer-Kratzsch, Antke; Leinwand, Leslie A

    2017-12-01

    A number of signaling pathways underlying pathological cardiac hypertrophy have been identified. However, few studies have probed the functional significance of these signaling pathways in the context of exercise or physiological pathways. Exercise studies were performed on females from six different genetic mouse models that have been shown to exhibit alterations in pathological cardiac adaptation and hypertrophy. These include mice expressing constitutively active glycogen synthase kinase-3β (GSK-3βS9A), an inhibitor of CaMK II (AC3-I), both GSK-3βS9A and AC3-I (GSK-3βS9A/AC3-I), constitutively active Akt (myrAkt), mice deficient in MAPK/ERK kinase kinase-1 (MEKK1 -/- ), and mice deficient in cyclin D2 (cyclin D2 -/- ). Voluntary wheel running performance was similar to NTG littermates for five of the mouse lines. Exercise induced significant cardiac growth in all mouse models except the cyclin D2 -/- mice. Cardiac function was not impacted in the cyclin D2 -/- mice and studies using a phospho-antibody array identified six proteins with increased phosphorylation (greater than 150%) and nine proteins with decreased phosphorylation (greater than 33% decrease) in the hearts of exercised cyclin D2 -/- mice compared to exercised NTG littermate controls. Our results demonstrate that unlike the other hypertrophic signaling molecules tested here, cyclin D2 is an important regulator of both pathologic and physiological hypertrophy. Impact statement This research is relevant as the hypertrophic signaling pathways tested here have only been characterized for their role in pathological hypertrophy, and not in the context of exercise or physiological hypertrophy. By using the same transgenic mouse lines utilized in previous studies, our findings provide a novel and important understanding for the role of these signaling pathways in physiological hypertrophy. We found that alterations in the signaling pathways tested here had no impact on exercise performance. Exercise

  13. Regression of electrocardiographic left ventricular hypertrophy during antihypertensive therapy and reduction in sudden cardiac death: the LIFE Study

    DEFF Research Database (Denmark)

    Wachtell, Kristian; Okin, Peter M; Olsen, Michael H

    2007-01-01

    BACKGROUND: Sudden cardiac death (SCD) occurs more often in patients with ECG left ventricular (LV) hypertrophy. However, whether LV hypertrophy regression is associated with a reduced risk of SCD remains unclear. METHODS AND RESULTS: The Losartan Intervention for End Point Reduction in Hypertens......BACKGROUND: Sudden cardiac death (SCD) occurs more often in patients with ECG left ventricular (LV) hypertrophy. However, whether LV hypertrophy regression is associated with a reduced risk of SCD remains unclear. METHODS AND RESULTS: The Losartan Intervention for End Point Reduction...... risk of SCD independently of treatment modality, blood pressure reduction, prevalent coronary heart disease, and other cardiovascular risk factors in hypertensive patients with LV hypertrophy. Udgivelsesdato: 2007-Aug-14...

  14. Investigating β-adrenergic-induced cardiac hypertrophy through computational approach: classical and non-classical pathways.

    Science.gov (United States)

    Khalilimeybodi, Ali; Daneshmehr, Alireza; Sharif-Kashani, Babak

    2018-07-01

    The chronic stimulation of β-adrenergic receptors plays a crucial role in cardiac hypertrophy and its progression to heart failure. In β-adrenergic signaling, in addition to the well-established classical pathway, Gs/AC/cAMP/PKA, activation of non-classical pathways such as Gi/PI3K/Akt/GSK3β and Gi/Ras/Raf/MEK/ERK contribute in cardiac hypertrophy. The signaling network of β-adrenergic-induced hypertrophy is very complex and not fully understood. So, we use a computational approach to investigate the dynamic response and contribution of β-adrenergic mediators in cardiac hypertrophy. The proposed computational model provides insights into the effects of β-adrenergic classical and non-classical pathways on the activity of hypertrophic transcription factors CREB and GATA4. The results illustrate that the model captures the dynamics of the main signaling mediators and reproduces the experimental observations well. The results also show that despite the low portion of β2 receptors out of total cardiac β-adrenergic receptors, their contribution in the activation of hypertrophic mediators and regulation of β-adrenergic-induced hypertrophy is noticeable and variations in β1/β2 receptors ratio greatly affect the ISO-induced hypertrophic response. The model results illustrate that GSK3β deactivation after β-adrenergic receptor stimulation has a major influence on CREB and GATA4 activation and consequent cardiac hypertrophy. Also, it is found through sensitivity analysis that PKB (Akt) activation has both pro-hypertrophic and anti-hypertrophic effects in β-adrenergic signaling.

  15. Benign prostatic hyperplasia presenting with renal failure--what is the role for transurethral resection of the prostate (TURP)?

    LENUS (Irish Health Repository)

    Thomas, A Z

    2009-02-01

    The aim of the study was to determine the role of transurethralresection of prostate (TURP) in normalising renal function in men presenting with obstructive renal failure secondary to benign prostatic hyperplasia. We reviewed the cases of 14 men who presented in the last 5 years with renal impairment associated with symptoms of bladder outflow obstruction and radiological evidence of obstructive uropathy. The mean serum creatinine at presentation was 632 ng\\/mL (range 1299 - 225). The mean age at presentation was 68.2 years (range 50 - 83 years). Duration of symptoms prior to presentation ranged between 1 - 118 months (mean 21.5 months). Following catheter insertion, all patients underwent TURP. Six of the 14 patients required dialysis prior to surgery. Histology of the resected prostate confirmed benign prostatic hypertrophy and\\/or hyperplasia in all cases. Patients with carcinoma of the prostate were excluded from the study. Following TURP, 2 of the 14 men (14%) failed to void spontaneously following removal of catheter - one patient performs clean self intermittent catheterization (CSIC), the other man has an in-dwelling catheter in situ. One patient died 7 months following TURP due to a myocardial infarction. However, 8 patients, (57%) remained dialysis dependent following TURP. Two of these patients have since undergone successful renal transplantation. Of the remaining 6 patients, only 3 have normal renal function with the other 3 experiencing moderately elevated serum creatinine (range 236 - 344 ng\\/mL). In patients presenting with renal failure due to bladder outflow obstruction, TURP restores normal voiding pattern in many cases. However renal failure due to bladder outflow obstruction tends to be more refractory and only 3 of 14 patients experienced return to normal renal function post treatment.

  16. Left ventricular hypertrophy: virtuous intentions, malign consequences.

    Science.gov (United States)

    Pokharel, Saraswati; Sharma, Umesh C; Pinto, Yigal M

    2003-06-01

    Left ventricular hypertrophy (LVH) is currently the focus of intense cardiovascular research, with the resultant rapid evolution of novel concepts relating to its exceedingly complex pathophysiology. In addition to the alterations in signal transduction and disturbances in Ca(2+) homeostasis, there are structural changes in myofilaments, disorganization of the cytoskeletal framework and increased collagen synthesis. LVH is associated with progressive left ventricular remodeling that culminates to heart failure. The modern treatment of left ventricular hypertrophy is now largely based on the hypothesis that neuroendocrine activation is important in the progression of the disease and inhibition of neurohormones is likely to have long-term benefit with regard to morbidity and mortality. Drugs specifically designed to unload the left ventricle, such as diuretics and vasodilators, appears to be less effective in reducing LV mass and improving prognosis. Thus, the evolution of treatment for LVH itself has provided much enlightenment for our understanding of the fundamental biology of the disorder.

  17. Long-term treatment with EGFR inhibitor erlotinib attenuates renal inflammatory cytokines but not nephropathy in Alport syndrome mouse model.

    Science.gov (United States)

    Omachi, Kohei; Miyakita, Rui; Fukuda, Ryosuke; Kai, Yukari; Suico, Mary Ann; Yokota, Tsubasa; Kamura, Misato; Shuto, Tsuyoshi; Kai, Hirofumi

    2017-12-01

    Alport syndrome (AS) is a hereditary kidney disease caused by mutation of type IV collagen. Loss of collagen network induces collapse of glomerular basement membrane (GBM) structure. The previous studies showed that upregulation of some tyrosine kinase receptors signaling accompanied GBM disorder in AS mouse model. EGFR signaling is one of the well-known receptor kinase signaling that is involved in glomerular diseases. However, whether EGFR signaling is relevant to AS progression is still uninvestigated. Here, we determined the involvement of EGFR in AS and the effect of suppressing EGFR signaling by erlotinib treatment on AS progression. Phosphorylated EGFR expression was investigated by Western blotting analysis and immunostaining of kidney tissues of Col4a5 mutant mice (a mouse model of X-linked AS). To check the effect of blocking EGFR signaling in AS, we administered erlotinib to AS mice once a day (10 mg/kg/day) orally for 18 weeks. Renal function parameters (proteinuria, serum creatinine, and BUN) and renal histology were assessed, and the gene expressions of inflammatory cytokines were analyzed in renal tissues. Phosphorylated EGFR expression was upregulated in AS mice kidney tissues. Erlotinib slightly reduced the urinary protein and suppressed the expression of renal injury markers (Lcn2, Lysozyme) and inflammatory cytokines (Il-6, Il-1β and KC). Erlotinib did not improve renal pathology, such as glomerular sclerosis and fibrosis. These findings suggest that EGFR signaling is upregulated in kidney, but although inhibiting this signaling pathway suppressed renal inflammatory cytokines, it did not ameliorate renal dysfunction in AS mouse model.

  18. Local renin-angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy.

    Science.gov (United States)

    Kobori, H; Ichihara, A; Miyashita, Y; Hayashi, M; Saruta, T

    1999-01-01

    We have reported previously that thyroid hormone activates the circulating and tissue renin-angiotensin systems without involving the sympathetic nervous system, which contributes to cardiac hypertrophy in hyperthyroidism. This study examined whether the circulating or tissue renin-angiotensin system plays the principal role in hyperthyroidism-induced cardiac hypertrophy. The circulating renin-angiotensin system in Sprague-Dawley rats was fixed by chronic angiotensin II infusion (40 ng/min, 28 days) via mini-osmotic pumps. Daily i.p. injection of thyroxine (0.1 mg/kg per day, 28 days) was used to mimic hyperthyroidism. Serum free tri-iodothyronine, plasma renin activity, plasma angiotensin II, cardiac renin and cardiac angiotensin II were measured with RIAs. The cardiac expression of renin mRNA was evaluated by semiquantitative reverse transcriptase-polymerase chain reaction. Plasma renin activity and plasma angiotensin II were kept constant in the angiotensin II and angiotensin II+thyroxine groups (0.12+/-0.03 and 0.15+/-0.03 microgram/h per liter, 126+/-5 and 130+/-5 ng/l respectively) (means+/-s.e.m.). Despite stabilization of the circulating renin-angiotensin system, thyroid hormone induced cardiac hypertrophy (5.0+/-0.5 vs 3.5+/-0.1 mg/g) in conjunction with the increases in cardiac expression of renin mRNA, cardiac renin and cardiac angiotensin II (74+/-2 vs 48+/-2%, 6.5+/-0.8 vs 3.8+/-0.4 ng/h per g, 231+/-30 vs 149+/-2 pg/g respectively). These results indicate that the local renin-angiotensin system plays the primary role in the development of hyperthyroidism-induced cardiac hypertrophy.

  19. Akt1/PKB upregulation leads to vascular smooth muscle cell hypertrophy and polyploidization

    Science.gov (United States)

    Hixon, Mary L.; Muro-Cacho, Carlos; Wagner, Mark W.; Obejero-Paz, Carlos; Millie, Elise; Fujio, Yasushi; Kureishi, Yasuko; Hassold, Terry; Walsh, Kenneth; Gualberto, Antonio

    2000-01-01

    Vascular smooth muscle cells (VSMCs) at capacitance arteries of hypertensive individuals and animals undergo marked age- and blood pressure–dependent polyploidization and hypertrophy. We show here that VSMCs at capacitance arteries of rat models of hypertension display high levels of Akt1/PKB protein and activity. Gene transfer of Akt1 to VSMCs isolated from a normotensive rat strain was sufficient to abrogate the activity of the mitotic spindle cell–cycle checkpoint, promoting polyploidization and hypertrophy. Furthermore, the hypertrophic agent angiotensin II induced VSMC polyploidization in an Akt1-dependent manner. These results demonstrate that Akt1 regulates ploidy levels in VSMCs and contributes to vascular smooth muscle polyploidization and hypertrophy during hypertension. PMID:11032861

  20. Validation of a simple isotopic technique for the measurement of global and separated renal function

    International Nuclear Information System (INIS)

    Chachati, A.; Meyers, A.; Rigo, P.; Godon, J.P.

    1986-01-01

    Schlegel and Gates described an isotopic method for the measurement of global and separated glomerular filtration rate (GFR) and effective renal plasma flow (ERPF) based on the determination by scintillation camera of the fraction of the injected dose (99mTc-DTPA-[ 131 I]hippuran) present in the kidneys 1-3 min after its administration. This method requires counting of the injected dose and attenuation correction, but no blood or urine sampling. We validated this technique by the simultaneous infusion of inulin and para-amino hippuric acid (PAH) in patients with various levels of renal function (anuric to normal). To better define individual renal function we studied 9 kidneys in patients either nephrectomized or with a nephrostomy enabling separated function measurement. A good correlation between inulin, PAH clearance, and isotopic GFR-ERPF measurement for both global and separate renal function was observed

  1. The characteristics of myocardial fatty acid metabolism in patients with left ventricular hypertrophy

    International Nuclear Information System (INIS)

    Isobe, Naoki; Toyama, Takuji; Hoshizaki, Hiroshi

    1999-01-01

    We evaluated the characteristics of myocardial fatty acid metabolism in patients with left ventricular hypertrophy (LVH). Myocardial imaging with 123 I-beta-methyl iodophenyl pentadecanoic acid (BMIPP) was performed in 28 patients with hypertrophic cardiomyopathy (HCM), 15 patients with hypertensive heart disease (HHD), 13 patients with aortic stenosis (AS) and 8 normal controls (NC). The patients with HCM consisted of 13 patients of asymmetric septal hypertrophy (ASH), 7 patients of diffuse hypertrophy (Diffuse-HCM) and 8 patients of apical hypertrophy (APH). Planar and SPECT images of BMIPP were acquired 15 minutes and 4 hours after tracer injection. Resting 201 Tl SPECT images and echocardiography were also performed on other days. We calculated heart/mediastinum count ratio and washout rate of BMIPP by using planar image. In patients with LVH, the incidence of reduced BMIPP uptake was more frequent than that of reduced 201 Tl uptake. In delayed images, more than 60% of patients with LVH reduced BMIPP uptake, especially remarkable for patients with ASH and APH. The washout rate of all cardiac hypertrophic disorders was tended to be higher than that of normal subjects. Reduced BMIPP uptake was frequently found in septal portion of anterior and inferior wall in patients with ASH, in inferior wall in patients with Diffuse-HCM and HHD, in apex in patients with APH and AS. These results suggest that BMIPP scintigraphy can differentiate three types of cardiac hypertrophy. (author)

  2. Classification of Hypertrophy of Labia Minora: Consideration of a Multiple Component Approach.

    Science.gov (United States)

    González, Pablo I

    2015-11-01

    Labia minora hypertrophy of unknown and under-reported incidence in the general population is considered a variant of normal anatomy. Its origin is multi-factorial including genetic, hormonal, and infectious factors, and voluntary elongation of the labiae minorae in some cultures. Consults with patients bothered by this condition have been increasing with patients complaining of poor aesthetics and symptoms such as difficulty with vaginal secretions, vulvovaginitis, chronic irritation, and superficial dyspareunia, all of which can have a negative effect on these patients' sexuality and self esteem. Surgical management of labial hypertrophy is an option for women with these physical complaints or aesthetic issues. Labia minora hypertrophy can consist of multiple components, including the clitoral hood, lateral prepuce, frenulum, and the body of the labia minora. To date, there is not a consensus in the literature with respect to the classification and definition of varying grades of hypertrophy, aside from measurement of the length in centimeters. In order to offer patients the most appropriate surgical technique, an objective and understandable classification that can be used as part of the preoperative evaluation is necessary. Such a classification should have the aim of offering patients the best cosmetic and functional results with the fewest complications.

  3. A novel therapy to attenuate acute kidney injury and ischemic allograft damage after allogenic kidney transplantation in mice.

    Directory of Open Access Journals (Sweden)

    Faikah Gueler

    Full Text Available Ischemia followed by reperfusion contributes to the initial damage to allografts after kidney transplantation (ktx. In this study we tested the hypothesis that a tetrapeptide EA-230 (AQGV, might improve survival and attenuate loss of kidney function in a mouse model of renal ischemia/reperfusion injury (IRI and ischemia-induced delayed graft function after allogenic kidney transplantation. IRI was induced in male C57Bl/6N mice by transient bilateral renal pedicle clamping for 35 min. Treatment with EA-230 (20-50mg/kg twice daily i.p. for four consecutive days was initiated 24 hours after IRI when acute kidney injury (AKI was already established. The treatment resulted in markedly improved survival in a dose dependent manner. Acute tubular injury two days after IRI was diminished and tubular epithelial cell proliferation was significantly enhanced by EA-230 treatment. Furthermore, CTGF up-regulation, a marker of post-ischemic fibrosis, at four weeks after IRI was significantly less in EA-230 treated renal tissue. To learn more about these effects, we measured renal blood flow (RBF and glomerular filtration rate (GFR at 28 hours after IRI. EA-230 improved both GFR and RBF significantly. Next, EA-230 treatment was tested in a model of ischemia-induced delayed graft function after allogenic kidney transplantation. The recipients were treated with EA-230 (50 mg/kg twice daily i.p. which improved renal function and allograft survival by attenuating ischemic allograft damage. In conclusion, EA-230 is a novel and promising therapeutic agent for treating acute kidney injury and preventing IRI-induced post-transplant ischemic allograft injury. Its beneficial effect is associated with improved renal perfusion after IRI and enhanced regeneration of tubular epithelial cells.

  4. Lumbar radiculopathy due to unilateral facet hypertrophy following lumbar disc hernia operation: a case report.

    Science.gov (United States)

    Kökeş, Fatih; Günaydin, Ahmet; Aciduman, Ahmet; Kalan, Mehmet; Koçak, Halit

    2007-10-01

    To present a radiculopathy case due to unilateral facet hypertrophy developing three years after a lumbar disc hernia operation. A fifty two-year-old female patient, who had been operated on for a left L5-S1 herniated lumbar disc three years ago, was hospitalized and re-operated with a diagnosis of unilateral facet hypertrophy. She had complaints of left leg pain and walking restrictions for the last six months. Left Straight Leg Raising test was positive at 40 degrees , left ankle dorsiflexion muscle strength was 4/5, left Extensor Hallucis Longus muscle strength was 3/5, and left Achilles reflex was hypoactive. Lumbar spinal Magnetic Resonance Imaging revealed left L5-S1 facet hypertrophy. Lumbar radiculopathy due to lumbar facet hypertrophy is a well-known neurological condition. Radicular pain develops during the late postoperative period following lumbar disc hernia operations that are often related to recurrent disc herniation or to formation of post-operative scar tissue. In addition, it can be speculated that unilateral facet hypertrophy, which may develop after a disc hernia operation, might also be one of the causes of radiculopathy.

  5. Becker muscular dystrophy with widespread muscle hypertrophy and a non-sense mutation of exon 2

    DEFF Research Database (Denmark)

    Witting, Nanna; Duno, M; Vissing, J

    2013-01-01

    Becker muscular dystrophy features progressive proximal weakness, wasting and often focal hypertrophy. We present a patient with pain and cramps from adolescence. Widespread muscle hypertrophy, preserved muscle strength and a 10-20-fold raised CPK were noted. Muscle biopsy was dystrophic......, and Western blot showed a 95% reduction of dystrophin levels. Genetic analyses revealed a non-sense mutation in exon 2 of the dystrophin gene. This mutation is predicted to result in a Duchenne phenotype, but resulted in a mild Becker muscular dystrophy with widespread muscle hypertrophy. We suggest...

  6. Impaired P2X signalling pathways in renal microvascular myocytes in genetic hypertension

    KAUST Repository

    Gordienko, Dmitri V.; Povstyan, Oleksandr V.; Sukhanova, Khrystyna Yu; Raphaë l, Maylis; Harhun, Maksym I.; Dyskina, Yulia; Lehen'Kyi, V'Yacheslav; Jama, Abdirahman Mahmoud; Lu, Zhiliang; Skryma, Roman N.; Prevarskaya, Natalia B.

    2014-01-01

    Aims P2X receptors (P2XRs) mediate sympathetic control and autoregulation of renal circulation triggering preglomerular vasoconstriction, which protects glomeruli from elevated pressures. Although previous studies established a casual link between glomerular susceptibility to hypertensive injury and decreased preglomerular vascular reactivity to P2XR activation, the mechanisms of attenuation of the P2XR signalling in hypertension remained unknown. We aimed to analyse molecular mechanisms of the impairment of P2XR signalling in renal vascular smooth muscle cells (RVSMCs) in genetic hypertension. Methods and results We compared the expression of pertinent genes and P2XR-linked Ca2+ entry and Ca2+ release mechanisms in RVSMCs of spontaneously hypertensive rats (SHRs) and their normotensive controls, Wistar Kyoto (WKY) rats. We found that, in SHR RVSMCs, P2XR-linked Ca2+ entry and Ca2+ release from the sarcoplasmic reticulum (SR) are both significantly reduced. The former is due to down-regulation of the P2X1 subunit. The latter is caused by a decrease of the SR Ca2+ load. The SR Ca2+ load reduction is caused by attenuated Ca2+ uptake via down-regulated sarco-/endoplasmic reticulum Ca2+-ATPase 2b and elevated Ca2+ leak from the SR via ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors. Spontaneous activity of these Ca2+-release channels is augmented due to up-regulation of RyR type 2 and elevated IP3 production by up-regulated phospholipase C-β1. Conclusions Our study unravels the cellular and molecular mechanisms of attenuation of P2XR-mediated preglomerular vasoconstriction that elevates glomerular susceptibility to harmful hypertensive pressures. This provides an important impetus towards understanding of the pathology of hypertensive renal injury.

  7. Impaired P2X signalling pathways in renal microvascular myocytes in genetic hypertension

    KAUST Repository

    Gordienko, Dmitri V.

    2014-12-16

    Aims P2X receptors (P2XRs) mediate sympathetic control and autoregulation of renal circulation triggering preglomerular vasoconstriction, which protects glomeruli from elevated pressures. Although previous studies established a casual link between glomerular susceptibility to hypertensive injury and decreased preglomerular vascular reactivity to P2XR activation, the mechanisms of attenuation of the P2XR signalling in hypertension remained unknown. We aimed to analyse molecular mechanisms of the impairment of P2XR signalling in renal vascular smooth muscle cells (RVSMCs) in genetic hypertension. Methods and results We compared the expression of pertinent genes and P2XR-linked Ca2+ entry and Ca2+ release mechanisms in RVSMCs of spontaneously hypertensive rats (SHRs) and their normotensive controls, Wistar Kyoto (WKY) rats. We found that, in SHR RVSMCs, P2XR-linked Ca2+ entry and Ca2+ release from the sarcoplasmic reticulum (SR) are both significantly reduced. The former is due to down-regulation of the P2X1 subunit. The latter is caused by a decrease of the SR Ca2+ load. The SR Ca2+ load reduction is caused by attenuated Ca2+ uptake via down-regulated sarco-/endoplasmic reticulum Ca2+-ATPase 2b and elevated Ca2+ leak from the SR via ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate receptors. Spontaneous activity of these Ca2+-release channels is augmented due to up-regulation of RyR type 2 and elevated IP3 production by up-regulated phospholipase C-β1. Conclusions Our study unravels the cellular and molecular mechanisms of attenuation of P2XR-mediated preglomerular vasoconstriction that elevates glomerular susceptibility to harmful hypertensive pressures. This provides an important impetus towards understanding of the pathology of hypertensive renal injury.

  8. Airway evaluation by indirect laryngoscopy in patients with lingual tonsillar hypertrophy.

    Science.gov (United States)

    Sánchez-Morillo, Jorge; Gómez-Diago, Lorena; Rodríguez-Gimillo, Pablo; Herrera-Collado, Raúl; Puchol-Castillo, Jorge; Mompó-Romero, Luis

    2013-01-01

    Prevalence of the lingual tonsillar hypertrophy is unknown but it is believed that its presence is associated with the difficult airway. To investigate this, indirect laryngoscopy was performed on patients in the preoperative evaluation and this pathology was diagnosed. The relationship with difficulty of viewing the larynx, intubation and ventilation, under general anaesthesia and using direct laryngoscopy, was then studied. We performed the demographic variable checks and tests for predicting difficult intubation (mouth opening, thyromental distance, cervical flexion-extension, neck thickness and Mallampati test), in the preoperative step on 300 patients who were going to be submitted to general anaesthesia. We then performed indirect laryngoscopy on them using a 70° rigid laryngoscope to ascertain the frequency of appearance of lingual tonsillar hypertrophy. Next, under general anaesthesia, we carried out direct laryngoscopy to verify whether there was difficulty in viewing the larynx and intubation and ventilation. We then investigated the association of demographic predictors of difficult intubation, including indirect laryngoscopy, with the presence of this condition. Prevalence of lingual tonsillar hypertrophy was 2%. No relationship between the appearance of this entity and the difficulty of viewing the larynx, intubation and ventilation was found. Only indirect laryngoscopy was linked to the appearance of this pathology. Lingual tonsillar hypertrophy is a relatively frequent disorder, whose presence is not usually associated with difficult airway. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  9. Inhibition of renal Na+/H+ exchange in cadmium-intoxicated rats

    International Nuclear Information System (INIS)

    Ahn, Do Whan; Chung, Jin Mo; Kim, Jee Yeun; Kim, Kyoung Ryong; Park, Yang Saeng

    2005-01-01

    Chronic exposure to cadmium (Cd) results in bicarbonaturia, leading to metabolic acidosis. To elucidate the mechanism(s) by which renal bicarbonate reabsorption is inhibited, we investigated changes in renal transporters and enzymes associated with bicarbonate reabsorption in Cd-intoxicated rats. Cd intoxication was induced by subcutaneous injections of CdCl 2 (2 mg Cd/kg per day) for 3 weeks. Cd intoxication resulted in a significant reduction in V max of Na + /H + antiport with no changes in K Na in the renal cortical brush-border membrane vesicles (BBMV). Western blotting of BBM proteins and indirect immunohistochemistry in renal tissue sections, using an antibody against Na + /H + exchange-3 (NHE3), showed a diminished expression of NHE3 protein in the BBM. Reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed that NHE3 mRNA expression was reduced in the renal cortex. The activity of carbonic anhydrase IV (CA IV) in BBM was not changed. The protein abundance of Na + -HCO 3 - cotransporter-1 (NBC1) in whole kidney membrane fractions was slightly attenuated, whereas that of the Na + -K + -ATPase α-subunit was markedly elevated in Cd-intoxicated animals. These results indicate that Cd intoxication impairs NHE3 expression in the proximal tubule, thereby reducing the capacity for bicarbonate reabsorption, leading to bicarbonaturia in an intact animal

  10. The Regulatory Role of Signaling Crosstalk in Hypertrophy of MSCs and Human Articular Chondrocytes

    Directory of Open Access Journals (Sweden)

    Leilei Zhong

    2015-08-01

    Full Text Available Hypertrophic differentiation of chondrocytes is a main barrier in application of mesenchymal stem cells (MSCs for cartilage repair. In addition, hypertrophy occurs occasionally in osteoarthritis (OA. Here we provide a comprehensive review on recent literature describing signal pathways in the hypertrophy of MSCs-derived in vitro differentiated chondrocytes and chondrocytes, with an emphasis on the crosstalk between these pathways. Insight into the exact regulation of hypertrophy by the signaling network is necessary for the efficient application of MSCs for articular cartilage repair and for developing novel strategies for curing OA. We focus on articles describing the role of the main signaling pathways in regulating chondrocyte hypertrophy-like changes. Most studies report hypertrophic differentiation in chondrogenesis of MSCs, in both human OA and experimental OA. Chondrocyte hypertrophy is not under the strict control of a single pathway but appears to be regulated by an intricately regulated network of multiple signaling pathways, such as WNT, Bone morphogenetic protein (BMP/Transforming growth factor-β (TGFβ, Parathyroid hormone-related peptide (PTHrP, Indian hedgehog (IHH, Fibroblast growth factor (FGF, Insulin like growth factor (IGF and Hypoxia-inducible factor (HIF. This comprehensive review describes how this intricate signaling network influences tissue-engineering applications of MSCs in articular cartilage (AC repair, and improves understanding of the disease stages and cellular responses within an OA articular joint.

  11. Recognition of regional hypertrophy in hypertrophic cardiomyopathy using thallium-201 emission-computed tomography: comparison with two-dimensional echocardiography

    International Nuclear Information System (INIS)

    Suzuki, Y.; Kadota, K.; Nohara, R.

    1984-01-01

    The configuration of the hypertrophied myocardium was evaluated by thallium-201 emission-computed tomography and 2-dimensional (2-D) sector scan in 10 patients with obstructive hypertrophic cardiomyopathy (HC), 10 with nonobstructive HC with giant negative T waves and 10 with concentric left ventricular (LV) hypertrophy. Thallium-201 myocardial imaging was reconstructed into multiple 12-mm-thick slices in 3 planes. The thickness ratio of the ventricular septum and the LV posterior wall in the short-axis plane and the ratio of the ventricular septum and the apical wall in the long-axis plane were analyzed. In the patients with obstructive HC the ventricular septal wall thickness index was increased, and the ratio of septal to posterior wall thickness index (1.45 +/- 0.23) was greater than that in the patients with nonobstructive HC with giant negative T waves or in those with concentric LV hypertrophy (1.03 +/- 0.20 and 0.98 +/- 0.11, respectively; p less than 0.01 for each). In the patients with nonobstructive HC with giant negative T waves, increased apical wall thickness with apical cavity obliteration was characteristic, and the ratio of ventricular septal to apical wall thickness index (0.66 +/- 0.14) was less than that in the patients with obstructive HC or in those with concentric LV hypertrophy (1.46 +/- 0.38 and 1.04 +/- 0.09, respectively; p less than 0.001 for each). In contrast, technically satisfactory 2-D sector scanning (83%) demonstrated various configurations of the hypertrophied ventricularseptum, but could not detect apical hypertrophy in 4 of the 10 patients with nonobstructive HC with giant negative T waves whose LV cineangiograms demonstrated apical hypertrophy. Thus, thallium-201 emission-computed tomography is useful in evaluating the characteristics of LV hypertrophy and assists 2-D sector scan, especially in patients with apical hypertrophy in HC

  12. Ventricular premature contraction in hypertrophic cardiomyopathy and essential hypertension with left ventricular hypertrophy

    International Nuclear Information System (INIS)

    Kobiki, Naoki

    1989-01-01

    In order to investigate the relationship of different morbid states of the hypertrophied myocardium to the appearance of ventricular premature contraction (VPC), we compared the VPC findings from Holter ECG with those of UCG and stress thallium-201 myocardial SPECT scintigraphy (stress scinti) in 31 patients with hypertrophic cardiomyopathy (HCM) and 20 with essential hypertension (HT). The HCM patients consisted of 21 with asymmetric hypertrophy (ASH), 3 with symmetric hypertrophy (SH), and 7 with apical hypertrophy (APH). We recognized positive findings on the stress scinti such as fixed perfusion defect (FD) or reversible perfusion defect (RD) in 11 patients (ASH 10, APH 1) out of 31 patients with HCM (35%). Positive findings were observed in only one patient out of 20 with HT (5%). We recognized a high grade VPC (grade 4a and 4b of Lown's criteria) in 8 of 11 scinti positive patients with HCM (ASH 7, APH 1)(73%), while high grade VPC appeared in 5 (all of them are ASH) out of 20 scinti negative patients with HCM (25%). Therefore, these findings suggest that high grade VPCs in HCM occur in relation to a myocardial perfusion defect. (author)

  13. Utility evaluation on application of geometric mean depending on depth of kidney in split renal function test using 99mTc-MAG3

    International Nuclear Information System (INIS)

    Lee, Eun Byeul; Ahn, Sung Min; Lee, Wang Hui

    2016-01-01

    99mTc-MAG 3 Renal scan is a method that acquires dynamic renal scan image by using 99mTc-MAG 3 and dynamically visualizes process of radioactive agent being absorbed to kidney and excreted continuously. Once the test starts, ratio in both kidneys in 1-2.5 minutes was measured to obtain split renal function and split renal function can be expressed in ratio based on overall renal function. This study is based on compares split renal function obtained from data acquired from posterior detector, which is a conventional renal function test method, with split renal function acquired from the geometric mean of values obtained from anterior and posterior detectors, and studies utility of attenuation compensation depending on difference in geometric mean kidney depth. From July, 2015 to February 2016, 33 patients who undertook 99mTc-MAG 3 Renal scan(13 male, 20 female, average age of 44.66 with range of 5-70, average height of 160.40 cm, average weight of 55.40 kg) were selected as subjects. Depth of kidney was shown to be 65.82 mm at average for left and 71.62 mm at average for right. In supine position, 30 out of 33 patients showed higher ratio of deep-situated kidney and lower ratio of shallow-situated kidney. Such result is deemed to be due to correction by attenuation between deep-situated kidney and detector and in case where there is difference between the depth of both kidneys such as, lesions in or around kidney, spine malformation, and ectopic kidney, ratio of deep-situated kidney must be compensated for more accurate calculation of split renal function, when compared to the conventional test method (posterior detector counting)

  14. Increased sarcolemmal Na+/H+ exchange activity in hypertrophied myocytes from dogs with chronic atrioventricular block

    NARCIS (Netherlands)

    van Borren, Marcel M. G. J.; Vos, Marc A.; Houtman, Marien J. C.; Antoons, Gudrun; Ravesloot, Jan H.

    2013-01-01

    Dogs with compensated biventricular hypertrophy due to chronic atrioventricular block (cAVB), are more susceptible to develop drug-induced Torsade-de-Pointes arrhythmias and sudden cardiac death. It has been suggested that the increased Na+ influx in hypertrophied cAVB ventricular myocytes

  15. Aberrant Glycosylation in the Left Ventricle and Plasma of Rats with Cardiac Hypertrophy and Heart Failure.

    Directory of Open Access Journals (Sweden)

    Chiaki Nagai-Okatani

    Full Text Available Targeted proteomics focusing on post-translational modifications, including glycosylation, is a useful strategy for discovering novel biomarkers. To apply this strategy effectively to cardiac hypertrophy and resultant heart failure, we aimed to characterize glycosylation profiles in the left ventricle and plasma of rats with cardiac hypertrophy. Dahl salt-sensitive hypertensive rats, a model of hypertension-induced cardiac hypertrophy, were fed a high-salt (8% NaCl diet starting at 6 weeks. As a result, they exhibited cardiac hypertrophy at 12 weeks and partially impaired cardiac function at 16 weeks compared with control rats fed a low-salt (0.3% NaCl diet. Gene expression analysis revealed significant changes in the expression of genes encoding glycosyltransferases and glycosidases. Glycoproteome profiling using lectin microarrays indicated upregulation of mucin-type O-glycosylation, especially disialyl-T, and downregulation of core fucosylation on N-glycans, detected by specific interactions with Amaranthus caudatus and Aspergillus oryzae lectins, respectively. Upregulation of plasma α-l-fucosidase activity was identified as a biomarker candidate for cardiac hypertrophy, which is expected to support the existing marker, atrial natriuretic peptide and its related peptides. Proteomic analysis identified cysteine and glycine-rich protein 3, a master regulator of cardiac muscle function, as an O-glycosylated protein with altered glycosylation in the rats with cardiac hypertrophy, suggesting that alternations in O-glycosylation affect its oligomerization and function. In conclusion, our data provide evidence of significant changes in glycosylation pattern, specifically mucin-type O-glycosylation and core defucosylation, in the pathogenesis of cardiac hypertrophy and heart failure, suggesting that they are potential biomarkers for these diseases.

  16. Utility of intravenous nonionic contrast media for abdominal CT in patients with renal dysfunction

    International Nuclear Information System (INIS)

    Craig, B.M.; Alpern, M.B.; Sandler, M.A.; Pearlberg, J.L.; Swanson, D.P.

    1987-01-01

    The safety and efficacy of a nonionic contrast medium (NICM) for CT enhancements in patients with renal dysfunction were evaluated. Thirty consecutive patients referred for abdominal CT with a serum creatinine (SCr) level over 5 mg/dL or a SCr level of 2-5 mg/dL and another risk factor (e.g., diabetes, single kidney) received NICM. Each was matched with a control who received the same 150-mL bolus of a conventional medium. No adverse reactions or significant alterations in SCr values were found in the NICM patients. No significant differences between the patient groups were found in blinded subjective image quality ratings or measured attenuation values of a parenchymal organs and vascular structures (with the exception of less renal enhancement in the NICM patients, reflecting their renal dysfunction). Use of an NICM is a safe and effective method for contrast medium-enhanced CT in patients with renal dysfunction

  17. Expression profiling of skeletal muscle following acute and chronic β2-adrenergic stimulation: implications for hypertrophy, metabolism and circadian rhythm

    Directory of Open Access Journals (Sweden)

    Lynch Gordon S

    2009-09-01

    Full Text Available Abstract Background Systemic administration of β-adrenoceptor (β-AR agonists has been found to induce skeletal muscle hypertrophy and significant metabolic changes. In the context of energy homeostasis, the importance of β-AR signaling has been highlighted by the inability of β1-3-AR-deficient mice to regulate energy expenditure and susceptibility to diet induced obesity. However, the molecular pathways and gene expression changes that initiate and maintain these phenotypic modulations are poorly understood. Therefore, the aim of this study was to identify differential changes in gene expression in murine skeletal muscle associated with systemic (acute and chronic administration of the β2-AR agonist formoterol. Results Skeletal muscle gene expression (from murine tibialis anterior was profiled at both 1 and 4 hours following systemic administration of the β2-AR agonist formoterol, using Illumina 46K mouse BeadArrays. Illumina expression profiling revealed significant expression changes in genes associated with skeletal muscle hypertrophy, myoblast differentiation, metabolism, circadian rhythm, transcription, histones, and oxidative stress. Differentially expressed genes relevant to the regulation of muscle mass and metabolism (in the context of the hypertrophic phenotype were further validated by quantitative RT-PCR to examine gene expression in response to both acute (1-24 h and chronic administration (1-28 days of formoterol at multiple timepoints. In terms of skeletal muscle hypertrophy, attenuation of myostatin signaling (including differential expression of myostatin, activin receptor IIB, phospho-Smad3 etc was observed following acute and chronic administration of formoterol. Acute (but not chronic administration of formoterol also significantly induced the expression of genes involved in oxidative metabolism, including hexokinase 2, sorbin and SH3 domain containing 1, and uncoupling protein 3. Interestingly, formoterol

  18. Effect of parathyroid hormone-related protein in an in vitro hypertrophy model for mesenchymal stem cell chondrogenesis.

    Science.gov (United States)

    Mueller, Michael B; Fischer, Maria; Zellner, Johannes; Berner, Arne; Dienstknecht, Thomas; Kujat, Richard; Prantl, Lukas; Nerlich, Michael; Tuan, Rocky S; Angele, Peter

    2013-05-01

    Mesenchymal stem cells (MSCs) express markers of hypertrophic chondrocytes during chondrogenic differentiation. We tested the suitability of parathyroid hormone-related protein (PTHrP), a regulator of chondrocyte hypertrophy in embryonic cartilage development, for the suppression of hypertrophy in an in vitro hypertrophy model of chondrifying MSCs. Chondrogenesis was induced in human MSCs in pellet culture for two weeks and for an additional two weeks cultures were either maintained in standard chondrogenic medium or transferred to a hypertrophy-enhancing medium. PTHrP(1-40) was added to the medium throughout the culture period at concentrations from 1 to 1,000 pM. Pellets were harvested on days one, 14 and 28 for biochemical and histological analysis. Hypertrophic medium clearly enhanced the hypertrophic phenotype, with increased cell size, and strong alkaline phosphatase (ALP) and type X collagen staining. In chondrogenic medium, 1-100 pM PTHrP(1-40) did not inhibit chondrogenic differentiation, whereas 1,000 pM PTHrP(1-40) significantly reduced chondrogenesis. ALP activity was dose-dependently reduced by PTHrP(1-40) at 10-1,000 pM in chondrogenic conditions. Under hypertrophy-enhancing conditions, PTHrP(1-40) did not inhibit the induction of the hypertrophy. At the highest concentration (1,000 pM) in the hypertrophic group, aggregates were partially dedifferentiated and differentiated areas of these aggregates maintained their hypertrophic appearance. PTHrP(1-40) treatment dose-dependently reduced ALP expression in MSC pellets cultured under standard chondrogenic conditions and is thus beneficial for the maintenance of the chondrogenic phenotype in this medium condition. When cultured under hypertrophy-enhancing conditions, PTHrP(1-40) could not diminish the induced enhancement of hypertrophy in the MSC pellets.

  19. Effect of Thymol on Serum Antioxidant Capacity of Rats Following Myocardial Hypertrophy

    Directory of Open Access Journals (Sweden)

    Mohabbat Jamhiri

    2017-07-01

    Full Text Available Abstract Background: Oxidative stress plays an important role in the pathogenesis of hypertension- induced cardiac hypertrophy. Plants are a rich source of antioxidant compounds. Thymol is a natural monoterpen phenol which is plentiful in some plants and shows many biological effects. The aim of the present study was to assess the effects of thymol on activity of antioxidant enzyme catalase, malondialdehyde (MDA level and the activity of the inhibition of free radical DPPH (2,2-Diphenyl-1-picryl-hydrazyl, following left ventricular hypertrophy in rats. Materials and Methods: In this experimental study, rats were divided into hypertrophied group without any treatment (H group and rats pretreated with 25 and 50 mg/kg/day of thymol (Thy25+H and Thy50+H groups, respectively. Intact animals were served as control (Ctl. Animal model of left ventricular hypertrophy was induced by abdominal aortic banding. Serum catalase (CAT activity, malondialdehyde (MDA level and the activity of inhibition of free radicals DPPH were determined by the biochemical methods. Results: In Thy25+H and Thy50+H groups, the CAT activity was increased significantly in serum (p<0.01, vs. Ctl. Also, serum level of MDA was decreased significantly compared to the group H in Thy25+H and Thy50+H groups (p<0.05 and p<0.001, respectively. The effect of inhibiting DPPH free radicals was increased significantly in Thy25+H and Thy50+H groups compared to the group H (p<0.001 and p<0.05, respectively. Conclusion: The findings of this study suggest that thymol as an antioxidant causes cardioprotective effects and as well as prevents left ventricular hypertrophy via augmentation of serum antioxidant capacity.

  20. Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus

    Science.gov (United States)

    Rose, Michael; Gerasimova, Maria; Satriano, Joseph; Platt, Kenneth A.; Koepsell, Hermann; Cunard, Robyn; Sharma, Kumar; Thomson, Scott C.; Rieg, Timo

    2013-01-01

    The Na-glucose cotransporter SGLT2 mediates high-capacity glucose uptake in the early proximal tubule and SGLT2 inhibitors are developed as new antidiabetic drugs. We used gene-targeted Sglt2 knockout (Sglt2−/−) mice to elucidate the contribution of SGLT2 to blood glucose control, glomerular hyperfiltration, kidney growth, and markers of renal growth and injury at 5 wk and 4.5 mo after induction of low-dose streptozotocin (STZ) diabetes. The absence of SGLT2 did not affect renal mRNA expression of glucose transporters SGLT1, NaGLT1, GLUT1, or GLUT2 in response to STZ. Application of STZ increased blood glucose levels to a lesser extent in Sglt2−/− vs. wild-type (WT) mice (∼300 vs. 470 mg/dl) but increased glucosuria and food and fluid intake to similar levels in both genotypes. Lack of SGLT2 prevented STZ-induced glomerular hyperfiltration but not the increase in kidney weight. Knockout of SGLT2 attenuated the STZ-induced renal accumulation of p62/sequestosome, an indicator of impaired autophagy, but did not attenuate the rise in renal expression of markers of kidney growth (p27 and proliferating cell nuclear antigen), oxidative stress (NADPH oxidases 2 and 4 and heme oxygenase-1), inflammation (interleukin-6 and monocyte chemoattractant protein-1), fibrosis (fibronectin and Sirius red-sensitive tubulointerstitial collagen accumulation), or injury (renal/urinary neutrophil gelatinase-associated lipocalin). SGLT2 deficiency did not induce ascending urinary tract infection in nondiabetic or diabetic mice. The results indicate that SGLT2 is a determinant of hyperglycemia and glomerular hyperfiltration in STZ-induced diabetes mellitus but is not critical for the induction of renal growth and markers of renal injury, inflammation, and fibrosis. PMID:23152292

  1. Changes in forearm muscle temperature alter renal vascular responses to isometric handgrip.

    Science.gov (United States)

    Kuipers, Nathan T; Sauder, Charity L; Kearney, Matthew L; Ray, Chester A

    2007-12-01

    The purpose of the present study was to examine the effect of heating and cooling the forearm muscles on renal vascular responses to ischemic isometric handgrip (IHG). It was hypothesized that heating and cooling the forearm would augment and attenuate, respectively, renal vascular responses to IHG. Renal vascular responses to IHG were studied during forearm heating at 39 degrees C (n = 15, 26 +/- 1 yr) and cooling at 26 degrees C (n = 12, 26 +/- 1 yr). For a control trial, subjects performed the experimental protocol while the forearm was normothermic (approximately 34 degrees C). Muscle temperature (measured by intramuscular probe) was controlled by changing the temperature of water cycling through a water-perfused sleeve. The experimental protocol was as follows: 3 min at baseline, 1 min of ischemia, ischemic IHG to fatigue, and 2 min of postexercise muscle ischemia. At rest, renal artery blood velocity (RBV; Doppler ultrasound) and renal vascular conductance (RVC = RBV/mean arterial blood pressure) were not different between normothermia and the two thermal conditions. During ischemic IHG, there were greater decreases in RBV and RVC in the heating trial. However, RBV and RVC were similar during postexercise muscle ischemia during heating and normothermia. RVC decreased less during cooling than in normothermia while the subjects performed the ischemic IHG protocol. During postexercise muscle ischemia, RVC was greater during cooling than in normothermia. These results indicate that heating augments mechanoreceptor-mediated renal vasoconstriction whereas cooling blunts metaboreceptor-mediated renal vasoconstriction.

  2. Differential diagnosis of left ventricular hypertrophy: usefulness of multimodality imaging and tissue characterization with cardiac magnetic resonance.

    Science.gov (United States)

    Izgi, Cemil; Vassiliou, Vassilis; Baksi, A John; Prasad, Sanjay K

    2016-11-01

    Differential diagnosis of asymmetrical left ventricular hypertrophy may be challenging, particularly in patients with history of hypertension. A middle-aged man underwent an echocardiographic examination during workup for hypertension, which unexpectedly showed significant asymmetrical septal hypertrophy and raised suspicion for hypertrophic cardiomyopathy. Cardiovascular magnetic resonance confirmed the asymmetrical hypertrophy. No myocardial late gadolinium contrast enhancement was seen. However, precontrast T1 mapping revealed a low native myocardial T1 value. This was highly suggestive of Anderson-Fabry disease, which was subsequently proved with very low alpha galactosidase enzyme levels and mutation analysis. The case illustrates clinical usefulness of multimodality imaging and the novel tissue characterization techniques for assessment of left ventricular hypertrophy. © 2016, Wiley Periodicals, Inc.

  3. Mouse models for the study of postnatal cardiac hypertrophy

    Directory of Open Access Journals (Sweden)

    A. Del Olmo-Turrubiarte

    2015-06-01

    Full Text Available The main objective of this study was to create a postnatal model for cardiac hypertrophy (CH, in order to explain the mechanisms that are present in childhood cardiac hypertrophy. Five days after implantation, intraperitoneal (IP isoproterenol (ISO was injected for 7 days to pregnant female mice. The fetuses were obtained at 15, 17 and 19 dpc from both groups, also newborns (NB, neonates (7–15 days and young adults (6 weeks of age. Histopathological exams were done on the hearts. Immunohistochemistry and western blot demonstrated GATA4 and PCNA protein expression, qPCR real time the mRNA of adrenergic receptors (α-AR and β-AR, alpha and beta myosins (α-MHC, β-MHC and GATA4. After the administration of ISO, there was no change in the number of offsprings. We observed significant structural changes in the size of the offspring hearts. Morphometric analysis revealed an increase in the size of the left ventricular wall and interventricular septum (IVS. Histopathological analysis demonstrated loss of cellular compaction and presence of left ventricular small fibrous foci after birth. Adrenergic receptors might be responsible for changing a physiological into a pathological hypertrophy. However GATA4 seemed to be the determining factor in the pathology. A new animal model was established for the study of pathologic CH in early postnatal stages.

  4. Three-dimensional CT might be a potential evaluation modality in correction of asymmetrical masseter muscle hypertrophy by botulinum toxin injection.

    Science.gov (United States)

    No, Yeon A; Ahn, Byeong Heon; Kim, Beom Joon; Kim, Myeung Nam; Hong, Chang Kwon

    2016-01-01

    For correction of this asymmetrical hypertrophy, botulinum toxin type A (BTxA) injection is one of convenient treatment modalities. Unfortunately, physical examination of masseter muscle is not enough to estimate the exact volume of muscle hypertrophy difference. Two Koreans, male and female, of bilateral masseter hypertrophy with asymmetricity were evaluated. BTxA (NABOTA(®), Daewoong, Co. Ltd., Seoul, Korea) was injected at master muscle site with total 50 U (25 U at each side) and volume change was evaluated with three-dimensional (3D) CT image analysis. Maximum reduction of masseter hypertrophy was recognized at 2-month follow-up and reduced muscle size started to restore after 3 months. Mean reduction of masseter muscle volume was 36% compared with baseline. More hypertrophied side of masseter muscle presented 42% of volume reduction at 2-month follow-up but less hypertrophied side of masseter muscle showed 30% of volume shrinkage. In conclusion, 3D CT image analysis might be the exact evaluation tool for correction of asymmetrical masseter hypertrophy by botulinum toxin injection.

  5. Gadolinium Contrast Agent is of Limited Value for Magnetic Resonance Imaging Assessment of Synovial Hypertrophy in Hemophiliacs

    Energy Technology Data Exchange (ETDEWEB)

    Lundin, B.; Berntorp, E.; Pettersson, H.; Wirestam, R.; Jonsson, K.; Staahlberg, F.; Ljung, R. [Dept. of Radiology, Univ Hospital of Lund, Lund (Sweden)

    2007-07-15

    Purpose: To examine the influence of different doses of gadolinium contrast agent on synovial enhancement, to compare magnetic resonance imaging (MRI) findings of synovial hypertrophy and radiographic joint changes in hemophiliacs, and to investigate the value of gadolinium in MRI assessment of synovial hypertrophy in hemophiliacs using dynamic MRI and MRI scoring. Material and Methods: Twenty-one hemophiliacs on prophylactic factor treatment without recent bleeds were subjected to radiography and gadolinium contrast-enhanced dynamic and static MRI of the knee using a standard dose of 0.1 mmol/kg b.w. gadoteridol. In 17 of the patients, the MRI procedure was repeated after a triple dose of gadoteridol. Results: MRI findings of synovial hypertrophy were significantly correlated with Pettersson radiographic scores. In 19 of the 21 MRI investigated joints, administration of contrast agent did not alter the result of the evaluation of synovial hypertrophy. Conclusion: The optimal time interval for volume assessment of synovial hypertrophy after injection of gadolinium contrast agent is dose dependent. Hemophiliacs without recent bleeds have minor to abundant synovial hypertrophy in joints with pronounced radiographic changes. Dynamic MRI is not useful for evaluating hemophilic arthropathy, and gadolinium contrast agent is not routinely indicated for MRI scoring of joints in hemophiliacs.

  6. Gadolinium Contrast Agent is of Limited Value for Magnetic Resonance Imaging Assessment of Synovial Hypertrophy in Hemophiliacs

    International Nuclear Information System (INIS)

    Lundin, B.; Berntorp, E.; Pettersson, H.; Wirestam, R.; Jonsson, K.; Staahlberg, F.; Ljung, R.

    2007-01-01

    Purpose: To examine the influence of different doses of gadolinium contrast agent on synovial enhancement, to compare magnetic resonance imaging (MRI) findings of synovial hypertrophy and radiographic joint changes in hemophiliacs, and to investigate the value of gadolinium in MRI assessment of synovial hypertrophy in hemophiliacs using dynamic MRI and MRI scoring. Material and Methods: Twenty-one hemophiliacs on prophylactic factor treatment without recent bleeds were subjected to radiography and gadolinium contrast-enhanced dynamic and static MRI of the knee using a standard dose of 0.1 mmol/kg b.w. gadoteridol. In 17 of the patients, the MRI procedure was repeated after a triple dose of gadoteridol. Results: MRI findings of synovial hypertrophy were significantly correlated with Pettersson radiographic scores. In 19 of the 21 MRI investigated joints, administration of contrast agent did not alter the result of the evaluation of synovial hypertrophy. Conclusion: The optimal time interval for volume assessment of synovial hypertrophy after injection of gadolinium contrast agent is dose dependent. Hemophiliacs without recent bleeds have minor to abundant synovial hypertrophy in joints with pronounced radiographic changes. Dynamic MRI is not useful for evaluating hemophilic arthropathy, and gadolinium contrast agent is not routinely indicated for MRI scoring of joints in hemophiliacs

  7. Whey protein hydrolysate augments tendon and muscle hypertrophy independent of resistance exercise contraction mode

    DEFF Research Database (Denmark)

    Farup, Jean; Rahbek, S K; Vendelbo, M H

    2014-01-01

    In a comparative study, we investigated the effects of maximal eccentric or concentric resistance training combined with whey protein or placebo on muscle and tendon hypertrophy. 22 subjects were allocated into either a high-leucine whey protein hydrolysate + carbohydrate group (WHD) or a carbohy......In a comparative study, we investigated the effects of maximal eccentric or concentric resistance training combined with whey protein or placebo on muscle and tendon hypertrophy. 22 subjects were allocated into either a high-leucine whey protein hydrolysate + carbohydrate group (WHD...... or contraction mode effects. In conclusion, high-leucine whey protein hydrolysate augments muscle and tendon hypertrophy following 12 weeks of resistance training – irrespective of contraction mode....

  8. Effects of age and caloric restriction in the vascular response of renal arteries to endothelin-1 in rats.

    Science.gov (United States)

    Amor, Sara; García-Villalón, Angel Luis; Rubio, Carmen; Carrascosa, Jose Ma; Monge, Luis; Fernández, Nuria; Martín-Carro, Beatriz; Granado, Miriam

    2017-02-01

    Cardiovascular alterations are the most prevalent cause of impaired physiological function in aged individuals with kidney being one the most affected organs. Aging-induced alterations in renal circulation are associated with a decrease in endothelium-derived relaxing factors such as nitric oxide (NO) and with an increase in contracting factors such as endothelin-1(ET-1). As caloric restriction (CR) exerts beneficial effects preventing some of the aging-induced alterations in cardiovascular system, the aim of this study was to analyze the effects of age and caloric restriction in the vascular response of renal arteries to ET-1 in aged rats. Vascular function was studied in renal arteries from 3-month-old Wistar rats fed ad libitum (3m) and in renal arteries from 8-and 24-month-old Wistar rats fed ad libitum (8m and 24m), or subjected to 20% caloric restriction during their three last months of life (8m-CR and 24m-CR). The contractile response to ET-1 was increased in renal arteries from 8m and 24m compared to 3m rats. ET-1-induced contraction was mediated by ET-A receptors in all experimental groups and also by ET-B receptors in 24m rats. Caloric restriction attenuated the increased contraction to ET-1 in renal arteries from 8m but not from 24m rats possibly through NO release proceeding from ET-B endothelial receptors. In 24m rats, CR did not attenuate the aging-increased response of renal arteries to ET-1, but it prevented the aging-induced increase in iNOS mRNA levels and the aging-induced decrease in eNOS mRNA levels in arterial tissue. In conclusion, aging is associated with an increased response to ET-1 in renal arteries that is prevented by CR in 8m but not in 24m rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Idiopathic masseter muscle hypertrophy.

    Science.gov (United States)

    Kebede, Biruktawit; Megersa, Shimalis

    2011-11-01

    Benign Masseteric Hypertrophy is a relatively uncommon condition that can occur unilaterally or bilaterally. Pain may be a symptom, but most frequently a clinician is consulted for cosmetic reasons. In some cases prominent Exostoses at the angle of the mandible are noted. Although it is tempting to point to Malocclusion, Bruxism, clenching, or Temporomandibular joint disorders, the etiology in the majority of cases is unclear. Diagnosis is based on awareness of the condition, clinical and radiographic findings, and exclusion of more serious Pathology such as Benign and Malignant Parotid Disease, Rhabdomyoma, and Lymphangioma. Treatment usually involves resection of a portion of the Masseter muscle with or without the underlying bone.

  10. Macrophage microRNA-155 promotes cardiac hypertrophy and failure

    NARCIS (Netherlands)

    Heymans, Stephane; Corsten, Maarten F.; Verhesen, Wouter; Carai, Paolo; van Leeuwen, Rick E. W.; Custers, Kevin; Peters, Tim; Hazebroek, Mark; Stöger, Lauran; Wijnands, Erwin; Janssen, Ben J.; Creemers, Esther E.; Pinto, Yigal M.; Grimm, Dirk; Schürmann, Nina; Vigorito, Elena; Thum, Thomas; Stassen, Frank; Yin, Xiaoke; Mayr, Manuel; de Windt, Leon J.; Lutgens, Esther; Wouters, Kristiaan; de Winther, Menno P. J.; Zacchigna, Serena; Giacca, Mauro; van Bilsen, Marc; Papageorgiou, Anna-Pia; Schroen, Blanche

    2013-01-01

    Cardiac hypertrophy and subsequent heart failure triggered by chronic hypertension represent major challenges for cardiovascular research. Beyond neurohormonal and myocyte signaling pathways, growing evidence suggests inflammatory signaling pathways as therapeutically targetable contributors to this

  11. Utility evaluation on application of geometric mean depending on depth of kidney in split renal function test using 99mTc-MAG{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Byeul; Ahn, Sung Min [Dept. of Radiological Science, Gachon University, Incheon (Korea, Republic of); Lee, Wang Hui [Dept. of Nuclear Medicine, Gil-Hospital, Incheon (Korea, Republic of)

    2016-06-15

    99mTc-MAG{sub 3} Renal scan is a method that acquires dynamic renal scan image by using 99mTc-MAG{sub 3} and dynamically visualizes process of radioactive agent being absorbed to kidney and excreted continuously. Once the test starts, ratio in both kidneys in 1-2.5 minutes was measured to obtain split renal function and split renal function can be expressed in ratio based on overall renal function. This study is based on compares split renal function obtained from data acquired from posterior detector, which is a conventional renal function test method, with split renal function acquired from the geometric mean of values obtained from anterior and posterior detectors, and studies utility of attenuation compensation depending on difference in geometric mean kidney depth. From July, 2015 to February 2016, 33 patients who undertook 99mTc-MAG{sub 3} Renal scan(13 male, 20 female, average age of 44.66 with range of 5-70, average height of 160.40 cm, average weight of 55.40 kg) were selected as subjects. Depth of kidney was shown to be 65.82 mm at average for left and 71.62 mm at average for right. In supine position, 30 out of 33 patients showed higher ratio of deep-situated kidney and lower ratio of shallow-situated kidney. Such result is deemed to be due to correction by attenuation between deep-situated kidney and detector and in case where there is difference between the depth of both kidneys such as, lesions in or around kidney, spine malformation, and ectopic kidney, ratio of deep-situated kidney must be compensated for more accurate calculation of split renal function, when compared to the conventional test method (posterior detector counting)

  12. Aortic coarctation diagnosed by renal Doppler flow patterns in a hypertensive young patient: a case report

    International Nuclear Information System (INIS)

    Sari, S.; Kara, K.; Verim, S.

    2012-01-01

    Full text: Introduction: Aortic coarctation is a congenital malformation, which can cause systemic hypertension and subsequent complications, and causes of secondary hypertension, affecting in differential pressures in the upper and lower extremities. Because hypertension is caused by aortic coarctation, tends to be resistant to medical therapy, early recognition and surgical rectification are important. Objectives and tasks: In this article, we aimed to point out that renal Doppler sonography is a beneficial and frequently used to evaluate secondary hypertension, if there are bilateral tardus-parvus wave patterns are detected. Thus, bilateral renal artery stenosis, aortic stenosis, and coarctation should be considered in this condition. Materials and methods: A 23-year-old male who has six-month history of hypertension. He was referred by a cardiologist for investigation of his secondary hypertension. There was an ascending aortic dilatation, left ventricular hypertrophy in his echocardiography. Results: The patient's blood pressure was measured as 160/90 mm Hg in his both arms. Renal Doppler sonography was performed to identify the potential cause of secondary hypertension, specifically renal artery stenosis, after tardus-parvus pulse waves were noted in both renal intralobar-arteries. Aortic coarctation is suspected and then a chest computed tomography (CT) was performed to evaluate supra-diaphragmatic vessel abnormalities. The CT exposed a stenotic lesion in the isthmus of the aorta. The patient was transferred to cardiovascular surgery department for treatment. Conclusion: Careful physical examination should be performed in all hypertensive patients. If bilateral tardus-parvus wave pattern are seen in patients who has been referred for Doppler evaluation on suspicion of renovascular hypertension, aortic coarctation should be considered as differential diagnosis

  13. Protection of MICU1 against myocardial hypertrophy induced by angiotensin Ⅱ

    Directory of Open Access Journals (Sweden)

    Yi YANG

    2017-12-01

    Full Text Available Objective To investigate the role of mitochondrial calcium uptake 1 (MICU1 in myocardial hypertrophy of mice and underlying mechanism. Methods The model of myocardial hypertrophy was established via incubation of mouse cardiac myocytes (MCM with 300nmol/L angiotensin Ⅱ (Ang Ⅱ for 48 hours in vitro. After that, MICU1 specific small interfering RNA (siRNA was delivered to knockdown MICU1 levels in MCM. On the other hand, adenovirus-mediated over-expression of MICU1 was transfected into MCM. Accordingly, the expressions of ANP and BNP in myocardial cells were measured by qRT- PCR. Mitochondrial membrane potential and ATP contents were detected by JC-1 assay kit and ATP assay kit, respectively. Then, Western blotting and qRT-PCR were used to detect the levels of MICU1 in myocardial cells. The mitochondrial Ca2+ contents were measured via atomic absorption flame spectroscopy. The size of myocardial cells was determined by α-actinin staining. Results Mitochondrial membrane potential and ATP contents in hypertrophic cardiomyocytes induced by AngⅡ were both decreased. Meanwhile, myocardial hypertrophy significantly increased mitochondrial Ca2+ contents but decreased MICU1 levels. With the method of genetic intervention, we found that MICU1 deficiency exacerbated mitochondrial Ca2+ overload, increased cell surface and elevated the expression of BNP. Conversely, the overexpression of MICU1 obviously decreased mitochondrial Ca2+ overload, cell surface of MCM and expressions of ANP and BNP. Conclusion MICU1 alleviates AngⅡ-induced myocardial hypertrophy via inhibiting mitochondrial Ca2+ overload. DOI: 10.11855/j.issn.0577-7402.2017.12.05

  14. A blueberry-enriched diet attenuates nephropathy in a rat model of hypertension via reduction in oxidative stress.

    Directory of Open Access Journals (Sweden)

    Carrie M Elks

    Full Text Available To assess renoprotective effects of a blueberry-enriched diet in a rat model of hypertension. Oxidative stress (OS appears to be involved in the development of hypertension and related renal injury. Pharmacological antioxidants can attenuate hypertension and hypertension-induced renal injury; however, attention has shifted recently to the therapeutic potential of natural products as antioxidants. Blueberries (BB have among the highest antioxidant capacities of fruits and vegetables.Male spontaneously hypertensive rats received a BB-enriched diet (2% w/w or an isocaloric control diet for 6 or 12 weeks or 2 days. Compared to controls, rats fed BB-enriched diet for 6 or 12 weeks exhibited lower blood pressure, improved glomerular filtration rate, and decreased renovascular resistance. As measured by electron paramagnetic resonance spectroscopy, significant decreases in total reactive oxygen species (ROS, peroxynitrite, and superoxide production rates were observed in kidney tissues in rats on long-term dietary treatment, consistent with reduced pathology and improved function. Additionally, measures of antioxidant status improved; specifically, renal glutathione and catalase activities increased markedly. Contrasted to these observations indicating reduced OS in the BB group after long-term feeding, similar measurements made in rats fed the same diet for only 2 days yielded evidence of increased OS; specifically, significant increases in total ROS, peroxynitrite, and superoxide production rates in all tissues (kidney, brain, and liver assayed in BB-fed rats. These results were evidence of "hormesis" during brief exposure, which dissipated with time as indicated by enhanced levels of catalase in heart and liver of BB group.Long-term feeding of BB-enriched diet lowered blood pressure, preserved renal hemodynamics, and improved redox status in kidneys of hypertensive rats and concomitantly demonstrated the potential to delay or attenuate development

  15. Local renin–angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy

    Science.gov (United States)

    Kobori, H; Ichihara, A; Miyashita, Y; Hayashi, M; Saruta, T

    2008-01-01

    We have reported previously that thyroid hormone activates the circulating and tissue renin–angiotensin systems without involving the sympathetic nervous system, which contributes to cardiac hypertrophy in hyperthyroidism. This study examined whether the circulating or tissue renin–angiotensin system plays the principal role in hyperthyroidism-induced cardiac hypertrophy. The circulating renin–angiotensin system in Sprague–Dawley rats was fixed by chronic angiotensin II infusion (40 ng/ min, 28 days) via mini-osmotic pumps. Daily i.p. injection of thyroxine (0·1 mg/kg per day, 28 days) was used to mimic hyperthyroidism. Serum free tri-iodothyronine, plasma renin activity, plasma angiotensin II, cardiac renin and cardiac angiotensin II were measured with RIAs. The cardiac expression of renin mRNA was evaluated by semiquantitative reverse transcriptase-polymerase chain reaction. Plasma renin activity and plasma angiotensin II were kept constant in the angiotensin II and angiotensin II+thyroxine groups (0·12 ± 0·03 and 0·15 ± 0·03 μg/h per liter, 126 ± 5 and 130 ± 5 ng/l respectively) (means ± s.e.m.). Despite stabilization of the circulating renin–angiotensin system, thyroid hormone induced cardiac hypertrophy (5·0 ± 0·5 vs 3·5 ± 0·1 mg/g) in conjunction with the increases in cardiac expression of renin mRNA, cardiac renin and cardiac angiotensin II (74 ± 2 vs 48 ± 2%, 6·5 ± 0·8 vs 3·8 ± 0·4 ng/h per g, 231 ± 30 vs 149 ± 2 pg/g respectively). These results indicate that the local renin–angiotensin system plays the primary role in the development of hyperthyroidism-induced cardiac hypertrophy. PMID:9854175

  16. Population-specific left ventricular hypertrophy in three groups from the northeastern region of India.

    Science.gov (United States)

    Borah, P K; Hazarika, N C; Biswas, D; Kalita, H C; Mahanta, J

    2010-01-01

    People living in the hills are continuously exposed to strenuous physical activity for their day-to-day work. Besides hypertension, left ventricular hypertrophy in different populations may be related to continuous physical activity. Electrocardiogram, blood pressure and sociodemographic information of 12 252 subjects > or = 30 years of age from three different population groups living in Mizoram (hilly) and Assam (plain) were recorded. Of them, 8058 were from Mizoram and 3180 and 1014 were Indigenous Assamese and tea garden workers of Assam. Among the subjects from Mizoram the percentage of smokers (41.9%), mean (SD) BMI (21.9 [3.8]) and waist-hip ratio (0.87 [0.02]) were significantly higher than in those from other groups. Tea garden workers had a higher mean systolic blood pressure (145.2 [25.7]) and diastolic blood pressure (87.6 [13.6]). The prevalence of left ventricular hypertrophy was highest among tea garden workers (16.5%) followed by people from Mizoram (3.7%) and the indigenous Assamese (2%) people. In spite of a significantly higher prevalence of hypertension among the indigenous Assamese community than among those from Mizoram, left ventricular hypertrophy was found to be lower in the former. High prevalence of left ventricular hypertrophy among tea garden workers was possibly related to a higher prevalence of hypertension but the higher prevalence of left ventricular hypertrophy among people from Mizoram might be related to more physical activity.

  17. Reduction of blood oxygen levels enhances postprandial cardiac hypertrophy in Burmese python (Python bivittatus).

    Science.gov (United States)

    Slay, Christopher E; Enok, Sanne; Hicks, James W; Wang, Tobias

    2014-05-15

    Physiological cardiac hypertrophy is characterized by reversible enlargement of cardiomyocytes and changes in chamber architecture, which increase stroke volume and via augmented convective oxygen transport. Cardiac hypertrophy is known to occur in response to repeated elevations of O2 demand and/or reduced O2 supply in several species of vertebrate ectotherms, including postprandial Burmese pythons (Python bivittatus). Recent data suggest postprandial cardiac hypertrophy in P. bivittatus is a facultative rather than obligatory response to digestion, though the triggers of this response are unknown. Here, we hypothesized that an O2 supply-demand mismatch stimulates postprandial cardiac enlargement in Burmese pythons. To test this hypothesis, we rendered animals anemic prior to feeding, essentially halving blood oxygen content during the postprandial period. Fed anemic animals had heart rates 126% higher than those of fasted controls, which, coupled with a 71% increase in mean arterial pressure, suggests fed anemic animals were experiencing significantly elevated cardiac work. We found significant cardiac hypertrophy in fed anemic animals, which exhibited ventricles 39% larger than those of fasted controls and 28% larger than in fed controls. These findings support our hypothesis that those animals with a greater magnitude of O2 supply-demand mismatch exhibit the largest hearts. The 'low O2 signal' stimulating postprandial cardiac hypertrophy is likely mediated by elevated ventricular wall stress associated with postprandial hemodynamics. © 2014. Published by The Company of Biologists Ltd.

  18. Agmatine improves renal function in gentamicin-induced nephrotoxicity in rats.

    Science.gov (United States)

    El-Kashef, Dalia H; El-Kenawi, Asmaa E; Abdel Rahim, Mona; Suddek, Ghada M; Salem, Hatem A

    2016-03-01

    The present study was designed to explore the possible protective effects of agmatine, a known nitric oxide (NO) synthase inhibitor, against gentamicin-induced nephrotoxicity in rats. For this purpose, we quantitatively evaluated gentamicin-induced renal structural and functional alterations using histopathological and biochemical approaches. Furthermore, the effect of agmatine on gentamicin-induced hypersensitivity of urinary bladder rings to acetylcholine (ACh) was evaluated. Twenty-four male Wistar albino rats were randomly divided into 3 groups, namely control, gentamicin (100 mg/kg, i.p.), and gentamicin plus agmatine (40 mg/kg, orally). At the end of the study, all rats were sacrificed and then blood and urine samples and kidneys were taken. Administration of agmatine significantly decreased kidney/body mass ratio, serum creatinine, lactate dehydrogenase (LDH), renal malondialdehyde (MDA), myeloperoxidase (MPO), NO, and tumor necrosis factor-alpha (TNF-α) while it significantly increased creatinine clearance and renal superoxide dismutase (SOD) activity when compared with the gentamicin-treated group. Additionally, agmatine ameliorated tissue morphology as evidenced by histological evaluation and reduced the responses of isolated bladder rings to ACh. Our study indicates that agmatine administration with gentamicin attenuates oxidative-stress associated renal injury by reducing oxygen free radicals and lipid peroxidation, restoring NO level and inhibiting inflammatory mediators such as TNF-α.

  19. Apical hypertrophy associated with rapid T wave inversion on the electrocardiogram.

    Science.gov (United States)

    Yamanari, H; Saito, D; Mikio, K; Nakamura, K; Nanba, T; Morita, H; Mizuo, K; Sato, T; Ohe, T

    1995-01-01

    A 53-year-old man who had no chest pain and no family history of heart disease demonstrated a rapid T wave change on an electrocardiogram, from a positive T wave to a giant negative T wave, within 1 year. Echocardiography showed no left ventricular hypertrophy before or after the T wave change. Cine-magnetic resonance imaging revealed focal apical hypertrophy after the appearance of the giant negative T wave. Although T wave inversions sometimes develop within a short period in patients with hypertrophic cardiomyopathy, they are rare in a patient without hypertension or chest pain.

  20. Screening for Fabry Disease in Left Ventricular Hypertrophy: Documentation of a Novel Mutation

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Ana, E-mail: baptista-ana@hotmail.com; Magalhães, Pedro; Leão, Sílvia; Carvalho, Sofia; Mateus, Pedro; Moreira, Ilídio [Centro Hospitalar de Trás-os-Montes e Alto Douro, Unidade de Vila Real (Portugal)

    2015-08-15

    Fabry disease is a lysosomal storage disease caused by enzyme α-galactosidase A deficiency as a result of mutations in the GLA gene. Cardiac involvement is characterized by progressive left ventricular hypertrophy. To estimate the prevalence of Fabry disease in a population with left ventricular hypertrophy. The patients were assessed for the presence of left ventricular hypertrophy defined as a left ventricular mass index ≥ 96 g/m{sup 2} for women or ≥ 116 g/m{sup 2} for men. Severe aortic stenosis and arterial hypertension with mild left ventricular hypertrophy were exclusion criteria. All patients included were assessed for enzyme α-galactosidase A activity using dry spot testing. Genetic study was performed whenever the enzyme activity was decreased. A total of 47 patients with a mean left ventricular mass index of 141.1 g/m{sup 2} (± 28.5; 99.2 to 228.5 g/m{sup 2}] were included. Most of the patients were females (51.1%). Nine (19.1%) showed decreased α-galactosidase A activity, but only one positive genetic test − [GLA] c.785G>T; p.W262L (exon 5), a mutation not previously described in the literature. This clinical investigation was able to establish the association between the mutation and the clinical presentation. In a population of patients with left ventricular hypertrophy, we documented a Fabry disease prevalence of 2.1%. This novel case was defined in the sequence of a mutation of unknown meaning in the GLA gene with further pathogenicity study. Thus, this study permitted the definition of a novel causal mutation for Fabry disease - [GLA] c.785G>T; p.W262L (exon 5)

  1. Screening for Fabry Disease in Left Ventricular Hypertrophy: Documentation of a Novel Mutation

    International Nuclear Information System (INIS)

    Baptista, Ana; Magalhães, Pedro; Leão, Sílvia; Carvalho, Sofia; Mateus, Pedro; Moreira, Ilídio

    2015-01-01

    Fabry disease is a lysosomal storage disease caused by enzyme α-galactosidase A deficiency as a result of mutations in the GLA gene. Cardiac involvement is characterized by progressive left ventricular hypertrophy. To estimate the prevalence of Fabry disease in a population with left ventricular hypertrophy. The patients were assessed for the presence of left ventricular hypertrophy defined as a left ventricular mass index ≥ 96 g/m 2 for women or ≥ 116 g/m 2 for men. Severe aortic stenosis and arterial hypertension with mild left ventricular hypertrophy were exclusion criteria. All patients included were assessed for enzyme α-galactosidase A activity using dry spot testing. Genetic study was performed whenever the enzyme activity was decreased. A total of 47 patients with a mean left ventricular mass index of 141.1 g/m 2 (± 28.5; 99.2 to 228.5 g/m 2 ] were included. Most of the patients were females (51.1%). Nine (19.1%) showed decreased α-galactosidase A activity, but only one positive genetic test − [GLA] c.785G>T; p.W262L (exon 5), a mutation not previously described in the literature. This clinical investigation was able to establish the association between the mutation and the clinical presentation. In a population of patients with left ventricular hypertrophy, we documented a Fabry disease prevalence of 2.1%. This novel case was defined in the sequence of a mutation of unknown meaning in the GLA gene with further pathogenicity study. Thus, this study permitted the definition of a novel causal mutation for Fabry disease - [GLA] c.785G>T; p.W262L (exon 5)

  2. Progression of Renal Insufficiency in Patients with Essential Hypertension Treated with Renin Angiotensin Aldosterone System Blockers: An Electrocardiographic Correlation.

    Science.gov (United States)

    Rodriguez-Padial, Luis; Akerström, Finn; Barderas, María G; Vivanco, Fernando; Arias, Miguel A; Segura, Julian; Ruilope, Luis M

    2017-12-08

    There is a frequent association between renal insufficiency and cardiovascular disease in patients with essential hypertension (HTN). The aim of this study was to analyze the relationship between ECG parameters and the progress of renal damage in patients with treated HTN. 109 patients with HTN had their microalbuminuria monitored over a 3-year time frame. During the last 3 months of follow-up, an ECG was recorded. Patients were divided into 3 groups according to the deterioration of their renal function: normoalbuminuria during the study period (normo-normo; n = 51); normoalbuminuria developing microalbuminuria (normo-micro; n = 29); and microalbuminuria at baseline (micro-micro; n = 29). There were no differences in presence of left ventricular hypertrophy between the 3 groups. RV6/RV5 >1 was observed more frequently as renal function declined ( p = 0.025). The 12-lead QRS-complex voltage-duration product was significantly increased in patients without microalbuminuria at baseline who went on to develop microalbuminuria ( p = 0.006). Patients who developed microalbuminuria during follow-up, with positive Cornell voltage criteria, showed a lesser degree of progression of microalbuminuria when compared with the rest of the subgroups ( p = 0.044). Furthermore, patients with microalbuminuria at baseline treated with angiotensin receptor blockers and diuretics, and positive Cornell voltage criteria, showed a higher degree of microalbuminuria compared to those with negative Cornell voltage criteria ( p = 0.016). In patients with HTN, we identified some ECG parameters, which predict renal disease progression in patients with HTN, which may permit the identification of patients who are at risk of renal disease progression, despite optimal antihypertensive pharmacotherapy.

  3. Unilateral hypoplasia with contralateral hypertrophy of anterior belly of digastric muscle: a case report.

    Science.gov (United States)

    Ochoa-Escudero, Martin; Juliano, Amy F

    2016-10-01

    Anomalies of the anterior belly of the digastric muscle (DM) are uncommon. We present a case of hypoplasia of the anterior belly of the left DM with hypertrophy of the anterior belly of the contralateral DM. The importance of recognizing this finding is to differentiate hypoplasia of the anterior belly of the DM from denervation atrophy, and not to confuse contralateral hypertrophy with a submental mass or lymphadenopathy. In denervation atrophy of the anterior belly of the DM, associated atrophy of the ipsilateral mylohyoid muscle is present. Hypertrophy of the anterior belly of the contralateral DM can be differentiated from a submental mass or lymphadenopathy by recognizing its isodensity on computed tomography and isointensity on magnetic resonance imaging to other muscles, without abnormal contrast enhancement.

  4. Na+/Ca2+ exchange inhibitor, KB-R7943, attenuates contrast-induced acute 
kidney injury.

    Science.gov (United States)

    Yang, Dingwei; Yang, Dingping; Jia, Ruhan; Tan, Jin

    2013-01-01

    Intracellular Ca2+ overload is considered to be a key factor in contrast-induced acute kidney injury (CI-AKI). The Na+/Ca2+ exchanger (NCX) system is one of the main pathways of intracellular Ca2+ overload. We investigated the effects of KB-R7943, an inhibitor of the reverse mode of NCX, on CI-AKI in a rat model. Rats were divided into control group, CI-AKI group and pretreatment groups (with KB-R7943 dose of 5 or 10 mg/kg). CI-AKI was induced by diatrizoate administration in rats with cholesterol-supplemented diet for 8 weeks. Renal function and renal hemodynamics were determined 1 day following contrast medium administration. Renal histopathology was observed by light microscope. Renal tubular apoptosis was examined by TUNEL. Renal endothelin-1 (ET-1) was measured by radioimmunoassay. Renal malondialdehyde (MDA) and catalase (CAT) were measured as oxidative markers. Levels of serum creatinine (Scr), renal ET-1, MDA and CAT, and resistance index (RI) of renal blood vessels increased significantly in CI-AKI rats. The 
increases in Scr and RI of renal blood vessels induced by diatrizoate were suppressed significantly and 
dose-dependently by pretreatment with KB-R7943. Histopathological and TUNEL results showed that 
the contrast medium-induced severe renal tubular 
necrosis and apoptosis were significantly and dose-dependently attenuated by KB-R7943. KB-R7943 significantly suppressed the increment of renal ET-1 content and MDA and CAT level induced by contrast medium administration. Activation of the reverse mode of NCX, followed by ET-1 overproduction and increased oxidative stress, seems to play an important role in the pathogenesis of CI-AKI. The inhibitor of the reverse mode of NCX, KB-R7943, has renoprotective effects on CI-AKI.

  5. Sparing of the dystrophin-deficient cranial sartorius muscle is associated with classical and novel hypertrophy pathways in GRMD dogs.

    Science.gov (United States)

    Nghiem, Peter P; Hoffman, Eric P; Mittal, Priya; Brown, Kristy J; Schatzberg, Scott J; Ghimbovschi, Svetlana; Wang, Zuyi; Kornegay, Joe N

    2013-11-01

    Both Duchenne and golden retriever muscular dystrophy (GRMD) are caused by dystrophin deficiency. The Duchenne muscular dystrophy sartorius muscle and orthologous GRMD cranial sartorius (CS) are relatively spared/hypertrophied. We completed hierarchical clustering studies to define molecular mechanisms contributing to this differential involvement and their role in the GRMD phenotype. GRMD dogs with larger CS muscles had more severe deficits, suggesting that selective hypertrophy could be detrimental. Serial biopsies from the hypertrophied CS and other atrophied muscles were studied in a subset of these dogs. Myostatin showed an age-dependent decrease and an inverse correlation with the degree of GRMD CS hypertrophy. Regulators of myostatin at the protein (AKT1) and miRNA (miR-539 and miR-208b targeting myostatin mRNA) levels were altered in GRMD CS, consistent with down-regulation of myostatin signaling, CS hypertrophy, and functional rescue of this muscle. mRNA and proteomic profiling was used to identify additional candidate genes associated with CS hypertrophy. The top-ranked network included α-dystroglycan and like-acetylglucosaminyltransferase. Proteomics demonstrated increases in myotrophin and spectrin that could promote hypertrophy and cytoskeletal stability, respectively. Our results suggest that multiple pathways, including decreased myostatin and up-regulated miRNAs, α-dystroglycan/like-acetylglucosaminyltransferase, spectrin, and myotrophin, contribute to hypertrophy and functional sparing of the CS. These data also underscore the muscle-specific responses to dystrophin deficiency and the potential deleterious effects of differential muscle involvement. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  6. Left ventricular hypertrophy among chronic kidney disease patients ...

    African Journals Online (AJOL)

    Introduction: The presence of left ventricular hypertrophy (LVH) in patients with Chronic Kidney Disease (CKD) is associated with worsening cardiovascular outcomes. There is a dearth of data on LVH in Ghanaian CKD patients. Methods: This was a cross sectional study carried out at the Komfo Anokye Teaching Hospital ...

  7. Do stress fractures induce hypertrophy of the grafted fibula? A report of three cases received free vascularized fibular graft treatment for tibial defects.

    Science.gov (United States)

    Qi, Yong; Sun, Hong-Tao; Fan, Yue-Guang; Li, Fei-Meng; Lin, Zhou-Sheng

    2016-06-01

    The presence of large segmental defects of the diaphyseal bone is challenging for orthopedic surgeons. Free vascularized fibular grafting (FVFG) is considered to be a reliable reconstructive procedure. Stress fractures are a common complication following this surgery, and hypertrophy is the main physiological change of the grafted fibula. The exact mechanism of hypertrophy is not completely known. To the best of our knowledge, no studies have examined the possible relationship between stress fractures and hypertrophy. We herein report three cases of patients underwent FVFG. Two of them developed stress fractures and significant hypertrophy, while the remaining patient developed neither stress fractures nor significant hypertrophy. This phenomenon indicates that a relationship may exist between stress fractures and hypertrophy of the grafted fibula, specifically, that the presence of a stress fracture may initiate the process of hypertrophy.

  8. Left-liver hypertrophy after therapeutic right-liver radioembolization is substantial but less than after portal vein embolization.

    Science.gov (United States)

    Garlipp, Benjamin; de Baere, Thierry; Damm, Robert; Irmscher, Romy; van Buskirk, Mark; Stübs, Patrick; Deschamps, Frederic; Meyer, Frank; Seidensticker, Ricarda; Mohnike, Konrad; Pech, Maciej; Amthauer, Holger; Lippert, Hans; Ricke, Jens; Seidensticker, Max

    2014-05-01

    In patients with liver malignancies potentially amenable to curative extended right hepatectomy but insufficient size of the future liver remnant (FLR), portal vein embolization (PVE) of the tumor-bearing liver is used to induce contralateral liver hypertrophy but leaves the tumor untreated. Radioembolization (RE) treats the tumor in the embolized lobe along with contralateral hypertrophy induction. We performed a matched-pair analysis to compare the capacity for hypertrophy induction of these two modalities. Patients with right-hepatic secondary liver malignancies with no or negligible left-hepatic tumor involvement who were treated by right-lobar PVE (n = 141) or RE (n = 35) at two centers were matched for criteria known to influence liver regeneration following PVE: 1) baseline FLR/Total liver volume ratio (<25 versus ≥ 25%); 2) prior platinum-containing systemic chemotherapy; 3) embolization of segments 5-8 versus 4-8; and 4) baseline platelet count (<200 versus ≥ 200 Gpt/L).The primary endpoint was relative change in FLR volume from baseline to follow-up. Twenty-six matched pairs were identified. FLR volume increase from baseline to follow-up (median 33 [24-56] days after PVE or 46 [27-79] days after RE) was significant in both groups but PVE produced significantly more FLR hypertrophy than RE (61.5 versus 29%, P < 0.001). Time between treatment and follow-up was not correlated with the degree of contralateral hypertrophy achieved in both groups. Although group differences in patient history and treatment setting were present and some bias cannot be excluded, this was minimized by the matched-pair design, as remaining group differences after matching were found to have no significant influence on contralateral hypertrophy development. PVE induces significantly more contralateral hypertrophy than RE with therapeutic (nonlobectomy) doses. However, contralateral hypertrophy induced by RE is substantial and RE minimizes the risk of tumor progression in the

  9. 123I-MIBG myocardial imaging in hypertensive patients. Abnormality progresses with left ventricular hypertrophy

    International Nuclear Information System (INIS)

    Mitani, Isao; Sumita, Shinichi; Takahashi, Nobukazu; Ochiai, Hisao; Ishii, Masao

    1996-01-01

    Twenty-seven patients with essential hypertension were prospectively studied with 123 I-labeled metaiodobenzyl-guanidine ( 123 I-MIBG) to assess the presence and location of impaired sympathetic innervation in hypertrophied myocardium. Thirteen patients had left ventricular hypertrophy on echocardiography, and 14 had normal echocardiograms. The wash-out ratio of 123 I-MIBG in these two groups did not differ significantly (35.3±6.1 and 35.4±5.1) but was higher than in control subjects (29.4±6.7). The delayed heart-to-mediastinum count ratio was lower in the patients with hypertrophy than in the patients without hypertrophy (1.93±0.28 and 2.22±0.21; p<0.05) and the control subjects (1.93±0.28 and 2.33±0.25; p<0.05). On SPECT imaging, abnormalities in segmental uptake were frequent at the posterior and postero-lateral wall in both groups, although the hypertrophic group had more significant impairment. Our results lead to the hypothesis that hypertension in more advanced stages may be associated not only with hypertrophic changes but also with more advanced regional impairment of cardiac sympathetic innervation. (author)

  10. sup(99m)Tc-DMSA renal scintigraphy in renal failure due to various renal diseases

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, S; Daijo, K; Okabe, T; Kawamura, J; Hara, A [Kyoto Univ. (Japan). Hospital

    1979-08-01

    Renal contours in renal failure were studied by means of sup(99m)Tc-dimercaptosuccinic acid (DMSA) renoscintigraphy. Renal cortical images were obtained even in renal failure cases. Causes of renal failure were chronic glomerulonephritis in 7, bilateral renal tuberculosis in 2, chronic pyelonephritis in 3, bilateral renal calculi in 3, diabetic nephropathy in 2, polycystic kidney disease in 2 and stomach cancer in 1.

  11. sup(99m)Tc-DMSA renal scintigraphy in renal failure due to various renal diseases

    International Nuclear Information System (INIS)

    Hosokawa, Shin-ichi; Daijo, Kazuyuki; Okabe, Tatsushiro; Kawamura, Juichi; Hara, Akira

    1979-01-01

    Renal contours in renal failure were studied by means of sup(99m)Tc-dimercaptosuccinic acid (DMSA) renoscintigraphy. Renal cortical images were obtained even in renal failure cases. Causes of renal failure were chronic glomerulonephritis in 7, bilateral renal tuberculosis in 2, chronic pyelonephritis in 3, bilateral renal calculi in 3, diabetic nephropathy in 2, polycystic kidney disease in 2 and stomach cancer in 1. (author)

  12. Amlodipine decreases fibrosis and cardiac hypertrophy in spontaneously hypertensive rats: persistent effects after withdrawal.

    Science.gov (United States)

    Sevilla, María A; Voces, Felipe; Carrón, Rosalía; Guerrero, Estela I; Ardanaz, Noelia; San Román, Luis; Arévalo, Miguel A; Montero, María J

    2004-07-02

    Our objective was to examine the effect of chronic treatment with amlodipine on blood pressure, left ventricular hypertrophy, and fibrosis in spontaneously hypertensive rats and the persistence of such an effect after drug withdrawal. We investigated the effects of treatment with 2, 8 and 20 mg/kg/day of amlodipine given orally for six months and at three months after drug withdrawal. Systolic blood pressure was measured using the tail-cuff method. At the end of the study period, the heart was excised, the left ventricle was isolated, and the left ventricle weight/body weight ratio was calculated as a left ventricular hypertrophy index. Fibrosis, expressed as collagen volume fraction, was evaluated using an automated image-analysis system on sections stained with Sirius red. Age-matched untreated Wistar-Kyoto and SHR were used as normotensive and hypertensive controls, respectively. Systolic blood pressure was reduced in the treated SHR in a dose-dependent way and after amlodipine withdrawal it increased progressively, without reaching the values of the hypertensive controls. Cardiac hypertrophy was reduced by 8 and 20 mg/kg/day amlodipine, but when treatment was withdrawn only the group treated with 8 mg/kg/day maintained significant differences versus the hypertensive controls. All three doses of amlodipine reduced cardiac fibrosis and this regression persisted with the two highest doses after three months without treatment. We concluded that antihypertensive treatment with amlodipine is accompanied by a reduction in left ventricular hypertrophy and regression in collagen deposition. Treatment was more effective in preventing fibrosis than in preventing ventricular hypertrophy after drug withdrawal. Copyright 2004 Elsevier Inc.

  13. Ameliorative role of gemfibrozil against partial abdominal aortic constriction-induced cardiac hypertrophy in rats.

    Science.gov (United States)

    Singh, Amrit Pal; Singh, Randhir; Krishan, Pawan

    2015-04-01

    Fibrates are peroxisome proliferator-activated receptor-α agonists and are clinically used for treatment of dyslipidemia and hypertriglyceridemia. Fenofibrate is reported as a cardioprotective agent in various models of cardiac dysfunction; however, limited literature is available regarding the role of gemfibrozil as a possible cardioprotective agent, especially in a non-obese model of cardiac remodelling. The present study investigated the role of gemfibrozil against partial abdominal aortic constriction-induced cardiac hypertrophy in rats. Cardiac hypertrophy was induced by partial abdominal aortic constriction in rats and they survived for 4 weeks. The cardiac hypertrophy was assessed by measuring left ventricular weight to body weight ratio, left ventricular wall thickness, and protein and collagen content. The oxidative stress in the cardiac tissues was assessed by measuring thiobarbituric acid-reactive substances, superoxide anion generation, and reduced glutathione level. The haematoxylin-eosin and picrosirius red staining was used to observe cardiomyocyte diameter and collagen deposition, respectively. Moreover, serum levels of cholesterol, high-density lipoproteins, triglycerides, and glucose were also measured. Gemfibrozil (30 mg/kg, p.o.) was administered since the first day of partial abdominal aortic constriction and continued for 4 weeks. The partial abdominal aortic constriction-induced cardiac oxidative stress and hypertrophy are indicated by significant change in various parameters used in the present study that were ameliorated with gemfibrozil treatment in rats. No significant change in serum parameters was observed between various groups used in the present study. It is concluded that gemfibrozil ameliorates partial abdominal aortic constriction-induced cardiac oxidative stress and hypertrophy and in rats.

  14. Diosmin Attenuates Methotrexate-Induced Hepatic, Renal, and Cardiac Injury: A Biochemical and Histopathological Study in Mice

    Science.gov (United States)

    Khalifa, Hesham A.; Al-Quraishy, Saleh A.

    2017-01-01

    The current study was designed to investigate the beneficial role of diosmin, a biologically active flavonoid, against methotrexate- (MTX-) induced hepatic, renal, and cardiac injuries in mice. Male Swiss albino mice received a single intraperitoneal injection of MTX (at 20 mg/kg, body weight) either alone or in combination with oral diosmin (at 50 or 100 mg/kg body weight, for 10 days). Serum was used to evaluate tissue injury markers, while hepatic, renal, and cardiac tissue samples were obtained for determination of antioxidant activity as well as histopathological examination. Diosmin treatment ameliorated the MTX-induced elevation of serum alkaline phosphatase, aminotransferases, urea, creatinine, lactate dehydrogenase, and creatine kinases as well as plasma proinflammatory cytokines (interleukin-1-beta, interleukin-6, and tumor necrosis factor-alpha). Additionally, both diosmin doses significantly reduced tissue levels of malondialdehyde and nitric oxide and increased those of glutathione, glutathione peroxidase, glutathione reductase, glutathione S-transferase, superoxide dismutase, and catalase, compared to the MTX-intoxicated group. Histopathological examination showed that diosmin significantly minimized the MTX-induced histological alterations and nearly restored the normal architecture of hepatic, renal, and cardiac tissues. Based on these findings, diosmin may be a promising agent for protection against MTX-induced cytotoxicity in patients with cancer and autoimmune diseases. PMID:28819543

  15. Cycle training induces muscle hypertrophy and strength gain: strategies and mechanisms.

    Science.gov (United States)

    Ozaki, Hayao; Loenneke, J P; Thiebaud, R S; Abe, T

    2015-03-01

    Cycle training is widely performed as a major part of any exercise program seeking to improve aerobic capacity and cardiovascular health. However, the effect of cycle training on muscle size and strength gain still requires further insight, even though it is known that professional cyclists display larger muscle size compared to controls. Therefore, the purpose of this review is to discuss the effects of cycle training on muscle size and strength of the lower extremity and the possible mechanisms for increasing muscle size with cycle training. It is plausible that cycle training requires a longer period to significantly increase muscle size compared to typical resistance training due to a much slower hypertrophy rate. Cycle training induces muscle hypertrophy similarly between young and older age groups, while strength gain seems to favor older adults, which suggests that the probability for improving in muscle quality appears to be higher in older adults compared to young adults. For young adults, higher-intensity intermittent cycling may be required to achieve strength gains. It also appears that muscle hypertrophy induced by cycle training results from the positive changes in muscle protein net balance.

  16. Left ventricular wall stress and sarcoplasmic reticulum Ca(2+)-ATPase gene expression in renal hypertensive rats: dose-dependent effects of ACE inhibition and AT1-receptor blockade.

    Science.gov (United States)

    Zierhut, W; Studer, R; Laurent, D; Kästner, S; Allegrini, P; Whitebread, S; Cumin, F; Baum, H P; de Gasparo, M; Drexler, H

    1996-05-01

    Cardiac hypertrophy is associated with altered Ca2+ handling and may predispose to the development of LV dysfunction and cardiac failure. At the cellular level, the re-expression of ANF represents a well-established marker of myocyte hypertrophy while the decreased expression of the sarcoplasmatic reticulum (SR) Ca(2+)-ATPase is thought o play a crucial role in the alterations of Ca2+ handling and LV function. We assessed the dose-dependent effect of chronic ACE inhibition or AT1 receptor blockade on cardiac function in relation to the cardiac expression of the SR Ca(2+)-ATPase and ANF. Renal hypertensive rats (2K-1C) were treated for 12 weeks with three different doses of the ACE inhibitor benazepril, the AT1-receptor antagonist valsartan (each drug 0.3, 3, and 10 mg/kg per day i.p.) or placebo. LV dimensions, hypertrophy and wall stress were determined in vivo by magnetic resonance imaging and the gene expressions of ANF and SR Ca(2+)-ATPase were quantified by Northern blot. Low doses of both drugs did not affect blood pressure, hypertrophy, systolic wall stress and the ANF and SR Ca(2+)-ATPase gene expression. High doses of each drug reduced systolic blood pressure, wall stress, and LV hypertrophy to a similar extent and to values comparable to normotensive, age-matched rats. In addition, high dose treatment reduced LV end-systolic and end-diastolic volume as compared to untreated 2K-1C animals and normalized the mRNA levels of both ANF and SR Ca(2+)-ATPase (as compared to normotensive animals). We conclude that in this model, high doses of ACE inhibition and AT1-receptor blockade are necessary to normalize systolic blood pressure, LV hypertrophy and systolic LV wall stress which, in turn, is associated with restoration of a normal cardiac phenotype with respect to SR Ca(2+)-ATPase and ANF and normalization of cardiac function.

  17. Region specific patella tendon hypertrophy in humans following resistance training

    DEFF Research Database (Denmark)

    Kongsgaard, M.; Reitelseder, S; Pedersen, T.G.

    2007-01-01

    AIM: To examine if cross-sectional area (CSA) differs along the length of the human patellar tendon (PT), and if there is PT hypertrophy in response to resistance training. METHODS: Twelve healthy young men underwent baseline and post-training assessments. Maximal isometric knee extension strength...... (MVC) was determined unilaterally in both legs. PT CSA was measured at the proximal-, mid- and distal PT level and quadriceps muscle CSA was measured at mid-thigh level using magnetic resonance imaging. Mechanical properties of the patellar tendons were determined using ultrasonography. Subsequently....... CONCLUSIONS: To our knowledge, this study is the first to report tendon hypertrophy following resistance training. Further, the data show that the human PT CSA varies along the length of the tendon....

  18. Screening for Fabry Disease in Left Ventricular Hypertrophy: Documentation of a Novel Mutation

    Directory of Open Access Journals (Sweden)

    Ana Baptista

    2015-01-01

    Full Text Available Abstract Background: Fabry disease is a lysosomal storage disease caused by enzyme α-galactosidase A deficiency as a result of mutations in the GLA gene. Cardiac involvement is characterized by progressive left ventricular hypertrophy. Objective: To estimate the prevalence of Fabry disease in a population with left ventricular hypertrophy. Methods: The patients were assessed for the presence of left ventricular hypertrophy defined as a left ventricular mass index ≥ 96 g/m2 for women or ≥ 116 g/m2 for men. Severe aortic stenosis and arterial hypertension with mild left ventricular hypertrophy were exclusion criteria. All patients included were assessed for enzyme α-galactosidase A activity using dry spot testing. Genetic study was performed whenever the enzyme activity was decreased. Results: A total of 47 patients with a mean left ventricular mass index of 141.1 g/m2 (± 28.5; 99.2 to 228.5 g/m2] were included. Most of the patients were females (51.1%. Nine (19.1% showed decreased α-galactosidase A activity, but only one positive genetic test − [GLA] c.785G>T; p.W262L (exon 5, a mutation not previously described in the literature. This clinical investigation was able to establish the association between the mutation and the clinical presentation. Conclusion: In a population of patients with left ventricular hypertrophy, we documented a Fabry disease prevalence of 2.1%. This novel case was defined in the sequence of a mutation of unknown meaning in the GLA gene with further pathogenicity study. Thus, this study permitted the definition of a novel causal mutation for Fabry disease - [GLA] c.785G>T; p.W262L (exon 5.

  19. Role of Bone Marrow Derived Mesenchymal Stem Cells and the Protective Effect of Silymarin in Cisplatin-Induced Acute Renal Failure in Rats.

    Science.gov (United States)

    Ibrahim, Mohamed El-Tantawy; Bana, Eman El; El-Kerdasy, Hanan I

    2018-01-01

    Cisplatin is a highly effective antitumor agent whose clinical application is limited by its nephrotoxicity, which is associated with high mortality and morbidity rates. We aimed to study the protective role of silymarin and mesenchymal stem cells as a therapeutic tool of cisplatin nephrotoxicity. We injected rats with cisplatin in a dose of 5mg/kg body weight for 5 days to induce acute renal failure (ARF). Silymarin was administrated 6 hours before cisplatin injection and mesenchymal stem cells were injected 24 hours after cisplatin-induced ARF. We assessed the ARF biochemically by elevation of kidney function tests and histopathologically by an alteration of the histological architecture of the renal cortex in the form of shrinkage of glomeruli, lobulated tufts and glomerular hypertrophy with narrowing capsular space. The tubules showed extensive tubular degeneration with cellular hyaline materials and debris in the lumen of the renal tubules. The renal blood vessels appeared sclerotic with marked thickened walls. When silymarin was given in different doses before cisplatin, it decreased the toxic effect of cisplatin in the kidney but sclerotic blood vessels remained. Injection of mesenchymal stem cells in rats with cisplatin-induced ARF improved the histopathological effects of cisplatin in renal tissues and kidney function tests were significantly improved. There was a significant improvement in kidney function tests and renal histopathology by using silymarin as protective mechanism in cisplatin-induced ARF. Administration of mesenchymal stem cells denoted a more remarkable therapeutic effect in ARF. Copyright © 2018 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  20. Discriminating between adaptive and carcinogenic liver hypertrophy in rat studies using logistic ridge regression analysis of toxicogenomic data: The mode of action and predictive models.

    Science.gov (United States)

    Liu, Shujie; Kawamoto, Taisuke; Morita, Osamu; Yoshinari, Kouichi; Honda, Hiroshi

    2017-03-01

    Chemical exposure often results in liver hypertrophy in animal tests, characterized by increased liver weight, hepatocellular hypertrophy, and/or cell proliferation. While most of these changes are considered adaptive responses, there is concern that they may be associated with carcinogenesis. In this study, we have employed a toxicogenomic approach using a logistic ridge regression model to identify genes responsible for liver hypertrophy and hypertrophic hepatocarcinogenesis and to develop a predictive model for assessing hypertrophy-inducing compounds. Logistic regression models have previously been used in the quantification of epidemiological risk factors. DNA microarray data from the Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System were used to identify hypertrophy-related genes that are expressed differently in hypertrophy induced by carcinogens and non-carcinogens. Data were collected for 134 chemicals (72 non-hypertrophy-inducing chemicals, 27 hypertrophy-inducing non-carcinogenic chemicals, and 15 hypertrophy-inducing carcinogenic compounds). After applying logistic ridge regression analysis, 35 genes for liver hypertrophy (e.g., Acot1 and Abcc3) and 13 genes for hypertrophic hepatocarcinogenesis (e.g., Asns and Gpx2) were selected. The predictive models built using these genes were 94.8% and 82.7% accurate, respectively. Pathway analysis of the genes indicates that, aside from a xenobiotic metabolism-related pathway as an adaptive response for liver hypertrophy, amino acid biosynthesis and oxidative responses appear to be involved in hypertrophic hepatocarcinogenesis. Early detection and toxicogenomic characterization of liver hypertrophy using our models may be useful for predicting carcinogenesis. In addition, the identified genes provide novel insight into discrimination between adverse hypertrophy associated with carcinogenesis and adaptive hypertrophy in risk assessment. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Discriminating between adaptive and carcinogenic liver hypertrophy in rat studies using logistic ridge regression analysis of toxicogenomic data: The mode of action and predictive models

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shujie; Kawamoto, Taisuke; Morita, Osamu [R& D, Safety Science Research, Kao Corporation, Tochigi (Japan); Yoshinari, Kouichi [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka (Japan); Honda, Hiroshi, E-mail: honda.hiroshi@kao.co.jp [R& D, Safety Science Research, Kao Corporation, Tochigi (Japan)

    2017-03-01

    Chemical exposure often results in liver hypertrophy in animal tests, characterized by increased liver weight, hepatocellular hypertrophy, and/or cell proliferation. While most of these changes are considered adaptive responses, there is concern that they may be associated with carcinogenesis. In this study, we have employed a toxicogenomic approach using a logistic ridge regression model to identify genes responsible for liver hypertrophy and hypertrophic hepatocarcinogenesis and to develop a predictive model for assessing hypertrophy-inducing compounds. Logistic regression models have previously been used in the quantification of epidemiological risk factors. DNA microarray data from the Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System were used to identify hypertrophy-related genes that are expressed differently in hypertrophy induced by carcinogens and non-carcinogens. Data were collected for 134 chemicals (72 non-hypertrophy-inducing chemicals, 27 hypertrophy-inducing non-carcinogenic chemicals, and 15 hypertrophy-inducing carcinogenic compounds). After applying logistic ridge regression analysis, 35 genes for liver hypertrophy (e.g., Acot1 and Abcc3) and 13 genes for hypertrophic hepatocarcinogenesis (e.g., Asns and Gpx2) were selected. The predictive models built using these genes were 94.8% and 82.7% accurate, respectively. Pathway analysis of the genes indicates that, aside from a xenobiotic metabolism-related pathway as an adaptive response for liver hypertrophy, amino acid biosynthesis and oxidative responses appear to be involved in hypertrophic hepatocarcinogenesis. Early detection and toxicogenomic characterization of liver hypertrophy using our models may be useful for predicting carcinogenesis. In addition, the identified genes provide novel insight into discrimination between adverse hypertrophy associated with carcinogenesis and adaptive hypertrophy in risk assessment. - Highlights: • Hypertrophy (H) and hypertrophic

  2. Discriminating between adaptive and carcinogenic liver hypertrophy in rat studies using logistic ridge regression analysis of toxicogenomic data: The mode of action and predictive models

    International Nuclear Information System (INIS)

    Liu, Shujie; Kawamoto, Taisuke; Morita, Osamu; Yoshinari, Kouichi; Honda, Hiroshi

    2017-01-01

    Chemical exposure often results in liver hypertrophy in animal tests, characterized by increased liver weight, hepatocellular hypertrophy, and/or cell proliferation. While most of these changes are considered adaptive responses, there is concern that they may be associated with carcinogenesis. In this study, we have employed a toxicogenomic approach using a logistic ridge regression model to identify genes responsible for liver hypertrophy and hypertrophic hepatocarcinogenesis and to develop a predictive model for assessing hypertrophy-inducing compounds. Logistic regression models have previously been used in the quantification of epidemiological risk factors. DNA microarray data from the Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System were used to identify hypertrophy-related genes that are expressed differently in hypertrophy induced by carcinogens and non-carcinogens. Data were collected for 134 chemicals (72 non-hypertrophy-inducing chemicals, 27 hypertrophy-inducing non-carcinogenic chemicals, and 15 hypertrophy-inducing carcinogenic compounds). After applying logistic ridge regression analysis, 35 genes for liver hypertrophy (e.g., Acot1 and Abcc3) and 13 genes for hypertrophic hepatocarcinogenesis (e.g., Asns and Gpx2) were selected. The predictive models built using these genes were 94.8% and 82.7% accurate, respectively. Pathway analysis of the genes indicates that, aside from a xenobiotic metabolism-related pathway as an adaptive response for liver hypertrophy, amino acid biosynthesis and oxidative responses appear to be involved in hypertrophic hepatocarcinogenesis. Early detection and toxicogenomic characterization of liver hypertrophy using our models may be useful for predicting carcinogenesis. In addition, the identified genes provide novel insight into discrimination between adverse hypertrophy associated with carcinogenesis and adaptive hypertrophy in risk assessment. - Highlights: • Hypertrophy (H) and hypertrophic

  3. Renal myxozoanosis in weedy sea dragons, Phyllopteryx taeniolatus (Lacepède), caused by Sinuolinea phyllopteryxa n. sp.

    Science.gov (United States)

    Garner, M M; Atkinson, S D; Hallett, S L; Bartholomew, J L; Nordhausen, R W; Reed, H; Adams, L; Whitaker, B

    2008-01-01

    Renal myxozoanosis was diagnosed histologically in 11 captive, wild caught, adult weedy (common) sea dragons, Phyllopteryx taeniolatus, from three separate public aquaria in the United States. Myxozoan spores were visible in wet mounts of kidney tissue and were associated with renal tubular dilatation and tubular epithelial cell hypertrophy. Light and electron microscopy revealed spore morphology consistent with the genus Sinuolinea. Spores were spheroidal, slightly dorso-ventrally compressed, length (L) 17.1 x width (W) 16.4 x thickness (T) 15.6 microm, with two shell valves joined at a distinct, sinuous sutural ridge, and had two nearly spherical polar capsules, L 5.5 x W 5.0 microm, with five to seven turns of the polar filament. There were no extra-valvular ridges or protrusions. DNA sequencing required the design of three new primers that yielded 1740 bp of 18S ribosomal DNA sequence. The parasite was determined to be novel based on morphological and molecular data, and was given the name Sinuolinea phyllopteryxa after its vertebrate host.

  4. Inhibition of platelet-derived growth factor signaling prevents muscle fiber growth during skeletal muscle hypertrophy.

    Science.gov (United States)

    Sugg, Kristoffer B; Korn, Michael A; Sarver, Dylan C; Markworth, James F; Mendias, Christopher L

    2017-03-01

    The platelet-derived growth factor receptors alpha and beta (PDGFRα and PDGFRβ) mark fibroadipogenic progenitor cells/fibroblasts and pericytes in skeletal muscle, respectively. While the role that these cells play in muscle growth and development has been evaluated, it was not known whether the PDGF receptors activate signaling pathways that control transcriptional and functional changes during skeletal muscle hypertrophy. To evaluate this, we inhibited PDGFR signaling in mice subjected to a synergist ablation muscle growth procedure, and performed analyses 3 and 10 days after induction of hypertrophy. The results from this study indicate that PDGF signaling is required for fiber hypertrophy, extracellular matrix production, and angiogenesis that occur during muscle growth. © 2017 Federation of European Biochemical Societies.

  5. Becker muscular dystrophy with widespread muscle hypertrophy and a non-sense mutation of exon 2.

    Science.gov (United States)

    Witting, N; Duno, M; Vissing, J

    2013-01-01

    Becker muscular dystrophy features progressive proximal weakness, wasting and often focal hypertrophy. We present a patient with pain and cramps from adolescence. Widespread muscle hypertrophy, preserved muscle strength and a 10-20-fold raised CPK were noted. Muscle biopsy was dystrophic, and Western blot showed a 95% reduction of dystrophin levels. Genetic analyses revealed a non-sense mutation in exon 2 of the dystrophin gene. This mutation is predicted to result in a Duchenne phenotype, but resulted in a mild Becker muscular dystrophy with widespread muscle hypertrophy. We suggest that this unusual phenotype is caused by translation re-initiation downstream from the mutation site. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Renal computed angiography. Part I: Renal CT phlebography. Renal veins variants

    International Nuclear Information System (INIS)

    Al-Amin, M.; Krupev, M.; Hadjidekov, V.; Plachkov, I.

    2012-01-01

    The changing trend in renal surgery, transplantation and minimal invasive urology implies preprocedure evaluation of renal veins. Development of imaging methods offers new possibilities for venographic visualization. The goal of this study is to present authors experience in visualization of renal veins using 64 MDCT and to evaluate the utility in assessments of their variants. 128 patients (68 females and 60 males, mean age 53,3) with urological complaints underwent 64MDCT examination including CT angiography. Contrast enhancement includes 3-4ml/sec injection flow of 90 ml contrast medium followed by 20 ml saline at the same rate. In 23 out of 128 examined patients some of the common variants of the renal vein is found. 64 MDCT angiography visualize very well renal veins and becomes method of choice in preoperative assessment of renal vein anatomy. (authors)

  7. Renal function predicts long-term outcome on enzyme replacement therapy in patients with Fabry disease.

    Science.gov (United States)

    Lenders, Malte; Schmitz, Boris; Stypmann, Jörg; Duning, Thomas; Brand, Stefan-Martin; Kurschat, Christine; Brand, Eva

    2017-12-01

    Renal and cardiac involvement is responsible for substantial morbidity and mortality in Fabry disease (FD). We analysed the incidence of FD-related renal, cardiac and neurologic end points in patients with FD on long-term enzyme replacement therapy (ERT). A retrospective analysis of prospectively collected data from two German FD centres was performed. The impact of renal and cardiac function at ERT-naïve baseline on end point development despite ERT was analysed. Fifty-four patients (28 females) receiving ERT (mean 81 ± 21 months) were investigated. Forty per cent of patients were diagnosed with clinical end points before ERT initiation and 50% of patients on ERT developed new clinical end points. In patients initially diagnosed with an end point before ERT initiation, the risk for an additional end point on ERT was increased {hazard ratio [HR] 3.83 [95% confidence interval (CI) 1.61-9.08]; P = 0.0023}. A decreased glomerular filtration rate (eGFR) ≤75 mL/min/1.73 m2 in ERT-naïve patients at baseline was associated with an increased risk for cardiovascular end points [HR 3.59 (95% CI 1.15-11.18); P = 0.0273] as well as for combined renal, cardiac and neurologic end points on ERT [HR 4.77 (95% CI 1.93-11.81); P = 0.0007]. In patients with normal kidney function, left ventricular hypertrophy at baseline predicted a decreased end point-free survival [HR 6.90 (95% CI 2.04-23.27); P = 0.0018]. The risk to develop an end point was independent of sex. In addition to age, even moderately impaired renal function determines FD progression on ERT. In patients with FD, renal and cardiac protection is warranted to prevent patients from deleterious manifestations of the disease. © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  8. Rhabdomyolysis and acute renal failure following prolonged surgery in the lithotomy position

    Directory of Open Access Journals (Sweden)

    Adnane Guella

    2013-01-01

    Full Text Available Operative positions commonly used in urogenital surgeries when perineal exposure is required include the lithotomy and the exaggerated lithotomy positions (LPs, which expose patients to the risk of rhabdomyolysis. We report a patient with bladder outflow obstruction, benign prostatic hypertrophy and a very large bladder stone, which was removed with cystoscopy and cystolitholapaxy in the LP. The procedure was complicated by posterior bladder perforation and abdominal distention leading to prolonged surgery duration (5.5 h. The patient developed rhabdomyolysis and acute renal failure (ARF without compartmental syndrome. On the other hand, there was a potential role of glycine solution, used for bladder irrigation, in the appearance of ARF. Overall, our case shows that rhabdomyolysis and ARF can develop in operative positions, and duration of surgery is the most important risk factor for such complications.

  9. Lycium chinense leaves extract ameliorates diabetic nephropathy by suppressing hyperglycemia mediated renal oxidative stress and inflammation.

    Science.gov (United States)

    Olatunji, Opeyemi Joshua; Chen, Hongxia; Zhou, Yifeng

    2018-06-01

    Diabetic nephropathy is one of the most serious and most frequently encountered diabetic complication, accounting for the highest cause of end-stage renal disease. This present study was aimed at exploring the protective/attenuative effect of Lycium chinense leaf extract (MELC) on streptozotocin induced diabetic nephropathy in experimental Sprague Dawley rats. The oral administration of diabetic rats with MELC markedly ameliorated renal dysfunction as observed in the significant reduction in the serum levels of creatinine, blood urea nitrogen (BUN), albumin and TGF-β1 as compared to the untreated diabetic control rats. In addition, the elevated levels of renal oxidative stress markers and pro-inflammatory parameters (GSH, SOD, CAT, MDA, TNF-α, IL-6 and IL-1β) were significantly reduced in MELC treated diabetic rats. The results obtained in this study suggests that L. chinense leaf might have the potential as possible pharmacological agent against diabetic nephropathy by suppressing renal oxidative stress and inflammation. Copyright © 2018. Published by Elsevier Masson SAS.

  10. Docosahexaenoic acid inhibits monocrotaline-induced pulmonary hypertension via attenuating endoplasmic reticulum stress and inflammation.

    Science.gov (United States)

    Chen, Rui; Zhong, Wei; Shao, Chen; Liu, Peijing; Wang, Cuiping; Wang, Zhongqun; Jiang, Meiping; Lu, Yi; Yan, Jinchuan

    2018-02-01

    Endoplasmic reticulum (ER) stress and inflammation contribute to pulmonary hypertension (PH) pathogenesis. Previously, we confirmed that docosahexaenoic acid (DHA) could improve hypoxia-induced PH. However, little is known about the link between DHA and monocrotaline (MCT)-induced PH. Our aims were, therefore, to evaluate the effects and molecular mechanisms of DHA on MCT-induced PH in rats. Rat PH was induced by MCT. Rats were treated with DHA daily in the prevention group (following MCT injection) and the reversal group (after MCT injection for 2 wk) by gavage. After 4 wk, mean pulmonary arterial pressure (mPAP), right ventricular (RV) hypertrophy index, and morphological and immunohistochemical analyses were evaluated. Rat pulmonary artery smooth muscle cells (PASMCs) were used to investigate the effects of DHA on cell proliferation stimulated by platelet-derived growth factor (PDGF)-BB. DHA decreased mPAP and attenuated pulmonary vascular remodeling and RV hypertrophy, which were associated with suppressed ER stress. DHA blocked the mitogenic effect of PDGF-BB on PASMCs and arrested the cell cycle via inhibiting nuclear factor of activated T cells-1 (NFATc1) expression and activation and regulating cell cycle-related proteins. Moreover, DHA ameliorated inflammation in lung and suppressed macrophage and T lymphocyte accumulation in lung and adventitia of resistance pulmonary arteries. These findings suggest that DHA could protect against MCT-induced PH by reducing ER stress, suppressing cell proliferation and inflammation.

  11. N-terminal pro B-type natriuretic peptide predicts mortality in patients with left ventricular hypertrophy.

    Science.gov (United States)

    Garcia, Santiago; Akbar, Muhammad S; Ali, Syed S; Kamdar, Forum; Tsai, Michael Y; Duprez, Daniel A

    2010-09-03

    Left ventricular hypertrophy adversely affects outcomes in patients with hypertension. Whether N-terminal pro B-type natriuretic peptide (NT-proBNP) adds incremental prognostic information in patients with hypertension and left ventricular hypertrophy (LVH) is not well established. We aimed to study the prognostic value of NT-proBNP in hypertensive patients with LVH. Echocardiography was performed in 232 patients (mean age 61±15, 102 males, 130 females) for the diagnosis of left ventricular hypertrophy. Left ventricular mass was measured according to The American Society of Echocardiography guidelines. A blood sample was taken for NT-proBNP determination. NT-proBNP levels were analyzed in quartiles after log transformation. Long term survival was established by review of electronic medical records. Arterial hypertension was present in 130 patients (56%) and left ventricular hypertrophy was present in 105 patients (45%). In patients with left ventricular hypertrophy, NT-proBNP levels predicted long term survival (Chi-square=10, p=0.01). After adjusting by age, presence of coronary artery disease, ejection fraction, diabetes status, and hypertension; patients in highest NT pro-BNP quartile were twice as likely to die when compared to patients in the lowest NT-ptoBNP quartile (OR=2.2, 95% CI=1.0-4.6, p=0.03). NT-proBNP is an independent predictor of survival in patients with hypertension and increased left ventricular mass. Copyright © 2009 Elsevier B.V. All rights reserved.

  12. Attenuation changes of the normal and ischemic canine kidney. Dynamic CT scanning after intravenous contrast medium bolus

    Energy Technology Data Exchange (ETDEWEB)

    Jaschke, W.; Lipton, M.J.; Boyd, D.P.; Cann, C.; Strauss, L.; Sievers, R.S.

    The potential of CT scanning to explore total and regional renal blood flow was evaluated in a dog model with unilateral renal artery stenosis (n=7, reduction of renal blood flow: 32-75% of base line flow). Attenuation versus time curves were generated for the renal cortex and medulla, as well as for the aorta and renal vein. A fast CT scanner was used which allowed for up to 24 scans/minute at the same level (slice thickness: 10 mm). A total of 10 ml contrast medim was injected into a peripheral vein for each scan series taken. During baseline conditions, the curve of the renal cortex and medulla demonstrated 2 peaks. The first peak was mainly related to early vascular enhancement, whereas the second peak corresponded mainly to the appearance of contrast medium in the distal convolutes and collecting ducts. Ischemia of the kidney resulted in a reduction of the first peak and a flattening of the leading edge slope. Transport of contrast medium through the extravascular compartments of the kidney was delayed during ischemia. Relative renal blood flow was obtained from the CT data by dividing peak enhancement by rise-time as assessed from the cortical curve. All measurements were related to baseline flow and validated by flow measurements using radioactive labeled microspheres (n=5). Correlation was found to be r=0.97. (orig.).

  13. The inhibitory effect of salmon calcitonin on tri-iodothyronine induction of early hypertrophy in articular cartilage.

    Directory of Open Access Journals (Sweden)

    Pingping Chen-An

    Full Text Available Salmon calcitonin has chondroprotective effect both in vitro and in vivo, and is therefore being tested as a candidate drug for cartilage degenerative diseases. Recent studies have indicated that different chondrocyte phenotypes may express the calcitonin receptor (CTR differentially. We tested for the presence of the CTR in chondrocytes from tri-iodothyronin (T3-induced bovine articular cartilage explants. Moreover, investigated the effects of human and salmon calcitonin on the explants.Early chondrocyte hypertrophy was induced in bovine articular cartilage explants by stimulation over four days with 20 ng/mL T3. The degree of hypertrophy was investigated by molecular markers of hypertrophy (ALP, IHH, COLX and MMP13, by biochemical markers of cartilage turnover (C2M, P2NP and AGNxII and histology. The expression of the CTR was detected by qPCR and immunohistochemistry. T3-induced explants were treated with salmon or human calcitonin. Calcitonin down-stream signaling was measured by levels of cAMP, and by the molecular markers.Compared with untreated control explants, T3 induction increased expression of the hypertrophic markers (p<0.05, of cartilage turnover (p<0.05, and of CTR (p<0.01. Salmon, but not human, calcitonin induced cAMP release (p<0.001. Salmon calcitonin also inhibited expression of markers of hypertrophy and cartilage turnover (p<0.05.T3 induced early hypertrophy of chondrocytes, which showed an elevated expression of the CTR and was thus a target for salmon calcitonin. Molecular marker levels indicated salmon, but not human, calcitonin protected the cartilage from hypertrophy. These results confirm that salmon calcitonin is able to modulate the CTR and thus have chondroprotective effects.

  14. Vascular endothelial growth factor, capillarization, and function of the rat plantaris muscle at the onset of hypertrophy.

    NARCIS (Netherlands)

    Degens, H.; Moore, J.A.; Alway, S.E.

    2003-01-01

    Capillary proliferation occurs during compensatory hypertrophy. We investigated whether the expression of vascular endothelial growth factor (VEGF) is elevated at the onset of hypertrophy when capillary proliferation is minimal, and whether muscle damage as assessed by muscle force deficits, may

  15. Acute post-exercise myofibrillar protein synthesis is not correlated with resistance training-induced muscle hypertrophy in young men.

    Science.gov (United States)

    Mitchell, Cameron J; Churchward-Venne, Tyler A; Parise, Gianni; Bellamy, Leeann; Baker, Steven K; Smith, Kenneth; Atherton, Philip J; Phillips, Stuart M

    2014-01-01

    Muscle hypertrophy following resistance training (RT) involves activation of myofibrillar protein synthesis (MPS) to expand the myofibrillar protein pool. The degree of hypertrophy following RT is, however, highly variable and thus we sought to determine the relationship between the acute activation of MPS and RT-induced hypertrophy. We measured MPS and signalling protein activation after the first session of resistance exercise (RE) in untrained men (n = 23) and then examined the relation between MPS with magnetic resonance image determined hypertrophy. To measure MPS, young men (24±1 yr; body mass index  = 26.4±0.9 kg•m²) underwent a primed constant infusion of L-[ring-¹³C₆] phenylalanine to measure MPS at rest, and acutely following their first bout of RE prior to 16 wk of RT. Rates of MPS were increased 235±38% (Pmuscle volume and acute rates of MPS measured over 1-3 h (r = 0.02), 3-6 h (r = 0.16) or the aggregate 1-6 h post-exercise period (r = 0.10). Hypertrophy after chronic RT was correlated (r = 0.42, P = 0.05) with phosphorylation of 4E-BP1(Thr37/46) at 1 hour post RE. We conclude that acute measures of MPS following an initial exposure to RE in novices are not correlated with muscle hypertrophy following chronic RT.

  16. Change in iron metabolism in rats after renal ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Guang-Liang Xie

    findings might suggest a self-protection mechanism regulating iron homeostasis in IRI and provide a new perspective on iron metabolism in attenuating renal IRI.

  17. A novel hydrodynamic approach of drag-reducing polymers to improve left ventricular hypertrophy and aortic remodeling in spontaneously hypertensive rats

    Directory of Open Access Journals (Sweden)

    Zhang X

    2016-12-01

    -systolic diameter and left ventricular end-diastolic diameter but bigger anterior and posterior systolic wall thicknesses, while there was no significant difference in fractional shortening and ejection fraction. The cross-sectional areas (CSAs of cardiomyocytes and the medial thickness of the aorta in SHR + 10 (ppm DRP and SHR + 20 (ppm DRP groups were significantly reduced compared with SHR + NS group. The expression of ET-1 in SHR + 10DRP and SHR + 20DRP groups was significantly attenuated. These results suggest that chronic treatment with DRPs can protect against left ventricular hypertrophy and aortic remodeling. DRPs may offer a new approach to the treatment of left ventricular hypertrophy and aortic remodeling caused by hypertension. Keywords: aortic remodeling, drag-reducing polymers, ET-1, hypertension, left ventricular hypertrophy

  18. Bilateral idiopathic calf muscle hypertrophy: an exceptional cause of unsightly leg curvature.

    Science.gov (United States)

    Herlin, C; Chaput, B; Rivier, F; Doucet, J C; Bigorre, M; Captier, G

    2015-04-01

    The authors present the management of a young female patient who presented with longstanding bilateral calf muscle hypertrophy, with no known cause. Taking into account the patient's wishes and the fact that the hypertrophy was mainly located in the posteromedial compartment, we chose to carry out a subtotal bilateral resection of medial gastrocnemius muscles. This procedure was performed with an harmonic scalpel, permitting a excellent cosmetic result while avoiding complications or functional impairment. After a reviewing of the commonly used techniques, the authors discuss the chosen surgical approach taking into account its clinical particularity. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  19. Total glucosides of paeony attenuate renal tubulointerstitial injury in STZ-induced diabetic rats: role of Toll-like receptor 2.

    Science.gov (United States)

    Zhang, Wei; Zhao, Li; Su, Shuang-Quan; Xu, Xing-Xin; Wu, Yong-Gui

    2014-01-01

    Accumulating evidence suggested that macrophages induce tubulointerstitial injury. Total glucosides of paeony (TGP), extracted from Paeonia lactiflora, has presented anti-inflammatory activities in diabetic kidney disease. This research will investigate the protective effect of TGP on renal tubulointerstitium and its mechanism in streptozotocin-induced diabetic rats. TGP was administered orally at a dose of 50, 100, and 200 mg·kg(-1)·d(-1) for 8 weeks. Tubulointerstitial injury was quantified, followed by immunohistochemistry analysis of renal α-smooth muscle actin (α-SMA), E-cadherin (E-cad) expression, nuclear factor kappa B (NF-κB)-p-p-65(+), Toll-like receptor (TLR)2(+), and ED-1(+) cell infiltration in renal tubulointerstitium. Renal TLR2(+) macrophages were detected by double immunohistochemical staining. Western blotting was used to detect the TLR2 expression. Histologically, there was marked accumulation of TLR2(+), NF-κB-p-p-65(+), ED-1(+) cells, and ED-1(+)TLR2(+) cells (macrophages) in the diabetic kidney and TGP treatment could alleviate it. Accompanying with that, the tubulointerstitial injury was ameliorated, α-SMA expression was lower, and E-cad expression was higher compared with the diabetic rats. Western blot analysis showed that the expression of TLR2 protein was significantly increased in the kidney of the diabetic rats, whereas TGP treatment reduced it. Our study showed that TGP could prevent renal tubulointerstitium injury in diabetic rats through a mechanism that may be at least partly correlated with suppression of increased macrophage infiltration and the expression of TLR2.

  20. Factors influencing left ventricular hypertrophy in children and adolescents with or without family history of premature myocardial infarction

    Directory of Open Access Journals (Sweden)

    Seyyed Mohsen Hosseini

    2014-01-01

    Result : The results showed that among the studied variables, gender, age, body mass index, and blood pressure were associated with the left ventricular hypertrophy. Conclusion: Considering the results and previous studies in this field, it was observed that left ventricular hypertrophy exists at early ages, which is very dangerous and can lead to heart diseases at early ages. Factors such as being overweight, having high blood pressure, and being male cause left ventricular hypertrophy and lead to undiagnosable heart diseases.

  1. Reno-Cerebral Reflex Activates the Renin-Angiotensin System, Promoting Oxidative Stress and Renal Damage After Ischemia-Reperfusion Injury.

    Science.gov (United States)

    Cao, Wei; Li, Aiqing; Li, Jiawen; Wu, Chunyi; Cui, Shuang; Zhou, Zhanmei; Liu, Youhua; Wilcox, Christopher S; Hou, Fan Fan

    2017-09-01

    A kidney-brain interaction has been described in acute kidney injury, but the mechanisms are uncertain. Since we recently described a reno-cerebral reflex, we tested the hypothesis that renal ischemia-reperfusion injury (IRI) activates a sympathetic reflex that interlinks the renal and cerebral renin-angiotensin axis to promote oxidative stress and progression of the injury. Bilateral ischemia-reperfusion activated the intrarenal and cerebral, but not the circulating, renin-angiotensin system (RAS), increased sympathetic activity in the kidney and the cerebral sympathetic regulatory regions, and induced brain inflammation and kidney injury. Selective renal afferent denervation with capsaicin or renal denervation significantly attenuated IRI-induced activation of central RAS and brain inflammation. Central blockade of RAS or oxidative stress by intracerebroventricular (ICV) losartan or tempol reduced the renal ischemic injury score by 65% or 58%, respectively, and selective renal afferent denervation or reduction of sympathetic tone by ICV clonidine decreased the score by 42% or 52%, respectively (all p renal damage and dysfunction persisted after controlling blood pressure with hydralazine. This study uncovered a novel reflex pathway between ischemic kidney and the brain that sustains renal oxidative stress and local RAS activation to promote ongoing renal damage. These data suggest that the renal and cerebral renin-angiotensin axes are interlinked by a reno-cerebral sympathetic reflex that is activated by ischemia-reperfusion, which contributes to ischemia-reperfusion-induced brain inflammation and worsening of the acute renal injury. Antioxid. Redox Signal. 27, 415-432.

  2. Incidental Findings in Abdominal Dual-Energy Computed Tomography: Correlation Between True Noncontrast and Virtual Noncontrast Images Considering Renal and Liver Cysts and Adrenal Masses.

    Science.gov (United States)

    Slebocki, Karin; Kraus, Bastian; Chang, De-Hua; Hellmich, Martin; Maintz, David; Bangard, Christopher

    To assess correlation between attenuation measurements of incidental findings in abdominal second generation dual-energy computed tomography (CT) on true noncontrast (TNC) and virtual noncontrast (VNC) images. Sixty-three patients underwent arterial dual-energy CT (Somatom Definition Flash, Siemens; pitch factor, 0.75-1.0; gantry rotation time, 0.28 seconds) after endovascular aneurysm repair, consisting of a TNC single energy CT scan (collimation, 128 × 0.6 mm; 120 kVp) and a dual-energy arterial phase scan (collimation, 32 × 0.6 mm, 140 and 100 kVp; blended, 120 kVp data set). Attenuation measurements in Hounsfield units (HU) of liver parenchyma and incidental findings like renal and hepatic cysts and adrenal masses on TNC and VNC images were done by drawing regions of interest. Statistical analysis was performed by paired t test and Pearson correlation. Incidental findings were detected in 56 (89%) patients. There was excellent correlation for both renal (n = 40) and hepatic cysts (n = 12) as well as adrenal masses (n = 6) with a Pearson correlation of 0.896, 0.800, and 0.945, respectively, and mean attenuation values on TNC and VNC images of 10.6 HU ± 12.8 versus 5.1 HU ± 17.5 (attenuation value range from -8.8 to 59.1 HU vs -11.8 to 73.4 HU), 6.4 HU ± 5.8 versus 6.3 HU ± 4.6 (attenuation value range from 2.0 to 16.2 HU vs -3.0 to 15.9 HU), and 12.8 HU ± 11.2 versus 12.4 HU ± 10.2 (attenuation value range from -2.3 to 27.5 HU vs -2.2 to 23.6 HU), respectively. As proof of principle, liver parenchyma measurements also showed excellent correlation between TNC and VNC (n = 40) images with a Pearson correlation of 0.839 and mean attenuation values on TNC and VNC images of 47.2 HU ± 10.5 versus 43.8 HU ± 8.7 (attenuation value range from 21.9 to 60.2 HU vs 4.5 to 65.3 HU). In conclusion, attenuation measurements of incidental findings like renal cysts or adrenal masses on TNC and VNC images derived from second generation dual-energy CT scans show excellent

  3. Diagnostic value of exercise thallium-201 scintigraphy for ischemic heart disease in patients with chronic renal failure

    International Nuclear Information System (INIS)

    Sato, Shigeaki; Ohta, Makoto; Soejima, Michimasa

    1991-01-01

    Recently, it has been reported that there are considerable difficulties in diagnosing ischemic heart disease by ECG alone in patients on hemodialysis (HD) and continuous ambulatory peritoneal dialysis (CAPD). This study was designed to evaluate the diagnostic value of exercise thollium-201 myocardial scintigraphy as compared with ECG examination alone in patients with chronic renal failure. The subjects were 26 patients with chronic renal failure, including patients being treated with HD and CAPD, and 7 normal persons who served as controls. Exercise thallium-201 myocardial scintigraphy was performed according to a multistage bicycle ergometer exercise test. Exercise duration times were shorter (p<0.001) and maximum attained heart rates lower (p<0.05) in the HD group than in controls. Since exercise capacities were reduced in the dialysis patients, there were considerable difficulties in diagnosing ischemic heart disease by ECG alone. In our 26 patients, 15 cases (57.7%) had left ventricular hypertrophy, 5 cases (19.2%) had manifestations of ischemic heart disease, and 4 cases with abnormal ECGs had no abnormal findings on exercise thallium-201 myocardial scintigraphy. Thallium washout rates were higher (p<0.001) in the chronic renal failure group than in the control group, and a significant negative correlation (r=-0.70, p<0.001) was found between thallium washout rates and hematocrit values. Exercise thallium-201 myocardial scitigraphy was more accurate than ECG examination and also could be performed repeatedly without invasion. These results indicate that exercise thallium-201 myocardial scintigraphy is a valuable diagnostic method for ischemic heart disease in patients with chronic renal failure. (author)

  4. Transcriptional profile of isoproterenol-induced cardiomyopathy and comparison to exercise-induced cardiac hypertrophy and human cardiac failure

    Directory of Open Access Journals (Sweden)

    McIver Lauren J

    2009-12-01

    Full Text Available Abstract Background Isoproterenol-induced cardiac hypertrophy in mice has been used in a number of studies to model human cardiac disease. In this study, we compared the transcriptional response of the heart in this model to other animal models of heart failure, as well as to the transcriptional response of human hearts suffering heart failure. Results We performed microarray analyses on RNA from mice with isoproterenol-induced cardiac hypertrophy and mice with exercise-induced physiological hypertrophy and identified 865 and 2,534 genes that were significantly altered in pathological and physiological cardiac hypertrophy models, respectively. We compared our results to 18 different microarray data sets (318 individual arrays representing various other animal models and four human cardiac diseases and identified a canonical set of 64 genes that are generally altered in failing hearts. We also produced a pairwise similarity matrix to illustrate relatedness of animal models with human heart disease and identified ischemia as the human condition that most resembles isoproterenol treatment. Conclusion The overall patterns of gene expression are consistent with observed structural and molecular differences between normal and maladaptive cardiac hypertrophy and support a role for the immune system (or immune cell infiltration in the pathology of stress-induced hypertrophy. Cross-study comparisons such as the results presented here provide targets for further research of cardiac disease that might generally apply to maladaptive cardiac stresses and are also a means of identifying which animal models best recapitulate human disease at the transcriptional level.

  5. A case report of cardia cancer complicated with idiopathic muscular hypertrophy of the oesophagus treated with thoracoscopic surgery.

    Science.gov (United States)

    Ren, Jun; Hao, Yingtao; Peng, Chuanliang

    2018-01-01

    The incidence of idiopathic muscular hypertrophy of oesophagus (IMHE) is low, and cancer with IMHE, showing significant hypertrophy of muscular layer of middle part of the oesophagus and successfully treated with minimally invasive thoracoscopic surgery.

  6. Renin angiotensin system and cardiac hypertrophy after sinoaortic denervation in rats

    Directory of Open Access Journals (Sweden)

    Aline Cristina Piratello

    2010-01-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the role of angiotensin I, II and 1-7 on left ventricular hypertrophy of Wistar and spontaneously hypertensive rats submitted to sinoaortic denervation. METHODS: Ten weeks after sinoaortic denervation, hemodynamic and morphofunctional parameters were analyzed, and the left ventricle was dissected for biochemical analyses. RESULTS: Hypertensive groups (controls and denervated showed an increase on mean blood pressure compared with normotensive ones (controls and denervated. Blood pressure variability was higher in denervated groups than in their respective controls. Left ventricular mass and collagen content were increased in the normotensive denervated and in both spontaneously hypertensive groups compared with Wistar controls. Both hypertensive groups presented a higher concentration of angiotensin II than Wistar controls, whereas angiotensin 1-7 concentration was decreased in the hypertensive denervated group in relation to the Wistar groups. There was no difference in angiotensin I concentration among groups. CONCLUSION: Our results suggest that not only blood pressure variability and reduced baroreflex sensitivity but also elevated levels of angiotensin II and a reduced concentration of angiotensin 1-7 may contribute to the development of left ventricular hypertrophy. These data indicate that baroreflex dysfunction associated with changes in the renin angiotensin system may be predictive factors of left ventricular hypertrophy and cardiac failure.

  7. ERK1/2 pathway is involved in renal gluconeogenesis inhibition under conditions of lowered NADPH oxidase activity.

    Science.gov (United States)

    Winiarska, Katarzyna; Jarzyna, Robert; Dzik, Jolanta M; Jagielski, Adam K; Grabowski, Michal; Nowosielska, Agata; Focht, Dorota; Sierakowski, Bartosz

    2015-04-01

    The aim of this study was to elucidate the mechanisms involved in the inhibition of renal gluconeogenesis occurring under conditions of lowered activity of NADPH oxidase (Nox), the enzyme considered to be one of the main sources of reactive oxygen species in kidneys. The in vitro experiments were performed on primary cultures of rat renal proximal tubules, with the use of apocynin, a selective Nox inhibitor, and TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl), a potent superoxide radical scavenger. In the in vivo experiments, Zucker diabetic fatty (ZDF) rats, a well established model of diabetes type 2, were treated with apocynin solution in drinking water. The main in vitro findings are the following: (1) both apocynin and TEMPOL attenuate the rate of gluconeogenesis, inhibiting the step catalyzed by phosphoenolpyruvate carboxykinase (PEPCK), a key enzyme of the process; (2) in the presence of the above-noted compounds the expression of PEPCK and the phosphorylation of transcription factor CREB and ERK1/2 kinases are lowered; (3) both U0126 (MEK inhibitor) and 3-(2-aminoethyl)-5-((4-ethoxyphenyl)methylene)-2,4-thiazolidinedione (ERK inhibitor) diminish the rate of glucose synthesis via mechanisms similar to those of apocynin and TEMPOL. The observed apocynin in vivo effects include: (1) slight attenuation of hyperglycemia; (2) inhibition of renal gluconeogenesis; (3) a decrease in renal PEPCK activity and content. In view of the results summarized above, it can be concluded that: (1) the lowered activity of the ERK1/2 pathway is of importance for the inhibition of renal gluconeogenesis found under conditions of lowered superoxide radical production by Nox; (2) the mechanism of this phenomenon includes decreased PEPCK expression, resulting from diminished activity of transcription factor CREB; (3) apocynin-evoked inhibition of renal gluconeogenesis contributes to the hypoglycemic action of this compound observed in diabetic animals. Thus, the study has

  8. Disease: H01642 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available H01642 Renal anemia