WorldWideScience

Sample records for attenuates microglial activation

  1. Brilliant blue G attenuates lipopolysaccharidemediated microglial activation and inflammation

    Institute of Scientific and Technical Information of China (English)

    Kui Lu; Jue Wang; Bin Hu; Xiaolei Shi; Junyi Zhou; Yamei Tang; Ying Peng

    2013-01-01

    Previous studies have confirmed that oxidized adenosine triphosphate, a P2X7 receptor antagonist, attenuates lipopolysaccharide-mediated microglial activation and inflammatory expression following neuronal damage in rat brain. NaCl and temperature may affect the potency of oxidized adenosine triphosphate. Brilliant blue G is a derivative of a widely used food additive and has little toxicity. This study explored the effects of brilliant blue G, a selective P2X7 receptor antagonist, on microglial activation and inflammation. Results demonstrated that brilliant blue G inhibited the release of cyclooxygenase-2 and interleukin-6 in BV2 cells. Immunofluorescence displayed that brilliant blue G could suppress lipopolysaccharide-induced microglial activation. This study used RNA interference to block P2X7 receptor expression and found that small interfering RNA also suppressed the release of cyclooxygenase-2 and interleukin-6 in BV2 cells. These results suggested that downregulation of the P2X7 receptor by brilliant blue G was involved in the inhibition of microglial activation and inflammation.

  2. Activation of serotonin receptors promotes microglial injury-induced motility but attenuates phagocytic activity

    NARCIS (Netherlands)

    Krabbe, Grietje; Matyash, Vitali; Pannasch, Ulrike; Mamer, Lauren; Boddeke, Hendrikus W. G. M.; Kettenmann, Helmut

    2012-01-01

    Microglia, the brain immune cell, express several neurotransmitter receptors which modulate microglial functions. In this project we studied the impact of serotonin receptor activation on distinct microglial properties as serotonin deficiency not only has been linked to a number of psychiatric disea

  3. Intrathecal lidocaine pretreatment attenuates immediate neuropathic pain by modulating Nav1.3 expression and decreasing spinal microglial activation

    Directory of Open Access Journals (Sweden)

    Wang Hung-Chen

    2011-06-01

    Full Text Available Abstract Background Intrathecal lidocaine reverses tactile allodynia after nerve injury, but whether neuropathic pain is attenuated by intrathecal lidocaine pretreatment is uncertain. Methods Sixty six adult male Sprague-Dawley rats were divided into three treatment groups: (1 sham (Group S, which underwent removal of the L6 transverse process; (2 ligated (Group L, which underwent left L5 spinal nerve ligation (SNL; and (3 pretreated (Group P, which underwent L5 SNL and was pretreated with intrathecal 2% lidocaine (50 μl. Neuropathic pain was assessed based on behavioral responses to thermal and mechanical stimuli. Expression of sodium channels (Nav1.3 and Nav1.8 in injured dorsal root ganglia and microglial proliferation/activation in the spinal cord were measured on post-operative days 3 (POD3 and 7 (POD7. Results Group L presented abnormal behavioral responses indicative of mechanical allodynia and thermal hyperalgesia, exhibited up-regulation of Nav1.3 and down-regulation of Nav1.8, and showed increased microglial activation. Compared with ligation only, pretreatment with intrathecal lidocaine before nerve injury (Group P, as measured on POD3, palliated both mechanical allodynia (p p 1.3 up-regulation (p = 0.003, and mitigated spinal microglial activation (p = 0.026 by inhibiting phosphorylation (activation of p38 MAP kinase (p = 0.034. p38 activation was also suppressed on POD7 (p = 0.002. Conclusions Intrathecal lidocaine prior to SNL blunts the response to noxious stimuli by attenuating Nav1.3 up-regulation and suppressing activation of spinal microglia. Although its effects are limited to 3 days, intrathecal lidocaine pretreatment can alleviate acute SNL-induced neuropathic pain.

  4. Modulation of microglial/macrophage activation by macrophage inhibitory factor (TKP or tuftsin (TKPR attenuates the disease course of experimental autoimmune encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Tsirka Stella E

    2007-07-01

    Full Text Available Abstract Background Myelin Oligodendrocyte Glycoprotein (MOG-induced experimental autoimmune encephalomyelitis (EAE is the most commonly used mouse model for multiple sclerosis (MS. During the of progression of EAE, microglia, the immunocompetent cells of the brain, become activated and accumulate around demyelinated lesions. Microglial activation is mediated by the extracellular protease tissue Plasminogen Activator (tPA, and mice lacking tPA display altered EAE progression. In this study, we have used pharmacological inhibitors and stimulators of microglial/macrophage activation to examine the temporal requirement for microglial activation in EAE progression and to determine whether such approaches might potentially be of therapeutic value. Results Intervention using the tripeptide macrophage/microglia inhibitory factor MIF (TKP and the tetrapeptide macrophage/microglial stimulator tuftsin (TKPR attenuated EAE symptoms and revealed that the timing of macrophage/microglial activation is critical for the clinical outcome of EAE. We show that the disease progression can potentially be manipulated favorably at early stages by altering the timing of microglial activation, which in turn alters the systemic immune response to favor upregulation of T helper cell 2 genes that promote recovery from EAE. Conclusion Preventative and therapeutic modulation of macrophage/microglial activity significantly alters the outcome of EAE at symptomatic stages. Specific molecular targets have been identified that represent potential avenues of exploration for the treatment and prevention of MS.

  5. Estradiol attenuates spinal cord injury-induced pain by suppressing microglial activation in thalamic VPL nuclei of rats.

    Science.gov (United States)

    Saghaei, Elham; Abbaszadeh, Fatemeh; Naseri, Kobra; Ghorbanpoor, Samar; Afhami, Mina; Haeri, Ali; Rahimi, Farzaneh; Jorjani, Masoumeh

    2013-04-01

    In our previous study we showed that central pain syndrome (CPS) induced by electrolytic injury caused in the unilateral spinothalamic tract (STT) is a concomitant of glial alteration at the site of injury. Here, we investigated the activity of glial cells in thalamic ventral posterolateral nuclei (VPL) and their contribution to CPS. We also examined whether post-injury administration of a pharmacological dose of estradiol can attenuate CPS and associated molecular changes. Based on the results,in the ipsilateral VPL the microglial phenotype switched o hyperactive mode and Iba1 expression was increased significantly on days 21 and 28 post-injury. The same feature was observed in contralateral VPL on day 28 (P<.05). These changes were strongly correlated with the onset of CPS (r(2)=0.670). STT injury did not induce significant astroglial response in both ipsilateral and contralateral VPL. Estradiol attenuated bilateral mechanical hypersensitivity 14 days after STT lesion (P<.05). Estradiol also suppressed microglial activation in the VPL. Taken together, these findings indicate that selective STT lesion induces bilateral microglia activation in VPL which might contribute to mechanical hypersensitivity. Furthermore, a pharmacological dose of estradiol reduces central pain possibly via suppression of glial activity in VPL region. PMID:23419864

  6. Electroacupuncture pretreatment prevents cognitive impairment induced by limb ischemia-reperfusion via inhibition of microglial activation and attenuation of oxidative stress in rats.

    Science.gov (United States)

    Chen, Ye; Zhou, Jun; Li, Jun; Yang, Shi-Bin; Mo, Li-Qun; Hu, Jie-Hui; Yuan, Wan-Li

    2012-01-13

    Limb ischemia-reperfusion (LI/R) is associated with high morbidity and mortality. Furthermore, critical trauma survivors can present cognitive impairment. Cognitive function, survival rate, oxidative stress and neuronal health were examined to elucidate (1) the magnitude of cognitive effects of prolonged reperfusion, (2) potential players in the mechanistic pathway mediating such effects, and (3) possible benefits of electroacupuncture (EA) pretreatment at Baihui (GV20), Yanglingquan (GB34), Taichong (LR3), Zusanli (ST36) and Xuehai (SP10) acupoints. LI/R was induced in rats by placing a rubber tourniquet on each hind limb for 3h, and the animals were evaluated periodically for 7d after LI/R. Rats subjected to LI/R had significantly lower survival rates, and displayed evidence of brain injury and cognitive dysfunction (as determined by the Morris water maze test) 1d and 3d after reperfusion compared to sham-operated controls. LI/R also resulted in higher levels of reactive oxygen species (ROS) and malondialdehyde (MDA), microglial activation, and decreased superoxide dismutase (SOD) activity within Cornu Ammonis area 1 (CA1) of the hippocampus. Depressed survival rates, microglial activation, oxidative damage, and histological changes, as well as cognitive dysfunction were partially or fully attenuated in rats that received 14d of EA prior to LI/R. These findings indicate that LI/R can result in cognitive dysfunction related to activated microglia and elevated oxidative stress, and that EA has neuroprotective potential mediated, at least in part, by inhibition of microglial activation and attenuation of oxidative stress. PMID:22129788

  7. Gypenoside Attenuates β Amyloid-Induced Inflammation in N9 Microglial Cells via SOCS1 Signaling

    OpenAIRE

    Hui Cai; Qianlei Liang; Guanqun Ge

    2016-01-01

    Reducing β amyloid- (Aβ-) induced microglial activation is believed to be effective in treating Alzheimer’s disease (AD). Microglia can be activated into classic activated state (M1 state) or alternative activated state (M2 state), and the former is harmful; in contrast, the latter is beneficial. Gypenoside (GP) is the major bioactive constituent of Gynostemma pentaphyllum, a traditional Chinese herb medicine. In this study, we hypothesized that GP attenuates Aβ-induced microglial activation ...

  8. Gypenoside Attenuates β Amyloid-Induced Inflammation in N9 Microglial Cells via SOCS1 Signaling

    OpenAIRE

    Cai, Hui; Liang, Qianlei; Ge, Guanqun

    2016-01-01

    Reducing β amyloid- (Aβ-) induced microglial activation is believed to be effective in treating Alzheimer's disease (AD). Microglia can be activated into classic activated state (M1 state) or alternative activated state (M2 state), and the former is harmful; in contrast, the latter is beneficial. Gypenoside (GP) is the major bioactive constituent of Gynostemma pentaphyllum, a traditional Chinese herb medicine. In this study, we hypothesized that GP attenuates Aβ-induced microglial activation ...

  9. Gypenoside Attenuates β Amyloid-Induced Inflammation in N9 Microglial Cells via SOCS1 Signaling

    Directory of Open Access Journals (Sweden)

    Hui Cai

    2016-01-01

    Full Text Available Reducing β amyloid- (Aβ- induced microglial activation is believed to be effective in treating Alzheimer’s disease (AD. Microglia can be activated into classic activated state (M1 state or alternative activated state (M2 state, and the former is harmful; in contrast, the latter is beneficial. Gypenoside (GP is the major bioactive constituent of Gynostemma pentaphyllum, a traditional Chinese herb medicine. In this study, we hypothesized that GP attenuates Aβ-induced microglial activation by ameliorating microglial M1/M2 states, and the process may be mediated by suppressor of cell signaling protein 1 (SOCS1. In this study, we found that Aβ exposure increased the levels of microglial M1 markers, including iNOS expression, tumor necrosis factor α (TNF-α, interleukin 1β (IL-1β, and IL-6 releases, and coadministration of GP reversed the increase of M1 markers and enhanced the levels of M2 markers, including arginase-1 (Arg-1 expression, IL-10, brain-derived neurotrophic factor (BDNF, and glial cell-derived neurotrophic factor (GDNF releases in the Aβ-treated microglial cells. SOCS1-siRNA, however, significantly abolished the GP-induced effects on the levels of microglial M1 and M2 markers. These findings indicated that GP attenuates Aβ-induced microglial activation by ameliorating M1/M2 states, and the process may be mediated by SOCS1.

  10. Gypenoside Attenuates β Amyloid-Induced Inflammation in N9 Microglial Cells via SOCS1 Signaling.

    Science.gov (United States)

    Cai, Hui; Liang, Qianlei; Ge, Guanqun

    2016-01-01

    Reducing β amyloid- (Aβ-) induced microglial activation is believed to be effective in treating Alzheimer's disease (AD). Microglia can be activated into classic activated state (M1 state) or alternative activated state (M2 state), and the former is harmful; in contrast, the latter is beneficial. Gypenoside (GP) is the major bioactive constituent of Gynostemma pentaphyllum, a traditional Chinese herb medicine. In this study, we hypothesized that GP attenuates Aβ-induced microglial activation by ameliorating microglial M1/M2 states, and the process may be mediated by suppressor of cell signaling protein 1 (SOCS1). In this study, we found that Aβ exposure increased the levels of microglial M1 markers, including iNOS expression, tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and IL-6 releases, and coadministration of GP reversed the increase of M1 markers and enhanced the levels of M2 markers, including arginase-1 (Arg-1) expression, IL-10, brain-derived neurotrophic factor (BDNF), and glial cell-derived neurotrophic factor (GDNF) releases in the Aβ-treated microglial cells. SOCS1-siRNA, however, significantly abolished the GP-induced effects on the levels of microglial M1 and M2 markers. These findings indicated that GP attenuates Aβ-induced microglial activation by ameliorating M1/M2 states, and the process may be mediated by SOCS1. PMID:27213058

  11. Microglial control of neuronal activity

    Directory of Open Access Journals (Sweden)

    Catherine eBéchade

    2013-03-01

    Full Text Available Fine-tuning of neuronal activity was thought to be a neuron-autonomous mechanism until the discovery that astrocytes are active players of synaptic transmission. The involvement of astrocytes has changed our understanding of the roles of non-neuronal cells and shed new light on the regulation of neuronal activity. Microglial cells are the macrophages of the brain and they have been mostly investigated as immune cells. However recent data discussed in this review support the notion that, similarly to astrocytes, microglia are involved in the regulation of neuronal activity. For instance, in most, if not all, brain pathologies a strong temporal correlation has long been known to exist between the pathological activation of microglia and dysfunction of neuronal activity. Recent studies have convincingly shown that alteration of microglial function is responsible for pathological neuronal activity. This causal relationship has also been demonstrated in mice bearing loss-of-function mutations in genes specifically expressed by microglia. In addition to these long-term regulations of neuronal activity, recent data show that microglia can also rapidly regulate neuronal activity, thereby acting as partners of neurotransmission.

  12. Stimulation of cannabinoid receptor 2 (CB2 suppresses microglial activation

    Directory of Open Access Journals (Sweden)

    Fernandez Francisco

    2005-12-01

    Full Text Available Abstract Background Activated microglial cells have been implicated in a number of neurodegenerative disorders, including Alzheimer's disease (AD, multiple sclerosis (MS, and HIV dementia. It is well known that inflammatory mediators such as nitric oxide (NO, cytokines, and chemokines play an important role in microglial cell-associated neuron cell damage. Our previous studies have shown that CD40 signaling is involved in pathological activation of microglial cells. Many data reveal that cannabinoids mediate suppression of inflammation in vitro and in vivo through stimulation of cannabinoid receptor 2 (CB2. Methods In this study, we investigated the effects of a cannabinoid agonist on CD40 expression and function by cultured microglial cells activated by IFN-γ using RT-PCR, Western immunoblotting, flow cytometry, and anti-CB2 small interfering RNA (siRNA analyses. Furthermore, we examined if the stimulation of CB2 could modulate the capacity of microglial cells to phagocytise Aβ1–42 peptide using a phagocytosis assay. Results We found that the selective stimulation of cannabinoid receptor CB2 by JWH-015 suppressed IFN-γ-induced CD40 expression. In addition, this CB2 agonist markedly inhibited IFN-γ-induced phosphorylation of JAK/STAT1. Further, this stimulation was also able to suppress microglial TNF-α and nitric oxide production induced either by IFN-γ or Aβ peptide challenge in the presence of CD40 ligation. Finally, we showed that CB2 activation by JWH-015 markedly attenuated CD40-mediated inhibition of microglial phagocytosis of Aβ1–42 peptide. Taken together, these results provide mechanistic insight into beneficial effects provided by cannabinoid receptor CB2 modulation in neurodegenerative diseases, particularly AD.

  13. Microglial activation - tuning and pruning adult neurogenesis

    Directory of Open Access Journals (Sweden)

    Christine TEkdahl

    2012-03-01

    Full Text Available Adult born neurons are encountering numerous choices during their development from neural stem cells to mature functionally integrated neurons in the brain. Microglia are part of the microenvironment within the neurogenic niches and possibly involved during the entire decision process. Mounting evidence suggest that microglia act as local equalizers capable of amplifying as well as filtering homeostatic signals. Depending on their state of activation, they may induce or facilitate different fundamental decisions in neurogenesis, such as proliferation or quiescence, cell survival or death, migration or establishment, growth or retraction of dendrites and axons, synaptic assembly or pruning, or tuning of synaptic transmission. Microglia are activated as a first line of defence against infections and participate in transforming the innate immunity into an adaptive immune response by recruiting systemic immune cells. So far, most studies have reported an acute decrease in the survival of new neurons following this classically activated microglial reaction. However, the long-term effects are more complex. In several neurodegenerative diseases the microglial activation is also evident, including a heterogeneous population of microglial phenotypes and a plethora of immune mediators, where the initiating agent may be protein deposits or cell debris. The transformation from a pro- to an anti-inflammatory cytokine profile and the de-activation of microglia is not clearly defined, or even dysregulated, and the adaptive response is often sparse. The diverse role of microglial activation in neurodegenerative diseases is reflected by the numerous studies reporting both beneficial and detrimental effects on the different steps of neurogenesis. This review will highlight the most recent findings on how microglial activation modulates adult neurogenesis, and specifically discuss the role of microglia in synaptic integration, currently a fast expanding research

  14. Vitamin E Suppression of Microglial Activation Is Neuroprotective

    OpenAIRE

    Li, Yuekui; Liu, Ling; Barger, Steven W.; Mrak, Robert E; Griffin, W Sue T

    2001-01-01

    Neurotoxic microglial-neuronal interactions have been implicated in the pathogenesis of various neurodegenerative diseases such as Alzheimer’s disease, and vitamin E has been shown to have direct neuroprotective effects. To determine whether vitamin E also has indirect neuroprotective effects through suppression of microglial activation, we used a microglial-neuronal coculture. Lipopolysaccharide (LPS) treatment of a microglial cell line (N9) induced a time-dependent activation of both p38 mi...

  15. Aspirin-triggered lipoxin A4 attenuates LPS-induced pro-inflammatory responses by inhibiting activation of NF-κB and MAPKs in BV-2 microglial cells

    OpenAIRE

    Yuan Shi-Ying; Zhou Jie-Ping; Liu Ren-Gang; Zheng Jin; Li Long-Yan; Wu Yan; Wang Yan-Ping; Shang You; Yao Shang-Long

    2011-01-01

    Abstract Background Microglial activation plays an important role in neurodegenerative diseases through production of nitric oxide (NO) and several pro-inflammatory cytokines. Lipoxins (LXs) and aspirin-triggered LXs (ATLs) are considered to act as 'braking signals' in inflammation. In the present study, we investigated the effect of aspirin-triggered LXA4 (ATL) on infiammatory responses induced by lipopolysaccharide (LPS) in murine microglial BV-2 cells. Methods BV-2 cells were treated with ...

  16. Minocycline and sulforaphane inhibited lipopolysaccharide-mediated retinal microglial activation

    OpenAIRE

    Li-ping YANG; Zhu, Xiu-an; Tso, Mark O.M.

    2007-01-01

    Purpose To elucidate the inhibitory effect of minocycline and sulforaphane on lipopolysaccharide (LPS)-induced retinal microglial activation and the mechanisms through which they exerted their inhibitory effects. Methods Primary retinal microglial cultures were exposed to LPS with or without minocycline and sulforaphane. The mRNA expression of monocyte chemotactic protein (MCP)-1, MCP-3, macrophage inflammatory protein (MIP)-1α, MIP-1β, eotaxin, regulated upon activation normal T-cell express...

  17. Doxycycline Suppresses Microglial Activation by Inhibiting the p38 MAPK and NF-kB Signaling Pathways.

    Science.gov (United States)

    Santa-Cecília, Flávia V; Socias, Benjamin; Ouidja, Mohand O; Sepulveda-Diaz, Julia E; Acuña, Leonardo; Silva, Rangel L; Michel, Patrick P; Del-Bel, Elaine; Cunha, Thiago M; Raisman-Vozari, Rita

    2016-05-01

    In neurodegenerative diseases, the inflammatory response is mediated by activated glial cells, mainly microglia, which are the resident immune cells of the central nervous system. Activated microglial cells release proinflammatory mediators and neurotoxic factors that are suspected to cause or exacerbate these diseases. We recently demonstrated that doxycycline protects substantia nigra dopaminergic neurons in an animal model of Parkinson's disease. This effect was associated with a reduction of microglial cell activation, which suggests that doxycycline may operate primarily as an anti-inflammatory drug. In the present study, we assessed the anti-inflammatory potential of doxycycline using lipopolysaccharide (LPS)-activated primary microglial cells in culture as a model of neuroinflammation. Doxycycline attenuated the expression of key activation markers in LPS-treated microglial cultures in a concentration-dependent manner. More specifically, doxycycline treatment lowered the expression of the microglial activation marker IBA-1 as well as the production of ROS, NO, and proinflammatory cytokines (TNF-α and IL-1β). In primary microglial cells, we also found that doxycycline inhibits LPS-induced p38 MAP kinase phosphorylation and NF-kB nuclear translocation. The present results indicate that the effect of doxycycline on LPS-induced microglial activation probably occurs via the modulation of p38 MAP kinase and NF-kB signaling pathways. These results support the idea that doxycycline may be useful in preventing or slowing the progression of PD and other neurodegenerative diseases that exhibit altered glia function. PMID:26745968

  18. Insensitivity of astrocytes to interleukin 10 signaling following peripheral immune challenge results in prolonged microglial activation in the aged brain.

    Science.gov (United States)

    Norden, Diana M; Trojanowski, Paige J; Walker, Frederick R; Godbout, Jonathan P

    2016-08-01

    Immune-activated microglia from aged mice produce exaggerated levels of cytokines. Despite high levels of microglial interleukin (IL)-10 in the aged brain, neuroinflammation was prolonged and associated with depressive-like deficits. Because astrocytes respond to IL-10 and, in turn, attenuate microglial activation, we investigated if astrocyte-mediated resolution of microglial activation was impaired with age. Here, aged astrocytes had a dysfunctional profile with higher glial fibrillary acidic protein, lower glutamate transporter expression, and significant cytoskeletal re-arrangement. Moreover, aged astrocytes had reduced expression of growth factors and IL-10 receptor-1 (IL-10R1). After in vivo lipopolysaccharide immune challenge, aged astrocytes had a molecular signature associated with reduced responsiveness to IL-10. This IL-10 insensitivity of aged astrocytes resulted in a failure to induce IL-10R1 and transforming growth factor β and resolve microglial activation. In addition, adult astrocytes reduced microglial activation when co-cultured ex vivo, whereas aged astrocytes did not. Consistent with the aging studies, IL-10R(KO) astrocytes did not augment transforming growth factor β after immune challenge and failed to resolve microglial activation. Collectively, a major cytokine-regulatory loop between activated microglia and astrocytes is impaired in the aged brain. PMID:27318131

  19. Inhibition of mammalian target of rapamycin attenuates early brain injury through modulating microglial polarization after experimental subarachnoid hemorrhage in rats.

    Science.gov (United States)

    You, Wanchun; Wang, Zhong; Li, Haiying; Shen, Haitao; Xu, Xiang; Jia, Genlai; Chen, Gang

    2016-08-15

    Here, we aimed to study the role and underlying mechanism of mTOR in early brain injury (EBI) after subarachnoid hemorrhage (SAH). Experiment 1, the time course of mTOR activation in the cortex following SAH. Experiment 2, the role of mTOR in SAH-induced EBI. Adult SD rats were divided into four groups: sham group (n=18), SAH+vehicle group (n=18), SAH+rapamycin group (n=18), SAH+AZD8055 group (n=18). Experiment 3, we incubated enriched microglia with OxyHb. Rapamycin and AZD8055 were also used to demonstrate the mTOR's role on microglial polarization in vitro. The phosphorylation levels of mTOR and its substrates were significantly increased and peaked at 24h after SAH. Rapamycin or AZD8055 markedly decreased the phosphorylation levels of mTOR and its substrates and the activation of microglia in vivo, and promoted the microglial polarization from M1 phenotype to M2 phenotype. In addition, administration of rapamycin and AZD8055 following SAH significantly ameliorated EBI, including neuronal apoptosis, neuronal necrosis, brain edema and blood-brain barrier permeability. Our findings suggested that the rapamycin and AZD8055 could attenuate the development of EBI in this SAH model, possibly through inhibiting the activation of microglia by mTOR pathway. PMID:27423593

  20. Magnolia polyphenols attenuate oxidative and inflammatory responses in neurons and microglial cells

    Directory of Open Access Journals (Sweden)

    Chuang Dennis Y

    2013-01-01

    Full Text Available Abstract Background The bark of magnolia has been used in Oriental medicine to treat a variety of remedies, including some neurological disorders. Magnolol (Mag and honokiol (Hon are isomers of polyphenolic compounds from the bark of Magnolia officinalis, and have been identified as major active components exhibiting anti-oxidative, anti-inflammatory, and neuroprotective effects. In this study, we investigate the ability of these isomers to suppress oxidative stress in neurons stimulated by the ionotropic glutamate receptor agonist N-methyl-D-aspartate (NMDA and oxidative and inflammatory responses in microglial cells activated by interferon-γ (IFNγ and lipopolysaccharide (LPS. We also attempt to elucidate the mechanism and signaling pathways involved in cytokine-induced production of reactive oxygen species (ROS in microglial cells. Methods Dihydroethidium (DHE was used to assay superoxide production in neurons, while CM-H2DCF-DA was used to test for ROS production in murine (BV-2 and rat (HAPI immortalized microglial cells. NADPH oxidase inhibitors (for example, diphenyleneiodonium (DPI, AEBSF, and apocynin and immunocytochemistry targeting p47phox and gp91phox were used to assess the involvement of NADPH oxidase. Western blotting was used to assess iNOS and ERK1/2 expression, and the Griess reaction protocol was employed to determine nitric oxide (NO concentration. Results Exposure of Hon and Mag (1–10 μM to neurons for 24 h did not alter neuronal viability, but both compounds (10 μM inhibited NMDA-stimulated superoxide production, a pathway known to involve NADPH oxidase. In microglial cells, Hon and Mag inhibited IFNγ±LPS-induced iNOS expression, NO, and ROS production. Studies with inhibitors and immunocytochemical assay further demonstrated the important role of IFNγ activating the NADPH oxidase through the p-ERK-dependent pathway. Hon and, to a lesser extent, Mag inhibited IFNγ-induced p-ERK1/2 and its downstream pathway for

  1. HIV-1 Tat protein increases microglial outward K(+ current and resultant neurotoxic activity.

    Directory of Open Access Journals (Sweden)

    Jianuo Liu

    Full Text Available Microglia plays a crucial role in the pathogenesis of HIV-1-associated neurocognitive disorders. Increasing evidence indicates the voltage-gated potassium (Kv channels are involved in the regulation of microglia function, prompting us to hypothesize Kv channels may also be involved in microglia-mediated neurotoxic activity in HIV-1-infected brain. To test this hypothesis, we investigated the involvement of Kv channels in the response of microglia to HIV-1 Tat protein. Treatment of rat microglia with HIV-1 Tat protein (200 ng/ml resulted in pro-inflammatory microglial activation, as indicated by increases in TNF-α, IL-1β, reactive oxygen species, and nitric oxide, which were accompanied by enhanced outward K(+ current and Kv1.3 channel expression. Suppression of microglial Kv1.3 channel activity, either with Kv1.3 channel blockers Margatoxin, 5-(4-Phenoxybutoxypsoralen, or broad-spectrum K(+ channel blocker 4-Aminopyridine, or by knockdown of Kv1.3 expression via transfection of microglia with Kv1.3 siRNA, was found to abrogate the neurotoxic activity of microglia resulting from HIV-1 Tat exposure. Furthermore, HIV-1 Tat-induced neuronal apoptosis was attenuated with the application of supernatant collected from K(+ channel blocker-treated microglia. Lastly, the intracellular signaling pathways associated with Kv1.3 were investigated and enhancement of microglial Kv1.3 was found to correspond with an increase in Erk1/2 mitogen-activated protein kinase activation. These data suggest targeting microglial Kv1.3 channels may be a potential new avenue of therapy for inflammation-mediated neurological disorders.

  2. Acupuncture inhibits microglial activation and inflammatory events in the MPTP-induced mouse model.

    Science.gov (United States)

    Kang, Jun Mo; Park, Hi Joon; Choi, Yeong Gon; Choe, Il Hwan; Park, Jae Hyun; Kim, Yong Sik; Lim, Sabina

    2007-02-01

    Using a mouse model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD), this study investigated on the neuroprotective effects of acupuncture by examining whether acupuncture contributed to inhibiting microglial activation and inflammatory events. C57BL/6 mice were treated with MPTP (30 mg/kg, i.p.) for 5 consecutive days. Acupuncture was then applied to acupoints Yanglingquan (GB34) and Taichong (LR3) starting 2 h after the first MPTP administration and then at 48 h intervals until the mice were sacrificed for analyses at 1, 3, and 7 days after the last MPTP injection. These experiments demonstrated that acupuncture inhibited the decreased of the tyrosine hydroxylase (TH) immunoreactivity (IR) and generated a neuroprotective effects in the striatum (ST) and the substantia nigra (SN) on days 1, 3, and 7 post-MPTP injections. Acupuncture attenuated the increase of macrophage antigen complex-1 (MAC-1), a marker of microglial activation, at 1 and 3 days and reduced the increases in cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression on days 1, 3, and 7. In MPTP group, striatal dopamine (DA) was measured by 46% at 7 days, whereas DA in the acupuncture group was 78%. On the basis of these results, we suggest that acupuncture could be used as a neuroprotective intervention for the purpose of inhibiting microglial activation and inflammatory events in PD. PMID:17173870

  3. Sinomenine inhibits microglial activation by Aβ and confers neuroprotection

    Directory of Open Access Journals (Sweden)

    Sharma Shiv K

    2011-09-01

    Full Text Available Abstract Background Neuroinflammation is an important contributor to the development of neurodegenerative diseases, including Alzheimer's disease. Thus, there is a keen interest in identifying compounds, especially from herbal sources, that can inhibit neuroinflammation. Amyloid-β (Aβ is a major component of the amyloid plaques present in the brains of Alzheimer's disease patients. Here, we examined whether sinomenine, present in a Chinese medicinal plant, prevents oligomeric Aβ-induced microglial activation and confers protection against neurotoxicity. Methods Oligomeric amyloid-β was prepared from Aβ(1-42. Intracellular reactive oxygen species production was determined using the dye 2',7'-dichlorodihydrofluorescin diacetate. Nitric oxide level was assessed using the Griess reagent. Flow cytometry was used to examine the levels of inflammatory molecules. BV2-conditioned medium was used to treat hippocampal cell line (HT22 and primary hippocampal cells in indirect toxicity experiments. Toxicity was assessed using MTT reduction and TUNEL assays. Results We found that sinomenine prevents the oligomeric Aβ-induced increase in levels of reactive oxygen species and nitric oxide in BV2 microglial cells. In addition, sinomenine reduces levels of Aβ-induced inflammatory molecules. Furthermore, sinomenine protects hippocampal HT22 cells as well as primary hippocampal cells from indirect toxicity mediated by Aβ-treated microglial cells, but has no effect on Aβ-induced direct toxicity to HT22 cells. Finally, we found that conditioned medium from Aβ-treated BV2 cells contains increased levels of nitric oxide and inflammatory molecules, but the levels of these molecules are reduced by sinomenine. Conclusions Sinomenine prevents oligomeric Aβ-induced microglial activation, and confers protection against indirect neurotoxicity to hippocampal cells. These results raise the possibility that sinomenine may have therapeutic potential for the treatment

  4. Microglial phagocytosis induced by fibrillar β-amyloid is attenuated by oligomeric β-amyloid: implications for Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Lin Nan

    2011-06-01

    Full Text Available Abstract Background Reactive microglia are associated with β-amyloid (Aβ deposit and clearance in Alzhiemer's Disease (AD. Paradoxically, entocranial resident microglia fail to trigger an effective phagocytic response to clear Aβ deposits although they mainly exist in an "activated" state. Oligomeric Aβ (oAβ, a recent target in the pathogenesis of AD, can induce more potent neurotoxicity when compared with fibrillar Aβ (fAβ. However, the role of the different Aβ forms in microglial phagocytosis, induction of inflammation and oxidation, and subsequent regulation of phagocytic receptor system, remain unclear. Results We demonstrated that Aβ(1-42 fibrils, not Aβ(1-42 oligomers, increased the microglial phagocytosis. Intriguingly, the pretreatment of microglia with oAβ(1-42 not only attenuated fAβ(1-42-triggered classical phagocytic response to fluorescent microspheres but also significantly inhibited phagocytosis of fluorescent labeled fAβ(1-42. Compared with the fAβ(1-42 treatment, the oAβ(1-42 treatment resulted in a rapid and transient increase in interleukin 1β (IL-1β level and produced higher levels of tumor necrosis factor-α (TNF-α, nitric oxide (NO, prostaglandin E2 (PGE2 and intracellular superoxide anion (SOA. The further results demonstrated that microglial phagocytosis was negatively correlated with inflammatory mediators in this process and that the capacity of phagocytosis in fAβ(1-42-induced microglia was decreased by IL-1β, lippolysaccharide (LPS and tert-butyl hydroperoxide (t-BHP. The decreased phagocytosis could be relieved by pyrrolidone dithiocarbamate (PDTC, a nuclear factor-κB (NF-κB inhibitor, and N-acetyl-L-cysteine (NAC, a free radical scavenger. These results suggest that the oAβ-impaired phagocytosis is mediated through inflammation and oxidative stress-mediated mechanism in microglial cells. Furthermore, oAβ(1-42 stimulation reduced the mRNA expression of CD36, integrin β1 (Itgb1, and Ig

  5. Hypothermia Reduces Toll-Like Receptor 3-Activated Microglial Interferon-β and Nitric Oxide Production

    Directory of Open Access Journals (Sweden)

    Tomohiro Matsui

    2013-01-01

    Full Text Available Therapeutic hypothermia protects neurons after injury to the central nervous system (CNS. Microglia express toll-like receptors (TLRs that play significant roles in the pathogenesis of sterile CNS injury. To elucidate the possible mechanisms involved in the neuroprotective effect of therapeutic hypothermia, we examined the effects of hypothermic culture on TLR3-activated microglial release of interferon (IFN-β and nitric oxide (NO, which are known to be associated with neuronal cell death. When rat or mouse microglia were cultured under conditions of hypothermia (33°C and normothermia (37°C with a TLR3 agonist, polyinosinic-polycytidylic acid, the production of IFN-β and NO in TLR3-activated microglia at 48 h was decreased by hypothermia compared with that by normothermia. In addition, exposure to recombinant IFN-β and sodium nitroprusside, an NO donor, caused death of rat neuronal pheochromocytoma PC12 cells in a concentration-dependent manner after 24 h. Taken together, these results suggest that the attenuation of microglial production of IFN-β and NO by therapeutic hypothermia leads to the inhibition of neuronal cell death.

  6. Cyclooxygenase-2 mediates microglial activation and secondary dopaminergic cell death in the mouse MPTP model of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Hunter Randy L

    2006-03-01

    Full Text Available Abstract Background Accumulating evidence suggests that inflammation plays an important role in the progression of Parkinson's disease (PD. Among many inflammatory factors found in the PD brain, cyclooxygenase (COX, specifically the inducible isoform, COX-2, is believed to be a critical enzyme in the inflammatory response. Induction of COX-2 is also found in an experimental model of PD produced by administration of 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP. Method COX-2-deficient mice or C57BL/6 mice were treated with MPTP to investigate the effects of COX-2 deficiency or by using various doses of valdecoxib, a specific COX-2 inhibitor, which induces inhibition of COX-2 on dopaminergic neuronal toxicity and locomotor activity impairment. Immunohistochemistry, stereological cell counts, immunoblotting, an automated spontaneous locomotor activity recorder and rotarod behavioral testing apparatus were used to assess microglial activation, cell loss, and behavioral impariments. Results MPTP reduced tyrosine hydroxylase (TH-positive cell counts in the substantia nigra pars compacta (SNpc; total distance traveled, vertical activity, and coordination on a rotarod; and increased microglia activation. Valdecoxib alleviated the microglial activation, the loss of TH-positive cells and the decrease in open field and vertical activity. COX-2 deficiency attenuated MPTP-induced microglial activation, degeneration of TH-positive cells, and loss of coordination. Conclusion These results indicate that reducing COX-2 activity can mitigate the secondary and progressive loss of dopaminergic neurons as well as the motor deficits induced by MPTP, possibly by suppression of microglial activation in the SNpc.

  7. CCL2/MCP-1 modulation of microglial activation and proliferation

    Directory of Open Access Journals (Sweden)

    Garcia-Bueno Borja

    2011-07-01

    Full Text Available Abstract Background Monocyte chemoattractant protein (CCL2/MCP-1 is a chemokine that attracts cells involved in the immune/inflammatory response. As microglia are one of the main cell types sustaining inflammation in brain, we proposed here to analyze the direct effects of MCP-1 on cultured primary microglia. Methods Primary microglia and neuronal cultures were obtained from neonatal and embryonic Wistar rats, respectively. Microglia were incubated with different concentrations of recombinant MCP-1 and LPS. Cell proliferation was quantified by measuring incorporation of bromodeoxyuridine (BrdU. Nitrite accumulation was measured using the Griess assay. The expression and synthesis of different proteins was measured by RT-PCR and ELISA. Cell death was quantified by measuring release of LDH into the culture medium. Results MCP-1 treatment (50 ng/ml, 24 h did not induce morphological changes in microglial cultures. Protein and mRNA levels of different cytokines were measured, showing that MCP-1 was not able to induce proinflammatory cytokines (IL-1β, IL6, MIP-1α, either by itself or in combination with LPS. A similar lack of effect was observed when measuring inducible nitric oxide synthase (NOS2 expression or accumulation of nitrites in the culture media as a different indicator of microglial activation. MCP-1 was also unable to alter the expression of different trophic factors that were reduced by LPS treatment. In order to explore the possible release of other products by microglia and their potential neurotoxicity, neurons were co-cultured with microglia: no death of neurons could be detected when treated with MCP-1. However, the presence of MCP-1 induced proliferation of microglia, an effect opposite to that observed with LPS. Conclusion These data indicate that, while causing migration and proliferation of microglia, MCP-1 does not appear to directly activate an inflammatory response in this cell type, and therefore, other factors may be

  8. Differential regulation of Aβ42-induced neuronal C1q synthesis and microglial activation

    OpenAIRE

    Tenner Andrea J; Fan Rong

    2005-01-01

    Abstract Expression of C1q, an early component of the classical complement pathway, has been shown to be induced in neurons in hippocampal slices, following accumulation of exogenous Aβ42. Microglial activation was also detected by surface marker expression and cytokine production. To determine whether C1q induction was correlated with intraneuronal Aβ and/or microglial activation, D-(-)-2-amino-5-phosphonovaleric acid (APV, an NMDA receptor antagonist) and glycine-arginine-glycine-aspartic a...

  9. Differential regulation of Aβ42-induced neuronal C1q synthesis and microglial activation

    Directory of Open Access Journals (Sweden)

    Tenner Andrea J

    2005-01-01

    Full Text Available Abstract Expression of C1q, an early component of the classical complement pathway, has been shown to be induced in neurons in hippocampal slices, following accumulation of exogenous Aβ42. Microglial activation was also detected by surface marker expression and cytokine production. To determine whether C1q induction was correlated with intraneuronal Aβ and/or microglial activation, D-(--2-amino-5-phosphonovaleric acid (APV, an NMDA receptor antagonist and glycine-arginine-glycine-aspartic acid-serine-proline peptide (RGD, an integrin receptor antagonist, which blocks and enhances Aβ42 uptake, respectively, were assessed for their effect on neuronal C1q synthesis and microglial activation. APV inhibited, and RGD enhanced, microglial activation and neuronal C1q expression. However, addition of Aβ10–20 to slice cultures significantly reduced Aβ42 uptake and microglial activation, but did not alter the Aβ42-induced neuronal C1q expression. Furthermore, Aβ10–20 alone triggered C1q production in neurons, demonstrating that neither neuronal Aβ42 accumulation, nor microglial activation is required for neuronal C1q upregulation. These data are compatible with the hypothesis that multiple receptors are involved in Aβ injury and signaling in neurons. Some lead to neuronal C1q induction, whereas other(s lead to intraneuronal accumulation of Aβ and/or stimulation of microglia.

  10. Allergy Enhances Neurogenesis and Modulates Microglial Activation in the Hippocampus

    Science.gov (United States)

    Klein, Barbara; Mrowetz, Heike; Thalhamer, Josef; Scheiblhofer, Sandra; Weiss, Richard; Aigner, Ludwig

    2016-01-01

    Allergies and their characteristic TH2-polarized inflammatory reactions affect a substantial part of the population. Since there is increasing evidence that the immune system modulates plasticity and function of the central nervous system (CNS), we investigated the effects of allergic lung inflammation on the hippocampus—a region of cellular plasticity in the adult brain. The focus of the present study was on microglia, the resident immune cells of the CNS, and on hippocampal neurogenesis, i.e., the generation of new neurons. C57BL/6 mice were sensitized with a clinically relevant allergen derived from timothy grass pollen (Phl p 5). As expected, allergic sensitization induced high serum levels of allergen-specific immunoglobulins (IgG1 and IgE) and of TH2 cytokines (IL-5 and IL-13). Surprisingly, fewer Iba1+ microglia were found in the granular layer (GL) and subgranular zone (SGZ) of the hippocampal dentate gyrus and also the number of Iba1+MHCII+ cells was lower, indicating a reduced microglial surveillance and activation in the hippocampus of allergic mice. Neurogenesis was analyzed by labeling of proliferating cells with bromodeoxyuridine (BrdU) and determining their fate 4 weeks later, and by quantitative analysis of young immature neurons, i.e., cells expressing doublecortin (DCX). The number of DCX+ cells was clearly increased in the allergy animals. Moreover, there were more BrdU+ cells present in the hippocampus of allergic mice, and these newly born cells had differentiated into neurons as indicated by a higher number of BrdU+NeuN+ cells. In summary, allergy led to a reduced microglia presence and activity and to an elevated level of neurogenesis in the hippocampus. This effect was apparently specific to the hippocampus, as we did not observe these alterations in the subventricular zone (SVZ)/olfactory bulb (OB) system, also a region of high cellular plasticity and adult neurogenesis.

  11. Cannabinoid CB2 Receptor Mediates Nicotine-Induced Anti-Inflammation in N9 Microglial Cells Exposed to β Amyloid via Protein Kinase C

    OpenAIRE

    Ji Jia; Jie Peng; Zhaoju Li; Youping Wu; Qunlin Wu; Weifeng Tu; Mingchun Wu

    2016-01-01

    Background. Reducing β amyloid- (Aβ-) induced microglial activation is considered to be effective in treating Alzheimer's disease (AD). Nicotine attenuates Aβ-induced microglial activation; the mechanism, however, is still elusive. Microglia could be activated into classic activated state (M1 state) or alternative activated state (M2 state); the former is cytotoxic and the latter is neurotrophic. In this investigation, we hypothesized that nicotine attenuates Aβ-induced microglial activation ...

  12. CD45RB is a novel molecular therapeutic target to inhibit Abeta peptide-induced microglial MAPK activation.

    Directory of Open Access Journals (Sweden)

    Yuyan Zhu

    Full Text Available BACKGROUND: Microglial activation, characterized by p38 MAPK or p44/42 MAPK pathway signal transduction, occurs in Alzheimer's disease (AD. Our previous studies demonstrated CD45, a membrane-bound protein tyrosine phosphatase (PTP, opposed beta-amyloid (Abeta peptide-induced microglial activation via inhibition of p44/42 MAPK. Additionally we have shown agonism of the RB isoform of CD45 (CD45RB abrogates lipopolysaccharide (LPS-induced microglial activation. METHODOLOGY AND RESULTS: In this study, CD45RB modulation of Abeta peptide or LPS-activated primary cultured microglial cells was further investigated. Microglial cells were co-treated with "aged" FITC-Abeta(1-42 and multiple CD45 isoform agonist antibodies. Data revealed cross-linking of CD45, particularly the CD45RB isoform, enhances microglial phagocytosis of Abeta(1-42 peptide and inhibits LPS-induced activation of p44/42 and p38 pathways. Co-treatment of microglial cells with agonist CD45 antibodies results in significant inhibition of LPS-induced microglial TNF-alpha and IL-6 release through p44/42 and/or p38 pathways. Moreover, inhibition of either of these pathways augmented CD45RB cross-linking induced microglial phagocytosis of Abeta(1-42 peptide. To investigate the mechanism(s involved, microglial cells were co-treated with a PTP inhibitor (potassium bisperoxo [1,10-phenanthroline oxovanadate; Phen] and Abeta(1-42 peptides. Data showed synergistic induction of microglial activation as evidenced by TNF-alpha and IL-6 release; both of which are demonstrated to be dependent on increased p44/42 and/or p38 activation. Finally, it was observed that cross-linking of CD45RB in the presence of Abeta(1-42 peptide, inhibits co-localization of microglial MHC class II and Abeta peptide; suggesting CD45 activation inhibits the antigen presenting phenotype of microglial cells. CONCLUSION: In summary, p38 MAPK is another novel signaling pathway, besides p44/42, in which CD45RB cross

  13. Imaging microglial activation and glucose consumption in a mouse model of Alzheimer’s disease

    OpenAIRE

    Rapic, S. (Sara); Backes, H. (Heiko); Viel, T. (Thomas); Monfared, P; Jacobs, A. H.; Kummer, M. P.; Neumaier, B.; Vollmar, S.; Hoehn, M.; Linden, A; Heneka, M.T. (Michael)

    2012-01-01

    In Alzheimer´s disease (AD), persistent microglial activation as sign of chronic neuroinflammation contributes to disease progression. Our study aimed to in vivo visualize and quantify microglial activation in 13- to 15-month-old AD mice using [11C]-(R)-PK11195 and positron emission tomography (PET). We attempted to modulate neuroinflammation by subjecting the animals to an anti-inflammatory treatment with pioglitazone (5-weeks’ treatment, 5-week wash-out period). [11C]-(R)-PK11195 distrib...

  14. Anti-inflammatory effects of thymoquinone in activated BV-2 microglial cells.

    Science.gov (United States)

    Taka, Equar; Mazzio, Elizabeth A; Goodman, Carl B; Redmon, Natalie; Flores-Rozas, Hernan; Reams, Renee; Darling-Reed, Selina; Soliman, Karam F A

    2015-09-15

    Thymoquinone (TQ), the main pharmacological active ingredient within the black cumin seed (Nigella sativa) is believed to be responsible for the therapeutic effects on chronic inflammatory conditions such as arthritis, asthma and neurodegeneration. In this study, we evaluated the potential anti-inflammatory role of TQ in lipopolysaccharide (LPS)-stimulated BV-2 murine microglia cells. The results obtained indicate that TQ was effective in reducing NO2(-) with an IC50 of 5.04μM, relative to selective iNOS inhibitor LNIL-l-N6-(1-iminoethyl)lysine (IC50 4.09μM). TQ mediated reduction in NO2(-) was found to parallel the decline of iNOS protein expression as confirmed by immunocytochemistry. In addition, we evaluated the anti-inflammatory effects of TQ on ninety-six (96) cytokines using a RayBio AAM-CYT-3 and 4 cytokine antibody protein array. Data obtained establish a baseline protein expression profile characteristic of resting BV-2 cells in the order of osteopontin>MIP-1alpha>MIP-1g>IGF-1 and MCP-I. In the presence of LPS [1ug/ml], activated BV-2 cells produced a sharp rise in specific pro-inflammatory cytokines/chemokine's IL-6, IL-12p40/70, CCL12 /MCP-5, CCL2/MCP-1, and G-CSF which were attenuated by the addition of TQ (10μM). The TQ mediated attenuation of MCP-5, MCP-1 and IL-6 protein in supernatants from activated BV-2 cells were corroborated by independent ELISA. Moreover, the data obtained from the RT(2) PCR demonstrated a similar pattern where the LPS mediated elevation of mRNA for IL-6, CCL12/MCP-5, CCL2/MCP-1 were significantly attenuated by TQ (10μM). Also, in this study, consistent data were obtained for both protein antibody array densitometry and ELISA assays. In addition, TQ was found to reduce LPS mediated elevation in gene expression of Cxcl10 and a number of other cytokines in the panel. These findings demonstrate the significant anti-inflammatory properties of TQ in LPS activated microglial cells. Therefore, the obtained results might indicate

  15. Anti-inflammatory effects and antioxidant activity of dihydroasparagusic acid in lipopolysaccharide-activated microglial cells.

    Science.gov (United States)

    Salemme, Adele; Togna, Anna Rita; Mastrofrancesco, Arianna; Cammisotto, Vittoria; Ottaviani, Monica; Bianco, Armandodoriano; Venditti, Alessandro

    2016-01-01

    The activation of microglia and subsequent release of toxic pro-inflammatory factors are crucially associated with neurodegenerative disease, characterized by increased oxidative stress and neuroinflammation, including Alzheimer and Parkinson diseases and multiple sclerosis. Dihydroasparagusic acid is the reduced form of asparagusic acid, a sulfur-containing flavor component produced by Asparagus plants. It has two thiolic functions able to coordinate the metal ions, and a carboxylic moiety, a polar function, which may enhance excretion of the complexes. Thiol functions are also present in several biomolecules with important physiological antioxidant role as glutathione. The aim of this study is to evaluate the anti-inflammatory and antioxidant potential effect of dihydroasparagusic acid on microglial activation in an in vitro model of neuroinflammation. We have used lipopolysaccharide to induce an inflammatory response in primary rat microglial cultures. Our results suggest that dihydroasparagusic acid significantly prevented lipopolysaccharide-induced production of pro-inflammatory and neurotoxic mediators such as nitric oxide, tumor necrosis factor-α, prostaglandin E2, as well as inducible nitric oxide synthase and cyclooxygenase-2 protein expression and lipoxygenase activity in microglia cells. Moreover it effectively suppressed the level of reactive oxygen species and affected lipopolysaccharide-stimulated activation of mitogen activated protein kinase, including p38, and nuclear factor-kB pathway. These results suggest that dihydroasparagusic acid's neuroprotective properties may be due to its ability to dampen induction of microglial activation. It is a compound that can effectively inhibit inflammatory and oxidative processes that are important factors of the etiopathogenesis of neurodegenerative diseases. PMID:26592472

  16. Up-regulation of microglial cathepsin C expression and activity in lipopolysaccharide-induced neuroinflammation

    Directory of Open Access Journals (Sweden)

    Fan Kai

    2012-05-01

    Full Text Available Abstract Background Cathepsin C (Cat C functions as a central coordinator for activation of many serine proteases in inflammatory cells. It has been recognized that Cat C is responsible for neutrophil recruitment and production of chemokines and cytokines in many inflammatory diseases. However, Cat C expression and its functional role in the brain under normal conditions or in neuroinflammatory processes remain unclear. Our previous study showed that Cat C promoted the progress of brain demyelination in cuprizone-treated mice. The present study further investigated the Cat C expression and activity in lipopolysaccharide (LPS-induced neuroinflammation in vivo and in vitro. Methods C57BL/6 J mice were intraperitoneally injected with either 0.9% saline or lipopolysaccharide (LPS, 5 mg/kg. Immunohistochemistry (IHC and in situ hybridization (ISH were used to analyze microglial activation, TNF-α, IL-1β, IL-6, iNOS mRNAs expressions and cellular localization of Cat C in the brain. Nitrite assay was used to examine microglial activation in vitro; RT-PCR and ELISA were used to determine the expression and release of Cat C. Cat C activity was analyzed by cellular Cat C assay kit. Data were evaluated for statistical significance with paired t test. Results Cat C was predominantly expressed in hippocampal CA2 neurons in C57BL/6 J mice under normal conditions. Six hours after LPS injection, Cat C expression was detected in cerebral cortical neurons; whereas, twenty-four hours later, Cat C expression was captured in activated microglial cells throughout the entire brain. The duration of induced Cat C expression in neurons and in microglial cells was ten days and three days, respectively. In vitro, LPS, IL-1β and IL-6 treatments increased microglial Cat C expression in a dose-dependent manner and upregulated Cat C secretion and its activity. Conclusions Taken together, these data indicate that LPS and proinflammatory cytokines IL-1β, IL-6 induce the

  17. Changes in microglial activation within the hindbrain, nodose ganglia, and the spinal cord following subdiaphragmatic vagotomy

    OpenAIRE

    Gallaher, Z.R.; Ryu, V; Herzog, T.; Ritter, R. C.; Czaja, K

    2012-01-01

    Damage to peripheral nerve branches triggers activation of microglia in CNS areas containing motor neuron soma and primary afferent terminals of the damaged fibers. Furthermore, microglial activation occurs in areas containing the soma and terminals of spared nerve branches of a damaged nerve. Because the abdominal viscera are innervated by spinal afferents as well as vagal afferents and efferents, we speculated that spinal nerves might respond like spared nerve branches following damage to v...

  18. Large A-fiber activity is required for microglial proliferation and p38 MAPK activation in the spinal cord: different effects of resiniferatoxin and bupivacaine on spinal microglial changes after spared nerve injury

    Directory of Open Access Journals (Sweden)

    Decosterd Isabelle

    2009-09-01

    Full Text Available Abstract Background After peripheral nerve injury, spontaneous ectopic activity arising from the peripheral axons plays an important role in inducing central sensitization and neuropathic pain. Recent evidence indicates that activation of spinal cord microglia also contributes to the development of neuropathic pain. In particular, activation of p38 mitogen-activated protein kinase (MAPK in spinal microglia is required for the development of mechanical allodynia. However, activity-dependent activation of microglia after nerve injury has not been fully addressed. To determine whether spontaneous activity from C- or A-fibers is required for microglial activation, we used resiniferatoxin (RTX to block the conduction of transient receptor potential vanilloid subtype 1 (TRPV1 positive fibers (mostly C- and Aδ-fibers and bupivacaine microspheres to block all fibers of the sciatic nerve in rats before spared nerve injury (SNI, and observed spinal microglial changes 2 days later. Results SNI induced robust mechanical allodynia and p38 activation in spinal microglia. SNI also induced marked cell proliferation in the spinal cord, and all the proliferating cells (BrdU+ were microglia (Iba1+. Bupivacaine induced a complete sensory and motor blockade and also significantly inhibited p38 activation and microglial proliferation in the spinal cord. In contrast, and although it produced an efficient nociceptive block, RTX failed to inhibit p38 activation and microglial proliferation in the spinal cord. Conclusion (1 Blocking peripheral input in TRPV1-positive fibers (presumably C-fibers is not enough to prevent nerve injury-induced spinal microglial activation. (2 Peripheral input from large myelinated fibers is important for microglial activation. (3 Microglial activation is associated with mechanical allodynia.

  19. Hypothermia Reduces Toll-Like Receptor 3-Activated Microglial Interferon-β and Nitric Oxide Production

    OpenAIRE

    Tomohiro Matsui; Yukari Motoki; Yusuke Yoshida

    2013-01-01

    Therapeutic hypothermia protects neurons after injury to the central nervous system (CNS). Microglia express toll-like receptors (TLRs) that play significant roles in the pathogenesis of sterile CNS injury. To elucidate the possible mechanisms involved in the neuroprotective effect of therapeutic hypothermia, we examined the effects of hypothermic culture on TLR3-activated microglial release of interferon (IFN)- β and nitric oxide (NO), which are known to be associated with neuronal cell deat...

  20. Treatment with polyamine oxidase inhibitor reduces microglial activation and limits vascular injury in ischemic retinopathy.

    Science.gov (United States)

    Patel, C; Xu, Z; Shosha, E; Xing, J; Lucas, R; Caldwell, R W; Caldwell, R B; Narayanan, S P

    2016-09-01

    Retinal vascular injury is a major cause of vision impairment in ischemic retinopathies. Insults such as hyperoxia, oxidative stress and inflammation contribute to this pathology. Previously, we showed that hyperoxia-induced retinal neurodegeneration is associated with increased polyamine oxidation. Here, we are studying the involvement of polyamine oxidases in hyperoxia-induced injury and death of retinal vascular endothelial cells. New-born C57BL6/J mice were exposed to hyperoxia (70% O2) from postnatal day (P) 7 to 12 and were treated with the polyamine oxidase inhibitor MDL 72527 or vehicle starting at P6. Mice were sacrificed after different durations of hyperoxia and their retinas were analyzed to determine the effects on vascular injury, microglial cell activation, and inflammatory cytokine profiling. The results of this analysis showed that MDL 72527 treatment significantly reduced hyperoxia-induced retinal vascular injury and enhanced vascular sprouting as compared with the vehicle controls. These protective effects were correlated with significant decreases in microglial activation as well as levels of inflammatory cytokines and chemokines. In order to model the effects of polyamine oxidation in causing microglial activation in vitro, studies were performed using rat brain microvascular endothelial cells treated with conditioned-medium from rat retinal microglia stimulated with hydrogen peroxide. Conditioned-medium from activated microglial cultures induced cell stress signals and cell death in microvascular endothelial cells. These studies demonstrate the involvement of polyamine oxidases in hyperoxia-induced retinal vascular injury and retinal inflammation in ischemic retinopathy, through mechanisms involving cross-talk between endothelial cells and resident retinal microglia. PMID:27239699

  1. Increased Plp1 gene expression leads to massive microglial cell activation and inflammation throughout the brain

    Directory of Open Access Journals (Sweden)

    Carrie L Tatar

    2010-09-01

    Full Text Available PMD (Pelizaeus–Merzbacher disease is a rare neurodegenerative disorder that impairs motor and cognitive functions and is associated with a shortened lifespan. The cause of PMD is mutations of the PLP1 [proteolipid protein 1 gene (human] gene. Transgenic mice with increased Plp1 [proteolipid protein 1 gene (non-human] copy number model most aspects of PMD patients with duplications. Hypomyelination and demyelination are believed to cause the neurological abnormalities in mammals with PLP1 duplications. We show, for the first time, intense microglial reactivity throughout the grey and white matter of a transgenic mouse line with increased copy number of the native Plp1 gene. Activated microglia in the white and grey matter of transgenic mice are found as early as postnatal day 7, before myelin commences in normal cerebra. This finding indicates that degeneration of myelin does not cause the microglial response. Microglial numbers are doubled due to in situ proliferation. Compared with the jp (jimpy mouse, which has much more oligodendrocyte death and hardly any myelin, microglia in the overexpressors show a more dramatic microglial reactivity than jp, especially in the grey matter. Predictably, many classical markers of an inflammatory response, including TNF-α (tumour necrosis factor-α and IL-6, are significantly up-regulated manyfold. Because inflammation is believed to contribute to axonal degeneration in multiple sclerosis and other neurodegenerative diseases, inflammation in mammals with increased Plp1 gene dosage may also contribute to axonal degeneration described in patients and rodents with PLP1 increased gene dosage.

  2. Magnolia polyphenols attenuate oxidative and inflammatory responses in neurons and microglial cells

    OpenAIRE

    Chuang Dennis Y; Chan Ming-Huan; Zong Yijia; Sheng Wenwen; He Yan; Jiang Jing Hua; Simonyi Agnes; Gu Zezong; Fritsche Kevin L; Cui Jiankun; Lee James C; Folk William R; Lubahn Dennis B; Sun Albert Y; Sun Grace Y

    2013-01-01

    Abstract Background The bark of magnolia has been used in Oriental medicine to treat a variety of remedies, including some neurological disorders. Magnolol (Mag) and honokiol (Hon) are isomers of polyphenolic compounds from the bark of Magnolia officinalis, and have been identified as major active components exhibiting anti-oxidative, anti-inflammatory, and neuroprotective effects. In this study, we investigate the ability of these isomers to suppress oxidative stress in neurons stimulated by...

  3. Retinoic acid receptor agonist Am80 inhibits CXCL2 production from microglial BV-2 cells via attenuation of NF-κB signaling.

    Science.gov (United States)

    Takaoka, Yuichiro; Takahashi, Moeka; Kurauchi, Yuki; Hisatsune, Akinori; Seki, Takahiro; Shudo, Koichi; Katsuki, Hiroshi

    2016-09-01

    Accumulating lines of evidence suggest that retinoic acid receptor agonists such as Am80 exerts anti-inflammatory actions in the central nervous system, although detailed mechanisms of the action remain largely unknown. Our previous findings suggest that Am80 provides therapeutic effect on intracerebral hemorrhage in mice via suppression of expression of chemokine (C-X-C motif) ligand 2 (CXCL2). Here we investigated the mechanisms of inhibitory action of Am80 on expression of CXCL2 and other pro-inflammatory factors in microglial BV-2 cells. Pretreatment with Am80 markedly suppressed lipopolysaccharide (LPS)-induced expression of CXCL2 mRNA and release of CXCL2 protein. Am80 had no effect on LPS-induced activation of p38 mitogen-activated protein kinase and extracellular signal-regulated kinase. On the other hand, Am80 prevented LPS-induced nuclear translocation of p65 subunit of NF-κB complex. In addition, total expression levels of p65 and IκBα proteins, as well as of mRNAs encoding p65 and IκBα, were lowered by Am80. Dependence of CXCL2 expression on NF-κB was confirmed by the effect of an NF-κB inhibitor caffeic acid phenethyl ester that abolished LPS-induced CXCL2 expression. Caffeic acid phenethyl ester also abolished LPS-induced expression of inducible nitric oxide synthase, interleukin-1β and tumor necrosis factor α, which may be relevant to the inhibitory effect of Am80 on expression of these pro-inflammatory factors. We additionally found that Am80 attenuated LPS-induced up-regulation of CD14, a co-receptor for Toll-like receptor 4 (TLR4). These results suggest that inhibitory effect on TLR4 signaling mediated by NF-κB pathway underlies the anti-inflammatory action of retinoic acid receptor agonists in microglia. PMID:27351827

  4. Neonatal binge alcohol exposure increases microglial activation in the developing rat hippocampus.

    Science.gov (United States)

    Boschen, K E; Ruggiero, M J; Klintsova, A Y

    2016-06-01

    Aberrant activation of the developing immune system can have long-term negative consequences on cognition and behavior. Teratogens, such as alcohol, activate microglia, the brain's resident immune cells, which could contribute to the lifelong deficits in learning and memory observed in humans with Fetal Alcohol Spectrum Disorders (FASD) and in rodent models of FASD. The current study investigates the microglial response of the brain 24h following neonatal alcohol exposure (postnatal days (PDs) 4-9, 5.25g/kg/day). On PD10, microglial cell counts and area of cell territory were assessed using unbiased stereology in the hippocampal subfields CA1, CA3 and dentate gyrus (DG), and hippocampal expression of pro- and anti-inflammatory genes was analyzed. A significant decrease in microglial cell counts in CA1 and DG was found in alcohol-exposed and sham-intubated (SI) animals compared to undisturbed suckle controls (SCs), suggesting overlapping effects of alcohol exposure and intubation alone on the neuroimmune response. Cell territory was decreased in alcohol-exposed animals in CA1, CA3, and DG compared to controls, suggesting the microglia have shifted to a more activated state following alcohol treatment. Furthermore, both alcohol-exposed and SI animals had increased levels of pro-inflammatory cytokines IL-1β, TNF-α, CD11b, and CCL4; in addition, CCL4 was significantly increased in alcohol-exposed animals compared to SI as well. Alcohol-exposed animals also showed increased levels of anti-inflammatory cytokine TGF-β compared to both SI and SCs. In summary, the number and activation of microglia in the neonatal hippocampus are both affected in a rat model of FASD, along with increased gene expression of pro- and anti-inflammatory cytokines. This study shows that alcohol exposure during development induces a neuroimmune response, potentially contributing to long-term alcohol-related changes to cognition, behavior and immune function. PMID:26996510

  5. The PPARα Agonist Fenofibrate Preserves Hippocampal Neurogenesis and Inhibits Microglial Activation After Whole-Brain Irradiation

    International Nuclear Information System (INIS)

    Purpose: Whole-brain irradiation (WBI) leads to cognitive impairment months to years after radiation. Numerous studies suggest that decreased hippocampal neurogenesis and microglial activation are involved in the pathogenesis of WBI-induced brain injury. The goal of this study was to investigate whether administration of the peroxisomal proliferator-activated receptor (PPAR) α agonist fenofibrate would prevent the detrimental effect of WBI on hippocampal neurogenesis. Methods and Materials: For this study, 129S1/SvImJ wild-type and PPARα knockout mice that were fed either regular or 0.2% wt/wt fenofibrate-containing chow received either sham irradiation or WBI (10-Gy single dose of 137Cs γ-rays). Mice were injected intraperitoneally with bromodeoxyuridine to label the surviving cells at 1 month after WBI, and the newborn neurons were counted at 2 months after WBI by use of bromodeoxyuridine/neuronal nuclei double immunofluorescence. Proliferation in the subgranular zone and microglial activation were measured at 1 week and 2 months after WBI by use of Ki-67 and CD68 immunohistochemistry, respectively. Results: Whole-brain irradiation led to a significant decrease in the number of newborn hippocampal neurons 2 months after it was performed. Fenofibrate prevented this decrease by promoting the survival of newborn cells in the dentate gyrus. In addition, fenofibrate treatment was associated with decreased microglial activation in the dentate gyrus after WBI. The neuroprotective effects of fenofibrate were abolished in the knockout mice, indicating a PPARα-dependent mechanism or mechanisms. Conclusions: These data highlight a novel role for PPARα ligands in improving neurogenesis after WBI and offer the promise of improving the quality of life for brain cancer patients receiving radiotherapy.

  6. Cannabinoid receptor type 1 protects nigrostriatal dopaminergic neurons against MPTP neurotoxicity by inhibiting microglial activation.

    Science.gov (United States)

    Chung, Young C; Bok, Eugene; Huh, Sue H; Park, Ju-Young; Yoon, Sung-Hwa; Kim, Sang R; Kim, Yoon-Seong; Maeng, Sungho; Park, Sung Hyun; Jin, Byung K

    2011-12-15

    This study examined whether the cannabinoid receptor type 1 (CB(1)) receptor contributes to the survival of nigrostriatal dopaminergic (DA) neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. MPTP induced significant loss of nigrostriatal DA neurons and microglial activation in the substantia nigra (SN), visualized with tyrosine hydroxylase or macrophage Ag complex-1 immunohistochemistry. Real-time PCR, ELISA, Western blotting, and immunohistochemistry disclosed upregulation of proinflammatory cytokines, activation of microglial NADPH oxidase, and subsequent reactive oxygen species production and oxidative damage of DNA and proteins in MPTP-treated SN, resulting in degeneration of DA neurons. Conversely, treatment with nonselective cannabinoid receptor agonists (WIN55,212-2 and HU210) led to increased survival of DA neurons in the SN, their fibers and dopamine levels in the striatum, and improved motor function. This neuroprotection by cannabinoids was accompanied by suppression of NADPH oxidase reactive oxygen species production and reduced expression of proinflammatory cytokines from activated microglia. Interestingly, cannabinoids protected DA neurons against 1-methyl-4-phenyl-pyridinium neurotoxicity in cocultures of mesencephalic neurons and microglia, but not in neuron-enriched mesencephalic cultures devoid of microglia. The observed neuroprotection and inhibition of microglial activation were reversed upon treatment with CB(1) receptor selective antagonists AM251 and/or SR14,716A, confirming the involvement of the CB(1) receptor. The present in vivo and in vitro findings clearly indicate that the CB(1) receptor possesses anti-inflammatory properties and inhibits microglia-mediated oxidative stress. Our results collectively suggest that the cannabinoid system is beneficial for the treatment of Parkinson's disease and other disorders associated with neuroinflammation and microglia-derived oxidative damage

  7. Apigenin and luteolin modulate microglial activation via inhibition of STAT1-induced CD40 expression

    Directory of Open Access Journals (Sweden)

    Bickford Paula

    2008-09-01

    Full Text Available Abstract Background It is well known that most neurodegenerative diseases are associated with microglia-mediated inflammation. Our previous research demonstrates that the CD40 signaling is critically involved in microglia-related immune responses in the brain. For example, it is well known that the activation of the signal transducer and activator of transcription (STAT signaling pathway plays a central role in interferon-gamma (IFN-γ-induced microglial CD40 expression. We and others have previously reported that microglial CD40 expression is significantly induced by IFN-γ and amyloid-β (Aβ peptide. Recent studies have shown that certain flavonoids possess anti-inflammatory and neuroprotective properties distinct from their well-known anti-oxidant effects. In particular, flavonoids, apigenin and luteolin have been found to be effective CD40 immunomodulators. Methods Cultured microglia, both N9 and primary derived lines, were treated with flavonoids in the presence of IFN-γ and/or CD40 ligation to assess any anti-inflammatory effects and/or mechanisms. CD40 expression on microglia was analyzed by fluorescence activated cell sorting (FACS. Anti-inflammatory effects and mechanisms were confirmed by ELISA for interlekin-6 (IL-6 and TNF-α, lactate dehydrogenase (LDH assay, and STAT1 Western blotting. Results Apigenin and luteolin concentration-dependently suppressed IFN-γ-induced CD40 expression. Apigenin and luteolin also suppressed microglial TNF-α and IL-6 production stimulated by IFN-gamma challenge in the presence of CD40 ligation. In addition, apigenin and luteolin markedly inhibited IFN-γ-induced phosphorylation of STAT1 with little impact on cell survival. Conclusion Our findings provide further support for apigenin and luteolin's anti-inflammatory effects and suggest that these flavonoids may have neuroprotective/disease-modifying properties in various neurodegenerative disorders, including Alzheimer's disease (AD.

  8. Flipping the switches: CD40 and CD45 modulation of microglial activation states in HIV associated dementia (HAD

    Directory of Open Access Journals (Sweden)

    Jin Jingji

    2011-01-01

    Full Text Available Abstract Microglial dysfunction is associated with the pathogenesis and progression of a number of neurodegenerative disorders including HIV associated dementia (HAD. HIV promotion of an M1 antigen presenting cell (APC - like microglial phenotype, through the promotion of CD40 activity, may impair endogenous mechanisms important for amyloid- beta (Aβ protein clearance. Further, a chronic pro-inflammatory cycle is established in this manner. CD45 is a protein tyrosine phosphatase receptor which negatively regulates CD40L-CD40-induced microglial M1 activation; an effect leading to the promotion of an M2 phenotype better suited to phagocytose and clear Aβ. Moreover, this CD45 mediated activation state appears to dampen harmful cytokine production. As such, this property of microglial CD45 as a regulatory "off switch" for a CD40-promoted M1, APC-type microglia activation phenotype may represent a critical therapeutic target for the prevention and treatment of neurodegeneration, as well as microglial dysfunction, found in patients with HAD.

  9. Microglial activation and neuroinflammation in Alzheimer's disease: a critical examination of recent history

    Directory of Open Access Journals (Sweden)

    Wolfgang J Streit

    2010-06-01

    Full Text Available The neurofibrillary degeneration that occurs in Alzheimer’s disease (AD is thought to be the result of a chronic and damaging neuroinflammatory response mediated by neurotoxic substances produced by activated microglial cells. This neuroinflammation hypothesis of AD pathogenesis has led to numerous clinical trials with anti-inflammatory drugs, none of which have shown clear benefits for slowing or preventing disease onset and progression. In this paper, I make the point that AD is not an inflammatory condition, and reconstruct the sequence of events during the 1980s and 1990s that I believe led to the development of this faulty theory.

  10. A common carcinogen benzo[a]pyrene causes neuronal death in mouse via microglial activation.

    Directory of Open Access Journals (Sweden)

    Kallol Dutta

    Full Text Available BACKGROUND: Benzo[a]pyrene (B[a]P belongs to a class of polycyclic aromatic hydrocarbons that serve as micropollutants in the environment. B[a]P has been reported as a probable carcinogen in humans. Exposure to B[a]P can take place by ingestion of contaminated (especially grilled, roasted or smoked food or water, or inhalation of polluted air. There are reports available that also suggests neurotoxicity as a result of B[a]P exposure, but the exact mechanism of action is unknown. METHODOLOGY/PRINCIPAL FINDINGS: Using neuroblastoma cell line and primary cortical neuron culture, we demonstrated that B[a]P has no direct neurotoxic effect. We utilized both in vivo and in vitro systems to demonstrate that B[a]P causes microglial activation. Using microglial cell line and primary microglial culture, we showed for the first time that B[a]P administration results in elevation of reactive oxygen species within the microglia thereby causing depression of antioxidant protein levels; enhanced expression of inducible nitric oxide synthase, that results in increased production of NO from the cells. Synthesis and secretion of proinflammatory cytokines were also elevated within the microglia, possibly via the p38MAP kinase pathway. All these factors contributed to bystander death of neurons, in vitro. When administered to animals, B[a]P was found to cause microglial activation and astrogliosis in the brain with subsequent increase in proinflammatory cytokine levels. CONCLUSIONS/SIGNIFICANCE: Contrary to earlier published reports we found that B[a]P has no direct neurotoxic activity. However, it kills neurons in a bystander mechanism by activating the immune cells of the brain viz the microglia. For the first time, we have provided conclusive evidence regarding the mechanism by which the micropollutant B[a]P may actually cause damage to the central nervous system. In today's perspective, where rising pollution levels globally are a matter of grave concern, our

  11. Therapeutic targeting of Krüppel-like factor 4 abrogates microglial activation

    Directory of Open Access Journals (Sweden)

    Kaushik Deepak

    2012-03-01

    Full Text Available Abstract Background Neuroinflammation occurs as a result of microglial activation in response to invading micro-organisms or other inflammatory stimuli within the central nervous system. According to our earlier findings, Krüppel-like factor 4 (Klf4, a zinc finger transcription factor, is involved in microglial activation and subsequent release of proinflammatory cytokines, tumor necrosis factor alpha, macrophage chemoattractant protein-1 and interleukin-6 as well as proinflammatory enzymes, inducible nitric oxide synthase and cyclooxygenase-2 in lipopolysaccharide-treated microglial cells. Our current study focuses on finding the molecular mechanism of the anti-inflammatory activities of honokiol in lipopolysaccharide-treated microglia with emphasis on the regulation of Klf4. Methods For in vitro studies, mouse microglial BV-2 cell lines as well as primary microglia were treated with 500 ng/mL lipopolysaccharide as well as 1 μM and 10 μM of honokiol. We cloned full-length Klf4 cDNA in pcDNA3.1 expression vector and transfected BV-2 cells with this construct using lipofectamine for overexpression studies. For in vivo studies, brain tissues were isolated from BALB/c mice treated with 5 mg/kg body weight of lipopolysaccharide either with or without 2.5 or 5 mg/kg body weight of honokiol. Expression of Klf4, cyclooxygenase-2, inducible nitric oxide synthase and phospho-nuclear factor-kappa B was measured using immunoblotting. We also measured the levels of cytokines, reactive oxygen species and nitric oxide in different conditions. Results Our findings suggest that honokiol can substantially downregulate the production of proinflammatory cytokines and inflammatory enzymes in lipopolysaccharide-stimulated microglia. In addition, honokiol downregulates lipopolysaccharide-induced upregulation of both Klf4 and phospho-nuclear factor-kappa B in these cells. We also found that overexpression of Klf4 in BV-2 cells suppresses the anti

  12. Microglial activation induced by brain trauma is suppressed by post-injury treatment with a PARP inhibitor

    Directory of Open Access Journals (Sweden)

    d'Avila Joana C

    2012-02-01

    Full Text Available Abstract Background Traumatic brain injury (TBI induces activation of microglia. Activated microglia can in turn increase secondary injury and impair recovery. This innate immune response requires hours to days to become fully manifest, thus providing a clinically relevant window of opportunity for therapeutic intervention. Microglial activation is regulated in part by poly(ADP-ribose polymerase-1 (PARP-1. Inhibition of PARP-1 activity suppresses NF-kB-dependent gene transcription and thereby blocks several aspects of microglial activation. Here we evaluated the efficacy of a PARP inhibitor, INO-1001, in suppressing microglial activation after cortical impact in the rat. Methods Rats were subjected to controlled cortical impact and subsequently treated with 10 mg/kg of INO-1001 (or vehicle alone beginning 20 - 24 hours after the TBI. Brains were harvested at several time points for histological evaluation of inflammation and neuronal survival, using markers for microglial activation (morphology and CD11b expression, astrocyte activation (GFAP, and neuronal survival (NeuN. Rats were also evaluated at 8 weeks after TBI using measures of forelimb dexterity: the sticky tape test, cylinder test, and vermicelli test. Results Peak microglial and astrocyte activation was observed 5 to 7 days after this injury. INO-1001 significantly reduced microglial activation in the peri-lesion cortex and ipsilateral hippocampus. No rebound inflammation was observed in rats that were treated with INO-1001 or vehicle for 12 days followed by 4 days without drug. The reduced inflammation was associated with increased neuronal survival in the peri-lesion cortex and improved performance on tests of forelimb dexterity conducted 8 weeks after TBI. Conclusions Treatment with a PARP inhibitor for 12 days after TBI, with the first dose given as long as 20 hours after injury, can reduce inflammation and improve histological and functional outcomes.

  13. Expression of Tau40 induces activation of cultured rat microglial cells.

    Directory of Open Access Journals (Sweden)

    Lu Wang

    Full Text Available Accumulation of microtubule-associated protein tau has been observed in the brain of aging and tauopathies. Tau was observed in microglia, but its role is not illustrated. By immunofluorescence staining and the fractal dimension value assay in the present study, we observed that microglia were activated in the brains of rats and mice during aging, simultaneously, the immunoreactivities of total tau and the phosphorylated tau were significantly enhanced in the activated microglia. Furtherly by transient transfection of tau40 (human 2N/4R tau into the cultured rat microglia, we demonstrated that expression of tau40 increased the level of Iba1, indicating activation of microglia. Moreover, expression of tau40 significantly enhanced the membranous localization of the phosphorylated tau at Ser396 in microglia possibly by a mechanism involving protein phosphatase 2A, extracellular signal-regulated kinase and glycogen synthase kinase-3β. It was also found that expression of tau40 promoted microglial migration and phagocytosis, but not proliferation. And we observed increased secretion of several cytokines, including interleukin (IL-1β, IL-6, IL-10, tumor necrosis factor-α and nitric oxide after the expression of tau40. These data suggest a novel role of human 2N/4R tau in microglial activation.

  14. Maternal immune activation evoked by polyinosinic:polycytidylic acid does not evoke microglial cell activation in the embryo.

    Directory of Open Access Journals (Sweden)

    Silke eSmolders

    2015-08-01

    Full Text Available Several studies have indicated that inflammation during pregnancy increases the risk for the development of neuropsychiatric disorders in the offspring. Morphological brain abnormalities combined with deviations in the inflammatory status of the brain can be observed in patients of both autism and schizophrenia. It was shown that acute infection can induce changes in maternal cytokine levels which in turn are suggested to affect fetal brain development and increase the risk on the development of neuropsychiatric disorders in the offspring. Animal models of maternal immune activation reproduce the etiology of neurodevelopmental disorders such as schizophrenia and autism. In this study the poly (I:C model was used to mimic viral immune activation in pregnant mice in order to assess the activation status of fetal microglia in these developmental disorders. Because microglia are the resident immune cells of the brain they were expected to be activated due to the inflammatory stimulus.Microglial cell density and activation level in the fetal cortex and hippocampus were determined. Despite the presence of a systemic inflammation in the pregnant mice, there was no significant difference in fetal microglial cell density or immunohistochemically determined activation level between the control and inflammation group. These data indicate that activation of the fetal microglial cells is not likely to be responsible for the inflammation induced deficits in the offspring in this model.

  15. Botanical Polyphenols Mitigate Microglial Activation and Microglia-Induced Neurotoxicity: Role of Cytosolic Phospholipase A2.

    Science.gov (United States)

    Chuang, Dennis Y; Simonyi, Agnes; Cui, Jiankun; Lubahn, Dennis B; Gu, Zezong; Sun, Grace Y

    2016-09-01

    Microglia play a significant role in the generation and propagation of oxidative/nitrosative stress, and are the basis of neuroinflammatory responses in the central nervous system. Upon stimulation by endotoxins such as lipopolysaccharides (LPS), these cells release pro-inflammatory factors which can exert harmful effects on surrounding neurons, leading to secondary neuronal damage and cell death. Our previous studies demonstrated the effects of botanical polyphenols to mitigate inflammatory responses induced by LPS, and highlighted an important role for cytosolic phospholipase A2 (cPLA2) upstream of the pro-inflammatory pathways (Chuang et al. in J Neuroinflammation 12(1):199, 2015. doi: 10.1186/s12974-015-0419-0 ). In this study, we investigate the action of botanical compounds and assess whether suppression of cPLA2 in microglia is involved in the neurotoxic effects on neurons. Differentiated SH-SY5Y neuroblastoma cells were used to test the neurotoxicity of conditioned medium from stimulated microglial cells, and WST-1 assay was used to assess for the cell viability of SH-SY5Y cells. Botanicals such as quercetin and honokiol (but not cyanidin-3-O-glucoside, 3CG) were effective in inhibiting LPS-induced nitric oxide (NO) production and phosphorylation of cPLA2. Conditioned medium from BV-2 cells stimulated with LPS or IFNγ caused neurotoxicity to SH-SY5Y cells. Decrease in cell viability could be ameliorated by pharmacological inhibitors for cPLA2 as well as by down-regulating cPLA2 with siRNA. Botanicals effective in inhibition of LPS-induced NO and cPLA2 phosphorylation were also effective in ameliorating microglial-induced neurotoxicity. Results demonstrated cytotoxic factors from activated microglial cells to cause damaging effects to neurons and potential use of botanical polyphenols to ameliorate the neurotoxic effects. PMID:27339657

  16. Poly(ADP-ribosepolymerase-1 modulates microglial responses to amyloid β

    Directory of Open Access Journals (Sweden)

    Kauppinen Tiina M

    2011-11-01

    Full Text Available Abstract Background Amyloid β (Aβ accumulates in Alzheimer's disease (AD brain. Microglial activation also occurs in AD, and this inflammatory response may contribute to disease progression. Microglial activation can be induced by Aβ, but the mechanisms by which this occurs have not been defined. The nuclear enzyme poly(ADP-ribose polymerase-1 (PARP-1 regulates microglial activation in response to several stimuli through its interactions with the transcription factor, NF-κB. The purpose of this study was to evaluate whether PARP-1 activation is involved in Aβ-induced microglial activation, and whether PARP-1 inhibition can modify microglial responses to Aβ. Methods hAPPJ20 mice, which accumulate Aβ with ageing, were crossed with PARP-1-/- mice to assess the effects of PARP-1 depletion on microglial activation, hippocampal synaptic integrity, and cognitive function. Aβ peptide was also injected into brain of wt and PARP-1-/- mice to directly determine the effects of PARP-1 on Aβ-induced microglial activation. The effect of PARP-1 on Aβ-induced microglial cytokine production and neurotoxicity was evaluated in primary microglia cultures and in microglia-neuron co-cultures, utilizing PARP-1-/- cells and a PARP-1 inhibitor. NF-κB activation was evaluated in microglia infected with a lentivirus reporter gene. Results The hAPPJ20 mice developed microglial activation, reduced hippocampal CA1 calbindin expression, and impaired novel object recognition by age 6 months. All of these features were attenuated in hAPPJ20/PARP-1-/- mice. Similarly, Aβ1-42 injected into mouse brain produced a robust microglial response in wild-type mice, and this was blocked in mice lacking PARP-1 expression or activity. Studies using microglial cultures showed that PARP-1 activity was required for Aβ-induced NF-κB activation, morphological transformation, NO release, TNFα release, and neurotoxicity. Conversely, PARP-1 inhibition increased release of the

  17. Subneurotoxic copper(II)-induced NF-κB-dependent microglial activation is associated with mitochondrial ROS

    International Nuclear Information System (INIS)

    Microglia-mediated neuroinflammation and the associated neuronal damage play critical roles in the pathogenesis of neurodegenerative disorders. Evidence shows an elevated concentration of extracellular copper(II) in the brains of these disorders, which may contribute to neuronal death through direct neurotoxicity. Here we explored whether extracellular copper(II) triggers microglial activation. Primary rat microglia and murine microglial cell line BV-2 cells were cultured and treated with copper(II). The content of tumor necrosis factor-α (TNF-α) and nitric oxide in the medium was determined. Extracellular hydrogen peroxide was quantified by a fluorometric assay with Amplex Red. Mitochondrial superoxide was measured by MitoSOX oxidation. At subneurotoxic concentrations, copper(II) treatment induced a dose- and time-dependent release of TNF-α and nitric oxide from microglial cells, and caused an indirect, microglia-mediated neurotoxicity that was blocked by inhibition of TNF-α and nitric oxide production. Copper(II)-initiated microglial activation was accompanied with reduced IkB-α expression as well as phosphorylation and translocation of nuclear factor-κB (NF-κB) p65 and was blocked by NF-κB inhibitors (BAY11-7082 and SC-514). Moreover, copper(II) treatment evoked a rapid release of hydrogen peroxide from microglial cells, an effect that was not affected by NADPH oxidase inhibitors. N-acetyl-cysteine, a scavenger of reactive oxygen species (ROS), abrogated copper(II)-elicited microglial release of TNF-α and nitric oxide and subsequent neurotoxicity. Importantly, mitochondrial production of superoxide, paralleled to extracellular release of hydrogen peroxide, was induced after copper(II) stimulation. Our findings suggest that extracellular copper(II) at subneurotoxic concentrations could trigger NF-κB-dependent microglial activation and subsequent neurotoxicity. NADPH oxidase-independent, mitochondria-derived ROS may be involved in this activation

  18. Subneurotoxic copper(II)-induced NF-κB-dependent microglial activation is associated with mitochondrial ROS

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Zhuqin; Yu, Fengxiang; Gong, Ping; Qiu, Yu; Zhou, Wei; Cui, Yongyao; Li, Juan, E-mail: lijuanpharm@gmail.com; Chen, Hongzhuan, E-mail: yaoli@shsmu.edu.cn

    2014-04-15

    Microglia-mediated neuroinflammation and the associated neuronal damage play critical roles in the pathogenesis of neurodegenerative disorders. Evidence shows an elevated concentration of extracellular copper(II) in the brains of these disorders, which may contribute to neuronal death through direct neurotoxicity. Here we explored whether extracellular copper(II) triggers microglial activation. Primary rat microglia and murine microglial cell line BV-2 cells were cultured and treated with copper(II). The content of tumor necrosis factor-α (TNF-α) and nitric oxide in the medium was determined. Extracellular hydrogen peroxide was quantified by a fluorometric assay with Amplex Red. Mitochondrial superoxide was measured by MitoSOX oxidation. At subneurotoxic concentrations, copper(II) treatment induced a dose- and time-dependent release of TNF-α and nitric oxide from microglial cells, and caused an indirect, microglia-mediated neurotoxicity that was blocked by inhibition of TNF-α and nitric oxide production. Copper(II)-initiated microglial activation was accompanied with reduced IkB-α expression as well as phosphorylation and translocation of nuclear factor-κB (NF-κB) p65 and was blocked by NF-κB inhibitors (BAY11-7082 and SC-514). Moreover, copper(II) treatment evoked a rapid release of hydrogen peroxide from microglial cells, an effect that was not affected by NADPH oxidase inhibitors. N-acetyl-cysteine, a scavenger of reactive oxygen species (ROS), abrogated copper(II)-elicited microglial release of TNF-α and nitric oxide and subsequent neurotoxicity. Importantly, mitochondrial production of superoxide, paralleled to extracellular release of hydrogen peroxide, was induced after copper(II) stimulation. Our findings suggest that extracellular copper(II) at subneurotoxic concentrations could trigger NF-κB-dependent microglial activation and subsequent neurotoxicity. NADPH oxidase-independent, mitochondria-derived ROS may be involved in this activation

  19. Atorvastatin prevents age-related and amyloid-beta-induced microglial activation by blocking interferon-gamma release from natural killer cells in the brain

    LENUS (Irish Health Repository)

    Lyons, Anthony

    2011-03-31

    Abstract Background Microglial function is modulated by several factors reflecting the numerous receptors expressed on the cell surface, however endogenous factors which contribute to the age-related increase in microglial activation remain largely unknown. One possible factor which may contribute is interferon-γ (IFNγ). IFNγ has been shown to increase in the aged brain and potently activates microglia, although its endogenous cell source in the brain remains unidentified. Methods Male Wistar rats were used to assess the effect of age and amyloid-β (Aβ) on NK cell infiltration into the brain. The effect of the anti-inflammatory compound, atorvastatin was also assessed under these conditions. We measured cytokine and chemokine (IFNγ, IL-2, monocyte chemoattractant protein-1 (MCP-1) and IFNγ-induced protein 10 kDa (IP-10)), expression in the brain by appropriate methods. We also looked at NK cell markers, CD161, NKp30 and NKp46 using flow cytometry and western blot. Results Natural killer (NK) cells are a major source of IFNγ in the periphery and here we report the presence of CD161+ NKp30+ cells and expression of CD161 and NKp46 in the brain of aged and Aβ-treated rats. Furthermore, we demonstrate that isolated CD161+ cells respond to interleukin-2 (IL-2) by releasing IFNγ. Atorvastatin, the HMG-CoA reductase inhibitor, attenuates the increase in CD161 and NKp46 observed in hippocampus of aged and Aβ-treated rats. This was paralleled by a decrease in IFNγ, markers of microglial activation and the chemokines, MCP-1 and IP-10 which are chemotactic for NK cells. Conclusions We propose that NK cells contribute to the age-related and Aβ-induced neuroinflammatory changes and demonstrate that these changes can be modulated by atorvastatin treatment.

  20. Atorvastatin prevents age-related and amyloid-β-induced microglial activation by blocking interferon-γ release from natural killer cells in the brain

    Directory of Open Access Journals (Sweden)

    Clarke Rachael

    2011-03-01

    Full Text Available Abstract Background Microglial function is modulated by several factors reflecting the numerous receptors expressed on the cell surface, however endogenous factors which contribute to the age-related increase in microglial activation remain largely unknown. One possible factor which may contribute is interferon-γ (IFNγ. IFNγ has been shown to increase in the aged brain and potently activates microglia, although its endogenous cell source in the brain remains unidentified. Methods Male Wistar rats were used to assess the effect of age and amyloid-β (Aβ on NK cell infiltration into the brain. The effect of the anti-inflammatory compound, atorvastatin was also assessed under these conditions. We measured cytokine and chemokine (IFNγ, IL-2, monocyte chemoattractant protein-1 (MCP-1 and IFNγ-induced protein 10 kDa (IP-10, expression in the brain by appropriate methods. We also looked at NK cell markers, CD161, NKp30 and NKp46 using flow cytometry and western blot. Results Natural killer (NK cells are a major source of IFNγ in the periphery and here we report the presence of CD161+ NKp30+ cells and expression of CD161 and NKp46 in the brain of aged and Aβ-treated rats. Furthermore, we demonstrate that isolated CD161+ cells respond to interleukin-2 (IL-2 by releasing IFNγ. Atorvastatin, the HMG-CoA reductase inhibitor, attenuates the increase in CD161 and NKp46 observed in hippocampus of aged and Aβ-treated rats. This was paralleled by a decrease in IFNγ, markers of microglial activation and the chemokines, MCP-1 and IP-10 which are chemotactic for NK cells. Conclusions We propose that NK cells contribute to the age-related and Aβ-induced neuroinflammatory changes and demonstrate that these changes can be modulated by atorvastatin treatment.

  1. Exposure to electromagnetic field attenuates oxygen-glucose deprivation-induced microglial cell death by reducing intracellular Ca(2+) and ROS.

    Science.gov (United States)

    Duong, Cao Nguyen; Kim, Jae Young

    2016-01-01

    Purpose The aim of this research was to demonstrate the protective effects of electromagnetic field (EMF) exposure on the human microglial cell line, HMO6, against ischemic cell death induced by in vitro oxygen-glucose deprivation (OGD). Materials and methods HMO6 cells were cultured for 4 h under OGD with or without exposure to EMF with different combinations of frequencies and intensities (10, 50, or 100 Hz/1 mT and 50 Hz/0.01, 0.1, or 1 mT). Cell survival, intracellular calcium and reactive oxygen species (ROS) levels were measured. Results OGD caused significant HMO6 cell death as well as elevation of intracellular Ca(2+) and ROS levels. Among different combinations of EMF frequencies and intensities, 50 Hz/1 mT EMF was the most potent to attenuate OGD-induced cell death and intracellular Ca(2+) and ROS levels. A significant but less potent protective effect was also found at 10 Hz/1 mT, whereas no protective effect was found at other combinations of EMF. A xanthine oxidase inhibitor reversed OGD-induced ROS production and cell death, while NADPH oxidase and mitochondrial respiration chain complex II inhibitors did not affect cell death. Conclusions 50 Hz/1 mT EMF protects human microglial cells from OGD-induced cell death by interfering with OGD-induced elevation of intracellular Ca(2+) and ROS levels, and xanthine oxidase is one of the main mediators involved in OGD-induced HMO6 cell death. Non-invasive treatment of EMF radiation may be clinically useful to attenuate hypoxic-ischemic brain injury. PMID:26882219

  2. Activation of retinal microglia rather than microglial cell density correlates with retinal neovascularization in the mouse model of oxygen-induced retinopathy

    Directory of Open Access Journals (Sweden)

    Martin Gottfried

    2011-09-01

    Full Text Available Abstract Background Retinal neovascularization has been intensively investigated in the mouse model of oxygen-induced retinopathy (OIR. Here, we studied the contribution of microglial cells to vascular regression during the hyperoxic phase and to retinal neovascularization during the hypoxic phase. Methods Mice expressing green fluorescent protein (GFP under the Cx3cr1 promoter labeling microglial cells were kept in 75% oxygen from postnatal day 7 (P7 to P12. Microglial cell density was quantified at different time points and at different retinal positions in retinal flat mounts. Microglial activation was determined by the switch from ramified to amoeboid cell morphology which correlated with the switch from lectin negative to lectin positive staining of GFP positive cells. Results Microglial cell density was constant in the peripheral region of the retina. In the deep vascular layer of the central region, however, it declined 14 fold from P12 to P14 and recovered afterwards. Activated microglial cells were found in the superficial layer of the central avascular zone from P8 to P12 and from P16 to P18. In addition, hyalocytes were found in the vitreal layer in the central region and their cell density decreased over time. Conclusion Density of microglial cells does not correlate with vascular obliteration or revascularization. But the time course of the activation of microglia indicates that they may be involved in retinal neovascularization during the hypoxic phase.

  3. Anti-inflammatory Activity of 1-docosanoyl Cafferate Isolated from Rhus verniciflua in LPS-stimulated BV2 Microglial Cells

    OpenAIRE

    Lee, Jae-Won; Cheong, Il-Young; Kim, Hae-Sung; Lee, Jae Jun; Lee, Yong-Suk; Kwon, Yong-Soo; Kim, Myong-Jo; Lee, Hee Jae; Kim, Sung-Soo; Chun, Wanjoo

    2011-01-01

    Although various derivatives of caffeic acid have been reported to possess a wide variety of biological activities such as protection of neuronal cells against excitotoxicity, the biological activity of 1-docosanoyl cafferate (DC) has not been examined. The objective of the present study was to evaluate the anti-inflammatory effects of DC, isolated from the stem bark of Rhus verniciflua, on lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Pretreatment of cells with DC significantly a...

  4. A novel method for evaluating microglial activation using ionized calcium-binding adaptor protein-1 staining: cell body to cell size ratio

    Directory of Open Access Journals (Sweden)

    Iris Bertha Hovens

    2014-09-01

    Full Text Available Aim: The aim was to validate a newly developed methodology of semi-automatic image analysis to analyze microglial morphology as marker for microglial activation in ionized calcium-binding adaptor protein-1 (IBA-1 stained brain sections. Methods: The novel method was compared to currently used analysis methods, visual characterization of activation stage and optical density measurement, in brain sections of young and aged rats that had undergone surgery or remained naοve. Results: The cell body to cell size ratio of microglia was strongly correlated to the visual characterization activation stage. In addition, we observed specific surgery and age-related changes in cell body size, size of the dendritic processes and cell body to cell size ratio. Conclusion: The novel analysis method provides a sensitive marker for microglial activation in the rat brain, which is quick and easy to perform and provides additional information about microglial morphology.

  5. Toll-like receptor 4 mediates microglial activation and production of inflammatory mediators in neonatal rat brain following hypoxia: role of TLR4 in hypoxic microglia

    OpenAIRE

    Yao Linli; Kan Enci Mary; Lu Jia; Hao Aijun; Dheen S Thameem; Kaur Charanjit; Ling Eng-Ang

    2013-01-01

    Abstract Background Hypoxia induces microglial activation which causes damage to the developing brain. Microglia derived inflammatory mediators may contribute to this process. Toll-like receptor 4 (TLR4) has been reported to induce microglial activation and cytokines production in brain injuries; however, its role in hypoxic injury remains uncertain. We investigate here TLR4 expression and its roles in neuroinflammation in neonatal rats following hypoxic injury. Methods One day old Wistar rat...

  6. Ganoderma lucidum Protects Dopaminergic Neuron Degeneration through Inhibition of Microglial Activation

    Directory of Open Access Journals (Sweden)

    Ruiping Zhang

    2011-01-01

    Full Text Available Abundant evidence has suggested that neuroinflammation participates in the pathogenesis of Parkinson's disease (PD. The emerging evidence has supported that microglia may play key roles in the progressive neurodegeneration in PD and might be a promising therapeutic target. Ganoderma lucidum (GL, a traditional Chinese medicinal herb, has been shown potential neuroprotective effects in our clinical trials that make us to speculate that it might possess potent anti-inflammatory and immunomodulating properties. To test this hypothesis, we investigated the potential neuroprotective effect of GL and possible underlying mechanism of action through protecting microglial activation using co-cultures of dopaminergic neurons and microglia. The microglia is activated by LPS and MPP+-treated MES 23.5 cell membranes. Meanwhile, GL extracts significantly prevent the production of microglia-derived proinflammatory and cytotoxic factors [nitric oxide, tumor necrosis factor-α (TNF-α, interlukin 1β (IL-1β] in a dose-dependent manner and down-regulate the TNF-α and IL-1β expressions on mRNA level as well. In conclusion, our results support that GL may be a promising agent for the treatment of PD through anti-inflammation.

  7. Caspase 3 involves in neuroplasticity, microglial activation and neurogenesis in the mice hippocampus after intracerebral injection of kainic acid

    OpenAIRE

    Tzeng, Tsai-Teng; Tsay, Huey-Jen; Chang, Luping; Hsu, Chia-Lin; Lai, Tzu-Hsuan; Huang, Fong-Lee; Shiao, Young-Ji

    2013-01-01

    Background The roles of caspase 3 on the kainic acid-mediated neurodegeneration, dendritic plasticity alteration, neurogenesis, microglial activation and gliosis are not fully understood. Here, we investigate hippocampal changes using a mouse model that receive a single kainic acid-intracerebral ventricle injection. The effects of caspase 3 inhibition on these changes were detected during a period of 1 to 7 days post kainic acid injection. Result Neurodegeneration was assessed by Fluoro-Jade ...

  8. Formyl-methionyl-leucyl-phenylalanine–Induced Dopaminergic Neurotoxicity via Microglial Activation: A Mediator between Peripheral Infection and Neurodegeneration?

    OpenAIRE

    Gao, Xi; Hu, Xiaoming; Qian, Li; Yang, Sufen; ZHANG Wei; Zhang, Dan; Wu, Xuefei; Fraser, Alison; Wilson, Belinda; Flood, Patrick M; Block, Michelle; Hong, Jau-Shyong

    2008-01-01

    Background Parkinson disease (PD), a chronic neurodegenerative disease, has been proposed to be a multifactorial disorder resulting from a combination of environmental mechanisms (chemical, infectious, and traumatic), aging, and genetic deficits. Microglial activation is important in the pathogenesis of PD. Objectives We investigated dopaminergic (DA) neurotoxicity and the underlying mechanisms of formyl-methionyl-leucyl-phenylalanine (fMLP), a bacteria-derived peptide, in relation to PD. MET...

  9. Anti-Inflammatory Activity of Bee Venom in BV2 Microglial Cells: Mediation of MyD88-Dependent NF-κB Signaling Pathway.

    Science.gov (United States)

    Im, Eun Ju; Kim, Su Jung; Hong, Seung Bok; Park, Jin-Kyu; Rhee, Man Hee

    2016-01-01

    Bee venom has long been used as a traditional folk medicine in Korea. It has been reportedly used for the treatment of arthritis, cancer, and inflammation. Although its anti-inflammatory activity in lipopolysaccharide- (LPS-) stimulated inflammatory cells has been reported, the exact mechanism of its anti-inflammatory action has not been fully elucidated. Therefore, the aim of this study was to investigate the anti-inflammatory mechanism of bee venom in BV2 microglial cells. We first investigated whether NO production in LPS-activated BV2 cells was inhibited by bee venom, and further iNOS mRNA and protein expressions were determined. The mRNA and protein levels of proinflammatory cytokines were examined using semiquantitative RT-PCR and immunoblotting, respectively. Moreover, modulation of the transcription factor NF-κB by bee venom was also investigated using a luciferase assay. LPS-induced NO production in BV2 microglial cells was significantly inhibited in a concentration-dependent manner upon pretreatment with bee venom. Bee venom markedly reduced the mRNA expression of COX-2, TNF-α, IL-1β, and IL-6 and suppressed LPS-induced activation of MyD88 and IRAK1 and phosphorylation of TAK1. Moreover, NF-κB translocation by IKKα/β phosphorylation and subsequent IκB-α degradation were also attenuated. Thus, collectively, these results indicate that bee venom exerts its anti-inflammatory activity via the IRAK1/TAK1/NF-κB signaling pathway. PMID:27563334

  10. Lipopolysaccharide-activated microglial-induced neuroglial cell differentiation in bone marrow mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Xiaoguang Luo; Chunlin Ge; Yan Ren; Hongmei Yu; Zhe Wu; Qiushuang Wang; Chaodong Zhang

    2008-01-01

    BACKGROUND: Microglia are very sensitive to environmental changes, often becoming activated by pathological conditions. Activated microglia can exert a dual role in injury and repair in various diseases of the central nervous system, including cerebral ischemia, Parkinson's disease, and Alzheimer's disease. OBJECTIVE: An immortal microglial cell line, BV2, was treated with varying concentrations of lipopolysaccharide (LPS) to induce a pathological situation. Supernatant was harvested and incubated with bone marrow mesenchymal stem cells and, concomitantly, bone marrow mesenchymal stem cell differentiation was observed. DESIGN: A controlled observation, in vitro experiment. SETTING: Department of Neurology, First Affiliated Hospital of China Medical University. MATERIALS: Five male 2-3-week-old Sprague Dawley rats were purchased from Animal Laboratory Center of China Medical University and included in this study. The protocol was performed in accordance with ethical guidelines for the use and care of animals. The microglial cell line BV2 was produced by Cell Research Institute of Chinese Academy of Sciences. LPS was produced by Sigma Company, USA. METHODS: This study was performed in the Central Laboratory of China Medical University from September 2006 to March 2007. Rat femoral and tibial bone marrow was collected for separation and primary culture of bone marrow mesenchymal stem cells. Bone marrow mesenchymal stem cell cultures were divided into 5 groups: control group, non-activated group, as well as low-, medium-, and high-dose LPS groups. In the control group, bone marrow mesenchymal stem cells were cultured with Dulbecco's modified Eagle's medium (DMEM) supplemented with fetal bovine serum (volume fraction 0.1). In the non-activated group, bone marrow mesenchymal stem cells were incubated with non-activated BV2 supernatant. In the low-, medium-, and high-dose LPS groups, bone marrow mesenchymal stem cells were incubated with LPS (0.01, 0.1 and 1

  11. Toll-like receptor 4 mediates microglial activation and production of inflammatory mediators in neonatal rat brain following hypoxia: role of TLR4 in hypoxic microglia

    Directory of Open Access Journals (Sweden)

    Yao Linli

    2013-02-01

    Full Text Available Abstract Background Hypoxia induces microglial activation which causes damage to the developing brain. Microglia derived inflammatory mediators may contribute to this process. Toll-like receptor 4 (TLR4 has been reported to induce microglial activation and cytokines production in brain injuries; however, its role in hypoxic injury remains uncertain. We investigate here TLR4 expression and its roles in neuroinflammation in neonatal rats following hypoxic injury. Methods One day old Wistar rats were subjected to hypoxia for 2 h. Primary cultured microglia and BV-2 cells were subjected to hypoxia for different durations. TLR4 expression in microglia was determined by RT-PCR, western blot and immunofluorescence staining. Small interfering RNA (siRNA transfection and antibody neutralization were employed to downregulate TLR4 in BV-2 and primary culture. mRNA and protein expression of tumor necrosis factor-alpha (TNF-α, interleukin-1 beta (IL-1β and inducible nitric oxide synthase (iNOS was assessed. Reactive oxygen species (ROS, nitric oxide (NO and NF-κB levels were determined by flow cytometry, colorimetric and ELISA assays respectively. Hypoxia-inducible factor-1 alpha (HIF-1α mRNA and protein expression was quantified and where necessary, the protein expression was depleted by antibody neutralization. In vivo inhibition of TLR4 with CLI-095 injection was carried out followed by investigation of inflammatory mediators expression via double immunofluorescence staining. Results TLR4 immunofluorescence and protein expression in the corpus callosum and cerebellum in neonatal microglia were markedly enhanced post-hypoxia. In vitro, TLR4 protein expression was significantly increased in both primary microglia and BV-2 cells post-hypoxia. TLR4 neutralization in primary cultured microglia attenuated the hypoxia-induced expression of TNF-α, IL-1β and iNOS. siRNA knockdown of TLR4 reduced hypoxia-induced upregulation of TNF-α, IL-1β, iNOS, ROS and

  12. Early neurodegeneration progresses independently of microglial activation by heparan sulfate in the brain of mucopolysaccharidosis IIIB mice.

    Directory of Open Access Journals (Sweden)

    Jérôme Ausseil

    Full Text Available BACKGROUND: In mucopolysaccharidosis type IIIB, a lysosomal storage disease causing early onset mental retardation in children, the production of abnormal oligosaccharidic fragments of heparan sulfate is associated with severe neuropathology and chronic brain inflammation. We addressed causative links between the biochemical, pathological and inflammatory disorders in a mouse model of this disease. METHODOLOGY/PRINCIPAL FINDINGS: In cell culture, heparan sulfate oligosaccharides activated microglial cells by signaling through the Toll-like receptor 4 and the adaptor protein MyD88. CD11b positive microglial cells and three-fold increased expression of mRNAs coding for the chemokine MIP1alpha were observed at 10 days in the brain cortex of MPSIIIB mice, but not in MPSIIIB mice deleted for the expression of Toll-like receptor 4 or the adaptor protein MyD88, indicating early priming of microglial cells by heparan sulfate oligosaccharides in the MPSIIIB mouse brain. Whereas the onset of brain inflammation was delayed for several months in doubly mutant versus MPSIIIB mice, the onset of disease markers expression was unchanged, indicating similar progression of the neurodegenerative process in the absence of microglial cell priming by heparan sulfate oligosaccharides. In contrast to younger mice, inflammation in aged MPSIIIB mice was not affected by TLR4/MyD88 deficiency. CONCLUSIONS/SIGNIFICANCE: These results indicate priming of microglia by HS oligosaccharides through the TLR4/MyD88 pathway. Although intrinsic to the disease, this phenomenon is not a major determinant of the neurodegenerative process. Inflammation may still contribute to neurodegeneration in late stages of the disease, albeit independent of TLR4/MyD88. The results support the view that neurodegeneration is primarily cell autonomous in this pediatric disease.

  13. Downregulation of NO and PGE2 in LPS-stimulated BV2 microglial cells by trans-isoferulic acid via suppression of PI3K/Akt-dependent NF-κB and activation of Nrf2-mediated HO-1.

    Science.gov (United States)

    Dilshara, Matharage Gayani; Lee, Kyoung-Tae; Jayasooriya, Rajapaksha Gedara Prasad Tharanga; Kang, Chang-Hee; Park, Sang Rul; Choi, Yung Hyun; Choi, Il-Whan; Hyun, Jin-Won; Chang, Weon-Young; Kim, Yeon-Su; Lee, Hak-Ju; Kim, Gi-Young

    2014-01-01

    Little is known about whether trans-isoferulic acid (TIA) regulates the production of lipopolysaccharide (LPS)-induced proinflammatory mediators. Therefore, we examined the effect of TIA isolated from Clematis mandshurica on LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production in BV2 microglial cells. We found that TIA inhibited the production of LPS-induced NO and PGE2 without accompanying cytotoxicity in BV2 microglial cells. TIA also downregulated the expression levels of specific regulatory genes such as inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) by suppressing LPS-induced NF-κB activity via dephosphorylation of PI3K/Akt. In addition, we demonstrated that a specific NF-κB inhibitor PDTC and a selective PI3K/Akt inhibitor, LY294002 effectively attenuated the expression of LPS-stimulated iNOS and COX-2 mRNA, while LY294002 suppressed LPS-induced NF-κB activity, suggesting that TIA attenuates the expression of these proinflammatory genes by suppressing PI3K/Akt-mediated NF-κB activity. Our results showed that TIA suppressed NO and PGE2 production through the induction of nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent heme oxygenase-1 (HO-1). Taken together, our data indicate that TIA suppresses the production of proinflammatory mediators such as NO and PGE2, as well as their regulatory genes, in LPS-stimulated BV2 microglial cells, by inhibiting PI3K/Akt-dependent NF-κB activity and enhancing Nrf2-mediated HO-1 expression. PMID:24291391

  14. Crocin Upregulates CX3CR1 Expression by Suppressing NF-κB/YY1 Signaling and Inhibiting Lipopolysaccharide-Induced Microglial Activation.

    Science.gov (United States)

    Lv, Bochang; Huo, Fuquan; Zhu, Zhongqiao; Xu, Zhiguo; Dang, Xiaojie; Chen, Tao; Zhang, Ting; Yang, Xinguang

    2016-08-01

    Glaucoma is a group of neurodegenerative diseases characterized by the progressive loss of retinal ganglion cells (RGCs) and optic nerve fibers. Microglial activation has been shown to be deleterious to RGCs and may participate in the progression of glaucoma. Crocin, one of the major active ingredients in saffron, has been found to inhibit microglial activation. However, the mechanism remains unclear. The aim of this study was to investigate whether crocin can inhibit lipopolysaccharide (LPS)-induced microglial activation and to clarify the mechanisms involved. The influence of crocin on primary RGCs and LPS-stimulated BV2 microglial cells survival was determined by the MTT and lactate dehydrogenase assays, or by flow cytometry. BV2 cells were pretreated with various concentrations of crocin for 2 h followed by 1 μg/mL LPS stimulation. Microglial markers and pro-inflammatory mediators were assessed by real-time PCR, western blot and ELISA. Furthermore, CX3CR1 expression was detected and the underlying mechanism was examined. The concentrations of crocin ranged from 0.1 to 1 μM, and did not show any cytotoxicity in RGC and BV2 cells. After crocin pretreatment, the expression of microglial markers (CD11b and Iba-1) and pro-inflammatory mediators (iNOS, COX-2, IL-1β, and TNF-α) induced by LPS were significantly decreased in a dose-dependent manner. Additionally, CX3CR1 expression was remarkably increased by crocin via the suppression of NF-κB/Yin Yang 1 (YY1) signaling in BV2 cells. In conclusion, crocin effectively suppresses microglial activation and upregulates CX3CR1 expression by suppressing NF-κB/YY1 signaling. PMID:27084772

  15. Activation of KCNN3/SK3/K(Ca)2.3 channels attenuates enhanced calcium influx and inflammatory cytokine production in activated microglia.

    Science.gov (United States)

    Dolga, Amalia M; Letsche, Till; Gold, Maike; Doti, Nunzianna; Bacher, Michael; Chiamvimonvat, Nipavan; Dodel, Richard; Culmsee, Carsten

    2012-12-01

    In neurons, small-conductance calcium-activated potassium (KCNN/SK/K(Ca)2) channels maintain calcium homeostasis after N-methyl-D-aspartate (NMDA) receptor activation, thereby preventing excitotoxic neuronal death. So far, little is known about the function of KCNN/SK/K(Ca)2 channels in non-neuronal cells, such as microglial cells. In this study, we addressed the question whether KCNN/SK/K(Ca)2 channels activation affected inflammatory responses of primary mouse microglial cells upon lipopolysaccharide (LPS) stimulation. We found that N-cyclohexyl-N-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-4-pyrimidinamine (CyPPA), a positive pharmacological activator of KCNN/SK/K(Ca)2 channels, significantly reduced LPS-stimulated activation of microglia in a concentration-dependent manner. The general KCNN/SK/K(Ca)2 channel blocker apamin reverted these effects of CyPPA on microglial proliferation. Since calcium plays a central role in microglial activation, we further addressed whether KCNN/SK/K(Ca)2 channel activation affected the changes of intracellular calcium levels, [Ca(2+)](i), in microglial cells. Our data show that LPS-induced elevation of [Ca(2+)](i) was attenuated following activation of KCNN2/3/K(Ca)2.2/K(Ca)2.3 channels by CyPPA. Furthermore, CyPPA reduced downstream events including tumor necrosis factor alpha and interleukin 6 cytokine production and nitric oxide release in activated microglia. Further, we applied specific peptide inhibitors of the KCNN/SK/K(Ca)2 channel subtypes to identify which particular channel subtype mediated the observed anti-inflammatory effects. Only inhibitory peptides targeting KCNN3/SK3/K(Ca)2.3 channels, but not KCNN2/SK2/K(Ca)2.2 channel inhibition, reversed the CyPPA-effects on LPS-induced microglial proliferation. These findings revealed that KCNN3/SK3/K(Ca)2.3 channels can modulate the LPS-induced inflammatory responses in microglial cells. Thus, KCNN3/SK3/K(Ca)2.3 channels may serve as a therapeutic target for reducing microglial

  16. Gabapentin reduces CX3CL1 signaling and blocks spinal microglial activation in monoarthritic rats

    Directory of Open Access Journals (Sweden)

    Yang Jia-Le

    2012-05-01

    Full Text Available Abstract Background Spinal glia, particularly microglia and astrocytes, are of the utmost importance in the development and maintenance of chronic pain. A recent study from our laboratory revealed that gabapentin, a recommended first-line treatment for multiple neuropathic conditions, could also efficiently antagonize thermal hyperalgesia evoked by complete Freund's adjuvant (CFA-induced monoarthritis (MA. In the present study, we investigated whether the spinal glia are involved in the anti-hyperalgesic effect of gabapentin and how this event occurs. Results Unilateral intra-articular injection of CFA produced a robust activation of microglia and astrocytes. These cells exhibited large cell bodies, thick processes and increases in the ionized calcium binding adapter molecule 1 (Iba-1, a microglial marker or the glia fibrillary acidic protein (GFAP, an astrocytic marker. These cells also displayed immunoreactive signals, and an upregulation of the voltage-gated calcium channels (VGCCs α2/δ-1 subunit, CX3CL1 and CX3CR1 expression levels in the spinal cord. These changes were associated with the development of thermal hyperalgesia. Immunofluorescence staining showed that VGCC α2/δ-1 subunit, a proposed gabapentin target of action, was widely distributed in primary afferent fibers terminals and dorsal horn neurons. CX3CL1, a potential trigger to activate microglia, colocalized with VGCC α2/δ-1 subunits in the spinal dorsal horn. However, its receptor CX3CR1 was mainly expressed in the spinal microglia. Multiple intraperitoneal (i.p. gabapentin injections (100 mg/kg, once daily for 4 days with the first injection 60 min before intra-articular CFA suppressed the activation of spinal microglia, downregulated spinal VGCC α2/δ-1 subunits decreased CX3CL1 levels and blocked the development of thermal hyperalgesia in MA rats. Conclusions Here we provide the first evidence that gabapentin diminishes CX3CL1 signaling and spinal microglia

  17. 线粒体分裂蛋白抑制剂对小胶质细胞氧化损伤的保护作用%Mitochondrial Division Inhibition Attenuates Aβ-induced Oxidative Stress Injury in Primary Microglial Cells

    Institute of Scientific and Technical Information of China (English)

    谢南昌; 陈晨; 王翠; 张倩; 夏建华; 张宏伟; 连亚军

    2014-01-01

    Objective:To investigate whether mitochondrial division inhibitor 1 (mdivi-1) attenuates β-amyloid protein (Aβ)-induced oxidative stress injury in primary microglial cells. Methods:Primary microglial cells were randomly divided into control group, Aβgroup, mdivi-1 group and Aβ+mdivi-1 group. The viability and apoptosis of cells, mitochondrial membrane potential, malondialdehyde (MDA) content, superoxide dismutase (SOD) content and 8-hydroxy-deoxyguanosine (8-OHdG) were examined. Results:Compared with control group, the cell viability of Aβ group was significantly reduced, the apoptotic cells was increased, the mitochondrial membrane potential and SOD activity were decreased, while the levels of MDA and 8-OHdG were increased( <0.05). Compared with the Aβgroup, in the Aβ+mdivi-1 group, the cell viability was increased, the apoptotic cells was decreased, the mitochondrial membrane potential and SOD activity were increased, while the levels of MDA and 8-OhdG were decreased ( <0.05). Conclusion:Mdivi-1 exerts neuroprotective effects against Aβ-induced oxida-tive stress injury in primary microglial cells.%目的:研究线粒体分裂蛋白抑制剂(mdivi-1)能否减轻β淀粉样蛋白(Aβ)诱导的体外原代培养小鼠小胶质细胞的氧化应激损伤。方法:随机将体外原代培养BALB/C小鼠小胶质细胞分为con组、Aβ组、mdi组和 Aβ+mdi 组,con 组不予处理,Aβ组中加入 Aβ,mdi 组中加入 mdivi-1,Aβ+mdi 组分别加入2、5、10、20μmol/L mdivi-1后1 h加入Aβ。分别检测小胶质细胞存活率及凋亡、线粒体膜电位、丙二醛(MDA)含量、超氧化物歧化酶(SOD)活性、8-羟基脱氧鸟苷(8-OHdG)含量。结果:与con组相比,Aβ组小胶质细胞存活率下降,凋亡增加,线粒体膜电位下降,MDA和8-OHdG含量升高,SOD活性下降,差异有统计学意义(<0.05);与Aβ组相比,Aβ+mdi组小胶质细胞存活率上升,凋亡减少,线粒体

  18. Endocannabinoids regulate the activity of astrocytic hemichannels and the microglial response against an injury: In vivo studies.

    Science.gov (United States)

    Vázquez, Carmen; Tolón, Rosa María; Pazos, María Ruth; Moreno, Marta; Koester, Erin C; Cravatt, Benjamin F; Hillard, Cecilia J; Romero, Julián

    2015-07-01

    Anandamide (AEA) is an endocannabinoid (EC) that modulates multiple functions in the CNS and that is released in areas of injury, exerting putative neuroprotective actions. In the present study, we have used intravital microscopy to analyze the role of the EC system in the glial response against an acute insult. Our data show that AEA modulates astroglial function in vivo by increasing connexin-43 hemichannel (HC) activity. Furthermore, the genetic inactivation of the AEA-degrading enzyme, fatty acid amide hydrolase (FAAH), also increased HC activity and enhanced the microglial response against an acute injury to the brain parenchyma, effects that were mediated by cannabinoid CB1 receptors. The contribution of ATP released through an astrocytic HC was critical for the microglial response, as this was prevented by the use of the HC blocker flufenamic acid and by apyrase. As could be expected, brain concentrations of AEA, palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) were elevated in FAAH-null mice, while 2-arachidonoylglycerol (2-AG) concentrations remained unaltered. In summary, these findings demonstrate that AEA modifies glial functions by promoting an enhanced pro-inflammatory glial response in the brain. PMID:25917763

  19. TLR4 mutation reduces microglial activation, increases Aβ deposits and exacerbates cognitive deficits in a mouse model of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Song Min

    2011-08-01

    Full Text Available Abstract Background Amyloid plaques, a pathological hallmark of Alzheimer's disease (AD, are accompanied by activated microglia. The role of activated microglia in the pathogenesis of AD remains controversial: either clearing Aβ deposits by phagocytosis or releasing proinflammatory cytokines and cytotoxic substances. Microglia can be activated via toll-like receptors (TLRs, a class of pattern-recognition receptors in the innate immune system. We previously demonstrated that an AD mouse model homozygous for a loss-of-function mutation of TLR4 had increases in Aβ deposits and buffer-soluble Aβ in the brain as compared with a TLR4 wild-type AD mouse model at 14-16 months of age. However, it is unknown if TLR4 signaling is involved in initiation of Aβ deposition as well as activation and recruitment of microglia at the early stage of AD. Here, we investigated the role of TLR4 signaling and microglial activation in early stages using 5-month-old AD mouse models when Aβ deposits start. Methods Microglial activation and amyloid deposition in the brain were determined by immunohistochemistry in the AD models. Levels of cerebral soluble Aβ were determined by ELISA. mRNA levels of cytokines and chemokines in the brain and Aβ-stimulated monocytes were quantified by real-time PCR. Cognitive functions were assessed by the Morris water maze. Results While no difference was found in cerebral Aβ load between AD mouse models at 5 months with and without TLR4 mutation, microglial activation in a TLR4 mutant AD model (TLR4M Tg was less than that in a TLR4 wild-type AD model (TLR4W Tg. At 9 months, TLR4M Tg mice had increased Aβ deposition and soluble Aβ42 in the brain, which were associated with decrements in cognitive functions and expression levels of IL-1β, CCL3, and CCL4 in the hippocampus compared to TLR4W Tg mice. TLR4 mutation diminished Aβ-induced IL-1β, CCL3, and CCL4 expression in monocytes. Conclusion This is the first demonstration of TLR4

  20. Krüppel-like factor 4, a novel transcription factor regulates microglial activation and subsequent neuroinflammation

    Directory of Open Access Journals (Sweden)

    Das Sulagna

    2010-10-01

    Full Text Available Abstract Background Activation of microglia, the resident macrophages of the central nervous system (CNS, is the hallmark of neuroinflammation in neurodegenerative diseases and other pathological conditions associated with CNS infection. The activation of microglia is often associated with bystander neuronal death. Nuclear factor-κB (NF-κB is one of the important transcription factors known to be associated with microglial activation which upregulates the expression of inducible nitric oxide synthase (iNOS, cyclooxygenase-2 (Cox-2 and other pro-inflammatory cytokines. Recent studies have focused on the role of Krüppel-like factor 4 (Klf4, one of the zinc-finger transcription factors, in mediating inflammation. However, these studies were limited to peripheral system and its role in CNS is not understood. Our studies focused on the possible role of Klf4 in mediating CNS inflammation. Methods For in vitro studies, mouse microglial BV-2 cell lines were treated with 500 ng/ml Salmonella enterica lipopolysacchride (LPS. Brain tissues were isolated from BALB/c mice administered with 5 mg/kg body weight of LPS. Expressions of Klf4, Cox-2, iNOS and pNF-κB were evaluated using western blotting, quantitative real time PCR, and reverse transcriptase polymerase chain reactions (RT-PCRs. Klf4 knockdown was carried out using SiRNA specific for Klf4 mRNA and luciferase assays and electromobility shift assay (EMSA were performed to study the interaction of Klf4 to iNOS promoter elements in vitro. Co-immunoprecipitation of Klf4 and pNF-κB was done in order to study a possible interaction between the two transcription factors. Results LPS stimulation increased Klf4 expression in microglial cells in a time- and dose-dependent manner. Knockdown of Klf4 resulted in decreased levels of the pro-inflammatory cytokines TNF-α, MCP-1 and IL-6, along with a significant decrease in iNOS and Cox-2 expression. NO production also decreased as a result of Klf4 knockdown

  1. Anthocyanin-rich acai (Euterpe oleracea mart.) fruit pulp fractions attenuate inflammatory stress signaling in mouse brain BV-2 microglial cells

    Science.gov (United States)

    Age-related increases in oxidative stress and inflammation are associated with loss of cognitive and motor functions. Previous research has shown that supplementation with berry fruits can modulate signaling in primary hippocampal neurons or BV-2 mouse microglial cells. Because of the high polypheno...

  2. Cannabinoid CB2 Receptor Mediates Nicotine-Induced Anti-Inflammation in N9 Microglial Cells Exposed to β Amyloid via Protein Kinase C

    Directory of Open Access Journals (Sweden)

    Ji Jia

    2016-01-01

    Full Text Available Background. Reducing β amyloid- (Aβ- induced microglial activation is considered to be effective in treating Alzheimer’s disease (AD. Nicotine attenuates Aβ-induced microglial activation; the mechanism, however, is still elusive. Microglia could be activated into classic activated state (M1 state or alternative activated state (M2 state; the former is cytotoxic and the latter is neurotrophic. In this investigation, we hypothesized that nicotine attenuates Aβ-induced microglial activation by shifting microglial M1 to M2 state, and cannabinoid CB2 receptor and protein kinase C mediate the process. Methods. We used Aβ1–42 to activate N9 microglial cells and observed nicotine-induced effects on microglial M1 and M2 biomarkers by using western blot, immunocytochemistry, and enzyme-linked immunosorbent assay (ELISA. Results. We found that nicotine reduced the levels of M1 state markers, including inducible nitric oxide synthase (iNOS expression and tumor necrosis factor α (TNF-α and interleukin- (IL- 6 releases; meanwhile, it increased the levels of M2 state markers, including arginase-1 (Arg-1 expression and brain-derived neurotrophic factor (BDNF release, in the Aβ-stimulated microglia. Coadministration of cannabinoid CB2 receptor antagonist or protein kinase C (PKC inhibitor partially abolished the nicotine-induced effects. Conclusion. These findings indicated that cannabinoid CB2 receptor mediates nicotine-induced anti-inflammation in microglia exposed to Aβ via PKC.

  3. Coordinated role of voltage-gated sodium channels and the Na+/H+ exchanger in sustaining microglial activation during inflammation

    International Nuclear Information System (INIS)

    Persistent neuroinflammation and microglial activation play an integral role in the pathogenesis of many neurological disorders. We investigated the role of voltage-gated sodium channels (VGSC) and Na+/H+ exchangers (NHE) in the activation of immortalized microglial cells (BV-2) after lipopolysaccharide (LPS) exposure. LPS (10 and 100 ng/ml) caused a dose- and time-dependent accumulation of intracellular sodium [(Na+)i] in BV-2 cells. Pre-treatment of cells with the VGSC antagonist tetrodotoxin (TTX, 1 μM) abolished short-term Na+ influx, but was unable to prevent the accumulation of (Na+)i observed at 6 and 24 h after LPS exposure. The NHE inhibitor cariporide (1 μM) significantly reduced accumulation of (Na+)i 6 and 24 h after LPS exposure. Furthermore, LPS increased the mRNA expression and protein level of NHE-1 in a dose- and time-dependent manner, which was significantly reduced after co-treatment with TTX and/or cariporide. LPS increased production of TNF-α, ROS, and H2O2 and expression of gp91phox, an active subunit of NADPH oxidase, in a dose- and time-dependent manner, which was significantly reduced by TTX or TTX + cariporide. Collectively, these data demonstrate a closely-linked temporal relationship between VGSC and NHE-1 in regulating function in activated microglia, which may provide avenues for therapeutic interventions aimed at reducing neuroinflammation. - Highlights: • LPS causes immediate increase in sodium through VGSC and subsequently through the NHE-1. • Inhibition of VGSC reduces increases in NHE-1 and gp91phox. • Inhibition of VGSC and NHE-1 reduces NADPH oxidase-mediated Tnf-α, ROS, and H2O2 production. • NHE-1 and Nav1.6 may be viable targets for therapeutic interventions to reduce neuroinflammation in neurodegenerative disease

  4. In vivo changes in microglial activation and amyloid deposits in brain regions with hypometabolism in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Yokokura, Masamichi; Mori, Norio; Yoshihara, Yujiro; Wakuda, Tomoyasu; Takebayashi, Kiyokazu; Iwata, Yasuhide; Nakamura, Kazuhiko [Hamamatsu University School of Medicine, Department of Psychiatry and Neurology, Hamamatsu (Japan); Yagi, Shunsuke; Ouchi, Yasuomi [Hamamatsu University School of Medicine, Laboratory of Human Imaging Research, Molecular Imaging Frontier Research Center, Hamamatsu (Japan); Yoshikawa, Etsuji [Hamamatsu Photonics K.K., Central Research Laboratory, Hamamatsu (Japan); Kikuchi, Mitsuru [Kanazawa University, Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa (Japan); Sugihara, Genichi; Suda, Shiro; Tsuchiya, Kenji J.; Suzuki, Katsuaki [Hamamatsu University School of Medicine, Research Center for Child Mental Development, Hamamatsu (Japan); Ueki, Takatoshi [Hamamatsu University School of Medicine, Department of Anatomy, Hamamatsu (Japan)

    2011-02-15

    Amyloid {beta} protein (A{beta}) is known as a pathological substance in Alzheimer's disease (AD) and is assumed to coexist with a degree of activated microglia in the brain. However, it remains unclear whether these two events occur in parallel with characteristic hypometabolism in AD in vivo. The purpose of the present study was to clarify the in vivo relationship between A{beta} accumulation and neuroinflammation in those specific brain regions in early AD. Eleven nootropic drug-naive AD patients underwent a series of positron emission tomography (PET) measurements with [{sup 11}C](R)PK11195, [{sup 11}C]PIB and [{sup 18}F]FDG and a battery of cognitive tests within the same day. The binding potentials (BPs) of [{sup 11}C](R)PK11195 were directly compared with those of [{sup 11}C]PIB in the brain regions with reduced glucose metabolism. BPs of [{sup 11}C](R)PK11195 and [{sup 11}C]PIB were significantly higher in the parietotemporal regions of AD patients than in ten healthy controls. In AD patients, there was a negative correlation between dementia score and [{sup 11}C](R)PK11195 BPs, but not [{sup 11}C]PIB, in the limbic, precuneus and prefrontal regions. Direct comparisons showed a significant negative correlation between [{sup 11}C](R)PK11195 and [{sup 11}C]PIB BPs in the posterior cingulate cortex (PCC) (p < 0.05, corrected) that manifested the most severe reduction in [{sup 18}F]FDG uptake. A lack of coupling between microglial activation and amyloid deposits may indicate that A{beta} accumulation shown by [{sup 11}C]PIB is not always the primary cause of microglial activation, but rather the negative correlation present in the PCC suggests that microglia can show higher activation during the production of A{beta} in early AD. (orig.)

  5. Alterations in blood-brain barrier ICAM-1 expression and brain microglial activation after λ-carrageenan-induced inflammatory pain

    Science.gov (United States)

    Huber, J. D.; Campos, C. R.; Mark, K. S.; Davis, T. P.

    2014-01-01

    Previous studies showed that peripheral inflammatory pain increased blood-brain barrier (BBB) permeability and altered tight junction protein expression and the delivery of opioid analgesics to the brain. What remains unknown is which pathways and mediators during peripheral inflammation affect BBB function and structure. The current study investigated effects of λ-carrageenan-induced inflammatory pain (CIP) on BBB expression of ICAM-1. We also examined the systemic contribution of a number of proinflammatory cytokines and microglial activation in the brain to elucidate pathways involved in BBB disruption during CIP. We investigated ICAM-1 RNA and protein expression levels in isolated rat brain microvessels after CIP using RT-PCR and Western blot analyses, screened inflammatory cytokines during the time course of inflammation, assessed white blood cell counts, and probed for BBB and central nervous system stimulation and leukocyte transmigration using immunohistochemistry and flow cytometry. Results showed an early increase in ICAM-1 RNA and protein expression after CIP with no change in circulating levels of several proinflammatory cytokines. Changes in ICAM-1 protein expression were noted at 48 h. Immunohistochemistry showed that the induction of ICAM-1 was region specific with increased expression noted in the thalamus and frontal and parietal cortices, which directly correlated with increased expression of activated microglia. The findings of the present study were that CIP induces increased ICAM-1 mRNA and protein expression at the BBB and that systemic proinflammatory mediators play no apparent role in the early response (1–6 h); however, brain region-specific increases in micro-glial activation suggest a potential for a central-mediated response. PMID:16199477

  6. Microglial activation induced by factor(s) contained in sera from Alzheimer-related ApoE genotypes.

    Science.gov (United States)

    Lombardi, V R; García, M; Cacabelos, R

    1998-11-15

    Several factors that increase the likelihood of developing Alzheimer's disease (AD) have already been identified. A correct evaluation of these may contribute to a better understanding of the etiology of the disease. The risk of developing AD definitely increases with (a) age, (b) head injuries, (c) family history of AD or Down syndrome, (d) sex (higher prevalence of AD in women), (e) vascular disease, (f) exposure to environmental toxins, (g) infectious processes, or (h) changes in immune function, and recent advances in molecular genetics have suggested that genetic predisposition (i) can be considered one of the most important risk factors in the development of AD. A significant increase in the number of amyloid plaques in AD patients with an apolipoprotein E4 (ApoE) allele has been observed and the results of several genetic studies indicate that the etiology of this neurodegenerative disease is associated with the presence of the allele E4 of ApoE. A potential source of damage in the AD brain is an altered response triggered by microglial activation, which is associated with amyloid plaques. It has become evident that a dysregulation of cytokine release appears within lesions of many types of brain disorders including infection, trauma, stroke, and neurodegenerative diseases. Many studies have shown that microglia secrete both cytokines and cytotoxins and since reactive microglia appears in nearly every type of brain damage, it is likely that their secreted products ultimately help to determine the rate of damaged brain tissue. In this study, in vitro cell cultures were established to investigate the effect of different concentrations of human sera (2.5% and 10%) with specific ApoE genotypes from Alzheimer's and non-Alzheimer's subjects on ameboid and flat microglial cells obtained from neonatal rat hippocampi. Results show that a modulation in the proliferation and activation of microglial cells was obtained and that AD sera, mainly in the ApoE 3/4 and 4

  7. Depression as a microglial disease.

    Science.gov (United States)

    Yirmiya, Raz; Rimmerman, Neta; Reshef, Ronen

    2015-10-01

    Despite decades of intensive research, the biological mechanisms that causally underlie depression are still unclear, and therefore the development of novel effective antidepressant treatments is hindered. Recent studies indicate that impairment of the normal structure and function of microglia, caused by either intense inflammatory activation (e.g., following infections, trauma, stroke, short-term stress, autoimmune or neurodegenerative diseases) or by decline and senescence of these cells (e.g., during aging, Alzheimer's disease, or chronic unpredictable stress exposure), can lead to depression and associated impairments in neuroplasticity and neurogenesis. Accordingly, some forms of depression can be considered as a microglial disease (microgliopathy), which should be treated by a personalized medical approach using microglial inhibitors or stimulators depending on the microglial status of the depressed patient. PMID:26442697

  8. In vivo imaging of microglial activation by positron emission tomography with [(11) C]PBR28 in the 5XFAD model of Alzheimer's disease.

    Science.gov (United States)

    Mirzaei, Nazanin; Tang, Sac Pham; Ashworth, Sharon; Coello, Christopher; Plisson, Christophe; Passchier, Jan; Selvaraj, Vimal; Tyacke, Robin J; Nutt, David J; Sastre, Magdalena

    2016-06-01

    Microglial activation has been linked with deficits in neuronal function and synaptic plasticity in Alzheimer's disease (AD). The mitochondrial translocator protein (TSPO) is known to be upregulated in reactive microglia. Accurate visualization and quantification of microglial density by PET imaging using the TSPO tracer [(11) C]-R-PK11195 has been challenging due to the limitations of the ligand. In this study, it was aimed to evaluate the new TSPO tracer [(11) C]PBR28 as a marker for microglial activation in the 5XFAD transgenic mouse model of AD. Dynamic PET scans were acquired following intravenous administration of [(11) C]PBR28 in 6-month-old 5XFAD mice and in wild-type controls. Autoradiography with [(3) H]PBR28 was carried out in the same brains to further confirm the distribution of the radioligand. In addition, immunohistochemistry was performed on adjacent brain sections of the same mice to evaluate the co-localization of TSPO with microglia. PET imaging revealed that brain uptake of [(11) C]PBR28 in 5XFAD mice was increased compared with control mice. Moreover, binding of [(3) H]PBR28, measured by autoradiography, was enriched in cortical and hippocampal brain regions, coinciding with the positive staining of the microglial marker Iba-1 and amyloid deposits in the same areas. Furthermore, double-staining using antibodies against TSPO demonstrated co-localization of TSPO with microglia and not with astrocytes in 5XFAD mice and human post-mortem AD brains. The data provided support of the suitability of [(11) C]PBR28 as a tool for in vivo monitoring of microglial activation and assessment of treatment response in future studies using animal models of AD. GLIA 2016;64:993-1006. PMID:26959396

  9. 3,4,5-Trihydroxycinnamic Acid Inhibits Lipopolysaccharide-Induced Inflammatory Response through the Activation of Nrf2 Pathway in BV2 Microglial Cells

    OpenAIRE

    Lee, Jae-Won; Choi, Yong-Jun; Park, Jun-Ho; Sim, Jae-Young; Kwon, Yong-Soo; Lee, Hee Jae; Kim, Sung-Soo; Chun, Wanjoo

    2013-01-01

    3,4,5-Trihydroxycinnamic acid (THC) is a derivative of hydroxycinnamic acids, which have been reported to possess a variety of biological properties such as anti-inflammatory, anti-tumor, and neuroprotective activities. However, biological activity of THC has not been extensively examined. Recently, we reported that THC possesses anti-inflammatory activity in LPS-stimulated BV2 microglial cells. However, its precise mechanism by which THC exerts anti-inflammatory action has not been clearly i...

  10. 3,4,5-Trihydroxycinnamic Acid Inhibits LPS-Induced iNOS Expression by Suppressing NF-κB Activation in BV2 Microglial Cells

    OpenAIRE

    Lee, Jae-Won; Bae, Chang Jun; Choi, Yong-Jun; Kim, Song-In; Kim, Nam-Ho; Lee, Hee Jae; Kim, Sung-Soo; Kwon, Yong-Soo; Chun, Wanjoo

    2012-01-01

    Although various derivatives of caffeic acid have been reported to possess a wide variety of biological activities such as neuronal protection against excitotoxicity and anti-inflammatory property, the biological activity of 3,4,5-trihydroxycinnamic acid (THC), a derivative of hydroxycinnamic acids, has not been clearly examined. The objective of the present study is to evaluate the anti-inflammatory effects of THC on lipopolysaccharide (LPS)-stimulated BV2 microglial cells. THC significantly...

  11. COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord

    Directory of Open Access Journals (Sweden)

    Bountra Chas

    2006-03-01

    Full Text Available Abstract Background While multiple sclerosis (MS and amyotrophic lateral sclerosis (ALS are primarily inflammatory and degenerative disorders respectively, there is increasing evidence for shared cellular mechanisms that may affect disease progression, particularly glial responses. Cyclooxygenase 2 (COX-2 inhibition prolongs survival and cannabinoids ameliorate progression of clinical disease in animal models of ALS and MS respectively, but the mechanism is uncertain. Therefore, three key molecules known to be expressed in activated microglial cells/macrophages, COX-2, CB2 and P2X7, which plays a role in inflammatory cascades, were studied in MS and ALS post-mortem human spinal cord. Methods Frozen human post mortem spinal cord specimens, controls (n = 12, ALS (n = 9 and MS (n = 19, were available for study by immunocytochemistry and Western blotting, using specific antibodies to COX-2, CB2 and P2X7, and markers of microglial cells/macrophages (CD 68, ferritin. In addition, autoradiography for peripheral benzodiazepine binding sites was performed on some spinal cord sections using [3H] (R-PK11195, a marker of activated microglial cells/macrophages. Results of immunostaining and Western blotting were quantified by computerized image and optical density analysis respectively. Results In control spinal cord, few small microglial cells/macrophages-like COX-2-immunoreactive cells, mostly bipolar with short processes, were scattered throughout the tissue, whilst MS and ALS specimens had significantly greater density of such cells with longer processes in affected regions, by image analysis. Inflammatory cell marker CD68-immunoreactivity, [3H] (R-PK11195 autoradiography, and double-staining against ferritin confirmed increased production of COX-2 by activated microglial cells/macrophages. An expected 70-kDa band was seen by Western blotting which was significantly increased in MS spinal cord. There was good correlation between the COX-2 immunostaining

  12. Outbred ICR/CD1 mice display more severe neuroinflammation mediated by microglial TLR4/CD14 activation than inbred C57Bl/6 mice

    OpenAIRE

    Nikodemova, Maria; Watters, Jyoti J.

    2011-01-01

    Neuroinflammation mediated by microglia is a pathological hallmark of many CNS disorders. Cell lines derived from inbred C57Bl/6 and outbred ICR/CD1 mice (BV2 and N9 respectively), are often used to study microglial inflammatory activities. Although many studies demonstrate different responses of these cell lines to the same stimulus, no comparisons have been done in vivo. Because inbreeding reduces resistance to pathogens and parasites, we hypothesized that microglia from outbred ICR/CD1 mic...

  13. NADPH oxidase 2-derived reactive oxygen species in the hippocampus might contribute to microglial activation in postoperative cognitive dysfunction in aged mice.

    Science.gov (United States)

    Qiu, Li-Li; Ji, Mu-Huo; Zhang, Hui; Yang, Jiao-Jiao; Sun, Xiao-Ru; Tang, Hui; Wang, Jing; Liu, Wen-Xue; Yang, Jian-Jun

    2016-01-01

    Microglial activation plays a key role in the development of postoperative cognitive dysfunction (POCD). Nox2, one of the main isoforms of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in the central nervous system, is a predominant source of reactive oxygen species (ROS) overproduction in phagocytes including microglia. We therefore hypothesized that Nox2-induced microglial activation is involved in the development of POCD. Sixteen-month-old C57BL/6 mice were subjected to exploratory laparotomy with isoflurane anesthesia to mimic the clinical human abdominal surgery. Behavioral tests were performed at 6 and 7 d post-surgery with open field and fear conditioning tests, respectively. The levels of Nox2, 8-hydroxy-2'-deoxyguanosine (8-OH-dG, a marker of DNA oxidation), CD11b (a marker of microglial activation), interleukin-1β (IL-1β), and brain-derived neurotrophic factor (BDNF) were determined in the hippocampus and prefrontal cortex at 1 d and 7 d post-surgery, respectively. For the interventional study, mice were treated with a NADPH oxidase inhibitor apocynin (APO). Our results showed that exploratory laparotomy with isoflurane anesthesia impaired the contextual fear memory, increased expression of Nox2, 8-OH-dG, CD11b, and IL-1β, and down-regulated BDNF expression in the hippocampus at 7 d post-surgery. The surgery-induced microglial activation and neuroinflammation persisted to 7 d after surgery in the hippocampus, but only at 1 d in the prefrontal cortex. Notably, administration with APO could rescue these surgery-induced cognitive impairments and associated brain pathology. Together, our data suggested that Nox2-derived ROS in hippocampal microglia, at least in part, contributes to subsequent neuroinflammation and cognitive impairments induced by surgery in aged mice. PMID:26254234

  14. Anti-Inflammatory Activity of Bee Venom in BV2 Microglial Cells: Mediation of MyD88-Dependent NF-κB Signaling Pathway

    OpenAIRE

    Im, Eun Ju; Kim, Su Jung; Hong, Seung Bok; PARK, Jin-Kyu; Rhee, Man Hee

    2016-01-01

    Bee venom has long been used as a traditional folk medicine in Korea. It has been reportedly used for the treatment of arthritis, cancer, and inflammation. Although its anti-inflammatory activity in lipopolysaccharide- (LPS-) stimulated inflammatory cells has been reported, the exact mechanism of its anti-inflammatory action has not been fully elucidated. Therefore, the aim of this study was to investigate the anti-inflammatory mechanism of bee venom in BV2 microglial cells. We first investig...

  15. Low-level laser therapy regulates microglial function through Src-mediated signaling pathways: implications for neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Song Sheng

    2012-09-01

    Full Text Available Abstract Background Activated microglial cells are an important pathological component in brains of patients with neurodegenerative diseases. The purpose of this study was to investigate the effect of He-Ne (632.8 nm, 64.6 mW/cm2 low-level laser therapy (LLLT, a non-damaging physical therapy, on activated microglia, and the subsequent signaling events of LLLT-induced neuroprotective effects and phagocytic responses. Methods To model microglial activation, we treated the microglial BV2 cells with lipopolysaccharide (LPS. For the LLLT-induced neuroprotective study, neuronal cells with activated microglial cells in a Transwell™ cell-culture system were used. For the phagocytosis study, fluorescence-labeled microspheres were added into the treated microglial cells to confirm the role of LLLT. Results Our results showed that LLLT (20 J/cm2 could attenuate toll-like receptor (TLR-mediated proinflammatory responses in microglia, characterized by down-regulation of proinflammatory cytokine expression and nitric oxide (NO production. LLLT-triggered TLR signaling inhibition was achieved by activating tyrosine kinases Src and Syk, which led to MyD88 tyrosine phosphorylation, thus impairing MyD88-dependent proinflammatory signaling cascade. In addition, we found that Src activation could enhance Rac1 activity and F-actin accumulation that typify microglial phagocytic activity. We also found that Src/PI3K/Akt inhibitors prevented LLLT-stimulated Akt (Ser473 and Thr308 phosphorylation and blocked Rac1 activity and actin-based microglial phagocytosis, indicating the activation of Src/PI3K/Akt/Rac1 signaling pathway. Conclusions The present study underlines the importance of Src in suppressing inflammation and enhancing microglial phagocytic function in activated microglia during LLLT stimulation. We have identified a new and important neuroprotective signaling pathway that consists of regulation of microglial phagocytosis and inflammation under LLLT

  16. Methamphetamine activates nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and induces human immunodeficiency virus (HIV) transcription in human microglial cells

    Science.gov (United States)

    Wires, Emily S.; Alvarez, David; Dobrowolski, Curtis; Wang, Yun; Morales, Marisela; Karn, Jonathan; Harvey, Brandon K.

    2012-01-01

    Human immunodeficiency virus (HIV) primarily infects glial cells in the central nervous system (CNS). Recent evidence suggests that HIV-infected individuals who abuse drugs such as methamphetamine (METH) have higher viral loads and experience more severe neurological complications than HIV-infected individuals who do not abuse drugs. The aim of this study was to determine the effect of METH on HIV expression from the HIV long terminal repeats (LTR) promoter and on an HIV integrated provirus in microglial cells, the primary host cells for HIV in the CNS. Primary human microglial cells immortalized with SV40 T-antigen (CHME-5 cells) were co-transfected with an HIV LTR reporter and the HIV Tat gene, a key regulator of viral replication and gene expression, and exposed to METH. Our results demonstrate that METH treatment induced LTR activation, an effect potentiated in the presence of Tat. We also found that METH increased the nuclear translocation of the nuclear factor kappa B (NF-κB), a key cellular transcriptional regulator of the LTR promoter, and the activity of an NF-κB-specific reporter plasmid in CHME-5 cells. The presence of a dominant-negative regulator of NF-κB blocked METH-related activation of the HIV LTR. Furthermore, treatment of HIV-latently infected CHME-5 (CHME-5/HIV) cells with METH induced HIV expression in a dose-dependent manner, and nuclear translocation of the p65 subunit of NF-κB. These results suggest that METH can stimulate HIV gene expression in microglia cells through activation of the NF-κB signaling pathway. This mechanism may outline the initial biochemical events leading to the observed increased neurodegeneration in HIV-positive individuals who use METH. PMID:22618514

  17. Cytomegalovirus Infection of the Rat Developing Brain In Utero Prominently Targets Immune Cells and Promotes Early Microglial Activation

    Science.gov (United States)

    Cloarec, Robin; Bauer, Sylvian; Luche, Hervé; Buhler, Emmanuelle; Pallesi-Pocachard, Emilie; Salmi, Manal; Courtens, Sandra; Massacrier, Annick; Grenot, Pierre; Teissier, Natacha; Watrin, Françoise; Schaller, Fabienne; Adle-Biassette, Homa; Gressens, Pierre; Malissen, Marie; Stamminger, Thomas; Streblow, Daniel N.; Bruneau, Nadine; Szepetowski, Pierre

    2016-01-01

    Background Congenital cytomegalovirus infections are a leading cause of neurodevelopmental disorders in human and represent a major health care and socio-economical burden. In contrast with this medical importance, the pathophysiological events remain poorly known. Murine models of brain cytomegalovirus infection, mostly neonatal, have brought recent insights into the possible pathogenesis, with convergent evidence for the alteration and possible involvement of brain immune cells. Objectives and Methods In order to confirm and expand those findings, particularly concerning the early developmental stages following infection of the fetal brain, we have created a model of in utero cytomegalovirus infection in the developing rat brain. Rat cytomegalovirus was injected intraventricularly at embryonic day 15 (E15) and the brains analyzed at various stages until the first postnatal day, using a combination of gene expression analysis, immunohistochemistry and multicolor flow cytometry experiments. Results Rat cytomegalovirus infection was increasingly seen in various brain areas including the choroid plexi and the ventricular and subventricular areas and was prominently detected in CD45low/int, CD11b+ microglial cells, in CD45high, CD11b+ cells of the myeloid lineage including macrophages, and in CD45+, CD11b– lymphocytes and non-B non-T cells. In parallel, rat cytomegalovirus infection of the developing rat brain rapidly triggered a cascade of pathophysiological events comprising: chemokines upregulation, including CCL2-4, 7 and 12; infiltration by peripheral cells including B-cells and monocytes at E17 and P1, and T-cells at P1; and microglia activation at E17 and P1. Conclusion In line with previous findings in neonatal murine models and in human specimen, our study further suggests that neuroimmune alterations might play critical roles in the early stages following cytomegalovirus infection of the brain in utero. Further studies are now needed to determine which

  18. Dexamethasone selectively suppresses microglial trophic responses to hippocampal deafferentation

    DEFF Research Database (Denmark)

    Woods, A G; Poulsen, F R; Gall, C M

    1999-01-01

    hippocampus. Daily dexamethasone injections almost completely blocked increases in insulin-like growth factor-1 messenger RNA content, but did not perturb increases in ciliary neurotrophic factor or basic fibroblast growth factor messenger RNA content, in the deafferented dentate gyrus molecular layer. To...... injections on microglial proliferation, ED-1 immunoreactivity (a marker of microglial reactivity) and insulin-like growth factor-1 messenger RNA expression. Semi-chronic dexamethasone treatment attenuated all three measures of deafferentation-induced microglial reactivity. However, a single dexamethasone...

  19. Preventive effects of a fermented dairy product against Alzheimer's disease and identification of a novel oleamide with enhanced microglial phagocytosis and anti-inflammatory activity.

    Science.gov (United States)

    Ano, Yasuhisa; Ozawa, Makiko; Kutsukake, Toshiko; Sugiyama, Shinya; Uchida, Kazuyuki; Yoshida, Aruto; Nakayama, Hiroyuki

    2015-01-01

    Despite the ever-increasing number of patients with dementia worldwide, fundamental therapeutic approaches to this condition have not been established. Epidemiological studies suggest that intake of fermented dairy products prevents cognitive decline in the elderly. However, the active compounds responsible for the effect remain to be elucidated. The present study aims to elucidate the preventive effects of dairy products on Alzheimer's disease and to identify the responsible component. Here, in a mouse model of Alzheimer's disease (5xFAD), intake of a dairy product fermented with Penicillium candidum had preventive effects on the disease by reducing the accumulation of amyloid β (Aβ) and hippocampal inflammation (TNF-α and MIP-1α production), and enhancing hippocampal neurotrophic factors (BDNF and GDNF). A search for preventive substances in the fermented dairy product identified oleamide as a novel dual-active component that enhanced microglial Aβ phagocytosis and anti-inflammatory activity towards LPS stimulation in vitro and in vivo. During the fermentation, oleamide was synthesized from oleic acid, which is an abundant component of general dairy products owing to lipase enzymatic amidation. The present study has demonstrated the preventive effect of dairy products on Alzheimer's disease, which was previously reported only epidemiologically. Moreover, oleamide has been identified as an active component of dairy products that is considered to reduce Aβ accumulation via enhanced microglial phagocytosis, and to suppress microglial inflammation after Aβ deposition. Because fermented dairy products such as camembert cheese are easy to ingest safely as a daily meal, their consumption might represent a preventive strategy for dementia. PMID:25760987

  20. Preventive effects of a fermented dairy product against Alzheimer's disease and identification of a novel oleamide with enhanced microglial phagocytosis and anti-inflammatory activity.

    Directory of Open Access Journals (Sweden)

    Yasuhisa Ano

    Full Text Available Despite the ever-increasing number of patients with dementia worldwide, fundamental therapeutic approaches to this condition have not been established. Epidemiological studies suggest that intake of fermented dairy products prevents cognitive decline in the elderly. However, the active compounds responsible for the effect remain to be elucidated. The present study aims to elucidate the preventive effects of dairy products on Alzheimer's disease and to identify the responsible component. Here, in a mouse model of Alzheimer's disease (5xFAD, intake of a dairy product fermented with Penicillium candidum had preventive effects on the disease by reducing the accumulation of amyloid β (Aβ and hippocampal inflammation (TNF-α and MIP-1α production, and enhancing hippocampal neurotrophic factors (BDNF and GDNF. A search for preventive substances in the fermented dairy product identified oleamide as a novel dual-active component that enhanced microglial Aβ phagocytosis and anti-inflammatory activity towards LPS stimulation in vitro and in vivo. During the fermentation, oleamide was synthesized from oleic acid, which is an abundant component of general dairy products owing to lipase enzymatic amidation. The present study has demonstrated the preventive effect of dairy products on Alzheimer's disease, which was previously reported only epidemiologically. Moreover, oleamide has been identified as an active component of dairy products that is considered to reduce Aβ accumulation via enhanced microglial phagocytosis, and to suppress microglial inflammation after Aβ deposition. Because fermented dairy products such as camembert cheese are easy to ingest safely as a daily meal, their consumption might represent a preventive strategy for dementia.

  1. Statins attenuate polymethylmethacrylate-mediated monocyte activation.

    LENUS (Irish Health Repository)

    Laing, Alan J

    2012-02-03

    BACKGROUND: Periprosthetic osteolysis precipitates aseptic loosening of components, increases the risk of periprosthetic fracture and, through massive bone loss, complicates revision surgery and ultimately is the primary cause for failure of joint arthroplasty. The anti-inflammatory properties of HMG-CoA reductase inhibitors belonging to the statin family are well recognized. We investigated a possible role for status in initiating the first stage of the osteolytic cycle, namely monocytic activation. METHODS: We used an in vitro model of the human monocyte\\/macrophage inflammatory response to poly-methylmethacrylate (PMMA) particles after pretreat-ing cells with cerivastatin, a potent member of the statin family. Cell activation based upon production of TNF-alpha and MCP-1 cytokines was analyzed and the intracellular Raf-MEK-ERK signal transduction pathway was evaluated using western blot analysis, to identify its role in cell activation and in any cerivastatin effects observed. RESULTS: We found that pretreatment with cerivastatin significantly abrogates the production of inflammatory cytokines TNF-alpha and MCP-1 by human monocytes in response to polymethylmethacrylate particle activation. This inflammatory activation and attenuation appear to be mediated through the intracellular Raf-MEK-ERK pathway. INTERPRETATION: We propose that by intervening at the upstream activation stage, subsequent osteoclast activation and osteolysis can be suppressed. We believe that the anti-inflammatory properties of statins may potentially play a prophylactic role in the setting of aseptic loosening, and in so doing increase implant longevity.

  2. CX3CL1 reduces neurotoxicity and microglial activation in a rat model of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Hudson Charles E

    2011-01-01

    Full Text Available Abstract Background Parkinson's disease is characterized by a progressive loss of dopaminergic neurons in the substantia nigra. The cause of the neurodegeneration is unknown. Neuroinflammation has been clearly shown in Parkinson's disease and may be involved in the progressive nature of the disease. Microglia are capable of producing neuronal damage through the production of bioactive molecules such as cytokines, as well as reactive oxygen species (ROS, and nitric oxide (NO. The inflammatory response in the brain is tightly regulated at multiple levels. One form of immune regulation occurs via neurons. Fractalkine (CX3CL1, produced by neurons, suppresses the activation of microglia. CX3CL1 is constitutively expressed. It is not known if addition of exogenous CX3CL1 beyond otherwise physiologically normal levels could decrease microglia activation and thereby minimize the secondary neurodegeration following a neurotoxic insult. Methods The intrastriatal 6-hydroxydopamine (6-OHDA rat model of Parkinson disease, was used to test the hypothesis that exogenous CX3CL1 could be neuroprotective. Treatment with recombinant CX3CL1 was delivered to the striatum by an osmotic minipump for 28 days beginning 7 days after the initial insult. Unbiased stereological methods were used to quantify the lesion size in the striatum, the amount of neuronal loss in the substantia nigra, and the amount of microglia activation. Results As hypothesized, CX3CL1 was able to suppress this microglia activation. The reduced microglia activation was found to be neuroprotective as the CX3CL1 treated rats had a smaller lesion volume in the striatum and importantly significantly fewer neurons were lost in the CX3CL1 treated rats. Conclusion These findings demonstrated that CX3CL1 plays a neuroprotective role in 6-OHDA-induced dopaminergic lesion and it might be an effective therapeutic target for many neurodegenerative diseases, including Parkinson disease and Alzheimer disease

  3. TAM receptors affect adult brain neurogenesis by negative regulation of microglial cell activation1

    OpenAIRE

    Ji, Rui; Tian, Shifu; Lu, Helen J.; LU, QINGJUN; Yan ZHENG; Wang, Xiaomin; Ding, Jixiang; Li, Qiutang; Lu, Qingxian

    2013-01-01

    TAM tyrosine kinases play multiple functional roles including regulation of the target genes important in homeostatic regulation of cytokine receptors or Toll-like receptor-mediated signal transduction pathways. Here, we show that TAM receptors affect adult hippocampal neurogenesis and loss of TAM receptors impair hippocampal neurogenesis, largely attributed to exaggerated inflammatory responses by microglia characterized by increased MAP kinase and NF-κB activation and elevated production of...

  4. Prevention of Alzheimer's disease pathology by cannabinoids: Neuroprotection mediated by blockade of microglial activation

    OpenAIRE

    Ramírez, B.G.; Blázquez, Cristina; Gómez del Pulgar, Teresa; Guzmán, M.; De Ceballos, ML

    2005-01-01

    Alzheimer's disease (AD) is characterized by enhanced β-amyloid peptide (βA) deposition along with glial activation in senile plaques, selective neuronal loss, and cognitive deficits. Cannabinoids are neuroprotective agents against excitotoxicity in vitro and acute brain damage in vivo. This background prompted us to study the localization, expression, and function of cannabinoid receptors in AD and the possible protective role of cannabinoids after βA treatment, both in vivo and in vitro. He...

  5. Cannabinoids prevent lipopolysaccharide-induced neurodegeneration in the rat substantia nigra in vivo through inhibition of microglial activation and NADPH oxidase.

    Science.gov (United States)

    Chung, Eun Sook; Bok, Eugene; Chung, Young Cheul; Baik, Hyung Hwan; Jin, Byung Kwan

    2012-04-27

    We investigated the effects of synthetic cannabinoids, WIN55,212-2 and HU210, on LPS-injected rat substantia nigra in vivo. Intranigral injection of LPS resulted in a significant loss of nigral dopaminergic (DA) neurons, as determined by Nissl staining and TH immunohistochemistry. LPS-induced neurotoxicity was accompanied by microglial activation, as demonstrated by OX-42 immunohistochemistry. In parallel, Western blot analysis, ELISA assay and hydroethidine histochemistry revealed activation of NADPH oxidase, as demonstrated by increased translocation of the cytosolic proteins p47(phox) and p67(phox), generation of reactive oxygen species (ROS) and increased level of proinflammatory cytokines (TNF-α and IL-1β), where degeneration of nigral DA neurons was evident. Interestingly, WIN55,212-2 and HU210 increased the survival of nigral DA neurons at 7days post-LPS treatment. Consistent with these results, cannabinoids inhibited activation of NADPH oxidase, ROS production and production of proinflammatory cytokines in the rat SN. The present data suggest that cannabinoids may be beneficial for the treatment of neurodegenerative diseases, such as PD, that are associated with microglial activation. PMID:22436849

  6. Inhibition of Src kinase activity attenuates amyloid associated microgliosis in a murine model of Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Dhawan Gunjan

    2012-07-01

    Full Text Available Abstract Background Microglial activation is an important histologic characteristic of the pathology of Alzheimer’s disease (AD. One hypothesis is that amyloid beta (Aβ peptide serves as a specific stimulus for tyrosine kinase-based microglial activation leading to pro-inflammatory changes that contribute to disease. Therefore, inhibiting Aβ stimulation of microglia may prove to be an important therapeutic strategy for AD. Methods Primary murine microglia cultures and the murine microglia cell line, BV2, were used for stimulation with fibrillar Aβ1-42. The non-receptor tyrosine kinase inhibitor, dasatinib, was used to treat the cells to determine whether Src family kinase activity was required for the Aβ stimulated signaling response and subsequent increase in TNFα secretion using Western blot analysis and enzyme-linked immunosorbent assay (ELISA, respectively. A histologic longitudinal analysis was performed using an AD transgenic mouse model, APP/PS1, to determine an age at which microglial protein tyrosine kinase levels increased in order to administer dasatinib via mini osmotic pump diffusion. Effects of dasatinib administration on microglial and astroglial activation, protein phosphotyrosine levels, active Src kinase levels, Aβ plaque deposition, and spatial working memory were assessed via immunohistochemistry, Western blot, and T maze analysis. Results Aβ fibrils stimulated primary murine microglia via a tyrosine kinase pathway involving Src kinase that was attenuated by dasatinib. Dasatinib administration to APP/PS1 mice decreased protein phosphotyrosine, active Src, reactive microglia, and TNFα levels in the hippocampus and temporal cortex. The drug had no effect on GFAP levels, Aβ plaque load, or the related tyrosine kinase, Lyn. These anti-inflammatory changes correlated with improved performance on the T maze test in dasatinib infused animals compared to control animals. Conclusions These data suggest that amyloid

  7. Novel point mutations attenuate autotaxin activity

    Directory of Open Access Journals (Sweden)

    Stracke Mary L

    2009-02-01

    Full Text Available Abstract Background The secreted enzyme autotaxin (ATX stimulates tumor cell migration, tumorigenesis, angiogenesis, and metastasis. ATX hydrolyzes nucleotides, but its hydrolysis of lysophospholipids to produce lysophosphatidic acid (LPA accounts for its biological activities. ATX has been identified only as a constitutively active enzyme, and regulation of its activity is largely unexplored. In spite of its presence in plasma along with abundant putative substrate LPC, the product LPA is found in plasma at unexpectedly low concentrations. It is plausible that the LPA-producing activity of ATX is regulated by its expression and by access to substrate(s. For this reason studying the interaction of enzyme with substrate is paramount to understanding the regulation of LPA production. Results In this study we determine ATX hydrolytic activities toward several artificial and natural substrates. Two novel point mutations near the enzyme active site (H226Q and H434Q confer attenuated activity toward all substrates tested. The Vmax for LPC compounds depends upon chain length and saturation; but this order does not differ among wild type and mutants. However the mutant forms show disproportionately low activity toward two artificial substrates, pNpTMP and FS-3. The mutant forms did not significantly stimulate migration responses at concentrations that produced a maximum response for WT-ATX, but this defect could be rescued by inclusion of exogenous LPC. Conclusion H226Q-ATX and H434Q-ATX are the first point mutations of ATX/NPP2 demonstrated to differentially impair substrate hydrolysis, with hydrolysis of artificial substrates being disproportionately lower than that of LPC. This implies that H226 and H434 are important for substrate interaction. Assays that rely on hydrolyses of artificial substrates (FS-3 and pNpTMP, or that rely on hydrolysis of cell-derived substrate, might fail to detect certain mutated forms of ATX that are nonetheless capable of

  8. N-[3,4-dimethoxycinnamoyl]-anthranilic acid (tranilast) suppresses microglial inducible nitric oxide synthase (iNOS) expression and activity induced by interferon-γ (IFN-γ)

    OpenAIRE

    Platten, Michael; Wick, Wolfgang; Wischhusen, Jörg; WELLER, MICHAEL

    2001-01-01

    Microglial cells up-regulate inducible nitric oxide synthase (iNOS) expression in response to various pro-inflammatory stimuli including interferon-γ (IFN-γ), allowing for the release of nitric oxide (NO). Tranilast (N-[3,4-dimethoxycinnamoyl]-anthranilic acid) is an antiallergic compound with suppressive effects on the activation of monocytes.Here, we show that N9 murine microglial cells express iNOS mRNA and protein and release nitric oxide into the culture medium in response to IFN-γ (200 ...

  9. 2-Methoxyestradiol, an endogenous 17β-estradiol metabolite, inhibits microglial proliferation and activation via an estrogen receptor-independent mechanism.

    Science.gov (United States)

    Schaufelberger, Sara A; Rosselli, Marinella; Barchiesi, Federica; Gillespie, Delbert G; Jackson, Edwin K; Dubey, Raghvendra K

    2016-03-01

    17β-Estradiol (estradiol) inhibits microglia proliferation. 2-Methoxyestradiol (2-ME) is an endogenous metabolite of estradiol with little affinity for estrogen receptors (ERs). We hypothesize that 2-ME inhibits microglial proliferation and activation and contributes to estradiol's inhibitory effects on microglia. We compared the effects of estradiol, 2-hydroxyestradiol [2-OE; estradiol metabolite produced by cytochrome P450 (CYP450)], and 2-ME [formed by catechol-O-methyltransferase (COMT) acting upon 2-OE] on microglial (BV2 cells) DNA synthesis, cell proliferation, activation, and phagocytosis. 2-ME and 2-OE were approximately three- and 10-fold, respectively, more potent than estradiol in inhibiting microglia DNA synthesis. The antimitogenic effects of estradiol were reduced by pharmacological inhibitors of CYP450 and COMT. Inhibition of COMT blocked the conversion of 2-OE to 2-ME and the antimitogenic effects of 2-OE but not 2-ME. Microglia expressed ERβ and GPR30 but not ERα. 2,3-Bis(4-hydroxyphenyl)-propionitrile (ERβ agonist), but not 4,4',4''-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (ERα agonist) or G1 (GPR30 agonist), inhibited microglial proliferation. The antiproliferative effects of estradiol, but not 2-OE or 2-ME, were partially reversed by ICI-182,780 (ERα/β antagonist) but not by 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole (ERα antagonist) or G15 (GPR30 antagonist). Lipopolysaccharide increased microglia iNOS and COX-2 expression and phagocytosing activity of microglia; these effects were inhibited by 2-ME. We conclude that in microglia, 2-ME inhibits proliferation, proinflammatory responses, and phagocytosis. 2-ME partially mediates the effects of estradiol via ER-independent mechanisms involving sequential metabolism of estradiol to 2-OE and 2-ME. 2-ME could be of potential therapeutic use in postischemic stroke injuries. Interindividual differences in estradiol metabolism might affect the

  10. Glucocerebrosidase 1 deficient Danio rerio mirror key pathological aspects of human Gaucher disease and provide evidence of early microglial activation preceding alpha-synuclein-independent neuronal cell death

    Science.gov (United States)

    Keatinge, Marcus; Bui, Hai; Menke, Aswin; Chen, Yu-Chia; Sokol, Anna M.; Bai, Qing; Ellett, Felix; Da Costa, Marc; Burke, Derek; Gegg, Matthew; Trollope, Lisa; Payne, Thomas; McTighe, Aimee; Mortiboys, Heather; de Jager, Sarah; Nuthall, Hugh; Kuo, Ming-Shang; Fleming, Angeleen; Schapira, Anthony H.V.; Renshaw, Stephen A.; Highley, J. Robin; Chacinska, Agnieszka; Panula, Pertti; Burton, Edward A.; O'Neill, Michael J.; Bandmann, Oliver

    2015-01-01

    Autosomal recessively inherited glucocerebrosidase 1 (GBA1) mutations cause the lysosomal storage disorder Gaucher's disease (GD). Heterozygous GBA1 mutations (GBA1+/−) are the most common risk factor for Parkinson's disease (PD). Previous studies typically focused on the interaction between the reduction of glucocerebrosidase (enzymatic) activity in GBA1+/− carriers and alpha-synuclein-mediated neurotoxicity. However, it is unclear whether other mechanisms also contribute to the increased risk of PD in GBA1+/− carriers. The zebrafish genome does not contain alpha-synuclein (SNCA), thus providing a unique opportunity to study pathogenic mechanisms unrelated to alpha-synuclein toxicity. Here we describe a mutant zebrafish line created by TALEN genome editing carrying a 23 bp deletion in gba1 (gba1c.1276_1298del), the zebrafish orthologue of human GBA1. Marked sphingolipid accumulation was already detected at 5 days post-fertilization with accompanying microglial activation and early, sustained up-regulation of miR-155, a master regulator of inflammation. gba1c.1276_1298del mutant zebrafish developed a rapidly worsening phenotype from 8 weeks onwards with striking reduction in motor activity by 12 weeks. Histopathologically, we observed marked Gaucher cell invasion of the brain and other organs. Dopaminergic neuronal cell count was normal through development but reduced by >30% at 12 weeks in the presence of ubiquitin-positive, intra-neuronal inclusions. This gba1c.1276_1298del zebrafish line is the first viable vertebrate model sharing key pathological features of GD in both neuronal and non-neuronal tissue. Our study also provides evidence for early microglial activation prior to alpha-synuclein-independent neuronal cell death in GBA1 deficiency and suggests upregulation of miR-155 as a common denominator across different neurodegenerative disorders. PMID:26376862

  11. Role of fractalkine/CX3CR1 interaction in light-induced photoreceptor degeneration through regulating retinal microglial activation and migration.

    Directory of Open Access Journals (Sweden)

    Meng Zhang

    Full Text Available BACKGROUND: Excessive exposure to light enhances the progression and severity of some human retinal degenerative diseases. While retinal microglia are likely to be important in neuron damage associated with these diseases, the relationship between photoreceptor damage and microglial activation remains poorly understood. Some recent studies have indicated that the chemokine fractalkine is involved in the pathogenesis of many neurodegenerative diseases. The present study was performed to investigate the cross-talk between injured photoreceptors and activated retinal microglia, focusing on the role of fractalkine and its receptor CX3CR1 in light-induced photoreceptor degeneration. METHODOLOGY/PRINCIPAL FINDINGS: Both in vivo and in vitro experiments were involved in the research. In vivo, Sprague-Dawley rats were exposed to blue light for 24 hours. In vitro, the co-culture of primary retinal microglia and a photoreceptor cell line (661W cell was exposed to blue light for five hours. Some cultures were pretreated by the addition of anti-CX3CR1 neutralizing antibody or recombinant fractalkine. Expression of fractalkine/CX3CR1 and inflammatory cytokines was detected by immunofluorescence, real-time PCR, Western immunoblot analysis, and ELISA assay. TUNEL method was used to detect cell apoptosis. In addition, chemotaxis assay was performed to evaluate the impact of soluble fractalkine on microglial migration. Our results showed that the expression of fractalkine that was significantly upregulated after exposure to light, located mainly at the photoreceptors. The extent of photoreceptor degeneration and microglial migration paralleled the increased level of fractalkine/CX3CR1. Compared with the control, the expression of inflammatory cytokines was significantly downregulated in the anti-CX3CR1 neutralizing antibody-treated group, and the number of photoreceptors was also well preserved. The addition of recombinant full-length fractalkine or soluble

  12. The Anti-Inflammatory Activity of Eucommia ulmoides Oliv. Bark. Involves NF-κB Suppression and Nrf2-Dependent HO-1 Induction in BV-2 Microglial Cells

    Science.gov (United States)

    Kwon, Seung-Hwan; Ma, Shi-Xun; Hwang, Ji-Young; Ko, Yong-Hyun; Seo, Ji-Yeon; Lee, Bo-Ram; Lee, Seok-Yong; Jang, Choon-Gon

    2016-01-01

    In the present study, we investigated the anti-inflammatory properties of Eucommia ulmoides Oliv. Bark. (EUE) in lipopolysaccharide (LPS)-stimulated microglial BV-2 cells and found that EUE inhibited LPS-mediated up-regulation of pro-inflammatory response factors. In addition, EUE inhibited the elevated production of pro-inflammatory cytokines, mediators, and reactive oxygen species (ROS) in LPS-stimulated BV-2 microglial cells. Subsequent mechanistic studies revealed that EUE suppressed LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs), phosphoinositide-3-kinase (PI3K)/Akt, glycogen synthase kinase-3β (GSK-3β), and their downstream transcription factor, nuclear factor-kappa B (NF-κB). EUE also blocked the nuclear translocation of NF-κB and inhibited its binding to DNA. We next demonstrated that EUE induced the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and upregulated heme oxygenase-1 (HO-1) expression. We determined that the significant up-regulation of HO-1 expression by EUE was a consequence of Nrf2 nuclear translocation; furthermore, EUE increased the DNA binding of Nrf2. In contrast, zinc protoporphyrin (ZnPP), a specific HO-1 inhibitor, blocked the ability of EUE to inhibit NO and PGE2 production, indicating the vital role of HO-1. Overall, our results indicate that EUE inhibits pro-inflammatory responses by modulating MAPKs, PI3K/Akt, and GSK-3β, consequently suppressing NF-κB activation and inducing Nrf2-dependent HO-1 activation. PMID:27068259

  13. Inhibition of Src kinase activity attenuates amyloid associated microgliosis in a murine model of Alzheimer’s disease

    OpenAIRE

    Dhawan Gunjan; Combs Colin K

    2012-01-01

    Abstract Background Microglial activation is an important histologic characteristic of the pathology of Alzheimer’s disease (AD). One hypothesis is that amyloid beta (Aβ) peptide serves as a specific stimulus for tyrosine kinase-based microglial activation leading to pro-inflammatory changes that contribute to disease. Therefore, inhibiting Aβ stimulation of microglia may prove to be an important therapeutic strategy for AD. Methods Primary murine microglia cultures and the murine microglia c...

  14. Nonlinear dual reconstruction of SPECT activity and attenuation images.

    Science.gov (United States)

    Liu, Huafeng; Guo, Min; Hu, Zhenghui; Shi, Pengcheng; Hu, Hongjie

    2014-01-01

    In single photon emission computed tomography (SPECT), accurate attenuation maps are needed to perform essential attenuation compensation for high quality radioactivity estimation. Formulating the SPECT activity and attenuation reconstruction tasks as coupled signal estimation and system parameter identification problems, where the activity distribution and the attenuation parameter are treated as random variables with known prior statistics, we present a nonlinear dual reconstruction scheme based on the unscented Kalman filtering (UKF) principles. In this effort, the dynamic changes of the organ radioactivity distribution are described through state space evolution equations, while the photon-counting SPECT projection data are measured through the observation equations. Activity distribution is then estimated with sub-optimal fixed attenuation parameters, followed by attenuation map reconstruction given these activity estimates. Such coupled estimation processes are iteratively repeated as necessary until convergence. The results obtained from Monte Carlo simulated data, physical phantom, and real SPECT scans demonstrate the improved performance of the proposed method both from visual inspection of the images and a quantitative evaluation, compared to the widely used EM-ML algorithms. The dual estimation framework has the potential to be useful for estimating the attenuation map from emission data only and thus benefit the radioactivity reconstruction. PMID:25225796

  15. GBE50 Attenuates Inflammatory Response by Inhibiting the p38 MAPK and NF-κB Pathways in LPS-Stimulated Microglial Cells

    Directory of Open Access Journals (Sweden)

    Gai-ying He

    2014-01-01

    Full Text Available Overactivated microglia contribute to a variety of pathological conditions in the central nervous system. The major goal of the present study is to evaluate the potential suppressing effects of a new type of Ginko biloba extract, GBE50, on activated microglia which causes proinflammatory responses and to explore the underlying molecular mechanisms. Murine BV2 microglia cells, with or without pretreatmentof GBE50 at various concentrations, were activated by incubation with lipopolysaccharide (LPS. A series of biochemical and microscopic assays were performed to measure cell viability, cell morphology, release of tumor necrosis factor-α (TNF-α and interleukin-1β (IL-1β, and signal transduction via the p38 MAPK and nuclear factor-kappa B (NF-κB p65 pathways. We found that GBE50 pretreatment suppressed LPS-induced morphological changes in BV2 cells. Moreover, GBE50 treatment significantly reduced the release of proinflammatory cytokines, TNF-α and IL-1β, and inhibited the associated signal transduction through the p38 MAPK and NF-κB p65 pathways. These results demonstrated the anti-inflammatory effect of GBE50 on LPS-activated BV2 microglia cells, and indicated that GBE50 reduced the LPS-induced proinflammatory TNF-α and IL-1β release by inhibiting signal transduction through the NF-κB p65 and p38 MAPK pathways. Our findings reveal, at least in part, the molecular basis underlying the anti-inflammatory effects of GBE50.

  16. Small interfering RNA-mediated suppression of Ccl2 in Müller cells attenuates microglial recruitment and photoreceptor death following retinal degeneration

    Directory of Open Access Journals (Sweden)

    Rutar Matt

    2012-09-01

    Full Text Available Abstract Background The recruitment and activation of inflammatory cells is thought to exacerbate photoreceptor death in retinal degenerative conditions such as age-related macular degeneration (AMD. We investigated the role of Müller cell-derived chemokine (C-C motif ligand (Ccl2 expression on monocyte/microglia infiltration and photoreceptor death in light-mediated retinal degeneration, using targeted small interfering (siRNA. Methods Adult Sprague–Dawley rats were injected intravitreally with 1 μg of either Ccl2 siRNA or scrambled siRNA, and were then exposed to 1000 lux of light for a period of 24 hours. The mice were given an overdose of barbiturate, and the retinas harvested and evaluated for the effects of bright-light exposure. Ccl2 expression was assessed by quantitative PCR, immunohistochemistry, and in situ hybridization. Monocytes/microglia were counted on retinal cryostat sections immunolabeled with the markers ED1 and ionized calcium binding adaptor (IBA1, and photoreceptor apoptosis was assessed using terminal dUTP nick end labeling. Results Intravitreal injection of Ccl2 siRNA significantly reduced the expression of Ccl2 following light damage to 29% compared with controls. In retinas injected with Ccl2 siRNA, in situ hybridization and immunohistochemistry on retinal cryostat sections showed a substantial decrease in Ccl2 within Müller cells. Cell counts showed significantly fewer ED1-positive and IBA1-positive cells in the retinal vasculature and outer nuclear layer of Ccl2 siRNA-injected retinas, compared with controls. Moreover, there was significantly less photoreceptor apoptosis in Ccl2 siRNA-injected retinas compared with controls. Conclusions Our data indicate that Ccl2 expression by Müller cells promotes the infiltration of monocytes/microglia, thereby contributing to the neuroinflammatory response and photoreceptor death following retinal injury. Modulation of exaggerated chemokine responses using siRNA may have

  17. Activation of KCNN3/SK3/KCa2.3 channels attenuates enhanced calcium influx and inflammatory cytokine production in activated microglia

    OpenAIRE

    Dolga, Amalia M.; Letsche, Till; Gold, Maike; Doti, Nunzianna; Bacher, Michael; Chiamvimonvat, Nipavan; Dodel, Richard; Culmsee, Carsten

    2012-01-01

    In neurons, small-conductance calcium activated potassium (KCNN/SK/KCa2) channels maintain calcium homeostasis after NMDA receptor activation, thereby preventing excitotoxic neuronal death. So far, little is known about the function of KCNN/SK/KCa2 channels in non-neuronal cells, such as microglial cells. In this study, we addressed the question whether KCNN/SK/KCa2 channels activation affected inflammatory responses of primary mouse microglial cells upon lipopolysaccharide (LPS) stimulation....

  18. Activation of microglial NADPH oxidase is synergistic with glial iNOS expression in inducing neuronal death: a dual-key mechanism of inflammatory neurodegeneration

    Directory of Open Access Journals (Sweden)

    Brown Guy C

    2005-09-01

    Full Text Available Abstract Background Inflammation-activated glia are seen in many CNS pathologies and may kill neurons through the release of cytotoxic mediators, such as nitric oxide from inducible NO synthase (iNOS, and possibly superoxide from NADPH oxidase (NOX. We set out to determine the relative role of these species in inducing neuronal death, and to test the dual-key hypothesis that the production of both species simultaneously is required for significant neuronal death. Methods Primary co-cultures of cerebellar granule neurons and glia from rats were used to investigate the effect of NO (from iNOS, following lipopolysaccharide (LPS and/or cytokine addition or superoxide/hydrogen peroxide (from NOX, following phorbol 12-myristate 13-acetate (PMA, ATP analogue (BzATP, interleukin-1β (IL-1β or arachidonic acid (AA addition on neuronal survival. Results Induction of glial iNOS caused little neuronal death. Similarly, activation of NOX alone resulted in little or no neuronal death. However, if NOX was activated (by PMA or BzATP in the presence of iNOS (induced by LPS and interferon-γ then substantial delayed neuronal death occurred over 48 hours, which was prevented by inhibitors of iNOS (1400W, NOX (apocynin or a peroxynitrite decomposer (FeTPPS. Neurons and glia were also found to stain positive for nitrotyrosine (a putative marker of peroxynitrite only when both iNOS and NOX were simultaneously active. If NOX was activated by weak stimulators (IL-1β, AA or the fibrillogenic prion peptide PrP106-126 in the presence of iNOS, it caused microglial proliferation and delayed neurodegeneration over 6 days, which was prevented by iNOS or NOX inhibitors, a peroxynitrite decomposer or a NMDA-receptor antagonist (MK-801. Conclusion These results suggest a dual-key mechanism, whereby glial iNOS or microglial NOX activation alone is relatively benign, but if activated simultaneously are synergistic in killing neurons, through generating peroxynitrite. This

  19. TGF-β1 blockade of microglial chemotaxis toward Aβ aggregates involves SMAD signaling and down-regulation of CCL5

    Directory of Open Access Journals (Sweden)

    Huang Fong-Lee

    2010-04-01

    Full Text Available Abstract Background Overactivated microglia that cluster at neuritic plaques constantly release neurotoxins, which actively contribute to progressive neurodegeneration in Alzheimer's disease (AD. Therefore, attenuating microglial clustering can reduce focal neuroinflammation at neuritic plaques. Previously, we identified CCL5 and CCL2 as prominent chemokines that mediate the chemotaxis of microglia toward beta-amyloid (Aβaggregates. Although transforming growth factor-β1 (TGF-β1 has been shown to down-regulate the expression of chemokines in activated microglia, whether TGF-β1 can reduce the chemotaxis of microglia toward neuritic plaques in AD remains unclear. Methods In the present study, we investigated the effects of TGF-β1 on Aβ-induced chemotactic migration of BV-2 microglia using time-lapse recording, transwell assay, real-time PCR, ELISA, and western blotting. Results The cell tracing results suggest that the morphological characteristics and migratory patterns of BV-2 microglia resemble those of microglia in slice cultures. Using this model system, we discovered that TGF-β1 reduces Aβ-induced BV-2 microglial clustering in a dose-dependent manner. Chemotactic migration of these microglial cells toward Aβ aggregates was significantly attenuated by TGF-β1. However, these microglia remained actively moving without any reduction in migration speed. Pharmacological blockade of TGF-β1 receptor I (ALK5 by SB431542 treatment reduced the inhibitory effects of TGF-β1 on Aβ-induced BV-2 microglial clustering, while preventing TGF-β1-mediated cellular events, including SMAD2 phosphorylation and CCL5 down-regulation. Conclusions Our results suggest that TGF-β1 reduces Aβ-induced microglial chemotaxis via the SMAD2 pathway. The down-regulation of CCL5 by TGF-β1 at least partially contributes to the clustering of microglia at Aβ aggregates. The attenuating effects of SB431542 upon TGF-β1-suppressed microglial clustering may be

  20. Metabotropic glutamate receptors inhibit microglial glutamate release

    Directory of Open Access Journals (Sweden)

    Gary Guo Li

    2012-08-01

    Full Text Available Pro-inflammatory stimuli evoke an export of glutamate from microglia that is sufficient to contribute to excitotoxicity in neighbouring neurons. Since microglia also express various glutamate receptors themselves, we were interested in the potential feedback of glutamate on this system. Several agonists of mGluRs (metabotropic glutamate receptors were applied to primary rat microglia, and the export of glutamate into their culture medium was evoked by LPS (lipopolysaccharide. Agonists of group-II and -III mGluR ACPD [(1S,3R-1-aminocyclopentane-1,3-dicarboxylic acid] and L-AP4 [L-(+-2-amino-4-phosphonobutyric acid] were both capable of completely blocking the glutamate export without interfering with the production of NO (nitric oxide; the group-I agonist tADA (trans-azetidine-2,4-dicarboxylic acid was ineffective. Consistent with the possibility of feedback, inhibition of mGluR by MSPG [(R,S-α-2-methyl-4sulfonophenylglycine] potentiated glutamate export. As the group-II and -III mGluR are coupled to Gαi-containing G-proteins and the inhibition of adenylate cyclase, we explored the role of cAMP in this effect. Inhibition of cAMP-dependent protein kinase [also known as protein kinase A (PKA] by H89 mimicked the effect of ACPD, and the mGluR agonist had its actions reversed by artificially sustaining cAMP through the PDE (phosphodiesterase inhibitor IBMX (isobutylmethylxanthine or the cAMP mimetic dbcAMP (dibutyryl cAMP. These data indicate that mGluR activation attenuates a potentially neurotoxic export of glutamate from activated microglia and implicate cAMP as a contributor to this aspect of microglial action.

  1. Coordinated role of voltage-gated sodium channels and the Na{sup +}/H{sup +} exchanger in sustaining microglial activation during inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Muhammad M. [Department of Environmental and Occupational Medicine and Environmental and Occupational Health Sciences Institute, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States); Sonsalla, Patricia K. [Department of Neurology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States); Richardson, Jason R., E-mail: jricha3@eohsi.rutgers.edu [Department of Environmental and Occupational Medicine and Environmental and Occupational Health Sciences Institute, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States)

    2013-12-01

    Persistent neuroinflammation and microglial activation play an integral role in the pathogenesis of many neurological disorders. We investigated the role of voltage-gated sodium channels (VGSC) and Na{sup +}/H{sup +} exchangers (NHE) in the activation of immortalized microglial cells (BV-2) after lipopolysaccharide (LPS) exposure. LPS (10 and 100 ng/ml) caused a dose- and time-dependent accumulation of intracellular sodium [(Na{sup +}){sub i}] in BV-2 cells. Pre-treatment of cells with the VGSC antagonist tetrodotoxin (TTX, 1 μM) abolished short-term Na{sup +} influx, but was unable to prevent the accumulation of (Na{sup +}){sub i} observed at 6 and 24 h after LPS exposure. The NHE inhibitor cariporide (1 μM) significantly reduced accumulation of (Na{sup +}){sub i} 6 and 24 h after LPS exposure. Furthermore, LPS increased the mRNA expression and protein level of NHE-1 in a dose- and time-dependent manner, which was significantly reduced after co-treatment with TTX and/or cariporide. LPS increased production of TNF-α, ROS, and H{sub 2}O{sub 2} and expression of gp91{sup phox}, an active subunit of NADPH oxidase, in a dose- and time-dependent manner, which was significantly reduced by TTX or TTX + cariporide. Collectively, these data demonstrate a closely-linked temporal relationship between VGSC and NHE-1 in regulating function in activated microglia, which may provide avenues for therapeutic interventions aimed at reducing neuroinflammation. - Highlights: • LPS causes immediate increase in sodium through VGSC and subsequently through the NHE-1. • Inhibition of VGSC reduces increases in NHE-1 and gp91{sup phox}. • Inhibition of VGSC and NHE-1 reduces NADPH oxidase-mediated Tnf-α, ROS, and H{sub 2}O{sub 2} production. • NHE-1 and Na{sub v}1.6 may be viable targets for therapeutic interventions to reduce neuroinflammation in neurodegenerative disease.

  2. Novel point mutations attenuate autotaxin activity

    OpenAIRE

    Stracke Mary L; Roberts David D; Bandle Russell W; Koh Eunjin; Clair Timothy

    2009-01-01

    Abstract Background The secreted enzyme autotaxin (ATX) stimulates tumor cell migration, tumorigenesis, angiogenesis, and metastasis. ATX hydrolyzes nucleotides, but its hydrolysis of lysophospholipids to produce lysophosphatidic acid (LPA) accounts for its biological activities. ATX has been identified only as a constitutively active enzyme, and regulation of its activity is largely unexplored. In spite of its presence in plasma along with abundant putative substrate LPC, the product LPA is ...

  3. Inhibitory effect of a tyrosine-fructose Maillard reaction product, 2,4-bis(p-hydroxyphenyl-2-butenal on amyloid-β generation and inflammatory reactions via inhibition of NF-κB and STAT3 activation in cultured astrocytes and microglial BV-2 cells

    Directory of Open Access Journals (Sweden)

    Choi Im Seup

    2011-10-01

    Full Text Available Abstract Background Amyloidogenesis is linked to neuroinflammation. The tyrosine-fructose Maillard reaction product, 2,4-bis(p-hydroxyphenyl-2-butenal, possesses anti-inflammatory properties in cultured macrophages, and in an arthritis animal model. Because astrocytes and microglia are responsible for amyloidogenesis and inflammatory reactions in the brain, we investigated the anti-inflammatory and anti-amyloidogenic effects of 2,4-bis(p-hydroxyphenyl-2-butenal in lipopolysaccharide (LPS-stimulated astrocytes and microglial BV-2 cells. Methods Cultured astrocytes and microglial BV-2 cells were treated with LPS (1 μg/ml for 24 h, in the presence (1, 2, 5 μM or absence of 2,4-bis(p-hydroxyphenyl-2-butenal, and harvested. We performed molecular biological analyses to determine the levels of inflammatory and amyloid-related proteins and molecules, cytokines, Aβ, and secretases activity. Nuclear factor-kappa B (NF-κB DNA binding activity was determined using gel mobility shift assays. Results We found that 2,4-bis(p-hydroxyphenyl-2-butenal (1, 2, 5 μM suppresses the expression of inducible nitric oxide synthase (iNOS and cyclooxygenase-2 (COX-2 as well as the production of nitric oxide (NO, reactive oxygen species (ROS, tumor necrosis factor-α (TNF-α, and interleukin-1β (IL-1β in LPS (1 μg/ml-stimulated astrocytes and microglial BV-2 cells. Further, 2,4-bis(p-hydroxyphenyl-2-butenal inhibited the transcriptional and DNA binding activity of NF-κB--a transcription factor that regulates genes involved in neuroinflammation and amyloidogenesis via inhibition of IκB degradation as well as nuclear translocation of p50 and p65. Consistent with the inhibitory effect on inflammatory reactions, 2,4-bis(p-hydroxyphenyl-2-butenal inhibited LPS-elevated Aβ42 levels through attenuation of β- and γ-secretase activities. Moreover, studies using signal transducer and activator of transcription 3 (STAT3 siRNA and a pharmacological inhibitor showed that 2

  4. GWAS of longitudinal amyloid accumulation on 18F-florbetapir PET in Alzheimer's disease implicates microglial activation gene IL1RAP.

    Science.gov (United States)

    Ramanan, Vijay K; Risacher, Shannon L; Nho, Kwangsik; Kim, Sungeun; Shen, Li; McDonald, Brenna C; Yoder, Karmen K; Hutchins, Gary D; West, John D; Tallman, Eileen F; Gao, Sujuan; Foroud, Tatiana M; Farlow, Martin R; De Jager, Philip L; Bennett, David A; Aisen, Paul S; Petersen, Ronald C; Jack, Clifford R; Toga, Arthur W; Green, Robert C; Jagust, William J; Weiner, Michael W; Saykin, Andrew J

    2015-10-01

    Brain amyloid deposition is thought to be a seminal event in Alzheimer's disease. To identify genes influencing Alzheimer's disease pathogenesis, we performed a genome-wide association study of longitudinal change in brain amyloid burden measured by (18)F-florbetapir PET. A novel association with higher rates of amyloid accumulation independent from APOE (apolipoprotein E) ε4 status was identified in IL1RAP (interleukin-1 receptor accessory protein; rs12053868-G; P = 1.38 × 10(-9)) and was validated by deep sequencing. IL1RAP rs12053868-G carriers were more likely to progress from mild cognitive impairment to Alzheimer's disease and exhibited greater longitudinal temporal cortex atrophy on MRI. In independent cohorts rs12053868-G was associated with accelerated cognitive decline and lower cortical (11)C-PBR28 PET signal, a marker of microglial activation. These results suggest a crucial role of activated microglia in limiting amyloid accumulation and nominate the IL-1/IL1RAP pathway as a potential target for modulating this process. PMID:26268530

  5. Activation of microglial cells triggers a release of brain-derived neurotrophic factor (BDNF inducing their proliferation in an adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and proliferation of microglia

    Directory of Open Access Journals (Sweden)

    Gomes Catarina

    2013-01-01

    Full Text Available Abstract Background Brain-derived neurotrophic factor (BDNF has been shown to control microglial responses in neuropathic pain. Since adenosine A2A receptors (A2ARs control neuroinflammation, as well as the production and function of BDNF, we tested to see if A2AR controls the microglia-dependent secretion of BDNF and the proliferation of microglial cells, a crucial event in neuroinflammation. Methods Murine N9 microglial cells were challenged with lipopolysaccharide (LPS, 100 ng/mL in the absence or in the presence of the A2AR antagonist, SCH58261 (50 nM, as well as other modulators of A2AR signaling. The BDNF cellular content and secretion were quantified by Western blotting and ELISA, A2AR density was probed by Western blotting and immunocytochemistry and cell proliferation was assessed by BrdU incorporation. Additionally, the A2AR modulation of LPS-driven cell proliferation was also tested in primary cultures of mouse microglia. Results LPS induced time-dependent changes of the intra- and extracellular levels of BDNF and increased microglial proliferation. The maximal LPS-induced BDNF release was time-coincident with an LPS-induced increase of the A2AR density. Notably, removing endogenous extracellular adenosine or blocking A2AR prevented the LPS-mediated increase of both BDNF secretion and proliferation, as well as exogenous BDNF-induced proliferation. Conclusions We conclude that A2AR activation plays a mandatory role controlling the release of BDNF from activated microglia, as well as the autocrine/paracrine proliferative role of BDNF.

  6. LRRK2 kinase inhibition prevents pathological microglial phagocytosis in response to HIV-1 Tat protein

    Directory of Open Access Journals (Sweden)

    Marker Daniel F

    2012-11-01

    Full Text Available Abstract Background Human Immunodeficiency Virus-1 (HIV-1 associated neurocognitive disorders (HANDs are accompanied by significant morbidity, which persists despite the use of combined antiretroviral therapy (cART. While activated microglia play a role in pathogenesis, changes in their immune effector functions, including phagocytosis and proinflammatory signaling pathways, are not well understood. We have identified leucine-rich repeat kinase 2 (LRRK2 as a novel regulator of microglial phagocytosis and activation in an in vitro model of HANDs, and hypothesize that LRRK2 kinase inhibition will attenuate microglial activation during HANDs. Methods We treated BV-2 immortalized mouse microglia cells with the HIV-1 trans activator of transcription (Tat protein in the absence or presence of LRRK2 kinase inhibitor (LRRK2i. We used Western blot, qRT-PCR, immunocytochemistry and latex bead engulfment assays to analyze LRRK2 protein levels, proinflammatory cytokine and phagocytosis receptor expression, LRRK2 cellular distribution and phagocytosis, respectively. Finally, we utilized ex vivo microfluidic chambers containing primary hippocampal neurons and BV-2 microglia cells to investigate microglial phagocytosis of neuronal axons. Results We found that Tat-treatment of BV-2 cells induced kinase activity associated phosphorylation of serine 935 on LRRK2 and caused the formation of cytoplasmic LRRK2 inclusions. LRRK2i decreased Tat-induced phosphorylation of serine 935 on LRRK2 and inhibited the formation of Tat-induced cytoplasmic LRRK2 inclusions. LRRK2i also decreased Tat-induced process extension in BV-2 cells. Furthermore, LRRK2i attenuated Tat-induced cytokine expression and latex bead engulfment. We examined relevant cellular targets in microfluidic chambers and found that Tat-treated BV-2 microglia cells cleared axonal arbor and engulfed neuronal elements, whereas saline treated controls did not. LRRK2i was found to protect axons in the presence

  7. Activating and Attenuating the Amicoumacin Antibiotics.

    Science.gov (United States)

    Park, Hyun Bong; Perez, Corey E; Perry, Elena Kim; Crawford, Jason M

    2016-01-01

    The amicoumacins belong to a class of dihydroisocoumarin natural products and display antibacterial, antifungal, anticancer, and anti-inflammatory activities. Amicoumacins are the pro-drug activation products of a bacterial nonribosomal peptide-polyketide hybrid biosynthetic pathway and have been isolated from Gram-positive Bacillus and Nocardia species. Here, we report the stimulation of a "cryptic" amicoumacin pathway in the entomopathogenic Gram-negative bacterium Xenorhabdus bovienii, a strain not previously known to produce amicoumacins. X. bovienii participates in a multi-lateral symbiosis where it is pathogenic to insects and mutualistic to its Steinernema nematode host. Waxmoth larvae are common prey of the X. bovienii-Steinernema pair. Employing a medium designed to mimic the amino acid content of the waxmoth circulatory fluid led to the detection and characterization of amicoumacins in X. bovienii. The chemical structures of the amicoumacins were supported by 2D-NMR, HR-ESI-QTOF-MS, tandem MS, and polarimeter spectral data. A comparative gene cluster analysis of the identified X. bovienii amicoumacin pathway to that of the Bacillus subtilis amicoumacin pathway and the structurally-related Xenorhabdus nematophila xenocoumacin pathway is presented. The X. bovienii pathway encodes an acetyltransferase not found in the other reported pathways, which leads to a series of N-acetyl-amicoumacins that lack antibacterial activity. N-acetylation of amicoumacin was validated through in vitro protein biochemical studies, and the impact of N-acylation on amicoumacin's mode of action was examined through ribosomal structural analyses. PMID:27347911

  8. Microglial Dysregulation in Psychiatric Disease

    Directory of Open Access Journals (Sweden)

    Luciana Romina Frick

    2013-01-01

    Full Text Available Microglia, the brain's resident immune cells, are phagocytes of the macrophage lineage that have a key role in responding to inflammation and immune challenge in the brain. More recently, they have been shown to have a number of important roles beyond immune surveillance and response, including synaptic pruning during development and the support of adult neurogenesis. Microglial abnormalities have been found in several neuropsychiatric conditions, though in most cases it remains unclear whether these are causative or are a reaction to some other underlying pathophysiology. Here we summarize postmortem, animal, neuroimaging, and other evidence for microglial pathology in major depression, schizophrenia, autism, obsessive-compulsive disorder, and Tourette syndrome. We identify gaps in the existing literature and important areas for future research. If microglial pathology proves to be an important causative factor in these or other neuropsychiatric diseases, modulators of microglial function may represent a novel therapeutic strategy.

  9. Importance of Attenuating Quadriceps Activation Deficits after Total Knee Arthroplasty

    OpenAIRE

    Thomas, Abbey C.; Jennifer E Stevens-Lapsley

    2012-01-01

    Total knee arthroplasty (TKA) is associated with persistent quadriceps dysfunction. Since quadriceps dysfunction impairs functional performance, minimizing quadriceps dysfunction by attenuating central activation deficits early after surgery may improve function later in life. Rehabilitation strategies incorporating neuromuscular electrical stimulation and early, aggressive quadriceps strengthening may prove beneficial. Further, surgical approaches such as minimally invasive TKA may minimize ...

  10. SENP1 inhibits the IH-induced apoptosis and nitric oxide production in BV2 microglial cells.

    Science.gov (United States)

    Liu, Song; Wang, Zhong-hua; Xu, Bo; Chen, Kui; Sun, Jin-yuan; Ren, Lian-ping

    2015-11-27

    To reveal SUMOylation and the roles of Sentrin-specific proteases (SENP)s in microglial cells under Intermittent hypoxia (IH) condition would provide more intensive view of understanding the mechanisms of IH-induced central nervous system (CNS) damage. Hence, in the present study, we detected the expression levels of SENPs in microglial cells under IH and normoxia conditions via RT-PCR assay. We found that SENP1 was significantly down-regulated in cells exposure to IH. Subsequently, the effect of IH for the activation of microglia and the potential roles of SENP1 in the SENP1-overexpressing cell lines were investigated via Western blotting, RT-PCR and Griess assay. The present study demonstrated the apoptosis-inducing and activating role of IH on microglia. In addition, we revealed that the effect of IH on BV-2 including apoptosis, nitric oxide synthase (iNOS) expression and nitric oxide (NO) induction can be attenuated by SENP1 overexpression. The results of the present study are of both theoretical and therapeutic significance to explore the potential roles of SENP1 under IH condition and elucidated the mechanisms underlying microglial survival and activation. PMID:26499079

  11. Cinnamon and Its Metabolite Sodium Benzoate Attenuate the Activation of p21rac and Protect Memory and Learning in an Animal Model of Alzheimer's Disease.

    Science.gov (United States)

    Modi, Khushbu K; Roy, Avik; Brahmachari, Saurabh; Rangasamy, Suresh B; Pahan, Kalipada

    2015-01-01

    This study underlines the importance of cinnamon, a commonly used natural spice and flavoring material, and its metabolite sodium benzoate (NaB) in attenuating oxidative stress and protecting memory and learning in an animal model of Alzheimer's disease (AD). NaB, but not sodium formate, was found to inhibit LPS-induced production of reactive oxygen species (ROS) in mouse microglial cells. Similarly, NaB also inhibited fibrillar amyloid beta (Aβ)- and 1-methyl-4-phenylpyridinium(+)-induced microglial production of ROS. Although NaB reduced the level of cholesterol in vivo in mice, reversal of the inhibitory effect of NaB on ROS production by mevalonate, and geranylgeranyl pyrophosphate, but not cholesterol, suggests that depletion of intermediates, but not end products, of the mevalonate pathway is involved in the antioxidant effect of NaB. Furthermore, we demonstrate that an inhibitor of p21rac geranylgeranyl protein transferase suppressed the production of ROS and that NaB suppressed the activation of p21rac in microglia. As expected, marked activation of p21rac was observed in the hippocampus of subjects with AD and 5XFAD transgenic (Tg) mouse model of AD. However, oral feeding of cinnamon (Cinnamonum verum) powder and NaB suppressed the activation of p21rac and attenuated oxidative stress in the hippocampus of Tg mice as evident by decreased dihydroethidium (DHE) and nitrotyrosine staining, reduced homocysteine level and increased level of reduced glutathione. This was accompanied by suppression of neuronal apoptosis, inhibition of glial activation, and reduction of Aβ burden in the hippocampus and protection of memory and learning in transgenic mice. Therefore, cinnamon powder may be a promising natural supplement in halting or delaying the progression of AD. PMID:26102198

  12. Cinnamon and Its Metabolite Sodium Benzoate Attenuate the Activation of p21rac and Protect Memory and Learning in an Animal Model of Alzheimer's Disease.

    Directory of Open Access Journals (Sweden)

    Khushbu K Modi

    Full Text Available This study underlines the importance of cinnamon, a commonly used natural spice and flavoring material, and its metabolite sodium benzoate (NaB in attenuating oxidative stress and protecting memory and learning in an animal model of Alzheimer's disease (AD. NaB, but not sodium formate, was found to inhibit LPS-induced production of reactive oxygen species (ROS in mouse microglial cells. Similarly, NaB also inhibited fibrillar amyloid beta (Aβ- and 1-methyl-4-phenylpyridinium(+-induced microglial production of ROS. Although NaB reduced the level of cholesterol in vivo in mice, reversal of the inhibitory effect of NaB on ROS production by mevalonate, and geranylgeranyl pyrophosphate, but not cholesterol, suggests that depletion of intermediates, but not end products, of the mevalonate pathway is involved in the antioxidant effect of NaB. Furthermore, we demonstrate that an inhibitor of p21rac geranylgeranyl protein transferase suppressed the production of ROS and that NaB suppressed the activation of p21rac in microglia. As expected, marked activation of p21rac was observed in the hippocampus of subjects with AD and 5XFAD transgenic (Tg mouse model of AD. However, oral feeding of cinnamon (Cinnamonum verum powder and NaB suppressed the activation of p21rac and attenuated oxidative stress in the hippocampus of Tg mice as evident by decreased dihydroethidium (DHE and nitrotyrosine staining, reduced homocysteine level and increased level of reduced glutathione. This was accompanied by suppression of neuronal apoptosis, inhibition of glial activation, and reduction of Aβ burden in the hippocampus and protection of memory and learning in transgenic mice. Therefore, cinnamon powder may be a promising natural supplement in halting or delaying the progression of AD.

  13. In vivo imaging of microglial activation using a peripheral benzodiazepine receptor ligand. [11C]PK-11195 and animal PET following ethanol injury in rat striatum

    International Nuclear Information System (INIS)

    To investigate whether [11C]PK-11195, a specific peripheral benzodiazepine receptors (PBRs) ligand for positron emission tomography (PET), can show activated microglia in a rat brain injury model. On day 1, ethanol was injected into the rat's right striatum (ST) using a stereotaxic operative procedure. On day 3, head magnetic resonance imaging (MRI) scans for surgically treated rats were performed to evaluate ethanol injury morphologically. On day 4, dynamic PET scans (17 injured rats and 7 non-injured controls) were performed for 60 min with an animal PET scanner under chloral hydrate anesthesia following a bolus injection of [11C]PK-11195 through tail vein. Because PBRs are present throughout the brain, there is no suitable receptor-free reference region. The reference tissue model may not be applicable because of low target to back-ground ratio for low affinity of [11C]PK-11195 to PBRs. We evaluated the PBRs binding with regions of interest (ROIs)-based approach to estimate total distribution volume (V). We used an integral from 0 min to 60 min (V60) as an estimate of V. On the coronal PET image, ROIs were placed on bilateral ST. Differences in right/left ST V60 ratios between lesioned and unlesioned control rats were compared using unpaired t tests. Immunohistochemical staining was performed for confirming the presence of activated microglia following decapitation on the PET experiment day. The right/left ST V60 ratios in lesioned rats (1.07±0.08) were significantly higher than those in unlesioned control rats (1.00±0.06, P11C]PK-11195 PET imaging would be a useful tool for evaluating microglial activation in a rat brain injury model. (author)

  14. Minocycline Attenuates Neonatal Germinal-Matrix-Hemorrhage-Induced Neuroinflammation and Brain Edema by Activating Cannabinoid Receptor 2.

    Science.gov (United States)

    Tang, Jun; Chen, Qianwei; Guo, Jing; Yang, Liming; Tao, Yihao; Li, Lin; Miao, Hongping; Feng, Hua; Chen, Zhi; Zhu, Gang

    2016-04-01

    Germinal matrix hemorrhage (GMH) is the most common neurological disease of premature newborns leading to detrimental neurological sequelae. Minocycline has been reported to play a key role in neurological inflammatory diseases by controlling some mechanisms that involve cannabinoid receptor 2 (CB2R). The current study investigated whether minocycline reduces neuroinflammation and protects the brain from injury in a rat model of collagenase-induced GMH by regulating CB2R activity. To test this hypothesis, the effects of minocycline and a CB2R antagonist (AM630) were evaluated in male rat pups that were post-natal day 7 (P7) after GMH. We found that minocycline can lead to increased CB2R mRNA expression and protein expression in microglia. Minocycline significantly reduced GMH-induced brain edema, microglial activation, and lateral ventricular volume. Additionally, minocycline enhanced cortical thickness after injury. All of these neuroprotective effects of minocycline were prevented by AM630. A cannabinoid CB2 agonist (JWH133) was used to strengthen the hypothesis, which showed the identical neuroprotective effects of minocycline. Our study demonstrates, for the first time, that minocycline attenuates neuroinflammation and brain injury in a rat model of GMH, and activation of CBR2 was partially involved in these processes. PMID:25833102

  15. Axonal lesion-induced microglial proliferation and microglial cluster formation in the mouse

    DEFF Research Database (Denmark)

    Dissing-Olesen, L; Ladeby, R; Nielsen, Helle Hvilsted; Toft-Hansen, H; Dalmau, I; Finsen, B

    2007-01-01

    Microglia are innate immune cells and form the first line of defense of the CNS. Proliferation is a key event in the activation of microglia in acute pathology, and has been extensively characterized in rats, but not in mice. In this study we investigated axonal-lesion-induced microglial prolifer......Microglia are innate immune cells and form the first line of defense of the CNS. Proliferation is a key event in the activation of microglia in acute pathology, and has been extensively characterized in rats, but not in mice. In this study we investigated axonal-lesion-induced microglial...... double staining showed that most activated, proliferating microglia occurred in multicellular clusters and co-expressed the intercellular adhesion molecule-1 and the hematopoietic stem cell marker cluster of differentiation 34. In conclusion, this study extends observations of axonal lesion...

  16. Baroreceptor activation attenuates attentional effects on pain-evoked potentials

    OpenAIRE

    Gray, Marcus A.; Minati, Ludovico; Paoletti, Giulia; Critchley, Hugo D.

    2010-01-01

    Focused attention typically enhances neural nociceptive responses, reflected electroencephalographically as increased amplitude of pain-evoked event-related potentials (ERPs). Additionally, pain-evoked ERPs are attenuated by hypertension and baroreceptor activity, through as yet unclear mechanisms. There is indirect evidence that these two effects may interact, suggesting that baroreceptor-related modulation of nociception is more than a low-level gating phenomenon. To address this hypothesis...

  17. Pomegranate Polyphenols and Extract Inhibit Nuclear Factor of Activated T-Cell Activity and Microglial Activation In Vitro and in a Transgenic Mouse Model of Alzheimer Disease123

    OpenAIRE

    Rojanathammanee, Lalida; Puig, Kendra L.; Combs, Colin K.

    2013-01-01

    Alzheimer disease (AD) brain is characterized by extracellular plaques of amyloid β (Aβ) peptide with reactive microglia. This study aimed to determine whether a dietary intervention could attenuate microgliosis. Memory was assessed in 12-mo-old male amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice via Barnes maze testing followed by division into either a control-fed group provided free access to normal chow and water or a treatment group provided free access to normal chow a...

  18. Attenuation of neuroinflammation by dexmedetomidine is associated with activation of a cholinergic anti-inflammatory pathway in a rat tibial fracture model.

    Science.gov (United States)

    Zhu, Ya-Juan; Peng, Ke; Meng, Xiao-Wen; Ji, Fu-Hai

    2016-08-01

    Sustained neuroinflammation contributes to the pathogenesis of postoperative cognitive dysfunction. Dexmedetomidine, a selective α-2 adrenergic receptor agonist, exhibits a protective role in the brain. This study investigated whether dexmedetomidine pretreatment attenuates neuroinflammation induced by tibial fracture in rats, as well as the mechanism by which dexmedetomidine provides its neuroprotection. In our study, we observed that tibial fracture significantly increased the levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) and the expression of nuclear factor-kappa B (NF-κB) in the hippocampus. Overexpression of microglial (CD11b) and astrocytic (GFAP) responses to injury were observed in the hippocampus. Dexmedetomidine pretreatment significantly suppressed the inflammatory responses, as evidenced by lower TNF-α and IL-1β levels, significantly inhibited NF-κB activity, and alleviated overexpression of microglia and astrocytes in the hippocampus. However, pretreatment with dexmedetomidine failed to attenuate cytokine responses and activity of NF-κB, CD11b and GFAP after vagotomy or treatment with methyllycaconitine, an α-7 nicotinic acetylcholine receptor (α7nAChR) antagonist. These results suggest that pretreatment with dexmedetomidine may attenuate neuroinflammation caused by tibial fracture in rats through vagal-dependent and α7nAChR-dependent mechanisms. PMID:27163720

  19. Minocycline treatment inhibits microglial activation and alters spinal levels of endocannabinoids in a rat model of neuropathic pain

    Directory of Open Access Journals (Sweden)

    Elphick Maurice R

    2009-07-01

    Full Text Available Abstract Activation of spinal microglia contributes to aberrant pain responses associated with neuropathic pain states. Endocannabinoids (ECs are present in the spinal cord, and inhibit nociceptive processing; levels of ECs may be altered by microglia which modulate the turnover of endocannabinoids in vitro. Here, we investigate the effect of minocycline, an inhibitor of activated microglia, on levels of the endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG, and the related compound N-palmitoylethanolamine (PEA, in neuropathic spinal cord. Selective spinal nerve ligation (SNL in rats resulted in mechanical allodynia and the presence of activated microglia in the ipsilateral spinal cord. Chronic daily treatment with minocycline (30 mg/kg, ip for 14 days significantly reduced the development of mechanical allodynia at days 5, 10 and 14 post-SNL surgery, compared to vehicle-treated SNL rats (P P P P P

  20. Microglia-Secreted Galectin-3 Acts as a Toll-like Receptor 4 Ligand and Contributes to Microglial Activation

    Directory of Open Access Journals (Sweden)

    Miguel Angel Burguillos

    2015-03-01

    Full Text Available Inflammatory response induced by microglia plays a critical role in the demise of neuronal populations in neuroinflammatory diseases. Although the role of toll-like receptor 4 (TLR4 in microglia’s inflammatory response is fully acknowledged, little is known about endogenous ligands that trigger TLR4 activation. Here, we report that galectin-3 (Gal3 released by microglia acts as an endogenous paracrine TLR4 ligand. Gal3-TLR4 interaction was further confirmed in a murine neuroinflammatory model (intranigral lipopolysaccharide [LPS] injection and in human stroke subjects. Depletion of Gal3 exerted neuroprotective and anti-inflammatory effects following global brain ischemia and in the neuroinflammatory LPS model. These results suggest that Gal3-dependent-TLR4 activation could contribute to sustained microglia activation, prolonging the inflammatory response in the brain.

  1. Resolvins AT-D1 and E1 differentially impact functional outcome, post-traumatic sleep, and microglial activation following diffuse brain injury in the mouse.

    Science.gov (United States)

    Harrison, Jordan L; Rowe, Rachel K; Ellis, Timothy W; Yee, Nicole S; O'Hara, Bruce F; Adelson, P David; Lifshitz, Jonathan

    2015-07-01

    Traumatic brain injury (TBI) is induced by mechanical forces which initiate a cascade of secondary injury processes, including inflammation. Therapies which resolve the inflammatory response may promote neural repair without exacerbating the primary injury. Specific derivatives of omega-3 fatty acids loosely grouped as specialized pro-resolving lipid mediators (SPMs) and termed resolvins promote the active resolution of inflammation. In the current study, we investigate the effect of two resolvin molecules, RvE1 and AT-RvD1, on post-traumatic sleep and functional outcome following diffuse TBI through modulation of the inflammatory response. Adult, male C57BL/6 mice were injured using a midline fluid percussion injury (mFPI) model (6-10min righting reflex time for brain-injured mice). Experimental groups included mFPI administered RvE1 (100ng daily), AT-RvD1 (100ng daily), or vehicle (sterile saline) and counterbalanced with uninjured sham mice. Resolvins or saline were administered daily for seven consecutive days beginning 3days prior to TBI to evaluate proof-of-principle to improve outcome. Immediately following diffuse TBI, post-traumatic sleep was recorded for 24h post-injury. For days 1-7 post-injury, motor outcome was assessed by rotarod. Cognitive function was measured at 6days post-injury using novel object recognition (NOR). At 7days post-injury, microglial activation was quantified using immunohistochemistry for Iba-1. In the diffuse brain-injured mouse, AT-RvD1 treatment, but not RvE1, mitigated motor and cognitive deficits. RvE1 treatment significantly increased post-traumatic sleep in brain-injured mice compared to all other groups. RvE1 treated mice displayed a higher proportion of ramified microglia and lower proportion of activated rod microglia in the cortex compared to saline or AT-RvD1 treated brain-injured mice. Thus, RvE1 treatment modulated post-traumatic sleep and the inflammatory response to TBI, albeit independently of improvement in motor

  2. Interleukin 1 receptor antagonist knockout mice show enhanced microglial activation and neuronal damage induced by intracerebroventricular infusion of human β-amyloid

    Directory of Open Access Journals (Sweden)

    Watterson D Martin

    2005-06-01

    Full Text Available Abstract Background Interleukin 1 (IL-1 is a key mediator of immune responses in health and disease. Although classically the function of IL-1 has been studied in the systemic immune system, research in the past decade has revealed analogous roles in the CNS where the cytokine can contribute to the neuroinflammation and neuropathology seen in a number of neurodegenerative diseases. In Alzheimer's disease (AD, for example, pre-clinical and clinical studies have implicated IL-1 in the progression of a pathologic, glia-mediated pro-inflammatory state in the CNS. The glia-driven neuroinflammation can lead to neuronal damage, which, in turn, stimulates further glia activation, potentially propagating a detrimental cycle that contributes to progression of pathology. A prediction of this neuroinflammation hypothesis is that increased IL-1 signaling in vivo would correlate with increased severity of AD-relevant neuroinflammation and neuronal damage. Methods To test the hypothesis that increased IL-1 signaling predisposes animals to beta-amyloid (Aβ-induced damage, we used IL-1 receptor antagonist Knock-Out (IL1raKO and wild-type (WT littermate mice in a model that involves intracerebroventricular infusion of human oligomeric Aβ1–42. This model mimics many features of AD, including robust neuroinflammation, Aβ plaques, synaptic damage and neuronal loss in the hippocampus. IL1raKO and WT mice were infused with Aβ for 28 days, sacrificed at 42 days, and hippocampal endpoints analyzed. Results IL1raKO mice showed increased vulnerability to Aβ-induced neuropathology relative to their WT counterparts. Specifically, IL1raKO mice exhibited increased mortality, enhanced microglial activation and neuroinflammation, and more pronounced loss of synaptic markers. Interestingly, Aβ-induced astrocyte responses were not significantly different between WT and IL1raKO mice, suggesting that enhanced IL-1 signaling predominately affects microglia. Conclusion Our

  3. Nitrite attenuated peroxynitrite and hypochlorite generation in activated neutrophils.

    Science.gov (United States)

    Ren, Xiaoming; Ding, Yun; Lu, Naihao

    2016-03-15

    Oxidative stress is usually considered as an important factor to the pathogenesis of various diseases. Peroxynitrite (ONOO(-)) and hypochlorite (OCl(-)) are formed in immune cells as a part of the innate host defense system, but excessive reactive oxygen species generation can cause progressive inflammation and tissue damage. It has been proven that through mediating nitric oxide (NO) homeostasis, inorganic nitrite (NO2(-)) shows organ-protective effects on oxidative stress and inflammation. However, the effects of NO2(-) on the function of immune cells were still not clear. The potential role of NO2(-) in modulating ONOO(-) and OCl(-) generation in neutrophil cells was investigated in this study. As an immune cell activator, lipopolysaccharide (LPS) increased both ONOO(-) and OCl(-) production in neutrophils, which was significantly attenuated by NO2(-). NO2(-) reduced superoxide (O2(·-)) generation via a NO-dependent mechanism and increased NO formation in activated neutrophils, suggesting a crucial role of O2(·-) in NO2(-)-mediated reduction of ONOO(-). Moreover, the reduced effect of NO2(-) on OCl(-) production was attributed to that NO2(-) reduced H2O2 production in activated neutrophils without influencing the release of myeloperoxidase (MPO), thus limiting OCl(-) production by MPO/H2O2 system. Therefore, NO2(-) attenuates ONOO(-) and OCl(-) formation in activated neutrophils, opening a new direction to modulate the inflammatory response. PMID:26854590

  4. Herpes simplex virus induces neural oxidative damage via microglial cell Toll-like receptor-2

    Directory of Open Access Journals (Sweden)

    Little Morgan R

    2010-06-01

    Full Text Available Abstract Background Using a murine model of herpes simplex virus (HSV-1 encephalitis, our laboratory has determined that induction of proinflammatory mediators in response to viral infection is largely mediated through a Toll-like receptor-2 (TLR2-dependent mechanism. Published studies have shown that, like other inflammatory mediators, reactive oxygen species (ROS are generated during viral brain infection. It is increasingly clear that ROS are responsible for facilitating secondary tissue damage during central nervous system infection and may contribute to neurotoxicity associated with herpes encephalitis. Methods Purified microglial cell and mixed neural cell cultures were prepared from C57B/6 and TLR2-/- mice. Intracellular ROS production in cultured murine microglia was measured via 2', 7'-Dichlorofluorescin diacetate (DCFH-DA oxidation. An assay for 8-isoprostane, a marker of lipid peroxidation, was utilized to measure free radical-associated cellular damage. Mixed neural cultures obtained from β-actin promoter-luciferase transgenic mice were used to detect neurotoxicity induced by HSV-infected microglia. Results Stimulation with HSV-1 elevated intracellular ROS in wild-type microglial cell cultures, while TLR2-/- microglia displayed delayed and attenuated ROS production following viral infection. HSV-infected TLR2-/- microglia produced less neuronal oxidative damage to mixed neural cell cultures in comparison to HSV-infected wild-type microglia. Further, HSV-infected TLR2-/- microglia were found to be less cytotoxic to cultured neurons compared to HSV-infected wild-type microglia. These effects were associated with decreased activation of p38 MAPK and p42/p44 ERK in TLR2-/- mice. Conclusions These studies demonstrate the importance of microglial cell TLR2 in inducing oxidative stress and neuronal damage in response to viral infection.

  5. Neuroprotection and Functional Recovery Associated with Decreased Microglial Activation Following Selective Activation of mGluR2/3 Receptors in a Rodent Model of Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Hugh Chan

    2010-01-01

    Full Text Available Clinical trials have demonstrated positive proof of efficacy of dual metabotropic glutamate receptor 2/3 (mGluR2/3 agonists in both anxiety and schizophrenia. Importantly, evidence suggests that these drugs may also be neuroprotective against glutamate excitotoxicity, implicated in the pathogenesis of Parkinson's disease (PD. However, whether this neuroprotection also translates into functional recovery is unclear. In the current study, we examined the neuroprotective efficacy of the dual mGluR2/3 agonist, 2R,4R-4-aminopyrrolidine-2,4-dicarboxylate (2R,4R-APDC, and whether this is accompanied by behavioral recovery in a rodent 6-hydroxydopamine (6-OHDA model of PD. We now report that delayed post lesion treatment with 2R,4R-APDC (10 nmol, results in robust neuroprotection of the nigrostriatal system, which translated into functional recovery as measured by improved forelimb use asymmetry and reduced (+-amphetamine-induced rotation compared to vehicle treated animals. Interestingly, these beneficial effects were associated with a decrease in microglial markers in the SNc, which may suggest an antiinflammatory action of this drug.

  6. Curcumin Ameliorates the Reduction Effect of PGE2 on Fibrillar β-Amyloid Peptide (1-42)-Induced Microglial Phagocytosis through the Inhibition of EP2-PKA Signaling in N9 Microglial Cells.

    Science.gov (United States)

    He, Gen-Lin; Luo, Zhen; Yang, Ju; Shen, Ting-Ting; Chen, Yi; Yang, Xue-Sen

    2016-01-01

    Inflammatory activation of microglia and β amyloid (Aβ) deposition are considered to work both independently and synergistically to contribute to the increased risk of Alzheimer's disease (AD). Recent studies indicate that long-term use of phenolic compounds provides protection against AD, primarily due to their anti-inflammatory actions. We previously suggested that phenolic compound curcumin ameliorated phagocytosis possibly through its anti-inflammatory effects rather than direct regulation of phagocytic function in electromagnetic field-exposed N9 microglial cells (N9 cells). Here, we explored the prostaglandin-E2 (PGE2)-related signaling pathway that involved in curcumin-mediated phagocytosis in fibrillar β-amyloid peptide (1-42) (fAβ42)-stimulated N9 cells. Treatment with fAβ42 increased phagocytosis of fluorescent-labeled latex beads in N9 cells. This increase was attenuated in a dose-dependent manner by endogenous and exogenous PGE2, as well as a selective EP2 or protein kinase A (PKA) agonist, but not by an EP4 agonist. We also found that an antagonist of EP2, but not EP4, abolished the reduction effect of PGE2 on fAβ42-induced microglial phagocytosis. Additionally, the increased expression of endogenous PGE2, EP2, and cyclic adenosine monophosphate (AMP), and activation of vasodilator-stimulated phosphoprotein, cyclic AMP responsive element-binding protein, and PKA were depressed by curcumin administration. This reduction led to the amelioration of the phagocytic abilities of PGE2-stimulated N9 cells. Taken together, these data suggested that curcumin restored the attenuating effect of PGE2 on fAβ42-induced microglial phagocytosis via a signaling mechanism involving EP2 and PKA. Moreover, due to its immune modulatory effects, curcumin may be a promising pharmacological candidate for neurodegenerative diseases. PMID:26824354

  7. Curcumin Ameliorates the Reduction Effect of PGE2 on Fibrillar β-Amyloid Peptide (1-42-Induced Microglial Phagocytosis through the Inhibition of EP2-PKA Signaling in N9 Microglial Cells.

    Directory of Open Access Journals (Sweden)

    Gen-Lin He

    Full Text Available Inflammatory activation of microglia and β amyloid (Aβ deposition are considered to work both independently and synergistically to contribute to the increased risk of Alzheimer's disease (AD. Recent studies indicate that long-term use of phenolic compounds provides protection against AD, primarily due to their anti-inflammatory actions. We previously suggested that phenolic compound curcumin ameliorated phagocytosis possibly through its anti-inflammatory effects rather than direct regulation of phagocytic function in electromagnetic field-exposed N9 microglial cells (N9 cells. Here, we explored the prostaglandin-E2 (PGE2-related signaling pathway that involved in curcumin-mediated phagocytosis in fibrillar β-amyloid peptide (1-42 (fAβ42-stimulated N9 cells. Treatment with fAβ42 increased phagocytosis of fluorescent-labeled latex beads in N9 cells. This increase was attenuated in a dose-dependent manner by endogenous and exogenous PGE2, as well as a selective EP2 or protein kinase A (PKA agonist, but not by an EP4 agonist. We also found that an antagonist of EP2, but not EP4, abolished the reduction effect of PGE2 on fAβ42-induced microglial phagocytosis. Additionally, the increased expression of endogenous PGE2, EP2, and cyclic adenosine monophosphate (AMP, and activation of vasodilator-stimulated phosphoprotein, cyclic AMP responsive element-binding protein, and PKA were depressed by curcumin administration. This reduction led to the amelioration of the phagocytic abilities of PGE2-stimulated N9 cells. Taken together, these data suggested that curcumin restored the attenuating effect of PGE2 on fAβ42-induced microglial phagocytosis via a signaling mechanism involving EP2 and PKA. Moreover, due to its immune modulatory effects, curcumin may be a promising pharmacological candidate for neurodegenerative diseases.

  8. Detailed analysis of the promoter activity of an attenuated lentivirus.

    Science.gov (United States)

    Blatti-Cardinaux, Laure; Sanjosé, Leticia; Zahno, Marie-Luise; Zanoni, Reto; Reina, Ramses; Bertoni, Giuseppe

    2016-07-01

    In spite of an eradication campaign that eliminated clinical cases of caprine arthritis encephalitis virus-induced arthritis in the Swiss goat population, seroconversions are still observed. In the affected flocks, viruses belonging mainly to the small ruminant lentivirus A4 subtype are regularly isolated. These viruses are considered attenuated, except in the mammary gland, where high viral loads and histopathological lesions have been observed. We previously characterized and sequenced such field isolates, detecting several potentially attenuating mutations in their LTR. Here we present a detailed analysis of the promoter activity of these genetic elements, which was comparable to those of virulent isolates. An AP-1 binding site was shown to be crucial for promoter activity in reporter gene assays and also in the context of a replicating molecular clone. Other sites, such as AML(vis) and a conserved E-box, appeared to be less crucial. Analysis of a unique AP-4 site showed a clear discrepancy between results obtained with reporter gene assays and those with mutated viruses. Within the limits of this in vitro study, we did not find evidence pointing to the LTR as the genetic correlate of attenuation for these viruses. Finally, the limited replication of SRLV A4 in mammary cell culture could not explain the suggested mammary tropism. In contrast, and in view of the abundance of macrophages in the mammary gland, it is the striking replication capacity of SRLV A4 in these cells, unaffected by all LTR mutations tested, which may explain the apparent mammary tropism of these viruses. PMID:27114068

  9. Microglial interactions with synapses are modulated by visual experience.

    Directory of Open Access Journals (Sweden)

    Marie-Ève Tremblay

    Full Text Available Microglia are the immune cells of the brain. In the absence of pathological insult, their highly motile processes continually survey the brain parenchyma and transiently contact synaptic elements. Aside from monitoring, their physiological roles at synapses are not known. To gain insight into possible roles of microglia in the modification of synaptic structures, we used immunocytochemical electron microscopy, serial section electron microscopy with three-dimensional reconstructions, and two-photon in vivo imaging to characterize microglial interactions with synapses during normal and altered sensory experience, in the visual cortex of juvenile mice. During normal visual experience, most microglial processes displayed direct apposition with multiple synapse-associated elements, including synaptic clefts. Microglial processes were also distinctively surrounded by pockets of extracellular space. In terms of dynamics, microglial processes localized to the vicinity of small and transiently growing dendritic spines, which were typically lost over 2 d. When experience was manipulated through light deprivation and reexposure, microglial processes changed their morphology, showed altered distributions of extracellular space, displayed phagocytic structures, apposed synaptic clefts more frequently, and enveloped synapse-associated elements more extensively. While light deprivation induced microglia to become less motile and changed their preference of localization to the vicinity of a subset of larger dendritic spines that persistently shrank, light reexposure reversed these behaviors. Taken together, these findings reveal different modalities of microglial interactions with synapses that are subtly altered by sensory experience. These findings suggest that microglia may actively contribute to the experience-dependent modification or elimination of a specific subset of synapses in the healthy brain.

  10. K+ channels and the microglial respiratory burst.

    Science.gov (United States)

    Khanna, R; Roy, L; Zhu, X; Schlichter, L C

    2001-04-01

    Microglial activation following central nervous system damage or disease often culminates in a respiratory burst that is necessary for antimicrobial function, but, paradoxically, can damage bystander cells. We show that several K+ channels are expressed and play a role in the respiratory burst of cultured rat microglia. Three pharmacologically separable K+ currents had properties of Kv1.3 and the Ca2+/calmodulin-gated channels, SK2, SK3, and SK4. mRNA was detected for Kv1.3, Kv1.5, SK2, and/or SK3, and SK4. Protein was detected for Kv1.3, Kv1.5, and SK3 (selective SK2 and SK4 antibodies not available). No Kv1.5-like current was detected, and confocal immunofluorescence showed the protein to be subcellular, in contrast to the robust membrane localization of Kv1.3. To determine whether any of these channels play a role in microglial activation, a respiratory burst was stimulated with phorbol 12-myristate 13-acetate and measured using a single cell, fluorescence-based dihydrorhodamine 123 assay. The respiratory burst was markedly inhibited by blockers of SK2 (apamin) and SK4 channels (clotrimazole and charybdotoxin), and to a lesser extent, by the potent Kv1.3 blocker agitoxin-2. PMID:11245596

  11. Baroreceptor activation attenuates attentional effects on pain-evoked potentials.

    Science.gov (United States)

    Gray, Marcus A; Minati, Ludovico; Paoletti, Giulia; Critchley, Hugo D

    2010-12-01

    Focused attention typically enhances neural nociceptive responses, reflected electroencephalographically as increased amplitude of pain-evoked event-related potentials (ERPs). Additionally, pain-evoked ERPs are attenuated by hypertension and baroreceptor activity, through as yet unclear mechanisms. There is indirect evidence that these two effects may interact, suggesting that baroreceptor-related modulation of nociception is more than a low-level gating phenomenon. To address this hypothesis, we explored in a group of healthy participants the combined effects of cue-induced expectancy and baroreceptor activity on the amplitude of pain-evoked ERPs. Brief nociceptive skin stimuli were delivered during a simple visual task; half were preceded by a visual forewarning cue, and half were unpredictable. Nociceptive stimuli were timed to coincide either with systole (maximum activation of cardiac baroreceptors) or with diastole (minimum baroreceptor activation). We observed a strong interaction between expectancy and cardiac timing for the amplitude of the P2 ERP component; no effects were observed for the N2 component. Cued stimuli were associated with larger P2 amplitude, but this effect was abolished for stimuli presented during baroreceptor activation. No cardiac timing effect was observed for un-cued stimuli. Taken together, these findings suggest a close integration of cognitive-affective aspects of expectancy and baroreceptor influences on pain, and as such may cast further light on mechanisms underlying mental and physiological contributions to clinical pain. PMID:20965656

  12. Failure of Neuroprotection Despite Microglial Suppression by Delayed-Start Myeloperoxidase Inhibition in a Model of Advanced Multiple System Atrophy: Clinical Implications.

    Science.gov (United States)

    Kaindlstorfer, Christine; Sommer, Patrick; Georgievska, Biljana; Mather, Robert J; Kugler, Alan R; Poewe, Werner; Wenning, Gregor K; Stefanova, Nadia

    2015-10-01

    Multiple system atrophy (MSA) is a rapidly progressive neurodegenerative disease. Post-mortem hallmarks of MSA neuropathology include oligodendroglial α-synuclein (αSYN) inclusions, striatonigral degeneration, olivopontocerebellar atrophy, and increased microglial activation that accompanies the wide spread neurodegeneration. Recently, we demonstrated upregulation of myeloperoxidase (MPO) in activated microglia and provided evidence for the role of microglial MPO in the mediation of MSA-like neurodegeneration (Stefanova et al. Neurotox Res 21:393-404, 2015). The aim of the current study was to assess the therapeutic potency of MPO inhibition (MPOi) in a model of advanced MSA. We replicated the advanced pathology of MSA by intoxicating transgenic PLP-α-synuclein transgenic mice with 3-nitropropionic acid (3NP). After onset of the full-blown pathology, MSA mice received either MPOi or vehicle over 3 weeks. Motor phenotype and neuropathology were analyzed to assess the therapeutic efficacy of MPOi compared to vehicle treatment in MSA mice. MPOi therapy initiated after the onset of severe MSA-like neuropathology in mice failed to attenuate motor impairments and neuronal loss within the striatum, substantia nigra pars compacta, inferior olives, pontine nuclei, and cerebellar cortex. However, we observed a significant reduction of microglial activation in degenerating brain areas. Further, nitrated αSYN accumulation was reduced in the striatonigral region. In summary, delayed-start MPOi treatment reduced microglial activation and levels of nitrated αSYN in a mouse model of advanced MSA. These effects failed to impact on motor impairments and neuronal loss in contrast to previously reported disease modifying efficacy of early-start therapy with MPOi in MSA. PMID:26194617

  13. Microglial interleukin-1β in the ipsilateral dorsal horn inhibits the development of mirror-image contralateral mechanical allodynia through astrocyte activation in a rat model of inflammatory pain.

    Science.gov (United States)

    Choi, Hoon-Seong; Roh, Dae-Hyun; Yoon, Seo-Yeon; Moon, Ji-Young; Choi, Sheu-Ran; Kwon, Soon-Gu; Kang, Suk-Yun; Han, Ho-Jae; Kim, Hyun-Woo; Beitz, Alvin J; Oh, Seog-Bae; Lee, Jang-Hern

    2015-06-01

    Damage on one side of the body can also result in pain on the contralateral unaffected side, called mirror-image pain (MIP). Currently, the mechanisms responsible for the development of MIP are unknown. In this study, we investigated the involvement of spinal microglia and interleukin-1β (IL-1β) in the development of MIP using a peripheral inflammatory pain model. After unilateral carrageenan injection, mechanical allodynia (MA) in both hind paws and the expression levels of spinal Iba-1, IL-1β, and GFAP were evaluated. Ipsilateral MA was induced beginning at 3 hours after carrageenan injection, whereas contralateral MA showed a delayed onset occurring 5 days after injection. A single intrathecal (i.t.) injection of minocycline, a tetracycline derivative that displays selective inhibition of microglial activation, or an interleukin-1 receptor antagonist (IL-1ra) on the day of carrageenan injection caused an early temporary induction of contralateral MA, whereas repeated i.t. treatment with these drugs from days 0 to 3 resulted in a long-lasting contralateral MA, which was evident in its advanced development. We further showed that IL-1β was localized to microglia and that minocycline inhibited the carrageenan-induced increases in spinal Iba-1 and IL-1β expression. Conversely, minocycline or IL-1ra pretreatment increased GFAP expression as compared with that of control rats. However, i.t. pretreatment with fluorocitrate, an astrocyte inhibitor, restored minocycline- or IL-1ra-induced contralateral MA. These results suggest that spinal IL-1β derived from activated microglia temporarily suppresses astrocyte activation, which can ultimately prevent the development of contralateral MA under inflammatory conditions. These findings imply that microglial IL-1β plays an important role in regulating the induction of inflammatory MIP. PMID:25749305

  14. Tissue plasminogen activator attenuates ventilatorinduced lung injury in rats

    Institute of Scientific and Technical Information of China (English)

    Liang-ti HUANG; Hsiu-chu CHOU; Leng-fang WANG; Chung-ming CHEN

    2012-01-01

    Aim:To test the hypothesis that the tissue plasminogen activator (tPA) may counteract the inhibitory effect ot plasminogen activator inhibitors (PAI) and attenuate lung injury in a rat model of ventilator-induced lung injury (VILI).Methods:Adult male Sprague-Dawley rats were ventilated with a HVZP (high-volume zero PEEP) protocol for 2 h at a tidal volume of 30 ml/kg,a respiratory rate of 25 breaths/min,and an inspired oxygen fraction of 21%.The rats were divided into 3 groups (n=7 for each):HVZP+tPA group receiving tPA (1.25 mg/kg,iv) 15 min before ventilation,HVZP group receiving HVZP+vehicle injection,and a control group receiving no ventilation.After 2 h of ventilation,the rats were killed; blood and lungs were collected for biochemical and histological analyses.Results:HVZP ventilation significantly increased total protein content and the concentration of macrophage inflammatory protein-2 (MIP-2) in the bronchoalveolar lavage fluid (BALF) as well as the lung injury score.Rats that received HVZP ventilation had significantly higher lung PAI-1 mRNA expression,plasma PAI-1and plasma D-dimer levels than the control animals,tPA treatment significantly reduced the BALF total protein and the lung injury score as compared to the HVZP group,tPA treatment also significantly decreased the plasma D-dimer levels and the HVZP ventilation-induced lung vascular fibrin thrombi,tPA treatment showed no effect on MIP-2 level in BALF.Conclusion:These results demonstrate that VILI increases lung PAI-1 mRNA expression,plasma levels of PAI-1 and D-limers,lung injury score and vascular fibrin deposition,tPA can attenuate VILI by decreasing capillary-alveolar protein leakage as well as local and systemic coagulation as shown by decreased lung vascular fibrin deposition and plasma D-dimers.

  15. Systemic inflammation regulates microglial responses to tissue damage in vivo

    OpenAIRE

    Gyoneva, Stefka; Davalos, Dimitrios; Biswas, Dipankar; Swanger, Sharon A.; Garnier-Amblard, Ethel; Loth, Francis; Akassoglou, Katerina; Traynelis, Stephen F

    2014-01-01

    Microglia, the resident immune cells of the central nervous system, exist in either a “resting” state associated with physiological tissue surveillance or an “activated” state in neuroinflammation. We recently showed that ATP is the primary chemoattractor to tissue damage in vivo and elicits opposite effects on the motility of activated microglia in vitro through activation of adenosine A2A receptors. However, whether systemic inflammation affects microglial responses to tissue damage in vivo...

  16. Deciphering resting microglial morphology and process motility from a synaptic prospect

    Directory of Open Access Journals (Sweden)

    Ines eHristovska

    2016-01-01

    Full Text Available Microglia, the resident immune cells of the central nervous system (CNS, were traditionally believed to be set into action only in case of injury or disease. Accordingly, microglia were assumed to be inactive or resting in the healthy brain. However, recent studies revealed that microglia carry out active tissue sampling in the intact brain by extending and retracting their ramified processes while periodically contacting synapses. Microglial morphology and motility as well as the frequency and duration of physical contacts with synaptic elements were found to be modulated by neuronal activity, sensory experience and neurotransmission; however findings have not been straightforward. Microglial cells are the most morphologically plastic element of the CNS. This unique feature confers them the possibility to locally sense activity, and to respond adequately by establishing synaptic contacts to regulate synaptic inputs by the secretion of signaling molecules. Indeed, microglial cells can hold new roles as critical players in maintaining brain homeostasis and regulating synaptic number, maturation and plasticity. For this reason, a better characterization of microglial cells and cues mediating neuron-to-microglia communication under physiological conditions may help advance our understanding of the microglial behavior and its regulation in the healthy brain. This review highlights recent findings on the instructive role of neuronal activity on microglial motility and microglia-synapse interactions, focusing on the main transmitters involved in this communication and including newly described communication at the tripartite synapse.

  17. Microglial Involvement in Neuroplastic Changes Following Focal Brain Ischemia in Rats

    OpenAIRE

    Madinier, Alexandre; Bertrand, Nathalie; Mossiat, Claude; Prigent-Tessier, Anne; Beley, Alain; Marie, Christine; Garnier, Philippe

    2009-01-01

    The pathogenesis of ischemic stroke is a complex sequence of events including inflammatory reaction, for which the microglia appears to be a major cellular contributor. However, whether post-ischemic activation of microglial cells has beneficial or detrimental effects remains to be elucidated, in particular on long term brain plasticity events. The objective of our study was to determine, through modulation of post-stroke inflammatory response, to what extent microglial cells are involved in ...

  18. Microglial intracellular Ca2+ signaling as a target of antipsychotic actions for the treatment of schizophrenia

    Directory of Open Access Journals (Sweden)

    Yoshito Mizoguchi

    2014-11-01

    Full Text Available Microglia are resident innate immune cells which release many factors including proinflammatory cytokines, nitric oxide (NO and neurotrophic factors when they are activated in response to immunological stimuli. Recent reports show that pathophysiology of schizophrenia is related to the inflammatory responses mediated by microglia. Intracellular Ca2+ signaling, which is mainly controlled by the endoplasmic reticulum (ER, is important for microglial functions such as release of NO and cytokines, migration, ramification and deramification. In addition, alteration of intracellular Ca2+ signaling underlies the pathophysiology of schizophrenia, while it remains unclear how typical or atypical antipsychotics affect intracellular Ca2+ mobilization in microglial cells. This mini-review article summarizes recent findings on cellular mechanisms underlying the characteristic differences in the actions of antipsychotics on microglial intracellular Ca2+ signaling and reinforces the importance of the ER of microglial cells as a target of antipsychotics for the treatment of schizophrenia.

  19. Low-level laser therapy regulates microglial function through Src-mediated signaling pathways: implications for neurodegenerative diseases

    OpenAIRE

    Song Sheng; Zhou Feifan; Chen Wei R

    2012-01-01

    Abstract Background Activated microglial cells are an important pathological component in brains of patients with neurodegenerative diseases. The purpose of this study was to investigate the effect of He-Ne (632.8 nm, 64.6 mW/cm2) low-level laser therapy (LLLT), a non-damaging physical therapy, on activated microglia, and the subsequent signaling events of LLLT-induced neuroprotective effects and phagocytic responses. Methods To model microglial activation, we treated the microglial BV2 cells...

  20. Reprint of: Microglial toll-like receptors and Alzheimer's disease.

    Science.gov (United States)

    Su, Fan; Bai, Feng; Zhou, Hong; Zhang, Zhijun

    2016-07-01

    Microglial activation represents an important pathological hallmark of Alzheimer's disease (AD), and emerging data highlight the involvement of microglial toll-like receptors (TLRs) in the course of AD. TLRs have been observed to exert both beneficial and detrimental effects on AD-related pathologies, and transgenic animal models have provided direct and credible evidence for an association between TLRs and AD. Moreover, analyses of genetic polymorphisms have suggested interactions between genetic polymorphisms in TLRs and AD risk, further supporting the hypothesis that TLRs are involved in AD. In this review, we summarize the key evidence in this field. Future studies should focus on exploring the mechanisms underlying the potential roles of TLRs in AD. PMID:27255539

  1. Inhomogeneous distribution of Iba-1 characterizes microglial pathology in Alzheimer's disease.

    Science.gov (United States)

    Tischer, Jasmin; Krueger, Martin; Mueller, Wolf; Staszewski, Ori; Prinz, Marco; Streit, Wolfgang J; Bechmann, Ingo

    2016-09-01

    Microglial dystrophy has recently been described as a morphological phenotype of microglia that differs from resting and activated states by spheroid formation and cytorrhexis. In thick sections immunolabeled for HLA-DR or Iba-1 dystrophic microglial processes lose their typical, homogeneous staining pattern and appear to be fragmented or clustered. In this study, we performed double immunofluorescence and electron microscopy to determine if this labeling pattern indeed reflects complete separation of microglial processes from the soma. Using Iba-1/CD68 and Iba-1/MHC class II, as microglial markers, we observed that isolated Iba-1 fragments were still connected to each other by segments of the microglial process immune positive for CD68 or MHC class II. Ultrathin serial sections of two Iba-1 fragments which appeared to be disconnected from each other at the light microscopical level revealed a still existing "bridge" with a diameter of around 0.182 µm. Therefore, microglial dystrophy may reflect alterations of the cytoskeleton ultimately leading to slow cytorrhexis. GLIA 2016;64:1562-1572. PMID:27404378

  2. Regulation of microglia activity by glaucocalyxin-A: attenuation of lipopolysaccharide-stimulated neuroinflammation through NF-κB and p38 MAPK signaling pathways.

    Directory of Open Access Journals (Sweden)

    Byung-Wook Kim

    Full Text Available Microglial cells are the resident macrophages and intrinsic arm of the central nervous system innate immune defense. Microglial cells become activated in response to injury, infection, environmental toxins, and other stimuli that threaten neuronal survival. Therefore, regulating microglial activation may have therapeutic benefits that lead to alleviating the progression of inflammatory-mediated neurodegeneration. In the present study, we investigated the effect of glaucocalyxin A (GLA isolated from Rabdosia japonica on the production of pro-inflammatory mediators in lipopolysaccharide (LPS-stimulated primary microglia and BV-2 cells. GLA significantly inhibited LPS-induced production of nitric oxide and reversed the morphological changes in primary microglia. Further, GLA suppressed expression of inducible nitric oxide synthase and cyclooxygenase-2 dose-dependently at the mRNA and protein levels. The production of proinflammatory cytokines such as tumor necrosis factor-α, interleukin-1β (IL-1β, and IL-6 were inhibited by suppressing their transcriptional activity. Furthermore, GLA suppressed nuclear factor-κB activation by blocking degradation of IκB-α and inhibited the induction of lipocalin-2 expression in LPS-stimulated BV-2 cells. Mechanistic study revealed that the inhibitory effects of GLA were accompanied by blocking the p38 mitogen activated protein kinase signaling pathway in activated microglia. In conclusion, given that microglial activation contributes to the pathogenesis of neurodegenerative diseases, GLA could be developed as a potential therapeutic agent for treating microglia-mediated neuroinflammatory diseases.

  3. Microglial involvement in neuroplastic changes following focal brain ischemia in rats.

    Directory of Open Access Journals (Sweden)

    Alexandre Madinier

    Full Text Available The pathogenesis of ischemic stroke is a complex sequence of events including inflammatory reaction, for which the microglia appears to be a major cellular contributor. However, whether post-ischemic activation of microglial cells has beneficial or detrimental effects remains to be elucidated, in particular on long term brain plasticity events. The objective of our study was to determine, through modulation of post-stroke inflammatory response, to what extent microglial cells are involved in some specific events of neuronal plasticity, neurite outgrowth and synaptogenesis. Since microglia is a source of neurotrophic factors, the identification of the brain-derived neurophic factor (BDNF as possible molecular actor involved in these events was also attempted. As a means of down-regulating the microglial response induced by ischemia, 3-aminobenzamide (3-AB, 90 mg/kg, i.p. was used to inhibit the poly(ADP-ribose polymerase-1 (PARP-1. Indeed, PARP-1 contributes to the activation of the transcription factor NF-kB, which is essential to the upregulation of proinflammatory genes, in particular responsible for microglial activation/proliferation. Experiments were conducted in rats subjected to photothrombotic ischemia which leads to a strong and early microglial cells activation/proliferation followed by an infiltration of macrophages within the cortical lesion, events evaluated at serial time points up to 1 month post-ictus by immunostaining for OX-42 and ED-1. Our most striking finding was that the decrease in acute microglial activation induced by 3-AB was associated with a long term down-regulation of two neuronal plasticity proteins expression, synaptophysin (marker of synaptogenesis and GAP-43 (marker of neuritogenesis as well as to a significant decrease in tissue BDNF production. Thus, our data argue in favour of a supportive role for microglia in brain neuroplasticity stimulation possibly through BDNF production, suggesting that a targeted

  4. Microglial inflammation in the parkinsonian substantia nigra: relationship to alpha-synuclein deposition

    Directory of Open Access Journals (Sweden)

    Pearce Ronald KB

    2005-06-01

    Full Text Available Abstract Background The role of both microglial activation and alpha-synuclein deposition in Parkinson's disease remain unclear. We have tested the hypothesis that if microglia play a primary role in Parkinson's disease pathogenesis, the microglial "activated" phenotype should be associated with histopathological and/or clinical features of the disease. Methods We have examined microglial MHC class II expression, a widely used marker of microglial activation, the occurrence of CD68-positive phagocytes and alpha-synuclein immunoreactivity in post-mortem human substantia nigra affected by idiopathic Parkinson's disease (PD. Using semi-quantitative severity ratings, we have examined the relationship between microglial activation, alpha-synuclein deposition, classical neuropathological criteria for PD, subtype of the disease and clinical course. Results While we did not observe an association between microglial MHC class II expression and clinical parameters, we did find a correlation between disease duration and the macrophage marker CD68 which is expressed by phagocytic microglia. In addition, we observed a significant correlation between the degree of MHC class II expression and alpha-synuclein deposition in the substantia nigra in PD. Conclusion While microglia appeared to respond to alpha-synuclein deposition, MHC class II antigen expression by microglia in the substantia nigra cannot be used as an indicator of clinical PD severity or disease progression. In addition, a contributory or even causative role for microglia in the neuronal loss associated with PD as suggested by some authors seems unlikely. Our data further suggest that an assessment of microglial activation in the aged brain on the basis of immunohistochemistry for MHC class II antigens alone should be done with caution.

  5. Microglial AGE-albumin is critical in promoting alcohol-induced neurodegeneration in rats and humans.

    Science.gov (United States)

    Byun, Kyunghee; Bayarsaikhan, Delger; Bayarsaikhan, Enkhjargal; Son, Myeongjoo; Oh, Seyeon; Lee, Jaesuk; Son, Hye-In; Won, Moo-Ho; Kim, Seung U; Song, Byoung-Joon; Lee, Bonghee

    2014-01-01

    Alcohol is a neurotoxic agent, since long-term heavy ingestion of alcohol can cause various neural diseases including fetal alcohol syndrome, cerebellar degeneracy and alcoholic dementia. However, the molecular mechanisms of alcohol-induced neurotoxicity are still poorly understood despite numerous studies. Thus, we hypothesized that activated microglial cells with elevated AGE-albumin levels play an important role in promoting alcohol-induced neurodegeneration. Our results revealed that microglial activation and neuronal damage were found in the hippocampus and entorhinal cortex following alcohol treatment in a rat model. Increased AGE-albumin synthesis and secretion were also observed in activated microglial cells after alcohol exposure. The expressed levels of receptor for AGE (RAGE)-positive neurons and RAGE-dependent neuronal death were markedly elevated by AGE-albumin through the mitogen activated protein kinase pathway. Treatment with soluble RAGE or AGE inhibitors significantly diminished neuronal damage in the animal model. Furthermore, the levels of activated microglial cells, AGE-albumin and neuronal loss were significantly elevated in human brains from alcoholic indivisuals compared to normal controls. Taken together, our data suggest that increased AGE-albumin from activated microglial cells induces neuronal death, and that efficient regulation of its synthesis and secretion is a therapeutic target for preventing alcohol-induced neurodegeneration. PMID:25140518

  6. Microglial cells in astroglial cultures: a cautionary note

    Directory of Open Access Journals (Sweden)

    Saura Josep

    2007-10-01

    Full Text Available Abstract Primary rodent astroglial-enriched cultures are the most popular model to study astroglial biology in vitro. From the original methods described in the 1970's a great number of minor modifications have been incorporated into these protocols by different laboratories. These protocols result in cultures in which the astrocyte is the predominant cell type, but astrocytes are never 100% of cells in these preparations. The aim of this review is to bring attention to the presence of microglia in astroglial cultures because, in my opinion, the proportion of and the role that microglial cells play in astroglial cultures are often underestimated. The main problem with ignoring microglia in these cultures is that relatively minor amounts of microglia can be responsible for effects observed on cultures in which the astrocyte is the most abundant cell type. If the relative contributions of astrocytes and microglia are not properly assessed an observed effect can be erroneously attributed to the astrocytes. In order to illustrate this point the case of NO production in activated astroglial-enriched cultures is examined. Lipopolysaccharide (LPS induces nitric oxide (NO production in astroglial-enriched cultures and this effect is very often attributed to astrocytes. However, a careful review of the published data suggests that LPS-induced NO production in rodent astroglial-enriched cultures is likely to be mainly microglial in origin. This review considers cell culture protocol factors that can affect the proportion of microglial cells in astroglial cultures, strategies to minimize the proportion of microglia in these cultures, and specific markers that allow the determination of such microglial proportions.

  7. Peripheral formalin injection induces unique spinal cord microglial phenotypic changes

    OpenAIRE

    Fu, Kai-Yuan; Tan, Yong-Hui; Sung, Backil; Mao, Jianren

    2008-01-01

    Microglia are resident immune cells of brain and activated by peripheral tissue injury. In the present study, we investigated the possible induction of several microglial surface immunomolecules in the spinal cord, including leukocyte common antigen (LCA/CD45), MHC class I antigen, MHC class II antigen, Fc receptor, and CD11c following formalin injection into the rat’s hind paw. CD45 and MHC class I were upregulated in the activated microglia, which was evident on day 3 with the peak expressi...

  8. Ethanol downregulates N-acyl phosphatidylethanolamine-phospholipase D expression in BV2 microglial cells via epigenetic mechanisms.

    Science.gov (United States)

    Correa, Fernando; De Laurentiis, Andrea; Franchi, Ana María

    2016-09-01

    Excessive ethanol drinking has deleterious effects on the brain. However, the effects of alcohol on microglia, the main mediator of the brain's innate immune response remain poorly understood. On the other hand, the endocannabinoid system plays a fundamental role in regulating microglial reactivity and function. Here we studied the effects of acute ethanol exposure to murine BV2 microglial cells on N-acyl phosphatidylethanolamine-phospholipase D (NAPE-PLD), a major synthesizing enzyme of anandamide and other N-acylethanolamines. We found that ethanol downregulated microglial NAPE-PLD expression by activating cAMP/PKA and ERK1/2. These signaling pathways converged on increased phosphorylation of CREB. Moreover, ethanol induced and increase in histone acetyltransferase activity which led to higher levels of acetylation of histone H3. Taken together, our results suggest that ethanol actions on microglial NAPE-PLD expression might involve epigenetic mechanisms. PMID:27266665

  9. Macrophage colony-stimulating factor and its receptor signaling augment glycated albumin-induced retinal microglial inflammation in vitro

    Directory of Open Access Journals (Sweden)

    Jiang Chun H

    2011-01-01

    Full Text Available Abstract Background Microglial activation and the proinflammatory response are controlled by a complex regulatory network. Among the various candidates, macrophage colony-stimulating factor (M-CSF is considered an important cytokine. The up-regulation of M-CSF and its receptor CSF-1R has been reported in brain disease, as well as in diabetic complications; however, the mechanism is unclear. An elevated level of glycated albumin (GA is a characteristic of diabetes; thus, it may be involved in monocyte/macrophage-associated diabetic complications. Results The basal level of expression of M-CSF/CSF-1R was examined in retinal microglial cells in vitro. Immunofluorescence, real-time PCR, immunoprecipitation, and Western blot analyses revealed the up-regulation of CSF-1R in GA-treated microglial cells. We also detected increased expression and release of M-CSF, suggesting that the cytokine is produced by activated microglia via autocrine signaling. Using an enzyme-linked immunosorbent assay, we found that GA affects microglial activation by stimulating the release of tumor necrosis factor-α and interleukin-1β. Furthermore, the neutralization of M-CSF or CSF-1R with antibodies suppressed the proinflammatory response. Conversely, this proinflammatory response was augmented by the administration of M-CSF. Conclusions We conclude that GA induces microglial activation via the release of proinflammatory cytokines, which may contribute to the inflammatory pathogenesis of diabetic retinopathy. The increased microglial expression of M-CSF/CSF-1R not only is a response to microglial activation in diabetic retinopathy but also augments the microglial inflammation responsible for the diabetic microenvironment.

  10. Adrenergic activation attenuates astrocyte swelling induced by hypotonicity and neurotrauma.

    Science.gov (United States)

    Vardjan, Nina; Horvat, Anemari; Anderson, Jamie E; Yu, Dou; Croom, Deborah; Zeng, Xiang; Lužnik, Zala; Kreft, Marko; Teng, Yang D; Kirov, Sergei A; Zorec, Robert

    2016-06-01

    Edema in the central nervous system can rapidly result in life-threatening complications. Vasogenic edema is clinically manageable, but there is no established medical treatment for cytotoxic edema, which affects astrocytes and is a primary trigger of acute post-traumatic neuronal death. To test the hypothesis that adrenergic receptor agonists, including the stress stimulus epinephrine protects neural parenchyma from damage, we characterized its effects on hypotonicity-induced cellular edema in cortical astrocytes by in vivo and in vitro imaging. After epinephrine administration, hypotonicity-induced swelling of astrocytes was markedly reduced and cytosolic 3'-5'-cyclic adenosine monophosphate (cAMP) was increased, as shown by a fluorescence resonance energy transfer nanosensor. Although, the kinetics of epinephrine-induced cAMP signaling was slowed in primary cortical astrocytes exposed to hypotonicity, the swelling reduction by epinephrine was associated with an attenuated hypotonicity-induced cytosolic Ca(2+) excitability, which may be the key to prevent astrocyte swelling. Furthermore, in a rat model of spinal cord injury, epinephrine applied locally markedly reduced neural edema around the contusion epicenter. These findings reveal new targets for the treatment of cellular edema in the central nervous system. GLIA 2016;64:1034-1049. PMID:27018061

  11. Enhanced microglial clearance of myelin debris in T cell-infiltrated central nervous system

    DEFF Research Database (Denmark)

    Nielsen, Helle Hvilsted; Ladeby, Rune; Fenger, Christina;

    2009-01-01

    Acute multiple sclerosis lesions are characterized by accumulation of T cells and macrophages, destruction of myelin and oligodendrocytes, and axonal damage. There is, however, limited information on neuroimmune interactions distal to sites of axonal damage in the T cell-infiltrated central nervous...... system. We investigated T-cell infiltration, myelin clearance, microglial activation, and phagocytic activity distal to sites of axonal transection through analysis of the perforant pathway deafferented dentate gyrus in SJL mice that had received T cells specific for myelin basic protein (TMBP) or...... with TMBP but not TOVA enhanced the microglial response to axonal transection and microglial phagocytosis of myelin debris associated with the degenerating axons. Because myelin antigen-specific immune responses may provoke protective immunity, increased phagocytosis of myelin debris might enhance...

  12. Microglial dysfunction connects depression and Alzheimer's disease.

    Science.gov (United States)

    Santos, Luís Eduardo; Beckman, Danielle; Ferreira, Sergio T

    2016-07-01

    Alzheimer's disease (AD) and major depressive disorder (MDD) are highly prevalent neuropsychiatric conditions with intriguing epidemiological overlaps. Depressed patients are at increased risk of developing late-onset AD, and around one in four AD patients are co-diagnosed with MDD. Microglia are the main cellular effectors of innate immunity in the brain, and their activation is central to neuroinflammation - a ubiquitous process in brain pathology, thought to be a causal factor of both AD and MDD. Microglia serve several physiological functions, including roles in synaptic plasticity and neurogenesis, which may be disrupted in neuroinflammation. Following early work on the 'sickness behavior' of humans and other animals, microglia-derived inflammatory cytokines have been shown to produce depressive-like symptoms when administered exogenously or released in response to infection. MDD patients consistently show increased circulating levels of pro-inflammatory cytokines, and anti-inflammatory drugs show promise for treating depression. Activated microglia are abundant in the AD brain, and concentrate around senile plaques, hallmark lesions composed of aggregated amyloid-β peptide (Aβ). The Aβ burden in affected brains is regulated largely by microglial clearance, and the complex activation state of microglia may be crucial for AD progression. Intriguingly, recent reports have linked soluble Aβ oligomers, toxins that accumulate in AD brains and are thought to cause memory impairment, to increased brain cytokine production and depressive-like behavior in mice. Here, we review recent findings supporting the inflammatory hypotheses of AD and MDD, focusing on microglia as a common player and therapeutic target linking these devastating disorders. PMID:26612494

  13. Activation of TRPV1 reduces vascular lipid accumulation and attenuates atherosclerosis

    DEFF Research Database (Denmark)

    Ma, Liqun; Zhong, Jian; Zhao, Zhigang; Luo, Zhidan; Ma, Shuangtao; Sun, Jing; He, Hongbo; Zhu, Tianqi; Liu, Daoyan; Zhu, Zhiming; Tepel, Martin

    2011-01-01

    Activation of transient receptor potential vanilloid type-1 (TRPV1) channels may affect lipid storage and the cellular inflammatory response. Now, we tested the hypothesis that activation of TRPV1 channels attenuates atherosclerosis in apolipoprotein E knockout mice (ApoE(-/-)) but not ApoE(-/-)TRPV......1(-/-) double knockout mice on a high-fat diet....

  14. Fractalkine receptor deficiency impairs microglial and neuronal responsiveness to chronic stress.

    Science.gov (United States)

    Milior, Giampaolo; Lecours, Cynthia; Samson, Louis; Bisht, Kanchan; Poggini, Silvia; Pagani, Francesca; Deflorio, Cristina; Lauro, Clotilde; Alboni, Silvia; Limatola, Cristina; Branchi, Igor; Tremblay, Marie-Eve; Maggi, Laura

    2016-07-01

    Chronic stress is one of the most relevant triggering factors for major depression. Microglial cells are highly sensitive to stress and, more generally, to environmental challenges. However, the role of these brain immune cells in mediating the effects of stress is still unclear. Fractalkine signaling - which comprises the chemokine CX3CL1, mainly expressed by neurons, and its receptor CX3CR1, almost exclusively present on microglia in the healthy brain - has been reported to critically regulate microglial activity. Here, we investigated whether interfering with microglial function by deleting the Cx3cr1 gene affects the brain's response to chronic stress. To this purpose, we housed Cx3cr1 knockout and wild-type adult mice in either control or stressful environments for 2weeks, and investigated the consequences on microglial phenotype and interactions with synapses, synaptic transmission, behavioral response and corticosterone levels. Our results show that hampering neuron-microglia communication via the CX3CR1-CX3CL1 pathway prevents the effects of chronic unpredictable stress on microglial function, short- and long-term neuronal plasticity and depressive-like behavior. Overall, the present findings suggest that microglia-regulated mechanisms may underlie the differential susceptibility to stress and consequently the vulnerability to diseases triggered by the experience of stressful events, such as major depression. PMID:26231972

  15. Effect of GSM-1800 and U.M.T.S. exposures on micro-glial activation and heat shock proteins induction in brain: a study on young adult and elderly rats

    International Nuclear Information System (INIS)

    Contradictory results have emerged from recent studies describing low -level radiofrequency radiation (R.F.R.) as a hazardous factor for the central nervous system while others described such type of exposure as totally safe. In the brain, heat shock proteins (H.s.p.) are often induced under harmful conditions such as ischemia, traumatic injury, epilepsy, hyperthermia, drug administration, and neuro-degenerative diseases. Under those conditions, activation of the micro-glial cell population is often observed. In this work we studied the effect of two types of mobile phone signals, GSM-1800 and U.M.T.S. on the expression of two major H.s.p., induced in the brain under harmful conditions, H.s.p. 70 and H.s.p. 25. We also studied micro-glial activation in young adult (8 weeks) and elderly (17 months) Wistar rats. Height animals by group were exposed. Exposures were performed using a brain-averaged S.A.R. of 2 W/kg following two types of protocols: an acute exposure, with exposure lasting only two hours, and a sub chronic exposure in which the animals were exposed for two hours per day, five days per week, during four weeks. In all cases, rats were progressively habituated to the exposure setup (rockets) over two weeks to avoid stress and a sham group was exposed for each condition. Positive controls were performed by induction of a status epilepticus using a subcutaneous injection kainic acid (10 mg/kg). At the end of exposure, rats were anesthetized with isofluran and perfused from the heart with P.B.S. then paraformaldehyde prior to removing of the brain. Sections (10 m m thick) were prepared on slides for immunohistochemistry. Brain samples were coded and the analysis was performed in a blind manner. The sections were immuno-histo-chemically stained with antibodies raised in rabbits against H.s.p.25 and against the inducible form of H.s.p.70. The whole glial cell population was detected by its common cell surface glyco conjugates, which bind the plant Griffonia

  16. TMEM16F Regulates Spinal Microglial Function in Neuropathic Pain States

    Directory of Open Access Journals (Sweden)

    Laura Batti

    2016-06-01

    Full Text Available Neuropathic pain is a widespread chronic pain state that results from injury to the nervous system. Spinal microglia play a causative role in the pathogenesis of neuropathic pain through secretion of growth factors and cytokines. Here, we investigated the contribution of TMEM16F, a protein that functions as a Ca2+-dependent ion channel and a phospholipid scramblase, to microglial activity during neuropathic pain. We demonstrate that mice with a conditional ablation of TMEM16F in microglia do not develop mechanical hypersensitivity upon nerve injury. In the absence of TMEM16F, microglia display deficits in process motility and phagocytosis. Moreover, loss of GABA immunoreactivity upon injury is spared in TMEM16F conditional knockout mice. Collectively, these data indicate that TMEM16F is an essential component of the microglial response to injury and suggest the importance of microglial phagocytosis in the pathogenesis of neuropathic pain.

  17. State space approach for joint estimation of activity and attenuation map from PET emission sinograms

    Institute of Scientific and Technical Information of China (English)

    Liu Huafeng; You Hongshun; Shi Pengcheng

    2007-01-01

    Quantitative estimation of radioactivity map has important clinical implications for better diagnosis and understanding of cancers. Although attenuation map and activity map are usually treated sequentially, they can obviously benefit a great deal when the transmission data is missing. In this paper, we propose a novel scheme of simultaneously solving for attenuation map and activity distribution from emission sinograms. Our strategy combines the measurement model of PET, and the attenuation parameters are treated as random variables with known prior statistics. After the conversion to state space representation, the extended Kalman filtering procedures are adopted to linearize the equations and to provide the joint estimates in an approximate optimal sense. Experiments have been performed on both synthetic data to illustrate its abilities and benefits.

  18. Accelerated microglial pathology is associated with Aβ plaques in mouse models of Alzheimer's disease

    DEFF Research Database (Denmark)

    Baron, Rona; Babcock, Alicia A; Nemirovsky, Anna;

    2014-01-01

    earlier in mouse models of Alzheimer's disease (AD), along with a significant increase in brain parenchyma lacking coverage by microglial processes. We further demonstrate that microglia near amyloid plaques acquire unique activated phenotypes with impaired process complexity. We thus show that along with...... a chronic proinflammatory reaction in the brain, aging causes a significant reduction in the capacity of microglia to scan their environment. This type of pathology is markedly accelerated in mouse models of AD, resulting in a severe microglial process deficiency, and possibly contributing to...

  19. Ceftriaxone attenuates locomotor activity induced by acute and repeated cocaine exposure in mice.

    Science.gov (United States)

    Tallarida, Christopher S; Corley, Gladys; Kovalevich, Jane; Yen, William; Langford, Dianne; Rawls, Scott M

    2013-11-27

    Ceftriaxone (CTX) decreases locomotor activation produced by initial cocaine exposure and attenuates development of behavioral sensitization produced by repeated cocaine exposure. An important question that has not yet been answered is whether or not CTX reduces behavioral sensitization to cocaine in cases in which the antibiotic is administered only during the period of cocaine absence that follows repeated cocaine exposure and precedes reintroduction to cocaine. We investigated this question using C57BL/6 mice. Mice pretreated with cocaine (15mg/kg×14 days) and then challenged with cocaine (15mg/kg) after 30 days of cocaine absence displayed sensitization of locomotor activity. For combination experiments, CTX injected during the 30 days of cocaine absence attenuated behavioral sensitization produced by cocaine challenge. In the case in which CTX was injected together with cocaine for 14 days, development of behavioral sensitization to cocaine challenge was also reduced. CTX attenuated the increase in locomotor activity produced by acute cocaine exposure; however, its efficacy was dependent on the dose of cocaine as inhibition was detected against 30mg/kg, but not 15mg/kg, of cocaine. These results from mice indicate that CTX attenuates locomotor activity produced by acute and repeated cocaine exposure and counters cocaine's locomotor activating properties in a paradigm in which the antibiotic is injected during the period of forced cocaine absence that follows repeated cocaine exposure. PMID:24120434

  20. Activation of AMP-activated protein kinase attenuates hepatocellular carcinoma cell adhesion stimulated by adipokine resistin

    International Nuclear Information System (INIS)

    Resistin, adipocyte-secreting adipokine, may play critical role in modulating cancer pathogenesis. The aim of this study was to investigate the effects of resistin on HCC adhesion to the endothelium, and the mechanism underlying these resistin effects. Human SK-Hep1 cells were used to study the effect of resistin on intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expressions as well as NF-κB activation, and hence cell adhesion to human umbilical vein endothelial cells (HUVECs). 5-Aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR), an AMP-activated protein kinase (AMPK) activator, was used to determine the regulatory role of AMPK on HCC adhesion to the endothelium in regard to the resistin effects. Treatment with resistin increased the adhesion of SK-Hep1 cells to HUVECs and concomitantly induced NF-κB activation, as well as ICAM-1 and VCAM-1 expressions in SK-Hep1 cells. Using specific blocking antibodies and siRNAs, we found that resistin-induced SK-Hep1 cell adhesion to HUVECs was through NF-κB-regulated ICAM-1 and VCAM-1 expressions. Moreover, treatment with AICAR demonstrated that AMPK activation in SK-Hep1 cells significantly attenuates the resistin effect on SK-Hep1 cell adhesion to HUVECs. These results clarify the role of resistin in inducing HCC adhesion to the endothelium and demonstrate the inhibitory effect of AMPK activation under the resistin stimulation. Our findings provide a notion that resistin play an important role to promote HCC metastasis and implicate AMPK may be a therapeutic target to against HCC metastasis

  1. Metformin attenuates pressure overload-induced cardiac hypertrophy via AMPK activation

    Institute of Scientific and Technical Information of China (English)

    Yong-nan FU; Han XIAO; Xiao-wei MA; Sheng-yang JIANG; Ming XU; You-yi ZHANG

    2011-01-01

    Aim: To identify the role of metformin in cardiac hypertrophy and investigate the possible mechanism underlying this effect.Methods: Wild type and AMPKα2 knockout (AMPKα2-/-) littermates were subjected to left ventricular pressure overload caused by evaluated using echocardiography and anatomic and histological methods. The antihypertrophic mechanism of metformin was analyzed using Western blotting.Results: Metformin significantly attenuated cardiac hypertrophy induced by pressure overload in wild type mice, but the antihypertrophic actions of metformin were ablated in AMPKx2-/- mice. Furthermore, metformin suppressed the phosphorylation of Akt/protein kinase B (AKT) and mammalian target of rapamycin (mTOR) in response to pressure overload in wild type mice, but not in AMPKα2-/-mice.Conclusion: Long-term administration of metformin may attenuate cardiac hypertrophy induced by pressure overload in nondiabetic mice, and this attenuation is highly dependent on AMPK activation. These findings may provide a potential therapy for patients at risk of developing pathological cardiac hypertrophy.

  2. Tff3 is Expressed in Neurons and Microglial Cells

    Directory of Open Access Journals (Sweden)

    Ting Fu

    2014-11-01

    Full Text Available Background/Aims: The trefoil factor family (TFF peptide TFF3 is typically secreted by mucous epithelia, but is also expressed in the immune system and the brain. It was the aim of this study to determine the cerebral cell types which express Tff3. Methods: Primary cultures from rat embryonic or neonatal cerebral cortex and hippocampus, respectively, were studied by means of RT-PCR and immunofluorescence. Moreover, Tff3 expression was localized by immunocytochemistry in sections of adult rat cerebellum. Results: Tff3 transcripts were detectable in neural cultures of both the cortex and the hippocampus as well as in glial cell-enriched cultures. Tff3 peptide co-localized with Map2 indicating an expression in neurons in vitro. The neuronal expression was confirmed by immunofluorescence studies of adult rat cerebellum. Furthermore, Tff3 peptide showed also a clear co-localization with Iba-1 in vitro typical of activated microglial cells. Conclusion: The neuronal expression of Tff3 is in line with a function of a typical neuropeptide influencing, e.g., fear, memory, depression and motoric skills. The expression in activated microglial cells, which is demonstrated here for the first time, points towards a possible function for Tff3 in immune reactions in the CNS. This opens a plethora of additional possible functions for Tff3 including synaptic plasticity and cognition as well as during neuroinflammatory diseases and psychiatric disorders.

  3. Epigallocatechin gallate (EGCG) attenuates infrasound-induced neuronal impairment by inhibiting microglia-mediated inflammation.

    Science.gov (United States)

    Cai, Jing; Jing, Da; Shi, Ming; Liu, Yang; Lin, Tian; Xie, Zhen; Zhu, Yi; Zhao, Haibo; Shi, Xiaodan; Du, Fang; Zhao, Gang

    2014-07-01

    Infrasound, a kind of common environmental noise and a major contributor of vibroacoustic disease, can induce the central nervous system (CNS) damage. However, no relevant anti-infrasound drugs have been reported yet. Our recent studies have shown that infrasound resulted in excessive microglial activation rapidly and sequential inflammation, revealing a potential role of microglia in infrasound-induced CNS damage. Epigallocatechin gallate (EGCG), a major bioactive component in green tea, has the capacity of protecting against various neurodegenerative diseases via an anti-inflammatory mechanism. However, it is still unknown to date whether EGCG acts on infrasound-induced microglial activation and neuronal damage. We showed that, after 1-, 2- or 5-day exposure of rats to 16 Hz, 130 dB infrasound (2 h/day), EGCG significantly inhibited infrasound-induced microglial activation in rat hippocampal region, evidenced by reduced expressions of Iba-1 (a marker for microglia) and proinflammatory cytokines (IL-1β, IL-6, IL-18 and TNF-α). Moreover, infrasound-induced neuronal apoptosis in rat hippocampi was significantly suppressed by EGCG. EGCG also inhibited infrasound-induced activation of primary microglia in vitro and decreased the levels of proinflammatory cytokines in the supernatants of microglial culture, which were toxic to cultured neurons. Furthermore, EGCG attenuated infrasound-induced increases in nuclear NF-κB p65 and phosphorylated IκBα, and ameliorated infrasound-induced decrease in IκB in microglia. Therefore, our study provides the first evidence that EGCG acts against infrasound-induced neuronal impairment by inhibiting microglia-mediated inflammation through a potential NF-κB pathway-related mechanism, suggesting that EGCG can be used as a promising drug for the treatment of infrasound-induced CNS damage. PMID:24746834

  4. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Weibin [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Institutes of Biomedical Science, Fudan University, Shanghai 200032 (China); Zhu, Bo; Peng, Xiaomin [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Zhou, Meiling, E-mail: meilingzhou2012@gmail.com [Department of Radiology, Zhongshan Hospital of Fudan University and Shanghai Institute of Medical Imaging, Shanghai 200032 (China); Jia, Dongwei, E-mail: jiadongwei@fudan.edu.cn [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Gu, Jianxin [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Institutes of Biomedical Science, Fudan University, Shanghai 200032 (China)

    2014-01-03

    Highlights: •FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. •Activation of FXR attenuated alcohol-induced liver injury and steatosis. •Activation of FXR attenuated cholestasis and oxidative stress in mouse liver. -- Abstract: Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid and glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients.

  5. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease

    International Nuclear Information System (INIS)

    Highlights: •FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. •Activation of FXR attenuated alcohol-induced liver injury and steatosis. •Activation of FXR attenuated cholestasis and oxidative stress in mouse liver. -- Abstract: Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid and glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients

  6. Inhibition of NF-κB activity in the hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by modulating cytokines and attenuating oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiao-Jing [Department of Physiology and Pathophysiology, Xi' an Jiaotong University School of Basic Medical Sciences, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China); Zhang, Dong-Mei [Department of Physiology, Dalian Medical University, Dalian 116044 (China); Jia, Lin-Lin; Qi, Jie; Song, Xin-Ai; Tan, Hong [Department of Physiology and Pathophysiology, Xi' an Jiaotong University School of Basic Medical Sciences, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China); Cui, Wei [Department of Endocrinology and Metabolism, First Affiliated Hospital of Xi' an Jiaotong University, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China); Chen, Wensheng [Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi' an 710032 (China); Zhu, Guo-Qing [Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029 (China); Qin, Da-Nian, E-mail: dnqin@stu.edu.cn [Department of Physiology, Shantou University Medical College, Shantou 515041 (China); Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn [Department of Physiology and Pathophysiology, Xi' an Jiaotong University School of Basic Medical Sciences, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China)

    2015-05-01

    We hypothesized that chronic inhibition of NF-κB activity in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), attenuating nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase in the PVN of young spontaneously hypertensive rats (SHR). Young normotensive Wistar–Kyoto (WKY) and SHR rats received bilateral PVN infusions with NF–κB inhibitor pyrrolidine dithiocarbamate (PDTC) or vehicle for 4 weeks. SHR rats had higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, cardiomyocyte diameters of the left cardiac ventricle, and mRNA expressions of cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC). These SHR rats had higher PVN levels of proinflammatory cytokines (PICs), reactive oxygen species (ROS), the chemokine monocyte chemoattractant protein-1 (MCP-1), NAD(P)H oxidase activity, mRNA expression of NOX-2 and NOX-4, and lower PVN IL-10, and higher plasma levels of PICs and NE, and lower plasma IL-10. PVN infusion of NF-κB inhibitor PDTC attenuated all these changes. These findings suggest that NF-κB activation in the PVN increases sympathoexcitation and hypertensive response, which are associated with the increases of PICs and oxidative stress in the PVN; PVN inhibition of NF-κB activity attenuates PICs and oxidative stress in the PVN, thereby attenuates hypertension and cardiac hypertrophy. - Highlights: • Spontaneously hypertensive rats exhibit neurohormonal excitation in the PVN. • PVN inhibition of NF-κB attenuates hypertension-induced cardiac hypertrophy. • PVN inhibition of NF-κB attenuates hypertension-induced neurohormonal excitation. • PVN inhibition of NF-κB attenuates hypertension-induced imbalance of cytokines

  7. Inhibition of NF-κB activity in the hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by modulating cytokines and attenuating oxidative stress

    International Nuclear Information System (INIS)

    We hypothesized that chronic inhibition of NF-κB activity in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), attenuating nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase in the PVN of young spontaneously hypertensive rats (SHR). Young normotensive Wistar–Kyoto (WKY) and SHR rats received bilateral PVN infusions with NF–κB inhibitor pyrrolidine dithiocarbamate (PDTC) or vehicle for 4 weeks. SHR rats had higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, cardiomyocyte diameters of the left cardiac ventricle, and mRNA expressions of cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC). These SHR rats had higher PVN levels of proinflammatory cytokines (PICs), reactive oxygen species (ROS), the chemokine monocyte chemoattractant protein-1 (MCP-1), NAD(P)H oxidase activity, mRNA expression of NOX-2 and NOX-4, and lower PVN IL-10, and higher plasma levels of PICs and NE, and lower plasma IL-10. PVN infusion of NF-κB inhibitor PDTC attenuated all these changes. These findings suggest that NF-κB activation in the PVN increases sympathoexcitation and hypertensive response, which are associated with the increases of PICs and oxidative stress in the PVN; PVN inhibition of NF-κB activity attenuates PICs and oxidative stress in the PVN, thereby attenuates hypertension and cardiac hypertrophy. - Highlights: • Spontaneously hypertensive rats exhibit neurohormonal excitation in the PVN. • PVN inhibition of NF-κB attenuates hypertension-induced cardiac hypertrophy. • PVN inhibition of NF-κB attenuates hypertension-induced neurohormonal excitation. • PVN inhibition of NF-κB attenuates hypertension-induced imbalance of cytokines

  8. Prenatal Acute Stress Attenuated Epileptiform Activities in Neonate Mice

    Directory of Open Access Journals (Sweden)

    Behnam Heshmatian

    2010-01-01

    Full Text Available Objective: Development of the central nervous system (CNS is dependent on interactionsbetween genetic and epigenetic factors, some of which could affect the susceptibilityof the developing brain to damaging insults. Gestational stress has been shown as a potentialfactor associated with higher risk of developing certain neurological and psychiatricdisorders. This study tested the hypothesis that maternal stress influences the risk ofepilepsy in offsprings.Materials and Methods: Pregnant mice were exposed to restraint stress twice a day forthree days at the start of the last week of gestation. Ten days after birth, the intact hippocampiof the newborn mice were excised and prepared for investigation. The hippocampiwere bathed in low magnesium artificial cerebrospinal fluid to induce field potential,and the subsequent spontaneous seizure-like events of the CA1 neurons were recorded.Plasma corticosterone was measured using a commercial radioimmunoassay (RIA kitand the values were expressed as μg/100 ml.Results: Both the number of recurrent seizures and the duration of seizure activity werereduced in the stressed group compared to the controls (p<0.001. Stress induced a significantrise in serum corticosterone levels in both pregnant mice and in their newbornpups (p<0.001.Conclusion: These findings suggest that acute prenatal stress, which may mimic acutestress in human pregnancy, is a likely factor affecting seizure control in childhood temporallobe epilepsy. The underlying inhibitory mechanism may be an increase in the level ofneurosteroids both in the blood and the brain.

  9. Preventive Effects of a Fermented Dairy Product against Alzheimer’s Disease and Identification of a Novel Oleamide with Enhanced Microglial Phagocytosis and Anti-Inflammatory Activity

    OpenAIRE

    Ano, Yasuhisa; Ozawa, Makiko; Kutsukake, Toshiko; Sugiyama, Shinya; Uchida, Kazuyuki; Yoshida, Aruto; Nakayama, Hiroyuki

    2015-01-01

    Despite the ever-increasing number of patients with dementia worldwide, fundamental therapeutic approaches to this condition have not been established. Epidemiological studies suggest that intake of fermented dairy products prevents cognitive decline in the elderly. However, the active compounds responsible for the effect remain to be elucidated. The present study aims to elucidate the preventive effects of dairy products on Alzheimer’s disease and to identify the responsible component. Here,...

  10. Glucocerebrosidase 1 deficient Danio rerio mirror key pathological aspects of human Gaucher disease and provide evidence of early microglial activation preceding alpha-synuclein-independent neuronal cell death

    OpenAIRE

    Keatinge, Marcus; Bui, Hai; Menke, Aswin; Chen, Yu-Chia; Sokol, Anna M.; Bai, Qing; Ellett, Felix; Da Costa, Marc; Burke, Derek; Gegg, Matthew; Trollope, Lisa; Payne, Thomas; McTighe, Aimee; Mortiboys, Heather; de Jager, Sarah

    2015-01-01

    Autosomal recessively inherited glucocerebrosidase 1 (GBA1) mutations cause the lysosomal storage disorder Gaucher's disease (GD). Heterozygous GBA1 mutations (GBA1 +/−) are the most common risk factor for Parkinson's disease (PD). Previous studies typically focused on the interaction between the reduction of glucocerebrosidase (enzymatic) activity in GBA1 +/− carriers and alpha-synuclein-mediated neurotoxicity. However, it is unclear whether other mechanisms also contribute to the increased ...

  11. Microglial and macrophage reactions mark progressive changes and define the penumbra in the rat neocortex and striatum after transient middle cerebral artery occlusion

    DEFF Research Database (Denmark)

    Lehrmann, E; Christensen, Thomas; Zimmer, J;

    1997-01-01

    /macrophages in the adjacent penumbra. Within the neocortex, a later onset of degeneration along the insular-parietal axis was marked by neuronal expression of heat shock protein and a progressive microglial activation with induction of the full repertoire of microglial activation markers, including a widespread...... significant differences in the characteristics and timing of the microglial/macrophage responses between the caudate putamen and neocortical infarct zones, the infarct zones and their associated penumbral zones, as well as between the striatal and the neocortical penumbral zone. Infiltrations with...

  12. PI3k/Akt signalling pathway plays a crucial role in the anti-inflammatory effects of curcumin in LPS-activated microglia.

    Science.gov (United States)

    Cianciulli, Antonia; Calvello, Rosa; Porro, Chiara; Trotta, Teresa; Salvatore, Rosaria; Panaro, Maria Antonietta

    2016-07-01

    Microglia are resident macrophages in the central nervous system (CNS) deputed to defend against pathogens. Persistent or acute inflammation of microglia leads to CNS disorders, so regulation of pro-inflammatory responses of microglial cells is thought to be a promising therapeutic strategy to attenuate abnormal inflammatory responses observed in neurodegenerative disease. We hypothesized that curcumin supplementation could reduce the inflammatory responses of activated microglial cells modulating PI3K/Akt pathway. Different curcumin concentrations were administered as BV-2 microglia pre-treatment 1h prior to LPS stimulation. Nitric oxide (NO) and inducible nitric oxide synthase (iNOS) expression were determined by Griess reagent and western blotting, respectively. Inflammatory cytokines release was evaluated by ELISA and qRT-PCR. PI3K/Akt expression was analyzed by western blotting analysis. Curcumin significantly attenuated, in a dose-dependent manner, LPS-induced release of NO and pro-inflammatory cytokines, as well as iNOS expression. Interestingly, curcumin was able to reduce, again in a dose-dependent manner, PI3K/Akt phosphorylation as well as NF-κB activation in LPS-activated microglial cells. Overall these results suggest that curcumin plays an important role in the attenuation of LPS-induced inflammatory responses in microglial cells and that the mechanisms involve down-regulation of the PI3K/Akt signalling. PMID:27208432

  13. Propofol and magnesium attenuate isoflurane-induced caspase-3 activation via inhibiting mitochondrial permeability transition pore

    Directory of Open Access Journals (Sweden)

    Zhang Yiying

    2012-08-01

    Full Text Available Abstract Background The inhalation anesthetic isoflurane has been shown to open the mitochondrial permeability transition pore (mPTP and induce caspase activation and apoptosis, which may lead to learning and memory impairment. Cyclosporine A, a blocker of mPTP opening might attenuate the isoflurane-induced mPTP opening, lessening its ripple effects. Magnesium and anesthetic propofol are also mPTP blockers. We therefore set out to determine whether propofol and magnesium can attenuate the isoflurane-induced caspase activation and mPTP opening. Methods We investigated the effects of magnesium sulfate (Mg2+, propofol, and isoflurane on the opening of mPTP and caspase activation in H4 human neuroglioma cells stably transfected to express full-length human amyloid precursor protein (APP (H4 APP cells and in six day-old wild-type mice, employing Western blot analysis and flowcytometry. Results Here we show that Mg2+ and propofol attenuated the isoflurane-induced caspase-3 activation in H4-APP cells and mouse brain tissue. Moreover, Mg2+ and propofol, the blockers of mPTP opening, mitigated the isoflurane-induced mPTP opening in the H4-APP cells. Conclusion These data illustrate that Mg2+ and propofol may ameliorate the isoflurane-induced neurotoxicity by inhibiting its mitochondrial dysfunction. Pending further studies, these findings may suggest the use of Mg2+ and propofol in preventing and treating anesthesia neurotoxicity.

  14. Microglial priming through the lung-brain axis: the role of air pollution-induced circulating factors.

    Science.gov (United States)

    Mumaw, Christen L; Levesque, Shannon; McGraw, Constance; Robertson, Sarah; Lucas, Selita; Stafflinger, Jillian E; Campen, Matthew J; Hall, Pamela; Norenberg, Jeffrey P; Anderson, Tamara; Lund, Amie K; McDonald, Jacob D; Ottens, Andrew K; Block, Michelle L

    2016-05-01

    Air pollution is implicated in neurodegenerative disease risk and progression and in microglial activation, but the mechanisms are unknown. In this study, microglia remained activated 24 h after ozone (O3) exposure in rats, suggesting a persistent signal from lung to brain. Ex vivo analysis of serum from O3-treated rats revealed an augmented microglial proinflammatory response and β-amyloid 42 (Aβ42) neurotoxicity independent of traditional circulating cytokines, where macrophage-1 antigen-mediated microglia proinflammatory priming. Aged mice exhibited reduced pulmonary immune profiles and the most pronounced neuroinflammation and microglial activation in response to mixed vehicle emissions. Consistent with this premise, cluster of differentiation 36 (CD36)(-/-) mice exhibited impaired pulmonary immune responses concurrent with augmented neuroinflammation and microglial activation in response to O3 Further, aging glia were more sensitive to the proinflammatory effects of O3 serum. Together, these findings outline the lung-brain axis, where air pollutant exposures result in circulating, cytokine-independent signals present in serum that elevate the brain proinflammatory milieu, which is linked to the pulmonary response and is further augmented with age.-Mumaw, C. L., Levesque, S., McGraw, C., Robertson, S., Lucas, S., Stafflinger, J. E., Campen, M. J., Hall, P., Norenberg, J. P., Anderson, T., Lund, A. K., McDonald, J. D., Ottens, A. K., Block, M. L. Microglial priming through the lung-brain axis: the role of air pollution-induced circulating factors. PMID:26864854

  15. In-stream attenuation of neuro-active pharmaceuticals and their metabolites

    Science.gov (United States)

    Writer, Jeffrey; Antweiler, Ronald C.; Ferrar, Imma; Ryan, Joseph N.; Thurman, Michael

    2013-01-01

    In-stream attenuation was determined for 14 neuro-active pharmaceuticals and associated metabolites. Lagrangian sampling, which follows a parcel of water as it moves downstream, was used to link hydrological and chemical transformation processes. Wastewater loading of neuro-active compounds varied considerably over a span of several hours, and thus a sampling regime was used to verify that the Lagrangian parcel was being sampled and a mechanism was developed to correct measured concentrations if it was not. In-stream attenuation over the 5.4-km evaluated reach could be modeled as pseudo-first-order decay for 11 of the 14 evaluated neuro-active pharmaceutical compounds, illustrating the capacity of streams to reduce conveyance of neuro-active compounds downstream. Fluoxetine and N-desmethyl citalopram were the most rapidly attenuated compounds (t1/2 = 3.6 ± 0.3 h, 4.0 ± 0.2 h, respectively). Lamotrigine, 10,11,-dihydro-10,11,-dihydroxy-carbamazepine, and carbamazepine were the most persistent (t1/2 = 12 ± 2.0 h, 12 ± 2.6 h, 21 ± 4.5 h, respectively). Parent compounds (e.g., buproprion, carbamazepine, lamotrigine) generally were more persistent relative to their metabolites. Several compounds (citalopram, venlafaxine, O-desmethyl-venlafaxine) were not attenuated. It was postulated that the primary mechanism of removal for these compounds was interaction with bed sediments and stream biofilms, based on measured concentrations in stream biofilms and a column experiment using stream sediments.

  16. Ceftriaxone attenuates locomotor activity induced by acute and repeated cocaine exposure in mice

    OpenAIRE

    Tallarida, Christopher S.; Corley, Gladys; Kovalevich, Jane; Yen, William; Langford, Dianne; Rawls, Scott M

    2013-01-01

    Ceftriaxone (CTX) decreases locomotor activation produced by initial cocaine exposure and attenuates development of behavioral sensitization produced by repeated cocaine exposure. An important question that has not yet been answered is whether or not CTX reduces behavioral sensitization to cocaine in cases in which the antibiotic is administered only during the period of cocaine absence that follows repeated cocaine exposure and precedes reintroduction to cocaine. We investigated this questio...

  17. Essential role of MFG-E8 for phagocytic properties of microglial cells.

    Directory of Open Access Journals (Sweden)

    Yong Liu

    Full Text Available Milk fat globule factor-E8 (MFG-E8 has been regarded as a key factor involved in the phagocytosis of apoptotic cells. We induced a lentivirus into the microglial cells for the augmentation or abrogation of MFG-E8 expression in mouse microglial cells, and investigated phagocytosis of phosphatidylserine tagged human red blood cells (hRBCs in co-cultures. Increased MFG-E8 levels were associated with a significant increase in phagocytic activity compared to the controls. Conversely, phagocytosis dramitically decreased due to the abrogation of MFG-E8. In addition, the expression of the inflammatory cytokines, TNF-α and IL-1β, also increased or decreased in the microglial cells with the augmentation or abrogation of MFG-E8, respectively. Our findings indicate that the enhanced expression of MFG-E8 could increase phagocytosis of apoptotic cells; conversely, the rate of phagocytosis and the expression of inflammatory cytokines decreased when MFG-E8 expression was knocked down. Our results confirm that MFG-E8 plays an important role in phagocytosis, and possibly serves as an essential signal molecule for microglial cells.

  18. Attenuation of signaling pathways stimulated by pathologically activated FGF-receptor 2 mutants prevents craniosynostosis.

    Science.gov (United States)

    Eswarakumar, V P; Ozcan, F; Lew, E D; Bae, J H; Tomé, F; Booth, C J; Adams, D J; Lax, I; Schlessinger, J

    2006-12-01

    Craniosynostosis, the fusion of one or more of the sutures of the skull vault before the brain completes its growth, is a common (1 in 2,500 births) craniofacial abnormality, approximately 20% of which occurrences are caused by gain-of-function mutations in FGF receptors (FGFRs). We describe a genetic and pharmacological approach for the treatment of a murine model system of Crouzon-like craniosynostosis induced by a dominant mutation in Fgfr2c. Using genetically modified mice, we demonstrate that premature fusion of sutures mediated by Crouzon-like activated Fgfr2c mutant is prevented by attenuation of signaling pathways by selective uncoupling between the docking protein Frs2alpha and activated Fgfr2c, resulting in normal skull development. We also demonstrate that attenuation of Fgfr signaling in a calvaria organ culture with an Fgfr inhibitor prevents premature fusion of sutures without adversely affecting calvaria development. These experiments show that attenuation of FGFR signaling by pharmacological intervention could be applied for the treatment of craniosynostosis or other severe bone disorders caused by mutations in FGFRs that currently have no treatment. PMID:17132737

  19. Physical Activity Attenuates the Influence of FTO Variants on Obesity Risk

    DEFF Research Database (Denmark)

    Oskari Kilpeläinen, Tuomas; Qi, Lu; Brage, Soren;

    2011-01-01

    Background The FTO gene harbors the strongest known susceptibility locus for obesity. While many individual studies have suggested that physical activity (PA) may attenuate the effect of FTO on obesity risk, other studies have not been able to confirm this interaction. To confirm or refute...... unambiguously whether PA attenuates the association of FTO with obesity risk, we meta-analyzed data from 45 studies of adults (n = 218,166) and nine studies of children and adolescents (n = 19,268). Methods and Findings All studies identified to have data on the FTO rs9939609 variant (or any proxy [r2>0.8]) and...... performed within each study by including the FTO×PA interaction term in an additive model, adjusting for age and sex. Subsequently, random effects meta-analysis was used to pool the interaction terms. In adults, the minor (A-) allele of rs9939609 increased the odds of obesity by 1.23-fold/allele (95% CI 1...

  20. Ginsenoside Rg1 Attenuates Isoflurane-induced Caspase-3 Activation via Inhibiting Mitochondrial Dysfunction

    Institute of Scientific and Technical Information of China (English)

    MIAO Hui Hui; ZHEN Yu; DING Guan Nan; HONG Fang Xiao; XIE Zhong Cong; TIAN Ming

    2015-01-01

    Objective The inhalation anesthetic isoflurane has been shown to induce mitochondrial dysfunction and caspase activation, which may lead to learning and memory impairment. Ginsenoside Rg1 is reported to be neuroprotective. We therefore set out to determine whether ginsenoside Rg1 can attenuate isoflurane-induced caspase activation via inhibiting mitochondrial dysfunction. Methods We investigated the effects of ginsenoside Rg1 at concentrations of 12.5, 25, and 50 µmol/L and pretreatment times of 12 h and 24 h on isoflurane-induced caspase-3 activation in H4 naïve and stably transfected H4 human neuroglioma cells that express full-length human amyloid precursor protein (APP) (H4-APP cells). For mitochondrial dysfunction, we assessed mitochondrial permeability transition pore (mPTP) and adenosine-5’-triphosphate (ATP) levels. We employed Western blot analysis, chemiluminescence, and flowcytometry. Results Here we show that pretreatment with 50 µmol/L ginsenoside Rg1 for 12 h attenuated isoflurane-induced caspase-3 activation and mitochondrial dysfunction in H4-APP cells, while pretreatment with 25 and 50 µmol/L ginsenoside Rg1 for 24 h attenuated isoflurane-induced caspase-3 activation and mitochondrial dysfunction in both H4 naïve and H4-APP cells. Conclusion These data suggest that ginsenoside Rg1 may ameliorate isoflurane-induced caspase-3 activation by inhibiting mitochondrial dysfunction. Pending further studies, these findings might recommend the use of ginsenoside Rg1 in preventing and treating isoflurane-induced neurotoxicity.

  1. Neurons and astroglia govern microglial endotoxin tolerance through macrophage colony-stimulating factor receptor-mediated ERK1/2 signals.

    Science.gov (United States)

    Chu, Chun-Hsien; Wang, Shijun; Li, Chia-Ling; Chen, Shih-Heng; Hu, Chih-Fen; Chung, Yi-Lun; Chen, Shiou-Lan; Wang, Qingshan; Lu, Ru-Band; Gao, Hui-Ming; Hong, Jau-Shyong

    2016-07-01

    Endotoxin tolerance (ET) is a reduced responsiveness of innate immune cells like macrophages/monocytes to an endotoxin challenge following a previous encounter with the endotoxin. Although ET in peripheral systems has been well studied, little is known about ET in the brain. The present study showed that brain immune cells, microglia, being different from peripheral macrophages, displayed non-cell autonomous mechanisms in ET formation. Specifically, neurons and astroglia were indispensable for microglial ET. Macrophage colony-stimulating factor (M-CSF) secreted from these non-immune cells was essential for governing microglial ET. Neutralization of M-CSF deprived the neuron-glia conditioned medium of its ability to enable microglia to form ET when microglia encountered two lipopolysaccharide (LPS) treatments. Recombinant M-CSF protein rendered enriched microglia refractory to the second LPS challenge leading to microglial ET. Activation of microglial M-CSF receptor (M-CSFR; also known as CSF1R) and the downstream ERK1/2 signals was responsible for M-CSF-mediated microglial ET. Endotoxin-tolerant microglia in neuron-glia cultures displayed M2-like polarized phenotypes, as shown by upregulation of M2 marker Arg-1, elevated production of anti-inflammatory cytokine interleukin 10, and decreased secretion of pro-inflammatory mediators (tumor necrosis factor α, nitric oxide, prostaglandin E2 and interleukin 1β). Endotoxin-tolerant microglia protected neurons against LPS-elicited inflammatory insults, as shown by reduced neuronal damages in LPS pre-treatment group compared with the group without LPS pre-treatment. Moreover, while neurons and astroglia became injured during chronic neuroinflammation, microglia failed to form ET. Thus, this study identified a distinct non-cell autonomous mechanism of microglial ET. Interactions of M-CSF secreted by neurons and astroglia with microglial M-CSFR programed microglial ET. Loss of microglial ET could be an important

  2. Minocycline Transiently Reduces Microglia/Macrophage Activation but Exacerbates Cognitive Deficits Following Repetitive Traumatic Brain Injury in the Neonatal Rat.

    Science.gov (United States)

    Hanlon, Lauren A; Huh, Jimmy W; Raghupathi, Ramesh

    2016-03-01

    Elevated microglial/macrophage-associated biomarkers in the cerebrospinal fluid of infant victims of abusive head trauma (AHT) suggest that these cells play a role in the pathophysiology of the injury. In a model of AHT in 11-day-old rats, 3 impacts (24 hours apart) resulted in spatial learning and memory deficits and increased brain microglial/macrophage reactivity, traumatic axonal injury, neuronal degeneration, and cortical and white-matter atrophy. The antibiotic minocycline has been effective in decreasing injury-induced microglial/macrophage activation while simultaneously attenuating cellular and functional deficits in models of neonatal hypoxic ischemia, but the potential for this compound to rescue deficits after impact-based trauma to the immature brain remains unexplored. Acute minocycline administration in this model of AHT decreased microglial/macrophage reactivity in the corpus callosum of brain-injured animals at 3 days postinjury, but this effect was lost by 7 days postinjury. Additionally, minocycline treatment had no effect on traumatic axonal injury, neurodegeneration, tissue atrophy, or spatial learning deficits. Interestingly, minocycline-treated animals demonstrated exacerbated injury-induced spatial memory deficits. These results contrast with previous findings in other models of brain injury and suggest that minocycline is ineffective in reducing microglial/macrophage activation and ameliorating injury-induced deficits following repetitive neonatal traumatic brain injury. PMID:26825312

  3. Predicting trace organic compound attenuation with spectroscopic parameters in powdered activated carbon processes.

    Science.gov (United States)

    Ziska, Austin D; Park, Minkyu; Anumol, Tarun; Snyder, Shane A

    2016-08-01

    The removal of trace organic compounds (TOrCs) is of growing interest in water research and society. Powdered activated carbon (PAC) has been proven to be an effective method of removal for TOrCs in water, with the degree of effectiveness depending on dosage, contact time, and activated carbon type. In this study, the attenuation of TOrCs in three different secondary wastewater effluents using four PAC materials was studied in order to elucidate the effectiveness and efficacy of PAC for TOrC removal. With the notable exception of hydrochlorothiazide, all 14 TOrC indicators tested in this study exhibited a positive correlation of removal rate with their log Dow values, demonstrating that the main adsorption mechanism was hydrophobic interaction. As a predictive model, the modified Chick-Watson model, often used for the prediction of microorganism inactivation by disinfectants, was applied. The applied model exhibited good predictive power for TOrC attenuation by PAC in wastewater. In addition, surrogate models based upon spectroscopic measurements including UV absorbance at 254 nm and total fluorescence were applied to predict TOrC removal by PAC. The surrogate model was found to provide an excellent prediction of TOrC attenuation for all combinations of water quality and PAC type included in this study. The success of spectrometric parameters as surrogates in predicting TOrC attenuation by PAC are particularly useful because of their potential application in real-time on-line sensor monitoring and process control at full-scale water treatment plants, which could lead to significantly reduced operator response times and PAC operational optimization. PMID:27174829

  4. Hormetic Effect of Berberine Attenuates the Anticancer Activity of Chemotherapeutic Agents.

    Directory of Open Access Journals (Sweden)

    Jiaolin Bao

    Full Text Available Hormesis is a phenomenon of biphasic dose response characterized by exhibiting stimulatory or beneficial effects at low doses and inhibitory or toxic effects at high doses. Increasing numbers of chemicals of various types have been shown to induce apparent hormetic effect on cancer cells. However, the underlying significance and mechanisms remain to be elucidated. Berberine, one of the major active components of Rhizoma coptidis, has been manifested with notable anticancer activities. This study aims to investigate the hormetic effect of berberine and its influence on the anticancer activities of chemotherapeutic agents. Our results demonstrated that berberine at low dose range (1.25 ~ 5 μM promoted cell proliferation to 112% ~170% of the untreated control in various cancer cells, while berberine at high dose rage (10 ~ 80 μM inhibited cell proliferation. Further, we observed that co-treatment with low dose berberine could significantly attenuate the anticancer activity of chemotherapeutic agents, including fluorouracil (5-FU, camptothecin (CPT, and paclitaxel (TAX. The hormetic effect and thereby the attenuated anticancer activity of chemotherapeutic drugs by berberine may attributable to the activated protective stress response in cancer cells triggered by berberine, as evidenced by up-regulated MAPK/ERK1/2 and PI3K/AKT signaling pathways. These results provided important information to understand the potential side effects of hormesis, and suggested cautious application of natural compounds and relevant herbs in adjuvant treatment of cancer.

  5. NF-κB Upregulates Type 5 Phosphodiesterase in N9 Microglial Cells: Inhibition by Sildenafil and Yonkenafil.

    Science.gov (United States)

    Zhao, Siqi; Yang, Jingyu; Wang, Lixin; Peng, Shengyi; Yin, Jie; Jia, Lina; Yang, Xiaowei; Yuan, Zengqiang; Wu, Chunfu

    2016-05-01

    Our previous studies showed that the phosphodiesterase-5 (PDE5) inhibitor sildenafil inhibited the microglial activation induced by lipopolysaccharide (LPS). However, whether yonkenafil, a novel PDE5 inhibitor, also inhibits microglial activation and the underlying mechanism of inhibition remain elusive. Here we found that yonkenafil significantly suppressed the production of NO, interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) and the protein expression of inducible NO synthase (iNOS) induced by LPS in microglial cells in a concentration-dependent manner. Knockdown of PDE5 inhibits NO and iNOS protein expression in LPS-stimulated N9 microglia. Moreover, we observed that the nuclear factor-κB (NF-κB) transcriptionally upregulated PDE5 expression, which was inhibited by sildenafil and yonkenafil in LPS-stimulated N9 microglia. Therefore, sildenafil and yonkenafil may exert their inhibitory effects on microglial activation by reducing the expression of PDE5. Furthermore, sildenafil and yonkenafil increased the cyclic guanosine monophosphate (cGMP) level in N9 microglia, and 8-Br-cGMP, an analogue of cGMP, downregulates extracellular signal-regulated kinases 1 and 2 (ERK1/2)/the NF-κB pathway, suggesting that sildenafil and yonkenafil inhibit microglial activation by decreasing PDE5 expression and increasing the cGMP level. Importantly, sildenafil and yonkenafil significantly alleviated the death of SH-SY5Y neuroblastoma cells and primary cortical neurons induced by the conditioned medium from activated microglia. Together, these findings position PDE5 as a potential therapy target for the treatment of neuroinflammation accompanied by microglial activation. PMID:26108184

  6. Resting microglial cells exhibit tubular membrane protrusions

    Directory of Open Access Journals (Sweden)

    Ulrike Gimsa

    2002-11-01

    Full Text Available Nano- and microtubular structures have recently become a subject of increasing interest due to their importance in biology and medicine as well as their technological potential. Such structures have been observed in anorganic (Iijima, 1991 as well as in organic (Schnur 1993; Oda et al. 1991 systems. Micro- and nanotubular protrusions of bilayer membranes have been found in cells (Kralj-Iglic et al. 1998; Kralj-Iglic et al. 2001a and phospholipid vesicles (Kralj-Iglic et al. 2002; Kralj-Iglic et al. 2001b. In this work we describe membrane protrusions in microglial cells.

  7. Activation of microglial cells triggers a release of brain-derived neurotrophic factor (BDNF) inducing their proliferation in an adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and proliferation of microglia

    OpenAIRE

    Gomes Catarina; Ferreira Raquel; George Jimmy; Sanches Rui; Rodrigues Diana I; Gonçalves Nélio; Cunha Rodrigo A

    2013-01-01

    Abstract Background Brain-derived neurotrophic factor (BDNF) has been shown to control microglial responses in neuropathic pain. Since adenosine A2A receptors (A2ARs) control neuroinflammation, as well as the production and function of BDNF, we tested to see if A2AR controls the microglia-dependent secretion of BDNF and the proliferation of microglial cells, a crucial event in neuroinflammation. Methods Murine N9 microglial cells were challenged with lipopolysaccharide (LPS, 100 ng/mL) in the...

  8. Direct and indirect pharmacological modulation of CCL2/CCR2 pathway results in attenuation of neuropathic pain - In vivo and in vitro evidence.

    Science.gov (United States)

    Piotrowska, Anna; Kwiatkowski, Klaudia; Rojewska, Ewelina; Slusarczyk, Joanna; Makuch, Wioletta; Basta-Kaim, Agnieszka; Przewlocka, Barbara; Mika, Joanna

    2016-08-15

    The repeated administration of microglial inhibitor (minocycline) and CCR2 antagonist (RS504393) attenuated the neuropathic pain symptoms in rats following chronic constriction injury of the sciatic nerve, which was associated with decreased spinal microglia activation and the protein level of CCL2 and CCR2. Furthermore, in microglia primary cell cultures minocycline downregulated both CCL2 and CCR2 protein levels after lipopolysaccharide-stimulation. Additionally, in astroglia primary cell cultures minocycline decreased the expression of CCL2, but not CCR2. Our results provide new evidence that modulation of CCL2/CCR2 pathway by microglial inhibitor as well as CCR2 antagonist is effective for neuropathic pain development in rats. PMID:27397071

  9. Activated protein C attenuates acute lung injury and apoptosis in a hyperoxic animal model.

    Science.gov (United States)

    Husari, Ahmad W; Khayat, Aline; Awdeh, Haitham; Hatoum, Hadi; Nasser, Michel; Mroueh, Salman M; Zaatari, Ghazi; El-Sabban, Marwan; Dbaibo, Ghassan S

    2010-05-01

    Evidence suggests that activated protein C (APC) attenuates acute lung injury (ALI) through antithrombotic and anti-inflammatory mechanisms. The aim of this study was to determine the effects of APC on ALI in adult rats exposed to hyperoxic environment. Rats were divided into control, hyperoxia, hyperoxia + APC, and APC. Hyperoxia and hyperoxia + APC were exposed to 1, 3, and 5 days of hyperoxia. Hyperoxia + APC and APC were injected with APC (5 mg/kg, i.p.) every 12 h. Control and hyperoxia received isotonic sodium chloride solution injection. Measurement of wet to dry ratio and albumin leak demonstrated significant improvement in hyperoxia + APC when compared with hyperoxia. Apoptosis, as measured by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay, was significantly reduced in hyperoxia + APC when compared with hyperoxia. Histological evaluation of lung sections showed significant reduction in inflammation, edema, and in the number of marginating neutrophils in hyperoxia + APC as compared with hyperoxia. Transcriptional expression of lung inflammatory mediators demonstrated a time-dependent surge in the levels TNF-alpha, IL-1beta, and IL-6 in response to hyperoxia that was attenuated with APC administration in the presence of hyperoxia. In this rat model, APC attenuates lung injury and the expression of inflammatory mediators in ALI secondary to hyperoxia. PMID:19851127

  10. The amelioration of phagocytic ability in microglial cells by curcumin through the inhibition of EMF-induced pro-inflammatory responses

    OpenAIRE

    He, Gen-Lin; Liu, Yong; Min LI; Chen, Chun-Hai; Gao, Peng; Yu, Zheng-Ping; Yang, Xue-Sen

    2014-01-01

    Background Insufficient clearance by microglial cells, prevalent in several neurological conditions and diseases, is intricately intertwined with MFG-E8 expression and inflammatory responses. Electromagnetic field (EMF) exposure can elicit the pro-inflammatory activation and may also trigger an alteration of the clearance function in microglial cells. Curcumin has important roles in the anti-inflammatory and phagocytic process. Here, we evaluated the ability of curcumin to ameliorate the phag...

  11. Elevated NF-κB activation is conserved in human myocytes cultured from obese type 2 diabetic patients and attenuated by AMP-activated protein kinase

    DEFF Research Database (Denmark)

    Green, Charlotte Jane; Pedersen, Maria; Pedersen, Bente K;

    2011-01-01

    To examine whether the inflammatory phenotype found in obese and diabetic individuals is preserved in isolated, cultured myocytes and to assess the effectiveness of pharmacological AMP-activated protein kinase (AMPK) activation upon the attenuation of inflammation in these myocytes....

  12. Magnetic Resonance Spectroscopy discriminates the response to microglial stimulation of wild type and Alzheimer's disease models.

    Science.gov (United States)

    Pardon, Marie-Christine; Yanez Lopez, Maria; Yuchun, Ding; Marjańska, Małgorzata; Prior, Malcolm; Brignell, Christopher; Parhizkar, Samira; Agostini, Alessandra; Bai, Li; Auer, Dorothee P; Faas, Henryk M

    2016-01-01

    Microglia activation has emerged as a potential key factor in the pathogenesis of Alzheimer's disease. Metabolite levels assessed by magnetic resonance spectroscopy (MRS) are used as markers of neuroinflammation in neurodegenerative diseases, but how they relate to microglial activation in health and chronic disease is incompletely understood. Using MRS, we monitored the brain metabolic response to lipopolysaccharides (LPS)-induced microglia activation in vivo in a transgenic mouse model of Alzheimer's disease (APP/PS1) and healthy controls (wild-type (WT) littermates) over 4 hours. We assessed reactive gliosis by immunohistochemistry and correlated metabolic and histological measures. In WT mice, LPS induced a microglial phenotype consistent with activation, associated with a sustained increase in macromolecule and lipid levels (ML9). This effect was not seen in APP/PS1 mice, where LPS did not lead to a microglial response measured by histology, but induced a late increase in the putative inflammation marker myoinositol (mI) and metabolic changes in total creatine and taurine previously reported to be associated with amyloid load. We argue that ML9 and mI distinguish the response of WT and APP/PS1 mice to immune mediators. Lipid and macromolecule levels may represent a biomarker of activation of healthy microglia, while mI may not be a glial marker. PMID:26813748

  13. Formation of multinucleated giant cells and microglial degeneration in rats expressing a mutant Cu/Zn superoxide dismutase gene

    Directory of Open Access Journals (Sweden)

    Streit Wolfgang J

    2007-02-01

    Full Text Available Abstract Background Microglial neuroinflammation is thought to play a role in the pathogenesis of amyotrophic lateral sclerosis (ALS. The purpose of this study was to provide a histopathological evaluation of the microglial neuroinflammatory response in a rodent model of ALS, the SOD1G93A transgenic rat. Methods Multiple levels of the CNS from spinal cord to cerebral cortex were studied in SOD1G93A transgenic rats during three stages of natural disease progression, including presymptomatic, early symptomatic (onset, and late symptomatic (end stage, using immuno- and lectin histochemical markers for microglia, such as OX-42, OX-6, and Griffonia simplicifolia isolectin B4. Results Our studies revealed abnormal aggregates of microglia forming in the spinal cord as early as the presymptomatic stage. During the symptomatic stages there was prominent formation of multinucleated giant cells through fusion of microglial cells in the spinal cord, brainstem, and red nucleus of the midbrain. Other brain regions, including substantia nigra, cranial nerve nuclei, hippocampus and cortex showed normal appearing microglia. In animals during end stage disease at 4–5 months of age virtually all microglia in the spinal cord gray matter showed extensive fragmentation of their cytoplasm (cytorrhexis, indicative of widespread microglial degeneration. Few microglia exhibiting nuclear fragmentation (karyorrhexis indicative of apoptosis were identified at any stage. Conclusion The current findings demonstrate the occurrence of severe abnormalities in microglia, such as cell fusions and cytorrhexis, which may be the result of expression of mutant SOD1 in these cells. The microglial changes observed are different from those that accompany normal microglial activation, and they demonstrate that aberrant activation and degeneration of microglia is part of the pathogenesis of motor neuron disease.

  14. Regulatory Effects of Caffeic Acid Phenethyl Ester on Neuroinflammation in Microglial Cells

    OpenAIRE

    Cheng-Fang Tsai; Yueh-Hsiung Kuo; Wei-Lan Yeh; Caren Yu-Ju Wu; Hsiao-Yun Lin; Sheng-Wei Lai; Yu-Shu Liu; Ling-Hsuan Wu; Jheng-Kun Lu; Dah-Yuu Lu

    2015-01-01

    Microglial activation has been widely demonstrated to mediate inflammatory processes that are crucial in several neurodegenerative disorders. Pharmaceuticals that can deliver direct inhibitory effects on microglia are therefore considered as a potential strategy to counter balance neurodegenerative progression. Caffeic acid phenethyl ester (CAPE), a natural phenol in honeybee propolis, is known to possess antioxidant, anti-inflammatory and anti-microbial properties. Accordingly, the current ...

  15. Microglial AGE-Albumin Is Critical in Promoting Alcohol-Induced Neurodegeneration in Rats and Humans

    OpenAIRE

    Byun, Kyunghee; Bayarsaikhan, Delger; Bayarsaikhan, Enkhjargal; Son, Myeongjoo; Oh, Seyeon; Lee, Jaesuk; Son, Hye-in; Won, Moo-Ho; Seung U. Kim; Song, Byoung-Joon; Lee, Bonghee

    2014-01-01

    Alcohol is a neurotoxic agent, since long-term heavy ingestion of alcohol can cause various neural diseases including fetal alcohol syndrome, cerebellar degeneracy and alcoholic dementia. However, the molecular mechanisms of alcohol-induced neurotoxicity are still poorly understood despite numerous studies. Thus, we hypothesized that activated microglial cells with elevated AGE-albumin levels play an important role in promoting alcohol-induced neurodegeneration. Our results revealed that micr...

  16. β-Glucan attenuates TLR2- and TLR4-mediated cytokine production by microglia

    Science.gov (United States)

    Shah, Vaibhav B.; Williams, David L.; Keshvara, Lakhu

    2015-01-01

    Microglia, the resident immune cells of the brain, are activated in response to any kind of CNS injury, and their activation is critical for maintaining homeostasis within the CNS. However, during inflammatory conditions, sustained microglial activation results in damage to surrounding neuronal cells. β-Glucans are widely recognized immunomodulators, but the molecular mechanisms underlying their immunomodulatory actions have not been fully explored. We previously reported that β-glucans activate microglia through Dectin-1 without inducing significant amount of cytokines and chemokines. Here, we show that particulate β-glucans attenuate cytokine production in response to TLR stimulation; this inhibitory activity of β-glucan is mediated by Dectin-1 and does not require particle internalization. At the molecular level, β-glucan suppressed TLR-mediated NF-κB activation, which may be responsible for the diminished capacity of microglia to produce cytokines in response to TLR stimulation. Overall, these results suggest that β-glucans may be used to prevent or treat excessive microglial activation during chronic inflammatory conditions. PMID:19393720

  17. Vitamin C Attenuates Isoflurane-Induced Caspase-3 Activation and Cognitive Impairment.

    Science.gov (United States)

    Cheng, Baiqi; Zhang, Yiying; Wang, Arthur; Dong, Yuanlin; Xie, Zhongcong

    2015-12-01

    Anesthetic isoflurane has been reported to induce caspase-3 activation. The underlying mechanism(s) and targeted intervention(s), however, remain largely to be determined. Vitamin C (VitC) inhibits oxidative stress and apoptosis. We therefore employed VitC to further determine the up-stream mechanisms and the down-stream consequences of the isoflurane-induced caspase-3 activation. H4 human neuroglioma cells overexpressed human amyloid precursor protein (H4-APP cells) and rat neuroblastoma cells were treated either with (1) 2% isoflurane or (2) with the control condition, plus saline or 400 μM VitC for 3 or 6 h. Western blot analysis and fluorescence assay were utilized at the end of the experiments to determine caspase-3 activation, levels of reactive oxygen species and ATP, and mitochondrial function. The interaction of isoflurane (1.4% for 2 h) and VitC (100 mg/kg) on cognitive function in mice was also assessed in the fear conditioning system. Here, we show for the first time that the VitC treatment attenuated the isoflurane-induced caspase-3 activation. Moreover, VitC mitigated the isoflurane-induced increases in the levels of reactive oxygen species, opening of mitochondrial permeability transition pore, reduction in mitochondrial membrane potential, and the reduction in ATP levels in the cells. Finally, VitC ameliorated the isoflurane-induced cognitive impairment in the mice. Pending confirmation from future studies, these results suggested that VitC attenuated the isoflurane-induced caspase-3 activation and cognitive impairment by inhibiting the isoflurane-induced oxidative stress, mitochondrial dysfunction, and reduction in ATP levels. These findings would promote further research into the underlying mechanisms and targeted interventions of anesthesia neurotoxicity. PMID:25367886

  18. Hexane fraction of Zingiberis Rhizoma Crudus extract inhibits the production of nitric oxide and proinflammatory cytokines in LPS-stimulated BV2 microglial cells via the NF-kappaB pathway.

    Science.gov (United States)

    Jung, Hyo Won; Yoon, Cheol-Ho; Park, Kwon Moo; Han, Hyung Soo; Park, Yong-Ki

    2009-06-01

    Excessive production of inflammatory mediators such as nitric oxide (NO), prostaglandin E(2) (PGE2), and proinflammatory cytokines, including tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) from activated microglia contributes to uncontrolled inflammation in neurodegenerative diseases. It seems possible that treatment with anti-inflammatory agents, including plants used in Oriental medicine, might delay the progression of neurodegeneration through the inhibition of microglial activation. The present study is focused on the inhibitory effect of the rhizome hexane fraction extract of Zingiber officinale Roscoe (ginger hexan extract; GHE) on the production of inflammatory mediators such as NO, PGE(2), and proinflammatory cytokines in lipopolysaccharide (LPS)-stimulated BV-2 cells, a mouse microglial cell line. GHE significantly inhibited the excessive production of NO, PGE(2), TNF-alpha, and IL-1beta in LPS-stimulated BV2 cells. In addition, GHE attenuated the mRNA expressions and protein levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and proinflammatory cytokines. The molecular mechanisms that underlie GHE-mediated attenuation are related to the inhibition of the phosphorylation of three mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinases 1 and 2 (ERK1/2), p38 MAPK, and c-Jun N-terminal kinase (JNK), and the activation of nuclear factor-kappaB (NF-kappaB). Our results indicate that GHE exhibits anti-inflammatory properties by suppressing the transcription of inflammatory mediator genes through the MAPK and NF-kappaB signaling pathways. The anti-inflammatory properties of GHE may make it useful as a therapeutic candidate for the treatment of human neurodegenerative diseases. PMID:19233241

  19. Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone attenuates postincisional pain by regulating macrophage polarization

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa-Moriyama, Maiko, E-mail: hase-mai@m3.kufm.kagoshima-u.ac.jp [Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Ohnou, Tetsuya; Godai, Kohei; Kurimoto, Tae; Nakama, Mayo; Kanmura, Yuichi [Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Rosiglitazone attenuated postincisional pain. Black-Right-Pointing-Pointer Rosiglitazone alters macrophage polarization to F4/80{sup +}CD206{sup +} M2 macrophages at the incisional sites. Black-Right-Pointing-Pointer Transplantation of rosiglitazone-treated macrophages produced analgesic effects. -- Abstract: Acute inflammation triggered by macrophage infiltration to injured tissue promotes wound repair and may induce pain hypersensitivity. Peroxisome proliferator-activated receptor {gamma} (PPAR){gamma} signaling is known to regulate heterogeneity of macrophages, which are often referred to as classically activated (M1) and alternatively activated (M2) macrophages. M1 macrophages have considerable antimicrobial activity and produce a wide variety of proinflammatory cytokines. In contrast, M2 macrophages are involved in anti-inflammatory and homeostatic functions linked to wound healing and tissue repair. Although it has been suggested that PPAR{gamma} agonists attenuate pain hypersensitivity, the molecular mechanism of macrophage-mediated effects of PPAR{gamma} signaling on pain development has not been explored. In this study, we investigated the link between the phenotype switching of macrophage polarization induced by PPAR{gamma} signaling and the development of acute pain hypersensitivity. Local administration of rosiglitazone significantly ameliorated hypersensitivity to heat and mechanical stimuli, and paw swelling. Consistent with the down-regulation of nuclear factor {kappa}B (NF{kappa}B) phosphorylation by rosiglitazone at the incisional sites, the number of F4/80{sup +}iNOS{sup +} M1 macrophages was decreased whereas numbers of F4/80{sup +}CD206{sup +} M2 macrophages were increased in rosiglitazone-treated incisional sites 24 h after the procedure. In addition, gene induction of anti-inflammatory M2-macrophage-associated markers such as arginase1, FIZZ1 and interleukin (IL)-10 were significantly increased, whereas

  20. Thermodynamics of tryptophan-mediated activation of the trp RNA-binding attenuation protein.

    Science.gov (United States)

    McElroy, Craig A; Manfredo, Amanda; Gollnick, Paul; Foster, Mark P

    2006-06-27

    The trp RNA-binding attenuation protein (TRAP) functions in many bacilli to control the expression of the tryptophan biosynthesis genes. Transcription of the trp operon is controlled by TRAP through an attenuation mechanism, in which competition between two alternative secondary-structural elements in the 5' leader sequence of the nascent mRNA is influenced by tryptophan-dependent binding of TRAP to the RNA. Previously, NMR studies of the undecamer (11-mer) suggested that tryptophan-dependent control of RNA binding by TRAP is accomplished through ligand-induced changes in protein dynamics. We now present further insights into this ligand-coupled event from hydrogen/deuterium (H/D) exchange analysis, differential scanning calorimetry (DSC), and isothermal titration calorimetry (ITC). Scanning calorimetry showed tryptophan dissociation to be independent of global protein unfolding, while analysis of the temperature dependence of the binding enthalpy by ITC revealed a negative heat capacity change larger than expected from surface burial, a hallmark of binding-coupled processes. Analysis of this excess heat capacity change using parameters derived from protein folding studies corresponds to the ordering of 17-24 residues per monomer of TRAP upon tryptophan binding. This result is in agreement with qualitative analysis of residue-specific broadening observed in TROSY NMR spectra of the 91 kDa oligomer. Implications for the mechanism of ligand-mediated TRAP activation through a shift in a preexisting conformational equilibrium and an induced-fit conformational change are discussed. PMID:16784236

  1. Activated protein C attenuates acute ischaemia reperfusion injury in skeletal muscle.

    LENUS (Irish Health Repository)

    Dillon, J P

    2012-02-03

    Activated protein C (APC) is an endogenous anti-coagulant with anti-inflammatory properties. The purpose of the present study was to evaluate the effects of activated protein C in the setting of skeletal muscle ischaemia reperfusion injury (IRI). IRI was induced in rats by applying rubber bands above the levels of the greater trochanters bilaterally for a period of 2h followed by 12h reperfusion. Treatment groups received either equal volumes of normal saline or activated protein C prior to tourniquet release. Following 12h reperfusion, muscle function was assessed electrophysiologically by electrical field stimulation. The animals were then sacrificed and skeletal muscle harvested for evaluation. Activated protein C significantly attenuated skeletal muscle reperfusion injury as shown by reduced myeloperoxidase content, wet to dry ratio and electrical properties of skeletal muscle. Further in vitro work was carried out on neutrophils isolated from healthy volunteers to determine the direct effect of APC on neutrophil function. The effects of APC on TNF-alpha stimulated neutrophils were examined by measuring CD18 expression as well as reactive oxygen species generation. The in vitro work demonstrated a reduction in CD18 expression and reactive oxygen species generation. We conclude that activated protein C may have a protective role in the setting of skeletal muscle ischaemia reperfusion injury and that this is in part mediated by a direct inhibitory effect on neutrophil activation.

  2. Meclozine facilitates proliferation and differentiation of chondrocytes by attenuating abnormally activated FGFR3 signaling in achondroplasia.

    Directory of Open Access Journals (Sweden)

    Masaki Matsushita

    Full Text Available Achondroplasia (ACH is one of the most common skeletal dysplasias with short stature caused by gain-of-function mutations in FGFR3 encoding the fibroblast growth factor receptor 3. We used the drug repositioning strategy to identify an FDA-approved drug that suppresses abnormally activated FGFR3 signaling in ACH. We found that meclozine, an anti-histamine drug that has long been used for motion sickness, facilitates chondrocyte proliferation and mitigates loss of extracellular matrix in FGF2-treated rat chondrosarcoma (RCS cells. Meclozine also ameliorated abnormally suppressed proliferation of human chondrosarcoma (HCS-2/8 cells that were infected with lentivirus expressing constitutively active mutants of FGFR3-K650E causing thanatophoric dysplasia, FGFR3-K650M causing SADDAN, and FGFR3-G380R causing ACH. Similarly, meclozine alleviated abnormally suppressed differentiation of ATDC5 chondrogenic cells expressing FGFR3-K650E and -G380R in micromass culture. We also confirmed that meclozine alleviates FGF2-mediated longitudinal growth inhibition of embryonic tibia in bone explant culture. Interestingly, meclozine enhanced growth of embryonic tibia in explant culture even in the absence of FGF2 treatment. Analyses of intracellular FGFR3 signaling disclosed that meclozine downregulates phosphorylation of ERK but not of MEK in FGF2-treated RCS cells. Similarly, meclozine enhanced proliferation of RCS cells expressing constitutively active mutants of MEK and RAF but not of ERK, which suggests that meclozine downregulates the FGFR3 signaling by possibly attenuating ERK phosphorylation. We used the C-natriuretic peptide (CNP as a potent inhibitor of the FGFR3 signaling throughout our experiments, and found that meclozine was as efficient as CNP in attenuating the abnormal FGFR3 signaling. We propose that meclozine is a potential therapeutic agent for treating ACH and other FGFR3-related skeletal dysplasias.

  3. Hot water extract of wheat bran attenuates white matter injury in a rat model of vascular dementia.

    Science.gov (United States)

    Lim, Sun Ha; Lee, Jongwon

    2014-09-01

    Vascular dementia is characterized by white matter lesions involving the demyelination and activation of astrocytes and microglia. In a previous study, we showed that the supernatant of a laboratory-scale, hot water extract of ground whole wheat (TALE) attenuated white matter injury and astrocytic activation in a rat model of bilateral common carotid artery occlusion (BCCAO). In the present study, we made several modifications to the hot water extraction process to remove starch and enable large-scale production. We used wheat bran (WB), which contains less starch, instead of ground whole wheat. In addition, we removed starch granules with a decanter before hot water extraction. The final product, wheat bran extract (WBE), contained 2.42% arabinose, a surrogate marker of arabinoxylan, which is an active constituent of WBE. Supplementation of the rat model of BCCAO with WBE (400 mg/kg/day) for 33 days attenuated white matter injury, which was assessed by Luxol Fast Blue staining, in the corpus callosum (cc) and optic tract (opt) regions. Attenuation of white matter injury in the opt region was accompanied by improvement of the pupillary light reflex. Immunochemical staining revealed that supplementation with WBE reduced astrocytic activation in the cc and opt regions and reduced microglial activation in the opt region. These findings indicate that supplementation with WBE is effective at attenuating white matter injury accompanied by the inhibition of astrocytic and microglial activation. Therefore, extracts from WB, a cheap by-product of wheat milling, can be developed as a nutraceutical to prevent vascular dementia, a disease for which there is no approved pharmaceutical treatment. PMID:25320711

  4. Rapamycin attenuates mitochondrial dysfunction via activation of mitophagy in experimental ischemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qiang [Department of Neurology, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200233 (China); Department of Neurology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Zhang, Ting [Department of Neurology, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200233 (China); Wang, Jixian [Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China); Zhang, Zhijun [Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China); Zhai, Yu [Department of Neurology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Yang, Guo-Yuan, E-mail: gyyang0626@gmail.com [Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China); Sun, Xiaojiang, E-mail: sunxj19@gmail.com [Department of Neurology, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200233 (China)

    2014-02-07

    Highlights: • Rapamycin enhances mitophagy via increasing p62 translocation to the mitochondria. • Rapamycin attenuates brain ischemic damage and improves mitochondrial function. • The protection of rapamycin to mitochondrial is linked to enhanced mitophagy. - Abstract: Rapamycin has been demonstrated to exhibit neuroprotective functions via the activation of autophagy in a cerebral ischemia model. However, the involvement of mitophagy in this process and its contribution to the protection of mitochondrial function remains unknown. The present study explored the characteristics of mitophagy after cerebral ischemia and the effect of rapamycin on mitochondrial function. Male Sprague–Dawley rats underwent transient middle cerebral artery occlusion (tMCAO). Neurological deficits scores; infarct volumes; mitophagy morphology; and the levels of malondialdehyde (MDA), adenosine triphosphate (ATP) and mitochondrial membrane potentials (Δψm) were examined. The expression of LC3, Beclin-1 and p62 in the mitochondrial fraction combined with transmission electronic microscopy were used to explore mitophagic activity after ischemia. We also blocked autophagosome formation using 3-methyladenine (3-MA) to check the linkage between the mitochondrial protective effect of rapamycin and enhanced mitophagy. We observed that rapamycin significantly enhanced mitophagy, as evidenced by the increase in LC3-II and Beclin-1 expression in the mitochondria and p62 translocation to the mitochondria. Rapamycin reduced infarct volume, improved neurological outcomes and inhibited mitochondrial dysfunction compared with the control animals (p < 0.05). However, these protective effects were reversed by 3-methyladenine treatment after rapamycin. The present study indicates that rapamycin treatment attenuates mitochondrial dysfunction following cerebral ischemia, which is linked to enhanced mitophagy.

  5. Rapamycin attenuates mitochondrial dysfunction via activation of mitophagy in experimental ischemic stroke

    International Nuclear Information System (INIS)

    Highlights: • Rapamycin enhances mitophagy via increasing p62 translocation to the mitochondria. • Rapamycin attenuates brain ischemic damage and improves mitochondrial function. • The protection of rapamycin to mitochondrial is linked to enhanced mitophagy. - Abstract: Rapamycin has been demonstrated to exhibit neuroprotective functions via the activation of autophagy in a cerebral ischemia model. However, the involvement of mitophagy in this process and its contribution to the protection of mitochondrial function remains unknown. The present study explored the characteristics of mitophagy after cerebral ischemia and the effect of rapamycin on mitochondrial function. Male Sprague–Dawley rats underwent transient middle cerebral artery occlusion (tMCAO). Neurological deficits scores; infarct volumes; mitophagy morphology; and the levels of malondialdehyde (MDA), adenosine triphosphate (ATP) and mitochondrial membrane potentials (Δψm) were examined. The expression of LC3, Beclin-1 and p62 in the mitochondrial fraction combined with transmission electronic microscopy were used to explore mitophagic activity after ischemia. We also blocked autophagosome formation using 3-methyladenine (3-MA) to check the linkage between the mitochondrial protective effect of rapamycin and enhanced mitophagy. We observed that rapamycin significantly enhanced mitophagy, as evidenced by the increase in LC3-II and Beclin-1 expression in the mitochondria and p62 translocation to the mitochondria. Rapamycin reduced infarct volume, improved neurological outcomes and inhibited mitochondrial dysfunction compared with the control animals (p < 0.05). However, these protective effects were reversed by 3-methyladenine treatment after rapamycin. The present study indicates that rapamycin treatment attenuates mitochondrial dysfunction following cerebral ischemia, which is linked to enhanced mitophagy

  6. Peripheral formalin injection induces unique spinal cord microglial phenotypic changes.

    Science.gov (United States)

    Fu, Kai-Yuan; Tan, Yong-Hui; Sung, Backil; Mao, Jianren

    2009-01-16

    Microglia are resident immune cells of brain and activated by peripheral tissue injury. In the present study, we investigated the possible induction of several microglial surface immunomolecules in the spinal cord, including leukocyte common antigen (LCA/CD45), MHC class I antigen, MHC class II antigen, Fc receptor, and CD11c following formalin injection into the rat's hind paw. CD45 and MHC class I were upregulated in the activated microglia, which was evident on day 3 with the peak expression on day 7 following peripheral formalin injection. There was a very low basal expression of MHC class II, CD11c, and the Fc receptor, which did not change after the formalin injection. These results, for the first time, indicate that peripheral formalin injection can induce phenotypic changes of microglia with distinct upregulation of CD45 and MHC class I antigen. The data suggest that phenotypic changes of the activated microglia may be a unique pattern of central changes following peripheral tissue injury. PMID:19015000

  7. Invariant NKT Cell Activation Induces Late Preterm Birth That Is Attenuated by Rosiglitazone.

    Science.gov (United States)

    St Louis, Derek; Romero, Roberto; Plazyo, Olesya; Arenas-Hernandez, Marcia; Panaitescu, Bogdan; Xu, Yi; Milovic, Tatjana; Xu, Zhonghui; Bhatti, Gaurav; Mi, Qing-Sheng; Drewlo, Sascha; Tarca, Adi L; Hassan, Sonia S; Gomez-Lopez, Nardhy

    2016-02-01

    Preterm birth (PTB) is the leading cause of neonatal morbidity and mortality worldwide. Although intra-amniotic infection is a recognized cause of spontaneous preterm labor, the noninfection-related etiologies are poorly understood. In this article, we demonstrated that the expansion of activated CD1d-restricted invariant NKT (iNKT) cells in the third trimester by administration of α-galactosylceramide (α-GalCer) induced late PTB and neonatal mortality. In vivo imaging revealed that fetuses from mice that underwent α-GalCer-induced late PTB had bradycardia and died shortly after delivery. Yet, administration of α-GalCer in the second trimester did not cause pregnancy loss. Peroxisome proliferator-activated receptor (PPAR)γ activation, through rosiglitazone treatment, reduced the rate of α-GalCer-induced late PTB and improved neonatal survival. Administration of α-GalCer in the third trimester suppressed PPARγ activation, as shown by the downregulation of Fabp4 and Fatp4 in myometrial and decidual tissues, respectively; this suppression was rescued by rosiglitazone treatment. Administration of α-GalCer in the third trimester induced an increase in the activation of conventional CD4(+) T cells in myometrial tissues and the infiltration of activated macrophages, neutrophils, and mature dendritic cells to myometrial and/or decidual tissues. All of these effects were blunted after rosiglitazone treatment. Administration of α-GalCer also upregulated the expression of inflammatory genes at the maternal-fetal interface and systemically, and rosiglitazone treatment partially attenuated these responses. Finally, an increased infiltration of activated iNKT-like cells in human decidual tissues is associated with noninfection-related preterm labor/birth. Collectively, these results demonstrate that iNKT cell activation in vivo leads to late PTB by initiating innate and adaptive immune responses and suggest that the PPARγ pathway has potential as a target for

  8. New compound, 5-O-isoferuloyl-2-deoxy-D-ribono-γ-lacton from Clematis mandshurica: Anti-inflammatory effects in lipopolysaccharide-stimulated BV2 microglial cells.

    Science.gov (United States)

    Dilshara, Matharage Gayani; Lee, Kyoung-Tae; Lee, Chang-Min; Choi, Yung Hyun; Lee, Hak-Ju; Choi, Il-Whan; Kim, Gi-Young

    2015-01-01

    Microglia are main immune cells to exacerbate neural disorders in persistent overactivating. Therefore, it is a good strategy to regulate microglia for the treatment of neural disorders. In the present study, we isolated and characterized a novel compound, 5-O-isoferuloyl-2-deoxy-D-ribono-γ-lacton (5-DRL) from Clematis mandshurica, and evaluated its anti-inflammatory effect in lipopolysaccharide (LPS)-treated BV2 microglial cells. 5-DRL inhibited the expression of LPS-stimulated proinflammatory mediators such as nitric oxide (NO) and prostaglandin E2 (PGE2), as well as their regulatory genes inducible NO syntheses (iNOS) and cyclooxygenase-2 (COX-2). 5-DRL also downregulated the LPS-induced DNA-binding activity of nuclear factor-κB (NF-κB) through suppression of the nuclear translocation of the NF-κB subunits, p65 and p50. Consistent with the inhibition of iNOS and COX-2 via NF-κB activity with 5-DRL, an inhibitor of NF-κB, pyrrolidine dithiocarbamate (PDTC), also led to the suppression of LPS-induced iNOS and COX-2 expression. Additionally, 5-DRL corresponding with antioxidants, N-acetylcysteine (NAC) and glutathione (GSH), remarkably inhibited reactive oxygen species (ROS) generation. Both NAC and GSH, thus attenuated the expression of iNOS and COX-2 by suppressing NF-κB activation, indicating that 5-DRL suppresses LPS-induced iNOS and COX-2 expression through downregulation of the ROS-dependent NF-κB signaling pathway. The present study also indicated that 5-DRL suppresses NO and PGE2 production by inducing heme oxygenase-1 (HO-1) via nuclear factor erythroid 2-related factor 2 (Nrf2). Taken together, the present data indicate that 5-DRL attenuates the production of proinflammatory mediators such as NO and PGE2 as well as their regulatory genes in LPS-stimulated BV2 microglial cells by inhibiting ROS-dependent NF-κB activation and stimulating the Nrf2/HO-1 signal pathway. These data may be implicated in the application of 5-DRL in LPS

  9. Entry and distribution of microglial cells in human embryonic and fetal cerebral cortex.

    Science.gov (United States)

    Monier, Anne; Adle-Biassette, Homa; Delezoide, Anne-Lise; Evrard, Philippe; Gressens, Pierre; Verney, Catherine

    2007-05-01

    Microglial cells penetrate into and scatter throughout the human cortical grey and white matter according to a specific spatiotemporal pattern during the first 2 trimesters of gestation. Routes of entry were quantitatively and qualitatively different from those identified in the diencephalon. Starting at 4.5 gestational weeks, amoeboid microglial cells, characterized by different antibodies as Iba1, CD68, CD45, and MHC-II, entered the cerebral wall from the ventricular lumen and the leptomeninges. Migration was mainly radial and tangential toward the immature white matter, subplate layer, and cortical plate, whereas pial cells populated the prospective layer I. The intraparenchymal vascular route of entry was detectable only from 12 gestational weeks. Interestingly, microglial cells accumulated in restricted laminar bands particularly at 19 to 24 gestational weeks among the corona radiata fibers rostrally, extending caudally in the immature white matter to reach the visual radiations. This accumulation of proliferating MIB1-positive microglia (as shown by MIB1-Iba1 double immunolabeling) was located at the site of white matter injury in premature neonates. The spatiotemporal organization of microglia in the immature white and grey matter suggests that these cells may play active roles in developmental processes and in injury to the developing brain. PMID:17483694

  10. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease.

    Science.gov (United States)

    Wu, Weibin; Zhu, Bo; Peng, Xiaomin; Zhou, Meiling; Jia, Dongwei; Gu, Jianxin

    2014-01-01

    Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid and glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients. PMID:24269813

  11. Anti-Inflammatory Effect of Emodin via Attenuation of NLRP3 Inflammasome Activation

    Directory of Open Access Journals (Sweden)

    Ji-Won Han

    2015-04-01

    Full Text Available Emodin, an active constituent of oriental herbs, is widely used to treat allergy, inflammation, and other symptoms. This study provides the scientific basis for the anti-inflammasome effects of emodin on both in vitro and in vivo experimental models. Bone marrow-derived macrophages were used to study the effects of emodin on inflammasome activation by using inflammasome inducers such as ATP, nigericin, and silica crystals. The lipopolysaccharide (LPS-induced endotoxin shock model was employed to study the effect of emodin on in vivo efficacy. Emodin treatment attenuated interleukin (IL-1β secretion via the inhibition of NOD-like receptor family, pyrin domain containing 3 (NLRP3 inflammasome activation induced by ATP, nigericin, and silica crystals. Further, emodin ameliorated the severity of NLRP3 inflammasome-mediated symptoms in LPS-induced endotoxin mouse models. This study is the first to reveal mechanism-based evidence, especially with respect to regulation of inflammasome activation, substantiating traditional claims of emodin in the treatment of inflammation-related disorders.

  12. Music Attenuated a Decrease in Parasympathetic Nervous System Activity after Exercise

    Science.gov (United States)

    Miura, Misa; Ito, Osamu; Kohzuki, Masahiro

    2016-01-01

    Music and exercise can both affect autonomic nervous system activity. However, the effects of the combination of music and exercise on autonomic activity are poorly understood. Additionally, it remains unknown whether music affects post-exercise orthostatic tolerance. The aim of this study was to evaluate the effects of music on autonomic nervous system activity in orthostatic tolerance after exercise. Twenty-six healthy graduate students participated in four sessions in a random order on four separate days: a sedentary session, a music session, a bicycling session, and a bicycling with music session. Participants were asked to listen to their favorite music and to exercise on a cycle ergometer. We evaluated autonomic nervous system activity before and after each session using frequency analysis of heart rate variability. High frequency power, an index of parasympathetic nervous system activity, was significantly increased in the music session. Heart rate was increased, and high frequency power was decreased, in the bicycling session. There was no significant difference in high frequency power before and after the bicycling with music session, although heart rate was significantly increased. Additionally, both music and exercise did not significantly affect heart rate, systolic blood pressure or also heart rate variability indices in the orthostatic test. These data suggest that music increased parasympathetic activity and attenuated the exercise-induced decrease in parasympathetic activity without altering the orthostatic tolerance after exercise. Therefore, music may be an effective approach for improving post-exercise parasympathetic reactivation, resulting in a faster recovery and a reduction in cardiac stress after exercise. PMID:26840532

  13. Music Attenuated a Decrease in Parasympathetic Nervous System Activity after Exercise.

    Directory of Open Access Journals (Sweden)

    Tiantian Jia

    Full Text Available Music and exercise can both affect autonomic nervous system activity. However, the effects of the combination of music and exercise on autonomic activity are poorly understood. Additionally, it remains unknown whether music affects post-exercise orthostatic tolerance. The aim of this study was to evaluate the effects of music on autonomic nervous system activity in orthostatic tolerance after exercise. Twenty-six healthy graduate students participated in four sessions in a random order on four separate days: a sedentary session, a music session, a bicycling session, and a bicycling with music session. Participants were asked to listen to their favorite music and to exercise on a cycle ergometer. We evaluated autonomic nervous system activity before and after each session using frequency analysis of heart rate variability. High frequency power, an index of parasympathetic nervous system activity, was significantly increased in the music session. Heart rate was increased, and high frequency power was decreased, in the bicycling session. There was no significant difference in high frequency power before and after the bicycling with music session, although heart rate was significantly increased. Additionally, both music and exercise did not significantly affect heart rate, systolic blood pressure or also heart rate variability indices in the orthostatic test. These data suggest that music increased parasympathetic activity and attenuated the exercise-induced decrease in parasympathetic activity without altering the orthostatic tolerance after exercise. Therefore, music may be an effective approach for improving post-exercise parasympathetic reactivation, resulting in a faster recovery and a reduction in cardiac stress after exercise.

  14. Music Attenuated a Decrease in Parasympathetic Nervous System Activity after Exercise.

    Science.gov (United States)

    Jia, Tiantian; Ogawa, Yoshiko; Miura, Misa; Ito, Osamu; Kohzuki, Masahiro

    2016-01-01

    Music and exercise can both affect autonomic nervous system activity. However, the effects of the combination of music and exercise on autonomic activity are poorly understood. Additionally, it remains unknown whether music affects post-exercise orthostatic tolerance. The aim of this study was to evaluate the effects of music on autonomic nervous system activity in orthostatic tolerance after exercise. Twenty-six healthy graduate students participated in four sessions in a random order on four separate days: a sedentary session, a music session, a bicycling session, and a bicycling with music session. Participants were asked to listen to their favorite music and to exercise on a cycle ergometer. We evaluated autonomic nervous system activity before and after each session using frequency analysis of heart rate variability. High frequency power, an index of parasympathetic nervous system activity, was significantly increased in the music session. Heart rate was increased, and high frequency power was decreased, in the bicycling session. There was no significant difference in high frequency power before and after the bicycling with music session, although heart rate was significantly increased. Additionally, both music and exercise did not significantly affect heart rate, systolic blood pressure or also heart rate variability indices in the orthostatic test. These data suggest that music increased parasympathetic activity and attenuated the exercise-induced decrease in parasympathetic activity without altering the orthostatic tolerance after exercise. Therefore, music may be an effective approach for improving post-exercise parasympathetic reactivation, resulting in a faster recovery and a reduction in cardiac stress after exercise. PMID:26840532

  15. Inhibition of Neuroinflammation in LPS-Activated Microglia by Cryptolepine.

    Science.gov (United States)

    Olajide, Olumayokun A; Bhatia, Harsharan S; de Oliveira, Antonio C P; Wright, Colin W; Fiebich, Bernd L

    2013-01-01

    Cryptolepine, an indoloquinoline alkaloid in Cryptolepis sanguinolenta, has anti-inflammatory property. In this study, we aimed to evaluate the effects of cryptolepine on lipopolysaccharide (LPS)- induced neuroinflammation in rat microglia and its potential mechanisms. Microglial activation was induced by stimulation with LPS, and the effects of cryptolepine pretreatment on microglial activation and production of proinflammatory mediators, PGE2/COX-2, microsomal prostaglandin E2 synthase and nitric oxide/iNOS were investigated. We further elucidated the role of Nuclear Factor-kappa B (NF- κ B) and the mitogen-activated protein kinases in the antiinflammatory actions of cryptolepine in LPS-stimulated microglia. Our results showed that cryptolepine significantly inhibited LPS-induced production of tumour necrosis factor-alpha (TNF α ), interleukin-6 (IL-6), interleukin-1beta (IL-1 β ), nitric oxide, and PGE2. Protein and mRNA levels of COX-2 and iNOS were also attenuated by cryptolepine. Further experiments on intracellular signalling mechanisms show that I κ B-independent inhibition of NF- κ B nuclear translocation contributes to the anti-neuroinflammatory actions of cryptolepine. Results also show that cryptolepine inhibited LPS-induced p38 and MAPKAPK2 phosphorylation in the microglia. Cell viability experiments revealed that cryptolepine (2.5 and 5  μ M) did not produce cytotoxicity in microglia. Taken together, our results suggest that cryptolepine inhibits LPS-induced microglial inflammation by partial targeting of NF- κ B signalling and attenuation of p38/MAPKAPK2. PMID:23737832

  16. PERK Activation Promotes Medulloblastoma Tumorigenesis by Attenuating Premalignant Granule Cell Precursor Apoptosis.

    Science.gov (United States)

    Ho, Yeung; Li, Xiting; Jamison, Stephanie; Harding, Heather P; McKinnon, Peter J; Ron, David; Lin, Wensheng

    2016-07-01

    Evidence suggests that activation of pancreatic endoplasmic reticulum kinase (PERK) signaling in response to endoplasmic reticulum stress negatively or positively influences cell transformation by regulating apoptosis. Patched1 heterozygous deficient (Ptch1(+/-)) mice reproduce human Gorlin's syndrome and are regarded as the best animal model to study tumorigenesis of the sonic hedgehog subgroup of medulloblastomas. It is believed that medulloblastomas in Ptch1(+/-) mice results from the transformation of granule cell precursors (GCPs) in the developing cerebellum. Here, we determined the role of PERK signaling on medulloblastoma tumorigenesis by assessing its effects on premalignant GCPs and tumor cells. We found that PERK signaling was activated in both premalignant GCPs in young Ptch1(+/-) mice and medulloblastoma cells in adult mice. We demonstrated that PERK haploinsufficiency reduced the incidence of medulloblastomas in Ptch1(+/-) mice. Interestingly, PERK haploinsufficiency enhanced apoptosis of premalignant GCPs in young Ptch1(+/-) mice but had no significant effect on medulloblastoma cells in adult mice. Moreover, we showed that the PERK pathway was activated in medulloblastomas in humans. These results suggest that PERK signaling promotes medulloblastoma tumorigenesis by attenuating apoptosis of premalignant GCPs during the course of malignant transformation. PMID:27181404

  17. Carboxylic Acid Fullerene (C60) Derivatives Attenuated Neuroinflammatory Responses by Modulating Mitochondrial Dynamics

    Science.gov (United States)

    Ye, Shefang; Zhou, Tong; Cheng, Keman; Chen, Mingliang; Wang, Yange; Jiang, Yuanqin; Yang, Peiyan

    2015-05-01

    Fullerene (C60) derivatives, a unique class of compounds with potent antioxidant properties, have been reported to exert a wide variety of biological activities including neuroprotective properties. Mitochondrial dynamics are an important constituent of cellular quality control and function, and an imbalance of the dynamics eventually leads to mitochondria disruption and cell dysfunctions. This study aimed to assess the effects of carboxylic acid C60 derivatives (C60-COOH) on mitochondrial dynamics and elucidate its associated mechanisms in lipopolysaccharide (LPS)-stimulated BV-2 microglial cell model. Using a cell-based functional screening system labeled with DsRed2-mito in BV-2 cells, we showed that LPS stimulation led to excessive mitochondrial fission, increased mitochondrial localization of dynamin-related protein 1 (Drp1), both of which were markedly suppressed by C60-COOH pretreatment. LPS-induced mitochondria reactive oxygen species (ROS) generation and collapse of mitochondrial membrane potential (Δ Ψm) were also significantly inhibited by C60-COOH. Moreover, we also found that C60-COOH pretreatment resulted in the attenuation of LPS-mediated activation of nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling, as well as the production of pro-inflammatory mediators. Taken together, these findings demonstrated that carboxylic acid C60 derivatives may exert neuroprotective effects through regulating mitochondrial dynamics and functions in microglial cells, thus providing novel insights into the mechanisms of the neuroprotective properties of carboxylic acid C60 derivatives.

  18. Loss of CARD9-mediated innate activation attenuates severe influenza pneumonia without compromising host viral immunity.

    Science.gov (United States)

    Uematsu, Takayuki; Iizasa, Ei'ichi; Kobayashi, Noritada; Yoshida, Hiroki; Hara, Hiromitsu

    2015-01-01

    Influenza virus (IFV) infection is a common cause of severe viral pneumonia associated with acute respiratory distress syndrome (ARDS), which is difficult to control with general immunosuppressive therapy including corticosteroids due to the unfavorable effect on viral replication. Studies have suggested that the excessive activation of the innate immunity by IFV is responsible for severe pathologies. In this study, we focused on CARD9, a signaling adaptor known to regulate innate immune activation through multiple innate sensor proteins, and investigated its role in anti-IFV defense and lung pathogenesis in a mouse model recapitulating severe influenza pneumonia with ARDS. We found that influenza pneumonia was dramatically attenuated in Card9-deficient mice, which showed improved mortality with reduced inflammatory cytokines and chemokines in the infected lungs. However, viral clearance, type-I interferon production, and the development of anti-viral B and T cell immunity were not compromised by CARD9 deficiency. Syk or CARD9-deficient DCs but not macrophages showed impaired cytokine but not type-I interferon production in response to IFV in vitro, indicating a possible role for the Syk-CARD9 pathway in DCs in excessive inflammation of IFV-infected lungs. Therefore, inhibition of this pathway is an ideal therapeutic target for severe influenza pneumonia without affecting viral clearance. PMID:26627732

  19. Early correlation of microglial activation with enhanced tumor necrosis factor-alpha and monocyte chemoattractant protein-1 expression specifically within the entorhinal cortex of triple transgenic Alzheimer's disease mice

    Directory of Open Access Journals (Sweden)

    LaFerla Frank M

    2005-10-01

    Full Text Available Abstract Background Alzheimer's disease is a complex neurodegenerative disorder characterized pathologically by a temporal and spatial progression of beta-amyloid (Aβ deposition, neurofibrillary tangle formation, and synaptic degeneration. Inflammatory processes have been implicated in initiating and/or propagating AD-associated pathology within the brain, as inflammatory cytokine expression and other markers of inflammation are pronounced in individuals with AD pathology. The current study examines whether inflammatory processes are evident early in the disease process in the 3xTg-AD mouse model and if regional differences in inflammatory profiles exist. Methods Coronal brain sections were used to identify Aβ in 2, 3, and 6-month 3xTg-AD and non-transgenic control mice. Quantitative real-time RT-PCR was performed on microdissected entorhinal cortex and hippocampus tissue of 2, 3, and 6-month 3xTg-AD and non-transgenic mice. Microglial/macrophage cell numbers were quantified using unbiased stereology in 3xTg-AD and non-transgenic entorhinal cortex and hippocampus containing sections. Results We observed human Aβ deposition at 3 months in 3xTg-AD mice which is enhanced by 6 months of age. Interestingly, we observed a 14.8-fold up-regulation of TNF-α and 10.8-fold up-regulation of MCP-1 in the entorhinal cortex of 3xTg-AD mice but no change was detected over time in the hippocampus or in either region of non-transgenic mice. Additionally, this increase correlated with a specific increase in F4/80-positive microglia and macrophages in 3xTg-AD entorhinal cortex. Conclusion Our data provide evidence for early induction of inflammatory processes in a model that develops amyloid and neurofibrillary tangle pathology. Additionally, our results link inflammatory processes within the entorhinal cortex, which represents one of the earliest AD-affected brain regions.

  20. Attenuated food anticipatory activity and abnormal circadian locomotor rhythms in Rgs16 knockdown mice.

    Directory of Open Access Journals (Sweden)

    Naoto Hayasaka

    Full Text Available Regulators of G protein signaling (RGS are a multi-functional protein family, which functions in part as GTPase-activating proteins (GAPs of G protein α-subunits to terminate G protein signaling. Previous studies have demonstrated that the Rgs16 transcripts exhibit robust circadian rhythms both in the suprachiasmatic nucleus (SCN, the master circadian light-entrainable oscillator (LEO of the hypothalamus, and in the liver. To investigate the role of RGS16 in the circadian clock in vivo, we generated two independent transgenic mouse lines using lentiviral vectors expressing short hairpin RNA (shRNA targeting the Rgs16 mRNA. The knockdown mice demonstrated significantly shorter free-running period of locomotor activity rhythms and reduced total activity as compared to the wild-type siblings. In addition, when feeding was restricted during the daytime, food-entrainable oscillator (FEO-driven elevated food-anticipatory activity (FAA observed prior to the scheduled feeding time was significantly attenuated in the knockdown mice. Whereas the restricted feeding phase-advanced the rhythmic expression of the Per2 clock gene in liver and thalamus in the wild-type animals, the above phase shift was not observed in the knockdown mice. This is the first in vivo demonstration that a common regulator of G protein signaling is involved in the two separate, but interactive circadian timing systems, LEO and FEO. The present study also suggests that liver and/or thalamus regulate the food-entrained circadian behavior through G protein-mediated signal transduction pathway(s.

  1. Potential chemoprevention of LPS-stimulated nitric oxide and prostaglandin E₂ production by α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranosyl-3-indolecarbonate in BV2 microglial cells through suppression of the ROS/PI3K/Akt/NF-κB pathway.

    Science.gov (United States)

    Dilshara, Matharage Gayani; Lee, Kyoung-Tae; Choi, Yung Hyun; Moon, Dong-Oh; Lee, Hak-Ju; Yun, Sung Gyu; Kim, Gi-Young

    2014-02-01

    α-l-Rhamnopyranosyl-(1→6)-β-d-glucopyranosyl-3-indolecarbonate (RG3I) is a chemical constituent isolated from the commonly used Asian traditional medicinal plant, Clematis mandshurica; however, no studies have been reported on its anti-inflammatory properties. In the present study, we found that RG3I attenuates the lipopolysaccharide (LPS)-induced DNA-binding activity of nuclear factor-κB (NF-κB) via the dephosphorylation of PI3K/Akt in BV2 microglial cells, leading to a suppression of nitric oxide (NO) and prostaglandin E2 (PGE2) production, along with that of their regulatory genes, inducible NO synthase (iNOS) and cyclooxygenase-2 (Cox-2). Further, the PI3K/Akt inhibitor, LY294002 diminished the expression of LPS-stimulated iNOS and COX-2 genes by suppressing NF-κB activity. Moreover, RG3I significantly inhibited LPS-induced reactive oxygen species (ROS) generation similar to the ROS inhibitors, N-acetylcysteine (NAC) and glutathione (GSH). Notably, NAC and GSH abolished the LPS-induced expression of iNOS and Cox-2 in BV2 microglial cells by inhibiting NF-κB activity. Taken together, our data indicate that RG3I suppresses the production of proinflammatory mediators such as NO and PGE2 as well as their regulatory genes in LPS-stimulated BV2 microglial cells by inhibiting the PI3K/Akt- and ROS-dependent NF-κB signaling pathway, suggesting that RG3I may be a good candidate to regulate LPS-induced inflammatory response. PMID:24486459

  2. Repetitive cryotherapy attenuates the in vitro and in vivo mononuclear cell activation response.

    Science.gov (United States)

    Lindsay, Angus; Othman, Mohd Izani; Prebble, Hannah; Davies, Sian; Gieseg, Steven P

    2016-07-01

    What is the central question of this study? Acute and repetitive cryotherapy are routinely used to accelerate postexercise recovery, although the effect on resident immune cells and repetitive exposure has largely been unexplored and neglected. What is the main finding and its importance? Using blood-derived mononuclear cells and semi-professional mixed martial artists, we show that acute and repetitive cryotherapy reduces the in vitro and in vivo T-cell and monocyte activation response whilst remaining independent of the physical performance of elite athletes. We investigated the effect of repetitive cryotherapy on the in vitro (cold exposure) and in vivo (cold water immersion) activation of blood-derived mononuclear cells following high-intensity exercise. Single and repeated cold exposure (5°C) of a mixed cell culture (T cells and monocytes) was investigated using in vitro tissue culture experimentation for total neopterin production (neopterin plus 7,8-dihydroneopterin). Fourteen elite mixed martial art fighters were also randomly assigned to either a cold water immersion (15 min at 10°C) or passive recovery protocol, which they completed three times per week during a 6 week training camp. Urine was collected and analysed for neopterin and total neopterin three times per week, and perceived soreness, fatigue, physical performance (broad jump, push-ups and pull-ups) and training performance were also assessed. Single and repetitive cold exposure significantly (P mixed cell culture, whereas cold water immersion significantly (P groups, whereas training session performance was significantly (P group. The data suggest that acute and repetitive cryotherapy attenuates in vitro T-cell and monocyte activation. This may explain the disparity in in vivo neopterin and total neopterin between cold water immersion and passive recovery following repetitive exposure during a high-intensity physical impact sport that remains independent of physical performance. PMID

  3. Activation of AMP-activated protein kinase attenuates hepatocellular carcinoma cell adhesion stimulated by adipokine resistin

    OpenAIRE

    Yang, Chen-Chieh; Chang, Shun-Fu; Chao, Jian-Kang; Lai, Yi-Liang; Chang, Wei-En; Hsu, Wen-Hsiu; Kuo, Wu-Hsien

    2014-01-01

    Background Resistin, adipocyte-secreting adipokine, may play critical role in modulating cancer pathogenesis. The aim of this study was to investigate the effects of resistin on HCC adhesion to the endothelium, and the mechanism underlying these resistin effects. Methods Human SK-Hep1 cells were used to study the effect of resistin on intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expressions as well as NF-κB activation, and hence cell adhesion to hu...

  4. Attenuated viral hepatitis in Trem1-/- mice is associated with reduced inflammatory activity of neutrophils.

    Science.gov (United States)

    Kozik, Jan-Hendrik; Trautmann, Tanja; Carambia, Antonella; Preti, Max; Lütgehetmann, Marc; Krech, Till; Wiegard, Christiane; Heeren, Joerg; Herkel, Johannes

    2016-01-01

    TREM1 (Triggering Receptor Expressed on Myeloid Cells 1) is a pro-inflammatory receptor expressed by phagocytes, which can also be released as a soluble molecule (sTREM1). The roles of TREM1 and sTREM1 in liver infection and inflammation are not clear. Here we show that patients with hepatitis B virus (HBV) or hepatitis C virus (HCV) infection manifest elevated serum levels of sTREM1. In mice, experimental viral hepatitis induced by infection with Lymphocytic Choriomeningitis Virus (LCMV)-WE was likewise associated with increased sTREM1 in serum and urine, and with increased TREM1 and its associated adapter molecule DAP12 in the liver. Trem1-/- mice showed accelerated clearance of LCMV-WE and manifested attenuated liver inflammation and injury. TREM1 expression in the liver of wild-type mice was mostly confined to infiltrating neutrophils, which responded to LCMV by secretion of CCL2 and TNF-α, and release of sTREM1. Accordingly, the production of CCL2 and TNF-α was decreased in the livers of LCMV-infected Trem1-/- mice, as compared to LCMV-infected wildtype mice. These findings indicate that TREM1 plays a role in viral hepatitis, in which it seems to aggravate the immunopathology associated with viral clearance, mainly by increasing the inflammatory activity of neutrophils. PMID:27328755

  5. Celecoxib Inhibits Prion Protein 90-231-Mediated Pro-inflammatory Responses in Microglial Cells.

    Science.gov (United States)

    Villa, Valentina; Thellung, Stefano; Corsaro, Alessandro; Novelli, Federica; Tasso, Bruno; Colucci-D'Amato, Luca; Gatta, Elena; Tonelli, Michele; Florio, Tullio

    2016-01-01

    Activation of microglia is a central event in the atypical inflammatory response occurring during prion encephalopathies. We report that the prion protein fragment encompassing amino acids 90-231 (PrP90-231), a model of the neurotoxic activity of the pathogenic prion protein (PrP(Sc)), causes activation of both primary microglia cultures and N9 microglial cells in vitro. This effect was characterized by cell proliferation arrest and induction of a secretory phenotype, releasing prostaglandin E2 (PGE2) and nitric oxide (NO). Conditioned medium from PrP90-231-treated microglia induced in vitro cytotoxicity of A1 mesencephalic neurons, supporting the notion that soluble mediators released by activated microglia contributes to the neurodegeneration during prion diseases. The neuroinflammatory role of COX activity, and its potential targeting for anti-prion therapies, was tested measuring the effects of ketoprofen and celecoxib (preferential inhibitors of COX1 and COX2, respectively) on PrP90-231-induced microglial activation. Celecoxib, but not ketoprofen significantly reverted the growth arrest as well as NO and PGE2 secretion induced by PrP90-231, indicating that PrP90-231 pro-inflammatory response in microglia is mainly dependent on COX2 activation. Taken together, these data outline the importance of microglia in the neurotoxicity occurring during prion diseases and highlight the potentiality of COX2-selective inhibitors to revert microglia as adjunctive pharmacological approach to contrast the neuroinflammation-dependent neurotoxicity. PMID:25404089

  6. Stat1 activation attenuates IL-6 induced Stat3 activity but does not alter apoptosis sensitivity in multiple myeloma

    Directory of Open Access Journals (Sweden)

    Dimberg Lina Y

    2012-07-01

    Full Text Available Abstract Background Multiple myeloma (MM is at present an incurable malignancy, characterized by apoptosis-resistant tumor cells. Interferon (IFN treatment sensitizes MM cells to Fas-induced apoptosis and is associated with an increased activation of Signal transducer and activator of transcription (Stat1. The role of Stat1 in MM has not been elucidated, but Stat1 has in several studies been ascribed a pro-apoptotic role. Conversely, IL-6 induction of Stat3 is known to confer resistance to apoptosis in MM. Methods To delineate the role of Stat1 in IFN mediated sensitization to apoptosis, sub-lines of the U-266-1970 MM cell line with a stable expression of the active mutant Stat1C were utilized. The influence of Stat1C constitutive transcriptional activation on endogenous Stat3 expression and activation, and the expression of apoptosis-related genes were analyzed. To determine whether Stat1 alone would be an important determinant in sensitizing MM cells to apoptosis, the U-266-1970-Stat1C cell line and control cells were exposed to high throughput compound screening (HTS. Results To explore the role of Stat1 in IFN mediated apoptosis sensitization of MM, we established sublines of the MM cell line U-266-1970 constitutively expressing the active mutant Stat1C. We found that constitutive nuclear localization and transcriptional activity of Stat1 was associated with an attenuation of IL-6-induced Stat3 activation and up-regulation of mRNA for the pro-apoptotic Bcl-2 protein family genes Harakiri, the short form of Mcl-1 and Noxa. However, Stat1 activation alone was not sufficient to sensitize cells to Fas-induced apoptosis. In a screening of > 3000 compounds including bortezomib, dexamethasone, etoposide, suberoylanilide hydroxamic acid (SAHA, geldanamycin (17-AAG, doxorubicin and thalidomide, we found that the drug response and IC50 in cells constitutively expressing active Stat1 was mainly unaltered. Conclusion We conclude that Stat1 alters IL-6

  7. Does Replacing Sodium Excreted in Sweat Attenuate the Health Benefits of Physical Activity?

    Science.gov (United States)

    Turner, Martin J; Avolio, Alberto P

    2016-08-01

    International guidelines suggest limiting sodium intake to 86-100 mmol/day, but average intake exceeds 150 mmol/day. Participants in physical activities are, however, advised to increase sodium intake before, during and after exercise to ensure euhydration, replace sodium lost in sweat, speed rehydration and maintain performance. A similar range of health benefits is attributable to exercise and to reduction in sodium intake, including reductions in blood pressure (BP) and the increase of BP with age, reduced risk of stroke and other cardiovascular diseases, and reduced risk of osteoporosis and dementia. Sweat typically contains 40-60 mmol/L of sodium, leading to approximately 20-90 mmol of sodium lost in one exercise session with sweat rates of 0.5-1.5 L/h. Reductions in sodium intake of 20-90 mmol/day have been associated with substantial health benefits. Homeostatic systems reduce sweat sodium as low as 3-10 mmol/L to prevent excessive sodium loss. "Salty sweaters" may be individuals with high sodium intake who perpetuate their "salty sweat" condition by continual replacement of sodium excreted in sweat. Studies of prolonged high intensity exercise in hot environments suggest that sodium supplementation is not necessary to prevent hyponatremia during exercise lasting up to 6 hr. We examine the novel hypothesis that sodium excreted in sweat during physical activity offsets a significant fraction of excess dietary sodium, and hence may contribute part of the health benefits of exercise. Replacing sodium lost in sweat during exercise may improve physical performance, but may attenuate the long-term health benefits of exercise. PMID:26841436

  8. Andrographolide inhibits NF-κB activation and attenuates neointimal hyperplasia in arterial restenosis

    Institute of Scientific and Technical Information of China (English)

    Yu-Jiu Wang; Jin-Tao Wang; Quan-Xin Fan; Jian-Guo Geng

    2007-01-01

    The NF-κB transcription factors modulate the expression of tissue factor(TF),E-selectin(CD62E)and vascular cell adhesion molecule-1(VCAM-11,which are essential for thrombosis and inflanunation.We have previously shown that andrographolide(Andro)covalently modifies the reduced cysteine62 of p50-a maior subunit of NF-κB transcription factors,thus blocking the binding Of NF-κB transcription factors to the promoters of their target genes,preventing NFκB activation and inhibiting inflammation in vitro and in vivo.Here we report that Andro.but not its inactive structural analog 4H-Andro,significantly suppressed the proliferation of arterial neointima (~60% reduction)in a murine model of arterial restenosis.Consistently,p50-/- mice manifested attenuated neointimal hyperplasia upon arterial ligation.Notably,the same dosage of Andro did not further reduce neointimal formation in p50-/- mice,which implicates the specificity of Andro on p50 for treating experimental arterial restenosis.The upregulation of NF-κB target genes,including TF,Eselectin and VCAM-1,and the increased deposition of leukocytes(mainly CD68+ macrophages)were clearly detected within the iniured arterial walls,all of which were significantly abolished by treatment with Andro or genetic deletion of p50.The expression of TF,E-selectin and VCAM-1 was also markedly upregulated in the patient sample of thrombotic vasculitis,indicating the clinical relevance of NF-κB activation in the pathogeneses of occlusive arterial diseases.Our data thus indicate that,by the downregulation ofthe NF-κB target genes that are critical in thrombosis and inflammation,specific inhibitors of p50,such as Andro,may be therapeutically valuable for preventing and treating thrombotic arterial diseases,including neointimal hyperplasia in arterial restenosis.

  9. In vivo imaging of activated microglia in a mouse model of focal cerebral ischemia by two-photon microscopy.

    Science.gov (United States)

    Bok, Seoyeon; Wang, Taejun; Lee, Chan-Ju; Jeon, Seong-Uk; Kim, Young-Eun; Kim, Jeongwoo; Hong, Beom-Ju; Yoon, Calvin Jinse; Kim, Sungjee; Lee, Seung-Hoon; Kim, Hak Jae; Kim, Il Han; Kim, Ki Hean; Ahn, G-One

    2015-09-01

    Microglia are brain resident macrophages rapidly responding to various stimuli to exert appropriate inflammatory responses. Although they have recently been exploited as an attractive candidate for imaging neuroinflammation, it is still difficult to visualize them at the cellular and molecular levels. Here we imaged activated microglia by establishing intracranial window chamber (ICW) in a mouse model of focal cerebral ischemia by using two-photon microscopy (TPM), in vivo. Intravenous injection of fluorescent antibodies allowed us to detect significantly elevated levels of Iba-1 and CD68 positive activated microglia in the ipsilateral compared to the contralateral side of the infarct. We further observed that indomethacin, a non-steroidal anti-inflammatory drug significantly attenuated CD68-positive microglial activation in ICW, which was further confirmed by qRT-PCR biochemical analyses. In conclusion, we believe that in vivo TPM imaging of ICW would be a useful tool to screen for therapeutic interventions lowering microglial activation hence neuroinflammation. PMID:26417502

  10. [The immunomodulatory role of retinal microglial cells in age-related macular degeneration].

    Science.gov (United States)

    Zhang, P F; Sun, X D

    2016-05-11

    Age-related macular degeneration (AMD) is one of the major causes of visual impairment in the elder population. Recent studies have revealed that retinal microgliacytes may play an important role in the pathogenesis of AMD, and the activation of retinal microglia could regulate the progress of AMD. The immunomodulatory role of retinal microglial cells is reviewed in this article, so as to investigate the mechanism and provide new insight for prevention and treatment of AMD.(Chin J Ophthalmol, 2016, 52: 386-390). PMID:27220713

  11. Magnetic Resonance Spectroscopy discriminates the response to microglial stimulation of wild type and Alzheimer’s disease models

    Science.gov (United States)

    Pardon, Marie-Christine; Yanez Lopez, Maria; Yuchun, Ding; Marjańska, Małgorzata; Prior, Malcolm; Brignell, Christopher; Parhizkar, Samira; Agostini, Alessandra; Bai, Li; Auer, Dorothee P.; Faas, Henryk M

    2016-01-01

    Microglia activation has emerged as a potential key factor in the pathogenesis of Alzheimer’s disease. Metabolite levels assessed by magnetic resonance spectroscopy (MRS) are used as markers of neuroinflammation in neurodegenerative diseases, but how they relate to microglial activation in health and chronic disease is incompletely understood. Using MRS, we monitored the brain metabolic response to lipopolysaccharides (LPS)-induced microglia activation in vivo in a transgenic mouse model of Alzheimer’s disease (APP/PS1) and healthy controls (wild-type (WT) littermates) over 4 hours. We assessed reactive gliosis by immunohistochemistry and correlated metabolic and histological measures. In WT mice, LPS induced a microglial phenotype consistent with activation, associated with a sustained increase in macromolecule and lipid levels (ML9). This effect was not seen in APP/PS1 mice, where LPS did not lead to a microglial response measured by histology, but induced a late increase in the putative inflammation marker myoinositol (mI) and metabolic changes in total creatine and taurine previously reported to be associated with amyloid load. We argue that ML9 and mI distinguish the response of WT and APP/PS1 mice to immune mediators. Lipid and macromolecule levels may represent a biomarker of activation of healthy microglia, while mI may not be a glial marker. PMID:26813748

  12. Microglial Aging in the Healthy CNS: Phenotypes, Drivers, and Rejuvenation

    Directory of Open Access Journals (Sweden)

    Wai T Wong

    2013-03-01

    Full Text Available Neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and age-related macular degeneration, share two characteristics in common: 1 a disease prevalence that increases markedly with advancing age, and 2 neuroinflammatory changes in which microglia, the primary resident immune cell of the CNS, feature prominently. These characteristics have led to the hypothesis that pathogenic mechanisms underlying age-related neurodegenerative disease involve aging changes in microglia. If correct, targeting features of microglial senescence may constitute a feasible therapeutic strategy. This review explores this hypothesis and its implications by considering the current knowledge on how microglia undergo change during aging and how the emergence of these aging phenotypes relate to significant alterations in microglial function. Evidence and theories on cellular mechanisms implicated in driving senescence in microglia are reviewed, as are rejuvenative measures and strategies that aim to reverse or ameliorate the aging microglial phenotype. Understanding and controlling microglial aging may represent an opportunity for elucidating disease mechanisms and for formulating novel therapies.

  13. Quantification of microglial proliferation and apoptosis by flow cytometry

    DEFF Research Database (Denmark)

    Babcock, Alicia A; Wirenfeldt, Martin; Finsen, Bente

    2013-01-01

    have the potential to expand rapidly in response to inflammatory stimuli, injury, or any other pathological changes, due to a high capacity for proliferation. In addition, apoptotic mechanisms can be evoked to retract the microglial population, as reactivity declines. In the normal CNS, a low rate of...

  14. Attenuation of cue-induced cigarette craving and anterior cingulate cortex activation in bupropion-treated smokers: a preliminary study

    OpenAIRE

    Brody, Arthur L.; Mandelkern, Mark A.; Lee, Grace; Smith, Erlyn; Sadeghi, Mary; Saxena, Sanjaya; Jarvik, Murray E.; London, Edythe D.

    2004-01-01

    In untreated smokers, exposure to cigarette-related cues increases both the intensity of cigarette craving and relative glucose metabolism of the perigenual/ventral anterior cingulate cortex (ACC). Given that treatment with bupropion HCl reduces overall cigarette craving levels in nicotine dependent subjects, we performed a preliminary study of smokers to determine if bupropion HCl treatment attenuates cue-induced cigarette craving and associated brain metabolic activation. Thirty-seven, othe...

  15. Macrophages as effector cells of protective immunity in murine schistosomiasis: macrophage activation in mice vaccinated with radiation-attenuated cercariae.

    OpenAIRE

    James, S L; Natovitz, P C; Farrar, W L; Leonard, E.J.

    1984-01-01

    Cell-mediated immune responses contributing to macrophage activation were compared in mice that demonstrated partial resistance to challenge Schistosoma mansoni infection as a result of vaccination with radiation-attenuated cercariae or of ongoing low-grade primary infection. Vaccinated mice developed significant delayed hypersensitivity reactions to soluble schistosome antigens in vivo. Splenocytes from vaccinated animals responded to in vitro culture with various specific antigens (soluble ...

  16. Regulatory Effects of Caffeic Acid Phenethyl Ester on Neuroinflammation in Microglial Cells

    Directory of Open Access Journals (Sweden)

    Cheng-Fang Tsai

    2015-03-01

    Full Text Available Microglial activation has been widely demonstrated to mediate inflammatory processes that are crucial in several neurodegenerative disorders. Pharmaceuticals that can deliver direct inhibitory effects on microglia are therefore considered as a potential strategy to counter balance neurodegenerative progression. Caffeic acid phenethyl ester (CAPE, a natural phenol in honeybee propolis, is known to possess antioxidant, anti-inflammatory and anti-microbial properties. Accordingly, the current study intended to probe the effects of CAPE on microglia activation by using in vitro and in vivo models. Western blot and Griess reaction assay revealed CAPE significantly inhibited the expressions of inducible nitric oxide synthase (NOS, cyclooxygenase (COX-2 and the production of nitric oxide (NO. Administration of CAPE resulted in increased expressions of hemeoxygenase (HO-1and erythropoietin (EPO in microglia. The phosphorylated adenosine monophosphate-activated protein kinase (AMPK-α was further found to regulate the anti-inflammatory effects of caffeic acid. In vivo results from immunohistochemistry along with rotarod test also revealed the anti-neuroinflammatory effects of CAPE in microglia activation. The current study has evidenced several possible molecular determinants, AMPKα, EPO, and HO-1, in mediating anti-neuroinflammatory responses in microglial cells.

  17. Regulatory effects of caffeic acid phenethyl ester on neuroinflammation in microglial cells.

    Science.gov (United States)

    Tsai, Cheng-Fang; Kuo, Yueh-Hsiung; Yeh, Wei-Lan; Wu, Caren Yu-Ju; Lin, Hsiao-Yun; Lai, Sheng-Wei; Liu, Yu-Shu; Wu, Ling-Hsuan; Lu, Jheng-Kun; Lu, Dah-Yuu

    2015-01-01

    Microglial activation has been widely demonstrated to mediate inflammatory processes that are crucial in several neurodegenerative disorders. Pharmaceuticals that can deliver direct inhibitory effects on microglia are therefore considered as a potential strategy to counter balance neurodegenerative progression. Caffeic acid phenethyl ester (CAPE), a natural phenol in honeybee propolis, is known to possess antioxidant, anti-inflammatory and anti-microbial properties. Accordingly, the current study intended to probe the effects of CAPE on microglia activation by using in vitro and in vivo models. Western blot and Griess reaction assay revealed CAPE significantly inhibited the expressions of inducible nitric oxide synthase (NOS), cyclooxygenase (COX)-2 and the production of nitric oxide (NO). Administration of CAPE resulted in increased expressions of hemeoxygenase (HO)-1and erythropoietin (EPO) in microglia. The phosphorylated adenosine monophosphate-activated protein kinase (AMPK)-α was further found to regulate the anti-inflammatory effects of caffeic acid. In vivo results from immunohistochemistry along with rotarod test also revealed the anti-neuroinflammatory effects of CAPE in microglia activation. The current study has evidenced several possible molecular determinants, AMPKα, EPO, and HO-1, in mediating anti-neuroinflammatory responses in microglial cells. PMID:25768341

  18. Morphological features of microglial cells in the hippocampal dentate gyrus of Gunn rat: a possible schizophrenia animal model

    OpenAIRE

    Liaury Kristian; Miyaoka Tsuyoshi; Tsumori Toshiko; Furuya Motohide; Wake Rei; Ieda Masa; Tsuchie Keiko; Taki Michiyo; Ishihara Kotomi; Tanra Andi; Horiguchi Jun

    2012-01-01

    Abstract Background Schizophrenia is a debilitating and complex mental disorder whose exact etiology remains unknown. There is growing amount of evidence of a relationship between neuroinflammation, as demonstrated by microglial activation, and schizophrenia. Our previous studies have proposed that hyperbilirubinemia plays a role in the pathophysiology of schizophrenia. Furthermore, we suggested the Gunn rat, an animal model of bilirubin encephalopathy, as a possible animal model of schizophr...

  19. Subpicomolar diphenyleneiodonium inhibits microglial NADPH oxidase with high specificity and shows great potential as a therapeutic agent for neurodegenerative diseases

    OpenAIRE

    Wang, Qingshan; Chu, Chun-Hsien; Oyarzabal, Esteban; Jiang, Lulu; Chen, Shih-Heng; Wilson, Belinda; Qian, Li; Hong, Jau-Shyong

    2014-01-01

    Activation of microglial NADPH oxidase (NOX2) plays a critical role in mediating neuroinflammation, which is closely linked with the pathogenesis of a variety of neurodegenerative diseases, including Parkinson’s disease (PD). The inhibition of NOX2-generated superoxide has become an effective strategy for developing disease-modifying therapies for PD. However, the lack of specific and potent NOX2 inhibitors has hampered the progress of this approach. Diphenyleneiodonium (DPI) is a widely used...

  20. A remediation strategy based on active phytoremediation followed by natural attenuation in a soil contaminated by pyrite waste

    International Nuclear Information System (INIS)

    Phytoremediation of metal-polluted soils can be promoted by the proper use of soil amendments and agricultural practices. A 4-year phytoremediation programme was applied to a site affected by the toxic spill of pyrite residue at Aznalcollar (Spain) in 1998, contaminated with heavy metals (Zn, Cu, Pb, Cd) and arsenic. This consisted of active phytoremediation, using organic amendments (cow manure and compost) and lime and growing two successive crops of Brassica juncea (L.) Czern., followed by natural attenuation without further intervention. Changes in soil pH, extractable metal and As concentrations, organic carbon content and microbial biomass was evaluated. The initial oxidation of metal sulphides from pyrite residues released soluble metals and reduced soil pH to extremely acidic values (mean 4.1, range 2.0-7.0). The addition of lime (up to 64 t ha-1) increased soil pH to adequate values for plant growth, resulting in a significant decrease in DTPA-extractable metal concentrations in all plots. Natural attenuation phase showed also a decrease in extractable metals. Organic treatments increased the soil total organic carbon, which led to higher values of microbial biomass (11.6, 15.2 and 14.9 g kg-1 TOC and 123, 170 and 275 μg g-1 biomass-C in control, compost and manure plots, respectively). Active phytoremediation followed by natural attenuation, was effective for remediation of this pyrite-polluted soil. - The addition of lime and organic amendments decreased heavy metal solubility and promoted Natural attenuation of a recently-contaminated soil

  1. Diversity and plasticity of microglial cells in psychiatric and neurological disorders.

    Science.gov (United States)

    Nakagawa, Yutaka; Chiba, Kenji

    2015-10-01

    Recent advanced immunological analyses have revealed that the diversity and plasticity of macrophages lead to the identification of functional polarization states (classically activated M1 type and alternatively activated M2 type) which are dependent on the extracellular environment. M1 and M2 polarization states of macrophages play an important role in controlling the balance between pro-inflammatory and anti-inflammatory conditions. Microglial cells are resident mononuclear phagocytes in the central nervous system (CNS), express several macrophage-associated markers, and appear to display functional polarization states similar to macrophages. Like M1 macrophages, M1 polarized microglia can produce pro-inflammatory cytokines and mediators such as interleukin (IL) 1β, IL-6, tumor necrosis factor-α, CC-chemokine ligand 2, nitric oxide, and reactive oxygen species, suggesting that these molecules contribute to dysfunction of neural network in the CNS. On the other hand, M2 polarized microglia can produce anti-inflammatory cytokine, IL-10 and express several receptors that are implicated in inhibiting inflammation and restoring homeostasis. In this review, we summarize the diversity, plasticity, and immunoregulatory functions of M1 and M2 microglia in psychiatric and neurological disorders. Based on these aspects, we propose a contribution of imbalance between M1 and M2 polarization of microglia in bipolar disorder, obesity, amyotrophic lateral sclerosis, and Rett syndrome. Consequently, molecules that normalize the imbalance between M1 and M2 microglial polarization states may provide a beneficial therapeutic target for the treatment of these disorders. PMID:26129625

  2. Oxidation of HMGB1 causes attenuation of its pro-inflammatory activity and occurs during liver ischemia and reperfusion.

    Directory of Open Access Journals (Sweden)

    Anding Liu

    Full Text Available High mobility group box 1 (HMGB1 is a nuclear transcription factor. Once HMGB1 is released by damaged cells or activated immune cells, it acts as danger molecule and triggers the inflammatory signaling cascade. Currently, evidence is accumulating that posttranslational modifications such as oxidation may modulate the pro-inflammatory potential of danger signals. We hypothesized that oxidation of HMGB1 may reduce its pro-inflammatory potential and could take place during prolonged ischemia and upon reperfusion.Liver grafts were cold preserved for 24 h and flushed with saline in hourly intervals to collect the effluent. Liver grafts, cold-preserved for 6 h, were transplanted into syngeneic recipients to obtain serum and liver samples 24 h after initiation of reperfusion. Addition of the effluent to a macrophage culture induced the synthesis of tumor necrosis factor-alpha (TNF-α and interleukin (IL-6. The stimulatory activity of graft effluent was reduced after depletion of HMGB1 via immunoprecipitation. Oxidation of the effluent HMGB1 using H(2O(2 attenuated its stimulatory activity as well. Liver transplantation of cold preserved grafts caused HMGB1 translocation and release as determined by immunohistochemistry and ELISA-assay, respectively. Using Western blot with non-reducing conditions revealed the presence of oxidized HMGB1 in liver samples obtained after 12 h and in effluent samples after 16 h of cold preservation as well as in liver and serum samples obtained 24 h after reperfusion.These observations confirm that post-translational oxidation of HMGB1 attenuates its pro-inflammatory activity. Oxidation of HMGB1 as induced during prolonged ischemia and by reoxygenation during reperfusion in vivo might also attenuate its pro-inflammatory activity. Our findings also call for future studies to investigate the mechanism of the inhibitory effect of oxidized HMGB1 on the pro-inflammatory potential.

  3. Microglial cells are involved in the susceptibility of NADPH oxidase knockout mice to 6-hydroxy-dopamine-induced neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Marina S Hernandes

    Full Text Available We explored the impact of Nox-2 in modulating inflammatory-mediated microglial responses in the 6-hydroxydopamine (6-OHDA-induced Parkinson's disease (PD model. Nox1 and Nox2 gene expression were found to increase in striatum, whereas a marked increase of Nox2 expression was observed in substantia nigra (SN of wild-type (wt mice after PD induction. Gp91(phox-/- 6-OHDA-lesioned mice exhibited a significant reduction in the apomorphine-induced rotational behavior, when compared to wt mice. Immunolabeling assays indicated that striatal 6-OHDA injections reduced the number of dopaminergic (DA neurons in the SN of wt mice. In gp91(phox-/- 6-OHDA-lesioned mice the DA degeneration was negligible, suggesting an involvement of Nox in 6-OHDA-mediated SN degeneration. Gp91(phox-/- 6-OHDA-lesioned mice treated with minocycline, a tetracycline derivative that exerts multiple anti-inflammatory effects, including microglial inhibition, exhibited increased apomorphine-induced rotational behavior and degeneration of DA neurons after 6-OHDA injections. The same treatment also increased TNF-α release and potentiated NF-κB activation in the SN of gp91(phox-/--lesioned mice. Our results demonstrate for the first time that inhibition of microglial cells increases the susceptibility of gp91(phox-/- 6-OHDA lesioned mice to develop PD. Blockade of microglia leads to NF-κB activation and TNF-α release into the SN of gp91(phox-/- 6-OHDA lesioned mice, a likely mechanism whereby gp91(phox-/- 6-OHDA lesioned mice may be more susceptible to develop PD after microglial cell inhibition. Nox2 adds an essential level of regulation to signaling pathways underlying the inflammatory response after PD induction.

  4. LPS-induced iNOS expression in N9 microglial cells is suppressed by geniposide via ERK, p38 and nuclear factor-κB signaling pathways.

    Science.gov (United States)

    Zhang, Gu; He, Jun-Lin; Xie, Xiao-Yan; Yu, Chao

    2012-09-01

    Activated microglia producing reactive nitrogen species, inflammatory factors, reactive oxygen species (ROS) and other neurovirulent factors, can lead to the development of neurodegenerative diseases. Certain compounds can inhibit the activation of microglia. However, the mechanisms remain unclear. In the present study, we investigated the inhibitory effect of geniposide on the production of ROS and inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-stimulated N9 murine microglial cells through the p38, ERK1/2 and nuclear factor-κB (NF-κB) signaling pathways. After the N9 cells were pre-treated with the vehicle or geniposide and exposed to LPS for the time indicated, the MTT conversion test was used to assess cell viability. Suitable concentrations were chosen and adjusted according to the experiments. Extracellular nitric oxide (NO) release was measured by Griess reaction. The formation of ROS and intracellular NO was evaluated by fluorescence imaging. NOS activities were determined using commercially available kits. The morphology of the N9 cells was examined by hematoxylin and eosin staining. The expression of iNOS mRNA was examined by RT-PCR. The protein levels of iNOS, p38 mitogen-activated protein kinase (MAPK), ERK1/2 and NF-κB, inhibitory factor-κB-α (IκB-α) were determined by western blot analysis. The results showed that geniposide attenuated the activation of N9 cells and inhibited the overproduction of NO, intracellular ROS and the expression of iNOS induced by LPS in the cells. In addition, geniposide blocked the phosphorylation of p38, ERK1/2 and inhibited the drop-off of IκB induced by LPS in the cells. These data indicate that geniposide has therapeutic potential for the treatment of neurodegenerative diseases, and that it exerts its effects by inhibiting inflammation. PMID:22710392

  5. Time course study of microglial and behavioral alterations induced by 6-hydroxydopamine in rats.

    Science.gov (United States)

    Silva, Thiago Pereira da; Poli, Anicleto; Hara, Daniela Balz; Takahashi, Reinaldo Naoto

    2016-05-27

    Understanding the mechanisms responsible for nonmotor manifestations of Parkinson's disease (PD) is crucial in the search for new therapeutic approaches. The aim of the present study was to evaluate the time course of behavioral, neurochemical, and microglial responses after a retrograde partial lesion of the nigrostriatal pathway induced by bilateral injection of 6-hydroxydopamine (6-OHDA). The results showed that 6-OHDA was able to produce both anhedonic and anxiety behaviors; however, an increase of microglial density in some brain areas (substantia nigra, hippocampus and striatum) and deficits in locomotor activity was observed only one week after the lesion. Striatal levels of dopamine (DA) and dihydroxyphenylacetic acid (DOPAC) were reduced by approximately 60% at all times tested. Conversely, increased levels of serotonin (5-HT) and its metabolite were also noted in the striatum only at the first week. These data extend our previous findings and suggest that the retrograde and partial damage of dopaminergic neurons in the substantia nigra can induce effects resembling premotor symptoms of PD, two and three weeks after injury. PMID:27113204

  6. Does microglial dysfunction play a role in autism and Rett syndrome?

    Science.gov (United States)

    MAEZAWA, IZUMI; CALAFIORE, MARCO; WULFF, HEIKE; JIN, LEE-WAY

    2016-01-01

    Autism spectrum disorders (ASDs) including classic autism is a group of complex developmental disabilities with core deficits of impaired social interactions, communication difficulties and repetitive behaviors. Although the neurobiology of ASDs has attracted much attention in the last two decades, the role of microglia has been ignored. Existing data are focused on their recognized role in neuroinflammation, which only covers a small part of the pathological repertoire of microglia. This review highlights recent findings on the broader roles of microglia, including their active surveillance of brain microenvironments and regulation of synaptic connectivity, maturation of brain circuitry and neurogenesis. Emerging evidence suggests that microglia respond to pre- and postnatal environmental stimuli through epigenetic interface to change gene expression, thus acting as effectors of experience-dependent synaptic plasticity. Impairments of these microglial functions could substantially contribute to several major etiological factors of autism, such as environmental toxins and cortical underconnectivity. Our recent study on Rett syndrome, a syndromic autistic disorder, provides an example that intrinsic microglial dysfunction due to genetic and epigenetic aberrations could detrimentally affect the developmental trajectory without evoking neuroinflammation. We propose that ASDs provide excellent opportunities to study the influence of microglia on neurodevelopment, and this knowledge could lead to novel therapies. PMID:22717189

  7. Immobilized nickel hexacyanoferrate on activated carbons for efficient attenuation of radio toxic Cs(I) from aqueous solutions

    International Nuclear Information System (INIS)

    Highlights: • Rice hulls and areca nut wastes are utilized to obtain activated carbons. • Nickel hexacyanoferrate is immobilized on activated carbon samples. • Materials are characterized by SEM–EDX and XRD data. • Materials are employed in attenuation of Cs(I) under batch and column studies. • Possible mechanism is deduced at solid/solution interface. - Abstract: The aim of this study is to immobilize nickel hexacyanoferrate onto the large surface of activated carbons (ACs) precursor to rice hulls and areca nut waste materials. These nickel hexacyanoferrate immobilized materials are then assessed in the effective attenuation of radio logically important cesium ions from aqueous solutions. The solid samples are characterized by the XRD analytical method and surface morphology is obtained from the SEM images. The batch reactor experiments show that an increase in sorptive pH (2.0–10.0) apparently not affecting the high percent uptake of Cs(I). Equilibrium modeling studies suggest that the data are reasonably and relatively fitted well to the Langmuir adsorption isotherm. Kinetic studies show that sorption process is fairly rapid and the kinetic data are fitted well to the pseudo-second order rate model. Increasing the background electrolyte concentration from 0.001 to 0.1 mol/L NaCl causes insignificant decrease in Cs(I) removal which infers the higher selectivity of these materials for Cs(I) from aqueous solutions. Further, the column reactor operations enable to obtain the breakthrough data which are then fitted to the Thomas non-linear equation as to obtain the loading capacity of column for Cs(I). The results show that the modified materials show potential applicability in the attenuation of radio toxic cesium from aqueous solution

  8. Myelin basic protein peptide 45–89 induces the release of nitric oxide from microglial cells.

    OpenAIRE

    Shanshiashvili, L.; Pichkhadze, B.; Machaidze, G.; Ramsden, Jeremy J.; Mikeladze, D.

    2002-01-01

    Continuous (24 h) exposure of mixed oligodendrocyte/microglial cells to peptides 45–89 derived from citrullinated C8 isoforms of myelin basic protein (MBP) induces cell death. In contrast, MBP-C8 at the same molecular concentration is not toxic to oligodendrocyte/microglial cells as detected by the MTT test and trypan blue exclusion method. The loss of oligodendrocyte/microglial cells resulted in the release of cytochrome c from mitochondria, suggesting MBP 45–89-induced apo...

  9. Telomere dysfunction reduces microglial numbers without fully inducing an aging phenotype

    DEFF Research Database (Denmark)

    Khan, Asif Manzoor; Babcock, Alicia; Saeed, Hamid;

    2015-01-01

    The susceptibility of the aging brain to neurodegenerative disease may in part be attributed to cellular aging of the microglial cells that survey it. We investigated the effect of cellular aging induced by telomere shortening on microglia by the use of mice lacking the telomerase RNA component...... relatively resistant to telomerase deficiency during steady state conditions, despite an overall reduction in microglial numbers. Furthermore, telomerase deficiency and aging may provide disparate cues leading to distinct changes in microglial morphology and phenotype....

  10. Targeting Attenuated Interferon-α to Myeloma Cells with a CD38 Antibody Induces Potent Tumor Regression with Reduced Off-Target Activity.

    Science.gov (United States)

    Pogue, Sarah L; Taura, Tetsuya; Bi, Mingying; Yun, Yong; Sho, Angela; Mikesell, Glen; Behrens, Collette; Sokolovsky, Maya; Hallak, Hussein; Rosenstock, Moti; Sanchez, Eric; Chen, Haiming; Berenson, James; Doyle, Anthony; Nock, Steffen; Wilson, David S

    2016-01-01

    Interferon-α (IFNα) has been prescribed to effectively treat multiple myeloma (MM) and other malignancies for decades. Its use has waned in recent years, however, due to significant toxicity and a narrow therapeutic index (TI). We sought to improve IFNα's TI by, first, attaching it to an anti-CD38 antibody, thereby directly targeting it to MM cells, and, second, by introducing an attenuating mutation into the IFNα portion of the fusion protein rendering it relatively inactive on normal, CD38 negative cells. This anti-CD38-IFNα(attenuated) immunocytokine, or CD38-Attenukine™, exhibits 10,000-fold increased specificity for CD38 positive cells in vitro compared to native IFNα and, significantly, is ~6,000-fold less toxic to normal bone marrow cells in vitro than native IFNα. Moreover, the attenuating mutation significantly decreases IFNα biomarker activity in cynomolgus macaques indicating that this approach may yield a better safety profile in humans than native IFNα or a non-attenuated IFNα immunocytokine. In human xenograft MM tumor models, anti-CD38-IFNα(attenuated) exerts potent anti-tumor activity in mice, inducing complete tumor regression in most cases. Furthermore, anti-CD38-IFNα(attenuated) is more efficacious than standard MM treatments (lenalidomide, bortezomib, dexamethasone) and exhibits strong synergy with lenalidomide and with bortezomib in xenograft models. Our findings suggest that tumor-targeted attenuated cytokines such as IFNα can promote robust tumor killing while minimizing systemic toxicity. PMID:27611189

  11. Proteomic analysis of the effects of aged garlic extract and its FruArg component on lipopolysaccharide-induced neuroinflammatory response in microglial cells.

    Directory of Open Access Journals (Sweden)

    Hui Zhou

    Full Text Available Aged garlic extract (AGE is widely used as a dietary supplement, and is claimed to promote human health through anti-oxidant/anti-inflammatory activities with hypolipidemic, antiplatelet and neuroprotective effects. Prior studies of AGE have mainly focused on its organosulfur compounds, with little attention paid to its carbohydrate derivatives, such as N-α-(1-deoxy-D-fructos-1-yl-L-arginine (FruArg. The goal of this study is to investigate actions of AGE and FruArg on antioxidative and neuroinflammatory responses in lipopolysaccharide (LPS-activated murine BV-2 microglial cells using a proteomic approach. Our data show that both AGE and FruArg can significantly inhibit LPS-induced nitric oxide (NO production in BV-2 cells. Quantitative proteomic analysis by combining two dimensional differential in-gel electrophoresis (2D-DIGE with mass spectrometry revealed that expressions of 26 proteins were significantly altered upon LPS exposure, while levels of 20 and 21 proteins exhibited significant changes in response to AGE and FruArg treatments, respectively, in LPS-stimulated BV-2 cells. Notably, approximate 78% of the proteins responding to AGE and FruArg treatments are in common, suggesting that FruArg is a major active component of AGE. MULTICOM-PDCN and Ingenuity Pathway Analyses indicate that the proteins differentially affected by treatment with AGE and FruArg are involved in inflammatory responses and the Nrf2-mediated oxidative stress response. Collectively, these results suggest that AGE and FruArg attenuate neuroinflammatory responses and promote resilience in LPS-activated BV-2 cells by suppressing NO production and by regulating expression of multiple protein targets associated with oxidative stress.

  12. Aquaporin-4 deficiency attenuates acute lesions but aggravates delayed lesions and microgliosis after cryoinjury to mouse brain

    Institute of Scientific and Technical Information of China (English)

    Wen-Zhen Shi; Chun-Zhen Zhao; Bing Zhao; Xiao-Liang Zheng; San-Hua Fang; Yun-Bi Lu; Wei-Ping Zhang; Zhong Chen; Er-Qing Wei

    2012-01-01

    Objective To determine whether aquaporin-4 (AQP4) regulates acute lesions,delayed lesions,and the associated microglial activation after cryoinjury to the brain.Methods Brain cryoinjury was applied to AQP4 knockout (KO)and wild-type mice.At 24 h and on days 7 and 14 after cryoinjury,lesion volume,neuronal loss,and densities of microglia and astrocytes were determined,and their changes were compared between AQP4 KO and wild-type mice.Results Lesion volume and neuronal loss in AQP4 KO mice were milder at 24 h following cryoinjury,but worsened on days 7 and 14,compared to those in wild-type mice.Besides,microglial density increased more,and astrocyte proliferation and glial scar formation were attenuated on days 7 and 14 in AQP4 KO mice.Conclusion AQP4 deficiency ameliorates acute lesions,but worsens delayed lesions,perhaps due to the microgliosis in the late phase.

  13. Sirtuin 7 promotes cellular survival following genomic stress by attenuation of DNA damage, SAPK activation and p53 response

    International Nuclear Information System (INIS)

    Maintaining the genomic integrity is a constant challenge in proliferating cells. Amongst various proteins involved in this process, Sirtuins play a key role in DNA damage repair mechanisms in yeast as well as mammals. In the present work we report the role of one of the least explored Sirtuin viz., SIRT7, under conditions of genomic stress when treated with doxorubicin. Knockdown of SIRT7 sensitized osteosarcoma (U2OS) cells to DNA damage induced cell death by doxorubicin. SIRT7 overexpression in NIH3T3 delayed cell cycle progression by causing delay in G1 to S transition. SIRT7 overexpressing cells when treated with low dose of doxorubicin (0.25 µM) showed delayed onset of senescence, lesser accumulation of DNA damage marker γH2AX and lowered levels of growth arrest markers viz., p53 and p21 when compared to doxorubicin treated control GFP expressing cells. Resistance to DNA damage following SIRT7 overexpression was also evident by EdU incorporation studies where cellular growth arrest was significantly delayed. When treated with higher dose of doxorubicin (>1 µM), SIRT7 conferred resistance to apoptosis by attenuating stress activated kinases (SAPK viz., p38 and JNK) and p53 response thereby shifting the cellular fate towards senescence. Interestingly, relocalization of SIRT7 from nucleolus to nucleoplasm together with its co-localization with SAPK was an important feature associated with DNA damage. SIRT7 mediated resistance to doxorubicin induced apoptosis and senescence was lost when p53 level was restored by nutlin treatment. Overall, we propose SIRT7 attenuates DNA damage, SAPK activation and p53 response thereby promoting cellular survival under conditions of genomic stress. - Highlights: • Knockdown of SIRT7 sensitized cells to DNA damage induced apoptosis. • SIRT7 delayed onset of premature senescence by attenuating DNA damage response. • Overexpression of SIRT7 delayed cell cycle progression by delaying G1/S transition. • Upon DNA damage SIRT

  14. Sirtuin 7 promotes cellular survival following genomic stress by attenuation of DNA damage, SAPK activation and p53 response

    Energy Technology Data Exchange (ETDEWEB)

    Kiran, Shashi; Oddi, Vineesha [Laboratory of Cancer Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500001 (India); Ramakrishna, Gayatri, E-mail: gayatrirama1@gmail.com [Laboratory of Cancer Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500001 (India); Laboratory of Cancer Cell Biology, Department of Research, Institute of Liver and Biliary Sciences, Delhi 110070 (India)

    2015-02-01

    Maintaining the genomic integrity is a constant challenge in proliferating cells. Amongst various proteins involved in this process, Sirtuins play a key role in DNA damage repair mechanisms in yeast as well as mammals. In the present work we report the role of one of the least explored Sirtuin viz., SIRT7, under conditions of genomic stress when treated with doxorubicin. Knockdown of SIRT7 sensitized osteosarcoma (U2OS) cells to DNA damage induced cell death by doxorubicin. SIRT7 overexpression in NIH3T3 delayed cell cycle progression by causing delay in G1 to S transition. SIRT7 overexpressing cells when treated with low dose of doxorubicin (0.25 µM) showed delayed onset of senescence, lesser accumulation of DNA damage marker γH2AX and lowered levels of growth arrest markers viz., p53 and p21 when compared to doxorubicin treated control GFP expressing cells. Resistance to DNA damage following SIRT7 overexpression was also evident by EdU incorporation studies where cellular growth arrest was significantly delayed. When treated with higher dose of doxorubicin (>1 µM), SIRT7 conferred resistance to apoptosis by attenuating stress activated kinases (SAPK viz., p38 and JNK) and p53 response thereby shifting the cellular fate towards senescence. Interestingly, relocalization of SIRT7 from nucleolus to nucleoplasm together with its co-localization with SAPK was an important feature associated with DNA damage. SIRT7 mediated resistance to doxorubicin induced apoptosis and senescence was lost when p53 level was restored by nutlin treatment. Overall, we propose SIRT7 attenuates DNA damage, SAPK activation and p53 response thereby promoting cellular survival under conditions of genomic stress. - Highlights: • Knockdown of SIRT7 sensitized cells to DNA damage induced apoptosis. • SIRT7 delayed onset of premature senescence by attenuating DNA damage response. • Overexpression of SIRT7 delayed cell cycle progression by delaying G1/S transition. • Upon DNA damage SIRT

  15. Curcumin Attenuated Bupivacaine-Induced Neurotoxicity in SH-SY5Y Cells Via Activation of the Akt Signaling Pathway.

    Science.gov (United States)

    Fan, You-Ling; Li, Heng-Chang; Zhao, Wei; Peng, Hui-Hua; Huang, Fang; Jiang, Wei-Hang; Xu, Shi-Yuan

    2016-09-01

    Bupivacaine is widely used for regional anesthesia, spinal anesthesia, and pain management. However, bupivacaine could cause neuronal injury. Curcumin, a low molecular weight polyphenol, has a variety of bioactivities and may exert neuroprotective effects against damage induced by some stimuli. In the present study, we tested whether curcumin could attenuate bupivacaine-induced neurotoxicity in SH-SY5Y cells. Cell injury was evaluated by examining cell viability, mitochondrial damage and apoptosis. We also investigated the levels of activation of the Akt signaling pathway and the effect of Akt inhibition by triciribine on cell injury following bupivacaine and curcumin treatment. Our findings showed that the bupivacaine treatment could induce neurotoxicity. Pretreatment of the SH-SY5Y cells with curcumin significantly attenuated bupivacaine-induced neurotoxicity. Interestingly, the curcumin treatment increased the levels of Akt phosphorylation. More significantly, the pharmacological inhibition of Akt abolished the cytoprotective effect of curcumin against bupivacaine-induced cell injury. Our data suggest that pretreating SH-SY5Y cells with curcumin provides a protective effect on bupivacaine-induced neuronal injury via activation of the Akt signaling pathway. PMID:27233246

  16. HIF-1α Activation Attenuates IL-6 and TNF-α Pathways in Hippocampus of Rats Following Transient Global Ischemia

    Directory of Open Access Journals (Sweden)

    Jihong Xing

    2016-07-01

    Full Text Available Background/Aims: This study was to examine the role played by hypoxia inducible factor-1 (HIF-1α in regulating pro-inflammatory cytokines (PICs pathway in the rat hippocampus after cardiac arrest (CA induced-transient global ischemia followed by cardiopulmonary resuscitation (CPR. Those PICs include interleukin-1β (IL-1β, interleukin-6 (IL-6 and tumor necrosis factor-α (TNF-α. Methods: A rat model of CA induced by asphyxia was used in the current study. Following CPR, the hippocampus CA1 region was obtained for ELISA to determine the levels of HIF-1α and PICs; and Western Blot analysis to determine the protein levels of PIC receptors. Results: Our data show that IL-1β, IL-6 and TNF-α were significant elevated in the hippocampus after CPR as compared with control group. This was companied with increasing of HIF-1α and the time courses for HIF-1α and PICs were similar. In addition, PIC receptors, namely IL-1R, IL-6R and TNFR1 were upregulated in CA rats. Also, stimulation of HIF-1α by systemic administration of ML228, HIF-1α activator, significantly attenuated the amplified IL-6/IL-6R and TNF-α /TNFR1 pathway in the hippocampus of CA rats, but did not modify IL-1β and its receptor. Moreover, ML228 attenuated upregulated expression of Caspase-3 indicating cell apoptosis evoked by CA. Conclusion: Transient global ischemia induced by CA increases the levels of IL-1β, IL-6 and TNF-α and thereby leads to enhancement in their respective receptor in the rat hippocampus. Stabilization of HIF-1α plays a role in attenuating amplified expression IL-6R, TNFR1 and Caspase-3 in the processing of transient global ischemia. Results of our study suggest that PICs contribute to cerebral injuries evoked by transient global ischemia and in this pathophysiological process activation of HIF-1α improves tissues against ischemic injuries. Our data revealed specific signaling pathways in alleviating CA-evoked global cerebral ischemia by elucidating that

  17. Aryl hydrocarbon receptor mediates both proinflammatory and anti-inflammatory effects in lipopolysaccharide-activated microglia.

    Science.gov (United States)

    Lee, Yi-Hsuan; Lin, Chun-Hua; Hsu, Pei-Chien; Sun, Yu-Yo; Huang, Yu-Jie; Zhuo, Jiun-Horng; Wang, Chen-Yu; Gan, Yu-Ling; Hung, Chia-Chi; Kuan, Chia-Yi; Shie, Feng-Shiun

    2015-07-01

    The aryl hydrocarbon receptor (AhR) regulates peripheral immunity; but its role in microglia-mediated neuroinflammation in the brain remains unknown. Here, we demonstrate that AhR mediates both anti-inflammatory and proinflammatory effects in lipopolysaccharide (LPS)-activated microglia. Activation of AhR by its ligands, formylindolo[3,2-b]carbazole (FICZ) or 3-methylcholanthrene (3MC), attenuated LPS-induced microglial immune responses. AhR also showed proinflammatory effects, as evidenced by the findings that genetic silence of AhR ameliorated the LPS-induced microglial immune responses and LPS-activated microglia-mediated neurotoxicity. Similarly, LPS-induced expressions of tumor necrosis factor α (TNFα) and inducible nitric oxide synthase (iNOS) were reduced in the cerebral cortex of AhR-deficient mice. Intriguingly, LPS upregulated and activated AhR in the absence of AhR ligands via the MEK1/2 signaling pathway, which effects were associated with a transient inhibition of cytochrome P450 1A1 (CYP1A1). Although AhR ligands synergistically enhance LPS-induced AhR activation, leading to suppression of LPS-induced microglial immune responses, they cannot do so on their own in microglia. Chromatin immunoprecipitation results further revealed that LPS-FICZ co-treatment, but not LPS alone, not only resulted in co-recruitment of both AhR and NFκB onto the κB site of TNFα gene promoter but also reduced LPS-induced AhR binding to the DRE site of iNOS gene promoter. Together, we provide evidence showing that microglial AhR, which can be activated by LPS, exerts bi-directional effects on the regulation of LPS-induced neuroinflammation, depending on the availability of external AhR ligands. These findings confer further insights into the potential link between environmental factors and the inflammatory brain disorders. PMID:25690886

  18. Citrus bergamia Juice Extract Attenuates β-Amyloid-Induced Pro-Inflammatory Activation of THP-1 Cells Through MAPK and AP-1 Pathways.

    Science.gov (United States)

    Currò, Monica; Risitano, Roberto; Ferlazzo, Nadia; Cirmi, Santa; Gangemi, Chiara; Caccamo, Daniela; Ientile, Riccardo; Navarra, Michele

    2016-01-01

    Flavonoids have been shown to be effective in protecting against age-related cognitive and motor decline in both in vitro and in vivo models. Recently, a flavonoid-rich extract of Citrus bergamia juice (BJe) has been shown to display anti-oxidant and anti-inflammatory properties against LPS-induced activation of human THP-1 monocytes. In the light of these observations, we wondered whether BJe may be beneficial against neuroinflammatory processes, such as those observed in Alzheimer's disease. To this aim we used THP-1 monocytes to investigate the mechanisms underlying the beneficial potential of BJe against amyloid-beta1-42 (Aβ1-42) -mediated inflammation. Exposure of THP-1 cells to Aβ1-42 significantly induced the expression and secretion of IL-6 and IL-1β in THP-1 cells and increased the phosphorylation of ERK 1/2 as well as p46 and p54 members of JNK family. Moreover, Aβ1-42 raises AP-1 DNA binding activity in THP-1-treated cells. Interestingly, all these effects were reduced in the presence of BJe. Our data indicate that BJe may effectively counteract the pro-inflammatory activation of monocytes/microglial cells exposed to amyloid fibrils, suggesting a promising role as a natural drug against neuroinflammatory processes. PMID:26853104

  19. Rosiglitazone, a peroxisome proliferator-activated receptor-γ agonist, attenuates acrolein-induced airway mucus hypersecretion in rats

    International Nuclear Information System (INIS)

    Background: Peroxisome proliferator-activated receptor-γ (PPAR-γ), a member of the ligand-activated nuclear receptor superfamily, has been shown to be implicated in anti-inflammatory and immunomodulatory responses, but its role in airway mucus hypersecretion remains not clear. Objective: To investigate the role of PPAR-γ in airway mucus hypersecretion, we used an acrolein-exposed rat model treated with rosiglitazone, a peroxisome proliferator-activated receptor-γ agonist. Methods: Rats were exposed to acrolein (3.0 ppm, 6 h/day, 7 days/week) and orally administered with rosiglitazone (2, 4, 8 mg/kg) once daily for up to 2 weeks. The expressions of Muc5ac protein and mRNA, and infiltration of inflammatory cells and levels of inflammatory cytokines (interleukin (IL)-1β, IL-8 and tumor necrosis factor (TNF)-α) in bronchoalveolar lavage fluid (BALF) were detected with real-time PCR, Western blot, cell counting and ELISA. In addition, the role of nuclear factor (NF)-κB pathway in this process was also explored. Results: Acrolein exposure significantly induced goblet cell hyperplasia in bronchial epithelium and Muc5ac mRNA and protein expressions in rat lungs, as well as the associated airway inflammation evidenced by the increased numbers of inflammatory cells and levels of inflammatory cytokines in BALF, which were attenuated with rosiglitazone treatment in a dose-dependent manner (P < 0.05). Simultaneously, the increased expression of NF-κB and decreased expression of cytoplasmic IκB in acrolein-exposed lungs were reversed by rosiglitazone treatment. Conclusions: These findings suggest that PPAR-γ activation by its ligands can attenuate acrolein-induced airway mucus hypersecretion in rats, which may be involved in inhibition of NF-κB pathway.

  20. Propofol pretreatment attenuates lipopolysaccharide-induced acute lung injury in rats by activating the phosphoinositide-3-kinase/Akt pathway

    International Nuclear Information System (INIS)

    The aim of this study was to investigate the effect of propofol pretreatment on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and the role of the phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) pathway in this procedure. Survival was determined 48 h after LPS injection. At 1 h after LPS challenge, the lung wet- to dry-weight ratio was examined, and concentrations of protein, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in bronchoalveolar lavage fluid (BALF) were determined using the bicinchoninic acid method or ELISA. Lung injury was assayed via lung histological examination. PI3K and p-Akt expression levels in the lung tissue were determined by Western blotting. Propofol pretreatment prolonged survival, decreased the concentrations of protein, TNF-α, and IL-6 in BALF, attenuated ALI, and increased PI3K and p-Akt expression in the lung tissue of LPS-challenged rats, whereas treatment with wortmannin, a PI3K/Akt pathway specific inhibitor, blunted this effect. Our study indicates that propofol pretreatment attenuated LPS-induced ALI, partly by activation of the PI3K/Akt pathway

  1. Propofol pretreatment attenuates lipopolysaccharide-induced acute lung injury in rats by activating the phosphoinositide-3-kinase/Akt pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.L. [Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province (China); Hu, G.C. [Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL (United States); Zhu, S.S. [Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province (China); Li, J.F. [Department of Anesthesiology, Tengzhou Central People' s Hospital, Liaocheng, Shandong Province (China); Liu, G.J. [Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province (China)

    2014-10-14

    The aim of this study was to investigate the effect of propofol pretreatment on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and the role of the phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) pathway in this procedure. Survival was determined 48 h after LPS injection. At 1 h after LPS challenge, the lung wet- to dry-weight ratio was examined, and concentrations of protein, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in bronchoalveolar lavage fluid (BALF) were determined using the bicinchoninic acid method or ELISA. Lung injury was assayed via lung histological examination. PI3K and p-Akt expression levels in the lung tissue were determined by Western blotting. Propofol pretreatment prolonged survival, decreased the concentrations of protein, TNF-α, and IL-6 in BALF, attenuated ALI, and increased PI3K and p-Akt expression in the lung tissue of LPS-challenged rats, whereas treatment with wortmannin, a PI3K/Akt pathway specific inhibitor, blunted this effect. Our study indicates that propofol pretreatment attenuated LPS-induced ALI, partly by activation of the PI3K/Akt pathway.

  2. Microglial Amyloid-β1-40 Phagocytosis Dysfunction Is Caused by High-Mobility Group Box Protein-1: Implications for the Pathological Progression of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Kazuyuki Takata

    2012-01-01

    Full Text Available In Alzheimer disease (AD patient brains, the accumulation of amyloid-β (Aβ peptides is associated with activated microglia. Aβ is derived from the amyloid precursor protein; two major forms of Aβ, that is, Aβ1-40 (Aβ40 and Aβ1-42 (Aβ42, exist. We previously reported that rat microglia phagocytose Aβ42, and high mobility group box protein 1 (HMGB1, a chromosomal protein, inhibits phagocytosis. In the present study, we investigated the effects of exogenous HMGB1 on rat microglial Aβ40 phagocytosis. In the presence of exogenous HMGB1, Aβ40 markedly increased in microglial cytoplasm, and the reduction of extracellular Aβ40 was inhibited. During this period, HMGB1 was colocalized with Aβ40 in the cytoplasm. Furthermore, exogenous HMGB1 inhibited the degradation of Aβ40 induced by the rat microglial cytosolic fraction. Thus, extracellular HMGB1 may internalize with Aβ40 in the microglial cytoplasm and inhibit Aβ40 degradation by microglia. This may subsequently delay Aβ40 clearance. We further confirmed that in AD brains, the parts of senile plaques surrounded by activated microglia are composed of Aβ40, and extracellular HMGB1 is deposited on these plaques. Taken together, microglial Aβ phagocytosis dysfunction may be caused by HMGB1 that accumulates extracellularly on Aβ plaques, and it may be critically involved in the pathological progression of AD.

  3. Increased autophagic activity in dorsal root ganglion attenuates neuropathic pain following peripheral nerve injury.

    Science.gov (United States)

    Guo, Jian-Shuang; Jing, Peng-Bo; Wang, Ji-An; Zhang, Rui; Jiang, Bao-Chun; Gao, Yong-Jing; Zhang, Zhi-Jun

    2015-07-10

    Autophagy is a process of cellular self-cannibalization, and provides an adaptive mechanism to protect cells against diverse pathological settings. Following peripheral nerve injury, autophagic process was changed in Schwann cells and spinal neurons and glial cells, implicating a vital role of autophagy in chronic pain. However, little is known about the role of autophagy in dorsal root ganglion (DRG) in neuropathic pain. In the present study, we investigated the autophagic process in DRG and its effect on neuropathic pain induced by L5 spinal nerve ligation (SNL). The level of microtubule associated protein 1 light chain 3 (LC3)-II, a general marker for autophagy, was increased in L5 DRG after SNL. Immunofluorescence staining showed that LC3-II puncta were observed in DRG neurons after SNL. Injection of autophagy inducer rapamycin into L5 DRG before or after SNL dose-dependently attenuated neuropathic pain. The expression of LC3 was enhanced in L5 DRG by rapamycin. These data suggest that the autophagy in L5 DRG neurons is a defensive reaction to L5 spinal nerve injury, and pharmacological enhancement of autophagy may be a potential treatment to prevent the onset and chronification of neuropathic pain. PMID:26021876

  4. Minocycline attenuates post-operative cognitive impairment in aged mice by inhibiting microglia activation.

    Science.gov (United States)

    Wang, Hui-Lin; Liu, Hua; Xue, Zhang-Gang; Liao, Qing-Wu; Fang, Hao

    2016-09-01

    Although it is known that isoflurane exposure or surgery leads to post-operative cognitive dysfunction in aged rodents, there are few clinical interventions and treatments available to prevent this disorder. Minocycline (MINO) produces neuroprotection from several neurodegenerative diseases and various experimental animal models. Therefore, we set out to investigate the effects of MINO pre-treatment on isoflurane or surgery induced cognitive impairment in aged mice by assessing the hippocampal-dependent spatial memory performance using the Morris water maze task. Hippocampal tissues were isolated from mice and evaluated by Western blot analysis, immunofluorescence procedures and protein array system. Our results elucidate that MINO down-regulated the isoflurane-induced and surgery-induced enhancement in the protein levels of pro-inflammatory cytokine tumour necrosis factor alpha, interleukin (IL)-1β, interferon-γ and microglia marker Iba-1, and up-regulated protein levels of the anti-inflammatory cytokine IL-4 and IL-10. These findings suggest that pre-treatment with MINO attenuated isoflurane or surgery induced cognitive impairment by inhibiting the overactivation of microglia in aged mice. PMID:27061744

  5. Activity-dependent control of neuronal output by local and global dendritic spike attenuation.

    Science.gov (United States)

    Remy, Stefan; Csicsvari, Jozsef; Beck, Heinz

    2009-03-26

    Neurons possess elaborate dendritic arbors which receive and integrate excitatory synaptic signals. Individual dendritic subbranches exhibit local membrane potential supralinearities, termed dendritic spikes, which control transfer of local synaptic input to the soma. Here, we show that dendritic spikes in CA1 pyramidal cells are strongly regulated by specific types of prior input. While input in the linear range is without effect, supralinear input inhibits subsequent spikes, causing them to attenuate and ultimately fail due to dendritic Na(+) channel inactivation. This mechanism acts locally within the boundaries of the input branch. If an input is sufficiently strong to trigger axonal action potentials, their back-propagation into the dendritic tree causes a widespread global reduction in dendritic excitability which is prominent after firing patterns occurring in vivo. Together, these mechanisms control the capability of individual dendritic branches to trigger somatic action potential output. They are invoked at frequencies encountered during learning, and impose limits on the storage and retrieval rates of information encoded as branch excitability. PMID:19323999

  6. PI3K/Akt Pathway Activation Attenuates the Cytotoxic Effect of Methyl Jasmonate Toward Sarcoma Cells

    Directory of Open Access Journals (Sweden)

    Uri Elia

    2008-11-01

    Full Text Available Methyl jasmonate (MJ acts both in vitro and in vivo against various cancer cell lines. Activation of the phosphatidylinositol 3-kinase (PI3K/Akt pathway results in decreased susceptibility to cytotoxic agents in many types of cancer cells. We found a strong inverse correlation between the basal level of phospho-Akt (pAkt and the sensitivity to MJ among sarcoma cell lines. Nevertheless, levels of pAkt increased in two sarcoma cell lines, MCA-105 and SaOS-2, after MJ treatment. Treatment of both cell lines with PI3K/Akt pathway inhibitors in combination with MJ resulted in a synergistic cytotoxic effect. Moreover, cells transfected with a constitutively active Akt were less susceptible to MJ-induced cytotoxicity in comparison with cells transfected with an inactive form of Akt. Taken together, these data suggest that the increase in pAkt after treatment with MJ played a protective role. Because it has been shown that the antiapoptotic effects of Akt are dependent on glycolysis, we examined the role of glucose metabolism in activation of Akt and the subsequent resistance of the cell lines to MJ. 2-Deoxy-d-glucose, a glycolysis inhibitor, decreased the levels of pAkt and was able to attenuate the MJ-induced elevation in pAkt. Accordingly, the presence of glucose attenuated MJ-induced cytotoxicity. Moreover, treatment with 2-deoxy-d-glucose in combination with MJ resulted in a synergistic cytotoxic effect. In conclusion, the PI3K/Akt pathway plays a critical role in the resistance of MCA-105 and SaOS-2 sarcoma cell lines toward MJ-induced cytotoxicity.

  7. Pharmacological activation of cannabinoid 2 receptor attenuates inflammation, fibrogenesis, and promotes re-epithelialization during skin wound healing.

    Science.gov (United States)

    Wang, Lin-Lin; Zhao, Rui; Li, Jiao-Yong; Li, Shan-Shan; Liu, Min; Wang, Meng; Zhang, Meng-Zhou; Dong, Wen-Wen; Jiang, Shu-Kun; Zhang, Miao; Tian, Zhi-Ling; Liu, Chang-Sheng; Guan, Da-Wei

    2016-09-01

    Previous studies showed that cannabinoid 2 (CB2) receptor is expressed in multiple effector cells during skin wound healing. Meanwhile, its functional involvement in inflammation, fibrosis, and cell proliferation in other organs and skin diseases implied CB2 receptor might also regulate skin wound healing. To verify this hypothesis, mice excisional wounds were created and treated with highly selective CB2 receptor agonist GP1a (1-(2,4-dichlorophenyl)-6-methyl- N-piperidin-1-yl-4H-indeno[1,2-c]pyrazole-3-carboxamide) and antagonist AM630 ([6-iodo-2- methyl-1-(2-morpholin-4-ylethyl)indol-3-yl]-(4-methoxyphenyl)methanone) respectively. The inflammatory infiltration, cytokine expression, fibrogenesis, and wound re-epithelialization were analyzed. After CB2 receptor activation, neutrophil and macrophage infiltrations were reduced, and expressions of monocyte chemotactic protein (MCP)-1, stromal cell-derived factor (SDF)-1, Interleukin (IL)-6, IL-1β, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β1 and vascular endothelial growth factor (VEGF)-A were decreased. Keratinocyte proliferation and migration were enhanced. Wound re-epithelialization was accelerated. Fibroblast accumulation and fibroblast-to-myofibroblast transformation were attenuated, and expression of pro-collagen I was decreased. Furthermore, HaCaT cells in vitro were treated with GP1a or AM630, which revealed that CB2 receptor activation promoted keratinocyte migration by inducing the epithelial to mesenchymal transition. These results, taken together, indicate that activating CB2 receptor could ameliorate wound healing by reducing inflammation, accelerating re-epithelialization, and attenuating scar formation. Thus, CB2 receptor agonist might be a novel perspective for skin wound therapy. PMID:27268717

  8. Demethyleneberberine attenuates non-alcoholic fatty liver disease with activation of AMPK and inhibition of oxidative stress.

    Science.gov (United States)

    Qiang, Xiaoyan; Xu, Lulu; Zhang, Miao; Zhang, Pengcheng; Wang, Yinhang; Wang, Yongchen; Zhao, Zheng; Chen, Huan; Liu, Xie; Zhang, Yubin

    2016-04-15

    Non-alcoholic fatty liver disease (NAFLD) has reached an epidemic level globally, which is recognized to form non-alcoholic steatohepatitis (NASH) by the "two-hit" model, including oxidative stress and inflammation. AMP-activated protein kinase (AMPK) has long been regarded as a key regulator of energy metabolism, which is recognized as a critical target for NAFLD treatment. Here we introduce a natural product, demethyleneberberine (DMB), which potentially ameliorated NAFLD by activating AMPK pathways. Our study showed that the intraperitoneal injection of DMB (20 or 40 mg/kg body weight) decreased hepatic lipid accumulation in methionine and choline deficient (MCD) high-fat diet feeding mice and db/db mice. The further investigation demonstrated that DMB activated AMPK by increasing its phosphorylation in vitro and in vivo. Accompanied with AMPK activation, the expression of lipogenic genes were significantly reduced while genes responsible for the fatty acid β-oxidation were restored in DMB-treated NAFLD mice. In addition, the remarkable oxidative damage and inflammation induced by NAFLD were both attenuated by DMB treatment, which is reflected by decreased lipid oxidative product, malonaldehyde (MDA) and inflammatory factors, tumor necrosis factor α (TNFα) and interleukin 1β (IL-1β). Based on all above, DMB could serve as a novel AMPK activator for treating NAFLD and preventing the pathologic progression from NAFLD to NASH by inhibiting the oxidative stress and inflammation. PMID:26970305

  9. Fractalkine regulation of microglial physiology and consequences on the brain and behaviour

    Directory of Open Access Journals (Sweden)

    Rosa Chiara Paolicelli

    2014-05-01

    Chemokines, a family of soluble and membrane-bound cytokines, play an essential role in mediating neuron-microglia crosstalk in the developing and mature brain. As part of this special issue on Cytokines as players of neuronal plasticity and sensitivity to environment in healthy and pathological brain, our review focuses on the fractalkine signalling pathway, involving the ligand CX3CL1 which is mainly expressed by neurons, and its receptor CX3CR1 that is exclusively found on microglia within the brain. An extensive literature largely based on transgenic mouse models has revealed that fractalkine signalling plays a critical role in regulating a broad spectrum of microglial properties during normal physiological conditions, especially their migration and dynamic surveillance of the brain parenchyma, in addition to influencing the survival of developing neurons, the maturation, activity and plasticity of developing and mature synapses, the brain functional connectivity, adult hippocampal neurogenesis, as well as learning and memory, and the behavioural outcome.

  10. Benzyl isothiocyanate inhibits inflammasome activation in E. coli LPS-stimulated BV2 cells.

    Science.gov (United States)

    Lee, Chang-Min; Lee, Dae-Sung; Jung, Won-Kyo; Yoo, Jong Su; Yim, Mi-Jin; Choi, Yung Hyun; Park, Saegwang; Seo, Su-Kil; Choi, Jung Sik; Lee, Young-Min; Park, Won Sun; Choi, Il-Whan

    2016-09-01

    Inflammasomes are multi-protein complexes that play a crucial role in innate immune responses. Benzyl isothiocyanate (BITC) is a naturally occurring compound found in cruciferous vegetables, and BITC exhibits potential as a chemopreventive agent. However, whether BITC exerts inflammasome-mediated regulatory effects on neuroinflammation is unknown. In this study, we examined the effects of BITC on inflammasome-mediated interleukin-1β (IL-1β) production in E. coli lipopolysaccharide (LPS)-stimulated BV2 microglial cells. IL-1β production is tightly regulated at the post-translational level through the inflammasoume. We measured the levels of IL-1β produced from the LPS-exposed BV2 microglial cells using enzyme-linked immunosorbent assays (ELISAs). The BITC regulatory mechanisms in inflammasome-mediated cellular signaling pathways were examined by RT-PCR, western blot analysis and electrophoretic mobility shift assays. BITC inhibited the secretion of IL-1β induced by LPS in the BV2 microglial cells. BITC inhibited inflammasome activation and NLR family, pyrin domain containing 3 (NLRP3)-mediated caspase-1 activation, and decreased the levels of inflammasome activation pro-inflammatory mediators, including mitochondrial reactive oxygen species (ROS) and adenosine triphosphate (ATP) secretion in the LPS-stimulated BV2 microglial cells. Furthermore, we demonstrated that nuclear factor-κB (NF-κB) activation induced by LPS was inhibited by BITC, which may contribute to the attenuated secretion of IL-1β. These BITC-mediated inhibitory effects on IL-1β expression may thus regulate neuroinflammation through the inflammasome-mediated signaling pathway. PMID:27430883

  11. Developmental changes in microglial mobilization are independent of apoptosis in the neonatal mouse hippocampus.

    Science.gov (United States)

    Eyo, Ukpong B; Miner, Samuel A; Weiner, Joshua A; Dailey, Michael E

    2016-07-01

    During CNS development, microglia transform from highly mobile amoeboid-like cells to primitive ramified forms and, finally, to highly branched but relatively stationary cells in maturity. The factors that control developmental changes in microglia are largely unknown. Because microglia detect and clear apoptotic cells, developmental changes in microglia may be controlled by neuronal apoptosis. Here, we assessed the extent to which microglial cell density, morphology, motility, and migration are regulated by developmental apoptosis, focusing on the first postnatal week in the mouse hippocampus when the density of apoptotic bodies peaks at postnatal day 4 and declines sharply thereafter. Analysis of microglial form and distribution in situ over the first postnatal week showed that, although there was little change in the number of primary microglial branches, microglial cell density increased significantly, and microglia were often seen near or engulfing apoptotic bodies. Time-lapse imaging in hippocampal slices harvested at different times over the first postnatal week showed differences in microglial motility and migration that correlated with the density of apoptotic bodies. The extent to which these changes in microglia are driven by developmental neuronal apoptosis was assessed in tissues from BAX null mice lacking apoptosis. We found that apoptosis can lead to local microglial accumulation near apoptotic neurons in the pyramidal cell body layer but, unexpectedly, loss of apoptosis did not alter overall microglial cell density in vivo or microglial motility and migration in ex vivo tissue slices. These results demonstrate that developmental changes in microglial form, distribution, motility, and migration occur essentially normally in the absence of developmental apoptosis, indicating that factors other than neuronal apoptosis regulate these features of microglial development. PMID:26576723

  12. Honokiol activates the LKB1–AMPK signaling pathway and attenuates the lipid accumulation in hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Min Suk; Kim, Jung Hwan; Kim, Hye Jung; Chang, Ki Churl; Park, Sang Won, E-mail: parksw@gnu.ac.kr

    2015-04-15

    Honokiol is a bioactive neolignan compound isolated from the species of Magnolia. This study was designed to elucidate the cellular mechanism by which honokiol alleviates the development of non-alcoholic steatosis. HepG2 cells were treated with honokiol for 1 h, and then exposed to 1 mM free fatty acid (FFA) for 24 h to simulate non-alcoholic steatosis in vitro. C57BL/6 mice were fed with a high-fat diet for 28 days, and honokiol (10 mg/kg/day) was daily treated. Honokiol concentration-dependently attenuated intracellular fat overloading and triglyceride (TG) accumulation in FFA-exposed HepG2 cells. These effects were blocked by pretreatment with an AMP-activated protein kinase (AMPK) inhibitor. Honokiol significantly inhibited sterol regulatory element-binding protein-1c (SREBP-1c) maturation and the induction of lipogenic proteins, stearoyl-CoA desaturase-1 (SCD-1) and fatty acid synthase (FAS) in FFA-exposed HepG2 cells, but these effects were blocked by pretreatment of an AMPK inhibitor. Honokiol induced AMPK phosphorylation and subsequent acetyl-CoA carboxylase (ACC) phosphorylation, which were inhibited by genetic deletion of liver kinase B1 (LKB1). Honokiol stimulated LKB1 phosphorylation, and genetic deletion of LKB1 blocked the effect of honokiol on SREBP-1c maturation and the induction of SCD-1 and FAS proteins in FFA-exposed HepG2 cells. Honokiol attenuated the increases in hepatic TG and lipogenic protein levels and fat accumulation in the mice fed with high-fat diet, while significantly induced LKB1 and AMPK phosphorylation. Taken together, our findings suggest that honokiol has an anti-lipogenic effect in hepatocytes, and this effect may be mediated by the LKB1–AMPK signaling pathway, which induces ACC phosphorylation and inhibits SREBP-1c maturation in hepatocytes. - Highlights: • Honokiol attenuates lipid accumulation induced by free fatty acid in hepatocyte. • Honokiol inhibits the increase in lipogenic enzyme levels induced by free fatty

  13. Music Attenuated a Decrease in Parasympathetic Nervous System Activity after Exercise

    OpenAIRE

    Jia, Tiantian; Ogawa, Yoshiko; Miura, Misa; Ito, Osamu; Kohzuki, Masahiro

    2016-01-01

    Music and exercise can both affect autonomic nervous system activity. However, the effects of the combination of music and exercise on autonomic activity are poorly understood. Additionally, it remains unknown whether music affects post-exercise orthostatic tolerance. The aim of this study was to evaluate the effects of music on autonomic nervous system activity in orthostatic tolerance after exercise. Twenty-six healthy graduate students participated in four sessions in a random order on fou...

  14. Turo (Qi Dance Training Attenuates Psychological Symptoms and Sympathetic Activation Induced by Mental Stress in Healthy Women

    Directory of Open Access Journals (Sweden)

    Hwa-Jin Lee

    2009-01-01

    Full Text Available Vagal withdrawal and sympathetic overactivity accompany various types of stress. Qi training is reported to reduce sympathetic hyper-reactivity in a stressful situation. Turo, which is a type of dance that uses the Meridian Qi System, may reduce the psychological symptoms induced by an imbalance of the autonomic nervous system (ANS. We observed whether Turo training alters psychopathological and psychological symptoms using the Symptom Checklist 90-Revision (SCL-90-R and examined whether it attenuates the stress response to mental stress in healthy adolescent females using the power spectrum analysis of heart rate variability (HRV. Twenty-one subjects received Turo training and 27 subjects were trained with mimicking movements. The SCL-90-R was measured before and after the 2-month training period. Heart rate (HR, total power (TP and the LF/HF ratio of HRV were compared between the Turo and control groups during and after mental stress. The somatization and hostility subscales of the SCL-90-R of the Turo group were significantly lower than those of the control group after 2 months. The increases in HR and the LF/HF ratio of HRV induced by the stress test were significantly lower in the Turo group than in the control group. The TP of the Turo group was significantly higher than that of the control group. The psychological symptoms and sympathetic activation induced by the artificial stress were significantly reduced by the Turo training. These findings suggest that Turo training can play a critical role in attenuating psychological symptoms and stress-induced sympathetic activation.

  15. A novel natural Nrf2 activator with PPARγ-agonist (monascin) attenuates the toxicity of methylglyoxal and hyperglycemia

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Wei-Hsuan; Lee, Bao-Hong; Chang, Yu-Ying [Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); Hsu, Ya-Wen [SunWay Biotechnology Company, Taipei, Taiwan (China); Pan, Tzu-Ming, E-mail: tmpan@ntu.edu.tw [Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China)

    2013-11-01

    Methylglyoxal (MG) is a toxic-glucose metabolite and a major precursor of advanced glycation endproducts (AGEs). MG has been reported to result in inflammation by activating receptor for AGEs (RAGE). We recently found that Monascus-fermented metabolite monascin acts as a novel natural peroxisome proliferator-activated receptor-γ (PPARγ) agonist that improves insulin sensitivity. We investigated the metabolic, biochemical, and molecular abnormalities characteristic of type 2 diabetes in MG-treated Wistar rats treated with oral administration of monascin or rosiglitazone. Monascin (a novel PPARγ agonist) activated nuclear factor-erythroid 2-related factor 2 (Nrf2) and down-regulated hyperinsulinmia in oral glucose tolerance test (OGTT). Monascin was able to elevate glyoxalase-1 expression via activation of hepatic Nrf2, hence, resulting in MG metabolism to D-lactic acid and protected from AGEs production in MG-treated rats. Rosiglitazone did not activate Nrf2 nor glyoxalase expression to lower serum and hepatic AGEs levels. Monascin acts as a novel natural Nrf2 activator with PPARγ-agonist activity were confirmed by Nrf2 and PPARγ reporter assays in Hep G2 cells. These findings suggest that monascin acts as an anti-diabetic and anti-oxidative stress agent to a greater degree than rosiglitazone and thus may have therapeutic potential for the prevention of diabetes. - Highlights: • Monascin acts as a PPARgamma agonist. • Monascin activates Nrf2 and AMPK. • Monascin promotes MG metabolism into D-lactic acid. • Monascin attenuates inflammation and diabetes in vivo.

  16. Nutrition and physical activity program to attenuate obesity and promote physical and metabolic fitness in elementary school children.

    Science.gov (United States)

    Donnelly, J E; Jacobsen, D J; Whatley, J E; Hill, J O; Swift, L L; Cherrington, A; Polk, B; Tran, Z V; Reed, G

    1996-05-01

    Obesity and low levels of physical and metabolic fitness are risk factors for cardiovascular disease and diabetes. The purpose of this investigation was to attenuate obesity and improve physical and metabolic fitness in elementary school children. Schools have the opportunity, mechanisms, and personnel in place to deliver nutrition education, fitness activities, and a school food service that is nutritious and healthy. Cohorts from grades 3 to 5 in two school districts in rural Nebraska (Intervention/Control) participated in a 2-year study of physical activity and modified school lunch program. Data collection for aerobic capacity, body composition, blood chemistry, nutrition knowledge, energy intake, and physical activity was at the beginning and end of each year. Int received enhanced physical activity, grade specific nutrition education, and a lower fat and sodium school lunch program. Con continued with a regular school lunch and team sports activity program. At year 2, Int lunches had significantly less energy (9%), fat (25%), sodium (21%), and more fiber (17%). However, measures of 24-hour energy intake for Int and Con showed significant differences for sodium only. Physical activity in the classroom was 6% greater for Int compared to Con (p < 0.05) but physical activity outside of school was approximately 16% less for Int compared to Con (p < 0.05). Body weight and body fat were not different between schools for normal weight or obese children. No differences were found for cholesterol, insulin, and glucose; however, HDL cholesterol was significantly greater and cholesterol/HDL was significantly less for Int compared to Con (p < 0.05). It appears that compensation in both energy intake and physical activity outside of school may be responsible for the lack of differences between Int and Con. PMID:8732957

  17. A 2-wk reduction of ambulatory activity attenuates peripheral insulin sensitivity

    DEFF Research Database (Denmark)

    Krogh-Madsen, Rikke; Thyfault, John P; Broholm, Christa; Mortensen, Ole Hartvig; Olsen, Rasmus H.; Mounier, Remi; Plomgaard, Peter; van Hall, Gerrit; Booth, Frank W; Pedersen, Bente K

    2010-01-01

    US adults take between approximately 2,000 and approximately 12,000 steps per day, a wide range of ambulatory activity that at the low range could increase risk for developing chronic metabolic diseases. Dramatic reductions in physical activity induce insulin resistance; however, it is uncertain if...... and how low ambulatory activity would influence peripheral insulin sensitivity. We aimed to explore if healthy, nonexercising subjects who went from a normal to a low level of ambulatory activity for 2 wk would display metabolic alterations including reduced peripheral insulin sensitivity. To do this......, ten healthy young men decreased their daily activity level from a mean of 10,501+/-808 to 1,344+/-33 steps/day for 2 wk. Hyperinsulinemic-euglycemic clamps with stable isotopes and muscle biopsies, maximal oxygen consumption (VO2 max) tests, and blood samples were performed pre- and postintervention...

  18. Inhibition of Neuroinflammation in LPS-Activated Microglia by Cryptolepine

    Directory of Open Access Journals (Sweden)

    Olumayokun A. Olajide

    2013-01-01

    Full Text Available Cryptolepine, an indoloquinoline alkaloid in Cryptolepis sanguinolenta, has anti-inflammatory property. In this study, we aimed to evaluate the effects of cryptolepine on lipopolysaccharide (LPS- induced neuroinflammation in rat microglia and its potential mechanisms. Microglial activation was induced by stimulation with LPS, and the effects of cryptolepine pretreatment on microglial activation and production of proinflammatory mediators, PGE2/COX-2, microsomal prostaglandin E2 synthase and nitric oxide/iNOS were investigated. We further elucidated the role of Nuclear Factor-kappa B (NF-κB and the mitogen-activated protein kinases in the antiinflammatory actions of cryptolepine in LPS-stimulated microglia. Our results showed that cryptolepine significantly inhibited LPS-induced production of tumour necrosis factor-alpha (TNFα, interleukin-6 (IL-6, interleukin-1beta (IL-1β, nitric oxide, and PGE2. Protein and mRNA levels of COX-2 and iNOS were also attenuated by cryptolepine. Further experiments on intracellular signalling mechanisms show that IκB-independent inhibition of NF-κB nuclear translocation contributes to the anti-neuroinflammatory actions of cryptolepine. Results also show that cryptolepine inhibited LPS-induced p38 and MAPKAPK2 phosphorylation in the microglia. Cell viability experiments revealed that cryptolepine (2.5 and 5 μM did not produce cytotoxicity in microglia. Taken together, our results suggest that cryptolepine inhibits LPS-induced microglial inflammation by partial targeting of NF-κB signalling and attenuation of p38/MAPKAPK2.

  19. Hormetic Effect of Berberine Attenuates the Anticancer Activity of Chemotherapeutic Agents

    OpenAIRE

    Jiaolin Bao; Borong Huang; Lidi Zou; Shenghui Chen; Chao Zhang; Yulin Zhang; Meiwan Chen; Jian-Bo Wan; Huanxing Su; Yitao Wang; Chengwei He

    2015-01-01

    Hormesis is a phenomenon of biphasic dose response characterized by exhibiting stimulatory or beneficial effects at low doses and inhibitory or toxic effects at high doses. Increasing numbers of chemicals of various types have been shown to induce apparent hormetic effect on cancer cells. However, the underlying significance and mechanisms remain to be elucidated. Berberine, one of the major active components of Rhizoma coptidis, has been manifested with notable anticancer activities. This st...

  20. Microglial AGE-albumin is critical for neuronal death in Parkinson's disease: a possible implication for theranostics

    Directory of Open Access Journals (Sweden)

    Bayarsaikhan E

    2016-08-01

    Full Text Available Enkhjargal Bayarsaikhan,1,2,* Delger Bayarsaikhan,1,* Jaesuk Lee,1 Myeongjoo Son,1,3 Seyeon Oh,1 Jeongsik Moon,1 Hye-Jeong Park,1 Arivazhagan Roshini,1 Seung U Kim,4 Byoung-Joon Song,5 Seung-Mook Jo,6 Kyunghee Byun,1,3 Bonghee Lee1,3 1Center for Regenerative Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea; 2Department of General Laboratory, National Cancer Center of Mongolia, Ulaanbaatar, Mongolia; 3Department of Anatomy and Cell Biology, Graduate School of Medicine, Gachon University, Incheon, Republic of Korea; 4Department of Medicine, University of British Columbia, Vancouver, Canada; 5Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA; 6Department of Emergency Medical Services, Eulji University, Seongnam-si, Gyeonggi-do, Republic of Korea *These authors contributed equally to this work Abstract: Advanced glycation end products (AGEs are known to play an important role in the pathogenesis of neurodegenerative diseases, including Parkinson’s disease (PD, by inducing protein aggregation and cross-link, formation of Lewy body, and neuronal death. In this study, we observed that AGE-albumin, the most abundant AGE product in the human PD brain, is synthesized in activated microglial cells and accumulates in the extracellular space. AGE-albumin synthesis in human-activated microglial cells is distinctly inhibited by ascorbic acid and cytochalasin treatment. Accumulated AGE-albumin upregulates the receptor to AGE, leading to apoptosis of human primary dopamine (DA neurons. In animal experiments, we observed reduced DA neuronal cell death by treatment with soluble receptor to AGE. Our study provides evidence that activated microglial cells are one of the main contributors in AGE-albumin accumulation, deleterious to DA neurons in human and animal PD brains. Finally, activated microglial AGE

  1. Palladium and platinum nanoparticles attenuate aging-like skin atrophy via antioxidant activity in mice.

    Directory of Open Access Journals (Sweden)

    Shuichi Shibuya

    Full Text Available Cu-Zn superoxide dismutase (Sod1 loss causes a redox imbalance as it leads to excess superoxide generation, which results in the appearance of various aging-related phenotypes, including skin atrophy. Noble metal nanoparticles, such as palladium (Pd and platinum (Pt nanoparticles, are considered to function as antioxidants due to their strong catalytic activity. In Japan, a mixture of Pd and Pt nanoparticles called PAPLAL has been used to treat chronic diseases over the past 60 years. In the present study, we investigated the protective effects of PAPLAL against aging-related skin pathologies in mice. Transdermal PAPLAL treatment reversed skin thinning associated with increased lipid peroxidation in Sod1-/- mice. Furthermore, PAPLAL normalized the gene expression levels of Col1a1, Mmp2, Has2, Tnf-α, Il-6, and p53 in the skin of the Sod1-/- mice. Pt nanoparticles exhibited marked SOD and catalase activity, while Pd nanoparticles only displayed weak SOD and catalase activity in vitro. Although the SOD and catalase activity of the Pt nanoparticles significantly declined after they had been oxidized in air, a mixture of Pd and Pt nanoparticles continued to exhibit SOD and catalase activity after oxidation. Importantly, a mixture of Pd and Pt nanoparticles with a molar ratio of 3 or 4 to 1 continued to exhibit SOD and catalase activity after oxidation, indicating that Pd nanoparticles prevent the oxidative deterioration of Pt nanoparticles. These findings indicate that PAPLAL stably suppresses intrinsic superoxide generation both in vivo and in vitro via SOD and catalase activity. PAPLAL is a potentially powerful tool for the treatment of aging-related skin diseases caused by oxidative damage.

  2. The adaptive immune system restrains Alzheimer’s disease pathogenesis by modulating microglial function

    Science.gov (United States)

    Abud, Edsel M.; Lakatos, Anita; Karimzadeh, Alborz; Yeung, Stephen T.; Davtyan, Hayk; Fote, Gianna M.; Lau, Lydia; Weinger, Jason G.; Lane, Thomas E.; Inlay, Matthew A.; Poon, Wayne W.; Blurton-Jones, Mathew

    2016-01-01

    The innate immune system is strongly implicated in the pathogenesis of Alzheimer’s disease (AD). In contrast, the role of adaptive immunity in AD remains largely unknown. However, numerous clinical trials are testing vaccination strategies for AD, suggesting that T and B cells play a pivotal role in this disease. To test the hypothesis that adaptive immunity influences AD pathogenesis, we generated an immune-deficient AD mouse model that lacks T, B, and natural killer (NK) cells. The resulting “Rag-5xfAD” mice exhibit a greater than twofold increase in β-amyloid (Aβ) pathology. Gene expression analysis of the brain implicates altered innate and adaptive immune pathways, including changes in cytokine/chemokine signaling and decreased Ig-mediated processes. Neuroinflammation is also greatly exacerbated in Rag-5xfAD mice as indicated by a shift in microglial phenotype, increased cytokine production, and reduced phagocytic capacity. In contrast, immune-intact 5xfAD mice exhibit elevated levels of nonamyloid reactive IgGs in association with microglia, and treatment of Rag-5xfAD mice or microglial cells with preimmune IgG enhances Aβ clearance. Last, we performed bone marrow transplantation studies in Rag-5xfAD mice, revealing that replacement of these missing adaptive immune populations can dramatically reduce AD pathology. Taken together, these data strongly suggest that adaptive immune cell populations play an important role in restraining AD pathology. In contrast, depletion of B cells and their appropriate activation by T cells leads to a loss of adaptive–innate immunity cross talk and accelerated disease progression. PMID:26884167

  3. The adaptive immune system restrains Alzheimer's disease pathogenesis by modulating microglial function.

    Science.gov (United States)

    Marsh, Samuel E; Abud, Edsel M; Lakatos, Anita; Karimzadeh, Alborz; Yeung, Stephen T; Davtyan, Hayk; Fote, Gianna M; Lau, Lydia; Weinger, Jason G; Lane, Thomas E; Inlay, Matthew A; Poon, Wayne W; Blurton-Jones, Mathew

    2016-03-01

    The innate immune system is strongly implicated in the pathogenesis of Alzheimer's disease (AD). In contrast, the role of adaptive immunity in AD remains largely unknown. However, numerous clinical trials are testing vaccination strategies for AD, suggesting that T and B cells play a pivotal role in this disease. To test the hypothesis that adaptive immunity influences AD pathogenesis, we generated an immune-deficient AD mouse model that lacks T, B, and natural killer (NK) cells. The resulting "Rag-5xfAD" mice exhibit a greater than twofold increase in β-amyloid (Aβ) pathology. Gene expression analysis of the brain implicates altered innate and adaptive immune pathways, including changes in cytokine/chemokine signaling and decreased Ig-mediated processes. Neuroinflammation is also greatly exacerbated in Rag-5xfAD mice as indicated by a shift in microglial phenotype, increased cytokine production, and reduced phagocytic capacity. In contrast, immune-intact 5xfAD mice exhibit elevated levels of nonamyloid reactive IgGs in association with microglia, and treatment of Rag-5xfAD mice or microglial cells with preimmune IgG enhances Aβ clearance. Last, we performed bone marrow transplantation studies in Rag-5xfAD mice, revealing that replacement of these missing adaptive immune populations can dramatically reduce AD pathology. Taken together, these data strongly suggest that adaptive immune cell populations play an important role in restraining AD pathology. In contrast, depletion of B cells and their appropriate activation by T cells leads to a loss of adaptive-innate immunity cross talk and accelerated disease progression. PMID:26884167

  4. Aluminum-doped zinc oxide nanoparticles attenuate the TSLP levels via suppressing caspase-1 in activated mast cells.

    Science.gov (United States)

    Kim, Min-Ho; Seo, Jun-Ho; Kim, Hyung-Min; Jeong, Hyun-Ja

    2016-04-01

    Zinc oxide nanoparticles (ZO-NPs) are used as antimicrobials, anti-inflammatories, and to treat cancer. However, although ZO-NPs have excellent efficiency and specificity, their cytotoxicity is higher than that of micron-sized zinc oxide. Doping ZO-NPs with aluminum can improve therapeutic efficacy, but the biological effects and mechanisms involved have not been elucidated. Here, we reported the efficacy of aluminum-doped ZO-NP (AZO) on thymic stromal lymphopoietin (TSLP) production and caspase-1 activation in human mast cell line, HMC-1 cells. AZO significantly reduced TSLP levels as well as interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α without inducing cytotoxicity. Furthermore, AZO more effectively reduced TSLP, IL-6, IL-8, and TNF-α levels than ZO-NP. The levels of inflammatory cytokine mRNA were also reduced by AZO treatment. AZO blocked production of IL-1β and activations of caspase-1 and nuclear factor-κB by inhibiting IκB kinase β and receptor interacting protein 2. In addition, AZO attenuated phosphorylation of mitogen-activated protein kinases, such as extracellular signal-regulated kinase, c-Jun N-terminal kinases, and p38. These findings provide evidence that AZO improves anti-inflammatory properties and offer a safe and effective potential treatment option. PMID:26825457

  5. A two-week reduction of ambulatory activity attenuates peripheral insulin sensitivity

    DEFF Research Database (Denmark)

    Krogh-Madsen, Rikke; Thyfault, John P; Broholm, Christa;

    2009-01-01

    activity would influence peripheral insulin sensitivity. We aimed to explore if healthy, non-exercising subjects who went from a normal to a low level of ambulatory activity for two weeks would display metabolic alterations including reduced peripheral insulin sensitivity. -To do this, ten healthy young...... number of daily steps induced a significant reduction of 17% in the glucose infusion rate (GIR) during the clamp. This reduction was due to a decline in peripheral insulin sensitivity with no effect on hepatic endogenous glucose production. The insulin-stimulated ratio of pAkt(thr308)/total Akt decreased...... possible biological cause for the public health problem of type 2 diabetes has been identified. Reduced ambulatory activity for two weeks in healthy, non-exercising young men significantly reduced peripheral insulin sensitivity, cardiovascular fitness, and lean leg mass. Key words: Inactivity, Insulin...

  6. Activation of farnesoid X receptor downregulates visfatin and attenuates diabetic nephropathy.

    Science.gov (United States)

    Zhou, Baoshang; Feng, Bing; Qin, Zhexue; Zhao, Youguang; Chen, Yu; Shi, Zhengmin; Gong, Yi; Zhang, Jing; Yuan, Fahuan; Mu, Jiao

    2016-01-01

    Visfatin, a recently discovered adipocytokine, has been shown to have an important role in the pathogenesis of diabetic nephropathy (DN). The farnesoid X receptor (FXR), a ligand-activated nuclear receptor, plays a protective role in DN. The regulation between FXR and visfatin and their interaction in DN has not been well established. In this study, we reported that FXR agonist GW4064 reduced high glucose induced human mesangial cells (HMCs) inflammation, fibrosis and proliferation by downregulating visfatin expression, which can be blunted by exogenous visfatin treatment. Moreover, luciferase reporter assay showed FXR regulated visfatin transcription activity probably by binding to the -1607 bp and -1192 bp region of the visfatin promoter. In vivo study also showed that GW4064 ameliorated the progression of DN in db/db mice with a decreased visfatin expression. These findings suggest that FXR activation delayed the progression of diabetic nephropathy and this effect is through downregulating visfatin. PMID:26450152

  7. Microglial recruitment, activation, and proliferation in response to primary demyelination

    DEFF Research Database (Denmark)

    Remington, Leah T; Babcock, Alicia A; Zehntner, Simone P;

    2007-01-01

    We have characterized the cellular response to demyelination/remyelination in the central nervous system using the toxin cuprizone, which causes reproducible demyelination in the corpus callosum. Microglia were distinguished from macrophages by relative CD45 expression (CD45(dim)) using flow...

  8. Preconditioning of Carbon Monoxide Releasing Molecule-derived CO Attenuates LPS-induced Activation of HUVEC

    Directory of Open Access Journals (Sweden)

    Bingwei Sun, Xiangqian Zou, Yueling Chen, Ping Zhang, Gengsheng Shi

    2008-01-01

    Full Text Available Objective: To investigate the effects and potential mechanisms of preconditioning of tricarbonyldichlororuthenium (III dimer (CORM-2-liberated CO on LPS-induced activation of endothelial cells (HUVEC. Methods: HUVEC were pretreated with CORM-2 at the concentration of 50 or 100μM for 2 hrs, washed and stimulated with LPS (10μg/ml for additional 4 hrs. Activation (oxidative stress of HUVEC was assessed by measuring intracellular oxidation of DHR 123 or nitration of DAF-FM, specific H2O2 and NO fluorochromes, respectively. The expression of HO-1, iNOS (Western blot and ICAM-1 (cell ELISA proteins and activation of inflammation-relevant transcription factor, NF-κB (EMSA were assessed. In addition, PMN adhesion to HUVEC was also assessed. Results: The obtained data indicate that pretreatment of HUVEC with CORM-2 results in: 1 decrease of LPS-induced production of ROS and NO; 2 up-regulation of HO-1 but decrease in iNOS at the protein levels; 3 inhibition of LPS-induced activation of NF-κB; and 4 downregulation of expression of ICAM-1, and this was accompanied by a decrease of PMN adhesion to LPS-stimulated HUVEC. Conclusions: Preconditioning of CO liberated by CORM-2 elicited its anti-inflammatory effects by interfering with the induction of intracellular oxidative stress. In addition, it also supports the notion that CO is a potent inhibitor of iNOS and NF-κB.

  9. Recombinant activated protein C attenuates coagulopathy and inflammation when administered early in murine pneumococcal pneumonia

    NARCIS (Netherlands)

    M. Schouten; C. van 't Veer; J.J.T.H. Roelofs; B. Gerlitz; B.W. Grinnell; M. Levi; T. van der Poll

    2011-01-01

    Recombinant human activated protein C (APC), which has both anticoagulant and anti-inflammatory properties, improves survival of patients with severe sepsis. This beneficial effect is especially apparent in patients with pneumococcal pneumonia. Earlier treatment with APC in sepsis has been associate

  10. Amiloride lowers blood pressure and attenuates urine plasminogen activation in patients with treatment-resistant hypertension

    DEFF Research Database (Denmark)

    Stolzenburg Oxlund, Christina; Buhl, Kristian Bergholt; Jacobsen, Ib A;

    2014-01-01

    daytime BP was reduced by 6.3/3.0 mm Hg. Seven of 80 cases (9%) discontinued amiloride due to hyperkalemia >5.5 mol/L, the most frequent adverse event. Urinary plasmin(ogen) and albumin excretions were significantly reduced after amiloride treatment (P < .0001). Urokinase activity was detectable in...

  11. Attenuated apoptosis response to Fas-ligand in active ulcerative colitis

    DEFF Research Database (Denmark)

    Seidelin, Jakob B; Nielsen, Ole H

    2008-01-01

    From mainly carcinoma cell line studies, apoptosis has been thought to play a major role in the pathogenesis of ulcerative colitis (UC). Apoptosis has been suggested to be due to a Fas ligand / Fas receptor interaction, but has never been studied in cells from patients with active UC. The aim was...

  12. Attenuated apoptosis response to Fas-ligand in active ulcerative colitis

    DEFF Research Database (Denmark)

    Seidelin, J.B.; Nielsen, Ole Haagen

    2008-01-01

    BACKGROUND: From mainly carcinoma cell line studies, apoptosis has been thought to play a major role in the pathogenesis of ulcerative colitis (UC). Apoptosis has been suggested to be due to a Fas ligand / Fas receptor interaction, but has never been studied in cells from patients with active UC....

  13. Functional adaptation of cortical interneurons to attenuated activity is subtype-specific

    Directory of Open Access Journals (Sweden)

    Theofanis Karayannis

    2012-09-01

    Full Text Available Functional neuronal homeostasis has been studied in a variety of model systems and contexts. Many studies have shown that there are a number of changes that can be activated within individual cells or networks in order to compensate for perturbations or changes in levels of activity. Dissociating the cell autonomous from the network-mediated events has been complicated due to the difficulty of sparsely targeting specific populations of neurons in vivo. Here, we make use of a recent in vivo approach we developed that allows for the sparse labeling and manipulation of activity within superficial CGE-derived GABAergic interneurons. Expression of the inward rectifying potassium channel Kir2.1 cell-autonomously reduced neuronal activity and lead to specific developmental changes in their intrinsic electrophysiological properties and the synaptic input they received. In contrast to previous studies on homeostatic scaling of pyramidal cells, we did not detect any of the typically observed compensatory mechanisms in these interneurons. Rather, we instead saw a specific alteration of the kinetics of excitatory synaptic events within the reelin-expressing subpopulation of interneurons. These results provide the first in vivo observations for the capacity of interneurons to cell-autonomously regulate their excitability.

  14. Functional adaptation of cortical interneurons to attenuated activity is subtype-specific.

    Science.gov (United States)

    Karayannis, Theofanis; De Marco García, Natalia V; Fishell, Gordon J

    2012-01-01

    Functional neuronal homeostasis has been studied in a variety of model systems and contexts. Many studies have shown that there are a number of changes that can be activated within individual cells or networks in order to compensate for perturbations or changes in levels of activity. Dissociating the cell autonomous from the network-mediated events has been complicated due to the difficulty of sparsely targeting specific populations of neurons in vivo. Here, we make use of a recent in vivo approach we developed that allows for the sparse labeling and manipulation of activity within superficial caudal ganglionic eminence (CGE)-derived GABAergic interneurons. Expression of the inward rectifying potassium channel Kir2.1 cell-autonomously reduced neuronal activity and lead to specific developmental changes in their intrinsic electrophysiological properties and the synaptic input they received. In contrast to previous studies on homeostatic scaling of pyramidal cells, we did not detect any of the typically observed compensatory mechanisms in these interneurons. Rather, we instead saw a specific alteration of the kinetics of excitatory synaptic events within the reelin-expressing subpopulation of interneurons. These results provide the first in vivo observations for the capacity of interneurons to cell-autonomously regulate their excitability. PMID:23015781

  15. Acute tianeptine treatment selectively modulates neuronal activation in the central nucleus of the amygdala and attenuates fear extinction.

    Science.gov (United States)

    Godsil, B P; Bontempi, B; Mailliet, F; Delagrange, P; Spedding, M; Jay, T M

    2015-11-01

    Antidepressant drugs are commonly prescribed treatments for anxiety disorders, and there is growing interest in understanding how these drugs impact fear extinction because extinction learning is pivotal to successful exposure-based therapy (EBT). A key objective within this domain is understanding how antidepressants alter the activation of specific elements of the limbic-based network that governs such fear processing. Chronic treatment with the antidepressant tianeptine has been shown to reduce the acquisition of extinction learning in rats, yet the drug's acute influence on activation in prefrontal and amygdalar regions, and on extinction learning are not well understood. To assess its influence on cellular activation, rats were injected with tianeptine and Fos immunoreactivity was measured in these regions. Acute tianeptine treatment selectively altered Fos expression within subdivisions of the central nucleus of the amygdala (CEA) in a bidirectional manner that varied in relation to ongoing activation within the capsular subdivision and its prefrontal and intra-amygdalar inputs. This pattern of results suggests that the drug can conditionally modulate the activation of CEA subdivisions, which contain microcircuits strongly implicated in fear processing. The effect of acute tianeptine was also examined with respect to the acquisition, consolidation and expression of fear extinction in rats. Acute tianeptine attenuated extinction learning as well as the recall of extinction memory, which underscores that acute dosing with the drug could alter learning during EBT. Together these findings provide a new perspective for understanding the mechanism supporting tianeptine's clinical efficacy, as well as its potential influence on CEA-based learning mechanisms. PMID:25560759

  16. Mixed disulfide formation at Cys141 leads to apparent unidirectional attenuation of Aspergillus niger NADP-glutamate dehydrogenase activity.

    Directory of Open Access Journals (Sweden)

    Adhish S Walvekar

    Full Text Available NADP-Glutamate dehydrogenase from Aspergillus niger (AnGDH exhibits sigmoid 2-oxoglutarate saturation. Incubation with 2-hydroxyethyl disulfide (2-HED, the disulfide of 2-mercaptoethanol resulted in preferential attenuation of AnGDH reductive amination (forward activity but with a negligible effect on oxidative deamination (reverse activity, when monitored in the described standard assay. Such a disulfide modified AnGDH displaying less than 1.0% forward reaction rate could be isolated after 2-HED treatment. This unique forward inhibited GDH form (FIGDH, resembling a hypothetical 'one-way' active enzyme, was characterized. Kinetics of 2-HED mediated inhibition and protein thiol titrations suggested that a single thiol group is modified in FIGDH. Two site-directed cysteine mutants, C141S and C415S, were constructed to identify the relevant thiol in FIGDH. The forward activity of C141S alone was insensitive to 2-HED, implicating Cys141 in FIGDH formation. It was observed that FIGDH displayed maximal reaction rate only after a pre-incubation with 2-oxoglutarate and NADPH. In addition, compared to the native enzyme, FIGDH showed a four fold increase in K0.5 for 2-oxoglutarate and a two fold increase in the Michaelis constants for ammonium and NADPH. With no change in the GDH reaction equilibrium constant, the FIGDH catalyzed rate of approach to equilibrium from reductive amination side was sluggish. Altered kinetic properties of FIGDH at least partly account for the observed apparent loss of forward activity when monitored under defined assay conditions. In sum, although Cys141 is catalytically not essential, its covalent modification provides a striking example of converting the biosynthetic AnGDH into a catabolic enzyme.

  17. D-Methionine attenuated cisplatin-induced vestibulotoxicity through altering ATPase activities and oxidative stress in guinea pigs

    International Nuclear Information System (INIS)

    Cisplatin has been used as a chemotherapeutic agent to treat many kinds of malignancies. Its damage to the vestibulo-ocular reflex (VOR) system has been reported. However, the underlying biochemical change in the inner ear or central vestibular nervous system is not fully understood. In this study, we attempted to examine whether cisplatin-induced vestibulotoxicity and D-methionine protection were correlated with the changes of ATPase activities and oxidative stress of ampullary tissue of vestibules as well as cerebellar cortex (the inhibitory center of VOR system) of guinea pigs. By means of a caloric test coupled with electronystagmographic recordings, we found that cisplatin exposure caused a dose-dependent (1, 3, or 5 mg/kg) vestibular dysfunction as revealed by a decrease of slow phase velocity (SPV). In addition, cisplatin significantly inhibited the Na+, K+-ATPase and Ca2+-ATPase activities in the ampullary tissue with a good dose-response relationship but not those of cerebellar cortex. Regression analysis indicated that a decrease of SPV was well correlated with the reduction of Na+, K+-ATPase and Ca2+-ATPase activities of the ampullary tissue. D-Methionine (300 mg/kg) reduced both abnormalities of SPV and ATPase activities in a correlated manner. Moreover, cisplatin exposure led to a significant dose-dependent increase of lipid peroxidation and nitric oxide concentrations of the vestibules, which could be significantly suppressed by D-methionine. However, cisplatin did not alter the levels of lipid peroxidation and nitric oxide of the cerebellum. In conclusion, cisplatin inhibited ATPase activities and increased oxidative stress in guinea pig vestibular labyrinths. D-Methionine attenuated cisplatin-induced vestibulotoxicity associated with ionic disturbance through its antioxidative property

  18. Faulty Suppression of Irrelevant Material in Patients with Thought Disorder Linked to Attenuated Frontotemporal Activation

    OpenAIRE

    Arcuri, S. M.; Broome, M. R.; Giampietro, V.; Amaro, E; T. T. J. Kircher; Williams, S.C.R.; Andrew, C. M.; Brammer, M.; Morris, R. G.; McGuire, P. K.

    2012-01-01

    Formal thought disorder is a feature schizophrenia that manifests as disorganized, incoherent speech, and is associated with a poor clinical outcome. The neurocognitive basis of this symptom is unclear but it is thought to involve an impairment in semantic processing classically described as a loosening of meaningful associations. Using a paradigm derived from the n400 event-related, potential, we examined the extent to which regional activation during semantic processing is altered in schizo...

  19. Acupuncture Attenuated Inflammation and Inhibited Th17 and Treg Activity in Experimental Asthma

    OpenAIRE

    Ying Wei; Ming Dong; Hongying Zhang; Yubao Lv; Jiaqi Liu; Kai Wei; Qingli Luo; Jing Sun; Feng Liu; Fei Xu; Jingcheng Dong

    2015-01-01

    Acupuncture is an effective therapeutic method in asthma treatment in traditional Chinese medicine. Here, we evaluated the effect of acupuncture on airway hyperresponsiveness (AHR) and the associated inflammatory changes as well as Th17 and Treg activity in ovalbumin- (OVA-) induced experimental asthma. Our results revealed that acupuncture treatment significantly inhibited AHR, lung inflammation, and mucus secretion of experimental asthma mice. Furthermore, a decrease in lymphocytes and eosi...

  20. Palladium and Platinum Nanoparticles Attenuate Aging-Like Skin Atrophy via Antioxidant Activity in Mice

    OpenAIRE

    Shibuya, Shuichi; Ozawa, Yusuke; Watanabe, Kenji; Izuo, Naotaka; Toda, Toshihiko; Yokote, Koutaro; Shimizu, Takahiko

    2014-01-01

    Cu-Zn superoxide dismutase (Sod1) loss causes a redox imbalance as it leads to excess superoxide generation, which results in the appearance of various aging-related phenotypes, including skin atrophy. Noble metal nanoparticles, such as palladium (Pd) and platinum (Pt) nanoparticles, are considered to function as antioxidants due to their strong catalytic activity. In Japan, a mixture of Pd and Pt nanoparticles called PAPLAL has been used to treat chronic diseases over the past 60 years. In t...

  1. Loss of CARD9-mediated innate activation attenuates severe influenza pneumonia without compromising host viral immunity

    OpenAIRE

    Takayuki Uematsu; Ei’ichi Iizasa; Noritada Kobayashi; Hiroki Yoshida; Hiromitsu Hara

    2015-01-01

    Influenza virus (IFV) infection is a common cause of severe viral pneumonia associated with acute respiratory distress syndrome (ARDS), which is difficult to control with general immunosuppressive therapy including corticosteroids due to the unfavorable effect on viral replication. Studies have suggested that the excessive activation of the innate immunity by IFV is responsible for severe pathologies. In this study, we focused on CARD9, a signaling adaptor known to regulate innate immune acti...

  2. 17β-estradiol attenuates injury-induced microglia activation in the oculomotor nucleus.

    Science.gov (United States)

    Gyenes, A; Hoyk, Z; Csakvari, E; Siklos, L; Parducz, A

    2010-12-15

    Recent studies provide increasing data indicating the prominent role of estrogens in protecting the nervous system against the noxious consequences of nerve injury. It is also clear that in the process of nerve injury and recovery not only the neurons, but the glial cells are also involved and they are important components of the protective mechanisms. In the present article the effect of 17β-estradiol on injury-induced microglia activation was studied in an animal model. Peripheral axotomy of the oculomotor neurons was achieved by the removal of the right eyeball including the extraocular muscles of ovariectomized adult mice. The time course and the extent of microglia activation was followed by the unbiased morphometric analysis of CD11b immunoreactive structures within the oculomotor nucleus. The first sign of microglia activation appeared after 24 h following injury, the maximal effect was found on the fourth day. In ovariectomized females hormone treatment (daily injection of 17β-estradiol, 5 μg/100 g b.w.) decreased significantly the microglia reaction at postoperative day 4. Our results show that microglia response to nerve injury is affected by estradiol, that is these cells may mediate some of the hormonal effects and may contribute to protective mechanisms resulting in the structural and functional recovery of the nervous system. PMID:20870014

  3. Activation of the adenosine A2A receptor attenuates experimental autoimmune encephalomyelitis and is associated with increased intracellular calcium levels.

    Science.gov (United States)

    Liu, Yumei; Zou, Haifeng; Zhao, Ping; Sun, Bo; Wang, Jinghua; Kong, Qingfei; Mu, Lili; Zhao, Sihan; Wang, Guangyou; Wang, Dandan; Zhang, Yao; Zhao, Jiaying; Yin, Pengqi; Liu, Lei; Zhao, Xiuli; Li, Hulun

    2016-08-25

    Multiple sclerosis (MS) is a common autoimmune disease that inevitably causes inflammatory nerve demyelination. However, an effective approach to prevent its course is still lacking and urgently needed. Recently, the adenosine A2A receptor (A2AR) has emerged as a novel inflammation regulator. Manipulation of A2AR activity may suppress the MS process and protect against nerve damage. To test this hypothesis, we treated murine experimental autoimmune encephalomyelitis (EAE), a model for MS, with the selective A2AR agonist, CGS21680 (CGS). We evaluated the effects of CGS on the pathological features of EAE progression, including CNS cellular infiltration, inflammatory cytokine expression, lymphocyte proliferation, and cell surface markers. Treatment with CGS significantly suppressed specific lymphocyte proliferation, reduced infiltration of CD4(+) T lymphocytes, and attenuated the expression of inflammatory cytokines, which in turn inhibited the EAE progression. For the first time, we demonstrate that CGS can increase the intracellular calcium concentration ([Ca(2+)]i) in murine lymphocytes, which may be the mechanism underlying the suppressive effects of CGS-induced A2AR activation on EAE progression. Our findings strongly suggest that A2AR is a potential therapeutic target for MS and provide insight into the mechanism of action of A2AR agonists, which may offer a therapeutic option for this disease. PMID:27217214

  4. Effects of the live attenuated measles-mumps-rubella booster vaccination on disease activity in patients with juvenile idiopathic arthritis : a randomized trial

    NARCIS (Netherlands)

    Heijstek, Marloes W; Kamphuis, Sylvia; Armbrust, Wineke; Swart, Joost; Gorter, Simone; de Vries, Lara D; Smits, Gaby P; van Gageldonk, Pieter G; Berbers, Guy A M; Wulffraat, Nico M

    2013-01-01

    IMPORTANCE: The immunogenicity and the effects of live attenuated measles-mumps-rubella (MMR) vaccination on disease activity in patients with juvenile idiopathic arthritis (JIA) are matters of concern, especially in patients treated with immunocompromising therapies. OBJECTIVES: To assess whether M

  5. Anti-inflammatory effects of saponins derived from the roots of Platycodon grandiflorus in lipopolysaccharide‑stimulated BV2 microglial cells.

    Science.gov (United States)

    Jang, Kyung-Jun; Kim, Hong Ki; Han, Min Ho; Oh, You Na; Yoon, Hyun-Min; Chung, Yoon Ho; Kim, Gi Young; Hwang, Hye Jin; Kim, Byung Woo; Choi, Yung Hyun

    2013-06-01

    Radix platycodi is the root of Platycodon grandiflorus A. DC, which has been widely used as a food material and for the treatment of a number of chronic inflammatory diseases in traditional oriental medicine. In this study, the anti‑inflammatory effects of the saponins isolated from radix platycodi (PGS) on the production of inflammatory mediators and cytokines in lipopolysaccharide (LPS)-stimulated BV2 murine microglial cells were examined. We also investigated the effects of PGS on LPS‑induced nuclear factor‑κB (NF-κB) activation and phosphoinositide 3-kinase (PI3K)/AKT and mitogen-activated protein kinase (MAPK) signaling pathways. Following stimulation with LPS, elevated nitric oxide (NO), prostaglandin E2 (PGE2) and pro-inflammatory cytokine production was detected in the BV2 microglial cells. However, PGS significantly inhibited the excessive production of NO, PGE2 and pro‑inflammatory cytokines, including interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in a concentration-dependent manner without causing any cytotoxic effects. In addition, PGS suppressed NF-κB translocation and inhibited the LPS-induced phosphorylation of AKT and MAPKs. Our results indicate that the inhibitory effect of PGS on LPS-stimulated inflammatory response in BV2 microglial cells is associated with the suppression of NF-κB activation and the PI3K/AKT and MAPK signaling pathways. Therefore, these findings suggest that PGS may be useful in the treatment of neurodegenerative diseases by inhibiting inflammatory responses in activated microglial cells. PMID:23563392

  6. Modulation of Lipopolysaccharide Stimulated Nuclear Factor kappa B Mediated iNOS/NO Production by Bromelain in Rat Primary Microglial Cells

    OpenAIRE

    Abbasi Habashi, Soraya; Sabouni, Farzaneh; Moghimi, Ali; Ansari Majd, Saeed

    2016-01-01

    Background: Microglial cells act as the sentinel of the central nervous system .They are involved in neuroprotection but are highly implicated in neurodegeneration of the aging brain. When over-activated, microglia release pro-inflammatory factors, such as nitric oxide (NO) and cytokines, which are critical in eliciting neuroinflammatory responses associated with neurodegenerative diseases. This study examined whether bromelain, the pineapple-derived extract, may exert an anti-inflammatory ef...

  7. Activation of the kinin B1 receptor attenuates melanoma tumor growth and metastasis.

    Directory of Open Access Journals (Sweden)

    Patricia Dillenburg-Pilla

    Full Text Available Melanoma is a very aggressive tumor that does not respond well to standard therapeutic approaches, such as radio- and chemotherapies. Furthermore, acquiring the ability to metastasize in melanoma and many other tumor types is directly related to incurable disease. The B1 kinin receptor participates in a variety of cancer-related pathophysiological events, such as inflammation and angiogenesis. Therefore, we investigated whether this G protein-coupled receptor plays a role in tumor progression. We used a murine melanoma cell line that expresses the kinin B1 receptor and does not express the kinin B2 receptor to investigate the precise contribution of activation of the B1 receptor in tumor progression and correlated events using various in vitro and in vivo approaches. Activation of the kinin B1 receptor in the absence of B2 receptor inhibits cell migration in vitro and decreases tumor formation in vivo. Moreover, tumors formed from cells stimulated with B1-specific agonist showed several features of decreased aggressiveness, such as smaller size and infiltration of inflammatory cells within the tumor area, higher levels of pro-inflammatory cytokines implicated in the host anti-tumor immune response, lower number of cells undergoing mitosis, a poorer vascular network, no signs of invasion of surrounding tissues or metastasis and increased animal survival. Our findings reveal that activation of the kinin B1 receptor has a host protective role during murine melanoma tumor progression, suggesting that the B1 receptor could be a new anti-tumor GPCR and provide new opportunities for therapeutic targeting.

  8. Additional attenuation of natural VLF electromagnetic waves observed by the DEMETER spacecraft resulting from preseismic activity

    Czech Academy of Sciences Publication Activity Database

    Píša, David; Němec, F.; Santolík, Ondřej; Parrot, M.; Rycroft, M.

    2013-01-01

    Roč. 118, č. 8 (2013), s. 5286-5295. ISSN 2169-9380 R&D Projects: GA ČR(CZ) GAP209/11/2280; GA ČR GA205/09/1253 Grant ostatní: European Community Seventh Framework Programme (FP7/2007-2013),(XE) 262005; AV ČR(CZ) M100431206. Institutional support: RVO:68378289 Keywords : DEMETER * VLF waves * preseismic activity * Earth-ionosphere waveguide Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.440, year: 2013 http://onlinelibrary.wiley.com/doi/10.1002/jgra.50469/abstract

  9. Perindopril Attenuates Lipopolysaccharide-Induced Amyloidogenesis and Memory Impairment by Suppression of Oxidative Stress and RAGE Activation.

    Science.gov (United States)

    Goel, Ruby; Bhat, Shahnawaz Ali; Hanif, Kashif; Nath, Chandishwar; Shukla, Rakesh

    2016-02-17

    Clinical and preclinical studies account hypertension as a risk factor for dementia. We reported earlier that angiotensin-converting enzyme (ACE) inhibition attenuated the increased vulnerability to neurodegeneration in hypertension and prevented lipopolysaccharide (LPS)-induced memory impairment in normotensive wistar rats (NWRs) and spontaneously hypertensive rats (SHRs). Recently, a receptor for advanced glycation end products (RAGE) has been reported to induce amyloid beta (Aβ1-42) deposition and memory impairment in hypertensive animals. However, the involvement of ACE in RAGE activation and amyloidogenesis in the hypertensive state is still unexplored. Therefore, in this study, we investigated the role of ACE on RAGE activation and amyloidogenesis in memory-impaired NWRs and SHRs. Memory impairment was induced by repeated (on days 1, 4, 7, and 10) intracerebroventricular (ICV) injections of LPS in SHRs (25 μg) and NWRs (50 μg). Our data showed that SHRs exhibited increased oxidative stress (increased gp91-phox/NOX-2 expression and ROS generation), RAGE, and β-secretase (BACE) expression without Aβ1-42 deposition. LPS (25 μg, ICV) further amplified oxidative stress, RAGE, and BACE activation, culminating in Aβ1-42 deposition and memory impairment in SHRs. Similar changes were observed at the higher dose of LPS (50 μg, ICV) in NWRs. Further, LPS-induced oxidative stress was associated with endothelial dysfunction and reduction in cerebral blood flow (CBF), more prominently in SHRs than in NWRs. Finally, we showed that perindopril (0.1 mg/kg, 15 days) prevented memory impairment by reducing oxidative stress, RAGE activation, amyloidogenesis, and improved CBF in both SHRs and NWRs. These findings suggest that perindopril might be used as a therapeutic strategy for the early stage of dementia. PMID:26689453

  10. Faulty Suppression of Irrelevant Material in Patients with Thought Disorder Linked to Attenuated Frontotemporal Activation

    Directory of Open Access Journals (Sweden)

    S. M. Arcuri

    2012-01-01

    Full Text Available Formal thought disorder is a feature schizophrenia that manifests as disorganized, incoherent speech, and is associated with a poor clinical outcome. The neurocognitive basis of this symptom is unclear but it is thought to involve an impairment in semantic processing classically described as a loosening of meaningful associations. Using a paradigm derived from the n400 event-related, potential, we examined the extent to which regional activation during semantic processing is altered in schizophrenic patients with formal thought disorder. Ten healthy control and 18 schizophrenic participants (9 with and 9 without formal thought disorder performed a semantic decision sentence task during an event-related functional magnetic resonance imaging experiment. We employed analysis of variance to estimate the main effects of semantic congruency and groups on activation and specific effects of formal thought disorder were addressed using post-hoc comparisons. We found that the frontotemporal network, normally engaged by a semantic decision task, was underactivated in schizophrenia, particularly in patients with FTD. This network is implicated in the inhibition of automatically primed stimuli and impairment of its function interferes with language processing and contributes to the production of incoherent speech.

  11. Acupuncture Attenuated Inflammation and Inhibited Th17 and Treg Activity in Experimental Asthma.

    Science.gov (United States)

    Wei, Ying; Dong, Ming; Zhang, Hongying; Lv, Yubao; Liu, Jiaqi; Wei, Kai; Luo, Qingli; Sun, Jing; Liu, Feng; Xu, Fei; Dong, Jingcheng

    2015-01-01

    Acupuncture is an effective therapeutic method in asthma treatment in traditional Chinese medicine. Here, we evaluated the effect of acupuncture on airway hyperresponsiveness (AHR) and the associated inflammatory changes as well as Th17 and Treg activity in ovalbumin- (OVA-) induced experimental asthma. Our results revealed that acupuncture treatment significantly inhibited AHR, lung inflammation, and mucus secretion of experimental asthma mice. Furthermore, a decrease in lymphocytes and eosinophils as well as neutrophils was observed in bronchoalveolar lavage fluid (BALF) of mice treated with acupuncture. Acupuncture reduced the OVA specific IgE level as well as the Th17 cytokine levels including IL-17A, IL-17F, and IL-22 in the serum of the experimental asthma mice. Acupuncture treatment group also had reduced CD4+IL-17A+ cell numbers and increased CD4+Foxp3+ cell numbers in BALF. In addition, acupuncture could inhibit IL-17R, RORγt, p65, and the inhibitor of NF-κB kinase-α (IKKα) protein expression. Our results indicated that acupuncture was effective in inhibiting AHR and inflammation in OVA-induced experimental asthma, which may be associated with the regulation of Th17 and Treg activity and NF-κB pathway. PMID:26612993

  12. Acupuncture Attenuated Inflammation and Inhibited Th17 and Treg Activity in Experimental Asthma

    Directory of Open Access Journals (Sweden)

    Ying Wei

    2015-01-01

    Full Text Available Acupuncture is an effective therapeutic method in asthma treatment in traditional Chinese medicine. Here, we evaluated the effect of acupuncture on airway hyperresponsiveness (AHR and the associated inflammatory changes as well as Th17 and Treg activity in ovalbumin- (OVA- induced experimental asthma. Our results revealed that acupuncture treatment significantly inhibited AHR, lung inflammation, and mucus secretion of experimental asthma mice. Furthermore, a decrease in lymphocytes and eosinophils as well as neutrophils was observed in bronchoalveolar lavage fluid (BALF of mice treated with acupuncture. Acupuncture reduced the OVA specific IgE level as well as the Th17 cytokine levels including IL-17A, IL-17F, and IL-22 in the serum of the experimental asthma mice. Acupuncture treatment group also had reduced CD4+IL-17A+ cell numbers and increased CD4+Foxp3+ cell numbers in BALF. In addition, acupuncture could inhibit IL-17R, RORγt, p65, and the inhibitor of NF-κB kinase-α (IKKα protein expression. Our results indicated that acupuncture was effective in inhibiting AHR and inflammation in OVA-induced experimental asthma, which may be associated with the regulation of Th17 and Treg activity and NF-κB pathway.

  13. Acupuncture Attenuated Inflammation and Inhibited Th17 and Treg Activity in Experimental Asthma

    Science.gov (United States)

    Wei, Ying; Dong, Ming; Zhang, Hongying; Lv, Yubao; Liu, Jiaqi; Wei, Kai; Luo, Qingli; Sun, Jing; Liu, Feng; Xu, Fei; Dong, Jingcheng

    2015-01-01

    Acupuncture is an effective therapeutic method in asthma treatment in traditional Chinese medicine. Here, we evaluated the effect of acupuncture on airway hyperresponsiveness (AHR) and the associated inflammatory changes as well as Th17 and Treg activity in ovalbumin- (OVA-) induced experimental asthma. Our results revealed that acupuncture treatment significantly inhibited AHR, lung inflammation, and mucus secretion of experimental asthma mice. Furthermore, a decrease in lymphocytes and eosinophils as well as neutrophils was observed in bronchoalveolar lavage fluid (BALF) of mice treated with acupuncture. Acupuncture reduced the OVA specific IgE level as well as the Th17 cytokine levels including IL-17A, IL-17F, and IL-22 in the serum of the experimental asthma mice. Acupuncture treatment group also had reduced CD4+IL-17A+ cell numbers and increased CD4+Foxp3+ cell numbers in BALF. In addition, acupuncture could inhibit IL-17R, RORγt, p65, and the inhibitor of NF-κB kinase-α (IKKα) protein expression. Our results indicated that acupuncture was effective in inhibiting AHR and inflammation in OVA-induced experimental asthma, which may be associated with the regulation of Th17 and Treg activity and NF-κB pathway. PMID:26612993

  14. Piperine, an active ingredient of black pepper attenuates acetaminophen-induced hepatotoxicity in mice

    Institute of Scientific and Technical Information of China (English)

    Evan Prince Sabina; Annie Deborah Harris Souriyan; Deborah Jackline; Mahaboob Khan Rasool

    2010-01-01

    Objective: To explore the hepatoprotective and antioxidant effects of piperine against acetaminophen-induced hepatotoxicity in mice. Methods: In mice, hepatotoxicity was induced by a single dose of acetaminophen (900 mg/kg b.w. i.p.). Piperine (25 mg/kg b.w. i.p.) and standard drug silymarin (25 mg/kg b.w. i.p.) were given to mice, 30 min after the single injection of acetaminophen. After 4 h, the mice were decapitated. Activities of liver marker enzymes [(aspartate transaminase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP)] and inflammatory mediator tumour necrosis factor-alpha (TNF-α) were estimated in serum, while lipid peroxidation and antioxidant status (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione-s-transferase and glutathione) were determined in liver homogenate of control and experimental mice. Results: Acetaminophen induction (900 mg/kg b.w. i.p.) significantly increased the levels of liver marker enzymes, TNF-α, and lipid peroxidation, and caused the depletion of antioxidant status. Piperine and silymarin treatment to acetaminophen challenged mice resulted in decreased liver marker enzymes activity, TNF-α and lipid peroxidation levels with increase in antioxidant status. Conclusions: The results clearly demonstrate that piperine shows promising hepatoprotective effect as comparable to standard drug silymarin.

  15. Olomoucine inhibits cathepsin L nuclear translocation, activates autophagy and attenuates toxicity of 6-hydroxydopamine.

    Science.gov (United States)

    Fei, Xi-Feng; Qin, Zheng-Hong; Xiang, Bei; Li, Ling-Yun; Han, Feng; Fukunaga, Kohji; Liang, Zhong-Qin

    2009-04-01

    The finding of nuclear translocation of cathepsin L and its ability to process the CDP/Cux transcription factor uncovers an important role of cathepsin L in control of cell cycle progression. As the expression of certain cell cycle regulators is associated with nigral neuronal death, the present study was sought to investigate if nuclear translocation of cathepsin L and expression of certain cyclins were induced in DA neurons by 6-hydroxydopamine (6-OHDA). The neuroprotective effects of the cell cycle inhibitor olomoucine against 6-OHDA-induced death of nigral neurons were examined. Using immunocytochemistry and real-time PCR we demonstrated that cyclin D1, cyclin B1 and proliferating cell nuclear antigen (PCNA) were aberrantly expressed in some dopaminergic neurons after 6-OHDA infusion. The nuclear translocation of cathepsin L and up-regulation of LC3, a protein involved in autophagy, were observed in nigral DA neurons. Olomoucine, a cyclin dependent kinase (CDK) inhibitor, reduced contralateral rotations and the loss of TH-positive neurons in substantia nigra induced by lesion with 6-OHDA. Pretreatment of rats or primary DA neurons with olomoucine resulted in a partial blockade of nuclear translocation of cathepsin L. Olomoucine also increased the expression of punctate LC3 immunoreactivity, indicating activation of autophagy. These findings suggest that olomoucine may exert neuroprotective effects through inhibiting cathepsin L nuclear translocation and activating autophagy. PMID:19368812

  16. Oral glucose ingestion attenuates exercise-induced activation of 5'-AMP-activated protein kinase in human skeletal muscle

    DEFF Research Database (Denmark)

    Åkerström, Thorbjörn; Birk, Jesper Bratz; Klein, Ditte Kjærsgaard;

    2006-01-01

    5'-AMP-activated protein kinase (AMPK) has been suggested to be a 'metabolic master switch' regulating various aspects of muscle glucose and fat metabolism. In isolated rat skeletal muscle, glucose suppresses the activity of AMPK and in human muscle glycogen loading decreases exercise-induced AMPK...

  17. Activated farnesoid X receptor attenuates apoptosis and liver injury in autoimmune hepatitis.

    Science.gov (United States)

    Lian, Fan; Wang, Yu; Xiao, Youjun; Wu, Xiwen; Xu, Hanshi; Liang, Liuqin; Yang, Xiuyan

    2015-10-01

    Autoimmune hepatitis (AIH) is a chronic inflammatory liver disease associated with interface hepatitis, the presence of autoantibodies, regulatory T‑cell dysfunction and raised plasma liver enzyme levels. The present study assessed the hepatoprotective and antiapoptotic role of farnesoid X receptor (FXR) in AIH. a mouse model of AIH was induced by treatment with concanavalin A (ConA). The FXR agonist, chenodeoxycholic acid (CDCA), was administered to mice exhibiting ConA‑induced liver injury and a normal control. Blood samples were obtained to detect the levels of aminotransferases and inflammatory cytokines. Liver specimens were collected, and hematoxylin‑eosin staining was used for histopathological examination and detection. Apoptosis was evaluated using the terminal deoxynucleotidyl-transferase‑mediated dUTP nick end labeling (TUNEL) method. The expression levels of apoptosis‑associated genes and proteins were determined by reverse transcription‑quantitative polymerase chain reaction and western blotting, respectively. The results demonstrated that FXR was downregulated at the mRNA and protein level in the liver specimens of mice induced with ConA‑induced hepatitis. Increased levels of aminotransferases and inflammatory cytokines, including interferon‑γ, tumor necrosis factor‑α, interleukin (IL)‑4 and IL‑2, were detected in ConA‑treated mice. The mice pretreated with the FXR agonist, CDCA, were more resistant to ConA hepatitis, as indicated by reduced levels of alanine transaminase/aspartate aminotransferase and aminotransferases. The activation of FXR ameliorated hepatocyte apoptosis, as demonstrated by TUNEL analysis and downregulation of the Fas/Fas ligand, tumor necrosis factor‑related apoptosis‑inducing ligand and caspase‑3. Taken together, FXR activation ameliorated liver injury and suppressed inflammatory cytokines in ConA‑induced hepatitis. FXR, therefore, exerts a protective role against ConA-induced apoptosis. PMID

  18. Copper Ion Attenuated the Antiproliferative Activity of Di-2-pyridylhydrazone Dithiocarbamate Derivative; However, There Was a Lack of Correlation between ROS Generation and Antiproliferative Activity.

    Science.gov (United States)

    Wang, Tingting; Fu, Yun; Huang, Tengfei; Liu, Youxun; Wu, Meihao; Yuan, Yanbin; Li, Shaoshan; Li, Changzheng

    2016-01-01

    The use of chelators for cancer treatment has been an alternative option. Dithiocarbamates have recently attracted considerable attention owning to their diverse biological activities; thus, the preparation of new dithiocarbamate derivatives with improved antitumor activity and selectivity as well as probing the underlying molecular mechanism are required. In this study, di-2-pyridylhydrazone dithiocarbamate S-propionic acid (DpdtpA) and its copper complex were prepared and characterized, and its antiproliferative activity was evaluated. The proliferation inhibition assay showed that DpdtpA exhibited excellent antiproliferative effect in hepatocellular carcinoma (IC50 = 1.3 ± 0.3 μM for HepG2, and 2.5 ± 0.6 μM for Bel-7402). However, in the presence of copper ion, the antiproliferative activity of DpdtpA was dramatically attenuated (20-30 fold) owing to the formation of copper chelate. A preliminarily mechanistic study revealed that reactive oxygen species (ROS) generation mediated the antiproliferative activity of DpdtpA, and accordingly induced apoptosis, DNA cleavage, and autophagy. Surprisingly, the cytotoxicity of DpdtpA copper complex (DpdtpA-Cu) was also involved in ROS generation; however, a paradoxical relation between cellular ROS level and cytotoxicity was observed. Further investigation indicated that DpdtpA could induce cell cycle arrest at the S phase; however, DpdtpA-Cu lacked this effect, which explained the difference in their antiproliferative activity. PMID:27556432

  19. Copper Ion Attenuated the Antiproliferative Activity of Di-2-pyridylhydrazone Dithiocarbamate Derivative; However, There Was a Lack of Correlation between ROS Generation and Antiproliferative Activity

    Directory of Open Access Journals (Sweden)

    Tingting Wang

    2016-08-01

    Full Text Available The use of chelators for cancer treatment has been an alternative option. Dithiocarbamates have recently attracted considerable attention owning to their diverse biological activities; thus, the preparation of new dithiocarbamate derivatives with improved antitumor activity and selectivity as well as probing the underlying molecular mechanism are required. In this study, di-2-pyridylhydrazone dithiocarbamate S-propionic acid (DpdtpA and its copper complex were prepared and characterized, and its antiproliferative activity was evaluated. The proliferation inhibition assay showed that DpdtpA exhibited excellent antiproliferative effect in hepatocellular carcinoma (IC50 = 1.3 ± 0.3 μM for HepG2, and 2.5 ± 0.6 μM for Bel-7402. However, in the presence of copper ion, the antiproliferative activity of DpdtpA was dramatically attenuated (20–30 fold owing to the formation of copper chelate. A preliminarily mechanistic study revealed that reactive oxygen species (ROS generation mediated the antiproliferative activity of DpdtpA, and accordingly induced apoptosis, DNA cleavage, and autophagy. Surprisingly, the cytotoxicity of DpdtpA copper complex (DpdtpA–Cu was also involved in ROS generation; however, a paradoxical relation between cellular ROS level and cytotoxicity was observed. Further investigation indicated that DpdtpA could induce cell cycle arrest at the S phase; however, DpdtpA–Cu lacked this effect, which explained the difference in their antiproliferative activity.

  20. Microglial p38α MAPK is a key regulator of proinflammatory cytokine up-regulation induced by toll-like receptor (TLR ligands or beta-amyloid (Aβ

    Directory of Open Access Journals (Sweden)

    Watterson D Martin

    2011-07-01

    Full Text Available Abstract Background Overproduction of proinflammatory cytokines from activated microglia has been implicated as an important contributor to pathophysiology progression in both acute and chronic neurodegenerative diseases. Therefore, it is critical to elucidate intracellular signaling pathways that are significant contributors to cytokine overproduction in microglia exposed to specific stressors, especially pathways amenable to drug interventions. The serine/threonine protein kinase p38α MAPK is a key enzyme in the parallel and convergent intracellular signaling pathways involved in stressor-induced production of IL-1β and TNFα in peripheral tissues, and is a drug development target for peripheral inflammatory diseases. However, much less is known about the quantitative importance of microglial p38α MAPK in stressor-induced cytokine overproduction, or the potential of microglial p38α MAPK to be a druggable target for CNS disorders. Therefore, we examined the contribution of microglial p38αMAPK to cytokine up-regulation, with a focus on the potential to suppress the cytokine increase by inhibition of the kinase with pharmacological or genetic approaches. Methods The microglial cytokine response to TLR ligands 2/3/4/7/8/9 or to Aβ1-42 was tested in the presence of a CNS-penetrant p38α MAPK inhibitor, MW01-2-069A-SRM. Primary microglia from mice genetically deficient in p38α MAPK were used to further establish a linkage between microglia p38α MAPK and cytokine overproduction. The in vivo significance was determined by p38α MAPK inhibitor treatment in a LPS-induced model of acute neuroinflammation. Results Increased IL-1β and TNFα production by the BV-2 microglial cell line and by primary microglia cultures was inhibited in a concentration-dependent manner by the p38α MAPK-targeted inhibitor. Cellular target engagement was demonstrated by the accompanying decrease in the phosphorylation state of two p38α MAPK protein substrates, MK2

  1. Inhibition of 5-Lipoxygenase Pathway Attenuates Acute Liver Failure by Inhibiting Macrophage Activation

    Directory of Open Access Journals (Sweden)

    Lu Li

    2014-01-01

    Full Text Available This study aimed to investigate the role of 5-lipoxygenase (5-LO in acute liver failure (ALF and changes in macrophage activation by blocking it. ALF was induced in rats by administration of D-galactosamine (D-GalN/lipopolysaccharide (LPS. Rats were injected intraperitoneally with AA-861 (a specific 5-LO inhibitor, 24 hr before D-GalN/LPS administration. After D-GalN/LPS injection, the liver tissue was collected for assessment of histology, macrophage microstructure, macrophage counts, 5-LO mRNA formation, protein expression, and concentration of leukotrienes. Serum was collected for detecting alanine aminotransferase (ALT, aspartate transaminase (AST, total bilirubin (Tbil, and tumor necrosis factor- (TNF-α. Twenty-four hours after injection, compared with controls, ALF rats were characterized by widespread hepatocyte necrosis and elevated ALT, AST, and Tbil, and 5-LO protein expression reached a peak. Liver leukotriene B4 was also significantly elevated. However, 5-LO mRNA reached a peak 8 hr after D-GalN/LPS injection. Simultaneously, the microstructure of macrophages was changed most significantly and macrophages counts were increased significantly. Moreover, serum TNF-α was also elevated. By contrast, AA-861 pretreatment significantly decreased liver necrosis as well as all of the parameters compared with the rats without pretreatment. Macrophages, via the 5-LO pathway, play a critical role in ALF, and 5-LO inhibitor significantly alleviates ALF, possibly related to macrophage inhibition.

  2. Salidroside attenuates inflammatory response via suppressing JAK2-STAT3 pathway activation and preventing STAT3 transfer into nucleus.

    Science.gov (United States)

    Qi, Zhilin; Qi, Shimei; Ling, Liefeng; Lv, Jun; Feng, Zunyong

    2016-06-01

    Salidroside (SAL) is an active ingredient isolated from the Rhodiola rosea, has potent anti-inflammatory effect, but the mechanism is still elusive. The purpose of this study is to verify the effects of SAL on LPS-induced inflammatory response and investigate the possible underlying molecular mechanism. RAW264.7 cells were pre-incubated with SAL for 2h, then stimulated with or without LPS for another 16h. The levels of TNF-α, MCP-1, IL-6, and PGE2 were detected by ELISA, and the production of NO was determined by nitrite analysis. The expression levels of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were detected by Western blotting. In RAW264.7 cells and murine peritoneal macrophages, the activation of signal molecules was also measured by Western blot. The nuclear translocation of STAT3 was determined by Laser confocal and nucleocytoplasmic separation experiments. Our results showed that SAL attenuated the productions of TNF-α, IL-6, MCP-1, PGE2 and NO dose dependently. SAL also suppressed LPS-induced expressions of iNOS and COX-2 significantly. Further studies revealed that SAL down-regulated the phosphorylation of JAK2-STAT3 signaling pathway and reduced the nuclear translocation of STAT3 induced by LPS in RAW264.7 cells and primary peritoneal macrophages. In addition, consistent with the results in vitro, in the model of mice acute lung injury (ALI) induced by LPS, SAL reduced the infiltration of inflammatory cells and decreased the levels of serum TNF-α and IL-6 obviously. Taken together, these data indicated that SAL exerted anti-inflammatory action via down-regulating LPS-induced activation of JAK2-STAT3 pathway and suppressing STAT3 transfer into the nucleus at least in part. PMID:27085677

  3. Lack of Platelet-Activating Factor Receptor Attenuates Experimental Food Allergy but Not Its Metabolic Alterations regarding Adipokine Levels

    Science.gov (United States)

    Batista, Nathália Vieira; Fonseca, Roberta Cristelli; Perez, Denise; Pereira, Rafaela Vaz Sousa; de Lima Alves, Juliana; Pinho, Vanessa; Faria, Ana Maria Caetano; Cara, Denise Carmona

    2016-01-01

    Platelet-activating factor (PAF) is known to be an important mediator of anaphylaxis. However, there is a lack of information in the literature about the role of PAF in food allergy. The aim of this work was to elucidate the participation of PAF during food allergy development and the consequent adipose tissue inflammation along with its alterations. Our data demonstrated that, both before oral challenge and after 7 days receiving ovalbumin (OVA) diet, OVA-sensitized mice lacking the PAF receptor (PAFR) showed a decreased level of anti-OVA IgE associated with attenuated allergic markers in comparison to wild type (WT) mice. Moreover, there was less body weight and adipose tissue loss in PAFR-deficient mice. However, some features of inflamed adipose tissue presented by sensitized PAFR-deficient and WT mice after oral challenge were similar, such as a higher rate of rolling leukocytes in this tissue and lower circulating levels of adipokines (resistin and adiponectin) in comparison to nonsensitized mice. Therefore, PAF signaling through PAFR is important for the allergic response to OVA but not for the adipokine alterations caused by this inflammatory process. Our work clarifies some effects of PAF during food allergy along with its role on the metabolic consequences of this inflammatory process. PMID:27314042

  4. Role of Endoplasmic Reticulum (ER) Stress in Cocaine-Induced Microglial Cell Death

    OpenAIRE

    Costa, Blaise Mathias; Yao, Honghong; Yang, Lu; Buch, Shilpa

    2013-01-01

    While it has been well-documented that drugs of abuse such as cocaine can enhance progression of human immunodeficiency virus (HIV)-associated neuropathological disorders, the underlying mechanisms mediating these effects remain poorly understood. The present study was undertaken to examine the effects of cocaine on microglial viability. Herein we demonstrate that exposure of microglial cell line-BV2 or rat primary microglia to exogenous cocaine resulted in decreased cell viability as determi...

  5. Microglial Cells as a Link between Cannabinoids and the Immune Hypothesis of Psychiatric Disorders

    OpenAIRE

    Lisboa, Sabrina F.; Gomes, Felipe V; Guimaraes, Francisco S.; Campos, Alline C

    2016-01-01

    Psychiatric disorders are one of the leading causes of disability worldwide. Although several therapeutic options are available, the exact mechanisms responsible for the genesis of these disorders remain to be fully elucidated. In the last decade, a body of evidence has supported the involvement of the immune system in the pathophysiology of these conditions. Microglial cells play a significant role in maintaining brain homeostasis and surveillance. Dysregulation of microglial functions has b...

  6. Monitored natural attenuation (MNA) and risk management applied to an active industrial site affected by fuel spill in groundwater

    International Nuclear Information System (INIS)

    Monitored Natural Attenuation (MNA) applied to sites were groundwater have been affected by a fuel spill from an Industrial Underground Storage Tank (UST) is economically viable and a reliable methodology to achieve remediation goals. MNA process consists in the control of naturally occurring physical, chemical , and biological processes and is based in the knowledge of the processes that take place and reduce the charge of compounds derived from fuel in the site of study. Because the risk for Human Health and Ecosystem define the concept of contaminant, during MNA special attention has to be taken on concentration diminution of that are or could become contaminants and in this way is possible to perform Risk-Based Land Management (RBLM) by measuring both, the primary lines of evidence (shrinking or stable plume of contaminants) and secondary lines of evidence (given by geochemical indicators in the plume). Once, evidences have been gathered, is possible to calculate the rate of attenuation of contaminants and evaluate if admissible risk is reached an in a reasonable time framework, in order to propose MNA as a unique remediation or combined with other procedures to apply to an affected site. The objective of the present study is to evaluate the application of MNA to an active industrial site in order to develop a RBLM able to assess that the risk for Human Health and ecosystem are acceptable. The added attractive of this methodology is the non-intrusiveness that allows not to stop the industrial activity. The site considered in our study is in an active company located about 15 Km to NW from Barcelona, Spain.The company has a buried UST containing heavy fuel oil for energetic use. During 2002 a general soil impact study revealed that subsoil and groundwater close to the UST were affected by hydrocarbon losses from the tank and in January 2003 the fuel of the tank was emptied by pumping. The free phase of fuel floating on groundwater remained on the aquifer. As a

  7. Quercetin attenuates renal ischemia/reperfusion injury via an activation of AMP-activated protein kinase-regulated autophagy pathway.

    Science.gov (United States)

    Chen, Bo-Lin; Wang, Li-Ting; Huang, Kuo-How; Wang, Ching-Chia; Chiang, Chih-Kang; Liu, Shing-Hwa

    2014-11-01

    Renal ischemia/reperfusion (I/R) is a major cause of acute renal failure. Quercetin, a flavonoid antioxidant, presents in many kinds of food. The molecular mechanism of quercetin on renal protection during I/R is still unclear. Here, we investigated the role of AMP-activated protein kinase (AMPK)-regulated autophagy in renal protection by quercetin. To investigate whether quercetin protects renal cells from I/R-induced cell injury, an in vitro model of I/R and an in vivo I/R model were used. Cell apoptosis was determined by propidium iodide/annexin V staining. Western blotting and immunofluorescence were used to determine the autophagy. AMPK expression was inhibited with appropriate short hairpin RNA (shRNA). In cultured renal tubular cell I/R model, quercetin decreased the cell injury, up-regulated the AMPK phosphorylation, down-regulated the mammalian target of rapamycin (mTOR) phosphorylation and activated autophagy during I/R. Knockdown of AMPK by shRNA transfection decreased the quercetin-induced autophagy but did not affect the mTOR phosphorylation. In I/R mouse model, quercetin decreased the increased serum creatinine level and altered renal histological score. Quercetin also increased AMPK phosphorylation, inhibited the mTOR phosphorylation and activated autophagy in the kidneys of I/R mice. These results suggest that quercetin activates an AMPK-regulated autophagy signaling pathway, which offers a protective effect in renal I/R injury. PMID:25087994

  8. Activated endothelial interleukin-1beta, -6, and -8 concentrations and intercellular adhesion molecule-1 expression are attenuated by lidocaine.

    LENUS (Irish Health Repository)

    Lan, Wei

    2012-02-03

    Endothelial cells play a key role in ischemia reperfusion injury. We investigated the effects of lidocaine on activated human umbilical vein endothelial cell (HUVEC) interleukin (IL)-1beta, IL-6, and IL-8 concentrations and intercellular adhesion molecule-1 (ICAM-1) expression. HUVECs were pretreated with different concentrations of lidocaine (0 to 0.5 mg\\/mL) for 60 min, thereafter tumor necrosis factor-alpha was added at a concentration of 2.5 ng\\/mL and the cells incubated for 4 h. Supernatants were harvested, and cytokine concentrations were analyzed by enzyme-linked immunosorbent assay. Endothelial ICAM-1 expression was analyzed by using flow cytometry. Differences were assessed using analysis of variance and post hoc unpaired Student\\'s t-test where appropriate. Lidocaine (0.5 mg\\/mL) decreased IL-1beta (1.89 +\\/- 0.11 versus 4.16 +\\/- 1.27 pg\\/mL; P = 0.009), IL-6 (65.5 +\\/- 5.14 versus 162 +\\/- 11.5 pg\\/mL; P < 0.001), and IL-8 (3869 +\\/- 785 versus 14,961 +\\/- 406 pg\\/mL; P < 0.001) concentrations compared with the control. IL-1beta, IL-6, and IL-8 concentrations in HUVECs treated with clinically relevant plasma concentrations of lidocaine (0.005 mg\\/mL) were similar to control. ICAM-1 expression on lidocaine-treated (0.05 mg\\/mL) HUVECs was less than on controls (198 +\\/- 52.7 versus 298 +\\/- 50.3; Mean Channel Fluorescence; P < 0.001). Activated endothelial IL-1beta, IL-6, and IL-8 concentrations and ICAM-1 expression are attenuated only by lidocaine at concentrations larger than clinically relevant concentrations.

  9. The Groucho co-repressor is primarily recruited to local target sites in active chromatin to attenuate transcription.

    Directory of Open Access Journals (Sweden)

    Aamna Kaul

    2014-08-01

    Full Text Available Gene expression is regulated by the complex interaction between transcriptional activators and repressors, which function in part by recruiting histone-modifying enzymes to control accessibility of DNA to RNA polymerase. The evolutionarily conserved family of Groucho/Transducin-Like Enhancer of split (Gro/TLE proteins act as co-repressors for numerous transcription factors. Gro/TLE proteins act in several key pathways during development (including Notch and Wnt signaling, and are implicated in the pathogenesis of several human cancers. Gro/TLE proteins form oligomers and it has been proposed that their ability to exert long-range repression on target genes involves oligomerization over broad regions of chromatin. However, analysis of an endogenous gro mutation in Drosophila revealed that oligomerization of Gro is not always obligatory for repression in vivo. We have used chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq to profile Gro recruitment in two Drosophila cell lines. We find that Gro predominantly binds at discrete peaks (<1 kilobase. We also demonstrate that blocking Gro oligomerization does not reduce peak width as would be expected if Gro oligomerization induced spreading along the chromatin from the site of recruitment. Gro recruitment is enriched in "active" chromatin containing developmentally regulated genes. However, Gro binding is associated with local regions containing hypoacetylated histones H3 and H4, which is indicative of chromatin that is not fully open for efficient transcription. We also find that peaks of Gro binding frequently overlap the transcription start sites of expressed genes that exhibit strong RNA polymerase pausing and that depletion of Gro leads to release of polymerase pausing and increased transcription at a bona fide target gene. Our results demonstrate that Gro is recruited to local sites by transcription factors to attenuate rather than silence gene expression by promoting histone

  10. Attenuated expression of the tight junction proteins is involved in clopidogrel-induced gastric injury through p38 MAPK activation

    International Nuclear Information System (INIS)

    epithelial cells is mediated by the p38 MAPK pathway. It is concluded that attenuated expression of the TJ proteins occludin and ZO-1 in human gastric epithelial cells could be involved in clopidogrel-induced gastric mucosal injury through activation of the p38 MAPK pathway

  11. Thioxanthenes, chlorprothixene and flupentixol inhibit proton currents in BV2 microglial cells.

    Science.gov (United States)

    Kim, Jiwon; Song, Jin-Ho

    2016-05-15

    The thioxanthene antipsychotic drugs chlorprothixene and flupentixol have anti-inflammatory and antioxidant properties. The reactive oxygen species produced by NADPH oxidase during microglia-mediated inflammatory responses cause neuronal damage, thereby contributing to various neurodegenerative diseases. Voltage-gated proton channels sustain the NADPH oxidase activity, and inhibition of the channels' activity reduces the production of reactive oxygen species. Herein, the effects of chlorprothixene and flupentixol on proton currents were investigated in BV2 microglial cells using the whole-cell patch-clamp method. Both drugs inhibited the proton currents in a concentration-dependent manner (IC50=1.7μM and 6.6μM, respectively). Chlorprothixene at 3μM slightly shifted the activation voltage toward depolarization. Both the activation and the deactivation kinetics of the proton currents were slowed by chlorprothixene 1.2- and 3.5-fold, respectively. Thus, the inhibition of proton currents may be partly responsible for the antioxidant effects of thioxanthene antipsychotic drugs. PMID:26945819

  12. The microglial NADPH oxidase complex as a source of oxidative stress in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Landreth Gary E

    2006-11-01

    Full Text Available Abstract Alzheimer's disease is the most common cause of dementia in the elderly, and manifests as progressive cognitive decline and profound neuronal loss. The principal neuropathological hallmarks of Alzheimer's disease are the senile plaques and the neurofibrillary tangles. The senile plaques are surrounded by activated microglia, which are largely responsible for the proinflammatory environment within the diseased brain. Microglia are the resident innate immune cells in the brain. In response to contact with fibrillar beta-amyloid, microglia secrete a diverse array of proinflammatory molecules. Evidence suggests that oxidative stress emanating from activated microglia contribute to the neuronal loss characteristic of this disease. The source of fibrillar beta-amyloid induced reactive oxygen species is primarily the microglial nicotinamide adenine dinucleotide phosphate (NADPH oxidase. The NADPH oxidase is a multicomponent enzyme complex that, upon activation, produces the highly reactive free radical superoxide. The cascade of intracellular signaling events leading to NADPH oxidase assembly and the subsequent release of superoxide in fibrillar beta-amyloid stimulated microglia has recently been elucidated. The induction of reactive oxygen species, as well as nitric oxide, from activated microglia can enhance the production of more potent free radicals such as peroxynitrite. The formation of peroxynitrite causes protein oxidation, lipid peroxidation and DNA damage, which ultimately lead to neuronal cell death. The elimination of beta-amyloid-induced oxidative damage through the inhibition of the NADPH oxidase represents an attractive therapeutic target for the treatment of Alzheimer's disease.

  13. Role of endoplasmic reticulum (ER) stress in cocaine-induced microglial cell death.

    Science.gov (United States)

    Costa, Blaise Mathias; Yao, Honghong; Yang, Lu; Buch, Shilpa

    2013-06-01

    While it has been well-documented that drugs of abuse such as cocaine can enhance progression of human immunodeficiency virus (HIV)-associated neuropathological disorders, the underlying mechanisms mediating these effects remain poorly understood. The present study was undertaken to examine the effects of cocaine on microglial viability. Herein we demonstrate that exposure of microglial cell line-BV2 or rat primary microglia to exogenous cocaine resulted in decreased cell viability as determined by MTS and TUNEL assays. Microglial toxicity of cocaine was accompanied by an increase in the expression of cleaved caspase-3 as demonstrated by western blot assays. Furthermore, increased microglial toxicity was also associated with a concomitant increase in the production of intracellular reactive oxygen species, an effect that was ameliorated in cells pretreated with NADPH oxidase inhibitor apocynin, thus emphasizing the role of oxidative stress in this process. A novel finding of this study was the involvement of endoplasmic reticulum (ER) signaling mediators such as PERK, Elf2α, and CHOP, which were up regulated in cells exposed to cocaine. Reciprocally, blocking CHOP expression using siRNA ameliorated cocaine-mediated cell death. In conclusion these findings underscore the importance of ER stress in modulating cocaine induced microglial toxicity. Understanding the link between ER stress, oxidative stress and apoptosis could lead to the development of therapeutic strategies targeting cocaine-mediated microglial death/dysfunction. PMID:23404095

  14. Microglial KCa3.1 Channels as a Potential Therapeutic Target for Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Izumi Maezawa

    2012-01-01

    Full Text Available There exists an urgent need for new target discovery to treat Alzheimer’s disease (AD; however, recent clinical trials based on anti-Aβ and anti-inflammatory strategies have yielded disappointing results. To expedite new drug discovery, we propose reposition targets which have been previously pursued by both industry and academia for indications other than AD. One such target is the calcium-activated potassium channel KCa3.1 (KCNN4, which in the brain is primarily expressed in microglia and is significantly upregulated when microglia are activated. We here review the existing evidence supporting that KCa3.1 inhibition could block microglial neurotoxicity without affecting their neuroprotective phagocytosis activity and without being broadly immunosuppressive. The anti-inflammatory and neuroprotective effects of KCa3.1 blockade would be suitable for treating AD as well as cerebrovascular and traumatic brain injuries, two well-known risk factors contributing to the dementia in AD patients presenting with mixed pathologies. Importantly, the pharmacokinetics and pharmacodynamics of several KCa3.1 blockers are well known, and a KCa3.1 blocker has been proven safe in clinical trials. It is therefore promising to reposition old or new KCa3.1 blockers for AD preclinical and clinical trials.

  15. Curcumin Attenuates Beta-Amyloid-Induced Neuroinflammation via Activation of Peroxisome Proliferator-Activated Receptor-Gamma Function in a Rat Model of Alzheimer's Disease.

    Science.gov (United States)

    Liu, Zun-Jing; Li, Zhong-Hao; Liu, Lei; Tang, Wen-Xiong; Wang, Yu; Dong, Ming-Rui; Xiao, Cheng

    2016-01-01

    Neuroinflammation is known to have a pivotal role in the pathogenesis of Alzheimer's disease (AD), and curcumin has been reported to have therapeutical effects on AD because of its anti-inflammatory effects. Curcumin is not only a potent PPARγ agonist, but also has neuroprotective effects on cerebral ischemic injury. However, whether PPARγ activated by curcumin is responsible for the anti-neuroinflammation and neuroprotection on AD remains unclear, and needs to be further investigated. Here, using both APP/PS1 transgenic mice and beta-amyloid-induced neuroinflammation in mixed neuronal/glial cultures, we showed that curcumin significantly alleviated spatial memory deficits in APP/PS1 mice and promoted cholinergic neuronal function in vivo and in vitro. Curcumin also reduced the activation of microglia and astrocytes, as well as cytokine production and inhibited nuclear factor kappa B (NF-κB) signaling pathway, suggesting the beneficial effects of curcumin on AD are attributable to the suppression of neuroinflammation. Attenuation of these beneficial effects occurred when co-administrated with PPARγ antagonist GW9662 or silence of PPARγ gene expression, indicating that PPARγ might be involved in anti-inflammatory effects. Circular dichroism and co-immunoprecipitation analysis showed that curcumin directly bound to PPARγ and increased the transcriptional activity and protein levels of PPARγ. Taking together, these data suggested that PPARγ might be a potential target of curcumin, acting to alleviate neuroinflammation and improve neuronal function in AD. PMID:27594837

  16. Plasminogen Activator Inhibitor-1 Antagonist TM5484 Attenuates Demyelination and Axonal Degeneration in a Mice Model of Multiple Sclerosis.

    Directory of Open Access Journals (Sweden)

    Nicolas Pelisch

    Full Text Available Multiple sclerosis (MS is characterized by inflammatory demyelination and deposition of fibrinogen in the central nervous system (CNS. Elevated levels of a critical inhibitor of the mammalian fibrinolitic system, plasminogen activator inhibitor 1 (PAI-1 have been demonstrated in human and animal models of MS. In experimental studies that resemble neuroinflammatory disease, PAI-1 deficient mice display preserved neurological structure and function compared to wild type mice, suggesting a link between the fibrinolytic pathway and MS. We previously identified a series of PAI-1 inhibitors on the basis of the 3-dimensional structure of PAI-1 and on virtual screening. These compounds have been reported to provide a number of in vitro and in vivo benefits but none was tested in CNS disease models because of their limited capacity to penetrate the blood-brain barrier (BBB. The existing candidates were therefore optimized to obtain CNS-penetrant compounds. We performed an in vitro screening using a model of BBB and were able to identify a novel, low molecular PAI-1 inhibitor, TM5484, with the highest penetration ratio among all other candidates. Next, we tested the effects on inflammation and demyelination in an experimental allergic encephalomyelitis mice model. Results were compared to either fingolimod or 6α-methylprednisolone. Oral administration of TM5484 from the onset of signs, ameliorates paralysis, attenuated demyelination, and axonal degeneration in the spinal cord of mice. Furthermore, it modulated the expression of brain-derived neurotrophic factor, which plays a protective role in neurons against various pathological insults, and choline acetyltransferase, a marker of neuronal density. Taken together, these results demonstrate the potential benefits of a novel PAI-1 inhibitor, TM5484, in the treatment of MS.

  17. PPARgamma activation attenuates T-lymphocyte-dependent inflammation of adipose tissue and development of insulin resistance in obese mice

    Directory of Open Access Journals (Sweden)

    Unger Thomas

    2010-10-01

    Full Text Available Abstract Background Inflammation of adipose tissue (AT has been recently accepted as a first step towards obesity-mediated insulin resistance. We could previously show that mice fed with high fat diet (HFD develop systemic insulin resistance (IR and glucose intolerance (GI associated with CD4-positive T-lymphocyte infiltration into visceral AT. These T-lymphocytes, when enriched in AT, participate in the development of fat tissue inflammation and subsequent recruitment of proinflammatory macrophages. The aim of this work was to elucidate the action of the insulin sensitizing PPARgamma on T-lymphocyte infiltration during development of IR, and comparison of the PPARgamma-mediated anti-inflammatory effects of rosiglitazone and telmisartan in diet-induced obesity model (DIO-model in mice. Methods In order to investigate the molecular mechanisms underlying early development of systemic insulin resistance and glucose intolerance male C57BL/6J mice were fed with high fat diet (HFD for 10-weeks in parallel to the pharmacological intervention with rosiglitazone, telmisartan, or vehicle. Results Both rosiglitazone and telmisartan were able to reduce T-lymphocyte infiltration into AT analyzed by quantitative analysis of the T-cell marker CD3gamma and the chemokine SDF1alpha. Subsequently, both PPARgamma agonists were able to attenuate macrophage infiltration into AT, measured by the reduction of MCP1 and F4/80 expression. In parallel to the reduction of AT-inflammation, ligand-activated PPARgamma improved diet-induced IR and GI. Conclusion Together the present study demonstrates a close connection between PPARgamma-mediated anti-inflammation in AT and systemic improvement of glucose metabolism identifying T-lymphocytes as one cellular mediator of PPARgamma´s action.

  18. Plasminogen Activator Inhibitor-1 Antagonist TM5484 Attenuates Demyelination and Axonal Degeneration in a Mice Model of Multiple Sclerosis.

    Science.gov (United States)

    Pelisch, Nicolas; Dan, Takashi; Ichimura, Atsuhiko; Sekiguchi, Hiroki; Vaughan, Douglas E; van Ypersele de Strihou, Charles; Miyata, Toshio

    2015-01-01

    Multiple sclerosis (MS) is characterized by inflammatory demyelination and deposition of fibrinogen in the central nervous system (CNS). Elevated levels of a critical inhibitor of the mammalian fibrinolitic system, plasminogen activator inhibitor 1 (PAI-1) have been demonstrated in human and animal models of MS. In experimental studies that resemble neuroinflammatory disease, PAI-1 deficient mice display preserved neurological structure and function compared to wild type mice, suggesting a link between the fibrinolytic pathway and MS. We previously identified a series of PAI-1 inhibitors on the basis of the 3-dimensional structure of PAI-1 and on virtual screening. These compounds have been reported to provide a number of in vitro and in vivo benefits but none was tested in CNS disease models because of their limited capacity to penetrate the blood-brain barrier (BBB). The existing candidates were therefore optimized to obtain CNS-penetrant compounds. We performed an in vitro screening using a model of BBB and were able to identify a novel, low molecular PAI-1 inhibitor, TM5484, with the highest penetration ratio among all other candidates. Next, we tested the effects on inflammation and demyelination in an experimental allergic encephalomyelitis mice model. Results were compared to either fingolimod or 6α-methylprednisolone. Oral administration of TM5484 from the onset of signs, ameliorates paralysis, attenuated demyelination, and axonal degeneration in the spinal cord of mice. Furthermore, it modulated the expression of brain-derived neurotrophic factor, which plays a protective role in neurons against various pathological insults, and choline acetyltransferase, a marker of neuronal density. Taken together, these results demonstrate the potential benefits of a novel PAI-1 inhibitor, TM5484, in the treatment of MS. PMID:25915660

  19. BET Inhibition Attenuates Helicobacter pylori-Induced Inflammatory Response by Suppressing Inflammatory Gene Transcription and Enhancer Activation.

    Science.gov (United States)

    Chen, Jinjing; Wang, Zhen; Hu, Xiangming; Chen, Ruichuan; Romero-Gallo, Judith; Peek, Richard M; Chen, Lin-Feng

    2016-05-15

    Helicobacter pylori infection causes chronic gastritis and peptic ulceration. H. pylori-initiated chronic gastritis is characterized by enhanced expression of many NF-κB-regulated inflammatory cytokines. Brd4 has emerged as an important NF-κB regulator and regulates the expression of many NF-κB-dependent inflammatory genes. In this study, we demonstrated that Brd4 was not only actively involved in H. pylori-induced inflammatory gene mRNA transcription but also H. pylori-induced inflammatory gene enhancer RNA (eRNA) synthesis. Suppression of H. pylori-induced eRNA synthesis impaired H. pylori-induced mRNA synthesis. Furthermore, H. pylori stimulated NF-κB-dependent recruitment of Brd4 to the promoters and enhancers of inflammatory genes to facilitate the RNA polymerase II-mediated eRNA and mRNA synthesis. Inhibition of Brd4 by JQ1 attenuated H. pylori-induced eRNA and mRNA synthesis for a subset of NF-κB-dependent inflammatory genes. JQ1 also inhibited H. pylori-induced interaction between Brd4 and RelA and the recruitment of Brd4 and RNA polymerase II to the promoters and enhancers of inflammatory genes. Finally, we demonstrated that JQ1 suppressed inflammatory gene expression, inflammation, and cell proliferation in H. pylori-infected mice. These studies highlight the importance of Brd4 in H. pylori-induced inflammatory gene expression and suggest that Brd4 could be a potential therapeutic target for the treatment of H. pylori-triggered inflammatory diseases and cancer. PMID:27084101

  20. A TIR domain protein from E. faecalis attenuates MyD88-mediated signaling and NF-κB activation.

    Directory of Open Access Journals (Sweden)

    Jun Zou

    Full Text Available Toll-like receptor signaling, mediated by functional Toll/interleukin-1 receptor (TIR domains, plays a critical role in activating the innate immune response responsible for controlling and clearing infection. Bacterial protein mimics of components of this signaling pathway have been identified and function through inhibition of interactions between Toll-like receptors (TLRs and their adaptor proteins, mediated by TIR domains. A previously uncharacterized gene, which we have named tcpF (for TIR domain-containing protein in E. faecalis was identified in the genome of Enterococcus faecalis V583, and predicted to encode a protein resembling mammalian and bacterial TIR proteins. We overexpressed and purified TcpF from E. coli and found that the recombinant protein could bind to phosphatidylinositol phosphates in vitro, suggesting a mechanism by which TcpF may be anchored to the plasma membrane in close proximity to TIR domains of TLRs and adaptor proteins. Purified TcpF was also found to interact specifically with the TIR adaptor protein MyD88, and this interaction was dependent on the BB loop domain in the Box 2 region of TcpF. Despite no evidence of TcpF being a secreted protein, recombinant TcpF was effectively able to enter RAW264.7 cells in vitro although the mechanism by which this occurs remains to be determined. Overexpression of TcpF in mammalian cells suppressed the NF-κB activation induced by bacterial lipoteichoic acid. A mutant lacking the tcpF gene was attenuated for survival in macrophages, with increased ability to activate NF-κB compared to the wild type strain. Complementation in trans restored growth, and inhibition of NF-κB, to that of wild type levels. No appreciable difference in bacterial persistence, dissemination or pathogenesis was observed between the wild type and mutant in a mouse peritonitis model however, which suggested either a subtle role for TcpF or functional overlap with other redundant factor(s in this

  1. Apocyanin, a Microglial NADPH Oxidase Inhibitor Prevents Dopaminergic Neuronal Degeneration in Lipopolysaccharide-Induced Parkinson's Disease Model.

    Science.gov (United States)

    Sharma, Neha; Nehru, Bimla

    2016-07-01

    Microglia-associated inflammatory processes have been strongly implicated in the development and progression of Parkinson's disease (PD). Specifically, microglia are activated in response to lipopolysaccharide (LPS) and become chronic source of cytokines and reactive oxygen species (ROS) production. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex is responsible for extracellular as well as intracellular production of ROS by microglia and its expression is upregulated in PD. Therefore, targeting NADPH oxidase complex activation using an NADPH oxidase inhibitor, i.e., apocyanin seems to be an effective approach. The aim of present study was to investigate the neuroprotective effects of apocyanin in a LPS-induced PD model. LPS (5 μg) was injected intranigral and apocyanin was administered daily at a dose of 10 mg/kg b.wt (i.p.) during the experiment. LPS when injected into the substantia nigra (SN) reproduced the characteristic hallmark features of PD in rats. It elicited an inflammatory response characterized by glial cell activation (Iba-1, GFAP). Furthermore, LPS upregulated the gene expression of nuclear factor-κB (NFκB), iNOS, and gp91PHOX and resulted in an elevated total ROS production as well as NADPH oxidase activity. Subsequently, this resulted in dopaminergic loss as depicted by decreased tyrosine hydroxylase (TH) expression with substantial loss in neurotransmitter dopamine and its metabolites, whereas treatment with apocyanin significantly reduced the number of glial fibrillary acidic protein (GFAP) and Iba-1-positive cells in LPS-treated animals. It also mitigated microglial activation-induced inflammatory response and elevation in NADPH oxidase activity, thus reducing the extracellular as well as intracellular ROS production. The present study indicated that targeting NADPH oxidase can inhibit microglial activation and reduce a broad spectrum of toxic factors generation (i.e., cytokines, ROS, and reactive nitrogen species [RNS

  2. Attenuated Leishmania induce pro-inflammatory mediators and influence leishmanicidal activity by p38 MAPK dependent phagosome maturation in Leishmania donovani co-infected macrophages

    OpenAIRE

    Somenath Banerjee; Dipayan Bose; Nabanita Chatterjee; Subhadip Das; Sreeparna Chakraborty; Tanya Das; Krishna Das Saha

    2016-01-01

    Promastigote form of Leishmania, an intracellular pathogen, delays phagosome maturation and resides inside macrophages. But till date limited study has been done to manipulate the phagosomal machinery of macrophages to restrict Leishmania growth. Attenuated Leishmania strain exposed RAW 264.7 cells showed a respiratory burst and enhanced production of pro-inflammatory mediators. The augmentation of pro-inflammatory activity is mostly attributed to p38 MAPK and p44/42 MAPK. In our study, these...

  3. Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children.

    Directory of Open Access Journals (Sweden)

    Tuomas O Kilpeläinen

    2011-11-01

    Full Text Available The FTO gene harbors the strongest known susceptibility locus for obesity. While many individual studies have suggested that physical activity (PA may attenuate the effect of FTO on obesity risk, other studies have not been able to confirm this interaction. To confirm or refute unambiguously whether PA attenuates the association of FTO with obesity risk, we meta-analyzed data from 45 studies of adults (n = 218,166 and nine studies of children and adolescents (n = 19,268.All studies identified to have data on the FTO rs9939609 variant (or any proxy [r(2>0.8] and PA were invited to participate, regardless of ethnicity or age of the participants. PA was standardized by categorizing it into a dichotomous variable (physically inactive versus active in each study. Overall, 25% of adults and 13% of children were categorized as inactive. Interaction analyses were performed within each study by including the FTO×PA interaction term in an additive model, adjusting for age and sex. Subsequently, random effects meta-analysis was used to pool the interaction terms. In adults, the minor (A- allele of rs9939609 increased the odds of obesity by 1.23-fold/allele (95% CI 1.20-1.26, but PA attenuated this effect (p(interaction  = 0.001. More specifically, the minor allele of rs9939609 increased the odds of obesity less in the physically active group (odds ratio  = 1.22/allele, 95% CI 1.19-1.25 than in the inactive group (odds ratio  = 1.30/allele, 95% CI 1.24-1.36. No such interaction was found in children and adolescents.The association of the FTO risk allele with the odds of obesity is attenuated by 27% in physically active adults, highlighting the importance of PA in particular in those genetically predisposed to obesity.

  4. Microglial Scavenger Receptors and Their Roles in the Pathogenesis of Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Kim Wilkinson

    2012-01-01

    Full Text Available Alzheimer’s disease (AD is increasing in prevalence with the aging population. Deposition of amyloid-β (Aβ in the brain of AD patients is a hallmark of the disease and is associated with increased microglial numbers and activation state. The interaction of microglia with Aβ appears to play a dichotomous role in AD pathogenesis. On one hand, microglia can phagocytose and clear Aβ, but binding of microglia to Aβ also increases their ability to produce inflammatory cytokines, chemokines, and neurotoxic reactive oxygen species (ROS. Scavenger receptors, a group of evolutionally conserved proteins expressed on the surface of microglia act as receptors for Aβ. Of particular interest are SCARA-1 (scavenger receptor A-1, CD36, and RAGE (receptor for advanced glycation end products. SCARA-1 appears to be involved in the clearance of Aβ, while CD36 and RAGE are involved in activation of microglia by Aβ. In this review, we discuss the roles of various scavenger receptors in the interaction of microglia with Aβ and propose that these receptors play complementary, nonredundant functions in the development of AD pathology. We also discuss potential therapeutic applications for these receptors in AD.

  5. Microglial disruption in young mice with early chronic lead exposure☆

    Science.gov (United States)

    Sobin, Christina; Montoya, Mayra Gisel Flores; Parisi, Natali; Schaub, Tanner; Cervantes, Miguel; Armijos, Rodrigo X.

    2013-01-01

    The mechanisms by which early chronic lead (Pb) exposure alter brain development have not been identified. We examined neuroimmune system effects in C57BL/6J mice with Pb exposure, including levels that may be common among children in lower socioeconomic income environments. Pups were exposed via dams’ drinking water from birth to post-natal day 28 to low, high or no Pb conditions. We compared gene expression of neuroinflammatory markers (study 1); and microglial mean cell body volume and mean cell body number in dentate gyrus, and dentate gyrus volume (study 2). Blood Pb levels in exposed animals at sacrifice (post-natal day 28) ranged from 2.66 to 20.31 μg/dL. Only interleukin-6 (IL6) differed between groups and reductions were dose-dependent. Microglia cell body number also differed between groups and reductions were dose-dependent. As compared with controls, microglia cell body volume was greater but highly variable in only low-dose animals; dentate gyri volumes in low- and high-dose animals were reduced. The results did not support a model of increased neuroinflammation. Instead, early chronic exposure to Pb disrupted microglia via damage to, loss of, or lack of proliferation of microglia in the developing brains of Pb-exposed animals. PMID:23598043

  6. Attenuated Leishmania induce pro-inflammatory mediators and influence leishmanicidal activity by p38 MAPK dependent phagosome maturation in Leishmania donovani co-infected macrophages.

    Science.gov (United States)

    Banerjee, Somenath; Bose, Dipayan; Chatterjee, Nabanita; Das, Subhadip; Chakraborty, Sreeparna; Das, Tanya; Saha, Krishna Das

    2016-01-01

    Promastigote form of Leishmania, an intracellular pathogen, delays phagosome maturation and resides inside macrophages. But till date limited study has been done to manipulate the phagosomal machinery of macrophages to restrict Leishmania growth. Attenuated Leishmania strain exposed RAW 264.7 cells showed a respiratory burst and enhanced production of pro-inflammatory mediators. The augmentation of pro-inflammatory activity is mostly attributed to p38 MAPK and p44/42 MAPK. In our study, these activated macrophages are found to induce phagosome maturation when infected with pathogenic Leishmania donovani. Increased co-localization of carboxyfluorescein succinimidyl ester labeled pathogenic L. donovani with Lysosome was found. Moreover, increased co-localization was observed between pathogenic L. donovani and late phagosomal markers viz. Rab7, Lysosomal Associated Membrane Protein 1, Cathepsin D, Rab9, and V-ATPase which indicate phagosome maturation. It was also observed that inhibition of V-type ATPase caused significant hindrance in attenuated Leishmania induced phagosome maturation. Finally, it was confirmed that p38 MAPK is the key player in acidification and maturation of phagosome in attenuated Leishmania strain pre-exposed macrophages. To our knowledge, this study for the first time reported an approach to induce phagosome maturation in L. donovani infected macrophages which could potentiate short-term prophylactic response in future. PMID:26928472

  7. Attenuated recombinant vaccinia virus expressing oncofetal antigen (tumor-associated antigen) 5T4 induces active therapy of established tumors.

    Science.gov (United States)

    Mulryan, Kate; Ryan, Matthew G; Myers, Kevin A; Shaw, David; Wang, Who; Kingsman, Susan M; Stern, Peter L; Carroll, Miles W

    2002-10-01

    The human oncofetal antigen 5T4 (h5T4) is a transmembrane glycoprotein overexpressed by a wide spectrum of cancers, including colorectal, ovarian, and gastric, but with a limited normal tissue expression. Such properties make 5T4 an excellent putative target for cancer immunotherapy. The murine homologue of 5T4 (m5T4) has been cloned and characterized, which allows for the evaluation of immune intervention strategies in "self-antigen" in vivo tumor models. We have constructed recombinant vaccinia viruses based on the highly attenuated and modified vaccinia virus ankara (MVA strain), expressing h5T4 (MVA-h5T4), m5T4 (MVA-m5T4), and Escherichia coli LacZ (MVA-LacZ). Immunization of BALB/c and C57BL/6 mice with MVA-h5T4 and MVA-m5T4 constructs induced antibody responses to human and mouse 5T4, respectively. C57BL/6 and BALB/c mice vaccinated with MVA-h5T4 were challenged with syngeneic tumor line transfectants, B16 melanoma, and CT26 colorectal cells that express h5T4. MVA-h5T4-vaccinated mice showed significant tumor retardation compared with mice vaccinated with MVA-LacZ or PBS. In active treatment studies, inoculation with MVA-h5T4 was able to treat established CT26-h5T4 lung tumor and to a lesser extent B16.h5T4 s.c. tumors. Additionally, when C57BL/6 mice vaccinated with MVA-m5T4 were challenged with B16 cells expressing m5T4, resulting growth of the tumors was significantly retarded compared with control animals. Furthermore, mice vaccinated with MVA-m5T4 showed no signs of autoimmune toxicity. These data support the use of MVA-5T4 for tumor immunotherapy. PMID:12481437

  8. Phagocytosis-dependent and independent mechanisms underlie the microglial cell damage caused by carbon nanotube agglomerates.

    Science.gov (United States)

    Shigemoto-Mogami, Yukari; Hoshikawa, Kazue; Hirose, Akihiko; Sato, Kaoru

    2016-01-01

    Although carbon nanotubes (CNTs) are used in many fields, including energy, healthcare, environmental technology, materials, and electronics, the adverse effects of CNTs in the brain are poorly understood. In this study, we investigated the effects of CNTs on cultured microglia, as microglia are the first responders to foreign materials. We compared the effects of sonicated suspensions of 5 kinds of CNTs and their flow-through filtered with a 0.22 µm membrane filter on microglial viability. We found that sonicated suspensions caused microglial cell damage, but their flow-through did not. The number of microglial aggregates was well correlated with the extent of the damage. We also determined that the CNT agglomerates consisted of two groups: one was phagocytosed by microglia and caused microglial cell damage, and the other caused cell damage without phagocytosis. These results suggest that phagocytosis-dependent and independent mechanisms underlie the microglial cell damage caused by CNT agglomerates and it is important to conduct studies about the relationships between physical properties of nanomaterial-agglomerates and cell damage. PMID:27432236

  9. Curcumin attenuates glutamate neurotoxicity in the hippocampus by suppression of ER stress-associated TXNIP/NLRP3 inflammasome activation in a manner dependent on AMPK

    International Nuclear Information System (INIS)

    Curcumin is a natural polyphenolic compound in Curcuma longa with beneficial effects on neuronal protection. This study aims to investigate the action of curcumin in the hippocampus subjected to glutamate neurotoxicity. Glutamate stimulation induced reactive oxygen species (ROS), endoplasmic reticulum stress (ER stress) and TXNIP/NLRP3 inflammasome activation, leading to damage in the hippocampus. Curcumin treatment in the hippocampus or SH-SY5Y cells inhibited IRE1α and PERK phosphorylation with suppression of intracellular ROS production. Curcumin increased AMPK activity and knockdown of AMPKα with specific siRNA abrogated its inhibitory effects on IRE1α and PERK phosphorylation, indicating that AMPK activity was essential for the suppression of ER stress. As a result, curcumin reduced TXNIP expression and inhibited NLRP3 inflammasome activation by downregulation of NLRP3 and cleaved caspase-1 induction, and thus reduced IL-1β secretion. Specific fluorescent probe and flow cytometry analysis showed that curcumin prevented mitochondrial malfunction and protected cell survival from glutamate neurotoxicity. Moreover, oral administration of curcumin reduced brain infarct volume and attenuated neuronal damage in rats subjected to middle cerebral artery occlusion. Immunohistochemistry showed that curcumin inhibited p-IRE1α, p-PERK and NLRP3 expression in hippocampus CA1 region. Together, these results showed that curcumin attenuated glutamate neurotoxicity by inhibiting ER stress-associated TXNIP/NLRP3 inflammasome activation via the regulation of AMPK, and thereby protected the hippocampus from ischemic insult. - Highlights: • Curcumin attenuates glutamate neurotoxicity in the hippocampus. • Curcumin suppresses ER stress in glutamate-induced hippocampus slices. • Curcumin inhibits TXNIP/NLRP3 inflammasome activation. • Regulation of AMPK by curcumin contributes to suppressing ER stress

  10. Curcumin attenuates glutamate neurotoxicity in the hippocampus by suppression of ER stress-associated TXNIP/NLRP3 inflammasome activation in a manner dependent on AMPK

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying; Li, Jia; Li, Shanshan; Li, Yi; Wang, Xiangxiang; Liu, Baolin [Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 639, Longmian Road, Nanjing 211198 (China); Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, China Pharmaceutical University, 639, Longmian Road, Nanjing 211198 (China); Fu, Qiang, E-mail: fuqiang@cpu.edu.cn [Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 639, Longmian Road, Nanjing 211198 (China); Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, China Pharmaceutical University, 639, Longmian Road, Nanjing 211198 (China); Ma, Shiping, E-mail: spma@cpu.edu.cn [Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 639, Longmian Road, Nanjing 211198 (China); Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, China Pharmaceutical University, 639, Longmian Road, Nanjing 211198 (China)

    2015-07-01

    Curcumin is a natural polyphenolic compound in Curcuma longa with beneficial effects on neuronal protection. This study aims to investigate the action of curcumin in the hippocampus subjected to glutamate neurotoxicity. Glutamate stimulation induced reactive oxygen species (ROS), endoplasmic reticulum stress (ER stress) and TXNIP/NLRP3 inflammasome activation, leading to damage in the hippocampus. Curcumin treatment in the hippocampus or SH-SY5Y cells inhibited IRE1α and PERK phosphorylation with suppression of intracellular ROS production. Curcumin increased AMPK activity and knockdown of AMPKα with specific siRNA abrogated its inhibitory effects on IRE1α and PERK phosphorylation, indicating that AMPK activity was essential for the suppression of ER stress. As a result, curcumin reduced TXNIP expression and inhibited NLRP3 inflammasome activation by downregulation of NLRP3 and cleaved caspase-1 induction, and thus reduced IL-1β secretion. Specific fluorescent probe and flow cytometry analysis showed that curcumin prevented mitochondrial malfunction and protected cell survival from glutamate neurotoxicity. Moreover, oral administration of curcumin reduced brain infarct volume and attenuated neuronal damage in rats subjected to middle cerebral artery occlusion. Immunohistochemistry showed that curcumin inhibited p-IRE1α, p-PERK and NLRP3 expression in hippocampus CA1 region. Together, these results showed that curcumin attenuated glutamate neurotoxicity by inhibiting ER stress-associated TXNIP/NLRP3 inflammasome activation via the regulation of AMPK, and thereby protected the hippocampus from ischemic insult. - Highlights: • Curcumin attenuates glutamate neurotoxicity in the hippocampus. • Curcumin suppresses ER stress in glutamate-induced hippocampus slices. • Curcumin inhibits TXNIP/NLRP3 inflammasome activation. • Regulation of AMPK by curcumin contributes to suppressing ER stress.

  11. A novel nuclear factor erythroid 2-related factor 2 (Nrf2) activator RS9 attenuates brain injury after ischemia reperfusion in mice.

    Science.gov (United States)

    Yamauchi, Keita; Nakano, Yusuke; Imai, Takahiko; Takagi, Toshinori; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Iwama, Toru; Hara, Hideaki

    2016-10-01

    Recanalization of occluded vessels leads to ischemia-reperfusion injury (IRI), with oxidative stress as one of the main causes of injury, despite the fact that recanalization therapy is the most effective treatment for ischemic stroke. The nuclear factor erythroid 2-related factor 2 (Nrf2) is one of the transcription factors which has an essential role in protection against oxidative stress. RS9 is a novel Nrf2 activator obtained from bardoxolone methyl (BARD), an Nrf2 activator that has already been tested in a clinical trial, using a biotransformation technique. RS9 has been reported to lead to higher Nrf2 activation and less cytotoxicity than BARD. In this study, we investigated the effects of RS9 on IRI. Mice were intraperitoneally treated immediately after 2h of transient middle cerebral artery occlusion (MCAO) with a vehicle solution or 0.2mg/kg of RS9. Post-onset treatment of RS9 attenuated the infarct volume and improved neurological deficits 22h after reperfusion. RS9 activated Nrf2 2 and 6h after reperfusion and activated heme oxygenase-1 at 6 and 22h after reperfusion. RS9 also attenuated the phosphorylation of NF-κB p65 2 and 6h after reperfusion. Finally, RS9 improved the survival rate and neurological deficits 7days after MCAO. Our results suggest that the activation of Nrf2 by RS9 has a neuroprotective effect, mediated by attenuating both oxidative stress and neuroinflammation, and that RS9 is an effective therapeutic candidate for the treatment of IRI. PMID:27474227

  12. Curcumin attenuates the release of pro-inflammatory cytokines in lipopolysaccharide-stimulated BV2 microglia

    Institute of Scientific and Technical Information of China (English)

    Cheng-yun JIN; Jae-dong LEE; Cheol PARK; Yung hyun CHOI; Gi-young KIM

    2007-01-01

    Aim: Pro-inflammatory mediators, such as prostaglandin E2 (PGE2) and nitric oxide(NO), and pro-inflammatory cytokines such as intedeukini(IL)- 1β, IL-6, and TNF-α, play pivotal roles in brain injuries. The anti-inflammatory properties are known to be associated with significant reductions in pro-inflammatory mediators in brain injuries. In the present study we investigate whether the effects of curcumin on the production of pro-inflammatory mediators in lipopolysaccharide (LPS)-stimu-lated BV2 microglia. Methods: Curcumin were administered and their effects on LPS-induced pro-inflammatory mediators were monitored by Western blotting and RT-PCR. Result: Curcumin significantly inhibited the release of NO, PGE2,and pro-inflammatory cytokines in a dose-dependent manner. Curcumin also attenuated the expressions of inducible NO synthase and cyclooxygenase-2 mRNA and protein levels. Moreover, curcumin suppressed NF-κB activation via the translocation of p65 into the nucleus. Our data also indicate that curcumin exerts anti-inflammatory properties by suppressing the transcription of proinflammatory cytokine genes through the NF-rd3 signaling pathway. Conclusion: Anti-inflam-matory properties of curcumin may be useful for treating the inflammatory and deleterious effects of microglial activation in response to LPS stimulation.

  13. Minocycline attenuates brain tissue levels of TNF-α produced by neurons after prolonged hypothermic cardiac arrest in rats

    Science.gov (United States)

    Drabek, Tomas; Janata, Andreas; Wilson, Caleb D.; Stezoski, Jason; Janesko-Feldman, Keri; Tisherman, Samuel A.; Foley, Lesley M.; Verrier, Jonathan; Kochanek, Patrick M.

    2014-01-01

    Neuro-cognitive disabilities are a well-recognized complication of hypothermic circulatory arrest. We and others have reported that prolonged cardiac arrest (CA) produces neuronal death and microglial proliferation and activation that are only partially mitigated by hypothermia. Microglia, and possibly other cells, are suggested to elaborate tumor necrosis factor alpha (TNF-α) which can trigger neuronal death cascades and exacerbate edema after CNS insults. Minocycline is neuroprotective in some brain ischemia models in part by blunting the microglial response. We tested the hypothesis that minocycline would attenuate neuroinflammation as reflected by brain tissue levels of TNF-α after hypothermic CA in rats. Rats were subjected to rapid exsanguination, followed by a 6 min normothermic CA. Hypothermia (30 °C) was then induced by an aortic saline flush. After a total of 20 min CA, resuscitation was achieved via cardiopulmonary bypass (CPB). After 5 min reperfusion, minocycline (90 mg/kg; n=6) or vehicle (PBS; n=6) were given. Hypothermia (34 °C) was maintained for 6 h. Rats were sacrificed at 6 or 24 h. TNF-α was quantified (ELISA) in four brain regions (cerebellum, CEREB; cortex, CTX; hippocampus, HIP; striatum, STRI). Naïve rats (n=6) and rats subjected to the same anesthesia and CPB but no CA served as controls (n=6). Immunocytochemistry was used to localize TNF-α. Naïve rats and CPB controls had no detectable TNF-α in any brain region. CA markedly increased brain TNF-α. Regional differences were seen, with the highest TNF-α levels in striatum in CA groups (10-fold higher, P<0.05 vs. all other brain regions). TNF-α was undetectable at 24 h. Minocycline attenuated TNF-α levels in CTX, HIP and STRI (P<0.05). TNF-α showed unique co-localization with neurons. In conclusion, we report region-dependent early increases in brain TNF-α levels after prolonged hypothermic CA, with maximal increases in striatum. Surprisingly, TNF-α co-localized in neurons and

  14. Use of Activated Carbon in Packaging to Attenuate Formaldehyde-Induced and Formic Acid-Induced Degradation and Reduce Gelatin Cross-Linking in Solid Dosage Forms.

    Science.gov (United States)

    Colgan, Stephen T; Zelesky, Todd C; Chen, Raymond; Likar, Michael D; MacDonald, Bruce C; Hawkins, Joel M; Carroll, Sophia C; Johnson, Gail M; Space, J Sean; Jensen, James F; DeMatteo, Vincent A

    2016-07-01

    Formaldehyde and formic acid are reactive impurities found in commonly used excipients and can be responsible for limiting drug product shelf-life. Described here is the use of activated carbon in drug product packaging to attenuate formaldehyde-induced and formic acid-induced drug degradation in tablets and cross-linking in hard gelatin capsules. Several pharmaceutical products with known or potential vulnerabilities to formaldehyde-induced or formic acid-induced degradation or gelatin cross-linking were subjected to accelerated stability challenges in the presence and absence of activated carbon. The effects of time and storage conditions were determined. For all of the products studied, activated carbon attenuated drug degradation or gelatin cross-linking. This novel use of activated carbon in pharmaceutical packaging may be useful for enhancing the chemical stability of drug products or the dissolution stability of gelatin-containing dosage forms and may allow for the 1) extension of a drug product's shelf-life when the limiting attribute is a degradation product induced by a reactive impurity, 2) marketing of a drug product in hotter and more humid climatic zones than currently supported without the use of activated carbon, and 3) enhanced dissolution stability of products that are vulnerable to gelatin cross-linking. PMID:27262203

  15. Icariin attenuates titanium-particle inhibition of bone formation by activating the Wnt/β-catenin signaling pathway in vivo and in vitro.

    Science.gov (United States)

    Wang, Junhua; Tao, Yunxia; Ping, Zichuan; Zhang, Wen; Hu, Xuanyang; Wang, Yijun; Wang, Liangliang; Shi, Jiawei; Wu, Xiexing; Yang, Huilin; Xu, Yaozeng; Geng, Dechun

    2016-01-01

    Wear-debris-induced periprosthetic osteolysis (PIO) is a common clinical condition following total joint arthroplasty, which can cause implant instability and failure. The host response to wear debris promotes bone resorption and impairs bone formation. We previously demonstrated that icariin suppressed wear-debris-induced osteoclastogenesis and attenuated particle-induced osteolysis in vivo. Whether icariin promotes bone formation in a wear-debris-induced osteolytic site remains unclear. Here, we demonstrated that icariin significantly attenuated titanium-particle inhibition of osteogenic differentiation of mesenchymal stem cells (MSCs). Additionally, icariin increased bone mass and decreased bone loss in titanium-particle-induced osteolytic sites. Mechanistically, icariin inhibited decreased β-catenin stability induced by titanium particles in vivo and in vitro. To confirm icariin mediated its bone-protective effects via the Wnt/β-catenin signaling pathway, we demonstrated that ICG-001, a selective Wnt/β-catenin inhibitor, attenuated the effects of icariin on MSC mineralization in vitro and bone formation in vivo. Therefore, icariin could induce osteogenic differentiation of MSCs and promote new bone formation at a titanium-particle-induced osteolytic site via activation of the Wnt/β-catenin signaling pathway. These results further support the protective effects of icariin on particle-induced bone loss and provide novel mechanistic insights into the recognized bone-anabolic effects of icariin and an evidence-based rationale for its use in PIO treatment. PMID:27029606

  16. Minocycline Attenuates Iron Neurotoxicity in Cortical Cell Cultures

    OpenAIRE

    Chen-Roetling, Jing; Chen, Lifen; Regan, Raymond F.

    2009-01-01

    Iron neurotoxicity may contribute to the pathogenesis of intracerebral hemorrhage (ICH). The tetracycline derivative minocycline is protective in ICH models, due putatively to inhibition of microglial activation. Although minocycline also chelates iron, its effect on iron neurotoxicity has not been reported, and was examined in this study. Cortical cultures treated with 10 μM ferrous sulfate for 24h sustained loss of most neurons and an increase in malondialdehyde. Minocycline prevented this ...

  17. Effects of chemokine (C–C motif) ligand 1 on microglial function

    International Nuclear Information System (INIS)

    Highlights: •CCR8, a specific receptor for CCL-1, was expressed on primary cultured microglia. •Expression of CCR-8 in microglia was upregulated in the presence of CCL-1. •CCL-1 increased motility, proliferation and phagocytosis of cultured microglia. •CCL-1promoted BDNF and IL-6 mRNA, and the release of NO from microglia. •CCL-1 activates microglia and may contribute to the development of neuropathic pain. -- Abstract: Microglia, which constitute the resident macrophages of the central nervous system (CNS), are generally considered as the primary immune cells in the brain and spinal cord. Microglial cells respond to various factors which are produced following nerve injury of multiple aetiologies and contribute to the development of neuronal disease. Chemokine (C–C motif) ligand 1 (CCL-1), a well-characterized chemokine secreted by activated T cells, has been shown to play an important role in neuropathic pain induced by nerve injury and is also produced in various cell types in the CNS, especially in dorsal root ganglia (DRG). However, the role of CCL-1 in the CNS and the effects on microglia remains unclear. Here we showed the multiple effects of CCL-1 on microglia. We first showed that CCR-8, a specific receptor for CCL-1, was expressed on primary cultured microglia, as well as on astrocytes and neurons, and was upregulated in the presence of CCL-1. CCL-1 at concentration of 1 ng/ml induced chemotaxis, increased motility at a higher concentration (100 ng/ml), and increased proliferation and phagocytosis of cultured microglia. CCL-1 also activated microglia morphologically, promoted mRNA levels for brain-derived neurotrophic factor (BDNF) and IL-6, and increased the release of nitrite from microglia. These indicate that CCL-1 has a role as a mediator in neuron-glia interaction, which may contribute to the development of neurological diseases, especially in neuropathic pain

  18. Effects of chemokine (C–C motif) ligand 1 on microglial function

    Energy Technology Data Exchange (ETDEWEB)

    Akimoto, Nozomi [Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Ifuku, Masataka [Laboratory of Integrative Physiology, Graduate School of Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Mori, Yuki [Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Noda, Mami, E-mail: noda@phar.kyushu-u.ac.jp [Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2013-07-05

    Highlights: •CCR8, a specific receptor for CCL-1, was expressed on primary cultured microglia. •Expression of CCR-8 in microglia was upregulated in the presence of CCL-1. •CCL-1 increased motility, proliferation and phagocytosis of cultured microglia. •CCL-1promoted BDNF and IL-6 mRNA, and the release of NO from microglia. •CCL-1 activates microglia and may contribute to the development of neuropathic pain. -- Abstract: Microglia, which constitute the resident macrophages of the central nervous system (CNS), are generally considered as the primary immune cells in the brain and spinal cord. Microglial cells respond to various factors which are produced following nerve injury of multiple aetiologies and contribute to the development of neuronal disease. Chemokine (C–C motif) ligand 1 (CCL-1), a well-characterized chemokine secreted by activated T cells, has been shown to play an important role in neuropathic pain induced by nerve injury and is also produced in various cell types in the CNS, especially in dorsal root ganglia (DRG). However, the role of CCL-1 in the CNS and the effects on microglia remains unclear. Here we showed the multiple effects of CCL-1 on microglia. We first showed that CCR-8, a specific receptor for CCL-1, was expressed on primary cultured microglia, as well as on astrocytes and neurons, and was upregulated in the presence of CCL-1. CCL-1 at concentration of 1 ng/ml induced chemotaxis, increased motility at a higher concentration (100 ng/ml), and increased proliferation and phagocytosis of cultured microglia. CCL-1 also activated microglia morphologically, promoted mRNA levels for brain-derived neurotrophic factor (BDNF) and IL-6, and increased the release of nitrite from microglia. These indicate that CCL-1 has a role as a mediator in neuron-glia interaction, which may contribute to the development of neurological diseases, especially in neuropathic pain.

  19. Pretreatment of rats with increased bioavailable berberine attenuates cerebral ischemia-reperfusion injury via down regulation of adenosine-5'monophosphate kinase activity.

    Science.gov (United States)

    Chen, Weijia; Wei, Shengnan; Yu, Yang; Xue, Huan; Yao, Fan; Zhang, Ming; Xiao, Jun; Hatch, Grant M; Chen, Li

    2016-05-15

    Berberine (BBR) exhibits multiple beneficial biological effects. However, poor bioavailability of BBR has limited its clinical application. We previously demonstrated that solid dispersion of BBR with sodium caprate (HGSD) remarkably improves its bioavailability. We examined whether this increased bioavailability of BBR could protect the brain from ischemia-reperfusion (IR) induced injury. Rats treated with HGSD, SC and saline for 7 days then subjected to cerebral ischemia reperfusion by middle cerebral artery occlusion for 2h followed 12h reperfusion. Neurological deficit scores, infarct size, SOD, MDA and NO levels were examined. P-AMPK, Bax, cleaved-Caspase-3 in brain was determined. To further probe for the mechanism of beneficial effect of HGSD, PC12 cells were incubated with serum from control or HGSD pretreated animals, incubated with 300μM H2O2 to induce apoptosis. Caspase-3 activity and cell apoptosis was evaluated. HGSD pretreatment significantly attenuated neurological deficit scores, reduced infarct size, increased SOD and decreased MDA and NO after cerebral IR injury compared to controls. Meanwhile, HGSD pretreatment significantly reduced expression of p-AMPK, Bax, cleaved-Caspase-3 after cerebral IR injury. Sodium caprate (100mg/kg/d) pretreatment alone did not exhibit any of these beneficial effects. PC12 cell apoptosis was attenuated when cells were cultured with HGSD serum compared to control. The presence of AMPK activator (AICAR) attenuated whereas AMPK inhibitor (Compound C) augmented the protective effect of HGSD serum on PC12 cell apoptosis.The results indicate that HGSD-pretreatment of rats protects the brain from ischemia-reperfusion injury and the mechanism is due to its anti-apoptotic effect mediated by decreased activation of AMPK. PMID:26957053

  20. Inhibition of Epidermal Growth Factor Receptor Improves Myelination and Attenuates Tissue Damage of Spinal Cord Injury.

    Science.gov (United States)

    Zhang, Si; Ju, Peijun; Tjandra, Editha; Yeap, Yeeshan; Owlanj, Hamed; Feng, Zhiwei

    2016-10-01

    Preventing demyelination and promoting remyelination of denuded axons are promising therapeutic strategies for spinal cord injury (SCI). Epidermal growth factor receptor (EGFR) inhibition was reported to benefit the neural functional recovery and the axon regeneration after SCI. However, its role in de- and remyelination of axons in injured spinal cord is unclear. In the present study, we evaluated the effects of EGFR inhibitor, PD168393 (PD), on the myelination in mouse contusive SCI model. We found that expression of myelin basic protein (MBP) in the injured spinal cords of PD treated mice was remarkably elevated. The density of glial precursor cells and oligodendrocytes (OLs) was increased and the cell apoptosis in lesions was attenuated after PD168393 treatment. Moreover, PD168393 treatment reduced both the numbers of OX42 + microglial cells and glial fibrillary acidic protein + astrocytes in damaged area of spinal cords. We thus conclude that the therapeutic effects of EGFR inhibition after SCI involves facilitating remyelination of the injured spinal cord, increasing of oligodendrocyte precursor cells and OLs, as well as suppressing the activation of astrocytes and microglia/macrophages. PMID:26883518

  1. Ligustrazine attenuates oxidative stress-induced activation of hepatic stellate cells by interrupting platelet-derived growth factor-β receptor-mediated ERK and p38 pathways

    International Nuclear Information System (INIS)

    Hepatic fibrosis represents a frequent event following chronic insult to trigger wound healing reactions with accumulation of extracellular matrix (ECM) in the liver. Activation of hepatic stellate cells (HSCs) is the pivotal event during liver fibrogenesis. Compelling evidence indicates that oxidative stress is concomitant with liver fibrosis irrespective of the underlying etiology. Natural antioxidant ligustrazine exhibits potent antifibrotic activities, but the mechanisms are poorly understood. Our studies were to investigate the ligustrazine effects on HSC activation stimulated by hydrogen peroxide (H2O2), an in vitro model mimicking the oxidative stress in liver fibrogenesis, and to elucidate the possible mechanisms. Our results demonstrated that H2O2 at 5 μM significantly stimulated HSC proliferation and expression of marker genes of HSC activation; whereas ligustrazine dose-dependently suppressed proliferation and induced apoptosis in H2O2-activated HSCs, and attenuated expression of fibrotic marker genes. Mechanistic investigations revealed that ligustrazine reduced platelet-derived growth factor-β receptor (PDGF-βR) expression and blocked the phosphorylation of extracellular regulated protein kinase (ERK) and p38 kinase, two downstream effectors of PDGF-βR. Further molecular evidence suggested that ligustrazine interruption of ERK and p38 pathways was dependent on the blockade of PDGF-βR and might be involved in ligustrazine reduction of fibrotic marker gene expression under H2O2 stimulation. Furthermore, ligustrazine modulated some proteins critical for HSC activation and ECM homeostasis in H2O2-stimulated HSCs. These data collectively indicated that ligustrazine could attenuate HSC activation caused by oxidative stress, providing novel insights into ligustrazine as a therapeutic option for hepatic fibrosis. Highlights: ► Ligustrazine inhibits oxidative stress-induced HSC activation. ► Ligustrazine reduces fibrotic marker genes in HSCs under

  2. Overexpression of activin-A and -B in malignant mesothelioma – Attenuated Smad3 signaling responses and ERK activation promote cell migration and invasive growth

    International Nuclear Information System (INIS)

    Activin-A and activin-B, members of the TGF-β superfamily, are regulators of reproductive functions, inflammation and wound healing. These dimeric molecules regulate various cellular activities such as proliferation, migration and suvival. Malignant mesothelioma is an asbestos exposure related tumor affecting mainly pleura and it usually has a dismal prognosis. Here, we demonstrate that both activin-A and -B are abundantly expressed in mesothelioma tumor tissue as well as in cultured primary and established mesothelioma cells. Migratory and invasive mesothelioma cells were also found to have attenuated activation of the Smad2/3 pathway in response to activins. Migration and invasive growth of the cells in three-dimentional matrix was prevented by inhibition of activin activity using a soluble activin receptor 2B (sActR2B-Fc). This was associated with decreased ERK activity. Furthermore, migration and invasive growth was significantly inhibited by blocking ERK phosphorylation. Mesothelioma tumors are locally invasive and our results clearly suggest that acivins have a tumor-promoting function in mesothelioma through increasing expression and switching from canonical Smad3 pathway to non-canonical ERK pathway signaling. Blocking activin activity offers a new therapeutic approach for inhibition of mesothelioma invasive growth. - Highlights: • Activin-A and activin-B are highly expressed in mesothelioma. • Mesothelioma cell migration and invasive growth can be blocked with sActR2B. • Activin induced Smad3 activity is attenuated in invasive mesothelioma cells. • Activins induce ERK activity in mesothelioma cells

  3. Overexpression of activin-A and -B in malignant mesothelioma – Attenuated Smad3 signaling responses and ERK activation promote cell migration and invasive growth

    Energy Technology Data Exchange (ETDEWEB)

    Tamminen, Jenni A.; Yin, Miao [Research Programs Unit, Translational Cancer Biology, University of Helsinki (Finland); Transplantation Laboratory, Haartman Institute, University of Helsinki (Finland); Rönty, Mikko [Helsinki University Central Hospital Laboratory, Helsinki (Finland); Department of Pathology, University of Helsinki (Finland); Sutinen, Eva [Helsinki University Central Hospital Laboratory, Helsinki (Finland); Department of Medicine, Division of Pulmonary Medicine, University of Helsinki (Finland); Pasternack, Arja; Ritvos, Olli [Helsinki University Central Hospital Laboratory, Helsinki (Finland); Department of Bacteriology and Immunology, University of Helsinki (Finland); Myllärniemi, Marjukka [Transplantation Laboratory, Haartman Institute, University of Helsinki (Finland); Helsinki University Central Hospital Laboratory, Helsinki (Finland); Department of Medicine, Division of Pulmonary Medicine, University of Helsinki (Finland); Koli, Katri, E-mail: katri.koli@helsinki.fi [Research Programs Unit, Translational Cancer Biology, University of Helsinki (Finland); Transplantation Laboratory, Haartman Institute, University of Helsinki (Finland)

    2015-03-01

    Activin-A and activin-B, members of the TGF-β superfamily, are regulators of reproductive functions, inflammation and wound healing. These dimeric molecules regulate various cellular activities such as proliferation, migration and suvival. Malignant mesothelioma is an asbestos exposure related tumor affecting mainly pleura and it usually has a dismal prognosis. Here, we demonstrate that both activin-A and -B are abundantly expressed in mesothelioma tumor tissue as well as in cultured primary and established mesothelioma cells. Migratory and invasive mesothelioma cells were also found to have attenuated activation of the Smad2/3 pathway in response to activins. Migration and invasive growth of the cells in three-dimentional matrix was prevented by inhibition of activin activity using a soluble activin receptor 2B (sActR2B-Fc). This was associated with decreased ERK activity. Furthermore, migration and invasive growth was significantly inhibited by blocking ERK phosphorylation. Mesothelioma tumors are locally invasive and our results clearly suggest that acivins have a tumor-promoting function in mesothelioma through increasing expression and switching from canonical Smad3 pathway to non-canonical ERK pathway signaling. Blocking activin activity offers a new therapeutic approach for inhibition of mesothelioma invasive growth. - Highlights: • Activin-A and activin-B are highly expressed in mesothelioma. • Mesothelioma cell migration and invasive growth can be blocked with sActR2B. • Activin induced Smad3 activity is attenuated in invasive mesothelioma cells. • Activins induce ERK activity in mesothelioma cells.

  4. Rotary antenna attenuator

    Science.gov (United States)

    Dickinson, R. M.; Hardy, J. C.

    1969-01-01

    Radio frequency attenuator, having negligible insertion loss at minimum attenuation, can be used for making precise antenna gain measurements. It is small in size compared to a rotary-vane attenuator.

  5. Early microglial colonization of the human forebrain and possible involvement in periventricular white-matter injury of preterm infants.

    Science.gov (United States)

    Verney, Catherine; Monier, Anne; Fallet-Bianco, Catherine; Gressens, Pierre

    2010-10-01

    Amoeboid microglial subpopulations visualized by antibodies against ionized calcium-binding adapter molecule 1, CD68, and CD45 enter the forebrain starting at 4.5 postovulatory or gestational weeks (gw). They penetrate the telencephalon and diencephalon via the meninges, choroid plexus, and ventricular zone. Early colonization by amoeboid microglia-macrophages is first restricted to the white matter, where these cells migrate and accumulate in patches at the junctions of white-matter pathways, such as the three junctions that the internal capsule makes with the thalamocortical projection, external capsule and cerebral peduncle, respectively. In the cerebral cortex anlage, migration is mainly radial and tangential towards the immature white matter, subplate layer, and cortical plate, whereas pial cells populate the prospective layer I. A second wave of microglial cells penetrates the brain via the vascular route at about 12-13 gw and remains confined to the white matter. Two main findings deserve emphasis. First, microglia accumulate at 10-12 gw at the cortical plate-subplate junction, where the first synapses are detected. Second, microglia accumulate in restricted laminar bands, most notably around 19-30 gw, at the axonal crossroads in the white matter (semiovale centre) rostrally, extending caudally in the immature white matter to the visual radiations. This accumulation of proliferating microglia is located at the site of white-matter injury in premature neonates. The spatiotemporal organization of microglia in the immature white and grey matter suggests that these cells may play active roles in developmental processes such as axonal guidance, synaptogenesis, and neurodevelopmental apoptosis as well as in injuries to the developing brain, in particular in the periventricular white-matter injury of preterm infants. PMID:20557401

  6. Microglia is activated by astrocytes in trimethyltin intoxication

    International Nuclear Information System (INIS)

    Microglia participates in most acute and chronic neuropathologies and its activation appears to involve interactions with neurons and other glial cells. Trimethyltin (TMT)-induced brain damage is a well-characterized model of neurodegeneration, in which microglial activation occurs before neuronal degeneration. The aim of this in vitro study was to investigate the role of astroglia in TMT-induced microgliosis by using nitric oxide (NO), inducible NO synthase (iNOS), and morphological changes as parameters for microglial activation. Our investigation discusses (a) whether microglial cells can be activated directly by TMT; (b) if astroglial cells are capable of triggering or modulating microglial activation; (c) how the morphology and survival of microglia and astrocytes are affected by TMT treatment; and (d) whether microglial-astroglial interactions depend on direct cell contact or on soluble factors. Our results show that microglia are more vulnerable to TMT than astrocytes are and cannot be activated directly by TMT with regard to the examined parameters. In bilayer coculture with viable astroglial cells, microglia produce NO in significant amounts at subcytotoxic concentrations of TMT (20 μmol/l). At these TMT concentrations, microglial cells in coculture convert into small round cells without cell processes, whereas flat, fibroblast-like astrocytes convert into thin process bearing stellate cells with a dense and compact cell body. We conclude that astrocytes trigger microglial activation after treatment with TMT, although the mechanisms of this interaction remain unknown

  7. An early granulocyte colony-stimulating factor treatment attenuates neuropathic pain through activation of mu opioid receptors on the injured nerve.

    Science.gov (United States)

    Liao, Ming-Feng; Yeh, Shin-Rung; Lo, Ai-Lun; Chao, Po-Kuan; Lee, Yun-Lin; Hung, Yu-Hui; Lu, Kwok-Tung; Ro, Long-Sun

    2016-01-01

    Several studies have shown that the mu opioid receptor (MOR) located in the peripheral nerves can be activated after nerve injury and that it attenuates peripheral nociceptive signals to the spinal dorsal horn. Various cytokines and phosphorylated-p38 (p-p38) activation in the dorsal horn also play an important role in neuropathic pain development. Granulocyte-colony stimulating factor (GCSF) is a growth factor that can stimulate granulocyte formation and has been shown to exert an analgesic effect on neuropathic pain through recruiting opioid-containing leukocytes to the injured nerve. However, the underlying mechanisms are not well understood. Herein, the results of behavior tests in addition to MOR levels in the injured sciatic nerve and the levels of p-p38 and various cytokines in the spinal dorsal horn were studied in vehicle-treated or GCSF-treated chronic constriction injured (CCI) rats at different time points (i.e., 1, 3, and 7 days, respectively) after nerve injury. The results showed that a single early systemic GCSF treatment after nerve injury can up-regulate MORs in the injured nerve, which can decrease peripheral nociceptive signals. Thereafter, those changes suppress the pro-inflammatory cytokine IL-6 but enhance the anti-inflammatory cytokine IL-4, followed by decreases in p-p38 in the dorsal horn, and thus further attenuate neuropathic pain. PMID:27180600

  8. Structure-Function Basis of Attenuated Inverse Agonism of Angiotensin II Type 1 Receptor Blockers for Active-State Angiotensin II Type 1 Receptor.

    Science.gov (United States)

    Takezako, Takanobu; Unal, Hamiyet; Karnik, Sadashiva S; Node, Koichi

    2015-09-01

    Ligand-independent signaling by the angiotensin II type 1 receptor (AT1R) can be activated in clinical settings by mechanical stretch and autoantibodies as well as receptor mutations. Transition of the AT1R to the activated state is known to lower inverse agonistic efficacy of clinically used AT1R blockers (ARBs). The structure-function basis for reduced efficacy of inverse agonists is a fundamental aspect that has been understudied not only in relation to the AT1R but also regarding other homologous receptors. Here, we demonstrate that the active-state transition in the AT1R indeed attenuates an inverse agonistic effect of four biphenyl-tetrazole ARBs through changes in specific ligand-receptor interactions. In the ground state, tight interactions of four ARBs with a set of residues (Ser109(TM3), Phe182(ECL2), Gln257(TM6), Tyr292(TM7), and Asn295(TM7)) results in potent inverse agonism. In the activated state, the ARB-AT1R interactions shift to a different set of residues (Val108(TM3), Ser109(TM3), Ala163(TM4), Phe182(ECL2), Lys199(TM5), Tyr292(TM7), and Asn295(TM7)), resulting in attenuated inverse agonism. Interestingly, V108I, A163T, N295A, and F182A mutations in the activated state of the AT1R shift the functional response to the ARB binding toward agonism, but in the ground state the same mutations cause inverse agonism. Our data show that the second extracellular loop is an important regulator of the functional states of the AT1R. Our findings suggest that the quest for discovering novel ARBs, and improving current ARBs, fundamentally depends on the knowledge of the unique sets of residues that mediate inverse agonistic potency in the two states of the AT1R. PMID:26121982

  9. The Attenuated Brucella abortus Strain 19 Invades, Persists in, and Activates Human Dendritic Cells, and Induces the Secretion of IL-12p70 but Not IL-23.

    Directory of Open Access Journals (Sweden)

    Mario Weinhold

    Full Text Available Bacterial vectors have been proposed as novel vaccine strategies to induce strong cellular immunity. Attenuated strains of Brucella abortus comprise promising vector candidates since they have the potential to induce strong CD4(+ and CD8(+ T-cell mediated immune responses in the absence of excessive inflammation as observed with other Gram-negative bacteria. However, some Brucella strains interfere with the maturation of dendritic cells (DCs, which is essential for antigen-specific T-cell priming. In the present study, we investigated the interaction of human monocyte-derived DCs with the smooth attenuated B. abortus strain (S 19, which has previously been employed successfully to vaccinate cattle.We first looked into the potential of S19 to hamper the cytokine-induced maturation of DCs; however, infected cells expressed CD25, CD40, CD80, and CD86 to a comparable extent as uninfected, cytokine-matured DCs. Furthermore, S19 activated DCs in the absence of exogeneous stimuli, enhanced the expression of HLA-ABC and HLA-DR, and was able to persist intracellularly without causing cytotoxicity. Thus, DCs provide a cellular niche for persisting brucellae in vivo as a permanent source of antigen. S19-infected DCs produced IL-12/23p40, IL-12p70, and IL-10, but not IL-23. While heat-killed bacteria also activated DCs, soluble mediators were not involved in S19-induced activation of human DCs. HEK 293 transfectants revealed cellular activation by S19 primarily through engagement of Toll-like receptor (TLR2.Thus, as an immunological prerequisite for vaccine efficacy, B. abortus S19 potently infects and potently activates (most likely via TLR2 human DCs to produce Th1-promoting cytokines.

  10. Immunity to Schistosoma mansoni in guinea-pigs vaccinated with radiation-attenuated cercariae. T-cell activation of macrophages for larval killing

    International Nuclear Information System (INIS)

    This study addresses macrophage activation in guinea-pigs vaccinated with radiation-attenuated cercariae of Schistosom mansoni. Peritoneal exudate macrophages elicited in vaccinated animals by mineral oil injection were activated to kill larval schistosomes in vitro. Killing efficiency is dependent upon the cell:target ratio employed and is enhanced by, but is not strictly dependent on, the presence of specific antibodies. Macrophages co-cultured with parasites release superoxide radicals and hydrogen peroxide, but the use of inhibitors has shown that neither of these reactive oxygen intermediates are the causal agents of cellular cytotoxicity in this system. Oil-elicited macrophages from naive guinea-pigs do not show comparable activation; they can, however, be activated in vitro by incubation with culture supernatant fluids from schistosome antigen-stimulated spleen, or lymph node cells harvested from vaccinated guinea-pigs. Naive macrophages activated in this way kill schistosomula in vitro and release the activation markers IL-l and superoxide anion. The macrophage-activating factor (MAF) present in spleen cell culture supernatant fluids has a MW of 35,000-55,000, but does not have the chemical characteristics of gamma-interferon. (author)

  11. Immunity to Schistosoma mansoni in guinea-pigs vaccinated with radiation-attenuated cercariae. T-cell activation of macrophages for larval killing

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, J.R.; McLaren, D.J.

    1988-02-01

    This study addresses macrophage activation in guinea-pigs vaccinated with radiation-attenuated cercariae of Schistosom mansoni. Peritoneal exudate macrophages elicited in vaccinated animals by mineral oil injection were activated to kill larval schistosomes in vitro. Killing efficiency is dependent upon the cell:target ratio employed and is enhanced by, but is not strictly dependent on, the presence of specific antibodies. Macrophages co-cultured with parasites release superoxide radicals and hydrogen peroxide, but the use of inhibitors has shown that neither of these reactive oxygen intermediates are the causal agents of cellular cytotoxicity in this system. Oil-elicited macrophages from naive guinea-pigs do not show comparable activation; they can, however, be activated in vitro by incubation with culture supernatant fluids from schistosome antigen-stimulated spleen, or lymph node cells harvested from vaccinated guinea-pigs. Naive macrophages activated in this way kill schistosomula in vitro and release the activation markers IL-l and superoxide anion. The macrophage-activating factor (MAF) present in spleen cell culture supernatant fluids has a MW of 35,000-55,000, but does not have the chemical characteristics of gamma-interferon.

  12. A novel thiol compound, N-acetylcysteine amide, attenuates allergic airway disease by regulating activation of NF-kappaB and hypoxia-inducible factor-1alpha.

    Science.gov (United States)

    Lee, Kyung Sun; Kim, So Ri; Park, Hee Sun; Park, Seoung Ju; Min, Kyung Hoon; Lee, Ka Young; Choe, Yeong Hun; Hong, Sang Hyun; Han, Hyo Jin; Lee, Young Rae; Kim, Jong Suk; Atlas, Daphne; Lee, Yong Chul

    2007-12-31

    Reactive oxygen species (ROS) play an important role in the pathogenesis of airway inflammation and hyperresponsiveness. Recent studies have demonstrated that antioxidants are able to reduce airway inflammation and hyperreactivity in animal models of allergic airway disease. A newly developed antioxidant, small molecular weight thiol compound, N-acetylcysteine amide (AD4) has been shown to increase cellular levels of glutathione and to attenuate oxidative stress related disorders such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. However, the effects of AD4 on allergic airway disease such as asthma are unknown. We used ovalbumin (OVA)-inhaled mice to evaluate the role of AD4 in allergic airway disease. In this study with OVA-inhaled mice, the increased ROS generation, the increased levels of Th2 cytokines and VEGF, the increased vascular permeability, the increased mucus production, and the increased airway resistance in the lungs were significantly reduced by the administration of AD4. We also found that the administration of AD4 decreased the increases of the NF-kappaB and hypoxia-inducible factor-1alpha (HIF-1alpha) levels in nuclear protein extracts of lung tissues after OVA inhalation. These results suggest that AD4 attenuates airway inflammation and hyperresponsiveness by regulating activation of NF-kappaB and HIF-1alpha as well as reducing ROS generation in allergic airway disease. PMID:18160846

  13. DC attenuation meter

    Science.gov (United States)

    Hargrove, Douglas L.

    2004-09-14

    A portable, hand-held meter used to measure direct current (DC) attenuation in low impedance electrical signal cables and signal attenuators. A DC voltage is applied to the signal input of the cable and feedback to the control circuit through the signal cable and attenuators. The control circuit adjusts the applied voltage to the cable until the feedback voltage equals the reference voltage. The "units" of applied voltage required at the cable input is the system attenuation value of the cable and attenuators, which makes this meter unique. The meter may be used to calibrate data signal cables, attenuators, and cable-attenuator assemblies.

  14. β-Lactoglobulin mutant Lys69Asn has attenuated IgE and increased retinol binding activity.

    Science.gov (United States)

    Taheri-Kafrani, Asghar; Tavakkoli Koupaie, Neda; Haertlé, Thomas

    2015-10-20

    β-Lactoglobulin (β-LG) is a member of lipocalin superfamily of transporters for small hydrophobic molecules such as retinoids, fatty acids, drugs, and vitamins. β-LG also is one of the major allergens in milk. Despite a lot of research on decreasing cow's milk allergenicity, the effects of mutations of β-LG on recognition by IgE from cow's milk allergy (CMA) patients have not been investigated. We describe here the expression in the yeast Pichia pastoris of a mutant bovine β-LG, in which lysine at position 69, in the main epitopes of the protein, was changed into asparagine (Lys69Asn). The purity and native like folded structure of the recombinant Lys69Asn β-LG was confirmed by HPLC, SDS-PAGE, mass spectrometry and circular dichroism. Lys69Asn β-LG has a fourfold stronger affinity than the wild-type protein for retinol, palmitic acid, and resveratrol, as determined by quenching of the intrinsic tryptophan fluorescence. At the same time the Lys69Asn mutant had a 9 fold attenuated, compared with the wild-type, affinity for IgE of sera from patients suffering from cow's milk allergy, whereas no difference could be detected between mutant and wild-type for binding of the IgGs of four monoclonal antibodies. The results of this study demonstrated the significant role of Lys69 residue on the binding and immuoreactivity properties of β-LG. PMID:26281976

  15. Dioscin alleviates alcoholic liver fibrosis by attenuating hepatic stellate cell activation via the TLR4/MyD88/NF-κB signaling pathway

    Science.gov (United States)

    Liu, Min; Xu, Youwei; Han, Xu; Yin, Lianhong; Xu, Lina; Qi, Yan; Zhao, Yanyan; Liu, Kexin; Peng, Jinyong

    2015-01-01

    The present work aimed to investigate the activities and underlying mechanisms of dioscin against alcoholic liver fibrosis (ALF). In vivo liver fibrosis in mice was induced by an alcoholic liquid diet, and in vitro studies were performed on activated HSC-T6 and LX2 cells treated with lipopolysaccharide. Our results showed that dioscin significantly attenuated hepatic stellate cells (HSCs) activation, improved collagen accumulation, and attenuated inflammation through down-regulating the levels of myeloid differentiation factor 88 (MyD88), nuclear factor κB (NF-κB), interleukin (IL)-1, IL-6 and tumour necrosis factor-α by decreasing Toll-like receptor (TLR)4 expression both in vivo and in vitro. TLR4 overexpression was also decreased by dioscin, leading to the markedly down-regulated levels of MyD88, NF-κB, transforming growth factor-β1 (TGF-β1), α-smooth muscle actin (α-SMA) and type I collagen (COL1A1) in cultured HSCs. Suppression of cellular MyD88 by ST2825 or abrogation of NF-κB by pyrrolidine dithiocarbamate eliminated the inhibitory effects of dioscin on the levels of TGF-β1, α-SMA and COL1A1. In a word, dioscin exhibited potent effects against ALF via altering TLR4/MyD88/NF-κB signaling pathway, which provided novel insights into the mechanisms of this compound as an antifibrogenic candidate for the treatment of ALF in the future. PMID:26655640

  16. Human mesenchymal stromal cells attenuate graft-versus-host disease and maintain graft-versus-leukemia activity following experimental allogeneic bone marrow transplantation.

    Science.gov (United States)

    Auletta, Jeffery J; Eid, Saada K; Wuttisarnwattana, Patiwet; Silva, Ines; Metheny, Leland; Keller, Matthew D; Guardia-Wolff, Rocio; Liu, Chen; Wang, Fangjing; Bowen, Theodore; Lee, Zhenghong; Solchaga, Luis A; Ganguly, Sudipto; Tyler, Megan; Wilson, David L; Cooke, Kenneth R

    2015-02-01

    We sought to define the effects and underlying mechanisms of human, marrow-derived mesenchymal stromal cells (hMSCs) on graft-versus-host disease (GvHD) and graft-versus-leukemia (GvL) activity. Irradiated B6D2F1 mice given C57BL/6 BM and splenic T cells and treated with hMSCs had reduced systemic GvHD, donor T-cell expansion, and serum TNFα and IFNγ levels. Bioluminescence imaging demonstrated that hMSCs redistributed from lungs to abdominal organs within 72 hours, and target tissues harvested from hMSC-treated allogeneic BMT (alloBMT) mice had less GvHD than untreated controls. Cryoimaging more precisely revealed that hMSCs preferentially distributed to splenic marginal zones and regulated T-cell expansion in the white pulp. Importantly, hMSCs had no effect on in vitro cytotoxic T-cell activity and preserved potent GvL effects in vivo. Mixed leukocyte cultures containing hMSCs exhibited decreased T-cell proliferation, reduced TNFα, IFNγ, and IL-10 but increased PGE2 levels. Indomethacin and E-prostanoid 2 (EP2) receptor antagonisms both reversed while EP2 agonism restored hMSC-mediated in vitro T-cell suppression, confirming the role for PGE2 . Furthermore, cyclo-oxygenase inhibition following alloBMT abrogated the protective effects of hMSCs. Together, our data show that hMSCs preserve GvL activity and attenuate GvHD and reveal that hMSC biodistribute to secondary lymphoid organs wherein they attenuate alloreactive T-cell proliferation likely through PGE2 induction. PMID:25336340

  17. Ligustrazine attenuates oxidative stress-induced activation of hepatic stellate cells by interrupting platelet-derived growth factor-β receptor-mediated ERK and p38 pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng [Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029 (China); Ni, Chunyan [Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029 (China); The First People' s Hospital of Changzhou, Changzhou 213003 (China); Kong, Desong; Zhang, Xiaoping; Zhu, Xiaojing; Chen, Li [Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029 (China); Lu, Yin [Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029 (China); Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046 (China); National First-Class Key Discipline for Traditional Chinese Medicine of Nanjing University of Chinese Medicine, Nanjing 210046 (China); Zheng, Shizhong, E-mail: nytws@163.com [Department of Clinical Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029 (China); Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046 (China); National First-Class Key Discipline for Traditional Chinese Medicine of Nanjing University of Chinese Medicine, Nanjing 210046 (China)

    2012-11-15

    Hepatic fibrosis represents a frequent event following chronic insult to trigger wound healing reactions with accumulation of extracellular matrix (ECM) in the liver. Activation of hepatic stellate cells (HSCs) is the pivotal event during liver fibrogenesis. Compelling evidence indicates that oxidative stress is concomitant with liver fibrosis irrespective of the underlying etiology. Natural antioxidant ligustrazine exhibits potent antifibrotic activities, but the mechanisms are poorly understood. Our studies were to investigate the ligustrazine effects on HSC activation stimulated by hydrogen peroxide (H{sub 2}O{sub 2}), an in vitro model mimicking the oxidative stress in liver fibrogenesis, and to elucidate the possible mechanisms. Our results demonstrated that H{sub 2}O{sub 2} at 5 μM significantly stimulated HSC proliferation and expression of marker genes of HSC activation; whereas ligustrazine dose-dependently suppressed proliferation and induced apoptosis in H{sub 2}O{sub 2}-activated HSCs, and attenuated expression of fibrotic marker genes. Mechanistic investigations revealed that ligustrazine reduced platelet-derived growth factor-β receptor (PDGF-βR) expression and blocked the phosphorylation of extracellular regulated protein kinase (ERK) and p38 kinase, two downstream effectors of PDGF-βR. Further molecular evidence suggested that ligustrazine interruption of ERK and p38 pathways was dependent on the blockade of PDGF-βR and might be involved in ligustrazine reduction of fibrotic marker gene expression under H{sub 2}O{sub 2} stimulation. Furthermore, ligustrazine modulated some proteins critical for HSC activation and ECM homeostasis in H{sub 2}O{sub 2}-stimulated HSCs. These data collectively indicated that ligustrazine could attenuate HSC activation caused by oxidative stress, providing novel insights into ligustrazine as a therapeutic option for hepatic fibrosis. Highlights: ► Ligustrazine inhibits oxidative stress-induced HSC activation.

  18. Involvement of PKA and HO-1 signaling in anti-inflammatory effects of surfactin in BV-2 microglial cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Young; Kim, Ji-Hee [Department of Molecular Biology, College of Natural Sciences, Pusan National University, Jangjeon-dong, Keumjeong-gu, Busan 609-735 (Korea, Republic of); Lee, Sang Joon [Department of Microbiology, College of Natural Sciences, Pusan National University, Jangjeon-dong, Keumjeong-gu, Busan 609-735 (Korea, Republic of); Kim, YoungHee, E-mail: yheekim@pusan.ac.kr [Department of Molecular Biology, College of Natural Sciences, Pusan National University, Jangjeon-dong, Keumjeong-gu, Busan 609-735 (Korea, Republic of)

    2013-04-01

    Surfactin, one of the most powerful biosurfactants, is a bacterial cyclic lipopeptide. Here, we investigated the anti-neuroinflammatory properties of surfactin in lipoteichoic acid (LTA)-stimulated BV-2 microglial cells. Surfactin significantly inhibited excessive production of the pro-inflammatory mediators TNF-α, IL-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1), prostaglandin E{sub 2} (PGE{sub 2}), nitric oxide (NO) and reactive oxygen species (ROS), and suppressed the expression of matrix metalloproteinase-9 (MMP-9), inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). Subsequent mechanistic studies revealed that surfactin inhibited LTA-induced nuclear factor-kappaB (NF-κB) and signal transducer and activator of transcription-1 (STAT-1) activation. However, surfactin increases the phosphorylation of the STAT-3, a component of the homeostatic mechanism causing anti-inflammatory events. We also demonstrated that surfactin induces heme oxygenase-1 (HO-1) expression and nuclear factor-regulated factor-2 (Nrf-2) activation, and that the anti-inflammatory effects of surfactin are abrogated by small interfering RNA-mediated knock-down of HO-1 or Nrf-2. Interestingly, we found that surfactin increased the level of cAMP and induced phosphorylation of cAMP responsive element binding protein (CREB) in microglial cells. Furthermore, treatment with the protein kinase A (PKA) inhibitor, H-89, blocked HO-1 induction by surfactin and abolished surfactin's suppressive effects on ROS and NO production. These results indicate that HO-1 and its upstream effector, PKA, play a pivotal role in the anti-neuroinflammatory response of surfactin in LTA-stimulated microglia. Therefore, surfactin might have therapeutic potential for neuroprotective agents to treat inflammatory and neurodegenerative diseases. - Highlights: ► Surfactin inhibits proinflammatory mediator synthesis in LTA-activated BV-2 cells. ► Surfactin suppresses NF-κB and STAT-1, but potentiates

  19. Involvement of PKA and HO-1 signaling in anti-inflammatory effects of surfactin in BV-2 microglial cells

    International Nuclear Information System (INIS)

    Surfactin, one of the most powerful biosurfactants, is a bacterial cyclic lipopeptide. Here, we investigated the anti-neuroinflammatory properties of surfactin in lipoteichoic acid (LTA)-stimulated BV-2 microglial cells. Surfactin significantly inhibited excessive production of the pro-inflammatory mediators TNF-α, IL-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1), prostaglandin E2 (PGE2), nitric oxide (NO) and reactive oxygen species (ROS), and suppressed the expression of matrix metalloproteinase-9 (MMP-9), inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). Subsequent mechanistic studies revealed that surfactin inhibited LTA-induced nuclear factor-kappaB (NF-κB) and signal transducer and activator of transcription-1 (STAT-1) activation. However, surfactin increases the phosphorylation of the STAT-3, a component of the homeostatic mechanism causing anti-inflammatory events. We also demonstrated that surfactin induces heme oxygenase-1 (HO-1) expression and nuclear factor-regulated factor-2 (Nrf-2) activation, and that the anti-inflammatory effects of surfactin are abrogated by small interfering RNA-mediated knock-down of HO-1 or Nrf-2. Interestingly, we found that surfactin increased the level of cAMP and induced phosphorylation of cAMP responsive element binding protein (CREB) in microglial cells. Furthermore, treatment with the protein kinase A (PKA) inhibitor, H-89, blocked HO-1 induction by surfactin and abolished surfactin's suppressive effects on ROS and NO production. These results indicate that HO-1 and its upstream effector, PKA, play a pivotal role in the anti-neuroinflammatory response of surfactin in LTA-stimulated microglia. Therefore, surfactin might have therapeutic potential for neuroprotective agents to treat inflammatory and neurodegenerative diseases. - Highlights: ► Surfactin inhibits proinflammatory mediator synthesis in LTA-activated BV-2 cells. ► Surfactin suppresses NF-κB and STAT-1, but potentiates phosphorylation of

  20. Anthocyanins Downregulate Lipopolysaccharide-Induced Inflammatory Responses in BV2 Microglial Cells by Suppressing the NF-κB and Akt/MAPKs Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Yung Hyun Choi

    2013-01-01

    Full Text Available Anthocyanins are naturally occurring polyphenols that impart bright color to fruits, vegetables and plants and have a variety of protective properties, which have generally been attributed to their antioxidant capacity. However, little is known about the molecular mechanisms underlying anti-inflammatory effects of anthocyanins related to neurodegenerative diseases. Therefore, we determined whether anthocyanins isolated from black soybean seed coats would inhibit pro-inflammatory mediators and cytokines in lipopolysaccharide (LPS-stimulated murine BV2 microglial cells. Our results showed that anthocyanins significantly inhibited LPS-induced pro-inflammatory mediators, such as nitric oxide (NO and prostaglandin E2, and pro-inflammatory cytokines including tumor necrosis factor (TNF-α and interleukin (IL-1β, without significant cytotoxicity. Anthocyanins also downregulated excessive expression of inducible NO synthase, cyclooxygenase-2, TNF-α, and IL-1β in LPS-stimulated BV2 cells. Moreover, anthocyanins inhibited nuclear translocation of nuclear factor-kappa B (NF-κB by reducing inhibitor of NF-κB alpha degradation as well as phosphorylating extracellular signal-regulated kinase, c-Jun N-terminal kinase, p38 mitogen-activated protein kinase, and Akt. These findings suggest that anthocyanins may offer substantial therapeutic potential for treating inflammatory and neurodegenerative diseases accompanied by microglial activation.

  1. Layer 5 Pyramidal Neurons’ Dendritic Remodeling and Increased Microglial Density in Primary Motor Cortex in a Murine Model of Facial Paralysis

    Directory of Open Access Journals (Sweden)

    Diana Urrego

    2015-01-01

    Full Text Available This work was aimed at characterizing structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with microglial density induced by facial nerve lesion using a murine facial paralysis model. Adult transgenic mice, expressing green fluorescent protein in microglia and yellow fluorescent protein in projecting neurons, were submitted to either unilateral section of the facial nerve or sham surgery. Injured animals were sacrificed either 1 or 3weeks after surgery. Two-photon excitation microscopy was then used for evaluating both layer 5 pyramidal neurons and microglia in vibrissal primary motor cortex (vM1. It was found that facial nerve lesion induced long-lasting changes in the dendritic morphology of vM1 layer 5 pyramidal neurons and in their surrounding microglia. Dendritic arborization of the pyramidal cells underwent overall shrinkage. Apical dendrites suffered transient shortening while basal dendrites displayed sustained shortening. Moreover, dendrites suffered transient spine pruning. Significantly higher microglial cell density was found surrounding vM1 layer 5 pyramidal neurons after facial nerve lesion with morphological bias towards the activated phenotype. These results suggest that facial nerve lesions elicit active dendrite remodeling due to pyramidal neuron and microglia interaction, which could be the pathophysiological underpinning of some neuropathic motor sequelae in humans.

  2. Panaxatriol Saponins Attenuated Oxygen-Glucose Deprivation Injury in PC12 Cells via Activation of PI3K/Akt and Nrf2 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yongliang Huang

    2014-01-01

    Full Text Available Panaxatriol saponins (PTS, the main components extracted from Panax notoginseng, have been shown to be efficacious in the prevention and treatment of cerebrovascular diseases in China. NF-E2-related factor 2 (Nrf2, a transcription factor regulating antioxidant and cytoprotective responses to oxidative stress, has received particular attention as a molecular target for pharmacological intervention of ischemic diseases. The aim of this study was to characterize the effect of PTS on the activation of Nrf2 signaling pathway and the potential role in its protective effect. We found that PTS induced heme oxygenase-1 (HO-1 expression in PC12 cells via activating Nrf2 signaling pathway. Phosphatidylinositol 3-kinase (PI3K/Akt kinase was involved in the upstream of this PTS activated pathway. Moreover, combination of the main components in PTS significantly enhanced the expression of Nrf2 mediated phase II enzymes. Importantly, the protective effect of PTS against oxygen-glucose deprivation-reperfusion (OGD-Rep induced cell death was significantly attenuated by PI3K inhibitor and antioxidant response element (ARE decoy oligonucleotides, suggesting that both PI3K/Akt and Nrf2 signaling pathway are essential during this protective process. Taken together, our results suggest that PTS may activate endogenous cytoprotective mechanism against OGD-Rep induced oxidative injury via the activation of PI3K/Akt and Nrf2 signaling pathway.

  3. HIF-1α signaling activation by post-ischemia treatment with astragaloside IV attenuates myocardial ischemia-reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Jingwen Si

    Full Text Available In this study, we evaluated the effect of astragaloside IV (Ast IV post-ischemia treatment on myocardial ischemia-reperfusion (IR injury (IRI. We also examined whether hypoxia inducible factor-1α (HIF-1α and its downstream gene-inducible nitric oxide (NO synthase (iNOS play roles in the cardioprotective effect of Ast IV. Cultured cardiomyocytes and perfused isolated rat hearts were exposed to Ast IV during reperfusion in the presence or absence of the HIF-1α inhibitor 2-methoxyestradiol (2-MeOE2. The post-ischemia treatment with Ast IV protected cardiomyocytes from the apoptosis and death induced by simulated IRI (SIRI. Additionally, in cardiomyocytes, 2-MeOE2 and HIF-1α siRNA treatment each not only abolished the anti-apoptotic effect of post-ischemia treatment with Ast IV but also reversed the upregulation of HIF-1α and iNOS expression. Furthermore, after treatment with Ast IV, post-ischemic cardiac functional recovery and lactate dehydrogenase (LDH release in the coronary flow (CF were improved, and the myocardial infarct size was decreased. Moreover, the number of apoptotic cells was reduced, and the upregulation of the anti-apoptotic protein Bcl2 and downregulation of the pro-apoptotic protein Caspase3 were reversed. 2-MeOE2 reversed these effects of Ast IV on IR-injured hearts. These results suggest that post-ischemia treatment with Ast IV can attenuate IRI by upregulating HIF-1α expression, which transmits a survival signal to the myocardium.

  4. β-Glucan attenuates TLR2- and TLR4-mediated cytokine production by microglia

    OpenAIRE

    Shah, Vaibhav B.; Williams, David L.; Keshvara, Lakhu

    2009-01-01

    Microglia, the resident immune cells of the brain, are activated in response to any kind of CNS injury, and their activation is critical for maintaining homeostasis within the CNS. However, during inflammatory conditions, sustained microglial activation results in damage to surrounding neuronal cells. β-Glucans are widely recognized immunomodulators, but the molecular mechanisms underlying their immunomodulatory actions have not been fully explored. We previously reported that β-glucans activ...

  5. Lactobacillus rhamnosus GR-1 Ameliorates Escherichia coli-Induced Inflammation and Cell Damage via Attenuation of ASC-Independent NLRP3 Inflammasome Activation.

    Science.gov (United States)

    Wu, Qiong; Liu, Ming-Chao; Yang, Jun; Wang, Jiu-Feng; Zhu, Yao-Hong

    2016-02-01

    Escherichia coli is a major environmental pathogen causing bovine mastitis, which leads to mammary tissue damage and cell death. We explored the effects of the probiotic Lactobacillus rhamnosus GR-1 on ameliorating E. coli-induced inflammation and cell damage in primary bovine mammary epithelial cells (BMECs). Increased Toll-like receptor 4 (TLR4), NOD1, and NOD2 mRNA expression was observed following E. coli challenge, but this increase was attenuated by L. rhamnosus GR-1 pretreatment. Immunofluorescence and Western blot analyses revealed that L. rhamnosus GR-1 pretreatment decreased the E. coli-induced increases in the expression of the NOD-like receptor family member pyrin domain-containing protein 3 (NLRP3) and the serine protease caspase 1. However, expression of the adaptor protein apoptosis-associated speck-like protein (ASC, encoded by the Pycard gene) was decreased during E. coli infection, even with L. rhamnosus GR-1 pretreatment. Pretreatment with L. rhamnosus GR-1 counteracted the E. coli-induced increases in interleukin-1β (IL-1β), -6, -8, and -18 and tumor necrosis factor alpha mRNA expression but upregulated IL-10 mRNA expression. Our data indicate that L. rhamnosus GR-1 reduces the adhesion of E. coli to BMECs, subsequently ameliorating E. coli-induced disruption of cellular morphology and ultrastructure and limiting detrimental inflammatory responses, partly via promoting TLR2 and NOD1 synergism and attenuating ASC-independent NLRP3 inflammasome activation. Although the residual pathogenic activity of L. rhamnosus, the dosage regimen, and the means of probiotic supplementation in cattle remain undefined, our data enhance our understanding of the mechanism of action of this candidate probiotic, allowing for development of specific probiotic-based therapies and strategies for preventing pathogenic infection of the bovine mammary gland. PMID:26655757

  6. Vitamin D receptor activation and downregulation of renin-angiotensin system attenuate morphine-induced T cell apoptosis

    OpenAIRE

    Chandel, Nirupama; Sharma, Bipin; Salhan, Divya; Husain, Mohammad; Malhotra, Ashwani; Buch, Shilpa; Singhal, Pravin C.

    2012-01-01

    Opiates have been reported to induce T cell loss. We evaluated the role of vitamin D receptor (VDR) and the activation of the renin-angiotensin system (RAS) in morphine-induced T cell loss. Morphine-treated human T cells displayed downregulation of VDR and the activation of the RAS. On the other hand, a VDR agonist (EB1089) enhanced T cell VDR expression both under basal and morphine-stimulated states. Since T cells with silenced VDR displayed the activation of the RAS, whereas activation of ...

  7. Diallylsulfide attenuates excessive collagen production and apoptosis in a rat model of bleomycin induced pulmonary fibrosis through the involvement of protease activated receptor-2

    International Nuclear Information System (INIS)

    Pulmonary fibrosis (PF) can be a devastating lung disease. It is primarily caused by inflammation leading to severe damage of the alveolar epithelial cells. The pathophysiology of PF is not yet been clearly defined, but studying lung parenchymal injury by involving reactive oxygen species (ROS) through the activation of protease activated receptor-2 (PAR-2) may provide promising results. PAR-2 is a G-protein coupled receptor is known to play an important role in the development of PF. In this study, we investigated the inhibitory role of diallylsulfide (DAS) against ROS mediated activation of PAR-2 and collagen production accompanied by epithelial cell apoptosis. Bleomycin induced ROS levels may prompt to induce the expression of PAR-2 as well as extracellular matrix proteins (ECM), such as MMP 2 and 9, collagen specific proteins HSP-47, α-SMA, and cytokines IL-6, and IL-8RA. Importantly DAS treatment effectively decreased the expression of all these proteins. The inhibitory effect of DAS on profibrotic molecules is mediated by blocking the ROS level. To identify apoptotic signaling as a mediator of PF induction, we performed apoptotic protein expression, DNA fragmentation analysis and ultrastructural details of the lung tissue were performed. DAS treatment restored all these changes to near normalcy. In conclusion, treatment of PF bearing rats with DAS results in amelioration of the ROS production, PAR-2 activation, ECM production, collagen synthesis and alveolar epithelial cell apoptosis during bleomycin induction. We attained the first evidence that treatment of DAS decreases the ROS levels and may provide a potential therapeutic effect attenuating bleomycin induced PF. - Highlights: • DAS inhibits PAR-2 activity; bleomycin stimulates PAR-2 activity. • Increase in PAR-2 activity is correlated with pulmonary fibrosis • DAS reduces pro-inflammatory activity linked to facilitating pulmonary fibrosis. • DAS inhibits apoptosis of alveolar epithelial cells

  8. Diallylsulfide attenuates excessive collagen production and apoptosis in a rat model of bleomycin induced pulmonary fibrosis through the involvement of protease activated receptor-2

    Energy Technology Data Exchange (ETDEWEB)

    Kalayarasan, Srinivasan, E-mail: kalaivasanbio@gmail.com; Sriram, Narayanan; Soumyakrishnan, Syamala; Sudhandiran, Ganapasam, E-mail: sudhandiran@yahoo.com

    2013-09-01

    Pulmonary fibrosis (PF) can be a devastating lung disease. It is primarily caused by inflammation leading to severe damage of the alveolar epithelial cells. The pathophysiology of PF is not yet been clearly defined, but studying lung parenchymal injury by involving reactive oxygen species (ROS) through the activation of protease activated receptor-2 (PAR-2) may provide promising results. PAR-2 is a G-protein coupled receptor is known to play an important role in the development of PF. In this study, we investigated the inhibitory role of diallylsulfide (DAS) against ROS mediated activation of PAR-2 and collagen production accompanied by epithelial cell apoptosis. Bleomycin induced ROS levels may prompt to induce the expression of PAR-2 as well as extracellular matrix proteins (ECM), such as MMP 2 and 9, collagen specific proteins HSP-47, α-SMA, and cytokines IL-6, and IL-8RA. Importantly DAS treatment effectively decreased the expression of all these proteins. The inhibitory effect of DAS on profibrotic molecules is mediated by blocking the ROS level. To identify apoptotic signaling as a mediator of PF induction, we performed apoptotic protein expression, DNA fragmentation analysis and ultrastructural details of the lung tissue were performed. DAS treatment restored all these changes to near normalcy. In conclusion, treatment of PF bearing rats with DAS results in amelioration of the ROS production, PAR-2 activation, ECM production, collagen synthesis and alveolar epithelial cell apoptosis during bleomycin induction. We attained the first evidence that treatment of DAS decreases the ROS levels and may provide a potential therapeutic effect attenuating bleomycin induced PF. - Highlights: • DAS inhibits PAR-2 activity; bleomycin stimulates PAR-2 activity. • Increase in PAR-2 activity is correlated with pulmonary fibrosis • DAS reduces pro-inflammatory activity linked to facilitating pulmonary fibrosis. • DAS inhibits apoptosis of alveolar epithelial cells.

  9. Attenuation of β-Amyloid-Induced Oxidative Cell Death by Sulforaphane via Activation of NF-E2-Related Factor 2

    Directory of Open Access Journals (Sweden)

    Chan Lee

    2013-01-01

    Full Text Available β-amyloid peptide (Aβ, a major component of senile plaques, plays important roles in neuropathology of Alzheimer's disease (AD. An array of in vitro and in vivo data indicates that Aβ-induced neuronal death is mediated by oxidative stress. In this study, we aimed to investigate effects of sulforaphane (SUL, an isothiocyanate in cruciferous vegetables, on Aβ-induced oxidative cell death in SH-SY5Y cells. Cells treated with Aβ25–35 exhibited decreased cell viability and underwent apoptosis as determined by MTT assay and TUNEL, respectively. Aβ25–35-induced cytotoxicity and apoptotic characteristics such as activation of c-JNK, dissipation of mitochondrial membrane potential, altered expression of Bcl-2 family proteins, and DNA fragmentation were effectively attenuated by SUL pretreatment. The antiapoptotic activity of SUL seemed to be mediated by inhibition of intracellular accumulation of reactive oxygen species and oxidative damages. SUL exerted antioxidant potential by upregulating expression of antioxidant enzymes including γ-glutamylcysteine ligase, NAD(PH:quinone oxidoreductase-1, and heme oxygenase-1 via activation of NF-E2-related factor 2(Nrf2. The protective effect of SUL against Aβ25–35-induced apoptotic cell death was abolished by siRNA of Nrf2. Taken together, the results suggest that pharmacologic activation of Nrf2 signaling pathway by SUL might be a practical prevention and/or protective treatment for the management of AD.

  10. α-Melanocyte stimulating hormone attenuates dexamethasone-induced osteoblast damages through activating melanocortin receptor 4-SphK1 signaling.

    Science.gov (United States)

    Guo, Shiguang; Xie, Yue; Fan, Jian-bo; Ji, Feng; Wang, Shouguo; Fei, Haodong

    2016-01-01

    Long-term glucocorticoid (GC) usage may cause non-traumatic femoral head osteonecrosis. Dexamethasone (Dex) is shown to exert potent cytotoxic effect to osteoblasts. Here, we investigated the potential activity of α-melanocyte stimulating hormone (α-MSH) against the process. Our data revealed that pretreatment of α-MSH significantly inhibited Dex-induced apoptosis and necrosis in both osteoblastic-like MC3T3-E1 cells and primary murine osteoblasts. Melanocortin receptor 4 (MC4R) acts as the receptor of α-MSH in mediating its actions in osteoblasts. The MC4R antagonist SHU9119, or shRNA-mediated knockdown of MC4R, almost abolished α-MSH-induced activation of downstream signalings (Akt and Erk1/2) and its pro-survival effect in osteoblasts. Further studies showed that α-MSH activated MC4R downstream sphingosine kinase 1 (SphK1) and increased cellular sphingosine-1-phosphate (S1P) content in MC3T3-E1 cells and primary murine osteoblasts, which were blocked by SHU9119 or MC4R shRNAs. SphK1 inhibition by the its inhibitor N,N-dimethylsphingosine (DMS), or SphK1 knockdown by targeted-shRNAs, largely attenuated α-MSH-mediated osteoblast protection against Dex. Together, these results suggest that α-MSH alleviates Dex-induced damages to cultured osteoblasts through activating MC4R-SphK1 signaling. PMID:26631960

  11. Date syrup-derived polyphenols attenuate angiogenic responses and exhibits anti-inflammatory activity mediated by vascular endothelial growth factor and cyclooxygenase-2 expression in endothelial cells.

    Science.gov (United States)

    Taleb, Hajer; Morris, R Keith; Withycombe, Cathryn E; Maddocks, Sarah E; Kanekanian, Ara D

    2016-07-01

    Bioactive components such as polyphenols, present in many plants, are purported to have anti-inflammatory and antiangiogenic properties. Date syrup, produced from date fruit of the date palm tree, has traditionally been used to treat a wide range of diseases with etiologies involving angiogenesis and inflammation. It was hypothesized that polyphenols in date syrup reduce angiogenic responses such as cell migration, tube formation, and matrix metalloproteinase activity in an inflammatory model by exhibiting anti-inflammatory activity mediated by vascular endothelial growth factor (VEGF) and the prostaglandin enzyme cyclooxygenase-2 (COX-2) in endothelial cells. Date syrup polyphenols at 60 and 600μg/mL reduced inflammation and suppressed several stages of angiogenesis, including endothelial cell migration, invasion, matrix metalloproteinase activity, and tube formation, without evidence of cytotoxicity. VEGF and COX-2 expression induced by tumor necrosis factor-alpha at both gene expression and protein level was significantly reduced by date syrup polyphenols in comparison to untreated cells. In conclusion, polyphenols in date syrup attenuated angiogenic responses and exhibited anti-inflammatory activity mediated by VEGF and COX-2 expression in endothelial cells. PMID:27333954

  12. Inhibition of spinal UCHL1 attenuates pain facilitation in a cancer-induced bone pain model by inhibiting ubiquitin and glial activation

    Science.gov (United States)

    Cheng, Wei; Chen, Yuan-Li; Wu, Liang; Miao, Bei; Yin, Qin; Wang, Jin-Feng; Fu, Zhi-Jian

    2016-01-01

    The present study examined alterations of spinal ubiquitin C-terminal hydrolase L1 (UCHL1), ubiquitin expression and glial activation in the cancer-induced bone pain rats. Furthermore, whether inhibition of spinal UCHL1 could alleviate cancer-induced bone pain was observed. The CIBP model was established by intrathecal Walker 256 mammary gland carcinoma cells in SD rats. The rats of CIBP developed significant pain facilitation in the Von Frey test. Double immunofluorescence analyses revealed that in the spines of CIBP rats, ubiquitin co-localized with NeuN, Iba-1 or GFAP; UCHL1 and NeuN were co-expressed and UCHL1 also co-localized with ubiquitin. The CIBP model induced up-regulation of ubiquitin and UCHL1 in the spines, as well as glial activation. Inhibition of spinal UCHL1 attenuated pain facilitation by down-regulation of ubiquitin expression and glial activation. in the CIBP rats. Our data suggests that UCHL1/ubiquitin distributed and increased in the spines of CIBP rats, that glial activation also increased in the CIBP model and that inhibition of spinal UCHL1 may be an effective method to alleviate cancer-induced bone pain. PMID:27508024

  13. Grapefruit-seed extract attenuates ethanol-and stress-induced gastric lesions via activation of prostaglandin, nitric oxide and sensory nerve pathways

    Institute of Scientific and Technical Information of China (English)

    Tomasz Brzozowski; Peter C Konturek; Danuta Drozdowicz; Stanislaw J Konturek; Oxana Zayachivska; Robert Pajdo; Slawomir Kwiecien; Wieslaw W Pawlik; Eckhart G Hahn

    2005-01-01

    AIM: Grapefruit-seed extract (GSE) containing flavonoids, possesses antibacterial and antioxidative properties but whether it influences the gastric defense mechanism and gastroprotection against ethanol- and stress-induced gastric lesions remains unknown.METHODS: We compared the effects of GSE on gastric mucosal lesions induced in rats by topical application of 100% ethanol or 3.5 h of water immersion and restraint stress (WRS) with or without (A) inhibition of cyclooxygenase (COX)-1 activity by indomethacin and rofecoxib, the selective COX-2 inhibitor, (B) suppression of NO-synthase with L-NNA (20 mg/kg ip), and (C) inactivation by capsaicin (125 mg/kg sc) of sensory nerves with or without intragastric (ig) pretreatment with GSE applied 30 min prior to ethanol or WRS. One hour after ethanol and 3.5 h after the end of WRS, the number and area of gastric lesions were measured by planimetry, the gastric bloodflow (GBF) was assessed by H2-gas clearance technique and plasma gastrin levels and the gastric mucosal generation of PGE2, superoxide dismutase (SOD) activity and malonyldialdehyde (MDA) concentration, as an index of lipid peroxidation were determined.RESULTS: Ethanol and WRS caused gastric lesions accompanied by the significant fall in the GBF and SOD activity and the rise in the mucosal MDA content.Pretreatment with GSE (8-64 mg/kg i g) dosedependently attenuated gastric lesions induced by 100% ethanol and WRS; the dose reducing these lesions by 50% (ID50) was 25 and 36 mg/kg, respectively, and this protective effect was similar to that obtained with methyl PGE2 analog (5 μg/kg i g). GSE significantly raised the GBF, mucosal generation of PGE2, SOD activity and plasma gastrin levels while attenuating MDA content.Inhibition of PGE2 generation with indomethacin or rofecoxib and suppression of NO synthase by L-NNA or capsaicin denervation reversed the GSE-induced protection and the accompanying hyperemia. Cotreatment of exogenous calcitonine gene

  14. The Effect of Erythropoietin on Neurotrophic Factors in N9 Murine Microglial Cells

    OpenAIRE

    Kuralay, Filiz; ÇAKIRLI, Başak BİNGOL; GENÇ, Şermin

    2008-01-01

    Aim: In this study, we investigated whether interferon gamma (IFNg), lipopolysaccharides (LPS) and amyloid beta (AMYb), as toxic stimulator agents, and erythropoietin (EPO), as a neurotrophic agent, have an effect on the production of the following neurotrophic factors in the N9 murine microglia cell line: neurotrophin 3 (NT3), neurotrophin 4 (NT4), and brain-derived neurotrophic factor (BDNF). Materials and Methods: Microglial cells were incubated with 50 μg/ml AMYb, or 1 _...

  15. Expression of sphingosine kinase 1 in amoeboid microglial cells in the corpus callosum of postnatal rats

    OpenAIRE

    Ling Eng-Ang; Xu Jiajun; Zhang Chuansen; Kaur Charanjit; Lu Jia; Baby Nimmi; Lin Haiyan; Dheen S Thameem

    2011-01-01

    Abstract Sphingosine kinase 1 (SphK1), a key enzyme responsible for phosphorylating sphingosine into sphingosine-1-phosphate (S1P) has been shown to be expressed in monocytes and monocyte-derived peripheral macrophages. This study demonstrates SphK1 immunoexpression in amoeboid microglial cells (AMC), a nascent monocyte-derived brain macrophage in the corpus callosum of developing rat brain. SphK1 immunofluorescence expression, which appeared to be weak in AMC in normal brain, was markedly in...

  16. Antiretroviral medications disrupt microglial phagocytosis of β-amyloid and increase its production by neurons: Implications for HIV-associated neurocognitive disorders

    Directory of Open Access Journals (Sweden)

    Giunta Brian

    2011-06-01

    Full Text Available Abstract Up to 50% of long-term HIV infected patients, including those with systemically well-controlled infection, commonly experience memory problems and slowness, difficulties in concentration, planning, and multitasking. Deposition of Aβ plaques is also a common pathological feature of HIV infection. However, it is not clear whether this accumulation is due to AD-like processes, HIV-associated immunosuppression, Tat protein-induced Aβ elevations, and/or the effects of single highly active antiretroviral therapy (ART. Here we evaluated the effects of several ART medications (Zidovudine, Lamivudine, Indinavir, and Abacavir alone and in combination on: 1 Aβ1-40, 42 generation in murine N2a cells transfected with the human "Swedish" mutant form of APP; 2 microglial phagocytosis of FITC-Aβ1-42 peptides in cultured murine N9 microglia. We report for the first time that these antiretroviral compounds (10 μM generally increase Aβ generation (~50-200% in SweAPP N2a cells and markedly inhibit microglial phagocytosis of FITC-Aβ1-42 peptides in murine microglia. The most significant amyloidogenic effects were observed with combined ART (p in vitro studies, these findings raise the possibility that ART may play a casual role in the elevated Aβ found in the brains of those infected with HIV. Therefore these compounds may consequently contribute to cognitive decline observed in HIV associated neurocognitive disorders (HAND.

  17. Astaxanthin reduces type 2 diabetic‑associated cognitive decline in rats via activation of PI3K/Akt and attenuation of oxidative stress.

    Science.gov (United States)

    Li, Xiaobin; Qi, Zhonghua; Zhao, Longshan; Yu, Zhan

    2016-01-01

    Astaxanthin (AST) is an oxygenated derivative of carotenoid, which possesses a strong antioxidant activity. AST can effectively remove active oxygen from the body, and is thus considered to have an important role in disease prevention and treatment. The present study aimed to determine the effects of AST on type 2 diabetic‑associated cognitive decline (DACD) in rats. Rats were intraperitoneally injected with streptozotocin (STZ), in order to establish a model of diabetes mellitus (DM). A total of 40 rats were randomly divided into five groups: The control group, the DM group, the AST (50 mg/kg) group, the AST (100 mg/kg) group, and the AST+LY294002 group (AST, 50 mg/kg and LY, 0.25 µg/100 g). Following a 14‑day treatment with AST, the body weight, blood glucose levels and cognitive function were determined. In addition, the protein expression levels of phosphatidylinositol 3‑kinase (PI3K)/Akt, glutathione peroxidase and superoxide dismutase activity, glutathione and malondialdehyde content, and inducible nitric oxide synthase (iNOS), caspase‑3 and caspase‑9 activity were detected in the rats with DM. AST clearly augmented body weight and reduced blood glucose levels in rats with DM. Furthermore, treatment with AST significantly improved the cognitive function of rats with DM. Treatment with AST activated the PI3K/Akt pathway, and suppressed oxidative stress in the DM rats. In the cerebral cortex and hippocampus of the rats with DM, the activities of iNOS, caspase‑3 and caspase‑9 were markedly reduced. Furthermore, treatment with the Akt inhibitor LY294002 reduced the effectiveness of AST on DACD in rats. In conclusion, AST may reduce type 2 DACD in rats via activation of PI3K/Akt and attenuation of oxidative stress. PMID:26648531

  18. Gemfibrozil, a lipid lowering drug, inhibits the activation of primary human microglia via peroxisome proliferator-activated receptor β

    OpenAIRE

    Jana, Malabendu; Pahan, Kalipada

    2012-01-01

    Microglial activation participates in the pathogenesis of various neuroinflammatory and neurodegenerative diseases. However, mechanisms by which microglial activation could be controlled are poorly understood. Peroxisome proliferator-activated receptors (PPAR) are transcription factors belonging to the nuclear receptor super family with diverse effect. This study underlines the importance of PPARβ/δ in mediating the anti-inflammatory effect of gemfibrozil, an FDA-approved lipid-lowering drug,...

  19. Alcohol Attenuates Activation in the Bilateral Anterior Insula during an Emotional Processing Task: A Pilot Study †

    OpenAIRE

    Padula, Claudia B.; Simmons, Alan N.; Matthews, Scott C; Robinson, Shannon K.; Tapert, Susan F.; Schuckit, Marc A.; Paulus, Martin P.

    2011-01-01

    Aims: Alcohol acutely reduces agitation and is widely used in social situations, but the neural substrates of emotion processing during its intoxication are not well understood. We examine whether alcohol's social stress dampening effect may be via reduced activity in the cortical systems that subserve awareness of bodily sensations, and are associated with affective distress. Methods: Blood oxygen level-dependent activation was measured through 24 functional magnetic resonance imaging sessio...

  20. Korean Red Ginseng Extract Attenuates 3-Nitropropionic Acid-Induced Huntington’s-Like Symptoms

    Directory of Open Access Journals (Sweden)

    Minhee Jang

    2013-01-01

    Full Text Available Korean red ginseng (KRG possesses neuroprotective activity. However, the potential neuroprotective value of KRG for the striatal toxicity is largely unknown. We investigated whether KRG extract (KRGE could have a neuroprotective effect in a 3-nitropropionic acid- (3-NP induced (i.p. Huntington’s disease (HD model. KRGE (50, 100, and 250 mg/kg/day, p.o. was administrated 10 days before 3-NP injection (pre-administration, from the same time with 3-NP injection (co-administration, or from the peak point of neurological impairment by 3-NP injection (post-administration. Pre-administration of KRGE produced the greatest neuroprotective effect in this model. Pre-administration of KRGE significantly decreased 3-NP-induced neurological impairment, lethality, lesion area, and neuronal loss in the 3-NP-injected striatum. KRGE attenuated microglial activation and phosphorylation of mitogen-activated protein kinases (MAPKs and nuclear factor-kappa B (NF-κB signal pathway. KRGE also reduced the level of mRNA expression of tumor necrosis factor-alpha, interleukin- (IL- 1β, IL-6, inducible nitric oxide synthase, and OX-42. Interestingly, the intrathecal administration of SB203580 (a p38 inhibitor or PD98059 (an inhibitor of MAPK Kinase, MEK increased the survival rate in the 3-NP-induced HD model. Pre-administration of KRGE may effectively inhibit 3-NP-induced striatal toxicity via the inhibition of the phosphorylation of MAPKs and NF-κB pathways, indicating its therapeutic potential for suppressing Huntington’s-like symptoms.

  1. Amitriptyline Activates TrkA to Aid Neuronal Growth and Attenuate Anesthesia-Induced Neurodegeneration in Rat Dorsal Root Ganglion Neurons.

    Science.gov (United States)

    Zheng, Xiaochun; Chen, Feng; Zheng, Ting; Huang, Fengyi; Chen, Jianghu; Tu, Wenshao

    2016-05-01

    Tricyclic antidepressant amitriptyline (AM) has been shown to exert neurotrophic activity on neurons. We thus explored whether AM may aid the neuronal development and protect anesthesia-induced neuro-injury in young spinal cord dorsal root ganglion (DRG) neurons.The DRG explants were prepared from 1-day-old rats. The effect of AM on aiding DRG neural development was examined by immunohistochemistry at dose-dependent manner. AM-induced changes in gene and protein expressions, and also phosphorylation states of tyrosine kinases receptor A (TrkA) and B (TrkB) in DRG, were examined by quantitative real-time polymerase chain reaction and western blot. The effect of AM on attenuating lidocaine-induced DRG neurodegeneration was examined by immunohistochemistry, and small interfering RNA (siRNA)-mediated TrkA/B down-regulation.Amitriptyline stimulated DRG neuronal development in dose-dependent manner, but exerted toxic effect at concentrations higher than 10 M. AM activated TrkA in DRG through phosphorylation, whereas it had little effect on TrkB-signaling pathway. AM reduced lidocaine-induced DRG neurodegeneration by regenerating neurites and growth cones. Moreover, the neuroprotection of AM on lidocaine-injured neurodegeneration was blocked by siRNA-mediated TrkA down-regulation, but not by TrkB down-regulation.Amitriptyline facilitated neuronal development and had protective effect on lidocaine-induced neurodegeneration, very likely through the activation of TrkA-signaling pathway in DRG. PMID:27149473

  2. Platelet-derived growth factor-D modulates extracellular matrix homeostasis and remodeling through TIMP-1 induction and attenuation of MMP-2 and MMP-9 gelatinase activities

    Energy Technology Data Exchange (ETDEWEB)

    Borkham-Kamphorst, Erawan, E-mail: ekamphorst@ukaachen.de; Alexi, Pascal; Tihaa, Lidia; Haas, Ute; Weiskirchen, Ralf, E-mail: rweiskirchen@ukaachen.de

    2015-02-13

    Platelet-derived growth factor-D (PDGF-D) is a more recent recognized growth factor involved in the regulation of several cellular processes, including cell proliferation, transformation, invasion, and angiogenesis by binding to and activating its cognate receptor PDGFR-β. After bile duct ligation or in the carbon tetrachloride-induced hepatic fibrosis model{sub ,} PDGF-D showed upregulation comparable to PDGF-B. Moreover, adenoviral PDGF-D gene transfer induced hepatic stellate cell proliferation and liver fibrosis. We here investigated the molecular mechanism of PDGF-D involvement in liver fibrogenesis. Therefore, the GRX mouse cell line was stimulated with PDGF-D and evaluated for fibrotic markers and PDGF-D signaling pathways in comparison to the other PDGF isoforms. We found that PDGF-D failed to enhance Col I and α-smooth muscle actin (α-SMA) production but has capacity to upregulate expression of the tissue inhibitor of metalloprotease 1 (TIMP-1) resulting in attenuation of MMP-2 and MMP-9 gelatinase activity as indicated by gelatinase zymography. This phenomenon was restored through application of a PDGF-D neutralizing antibody. Unexpectedly, PDGF-D incubation decreased both PDGFR-α and -β in mRNA and protein levels, and PDGF-D phosphorylated typrosines specific for PDGFR-α and -β. We conclude that PDGF-D intensifies fibrogenesis by interfering with the fibrolytic activity of the TIMP-1/MMP system and that PDGF-D signaling is mediated through both PDGF-α and -β receptors. - Highlights: • PDGF-D signals through PDGF receptor type α and β. • PDGF-D modulates extracellular matrix homeostasis and remodeling. • Like PDGF-B, PDGF-D triggers phosphorylation of PLC-γ, Akt/PKB, JNK, ERK1/2, and p38. • PDGF-D induces TIMP-1 expression through ERK and p38 MAPK. • PDGF-D attenuates MMP-2 and MMP-9 gelatinase activities.

  3. Low-Dose Ribavirin Treatments Attenuate Neuroinflammatory Activation of BV-2 Cells by Interfering with Inducible Nitric Oxide Synthase

    Directory of Open Access Journals (Sweden)

    Iva Bozic

    2015-01-01

    Full Text Available Microglia play a key role in defending central nervous system from various internal and external threats. However, their excessive and/or chronic activation is associated with deleterious effects in a variety of neurodegenerative diseases. Previously, we have shown that ribavirin when applied in clinically relevant dosage (10 μM modulates activated microglia in complex fashion inducing both anti- and proinflammatory effects, simultaneously causing cytotoxicity. Here, we examined potential of low-dose ribavirin (0.1 and 1 μM to modulate activated BV-2 microglia. Morphological and functional activation of BV-2 cells was achieved with lipopolysaccharide (LPS stimulation. Our results demonstrated that low-dose ribavirin did not induce cell death, while 10 μM ribavirin promoted LPS induced apoptosis. We determined that 1 μM ribavirin was equally efficient in deactivation of LPS induced morphological changes as 10 μM ribavirin treatment. Ribavirin showed halfway success in reducing markers of functional activation of microglia. Namely, none of the doses had effect on LPS triggered production of proinflammatory cytokine tumor necrosis factor alpha. On the other hand, low-dose ribavirin proved its effectiveness in reduction of another inflammatory mediator, nitric oxide, by inhibiting inducible form of nitric oxide synthase. Our results imply that low-dose ribavirin may alleviate nitrosative stress during neuroinflammation.

  4. Low-Dose Ribavirin Treatments Attenuate Neuroinflammatory Activation of BV-2 Cells by Interfering with Inducible Nitric Oxide Synthase

    Science.gov (United States)

    Bozic, Iva; Savic, Danijela; Jovanovic, Marija; Bjelobaba, Ivana; Laketa, Danijela; Nedeljkovic, Nadezda; Stojiljkovic, Mirjana; Pekovic, Sanja; Lavrnja, Irena

    2015-01-01

    Microglia play a key role in defending central nervous system from various internal and external threats. However, their excessive and/or chronic activation is associated with deleterious effects in a variety of neurodegenerative diseases. Previously, we have shown that ribavirin when applied in clinically relevant dosage (10 μM) modulates activated microglia in complex fashion inducing both anti- and proinflammatory effects, simultaneously causing cytotoxicity. Here, we examined potential of low-dose ribavirin (0.1 and 1 μM) to modulate activated BV-2 microglia. Morphological and functional activation of BV-2 cells was achieved with lipopolysaccharide (LPS) stimulation. Our results demonstrated that low-dose ribavirin did not induce cell death, while 10 μM ribavirin promoted LPS induced apoptosis. We determined that 1 μM ribavirin was equally efficient in deactivation of LPS induced morphological changes as 10 μM ribavirin treatment. Ribavirin showed halfway success in reducing markers of functional activation of microglia. Namely, none of the doses had effect on LPS triggered production of proinflammatory cytokine tumor necrosis factor alpha. On the other hand, low-dose ribavirin proved its effectiveness in reduction of another inflammatory mediator, nitric oxide, by inhibiting inducible form of nitric oxide synthase. Our results imply that low-dose ribavirin may alleviate nitrosative stress during neuroinflammation. PMID:26413464

  5. Pressure surge attenuator

    Science.gov (United States)

    Christie, Alan M.; Snyder, Kurt I.

    1985-01-01

    A pressure surge attenuation system for pipes having a fluted region opposite crushable metal foam. As adapted for nuclear reactor vessels and heads, crushable metal foam is disposed to attenuate pressure surges.

  6. MicroRNA-17-mediated down-regulation of apoptotic protease activating factor 1 attenuates apoptosome formation and subsequent apoptosis of cardiomyocytes.

    Science.gov (United States)

    Song, Seungjun; Seo, Hyang-Hee; Lee, Se-Yeon; Lee, Chang Yeon; Lee, Jiyun; Yoo, Kyung-Jong; Yoon, Cheesoon; Choi, Eunhyun; Hwang, Ki-Chul; Lee, Seahyoung

    2015-09-18

    Heart diseases such as myocardial infarction (MI) can damage individual cardiomyocytes, leading to the activation of cell death programs. The most scrutinized type of cell death in the heart is apoptosis, and one of the key events during the propagation of apoptotic signaling is the formation of apoptosomes, which relay apoptotic signals by activating caspase-9. As one of the major components of apoptosomes, apoptotic protease activating factor 1 (Apaf-1) facilitates the formation of apoptosomes containing cytochrome c (Cyto-c) and deoxyadenosine triphosphate (dATP). Thus, it may be possible to suppress the activation of the apoptotic program by down-regulating the expression of Apaf-1 using miRNAs. To validate this hypothesis, we selected a number of candidate miRNAs that were expected to target Apaf-1 based on miRNA target prediction databases. Among these candidate miRNAs, we empirically identified miR-17 as a novel Apaf-1-targeting miRNA. The delivery of exogenous miR-17 suppressed Apaf-1 expression and consequently attenuated formation of the apoptosome complex containing caspase-9, as demonstrated by co-immunoprecipitation and immunocytochemistry. Furthermore, miR-17 suppressed the cleavage of procaspase-9 and the subsequent activation of caspase-3, which is downstream of activated caspase-9. Cell viability tests also indicated that miR-17 pretreatment significantly prevented the norepinephrine-induced apoptosis of cardiomyocytes, suggesting that down-regulation of apoptosome formation may be an effective strategy to prevent cellular apoptosis. These results demonstrate the potential of miR-17 as an effective anti-apoptotic agent. PMID:26265044

  7. Light-activation through indirect ceramic restorations: does the overexposure compensate for the attenuation in light intensity during resin cement polymerization?

    Directory of Open Access Journals (Sweden)

    Albano Luis Novaes Bueno

    2011-02-01

    Full Text Available OBJECTIVES: This study evaluated the effects of light exposure through simulated indirect ceramic restorations (SICR on hardness (KHN of dual-cured resin cements (RCs, immediately after light-activation and 24 h later. MATERIAL AND METHODS: Three dual-cured RCs were evaluated: Eco-Link (Ivoclar Vivadent, Rely X ARC (3M ESPE, and Panavia F (Kuraray Medical Inc.. The RCs were manipulated in accordance to the manufacturers' instructions and were placed into cylindrical acrylic matrixes (1-mm-thick and 4-mm diameter. The RC light-activation (Optilux 501; Demetron Kerr was performed through a glass slide for 120 s (control group, or through 2-mm or 4-mm thick SICRs (IPS Empress II; Ivoclar Vivadent. The specimens were submitted to KHN analysis immediately and 24 h after light-activation. The data obtained at the 2 evaluation intervals were submitted to 2-way ANOVA repeated measures and post-hoc Tukey's test (pre-set alpha of 5%. RESULTS: Lower KHN was observed when light-activation was performed through SICRs for Eco-Link at all evaluation intervals and for Rely X ARC 24 h later. For Panavia F, no significant difference in KHN was observed between control and experimental groups, regardless of evaluation interval. Most groups exhibited higher KHN after 24 h than immediately after light-activation, with the exception of Rely X ARC light-activated through SICR, as no significant difference in KHN was found between evaluation intervals. CONCLUSIONS: Light overexposure did not compensate for light intensity attenuation due to the presence of SICR when Rely X and Eco-Link were used. Although hardness of such RCs increased over a 24-h interval, the RCs subjected to light overexposure did not reach the hardness values exhibited after direct light exposure.

  8. The attenuation and the attenuators: strategies and tactics

    Directory of Open Access Journals (Sweden)

    Antonio Briz

    2013-12-01

    Full Text Available This work is inscribed in a research project (ES.POR.ATENUAÇÃO that seeks to analyze and explain the attenuator activity in different regional varieties of Spanish and Portuguese, in order to perform, subsequently, different contrastive intralinguistic and interlinguistic studies. In this article, we explain some of the theoretical and methodological principles on which are based the qualitative and quantitative analysis. And especially, we will refer to the concept of attenuation (Briz 1995, 2002, 2003, 2005, 2007a, 2012.

  9. Heat shock factor activation in human muscles following a demanding intermittent exercise protocol is attenuated with hyperthermia

    DEFF Research Database (Denmark)

    Palomero, J; Broome, C S; Rasmussen, P;

    2008-01-01

    AIM: The present study investigated whether increased activation of heat shock factors (HSF) following exercise relates primarily to the increased muscle temperature or to exercise in general. METHODS: Six subjects completed 40 min of intermittent cycling (15s:15s exercise:recovery at 300 +/- 22 W...... exercise at 40 degrees C (reduced by 21 +/- 22%) whereas it increased by 29 +/- 51% following exercise at 20 degrees C. CONCLUSION: It appears that increased temperature is not the major factor responsible for activation of HSF DNA binding....

  10. Photonic Crystal Fiber Attenuator

    Institute of Scientific and Technical Information of China (English)

    Joo Beom Eom; Hokyung Kim; Jinchae Kim; Un-Chul Paek; Byeong Ha Lee

    2003-01-01

    We propose a novel fiber attenuator based on photonic crystal fibers. The difference in the modal field diameters of a conventional single mode fiber and a photonic crystal fiber was used. A variable optical attenuator was also achieved by applying macro-bending on the PCF part of the proposed attenuator

  11. Curcumin attenuates β-catenin signaling in prostate cancer cells through activation of protein kinase D1.

    Directory of Open Access Journals (Sweden)

    Vasudha Sundram

    Full Text Available Prostate cancer is the most commonly diagnosed cancer affecting 1 in 6 males in the US. Understanding the molecular basis of prostate cancer progression can serve as a tool for early diagnosis and development of novel treatment strategies for this disease. Protein Kinase D1 (PKD1 is a multifunctional kinase that is highly expressed in normal prostate. The decreased expression of PKD1 has been associated with the progression of prostate cancer. Therefore, synthetic or natural products that regulate this signaling pathway can serve as novel therapeutic modalities for prostate cancer prevention and treatment. Curcumin, the active ingredient of turmeric, has shown anti-cancer properties via modulation of a number of different molecular pathways. Herein, we have demonstrated that curcumin activates PKD1, resulting in changes in β-catenin signaling by inhibiting nuclear β-catenin transcription activity and enhancing the levels of membrane β-catenin in prostate cancer cells. Modulation of these cellular events by curcumin correlated with decreased cell proliferation, colony formation and cell motility and enhanced cell-cell aggregation in prostate cancer cells. In addition, we have also revealed that inhibition of cell motility by curcumin is mediated by decreasing the levels of active cofilin, a downstream target of PKD1. The potent anti-cancer effects of curcumin in vitro were also reflected in a prostate cancer xenograft mouse model. The in vivo inhibition of tumor growth also correlated with enhanced membrane localization of β-catenin. Overall, our findings herein have revealed a novel molecular mechanism of curcumin action via the activation of PKD1 in prostate cancer cells.

  12. Recombinant human brain natriuretic peptide attenuates LPS-induced cellular injury in human fetal lung fibroblasts via inhibiting MAPK and NF-κB pathway activation.

    Science.gov (United States)

    Song, Zhi; Zhao, Xiu; Liu, Martin; Jin, Hongxu; Cui, Yan; Hou, Mingxiao; Gao, Yan

    2016-08-01

    Inflammatory responses are vital in lung injury diseases, particularly acute respiratory distress syndrome (ARDS). Recombinant human brain natriuretic peptide (rhBNP) has been shown to exhibit anti‑inflammatory effects in vivo in our previous studies. The present study aimed to investigate the mechanisms underlying the anti‑inflammatory effects of rhBNP on lipopolysaccharide (LPS)-induced human fetal lung fibroblasts (HFL-1). The results showed that LPS induced a significant increase in the leakage of lactate dehydrogenase and the secretion of interleukin (IL)‑1β. Activation of p38, extracellular-signal regulated kinase (ERK) 1/2, c‑Jun NH2-terminal kinase (JNK) mitogen‑activated protein kinases (MAPK)s, and nuclear factor (NF)‑κB in HFL‑1 cells was also observed following treatment with LPS. Treatment with rhBNP (0.1 µM) reduced the production of IL‑1β at the protein and mRNA levels. Moreover, rhBNP decreased the phosphorylation of p38, ERK1/2 and JNK induced by LPS. However, the JNK inhibitor, SP600125, significantly inhibited LPS‑induced IL‑1β production. These results indicate that the inhibition of IL‑1β by may dependent upon the JNK signaling pathway. The LPS‑induced NF‑κB activation was also suppressed by rhBNP, and IL‑1β production was inhibited by the NF‑κB inhibitor. Furthermore, NF‑κB activation was attenuated by the JNK inhibitor, indicating that NF‑κB activation was dependent on the JNK signaling pathway. The present study suggests that rhBNP exhibits an anti‑inflammatory effect on LPS‑induced HFL‑1 cell injury via the inhibition of MAPK and NF‑κB signaling pathways and may exhibit therapeutic potential for acute lung injury and ARDS. PMID:27314600

  13. Intrathecal Lamotrigine Attenuates Antinociceptive Morphine Tolerance and Suppresses Spinal Glial Cell Activation in Morphine-Tolerant Rats

    OpenAIRE

    Jun, In-Gu; Kim, Sung-Hoon; Yoon, Yang-In; Park, Jong-Yeon

    2013-01-01

    Glial cells play a critical role in morphine tolerance, resulting from repeated administration of morphine. Both the development and the expression of tolerance are suppressed by the analgesic lamotrigine. This study investigated the relationship between the ability of lamotrigine to maintain the antinociceptive effect of morphine during tolerance development and glial cell activation in the spinal cord. In a rat model, morphine (15 µg) was intrathecally injected once daily for 7 days to indu...

  14. Activation of angiotensin-converting enzyme 2 (ACE2) attenuates allergic airway inflammation in rat asthma model.

    Science.gov (United States)

    Dhawale, Vaibhav Shrirang; Amara, Venkateswara Rao; Karpe, Pinakin Arun; Malek, Vajir; Patel, Deep; Tikoo, Kulbhushan

    2016-09-01

    Angiotensin-I converting enzyme (ACE) is positively correlated to asthma, chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS) and is highly expressed in lungs. ACE2, the counteracting enzyme of ACE, was proven to be protective in pulmonary, cardiovascular diseases. In the present study we checked the effect of ACE2 activation in animal model of asthma. Asthma was induced in male wistar rats by sensitization and challenge with ovalbumin and then treated with ACE2 activator, diminazene aceturate (DIZE) for 2weeks. 48h after last allergen challenge, animals were anesthetized, blood, BALF, femoral bone marrow lavage were collected for leucocyte count; trachea for measuring airway responsiveness to carbachol; lungs and heart were isolated for histological studies and western blotting. In our animal model, the characteristic features of asthma such as altered airway responsiveness to carbachol, eosinophilia and neutrophilia were observed. Western blotting revealed the increased pulmonary expression of ACE1, IL-1β, IL-4, NF-κB, BCL2, p-AKT, p-p38 and decreased expression of ACE2 and IκB. DIZE treatment prevented these alterations. Intraalveolar interstitial thickening, inflammatory cell infiltration, interstitial fibrosis, oxidative stress and right ventricular hypertrophy in asthma control animals were also reversed by DIZE treatment. Activation of ACE2 by DIZE conferred protection against asthma as evident from biochemical, functional, histological and molecular parameters. To the best of our knowledge, we report for the first time that activation of ACE2 by DIZE prevents asthma progression by altering AKT, p38, NF-κB and other inflammatory markers. PMID:27343405

  15. Final Report Real Time Monitoring of Rates of Subsurface Microbial Activity Associated with Natural Attenuation and Electron Donor Availability

    Energy Technology Data Exchange (ETDEWEB)

    Lovley, Derek R. [Univ. of Massachusetts, Amherst, MA (United States)

    2016-03-22

    The project was successful in developing new sensing technologies for monitoring rates of microbial activity in soils and sediments and also developed a novel proof-of-concept for monitoring the presence of bioavailable concentrations of a diversity of metabolites and toxic components in sedimentary environments. These studies led not only to publications in the peer-reviewed literature, but also two patent applications and a start-up company.

  16. Activation of SIRT3 attenuates triptolide-induced toxicity through closing mitochondrial permeability transition pore in cardiomyocytes.

    Science.gov (United States)

    Yang, Yanqin; Wang, Wenwen; Xiong, Zhewen; Kong, Jiamin; Qiu, Yuwen; Shen, Feihai; Huang, Zhiying

    2016-08-01

    Triptolide (TP), an active component of the traditional Chinese herb Tripterygium wilfordii Hook f. (TWHF), has multiple pharmacological effects. However, the severe toxicity of TP greatly restricts its clinical applications. Although TP exposure causes serious heart injury, the mechanism underlying TP-induced cardiotoxicity has rarely been investigated. In previous studies, we found that TP-induced oxidative stress was involved in the mitochondria-dependent apoptosis of cardiomyocytes. Opening of the mitochondrial permeability transition pore (mPTP) is the key to the mitochondrial dysfunction in cardiac toxicity. The aim of this study was to investigate the potential cardioprotective effects of sirtuin 3 (SIRT3) on the mPTP. In the present study, the cytotoxicity of TP was accompanied by the up-regulation of the SIRT3 protein level and its rapid aggregation in nuclei and mitochondria. The SIRT3-FOXO3 signaling pathway was activated simultaneously, resulting in increased transcription of manganese superoxide dismutase (MnSOD) and catalase (CAT) for the elimination of reactive oxygen species (ROS). In addition, augmentation of the SIRT3 level via the overexpression plasmid SIRT3-Flag provided resistance to TP-induced cellular damage, whereas knocking down the SIRT3 level via siRNA accelerated the damage. Because it is an activator of SIRT3, the protective effect of resveratrol was also evaluated in H9c2 cells. In conclusion, the current results suggest that activation of SIRT3 substantially ameliorates the detrimental effects of TP by closing the mPTP. PMID:27064125

  17. PKC/ROS-Mediated NLRP3 Inflammasome Activation Is Attenuated by Leishmania Zinc-Metalloprotease during Infection.

    Directory of Open Access Journals (Sweden)

    Marina Tiemi Shio

    Full Text Available Parasites of the Leishmania genus infect and survive within macrophages by inhibiting several microbicidal molecules, such as nitric oxide and pro-inflammatory cytokines. In this context, various species of Leishmania have been reported to inhibit or reduce the production of IL-1β both in vitro and in vivo. However, the mechanism whereby Leishmania parasites are able to affect IL-1β production and secretion by macrophages is still not fully understood. Dependent on the stimulus at hand, the maturation of IL-1β is facilitated by different inflammasome complexes. The NLRP3 inflammasome has been shown to be of pivotal importance in the detection of danger molecules such as inorganic crystals like asbestos, silica and malarial hemozoin, (HZ as well as infectious agents. In the present work, we investigated whether Leishmania parasites modulate NLRP3 inflammasome activation. Using PMA-differentiated THP-1 cells, we demonstrate that Leishmania infection effectively inhibits macrophage IL-1β production upon stimulation. In this context, the expression and activity of the metalloprotease GP63 - a critical virulence factor expressed by all infectious Leishmania species - is a prerequisite for a Leishmania-mediated reduction of IL-1β secretion. Accordingly, L. mexicana, purified GP63 and GP63-containing exosomes, caused the inhibition of macrophage IL-1β production. Leishmania-dependent suppression of IL-1β secretion is accompanied by an inhibition of reactive oxygen species (ROS production that has previously been shown to be associated with NLRP3 inflammasome activation. The observed loss of ROS production was due to an impaired PKC-mediated protein phosphorylation. Furthermore, ROS-independent inflammasome activation was inhibited, possibly due to an observed GP63-dependent cleavage of inflammasome and inflammasome-related proteins. Collectively for the first time, we herein provide evidence that the protozoan parasite Leishmania, through its

  18. Microglial cell dysregulation in brain aging and neurodegeneration

    OpenAIRE

    von Bernhardi, Rommy; Eugenín-von Bernhardi, Laura; Eugenín, Jaime

    2015-01-01

    Aging is the main risk factor for neurodegenerative diseases. In aging, microglia undergoes phenotypic changes compatible with their activation. Glial activation can lead to neuroinflammation, which is increasingly accepted as part of the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease (AD). We hypothesize that in aging, aberrant microglia activation leads to a deleterious environment and neurodegeneration. In aged mice, microglia exhibit an increased expression of c...

  19. Oral Administration of p-Hydroxycinnamic Acid Attenuates Atopic Dermatitis by Downregulating Th1 and Th2 Cytokine Production and Keratinocyte Activation.

    Science.gov (United States)

    Lee, Hyun-Su; Choi, Eun-Ju; Lee, Kyung-Sik; Kim, Hye-Ran; Na, Bo-Ra; Kwon, Min-Sung; Jeong, Gil-Saeng; Choi, Hyun Gyu; Choi, Eun Young; Jun, Chang-Duk

    2016-01-01

    Atopic dermatitis (AD) is a complex disease that is caused by various factors, including environmental change, genetic defects, and immune imbalance. We previously showed that p-hydroxycinnamic acid (HCA) isolated from the roots of Curcuma longa inhibits T-cell activation without inducing cell death. Here, we demonstrated that oral administration of HCA in a mouse model of ear AD attenuates the following local and systemic AD manifestations: ear thickening, immune-cell infiltration, production of AD-promoting immunoregulatory cytokines in ear tissues, increased spleen and draining lymph node size and weight, increased pro-inflammatory cytokine production by draining lymph nodes, and elevated serum immunoglobulin production. HCA treatment of CD4+ T cells in vitro suppressed their proliferation and differentiation into Th1 or Th2 and their Th1 and Th2 cytokine production. HCA treatment of keratinocytes lowered their production of the pro-inflammatory cytokines that drive either Th1 or Th2 responses in AD. Thus, HCA may be of therapeutic potential for AD as it acts by suppressing keratinocyte activation and downregulating T-cell differentiation and cytokine production. PMID:26959360

  20. Oral Administration of p-Hydroxycinnamic Acid Attenuates Atopic Dermatitis by Downregulating Th1 and Th2 Cytokine Production and Keratinocyte Activation.

    Directory of Open Access Journals (Sweden)

    Hyun-Su Lee

    Full Text Available Atopic dermatitis (AD is a complex disease that is caused by various factors, including environmental change, genetic defects, and immune imbalance. We previously showed that p-hydroxycinnamic acid (HCA isolated from the roots of Curcuma longa inhibits T-cell activation without inducing cell death. Here, we demonstrated that oral administration of HCA in a mouse model of ear AD attenuates the following local and systemic AD manifestations: ear thickening, immune-cell infiltration, production of AD-promoting immunoregulatory cytokines in ear tissues, increased spleen and draining lymph node size and weight, increased pro-inflammatory cytokine production by draining lymph nodes, and elevated serum immunoglobulin production. HCA treatment of CD4+ T cells in vitro suppressed their proliferation and differentiation into Th1 or Th2 and their Th1 and Th2 cytokine production. HCA treatment of keratinocytes lowered their production of the pro-inflammatory cytokines that drive either Th1 or Th2 responses in AD. Thus, HCA may be of therapeutic potential for AD as it acts by suppressing keratinocyte activation and downregulating T-cell differentiation and cytokine production.

  1. Zinc oxide and titanium dioxide nanoparticles induce oxidative stress, inhibit growth, and attenuate biofilm formation activity of Streptococcus mitis.

    Science.gov (United States)

    Khan, Shams Tabrez; Ahmad, Javed; Ahamed, Maqusood; Musarrat, Javed; Al-Khedhairy, Abdulaziz A

    2016-06-01

    Streptococcus mitis from the oral cavity causes endocarditis and other systemic infections. Rising resistance against traditional antibiotics amongst oral bacteria further aggravates the problem. Therefore, antimicrobial and antibiofilm activities of zinc oxide and titanium dioxide nanoparticles (NPs) synthesized and characterized during this study against S. mitis ATCC 6249 and Ora-20 were evaluated in search of alternative antimicrobial agents. ZnO and TiO2-NPs exhibited an average size of 35 and 13 nm, respectively. The IC50 values of ZnO and TiO2-NPs against S. mitis ATCC 6249 were 37 and 77 µg ml(-1), respectively, while the IC50 values against S. mitis Ora-20 isolate were 31 and 53 µg ml(-1), respectively. Live and dead staining, biofilm formation on the surface of polystyrene plates, and extracellular polysaccharide production show the same pattern. Exposure to these nanoparticles also shows an increase (26-83 %) in super oxide dismutase (SOD) activity. Three genes, namely bapA1, sodA, and gtfB like genes from these bacteria were identified and sequenced for quantitative real-time PCR analysis. An increase in sodA gene (1.4- to 2.4-folds) levels and a decrease in gtfB gene (0.5- to 0.9-folds) levels in both bacteria following exposure to ZnO and TiO2-NPs were observed. Results presented in this study verify that ZnO-NPs and TiO2-NPs can control the growth and biofilm formation activities of these strains at very low concentration and hence can be used as alternative antimicrobial agents for oral hygiene. PMID:26837748

  2. SIRT1 activation by pterostilbene attenuates the skeletal muscle oxidative stress injury and mitochondrial dysfunction induced by ischemia reperfusion injury.

    Science.gov (United States)

    Cheng, Yedong; Di, Shouyin; Fan, Chongxi; Cai, Liping; Gao, Chao; Jiang, Peng; Hu, Wei; Ma, Zhiqiang; Jiang, Shuai; Dong, Yushu; Li, Tian; Wu, Guiling; Lv, Jianjun; Yang, Yang

    2016-08-01

    Ischemia reperfusion (IR) injury is harmful to skeletal muscles and causes mitochondrial oxidative stress. Pterostilbene (PTE), an analogue of resveratrol, has organic protective effects against oxidative stress. However, no studies have investigated whether PTE can protect against IR-related skeletal muscular injury. In this study, we sought to evaluate the protective effect of PTE against IR-related skeletal muscle injury and to determine the mechanisms in this process. Male Sprague-Dawley rats were pretreated with PTE for a week and then underwent limb IR surgery. The IR injury induced segmental necrosis and apoptosis, myofilament disintegration, thicker interstitial spaces, and inflammatory cell infiltration. Furthermore, mitochondrial respiratory chain activity in the muscular tissue was inhibited, methane dicarboxylic aldehyde concentration and myeloperoxidase activity were up-regulated, and superoxide dismutase was down-regulated after IR. However, these effects were significantly inhibited by PTE in a dose-dependent manner. The mechanism underlying IR injury is attributed to the down-regulation of silent information regulator 1 (SIRT1)-FOXO1/p53 pathway and the increase of the Bax/Bcl2 ratio, Cleaved poly ADP-ribose polymerase 1, Cleaved Caspase 3, which can be reversed with PTE. Furthermore, EX527, an SIRT1 inhibitor, counteracted the protective effects of PTE on IR-related muscle injury. In conclusion, PTE has protective properties against IR injury of the skeletal muscles. The mechanism of this protective effect depends on the activation of the SIRT1-FOXO1/p53 signaling pathway and the decrease of the apoptotic ratio in skeletal muscle cells. PMID:27270300

  3. Characterization of the active bacterial community involved in natural attenuation processes in arsenic-rich creek sediments

    OpenAIRE

    Bruneel, Odile; Volant, A; Gallien, S.; Chaumande, B.; Casiot, C.; Carapito, C.; Bardil, A.; Morin, G.; Brown, G. E.; Personne, C. J.; Le Paslier, D; Schaeffer, C; Van Dorsselaer, A; Bertin, P. N.; Elbaz Poulichet, F.

    2011-01-01

    Acid mine drainage of the CarnoulSs mine (France) is characterized by acid waters containing high concentrations of arsenic and iron. In the first 30 m along the Reigous, a small creek draining the site, more than 38% of the dissolved arsenic was removed by co-precipitation with Fe(III), in agreement with previous studies, which suggest a role of microbial activities in the co-precipitation of As(III) and As(V) with Fe(III) and sulfate. To investigate how this particular ecosystem functions, ...

  4. Selective pharmacological blockade of the 5-HT7 receptor attenuates light and 8-OH-DPAT induced phase shifts of mouse circadian wheel running activity

    Directory of Open Access Journals (Sweden)

    Jonathan eShelton

    2015-01-01

    Full Text Available Recent reports have illustrated a reciprocal relationship between circadian rhythm disruption and mood disorders. The 5-HT7 receptor may provide a crucial link between the two sides of this equation since the receptor plays a critical role in sleep, depression, and circadian rhythm regulation. To further define the role of the 5-HT7 receptor as a potential pharmacotherapy to correct circadian rhythm disruptions, the current study utilized the selective 5-HT7 antagonist JNJ-18038683 (10 mg/kg in three different circadian paradigms. While JNJ-18038683 was ineffective at phase shifting the onset of wheel running activity in mice when administered at different circadian time (CT points across the circadian cycle, pretreatment with JNJ-18038683 blocked non-photic phase advance (CT6 induced by the 5-HT1A/7 receptor agonist 8-OH-DPAT (3 mg/kg. Since light induced phase shifts in mammals are partially mediated via the modulation of the serotonergic system, we determined if JNJ-18038683 altered phase shifts induced by a light pulse at times known to phase delay (CT15 or advance (CT22 wheel running activity in free running mice. Light exposure resulted in a robust shift in the onset of activity in vehicle treated animals at both times tested. Administration of JNJ-18038683 significantly attenuated the light-induced phase delay and completely blocked the phase advance. The current study demonstrates that pharmacological blockade of the 5-HT7 receptor by JNJ-18038683 blunts both non-photic and photic phase shifts of circadian wheel running activity in mice. These findings highlight the importance of the 5-HT7 receptor in modulating circadian rhythms. Due to the opposite modulating effects of light resetting between diurnal and nocturnal species, pharmacotherapy targeting the 5-HT7 receptor in conjunction with bright light therapy may prove therapeutically beneficial by correcting the desynchronization of internal rhythms observed in depressed individuals.

  5. Anti-inflammatory effects of the ethyl acetate extract of Aquilaria crassna inhibits LPS-induced tumour necrosis factor-alpha production by attenuating P38 MAPK activation

    Directory of Open Access Journals (Sweden)

    Sarawut Kumphune

    2011-01-01

    Full Text Available To study the inhibitory effect of the ethyl acetate extract of Aquilaria crassna0 on lipopolysaccharide (LPS-induced tumour necrosis factor-alpha (TNF-α secretion from isolated human peripheral blood mononuclear cells and its mechanisms of anti-inflammation so as to provide some evidence for its traditional use. Human peripheral blood mononuclear cells (hPBMCs were isolated from healthy volunteers. Cells, at a concentration of 1×10 6 cell/ml, were induced to secrete TNF-α by exposure to 10 ng/ml LPS in the presence and absence of the ethyl acetate extract of Aquilaria crassna. The TNF-a secretion in the collection medium was measured by enzyme-linked immunosorbent assay and the TNF-α gene expression was measured by reverse transcriptase-polymerase chain reaction. Determination of ERK1/2 MAPK and p38 MAPK activation were performed by Western blot analysis using a specific phosphorylated form of ERK1/2, p38 MAPK antibody. LPS at a concentration of 10 ng/ml significantly increased in TNF-a secretion and was significantly inhibited when treated with 1.5 mg/ml ethyl acetate extract of Aquilaria crassna (P< 0.05. Moreover, on treatment with 1.5 mg/ml, the extracts showed TNF-α gene expression inhibition. Co-treatment of the extract with LPS could not block p38 MAPK activation, but pre-treatment of the extracts significantly reduced the p38 MAPK phosphorylation without affecting the ERK1/2 MAPK activation (P< 0.05. The ethyl acetate extract of Aquilaria crassna inhibits TNF-α gene expression and secretion in LPS-induced hPBMCs. This inhibitory effect apparently resulted from selectively attenuating the p38 MAPK activation.

  6. Thymoquinone blocks lung injury and fibrosis by attenuating bleomycin-induced oxidative stress and activation of nuclear factor Kappa-B in rats

    International Nuclear Information System (INIS)

    Pulmonary fibrosis is one of the most common chronic interstitial lung diseases with high mortality rate after diagnosis and limited successful treatment. The present study was designed to assess the potential antifibrotic effect of thymoquinone (TQ) and whether TQ can attenuate the severity of oxidative stress and inflammatory response during bleomycin-induced pulmonary fibrosis. Male Wister rats were treated intraperitoneally with either bleomycin (15 mg/kg, 3 times a week for 4 weeks) and/or thymoquinone (5 mg/kg/day, 1 week before and until the end of the experiment). Bleomycin significantly increased lung weight and the levels of Lactate dehydrogenase, total leucocytic count, total protein and mucin in bronchoalveolar lavage and these effects were significantly ameliorated by TQ treatment. As markers of oxidative stress, bleomycin caused a significant increase in the levels of lipid peroxides and nitric oxide accompanied with a significant decrease in the antioxidant enzyme activity of superoxide dismutase and glutathione transferase. TQ treatment restored these markers toward normal values. TQ also counteracted emphysema in air alveoli, inflammatory cell infiltration, lymphoid hyperplastic cells activation surrounding the bronchioles and the over expression of activated form of nuclear factor kappa-B (NF-B) in lung tissue that was induced by bleomycin. Fibrosis was assessed by measuring hydroxyproline content, which increased markedly in the bleomycin group and significantly reduced by concurrent treatment with TQ. Furthermore, histopathological examination confirmed the antifibrotic effect of TQ. Collectively these findings indicate that TQ has potential antifibrotic effect beside its antioxidant activity that could be through NF-κB inhibition.

  7. β-Caryophyllene, a phytocannabinoid attenuates oxidative stress, neuroinflammation, glial activation, and salvages dopaminergic neurons in a rat model of Parkinson disease.

    Science.gov (United States)

    Ojha, Shreesh; Javed, Hayate; Azimullah, Sheikh; Haque, M Emdadul

    2016-07-01

    Parkinson disease (PD) is a neurodegenerative disease characterized by progressive dopaminergic neurodegeneration in the substantia nigra pars compacta (SNc) area. The present study was undertaken to evaluate the neuroprotective effect of β-caryophyllene (BCP) against rotenone-induced oxidative stress and neuroinflammation in a rat model of PD. In the present study, BCP was administered once daily for 4 weeks at a dose of 50 mg/kg body weight prior to a rotenone (2.5 mg/kg body weight) challenge to mimic the progressive neurodegenerative nature of PD. Rotenone administration results in oxidative stress as evidenced by decreased activities of superoxide dismutase, catalase, and depletion of glutathione with a concomitant rise in lipid peroxidation product, malondialdehyde. Rotenone also significantly increased pro-inflammatory cytokines in the midbrain region and elevated the inflammatory mediators such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in the striatum. Further, immunohistochemical analysis revealed loss of dopaminergic neurons in the SNc area and enhanced expression of ionized calcium-binding adaptor molecule-1 (Iba-1) and glial fibrillary acidic protein (GFAP), indicators of microglia activation, and astrocyte hypertrophy, respectively, as an index of inflammation. However, treatment with BCP rescued dopaminergic neurons and decreased microglia and astrocyte activation evidenced by reduced Iba-1 and GFAP expression. BCP in addition to attenuation of pro-inflammatory cytokines and inflammatory mediators such as COX-2 and iNOS, also restored antioxidant enzymes and inhibited lipid peroxidation as well as glutathione depletion. The findings demonstrate that BCP provides neuroprotection against rotenone-induced PD and the neuroprotective effects can be ascribed to its potent antioxidant and anti-inflammatory activities. PMID:27316720

  8. Lentivirus-mediated shRNA targeting Nanog inhibits cell proliferation and attenuates cancer stem cell activities in breast cancer.

    Science.gov (United States)

    Hu, Chun; Xu, Liang; Liang, Shujing; Zhang, Zhiying; Zhang, Yanyun; Zhang, Fengchun

    2016-06-01

    Emerging evidences suggest that cancer stem cells (CSCs) are responsible for tumor growth, metastasis and treatment resistance. Nanog is one of the transcription factors that are essential for stem cellular physiology process. Previous studies reported that Nanog was detected in breast cancer and other solid tumors and indicated that it has oncogenic characteristics. However, expression feature of Nanog in breast cancer stem cells (BCSCs) enriched population and its biological function in BCSCs is poorly understood. In this study, CD44 + CD24- fraction sorting with Fluorescence Activated Cell Sorter and mammosphere culture were used for enriching BCSCs. We report here that Nanog was highly expressed in CSCs-enriched population from the breast cancer cells, as well as stemness-associated genes. In addition, we employed the lentivirus-mediated shRNA targeting Nanog to investigate function of Nanog in BCSCs. We found that targeted inhibition of Nanog could suppress proliferation and colony formation in breast cancer cells. Further studies showed that targeted inhibition of Nanog resulted in a decrease of BCSCs activities, including mammosphere formation, CD44 + CD24- proportion and expressions of stemness-associated genes. These data therefore suggest that Nanog possesses important function in BCSCs and targeted inhibition of Nanog may provide a novel means of targeting and eliminating BCSCs. PMID:26339994

  9. TCDD promotes lung tumors via attenuation of apoptosis through activation of the Akt and ERK1/2 signaling pathways.

    Directory of Open Access Journals (Sweden)

    Rong-Jane Chen

    Full Text Available 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD is a multiple-site, multiple-species carcinogen that induces cancer in multiple organs. The molecular mechanisms underlying TCDD-induced lung tumorigenesis remain unclear. In the present study, a two-stage lung tumorigenesis model was established by administrating a single low dose of 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK combined with TCDD to female A/J mice. The results indicated that TCDD combined with low-dose NNK has a significant tumor-promoting effect compared with TCDD or low-dose NNK alone. Resistance to apoptosis is a hallmark of cancer and is thought to be one of the tumor-promoting mechanisms regulated by TCDD. We performed an additional series of experiments in the normal human bronchial epithelial cell line Beas2B cells, in which TCDD was combined with the apoptosis inducer staurosporine. Our in vitro results confirmed that TCDD could rescue cells from apoptosis induced by staurosporine. The inhibition of apoptosis is likely mediated by the activation of the Akt and ERK1/2 pathways, as determined by the effectiveness of pathway-specific inhibitors in abrogating the anti-apoptotic activity of TCDD. In conclusion, we demonstrated that TCDD promoted NNK-induced lung tumorigenesis and revealed that TCDD inhibits staurosporine-induced apoptosis, at least in part, through the Akt and ERK1/2 signaling pathways.

  10. Dexmedetomidine attenuates inflammatory reaction in the lung tissues of septic mice by activating cholinergic anti-inflammatory pathway.

    Science.gov (United States)

    Liu, Zhaoguo; Wang, Yueping; Wang, Yaoqi; Ning, Qiaoqing; Zhang, Yong; Gong, Chunzhi; Zhao, Wenxiang; Jing, Guangjian; Wang, Qianqian

    2016-06-01

    Dexmedetomidine (Dex) is a highly selective α2-adrenergic receptor agonist that is widely used for sedation in intensive care units and in clinical anesthesia. Dex has also been shown to possess anti-inflammatory benefits. However, the underlying mechanism by which Dex relieves the inflammatory reaction in the lung tissues of septic mice has not been fully elucidated. In this study, we aimed to evaluate the protective effects and possible mechanism of Dex on the sepsis-induced lung inflammatory response in mice. Sepsis was induced in mice models through the intraperitoneal injection of lipopolysaccharide (LPS). The preemptive administration of Dex substantially abated sepsis-induced pulmonary edema, pulmonary histopathological changes, and NF-κB p65 activity. The production of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) at both the mRNA and protein levels was also reduced. Moreover, these effects were significantly blocked by the α7 nicotinic acetylcholine receptor (α7nAChR) antagonist α-bungarotoxin (α-Bgt). α-Bgt aggravated pulmonary edema and pulmonary histopathological changes, as well as increased NF-κB p65 activity and TNF-α and IL-6 expression at both the mRNA and protein levels. The overall results demonstrate that Dex inhibits the LPS-induced inflammatory reaction in the lung tissues of septic mice partly through the α7nAChR-dependent cholinergic anti-inflammatory pathway. PMID:27074053

  11. Inhibition of mammalian target of rapamycin activation in the rostral anterior cingulate cortex attenuates pain-related aversion in rats.

    Science.gov (United States)

    Lu, Bo; Jiang, Jingyan; Sun, Jianliang; Xiao, Chun; Meng, Bo; Zheng, Jinwei; Li, Xiaoyu; Wang, Ruichun; Wu, Guorong; Chen, Junping

    2016-09-01

    Pain is a complex experience that comprises both sensory and affective dimensions. Mammalian target of rapamycin (mTOR) plays an important role in the modulation of neuronal plasticity associated with the pathogenesis of pain sensation. However, the role of mTOR in pain affect is unclear. Using a formalin-induced conditioned place avoidance (F-CPA) test, the current study investigated the effects of the mTOR specific inhibitor rapamycin on noxious stimulation induced aversion in the rostral anterior cingulate cortex (rACC). Intraplantar injection of 5% formalin was associated with significant activation of mTOR, as well as p70 ribosomal S6 protein (p70S6K), its downstream effector, in the rACC. The inhibition of mTOR activation with rapamycin disrupted pain-related aversion; however, this inhibition did not affect formalin-induced spontaneous nociceptive behaviors in rats. These findings demonstrated for the first time that mTOR and its downstream pathway in the rACC contribute to the induction of pain-related negative emotion. PMID:27163752

  12. Baicalin attenuates focal cerebral ischemic reperfusion injury through inhibition of nuclear factor {kappa}B p65 activation

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Xia [Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012 (China); Center for New Drugs Evaluation, Shandong University, Jinan 250012 (China); Qu, Xian-Jun [Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012 (China); Yang, Ying [School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355 (China); Sheng, Xie-Huang; Cheng, Fang; Jiang, E-Nang; Wang, Jian-hua; Bu, Wen [Center for New Drugs Evaluation, Shandong University, Jinan 250012 (China); Liu, Zhao-Ping, E-mail: liuzhaoping@sdu.edu.cn [Center for New Drugs Evaluation, Shandong University, Jinan 250012 (China)

    2010-12-17

    Research highlights: {yields} Permanent NF-{kappa}B p65 activation contributes to the infarction after ischemia-reperfusion injury in rats. {yields} Baicalin can markedly inhibit the nuclear NF-{kappa}B p65 expression and m RNA levels after ischemia-reperfusion injury in rats. {yields} Baicalin decreased the cerebral infarction area via inhibiting the activation of nuclear NF-{kappa}B p65. -- Abstract: Baicalin is a flavonoid compound purified from plant Scutellaria baicalensis Georgi. We aimed to evaluate the neuroprotective effects of baicalin against cerebral ischemic reperfusion injury. Male Wistar rats were subjected to middle cerebral artery occlusion (MCAO) for 2 h followed by reperfusion for 24 h. Baicalin at doses of 50, 100 and 200 mg/kg was intravenously injected after ischemia onset. Twenty-four hours after reperfusion, the neurological deficit was scored and infarct volume was measured. Hematoxylin and eosin (HE) staining was performed to analyze the histopathological changes of cortex and hippocampus neurons. We examined the levels of NF-{kappa}B p65 in ischemic cortexes by Western blot analysis and RT-PCR assay. The results showed that the neurological deficit scores were significantly decreased from 2.0 {+-} 0.7 to 1.2 {+-} 0.4 and the volume of infarction was reduced by 25% after baicalin injection. Histopathological examination showed that the increase of neurons with pycnotic shape and condensed nuclear in cortex and hippocampus were not observed in baicalin treated animals. Further examination showed that NF-{kappa}B p65 in cortex was increased after ischemia reperfusion injury, indicating the molecular mechanism of ischemia reperfusion injury. The level of NF-{kappa}B p65 was decreased by 73% after baicalin treatment. These results suggest that baicalin might be useful as a potential neuroprotective agent in stroke therapy. The neuroprotective effects of baicalin may relate to inhibition of NF-{kappa}B p65.

  13. Formononetin Attenuates IL-1β-Induced Apoptosis and NF-κB Activation in INS-1 Cells

    Directory of Open Access Journals (Sweden)

    Xiao Han

    2012-08-01

    Full Text Available Several studies suggest that the inflammation plays a role in the pathogenesis of some glucose disorders in adults. Exposure of pancreatic β-cells to cytokines, such as interleukin-1β (IL-1β, is thought to contribute to β-cell apoptosis. One important event triggered by IL-1β is induction of nitric oxide synthase (iNOS, an enzyme that catalyzes intracellular generation of the cytotoxic free radical NO. Recent work have suggested that formononetin, as an O-methylated isoflavone found in a number of plants and herbs like Astragalus membranaceus, inhibited some pro-inflammatory cytokine production in macrophages. However, the roles of formononetin in pancreatic beta cells have not been fully established. The aim of the present study was to assess possible in vitro effects of formononetin on cell apoptosis induced by IL-1β in the rat insulinoma cell line, INS-1. Our results demonstrate that formononetin significantly prevents IL-1β-increased INS-1 cell death and blocks cytokine-induced apoptotic signaling (the reduction of Bax/Bcl-2 ratio and caspase-3 activity. Formononetin also inhibited the activation of nuclear factor-kappaB