WorldWideScience

Sample records for attenuates microglial activation

  1. Brilliant blue G attenuates lipopolysaccharidemediated microglial activation and inflammation

    Institute of Scientific and Technical Information of China (English)

    Kui Lu; Jue Wang; Bin Hu; Xiaolei Shi; Junyi Zhou; Yamei Tang; Ying Peng

    2013-01-01

    Previous studies have confirmed that oxidized adenosine triphosphate, a P2X7 receptor antagonist, attenuates lipopolysaccharide-mediated microglial activation and inflammatory expression following neuronal damage in rat brain. NaCl and temperature may affect the potency of oxidized adenosine triphosphate. Brilliant blue G is a derivative of a widely used food additive and has little toxicity. This study explored the effects of brilliant blue G, a selective P2X7 receptor antagonist, on microglial activation and inflammation. Results demonstrated that brilliant blue G inhibited the release of cyclooxygenase-2 and interleukin-6 in BV2 cells. Immunofluorescence displayed that brilliant blue G could suppress lipopolysaccharide-induced microglial activation. This study used RNA interference to block P2X7 receptor expression and found that small interfering RNA also suppressed the release of cyclooxygenase-2 and interleukin-6 in BV2 cells. These results suggested that downregulation of the P2X7 receptor by brilliant blue G was involved in the inhibition of microglial activation and inflammation.

  2. Paeonol attenuates inflammation-mediated neurotoxicity and microglial activation

    Institute of Scientific and Technical Information of China (English)

    Kyong Nyon Nam; Byung-Cheol Woo; Sang-Kwan Moon; Seong-Uk Park; Joo-young Park; Jae-Woong Hwang; Hyung-Sup Bae; Chang-Nam Ko; Eunjoo Hwang Lee

    2013-01-01

    Chronic activation of microglial cells endangers neuronal survival through the release of various proinflammatory and neurotoxic factors. The root of Paeonia lactiflora Pall has been considered useful for the treatment of various disorders in traditional oriental medicine. Paeonol, found in the root of Paeonia lactiflora Pall, has a wide range of pharmacological functions, including anti-oxidative, anti-inflammatory and neuroprotective activities. The objective of this study was to examine the efficacy of paeonol in the repression of inflammation-induced neurotoxicity and microglial cell activation. Organotypic hippocampal slice cultures and primary microglial cells from rat brain were stimulated with bacterial lipopolysaccharide. Paeonol pretreatment was performed for 30 minutes prior to lipopolysaccharide addition. Cell viability and nitrite (the production of nitric oxide), tumor necrosis factor-alpha and interleukin-1beta products were measured after lipopolysaccharide treatment. In organotypic hippocampal slice cultures, paeonol blocked lipopolysaccharide-related hippocampal cell death and inhibited the release of nitrite and interleukin-1beta. Paeonol was effective in inhibiting nitric oxide release from primary microglial cells. It also reduced the lipopolysaccharide-stimulated release of tumor necrosis factor-alpha and interleukin-1β from microglial cells. Paeonol possesses neuroprotective activity in a model of inflammation-induced neurotoxicity and reduces the release of neurotoxic and proinflammatory factors in activated microglial cells.

  3. Activation of murine microglial N9 cells is attenuated through cannabinoid receptor CB2 signaling.

    Science.gov (United States)

    Ma, Lei; Jia, Ji; Liu, Xiangyu; Bai, Fuhai; Wang, Qiang; Xiong, Lize

    2015-02-27

    Inhibition of microglial activation is effective in treating various neurological disorders. Activation of microglial cannabinoid CB2 receptor induces anti-inflammatory effects, and the mechanism, however, is still elusive. Microglia could be activated into the classic activated state (M1 state) or the alternative activated state (M2 state), the former is cytotoxic, and the latter is neurotrophic. In this study, we used lipopolysaccharide (LPS) plus interferon-γ (IFNγ) to activate N9 microglia and hypothesized the pretreatment with cannabinoid CB2 receptor agonist AM1241 attenuates microglial activation by shifting microglial M1 to M2 state. We found that pretreatment with 5 μM AM1241 at 1 h before microglia were exposed to LPS plus IFNγ decreased the expression of inducible nitric oxide synthase (iNOS) and the release of pro-inflammatory factors, increased the expression of arginase 1 (Arg-1) and the release of anti-inflammatory and neurotrophic factors in microglia. However, these effects induced by AM1241 pretreatment were significantly reversed in the presence of 10 μM cannabinoid CB2 receptor antagonist AM630 or 10 μM protein kinase C (PKC) inhibitor chelerythrine. These findings indicated that AM1241 pretreatment attenuates microglial activation by shifting M1 to M2 activated state via CB2 receptor, and the AM1241-induced anti-inflammatory effects may be mediated by PKC.

  4. The age-related attenuation in long-term potentiation is associated with microglial activation.

    Science.gov (United States)

    Griffin, Rebecca; Nally, Rachel; Nolan, Yvonne; McCartney, Yvonne; Linden, James; Lynch, Marina A

    2006-11-01

    It is well established that inflammatory changes contribute to brain ageing, and an increased concentration of proinflammatory cytokine, interleukin-1beta (IL-1beta), has been reported in the aged brain associated with a deficit in long-term potentiation (LTP) in rat hippocampus. The precise age at which changes are initiated is unclear. In this study, we investigate parallel changes in markers of inflammation and LTP in 3-, 9- and 15-month-old rats. We report evidence of increased hippocampal concentrations of the proinflammatory cytokines IL-1alpha, IL-18 and interferon-gamma (IFNgamma), which are accompanied by deficits in LTP in the older rats. We also show an increase in expression of markers of microglial activation, CD86, CD40 and intercellular adhesion molecules (ICAM). Associated with these changes, we observed a significant impairment of hippocampal LTP in the same rats. The importance of microglial activation in the attenuation of long-term potentiation (LTP) was demonstrated using an inhibitor of microglial activation, minocycline; partial restoration of LTP in 15-month-old rats was observed following administration of minocycline. We propose that signs of neuroinflammation are observed in middle age and that these changes, which are characterized by microglial activation, may be triggered by IL-18.

  5. Caspase Inhibitors may Attenuate Opioid-induced Hyperalgesia and Tolerance via Inhibiting Microglial Activation and Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Jiancheng Zhang

    2013-07-01

    Full Text Available Prolonged exposure to an opioid induces hyperalgesia and tolerance, which negatively affect pain management in turn and significantly hamper the application of opioids. A growing body of evidence has demonstrated that glial activation contributes to the development of these two side effects. Recent studies have demonstrated that morphine, binding to an accessory protein of Toll-like receptor 4 (TLR4, activates microglia and produces neuroinflammation in amanner parallel to lipopolysaccharide. Meanwhile, lipopolysaccharide activates microglia through TLR4/caspase signalling. Therefore, we hypothesise that morphine may activate microglia throughTLR4/caspase signalling and that caspase inhibitors may attenuate opioid-induced hyperalgesia and tolerance via inhibiting microglial activation and neuroinflammation

  6. Intrathecal lidocaine pretreatment attenuates immediate neuropathic pain by modulating Nav1.3 expression and decreasing spinal microglial activation

    Directory of Open Access Journals (Sweden)

    Wang Hung-Chen

    2011-06-01

    Full Text Available Abstract Background Intrathecal lidocaine reverses tactile allodynia after nerve injury, but whether neuropathic pain is attenuated by intrathecal lidocaine pretreatment is uncertain. Methods Sixty six adult male Sprague-Dawley rats were divided into three treatment groups: (1 sham (Group S, which underwent removal of the L6 transverse process; (2 ligated (Group L, which underwent left L5 spinal nerve ligation (SNL; and (3 pretreated (Group P, which underwent L5 SNL and was pretreated with intrathecal 2% lidocaine (50 μl. Neuropathic pain was assessed based on behavioral responses to thermal and mechanical stimuli. Expression of sodium channels (Nav1.3 and Nav1.8 in injured dorsal root ganglia and microglial proliferation/activation in the spinal cord were measured on post-operative days 3 (POD3 and 7 (POD7. Results Group L presented abnormal behavioral responses indicative of mechanical allodynia and thermal hyperalgesia, exhibited up-regulation of Nav1.3 and down-regulation of Nav1.8, and showed increased microglial activation. Compared with ligation only, pretreatment with intrathecal lidocaine before nerve injury (Group P, as measured on POD3, palliated both mechanical allodynia (p p 1.3 up-regulation (p = 0.003, and mitigated spinal microglial activation (p = 0.026 by inhibiting phosphorylation (activation of p38 MAP kinase (p = 0.034. p38 activation was also suppressed on POD7 (p = 0.002. Conclusions Intrathecal lidocaine prior to SNL blunts the response to noxious stimuli by attenuating Nav1.3 up-regulation and suppressing activation of spinal microglia. Although its effects are limited to 3 days, intrathecal lidocaine pretreatment can alleviate acute SNL-induced neuropathic pain.

  7. Modulation of microglial/macrophage activation by macrophage inhibitory factor (TKP or tuftsin (TKPR attenuates the disease course of experimental autoimmune encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Tsirka Stella E

    2007-07-01

    Full Text Available Abstract Background Myelin Oligodendrocyte Glycoprotein (MOG-induced experimental autoimmune encephalomyelitis (EAE is the most commonly used mouse model for multiple sclerosis (MS. During the of progression of EAE, microglia, the immunocompetent cells of the brain, become activated and accumulate around demyelinated lesions. Microglial activation is mediated by the extracellular protease tissue Plasminogen Activator (tPA, and mice lacking tPA display altered EAE progression. In this study, we have used pharmacological inhibitors and stimulators of microglial/macrophage activation to examine the temporal requirement for microglial activation in EAE progression and to determine whether such approaches might potentially be of therapeutic value. Results Intervention using the tripeptide macrophage/microglia inhibitory factor MIF (TKP and the tetrapeptide macrophage/microglial stimulator tuftsin (TKPR attenuated EAE symptoms and revealed that the timing of macrophage/microglial activation is critical for the clinical outcome of EAE. We show that the disease progression can potentially be manipulated favorably at early stages by altering the timing of microglial activation, which in turn alters the systemic immune response to favor upregulation of T helper cell 2 genes that promote recovery from EAE. Conclusion Preventative and therapeutic modulation of macrophage/microglial activity significantly alters the outcome of EAE at symptomatic stages. Specific molecular targets have been identified that represent potential avenues of exploration for the treatment and prevention of MS.

  8. Pyrrolidine dithiocarbamate (PDTC) inhibits the overexpression of MCP-1 and attenuates microglial activation in the hippocampus of a pilocarpine-induced status epilepticus rat model.

    Science.gov (United States)

    Lv, Rilang; Xu, Xiaoyun; Luo, Zheng; Shen, Nan; Wang, Feng; Zhao, Yongbo

    2014-01-01

    The aim of this study was to investigate the effects of pyrrolidine dithiocarbamate (PDTC) on MCP-1 expression and microglial activation in the hippocampus of a rat model of pilocarpine (PILO)-induced status epilepticus (SE). Moreover, seizure susceptibility, frequency and severity as well as brain damage were analyzed and changes in behavior were recorded. Chemokine MCP-1 expression and microglial activation were detected by immunohistochemistry (IHC). Fluoro-Jade C (FJC) and NeuN staining were used for the evaluation of tissue damage. Our results showed that although SE resulted in the upregulation of MCP-1 and microglial activation in the rat hippocampus 24 h after seizure onset, pretreatment with PDTC significantly inhibited the MCP-1 overexpression and attenuated the microglial activation. These effects were accompanied by neurodegenerative amelioration. To the best of our knowledge, these findings indicated for the first time that the activation of the nuclear factor-κB (NF-κB) pathway may contribute to MCP-1 upregulation and microglial activation in the context of epilepsy. PDTC was also shown to exert anticonvulsant activity and to have a neuroprotective effect on the hippocampal CA1 and CA3 regions, potentially through attenuating microglial activation.

  9. Interleukin-1beta exacerbates and interleukin-1 receptor antagonist attenuates neuronal injury and microglial activation after excitotoxic damage in organotypic hippocampal slice cultures.

    Science.gov (United States)

    Hailer, Nils P; Vogt, Cornelia; Korf, Horst-Werner; Dehghani, Faramarz

    2005-05-01

    The effects of interleukin (IL)-1beta and IL-1 receptor antagonist (IL-1ra) on neurons and microglial cells were investigated in organotypic hippocampal slice cultures (OHSCs). OHSCs obtained from rats were excitotoxically lesioned after 6 days in vitro by application of N-methyl-D-aspartate (NMDA) and treated with IL-1beta (6 ng/mL) or IL-1ra (40, 100 or 500 ng/mL) for up to 10 days. OHSCs were then analysed by bright field microscopy after hematoxylin staining and confocal laser scanning microscopy after labeling of damaged neurons with propidium iodide (PI) and fluorescent staining of microglial cells. The specificity of PI labeling of damaged neurons was validated by triple staining with neuronal and glial markers and it was observed that PI accumulated in damaged neurons only but not in microglial cells or astrocytes. Treatment of unlesioned OHSCs with IL-1beta did not induce neuronal damage but caused an increase in the number of microglial cells. NMDA lesioning alone resulted in a massive increase in the number of microglial cells and degenerating neurons. Treatment of NMDA-lesioned OHSCs with IL-1beta exacerbated neuronal cell death and further enhanced microglial cell numbers. Treatment of NMDA-lesioned cultures with IL-1ra significantly attenuated NMDA-induced neuronal damage and reduced the number of microglial cells, whereas application of IL-1ra in unlesioned OHSCs did not induce significant changes in either cell population. Our findings indicate that: (i) IL-1beta directly affects the central nervous system and acts independently of infiltrating hematogenous cells; (ii) IL-1beta induces microglial activation but is not neurotoxic per se; (iii) IL-1beta enhances excitotoxic neuronal damage and microglial activation and (iv) IL-1ra, even when applied for only 4 h, reduces neuronal cell death and the number of microglial cells after excitotoxic damage.

  10. Equol, a Dietary Daidzein Gut Metabolite Attenuates Microglial Activation and Potentiates Neuroprotection In Vitro

    Directory of Open Access Journals (Sweden)

    Lalita Subedi

    2017-02-01

    Full Text Available Estrogen deficiency has been well characterized in inflammatory disorders including neuroinflammation. Daidzein, a dietary alternative phytoestrogen found in soy (Glycine max as primary isoflavones, possess anti‐inflammatory activity, but the effect of its active metabolite Equol (7‐hydroxy‐3‐(4′‐hydroxyphenyl‐chroman has not been well established. In this study, we investigated the anti‐neuroinflammatory and neuroprotective effect of Equol in vitro. To evaluate the potential effects of Equol, three major types of central nervous system (CNS cells, including microglia (BV‐2, astrocytes (C6, and neurons (N2a, were used. Effects of Equol on the expression of inducible nitric oxide synthase (iNOS, cyclooxygenase (COX‐2, Mitogen activated protein kinase (MAPK signaling proteins, and apoptosis‐related proteins were measured by western blot analysis. Equol inhibited the lipopolysaccharide (LPS‐induced TLR4 activation, MAPK activation, NF‐kB‐mediated transcription of inflammatory mediators, production of nitric oxide (NO, release of prostaglandin E2 (PGE‐2, secretion of tumor necrosis factor‐α (TNF‐α and interleukin 6 (IL‐6, in Lipopolysaccharide (LPS‐activated murine microglia cells. Additionally, Equol protects neurons from neuroinflammatory injury mediated by LPS‐activated microglia through downregulation of neuronal apoptosis, increased neurite outgrowth in N2a cell and neurotrophins like nerve growth factor (NGF production through astrocytes further supporting its neuroprotective potential. These findings provide novel insight into the anti‐neuroinflammatory effects of Equol on microglial cells, which may have clinical significance in cases of neurodegeneration.

  11. Intravenous multipotent adult progenitor cell therapy attenuates activated microglial/macrophage response and improves spatial learning after traumatic brain injury.

    Science.gov (United States)

    Bedi, Supinder S; Hetz, Robert; Thomas, Chelsea; Smith, Philippa; Olsen, Alex B; Williams, Stephen; Xue, Hasen; Aroom, Kevin; Uray, Karen; Hamilton, Jason; Mays, Robert W; Cox, Charles S

    2013-12-01

    We previously demonstrated that the intravenous delivery of multipotent adult progenitor cells (MAPCs) after traumatic brain injury (TBI) in rodents provides neuroprotection by preserving the blood-brain barrier and systemically attenuating inflammation in the acute time frame following cell treatment; however, the long-term behavioral and anti-inflammatory effects of MAPC administration after TBI have yet to be explored. We hypothesized that the intravenous injection of MAPCs after TBI attenuates the inflammatory response (as measured by microglial morphology) and improves performance at motor tasks and spatial learning (Morris water maze [MWM]). MAPCs were administered intravenously 2 and 24 hours after a cortical contusion injury (CCI). We tested four groups at 120 days after TBI: sham (uninjured), injured but not treated (CCI), and injured and treated with one of two concentrations of MAPCs, either 2 million cells per kilogram (CCI-2) or 10 million cells per kilogram (CCI-10). CCI-10 rats showed significant improvement in left hind limb deficit on the balance beam. On the fifth day of MWM trials, CCI-10 animals showed a significant decrease in both latency to platform and distance traveled compared with CCI. Probe trials revealed a significant decrease in proximity measure in CCI-10 compared with CCI, suggesting improved memory retrieval. Neuroinflammation was quantified by enumerating activated microglia in the ipsilateral hippocampus. We observed a significant decrease in the number of activated microglia in the dentate gyrus in CCI-10 compared with CCI. Our results demonstrate that intravenous MAPC treatment after TBI in a rodent model offers long-term improvements in spatial learning as well as attenuation of neuroinflammation.

  12. Inhibition of microglial activation by the herbal flavonoid baicalein attenuates inflammation-mediated degeneration of dopaminergic neurons.

    Science.gov (United States)

    Li, F-Q; Wang, T; Pei, Z; Liu, B; Hong, J-S

    2005-03-01

    Accumulating evidence has suggested that inflammation in the brain participates in the pathogenesis of Parkinson's disease (PD). Therefore, anti-inflammatory therapy has attracted much attention as novel interference to neurodegenerative diseases. Baicalein, a major flavonoid extracted from a traditional Chinese herb Scutellaria baicalensis Georgi (Huangqin), possesses potent anti-inflammatory and antioxidant properties. To test the potential neuroprotective effect of baicalein on dopaminergic neurons, primary midbrain neuron-glia cultures from E-14 rat embryos were used. Cultures were pretreated with baicalein for 30 min prior to stimulation with lipopolysaccharide (LPS, 10 ng/ml). LPS leads to massive activation of microglial cells revealed by OX-42 immunostaining, and produced excessive quantities of NO. Excessive elevation of superoxide level was also observed in enriched-microglia after stimulating with LPS. LPS-induced damage to dopaminergic neurons was evaluated by uptake capacity for [3H]dopamine and tyrosine hydroxylase (TH)-immunocytochemistry. Pretreatment with baicalein concentration-dependently attenuated LPS-induced decrease in [3H]dopamine uptake and loss of TH-immunoreactive (TH-ir) neurons, which the maximum protective effect was observed at the concentration of 5 microM. Post-treatment with baicalein (5 microM) was also shown to be effective even if baicalein administered up to 2 h later than LPS application. Morphological study shows that baicalein (5 microM) almost completely blocked LPS-induced activation of microglia. Excessive production of TNF(alpha) and free radicals such as NO and superoxide by LPS stimulation were also attenuated by baicalein at a concentration-dependent pattern. The present study indicates that baicalein exerts potent neuroprotective effect on LPS-induced injury of dopaminergic neurons. We hypothesize that the inhibition of LPS-induced production of NO and free radicals from microglia may underlie the mechanism of

  13. Positive allosteric modulators (PAMs) of metabotropic glutamate receptor 5 (mGluR5) attenuate microglial activation.

    Science.gov (United States)

    Xue, Fengtian; Stoica, Bogdan A; Hanscom, Marie; Kabadi, Shruti V; Faden, Alan I

    2014-01-01

    Traumatic brain injury causes progressive neurodegeneration associated with chronic microglial activation. Recent studies show that neurodegeneration and neuroinflammation after traumatic brain injury can be inhibited as late as one month in animals by the activation of the metabotropic glutamate receptor 5 in microglia using (RS)-2-chloro-5- hydroxy-phenylglycine. However, the therapeutic potential of this agonist is limited due to its relatively weak potency and brain permeability. To address such concerns, we evaluated the anti-inflammatory activities of several positive allosteric modulators using various in vitro assays, and found that 3,3'-difluorobenzaldazine, 3-cyano-N-(1,3-diphenyl-1H-pyrazol- 5-yl)benzamide and 4-nitro-N-(1-(2-fluorophenyl)-3-phenyl-1H-pyrazol-5-yl)benzamide showed significantly improved potency which makes them potential lead compounds for further development of positive allosteric modulators for the treatment of traumatic brain injury.

  14. Regulatory Effects of Fisetin on Microglial Activation

    Directory of Open Access Journals (Sweden)

    Jing-Yuan Chuang

    2014-06-01

    Full Text Available Increasing evidence suggests that inflammatory processes in the central nervous system that are mediated by microglial activation play a key role in neurodegeneration. Fisetin, a plant flavonol commonly found in fruits and vegetables, is frequently added to nutritional supplements due to its antioxidant properties. In the present study, treatment with fisetin inhibited microglial cell migration and ROS (reactive oxygen species production. Treatment with fisetin also effectively inhibited LPS plus IFN-γ-induced nitric oxide (NO production, and inducible nitric oxide synthase (iNOS expression in microglial cells. Furthermore, fisetin also reduced expressions of iNOS and NO by stimulation of peptidoglycan, the major component of the Gram-positive bacterium cell wall. Fisetin also inhibited the enhancement of LPS/IFN-γ- or peptidoglycan-induced inflammatory mediator IL (interlukin-1 β expression. Besides the antioxidative and anti-inflammatory effects of fisetin, our study also elucidates the manner in fisetin-induced an endogenous anti-oxidative enzyme HO (heme oxygenase-1 expression. Moreover, the regulatory molecular mechanism of fisetin-induced HO-1 expression operates through the PI-3 kinase/AKT and p38 signaling pathways in microglia. Notably, fisetin also significantly attenuated inflammation-related microglial activation and coordination deficit in mice in vivo. These findings suggest that fisetin may be a candidate agent for the development of therapies for inflammation-related neurodegenerative diseases.

  15. Regulatory effects of fisetin on microglial activation.

    Science.gov (United States)

    Chuang, Jing-Yuan; Chang, Pei-Chun; Shen, Yi-Chun; Lin, Chingju; Tsai, Cheng-Fang; Chen, Jia-Hong; Yeh, Wei-Lan; Wu, Ling-Hsuan; Lin, Hsiao-Yun; Liu, Yu-Shu; Lu, Dah-Yuu

    2014-06-26

    Increasing evidence suggests that inflammatory processes in the central nervous system that are mediated by microglial activation play a key role in neurodegeneration. Fisetin, a plant flavonol commonly found in fruits and vegetables, is frequently added to nutritional supplements due to its antioxidant properties. In the present study, treatment with fisetin inhibited microglial cell migration and ROS (reactive oxygen species) production. Treatment with fisetin also effectively inhibited LPS plus IFN-γ-induced nitric oxide (NO) production, and inducible nitric oxide synthase (iNOS) expression in microglial cells. Furthermore, fisetin also reduced expressions of iNOS and NO by stimulation of peptidoglycan, the major component of the Gram-positive bacterium cell wall. Fisetin also inhibited the enhancement of LPS/IFN-γ- or peptidoglycan-induced inflammatory mediator IL (interlukin)-1 β expression. Besides the antioxidative and anti-inflammatory effects of fisetin, our study also elucidates the manner in fisetin-induced an endogenous anti-oxidative enzyme HO (heme oxygenase)-1 expression. Moreover, the regulatory molecular mechanism of fisetin-induced HO-1 expression operates through the PI-3 kinase/AKT and p38 signaling pathways in microglia. Notably, fisetin also significantly attenuated inflammation-related microglial activation and coordination deficit in mice in vivo. These findings suggest that fisetin may be a candidate agent for the development of therapies for inflammation-related neurodegenerative diseases.

  16. Gypenoside Attenuates β Amyloid-Induced Inflammation in N9 Microglial Cells via SOCS1 Signaling

    Directory of Open Access Journals (Sweden)

    Hui Cai

    2016-01-01

    Full Text Available Reducing β amyloid- (Aβ- induced microglial activation is believed to be effective in treating Alzheimer’s disease (AD. Microglia can be activated into classic activated state (M1 state or alternative activated state (M2 state, and the former is harmful; in contrast, the latter is beneficial. Gypenoside (GP is the major bioactive constituent of Gynostemma pentaphyllum, a traditional Chinese herb medicine. In this study, we hypothesized that GP attenuates Aβ-induced microglial activation by ameliorating microglial M1/M2 states, and the process may be mediated by suppressor of cell signaling protein 1 (SOCS1. In this study, we found that Aβ exposure increased the levels of microglial M1 markers, including iNOS expression, tumor necrosis factor α (TNF-α, interleukin 1β (IL-1β, and IL-6 releases, and coadministration of GP reversed the increase of M1 markers and enhanced the levels of M2 markers, including arginase-1 (Arg-1 expression, IL-10, brain-derived neurotrophic factor (BDNF, and glial cell-derived neurotrophic factor (GDNF releases in the Aβ-treated microglial cells. SOCS1-siRNA, however, significantly abolished the GP-induced effects on the levels of microglial M1 and M2 markers. These findings indicated that GP attenuates Aβ-induced microglial activation by ameliorating M1/M2 states, and the process may be mediated by SOCS1.

  17. Microglial activation in healthy aging.

    Science.gov (United States)

    Schuitemaker, Alie; van der Doef, Thalia F; Boellaard, Ronald; van der Flier, Wiesje M; Yaqub, Maqsood; Windhorst, Albert D; Barkhof, Frederik; Jonker, Cees; Kloet, Reina W; Lammertsma, Adriaan A; Scheltens, Philip; van Berckel, Bart N M

    2012-06-01

    Healthy brain aging is characterized by neuronal loss and decline of cognitive function. Neuronal loss is closely associated with microglial activation and postmortem studies have indeed suggested that activated microglia may be present in the aging brain. Microglial activation can be quantified in vivo using (R)-[(11)C]PK11195 and positron emission tomography. The purpose of this study was to measure specific binding of (R)-[(11)C]PK11195 in healthy subjects over a wide age range. Thirty-five healthy subjects (age range 19-79 years) were included. In all subjects 60-minute dynamic (R)-[(11)C]PK11195 scans were acquired. Specific binding of (R)-[(11)C]PK11195 was calculated using receptor parametric mapping in combination with supervised cluster analysis to extract the reference tissue input function. Increased binding of (R)-[(11)C]PK11195 with aging was found in frontal lobe, anterior and posterior cingulate cortex, medial inferior temporal lobe, insula, hippocampus, entorhinal cortex, thalamus, parietal and occipital lobes, and cerebellum. This indicates that activated microglia appear in several cortical and subcortical areas during healthy aging, suggesting widespread neuronal loss.

  18. Acetyl-L-Carnitine via Upegulating Dopamine D1 Receptor and Attenuating Microglial Activation Prevents Neuronal Loss and Improves Memory Functions in Parkinsonian Rats.

    Science.gov (United States)

    Singh, Sonu; Mishra, Akanksha; Srivastava, Neha; Shukla, Rakesh; Shukla, Shubha

    2016-12-14

    Parkinson's disease is accompanied by nonmotor symptoms including cognitive impairment, which precede the onset of motor symptoms in patients and are regulated by dopamine (DA) receptors and the mesocorticolimbic pathway. The relative contribution of DA receptors and astrocytic glutamate transporter (GLT-1) in cognitive functions is largely unexplored. Similarly, whether microglia-derived increased immune response affects cognitive functions and neuronal survival is not yet understood. We have investigated the effect of acetyl-L-carnitine (ALCAR) on cognitive functions and its possible underlying mechanism of action in 6-hydroxydopamine (6-OHDA)-induced hemiparkinsonian rats. ALCAR treatment in 6-OHDA-lesioned rats improved memory functions as confirmed by decreased latency time and path length in the Morris water maze test. ALCAR further enhanced D1 receptor levels without altering D2 receptor levels in the hippocampus and prefrontal cortex (PFC) regions, suggesting that the D1 receptor is preferentially involved in the regulation of cognitive functions. ALCAR attenuated microglial activation and release of inflammatory mediators through balancing proinflammatory and anti-inflammatory cytokines, which subsequently enhanced the survival of mature neurons in the CA1, CA3, and PFC regions and improved cognitive functions in hemiparkinsonian rats. ALCAR treatment also improved glutathione (GSH) content, while decreasing oxidative stress indices, inducible nitrogen oxide synthase (iNOS) levels, and astrogliosis resulting in the upregulation of GLT-1 levels. Additionally, ALCAR prevented the loss of dopaminergic (DAergic) neurons in ventral tagmental area (VTA)/substantia nigra pars compacta (SNpc) regions of 6-OHDA-lesioned rats, thus maintaining the integrity of the nigrostriatal pathway. Together, these results demonstrate that ALCAR treatment in hemiparkinsonian rats ameliorates neurodegeneration and cognitive deficits, hence suggesting its therapeutic potential in

  19. Stimulation of cannabinoid receptor 2 (CB2 suppresses microglial activation

    Directory of Open Access Journals (Sweden)

    Fernandez Francisco

    2005-12-01

    Full Text Available Abstract Background Activated microglial cells have been implicated in a number of neurodegenerative disorders, including Alzheimer's disease (AD, multiple sclerosis (MS, and HIV dementia. It is well known that inflammatory mediators such as nitric oxide (NO, cytokines, and chemokines play an important role in microglial cell-associated neuron cell damage. Our previous studies have shown that CD40 signaling is involved in pathological activation of microglial cells. Many data reveal that cannabinoids mediate suppression of inflammation in vitro and in vivo through stimulation of cannabinoid receptor 2 (CB2. Methods In this study, we investigated the effects of a cannabinoid agonist on CD40 expression and function by cultured microglial cells activated by IFN-γ using RT-PCR, Western immunoblotting, flow cytometry, and anti-CB2 small interfering RNA (siRNA analyses. Furthermore, we examined if the stimulation of CB2 could modulate the capacity of microglial cells to phagocytise Aβ1–42 peptide using a phagocytosis assay. Results We found that the selective stimulation of cannabinoid receptor CB2 by JWH-015 suppressed IFN-γ-induced CD40 expression. In addition, this CB2 agonist markedly inhibited IFN-γ-induced phosphorylation of JAK/STAT1. Further, this stimulation was also able to suppress microglial TNF-α and nitric oxide production induced either by IFN-γ or Aβ peptide challenge in the presence of CD40 ligation. Finally, we showed that CB2 activation by JWH-015 markedly attenuated CD40-mediated inhibition of microglial phagocytosis of Aβ1–42 peptide. Taken together, these results provide mechanistic insight into beneficial effects provided by cannabinoid receptor CB2 modulation in neurodegenerative diseases, particularly AD.

  20. Regulatory Effects of Fisetin on Microglial Activation

    OpenAIRE

    Jing-Yuan Chuang; Pei-Chun Chang; Yi-Chun Shen; Chingju Lin; Cheng-Fang Tsai; Jia-Hong Chen; Wei-Lan Yeh; Ling-Hsuan Wu; Hsiao-Yun Lin; Yu-Shu Liu; Dah-Yuu Lu

    2014-01-01

    Increasing evidence suggests that inflammatory processes in the central nervous system that are mediated by microglial activation play a key role in neurodegeneration. Fisetin, a plant flavonol commonly found in fruits and vegetables, is frequently added to nutritional supplements due to its antioxidant properties. In the present study, treatment with fisetin inhibited microglial cell migration and ROS (reactive oxygen species) production. Treatment with fisetin also effectively inhibited LPS...

  1. Isobavachalcone Attenuates MPTP-Induced Parkinson's Disease in Mice by Inhibition of Microglial Activation through NF-κB Pathway

    Science.gov (United States)

    Jing, Haoran; Wang, Shaoxia; Wang, Min; Fu, Wenliang; Zhang, Chao; Xu, Donggang

    2017-01-01

    Parkinson's disease (PD) is a complex multi-system and age-related neurodegenerative disorder. The intervention targeting neuroinflammation in PD patients is one effective strategy to slow down or inhibit disease progression. Microglia-mediated inflammatory response plays an important role in Parkinson's, Alzheimer's and other cerebral diseases. Isobavachalcone is a main component of Chinese herb medicine Psoralea corylifolia, which function includes immunoregulation, anti-oxidation and the regulation of β-amyloid (Aβ42) deposited in hippocampus in Alzheimer's patients. Whether it has the therapeutic effect on Parkinson's disease, however, is unclear. In this study, we found that isobavachalcone could effectively remit Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP), prolong the residence time of mice on Rota-rod and alleviate the neuronal necrosis. It also inhibited the over-activation of microglia, and decreased the expression of IL-6 and IL-1β in the brain of PD mice. In vitro, isobavachalcone could inhibit nuclear factor-kappaB (NF-κB) pathway through inhibiting the LPS-induced transfer of NF-κB subunit from cytoplasm to nucleus in BV-2 cells. Isobavachalcone decreased the LPS-induced oxidative stress and the expression of inflammatory cytokines, and provided a neuroprotective effect by antagonizing microglia-mediated inflammation. Our results indicated that isobavachalcone may be a candidated drug against Parkinson's disease with great clinical potential. PMID:28060896

  2. Isobavachalcone Attenuates MPTP-Induced Parkinson's Disease in Mice by Inhibition of Microglial Activation through NF-κB Pathway.

    Science.gov (United States)

    Jing, Haoran; Wang, Shaoxia; Wang, Min; Fu, Wenliang; Zhang, Chao; Xu, Donggang

    2017-01-01

    Parkinson's disease (PD) is a complex multi-system and age-related neurodegenerative disorder. The intervention targeting neuroinflammation in PD patients is one effective strategy to slow down or inhibit disease progression. Microglia-mediated inflammatory response plays an important role in Parkinson's, Alzheimer's and other cerebral diseases. Isobavachalcone is a main component of Chinese herb medicine Psoralea corylifolia, which function includes immunoregulation, anti-oxidation and the regulation of β-amyloid (Aβ42) deposited in hippocampus in Alzheimer's patients. Whether it has the therapeutic effect on Parkinson's disease, however, is unclear. In this study, we found that isobavachalcone could effectively remit Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP), prolong the residence time of mice on Rota-rod and alleviate the neuronal necrosis. It also inhibited the over-activation of microglia, and decreased the expression of IL-6 and IL-1β in the brain of PD mice. In vitro, isobavachalcone could inhibit nuclear factor-kappaB (NF-κB) pathway through inhibiting the LPS-induced transfer of NF-κB subunit from cytoplasm to nucleus in BV-2 cells. Isobavachalcone decreased the LPS-induced oxidative stress and the expression of inflammatory cytokines, and provided a neuroprotective effect by antagonizing microglia-mediated inflammation. Our results indicated that isobavachalcone may be a candidated drug against Parkinson's disease with great clinical potential.

  3. Doxycycline Suppresses Microglial Activation by Inhibiting the p38 MAPK and NF-kB Signaling Pathways.

    Science.gov (United States)

    Santa-Cecília, Flávia V; Socias, Benjamin; Ouidja, Mohand O; Sepulveda-Diaz, Julia E; Acuña, Leonardo; Silva, Rangel L; Michel, Patrick P; Del-Bel, Elaine; Cunha, Thiago M; Raisman-Vozari, Rita

    2016-05-01

    In neurodegenerative diseases, the inflammatory response is mediated by activated glial cells, mainly microglia, which are the resident immune cells of the central nervous system. Activated microglial cells release proinflammatory mediators and neurotoxic factors that are suspected to cause or exacerbate these diseases. We recently demonstrated that doxycycline protects substantia nigra dopaminergic neurons in an animal model of Parkinson's disease. This effect was associated with a reduction of microglial cell activation, which suggests that doxycycline may operate primarily as an anti-inflammatory drug. In the present study, we assessed the anti-inflammatory potential of doxycycline using lipopolysaccharide (LPS)-activated primary microglial cells in culture as a model of neuroinflammation. Doxycycline attenuated the expression of key activation markers in LPS-treated microglial cultures in a concentration-dependent manner. More specifically, doxycycline treatment lowered the expression of the microglial activation marker IBA-1 as well as the production of ROS, NO, and proinflammatory cytokines (TNF-α and IL-1β). In primary microglial cells, we also found that doxycycline inhibits LPS-induced p38 MAP kinase phosphorylation and NF-kB nuclear translocation. The present results indicate that the effect of doxycycline on LPS-induced microglial activation probably occurs via the modulation of p38 MAP kinase and NF-kB signaling pathways. These results support the idea that doxycycline may be useful in preventing or slowing the progression of PD and other neurodegenerative diseases that exhibit altered glia function.

  4. The microglial "activation" continuum: from innate to adaptive responses

    Directory of Open Access Journals (Sweden)

    Nikolic Veljko

    2005-10-01

    Full Text Available Abstract Microglia are innate immune cells of myeloid origin that take up residence in the central nervous system (CNS during embryogenesis. While classically regarded as macrophage-like cells, it is becoming increasingly clear that reactive microglia play more diverse roles in the CNS. Microglial "activation" is often used to refer to a single phenotype; however, in this review we consider that a continuum of microglial activation exists, with phagocytic response (innate activation at one end and antigen presenting cell function (adaptive activation at the other. Where activated microglia fall in this spectrum seems to be highly dependent on the type of stimulation provided. We begin by addressing the classical roles of peripheral innate immune cells including macrophages and dendritic cells, which seem to define the edges of this continuum. We then discuss various types of microglial stimulation, including Toll-like receptor engagement by pathogen-associated molecular patterns, microglial challenge with myelin epitopes or Alzheimer's β-amyloid in the presence or absence of CD40L co-stimulation, and Alzheimer disease "immunotherapy". Based on the wide spectrum of stimulus-specific microglial responses, we interpret these cells as immune cells that demonstrate remarkable plasticity following activation. This interpretation has relevance for neurodegenerative/neuroinflammatory diseases where reactive microglia play an etiological role; in particular viral/bacterial encephalitis, multiple sclerosis and Alzheimer disease.

  5. Neuroinflammation and Alzheimer's Disease: Implications for Microglial Activation.

    Science.gov (United States)

    Regen, Francesca; Hellmann-Regen, Julian; Costantini, Erica; Reale, Marcella

    2017-02-03

    Microglial activation is a hallmark of neuroinflammation, seen in most acute and chronic neuropsychiatric conditions. With growing knowledge about microglia functions in surveying the brain for alterations, microglial activation is increasingly discussed in the context of disease progression and pathogenesis of Alzheimer's disease (AD). Underlying molecular mechanisms, however, remain largely unclear. While proper microglial function is essentially required for its scavenging duties, local activation of the brain's innate immune cells also brings about many less advantageous changes, such as reactive oxygen species (ROS) production, secretion of proinflammatory cytokines or degradation of neuroprotective retinoids, and may thus unnecessarily put surrounding healthy neurons in danger. In view of this dilemma, it is little surprising that both, AD vaccination trials, but also immunosuppressive strategies have consistently failed in AD patients. Nevertheless, epidemiological evidence has suggested a protective effect for anti-inflammatory agents, supporting the hypothesis that key processes involved in the pathogenesis of AD may take place rather early in the time course of the disorder, likely long before memory impairment becomes clinically evident. Activation of microglia results in a severely altered microenvironment. This is not only caused by the plethora of secreted cytokines, chemokines or ROS, but may also involve increased turnover of neuroprotective endogenous substances such as retinoic acid (RA), as recently shown in vitro. We discuss findings linking microglial activation and AD and speculate that microglial malfunction, which brings about changes in local RA concentrations in vitro, may underlie AD pathogenesis and precede or facilitate the onset of AD. Thus, chronic, "innate neuroinflammation" may provide a valuable target for preventive and therapeutic strategies.

  6. Aspirin-triggered lipoxin A4 attenuates LPS-induced pro-inflammatory responses by inhibiting activation of NF-κB and MAPKs in BV-2 microglial cells

    Directory of Open Access Journals (Sweden)

    Yuan Shi-Ying

    2011-08-01

    Full Text Available Abstract Background Microglial activation plays an important role in neurodegenerative diseases through production of nitric oxide (NO and several pro-inflammatory cytokines. Lipoxins (LXs and aspirin-triggered LXs (ATLs are considered to act as 'braking signals' in inflammation. In the present study, we investigated the effect of aspirin-triggered LXA4 (ATL on infiammatory responses induced by lipopolysaccharide (LPS in murine microglial BV-2 cells. Methods BV-2 cells were treated with ATL prior to LPS exposure, and the effects of such treatment production of nitric oxide (NO, inducible nitric oxide synthase (iNOS, interleukin-1β (IL-1β and tumour necrosis factor-α (TNF-α were analysed by Griess reaction, ELISA, western blotting and quantitative RT-PCR. Moreover, we investigated the effects of ATL on LPS-induced nuclear factor-κB (NF-κB activation, phosphorylation of mitogen-activated protein kinases (MAPKs and activator protein-1 (AP-1 activation. Results ATL inhibited LPS-induced production of NO, IL-1β and TNF-α in a concentration-dependent manner. mRNA expressions for iNOS, IL-1β and TNF-α in response to LPS were also decreased by ATL. These effects were inhibited by Boc-2 (a LXA4 receptor antagonist. ATL significantly reduced nuclear translocation of NF-κB p65, degradation of the inhibitor IκB-α, and phosphorylation of extracellular signal-regulated kinase (ERK and p38 MAPK in BV-2 cells activated with LPS. Furthermore, the DNA binding activity of NF-κB and AP-1 was blocked by ATL. Conclusions This study indicates that ATL inhibits NO and pro-inflammatory cytokine production at least in part via NF-κB, ERK, p38 MAPK and AP-1 signaling pathways in LPS-activated microglia. Therefore, ATL may have therapeutic potential for various neurodegenerative diseases.

  7. Astrocytic Orosomucoid-2 Modulates Microglial Activation and Neuroinflammation.

    Science.gov (United States)

    Jo, Myungjin; Kim, Jong-Heon; Song, Gyun Jee; Seo, Minchul; Hwang, Eun Mi; Suk, Kyoungho

    2017-03-15

    Orosomucoid (ORM) is an acute-phase protein that belongs to the immunocalin subfamily, a group of small-molecule-binding proteins with immunomodulatory functions. Little is known about the role of ORM proteins in the CNS. The aim of the present study was to investigate the brain expression of ORM and its role in neuroinflammation. Expression of Orm2, but not Orm1 or Orm3, was highly induced in the mouse brain after systemic injection of lipopolysaccharide (LPS). Plasma levels of ORM2 were also significantly higher in patients with cognitive impairment than in normal subjects. RT-PCR, Western blot, and immunofluorescence analyses revealed that astrocytes are the major cellular sources of ORM2 in the inflamed mouse brain. Recombinant ORM2 protein treatment decreased microglial production of proinflammatory mediators and reduced microglia-mediated neurotoxicity in vitro LPS-induced microglial activation, proinflammatory cytokines in hippocampus, and neuroinflammation-associated cognitive deficits also decreased as a result of intracerebroventricular injection of recombinant ORM2 protein in vivo Moreover, lentiviral shRNA-mediated Orm2 knockdown enhanced LPS-induced proinflammatory cytokine gene expression and microglial activation in the hippocampus. Mechanistically, ORM2 inhibited C-C chemokine ligand 4 (CCL4)-induced microglial migration and activation by blocking the interaction of CCL4 with C-C chemokine receptor type 5. Together, the results from our cultured glial cells, mouse neuroinflammation model, and patient studies suggest that ORM2 is a novel mediator of astrocyte-microglial interaction. We also report that ORM2 exerts anti-inflammatory effects by modulating microglial activation and migration during brain inflammation. ORM2 can be exploited therapeutically for the treatment of neuroinflammatory diseases.SIGNIFICANCE STATEMENT Neural cell interactions are important for brain physiology and pathology. Particularly, the interaction between non

  8. Neuropeptides and Microglial Activation in Inflammation, Pain, and Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Lila Carniglia

    2017-01-01

    Full Text Available Microglial cells are responsible for immune surveillance within the CNS. They respond to noxious stimuli by releasing inflammatory mediators and mounting an effective inflammatory response. This is followed by release of anti-inflammatory mediators and resolution of the inflammatory response. Alterations to this delicate process may lead to tissue damage, neuroinflammation, and neurodegeneration. Chronic pain, such as inflammatory or neuropathic pain, is accompanied by neuroimmune activation, and the role of glial cells in the initiation and maintenance of chronic pain has been the subject of increasing research over the last two decades. Neuropeptides are small amino acidic molecules with the ability to regulate neuronal activity and thereby affect various functions such as thermoregulation, reproductive behavior, food and water intake, and circadian rhythms. Neuropeptides can also affect inflammatory responses and pain sensitivity by modulating the activity of glial cells. The last decade has witnessed growing interest in the study of microglial activation and its modulation by neuropeptides in the hope of developing new therapeutics for treating neurodegenerative diseases and chronic pain. This review summarizes the current literature on the way in which several neuropeptides modulate microglial activity and response to tissue damage and how this modulation may affect pain sensitivity.

  9. Acupuncture inhibits microglial activation and inflammatory events in the MPTP-induced mouse model.

    Science.gov (United States)

    Kang, Jun Mo; Park, Hi Joon; Choi, Yeong Gon; Choe, Il Hwan; Park, Jae Hyun; Kim, Yong Sik; Lim, Sabina

    2007-02-02

    Using a mouse model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD), this study investigated on the neuroprotective effects of acupuncture by examining whether acupuncture contributed to inhibiting microglial activation and inflammatory events. C57BL/6 mice were treated with MPTP (30 mg/kg, i.p.) for 5 consecutive days. Acupuncture was then applied to acupoints Yanglingquan (GB34) and Taichong (LR3) starting 2 h after the first MPTP administration and then at 48 h intervals until the mice were sacrificed for analyses at 1, 3, and 7 days after the last MPTP injection. These experiments demonstrated that acupuncture inhibited the decreased of the tyrosine hydroxylase (TH) immunoreactivity (IR) and generated a neuroprotective effects in the striatum (ST) and the substantia nigra (SN) on days 1, 3, and 7 post-MPTP injections. Acupuncture attenuated the increase of macrophage antigen complex-1 (MAC-1), a marker of microglial activation, at 1 and 3 days and reduced the increases in cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression on days 1, 3, and 7. In MPTP group, striatal dopamine (DA) was measured by 46% at 7 days, whereas DA in the acupuncture group was 78%. On the basis of these results, we suggest that acupuncture could be used as a neuroprotective intervention for the purpose of inhibiting microglial activation and inflammatory events in PD.

  10. Fingolimod modulates microglial activation to augment markers of remyelination

    Directory of Open Access Journals (Sweden)

    Baker David

    2011-07-01

    Full Text Available Abstract Introduction Microglial activation in multiple sclerosis has been postulated to contribute to long-term neurodegeneration during disease. Fingolimod has been shown to impact on the relapsing remitting phase of disease by modulating autoreactive T-cell egress from lymph organs. In addition, it is brain penetrant and has been shown to exert multiple effects on nervous system cells. Methods In this study, the impact of fingolimod and other sphingosine-1-phosphate receptor active molecules following lysophosphotidyl choline-induced demyelination was examined in the rat telencephalon reaggregate, spheroid cell culture system. The lack of immune system components allowed elucidation of the direct effects of fingolimod on CNS cell types in an organotypic situation. Results Following demyelination, fingolimod significantly augmented expression of myelin basic protein in the remyelination phase. This increase was not associated with changes in neurofilament levels, indicating de novo myelin protein expression not associated with axonal branching. Myelin wrapping was confirmed morphologically using confocal and electron microscopy. Increased remyelination was associated with down-regulation of microglial ferritin, tumor necrosis factor alpha and interleukin 1 during demyelination when fingolimod was present. In addition, nitric oxide metabolites and apoptotic effectors caspase 3 and caspase 7 were reduced during demyelination in the presence of fingolimod. The sphingosine-1-phosphate receptor 1 and 5 agonist BAF312 also increased myelin basic protein levels, whereas the sphingosine-1-phosphate receptor 1 agonist AUY954 failed to replicate this effect on remyelination. Conclusions The results presented indicate that modulation of S1P receptors can ameliorate pathological effectors associated with microglial activation leading to a subsequent increase in protein and morphological markers of remyelination. In addition, sphingosine-1-phosphate

  11. Microglial phagocytosis induced by fibrillar β-amyloid is attenuated by oligomeric β-amyloid: implications for Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Lin Nan

    2011-06-01

    Full Text Available Abstract Background Reactive microglia are associated with β-amyloid (Aβ deposit and clearance in Alzhiemer's Disease (AD. Paradoxically, entocranial resident microglia fail to trigger an effective phagocytic response to clear Aβ deposits although they mainly exist in an "activated" state. Oligomeric Aβ (oAβ, a recent target in the pathogenesis of AD, can induce more potent neurotoxicity when compared with fibrillar Aβ (fAβ. However, the role of the different Aβ forms in microglial phagocytosis, induction of inflammation and oxidation, and subsequent regulation of phagocytic receptor system, remain unclear. Results We demonstrated that Aβ(1-42 fibrils, not Aβ(1-42 oligomers, increased the microglial phagocytosis. Intriguingly, the pretreatment of microglia with oAβ(1-42 not only attenuated fAβ(1-42-triggered classical phagocytic response to fluorescent microspheres but also significantly inhibited phagocytosis of fluorescent labeled fAβ(1-42. Compared with the fAβ(1-42 treatment, the oAβ(1-42 treatment resulted in a rapid and transient increase in interleukin 1β (IL-1β level and produced higher levels of tumor necrosis factor-α (TNF-α, nitric oxide (NO, prostaglandin E2 (PGE2 and intracellular superoxide anion (SOA. The further results demonstrated that microglial phagocytosis was negatively correlated with inflammatory mediators in this process and that the capacity of phagocytosis in fAβ(1-42-induced microglia was decreased by IL-1β, lippolysaccharide (LPS and tert-butyl hydroperoxide (t-BHP. The decreased phagocytosis could be relieved by pyrrolidone dithiocarbamate (PDTC, a nuclear factor-κB (NF-κB inhibitor, and N-acetyl-L-cysteine (NAC, a free radical scavenger. These results suggest that the oAβ-impaired phagocytosis is mediated through inflammation and oxidative stress-mediated mechanism in microglial cells. Furthermore, oAβ(1-42 stimulation reduced the mRNA expression of CD36, integrin β1 (Itgb1, and Ig

  12. Sinomenine inhibits microglial activation by Aβ and confers neuroprotection

    Directory of Open Access Journals (Sweden)

    Sharma Shiv K

    2011-09-01

    Full Text Available Abstract Background Neuroinflammation is an important contributor to the development of neurodegenerative diseases, including Alzheimer's disease. Thus, there is a keen interest in identifying compounds, especially from herbal sources, that can inhibit neuroinflammation. Amyloid-β (Aβ is a major component of the amyloid plaques present in the brains of Alzheimer's disease patients. Here, we examined whether sinomenine, present in a Chinese medicinal plant, prevents oligomeric Aβ-induced microglial activation and confers protection against neurotoxicity. Methods Oligomeric amyloid-β was prepared from Aβ(1-42. Intracellular reactive oxygen species production was determined using the dye 2',7'-dichlorodihydrofluorescin diacetate. Nitric oxide level was assessed using the Griess reagent. Flow cytometry was used to examine the levels of inflammatory molecules. BV2-conditioned medium was used to treat hippocampal cell line (HT22 and primary hippocampal cells in indirect toxicity experiments. Toxicity was assessed using MTT reduction and TUNEL assays. Results We found that sinomenine prevents the oligomeric Aβ-induced increase in levels of reactive oxygen species and nitric oxide in BV2 microglial cells. In addition, sinomenine reduces levels of Aβ-induced inflammatory molecules. Furthermore, sinomenine protects hippocampal HT22 cells as well as primary hippocampal cells from indirect toxicity mediated by Aβ-treated microglial cells, but has no effect on Aβ-induced direct toxicity to HT22 cells. Finally, we found that conditioned medium from Aβ-treated BV2 cells contains increased levels of nitric oxide and inflammatory molecules, but the levels of these molecules are reduced by sinomenine. Conclusions Sinomenine prevents oligomeric Aβ-induced microglial activation, and confers protection against indirect neurotoxicity to hippocampal cells. These results raise the possibility that sinomenine may have therapeutic potential for the treatment

  13. Fibrillar amyloid plaque formation precedes microglial activation.

    Directory of Open Access Journals (Sweden)

    Christian K E Jung

    Full Text Available In Alzheimer's disease (AD, hallmark β-amyloid deposits are characterized by the presence of activated microglia around them. Despite an extensive characterization of the relation of amyloid plaques with microglia, little is known about the initiation of this interaction. In this study, the detailed investigation of very small plaques in brain slices in AD transgenic mice of the line APP-PS1(dE9 revealed different levels of microglia recruitment. Analysing plaques with a diameter of up to 10 μm we find that only the half are associated with clear morphologically activated microglia. Utilizing in vivo imaging of new appearing amyloid plaques in double-transgenic APP-PS1(dE9xCX3CR1+/- mice further characterized the dynamic of morphological microglia activation. We observed no correlation of morphological microglia activation and plaque volume or plaque lifetime. Taken together, our results demonstrate a very prominent variation in size as well as in lifetime of new plaques relative to the state of microglia reaction. These observations might question the existing view that amyloid deposits by themselves are sufficient to attract and activate microglia in vivo.

  14. Increased microglial catalase activity in multiple sclerosis grey matter.

    Science.gov (United States)

    Gray, Elizabeth; Kemp, Kevin; Hares, Kelly; Redondo, Julianna; Rice, Claire; Scolding, Neil; Wilkins, Alastair

    2014-04-22

    Chronic demyelination, on-going inflammation, axonal loss and grey matter neuronal injury are likely pathological processes that contribute to disease progression in multiple sclerosis (MS). Although the precise contribution of each process and their aetiological substrates is not fully known, recent evidence has implicated oxidative damage as a major cause of tissue injury in MS. The degree of tissue injury caused by oxidative molecules, such as reactive oxygen species (ROS), is balanced by endogenous anti-oxidant enzymes which detoxify ROS. Understanding endogenous mechanisms which protect the brain against oxidative injury in MS is important, since enhancing anti-oxidant responses is a major therapeutic strategy for preventing irreversible tissue injury in the disease. Our aims were to determine expression and activity levels of the hydrogen peroxide-reducing enzyme catalase in MS grey matter (GM). In MS GM, a catalase enzyme activity was elevated compared to control GM. We measured catalase protein expression by immune dot-blotting and catalase mRNA by a real-time polymerase chain reaction (RT-PCR). Protein analysis studies showed a strong positive correlation between catalase and microglial marker IBA-1 in MS GM. In addition, calibration of catalase mRNA level with reference to the microglial-specific transcript AIF-1 revealed an increase in this transcript in MS. This was reflected by the extent of HLA-DR immunolabeling in MS GM which was significantly elevated compared to control GM. Collectively, these observations provide evidence that microglial catalase activity is elevated in MS grey matter and may be an important endogenous anti-oxidant defence mechanism in MS.

  15. Pyrroloquinoline quinone (PQQ inhibits lipopolysaccharide induced inflammation in part via downregulated NF-κB and p38/JNK activation in microglial and attenuates microglia activation in lipopolysaccharide treatment mice.

    Directory of Open Access Journals (Sweden)

    Chongfei Yang

    Full Text Available Therapeutic strategies designed to inhibit the activation of microglia may lead to significant advancement in the treatment of most neurodegenerative diseases. Pyrroloquinoline quinone (PQQ is a naturally occurring redox cofactor that acts as an essential nutrient, antioxidant, and has been reported to exert potent immunosuppressive effects. In the present study, the anti-inflammatory effects of PQQ was investigated in LPS treated primary microglia cells. Our observations showed that pretreatment with PQQ significantly inhibited the production of NO and PGE2 and suppressed the expression of pro-inflammatory mediators such as iNOS, COX-2, TNF-a, IL-1b, IL-6, MCP-1 and MIP-1a in LPS treated primary microglia cells. The nuclear translocation of NF-κB and the phosphorylation level of p65, p38 and JNK MAP kinase pathways were also inhibited by PQQ in LPS stimulated primary microglia cells. Further a systemic LPS treatment acute inflammation murine brain model was used to study the suppressive effects of PQQ against neuroinflammation in vivo. Mice treated with PQQ demonstrated marked attenuation of neuroinflammation based on Western blotting and immunohistochemistry analysis of Iba1-against antibody in the brain tissue. Indicated that PQQ protected primary cortical neurons against microglia-mediated neurotoxicity. These results collectively suggested that PQQ might be a promising therapeutic agent for alleviating the progress of neurodegenerative diseases associated with microglia activation.

  16. Plasminogen activator inhibitor type 1 regulates microglial motility and phagocytic activity

    Directory of Open Access Journals (Sweden)

    Jeon Hyejin

    2012-06-01

    Full Text Available Abstract Background Plasminogen activator inhibitor type 1 (PAI-1 is the primary inhibitor of urokinase type plasminogen activators (uPA and tissue type plasminogen activators (tPA, which mediate fibrinolysis. PAI-1 is also involved in the innate immunity by regulating cell migration and phagocytosis. However, little is known about the role of PAI-1 in the central nervous system. Methods In this study, we identified PAI-1 in the culture medium of mouse mixed glial cells by liquid chromatography and tandem mass spectrometry. Secretion of PAI-1 from glial cultures was detected by ELISA and western blotting analysis. Cell migration was evaluated by in vitro scratch-wound healing assay or Boyden chamber assay and an in vivo stab wound injury model. Phagocytic activity was measured by uptake of zymosan particles. Results The levels of PAI-1 mRNA and protein expression were increased by lipopolysaccharide and interferon-γ stimulation in both microglia and astrocytes. PAI-1 promoted the migration of microglial cells in culture via the low-density lipoprotein receptor-related protein (LRP 1/Janus kinase (JAK/signal transducer and activator of transcription (STAT1 axis. PAI-1 also increased microglial migration in vivo when injected into mouse brain. PAI-1-mediated microglial migration was independent of protease inhibition, because an R346A mutant of PAI-1 with impaired PA inhibitory activity also promoted microglial migration. Moreover, PAI-1 was able to modulate microglial phagocytic activity. PAI-1 inhibited microglial engulfment of zymosan particles in a vitronectin- and Toll-like receptor 2/6-dependent manner. Conclusion Our results indicate that glia-derived PAI-1 may regulate microglial migration and phagocytosis in an autocrine or paracrine manner. This may have important implications in the regulation of brain microglial activities in health and disease.

  17. Automatic counting of microglial cell activation and its applications

    Institute of Scientific and Technical Information of China (English)

    Beatriz I Gallego Collado; Pablo de Gracia

    2016-01-01

    Glaucoma is a multifactorial optic neuropathy characterized by the damage and death of the retinal gan-glion cells. This disease results in vision loss and blindness. Any vision loss resulting from the disease cannot be restored and nowadays there is no available cure for glaucoma;however an early detection and treatment, could offer neuronal protection and avoid later serious damages to the visual function. A full understanding of the etiology of the disease will still require the contribution of many scientiifc efforts. Glial activation has been observed in glaucoma, being microglial proliferation a hallmark in this neuro-degenerative disease. A typical project studying these cellular changes involved in glaucoma often needs thousands of images-from several animals-covering different layers and regions of the retina. The gold standard to evaluate them is the manual count. This method requires a large amount of time from special-ized personnel. It is a tedious process and prone to human error. We present here a new method to count microglial cells by using a computer algorithm. It counts in one hour the same number of images that a researcher counts in four weeks, with no loss of reliability.

  18. An early and late peak in microglial activation in Alzheimer's disease trajectory.

    Science.gov (United States)

    Fan, Zhen; Brooks, David J; Okello, Aren; Edison, Paul

    2017-01-24

    Amyloid-β deposition, neuroinflammation and tau tangle formation all play a significant role in Alzheimer's disease. We hypothesized that there is microglial activation early on in Alzheimer's disease trajectory, where in the initial phase, microglia may be trying to repair the damage, while later on in the disease these microglia could be ineffective and produce proinflammatory cytokines leading to progressive neuronal damage. In this longitudinal study, we have evaluated the temporal profile of microglial activation and its relationship between fibrillar amyloid load at baseline and follow-up in subjects with mild cognitive impairment, and this was compared with subjects with Alzheimer's disease. Thirty subjects (eight mild cognitive impairment, eight Alzheimer's disease and 14 controls) aged between 54 and 77 years underwent (11)C-(R)PK11195, (11)C-PIB positron emission tomography and magnetic resonance imaging scans. Patients were followed-up after 14 ± 4 months. Region of interest and Statistical Parametric Mapping analysis were used to determine longitudinal alterations. Single subject analysis was performed to evaluate the individualized pathological changes over time. Correlations between levels of microglial activation and amyloid deposition at a voxel level were assessed using Biological Parametric Mapping. We demonstrated that both baseline and follow-up microglial activation in the mild cognitive impairment cohort compared to controls were increased by 41% and 21%, respectively. There was a longitudinal reduction of 18% in microglial activation in mild cognitive impairment cohort over 14 months, which was associated with a mild elevation in fibrillar amyloid load. Cortical clusters of microglial activation and amyloid deposition spatially overlapped in the subjects with mild cognitive impairment. Baseline microglial activation was increased by 36% in Alzheimer's disease subjects compared with controls. Longitudinally, Alzheimer's disease subjects

  19. Experimental autoimmune prostatitis induces microglial activation in the spinal cord

    Science.gov (United States)

    Wong, Larry; Done, Joseph D.; Schaeffer, Anthony J.; Thumbikat, Praveen

    2014-01-01

    Background The pathogenesis of chronic prostatitis/chronic pelvic pain syndrome is unknown and factors including the host’s immune response and the nervous system have been attributed to the development of CP/CPPS. We previously demonstrated that mast cells and chemokines such as CCL2 and CCL3 play an important role in mediating prostatitis. Here, we examined the role of neuroinflammation and microglia in the CNS in the development of chronic pelvic pain. Methods Experimental autoimmune prostatitis (EAP) was induced using a subcutaneous injection of rat prostate antigen. Sacral spinal cord tissue (segments S4–S5) was isolated and utilized for immunofluorescence or QRT-PCR analysis. Tactile allodynia was measured at baseline and at various points during EAP using Von Frey fibers as a function for pelvic pain. EAP mice were treated with minocycline after 30 days of prostatitis to test the efficacy of microglial inhibition on pelvic pain. Results Prostatitis induced the expansion and activation of microglia and the development of inflammation in the spinal cord as determined by increased expression levels of CCL3, IL-1β, Iba1, and ERK1/2 phosphorylation. Microglial activation in mice with prostatitis resulted in increased expression of P2X4R and elevated levels of BDNF, two molecular markers associated with chronic pain. Pharmacological inhibition of microglia alleviated pain in mice with prostatitis and resulted in decreased expression of IL-1β, P2X4R, and BDNF. Conclusion Our data shows that prostatitis leads to inflammation in the spinal cord and the activation and expansion of microglia, mechanisms that may contribute to the development and maintenance of chronic pelvic pain. PMID:25263093

  20. NOSH-aspirin (NBS-1120), a novel nitric oxide and hydrogen sulfide releasing hybrid, attenuates neuroinflammation induced by microglial and astrocytic activation: a new candidate for treatment of neurodegenerative disorders.

    Science.gov (United States)

    Lee, Moonhee; McGeer, Edith; Kodela, Ravinder; Kashfi, Khosrow; McGeer, Patrick L

    2013-10-01

    Hydrogen sulfide (H2 S) and nitric oxide (NO) have been described as gasotransmitters. Anti-inflammatory activity in the central and peripheral nervous systems may be one of their functions. Previously we demonstrated that several SH(-) donors including H2 S-releasing aspirin (S-ASA) exhibited anti-inflammatory and neuroprotective activity in vitro against toxins released by activated microglia and astrocytes. Here we report that NOSH-ASA, an NO- and H2 S-releasing hybrid of aspirin, has a significantly greater anti-inflammatory and neuroprotective effect than S-ASA or NO-ASA. When activated by LPS/IFNγ, human microglia and THP-1 cells release materials that are toxic to differentiated SH-SY5Y cells. These phenomena also occur with IFNγ-stimulated human astroglia and U373 cells. When the cells were treated with the S-ASA or NO-ASA, there was a significant enhancement of neuroprotection. However, NOSH-ASA had significantly more potent protection properties than NO-ASA or S-ASA. The effect was concentration-dependent, as well as incubation time-dependent. Such treatment not only reduced the release of the TNFα and IL-6, but also attenuated activation of P38 MAPK and NFκB proteins. All the compounds tested were not harmful when applied directly to SH-SY5Y cells. These data suggest that NOSH-ASA has significant anti-inflammatory properties and may be a new candidate for treating neurodegenerative disorders that have a prominent neuroinflammatory component such as Alzheimer disease and Parkinson disease.

  1. CCL2/MCP-1 modulation of microglial activation and proliferation

    Directory of Open Access Journals (Sweden)

    Garcia-Bueno Borja

    2011-07-01

    Full Text Available Abstract Background Monocyte chemoattractant protein (CCL2/MCP-1 is a chemokine that attracts cells involved in the immune/inflammatory response. As microglia are one of the main cell types sustaining inflammation in brain, we proposed here to analyze the direct effects of MCP-1 on cultured primary microglia. Methods Primary microglia and neuronal cultures were obtained from neonatal and embryonic Wistar rats, respectively. Microglia were incubated with different concentrations of recombinant MCP-1 and LPS. Cell proliferation was quantified by measuring incorporation of bromodeoxyuridine (BrdU. Nitrite accumulation was measured using the Griess assay. The expression and synthesis of different proteins was measured by RT-PCR and ELISA. Cell death was quantified by measuring release of LDH into the culture medium. Results MCP-1 treatment (50 ng/ml, 24 h did not induce morphological changes in microglial cultures. Protein and mRNA levels of different cytokines were measured, showing that MCP-1 was not able to induce proinflammatory cytokines (IL-1β, IL6, MIP-1α, either by itself or in combination with LPS. A similar lack of effect was observed when measuring inducible nitric oxide synthase (NOS2 expression or accumulation of nitrites in the culture media as a different indicator of microglial activation. MCP-1 was also unable to alter the expression of different trophic factors that were reduced by LPS treatment. In order to explore the possible release of other products by microglia and their potential neurotoxicity, neurons were co-cultured with microglia: no death of neurons could be detected when treated with MCP-1. However, the presence of MCP-1 induced proliferation of microglia, an effect opposite to that observed with LPS. Conclusion These data indicate that, while causing migration and proliferation of microglia, MCP-1 does not appear to directly activate an inflammatory response in this cell type, and therefore, other factors may be

  2. Microglial activation in the hippocampus of hypercholesterolemic rabbits occurs independent of increased amyloid production

    Directory of Open Access Journals (Sweden)

    Streit Wolfgang J

    2007-08-01

    Full Text Available Abstract Background Rabbits maintained on high-cholesterol diets are known to show increased immunoreactivity for amyloid beta protein in cortex and hippocampus, an effect that is amplified by presence of copper in the drinking water. Hypercholesterolemic rabbits also develop sporadic neuroinflammatory changes. The purpose of this study was to survey microglial activation in rabbits fed cholesterol in the presence or absence of copper or other metal ions, such as zinc and aluminum. Methods Vibratome sections of the rabbit hippocampus and overlying cerebral cortex were examined for microglial activation using histochemistry with isolectin B4 from Griffonia simplicifolia. Animals were scored as showing either focal or diffuse microglial activation with or without presence of rod cells. Results Approximately one quarter of all rabbits fed high-cholesterol diets showed evidence of microglial activation, which was always present in the hippocampus and not in the cortex. Microglial activation was not correlated spatially with increased amyloid immunoreactivity or with neurodegenerative changes and was most pronounced in hypercholesterolemic animals whose drinking water had been supplemented with either copper or zinc. Controls maintained on normal chow were largely devoid of neuroinflammatory changes, but revealed minimal microglial activation in one case. Conclusion Because the increase in intraneuronal amyloid immunoreactivity that results from administration of cholesterol occurs in both cerebral cortex and hippocampus, we deduce that the microglial activation reported here, which is limited to the hippocampus, occurs independent of amyloid accumulation. Furthermore, since neuroinflammation occurred in the absence of detectable neurodegenerative changes, and was also not accompanied by increased astrogliosis, we conclude that microglial activation occurs because of metabolic or biochemical derangements that are influenced by dietary factors.

  3. Differential regulation of Aβ42-induced neuronal C1q synthesis and microglial activation

    Directory of Open Access Journals (Sweden)

    Tenner Andrea J

    2005-01-01

    Full Text Available Abstract Expression of C1q, an early component of the classical complement pathway, has been shown to be induced in neurons in hippocampal slices, following accumulation of exogenous Aβ42. Microglial activation was also detected by surface marker expression and cytokine production. To determine whether C1q induction was correlated with intraneuronal Aβ and/or microglial activation, D-(--2-amino-5-phosphonovaleric acid (APV, an NMDA receptor antagonist and glycine-arginine-glycine-aspartic acid-serine-proline peptide (RGD, an integrin receptor antagonist, which blocks and enhances Aβ42 uptake, respectively, were assessed for their effect on neuronal C1q synthesis and microglial activation. APV inhibited, and RGD enhanced, microglial activation and neuronal C1q expression. However, addition of Aβ10–20 to slice cultures significantly reduced Aβ42 uptake and microglial activation, but did not alter the Aβ42-induced neuronal C1q expression. Furthermore, Aβ10–20 alone triggered C1q production in neurons, demonstrating that neither neuronal Aβ42 accumulation, nor microglial activation is required for neuronal C1q upregulation. These data are compatible with the hypothesis that multiple receptors are involved in Aβ injury and signaling in neurons. Some lead to neuronal C1q induction, whereas other(s lead to intraneuronal accumulation of Aβ and/or stimulation of microglia.

  4. Differential effects of stress on microglial cell activation in male and female medial prefrontal cortex.

    Science.gov (United States)

    Bollinger, Justin L; Bergeon Burns, Christine M; Wellman, Cara L

    2016-02-01

    Susceptibility to stress-linked psychological disorders, including post-traumatic stress disorder and depression, differs between men and women. Dysfunction of medial prefrontal cortex (mPFC) has been implicated in many of these disorders. Chronic stress affects mPFC in a sex-dependent manner, differentially remodeling dendritic morphology and disrupting prefrontally mediated behaviors in males and females. Chronic restraint stress induces microglial activation, reflected in altered microglial morphology and immune factor expression, in mPFC in male rats. Unstressed females exhibit increased microglial ramification in several brain regions compared to males, suggesting both heightened basal activation and a potential for sex-dependent effects of stress on microglial activation. Therefore, we assessed microglial density and ramification in the prelimbic region of mPFC, and immune-associated genes in dorsal mPFC in male and female rats following acute or chronic restraint stress. Control rats were left unstressed. On the final day of restraint, brains were collected for either qPCR or visualization of microglia using Iba-1 immunohistochemistry. Microglia in mPFC were classified as ramified, primed, reactive, or amoeboid, and counted stereologically. Expression of microglia-associated genes (MHCII, CD40, IL6, CX3CL1, and CX3CR1) was also assessed using qPCR. Unstressed females showed a greater proportion of primed to ramified microglia relative to males, alongside heightened CX3CL1-CX3CR1 expression. Acute and chronic restraint stress reduced the proportion of primed to ramified microglia and microglial CD40 expression in females, but did not significantly alter microglial activation in males. This sex difference in microglial activation could contribute to the differential effects of stress on mPFC structure and function in males versus females.

  5. Microglial Immunoreceptor Tyrosine-Based Activation and Inhibition Motif Signaling in Neuroinflammation

    OpenAIRE

    Bettina Linnartz; Yiner Wang; Harald Neumann

    2010-01-01

    Elimination of extracellular aggregates and apoptotic neural membranes without inflammation is crucial for brain tissue homeostasis. In the mammalian central nervous system, essential molecules in this process are the Fc receptors and the DAP12-associated receptors which both trigger the microglial immunoreceptor tyrosine-based activation motif- (ITAM-) Syk-signaling cascade. Microglial triggering receptor expressed on myeloid cells-2 (TREM2), signal regulatory protein- 1, and complement re...

  6. Chronic apocynin treatment attenuates beta amyloid plaque size and microglial number in hAPP(751(SL mice.

    Directory of Open Access Journals (Sweden)

    Melinda E Lull

    Full Text Available BACKGROUND: NADPH oxidase is implicated in neurotoxic microglial activation and the progressive nature of Alzheimer's Disease (AD. Here, we test the ability of two NADPH oxidase inhibitors, apocynin and dextromethorphan (DM, to reduce learning deficits and neuropathology in transgenic mice overexpressing human amyloid precursor protein with the Swedish and London mutations (hAPP(751(SL. METHODS: Four month old hAPP(751(SL mice were treated daily with saline, 15 mg/kg DM, 7.5 mg/kg DM, or 10 mg/kg apocynin by gavage for four months. RESULTS: Only hAPP(751(SL mice treated with apocynin showed reduced plaque size and a reduction in the number of cortical microglia, when compared to the saline treated group. Analysis of whole brain homogenates from all treatments tested (saline, DM, and apocynin demonstrated low levels of TNFα, protein nitration, lipid peroxidation, and NADPH oxidase activation, indicating a low level of neuroinflammation and oxidative stress in hAPP(751(SL mice at 8 months of age that was not significantly affected by any drug treatment. Despite in vitro analyses demonstrating that apocynin and DM ameliorate Aβ-induced extracellular superoxide production and neurotoxicity, both DM and apocynin failed to significantly affect learning and memory tasks or synaptic density in hAPP(751(SL mice. To discern how apocynin was affecting plaque levels (plaque load and microglial number in vivo, in vitro analysis of microglia was performed, revealing no apocynin effects on beta-amyloid (Aβ phagocytosis, microglial proliferation, or microglial survival. CONCLUSIONS: Together, this study suggests that while hAPP(751(SL mice show increases in microglial number and plaque load, they fail to exhibit elevated markers of neuroinflammation consistent with AD at 8 months of age, which may be a limitation of this animal model. Despite absence of clear neuroinflammation, apocynin was still able to reduce both plaque size and microglial number

  7. Role of orexin A signaling in dietary palmitic acid-activated microglial cells.

    Science.gov (United States)

    Duffy, Cayla M; Yuan, Ce; Wisdorf, Lauren E; Billington, Charles J; Kotz, Catherine M; Nixon, Joshua P; Butterick, Tammy A

    2015-10-08

    Excess dietary saturated fatty acids such as palmitic acid (PA) induce peripheral and hypothalamic inflammation. Hypothalamic inflammation, mediated in part by microglial activation, contributes to metabolic dysregulation. In rodents, high fat diet-induced microglial activation results in nuclear translocation of nuclear factor-kappa B (NFκB), and increased central pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6). The hypothalamic neuropeptide orexin A (OXA, hypocretin 1) is neuroprotective in brain. In cortex, OXA can also reduce inflammation and neurodegeneration through a microglial-mediated pathway. Whether hypothalamic orexin neuroprotection mechanisms depend upon microglia is unknown. To address this issue, we evaluated effects of OXA and PA on inflammatory response in immortalized murine microglial and hypothalamic neuronal cell lines. We demonstrate for the first time in microglial cells that exposure to PA increases gene expression of orexin-1 receptor but not orexin-2 receptor. Pro-inflammatory markers IL-6, TNF-α, and inducible nitric oxide synthase in microglial cells are increased following PA exposure, but are reduced by pretreatment with OXA. The anti-inflammatory marker arginase-1 is increased by OXA. Finally, we show hypothalamic neurons exposed to conditioned media from PA-challenged microglia have increased cell survival only when microglia were pretreated with OXA. These data support the concept that OXA may act as an immunomodulatory regulator of microglia, reducing pro-inflammatory cytokines and increasing anti-inflammatory factors to promote a favorable neuronal microenvironment.

  8. Allergy Enhances Neurogenesis and Modulates Microglial Activation in the Hippocampus

    Science.gov (United States)

    Klein, Barbara; Mrowetz, Heike; Thalhamer, Josef; Scheiblhofer, Sandra; Weiss, Richard; Aigner, Ludwig

    2016-01-01

    Allergies and their characteristic TH2-polarized inflammatory reactions affect a substantial part of the population. Since there is increasing evidence that the immune system modulates plasticity and function of the central nervous system (CNS), we investigated the effects of allergic lung inflammation on the hippocampus—a region of cellular plasticity in the adult brain. The focus of the present study was on microglia, the resident immune cells of the CNS, and on hippocampal neurogenesis, i.e., the generation of new neurons. C57BL/6 mice were sensitized with a clinically relevant allergen derived from timothy grass pollen (Phl p 5). As expected, allergic sensitization induced high serum levels of allergen-specific immunoglobulins (IgG1 and IgE) and of TH2 cytokines (IL-5 and IL-13). Surprisingly, fewer Iba1+ microglia were found in the granular layer (GL) and subgranular zone (SGZ) of the hippocampal dentate gyrus and also the number of Iba1+MHCII+ cells was lower, indicating a reduced microglial surveillance and activation in the hippocampus of allergic mice. Neurogenesis was analyzed by labeling of proliferating cells with bromodeoxyuridine (BrdU) and determining their fate 4 weeks later, and by quantitative analysis of young immature neurons, i.e., cells expressing doublecortin (DCX). The number of DCX+ cells was clearly increased in the allergy animals. Moreover, there were more BrdU+ cells present in the hippocampus of allergic mice, and these newly born cells had differentiated into neurons as indicated by a higher number of BrdU+NeuN+ cells. In summary, allergy led to a reduced microglia presence and activity and to an elevated level of neurogenesis in the hippocampus. This effect was apparently specific to the hippocampus, as we did not observe these alterations in the subventricular zone (SVZ)/olfactory bulb (OB) system, also a region of high cellular plasticity and adult neurogenesis. PMID:27445696

  9. Suppression of Brain Mast Cells Degranulation Inhibits Microglial Activation and Central Nervous System Inflammation.

    Science.gov (United States)

    Dong, Hongquan; Zhang, Xiang; Wang, Yiming; Zhou, Xiqiao; Qian, Yanning; Zhang, Shu

    2017-03-01

    Brain inflammation has a critical role in the pathophysiology of brain diseases. Microglia, the resident immune cells in the brain, play an important role in brain inflammation, while brain mast cells are the "first responder" in the injury rather than microglia. Functional aspects of mast cell-microglia interactions remain poorly understood. Our results demonstrated that site-directed injection of the "mast cell degranulator" compound 48/80 (C48/80) in the hypothalamus induced mast cell degranulation, microglial activation, and inflammatory factor production, which initiated the acute brain inflammatory response. "Mast cell stabilizer" disodium cromoglycate (cromolyn) inhibited this effect, including decrease of inflammatory cytokines, reduced microglial activation, inhibition of MAPK and AKT pathways, and repression of protein expression of histamine receptor 1 (H1R), histamine receptor 4 (H4R), protease-activated receptor 2 (PAR2), and toll-like receptor 4 (TLR4) in microglia. We also demonstrated that C48/80 had no effect on microglial activation in mast cell-deficient Kit(W-sh/W-sh) mice. These results implicate that activated brain mast cells trigger microglial activation and stabilization of mast cell inhibits microglial activation-induced central nervous system (CNS) inflammation. Interactions between mast cells and microglia could constitute a new and unique therapeutic target for CNS immune inflammation-related diseases.

  10. Microglial Immunoreceptor Tyrosine-Based Activation and Inhibition Motif Signaling in Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Bettina Linnartz

    2010-01-01

    Full Text Available Elimination of extracellular aggregates and apoptotic neural membranes without inflammation is crucial for brain tissue homeostasis. In the mammalian central nervous system, essential molecules in this process are the Fc receptors and the DAP12-associated receptors which both trigger the microglial immunoreceptor tyrosine-based activation motif- (ITAM- Syk-signaling cascade. Microglial triggering receptor expressed on myeloid cells-2 (TREM2, signal regulatory protein-1, and complement receptor-3 (CD11b/CD18 signal via the adaptor protein DAP12 and activate phagocytic activity of microglia. Microglial ITAM-signaling receptors are counter-regulated by immunoreceptor tyrosine-based inhibition motif- (ITIM- signaling molecules such as sialic acid-binding immunoglobulin superfamily lectins (Siglecs. Siglecs can suppress the proinflammatory and phagocytic activity of microglia via ITIM signaling. Moreover, microglial neurotoxicity is alleviated via interaction of Siglec-11 with sialic acids on the neuronal glycocalyx. Thus, ITAM- and ITIM-signaling receptors modulate microglial phagocytosis and cytokine expression during neuroinflammatory processes. Their dysfunction could lead to impaired phagocytic clearance and neurodegeneration triggered by chronic inflammation.

  11. Tetrandrine suppresses lipopolysaccharide-induced microglial activation by inhibiting NF-κB pathway

    Institute of Scientific and Technical Information of China (English)

    Yang XUE; Ying WANG; De-chun FENG; Bao-guo XIAO; Ling-yun XU

    2008-01-01

    Aim: Microglial activation has been implicated in many neurological diseases. In this study, we examined the effects of tetrandrine (TET), a major pharmacologi-cally-active compound of Chinese herb Stephania tetrandra S Moore on micro-glial activation. Methods: The microglia pretreated with or without TET were activated by lipoopolysaccharide (LPS) in vitro. Nitric oxide (NO) release, superox-ide anion (O2-) generation, as well as TNF-α and intedeukin-6 (IL-6) production by microglia were measured afterwards. Electrophoretic mobility shift assay was performed to determine whether NF-κB activity in microglia was affected by TET treatment. Results: We found that TET inhibited the LPS-induced activation of microglia by decreasing the production of NO and O2-, consequently affecting the release of TNF-α and IL-6 in LPS-induced microglial activation. Such suppressive effect was accompanied by inhibiting transcription factor NF-κB activation. Conclusion: Our results suggest that TET might modulate LPS-induced microglial activation by inhibiting the NF-κB-mediated release of inflammatory factors.

  12. Galantamine and nicotine have a synergistic effect on inhibition of microglial activation induced by HIV-1 gp120.

    Science.gov (United States)

    Giunta, B; Ehrhart, J; Townsend, K; Sun, N; Vendrame, M; Shytle, D; Tan, J; Fernandez, F

    2004-08-30

    Chronic brain inflammation is the common final pathway in the majority of neurodegenerative diseases and central to this phenomenon is the immunological activation of brain mononuclear phagocyte cells, called microglia. This inflammatory mechanism is a central component of HIV-associated dementia (HAD). In the healthy state, there are endogenous signals from neurons and astrocytes, which limit excessive central nervous system (CNS) inflammation. However, the signals controlling this process have not been fully elucidated. Studies on the peripheral nervous system suggest that a cholinergic anti-inflammatory pathway regulates systemic inflammatory response by way of acetylcholine acting at the alpha7 nicotinic acetylcholine receptor (alpha7nAChR) found on blood-borne macrophages. Recent data from our laboratory indicates that cultured microglial cells also express this same receptor and that microglial anti-inflammatory properties are mediated through it and the p44/42 mitogen-activated protein kinase (MAPK) system. Here we report for the first time the creation of an in vitro model of HAD composed of cultured microglial cells synergistically activated by the addition of IFN-gamma and the HIV-1 coat glycoprotein, gp120. Furthermore, this activation, as measured by TNF-alpha and nitric oxide (NO) release, is synergistically attenuated through the alpha7 nAChR and p44/42 MAPK system by pretreatment with nicotine, and the cholinesterase inhibitor, galantamine. Our findings suggest a novel therapeutic combination to treat or prevent the onset of HAD through this modulation of the microglia inflammatory mechanism.

  13. Enriched environment induces beneficial effects on memory deficits and microglial activation in the hippocampus of type 1 diabetic rats.

    Science.gov (United States)

    Piazza, Francele Valente; Segabinazi, Ethiane; Centenaro, Lígia Aline; do Nascimento, Patrícia Severo; Achaval, Matilde; Marcuzzo, Simone

    2014-03-01

    Type 1 diabetes mellitus (T1DM) has been associated with long-term complications in the central nervous system, causing brain cellular dysfunctions and cognitive deficits. On the other hand, enriched environment (EE) induces experience-dependent plasticity, especially in the hippocampus, improving the performance of animals in learning and memory tasks. Thus, our objective was to investigate the influence of the EE on memory deficits, locomotion, corticosterone levels, synaptophysin (SYP) protein immunoreactivity, cell survival and microglial activation in the dentate gyrus (DG) of T1DM rat hippocampus. Male Wistar rats (21-day-old) were exposed to EE or maintained in standard housing (controls, C) for 3 months. At adulthood, the C and EE animals were randomly divided and diabetes was induced in half of them. All the animals received 4 doses of BrdU, 24 h apart. Hippocampus-dependent spatial memory, general locomotion and serum corticosterone levels were evaluated at the end of the experiment. The animals were transcardially perfused 30 days post-BrdU administration. Our results showed that EE was able to prevent/delay the development of memory deficits caused by diabetes in rats, however it did not revert the motor impairment observed in the diabetic group. SYP immunoreactivity was increased in the enriched healthy group. The EE decreased the serum corticosterone levels in diabetic adult rats and attenuated the injurious microglial activation, though without altering the decrease of the survival cell. Thus, EE was shown to help to ameliorate cognitive comorbidities associated with T1DM, possibly by reducing hyperactivity in the hypothalamic-pituitary-adrenal axis and microglial activation in diabetic animals.

  14. Secondary lymphoid tissue chemokine (CCL21) activates CXCR3 to trigger a Cl- current and chemotaxis in murine microglial

    NARCIS (Netherlands)

    Rappert, A; Biber, K; Nolte, C; Lipp, M; Schubel, A; Lu, B; Gerard, NP; Gerard, C; Boddeke, HWGM; Kettenmann, H

    2002-01-01

    Microglial cells represent the major immunocompetent element of the CNS and are activated by any type of brain injury or disease. A candidate for signaling neuronal injury to microglial cells is the CC chemokine ligand CCL21, given that damaged neurons express CCL21. Investigating microglia in acute

  15. Methamphetamine-induced neurotoxicity and microglial activation are not mediated by fractalkine receptor signaling.

    Science.gov (United States)

    Thomas, David M; Francescutti-Verbeem, Dina M; Kuhn, Donald M

    2008-07-01

    Methamphetamine (METH) damages dopamine (DA) nerve endings by a process that has been linked to microglial activation but the signaling pathways that mediate this response have not yet been delineated. Cardona et al. [Nat. Neurosci. 9 (2006), 917] recently identified the microglial-specific fractalkine receptor (CX3CR1) as an important mediator of MPTP-induced neurodegeneration of DA neurons. Because the CNS damage caused by METH and MPTP is highly selective for the DA neuronal system in mouse models of neurotoxicity, we hypothesized that the CX3CR1 plays a role in METH-induced neurotoxicity and microglial activation. Mice in which the CX3CR1 gene has been deleted and replaced with a cDNA encoding enhanced green fluorescent protein (eGFP) were treated with METH and examined for striatal neurotoxicity. METH depleted DA, caused microglial activation, and increased body temperature in CX3CR1 knockout mice to the same extent and over the same time course seen in wild-type controls. The effects of METH in CX3CR1 knockout mice were not gender-dependent and did not extend beyond the striatum. Striatal microglia expressing eGFP constitutively show morphological changes after METH that are characteristic of activation. This response was restricted to the striatum and contrasted sharply with unresponsive eGFP-microglia in surrounding brain areas that are not damaged by METH. We conclude from these studies that CX3CR1 signaling does not modulate METH neurotoxicity or microglial activation. Furthermore, it appears that striatal-resident microglia respond to METH with an activation cascade and then return to a surveying state without undergoing apoptosis or migration.

  16. Sevoflurane preconditioning induced endogenous neurogenesis against ischemic brain injury by promoting microglial activation.

    Science.gov (United States)

    Li, Li; Saiyin, Hexige; Xie, Jingmo; Ma, Lixiang; Xue, Lei; Wang, Wei; Liang, Weimin; Yu, Qiong

    2017-02-14

    Brain ischemia causes irreversible damage to functional neurons in cases of infarct. Promoting endogenous neurogenesis to replace necrotic neurons is a promising therapeutic strategy for ischemia patients. The neuroprotective role of sevoflurane preconditioning implies that it might also enhance endogenous neurogenesis and functional restoration in the infarct region. By using a transient middle cerebral artery occlusion (tMCAO) model, we discovered that endogenous neurogenesis was enhanced by sevoflurane preconditioning. This enhancement process is characterized by the promotion of neuroblast proliferation within the subventricular zone (SVZ), migration and differentiation into neurons, and the presence of astrocytes and oligodendrocytes at the site of infarct. The newborn neurons in the sevoflurane preconditioning group showed miniature excitatory postsynaptic currents (mEPSCs), increased synaptophysin and PSD95 staining density, indicating normal neuronal function. Furthermore, long-term behavioral improvement was observed in the sevoflurane preconditioning group consistent with endogenous neurogenesis. Further histological analyses showed that sevoflurane preconditioning accelerated microglial activation, including migration, phagocytosis and secretion of brain-derived neurotrophic factor (BDNF). Intraperitoneal injection of minocycline, a microglial inhibitor, suppressed microglial activation and reversed neurogenesis. Our data showed that sevoflurane preconditioning promoted microglial activities, created a favorable microenvironment for endogenous neurogenesis and accelerated functional reconstruction in the infarct region.

  17. Microglial CR3 activation triggers long-term synaptic depression in the hippocampus via NADPH oxidase.

    Science.gov (United States)

    Zhang, Jingfei; Malik, Aqsa; Choi, Hyun B; Ko, Rebecca W Y; Dissing-Olesen, Lasse; MacVicar, Brian A

    2014-04-02

    Complement receptor 3 (CR3) activation in microglia is involved in neuroinflammation-related brain disorders and pruning of neuronal synapses. Hypoxia, often observed together with neuroinflammation in brain trauma, stroke, and neurodegenerative diseases, is thought to exacerbate inflammatory responses and synergistically enhance brain damage. Here we show that when hypoxia and an inflammatory stimulus (lipopolysaccharide [LPS]) are combined, they act synergistically to trigger long-term synaptic depression (LTD) that requires microglial CR3, activation of nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase), and GluA2-mediated A-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) internalization. Microglial CR3-triggered LTD is independent of N-methyl-D-aspartate receptors (NMDARs), metabotropic glutamate receptors (mGluRs), or patterned synaptic activity. This type of LTD may contribute to memory impairments and synaptic disruptions in neuroinflammation-related brain disorders.

  18. Anti-HIV-1 activity of propolis in CD4(+) lymphocyte and microglial cell cultures.

    Science.gov (United States)

    Gekker, Genya; Hu, Shuxian; Spivak, Marla; Lokensgard, James R; Peterson, Phillip K

    2005-11-14

    An urgent need for additional agents to treat human immunodeficiency virus type 1 (HIV-1) infection led us to assess the anti-HIV-1 activity of the natural product propolis in CD4(+) lymphocytes and microglial cell cultures. Propolis inhibited viral expression in a concentration-dependent manner (maximal suppression of 85 and 98% was observed at 66.6 microg/ml propolis in CD4(+) and microglial cell cultures, respectively). Similar anti-HIV-1 activity was observed with propolis samples from several geographic regions. The mechanism of propolis antiviral property in CD4(+) lymphocytes appeared to involve, in part, inhibition of viral entry. While propolis had an additive antiviral effect on the reverse transcriptase inhibitor zidovudine, it had no noticeable effect on the protease inhibitor indinavir. The results of this in vitro study support the need for clinical trials of propolis or one or more of its components in the treatment of HIV-1 infection.

  19. Astrocyte-Derived CCL2 is Associated with M1 Activation and Recruitment of Cultured Microglial Cells

    Directory of Open Access Journals (Sweden)

    Mingfeng He

    2016-02-01

    Full Text Available Background/Aims: Microglia are an essential player in central nervous system inflammation. Recent studies have demonstrated that the astrocytic chemokine, CCL2, is associated with microglial activation in vivo. However, CCL2-induced microglial activation has not yet been studied in vitro. The purpose of the current study was to understand the role of astrocyte-derived CCL2 in microglial activation and to elucidate the underlying mechanism(s. Methods: Primary astrocytes were pre-treated with CCL2 siRNA and stimulated with TNF-α. The culture medium (CM was collected and added to cultures of microglia, which were incubated with and without CCR2 inhibitor. Microglial cells were analyzed by quantitative RT-PCR to determine whether they polarized to the M1 or M2 state. Microglial migratory ability was assessed by transwell migration assay. Results: TNF-α stimulated the release of CCL2 from astrocytes, even if the culture media containing TNF-α was replaced with fresh media after 3 h. CM from TNF-α-stimulated astrocytes successfully induced microglial activation, which was ascertained by increased activation of M1 and enhanced migration ability. In contrast, CM from astrocytes pretreated with CCL2 siRNA showed no effect on microglial activation, compared to controls. Additionally, microglia pre-treated with RS102895, a CCR2 inhibitor, were resistant to activation by CM from TNF-α-stimulated astrocytes. Conclusion: This study demonstrates that the CCL2/CCR2 pathway of astrocyte-induced microglial activation is associated with M1 polarization and enhanced migration ability, indicating that this pathway could be a useful target to ameliorate inflammation in the central nervous system.

  20. Large A-fiber activity is required for microglial proliferation and p38 MAPK activation in the spinal cord: different effects of resiniferatoxin and bupivacaine on spinal microglial changes after spared nerve injury

    Directory of Open Access Journals (Sweden)

    Decosterd Isabelle

    2009-09-01

    Full Text Available Abstract Background After peripheral nerve injury, spontaneous ectopic activity arising from the peripheral axons plays an important role in inducing central sensitization and neuropathic pain. Recent evidence indicates that activation of spinal cord microglia also contributes to the development of neuropathic pain. In particular, activation of p38 mitogen-activated protein kinase (MAPK in spinal microglia is required for the development of mechanical allodynia. However, activity-dependent activation of microglia after nerve injury has not been fully addressed. To determine whether spontaneous activity from C- or A-fibers is required for microglial activation, we used resiniferatoxin (RTX to block the conduction of transient receptor potential vanilloid subtype 1 (TRPV1 positive fibers (mostly C- and Aδ-fibers and bupivacaine microspheres to block all fibers of the sciatic nerve in rats before spared nerve injury (SNI, and observed spinal microglial changes 2 days later. Results SNI induced robust mechanical allodynia and p38 activation in spinal microglia. SNI also induced marked cell proliferation in the spinal cord, and all the proliferating cells (BrdU+ were microglia (Iba1+. Bupivacaine induced a complete sensory and motor blockade and also significantly inhibited p38 activation and microglial proliferation in the spinal cord. In contrast, and although it produced an efficient nociceptive block, RTX failed to inhibit p38 activation and microglial proliferation in the spinal cord. Conclusion (1 Blocking peripheral input in TRPV1-positive fibers (presumably C-fibers is not enough to prevent nerve injury-induced spinal microglial activation. (2 Peripheral input from large myelinated fibers is important for microglial activation. (3 Microglial activation is associated with mechanical allodynia.

  1. Immunological Demyelination Triggers Macrophage/Microglial Cells Activation without Inducing Astrogliosis

    Directory of Open Access Journals (Sweden)

    Frank Cloutier

    2013-01-01

    Full Text Available The glial scar formed by reactive astrocytes and axon growth inhibitors associated with myelin play important roles in the failure of axonal regeneration following central nervous system (CNS injury. Our laboratory has previously demonstrated that immunological demyelination of the CNS facilitates regeneration of severed axons following spinal cord injury. In the present study, we evaluate whether immunological demyelination is accompanied with astrogliosis. We compared the astrogliosis and macrophage/microglial cell responses 7 days after either immunological demyelination or a stab injury to the dorsal funiculus. Both lesions induced a strong activated macrophage/microglial cells response which was significantly higher within regions of immunological demyelination. However, immunological demyelination regions were not accompanied by astrogliosis compared to stab injury that induced astrogliosis which extended several millimeters above and below the lesions, evidenced by astroglial hypertrophy, formation of a glial scar, and upregulation of intermediate filaments glial fibrillary acidic protein (GFAP. Moreover, a stab or a hemisection lesion directly within immunological demyelination regions did not induced astrogliosis within the immunological demyelination region. These results suggest that immunological demyelination creates a unique environment in which astrocytes do not form a glial scar and provides a unique model to understand the putative interaction between astrocytes and activated macrophage/microglial cells.

  2. Eupatilin exerts neuroprotective effects in mice with transient focal cerebral ischemia by reducing microglial activation

    Science.gov (United States)

    Cho, Kyu Suk; Jeon, Se Jin; Kwon, Oh Wook; Jang, Dae Sik; Kim, Sun Yeou; Ryu, Jong Hoon; Choi, Ji Woong

    2017-01-01

    Microglial activation and its-driven neuroinflammation are characteristic pathogenetic features of neurodiseases, including focal cerebral ischemia. The Artemisia asiatica (Asteraceae) extract and its active component, eupatilin, are well-known to reduce inflammatory responses. But the therapeutic potential of eupatilin against focal cerebral ischemia is not known, along with its anti-inflammatory activities on activated microglia. In this study, we investigated the neuroprotective effect of eupatilin on focal cerebral ischemia through its anti-inflammation, particularly on activated microglia, employing a transient middle cerebral artery occlusion/reperfusion (tMCAO), combined with lipopolysaccharide-stimulated BV2 microglia. Eupatilin exerted anti-inflammatory responses in activated BV2 microglia, in which it reduced secretion of well-known inflammatory markers, including nitrite, IL-6, TNF-α, and PGE2, in a concentration-dependent manner. These observed in vitro effects of eupatilin led to in vivo neuroprotection against focal cerebral ischemia. Oral administration of eupatilin (10 mg/kg) in a therapeutic paradigm significantly reduced brain infarction and improved neurological functions in tMCAO-challenged mice. The same benefit was also observed when eupatilin was given even within 5 hours after MCAO induction. In addition, the neuroprotective effects of a single administration of eupatilin (10 mg/kg) immediately after tMCAO challenge persisted up to 3 days after tMCAO. Eupatilin administration reduced the number of Iba1-immunopositive cells across ischemic brain and induced their morphological changes from amoeboid into ramified in the ischemic core, which was accompanied with reduced microglial proliferation in ischemic brain. Eupatilin suppressed NF-κB signaling activities in ischemic brain by reducing IKKα/β phosphorylation, IκBα phosphorylation, and IκBα degradation. Overall, these data indicate that eupatilin is a neuroprotective agent against

  3. P2X7 receptor is critical in α-synuclein--mediated microglial NADPH oxidase activation.

    Science.gov (United States)

    Jiang, Tianfang; Hoekstra, Jake; Heng, Xin; Kang, Wenyan; Ding, Jianqing; Liu, Jun; Chen, Shengdi; Zhang, Jing

    2015-07-01

    Activated microglia are commonly observed in individuals with neurodegenerative disorders, including Parkinson's disease (PD) and are believed to contribute to neuronal death. This process occurs at least due partially to nicotinamide adenine dinucleotide phosphate oxidase (PHOX) activation, which leads to the production of superoxide and oxidative stress. α-Synuclein (α-Syn), a key protein implicated in PD pathogenesis, can activate microglia, contributing to death of dopaminergic neurons. Here, microglial cells (BV2) and primary cultured microglia were used to study the role that the purinergic receptor P2X7 plays in recognizing α-Syn and promoting PHOX activation. We demonstrate that both wild type and A53T mutant α-Syn readily activate PHOX, with the A53T form producing more rapid and sustained effects,that is, oxidative stress and cellular injuries. Furthermore, this process involves the activation of phosphoinositide 3-kinase (PI3K)/AKT (protein kinase B) pathway. Thus, it is concluded that stimulation of the microglial P2X7 receptor by extracellular α-Syn, with PI3K/AKT activation and increased oxidative stress, could be an important mechanism and a potential therapeutic target for PD.

  4. Flipping the switches: CD40 and CD45 modulation of microglial activation states in HIV associated dementia (HAD

    Directory of Open Access Journals (Sweden)

    Jin Jingji

    2011-01-01

    Full Text Available Abstract Microglial dysfunction is associated with the pathogenesis and progression of a number of neurodegenerative disorders including HIV associated dementia (HAD. HIV promotion of an M1 antigen presenting cell (APC - like microglial phenotype, through the promotion of CD40 activity, may impair endogenous mechanisms important for amyloid- beta (Aβ protein clearance. Further, a chronic pro-inflammatory cycle is established in this manner. CD45 is a protein tyrosine phosphatase receptor which negatively regulates CD40L-CD40-induced microglial M1 activation; an effect leading to the promotion of an M2 phenotype better suited to phagocytose and clear Aβ. Moreover, this CD45 mediated activation state appears to dampen harmful cytokine production. As such, this property of microglial CD45 as a regulatory "off switch" for a CD40-promoted M1, APC-type microglia activation phenotype may represent a critical therapeutic target for the prevention and treatment of neurodegeneration, as well as microglial dysfunction, found in patients with HAD.

  5. Microglial activation and neuroinflammation in Alzheimer's disease: a critical examination of recent history

    Directory of Open Access Journals (Sweden)

    Wolfgang J Streit

    2010-06-01

    Full Text Available The neurofibrillary degeneration that occurs in Alzheimer’s disease (AD is thought to be the result of a chronic and damaging neuroinflammatory response mediated by neurotoxic substances produced by activated microglial cells. This neuroinflammation hypothesis of AD pathogenesis has led to numerous clinical trials with anti-inflammatory drugs, none of which have shown clear benefits for slowing or preventing disease onset and progression. In this paper, I make the point that AD is not an inflammatory condition, and reconstruct the sequence of events during the 1980s and 1990s that I believe led to the development of this faulty theory.

  6. A common carcinogen benzo[a]pyrene causes neuronal death in mouse via microglial activation.

    Directory of Open Access Journals (Sweden)

    Kallol Dutta

    Full Text Available BACKGROUND: Benzo[a]pyrene (B[a]P belongs to a class of polycyclic aromatic hydrocarbons that serve as micropollutants in the environment. B[a]P has been reported as a probable carcinogen in humans. Exposure to B[a]P can take place by ingestion of contaminated (especially grilled, roasted or smoked food or water, or inhalation of polluted air. There are reports available that also suggests neurotoxicity as a result of B[a]P exposure, but the exact mechanism of action is unknown. METHODOLOGY/PRINCIPAL FINDINGS: Using neuroblastoma cell line and primary cortical neuron culture, we demonstrated that B[a]P has no direct neurotoxic effect. We utilized both in vivo and in vitro systems to demonstrate that B[a]P causes microglial activation. Using microglial cell line and primary microglial culture, we showed for the first time that B[a]P administration results in elevation of reactive oxygen species within the microglia thereby causing depression of antioxidant protein levels; enhanced expression of inducible nitric oxide synthase, that results in increased production of NO from the cells. Synthesis and secretion of proinflammatory cytokines were also elevated within the microglia, possibly via the p38MAP kinase pathway. All these factors contributed to bystander death of neurons, in vitro. When administered to animals, B[a]P was found to cause microglial activation and astrogliosis in the brain with subsequent increase in proinflammatory cytokine levels. CONCLUSIONS/SIGNIFICANCE: Contrary to earlier published reports we found that B[a]P has no direct neurotoxic activity. However, it kills neurons in a bystander mechanism by activating the immune cells of the brain viz the microglia. For the first time, we have provided conclusive evidence regarding the mechanism by which the micropollutant B[a]P may actually cause damage to the central nervous system. In today's perspective, where rising pollution levels globally are a matter of grave concern, our

  7. Therapeutic targeting of Krüppel-like factor 4 abrogates microglial activation

    Directory of Open Access Journals (Sweden)

    Kaushik Deepak

    2012-03-01

    Full Text Available Abstract Background Neuroinflammation occurs as a result of microglial activation in response to invading micro-organisms or other inflammatory stimuli within the central nervous system. According to our earlier findings, Krüppel-like factor 4 (Klf4, a zinc finger transcription factor, is involved in microglial activation and subsequent release of proinflammatory cytokines, tumor necrosis factor alpha, macrophage chemoattractant protein-1 and interleukin-6 as well as proinflammatory enzymes, inducible nitric oxide synthase and cyclooxygenase-2 in lipopolysaccharide-treated microglial cells. Our current study focuses on finding the molecular mechanism of the anti-inflammatory activities of honokiol in lipopolysaccharide-treated microglia with emphasis on the regulation of Klf4. Methods For in vitro studies, mouse microglial BV-2 cell lines as well as primary microglia were treated with 500 ng/mL lipopolysaccharide as well as 1 μM and 10 μM of honokiol. We cloned full-length Klf4 cDNA in pcDNA3.1 expression vector and transfected BV-2 cells with this construct using lipofectamine for overexpression studies. For in vivo studies, brain tissues were isolated from BALB/c mice treated with 5 mg/kg body weight of lipopolysaccharide either with or without 2.5 or 5 mg/kg body weight of honokiol. Expression of Klf4, cyclooxygenase-2, inducible nitric oxide synthase and phospho-nuclear factor-kappa B was measured using immunoblotting. We also measured the levels of cytokines, reactive oxygen species and nitric oxide in different conditions. Results Our findings suggest that honokiol can substantially downregulate the production of proinflammatory cytokines and inflammatory enzymes in lipopolysaccharide-stimulated microglia. In addition, honokiol downregulates lipopolysaccharide-induced upregulation of both Klf4 and phospho-nuclear factor-kappa B in these cells. We also found that overexpression of Klf4 in BV-2 cells suppresses the anti

  8. Ginsenoside Rb1 attenuates activated microglia-induced neuronal damage

    Institute of Scientific and Technical Information of China (English)

    Lining Ke; Wei Guo; Jianwen Xu; Guodong Zhang; Wei Wang; Wenhua Huang

    2014-01-01

    The microglia-mediated inlfammatory reaction promotes neuronal damage under cerebral isch-emia/hypoxia conditions. We therefore speculated that inhibition of hypoxia-induced microglial activation may alleviate neuronal damage. To test this hypothesis, we co-cultured ginsenoside Rb1, an active component of ginseng, and cortical neurons. Ginsenoside Rb1 protected neuronal morphology and structure in a single hypoxic culture system and in a hypoxic co-culture system with microglia, and reduced neuronal apoptosis and caspase-3 production. The protective effect was observable prior to placing in co-culture. Additionally, ginsenoside Rb1 inhibited levels of tumor necrosis factor-αin a co-culture system containing activated N9 microglial cells. Ginse-noside Rb1 also signiifcantly decreased nitric oxide and superoxide production induced by N9 microglia. Our ifndings indicate that ginsenoside Rb1 attenuates damage to cerebral cortex neu-rons by downregulation of nitric oxide, superoxide, and tumor necrosis factor-αexpression in hypoxia-activated microglia.

  9. Poly(ADP-ribosepolymerase-1 modulates microglial responses to amyloid β

    Directory of Open Access Journals (Sweden)

    Kauppinen Tiina M

    2011-11-01

    Full Text Available Abstract Background Amyloid β (Aβ accumulates in Alzheimer's disease (AD brain. Microglial activation also occurs in AD, and this inflammatory response may contribute to disease progression. Microglial activation can be induced by Aβ, but the mechanisms by which this occurs have not been defined. The nuclear enzyme poly(ADP-ribose polymerase-1 (PARP-1 regulates microglial activation in response to several stimuli through its interactions with the transcription factor, NF-κB. The purpose of this study was to evaluate whether PARP-1 activation is involved in Aβ-induced microglial activation, and whether PARP-1 inhibition can modify microglial responses to Aβ. Methods hAPPJ20 mice, which accumulate Aβ with ageing, were crossed with PARP-1-/- mice to assess the effects of PARP-1 depletion on microglial activation, hippocampal synaptic integrity, and cognitive function. Aβ peptide was also injected into brain of wt and PARP-1-/- mice to directly determine the effects of PARP-1 on Aβ-induced microglial activation. The effect of PARP-1 on Aβ-induced microglial cytokine production and neurotoxicity was evaluated in primary microglia cultures and in microglia-neuron co-cultures, utilizing PARP-1-/- cells and a PARP-1 inhibitor. NF-κB activation was evaluated in microglia infected with a lentivirus reporter gene. Results The hAPPJ20 mice developed microglial activation, reduced hippocampal CA1 calbindin expression, and impaired novel object recognition by age 6 months. All of these features were attenuated in hAPPJ20/PARP-1-/- mice. Similarly, Aβ1-42 injected into mouse brain produced a robust microglial response in wild-type mice, and this was blocked in mice lacking PARP-1 expression or activity. Studies using microglial cultures showed that PARP-1 activity was required for Aβ-induced NF-κB activation, morphological transformation, NO release, TNFα release, and neurotoxicity. Conversely, PARP-1 inhibition increased release of the

  10. Subneurotoxic copper(II)-induced NF-κB-dependent microglial activation is associated with mitochondrial ROS

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Zhuqin; Yu, Fengxiang; Gong, Ping; Qiu, Yu; Zhou, Wei; Cui, Yongyao; Li, Juan, E-mail: lijuanpharm@gmail.com; Chen, Hongzhuan, E-mail: yaoli@shsmu.edu.cn

    2014-04-15

    Microglia-mediated neuroinflammation and the associated neuronal damage play critical roles in the pathogenesis of neurodegenerative disorders. Evidence shows an elevated concentration of extracellular copper(II) in the brains of these disorders, which may contribute to neuronal death through direct neurotoxicity. Here we explored whether extracellular copper(II) triggers microglial activation. Primary rat microglia and murine microglial cell line BV-2 cells were cultured and treated with copper(II). The content of tumor necrosis factor-α (TNF-α) and nitric oxide in the medium was determined. Extracellular hydrogen peroxide was quantified by a fluorometric assay with Amplex Red. Mitochondrial superoxide was measured by MitoSOX oxidation. At subneurotoxic concentrations, copper(II) treatment induced a dose- and time-dependent release of TNF-α and nitric oxide from microglial cells, and caused an indirect, microglia-mediated neurotoxicity that was blocked by inhibition of TNF-α and nitric oxide production. Copper(II)-initiated microglial activation was accompanied with reduced IkB-α expression as well as phosphorylation and translocation of nuclear factor-κB (NF-κB) p65 and was blocked by NF-κB inhibitors (BAY11-7082 and SC-514). Moreover, copper(II) treatment evoked a rapid release of hydrogen peroxide from microglial cells, an effect that was not affected by NADPH oxidase inhibitors. N-acetyl-cysteine, a scavenger of reactive oxygen species (ROS), abrogated copper(II)-elicited microglial release of TNF-α and nitric oxide and subsequent neurotoxicity. Importantly, mitochondrial production of superoxide, paralleled to extracellular release of hydrogen peroxide, was induced after copper(II) stimulation. Our findings suggest that extracellular copper(II) at subneurotoxic concentrations could trigger NF-κB-dependent microglial activation and subsequent neurotoxicity. NADPH oxidase-independent, mitochondria-derived ROS may be involved in this activation

  11. Essential roles of mitochondrial depolarization in neuron loss through microglial activation and attraction toward neurons.

    Science.gov (United States)

    Nam, Min-Kyung; Shin, Hyun-Ah; Han, Ji-Hye; Park, Dae-Wook; Rhim, Hyangshuk

    2013-04-10

    As life spans increased, neurodegenerative disorders that affect aging populations have also increased. Progressive neuronal loss in specific brain regions is the most common cause of neurodegenerative disease; however, key determinants mediating neuron loss are not fully understood. Using a model of mitochondrial membrane potential (ΔΨm) loss, we found only 25% cell loss in SH-SY5Y (SH) neuronal mono-cultures, but interestingly, 85% neuronal loss occurred when neurons were co-cultured with BV2 microglia. SH neurons overexpressing uncoupling protein 2 exhibited an increase in neuron-microglia interactions, which represent an early step in microglial phagocytosis of neurons. This result indicates that ΔΨm loss in SH neurons is an important contributor to recruitment of BV2 microglia. Notably, we show that ΔΨm loss in BV2 microglia plays a crucial role in microglial activation and phagocytosis of damaged SH neurons. Thus, our study demonstrates that ΔΨm loss in both neurons and microglia is a critical determinant of neuron loss. These findings also offer new insights into neuroimmunological and bioenergetical aspects of neurodegenerative disease.

  12. Atorvastatin prevents age-related and amyloid-beta-induced microglial activation by blocking interferon-gamma release from natural killer cells in the brain

    LENUS (Irish Health Repository)

    Lyons, Anthony

    2011-03-31

    Abstract Background Microglial function is modulated by several factors reflecting the numerous receptors expressed on the cell surface, however endogenous factors which contribute to the age-related increase in microglial activation remain largely unknown. One possible factor which may contribute is interferon-γ (IFNγ). IFNγ has been shown to increase in the aged brain and potently activates microglia, although its endogenous cell source in the brain remains unidentified. Methods Male Wistar rats were used to assess the effect of age and amyloid-β (Aβ) on NK cell infiltration into the brain. The effect of the anti-inflammatory compound, atorvastatin was also assessed under these conditions. We measured cytokine and chemokine (IFNγ, IL-2, monocyte chemoattractant protein-1 (MCP-1) and IFNγ-induced protein 10 kDa (IP-10)), expression in the brain by appropriate methods. We also looked at NK cell markers, CD161, NKp30 and NKp46 using flow cytometry and western blot. Results Natural killer (NK) cells are a major source of IFNγ in the periphery and here we report the presence of CD161+ NKp30+ cells and expression of CD161 and NKp46 in the brain of aged and Aβ-treated rats. Furthermore, we demonstrate that isolated CD161+ cells respond to interleukin-2 (IL-2) by releasing IFNγ. Atorvastatin, the HMG-CoA reductase inhibitor, attenuates the increase in CD161 and NKp46 observed in hippocampus of aged and Aβ-treated rats. This was paralleled by a decrease in IFNγ, markers of microglial activation and the chemokines, MCP-1 and IP-10 which are chemotactic for NK cells. Conclusions We propose that NK cells contribute to the age-related and Aβ-induced neuroinflammatory changes and demonstrate that these changes can be modulated by atorvastatin treatment.

  13. Atorvastatin prevents age-related and amyloid-β-induced microglial activation by blocking interferon-γ release from natural killer cells in the brain

    Directory of Open Access Journals (Sweden)

    Clarke Rachael

    2011-03-01

    Full Text Available Abstract Background Microglial function is modulated by several factors reflecting the numerous receptors expressed on the cell surface, however endogenous factors which contribute to the age-related increase in microglial activation remain largely unknown. One possible factor which may contribute is interferon-γ (IFNγ. IFNγ has been shown to increase in the aged brain and potently activates microglia, although its endogenous cell source in the brain remains unidentified. Methods Male Wistar rats were used to assess the effect of age and amyloid-β (Aβ on NK cell infiltration into the brain. The effect of the anti-inflammatory compound, atorvastatin was also assessed under these conditions. We measured cytokine and chemokine (IFNγ, IL-2, monocyte chemoattractant protein-1 (MCP-1 and IFNγ-induced protein 10 kDa (IP-10, expression in the brain by appropriate methods. We also looked at NK cell markers, CD161, NKp30 and NKp46 using flow cytometry and western blot. Results Natural killer (NK cells are a major source of IFNγ in the periphery and here we report the presence of CD161+ NKp30+ cells and expression of CD161 and NKp46 in the brain of aged and Aβ-treated rats. Furthermore, we demonstrate that isolated CD161+ cells respond to interleukin-2 (IL-2 by releasing IFNγ. Atorvastatin, the HMG-CoA reductase inhibitor, attenuates the increase in CD161 and NKp46 observed in hippocampus of aged and Aβ-treated rats. This was paralleled by a decrease in IFNγ, markers of microglial activation and the chemokines, MCP-1 and IP-10 which are chemotactic for NK cells. Conclusions We propose that NK cells contribute to the age-related and Aβ-induced neuroinflammatory changes and demonstrate that these changes can be modulated by atorvastatin treatment.

  14. A novel method for evaluating microglial activation using ionized calcium-binding adaptor protein-1 staining: cell body to cell size ratio

    NARCIS (Netherlands)

    Hovens, Iris; Nyakas, Csaba; Schoemaker, Regina

    2014-01-01

    Aim: The aim was to validate a newly developed methodology of semi-automatic image analysis to analyze microglial morphology as marker for microglial activation in ionized calcium-binding adaptor protein-1 (IBA-1) stained brain sections. Methods: The novel method was compared to currently used analy

  15. Exposure to electromagnetic field attenuates oxygen-glucose deprivation-induced microglial cell death by reducing intracellular Ca(2+) and ROS.

    Science.gov (United States)

    Duong, Cao Nguyen; Kim, Jae Young

    2016-01-01

    Purpose The aim of this research was to demonstrate the protective effects of electromagnetic field (EMF) exposure on the human microglial cell line, HMO6, against ischemic cell death induced by in vitro oxygen-glucose deprivation (OGD). Materials and methods HMO6 cells were cultured for 4 h under OGD with or without exposure to EMF with different combinations of frequencies and intensities (10, 50, or 100 Hz/1 mT and 50 Hz/0.01, 0.1, or 1 mT). Cell survival, intracellular calcium and reactive oxygen species (ROS) levels were measured. Results OGD caused significant HMO6 cell death as well as elevation of intracellular Ca(2+) and ROS levels. Among different combinations of EMF frequencies and intensities, 50 Hz/1 mT EMF was the most potent to attenuate OGD-induced cell death and intracellular Ca(2+) and ROS levels. A significant but less potent protective effect was also found at 10 Hz/1 mT, whereas no protective effect was found at other combinations of EMF. A xanthine oxidase inhibitor reversed OGD-induced ROS production and cell death, while NADPH oxidase and mitochondrial respiration chain complex II inhibitors did not affect cell death. Conclusions 50 Hz/1 mT EMF protects human microglial cells from OGD-induced cell death by interfering with OGD-induced elevation of intracellular Ca(2+) and ROS levels, and xanthine oxidase is one of the main mediators involved in OGD-induced HMO6 cell death. Non-invasive treatment of EMF radiation may be clinically useful to attenuate hypoxic-ischemic brain injury.

  16. Phenotypic dysregulation of microglial activation in young offspring rats with maternal sleep deprivation-induced cognitive impairment

    Science.gov (United States)

    Zhao, Qiuying; Xie, Xiaofang; Fan, Yonghua; Zhang, Jinqiang; Jiang, Wei; Wu, Xiaohui; Yan, Shuo; Chen, Yubo; Peng, Cheng; You, Zili

    2015-01-01

    Despite the potential adverse effects of maternal sleep deprivation (MSD) on physiological and behavioral aspects of offspring, the mechanisms remain poorly understood. The present study was intended to investigate the roles of microglia on neurodevelopment and cognition in young offspring rats with prenatal sleep deprivation. Pregnant Wistar rats received 72 h sleep deprivation in the last trimester of gestation, and their prepuberty male offspring were given the intraperitoneal injection with or without minocycline. The results showed the number of Iba1+ microglia increased, that of hippocampal neurogenesis decreased, and the hippocampus-dependent spatial learning and memory were impaired in MSD offspring. The classical microglial activation markers (M1 phenotype) IL-1β, IL-6, TNF-α, CD68 and iNOS were increased, while the alternative microglial activation markers (M2 phenotype) Arg1, Ym1, IL-4, IL-10 and CD206 were reduced in hippocampus of MSD offspring. After minocycline administration, the MSD offspring showed improvement in MWM behaviors and increase in BrdU+/DCX+ cells. Minocycline reduced Iba1+ cells, suppressed the production of pro-inflammatory molecules, and reversed the reduction of M2 microglial markers in the MSD prepuberty offspring. These results indicate that dysregulation in microglial pro- and anti-inflammatory activation is involved in MSD-induced inhibition of neurogenesis and impairment of spatial learning and memory. PMID:25830666

  17. Cocaine-mediated microglial activation involves the ER stress-autophagy axis.

    Science.gov (United States)

    Guo, Ming-Lei; Liao, Ke; Periyasamy, Palsamy; Yang, Lu; Cai, Yu; Callen, Shannon E; Buch, Shilpa

    2015-01-01

    Cocaine abuse leads to neuroinflammation, which, in turn, contributes to the pathogenesis of neurodegeneration associated with advanced HIV-1 infection. Autophagy plays important roles in both innate and adaptive immune responses. However, the possible functional link between cocaine and autophagy has not been explored before. Herein, we demonstrate that cocaine exposure induced autophagy in both BV-2 and primary rat microglial cells as demonstrated by a dose- and time-dependent induction of autophagy-signature proteins such as BECN1/Beclin 1, ATG5, and MAP1LC3B. These findings were validated wherein cocaine treatment of BV-2 cells resulted in increased formation of puncta in cells expressing either endogenous MAP1LC3B or overexpressing GFP-MAP1LC3B. Specificity of cocaine-induced autophagy was confirmed by treating cells with inhibitors of autophagy (3-MA and wortmannin). Intriguingly, cocaine-mediated induction of autophagy involved upstream activation of 2 ER stress pathways (EIF2AK3- and ERN1-dependent), as evidenced by the ability of the ER stress inhibitor salubrinal to ameliorate cocaine-induced autophagy. In vivo validation of these findings demonstrated increased expression of BECN1, ATG5, and MAP1LC3B-II proteins in cocaine-treated mouse brains compared to untreated animals. Increased autophagy contributes to cocaine-mediated activation of microglia since pretreatment of cells with wortmannin resulted in decreased expression and release of inflammatory factors (TNF, IL1B, IL6, and CCL2) in microglial cells. Taken together, our findings suggest that cocaine exposure results in induction of autophagy that is closely linked with neuroinflammation. Targeting autophagic proteins could thus be considered as a therapeutic strategy for the treatment of cocaine-related neuroinflammation diseases.

  18. Treadmill exercise ameliorates symptoms of Alzheimer disease through suppressing microglial activation-induced apoptosis in rats

    Science.gov (United States)

    Baek, Seung-Soo; Kim, Sang-Hoon

    2016-01-01

    Alzheimer disease (AD) is a most common form of dementia and eventually causes impairments of learning ability and memory function. In the present study, we investigated the effects of treadmill exercise on the symptoms of AD focusing on the microglial activation-induced apoptosis. AD was made by bilateral intracerebroventricular injection of streptozotocin. The rats in the exercise groups were made to run on a treadmill once a day for 30 min during 4 weeks. The distance and latency in the Morris water maze task and the latency in the step-down avoidance task were increased in the AD rats, in contrast, treadmill exercise shortened these parameters. The numbers of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive and caspase-3-positive cells in the hippocampal dentate gyrus were decreased in the AD rats, in contrast, treadmill exercise suppressed these numbers. Expressions of glial fibrillary acidic protein (GFAP) and cluster of differentiation molecule 11B (CD11b) in the hippocampal dentate gyrus were increased in the AD rats, in contrast, treadmill exercise suppressed GFAP and CD11b expressions. Bax expression was increased and Bcl-2 expression was decreased in the hippocampus of AD rats, in contrast, treadmill exercise decreased Bax expression and increased Bcl-2 expression. The present results demonstrated that treadmill exercise ameliorated AD-induced impairments of spatial learning ability and short-term memory through suppressing apoptosis. The antiapoptotic effect of treadmill exercise might be ascribed to the inhibitory effect of treadmill exercise on microglial activation. PMID:28119873

  19. Wnt1, FoxO3a, and NF-kappaB oversee microglial integrity and activation during oxidant stress.

    Science.gov (United States)

    Shang, Yan Chen; Chong, Zhao Zhong; Hou, Jinling; Maiese, Kenneth

    2010-09-01

    Elucidating the underlying mechanisms that govern microglial activation and survival is essential for the development of new treatment strategies for neurodegenerative disorders, since microglia serve not only as guardian sentries of the nervous system, but also play a significant role in determining neuronal and vascular cell fate. Here we show that endogenous and exogenous Wnt1 in inflammatory microglial cells is necessary for the prevention of apoptotic early membrane phosphatidylserine exposure and later DNA degradation, since blockade of Wnt1 signaling abrogates cell survival during oxidative stress. Wnt1 prevents apoptotic demise through the post-translational phosphorylation and maintenance of FoxO3a in the cytoplasm to inhibit an apoptotic cascade that relies upon the loss of mitochondrial membrane permeability, cytochrome c release, Bad phosphorylation, and activation of caspase 3 and caspase 1 as demonstrated by complimentary gene knockdown studies of FoxO3a. Furthermore, subcellular trafficking and gene knockdown studies of NF-kappaB p65 illustrate that microglial cell survival determined by Wnt1 during oxidative stress requires NF-kappaB p65. Our work highlights Wnt1 and the control of novel downstream transcriptional pathways as critical components for the oversight of nervous system microglial cells.

  20. Delta-opioid receptor analgesia is independent of microglial activation in a rat model of neuropathic pain.

    Science.gov (United States)

    Mika, Joanna; Popiolek-Barczyk, Katarzyna; Rojewska, Ewelina; Makuch, Wioletta; Starowicz, Katarzyna; Przewlocka, Barbara

    2014-01-01

    The analgesic effect of delta-opioid receptor (DOR) ligands in neuropathic pain is not diminished in contrast to other opioid receptor ligands, which lose their effectiveness as analgesics. In this study, we examine whether this effect is related to nerve injury-induced microglial activation. We therefore investigated the influence of minocycline-induced inhibition of microglial activation on the analgesic effects of opioid receptor agonists: morphine, DAMGO, U50,488H, DPDPE, Deltorphin II and SNC80 after chronic constriction injury (CCI) to the sciatic nerve in rats. Pre-emptive and repeated administration of minocycline (30 mg/kg, i.p.) over 7 days significantly reduced allodynia and hyperalgesia as measured on day 7 after CCI. The antiallodynic and antihyperalgesic effects of intrathecally (i.t.) administered morphine (10-20 µg), DAMGO (1-2 µg) and U50,488H (25-50 µg) were significantly potentiated in rats after minocycline, but no such changes were observed after DPDPE (10-20 µg), deltorphin II (1.5-15 µg) and SNC80 (10-20 µg) administration. Additionally, nerve injury-induced down-regulation of all types of opioid receptors in the spinal cord and dorsal root ganglia was not influenced by minocycline, which indicates that the effects of opioid ligands are dependent on other changes, presumably neuroimmune interactions. Our study of rat primary microglial cell culture using qRT-PCR, Western blotting and immunocytochemistry confirmed the presence of mu-opioid receptors (MOR) and kappa-opioid receptors (KOR), further we provide the first evidence for the lack of DOR on microglial cells. In summary, DOR analgesia is different from analgesia induced by MOR and KOR receptors because it does not dependent on injury-induced microglial activation. DOR agonists appear to be the best candidates for new drugs to treat neuropathic pain.

  1. Delta-opioid receptor analgesia is independent of microglial activation in a rat model of neuropathic pain.

    Directory of Open Access Journals (Sweden)

    Joanna Mika

    Full Text Available The analgesic effect of delta-opioid receptor (DOR ligands in neuropathic pain is not diminished in contrast to other opioid receptor ligands, which lose their effectiveness as analgesics. In this study, we examine whether this effect is related to nerve injury-induced microglial activation. We therefore investigated the influence of minocycline-induced inhibition of microglial activation on the analgesic effects of opioid receptor agonists: morphine, DAMGO, U50,488H, DPDPE, Deltorphin II and SNC80 after chronic constriction injury (CCI to the sciatic nerve in rats. Pre-emptive and repeated administration of minocycline (30 mg/kg, i.p. over 7 days significantly reduced allodynia and hyperalgesia as measured on day 7 after CCI. The antiallodynic and antihyperalgesic effects of intrathecally (i.t. administered morphine (10-20 µg, DAMGO (1-2 µg and U50,488H (25-50 µg were significantly potentiated in rats after minocycline, but no such changes were observed after DPDPE (10-20 µg, deltorphin II (1.5-15 µg and SNC80 (10-20 µg administration. Additionally, nerve injury-induced down-regulation of all types of opioid receptors in the spinal cord and dorsal root ganglia was not influenced by minocycline, which indicates that the effects of opioid ligands are dependent on other changes, presumably neuroimmune interactions. Our study of rat primary microglial cell culture using qRT-PCR, Western blotting and immunocytochemistry confirmed the presence of mu-opioid receptors (MOR and kappa-opioid receptors (KOR, further we provide the first evidence for the lack of DOR on microglial cells. In summary, DOR analgesia is different from analgesia induced by MOR and KOR receptors because it does not dependent on injury-induced microglial activation. DOR agonists appear to be the best candidates for new drugs to treat neuropathic pain.

  2. Delta-Opioid Receptor Analgesia Is Independent of Microglial Activation in a Rat Model of Neuropathic Pain

    Science.gov (United States)

    Rojewska, Ewelina; Makuch, Wioletta; Starowicz, Katarzyna; Przewlocka, Barbara

    2014-01-01

    The analgesic effect of delta-opioid receptor (DOR) ligands in neuropathic pain is not diminished in contrast to other opioid receptor ligands, which lose their effectiveness as analgesics. In this study, we examine whether this effect is related to nerve injury-induced microglial activation. We therefore investigated the influence of minocycline-induced inhibition of microglial activation on the analgesic effects of opioid receptor agonists: morphine, DAMGO, U50,488H, DPDPE, Deltorphin II and SNC80 after chronic constriction injury (CCI) to the sciatic nerve in rats. Pre-emptive and repeated administration of minocycline (30 mg/kg, i.p.) over 7 days significantly reduced allodynia and hyperalgesia as measured on day 7 after CCI. The antiallodynic and antihyperalgesic effects of intrathecally (i.t.) administered morphine (10–20 µg), DAMGO (1–2 µg) and U50,488H (25–50 µg) were significantly potentiated in rats after minocycline, but no such changes were observed after DPDPE (10–20 µg), deltorphin II (1.5–15 µg) and SNC80 (10–20 µg) administration. Additionally, nerve injury-induced down-regulation of all types of opioid receptors in the spinal cord and dorsal root ganglia was not influenced by minocycline, which indicates that the effects of opioid ligands are dependent on other changes, presumably neuroimmune interactions. Our study of rat primary microglial cell culture using qRT-PCR, Western blotting and immunocytochemistry confirmed the presence of mu-opioid receptors (MOR) and kappa-opioid receptors (KOR), further we provide the first evidence for the lack of DOR on microglial cells. In summary, DOR analgesia is different from analgesia induced by MOR and KOR receptors because it does not dependent on injury-induced microglial activation. DOR agonists appear to be the best candidates for new drugs to treat neuropathic pain. PMID:25105291

  3. Annexin-1 Mediates Microglial Activation and Migration via the CK2 Pathway during Oxygen–Glucose Deprivation/Reperfusion

    Directory of Open Access Journals (Sweden)

    Shuangxi Liu

    2016-10-01

    Full Text Available Annexin-1 (ANXA1 has shown neuroprotective effects and microglia play significant roles during central nervous system injury, yet the underlying mechanisms remain unclear. This study sought to determine whether ANXA1 regulates microglial response to oxygen–glucose deprivation/reperfusion (OGD/R treatment and to clarify the downstream molecular mechanism. In rat hippocampal slices, OGD/R treatment enhanced the ANXA1 expression in neuron, the formyl peptide receptor (FPRs expression in microglia, and the microglial activation in the CA1 region (cornu ammonis 1. These effects were reversed by the FPRs antagonist Boc1. The cell membrane currents amplitude of BV-2 microglia (the microglial like cell-line was increased when treated with Ac2-26, the N-terminal peptide of ANXA1. Ac2-26 treatment enhanced BV-2 microglial migration whereas Boc1 treatment inhibited the migration. In BV-2 microglia, both the expression of the CK2 target phosphorylated α-E-catenin and the binding of casein kinase II (CK2 with α-E-catenin were elevated by Ac2-26, these effects were counteracted by the CK2 inhibitor TBB and small interfering (si RNA directed against transcripts of CK2 and FPRs. Moreover, both TBB and siRNA-mediated inhibition of CK2 blocked Ac2-26-mediated BV-2 microglia migration. Our findings indicate that ANXA1 promotes microglial activation and migration during OGD/R via FPRs, and CK2 target α-E-catenin phosphorylation is involved in this process.

  4. HIV-1 Tat primes and activates microglial NLRP3 inflammasome-mediated neuroinflammation.

    Science.gov (United States)

    Chivero, Ernest T; Guo, Ming-Lei; Periyasamy, Palsamy; Liao, Ke; Callen, Shannon E; Buch, Shilpa

    2017-03-07

    Neuroinflammation associated with HIV-1 infection is a problem affecting ∼50% of HIV-infected individuals. NLRP3 inflammasome has been implicated in HIV-induced microglial activation, but the mechanism(s) remain unclear. Since HIV-Tat continues to be present despite antiretroviral therapy and activates NF-kB, we hypothesized that Tat could prime the NLRP3 inflammasome. We found a dose- and time-dependent induction of NLRP3 expression in microglia exposed to Tat compared with control. Tat exposure also time-dependently increased the mature caspase-1 and IL-1β levels and enhanced the IL-1β secretion. These in vitro findings were validated in archival brain tissues from SIV-infected and uninfected rhesus macaques. Further validation of NLRP3 priming in-vivo involved administration of LPS to HIV-1 transgenic (Tg) rats followed by assessment of IL-1β mRNA expression and inflammasome activation (ASC oligomers and mature IL-1β). Intriguingly, LPS potentiated upregulation of IL-1β mRNA and inflammasome activation in HIV-Tg rats compared with the wild type controls. Interestingly, we found an inverse relationship in the expression of NLRP3 and its negative regulator, miR-223, suggesting a miR-223-mediated mechanism for Tat-induced NLRP3 priming. Furthermore, blockade of NLRP3 resulted in decreased IL-1β secretion. Collectively, these findings suggest a novel role of Tat in priming and activating the NLRP3 inflammasome. Thus, NLRP3 can be envisioned as a therapeutic target for ameliorating Tat-mediated neuroinflammation.Significance StatementDespite successful suppression of viremia with increased longevity in the era of cART, chronic inflammation with underlying neurocognitive impairment continues to afflict almost 50% of infected individuals. Viral, bacterial and cellular products have all been implicated in promoting the chronic inflammation found in these individuals. Understanding the molecular mechanism(s) by which viral proteins such as HIV Tat can activate

  5. The forkhead transcription factor FOXO3a controls microglial inflammatory activation and eventual apoptotic injury through caspase 3.

    Science.gov (United States)

    Shang, Yan Chen; Chong, Zhao Zhong; Hou, Jinling; Maiese, Kenneth

    2009-02-01

    Memory loss and cognitive failure are increasingly being identified as potential risks with the recognized increase in life expectancy of the general population. As a result, the development of novel therapeutic strategies for disorders such as Alzheimer's disease have garnered increased attention. The etiologies that can lead to Alzheimer's disease are extremely varied, but a number of therapeutic options are directed against amyloid-beta peptide and inflammatory cell regulation to prevent or halt progressive cognitive loss. In particular, inflammatory microglial cells may have disparate functions that in some scenarios lead to disability through the removal of functional neurovascular cells and in other circumstances foster tissue repair. Given the significance microglial cells hold for neurodegenerative disorders, we therefore examined the function that amyloid (Abeta(1-42)) has upon the microglial cell line EOC 2 and identified a novel role for the forkhead transcription factor FoxO3a and caspase 3. Here we show that Abeta(1-42) leads to progressive injury and apoptotic cell loss in microglial cells that involves both early phosphatidylserine (PS) externalization and late genomic DNA fragmentation over a 24 hour course. Prior to these injury programs, Abeta(1-42) results in the activation and proliferation of microglia as demonstrated by increased proliferating cell nuclear antigen (PCNA) expression and bromodeoxyuridine (BrdU) uptake. Both apoptotic injury as well as the prior activation and proliferation of microglial cells relies upon the presence of FoxO3a, since specific gene silencing of FoxO3a promotes microglial cell protection and prevents the early activation and proliferation of these cells. Furthermore, Abeta(1-42) exposure maintained FoxO3a in an unphosphorylated "active" state and facilitated the cellular trafficking of FoxO3a from the cytoplasm to the cell nucleus to potentially lead to "pro-apoptotic" programs by this transcription factor. One

  6. Bone marrow-derived mesenchymal stem cells maintain the resting phenotype of microglia and inhibit microglial activation.

    Directory of Open Access Journals (Sweden)

    Ke Yan

    Full Text Available Many studies have shown that microglia in the activated state may be neurotoxic. It has been proven that uncontrolled or over-activated microglia play an important role in many neurodegenerative disorders. Bone marrow-derived mesenchymal stem cells (BMSCs have been shown in many animal models to have a therapeutic effect on neural damage. Such a therapeutic effect is attributed to the fact that BMSCs have the ability to differentiate into neurons and to produce trophic factors, but there is little information available in the literature concerning whether BMSCs play a therapeutic role by affecting microglial activity. In this study, we triggered an inflammatory response situation in vitro by stimulating microglia with the bacterial endotoxin lipopolysaccharide (LPS, and then culturing these microglia with BMSC-conditioned medium (BMSC-CM. We found that BMSC-CM significantly inhibited proliferation and secretion of pro-inflammatory factors by activated microglia. Furthermore, we found that the phagocytic capacity of microglia was also inhibited by BMSC-CM. Finally, we investigated whether the induction of apoptosis and the production of nitric oxide (NO were involved in the inhibition of microglial activation. We found that BMSC-CM significantly induced apoptosis of microglia, while no apoptosis was apparent in the LPS-stimulated microglia. Our study also provides evidence that NO participates in the inhibitory effect of BMSCs. Our experimental results provide evidence that BMSCs have the ability to maintain the resting phenotype of microglia or to control microglial activation through their production of several factors, indicating that BMSCs could be a promising therapeutic tool for treatment of diseases associated with microglial activation.

  7. Inhibitory effects of SSRIs on IFN-γ induced microglial activation through the regulation of intracellular calcium.

    Science.gov (United States)

    Horikawa, Hideki; Kato, Takahiro A; Mizoguchi, Yoshito; Monji, Akira; Seki, Yoshihiro; Ohkuri, Takatoshi; Gotoh, Leo; Yonaha, Megumi; Ueda, Tadashi; Hashioka, Sadayuki; Kanba, Shigenobu

    2010-10-01

    Microglia, which are a major glial component of the central nervous system (CNS), have recently been suggested to mediate neuroinflammation through the release of pro-inflammatory cytokines and nitric oxide (NO). Microglia are also known to play a critical role as resident immunocompetent and phagocytic cells in the CNS. Immunological dysfunction has recently been demonstrated to be associated with the pathophysiology of depression. However, to date there have only been a few studies on the relationship between microglia and depression. We therefore investigated if antidepressants can inhibit microglial activation in vitro. Our results showed that the selective serotonin reuptake inhibitors (SSRIs) paroxetine and sertraline significantly inhibited the generation of NO and tumor necrosis factor (TNF)-α from interferon (IFN)-γ-activated 6-3 microglia. We further investigated the intracellular signaling mechanism underlying NO and TNF-α release from IFN-γ-activated 6-3 microglia. Our results suggest that paroxetine and sertraline may inhibit microglial activation through inhibition of IFN-γ-induced elevation of intracellular Ca(2+). Our results suggest that the inhibitory effect of paroxetine and sertraline on microglial activation may not be a prerequisite for antidepressant function, but an additional beneficial effect.

  8. Deep brain stimulation during early adolescence prevents microglial alterations in a model of maternal immune activation.

    Science.gov (United States)

    Hadar, Ravit; Dong, Le; Del-Valle-Anton, Lucia; Guneykaya, Dilansu; Voget, Mareike; Edemann-Callesen, Henriette; Schweibold, Regina; Djodari-Irani, Anais; Goetz, Thomas; Ewing, Samuel; Kettenmann, Helmut; Wolf, Susanne A; Winter, Christine

    2016-12-07

    In recent years schizophrenia has been recognized as a neurodevelopmental disorder likely involving a perinatal insult progressively affecting brain development. The poly I:C maternal immune activation (MIA) rodent model is considered as a neurodevelopmental model of schizophrenia. Using this model we and others demonstrated the association between neuroinflammation in the form of altered microglia and a schizophrenia-like endophenotype. Therapeutic intervention using the anti-inflammatory drug minocycline affected altered microglia activation and was successful in the adult offspring. However, less is known about the effect of preventive therapeutic strategies on microglia properties. Previously we found that deep brain stimulation of the medial prefrontal cortex applied pre-symptomatically to adolescence MIA rats prevented the manifestation of behavioral and structural deficits in adult rats. We here studied the effects of deep brain stimulation during adolescence on microglia properties in adulthood. We found that in the hippocampus and nucleus accumbens, but not in the medial prefrontal cortex, microglial density and soma size were increased in MIA rats. Pro-inflammatory cytokine mRNA was unchanged in all brain areas before and after implantation and stimulation. Stimulation of either the medial prefrontal cortex or the nucleus accumbens normalized microglia density and soma size in main projection areas including the hippocampus and in the area around the electrode implantation. We conclude that in parallel to an alleviation of the symptoms in the rat MIA model, deep brain stimulation has the potential to prevent the neuroinflammatory component in this disease.

  9. Ganoderma lucidum Protects Dopaminergic Neuron Degeneration through Inhibition of Microglial Activation

    Directory of Open Access Journals (Sweden)

    Ruiping Zhang

    2011-01-01

    Full Text Available Abundant evidence has suggested that neuroinflammation participates in the pathogenesis of Parkinson's disease (PD. The emerging evidence has supported that microglia may play key roles in the progressive neurodegeneration in PD and might be a promising therapeutic target. Ganoderma lucidum (GL, a traditional Chinese medicinal herb, has been shown potential neuroprotective effects in our clinical trials that make us to speculate that it might possess potent anti-inflammatory and immunomodulating properties. To test this hypothesis, we investigated the potential neuroprotective effect of GL and possible underlying mechanism of action through protecting microglial activation using co-cultures of dopaminergic neurons and microglia. The microglia is activated by LPS and MPP+-treated MES 23.5 cell membranes. Meanwhile, GL extracts significantly prevent the production of microglia-derived proinflammatory and cytotoxic factors [nitric oxide, tumor necrosis factor-α (TNF-α, interlukin 1β (IL-1β] in a dose-dependent manner and down-regulate the TNF-α and IL-1β expressions on mRNA level as well. In conclusion, our results support that GL may be a promising agent for the treatment of PD through anti-inflammation.

  10. Melatonin Attenuates Manganese and Lipopolysaccharide-Induced Inflammatory Activation of BV2 Microglia.

    Science.gov (United States)

    Park, Euteum; Chun, Hong Sung

    2017-02-01

    Melatonin, a naturally occurring neurohormone in the pineal gland, has been shown to exert antioxidant and anti-inflammatory effects. This study examined the effects of melatonin on manganese (Mn) and/or lipopolysaccharide (LPS)-induced microglial activation. Melatonin (10 μM) inhibited Mn (100 μM) and/or LPS (0.5 μg/ml)-induced phagocytotic activity of activated BV2 microglia. It also inhibited the lipid peroxidation and intracellular reduced glutathione (GSH) depletion induced by Mn and/or LPS. Melatonin effectively suppressed the upregulation of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) at both mRNA and protein levels in Mn and/or LPS-stimulated BV2 microglia. In addition, melatonin pretreatment attenuated Mn and/or LPS-induced degradation of IκB-α, nuclear translocation of nuclear factor-κB (NF-κB) and its activation, and the expressions of inducible nitric oxide synthase (iNOS) and nitric oxide (NO) in BV2 microglial cells. These results suggest that melatonin can effectively modulate phagocytosis and expression of proinflammatory mediators, and can prevent neuroinflammatory disorders accompanied by microglial activation.

  11. Lipopolysaccharide-activated microglial-induced neuroglial cell differentiation in bone marrow mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Xiaoguang Luo; Chunlin Ge; Yan Ren; Hongmei Yu; Zhe Wu; Qiushuang Wang; Chaodong Zhang

    2008-01-01

    BACKGROUND: Microglia are very sensitive to environmental changes, often becoming activated by pathological conditions. Activated microglia can exert a dual role in injury and repair in various diseases of the central nervous system, including cerebral ischemia, Parkinson's disease, and Alzheimer's disease. OBJECTIVE: An immortal microglial cell line, BV2, was treated with varying concentrations of lipopolysaccharide (LPS) to induce a pathological situation. Supernatant was harvested and incubated with bone marrow mesenchymal stem cells and, concomitantly, bone marrow mesenchymal stem cell differentiation was observed. DESIGN: A controlled observation, in vitro experiment. SETTING: Department of Neurology, First Affiliated Hospital of China Medical University. MATERIALS: Five male 2-3-week-old Sprague Dawley rats were purchased from Animal Laboratory Center of China Medical University and included in this study. The protocol was performed in accordance with ethical guidelines for the use and care of animals. The microglial cell line BV2 was produced by Cell Research Institute of Chinese Academy of Sciences. LPS was produced by Sigma Company, USA. METHODS: This study was performed in the Central Laboratory of China Medical University from September 2006 to March 2007. Rat femoral and tibial bone marrow was collected for separation and primary culture of bone marrow mesenchymal stem cells. Bone marrow mesenchymal stem cell cultures were divided into 5 groups: control group, non-activated group, as well as low-, medium-, and high-dose LPS groups. In the control group, bone marrow mesenchymal stem cells were cultured with Dulbecco's modified Eagle's medium (DMEM) supplemented with fetal bovine serum (volume fraction 0.1). In the non-activated group, bone marrow mesenchymal stem cells were incubated with non-activated BV2 supernatant. In the low-, medium-, and high-dose LPS groups, bone marrow mesenchymal stem cells were incubated with LPS (0.01, 0.1 and 1

  12. Cannabinoid receptor type 2 activation induces a microglial anti-inflammatory phenotype and reduces migration via MKP induction and ERK dephosphorylation

    Directory of Open Access Journals (Sweden)

    Landry Russell P

    2009-05-01

    Full Text Available Abstract Background Cannabinoid receptor type 2 (CBR2 inhibits microglial reactivity through a molecular mechanism yet to be elucidated. We hypothesized that CBR2 activation induces an anti-inflammatory phenotype in microglia by inhibiting extracellular signal-regulated kinase (ERK pathway, via mitogen-activated protein kinase-phosphatase (MKP induction. MKPs regulate mitogen activated protein kinases, but their role in the modulation of microglial phenotype is not fully understood. Results JWH015 (a CBR2 agonist increased MKP-1 and MKP-3 expression, which in turn reduced p-ERK1/2 in LPS-stimulated primary microglia. These effects resulted in a significant reduction of tumor necrosis factor-α (TNF expression and microglial migration. We confirmed the causative link of these findings by using MKP inhibitors. We found that the selective inhibition of MKP-1 by Ro-31-8220 and PSI2106, did not affect p-ERK expression in LPS+JWH015-treated microglia. However, the inhibition of both MKP-1 and MKP-3 by triptolide induced an increase in p-ERK expression and in microglial migration using LPS+JWH015-treated microglia. Conclusion Our results uncover a cellular microglial pathway triggered by CBR2 activation. These data suggest that the reduction of pro-inflammatory factors and microglial migration via MKP-3 induction is part of the mechanism of action of CBR2 agonists. These findings may have clinical implications for further drug development.

  13. Risperidone significantly inhibits interferon-gamma-induced microglial activation in vitro.

    Science.gov (United States)

    Kato, Takahiro; Monji, Akira; Hashioka, Sadayuki; Kanba, Shigenobu

    2007-05-01

    Microglia has recently been regarded to be a mediator of neuroinflammation via the release of proinflammatory cytokines, nitric oxide (NO) and reactive oxygen species (ROS) in the central nervous system (CNS). Microglia has thus been reported to play an important role in the pathology of neurodegenerative disease, such as Alzheimer's disease (AD) and Parkinson's disease (PD). The pathological mechanisms of schizophrenia remain unclear while some recent neuroimaging studies suggest even schizophrenia may be a kind of neurodegenerative disease. Risperidone has been reported to decrease the reduction of MRI volume during the clinical course of schizophrenia. Many recent studies have demonstrated that immunological mechanisms via such as interferon (IFN)-gamma and cytokines might be relevant to the pathophysiology of schizophrenia. In the present study, we thus investigated the effects of risperidone on the generation of nitric oxide, inducible NO synthase (iNOS) expression and inflammatory cytokines: interleukin (IL)-1beta, IL-6 and tumor necrosis factor (TNF)-alpha by IFN-gamma-activated microglia by using Griess assay, Western blotting and ELISA, respectively. In comparison with haloperidol, risperidone significantly inhibited the production of NO and proinflammatory cytokines by activated microglia. The iNOS levels of risperidone-treated cells were much lower than those of the haloperidol-treated cells. Antipsychotics, especially risperidone may have an anti-inflammatory effect via the inhibition of microglial activation, which is not only directly toxic to neurons but also has an inhibitory effect on neurogenesis and oligodendrogenesis, both of which have been reported to play a crucial role in the pathology of schizophrenia.

  14. Frataxin Deficiency Promotes Excess Microglial DNA Damage and Inflammation that Is Rescued by PJ34.

    Directory of Open Access Journals (Sweden)

    Yan Shen

    Full Text Available An inherited deficiency in the frataxin protein causes neurodegeneration of the dorsal root ganglia and Friedreich's ataxia (FA. Frataxin deficiency leads to oxidative stress and inflammatory changes in cell and animal models; however, the cause of the inflammatory changes, and especially what causes brain microglial activation is unclear. Here we investigated: 1 the mechanism by which frataxin deficiency activates microglia, 2 whether a brain-localized inflammatory stimulus provokes a greater microglial response in FA animal models, and 3 whether an anti-inflammatory treatment improves their condition. Intracerebroventricular administration of LPS induced higher amounts of microglial activation in the FA mouse model vs controls. We also observed an increase in oxidative damage in the form of 8-oxoguanine (8-oxo-G and the DNA repair proteins MUTYH and PARP-1 in cerebellar microglia of FA mutant mice. We hypothesized that frataxin deficiency increases DNA damage and DNA repair genes specifically in microglia, activating them. siRNA-mediated frataxin knockdown in microglial BV2 cells clearly elevated DNA damage and the expression of DNA repair genes MUTYH and PARP-1. Frataxin knockdown also induced a higher level of PARP-1 in MEF cells, and this was suppressed in MUTYH-/- knockout cells. Administration of the PARP-1 inhibitor PJ34 attenuated the microglial activation induced by intracerebroventricular injection of LPS. The combined administration of LPS and angiotensin II provoke an even stronger activation of microglia and neurobehavioral impairment. PJ34 treatment attenuated the neurobehavioral impairments in FA mice. These results suggest that the DNA repair proteins MUTYH and PARP-1 may form a pathway regulating microglial activation initiated by DNA damage, and inhibition of microglial PARP-1 induction could be an important therapeutic target in Friedreich's ataxia.

  15. Anti-inflammatory activity of xanthohumol involves heme oxygenase-1 induction via NRF2-ARE signaling in microglial BV2 cells.

    Science.gov (United States)

    Lee, Ik-Soo; Lim, Juhee; Gal, Jiyeong; Kang, Jeen Chu; Kim, Hyun Jung; Kang, Bok Yun; Choi, Hyun Jin

    2011-02-01

    Xanthohumol (2',4',4-trihydroxy-6'-methoxy-3'-prenylchalcone) is a major chalcone derivative isolated from hop (Humulus lupulus L.) commonly used in brewing due to its bitter flavors. Xanthohumol has anti-carcinogenic, free radical-scavenging, and anti-inflammatory activities, but its precise mechanisms are not clarified yet. The basic leucine zipper (bZIP) protein NRF2 is a key transcription factor mediating the antioxidant and anti-inflammatory responses in animals. Therefore, we tested whether xanthohumol exerts anti-inflammatory activity in mouse microglial BV2 cells via NRF2 signaling. Xanthohumol significantly inhibited the excessive production of inflammatory mediators NO, IL-1β, and TNF-α, and the activation of NF-κB signaling in LPS-induced stimulated BV2 cells. Xanthohumol up-regulated the transcription of NAD(P)H:quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1), and increased the level of the endogenous antioxidant GSH. In addition, xanthohumol induced nuclear translocation of NRF2 and further activation of ARE promoter-related transcription. The anti-inflammatory response of xanthohumol was attenuated by transfection with NRF2 siRNA and in the presence of the HO-1 inhibitor, ZnPP, but not the NQO1 inhibitor, dicoumarol. Taken together, our study suggests that xanthohumol exerts anti-inflammatory activity through NRF2-ARE signaling and up-regulation of downstream HO-1, and could be an attractive candidate for the regulation of inflammatory responses in the brain.

  16. Complexity of the Microglial Activation Pathways that Drive Innate Host Responses During Lethal Alphavirus Encephalitis in Mice

    Directory of Open Access Journals (Sweden)

    Nilufer Esen

    2012-04-01

    Full Text Available Microglia express multiple TLRs (Toll-like receptors and provide important host defence against viruses that invade the CNS (central nervous system. Although prior studies show these cells become activated during experimental alphavirus encephalitis in mice to generate cytokines and chemokines that influence virus replication, tissue inflammation and neuronal survival, the specific PRRs (pattern recognition receptors and signalling intermediates controlling microglial activation in this setting remain unknown. To investigate these questions directly in vivo, mice ablated of specific TLR signalling molecules were challenged with NSV (neuroadapted Sindbis virus and CNS viral titres, inflammatory responses and clinical outcomes followed over time. To approach this problem specifically in microglia, the effects of NSV on primary cells derived from the brains of wild-type and mutant animals were characterized in vitro. From the standpoint of the virus, microglial activation required viral uncoating and an intact viral genome; inactivated virus particles did not elicit measurable microglial responses. At the level of the target cell, NSV triggered multiple PRRs in microglia to produce a broad range of inflammatory mediators via non-overlapping signalling pathways. In vivo, disease survival was surprisingly independent of TLR-driven responses, but still required production of type-I IFN (interferon to control CNS virus replication. Interestingly, the ER (endoplasmic reticulum protein UNC93b1 facilitated host survival independent of its known effects on endosomal TLR signalling. Taken together, these data show that alphaviruses activate microglia via multiple PRRs, highlighting the complexity of the signalling networks by which CNS host responses are elicited by these infections.

  17. Gabapentin reduces CX3CL1 signaling and blocks spinal microglial activation in monoarthritic rats

    Directory of Open Access Journals (Sweden)

    Yang Jia-Le

    2012-05-01

    Full Text Available Abstract Background Spinal glia, particularly microglia and astrocytes, are of the utmost importance in the development and maintenance of chronic pain. A recent study from our laboratory revealed that gabapentin, a recommended first-line treatment for multiple neuropathic conditions, could also efficiently antagonize thermal hyperalgesia evoked by complete Freund's adjuvant (CFA-induced monoarthritis (MA. In the present study, we investigated whether the spinal glia are involved in the anti-hyperalgesic effect of gabapentin and how this event occurs. Results Unilateral intra-articular injection of CFA produced a robust activation of microglia and astrocytes. These cells exhibited large cell bodies, thick processes and increases in the ionized calcium binding adapter molecule 1 (Iba-1, a microglial marker or the glia fibrillary acidic protein (GFAP, an astrocytic marker. These cells also displayed immunoreactive signals, and an upregulation of the voltage-gated calcium channels (VGCCs α2/δ-1 subunit, CX3CL1 and CX3CR1 expression levels in the spinal cord. These changes were associated with the development of thermal hyperalgesia. Immunofluorescence staining showed that VGCC α2/δ-1 subunit, a proposed gabapentin target of action, was widely distributed in primary afferent fibers terminals and dorsal horn neurons. CX3CL1, a potential trigger to activate microglia, colocalized with VGCC α2/δ-1 subunits in the spinal dorsal horn. However, its receptor CX3CR1 was mainly expressed in the spinal microglia. Multiple intraperitoneal (i.p. gabapentin injections (100 mg/kg, once daily for 4 days with the first injection 60 min before intra-articular CFA suppressed the activation of spinal microglia, downregulated spinal VGCC α2/δ-1 subunits decreased CX3CL1 levels and blocked the development of thermal hyperalgesia in MA rats. Conclusions Here we provide the first evidence that gabapentin diminishes CX3CL1 signaling and spinal microglia

  18. Imaging Microglial Activation in Untreated First-Episode Psychosis: A PET Study With [18F]FEPPA

    Science.gov (United States)

    Hafizi, Sina; Tseng, Huai-Hsuan; Rao, Naren; Selvanathan, Thiviya; Kenk, Miran; Bazinet, Richard P.; Suridjan, Ivonne; Wilson, Alan A.; Meyer, Jeffrey H.; Remington, Gary; Houle, Sylvain; Rusjan, Pablo M.; Mizrahi, Romina

    2017-01-01

    Objective Neuroinflammation and abnormal immune responses are increasingly implicated in the pathophysiology of schizophrenia. Previous positron emission tomography (PET) studies targeting the translocator protein 18 kDa (TSPO) have been limited by high nonspecific binding of the first-generation radioligand, low-resolution scanners, small sample sizes, and psychotic patients being on antipsychotics or not being in the first episode of their illness. The present study uses the novel second-generation TSPO PET radioligand [18F]FEPPA to evaluate whether microglial activation is elevated in the dorsolateral prefrontal cortex and hippocampus of untreated patients with first-episode psychosis. Method Nineteen untreated patients with first-episode psychosis (14 of them antipsychotic naive) and 20 healthy volunteers underwent a high-resolution [18F]FEPPA PET scan and MRI. Dynamic PET data were analyzed using the validated two-tissue compartment model with arterial plasma input function with total volume of distribution (VT) as outcome measure. All analyses were corrected for TSPO rs6971 polymorphism (which is implicated in differential binding affinity). Results No significant differences were observed between patients and healthy volunteers in microglial activation, as indexed by [18F]FEPPA VT, in either the dorsolateral prefrontal cortex or the hippocampus. There were no significant correlations between [18F]FEPPA VT and duration of illness, clinical presentation, or neuropsychological measures after adjusting for multiple testing. Conclusions The lack of significant differences in [18F]FEPPA VT between groups suggests that microglial activation is not present in first-episode psychosis. PMID:27609240

  19. CD74 indicates microglial activation in experimental diabetic retinopathy and exogenous methylglyoxal mimics the response in normoglycemic retina.

    Science.gov (United States)

    Wang, Jing; Lin, Jihong; Schlotterer, Andreas; Wu, Liang; Fleming, Thomas; Busch, Stephanie; Dietrich, Nadine; Hammes, Hans-Peter

    2014-10-01

    Diabetes induces vasoregression, neurodegeneration and glial activation in the retina. Formation of advanced glycation endoproducts (AGEs) is increased in diabetes and contributes to the pathogenesis of diabetic retinopathy. CD74 is increased in activated microglia in a rat model developing both neurodegeneration and vasoregression. In this study, we aimed at investigating whether glucose and major AGE precursor methylglyoxal induce increased CD74 expression in the retina. Expression of CD74 in retinal microglia was analyzed in streptozotocin-diabetic rats by wholemount immunofluorescence. Nondiabetic mice were intravitreally injected with methylglyoxal. Expression of CD74 was studied by retinal wholemount immunofluorescence and quantitative real-time PCR, 48 h after the injection. CD74-positive cells were increased in diabetic 4-month retinas. These cells represented a subpopulation of CD11b-labeled activated microglia and were mainly located in the superficial vascular layer (13.7-fold increase compared to nondiabetic group). Methylglyoxal induced an 9.4-fold increase of CD74-positive cells in the superficial vascular layer and elevated gene expression of CD74 in the mouse retina 2.8-fold. In summary, we identified CD74 as a microglial activation marker in the diabetic retina. Exogenous methylglyoxal mimics the response in normoglycemic retina. This suggests that methylglyoxal is important in mediating microglial activation in the diabetic retina.

  20. Fosb gene products contribute to excitotoxic microglial activation by regulating the expression of complement C5a receptors in microglia.

    Science.gov (United States)

    Nomaru, Hiroko; Sakumi, Kunihiko; Katogi, Atsuhisa; Ohnishi, Yoshinori N; Kajitani, Kosuke; Tsuchimoto, Daisuke; Nestler, Eric J; Nakabeppu, Yusaku

    2014-08-01

    The Fosb gene encodes subunits of the activator protein-1 transcription factor complex. Two mature mRNAs, Fosb and ΔFosb, encoding full-length FOSB and ΔFOSB proteins respectively, are formed by alternative splicing of Fosb mRNA. Fosb products are expressed in several brain regions. Moreover, Fosb-null mice exhibit depressive-like behaviors and adult-onset spontaneous epilepsy, demonstrating important roles in neurological and psychiatric disorders. Study of Fosb products has focused almost exclusively on neurons; their function in glial cells remains to be explored. In this study, we found that microglia express equivalent levels of Fosb and ΔFosb mRNAs to hippocampal neurons and, using microarray analysis, we identified six microglial genes whose expression is dependent on Fosb products. Of these genes, we focused on C5ar1 and C5ar2, which encode receptors for complement C5a. In isolated Fosb-null microglia, chemotactic responsiveness toward the truncated form of C5a was significantly lower than that in wild-type cells. Fosb-null mice were significantly resistant to kainate-induced seizures compared with wild-type mice. C5ar1 mRNA levels and C5aR1 immunoreactivity were increased in wild-type hippocampus 24 hours after kainate administration; however, such induction was significantly reduced in Fosb-null hippocampus. Furthermore, microglial activation after kainate administration was significantly diminished in Fosb-null hippocampus, as shown by significant reductions in CD68 immunoreactivity, morphological change and reduced levels of Il6 and Tnf mRNAs, although no change in the number of Iba-1-positive cells was observed. These findings demonstrate that, under excitotoxicity, Fosb products contribute to a neuroinflammatory response in the hippocampus through regulation of microglial C5ar1 and C5ar2 expression.

  1. Qingkailing Suppresses the Activation of BV2 Microglial Cells by Inhibiting Hypoxia/Reoxygenation-Induced Inflammatory Responses

    Directory of Open Access Journals (Sweden)

    Lulu Mana

    2014-01-01

    Full Text Available Qingkailing (QKL is a well-known composite extract used in traditional Chinese medicine. This extract has been extensively administered to treat the acute phase of cerebrovascular disease. Our previous experiments confirmed that QKL exerts an inhibitory effect on cerebral ischemia-induced inflammatory responses. However, whether QKL suppresses the activation of microglia, the primary resident immune cells in the brain, has yet to be determined. In this study, BV2 microglial cells were used to validate the protective effects of QKL treatment following ischemia-reperfusion injury simulated via hypoxia/reoxygenation in vitro. Under these conditions, high expression levels of ROS, COX-2, iNOS, and p-p38 protein were detected. Following ischemia/reperfusion injury, QKL significantly increased the activity of BV2 cells to approximately the basal level by modulating microglial activation via inhibition of inflammatory factors, including TNF-α, COX-2, iNOS, and p-p38. However, QKL treatment also displayed dose-dependent differences in its inhibitory effects on p38 phosphorylation and inflammatory factor expression.

  2. Endocannabinoids regulate the activity of astrocytic hemichannels and the microglial response against an injury: In vivo studies.

    Science.gov (United States)

    Vázquez, Carmen; Tolón, Rosa María; Pazos, María Ruth; Moreno, Marta; Koester, Erin C; Cravatt, Benjamin F; Hillard, Cecilia J; Romero, Julián

    2015-07-01

    Anandamide (AEA) is an endocannabinoid (EC) that modulates multiple functions in the CNS and that is released in areas of injury, exerting putative neuroprotective actions. In the present study, we have used intravital microscopy to analyze the role of the EC system in the glial response against an acute insult. Our data show that AEA modulates astroglial function in vivo by increasing connexin-43 hemichannel (HC) activity. Furthermore, the genetic inactivation of the AEA-degrading enzyme, fatty acid amide hydrolase (FAAH), also increased HC activity and enhanced the microglial response against an acute injury to the brain parenchyma, effects that were mediated by cannabinoid CB1 receptors. The contribution of ATP released through an astrocytic HC was critical for the microglial response, as this was prevented by the use of the HC blocker flufenamic acid and by apyrase. As could be expected, brain concentrations of AEA, palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) were elevated in FAAH-null mice, while 2-arachidonoylglycerol (2-AG) concentrations remained unaltered. In summary, these findings demonstrate that AEA modifies glial functions by promoting an enhanced pro-inflammatory glial response in the brain.

  3. TLR4 mutation reduces microglial activation, increases Aβ deposits and exacerbates cognitive deficits in a mouse model of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Song Min

    2011-08-01

    Full Text Available Abstract Background Amyloid plaques, a pathological hallmark of Alzheimer's disease (AD, are accompanied by activated microglia. The role of activated microglia in the pathogenesis of AD remains controversial: either clearing Aβ deposits by phagocytosis or releasing proinflammatory cytokines and cytotoxic substances. Microglia can be activated via toll-like receptors (TLRs, a class of pattern-recognition receptors in the innate immune system. We previously demonstrated that an AD mouse model homozygous for a loss-of-function mutation of TLR4 had increases in Aβ deposits and buffer-soluble Aβ in the brain as compared with a TLR4 wild-type AD mouse model at 14-16 months of age. However, it is unknown if TLR4 signaling is involved in initiation of Aβ deposition as well as activation and recruitment of microglia at the early stage of AD. Here, we investigated the role of TLR4 signaling and microglial activation in early stages using 5-month-old AD mouse models when Aβ deposits start. Methods Microglial activation and amyloid deposition in the brain were determined by immunohistochemistry in the AD models. Levels of cerebral soluble Aβ were determined by ELISA. mRNA levels of cytokines and chemokines in the brain and Aβ-stimulated monocytes were quantified by real-time PCR. Cognitive functions were assessed by the Morris water maze. Results While no difference was found in cerebral Aβ load between AD mouse models at 5 months with and without TLR4 mutation, microglial activation in a TLR4 mutant AD model (TLR4M Tg was less than that in a TLR4 wild-type AD model (TLR4W Tg. At 9 months, TLR4M Tg mice had increased Aβ deposition and soluble Aβ42 in the brain, which were associated with decrements in cognitive functions and expression levels of IL-1β, CCL3, and CCL4 in the hippocampus compared to TLR4W Tg mice. TLR4 mutation diminished Aβ-induced IL-1β, CCL3, and CCL4 expression in monocytes. Conclusion This is the first demonstration of TLR4

  4. Hyperforin attenuates microglia activation and inhibits p65-Ser276 NFκB phosphorylation in the rat piriform cortex following status epilepticus.

    Science.gov (United States)

    Lee, Sang-Kyu; Kim, Ji-Eun; Kim, Yeon-Joo; Kim, Min-Ju; Kang, Tae-Cheon

    2014-08-01

    Hyperforin, a lipophilic constituent of medicinal herb St. John's Wort, has neurobiological effects including antidepressant activity, antibiotic potency, anti-inflammatory activity and anti-tumoral properties. Furthermore, hyperforin activates transient receptor potential conical channel-6 (TRPC6), a nonselective cation channel. To elucidate the roles of hyperforin and TRPC6 in neuroinflammation in vivo, we investigated the effect of hyperforin on neuroinflammatory responses and its related events in the rat piriform cortex (PC) following status epilepticus (SE). Hyperforin attenuated microglial activation, p65-serine 276 NFκB phosphorylation, and suppressed TNF-α expression in the PC following SE. Hyperforin also effectively alleviated SE-induced vasogenic edema formation, neuronal damage, microglial TRPC6 induction and blood-derived monocyte infiltration. Our findings suggest that hyperforin may effectively attenuate microglia-mediated neuroinflammation in the TRPC6-independent manner.

  5. Disruption of Fractalkine Signaling Leads to Microglial Activation and Neuronal Damage in the Diabetic Retina

    Directory of Open Access Journals (Sweden)

    Sandra M. Cardona

    2015-10-01

    Full Text Available Fractalkine (CX3CL1 or FKN is a membrane-bound chemokine expressed on neuronal membranes and is proteolytically cleaved to shed a soluble chemoattractant domain. FKN signals via its unique receptor CX3CR1 expressed on microglia and other peripheral leukocytes. The aim of this study is to determine the role of CX3CR1 in inflammatory-mediated damage to retinal neurons using a model of diabetic retinopathy. For this, we compared neuronal, microglial, and astroglial densities and inflammatory response in nondiabetic and diabetic (Ins2Akita CX3CR1-wild-type and CX3CR1-deficient mice at 10 and 20 weeks of age. Our results show that Ins2Akita CX3CR1-knockout mice exhibited (a decreased neuronal cell counts in the retinal ganglion cell layer, (b increased microglial cell numbers, and (c decreased astrocyte responses comparable with Ins2Akita CX3CR1-Wild-type mice at 20 weeks of age. Analyses of the inflammatory response using PCR arrays showed several inflammatory genes differentially regulated in diabetic tissues. From those, the response in Ins2Akita CX3CR1-deficient mice at 10 weeks of age revealed a significant upregulation of IL-1β at the transcript level that was confirmed by enzyme-linked immunosorbent assay in soluble retinal extracts. Overall, IL-1β, VEGF, and nitrite levels as a read out of nitric oxide production were abundant in Ins2Akita CX3CR1-deficient retina. Notably, double immunofluorescence staining shows that astrocytes act as a source of IL-1β in the Ins2Akita retina, and CX3CR1-deficient microglia potentiate the inflammatory response via IL-1β release. Collectively, these data demonstrate that dysregulated microglial responses in absence of CX3CR1 contribute to inflammatory-mediated damage of neurons in the diabetic retina.

  6. Ginsenoside Rg3 Improves Recovery from Spinal Cord Injury in Rats via Suppression of Neuronal Apoptosis, Pro-Inflammatory Mediators, and Microglial Activation

    Directory of Open Access Journals (Sweden)

    Dong-Kyu Kim

    2017-01-01

    Full Text Available Spinal cord injury (SCI is one of the most devastating medical conditions; however, currently, there are no effective pharmacological interventions for SCI. Ginsenoside Rg3 (GRg3 is one of the protopanaxadiols that show anti-inflammatory, anti-oxidant, and neuroprotective effects. The present study investigated the neuroprotective effect of GRg3 following SCI in rats. SCI was induced using a static compression model at vertebral thoracic level 10 for 5 min. GRg3 was administrated orally at a dose of 10 or 30 mg/kg/day for 14 days after the SCI. GRg3 (30 mg/kg treatment markedly improved behavioral motor functions, restored lesion size, preserved motor neurons in the spinal tissue, reduced Bax expression and number of TUNEL-positive cells, and suppressed mRNA expression of pro-inflammatory cytokines including tumor necrosis factor-α, interleukin (IL-1β, and IL-6. GRg3 also attenuated the over-production of cyclooxygenase-2 and inducible nitric oxide synthase after SCI. Moreover, GRg3 markedly suppressed microglial activation in the spinal tissue. In conclusion, GRg3 treatment led to a remarkable recovery of motor function and a reduction in spinal tissue damage by suppressing neuronal apoptosis and inflammatory responses after SCI. These results suggest that GRg3 may be a potential therapeutic agent for the treatment of SCI.

  7. Krüppel-like factor 4, a novel transcription factor regulates microglial activation and subsequent neuroinflammation

    Directory of Open Access Journals (Sweden)

    Das Sulagna

    2010-10-01

    Full Text Available Abstract Background Activation of microglia, the resident macrophages of the central nervous system (CNS, is the hallmark of neuroinflammation in neurodegenerative diseases and other pathological conditions associated with CNS infection. The activation of microglia is often associated with bystander neuronal death. Nuclear factor-κB (NF-κB is one of the important transcription factors known to be associated with microglial activation which upregulates the expression of inducible nitric oxide synthase (iNOS, cyclooxygenase-2 (Cox-2 and other pro-inflammatory cytokines. Recent studies have focused on the role of Krüppel-like factor 4 (Klf4, one of the zinc-finger transcription factors, in mediating inflammation. However, these studies were limited to peripheral system and its role in CNS is not understood. Our studies focused on the possible role of Klf4 in mediating CNS inflammation. Methods For in vitro studies, mouse microglial BV-2 cell lines were treated with 500 ng/ml Salmonella enterica lipopolysacchride (LPS. Brain tissues were isolated from BALB/c mice administered with 5 mg/kg body weight of LPS. Expressions of Klf4, Cox-2, iNOS and pNF-κB were evaluated using western blotting, quantitative real time PCR, and reverse transcriptase polymerase chain reactions (RT-PCRs. Klf4 knockdown was carried out using SiRNA specific for Klf4 mRNA and luciferase assays and electromobility shift assay (EMSA were performed to study the interaction of Klf4 to iNOS promoter elements in vitro. Co-immunoprecipitation of Klf4 and pNF-κB was done in order to study a possible interaction between the two transcription factors. Results LPS stimulation increased Klf4 expression in microglial cells in a time- and dose-dependent manner. Knockdown of Klf4 resulted in decreased levels of the pro-inflammatory cytokines TNF-α, MCP-1 and IL-6, along with a significant decrease in iNOS and Cox-2 expression. NO production also decreased as a result of Klf4 knockdown

  8. Microglial NLRP3 inflammasome activation mediates IL-1β-related inflammation in prefrontal cortex of depressive rats.

    Science.gov (United States)

    Pan, Ying; Chen, Xu-Yang; Zhang, Qing-Yu; Kong, Ling-Dong

    2014-10-01

    Depression is an inflammatory disorder. Pro-inflammatory cytokine interleukin-1 beta (IL-1β) may play a pivotal role in the central nervous system (CNS) inflammation of depression. Here, we investigated IL-1β alteration in serum, cerebrospinal fluid (CSF) and prefrontal cortex (PFC) of chronic unpredictable mild stress (CUMS)-exposed rats, a well-documented model of depression, and further explored the molecular mechanism by which CUMS procedure induced IL-1β-related CNS inflammation. We showed that 12-week CUMS procedure remarkably increased PFC IL-1β mRNA and protein levels in depressive-like behavior of rats, without significant alteration of serum and CSF IL-1β levels. We found that CUMS procedure significantly caused PFC nuclear factor kappa B (NF-κB) inflammatory pathway activation in rats. The intriguing finding in this study was the induced activation of nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome with the increased IL-1β maturation in PFC of CUMS rats, suggesting a new grade of regulatory mechanism for IL-1β-related CNS inflammation. Moreover, microglial activation and astrocytic function impairment were observed in PFC of CUMS rats. The increased co-location of NLRP3 and ionized calcium binding adaptor molecule 1 (Iba1) protein expression supported that microglia in glial cells was the primary contributor for CUMS-induced PFC NLRP3 inflammasome activation in rats. These alterations in CUMS rats were restored by chronic treatment of the antidepressant fluoxetine, indicating that fluoxetine-mediated rat PFC IL-1β reduction involves both transcriptional and post-transcriptional regulatory mechanisms. These findings provide in vivo evidence that microglial NLRP3 inflammasome activation is a mediator of IL-1β-related CNS inflammation during chronic stress, and suggest a new therapeutic target for the prevention and treatment of depression.

  9. Early and protective microglial activation in Alzheimer's disease: a prospective study using 18F-DPA-714 PET imaging.

    Science.gov (United States)

    Hamelin, Lorraine; Lagarde, Julien; Dorothée, Guillaume; Leroy, Claire; Labit, Mickael; Comley, Robert A; de Souza, Leonardo Cruz; Corne, Helene; Dauphinot, Luce; Bertoux, Maxime; Dubois, Bruno; Gervais, Philippe; Colliot, Olivier; Potier, Marie Claude; Bottlaender, Michel; Sarazin, Marie

    2016-04-01

    While emerging evidence suggests that neuroinflammation plays a crucial role in Alzheimer's disease, the impact of the microglia response in Alzheimer's disease remains a matter of debate. We aimed to study microglial activation in early Alzheimer's disease and its impact on clinical progression using a second-generation 18-kDa translocator protein positron emission tomography radiotracer together with amyloid imaging using Pittsburgh compound B positron emission tomography. We enrolled 96 subjects, 64 patients with Alzheimer's disease and 32 controls, from the IMABio3 study, who had both (11)C-Pittsburgh compound B and (18)F-DPA-714 positron emission tomography imaging. Patients with Alzheimer's disease were classified as prodromal Alzheimer's disease (n = 38) and Alzheimer's disease dementia (n = 26). Translocator protein-binding was measured using a simple ratio method with cerebellar grey matter as reference tissue, taking into account regional atrophy. Images were analysed at the regional (volume of interest) and at the voxel level. Translocator protein genotyping allowed the classification of all subjects in high, mixed and low affinity binders. Thirty high+mixed affinity binders patients with Alzheimer's disease were dichotomized into slow decliners (n = 10) or fast decliners (n = 20) after 2 years of follow-up. All patients with Alzheimer's disease had an amyloid positive Pittsburgh compound B positron emission tomography. Among controls, eight had positive amyloid scans (n = 6 high+mixed affinity binders), defined as amyloidosis controls, and were analysed separately. By both volumes of interest and voxel-wise comparison, 18-kDa translocator protein-binding was higher in high affinity binders, mixed affinity binders and high+mixed affinity binders Alzheimer's disease groups compared to controls, especially at the prodromal stage, involving the temporo-parietal cortex. Translocator protein-binding was positively correlated with Mini-Mental State Examination

  10. In vivo changes in microglial activation and amyloid deposits in brain regions with hypometabolism in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Yokokura, Masamichi; Mori, Norio; Yoshihara, Yujiro; Wakuda, Tomoyasu; Takebayashi, Kiyokazu; Iwata, Yasuhide; Nakamura, Kazuhiko [Hamamatsu University School of Medicine, Department of Psychiatry and Neurology, Hamamatsu (Japan); Yagi, Shunsuke; Ouchi, Yasuomi [Hamamatsu University School of Medicine, Laboratory of Human Imaging Research, Molecular Imaging Frontier Research Center, Hamamatsu (Japan); Yoshikawa, Etsuji [Hamamatsu Photonics K.K., Central Research Laboratory, Hamamatsu (Japan); Kikuchi, Mitsuru [Kanazawa University, Department of Psychiatry and Neurobiology, Graduate School of Medical Science, Kanazawa (Japan); Sugihara, Genichi; Suda, Shiro; Tsuchiya, Kenji J.; Suzuki, Katsuaki [Hamamatsu University School of Medicine, Research Center for Child Mental Development, Hamamatsu (Japan); Ueki, Takatoshi [Hamamatsu University School of Medicine, Department of Anatomy, Hamamatsu (Japan)

    2011-02-15

    Amyloid {beta} protein (A{beta}) is known as a pathological substance in Alzheimer's disease (AD) and is assumed to coexist with a degree of activated microglia in the brain. However, it remains unclear whether these two events occur in parallel with characteristic hypometabolism in AD in vivo. The purpose of the present study was to clarify the in vivo relationship between A{beta} accumulation and neuroinflammation in those specific brain regions in early AD. Eleven nootropic drug-naive AD patients underwent a series of positron emission tomography (PET) measurements with [{sup 11}C](R)PK11195, [{sup 11}C]PIB and [{sup 18}F]FDG and a battery of cognitive tests within the same day. The binding potentials (BPs) of [{sup 11}C](R)PK11195 were directly compared with those of [{sup 11}C]PIB in the brain regions with reduced glucose metabolism. BPs of [{sup 11}C](R)PK11195 and [{sup 11}C]PIB were significantly higher in the parietotemporal regions of AD patients than in ten healthy controls. In AD patients, there was a negative correlation between dementia score and [{sup 11}C](R)PK11195 BPs, but not [{sup 11}C]PIB, in the limbic, precuneus and prefrontal regions. Direct comparisons showed a significant negative correlation between [{sup 11}C](R)PK11195 and [{sup 11}C]PIB BPs in the posterior cingulate cortex (PCC) (p < 0.05, corrected) that manifested the most severe reduction in [{sup 18}F]FDG uptake. A lack of coupling between microglial activation and amyloid deposits may indicate that A{beta} accumulation shown by [{sup 11}C]PIB is not always the primary cause of microglial activation, but rather the negative correlation present in the PCC suggests that microglia can show higher activation during the production of A{beta} in early AD. (orig.)

  11. Inhibition of microglial inflammation by the MLK inhibitor CEP-1347.

    Science.gov (United States)

    Lund, Søren; Porzgen, Peter; Mortensen, Anne Louise; Hasseldam, Henrik; Bozyczko-Coyne, Donna; Morath, Siegfried; Hartung, Thomas; Bianchi, Marina; Ghezzi, Pietro; Bsibsi, Malika; Dijkstra, Sipke; Leist, Marcel

    2005-03-01

    CEP-1347 is a potent inhibitor of the mixed lineage kinases (MLKs), a distinct family of mitogen-activated protein kinase kinase kinases (MAPKKK). It blocks the activation of the c-Jun/JNK apoptotic pathway in neurons exposed to various stressors and attenuates neurodegeneration in animal models of Parkinson's disease (PD). Microglial activation may involve kinase pathways controlled by MLKs and might contribute to the pathology of neurodegenerative diseases. Therefore, the possibility that CEP-1347 modulates the microglial inflammatory response [tumour necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and monocyte chemotactic protein-1 (MCP-1)] was explored. Indeed, the MLK inhibitor CEP-1347 reduced cytokine production in primary cultures of human and murine microglia, and in monocyte/macrophage-derived cell lines, stimulated with various endotoxins or the plaque forming peptide Abeta1-40. Moreover, CEP-1347 inhibited brain TNF production induced by intracerebroventricular injection of lipopolysaccharide in mice. As expected from a MLK inhibitor, CEP-1347 acted upstream of p38 and c-Jun activation in microglia by dampening the activity of both pathways. These data imply MLKs as important, yet unrecognized, modulators of microglial inflammation, and demonstrate a novel anti-inflammatory potential of CEP-1347.

  12. Amphotericin B Increases Transglutaminase 2 Expression Associated with Upregulation of Endocytotic Activity in Mouse Microglial Cell Line BV-2.

    Science.gov (United States)

    Kawabe, Kenji; Takano, Katsura; Moriyama, Mitsuaki; Nakamura, Yoichi

    2017-02-21

    Amphotericin B (AmB), a polyene antibiotic, is reported to cause the microglial activation to induce nitric oxide (NO) production and proinflammatory cytokines expression, and change neurotrophic factors expression in cultured microglia (Motoyoshi et al. in Neurochem Int 52:1290-1296, 2008). On the other hand, tissue-type transglutaminase (TG2) is involved in connection to phagocytes with apoptotic cells. Engulfment of neurons by activated microglia is thought to cause neurodegenerative diseases but detail is unclear, and involvement of TG2 in phagocytosis has been reported in our previous study using lipopolysaccharide-stimulated BV-2 cells (Kawabe et al. in Neuroimmunomodulation 22(4):243-249, 2015). In the present study, we examined the changes of TG2 expression, phagocytosis and pinocytosis in BV-2 cells stimulated by AmB. AmB stimulation increased TG2 expression and TG activity. Phagocytosis of dead cells and pinocytosis of fluorescent microbeads were also up-regulated by AmB stimulation in BV-2 cells. Blockade of TG activity by cystamine, an inhibitor of TGs, suppressed AmB-enhanced TG2 expression, TG activity, NO production, phagocytosis and pinocytosis. Excessive NO production from microglia and/or facilitation of phagocytosis might be involved in neuronal death. To control TG activity might make possible to protect neurons and care for CNS diseases.

  13. Hypoxia induced amoeboid microglial cell activation in postnatal rat brain is mediated by ATP receptor P2X4

    Directory of Open Access Journals (Sweden)

    Li Fan

    2011-11-01

    Full Text Available Abstract Background Activation of amoeboid microglial cells (AMC and its related inflammatory response have been linked to the periventricular white matter damage after hypoxia in neonatal brain. Hypoxia increases free ATP in the brain and then induces various effects through ATP receptors. The present study explored the possible mechanism in ATP induced AMC activation in hypoxia. Results We first examined the immunoexpression of P2X4, P2X7 and P2Y12 in the corpus callosum (CC and subependyma associated with the lateral ventricles where both areas are rich in AMC. Among the three purinergic receptors, P2X4 was most intensely expressed. By double immunofluorescence, P2X4 was specifically localized in AMC (from P0 to P7 but the immunofluorescence in AMC was progressively diminished with advancing age (P14. It was further shown that P2X4 expression was noticeably enhanced in P0 day rats subjected to hypoxia and killed at 4, 24, 72 h and 7 d versus their matching controls by double labeling and western blotting analysis. P2X4 expression was most intense at 7 d whence the inflammatory response was drastic after hypoxia. We then studied the association of P2X4 with cytokine release in AMC after hypoxic exposure. In primary microglial cells exposed to hypoxia, IL-1β and TNF-α protein levels were up-regulated. Blockade of P2X4 receptor with 2', 3'-0-(2, 4, 6-Trinitrophenyl adenosine 5'-triphosphate, a selective P2X1-7 blocker resulted in partial suppression of IL-1β (24% vs hypoxic group and TNF-α expression (40% vs hypoxic group. However, pyridoxal phosphate-6-azo (benzene-2, 4-disulfonic acid tetrasodium salt hydrate, a selective P2X1-3, 5-7 blocker did not exert any significant effect on the cytokine expression. Conclusions It is concluded that P2X4 which is constitutively expressed by AMC in postnatal rats was enhanced in hypoxia. Hypoxia induced increase in IL-1β and TNF-α expression was reversed by 2', 3'-0-(2, 4, 6-Trinitrophenyl adenosine

  14. Inhibition of Peripheral TNF-α and Downregulation of Microglial Activation by Alpha-Lipoic Acid and Etanercept Protect Rat Brain Against Ischemic Stroke.

    Science.gov (United States)

    Wu, Ming-Hsiu; Huang, Chao-Ching; Chio, Chung-Ching; Tsai, Kuen-Jer; Chang, Ching-Ping; Lin, Nan-Kai; Lin, Mao-Tsun

    2016-09-01

    Ischemic stroke, caused by obstruction of blood flow to the brain, would initiate microglia activation which contributes to neuronal damage. Therefore, inhibition of microglia-mediated neuroinflammation could be a therapeutic strategy for ischemic stroke. This study was aimed to elucidate the anti-inflammatory effects of alpha-lipoic acid and etanercept given either singly or in combination in rats subjected to middle cerebral artery occlusion. Both α-lipoic acid and etanercept markedly reduced cerebral infarct, blood-brain barrier disruption, and neurological motor deficits with the former drug being more effective with the dosage used. Furthermore, when used in combination, the reduction was more substantial. Remarkably, a greater diminution in the serum levels of tumor necrosis factor-alpha as well as the brain levels of microglial activation (e.g., microgliosis, amoeboid microglia, and microglial overexpression of tumor necrosis factor-α) was observed with the combined drug treatment as compared to the drugs given separately. We conclude that inhibition of peripheral tumor necrosis factor-alpha as well as downregulation of brain microglial activation by alpha-lipoic acid or etanercept protect rat brain against ischemic stroke. Moreover, when both drugs were used in combination, the stroke recovery was promoted more extensively.

  15. Inhibitors of Microglial Neurotoxicity: Focus on Natural Products

    Directory of Open Access Journals (Sweden)

    Kyoungho Suk

    2011-01-01

    Full Text Available Microglial cells play a dual role in the central nervous system as they have both neurotoxic and neuroprotective effects. Uncontrolled and excessive activation of microglia often contributes to inflammation-mediated neurodegeneration. Recently, much attention has been paid to therapeutic strategies aimed at inhibiting neurotoxic microglial activation. Pharmacological inhibitors of microglial activation are emerging as a result of such endeavors. In this review, natural products-based inhibitors of microglial activation will be reviewed. Potential neuroprotective activity of these compounds will also be discussed. Future works should focus on the discovery of novel drug targets that specifically mediate microglial neurotoxicity rather than neuroprotection. Development of new drugs based on these targets may require a better understanding of microglial biology and neuroinflammation at the molecular, cellular, and systems levels.

  16. Curcumin is a potent modulator of microglial gene expression and migration

    Directory of Open Access Journals (Sweden)

    Aslanidis Alexander

    2011-09-01

    Signal transducer and activator of transcription 1 was reduced in LPS-triggered microglia. These transcriptional changes in curcumin-treated LPS-primed microglia also lead to decreased neurotoxicity with reduced apoptosis of 661W photoreceptor cultures. Conclusions Collectively, our results suggest that curcumin is a potent modulator of the microglial transcriptome. Curcumin attenuates microglial migration and triggers a phenotype with anti-inflammatory and neuroprotective properties. Thus, curcumin could be a nutraceutical compound to develop immuno-modulatory and neuroprotective therapies for the treatment of various neurodegenerative disorders.

  17. “P2X7 Receptor Activation Regulates Microglial Cell Death During Oxygen-Glucose Deprivation”

    OpenAIRE

    Eyo, Ukpong B.; Miner, Sam A.; Ahlers, Katelin E.; Wu, Long-Jun; Dailey, Michael E.

    2013-01-01

    Brain-resident microglia may promote tissue repair following stroke but, like other cells, they are vulnerable to ischemia. Here we identify mechanisms involved in microglial ischemic vulnerability. Using time-lapse imaging of cultured BV2 microglia, we show that simulated ischemia (oxygen-glucose deprivation; OGD) induces BV2 microglial cell death. Removal of extracellular Ca2+ or application of Brilliant Blue G (BBG), a potent P2X7 receptor (P2X7R) antagonist, protected BV2 microglia from d...

  18. Statins attenuate polymethylmethacrylate-mediated monocyte activation.

    LENUS (Irish Health Repository)

    Laing, Alan J

    2012-02-03

    BACKGROUND: Periprosthetic osteolysis precipitates aseptic loosening of components, increases the risk of periprosthetic fracture and, through massive bone loss, complicates revision surgery and ultimately is the primary cause for failure of joint arthroplasty. The anti-inflammatory properties of HMG-CoA reductase inhibitors belonging to the statin family are well recognized. We investigated a possible role for status in initiating the first stage of the osteolytic cycle, namely monocytic activation. METHODS: We used an in vitro model of the human monocyte\\/macrophage inflammatory response to poly-methylmethacrylate (PMMA) particles after pretreat-ing cells with cerivastatin, a potent member of the statin family. Cell activation based upon production of TNF-alpha and MCP-1 cytokines was analyzed and the intracellular Raf-MEK-ERK signal transduction pathway was evaluated using western blot analysis, to identify its role in cell activation and in any cerivastatin effects observed. RESULTS: We found that pretreatment with cerivastatin significantly abrogates the production of inflammatory cytokines TNF-alpha and MCP-1 by human monocytes in response to polymethylmethacrylate particle activation. This inflammatory activation and attenuation appear to be mediated through the intracellular Raf-MEK-ERK pathway. INTERPRETATION: We propose that by intervening at the upstream activation stage, subsequent osteoclast activation and osteolysis can be suppressed. We believe that the anti-inflammatory properties of statins may potentially play a prophylactic role in the setting of aseptic loosening, and in so doing increase implant longevity.

  19. Anandamide, Acting via CB2 Receptors, Alleviates LPS-Induced Neuroinflammation in Rat Primary Microglial Cultures

    Directory of Open Access Journals (Sweden)

    Natalia Malek

    2015-01-01

    Full Text Available Microglial activation is a polarized process divided into potentially neuroprotective phenotype M2 and neurotoxic phenotype M1, predominant during chronic neuroinflammation. Endocannabinoid system provides an attractive target to control the balance between microglial phenotypes. Anandamide as an immune modulator in the central nervous system acts via not only cannabinoid receptors (CB1 and CB2 but also other targets (e.g., GPR18/GPR55. We studied the effect of anandamide on lipopolysaccharide-induced changes in rat primary microglial cultures. Microglial activation was assessed based on nitric oxide (NO production. Analysis of mRNA was conducted for M1 and M2 phenotype markers possibly affected by the treatment. Our results showed that lipopolysaccharide-induced NO release in microglia was significantly attenuated, with concomitant downregulation of M1 phenotypic markers, after pretreatment with anandamide. This effect was not sensitive to CB1 or GPR18/GPR55 antagonism. Administration of CB2 antagonist partially abolished the effects of anandamide on microglia. Interestingly, administration of a GPR18/GPR55 antagonist by itself suppressed NO release. In summary, we showed that the endocannabinoid system plays a crucial role in the management of neuroinflammation by dampening the activation of an M1 phenotype. This effect was primarily controlled by the CB2 receptor, although functional cross talk with GPR18/GPR55 may occur.

  20. Identification of a fatty acid binding protein4-UCP2 axis regulating microglial mediated neuroinflammation.

    Science.gov (United States)

    Duffy, Cayla M; Xu, Hongliang; Nixon, Joshua P; Bernlohr, David A; Butterick, Tammy A

    2017-02-16

    Hypothalamic inflammation contributes to metabolic dysregulation and the onset of obesity. Dietary saturated fats activate microglia via a nuclear factor-kappa B (NFκB) mediated pathway to release pro-inflammatory cytokines resulting in dysfunction or death of surrounding neurons. Fatty acid binding proteins (FABPs) are lipid chaperones regulating metabolic and inflammatory pathways in response to fatty acids. Loss of FABP4 in peripheral macrophages via either molecular or pharmacologic mechanisms results in reduced obesity-induced inflammation via a UCP2-redox based mechanism. Despite the widespread appreciation for the role of FABP4 in mediating peripheral inflammation, the expression of FABP4 and a potential FABP4-UCP2 axis regulating microglial inflammatory capacity is largely uncharacterized. To that end, we hypothesized that microglial cells express FABP4 and that inhibition would upregulate UCP2 and attenuate palmitic acid (PA)-induced pro-inflammatory response. Gene expression confirmed expression of FABP4 in brain tissue lysate from C57Bl/6J mice and BV2 microglia. Treatment of microglial cells with an FABP inhibitor (HTS01037) increased expression of Ucp2 and arginase in the presence or absence of PA. Moreover, cells exposed to HTS01037 exhibited attenuated expression of inducible nitric oxide synthase (iNOS) compared to PA alone indicating reduced NFκB signaling. Hypothalamic tissue from mice lacking FABP4 exhibit increased UCP2 expression and reduced iNOS, tumor necrosis factor-alpha (TNF-α), and ionized calcium-binding adapter molecule 1 (Iba1; microglial activation marker) expression compared to wild type mice. Further, this effect is negated in microglia lacking UCP2, indicating the FABP4-UCP2 axis is pivotal in obesity induced neuroinflammation. To our knowledge, this is the first report demonstrating a FABP4-UCP2 axis with the potential to modulate the microglial inflammatory response.

  1. Radix Scrophulariae extracts (harpagoside) suppresses hypoxia-induced microglial activation and neurotoxicity

    OpenAIRE

    Sheu, Shiow-Yunn; Hong, Yi-Wen; Sun, Jui-Sheng; Liu, Man-Hai; Chen, Ching-Yun; Ke, Cherng-Jyh

    2015-01-01

    Background Hypoxia could lead to microglia activation and inflammatory mediators’ overproduction. These inflammatory molecules could amplify the neuroinflammatory process and exacerbate neuronal injury. The aim of this study is to find out whether harpagoside could reduce hypoxia-induced microglia activation. Methods In this study, primary microglia cells harvested from neonatal ICR mice were activated by exposure to hypoxia (1 % O2 for 3 h). Harpagoside had been shown to be no cytotoxicity o...

  2. [The microglial activation and the expression of heat shock protein 27 through the propagation pathway of kainic acid-induced hippocampal seizure in the rat].

    Science.gov (United States)

    Taniwaki, Y

    2001-02-01

    We studied activation of microglia and expression of the 27 kDa heat shock protein (HSP27) in the brain during kainic acid-induced acute hippocampal seizures in rats. The microglial activation was observed at 6 hrs after seizure induction, but the expression of HSP27 was delayed until 3 days after seizure induction. The gross anatomical distributions of the two phenomena in the brain structures were almost identical, being localized not only in the primary focus at the dorsal hippocampus ipsilateral to the kainic acid injection, but also in selected remote brain structures that was highly consistent with the propagation pathways of the hippocampal seizure as detected previously by metabolic mapping. These structures included the hippocampus, amygdala, entorhinal cortex, piriform cortex, sensorimotor cortex, hypothalamus and thalamus. A close observation, however, revealed a difference in distribution of the two phenomena in the layers of the contralateral hippocampus: The HSP27 expression showed a layer-specific distribution, being localized selectively in the molecular layer and hilus of the dentate gyrus, and the radiatum and molecular layers of the CA-3 subfield suggesting the expression in the neuropil. On the other hand, the distribution of the microglial activation was non-specific to the layers, being scattered in the whole regions of the dorsal hippocampus. There were no apparent morphological changes in the neurons in these structures except for the ipsilateral dorsal hippocampus, by light microscopic examinations with hematoxylin-eosin staining. These findings thus indicate that activation of microglial cells and expression of HSP27 occur transsynaptically by epileptic activities through the propagation pathways of hippocampal seizure and suggest that these phenomena may reflect a part of early microenvironmental alterations in epileptic brain.

  3. Preventive effects of a fermented dairy product against Alzheimer's disease and identification of a novel oleamide with enhanced microglial phagocytosis and anti-inflammatory activity.

    Directory of Open Access Journals (Sweden)

    Yasuhisa Ano

    Full Text Available Despite the ever-increasing number of patients with dementia worldwide, fundamental therapeutic approaches to this condition have not been established. Epidemiological studies suggest that intake of fermented dairy products prevents cognitive decline in the elderly. However, the active compounds responsible for the effect remain to be elucidated. The present study aims to elucidate the preventive effects of dairy products on Alzheimer's disease and to identify the responsible component. Here, in a mouse model of Alzheimer's disease (5xFAD, intake of a dairy product fermented with Penicillium candidum had preventive effects on the disease by reducing the accumulation of amyloid β (Aβ and hippocampal inflammation (TNF-α and MIP-1α production, and enhancing hippocampal neurotrophic factors (BDNF and GDNF. A search for preventive substances in the fermented dairy product identified oleamide as a novel dual-active component that enhanced microglial Aβ phagocytosis and anti-inflammatory activity towards LPS stimulation in vitro and in vivo. During the fermentation, oleamide was synthesized from oleic acid, which is an abundant component of general dairy products owing to lipase enzymatic amidation. The present study has demonstrated the preventive effect of dairy products on Alzheimer's disease, which was previously reported only epidemiologically. Moreover, oleamide has been identified as an active component of dairy products that is considered to reduce Aβ accumulation via enhanced microglial phagocytosis, and to suppress microglial inflammation after Aβ deposition. Because fermented dairy products such as camembert cheese are easy to ingest safely as a daily meal, their consumption might represent a preventive strategy for dementia.

  4. TRPM2 contributes to LPC-induced intracellular Ca(2+) influx and microglial activation.

    Science.gov (United States)

    Jeong, Heejin; Kim, Yong Ho; Lee, Yunsin; Jung, Sung Jun; Oh, Seog Bae

    2017-02-20

    Microglia are the resident immune cells which become activated in some pathological conditions in central nervous system (CNS). Lysophosphatidylcholine (LPC), an endogenous inflammatory phospholipid, is implicated in immunomodulatory function of glial cells in the CNS. Although several studies uncovered that LPC induces intracellular Ca(2+) influx and morphologic change in microglia, there is still no direct evidence showing change of phosphorylation of mitogen-activated protein kinase (MAPK) p38 (p-p38), a widely used microglia activation marker, by LPC. Furthermore, the cellular mechanism of LPC-induced microglia activation remains unknown. In this study, we found that LPC induced intracellular Ca(2+) increase in primary cultured microglia, which was blocked in the presence of Gd(3+), non-selective transient receptor potential (TRP) channel blocker. RT-PCR and whole cell patch clamp recordings revealed molecular and functional expression of TRP melastatin 2 (TRPM2) in microglia. Using western blotting, we also observed that LPC increased phosphorylation of p38 MAPK, and the increase of p-p38 expression is also reversed in TRPM2-knockout (KO) microglia. Moreover, LPC induced membrane trafficking of TRPM2 and intrathecal injection of LPC increased Iba-1 immunoreactivity in the spinal cord, which were significantly reduced in KO mice. In addition, LPC-induced intracellular Ca(2+) increase and inward currents were abolished in TRPM2-KO microglia. Taken together, our results suggest that LPC induces intracellular Ca(2+) influx and increases phosphorylation of p38 MAPK via TRPM2, which in turn activates microglia.

  5. Microglial activation in Parkinson’s disease using [18F]-FEPPA

    OpenAIRE

    Ghadery, Christine; Koshimori, Yuko; Coakeley, Sarah; Harris, Madeleine; Rusjan, Pablo; Kim, Jinhee; Houle, Sylvain; Antonio P. Strafella

    2017-01-01

    Background Neuroinflammatory processes including activated microglia have been reported to play an important role in Parkinson’s disease (PD). Increased expression of translocator protein (TSPO) has been observed after brain injury and inflammation in neurodegenerative diseases. Positron emission tomography (PET) radioligand targeting TSPO allows for the quantification of neuroinflammation in vivo. Methods Based on the genotype of the rs6791 polymorphism in the TSPO gene, we included 25 mixed...

  6. GDNF selectively induces microglial activation and neuronal survival in CA1/CA3 hippocampal regions exposed to NMDA insult through Ret/ERK signalling.

    Directory of Open Access Journals (Sweden)

    Francesca Boscia

    Full Text Available The glial cell line-derived neurotrophic factor (GDNF is a potent survival factor for several neuronal populations in different brain regions, including the hippocampus. However, no information is available on the: (1 hippocampal subregions involved in the GDNF-neuroprotective actions upon excitotoxicity, (2 identity of GDNF-responsive hippocampal cells, (3 transduction pathways involved in the GDNF-mediated neuroprotection in the hippocampus. We addressed these questions in organotypic hippocampal slices exposed to GDNF in presence of N-methyl-D-aspartate (NMDA by immunoblotting, immunohistochemistry, and confocal analysis. In hippocampal slices GDNF acts through the activation of the tyrosine kinase receptor, Ret, without involving the NCAM-mediated pathway. Both Ret and ERK phosphorylation mainly occurred in the CA3 region where the two activated proteins co-localized. GDNF protected in a greater extent CA3 rather than CA1 following NMDA exposure. This neuroprotective effect targeted preferentially neurons, as assessed by NeuN staining. GDNF neuroprotection was associated with a significant increase of Ret phosphorylation in both CA3 and CA1. Interestingly, confocal images revealed that upon NMDA exposure, Ret activation occurred in microglial cells in the CA3 and CA1 following GDNF exposure. Collectively, this study shows that CA3 and CA1 hippocampal regions are highly responsive to GDNF-induced Ret activation and neuroprotection, and suggest that, upon excitotoxicity, such neuroprotection involves a GDNF modulation of microglial cell activity.

  7. Novel point mutations attenuate autotaxin activity

    Directory of Open Access Journals (Sweden)

    Stracke Mary L

    2009-02-01

    Full Text Available Abstract Background The secreted enzyme autotaxin (ATX stimulates tumor cell migration, tumorigenesis, angiogenesis, and metastasis. ATX hydrolyzes nucleotides, but its hydrolysis of lysophospholipids to produce lysophosphatidic acid (LPA accounts for its biological activities. ATX has been identified only as a constitutively active enzyme, and regulation of its activity is largely unexplored. In spite of its presence in plasma along with abundant putative substrate LPC, the product LPA is found in plasma at unexpectedly low concentrations. It is plausible that the LPA-producing activity of ATX is regulated by its expression and by access to substrate(s. For this reason studying the interaction of enzyme with substrate is paramount to understanding the regulation of LPA production. Results In this study we determine ATX hydrolytic activities toward several artificial and natural substrates. Two novel point mutations near the enzyme active site (H226Q and H434Q confer attenuated activity toward all substrates tested. The Vmax for LPC compounds depends upon chain length and saturation; but this order does not differ among wild type and mutants. However the mutant forms show disproportionately low activity toward two artificial substrates, pNpTMP and FS-3. The mutant forms did not significantly stimulate migration responses at concentrations that produced a maximum response for WT-ATX, but this defect could be rescued by inclusion of exogenous LPC. Conclusion H226Q-ATX and H434Q-ATX are the first point mutations of ATX/NPP2 demonstrated to differentially impair substrate hydrolysis, with hydrolysis of artificial substrates being disproportionately lower than that of LPC. This implies that H226 and H434 are important for substrate interaction. Assays that rely on hydrolyses of artificial substrates (FS-3 and pNpTMP, or that rely on hydrolysis of cell-derived substrate, might fail to detect certain mutated forms of ATX that are nonetheless capable of

  8. TAM receptors affect adult brain neurogenesis by negative regulation of microglial cell activation.

    Science.gov (United States)

    Ji, Rui; Tian, Shifu; Lu, Helen J; Lu, Qingjun; Zheng, Yan; Wang, Xiaomin; Ding, Jixiang; Li, Qiutang; Lu, Qingxian

    2013-12-15

    TAM tyrosine kinases play multiple functional roles, including regulation of the target genes important in homeostatic regulation of cytokine receptors or TLR-mediated signal transduction pathways. In this study, we show that TAM receptors affect adult hippocampal neurogenesis and loss of TAM receptors impairs hippocampal neurogenesis, largely attributed to exaggerated inflammatory responses by microglia characterized by increased MAPK and NF-κB activation and elevated production of proinflammatory cytokines that are detrimental to neuron stem cell proliferation and neuronal differentiation. Injection of LPS causes even more severe inhibition of BrdU incorporation in the Tyro3(-/-)Axl(-/-)Mertk(-/-) triple-knockout (TKO) brains, consistent with the LPS-elicited enhanced expression of proinflammatory mediators, for example, IL-1β, IL-6, TNF-α, and inducible NO synthase, and this effect is antagonized by coinjection of the anti-inflammatory drug indomethacin in wild-type but not TKO brains. Conditioned medium from TKO microglia cultures inhibits neuron stem cell proliferation and neuronal differentiation. IL-6 knockout in Axl(-/-)Mertk(-/-) double-knockout mice overcomes the inflammatory inhibition of neurogenesis, suggesting that IL-6 is a major downstream neurotoxic mediator under homeostatic regulation by TAM receptors in microglia. Additionally, autonomous trophic function of the TAM receptors on the proliferating neuronal progenitors may also promote progenitor differentiation into immature neurons.

  9. Triptolide, a Chinese herbal extract, protects dopaminergic neurons from inflammation-mediated damage through inhibition of microglial activation.

    Science.gov (United States)

    Li, Feng-Qiao; Lu, Xiu-Zhi; Liang, Xi-Bin; Zhou, Hui-Fang; Xue, Bing; Liu, Xian-Yu; Niu, Dong-Bin; Han, Ji-Sheng; Wang, Xiao-Min

    2004-03-01

    Mounting lines of evidence have suggested that brain inflammation participates in the pathogenesis of Parkinson's disease. Triptolide is one of the major active components of Chinese herb Tripterygium wilfordii Hook F, which possesses potent anti-inflammatory and immunosuppressive properties. We found that triptolide concentration-dependently attenuated the lipopolysaccharide (LPS)-induced decrease in [3H]dopamine uptake and loss of tyrosine hydroxylase-immunoreactive neurons in primary mesencephalic neuron/glia mixed culture. Triptolide also blocked LPS-induced activation of microglia and excessive production of TNFalpha and NO. Our data suggests that triptolide may protect dopaminergic neurons from LPS-induced injury and its efficiency in inhibiting microglia activation may underlie the mechanism.

  10. Human microglial cells synthesize albumin in brain.

    Directory of Open Access Journals (Sweden)

    Sung-Min Ahn

    Full Text Available Albumin, an abundant plasma protein with multifunctional properties, is mainly synthesized in the liver. Albumin has been implicated in Alzheimer's disease (AD since it can bind to and transport amyloid beta (Abeta, the causative agent of AD; albumin is also a potent inhibitor of Abeta polymerization. Despite evidence of non-hepatic transcription of albumin in many tissues including kidney and pancreas, non-hepatic synthesis of albumin at the protein level has been rarely confirmed. In a pilot phase study of Human Brain Proteome Project, we found evidence that microglial cells in brain may synthesize albumin. Here we report, for the first time, the de novo synthesis of albumin in human microglial cells in brain. Furthermore, we demonstrate that the synthesis and secretion of albumin from microglial cells is enhanced upon microglial activation by Abeta(1-42- or lipopolysaccharide (LPS-treatment. These data indicate that microglial cells may play a beneficial role in AD by secreting albumin that not only inhibits Abeta polymerization but also increases its clearance.

  11. Fibrillar beta-amyloid peptide Aβ1–40 activates microglial proliferation via stimulating TNF-α release and H2O2 derived from NADPH oxidase: a cell culture study

    Directory of Open Access Journals (Sweden)

    Sharpe Martyn

    2006-09-01

    Full Text Available Abstract Background Alzheimer's disease is characterized by the accumulation of neuritic plaques, containing activated microglia and β-amyloid peptides (Aβ. Fibrillar Aβ can activate microglia, resulting in production of toxic and inflammatory mediators like hydrogen peroxide, nitric oxide, and cytokines. We have recently found that microglial proliferation is regulated by hydrogen peroxide derived from NADPH oxidase. Thus, in this study, we investigated whether Aβ can stimulate microglial proliferation and cytokine production via activation of NADPH oxidase to produce hydrogen peroxide. Methods Primary mixed glial cultures were prepared from the cerebral cortices of 7-day-old Wistar rats. At confluency, microglial cells were isolated by tapping, replated, and treated either with or without Aβ. Hydrogen peroxide production by cells was measured with Amplex Red and peroxidase. Microglial proliferation was assessed under a microscope 0, 24 and 48 hours after plating. TNF-α and IL-1β levels in the culture medium were assessed by ELISA. Results We found that 1 μM fibrillar (but not soluble Aβ1–40 peptide induced microglial proliferation and caused release of hydrogen peroxide, TNF-α and IL-1β from microglial cells. Proliferation was prevented by the NADPH oxidase inhibitor apocynin (10 μM, by the hydrogen peroxide-degrading enzyme catalase (60 U/ml, and by its mimetics EUK-8 and EUK-134 (20 μM; as well as by an antibody against TNF-α and by a soluble TNF receptor inhibitor. Production of TNF-α and IL-1β, measured after 24 hours of Aβ treatment, was also prevented by apocynin, catalase and EUKs, but the early release (measured after 1 hour of Aβ treatment of TNF-α was insensitive to apocynin or catalase. Conclusion These results indicate that Aβ1–40-induced microglial proliferation is mediated both by microglial release of TNF-α and production of hydrogen peroxide from NADPH oxidase. This suggests that TNF-α and NADPH

  12. Proinflammatory-activated glioma cells induce a switch in microglial polarization and activation status, from a predominant M2b phenotype to a mixture of M1 and M2a/B polarized cells

    Directory of Open Access Journals (Sweden)

    Lucia Lisi

    2014-05-01

    Full Text Available Malignant gliomas are primary brain tumors characterized by morphological and genetic complexities, as well as diffuse infiltration into normal brain parenchyma. Within gliomas, microglia/macrophages represent the largest tumor-infiltrating cell population, contributing by at least one-third to the total tumor mass. Bi-directional interactions between glioma cells and microglia may therefore play an important role on tumor growth and biology. In the present study, we have characterized the influence of glioma-soluble factors on microglial function, comparing the effects of media harvested under basal conditions with those of media obtained after inducing a pro-inflammatory activation state in glioma cells. We found that microglial cells undergo a different pattern of activation depending on the stimulus; in the presence of activated glioma-derived factors, i.e. a condition mimicking the late stage of pathology, microglia presents as a mixture of polarization phenotypes (M1 and M2a/b, with up-regulation of iNOS (inducible nitric oxide synthase, ARG (arginase and IL (interleukine-10. At variance, microglia exposed to basal glioma-derived factors, i.e. a condition resembling the early stage of pathology, shows a more specific pattern of activation, with increased M2b polarization status and up-regulation of IL-10 only. As far as viability and cell proliferation are concerned, both LI-CM [LPS (lipopolysaccharide–IFNγ (interferon γ conditioned media] and C-CM (control-conditioned media induce similar effects on microglial morphology. Finally, in human glioma tissue obtained from surgical resection of patients with IV grade glioblastoma, we detected a significant amount of CD68 positive cells, which is a marker of macrophage/microglial phagocytic activity, suggesting that in vitro findings presented here might have a relevance in the human pathology as well.

  13. Increase of TREM2 during Aging of an Alzheimer’s Disease Mouse Model Is Paralleled by Microglial Activation and Amyloidosis

    Science.gov (United States)

    Brendel, Matthias; Kleinberger, Gernot; Probst, Federico; Jaworska, Anna; Overhoff, Felix; Blume, Tanja; Albert, Nathalie L.; Carlsen, Janette; Lindner, Simon; Gildehaus, Franz Josef; Ozmen, Laurence; Suárez-Calvet, Marc; Bartenstein, Peter; Baumann, Karlheinz; Ewers, Michael; Herms, Jochen; Haass, Christian; Rominger, Axel

    2017-01-01

    Heterozygous missense mutations in the triggering receptor expressed on myeloid cells 2 (TREM2) have been reported to significantly increase the risk of developing Alzheimer’s disease (AD). Since TREM2 is specifically expressed by microglia in the brain, we hypothesized that soluble TREM2 (sTREM2) levels may increase together with in vivo biomarkers of microglial activity and amyloidosis in an AD mouse model as assessed by small animal positron-emission-tomography (μPET). In this cross-sectional study, we examined a strong amyloid mouse model (PS2APP) of four age groups by μPET with [18F]-GE180 (glial activation) and [18F]-florbetaben (amyloidosis), followed by measurement of sTREM2 levels and amyloid levels in the brain. Pathology affected brain regions were compared between tracers (dice similarity coefficients) and pseudo-longitudinally. μPET results of both tracers were correlated with terminal TREM2 levels. The brain sTREM2 levels strongly increased with age of PS2APP mice (5 vs. 16 months: +211%, p < 0.001), and correlated highly with μPET signals of microglial activity (R = 0.89, p < 0.001) and amyloidosis (R = 0.92, p < 0.001). Dual μPET enabled regional mapping of glial activation and amyloidosis in the mouse brain, which progressed concertedly leading to a high overlap in aged PS2APP mice (dice similarity 67%). Together, these results substantiate the use of in vivo μPET measurements in conjunction with post mortem sTREM2 in future anti-inflammatory treatment trials. Taking human data into account sTREM2 may increase during active amyloid deposition.

  14. Pomegranate polyphenols and extract inhibit nuclear factor of activated T-cell activity and microglial activation in vitro and in a transgenic mouse model of Alzheimer disease.

    Science.gov (United States)

    Rojanathammanee, Lalida; Puig, Kendra L; Combs, Colin K

    2013-05-01

    Alzheimer disease (AD) brain is characterized by extracellular plaques of amyloid β (Aβ) peptide with reactive microglia. This study aimed to determine whether a dietary intervention could attenuate microgliosis. Memory was assessed in 12-mo-old male amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice via Barnes maze testing followed by division into either a control-fed group provided free access to normal chow and water or a treatment group provided free access to normal chow and drinking water supplemented with pomegranate extract (6.25 mL/L) for 3 mo followed by repeat Barnes maze testing for both groups. Three months of pomegranate feeding decreased the path length to escape of mice compared with their initial 12-mo values (P polyphenol components of pomegranate extract, punicalagin and ellagic acid, attenuated NFAT activity in a reporter cell line (P < 0.05) and decreased Aβ-stimulated TNF-α secretion by murine microglia (P < 0.05). These data indicate that dietary pomegranate produces brain antiinflammatory effects that may attenuate AD progression.

  15. Silver and gold nanoparticles exposure to in vitro cultured retina--studies on nanoparticle internalization, apoptosis, oxidative stress, glial- and microglial activity.

    Science.gov (United States)

    Söderstjerna, Erika; Bauer, Patrik; Cedervall, Tommy; Abdshill, Hodan; Johansson, Fredrik; Johansson, Ulrica Englund

    2014-01-01

    The complex network of neuronal cells in the retina makes it a potential target of neuronal toxicity--a risk factor for visual loss. With growing use of nanoparticles (NPs) in commercial and medical applications, including ophthalmology, there is a need for reliable models for early prediction of NP toxicity in the eye and retina. Metal NPs, such as gold and silver, gain much of attention in the ophthalmology community due to their potential to cross the barriers of the eye. Here, NP uptake and signs of toxicity were investigated after exposure to 20 and 80 nm Ag- and AuNPs, using an in vitro tissue culture model of the mouse retina. The model offers long-term preservation of retinal cell types, numbers and morphology and is a controlled system for delivery of NPs, using serum-free defined culture medium. AgNO3-treatment was used as control for toxicity caused by silver ions. These end-points were studied; gross morphological organization, glial activity, microglial activity, level of apoptosis and oxidative stress, which are all well described as signs of insult to neural tissue. TEM analysis demonstrated cellular- and nuclear uptake of all NP types in all neuronal layers of the retina. Htx-eosin staining showed morphological disruption of the normal complex layered retinal structure, vacuole formation and pyknotic cells after exposure to all Ag- and AuNPs. Significantly higher numbers of apoptotic cells as well as an increased number of oxidative stressed cells demonstrated NP-related neuronal toxicity. NPs also caused increased glial staining and microglial cell activation, typical hallmarks of neural tissue insult. This study demonstrates that low concentrations of 20 and 80 nm sized Ag- and AuNPs have adverse effects on the retina, using an organotypic retina culture model. Our results motivate careful assessment of candidate NP, metallic or-non-metallic, to be used in neural systems for therapeutic approaches.

  16. Evaluation of CLINDE as potent translocator protein (18 kDa) SPECT radiotracer reflecting the degree of neuroinflammation in a rat model of microglial activation

    Energy Technology Data Exchange (ETDEWEB)

    Arlicot, Nicolas; Duval, Stephanie; Guilloteau, Denis; Chalon, Sylvie [Inserm, U930, Tours (France); Universite Francois Rabelais, Tours (France); CHRU de Tours, Tours (France); Katsifis, Andrew; Mattner, Filomena [Australian Nuclear Science and Technology Organisation, Radiopharmaceuticals Research Institute, Sydney (Australia); Garreau, Lucette; Vergote, Jackie; Bodard, Sylvie [Inserm, U930, Tours (France); Universite Francois Rabelais, Tours (France)

    2008-12-15

    The translocator protein (TSPO; 18 kDa), the new name of the peripheral-type benzodiazepine receptor, is localised in mitochondria of glial cells and expressed in very low concentrations in normal brain. Their expression rises after microglial activation following brain injury. Accordingly, TSPO are potential targets to evaluate neuroinflammatory changes in a variety of CNS disorders. To date, only a few effective tools are available to explore TSPO by SPECT. We characterised here 6-chloro-2-(4'iodophenyl)-3-(N,N-diethyl)-imidazo[1,2-a]pyridine-3-acetamide or CLINDE in a rat model with different stages of excitotoxic lesion. Excitotoxicity was induced in male Wistar rats by unilateral intrastriatal injection of different amounts of quinolinic acid (75, 150 or 300 nmol). Six days later, two groups of rats (n = 5-6/group) were i.v. injected with [{sup 125}I]-CLINDE (0.4 MBq); one group being pre-injected with PK11195 (5 mg/kg). Brains were removed 30 min after tracer injection and the radioactivity of cerebral areas measured. Complementary ex vivo autoradiography, in vitro autoradiography ([{sup 3}H]-PK11195) and immunohistochemical studies (OX-42) were performed on brain sections. In the control group, [{sup 125}I]-CLINDE binding was significantly higher (p < 0.001) in lesioned than that in intact side. This binding disappeared in rats pre-treated with PK11195 (p<0.001), showing specific binding of CLINDE to TSPO. Ex vivo and in vitro autoradiographic studies and immunohistochemistry were consistent with this, revealing a spatial correspondence between radioactivity signal and activated microglia. Regression analysis yielded a positive relation between the ligand binding and the degree of neuroinflammation. These results demonstrate that CLINDE is suitable for TSPO in vivo SPECT imaging to explore their involvement in neurodegenerative disorders associated with microglial activation. (orig.)

  17. Inflammatory Regulation by Driving Microglial M2 Polarization: Neuroprotective Effects of Cannabinoid Receptor-2 Activation in Intracerebral Hemorrhage

    Science.gov (United States)

    Lin, Li; Yihao, Tao; Zhou, Feng; Yin, Niu; Qiang, Tan; Haowen, Zheng; Qianwei, Chen; Jun, Tang; Yuan, Zhang; Gang, Zhu; Hua, Feng; Yunfeng, Yang; Zhi, Chen

    2017-01-01

    The cannabinoid receptor-2 (CB2R) was initially thought to be the “peripheral cannabinoid receptor.” Recent studies, however, have documented CB2R expression in the brain in both glial and neuronal cells, and increasing evidence suggests an important role for CB2R in the central nervous system inflammatory response. Intracerebral hemorrhage (ICH), which occurs when a diseased cerebral vessel ruptures, accounts for 10–15% of all strokes. Although surgical techniques have significantly advanced in the past two decades, ICH continues to have a high mortality rate. The aim of this study was to investigate the therapeutic effects of CB2R stimulation in acute phase after experimental ICH in rats and its related mechanisms. Data showed that stimulation of CB2R using a selective agonist, JWH133, ameliorated brain edema, brain damage, and neuron death and improved neurobehavioral outcomes in acute phase after ICH. The neuroprotective effects were prevented by SR144528, a selective CB2R inhibitor. Additionally, JWH133 suppressed neuroinflammation and upregulated the expression of microglial M2-associated marker in both gene and protein level. Furthermore, the expression of phosphorylated cAMP-dependent protein kinase (pPKA) and its downstream effector, cAMP-response element binding protein (CREB), were facilitated. Knockdown of CREB significantly inversed the increase of M2 polarization in microglia, indicating that the JWH133-mediated anti-inflammatory effects are closely associated with PKA/CREB signaling pathway. These findings demonstrated that CB2R stimulation significantly protected the brain damage and suppressed neuroinflammation by promoting the acquisition of microglial M2 phenotype in acute stage after ICH. Taken together, this study provided mechanism insight into neuroprotective effects by CB2R stimulation after ICH. PMID:28261199

  18. Regulation of Microglial Phagocytosis by RhoA/ROCK-Inhibiting Drugs.

    Science.gov (United States)

    Scheiblich, Hannah; Bicker, Gerd

    2017-04-01

    Inflammation within the central nervous system (CNS) is a major component of many neurodegenerative diseases. The underlying mechanisms of neuronal loss are not fully understood, but the activation of CNS resident phagocytic microglia seems to be a significant element contributing to neurodegeneration. At the onset of inflammation, high levels of microglial phagocytosis may serve as an essential prerequisite for creating a favorable environment for neuronal regeneration. However, the excessive and long-lasting activation of microglia and the augmented engulfment of neurons have been suggested to eventually govern widespread neurodegeneration. Here, we investigated in a functional assay of acute inflammation how the small GTPase RhoA and its main target the Rho kinase (ROCK) influence microglial phagocytosis of neuronal debris. Using BV-2 microglia and human NT2 model neurons, we demonstrate that the pain reliever Ibuprofen decreases RhoA activation and microglial phagocytosis of neuronal cell fragments. Inhibition of the downstream effector ROCK with the small-molecule agents Y-27632 and Fasudil reduces the engulfment of neuronal debris and attenuates the production of the inflammatory mediator nitric oxide during stimulation with lipopolysaccharide. Our results support a therapeutic potential for RhoA/ROCK-inhibiting agents as an effective treatment of excessive inflammation and the resulting progression of microglia-mediated neurodegeneration in the CNS.

  19. GBE50 Attenuates Inflammatory Response by Inhibiting the p38 MAPK and NF-κB Pathways in LPS-Stimulated Microglial Cells

    Directory of Open Access Journals (Sweden)

    Gai-ying He

    2014-01-01

    Full Text Available Overactivated microglia contribute to a variety of pathological conditions in the central nervous system. The major goal of the present study is to evaluate the potential suppressing effects of a new type of Ginko biloba extract, GBE50, on activated microglia which causes proinflammatory responses and to explore the underlying molecular mechanisms. Murine BV2 microglia cells, with or without pretreatmentof GBE50 at various concentrations, were activated by incubation with lipopolysaccharide (LPS. A series of biochemical and microscopic assays were performed to measure cell viability, cell morphology, release of tumor necrosis factor-α (TNF-α and interleukin-1β (IL-1β, and signal transduction via the p38 MAPK and nuclear factor-kappa B (NF-κB p65 pathways. We found that GBE50 pretreatment suppressed LPS-induced morphological changes in BV2 cells. Moreover, GBE50 treatment significantly reduced the release of proinflammatory cytokines, TNF-α and IL-1β, and inhibited the associated signal transduction through the p38 MAPK and NF-κB p65 pathways. These results demonstrated the anti-inflammatory effect of GBE50 on LPS-activated BV2 microglia cells, and indicated that GBE50 reduced the LPS-induced proinflammatory TNF-α and IL-1β release by inhibiting signal transduction through the NF-κB p65 and p38 MAPK pathways. Our findings reveal, at least in part, the molecular basis underlying the anti-inflammatory effects of GBE50.

  20. The PPAR-γ Agonist 15-Deoxy-Δ12,14-Prostaglandin J2 Attenuates Microglial Production of IL-12 Family Cytokines: Potential Relevance to Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Jihong Xu

    2008-01-01

    Full Text Available Accumulation of amyloid-β peptide (Aβ appears to contribute to the pathogenesis of Alzheimer's disease (AD. Therapeutic hope for the prevention or removal of Aβ deposits has been placed in strategies involving immunization against the Aβ peptide. Initial Aβ immunization studies in animal models of AD showed great promise. However, when this strategy was attempted in human subjects with AD, an unacceptable degree of meningoencephalitis occurred. It is generally believed that this adverse outcome resulted from a T-cell response to Aβ. Specifically, CD4+ Th1 and Th17 cells may contribute to severe CNS inflammation and limit the utility of Aβ immunization in the treatment of AD. Interleukin (IL-12 and IL-23 play critical roles in the development of Th1 and Th17 cells, respectively. In the present study, Aβ1−42 synergistically elevated the expression of IL-12 and IL-23 triggered by inflammatory activation of microglia, and the peroxisome proliferator-activated receptor (PPAR-γ agonist 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2 effectively blocked the elevation of these proinflammatory cytokines. Furthermore, 15d-PGJ2 suppressed the Aβ-related synergistic induction of CD14, MyD88, and Toll-like receptor 2, molecules that play critical roles in neuroinflammatory conditions. Collectively, these studies suggest that PPAR-γ agonists may be effective in modulating the development of AD.

  1. Paeoniflorin attenuates neuroinflammation and dopaminergic neurodegeneration in the MPTP model of Parkinson's disease by activation of adenosine A1 receptor.

    Science.gov (United States)

    Liu, Hua-Qing; Zhang, Wei-Yu; Luo, Xue-Ting; Ye, Yang; Zhu, Xing-Zu

    2006-06-01

    1. This study examined whether Paeoniflorin (PF), the major active components of Chinese herb Paeoniae alba Radix, has neuroprotective effect in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease (PD). 2. Subcutaneous administration of PF (2.5 and 5 mg kg(-1)) for 11 days could protect tyrosine hydroxylase (TH)-positive substantia nigra neurons and striatal nerve fibers from death and bradykinesia induced by four-dose injection of MPTP (20 mg kg(-1)) on day 8. 3. When given at 1 h after the last dose of MPTP, and then administered once a day for the following 3 days, PF (2.5 and 5 mg kg(-1)) also significantly attenuated the dopaminergic neurodegeneration in a dose-dependent manner. Post-treatment with PF (5 mg kg(-1)) significantly attenuated MPTP-induced proinflammatory gene upregulation and microglial and astrocytic activation. 4. Pretreatment with 0.3 mg kg(-1) 8-cyclopentyl-1,3-dipropylxanthine, an adenosine A1 receptor (A1AR) antagonist, 15 min before each dose of PF, reversed the neuroprotective and antineuroinflammatory effects of PF. 5. In conclusion, this study demonstrated that PF could reduce the MPTP-induced toxicity by inhibition of neuroinflammation by activation of the A1AR, and suggested that PF might be a valuable neuroprotective agent for the treatment of PD.

  2. Detection and quantification of remote microglial activation in rodent models of focal ischaemia using the TSPO radioligand CLINDE

    Energy Technology Data Exchange (ETDEWEB)

    Arlicot, Nicolas [Universite Francois Rabelais de Tours, CHRU de Tours (France). UMR Inserm U 930, CNRS ERL 3106; UFR Sciences Pharmaceutiques, Laboratoire de Biophysique, Tours (France); Petit, Edwige; Toutain, Jerome; Divoux, Didier; Roussel, Simon; Bernaudin, Myriam [Universite de Caen Basse-Normandie, Universite Paris-Descartes, CNRS, CEA CYCERON, Caen (France). Equipe CERVOxy ' ' Hypoxie et Physiopathologie cerebrovasculaire' ' , UMR 6232 CI-NAPS; Katsifis, Andrew [ANSTO, Radiopharmaceuticals Research Institute, Menai (Australia); Bodard, Sylvie; Guilloteau, Denis; Chalon, Sylvie [Universite Francois Rabelais de Tours, CHRU de Tours (France). UMR Inserm U 930, CNRS ERL 3106

    2010-12-15

    Neuroinflammation is involved in stroke pathophysiology and might be imaged using radioligands targeting the 18 kDa translocator protein (TSPO). We studied microglial reaction in brain areas remote from the primary lesion site in two rodent models of focal cerebral ischaemia (permanent or transient) using [{sup 125}I]-CLINDE, a promising TSPO single photon emission computed tomography radioligand. In a mouse model of permanent middle cerebral artery occlusion (MCAO), ex vivo autoradiographic studies demonstrated, besides in the ischaemic territory, accumulation of [{sup 125}I]-CLINDE in the ipsilateral thalamus with a binding that progressed up to 3 weeks after MCAO. [{sup 125}I]-CLINDE binding markedly decreased in animals pre-injected with either unlabelled CLINDE or PK11195, while no change was observed with flumazenil pre-treatment, demonstrating TSPO specificity. In rats subjected to transient MCAO, [{sup 125}I]-CLINDE binding in the ipsilateral thalamus and substantia nigra pars reticulata (SNr) was significantly higher than that in contralateral tissue. Moreover, [{sup 125}I]-CLINDE binding in the thalamus and SNr was quantitatively correlated to the ischaemic volume assessed by MRI in the cortex and striatum, respectively. Clinical consequences of secondary neuronal degeneration in stroke might be better treated thanks to the discrimination of neuronal processes using in vivo molecular imaging and potent TSPO radioligands like CLINDE to guide therapeutic interventions. (orig.)

  3. Neonatal intrahippocampal injection of lipopolysaccharide induces deficits in social behavior and prepulse inhibition and microglial activation in rats: Implication for a new schizophrenia animal model.

    Science.gov (United States)

    Zhu, Furong; Zhang, Lulu; Ding, Yu-qiang; Zhao, Jingping; Zheng, Yingjun

    2014-05-01

    Several lines of evidence have suggested that the dysregulation of immune system is involved in the pathogenesis of schizophrenia. Microglia are the resident macrophage of the brain and the major player in innate immunity in the brain. We hypothesized that microglia activation may be closely associated with the neuropathology of schizophrenia. Neonatal intrahippocampal injection of lipopolysaccharide (LPS), an activator of microglia, was performed in rats at postnatal day 7 (PD7), and they were separately treated with saline or minocycline for consecutive 3days. Behavioral changes (locomotor activity, social interaction and prepulse inhibition) were examined in adulthood, and the number of microglia was assessed using immunohistochemistry at PD9, PD21 and PD67. The adult rats in LPS-injected group showed obvious behavioral alterations (deficits in social behavior and prepulse inhibition) and a persistently dramatic increase of number of activated microglial cells in the hippocampus, cerebral cortex and thalamus compared to those in saline-injected group. Interestingly, pretreatment with minocycline could significantly rescue the behavioral deficits and prevent microglia activation. Our results suggest that neonatal intrahippocampal LPS injection may serve as a potential schizophrenia animal model, and inhibition of microglia activation may be a potential treatment strategy for schizophrenia.

  4. Isobavachalcone Attenuates MPTP-Induced Parkinson's Disease in Mice by Inhibition of Microglial Activation through NF-κB Pathway

    OpenAIRE

    Jing, Haoran; Wang, Shaoxia; Min WANG; Fu, Wenliang; Zhang, Chao; Xu, Donggang

    2017-01-01

    Parkinson's disease (PD) is a complex multi-system and age-related neurodegenerative disorder. The intervention targeting neuroinflammation in PD patients is one effective strategy to slow down or inhibit disease progression. Microglia-mediated inflammatory response plays an important role in Parkinson's, Alzheimer's and other cerebral diseases. Isobavachalcone is a main component of Chinese herb medicine Psoralea corylifolia, which function includes immunoregulation, anti-oxidation and the r...

  5. Coordinated role of voltage-gated sodium channels and the Na{sup +}/H{sup +} exchanger in sustaining microglial activation during inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Muhammad M. [Department of Environmental and Occupational Medicine and Environmental and Occupational Health Sciences Institute, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States); Sonsalla, Patricia K. [Department of Neurology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States); Richardson, Jason R., E-mail: jricha3@eohsi.rutgers.edu [Department of Environmental and Occupational Medicine and Environmental and Occupational Health Sciences Institute, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States)

    2013-12-01

    Persistent neuroinflammation and microglial activation play an integral role in the pathogenesis of many neurological disorders. We investigated the role of voltage-gated sodium channels (VGSC) and Na{sup +}/H{sup +} exchangers (NHE) in the activation of immortalized microglial cells (BV-2) after lipopolysaccharide (LPS) exposure. LPS (10 and 100 ng/ml) caused a dose- and time-dependent accumulation of intracellular sodium [(Na{sup +}){sub i}] in BV-2 cells. Pre-treatment of cells with the VGSC antagonist tetrodotoxin (TTX, 1 μM) abolished short-term Na{sup +} influx, but was unable to prevent the accumulation of (Na{sup +}){sub i} observed at 6 and 24 h after LPS exposure. The NHE inhibitor cariporide (1 μM) significantly reduced accumulation of (Na{sup +}){sub i} 6 and 24 h after LPS exposure. Furthermore, LPS increased the mRNA expression and protein level of NHE-1 in a dose- and time-dependent manner, which was significantly reduced after co-treatment with TTX and/or cariporide. LPS increased production of TNF-α, ROS, and H{sub 2}O{sub 2} and expression of gp91{sup phox}, an active subunit of NADPH oxidase, in a dose- and time-dependent manner, which was significantly reduced by TTX or TTX + cariporide. Collectively, these data demonstrate a closely-linked temporal relationship between VGSC and NHE-1 in regulating function in activated microglia, which may provide avenues for therapeutic interventions aimed at reducing neuroinflammation. - Highlights: • LPS causes immediate increase in sodium through VGSC and subsequently through the NHE-1. • Inhibition of VGSC reduces increases in NHE-1 and gp91{sup phox}. • Inhibition of VGSC and NHE-1 reduces NADPH oxidase-mediated Tnf-α, ROS, and H{sub 2}O{sub 2} production. • NHE-1 and Na{sub v}1.6 may be viable targets for therapeutic interventions to reduce neuroinflammation in neurodegenerative disease.

  6. Evaluation of C.L.I.N.D.E. as potent peripheral-type benzodiazepine receptor tracer in a rat model of micro-glial activation

    Energy Technology Data Exchange (ETDEWEB)

    Arlicot, N.; Guilloteau, D.; Chalon, S. [Institut National de la Sante et de la Recherche Medicale (INSERM), U619, 37 - Tours (France); Universite Francois Rabelais de Tours, 37 (France); Katsifis, A.; Mattner, F. [ANSTO, Sydney (Australia)

    2008-02-15

    The peripheral-type benzodiazepine receptors (P.B.R.) are localized in mitochondria of glial cells and are very low expressed in normal brain. Their expression rises after micro-glial activation consecutive to brain injury. Accordingly, P.B.R. are potential targets to evaluate neuro inflammatory changes in a variety of C.N.S. disorders. To date no effective tool is available to explore P.B.R. by SPECT. We characterized here 6-chloro-2-(4 iodophenyl)-3-(N,N-diethyl)-imidazo[1,2-a]pyridine- 3-acetamide, C.L.I.N.D.E., in a rat model of excitotoxic lesion. Excitotoxicity was induced in male Wistar rats by unilateral intra striatal injection of different amounts of quinolinic acid (Q.A.: 75, 150 or 300 nmol). One week later, 2 groups of rats (n = 5-6/group) were i.v. injected with [{sup 125}I]-C.L.I.N.D.E. (0.4 MBq), one group being pre-injected with P.K.11195 (5 mg/kg). Brains were removed 30 min after tracer injection and the radioactivity of cerebral areas measured. Complementary ex vivo autoradiography and immunohistochemical studies using O.X.-42 were performed on brain sections In the control group, [{sup 125}I]-C.L.I.N.D.E. binding was significantly higher ( p < 0.001) in lesioned than that in intact side (striatum: 0.552 {+-} 0.109 vs. 0.123 {+-} 0.012% I.D./g tissue; cortex: 0.385 {+-} 0.126 vs. 0.131 {+-} 0.007% with 300 nmol Q.A.). This binding disappeared in rats pretreated with P.K.11195 ( p < 0.001), showing specific binding of C.L.I.N.D.E. to P.B.R.. Ex vivo autoradiography and immunohistochemistry were consistent with this, revealing a spatial correspondence between radioactivity signal and activated micro-glia. Regression analysis yielded a significant correlation ( p < 0.001) between the ligand binding and the dose of Q.A.. These results demonstrate that C.L.I.N.D.E. is suitable for P.B.R. in vivo SPECT imaging to explore their involvement in neuro degenerative disorders associated with micro-glial activation. (authors)

  7. Activating and Attenuating the Amicoumacin Antibiotics

    Directory of Open Access Journals (Sweden)

    Hyun Bong Park

    2016-06-01

    Full Text Available The amicoumacins belong to a class of dihydroisocoumarin natural products and display antibacterial, antifungal, anticancer, and anti-inflammatory activities. Amicoumacins are the pro-drug activation products of a bacterial nonribosomal peptide-polyketide hybrid biosynthetic pathway and have been isolated from Gram-positive Bacillus and Nocardia species. Here, we report the stimulation of a “cryptic” amicoumacin pathway in the entomopathogenic Gram-negative bacterium Xenorhabdus bovienii, a strain not previously known to produce amicoumacins. X. bovienii participates in a multi-lateral symbiosis where it is pathogenic to insects and mutualistic to its Steinernema nematode host. Waxmoth larvae are common prey of the X. bovienii-Steinernema pair. Employing a medium designed to mimic the amino acid content of the waxmoth circulatory fluid led to the detection and characterization of amicoumacins in X. bovienii. The chemical structures of the amicoumacins were supported by 2D-NMR, HR-ESI-QTOF-MS, tandem MS, and polarimeter spectral data. A comparative gene cluster analysis of the identified X. bovienii amicoumacin pathway to that of the Bacillus subtilis amicoumacin pathway and the structurally-related Xenorhabdus nematophila xenocoumacin pathway is presented. The X. bovienii pathway encodes an acetyltransferase not found in the other reported pathways, which leads to a series of N-acetyl-amicoumacins that lack antibacterial activity. N-acetylation of amicoumacin was validated through in vitro protein biochemical studies, and the impact of N-acylation on amicoumacin’s mode of action was examined through ribosomal structural analyses.

  8. Glial Cell Line-Derived Neurotrophic Factor Family Members Reduce Microglial Activation via Inhibiting p38MAPKs-Mediated Inflammatory Responses

    Directory of Open Access Journals (Sweden)

    Uta Rickert

    2014-01-01

    Full Text Available Previous studies have shown that glial cell line-derived neurotrophic factor (GDNF family ligands (GFL are potent survival factors for dopaminergic neurons and motoneurons with therapeutic potential for Parkinson’s disease. However, little is known about direct influences of the GFL on microglia function, which are known to express part of the GDNF receptor system. Using RT-PCR and immunohistochemistrym we investigated the expression of the GDNF family receptor alpha 1 (GFR alpha and the coreceptor transmembrane receptor tyrosine kinase (RET in rat microglia in vitro as well as the effect of GFL on the expression of proinflammatory molecules in LPS activated microglia. We could show that GFL are able to regulate microglia functions and suggest that part of the well known neuroprotective action may be related to the suppression of microglial activation. We further elucidated the functional significance and pathophysiological implications of these findings and demonstrate that microglia are target cells of members of the GFL (GDNF and the structurally related neurotrophic factors neurturin (NRTN, artemin (ARTN, and persephin (PSPN.

  9. [Nle4, D-Phe7]-α-MSH Inhibits Toll-Like Receptor (TLR)2- and TLR4-Induced Microglial Activation and Promotes a M2-Like Phenotype

    Science.gov (United States)

    Carniglia, Lila; Ramírez, Delia; Durand, Daniela; Saba, Julieta; Caruso, Carla; Lasaga, Mercedes

    2016-01-01

    α-melanocyte stimulating hormone (α-MSH) is an anti-inflammatory peptide, proved to be beneficial in many neuroinflammatory disorders acting through melanocortin receptor 4 (MC4R). We previously determined that rat microglial cells express MC4R and that NDP-MSH, an analog of α-MSH, induces PPAR-γ expression and IL-10 release in these cells. Given the great importance of modulation of glial activation in neuroinflammatory disorders, we tested the ability of NDP-MSH to shape microglial phenotype and to modulate Toll-like receptor (TLR)-mediated inflammatory responses. Primary rat cultured microglia were stimulated with NDP-MSH followed by the TLR2 agonist Pam3CSK4 or the TLR4 agonist LPS. NDP-MSH alone induced expression of the M2a/M2c marker Ag1 and reduced expression of the M2b marker Il-4rα and of the LPS receptor Tlr4. Nuclear translocation of NF-κB subunits p65 and c-Rel was induced by LPS and these effects were partially prevented by NDP-MSH. NDP-MSH reduced LPS- and Pam3CSK4-induced TNF-α release but did not affect TLR-induced IL-10 release. Also, NDP-MSH inhibited TLR2-induced HMGB1 translocation from nucleus to cytoplasm and TLR2-induced phagocytic activity. Our data show that NDP-MSH inhibits TLR2- and TLR4-mediated proinflammatory mechanisms and promotes microglial M2-like polarization, supporting melanocortins as useful tools for shaping microglial activation towards an alternative immunomodulatory phenotype. PMID:27359332

  10. LRRK2 kinase inhibition prevents pathological microglial phagocytosis in response to HIV-1 Tat protein

    Directory of Open Access Journals (Sweden)

    Marker Daniel F

    2012-11-01

    Full Text Available Abstract Background Human Immunodeficiency Virus-1 (HIV-1 associated neurocognitive disorders (HANDs are accompanied by significant morbidity, which persists despite the use of combined antiretroviral therapy (cART. While activated microglia play a role in pathogenesis, changes in their immune effector functions, including phagocytosis and proinflammatory signaling pathways, are not well understood. We have identified leucine-rich repeat kinase 2 (LRRK2 as a novel regulator of microglial phagocytosis and activation in an in vitro model of HANDs, and hypothesize that LRRK2 kinase inhibition will attenuate microglial activation during HANDs. Methods We treated BV-2 immortalized mouse microglia cells with the HIV-1 trans activator of transcription (Tat protein in the absence or presence of LRRK2 kinase inhibitor (LRRK2i. We used Western blot, qRT-PCR, immunocytochemistry and latex bead engulfment assays to analyze LRRK2 protein levels, proinflammatory cytokine and phagocytosis receptor expression, LRRK2 cellular distribution and phagocytosis, respectively. Finally, we utilized ex vivo microfluidic chambers containing primary hippocampal neurons and BV-2 microglia cells to investigate microglial phagocytosis of neuronal axons. Results We found that Tat-treatment of BV-2 cells induced kinase activity associated phosphorylation of serine 935 on LRRK2 and caused the formation of cytoplasmic LRRK2 inclusions. LRRK2i decreased Tat-induced phosphorylation of serine 935 on LRRK2 and inhibited the formation of Tat-induced cytoplasmic LRRK2 inclusions. LRRK2i also decreased Tat-induced process extension in BV-2 cells. Furthermore, LRRK2i attenuated Tat-induced cytokine expression and latex bead engulfment. We examined relevant cellular targets in microfluidic chambers and found that Tat-treated BV-2 microglia cells cleared axonal arbor and engulfed neuronal elements, whereas saline treated controls did not. LRRK2i was found to protect axons in the presence

  11. Cinnamon and Its Metabolite Sodium Benzoate Attenuate the Activation of p21rac and Protect Memory and Learning in an Animal Model of Alzheimer's Disease.

    Directory of Open Access Journals (Sweden)

    Khushbu K Modi

    Full Text Available This study underlines the importance of cinnamon, a commonly used natural spice and flavoring material, and its metabolite sodium benzoate (NaB in attenuating oxidative stress and protecting memory and learning in an animal model of Alzheimer's disease (AD. NaB, but not sodium formate, was found to inhibit LPS-induced production of reactive oxygen species (ROS in mouse microglial cells. Similarly, NaB also inhibited fibrillar amyloid beta (Aβ- and 1-methyl-4-phenylpyridinium(+-induced microglial production of ROS. Although NaB reduced the level of cholesterol in vivo in mice, reversal of the inhibitory effect of NaB on ROS production by mevalonate, and geranylgeranyl pyrophosphate, but not cholesterol, suggests that depletion of intermediates, but not end products, of the mevalonate pathway is involved in the antioxidant effect of NaB. Furthermore, we demonstrate that an inhibitor of p21rac geranylgeranyl protein transferase suppressed the production of ROS and that NaB suppressed the activation of p21rac in microglia. As expected, marked activation of p21rac was observed in the hippocampus of subjects with AD and 5XFAD transgenic (Tg mouse model of AD. However, oral feeding of cinnamon (Cinnamonum verum powder and NaB suppressed the activation of p21rac and attenuated oxidative stress in the hippocampus of Tg mice as evident by decreased dihydroethidium (DHE and nitrotyrosine staining, reduced homocysteine level and increased level of reduced glutathione. This was accompanied by suppression of neuronal apoptosis, inhibition of glial activation, and reduction of Aβ burden in the hippocampus and protection of memory and learning in transgenic mice. Therefore, cinnamon powder may be a promising natural supplement in halting or delaying the progression of AD.

  12. Attenuation of rodent neuropathic pain by an orally active peptide, RAP-103, which potently blocks CCR2- and CCR5-mediated monocyte chemotaxis and inflammation.

    Science.gov (United States)

    Padi, Satyanarayana S V; Shi, Xiang Q; Zhao, Yuan Q; Ruff, Michael R; Baichoo, Noel; Pert, Candace B; Zhang, Ji

    2012-01-01

    Chemokine signaling is important in neuropathic pain, with microglial cells expressing CCR2 playing a well-established key role. DAPTA, a HIV gp120-derived CCR5 entry inhibitor, has been shown to inhibit CCR5-mediated monocyte migration and to attenuate neuroinflammation. We report here that as a stabilized analog of DAPTA, the short peptide RAP-103 exhibits potent antagonism for both CCR2 (half maximal inhibitory concentration [IC50] 4.2 pM) and CCR5 (IC50 0.18 pM) in monocyte chemotaxis. Oral administration of RAP-103 (0.05-1 mg/kg) for 7 days fully prevents mechanical allodynia and inhibits the development of thermal hyperalgesia after partial ligation of the sciatic nerve in rats. Administered from days 8 to 12, RAP-103 (0.2-1 mg/kg) reverses already established hypersensitivity. RAP-103 relieves behavioral hypersensitivity, probably through either or both CCR2 and CCR5 blockade, because by using genetically deficient animals, we demonstrated that in addition to CCR2, CCR5 is also required for the development of neuropathic pain. Moreover, RAP-103 is able to reduce spinal microglial activation and monocyte infiltration, and to inhibit inflammatory responses evoked by peripheral nerve injury that cause chronic pain. Our findings suggest that targeting CCR2/CCR5 should provide greater efficacy than targeting CCR2 or CCR5 alone, and that dual CCR2/CCR5 antagonist RAP-103 has the potential for broad clinical use in neuropathic pain treatment.

  13. Minocycline Attenuates Neonatal Germinal-Matrix-Hemorrhage-Induced Neuroinflammation and Brain Edema by Activating Cannabinoid Receptor 2.

    Science.gov (United States)

    Tang, Jun; Chen, Qianwei; Guo, Jing; Yang, Liming; Tao, Yihao; Li, Lin; Miao, Hongping; Feng, Hua; Chen, Zhi; Zhu, Gang

    2016-04-01

    Germinal matrix hemorrhage (GMH) is the most common neurological disease of premature newborns leading to detrimental neurological sequelae. Minocycline has been reported to play a key role in neurological inflammatory diseases by controlling some mechanisms that involve cannabinoid receptor 2 (CB2R). The current study investigated whether minocycline reduces neuroinflammation and protects the brain from injury in a rat model of collagenase-induced GMH by regulating CB2R activity. To test this hypothesis, the effects of minocycline and a CB2R antagonist (AM630) were evaluated in male rat pups that were post-natal day 7 (P7) after GMH. We found that minocycline can lead to increased CB2R mRNA expression and protein expression in microglia. Minocycline significantly reduced GMH-induced brain edema, microglial activation, and lateral ventricular volume. Additionally, minocycline enhanced cortical thickness after injury. All of these neuroprotective effects of minocycline were prevented by AM630. A cannabinoid CB2 agonist (JWH133) was used to strengthen the hypothesis, which showed the identical neuroprotective effects of minocycline. Our study demonstrates, for the first time, that minocycline attenuates neuroinflammation and brain injury in a rat model of GMH, and activation of CBR2 was partially involved in these processes.

  14. Systemic inflammation regulates microglial responses to tissue damage in vivo

    Science.gov (United States)

    Gyoneva, Stefka; Davalos, Dimitrios; Biswas, Dipankar; Swanger, Sharon A.; Garnier-Amblard, Ethel; Loth, Francis; Akassoglou, Katerina; Traynelis, Stephen F.

    2015-01-01

    Microglia, the resident immune cells of the central nervous system, exist in either a “resting” state associated with physiological tissue surveillance or an “activated” state in neuroinflammation. We recently showed that ATP is the primary chemoattractor to tissue damage in vivo and elicits opposite effects on the motility of activated microglia in vitro through activation of adenosine A2A receptors. However, whether systemic inflammation affects microglial responses to tissue damage in vivo remains largely unknown. Using in vivo two-photon imaging of mice, we show that injection of lipopolysaccharide (LPS) at levels that can produce both clear neuroinflammation and some features of sepsis significantly reduced the rate of microglial response to laser-induced ablation injury in vivo. Under pro-inflammatory conditions, microglial processes initially retracted from the ablation site, but subsequently moved toward and engulfed the damaged area. Analyzing the process dynamics in 3D cultures of primary microglia indicated that only A2A, but not A1 or A3 receptors, mediate process retraction in LPS-activated microglia. The A2A receptor antagonists caffeine and preladenant reduced adenosine-mediated process retraction in activated microglia in vitro. Finally, administration of preladenant before induction of laser ablation in vivo accelerated the microglial response to injury following systemic inflammation. The regulation of rapid microglial responses to sites of injury by A2A receptors could have implications for their ability to respond to the neuronal death occurring under conditions of neuroinflammation in neurodegenerative disorders. PMID:24807189

  15. Axonal lesion-induced microglial proliferation and microglial cluster formation in the mouse

    DEFF Research Database (Denmark)

    Dissing-Olesen, L; Ladeby, R; Nielsen, Helle Hvilsted;

    2007-01-01

    Microglia are innate immune cells and form the first line of defense of the CNS. Proliferation is a key event in the activation of microglia in acute pathology, and has been extensively characterized in rats, but not in mice. In this study we investigated axonal-lesion-induced microglial...... proliferation and surface antigen expression in C57BL/6 mice. Transection of the entorhino-dentate perforant path projection results in an anterograde axonal and a dense terminal degeneration that induces a region-specific activation of microglia in the dentate gyrus. Time-course analysis showed activation...... and the proliferation marker bromodeoxyuridine, injected 1 h prior to perfusion, showed that lesion-reactive microglia accounted for the vast majority of proliferating cells. Microglia proliferated as soon as 24 h after lesion and 25% of all microglial cells were proliferating 3 days post-lesion. Immunofluorescence...

  16. Microarray and pathway analysis reveal distinct mechanisms underlying cannabinoid-mediated modulation of LPS-induced activation of BV-2 microglial cells.

    Directory of Open Access Journals (Sweden)

    Ana Juknat

    Full Text Available Cannabinoids are known to exert immunosuppressive activities. However, the mechanisms which contribute to these effects are unknown. Using lipopolysaccharide (LPS to activate BV-2 microglial cells, we examined how Δ(9-tetrahydrocannabinol (THC, the major psychoactive component of marijuana, and cannabidiol (CBD the non-psychoactive component, modulate the inflammatory response. Microarray analysis of genome-wide mRNA levels was performed using Illumina platform and the resulting expression patterns analyzed using the Ingenuity Pathway Analysis to identify functional subsets of genes, and the Ingenuity System Database to denote the gene networks regulated by CBD and THC. From the 5338 transcripts that were differentially expressed across treatments, 400 transcripts were found to be upregulated by LPS, 502 by CBD+LPS and 424 by THC+LPS, while 145 were downregulated by LPS, 297 by CBD+LPS and 149 by THC+LPS, by 2-fold or more (p≤0.005. Results clearly link the effects of CBD and THC to inflammatory signaling pathways and identify new cannabinoid targets in the MAPK pathway (Dusp1, Dusp8, Dusp2, cell cycle related (Cdkn2b, Gadd45a as well as JAK/STAT regulatory molecules (Socs3, Cish, Stat1. The impact of CBD on LPS-stimulated gene expression was greater than that of THC. We attribute this difference to the fact that CBD highly upregulated several genes encoding negative regulators of both NFκB and AP-1 transcriptional activities, such as Trib3 and Dusp1 known to be modulated through Nrf2 activation. The CBD-specific expression profile reflected changes associated with oxidative stress and glutathione depletion via Trib3 and expression of ATF4 target genes. Furthermore, the CBD affected genes were shown to be controlled by nuclear factors usually involved in regulation of stress response and inflammation, mainly via Nrf2/Hmox1 axis and the Nrf2/ATF4-Trib3 pathway. These observations indicate that CBD, and less so THC, induce a cellular stress

  17. Nitrite attenuated peroxynitrite and hypochlorite generation in activated neutrophils.

    Science.gov (United States)

    Ren, Xiaoming; Ding, Yun; Lu, Naihao

    2016-03-15

    Oxidative stress is usually considered as an important factor to the pathogenesis of various diseases. Peroxynitrite (ONOO(-)) and hypochlorite (OCl(-)) are formed in immune cells as a part of the innate host defense system, but excessive reactive oxygen species generation can cause progressive inflammation and tissue damage. It has been proven that through mediating nitric oxide (NO) homeostasis, inorganic nitrite (NO2(-)) shows organ-protective effects on oxidative stress and inflammation. However, the effects of NO2(-) on the function of immune cells were still not clear. The potential role of NO2(-) in modulating ONOO(-) and OCl(-) generation in neutrophil cells was investigated in this study. As an immune cell activator, lipopolysaccharide (LPS) increased both ONOO(-) and OCl(-) production in neutrophils, which was significantly attenuated by NO2(-). NO2(-) reduced superoxide (O2(·-)) generation via a NO-dependent mechanism and increased NO formation in activated neutrophils, suggesting a crucial role of O2(·-) in NO2(-)-mediated reduction of ONOO(-). Moreover, the reduced effect of NO2(-) on OCl(-) production was attributed to that NO2(-) reduced H2O2 production in activated neutrophils without influencing the release of myeloperoxidase (MPO), thus limiting OCl(-) production by MPO/H2O2 system. Therefore, NO2(-) attenuates ONOO(-) and OCl(-) formation in activated neutrophils, opening a new direction to modulate the inflammatory response.

  18. Minocycline treatment inhibits microglial activation and alters spinal levels of endocannabinoids in a rat model of neuropathic pain.

    Science.gov (United States)

    Guasti, Leonardo; Richardson, Denise; Jhaveri, Maulik; Eldeeb, Khalil; Barrett, David; Elphick, Maurice R; Alexander, Stephen P H; Kendall, David; Michael, Gregory J; Chapman, Victoria

    2009-07-01

    Activation of spinal microglia contributes to aberrant pain responses associated with neuropathic pain states. Endocannabinoids (ECs) are present in the spinal cord, and inhibit nociceptive processing; levels of ECs may be altered by microglia which modulate the turnover of endocannabinoids in vitro. Here, we investigate the effect of minocycline, an inhibitor of activated microglia, on levels of the endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG), and the related compound N-palmitoylethanolamine (PEA), in neuropathic spinal cord. Selective spinal nerve ligation (SNL) in rats resulted in mechanical allodynia and the presence of activated microglia in the ipsilateral spinal cord. Chronic daily treatment with minocycline (30 mg/kg, ip for 14 days) significantly reduced the development of mechanical allodynia at days 5, 10 and 14 post-SNL surgery, compared to vehicle-treated SNL rats (P pain states.

  19. Microglia-Secreted Galectin-3 Acts as a Toll-like Receptor 4 Ligand and Contributes to Microglial Activation

    Directory of Open Access Journals (Sweden)

    Miguel Angel Burguillos

    2015-03-01

    Full Text Available Inflammatory response induced by microglia plays a critical role in the demise of neuronal populations in neuroinflammatory diseases. Although the role of toll-like receptor 4 (TLR4 in microglia’s inflammatory response is fully acknowledged, little is known about endogenous ligands that trigger TLR4 activation. Here, we report that galectin-3 (Gal3 released by microglia acts as an endogenous paracrine TLR4 ligand. Gal3-TLR4 interaction was further confirmed in a murine neuroinflammatory model (intranigral lipopolysaccharide [LPS] injection and in human stroke subjects. Depletion of Gal3 exerted neuroprotective and anti-inflammatory effects following global brain ischemia and in the neuroinflammatory LPS model. These results suggest that Gal3-dependent-TLR4 activation could contribute to sustained microglia activation, prolonging the inflammatory response in the brain.

  20. Minocycline treatment inhibits microglial activation and alters spinal levels of endocannabinoids in a rat model of neuropathic pain

    Directory of Open Access Journals (Sweden)

    Elphick Maurice R

    2009-07-01

    Full Text Available Abstract Activation of spinal microglia contributes to aberrant pain responses associated with neuropathic pain states. Endocannabinoids (ECs are present in the spinal cord, and inhibit nociceptive processing; levels of ECs may be altered by microglia which modulate the turnover of endocannabinoids in vitro. Here, we investigate the effect of minocycline, an inhibitor of activated microglia, on levels of the endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG, and the related compound N-palmitoylethanolamine (PEA, in neuropathic spinal cord. Selective spinal nerve ligation (SNL in rats resulted in mechanical allodynia and the presence of activated microglia in the ipsilateral spinal cord. Chronic daily treatment with minocycline (30 mg/kg, ip for 14 days significantly reduced the development of mechanical allodynia at days 5, 10 and 14 post-SNL surgery, compared to vehicle-treated SNL rats (P P P P P

  1. Macrophageal/microglial cell activation and cerebral injury induced by excretory-secretory products secreted by Paragonimus westermani.

    Science.gov (United States)

    Lee, Jae-Chul; Cho, Geum-Sil; Kwon, Jae Hyun; Shin, Myeong Heon; Lim, Ji Hyae; Kim, Won-Ki

    2006-02-01

    Cerebral paragonimiasis causes various neurological disorders including seizures, visual impairment and hemiplegia. The excretory-secretory product (ESP) released by Paragonimus westermani has a cysteine protease activity and plays important roles in its migration in the host tissue and modulation of host immune responses. To gain more insight into the pathogenesis of ESP in the brain, we investigated the inflammatory reaction and cerebral injury following microinjection of ESP into rat striatum. The size of injury was maximally observed 3 days after microinjection of ESP and then declined to control levels as astrocytes have repopulated the injury. ED1-positive monocytes and microglia were confluently found inside the injury. The mRNA expression of inducible nitric oxide synthase (iNOS) occurred as early as 9h after ESP injection and then declined to control levels within 1 day. The iNOS inhibitor aminoguanidine largely decreased the expression of iNOS but did not reduce the size of lesion caused by ESP. Interestingly, however, heat inactivation of ESP caused a decrease of injury formation with no altered expression of iNOS. The data indicate that ESP produces brain tissue injury by recruiting activated monocytes/microglia via heat-labile protease activity.

  2. LPS-induced microglial secretion of TNFα increases activity-dependent neuronal apoptosis in the neonatal cerebral cortex.

    Science.gov (United States)

    Nimmervoll, Birgit; White, Robin; Yang, Jenq-Wei; An, Shuming; Henn, Christopher; Sun, Jyh-Jang; Luhmann, Heiko J

    2013-07-01

    During the pre- and neonatal period, the cerebral cortex reveals distinct patterns of spontaneous synchronized activity, which is critically involved in the formation of early networks and in the regulation of neuronal survival and programmed cell death (apoptosis). During this period, the cortex is also highly vulnerable to inflammation and in humans prenatal infection may have a profound impact on neurodevelopment causing long-term neurological deficits. Using in vitro and in vivo multi-electrode array recordings and quantification of caspase-3 (casp-3)-dependent apoptosis, we demonstrate that lipopolysaccharide-induced inflammation causes rapid alterations in the pattern of spontaneous burst activities, which subsequently leads to an increase in apoptosis. We show that these inflammatory effects are specifically initiated by the microglia-derived pro-inflammatory cytokine tumor necrosis factor α and the chemokine macrophage inflammatory protein 2. Our data demonstrate that inflammation-induced modifications in spontaneous network activities influence casp-3-dependent cell death in the developing cerebral cortex.

  3. Developing active noise control systems for noise attenuation in ducts

    Science.gov (United States)

    Campos, Rosely V.; Ivo, Rodrigo C.; Medeiros, Eduardo B.

    2002-11-01

    The present work describes some of the research effort on Active Noise Control (ANC) being jointly developed by the Catholic University of Minas Gerais (PUC-MINAS) and the Federal University of Minas Gerais (UFMG). Considerations about the implementation of Digital Signal Processing for noise control in ducts has been presented. The objective is to establish a study on Active Noise Control in ducts combining geometry and acoustic parameters modification together with adaptive digital filtering implementation. Both algorithm and digital signal processing details are also discussed. The main results for a typical application where real attenuation has been obtained are presented and considered according to their use in developing real applications. The authors also believe that the present text should provide an interesting overview for both designers and students concerned about Active Noise Control in ducts. (To be presented in Portuguese.)

  4. Herpes simplex virus induces neural oxidative damage via microglial cell Toll-like receptor-2

    Directory of Open Access Journals (Sweden)

    Little Morgan R

    2010-06-01

    Full Text Available Abstract Background Using a murine model of herpes simplex virus (HSV-1 encephalitis, our laboratory has determined that induction of proinflammatory mediators in response to viral infection is largely mediated through a Toll-like receptor-2 (TLR2-dependent mechanism. Published studies have shown that, like other inflammatory mediators, reactive oxygen species (ROS are generated during viral brain infection. It is increasingly clear that ROS are responsible for facilitating secondary tissue damage during central nervous system infection and may contribute to neurotoxicity associated with herpes encephalitis. Methods Purified microglial cell and mixed neural cell cultures were prepared from C57B/6 and TLR2-/- mice. Intracellular ROS production in cultured murine microglia was measured via 2', 7'-Dichlorofluorescin diacetate (DCFH-DA oxidation. An assay for 8-isoprostane, a marker of lipid peroxidation, was utilized to measure free radical-associated cellular damage. Mixed neural cultures obtained from β-actin promoter-luciferase transgenic mice were used to detect neurotoxicity induced by HSV-infected microglia. Results Stimulation with HSV-1 elevated intracellular ROS in wild-type microglial cell cultures, while TLR2-/- microglia displayed delayed and attenuated ROS production following viral infection. HSV-infected TLR2-/- microglia produced less neuronal oxidative damage to mixed neural cell cultures in comparison to HSV-infected wild-type microglia. Further, HSV-infected TLR2-/- microglia were found to be less cytotoxic to cultured neurons compared to HSV-infected wild-type microglia. These effects were associated with decreased activation of p38 MAPK and p42/p44 ERK in TLR2-/- mice. Conclusions These studies demonstrate the importance of microglial cell TLR2 in inducing oxidative stress and neuronal damage in response to viral infection.

  5. MR constrained simultaneous reconstruction of activity and attenuation maps in brain TOF-PET/MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mehranian, Abolfazl; Zaidi, Habib [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva (Switzerland)

    2014-07-29

    The maximum likelihood estimation of attenuation and activity (MLAA) algorithm has been proposed to jointly estimate activity and attenuation from emission data only. Salomon et al employed the MLAA to estimate activity and attenuation from time-of-flight PET data with spatial MR prior information on attenuation. Recently, we proposed a novel algorithm to impose both spatial and statistical constraints on attenuation estimation within the MLAA algorithm using Dixon MR images and a constrained Gaussian mixture model (GMM). In this study, we compare the proposed algorithm with MLAA and MLAA-Salomon in brain TOF-PET/MR imaging.

  6. Curcumin Ameliorates the Reduction Effect of PGE2 on Fibrillar β-Amyloid Peptide (1-42-Induced Microglial Phagocytosis through the Inhibition of EP2-PKA Signaling in N9 Microglial Cells.

    Directory of Open Access Journals (Sweden)

    Gen-Lin He

    Full Text Available Inflammatory activation of microglia and β amyloid (Aβ deposition are considered to work both independently and synergistically to contribute to the increased risk of Alzheimer's disease (AD. Recent studies indicate that long-term use of phenolic compounds provides protection against AD, primarily due to their anti-inflammatory actions. We previously suggested that phenolic compound curcumin ameliorated phagocytosis possibly through its anti-inflammatory effects rather than direct regulation of phagocytic function in electromagnetic field-exposed N9 microglial cells (N9 cells. Here, we explored the prostaglandin-E2 (PGE2-related signaling pathway that involved in curcumin-mediated phagocytosis in fibrillar β-amyloid peptide (1-42 (fAβ42-stimulated N9 cells. Treatment with fAβ42 increased phagocytosis of fluorescent-labeled latex beads in N9 cells. This increase was attenuated in a dose-dependent manner by endogenous and exogenous PGE2, as well as a selective EP2 or protein kinase A (PKA agonist, but not by an EP4 agonist. We also found that an antagonist of EP2, but not EP4, abolished the reduction effect of PGE2 on fAβ42-induced microglial phagocytosis. Additionally, the increased expression of endogenous PGE2, EP2, and cyclic adenosine monophosphate (AMP, and activation of vasodilator-stimulated phosphoprotein, cyclic AMP responsive element-binding protein, and PKA were depressed by curcumin administration. This reduction led to the amelioration of the phagocytic abilities of PGE2-stimulated N9 cells. Taken together, these data suggested that curcumin restored the attenuating effect of PGE2 on fAβ42-induced microglial phagocytosis via a signaling mechanism involving EP2 and PKA. Moreover, due to its immune modulatory effects, curcumin may be a promising pharmacological candidate for neurodegenerative diseases.

  7. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces microglial nitric oxide production and subsequent rat primary cortical neuron apoptosis through p38/JNK MAPK pathway.

    Science.gov (United States)

    Li, Yuanye; Chen, Gang; Zhao, Jianya; Nie, Xiaoke; Wan, Chunhua; Liu, Jiao; Duan, Zhiqing; Xu, Guangfei

    2013-10-04

    It has been widely accepted that microglia, which are the innate immune cells in the brain, upon activation can cause neuronal damage. In the present study, we investigated the role of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in regulating microglial nitric oxide production and its role in causing neuronal damage. The study revealed that TCDD stimulates the expression of inducible nitric oxide synthase (iNOS) as well as the production of nitric oxide (NO) in a dose- and time-dependent manner. Further, a rapid activation of p38 and JNK MAPKs was found in HAPI microglia following TCDD treatment. Blockage of p38 and JNK kinases with their specific inhibitors, SB202190 and SP600125, significantly reduced TCDD-induced iNOS expression and NO production. In addition, it was demonstrated through treating rat primary cortical neurons with media conditioned with TCDD treated microglia that microglial iNOS activation mediates neuronal apoptosis. Lastly, it was also found that p38 and JNK MAPK inhibitors could attenuate the apoptosis of rat cortical neurons upon exposure to medium conditioned by TCDD-treated HAPI microglial cells. Based on these observations, we highlight that the p38/JNK MAPK pathways play an important role in TCDD-induced iNOS activation in rat HAPI microglia and in the subsequent induction of apoptosis in primary cortical neurons.

  8. Baroreceptor activation attenuates attentional effects on pain-evoked potentials.

    Science.gov (United States)

    Gray, Marcus A; Minati, Ludovico; Paoletti, Giulia; Critchley, Hugo D

    2010-12-01

    Focused attention typically enhances neural nociceptive responses, reflected electroencephalographically as increased amplitude of pain-evoked event-related potentials (ERPs). Additionally, pain-evoked ERPs are attenuated by hypertension and baroreceptor activity, through as yet unclear mechanisms. There is indirect evidence that these two effects may interact, suggesting that baroreceptor-related modulation of nociception is more than a low-level gating phenomenon. To address this hypothesis, we explored in a group of healthy participants the combined effects of cue-induced expectancy and baroreceptor activity on the amplitude of pain-evoked ERPs. Brief nociceptive skin stimuli were delivered during a simple visual task; half were preceded by a visual forewarning cue, and half were unpredictable. Nociceptive stimuli were timed to coincide either with systole (maximum activation of cardiac baroreceptors) or with diastole (minimum baroreceptor activation). We observed a strong interaction between expectancy and cardiac timing for the amplitude of the P2 ERP component; no effects were observed for the N2 component. Cued stimuli were associated with larger P2 amplitude, but this effect was abolished for stimuli presented during baroreceptor activation. No cardiac timing effect was observed for un-cued stimuli. Taken together, these findings suggest a close integration of cognitive-affective aspects of expectancy and baroreceptor influences on pain, and as such may cast further light on mechanisms underlying mental and physiological contributions to clinical pain.

  9. Microglial interactions with synapses are modulated by visual experience.

    Directory of Open Access Journals (Sweden)

    Marie-Ève Tremblay

    Full Text Available Microglia are the immune cells of the brain. In the absence of pathological insult, their highly motile processes continually survey the brain parenchyma and transiently contact synaptic elements. Aside from monitoring, their physiological roles at synapses are not known. To gain insight into possible roles of microglia in the modification of synaptic structures, we used immunocytochemical electron microscopy, serial section electron microscopy with three-dimensional reconstructions, and two-photon in vivo imaging to characterize microglial interactions with synapses during normal and altered sensory experience, in the visual cortex of juvenile mice. During normal visual experience, most microglial processes displayed direct apposition with multiple synapse-associated elements, including synaptic clefts. Microglial processes were also distinctively surrounded by pockets of extracellular space. In terms of dynamics, microglial processes localized to the vicinity of small and transiently growing dendritic spines, which were typically lost over 2 d. When experience was manipulated through light deprivation and reexposure, microglial processes changed their morphology, showed altered distributions of extracellular space, displayed phagocytic structures, apposed synaptic clefts more frequently, and enveloped synapse-associated elements more extensively. While light deprivation induced microglia to become less motile and changed their preference of localization to the vicinity of a subset of larger dendritic spines that persistently shrank, light reexposure reversed these behaviors. Taken together, these findings reveal different modalities of microglial interactions with synapses that are subtly altered by sensory experience. These findings suggest that microglia may actively contribute to the experience-dependent modification or elimination of a specific subset of synapses in the healthy brain.

  10. Isolation and analysis of mouse microglial cells.

    Science.gov (United States)

    Garcia, Jenny A; Cardona, Sandra M; Cardona, Astrid E

    2014-01-01

    Microglia are mononuclear phagocytes that make up about 10% of the central nervous system (CNS). They are known for their surveillant behavior, which involves continuous monitoring of neural tissue by extending and retracting their processes. Microglial cells are derived from myeloid progenitor cells and play important roles in homeostasis as well as inflammatory and immune responses in the brain. This unit describes several microglial cell isolation protocols that can be easily adapted for projects requiring a rapid and efficient analysis of mouse microglial cells by flow cytometry. Methods for visualizing microglial cells using in situ immunohistochemistry and immunochemistry in free-floating sections are also included.

  11. Direct and indirect pharmacological modulation of CCL2/CCR2 pathway results in attenuation of neuropathic pain - In vivo and in vitro evidence.

    Science.gov (United States)

    Piotrowska, Anna; Kwiatkowski, Klaudia; Rojewska, Ewelina; Slusarczyk, Joanna; Makuch, Wioletta; Basta-Kaim, Agnieszka; Przewlocka, Barbara; Mika, Joanna

    2016-08-15

    The repeated administration of microglial inhibitor (minocycline) and CCR2 antagonist (RS504393) attenuated the neuropathic pain symptoms in rats following chronic constriction injury of the sciatic nerve, which was associated with decreased spinal microglia activation and the protein level of CCL2 and CCR2. Furthermore, in microglia primary cell cultures minocycline downregulated both CCL2 and CCR2 protein levels after lipopolysaccharide-stimulation. Additionally, in astroglia primary cell cultures minocycline decreased the expression of CCL2, but not CCR2. Our results provide new evidence that modulation of CCL2/CCR2 pathway by microglial inhibitor as well as CCR2 antagonist is effective for neuropathic pain development in rats.

  12. Tissue plasminogen activator attenuates ventilatorinduced lung injury in rats

    Institute of Scientific and Technical Information of China (English)

    Liang-ti HUANG; Hsiu-chu CHOU; Leng-fang WANG; Chung-ming CHEN

    2012-01-01

    Aim:To test the hypothesis that the tissue plasminogen activator (tPA) may counteract the inhibitory effect ot plasminogen activator inhibitors (PAI) and attenuate lung injury in a rat model of ventilator-induced lung injury (VILI).Methods:Adult male Sprague-Dawley rats were ventilated with a HVZP (high-volume zero PEEP) protocol for 2 h at a tidal volume of 30 ml/kg,a respiratory rate of 25 breaths/min,and an inspired oxygen fraction of 21%.The rats were divided into 3 groups (n=7 for each):HVZP+tPA group receiving tPA (1.25 mg/kg,iv) 15 min before ventilation,HVZP group receiving HVZP+vehicle injection,and a control group receiving no ventilation.After 2 h of ventilation,the rats were killed; blood and lungs were collected for biochemical and histological analyses.Results:HVZP ventilation significantly increased total protein content and the concentration of macrophage inflammatory protein-2 (MIP-2) in the bronchoalveolar lavage fluid (BALF) as well as the lung injury score.Rats that received HVZP ventilation had significantly higher lung PAI-1 mRNA expression,plasma PAI-1and plasma D-dimer levels than the control animals,tPA treatment significantly reduced the BALF total protein and the lung injury score as compared to the HVZP group,tPA treatment also significantly decreased the plasma D-dimer levels and the HVZP ventilation-induced lung vascular fibrin thrombi,tPA treatment showed no effect on MIP-2 level in BALF.Conclusion:These results demonstrate that VILI increases lung PAI-1 mRNA expression,plasma levels of PAI-1 and D-limers,lung injury score and vascular fibrin deposition,tPA can attenuate VILI by decreasing capillary-alveolar protein leakage as well as local and systemic coagulation as shown by decreased lung vascular fibrin deposition and plasma D-dimers.

  13. Immune complement activation is attenuated by surface nanotopography

    Directory of Open Access Journals (Sweden)

    Elwing H

    2011-10-01

    Full Text Available Mats Hulander1, Anders Lundgren1, Mattias Berglin1, Mattias Ohrlander2, Jukka Lausmaa3,4, Hans Elwing1 1Department of Cell and Molecular Biology/Interface Biophysics, University of Gothenburg, Medicinaregatan 9E, Gothenburg, 2Bactiguard AB, Stockholm, 3SP Technical Research Institute, Boras, 4Biomatcell, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden Abstract: The immune complement (IC is a cell-free protein cascade system, and the first part of the innate immune system to recognize foreign objects that enter the body. Elevated activation of the system from, for example, biomaterials or medical devices can result in both local and systemic adverse effects and eventually loss of function or rejection of the biomaterial. Here, the researchers have studied the effect of surface nanotopography on the activation of the IC system. By a simple nonlithographic process, gold nanoparticles with an average size of 58 nm were immobilized on a smooth gold substrate, creating surfaces where a nanostructure is introduced without changing the surface chemistry. The activation of the IC on smooth and nanostructured surfaces was viewed with fluorescence microscopy and quantified with quartz crystal microbalance with dissipation monitoring in human serum. Additionally, the ability of pre-adsorbed human immunoglobulin G (IgG (a potent activator of the IC to activate the IC after a change in surface hydrophobicity was studied. It was found that the activation of the IC was significantly attenuated on nanostructured surfaces with nearly a 50% reduction, even after pre-adsorption with IgG. An increase in surface hydrophobicity blunted this effect. The possible role of the curvature of the nanoparticles for the orientation of adsorbed IgG molecules, and how this can affect the subsequent activation of the IC, are discussed. The present findings are important for further understanding of how surface nanotopography affects complex protein

  14. Microglial responses to amyloid β peptide opsonization and indomethacin treatment

    Directory of Open Access Journals (Sweden)

    Leonard Brian

    2005-08-01

    Full Text Available Abstract Background Recent studies have suggested that passive or active immunization with anti-amyloid β peptide (Aβ antibodies may enhance microglial clearance of Aβ deposits from the brain. However, in a human clinical trial, several patients developed secondary inflammatory responses in brain that were sufficient to halt the study. Methods We have used an in vitro culture system to model the responses of microglia, derived from rapid autopsies of Alzheimer's disease patients, to Aβ deposits. Results Opsonization of the deposits with anti-Aβ IgG 6E10 enhanced microglial chemotaxis to and phagocytosis of Aβ, as well as exacerbated microglial secretion of the pro-inflammatory cytokines TNF-α and IL-6. Indomethacin, a common nonsteroidal anti-inflammatory drug (NSAID, had no effect on microglial chemotaxis or phagocytosis, but did significantly inhibit the enhanced production of IL-6 after Aβ opsonization. Conclusion These results are consistent with well known, differential NSAID actions on immune cell functions, and suggest that concurrent NSAID administration might serve as a useful adjunct to Aβ immunization, permitting unfettered clearance of Aβ while dampening secondary, inflammation-related adverse events.

  15. Fyn Kinase Regulates Microglial Neuroinflammatory Responses in Cell Culture and Animal Models of Parkinson's Disease

    OpenAIRE

    2015-01-01

    Sustained neuroinflammation mediated by resident microglia is recognized as a key pathophysiological contributor to many neurodegenerative diseases, including Parkinson's disease (PD), but the key molecular signaling events regulating persistent microglial activation have yet to be clearly defined. In the present study, we examined the role of Fyn, a non-receptor tyrosine kinase, in microglial activation and neuroinflammatory mechanisms in cell culture and animal models of PD. The well-charac...

  16. Deciphering resting microglial morphology and process motility from a synaptic prospect

    Directory of Open Access Journals (Sweden)

    Ines eHristovska

    2016-01-01

    Full Text Available Microglia, the resident immune cells of the central nervous system (CNS, were traditionally believed to be set into action only in case of injury or disease. Accordingly, microglia were assumed to be inactive or resting in the healthy brain. However, recent studies revealed that microglia carry out active tissue sampling in the intact brain by extending and retracting their ramified processes while periodically contacting synapses. Microglial morphology and motility as well as the frequency and duration of physical contacts with synaptic elements were found to be modulated by neuronal activity, sensory experience and neurotransmission; however findings have not been straightforward. Microglial cells are the most morphologically plastic element of the CNS. This unique feature confers them the possibility to locally sense activity, and to respond adequately by establishing synaptic contacts to regulate synaptic inputs by the secretion of signaling molecules. Indeed, microglial cells can hold new roles as critical players in maintaining brain homeostasis and regulating synaptic number, maturation and plasticity. For this reason, a better characterization of microglial cells and cues mediating neuron-to-microglia communication under physiological conditions may help advance our understanding of the microglial behavior and its regulation in the healthy brain. This review highlights recent findings on the instructive role of neuronal activity on microglial motility and microglia-synapse interactions, focusing on the main transmitters involved in this communication and including newly described communication at the tripartite synapse.

  17. Active acoustic leak detection for LMFBR steam generator. Sound attenuation due to bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, Hiromichi; Sakuma, Toshio [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.

    1995-06-01

    In the steam generators (SG) of LMFBR, it is necessary to detect the leakage of water from tubes of heat exchangers as soon as it occurs. The active acoustic detection method has drawn general interest owing to its short response time and reduction of the influence of background noise. In this paper, the application of the active acoustic detection method for SG is proposed, and sound attenuation by bubbles is investigated experimentally. Furthermore, using the SG sector model, sound field characteristics and sound attenuation characteristics due to injection of bubbles are studied. It is clarified that the sound attenuation depends upon bubble size as well as void fraction, that the distance attenuation of sound in the SG model containing heat transfer tubes is 6dB for each two-fold increase of distance, and that emitted sound attenuates immediately upon injection of bubbles. (author).

  18. Microglial Responses after Ischemic Stroke and Intracerebral Hemorrhage

    Directory of Open Access Journals (Sweden)

    Roslyn A. Taylor

    2013-01-01

    Full Text Available Stroke is a leading cause of death worldwide. Ischemic stroke is caused by blockage of blood vessels in the brain leading to tissue death, while intracerebral hemorrhage (ICH occurs when a blood vessel ruptures, exposing the brain to blood components. Both are associated with glial toxicity and neuroinflammation. Microglia, as the resident immune cells of the central nervous system (CNS, continually sample the environment for signs of injury and infection. Under homeostatic conditions, they have a ramified morphology and phagocytose debris. After stroke, microglia become activated, obtain an amoeboid morphology, and release inflammatory cytokines (the M1 phenotype. However, microglia can also be alternatively activated, performing crucial roles in limiting inflammation and phagocytosing tissue debris (the M2 phenotype. In rodent models, microglial activation occurs very early after stroke and ICH; however, their specific roles in injury and repair remain unclear. This review summarizes the literature on microglial responses after ischemic stroke and ICH, highlighting the mediators of microglial activation and potential therapeutic targets for each condition.

  19. Regulation of microglia activity by glaucocalyxin-A: attenuation of lipopolysaccharide-stimulated neuroinflammation through NF-κB and p38 MAPK signaling pathways.

    Directory of Open Access Journals (Sweden)

    Byung-Wook Kim

    Full Text Available Microglial cells are the resident macrophages and intrinsic arm of the central nervous system innate immune defense. Microglial cells become activated in response to injury, infection, environmental toxins, and other stimuli that threaten neuronal survival. Therefore, regulating microglial activation may have therapeutic benefits that lead to alleviating the progression of inflammatory-mediated neurodegeneration. In the present study, we investigated the effect of glaucocalyxin A (GLA isolated from Rabdosia japonica on the production of pro-inflammatory mediators in lipopolysaccharide (LPS-stimulated primary microglia and BV-2 cells. GLA significantly inhibited LPS-induced production of nitric oxide and reversed the morphological changes in primary microglia. Further, GLA suppressed expression of inducible nitric oxide synthase and cyclooxygenase-2 dose-dependently at the mRNA and protein levels. The production of proinflammatory cytokines such as tumor necrosis factor-α, interleukin-1β (IL-1β, and IL-6 were inhibited by suppressing their transcriptional activity. Furthermore, GLA suppressed nuclear factor-κB activation by blocking degradation of IκB-α and inhibited the induction of lipocalin-2 expression in LPS-stimulated BV-2 cells. Mechanistic study revealed that the inhibitory effects of GLA were accompanied by blocking the p38 mitogen activated protein kinase signaling pathway in activated microglia. In conclusion, given that microglial activation contributes to the pathogenesis of neurodegenerative diseases, GLA could be developed as a potential therapeutic agent for treating microglia-mediated neuroinflammatory diseases.

  20. Differential regulation of trophic and proinflammatory microglial effectors is dependent on severity of neuronal injury.

    Science.gov (United States)

    Lai, Aaron Y; Todd, Kathryn G

    2008-02-01

    Microglial activation has been reported to promote neurotoxicity and also neuroprotective effects. A possible contributor to this dichotomy of responses may be the degree to which proximal neurons are injured. The aim of this study was to determine whether varying the severity of neuronal injury influenced whether microglia were neuroprotective or neurotoxic. We exposed cortical neuronal cultures to varying degrees of hypoxia thereby generating mild (70% death, 6 h hypoxia) injuries. Twenty-four hours after hypoxia, the media from the neuronal cultures was collected and incubated with primary microglial cultures for 24 h. Results showed that the classic microglial proinflammatory mediators including inducible nitric oxide synthase, tumor necrosis factor alpha, and interleukin-1-beta were upregulated only in response to mild neuronal injuries, while the trophic microglial effectors brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor were upregulated in response to all degrees of neuronal injury. Microglia stimulated with media from damaged neurons were co-cultured with hypoxic neurons. Microglia stimulated by moderate, but not mild or severe damage were neuroprotective in these co-cultures. We also showed that the severity-dependent phenomenon was not related to autocrine microglial signaling and was dependent on the neurotransmitters released by neurons after injury, namely glutamate and adenosine 5'-triphosphate. Together our results show that severity of neuronal injury is an important factor in determining microglial release of "toxic" versus "protective" effectors and the resulting neurotoxicity versus neuroprotection.

  1. Cannabinoid-mediated modulation of neuropathic pain and microglial accumulation in a model of murine type I diabetic peripheral neuropathic pain

    Directory of Open Access Journals (Sweden)

    Ellis Connie L

    2010-03-01

    Full Text Available Abstract Background Despite the frequency of diabetes mellitus and its relationship to diabetic peripheral neuropathy (DPN and neuropathic pain (NeP, our understanding of underlying mechanisms leading to chronic pain in diabetes remains poor. Recent evidence has demonstated a prominent role of microglial cells in neuropathic pain states. One potential therapeutic option gaining clinical acceptance is the cannabinoids, for which cannabinoid receptors (CB are expressed on neurons and microglia. We studied the accumulation and activation of spinal and thalamic microglia in streptozotocin (STZ-diabetic CD1 mice and the impact of cannabinoid receptor agonism/antagonism during the development of a chronic NeP state. We provided either intranasal or intraperitoneal cannabinoid agonists/antagonists at multiple doses both at the initiation of diabetes as well as after establishment of diabetes and its related NeP state. Results Tactile allodynia and thermal hypersensitivity were observed over 8 months in diabetic mice without intervention. Microglial density increases were seen in the dorsal spinal cord and in thalamic nuclei and were accompanied by elevation of phosphorylated p38 MAPK, a marker of microglial activation. When initiated coincidentally with diabetes, moderate-high doses of intranasal cannabidiol (cannaboid receptor 2 agonist and intraperitoneal cannabidiol attenuated the development of an NeP state, even after their discontinuation and without modification of the diabetic state. Cannabidiol was also associated with restriction in elevation of microglial density in the dorsal spinal cord and elevation in phosphorylated p38 MAPK. When initiated in an established DPN NeP state, both CB1 and CB2 agonists demonstrated an antinociceptive effect until their discontinuation. There were no pronociceptive effects demonstated for either CB1 or CB2 antagonists. Conclusions The prevention of microglial accumulation and activation in the dorsal spinal

  2. Dexmedetomidine Regulates 6-hydroxydopamine-Induced Microglial Polarization.

    Science.gov (United States)

    Zhang, Pei; Li, Yu; Han, Xuechang; Xing, Qunzhi; Zhao, Lei

    2017-02-28

    Microglia have undergone extensive characterization and have been shown to present distinct phenotypes, such as the M1 or M2 phenotypes, depending on their stimuli. As a highly specific neurotoxin, 6-hydroxydopamine (6-OHDA) can be used to further our understanding of the immune response in Parkinson's disease (PD). Dexmedetomidine (DEX), a centrally selective α2-adrenoceptor agonist, performs very well as an anti-anxiety medication, sedative and analgesic. In the present study, we investigated the effects of DEX on 6-OHDA-induced microglial polarization. Our results indicate that treatment with 6-OHDA promotes microglial polarization toward the M1 state in BV2 microglia cells by increasing the release of interleukin (IL)-6, IL-1β, or tumor necrosis factor-α, which can be prevented by pretreatment with DEX. In addition, we found that 6-OHDA blocked IL-4-mediated microglial M2 polarization by suppressing expression of the microglial M2 markers arginase-1 (Arg-1), resistin-like α (Retnla/Fizz1), and chitinase 3-like 3 (Chi3l3/Ym1), which could be ameliorated by pretreatment with DEX. Notably, the inhibitory effects of 6-OHDA on IL-4-mediated induction of the anti-inflammatory marker genes IL-10, IL-13, and transforming growth factor-β2 could be significantly alleviated by pretreatment with DEX in a dose-dependent manner (P < 0.01). Mechanistically, alternations in the activation of signal transducer and activator of transcription 6 were involved in this process. These findings suggest that administration of DEX has the potential to interrupt the process of microgliosis in PD.

  3. Microglial involvement in neuroplastic changes following focal brain ischemia in rats.

    Directory of Open Access Journals (Sweden)

    Alexandre Madinier

    Full Text Available The pathogenesis of ischemic stroke is a complex sequence of events including inflammatory reaction, for which the microglia appears to be a major cellular contributor. However, whether post-ischemic activation of microglial cells has beneficial or detrimental effects remains to be elucidated, in particular on long term brain plasticity events. The objective of our study was to determine, through modulation of post-stroke inflammatory response, to what extent microglial cells are involved in some specific events of neuronal plasticity, neurite outgrowth and synaptogenesis. Since microglia is a source of neurotrophic factors, the identification of the brain-derived neurophic factor (BDNF as possible molecular actor involved in these events was also attempted. As a means of down-regulating the microglial response induced by ischemia, 3-aminobenzamide (3-AB, 90 mg/kg, i.p. was used to inhibit the poly(ADP-ribose polymerase-1 (PARP-1. Indeed, PARP-1 contributes to the activation of the transcription factor NF-kB, which is essential to the upregulation of proinflammatory genes, in particular responsible for microglial activation/proliferation. Experiments were conducted in rats subjected to photothrombotic ischemia which leads to a strong and early microglial cells activation/proliferation followed by an infiltration of macrophages within the cortical lesion, events evaluated at serial time points up to 1 month post-ictus by immunostaining for OX-42 and ED-1. Our most striking finding was that the decrease in acute microglial activation induced by 3-AB was associated with a long term down-regulation of two neuronal plasticity proteins expression, synaptophysin (marker of synaptogenesis and GAP-43 (marker of neuritogenesis as well as to a significant decrease in tissue BDNF production. Thus, our data argue in favour of a supportive role for microglia in brain neuroplasticity stimulation possibly through BDNF production, suggesting that a targeted

  4. Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis.

    Science.gov (United States)

    Kreisel, T; Frank, M G; Licht, T; Reshef, R; Ben-Menachem-Zidon, O; Baratta, M V; Maier, S F; Yirmiya, R

    2014-06-01

    The limited success in understanding the pathophysiology of major depression may result from excessive focus on the dysfunctioning of neurons, as compared with other types of brain cells. Therefore, we examined the role of dynamic alterations in microglia activation status in the development of chronic unpredictable stress (CUS)-induced depressive-like condition in rodents. We report that following an initial period (2-3 days) of stress-induced microglial proliferation and activation, some microglia underwent apoptosis, leading to reductions in their numbers within the hippocampus, but not in other brain regions, following 5 weeks of CUS exposure. At that time, microglia displayed reduced expression of activation markers as well as dystrophic morphology. Blockade of the initial stress-induced microglial activation by minocycline or by transgenic interleukin-1 receptor antagonist overexpression rescued the subsequent microglial apoptosis and decline, as well as the CUS-induced depressive-like behavior and suppressed neurogenesis. Similarly, the antidepressant drug imipramine blocked the initial stress-induced microglial activation as well as the CUS-induced microglial decline and depressive-like behavior. Treatment of CUS-exposed mice with either endotoxin, macrophage colony-stimulating factor or granulocyte-macrophage colony-stimulating factor, all of which stimulated hippocampal microglial proliferation, partially or completely reversed the depressive-like behavior and dramatically increased hippocampal neurogenesis, whereas treatment with imipramine or minocycline had minimal or no anti-depressive effects, respectively, in these mice. These findings provide direct causal evidence that disturbances in microglial functioning has an etiological role in chronic stress-induced depression, suggesting that microglia stimulators could serve as fast-acting anti-depressants in some forms of depressive and stress-related conditions.

  5. Microglial microvesicles secretion and intercellular signalling

    Directory of Open Access Journals (Sweden)

    Elena eTurola

    2012-05-01

    Full Text Available Microvesicles (MVs are released from almost all cell brain types into the microenvironment and are emerging as a novel way of cell-to-cell communication. This review focuses on MVs discharged by microglial cells, the brain resident myeloid cells, which comprise approximately 10-12% of brain population. In this review, we summarize first evidence indicating that MV shedding is a process activated by the ATP receptor P2X7 and that shed MVs represent a secretory pathway for the inflammatory cytokine IL-1beta We then discuss subsequent findings which clarify how IL-1beta can be locally processed and released from MVs into the extracellular environment. In addition, we describe the current understanding about the mechanism of P2X7-dependent MV formation and membrane abscission, which, by involving sphingomyelinase activity and ceramide formation, may share similarities with exosome biogenesis. Finally we report our recent results which show that MVs can stimulate neuronal activity, and suggest new areas for future investigation

  6. Microglial Dysregulation in OCD, Tourette Syndrome, and PANDAS

    Directory of Open Access Journals (Sweden)

    Luciana Frick

    2016-01-01

    Full Text Available There is accumulating evidence that immune dysregulation contributes to the pathophysiology of obsessive-compulsive disorder (OCD, Tourette syndrome, and Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections (PANDAS. The mechanistic details of this pathophysiology, however, remain unclear. Here we focus on one particular component of the immune system: microglia, the brain’s resident immune cells. The role of microglia in neurodegenerative diseases has been understood in terms of classic, inflammatory activation, which may be both a consequence and a cause of neuronal damage. In OCD and Tourette syndrome, which are not characterized by frank neural degeneration, the potential role of microglial dysregulation is much less clear. Here we review the evidence for a neuroinflammatory etiology and microglial dysregulation in OCD, Tourette syndrome, and PANDAS. We also explore new hypotheses as to the potential contributions of microglial abnormalities to pathophysiology, beyond neuroinflammation, including failures in neuroprotection, lack of support for neuronal survival, and abnormalities in synaptic pruning. Recent advances in neuroimaging and animal model work are creating new opportunities to elucidate these issues.

  7. Microglial Dysregulation in OCD, Tourette Syndrome, and PANDAS

    Science.gov (United States)

    2016-01-01

    There is accumulating evidence that immune dysregulation contributes to the pathophysiology of obsessive-compulsive disorder (OCD), Tourette syndrome, and Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections (PANDAS). The mechanistic details of this pathophysiology, however, remain unclear. Here we focus on one particular component of the immune system: microglia, the brain's resident immune cells. The role of microglia in neurodegenerative diseases has been understood in terms of classic, inflammatory activation, which may be both a consequence and a cause of neuronal damage. In OCD and Tourette syndrome, which are not characterized by frank neural degeneration, the potential role of microglial dysregulation is much less clear. Here we review the evidence for a neuroinflammatory etiology and microglial dysregulation in OCD, Tourette syndrome, and PANDAS. We also explore new hypotheses as to the potential contributions of microglial abnormalities to pathophysiology, beyond neuroinflammation, including failures in neuroprotection, lack of support for neuronal survival, and abnormalities in synaptic pruning. Recent advances in neuroimaging and animal model work are creating new opportunities to elucidate these issues. PMID:28053994

  8. Salvianolic acid B attenuates toxin-induced neuronal damage via Nrf2-dependent glial cells-mediated protective activity in Parkinson's disease models.

    Directory of Open Access Journals (Sweden)

    Jie Zhou

    Full Text Available Salvianolic acid B (SalB, a bioactive compound isolated from the plant-derived medicinal herb Danshen, has been shown to exert various anti-oxidative and anti-inflammatory activities in several neurological disorders. In this study, we sought to investigate the potential protective effects and associated molecular mechanisms of SalB in Parkinson's disease (PD models. To determine the neuroprotective effects of SalB in vitro, MPP+- or lipopolysaccharide (LPS-induced neuronal injury was achieved using primary cultures with different compositions of neurons, microglia and astrocytes. Our results showed that SalB reduced both LPS- and MPP+-induced toxicity of dopamine neurons in a dose-dependent manner. Additionally, SalB treatment inhibited the release of microglial pro-inflammatory cytokines and resulted in an increase in the expression and release of glial cell line-derived neurotrophic factor (GDNF from astrocytes. Western blot analysis illustrated that SalB increased the expression and nuclear translocation of nuclear factor (erythroid-derived 2-like 2 (Nrf2. The knockdown of Nrf2 using specific small interfering RNA (siRNA partially reversed the SalB-induced GDNF expression and anti-inflammatory activity. Moreover, SalB treatment significantly attenuated dopaminergic (DA neuronal loss, inhibited neuroinflammation, increased GDNF expression and improved the neurological function in MPTP-treated mice. Collectively, these findings demonstrated that SalB protects DA neurons by an Nrf-2 -mediated dual action: reducing microglia activation-mediated neuroinflammation and inducing astrocyte activation-dependent GDNF expression. Importantly the present study also highlights critical roles of glial cells as targets for developing new strategies to alter the progression of neurodegenerative disorders.

  9. Salvianolic Acid B Attenuates Toxin-Induced Neuronal Damage via Nrf2-Dependent Glial Cells-Mediated Protective Activity in Parkinson’s Disease Models

    Science.gov (United States)

    Li, Zhi-Yun; Wei-Ji; Liu, Qi; Ma, Yi-Hui; He, Jiao-Jiang

    2014-01-01

    Salvianolic acid B (SalB), a bioactive compound isolated from the plant-derived medicinal herb Danshen, has been shown to exert various anti-oxidative and anti-inflammatory activities in several neurological disorders. In this study, we sought to investigate the potential protective effects and associated molecular mechanisms of SalB in Parkinson’s disease (PD) models. To determine the neuroprotective effects of SalB in vitro, MPP+- or lipopolysaccharide (LPS)-induced neuronal injury was achieved using primary cultures with different compositions of neurons, microglia and astrocytes. Our results showed that SalB reduced both LPS- and MPP+-induced toxicity of dopamine neurons in a dose-dependent manner. Additionally, SalB treatment inhibited the release of microglial pro-inflammatory cytokines and resulted in an increase in the expression and release of glial cell line-derived neurotrophic factor (GDNF) from astrocytes. Western blot analysis illustrated that SalB increased the expression and nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2). The knockdown of Nrf2 using specific small interfering RNA (siRNA) partially reversed the SalB-induced GDNF expression and anti-inflammatory activity. Moreover, SalB treatment significantly attenuated dopaminergic (DA) neuronal loss, inhibited neuroinflammation, increased GDNF expression and improved the neurological function in MPTP-treated mice. Collectively, these findings demonstrated that SalB protects DA neurons by an Nrf-2 -mediated dual action: reducing microglia activation-mediated neuroinflammation and inducing astrocyte activation-dependent GDNF expression. Importantly the present study also highlights critical roles of glial cells as targets for developing new strategies to alter the progression of neurodegenerative disorders. PMID:24991814

  10. Simultaneous reconstruction of activity and attenuation in time-of-flight PET.

    Science.gov (United States)

    Rezaei, Ahmadreza; Defrise, Michel; Bal, Girish; Michel, Christian; Conti, Maurizio; Watson, Charles; Nuyts, Johan

    2012-12-01

    In positron emission tomography (PET) and single photon emission tomography (SPECT), attenuation correction is necessary for quantitative reconstruction of the tracer distribution. Previously, several attempts have been made to estimate the attenuation coefficients from emission data only. These attempts had limited success, because the problem does not have a unique solution, and severe and persistent "cross-talk" between the estimated activity and attenuation distributions was observed. In this paper, we show that the availability of time-of-flight (TOF) information eliminates the cross-talk problem by destroying symmetries in the associated Fisher information matrix. We propose a maximum-a-posteriori reconstruction algorithm for jointly estimating the attenuation and activity distributions from TOF PET data. The performance of the algorithm is studied with 2-D simulations, and further illustrated with phantom experiments and with a patient scan. The estimated attenuation image is robust to noise, and does not suffer from the cross-talk that was observed in non-TOF PET. However, some constraining is still mandatory, because the TOF data determine the attenuation sinogram only up to a constant offset.

  11. Activation of TRPV1 reduces vascular lipid accumulation and attenuates atherosclerosis

    DEFF Research Database (Denmark)

    Ma, Liqun; Zhong, Jian; Zhao, Zhigang

    2011-01-01

    Activation of transient receptor potential vanilloid type-1 (TRPV1) channels may affect lipid storage and the cellular inflammatory response. Now, we tested the hypothesis that activation of TRPV1 channels attenuates atherosclerosis in apolipoprotein E knockout mice (ApoE(-/-)) but not Apo...

  12. Increased severity of experimental autoimmune encephalomyelitis, chronic macrophage/microglial reactivity, and demyelination in transgenic mice producing tumor necrosis factor-alpha in the central nervous system

    DEFF Research Database (Denmark)

    Taupin, V; Renno, T; Bourbonnière, L

    1997-01-01

    /microglial reactivity was evident in demyelinating lesions in spinal cord, but T cells were not detected during chronic disease. The participation of TNF-alpha in the demyelinating process is thus more probably due to the perpetuation of macrophage/microglial activation than to direct cytotoxicity of myelin...

  13. Macrophage colony-stimulating factor and its receptor signaling augment glycated albumin-induced retinal microglial inflammation in vitro

    Directory of Open Access Journals (Sweden)

    Jiang Chun H

    2011-01-01

    Full Text Available Abstract Background Microglial activation and the proinflammatory response are controlled by a complex regulatory network. Among the various candidates, macrophage colony-stimulating factor (M-CSF is considered an important cytokine. The up-regulation of M-CSF and its receptor CSF-1R has been reported in brain disease, as well as in diabetic complications; however, the mechanism is unclear. An elevated level of glycated albumin (GA is a characteristic of diabetes; thus, it may be involved in monocyte/macrophage-associated diabetic complications. Results The basal level of expression of M-CSF/CSF-1R was examined in retinal microglial cells in vitro. Immunofluorescence, real-time PCR, immunoprecipitation, and Western blot analyses revealed the up-regulation of CSF-1R in GA-treated microglial cells. We also detected increased expression and release of M-CSF, suggesting that the cytokine is produced by activated microglia via autocrine signaling. Using an enzyme-linked immunosorbent assay, we found that GA affects microglial activation by stimulating the release of tumor necrosis factor-α and interleukin-1β. Furthermore, the neutralization of M-CSF or CSF-1R with antibodies suppressed the proinflammatory response. Conversely, this proinflammatory response was augmented by the administration of M-CSF. Conclusions We conclude that GA induces microglial activation via the release of proinflammatory cytokines, which may contribute to the inflammatory pathogenesis of diabetic retinopathy. The increased microglial expression of M-CSF/CSF-1R not only is a response to microglial activation in diabetic retinopathy but also augments the microglial inflammation responsible for the diabetic microenvironment.

  14. Divergent Neuroinflammatory Regulation of Microglial TREM Expression and Involvement of NF-κB

    Science.gov (United States)

    Owens, Rosie; Grabert, Kathleen; Davies, Claire L.; Alfieri, Alessio; Antel, Jack P.; Healy, Luke M.; McColl, Barry W.

    2017-01-01

    The triggering receptor expressed on myeloid cells (TREM) family of proteins are cell surface receptors with important roles in regulation of myeloid cell inflammatory activity. In the central nervous system, TREM2 is implicated in further roles in microglial homeostasis, neuroinflammation and neurodegeneration. Different TREM receptors appear to have contrasting roles in controlling myeloid immune activity therefore the relative and co-ordinated regulation of their expression is important to understand but is currently poorly understood. We sought to determine how microglial TREM expression is affected under neuroinflammatory conditions in vitro and in vivo. Our data show that microglial Trem1 and Trem2 gene expression are regulated in an opposing manner by lipopolysaccharide (LPS) in vitro in both adult murine and human microglia. LPS caused a significant induction of Trem1 and a contrasting suppression of Trem2 expression. We also observed similar divergent Trem1 and Trem2 responses in vivo in response to acute brain inflammation and acute cerebral ischaemia. Our data show that inhibition of NF-κB activation prevents the LPS-induced alterations in both Trem1 and Trem2 expression in vitro indicating NF-κB as a common signaling intermediate controlling these divergent responses. Distinct patterns of microglial Trem1 induction and Trem2 suppression to different Toll-like receptor (TLR) ligands were also evident, notably with Trem1 induction restricted to those ligands activating TLRs signaling via TRIF. Our data show co-ordinated but divergent regulation of microglial TREM receptor expression with a central role for NF-κB. Neuroinflammatory conditions that alter the balance in TREM expression could therefore be an important influence on microglial inflammatory and homeostatic activity with implications for neuroinflammatory and neurodegenerative disease. PMID:28303091

  15. State space approach for joint estimation of activity and attenuation map from PET emission sinograms

    Institute of Scientific and Technical Information of China (English)

    Liu Huafeng; You Hongshun; Shi Pengcheng

    2007-01-01

    Quantitative estimation of radioactivity map has important clinical implications for better diagnosis and understanding of cancers. Although attenuation map and activity map are usually treated sequentially, they can obviously benefit a great deal when the transmission data is missing. In this paper, we propose a novel scheme of simultaneously solving for attenuation map and activity distribution from emission sinograms. Our strategy combines the measurement model of PET, and the attenuation parameters are treated as random variables with known prior statistics. After the conversion to state space representation, the extended Kalman filtering procedures are adopted to linearize the equations and to provide the joint estimates in an approximate optimal sense. Experiments have been performed on both synthetic data to illustrate its abilities and benefits.

  16. Curcumin attenuates diet-induced hepatic steatosis by activating AMP-activated protein kinase.

    Science.gov (United States)

    Um, Min Young; Hwang, Kwang Hyun; Ahn, Jiyun; Ha, Tae Youl

    2013-09-01

    Curcumin is a well-known component of traditional turmeric (Curcuma longa), which has been reported to prevent obesity and diabetes. However, the effect of curcumin on hepatic lipid metabolism remains unclear. The aim of this study was to examine the effects of curcumin on hepatic steatosis in high-fat/cholesterol diet (HFD)-induced obese mice. Male C57BL/6J mice were fed a normal diet (ND), HFD or HFD with 0.15% curcumin (HFD+C) for 11 weeks. We found that curcumin significantly lowered the body-weight and adipose tissue weight of mice in the HFD+C group compared with the findings for the HFD group (p cholesterol, fasting glucose and insulin in serum were decreased, and HFD-induced impairment of insulin sensitivity was improved by curcumin supplementation (p Curcumin protected against the development of hepatic steatosis by reducing hepatic fat accumulation. Moreover, curcumin activated AMP-activated protein kinase (AMPK) and elevated the gene expression of peroxisome proliferator-activated receptor alpha. By contrast, curcumin suppressed the HFD-mediated increases in sterol regulatory element-binding protein-1, acetyl-CoA carboxylase 1, fatty acid synthase and cluster of differentiation 36 expression. Taken together, these findings indicate that curcumin attenuates HFD-induced hepatic steatosis by regulating hepatic lipid metabolism via AMPK activation, suggesting its use as a therapeutic for hepatic steatosis.

  17. Ceftriaxone attenuates locomotor activity induced by acute and repeated cocaine exposure in mice.

    Science.gov (United States)

    Tallarida, Christopher S; Corley, Gladys; Kovalevich, Jane; Yen, William; Langford, Dianne; Rawls, Scott M

    2013-11-27

    Ceftriaxone (CTX) decreases locomotor activation produced by initial cocaine exposure and attenuates development of behavioral sensitization produced by repeated cocaine exposure. An important question that has not yet been answered is whether or not CTX reduces behavioral sensitization to cocaine in cases in which the antibiotic is administered only during the period of cocaine absence that follows repeated cocaine exposure and precedes reintroduction to cocaine. We investigated this question using C57BL/6 mice. Mice pretreated with cocaine (15mg/kg×14 days) and then challenged with cocaine (15mg/kg) after 30 days of cocaine absence displayed sensitization of locomotor activity. For combination experiments, CTX injected during the 30 days of cocaine absence attenuated behavioral sensitization produced by cocaine challenge. In the case in which CTX was injected together with cocaine for 14 days, development of behavioral sensitization to cocaine challenge was also reduced. CTX attenuated the increase in locomotor activity produced by acute cocaine exposure; however, its efficacy was dependent on the dose of cocaine as inhibition was detected against 30mg/kg, but not 15mg/kg, of cocaine. These results from mice indicate that CTX attenuates locomotor activity produced by acute and repeated cocaine exposure and counters cocaine's locomotor activating properties in a paradigm in which the antibiotic is injected during the period of forced cocaine absence that follows repeated cocaine exposure.

  18. Blockade of microglial KATP -channel abrogates suppression of inflammatory-mediated inhibition of neural precursor cells.

    Science.gov (United States)

    Ortega, Francisco J; Vukovic, Jana; Rodríguez, Manuel J; Bartlett, Perry F

    2014-02-01

    Microglia positively affect neural progenitor cell physiology through the release of inflammatory mediators or trophic factors. We demonstrated previously that reactive microglia foster K(ATP) -channel expression and that blocking this channel using glibenclamide administration enhances striatal neurogenesis after stroke. In this study, we investigated whether the microglial K(ATP) -channel directly influences the activation of neural precursor cells (NPCs) from the subventricular zone using transgenic Csf1r-GFP mice. In vitro exposure of NPCs to lipopolysaccharide and interferon-gamma resulted in a significant decrease in precursor cell number. The complete removal of microglia from the culture or exposure to enriched microglia culture also decreased the precursor cell number. The addition of glibenclamide rescued the negative effects of enriched microglia on neurosphere formation and promoted a ∼20% improvement in precursor cell number. Similar results were found using microglial-conditioned media from isolated microglia. Using primary mixed glial and pure microglial cultures, glibenclamide specifically targeted reactive microglia to restore neurogenesis and increased the microglial production of the chemokine monocyte chemoattractant protein-1 (MCP-1). These findings provide the first direct evidence that the microglial K(ATP) -channel is a regulator of the proliferation of NPCs under inflammatory conditions.

  19. Microglial Hv1 proton channel promotes cuprizone-induced demyelination through oxidative damage.

    Science.gov (United States)

    Liu, Junli; Tian, Daishi; Murugan, Madhuvika; Eyo, Ukpong B; Dreyfus, Cheryl F; Wang, Wei; Wu, Long-Jun

    2015-10-01

    NADPH oxidase (NOX)-dependent reactive oxygen species (ROS) production in inflammatory cells including microglia plays an important role in demyelination and free radical-mediated tissue injury in multiple sclerosis (MS). However, the mechanism underlying microglial ROS production and demyelination remains largely unknown. The voltage-gated proton channel, Hv1, is selectively expressed in microglia and is required for NOX-dependent ROS generation in the brain. In the present study, we sought to determine the role of microglial Hv1 proton channels in a mouse model of cuprizone-induced demyelination, a model for MS. Following cuprizone exposure, wild-type mice presented obvious demyelination, decreased myelin basic protein expression, loss of mature oligodendrocytes, and impaired motor coordination in comparison to mice on a normal chow diet. However, mice lacking Hv1 (Hv1(-/-) ) are partially protected from demyelination and motor deficits compared with those in wild-type mice. These rescued phenotypes in Hv1(-/-) mice in cuprizone-induced demyelination is accompanied by reduced ROS production, ameliorated microglial activation, increased oligodendrocyte progenitor cell (NG2) proliferation, and increased number of mature oligodendrocytes. These results demonstrate that the Hv1 proton channel is required for cuprizone-induced microglial oxidative damage and subsequent demyelination. Our study suggests that the microglial Hv1 proton channel is a unique target for controlling NOX-dependent ROS production in the pathogenesis of MS.

  20. Blockade of Glutamine Synthetase Enhances Inflammatory Response in Microglial Cells

    Science.gov (United States)

    Palmieri, Erika M.; Menga, Alessio; Lebrun, Aurore; Hooper, Douglas C.; Butterfield, D. Allan

    2017-01-01

    Abstract Aims: Microglial cells are brain-resident macrophages engaged in surveillance and maintained in a constant state of relative inactivity. However, their involvement in autoimmune diseases indicates that in pathological conditions microglia gain an inflammatory phenotype. The mechanisms underlying this change in the microglial phenotype are still unclear. Since metabolism is an important modulator of immune cell function, we focused our attention on glutamine synthetase (GS), a modulator of the response to lipopolysaccharide (LPS) activation in other cell types, which is expressed by microglia. Results: GS inhibition enhances release of inflammatory mediators of LPS-activated microglia in vitro, leading to perturbation of the redox balance and decreased viability of cocultured neurons. GS inhibition also decreases insulin-mediated glucose uptake in microglia. In vivo, microglia-specific GS ablation enhances expression of inflammatory markers upon LPS treatment. In the spinal cords from experimental autoimmune encephalomyelitis (EAE), GS expression levels and glutamine/glutamate ratios are reduced. Innovation: Recently, metabolism has been highlighted as mediator of immune cell function through the discovery of mechanisms that (behind these metabolic changes) modulate the inflammatory response. The present study shows for the first time a metabolic mechanism mediating microglial response to a proinflammatory stimulus, pointing to GS activity as a master modulator of immune cell function and thus unraveling a potential therapeutic target. Conclusions: Our study highlights a new role of GS in modulating immune response in microglia, providing insights into the pathogenic mechanisms associated with inflammation and new strategies of therapeutic intervention. Antioxid. Redox Signal. 26, 351–363. PMID:27758118

  1. Effect of GSM-1800 and U.M.T.S. exposures on micro-glial activation and heat shock proteins induction in brain: a study on young adult and elderly rats

    Energy Technology Data Exchange (ETDEWEB)

    Laclau, M.; Billaudel, B.; Taxil, M.; Haro, E.; Ruffie, G.; Sanchez, S.; Poulletier De Gannes, F.; Lagroye, I.; Veyret, B. [PIOM/Bioelecromagnetics Lab., ENSCPB/EPHE, 33 - Pessac (France)

    2006-07-01

    Contradictory results have emerged from recent studies describing low -level radiofrequency radiation (R.F.R.) as a hazardous factor for the central nervous system while others described such type of exposure as totally safe. In the brain, heat shock proteins (H.s.p.) are often induced under harmful conditions such as ischemia, traumatic injury, epilepsy, hyperthermia, drug administration, and neuro-degenerative diseases. Under those conditions, activation of the micro-glial cell population is often observed. In this work we studied the effect of two types of mobile phone signals, GSM-1800 and U.M.T.S. on the expression of two major H.s.p., induced in the brain under harmful conditions, H.s.p. 70 and H.s.p. 25. We also studied micro-glial activation in young adult (8 weeks) and elderly (17 months) Wistar rats. Height animals by group were exposed. Exposures were performed using a brain-averaged S.A.R. of 2 W/kg following two types of protocols: an acute exposure, with exposure lasting only two hours, and a sub chronic exposure in which the animals were exposed for two hours per day, five days per week, during four weeks. In all cases, rats were progressively habituated to the exposure setup (rockets) over two weeks to avoid stress and a sham group was exposed for each condition. Positive controls were performed by induction of a status epilepticus using a subcutaneous injection kainic acid (10 mg/kg). At the end of exposure, rats were anesthetized with isofluran and perfused from the heart with P.B.S. then paraformaldehyde prior to removing of the brain. Sections (10 m m thick) were prepared on slides for immunohistochemistry. Brain samples were coded and the analysis was performed in a blind manner. The sections were immuno-histo-chemically stained with antibodies raised in rabbits against H.s.p.25 and against the inducible form of H.s.p.70. The whole glial cell population was detected by its common cell surface glyco conjugates, which bind the plant Griffonia

  2. Treatment with dexamethasone and vitamin D3 attenuates neuroinflammatory age-related changes in rat hippocampus.

    Science.gov (United States)

    Moore, Michelle; Piazza, Alessia; Nolan, Yvonne; Lynch, Marina A

    2007-10-01

    Among the changes which occur in the brain with age is an increase in hippocampal concentration of proinflammatory cytokines like interleukin-1beta (IL-1beta) and an increase in IL-1beta-induced signaling. Here we demonstrate that the increase in IL-1beta concentration is accompanied by an increase in expression of IL-1 type I receptor (IL-1RI) and an age-related increase in microglial activation, as shown by increased expression of the cell surface marker, major histocompatibility complex II (MHCII) and increased MHCII staining. The evidence indicates that these age-related changes were abrogated in hippocampus of aged rats treated with dexamethasone and vitamin D3. Similarly, the age-related increases in activation of the stress-activated protein kinase, c-Jun N-terminal kinase (JNK), as well as caspase-3 and PARP were all attenuated in hippocampal tissue prepared from rats that received dexamethasone and vitamin D3. The data indicate that dexamethasone and vitamin D3 ameliorated the age-related increase in IFNgamma and suggest that IFNgamma may be the trigger leading to microglial activation, since it increases MHCII mRNA and IL-1beta release from cultured glia. In parallel with its ability to decrease microglial activation in vivo, we report that treatment of cultured glia with dexamethasone and vitamin D3 blocked the lipopolysaccharide increased MHCII mRNA and IL-1beta concentration, while the IL-1beta-induced increases in activation of JNK and caspase 3 in cultured neurons were also reversed by treatment with dexamethasone and vitamin D3. The data suggest that the antiinflammatory effect of dexamethasone and vitamin D3 derives from their ability to downreguate microglial activation.

  3. Enhanced microglial clearance of myelin debris in T cell-infiltrated central nervous system

    DEFF Research Database (Denmark)

    Nielsen, Helle Hvilsted; Ladeby, Rune; Fenger, Christina;

    2009-01-01

    system. We investigated T-cell infiltration, myelin clearance, microglial activation, and phagocytic activity distal to sites of axonal transection through analysis of the perforant pathway deafferented dentate gyrus in SJL mice that had received T cells specific for myelin basic protein (TMBP...

  4. Accelerated microglial pathology is associated with Aβ plaques in mouse models of Alzheimer's disease

    DEFF Research Database (Denmark)

    Baron, Rona; Babcock, Alicia A; Nemirovsky, Anna;

    2014-01-01

    with aging and in Alzheimer's-like disease. We show that, compared with microglia in young mice, microglia in old mice are less ramified and possess fewer branches and fine processes along with a slightly increased proinflammatory cytokine expression. A similar microglial pathology appeared 6-12 months...... earlier in mouse models of Alzheimer's disease (AD), along with a significant increase in brain parenchyma lacking coverage by microglial processes. We further demonstrate that microglia near amyloid plaques acquire unique activated phenotypes with impaired process complexity. We thus show that along...... with a chronic proinflammatory reaction in the brain, aging causes a significant reduction in the capacity of microglia to scan their environment. This type of pathology is markedly accelerated in mouse models of AD, resulting in a severe microglial process deficiency, and possibly contributing to enhanced...

  5. TMEM16F Regulates Spinal Microglial Function in Neuropathic Pain States

    Directory of Open Access Journals (Sweden)

    Laura Batti

    2016-06-01

    Full Text Available Neuropathic pain is a widespread chronic pain state that results from injury to the nervous system. Spinal microglia play a causative role in the pathogenesis of neuropathic pain through secretion of growth factors and cytokines. Here, we investigated the contribution of TMEM16F, a protein that functions as a Ca2+-dependent ion channel and a phospholipid scramblase, to microglial activity during neuropathic pain. We demonstrate that mice with a conditional ablation of TMEM16F in microglia do not develop mechanical hypersensitivity upon nerve injury. In the absence of TMEM16F, microglia display deficits in process motility and phagocytosis. Moreover, loss of GABA immunoreactivity upon injury is spared in TMEM16F conditional knockout mice. Collectively, these data indicate that TMEM16F is an essential component of the microglial response to injury and suggest the importance of microglial phagocytosis in the pathogenesis of neuropathic pain.

  6. Metformin attenuates pressure overload-induced cardiac hypertrophy via AMPK activation

    Institute of Scientific and Technical Information of China (English)

    Yong-nan FU; Han XIAO; Xiao-wei MA; Sheng-yang JIANG; Ming XU; You-yi ZHANG

    2011-01-01

    Aim: To identify the role of metformin in cardiac hypertrophy and investigate the possible mechanism underlying this effect.Methods: Wild type and AMPKα2 knockout (AMPKα2-/-) littermates were subjected to left ventricular pressure overload caused by evaluated using echocardiography and anatomic and histological methods. The antihypertrophic mechanism of metformin was analyzed using Western blotting.Results: Metformin significantly attenuated cardiac hypertrophy induced by pressure overload in wild type mice, but the antihypertrophic actions of metformin were ablated in AMPKx2-/- mice. Furthermore, metformin suppressed the phosphorylation of Akt/protein kinase B (AKT) and mammalian target of rapamycin (mTOR) in response to pressure overload in wild type mice, but not in AMPKα2-/-mice.Conclusion: Long-term administration of metformin may attenuate cardiac hypertrophy induced by pressure overload in nondiabetic mice, and this attenuation is highly dependent on AMPK activation. These findings may provide a potential therapy for patients at risk of developing pathological cardiac hypertrophy.

  7. Simultaneous reconstruction of emission activity and attenuation coefficient distribution from TOF data, acquired with external transmission source.

    Science.gov (United States)

    Panin, V Y; Aykac, M; Casey, M E

    2013-06-07

    The simultaneous PET data reconstruction of emission activity and attenuation coefficient distribution is presented, where the attenuation image is constrained by exploiting an external transmission source. Data are acquired in time-of-flight (TOF) mode, allowing in principle for separation of emission and transmission data. Nevertheless, here all data are reconstructed at once, eliminating the need to trace the position of the transmission source in sinogram space. Contamination of emission data by the transmission source and vice versa is naturally modeled. Attenuated emission activity data also provide additional information about object attenuation coefficient values. The algorithm alternates between attenuation and emission activity image updates. We also proposed a method of estimation of spatial scatter distribution from the transmission source by incorporating knowledge about the expected range of attenuation map values. The reconstruction of experimental data from the Siemens mCT scanner suggests that simultaneous reconstruction improves attenuation map image quality, as compared to when data are separated. In the presented example, the attenuation map image noise was reduced and non-uniformity artifacts that occurred due to scatter estimation were suppressed. On the other hand, the use of transmission data stabilizes attenuation coefficient distribution reconstruction from TOF emission data alone. The example of improving emission images by refining a CT-based patient attenuation map is presented, revealing potential benefits of simultaneous CT and PET data reconstruction.

  8. Inhibition of NF-κB activity in the hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by modulating cytokines and attenuating oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiao-Jing [Department of Physiology and Pathophysiology, Xi' an Jiaotong University School of Basic Medical Sciences, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China); Zhang, Dong-Mei [Department of Physiology, Dalian Medical University, Dalian 116044 (China); Jia, Lin-Lin; Qi, Jie; Song, Xin-Ai; Tan, Hong [Department of Physiology and Pathophysiology, Xi' an Jiaotong University School of Basic Medical Sciences, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China); Cui, Wei [Department of Endocrinology and Metabolism, First Affiliated Hospital of Xi' an Jiaotong University, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China); Chen, Wensheng [Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi' an 710032 (China); Zhu, Guo-Qing [Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029 (China); Qin, Da-Nian, E-mail: dnqin@stu.edu.cn [Department of Physiology, Shantou University Medical College, Shantou 515041 (China); Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn [Department of Physiology and Pathophysiology, Xi' an Jiaotong University School of Basic Medical Sciences, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China)

    2015-05-01

    We hypothesized that chronic inhibition of NF-κB activity in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), attenuating nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase in the PVN of young spontaneously hypertensive rats (SHR). Young normotensive Wistar–Kyoto (WKY) and SHR rats received bilateral PVN infusions with NF–κB inhibitor pyrrolidine dithiocarbamate (PDTC) or vehicle for 4 weeks. SHR rats had higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, cardiomyocyte diameters of the left cardiac ventricle, and mRNA expressions of cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC). These SHR rats had higher PVN levels of proinflammatory cytokines (PICs), reactive oxygen species (ROS), the chemokine monocyte chemoattractant protein-1 (MCP-1), NAD(P)H oxidase activity, mRNA expression of NOX-2 and NOX-4, and lower PVN IL-10, and higher plasma levels of PICs and NE, and lower plasma IL-10. PVN infusion of NF-κB inhibitor PDTC attenuated all these changes. These findings suggest that NF-κB activation in the PVN increases sympathoexcitation and hypertensive response, which are associated with the increases of PICs and oxidative stress in the PVN; PVN inhibition of NF-κB activity attenuates PICs and oxidative stress in the PVN, thereby attenuates hypertension and cardiac hypertrophy. - Highlights: • Spontaneously hypertensive rats exhibit neurohormonal excitation in the PVN. • PVN inhibition of NF-κB attenuates hypertension-induced cardiac hypertrophy. • PVN inhibition of NF-κB attenuates hypertension-induced neurohormonal excitation. • PVN inhibition of NF-κB attenuates hypertension-induced imbalance of cytokines

  9. Microglial priming and Alzheimer’s disease: a possible role for (early immune challenges and epigenetics?

    Directory of Open Access Journals (Sweden)

    Lianne Hoeijmakers

    2016-08-01

    Full Text Available Neuroinflammation is thought to contribute to Alzheimer’s disease (AD pathogenesis that is, to a large extent, mediated by microglia. Given the tight interaction between the immune system and the brain, peripheral immune challenges can profoundly affect brain function. Indeed, both preclinical and clinical studies have indicated that an aberrant inflammatory response can elicit behavioral impairments and cognitive deficits, especially when the brain is in a vulnerable state, e.g. during early development, as a result of aging, or under disease conditions like AD. However, how exactly peripheral immune challenges affect brain function and whether this is mediated by aberrant microglial functioning remains largely elusive. In this review, we hypothesize that; 1 systemic immune challenges occurring during vulnerable periods of life can increase the propensity to induce later cognitive dysfunction and accelerate AD pathology, and 2 that 'priming' of microglial cells is instrumental in mediating this vulnerability. We highlight how microglia can be primed by both neonatal infections as well as by aging, two periods of life during which microglial activity is known to be specifically upregulated. Lasting changes in (the ratios of specific microglial phenotypes can result in an exaggerated pro-inflammatory cytokine response to subsequent inflammatory challenges. While the resulting changes in brain function are initially transient, a continued and/or excess release of such pro-inflammatory cytokines can activate various downstream cellular cascades known to be relevant for AD. Finally, we discuss microglial priming and the aberrant microglial response as potential target for treatment strategies for AD.

  10. Perinatal hypoxia-ischemia reduces α 7 nicotinic receptor expression and selective α 7 nicotinic receptor stimulation suppresses inflammation and promotes microglial Mox phenotype.

    Science.gov (United States)

    Hua, Sansan; Ek, C Joakim; Mallard, Carina; Johansson, Maria E

    2014-01-01

    Inflammation plays a central role in neonatal brain injury. During brain inflammation the resident macrophages of the brain, the microglia cells, are rapidly activated. In the periphery, α 7 nicotinic acetylcholine receptors ( α 7R) present on macrophages can regulate inflammation by suppressing cytokine release. In the current study we investigated α 7R expression in neonatal mice after hypoxia-ischemia (HI). We further examined possible anti-inflammatory role of α 7R stimulation in vitro and microglia polarization after α 7R agonist treatment. Real-time PCR analysis showed a 33% reduction in α 7R expression 72 h after HI. Stimulation of primary microglial cells with LPS in combination with increasing doses of the selective α 7R agonist AR-R 17779 significantly attenuated TNF α release and increased α 7R transcript in microglial cells. Gene expression of M1 markers CD86 and iNOS, as well as M2 marker CD206 was not influenced by LPS and/or α 7R agonist treatment. Further, Mox markers heme oxygenase (Hmox1) and sulforedoxin-1 (Srx1) were significantly increased, suggesting a polarization towards the Mox phenotype after α 7R stimulation. Thus, our data suggest a role for the α 7R also in the neonatal brain and support the anti-inflammatory role of α 7R in microglia, suggesting that α 7R stimulation could enhance the polarization towards a reparative Mox phenotype.

  11. Perinatal Hypoxia-Ischemia Reduces α7 Nicotinic Receptor Expression and Selective α7 Nicotinic Receptor Stimulation Suppresses Inflammation and Promotes Microglial Mox Phenotype

    Directory of Open Access Journals (Sweden)

    Sansan Hua

    2014-01-01

    Full Text Available Inflammation plays a central role in neonatal brain injury. During brain inflammation the resident macrophages of the brain, the microglia cells, are rapidly activated. In the periphery, α7 nicotinic acetylcholine receptors (α7R present on macrophages can regulate inflammation by suppressing cytokine release. In the current study we investigated α7R expression in neonatal mice after hypoxia-ischemia (HI. We further examined possible anti-inflammatory role of α7R stimulation in vitro and microglia polarization after α7R agonist treatment. Real-time PCR analysis showed a 33% reduction in α7R expression 72 h after HI. Stimulation of primary microglial cells with LPS in combination with increasing doses of the selective α7R agonist AR-R 17779 significantly attenuated TNFα release and increased α7R transcript in microglial cells. Gene expression of M1 markers CD86 and iNOS, as well as M2 marker CD206 was not influenced by LPS and/or α7R agonist treatment. Further, Mox markers heme oxygenase (Hmox1 and sulforedoxin-1 (Srx1 were significantly increased, suggesting a polarization towards the Mox phenotype after α7R stimulation. Thus, our data suggest a role for the α7R also in the neonatal brain and support the anti-inflammatory role of α7R in microglia, suggesting that α7R stimulation could enhance the polarization towards a reparative Mox phenotype.

  12. Physical Activity Attenuates the Influence of FTO Variants on Obesity Risk

    DEFF Research Database (Denmark)

    Oskari Kilpeläinen, Tuomas; Qi, Lu; Brage, Soren

    2011-01-01

    Background The FTO gene harbors the strongest known susceptibility locus for obesity. While many individual studies have suggested that physical activity (PA) may attenuate the effect of FTO on obesity risk, other studies have not been able to confirm this interaction. To confirm or refute......>0.8]) and PA were invited to participate, regardless of ethnicity or age of the participants. PA was standardized by categorizing it into a dichotomous variable (physically inactive versus active) in each study. Overall, 25% of adults and 13% of children were categorized as inactive. Interaction analyses were.......20–1.26), but PA attenuated this effect (pinteraction = 0.001). More specifically, the minor allele of rs9939609 increased the odds of obesity less in the physically active group (odds ratio = 1.22/allele, 95% CI 1.19–1.25) than in the inactive group (odds ratio = 1.30/allele, 95% CI 1...

  13. Tff3 is Expressed in Neurons and Microglial Cells

    Directory of Open Access Journals (Sweden)

    Ting Fu

    2014-11-01

    Full Text Available Background/Aims: The trefoil factor family (TFF peptide TFF3 is typically secreted by mucous epithelia, but is also expressed in the immune system and the brain. It was the aim of this study to determine the cerebral cell types which express Tff3. Methods: Primary cultures from rat embryonic or neonatal cerebral cortex and hippocampus, respectively, were studied by means of RT-PCR and immunofluorescence. Moreover, Tff3 expression was localized by immunocytochemistry in sections of adult rat cerebellum. Results: Tff3 transcripts were detectable in neural cultures of both the cortex and the hippocampus as well as in glial cell-enriched cultures. Tff3 peptide co-localized with Map2 indicating an expression in neurons in vitro. The neuronal expression was confirmed by immunofluorescence studies of adult rat cerebellum. Furthermore, Tff3 peptide showed also a clear co-localization with Iba-1 in vitro typical of activated microglial cells. Conclusion: The neuronal expression of Tff3 is in line with a function of a typical neuropeptide influencing, e.g., fear, memory, depression and motoric skills. The expression in activated microglial cells, which is demonstrated here for the first time, points towards a possible function for Tff3 in immune reactions in the CNS. This opens a plethora of additional possible functions for Tff3 including synaptic plasticity and cognition as well as during neuroinflammatory diseases and psychiatric disorders.

  14. Connexins and pannexins: New insights into microglial functions and dysfunctions

    Directory of Open Access Journals (Sweden)

    Rosario Gajardo-Gómez

    2016-09-01

    Full Text Available In a physiological context, microglia adopt a resting phenotype that is associated with the production of anti-inflammatory and neurotrophic factors. In response to a wide variety of insults, they shift to the activated phenotype that is necessary for the proper restoration of brain homeostasis. When the intensity of the threat is relatively high, microglial activation can worsen the damage progression instead of providing protection, with potentially significant consequences for neuronal survival. Coordinated interactions among microglia and with other brain cells, including astrocytes and neurons, is critical for the development of timely and optimal inflammatory responses in the brain parenchyma. Tissue synchronization is in part mediated by connexins and pannexins, which are protein families that form different plasma membrane channels to communicate with neighboring cells. At one end, the gap junction channels (which are exclusively formed by connexins in vertebrates connect the cytoplasm of contacting cells to coordinate electrical and metabolic coupling. At the other end, hemichannels and pannexons (which are formed by connexins and pannexins, respectively communicate via intra- and extracellular compartments and serve as diffusion pathways for the exchange of ions and small molecules. In this review, we discuss the evidence available concerning the functional expression and regulation of connexin- and pannexin-based channels in microglia and their contribution to microglial function and dysfunction. We focus on the possible implications of these channels in microglia-to-microglia, microglia-to-astrocyte and neuron-to-microglia interactions in the inflamed brain.

  15. Interleukin-1β pre-treated bone marrow stromal cells alleviate neuropathic pain through CCL7-mediated inhibition of microglial activation in the spinal cord

    Science.gov (United States)

    Li, Jian; Deng, Guoying; Wang, Haowei; Yang, Mei; Yang, Rui; Li, Xiangnan; Zhang, Xiaoping; Yuan, Hongbin

    2017-01-01

    Although neuropathic pain is one of the most intractable diseases, recent studies indicate that systemic or local injection of bone marrow stromal cells (BMSCs) decreases pro-inflammatory cytokines release and alleviates neuropathic pain. However, it is still not clear whether pre-treated BMSCs have a strong anti-inflammatory and/or analgesia effect. Using the spinal nerve ligation model of neuropathic pain, IL-1β pre-treated BMSCs (IL-1β-BMSCs) were injected into rats followed by SNL in order to determine possible effects. Results indicated that IL-1β-BMSCs were more efficacious in both amelioration of neuropathic pain and inhibition of microglia activation. Specifically, microglia inhibition was found to be mediated by chemokine C-C motif ligand 7 (CCL7) but not CCL2. Results also showed that IL-1β-BMSCs had a stronger inhibitory effect on astrocyte activation as well as CCL7 release, which was found to be mediated by IL-10 not transforming growth factor-β1. In addition, we also found directional migration of IL-1β-BMSCs was mediated by inceased C-X-C motif chemokine ligand (CXCL) 13 expression following SNL. In conclusion, our results indicated IL-1β-BMSCs could inhibit microglia activation and neuropathic pain by decreasing CCL7 level in spinal cord. PMID:28195183

  16. Propofol and magnesium attenuate isoflurane-induced caspase-3 activation via inhibiting mitochondrial permeability transition pore

    Directory of Open Access Journals (Sweden)

    Zhang Yiying

    2012-08-01

    Full Text Available Abstract Background The inhalation anesthetic isoflurane has been shown to open the mitochondrial permeability transition pore (mPTP and induce caspase activation and apoptosis, which may lead to learning and memory impairment. Cyclosporine A, a blocker of mPTP opening might attenuate the isoflurane-induced mPTP opening, lessening its ripple effects. Magnesium and anesthetic propofol are also mPTP blockers. We therefore set out to determine whether propofol and magnesium can attenuate the isoflurane-induced caspase activation and mPTP opening. Methods We investigated the effects of magnesium sulfate (Mg2+, propofol, and isoflurane on the opening of mPTP and caspase activation in H4 human neuroglioma cells stably transfected to express full-length human amyloid precursor protein (APP (H4 APP cells and in six day-old wild-type mice, employing Western blot analysis and flowcytometry. Results Here we show that Mg2+ and propofol attenuated the isoflurane-induced caspase-3 activation in H4-APP cells and mouse brain tissue. Moreover, Mg2+ and propofol, the blockers of mPTP opening, mitigated the isoflurane-induced mPTP opening in the H4-APP cells. Conclusion These data illustrate that Mg2+ and propofol may ameliorate the isoflurane-induced neurotoxicity by inhibiting its mitochondrial dysfunction. Pending further studies, these findings may suggest the use of Mg2+ and propofol in preventing and treating anesthesia neurotoxicity.

  17. Active vibration attenuating seat suspension for an armored helicopter crew seat

    Science.gov (United States)

    Sztein, Pablo Javier

    An Active Vibration Attenuating Seat Suspension (AVASS) for an MH-60S helicopter crew seat is designed to protect the occupants from harmful whole-body vibration (WBV). Magnetorheological (MR) suspension units are designed, fabricated and installed in a helicopter crew seat. These MR isolators are built to work in series with existing Variable Load Energy Absorbers (VLEAs), have minimal increase in weight, and maintain crashworthiness for the seat system. Refinements are discussed, based on testing, to minimize friction observed in the system. These refinements include the addition of roller bearings to replace friction bearings in the existing seat. Additionally, semi-active control of the MR dampers is achieved using special purpose built custom electronics integrated into the seat system. Experimental testing shows that an MH-60S retrofitted with AVASS provides up to 70.65% more vibration attenuation than the existing seat configuration as well as up to 81.1% reduction in vibration from the floor.

  18. L-ascorbate attenuates the endotoxin-induced production of inflammatory mediators by inhibiting MAPK activation and NF-κB translocation in cortical neurons/glia Cocultures.

    Directory of Open Access Journals (Sweden)

    Ya-Ni Huang

    Full Text Available In response to acute insults to the central nervous system, such as pathogen invasion or neuronal injuries, glial cells become activated and secrete inflammatory mediators such as nitric oxide (NO, cytokines, and chemokines. This neuroinflammation plays a crucial role in the pathophysiology of chronic neurodegenerative diseases. Endogenous ascorbate levels are significantly decreased among patients with septic encephalopathy. Using the bacterial endotoxin lipopolysaccharide (LPS to induce neuroinflammation in primary neuron/glia cocultures, we investigated how L-ascorbate (vitamin C; Vit. C affected neuroinflammation. LPS (100 ng/ml induced the expression of inducible NO synthase (iNOS and the production of NO, interleukin (IL-6, and macrophage inflammatory protein-2 (MIP-2/CXCL2 in a time-dependent manner; however, cotreatment with Vit. C (5 or 10 mM attenuated the LPS-induced iNOS expression and production of NO, IL-6, and MIP-2 production. The morphological features revealed after immunocytochemical staining confirmed that Vit. C suppressed LPS-induced astrocytic and microglial activation. Because Vit. C can be transported into neurons and glia via the sodium-dependent Vit. C transporter-2, we examined how Vit. C affected LPS-activated intracellular signaling in neuron/glia cocultures. The results indicated the increased activation (caused by phosphorylation of mitogen-activated protein kinases (MAPKs, such as p38 at 30 min and extracellular signal-regulated kinases (ERKs at 180 min after LPS treatment. The inhibition of p38 and ERK MAPK suppressed the LPS-induced production of inflammatory mediators. Vit. C also inhibited the LPS-induced activation of p38 and ERK. Combined treatments of Vit. C and the inhibitors of p38 and ERK yielded no additional inhibition compared with using the inhibitors alone, suggesting that Vit. C functions through the same signaling pathway (i.e., MAPK as these inhibitors. Vit. C also reduced LPS-induced Iκ

  19. Estuarine morphometry governs optically active substances, Kd(PAR) and beam attenuation

    DEFF Research Database (Denmark)

    Lund-Hansen, L. C.; Nielsen, J. M.; Blüthgen, J.;

    2013-01-01

    Data on optical properties such as diffuse attenuation coefficient Kd(PAR), beam attenuation coefficient (cp) and the optically active constituents (OACs) CDOM, Chl-a and suspended particulate matter were obtained in a Danish temperate coastal plain estuary (56°N) and a Vietnamese tropical ria (12...... this spatial distribution. Partition and multiple regression analyses showed that Chl-a governed Kd(PAR) and beam attenuation coefficient in both estuaries. Significant, high correlations were obtained by multiple regression analyses in the estimation of Kd(PAR) and beam attenuation coefficients in the two...

  20. Microglial Intracellular Ca2+ Signaling in Synaptic Development and its Alterations in Neurodevelopmental Disorders

    Science.gov (United States)

    Mizoguchi, Yoshito; Monji, Akira

    2017-01-01

    Autism spectrum disorders (ASDs) are neurodevelopmental disorders characterized by deficits in social interaction, difficulties with language and repetitive/restricted behaviors. Microglia are resident innate immune cells which release many factors including proinflammatory cytokines, nitric oxide (NO) and brain-derived neurotrophic factor (BDNF) when they are activated in response to immunological stimuli. Recent in vivo imaging has shown that microglia sculpt and refine the synaptic circuitry by removing excess and unwanted synapses and be involved in the development of neural circuits or synaptic plasticity thereby maintaining the brain homeostasis. BDNF, one of the neurotrophins, has various important roles in cell survival, neurite outgrowth, neuronal differentiation, synaptic plasticity and the maintenance of neural circuits in the CNS. Intracellular Ca2+ signaling is important for microglial functions including ramification, de-ramification, migration, phagocytosis and release of cytokines, NO and BDNF. BDNF induces a sustained intracellular Ca2+ elevation through the upregulation of the surface expression of canonical transient receptor potential 3 (TRPC3) channels in rodent microglia. BDNF might have an anti-inflammatory effect through the inhibition of microglial activation and TRPC3 could play important roles in not only inflammatory processes but also formation of synapse through the modulation of microglial phagocytic activity in the brain. This review article summarizes recent findings on emerging dual, inflammatory and non-inflammatory, roles of microglia in the brain and reinforces the importance of intracellular Ca2+ signaling for microglial functions in both normal neurodevelopment and their potential contributing to neurodevelopmental disorders such as ASDs. PMID:28367116

  1. Deficiency of PTP1B Attenuates Hypothalamic Inflammation via Activation of the JAK2-STAT3 Pathway in Microglia

    Directory of Open Access Journals (Sweden)

    Taku Tsunekawa

    2017-02-01

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B regulates leptin signaling in hypothalamic neurons via the JAK2-STAT3 pathway. PTP1B has also been implicated in the regulation of inflammation in the periphery. However, the role of PTP1B in hypothalamic inflammation, which is induced by a high-fat diet (HFD, remains to be elucidated. Here, we showed that STAT3 phosphorylation (p-STAT3 was increased in microglia in the hypothalamic arcuate nucleus of PTP1B knock-out mice (KO on a HFD, accompanied by decreased Tnf and increased Il10 mRNA expression in the hypothalamus compared to wild-type mice (WT. In hypothalamic organotypic cultures, incubation with TNFα led to increased p-STAT3, accompanied by decreased Tnf and increased Il10 mRNA expression, in KO compared to WT. Incubation with p-STAT3 inhibitors or microglial depletion eliminated the differences in inflammation between genotypes. These data indicate an important role of JAK2-STAT3 signaling negatively regulated by PTP1B in microglia, which attenuates hypothalamic inflammation under HFD conditions.

  2. In-stream attenuation of neuro-active pharmaceuticals and their metabolites

    Science.gov (United States)

    Writer, Jeffrey; Antweiler, Ronald C.; Ferrar, Imma; Ryan, Joseph N.; Thurman, Michael

    2013-01-01

    In-stream attenuation was determined for 14 neuro-active pharmaceuticals and associated metabolites. Lagrangian sampling, which follows a parcel of water as it moves downstream, was used to link hydrological and chemical transformation processes. Wastewater loading of neuro-active compounds varied considerably over a span of several hours, and thus a sampling regime was used to verify that the Lagrangian parcel was being sampled and a mechanism was developed to correct measured concentrations if it was not. In-stream attenuation over the 5.4-km evaluated reach could be modeled as pseudo-first-order decay for 11 of the 14 evaluated neuro-active pharmaceutical compounds, illustrating the capacity of streams to reduce conveyance of neuro-active compounds downstream. Fluoxetine and N-desmethyl citalopram were the most rapidly attenuated compounds (t1/2 = 3.6 ± 0.3 h, 4.0 ± 0.2 h, respectively). Lamotrigine, 10,11,-dihydro-10,11,-dihydroxy-carbamazepine, and carbamazepine were the most persistent (t1/2 = 12 ± 2.0 h, 12 ± 2.6 h, 21 ± 4.5 h, respectively). Parent compounds (e.g., buproprion, carbamazepine, lamotrigine) generally were more persistent relative to their metabolites. Several compounds (citalopram, venlafaxine, O-desmethyl-venlafaxine) were not attenuated. It was postulated that the primary mechanism of removal for these compounds was interaction with bed sediments and stream biofilms, based on measured concentrations in stream biofilms and a column experiment using stream sediments.

  3. CSF markers of Alzheimer’s pathology and microglial activation are associated with altered white matter microstructure in asymptomatic adults at risk for Alzheimer’s disease

    Science.gov (United States)

    Melah, Kelsey E; Lu, Sharon Yuan-Fu; Hoscheidt, Siobhan M; Alexander, Andrew L; Adluru, Nagesh; Destiche, Daniel J; Carlsson, Cynthia M; Zetterberg, Henrik; Blennow, Kaj; Okonkwo, Ozioma C; Gleason, Carey E; Dowling, N Maritza; Bratzke, Lisa C; Rowley, Howard A; Sager, Mark A; Asthana, Sanjay; Johnson, Sterling C; Bendlin, Barbara B

    2015-01-01

    Background The immune response in Alzheimer’s disease (AD) involves activation of microglia which may remove β-amyloid. However, overproduction of inflammatory compounds may exacerbate neural damage in Alzheimer’s disease. AD pathology accumulates years before diagnosis, yet the extent to which neuroinflammation is involved in the earliest disease stages is unknown. Objective To determine whether neuroinflammation exacerbates neural damage in preclinical AD. Methods We utilized cerebrospinal fluid (CSF) and magnetic resonance imaging collected in 192 asymptomatic late-middle-aged adults (mean age=60.98 years). Neuroinflammatory markers chitinase-3-like protein 1 (YKL-40) and monocyte chemoattractant protein-1 (MCP-1) in CSF were utilized as markers of neuroinflammation. Neural cell damage was assessed using CSF neurofilament light chain protein (NFL), CSF total tau (T-Tau), and neural microstructure assessed with diffusion tensor imaging (DTI). With regard to AD pathology, CSF Aβ42 and tau phosphorylated at threonine 181 (P-Tau181) were used as markers of amyloid and tau pathology, respectively. We hypothesized that higher YKL-40 and MCP-1 in the presence of AD pathology would be associated with higher NFL, T-Tau, and altered microstructure on DTI. Results Neuroinflammation was associated with markers of neural damage. Higher CSF YKL-40 was associated with both higher CSF NFL and T-Tau. Inflammation interacted with AD pathology, such that greater MCP-1 and lower Aβ42 was associated with altered microstructure in bilateral frontal and right temporal lobe and that greater MCP-1 and greater P-Tau181 was associated with altered microstructure in precuneus. Conclusion Inflammation may play a role in neural damage in preclinical AD. PMID:26836182

  4. Simultaneous reconstruction of attenuation and activity for non–TOF PET/MR using MR prior information

    Energy Technology Data Exchange (ETDEWEB)

    Heußer, Thorsten; Rank, Christopher M [German Cancer Research Center (DKFZ), Heidelberg (Germany); Beyer, Thomas [Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna (Austria); Kachelrieß, Marc [German Cancer Research Center (DKFZ), Heidelberg (Germany)

    2015-05-18

    Accurate quantification of the activity distribution in positron emission tomography (PET) mandates attenuation correction (AC). Unlike in PET/CT, AC in PET/MR is, however, challenging, since information about the attenuation properties of the patient tissue distribution is not available directly. Standard MR-based AC (MRAC) does not account for the presence of bone and, thus, yields an underestimation of the activity distribution. We propose an algorithm to simultaneously reconstruct the activity and attenuation distribution using MR images as anatomical prior information for non time-of-flight PET/MR. The proposed algorithm is an extension of the existing maximum-likelihood reconstruction of attenuation and activity (MLAA). The MR images are used to obtain an initial attenuation map and to derive voxel-dependent expectations on the attenuation coefficients. These expectations are modeled using pre-defined attenuation values and Gaussian-like probability functions. An iterative reconstruction scheme incorporating the prior information on the attenuation coefficients is used to update attenuation and activity distribution in an alternating manner. The algorithm, called MR-MLAA, is evaluated for simulated 2D PET data for two patients with artificial lesions in the head region. The proposed algorithm helps recover bone attenuation information. However, for both patients, some misclassifications of air (considered as bone) and bone (considered as air or soft tissue) were observed. Nevertheless, PET quantification in lesions located close to bone tissue is greatly improved when using MR-MLAA. Errors in activity estimation are reduced to ranges of -9% to +1% whereas MRAC yields errors of -22% to -10%. In conclusion, MR-MLAA has the potential to improve quantification in hybrid PET/MR, especially in regions adjacent to dense bone tissue.

  5. Bioaccessible (poly)phenol metabolites from raspberry protect neural cells from oxidative stress and attenuate microglia activation.

    Science.gov (United States)

    Garcia, Gonçalo; Nanni, Sara; Figueira, Inês; Ivanov, Ines; McDougall, Gordon J; Stewart, Derek; Ferreira, Ricardo B; Pinto, Paula; Silva, Rui F M; Brites, Dora; Santos, Cláudia N

    2017-01-15

    Neuroinflammation is an integral part of the neurodegeneration process inherent to several aging dysfunctions. Within the central nervous system, microglia are the effective immune cells, responsible for neuroinflammatory responses. In this study, raspberries were subjected to in vitro digestion simulation to obtain the components that result from the gastrointestinal (GI) conditions, which would be bioaccessible and available for blood uptake. Both the original raspberry extract and the gastrointestinal bioaccessible (GIB) fraction protected neuronal and microglia cells against H2O2-induced oxidative stress and lipopolysaccharide (LPS)-induced inflammation, at low concentrations. Furthermore, this neuroprotective capacity was independent of intracellular ROS scavenging mechanisms. We show for the first time that raspberry metabolites present in the GIB fraction significantly inhibited microglial pro-inflammatory activation by LPS, through the inhibition of Iba1 expression, TNF-α release and NO production. Altogether, this study reveals that raspberry polyphenols may present a dietary route to the retardation or amelioration of neurodegenerative-related dysfunctions.

  6. Microglial cell dysregulation in Brain Aging and Neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Rommy eVon Bernhardi

    2015-07-01

    Full Text Available Aging is the main risk factor for neurodegenerative diseases. In aging, microglia undergo phenotypic changes compatible with their activation. Glial activation can lead to neuroinflammation, which is increasingly accepted as part of the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease (AD. We hypothesize that in aging, aberrant microglia activation leads to a deleterious environment and neurodegeneration. In aged mice, microglia exhibit an increased expression of cytokines and an exacerbated inflammatory response to pathological changes. Whereas LPS increases nitric oxide secretion in microglia from young mice, induction of reactive oxygen species (ROS predominates in older mice. Furthermore, there is accumulation of DNA oxidative damage in mitochondria of microglia during aging, and also an increased intracellular ROS production. Increased ROS activates the redox-sensitive nuclear factor kappa B, which promotes more neuroinflammation, and can be translated in functional deficits, such as cognitive impairment. Mitochondria-derived ROS and cathepsin B, are also necessary for the microglial cell production of interleukin-1β, a key inflammatory cytokine. Interestingly, whereas the regulatory cytokine TGFβ1 is also increased in the aged brain, neuroinflammation persists. Assessing this apparent contradiction, we have reported that TGFβ1 induction and activation of Smad3 signaling after inflammatory stimulation are reduced in adult mice. Other protective functions, such as phagocytosis, although observed in aged animals, become not inducible by inflammatory stimuli and TGFβ1. Here, we discuss data suggesting that mitochondrial and endolysosomal dysfunction could at least partially mediate age-associated microglial cell changes, and, together with the impairment of the TGFβ1-Smad3 pathway, could result in a reduction of protective activation and a facilitation of cytotoxic activation of microglia, resulting in the

  7. Ginsenoside Rg1 Attenuates Isoflurane-induced Caspase-3 Activation via Inhibiting Mitochondrial Dysfunction

    Institute of Scientific and Technical Information of China (English)

    MIAO Hui Hui; ZHEN Yu; DING Guan Nan; HONG Fang Xiao; XIE Zhong Cong; TIAN Ming

    2015-01-01

    Objective The inhalation anesthetic isoflurane has been shown to induce mitochondrial dysfunction and caspase activation, which may lead to learning and memory impairment. Ginsenoside Rg1 is reported to be neuroprotective. We therefore set out to determine whether ginsenoside Rg1 can attenuate isoflurane-induced caspase activation via inhibiting mitochondrial dysfunction. Methods We investigated the effects of ginsenoside Rg1 at concentrations of 12.5, 25, and 50 µmol/L and pretreatment times of 12 h and 24 h on isoflurane-induced caspase-3 activation in H4 naïve and stably transfected H4 human neuroglioma cells that express full-length human amyloid precursor protein (APP) (H4-APP cells). For mitochondrial dysfunction, we assessed mitochondrial permeability transition pore (mPTP) and adenosine-5’-triphosphate (ATP) levels. We employed Western blot analysis, chemiluminescence, and flowcytometry. Results Here we show that pretreatment with 50 µmol/L ginsenoside Rg1 for 12 h attenuated isoflurane-induced caspase-3 activation and mitochondrial dysfunction in H4-APP cells, while pretreatment with 25 and 50 µmol/L ginsenoside Rg1 for 24 h attenuated isoflurane-induced caspase-3 activation and mitochondrial dysfunction in both H4 naïve and H4-APP cells. Conclusion These data suggest that ginsenoside Rg1 may ameliorate isoflurane-induced caspase-3 activation by inhibiting mitochondrial dysfunction. Pending further studies, these findings might recommend the use of ginsenoside Rg1 in preventing and treating isoflurane-induced neurotoxicity.

  8. Predicting trace organic compound attenuation with spectroscopic parameters in powdered activated carbon processes.

    Science.gov (United States)

    Ziska, Austin D; Park, Minkyu; Anumol, Tarun; Snyder, Shane A

    2016-08-01

    The removal of trace organic compounds (TOrCs) is of growing interest in water research and society. Powdered activated carbon (PAC) has been proven to be an effective method of removal for TOrCs in water, with the degree of effectiveness depending on dosage, contact time, and activated carbon type. In this study, the attenuation of TOrCs in three different secondary wastewater effluents using four PAC materials was studied in order to elucidate the effectiveness and efficacy of PAC for TOrC removal. With the notable exception of hydrochlorothiazide, all 14 TOrC indicators tested in this study exhibited a positive correlation of removal rate with their log Dow values, demonstrating that the main adsorption mechanism was hydrophobic interaction. As a predictive model, the modified Chick-Watson model, often used for the prediction of microorganism inactivation by disinfectants, was applied. The applied model exhibited good predictive power for TOrC attenuation by PAC in wastewater. In addition, surrogate models based upon spectroscopic measurements including UV absorbance at 254 nm and total fluorescence were applied to predict TOrC removal by PAC. The surrogate model was found to provide an excellent prediction of TOrC attenuation for all combinations of water quality and PAC type included in this study. The success of spectrometric parameters as surrogates in predicting TOrC attenuation by PAC are particularly useful because of their potential application in real-time on-line sensor monitoring and process control at full-scale water treatment plants, which could lead to significantly reduced operator response times and PAC operational optimization.

  9. Hormetic Effect of Berberine Attenuates the Anticancer Activity of Chemotherapeutic Agents.

    Science.gov (United States)

    Bao, Jiaolin; Huang, Borong; Zou, Lidi; Chen, Shenghui; Zhang, Chao; Zhang, Yulin; Chen, Meiwan; Wan, Jian-Bo; Su, Huanxing; Wang, Yitao; He, Chengwei

    2015-01-01

    Hormesis is a phenomenon of biphasic dose response characterized by exhibiting stimulatory or beneficial effects at low doses and inhibitory or toxic effects at high doses. Increasing numbers of chemicals of various types have been shown to induce apparent hormetic effect on cancer cells. However, the underlying significance and mechanisms remain to be elucidated. Berberine, one of the major active components of Rhizoma coptidis, has been manifested with notable anticancer activities. This study aims to investigate the hormetic effect of berberine and its influence on the anticancer activities of chemotherapeutic agents. Our results demonstrated that berberine at low dose range (1.25 ~ 5 μM) promoted cell proliferation to 112% ~170% of the untreated control in various cancer cells, while berberine at high dose rage (10 ~ 80 μM) inhibited cell proliferation. Further, we observed that co-treatment with low dose berberine could significantly attenuate the anticancer activity of chemotherapeutic agents, including fluorouracil (5-FU), camptothecin (CPT), and paclitaxel (TAX). The hormetic effect and thereby the attenuated anticancer activity of chemotherapeutic drugs by berberine may attributable to the activated protective stress response in cancer cells triggered by berberine, as evidenced by up-regulated MAPK/ERK1/2 and PI3K/AKT signaling pathways. These results provided important information to understand the potential side effects of hormesis, and suggested cautious application of natural compounds and relevant herbs in adjuvant treatment of cancer.

  10. Hormetic Effect of Berberine Attenuates the Anticancer Activity of Chemotherapeutic Agents.

    Directory of Open Access Journals (Sweden)

    Jiaolin Bao

    Full Text Available Hormesis is a phenomenon of biphasic dose response characterized by exhibiting stimulatory or beneficial effects at low doses and inhibitory or toxic effects at high doses. Increasing numbers of chemicals of various types have been shown to induce apparent hormetic effect on cancer cells. However, the underlying significance and mechanisms remain to be elucidated. Berberine, one of the major active components of Rhizoma coptidis, has been manifested with notable anticancer activities. This study aims to investigate the hormetic effect of berberine and its influence on the anticancer activities of chemotherapeutic agents. Our results demonstrated that berberine at low dose range (1.25 ~ 5 μM promoted cell proliferation to 112% ~170% of the untreated control in various cancer cells, while berberine at high dose rage (10 ~ 80 μM inhibited cell proliferation. Further, we observed that co-treatment with low dose berberine could significantly attenuate the anticancer activity of chemotherapeutic agents, including fluorouracil (5-FU, camptothecin (CPT, and paclitaxel (TAX. The hormetic effect and thereby the attenuated anticancer activity of chemotherapeutic drugs by berberine may attributable to the activated protective stress response in cancer cells triggered by berberine, as evidenced by up-regulated MAPK/ERK1/2 and PI3K/AKT signaling pathways. These results provided important information to understand the potential side effects of hormesis, and suggested cautious application of natural compounds and relevant herbs in adjuvant treatment of cancer.

  11. Brazilian Red Propolis Attenuates Inflammatory Signaling Cascade in LPS-Activated Macrophages

    Science.gov (United States)

    Bueno-Silva, Bruno; Kawamoto, Dione; Ando-Suguimoto, Ellen S.; Alencar, Severino M.; Rosalen, Pedro L.; Mayer, Marcia P. A.

    2015-01-01

    Although previous studies suggested an anti-inflammatory property of Brazilian red propolis (BRP), the mechanisms involved in the anti-inflammatory effects of BRP and its activity on macrophages were still not elucidated. This study aimed to evaluate whether BRP attenuates the inflammatory effect of LPS on macrophages and to investigate its underlying mechanisms. BRP was added to RAW 264.7 murine macrophages after activation with LPS. NO production, cell viability, cytokines profile were evaluated. Activation of inflammatory signaling pathways and macrophage polarization were determined by RT-qPCR and Western blot. BRP at 50 μg/ml inhibited NO production by 78% without affecting cell viability. Cd80 and Cd86 were upregulated whereas mrc1 was down regulated by BRP indicating macrophage polarization at M1. BRP attenuated the production of pro-inflammatory mediators IL-12, GM-CSF, IFN-Ɣ, IL-1β in cell supernatants although levels of TNF- α and IL-6 were slightly increased after BRP treatment. Levels of IL-4, IL-10 and TGF-β were also reduced by BRP. BRP significantly reduced the up-regulation promoted by LPS of transcription of genes in inflammatory signaling (Pdk1, Pak1, Nfkb1, Mtcp1, Gsk3b, Fos and Elk1) and of Il1β and Il1f9 (fold-change rate > 5), which were further confirmed by the inhibition of NF-κB and MAPK signaling pathways. Furthermore, the upstream adaptor MyD88 adaptor-like (Mal), also known as TIRAP, involved in TLR2 and TLR4 signaling, was down- regulated in BRP treated LPS-activated macrophages. Given that BRP inhibited multiple signaling pathways in macrophages involved in the inflammatory process activated by LPS, our data indicated that BRP is a noteworthy food-source for the discovery of new bioactive compounds and a potential candidate to attenuate exhacerbated inflammatory diseases. PMID:26660901

  12. Brazilian Red Propolis Attenuates Inflammatory Signaling Cascade in LPS-Activated Macrophages.

    Directory of Open Access Journals (Sweden)

    Bruno Bueno-Silva

    Full Text Available Although previous studies suggested an anti-inflammatory property of Brazilian red propolis (BRP, the mechanisms involved in the anti-inflammatory effects of BRP and its activity on macrophages were still not elucidated. This study aimed to evaluate whether BRP attenuates the inflammatory effect of LPS on macrophages and to investigate its underlying mechanisms. BRP was added to RAW 264.7 murine macrophages after activation with LPS. NO production, cell viability, cytokines profile were evaluated. Activation of inflammatory signaling pathways and macrophage polarization were determined by RT-qPCR and Western blot. BRP at 50 μg/ml inhibited NO production by 78% without affecting cell viability. Cd80 and Cd86 were upregulated whereas mrc1 was down regulated by BRP indicating macrophage polarization at M1. BRP attenuated the production of pro-inflammatory mediators IL-12, GM-CSF, IFN-Ɣ, IL-1β in cell supernatants although levels of TNF- α and IL-6 were slightly increased after BRP treatment. Levels of IL-4, IL-10 and TGF-β were also reduced by BRP. BRP significantly reduced the up-regulation promoted by LPS of transcription of genes in inflammatory signaling (Pdk1, Pak1, Nfkb1, Mtcp1, Gsk3b, Fos and Elk1 and of Il1β and Il1f9 (fold-change rate > 5, which were further confirmed by the inhibition of NF-κB and MAPK signaling pathways. Furthermore, the upstream adaptor MyD88 adaptor-like (Mal, also known as TIRAP, involved in TLR2 and TLR4 signaling, was down- regulated in BRP treated LPS-activated macrophages. Given that BRP inhibited multiple signaling pathways in macrophages involved in the inflammatory process activated by LPS, our data indicated that BRP is a noteworthy food-source for the discovery of new bioactive compounds and a potential candidate to attenuate exhacerbated inflammatory diseases.

  13. Microglial cells in organotypic cultures of developing and adult mouse retina and their relationship with cell death.

    Science.gov (United States)

    Ferrer-Martín, Rosa M; Martín-Oliva, David; Sierra, Ana; Carrasco, Maria-Carmen; Martín-Estebané, María; Calvente, Ruth; Marín-Teva, José L; Navascués, Julio; Cuadros, Miguel A

    2014-04-01

    Organotypic cultures of retinal explants allow the detailed analysis of microglial cells in a cellular microenvironment similar to that in the in situ retina, with the advantage of easy experimental manipulation. However, the in vitro culture causes changes in the retinal cytoarchitecture and induces a microglial response that may influence the results of these manipulations. The purpose of this study was to analyze the influence of the retinal age on changes in retinal cytoarchitecture, cell viability and death, and microglial phenotype and distribution throughout the in vitro culture of developing and adult retina explants. Explants from developing (3 and 10 postnatal days, P3 and P10) and adult (P60) mouse retinas were cultured for up to 10 days in vitro (div). Dead or dying cells were recognized by TUNEL staining, cell viability was determined by flow cytometry, and the numbers and distribution patterns of microglial cells were studied by flow cytometry and immunocytochemistry, respectively. The retinal cytoarchitecture was better preserved at prolonged culture times (10 div) in P10 retina explants than in P3 or adult explants. Particular patterns of cell viability and death were observed at each age: in general, explants from developing retinas showed higher cell viability and lower density of TUNEL-positive profiles versus adult retinas. The proportion of microglial cells relative to the whole population of retinal cells was higher in explants fixed immediately after their dissection (i.e., non-cultured) from adult retinas than in those from developing retinas. This proportion was always higher in non-cultured explants than in explants at 10 div, suggesting the death of some microglial cells during the culture. Activation of microglial cells, as revealed by their phenotypical appearance, was observed in both developing and adult retina explants from the beginning of the culture. Immunofluorescence with the anti-CD68 antibody showed that some activated

  14. Inhibition of cathepsin X reduces the strength of microglial-mediated neuroinflammation.

    Science.gov (United States)

    Pišlar, Anja; Božić, Biljana; Zidar, Nace; Kos, Janko

    2017-03-01

    Inflammation plays a central role in the processes associated with neurodegeneration. The inflammatory response is mediated by activated microglia that release inflammatory mediators to the neuronal environment. Microglia-derived lysosomal cathepsins, including cathepsin X, are increasingly recognized as important mediators of the inflammation involved in lipopolysaccharide (LPS)-induced neuroinflammation. The current study was undertaken to investigate the role of cathepsin X and its molecular target, γ-enolase, in neuroinflammation and to elucidate the underlying mechanism. We determined that the exposure of activated BV2 and EOC 13.31 cells to LPS led to increased levels of cathepsin X protein and activity in the culture supernatants in a concentration- and time-dependent manner. In contrast, LPS stimulation of these two cells reduced the release of active γ-enolase in a manner regulated by the cathepsin X activity. Cathepsin X inhibitor AMS36 significantly reduced LPS-induced production of nitric oxide, reactive oxygen species and the pro-inflammatory cytokines interleukin-6 and tumor necrosis factor-α from BV2 cells. Inhibition of cathepsin X suppressed microglial activation through the reduced caspase-3 activity, together with diminished microglial cell death and apoptosis, and also through inhibition of the activity of the mitogen-activated protein kinases. Further, SH-SY5Y treatment with culture supernatants of activated microglial cells showed that cathepsin X inhibition reduces microglia-mediated neurotoxicity. These results indicate that up-regulated expression and increased release and activity of microglial cathepsin X leads to microglia activation-mediated neurodegeneration. Cathepsin X inhibitor caused neuroprotection via its inhibition of the activation of microglia. Cathepsin X could thus be a potential therapeutic target for neuroinflammatory disorders.

  15. Binge-Like Eating Attenuates Nisoxetine Feeding Suppression, Stress Activation, and Brain Norepinephrine Activity

    Science.gov (United States)

    Bello, Nicholas T.; Yeh, Chung-Yang; Verpeut, Jessica L.; Walters, Amy L.

    2014-01-01

    Stress is often associated with binge eating. A critical component of the control of stress is the central norepinephrine system. We investigated how dietary-induced binge eating alters central norepinephrine and related behaviors. Young male Sprague Dawley rats received calorie deprivation (24 h) and /or intermittent sweetened fat (vegetable shortening with sucrose; 30 min) twice a week for 10 weeks. The groups were Restrict Binge (calorie deprivation/sweetened fat), Binge (sweetened fat), Restrict (calorie deprivation), and Naive (no calorie deprivation/no sweetened fat). Dietary-induced binge eating was demonstrated by Restrict Binge and Binge, which showed an escalation in 30-min intake over time. Feeding suppression following nisoxetine (3 mg/kg; IP), a selective norepinephrine reuptake inhibitor, was not evident in Restrict Binge (Restrict Binge: 107±13, Binge: 52±9, Restrict: 80±8, Naive: 59±13% of saline injection at 1 h). In subsequent experiments with Restrict Binge and Naive, Restrict Binge had reduced corticosterone (Restrict Binge: 266±25; Naive: 494±36 ng/ml) and less feeding suppression (Restrict Binge: 81±12, Naive: 50±11% of non-restraint intake at 30 min) following restraint stress (1 h). Dietary-induced binge eating in Restrict Binge was not altered by a dorsal noradrenergic bundle lesion caused by N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4), but frontal cortex norepinephrine was positively correlated with the average 30-min intake post-lesion (0.69; p<0.01). In a separate set of animals, single-unit in vivo electrophysiological recording of locus coeruleus–norepinephrine neural activity demonstrated reduced sensory-evoked response as a consequence of the Restrict Binge schedule (Restrict Binge: 8.1±0.67, Naive: 11.9±1.09 Hz). These results, which suggest that a consequence of dietary-induced binge eating is to attenuate the responsiveness of the brain norepinephrine system, will further our understanding of how highly

  16. Binge-like eating attenuates nisoxetine feeding suppression, stress activation, and brain norepinephrine activity.

    Directory of Open Access Journals (Sweden)

    Nicholas T Bello

    Full Text Available Stress is often associated with binge eating. A critical component of the control of stress is the central norepinephrine system. We investigated how dietary-induced binge eating alters central norepinephrine and related behaviors. Young male Sprague Dawley rats received calorie deprivation (24 h and /or intermittent sweetened fat (vegetable shortening with sucrose; 30 min twice a week for 10 weeks. The groups were Restrict Binge (calorie deprivation/sweetened fat, Binge (sweetened fat, Restrict (calorie deprivation, and Naive (no calorie deprivation/no sweetened fat. Dietary-induced binge eating was demonstrated by Restrict Binge and Binge, which showed an escalation in 30-min intake over time. Feeding suppression following nisoxetine (3 mg/kg; IP, a selective norepinephrine reuptake inhibitor, was not evident in Restrict Binge (Restrict Binge: 107±13, Binge: 52±9, Restrict: 80±8, Naive: 59±13% of saline injection at 1 h. In subsequent experiments with Restrict Binge and Naive, Restrict Binge had reduced corticosterone (Restrict Binge: 266±25; Naive: 494±36 ng/ml and less feeding suppression (Restrict Binge: 81±12, Naive: 50±11% of non-restraint intake at 30 min following restraint stress (1 h. Dietary-induced binge eating in Restrict Binge was not altered by a dorsal noradrenergic bundle lesion caused by N-(2-chloroethyl-N-ethyl-2-bromobenzylamine (DSP4, but frontal cortex norepinephrine was positively correlated with the average 30-min intake post-lesion (0.69; p<0.01. In a separate set of animals, single-unit in vivo electrophysiological recording of locus coeruleus-norepinephrine neural activity demonstrated reduced sensory-evoked response as a consequence of the Restrict Binge schedule (Restrict Binge: 8.1±0.67, Naive: 11.9±1.09 Hz. These results, which suggest that a consequence of dietary-induced binge eating is to attenuate the responsiveness of the brain norepinephrine system, will further our understanding of how highly

  17. Autophagic flux regulates microglial phenotype according to the time of oxygen-glucose deprivation/reperfusion.

    Science.gov (United States)

    Xia, Cong-Yuan; Zhang, Shuai; Chu, Shi-Feng; Wang, Zhen-Zhen; Song, Xiu-Yun; Zuo, Wei; Gao, Yan; Yang, Peng-Fei; Chen, Nai-Hong

    2016-10-01

    Microglial phenotype alternation is a potential novel pathogenic mechanism for cerebral ischemia. Cerebral ischemia induced autophagy aggravates inflammation and neural injury. However, the effect of autophagy in the modulation of microglial phenotype is still unknown. In this study, we investigated the role of autophagic flux in the alternation of microglial phenotype following oxygen glucose deprivation/reperfusion (OGD/R) in BV-2 cells. Inhibition of autophagic flux by NH4Cl exposure significantly increased the level of microtubule-associated protein 1 light chain 3 (LC3)-II and p62 in control and OGD/R (12h, 24h and 48h) groups, but did not change their expression in OGD/R 72h group, indicating that autophagic flux was inhibited at OGD/R 72h. Once autophagic flux was inhibited at OGD/R 72h or at OGD/R 24h (with NH4Cl), BV-2 cells mainly showed M1 phenotype with increased tumor necrosis factor alpha (TNF-α), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and decreased M2 markers including interleukin-10 (IL-10), Arginase 1 (Arg-1), and brain derived neurotrophic factor (BDNF). Further study indicated that inhibition of autophagic flux activated NF-κB pathway and decreased the activity of cAMP-response element binding protein (CREB), which contributed to the alternation of microglial phenotype. Therefore, inhibition of autophagic flux regulated the alternation of microglial phenotype by modulating the balance between NF-κB and CREB.

  18. Impact attenuation during weight bearing activities in barefoot vs. shod conditions: a systematic review.

    Science.gov (United States)

    Fong Yan, Alycia; Sinclair, Peter J; Hiller, Claire; Wegener, Caleb; Smith, Richard M

    2013-06-01

    Although it could be perceived that there is extensive research on the impact attenuation characteristics of shoes, the approach and findings of researchers in this area are varied. This review aimed to clarify the effect of shoes on impact attenuation to the foot and lower leg and was limited to those studies that compared the shoe condition(s) with barefoot. A systematic search of the literature yielded 26 studies that investigated vertical ground reaction force, axial tibial acceleration, loading rate and local plantar pressures. Meta-analyses of the effect of shoes on each variable during walking and running were performed using the inverse variance technique. Variables were collected at their peak or at the impact transient, but when grouped together as previous comparisons have done, shoes reduced local plantar pressure and tibial acceleration, but did not affect vertical force or loading rate for walking. During running, shoes reduced tibial acceleration but did not affect loading rate or vertical force. Further meta-analyses were performed, isolating shoe type and when the measurements were collected. Athletic shoes reduced peak vertical force during walking, but increased vertical force at the impact transient and no change occurred for the other variables. During running, athletic shoes reduced loading rate but did not affect vertical force. The range of variables examined and variety of measurements used appears to be a reason for the discrepancies across the literature. The impact attenuating effect of shoes has potentially both adverse and beneficial effects depending on the variable and activity under investigation.

  19. Macrophage colony-stimulating factor augments beta-amyloid-induced interleukin-1, interleukin-6, and nitric oxide production by microglial cells.

    Science.gov (United States)

    Murphy, G M; Yang, L; Cordell, B

    1998-08-14

    In Alzheimer's disease (AD), a chronic cerebral inflammatory state is thought to lead to neuronal injury. Microglia, intrinsic cerebral immune effector cells, are likely to be key in the pathophysiology of this inflammatory state. We showed that macrophage colony-stimulating factor, a microglial activator found at increased levels in the central nervous system in AD, dramatically augments beta-amyloid peptide (betaAP)-induced microglial production of interleukin-1, interleukin-6, and nitric oxide. In contrast, granulocyte macrophage colony-stimulating factor, another hematopoietic cytokine found in the AD brain, did not augment betaAP-induced microglial secretory activity. These results indicate that increased macrophage colony-stimulating factor levels in AD could magnify betaAP-induced microglial inflammatory cytokine and nitric oxide production, which in turn could intensify the cerebral inflammatory state by activating astrocytes and additional microglia, as well as directly injuring neurons.

  20. Elevated NF-κB activation is conserved in human myocytes cultured from obese type 2 diabetic patients and attenuated by AMP-activated protein kinase

    DEFF Research Database (Denmark)

    Green, Charlotte Jane; Pedersen, Maria; Pedersen, Bente K;

    2011-01-01

    To examine whether the inflammatory phenotype found in obese and diabetic individuals is preserved in isolated, cultured myocytes and to assess the effectiveness of pharmacological AMP-activated protein kinase (AMPK) activation upon the attenuation of inflammation in these myocytes....

  1. Elevated NF-κB activation is conserved in human myocytes cultured from obese type 2 diabetic patients and attenuated by AMP-activated protein kinase

    DEFF Research Database (Denmark)

    Green, Charlotte Jane; Pedersen, Maria; Pedersen, Bente K

    2011-01-01

    To examine whether the inflammatory phenotype found in obese and diabetic individuals is preserved in isolated, cultured myocytes and to assess the effectiveness of pharmacological AMP-activated protein kinase (AMPK) activation upon the attenuation of inflammation in these myocytes.......To examine whether the inflammatory phenotype found in obese and diabetic individuals is preserved in isolated, cultured myocytes and to assess the effectiveness of pharmacological AMP-activated protein kinase (AMPK) activation upon the attenuation of inflammation in these myocytes....

  2. Microglial Signaling in Chronic Pain with a Special Focus on Caspase 6, p38 MAP Kinase, and Sex Dependence.

    Science.gov (United States)

    Berta, T; Qadri, Y J; Chen, G; Ji, R R

    2016-09-01

    Microglia are the resident immune cells in the spinal cord and brain. Mounting evidence suggests that activation of microglia plays an important role in the pathogenesis of chronic pain, including chronic orofacial pain. In particular, microglia contribute to the transition from acute pain to chronic pain, as inhibition of microglial signaling reduces pathologic pain after inflammation, nerve injury, and cancer but not baseline pain. As compared with inflammation, nerve injury induces much more robust morphologic activation of microglia, termed microgliosis, as shown by increased expression of microglial markers, such as CD11b and IBA1. However, microglial signaling inhibitors effectively reduce inflammatory pain and neuropathic pain, arguing against the importance of morphologic activation of microglia in chronic pain sensitization. Importantly, microglia enhance pain states via secretion of proinflammatory and pronociceptive mediators, such as tumor necrosis factor α, interleukins 1β and 18, and brain-derived growth factor. Mechanistically, these mediators have been shown to enhance excitatory synaptic transmission and suppress inhibitory synaptic transmission in the pain circuits. While early studies suggested a predominant role of microglia in the induction of chronic pain, further studies have supported a role of microglia in the maintenance of chronic pain. Intriguingly, recent studies show male-dominant microglial signaling in some neuropathic pain and inflammatory pain states, although both sexes show identical morphologic activation of microglia after nerve injury. In this critical review, we provide evidence to show that caspase 6-a secreted protease that is expressed in primary afferent axonal terminals surrounding microglia-is a robust activator of microglia and induces profound release of tumor necrosis factor α from microglia via activation of p38 MAP kinase. The authors also show that microglial caspase 6/p38 signaling is male dominant in some

  3. Pulsed Electromagnetic Field Exposure Reduces Hypoxia and Inflammation Damage in Neuron-Like and Microglial Cells.

    Science.gov (United States)

    Vincenzi, Fabrizio; Ravani, Annalisa; Pasquini, Silvia; Merighi, Stefania; Gessi, Stefania; Setti, Stefania; Cadossi, Ruggero; Borea, Pier Andrea; Varani, Katia

    2017-05-01

    In the present study, the effect of low-frequency, low-energy pulsed electromagnetic fields (PEMFs) has been investigated by using different cell lines derived from neuron-like cells and microglial cells. In particular, the primary aim was to evaluate the effect of PEMF exposure in inflammation- and hypoxia-induced injury in two different neuronal cell models, the human neuroblastoma-derived SH-SY5Y cells and rat pheochromocytoma PC12 cells and in N9 microglial cells. In neuron-like cells, live/dead and apoptosis assays were performed in hypoxia conditions from 2 to 48 h. Interestingly, PEMF exposure counteracted hypoxia damage significantly reducing cell death and apoptosis. In the same cell lines, PEMFs inhibited the activation of the hypoxia-inducible factor 1α (HIF-1α), the master transcriptional regulator of cellular response to hypoxia. The effect of PEMF exposure on reactive oxygen species (ROS) production in both neuron-like and microglial cells was investigated considering their key role in ischemic injury. PEMFs significantly decreased hypoxia-induced ROS generation in PC12, SH-SY5Y, and N9 cells after 24 or 48 h of incubation. Moreover, PEMFs were able to reduce some of the most well-known pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and IL-8 release in N9 microglial cells stimulated with different concentrations of LPS for 24 or 48 h of incubation time. These results show a protective effect of PEMFs on hypoxia damage in neuron-like cells and an anti-inflammatory effect in microglial cells suggesting that PEMFs could represent a potential therapeutic approach in cerebral ischemic conditions. J. Cell. Physiol. 232: 1200-1208, 2017. © 2016 Wiley Periodicals, Inc.

  4. Over-expression of calpastatin inhibits calpain activation and attenuates post-infarction myocardial remodeling.

    Directory of Open Access Journals (Sweden)

    Tingqiao Ye

    Full Text Available Calpain is activated following myocardial infarction and ablation of calpastatin (CAST, an endogenous inhibitor of calpains, promotes left ventricular remodeling after myocardial infarction (MI. The present study aimed to investigate the effect of transgenic over-expression of CAST on the post-infarction myocardial remodeling process.We established transgenic mice (TG ubiquitously over-expressing human CAST protein and produced MI in TG mice and C57BL/6J wild-type (WT littermates.The CAST protein expression was profoundly upregulated in the myocardial tissue of TG mice compared with WT littermates (P < 0.01. Overexpression of CAST significantly reduced the infarct size (P < 0.01 and blunted MI-induced interventricular hypertrophy, global myocardial fibrosis and collagen I and collagen III deposition, hypotension and hemodynamic disturbances at 21 days after MI. Moreover, the MI-induced up-regulation and activation of calpains were obviously attenuated in CAST TG mice. MI-induced down-regulation of CAST was partially reversed in TG mice. Additionally, the MI-caused imbalance of matrix metalloproteinases and their inhibitors was improved in TG mice.Transgenic over-expression of CAST inhibits calpain activation and attenuates post-infarction myocardial remodeling.

  5. Out-of-field activity in the estimation of mean lung attenuation coefficient in PET/MR

    Energy Technology Data Exchange (ETDEWEB)

    Berker, Yannick, E-mail: yberker@ukaachen.de [Department of Physics of Molecular Imaging Systems, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen (Germany); Salomon, André [X-Ray Imaging Systems, Philips Research, Eindhoven (Netherlands); Kiessling, Fabian [Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen (Germany); Schulz, Volkmar [Department of Physics of Molecular Imaging Systems, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen (Germany); Philips Technologie GmbH Innovative Technologies, Research Laboratories, Aachen (Germany)

    2014-01-11

    In clinical PET/MR, photon attenuation is a source of potentially severe image artifacts. Correction approaches include those based on MR image segmentation, in which image voxels are classified and assigned predefined attenuation coefficients to obtain an attenuation map. In whole-body imaging, however, mean lung attenuation coefficients (LAC) can vary by a factor of 2, and the choice of inappropriate mean LAC can have significant impact on PET quantification. Previously, we proposed a method combining MR image segmentation, tissue classification and Maximum Likelihood reconstruction of Attenuation and Activity (MLAA) to estimate mean LAC values. In this work, we quantify the influence of out-of-field (OOF) accidental coincidences when acquiring data in a single bed position. We therefore carried out GATE simulations of realistic, whole-body activity and attenuation distributions derived from data of three patients. A bias of 15% was found and significantly reduced by removing OOF accidentals from our data, suggesting that OOF accidentals are the major contributor to the bias. We found approximately equal contributions from OOF scatter and OOF randoms, and present results after correction of the bias by rescaling of results. Results using temporal subsets suggest that 30-second acquisitions may be sufficient for estimation mean LAC with less than 5% uncertainty if mean bias can be corrected for. -- Highlights: • Variability of lung attenuation complicates PET attenuation correction in PET/MR. • Maximum Likelihood Reconstruction of Attenuation and Activity combined with MR image segmentation. • GATE simulations of PET acquisitions in a realistic scanner model. • Bias in full-body simulations explained by accidentals from outside the FOV.

  6. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality?

    DEFF Research Database (Denmark)

    Ekelund, Ulf; Steene-Johannessen, Jostein; Brown, Wendy J

    2016-01-01

    and outcome data, provided data on both daily sitting or TV-viewing time and physical activity, and reported effect estimates for all-cause mortality, cardiovascular disease mortality, or breast, colon, and colorectal cancer mortality. We included data from 16 studies, of which 14 were identified through......BACKGROUND: High amounts of sedentary behaviour have been associated with increased risks of several chronic conditions and mortality. However, it is unclear whether physical activity attenuates or even eliminates the detrimental effects of prolonged sitting. We examined the associations...... of sedentary behaviour and physical activity with all-cause mortality. METHODS: We did a systematic review, searching six databases (PubMed, PsycINFO, Embase, Web of Science, Sport Discus, and Scopus) from database inception until October, 2015, for prospective cohort studies that had individual level exposure...

  7. Attenuation of eph receptor kinase activation in cancer cells by coexpressed ephrin ligands.

    Directory of Open Access Journals (Sweden)

    Giulia Falivelli

    Full Text Available The Eph receptor tyrosine kinases mediate juxtacrine signals by interacting "in trans" with ligands anchored to the surface of neighboring cells via a GPI-anchor (ephrin-As or a transmembrane segment (ephrin-Bs, which leads to receptor clustering and increased kinase activity. Additionally, soluble forms of the ephrin-A ligands released from the cell surface by matrix metalloproteases can also activate EphA receptor signaling. Besides these trans interactions, recent studies have revealed that Eph receptors and ephrins coexpressed in neurons can also engage in lateral "cis" associations that attenuate receptor activation by ephrins in trans with critical functional consequences. Despite the importance of the Eph/ephrin system in tumorigenesis, Eph receptor-ephrin cis interactions have not been previously investigated in cancer cells. Here we show that in cancer cells, coexpressed ephrin-A3 can inhibit the ability of EphA2 and EphA3 to bind ephrins in trans and become activated, while ephrin-B2 can inhibit not only EphB4 but also EphA3. The cis inhibition of EphA3 by ephrin-B2 implies that in some cases ephrins that cannot activate a particular Eph receptor in trans can nevertheless inhibit its signaling ability through cis association. We also found that an EphA3 mutation identified in lung cancer enhances cis interaction with ephrin-A3. These results suggest a novel mechanism that may contribute to cancer pathogenesis by attenuating the tumor suppressing effects of Eph receptor signaling pathways activated by ephrins in trans.

  8. Clearing the corpses: regulatory mechanisms, novel tools, and therapeutic potential of harnessing microglial phagocytosis in the diseased brain

    Directory of Open Access Journals (Sweden)

    Irune Diaz-Aparicio

    2016-01-01

    Full Text Available Apoptosis is a widespread phenomenon that occurs in the brain in both physiological and pathological conditions. Dead cells must be quickly removed to avoid the further toxic effects they exert in the parenchyma, a process executed by microglia, the brain professional phagocytes. Although phagocytosis is critical to maintain tissue homeostasis, it has long been either overlooked or indirectly assessed based on microglial morphology, expression of classical activation markers, or engulfment of artificial phagocytic targets in vitro. Nevertheless, these indirect methods present several limitations and, thus, direct observation and quantification of microglial phagocytosis is still necessary to fully grasp its relevance in the diseased brain. To overcome these caveats and obtain a comprehensive, quantitative picture of microglial phagocytosis we have developed a novel set of parameters. These parameters have allowed us to identify the different strategies utilized by microglia to cope with apoptotic challenges induced by excitotoxicity or inflammation. In contrast, we discovered that in mouse and human epilepsy microglia failed to find and engulf apoptotic cells, resulting in accumulation of debris and inflammation. Herein, we advocate that the efficiency of microglial phagocytosis should be routinely tested in neurodegenerative and neurological disorders, in order to determine the extent to which it contributes to apoptosis and inflammation found in these conditions. Finally, our findings point towards enhancing microglial phagocytosis as a novel therapeutic strategy to control tissue damage and inflammation, and accelerate recovery in brain diseases.

  9. Clearing the corpses:regulatory mechanisms, novel tools, and therapeutic potential of harnessing microglial phagocytosis in the diseased brain

    Institute of Scientific and Technical Information of China (English)

    Irune Diaz-Aparicio; Sol Beccari; Oihane Abiega; Amanda Sierra

    2016-01-01

    Apoptosis is a widespread phenomenon that occurs in the brain in both physiological and pathological conditions. Dead cells must be quickly removed to avoid the further toxic effects they exert in the pa-renchyma, a process executed by microglia, the brain professional phagocytes. Although phagocytosis is critical to maintain tissue homeostasis, it has long been either overlooked or indirectly assessed based on microglial morphology, expression of classical activation markers, or engulfment of artiifcial phagocytic targetsin vitro. Nevertheless, these indirect methods present several limitations and, thus, direct obser-vation and quantiifcation of microglial phagocytosis is still necessary to fully grasp its relevance in the diseased brain. To overcome these caveats and obtain a comprehensive, quantitative picture of microglial phagocytosis we have developed a novel set of parameters. hTese parameters have allowed us to identify the different strategies utilized by microglia to cope with apoptotic challenges induced by excitotoxicity or inlfammation. In contrast, we discovered that in mouse and human epilepsy microglia failed to ifnd and engulf apoptotic cells, resulting in accumulation of debris and inlfammation. Herein, we advocate that the effciency of microglial phagocytosis should be routinely tested in neurodegenerative and neuro-logical disorders, in order to determine the extent to which it contributes to apoptosis and inlfammation found in these conditions. Finally, our ifndings point towards enhancing microglial phagocytosis as a novel therapeutic strategy to control tissue damage and inlfammation, and accelerate recovery in brain diseases.

  10. LXW7 ameliorates focal cerebral ischemia injury and attenuates inflammatory responses in activated microglia in rats

    Energy Technology Data Exchange (ETDEWEB)

    Fang, T.; Zhou, D.; Lu, L.; Tong, X.; Wu, J.; Yi, L. [Department of Neurology, Shenzhen Hospital, Peking University, Shenzhen (China)

    2016-08-01

    Inflammation plays a pivotal role in ischemic stroke, when activated microglia release excessive pro-inflammatory mediators. The inhibition of integrin αvβ3 improves outcomes in rat focal cerebral ischemia models. However, the mechanisms by which microglia are neuroprotective remain unclear. This study evaluated whether post-ischemic treatment with another integrin αvβ3 inhibitor, the cyclic arginine-glycine-aspartic acid (RGD) peptide-cGRGDdvc (LXW7), alleviates cerebral ischemic injury. The anti-inflammatory effect of LXW7 in activated microglia within rat focal cerebral ischemia models was examined. A total of 108 Sprague-Dawley rats (250–280 g) were subjected to middle cerebral artery occlusion (MCAO). After 2 h, the rats were given an intravenous injection of LXW7 (100 μg/kg) or phosphate-buffered saline (PBS). Neurological scores, infarct volumes, brain water content (BWC) and histology alterations were determined. The expressions of pro-inflammatory cytokines [tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β)], and Iba1-positive activated microglia, within peri-ischemic brain tissue, were assessed with ELISA, western blot and immunofluorescence staining. Infarct volumes and BWC were significantly lower in LXW7-treated rats compared to those in the MCAO + PBS (control) group. The LXW7 treatment lowered the expression of pro-inflammatory cytokines. There was a reduction of Iba1-positive activated microglia, and the TNF-α and IL-1β expressions were attenuated. However, there was no difference in the Zea Longa scores between the ischemia and LXW7 groups. The results suggest that LXW7 protected against focal cerebral ischemia and attenuated inflammation in activated microglia. LXW7 may be neuroprotective during acute MCAO-induced brain damage and microglia-related neurodegenerative diseases.

  11. Antiulcer Effect of Extract/Fractions of Eruca sativa : Attenuation of Urease Activity.

    Science.gov (United States)

    Khan, Haroon; Khan, Murad Ali

    2014-07-01

    Eruca sativa (Rocket salad) is known for its antiulcer properties in the traditional system of treatment. The present study was, therefore, designed to scrutinize its effect on urease activity in vitro. The results demonstrated marked attenuation of urease by the crude extract of various test concentrations with IC50 value of 7.77 mg/mL. On fractionation, marked change in inhibitory profile was observed. The ethyl acetate fraction was the most potent urease inhibitor with IC50 value of 4.17 mg/mL followed by the aqueous fraction with an IC50 value of 5.83 mg/mL. However, hexane did not show significant urease inhibition. In conclusion, the present study illustrated strong antagonism of urease activity and thus validated scientifically the traditional use of the plant in the treatment of ulcers.

  12. Microglial TNF and IL-1 as early disease-modifiers in Alzheimer's-like disease in mice

    DEFF Research Database (Denmark)

    Ilkjær, Laura; Babcock, Alicia; Finsen, Bente

    2015-01-01

    and IL-1, and to phagocytose and clear amyloid beta (As), however, the influence of TNF and IL-1, and inflammation in general, on these processes is still poorly understood. We have studied the development of As pathology, and basal and lipopolysaccharide (LPS) stimulated microglial cytokine production......In Alzheimer's disease (AD) signs of microglial activation is evident already in prodromal and early AD. This and other evidence suggest that neuroinflammation contributes to the progression of the early disease development in AD. Microglial cells have the capacity to produce cytokines such as TNF...... in the APPswe/PS1DE9 mouse model of AD. In these mice, cortical As plaque load shows a sigmoidal trajectory with age, as it does in AD. At 12 months of age, when As pathology is welldeveloped, TNF and IL-1s are produced in significantly higher proportions of microglia in the APPswe/PS1DE9 mice, than in wildtype...

  13. Oral glucose ingestion attenuates exercise-induced activation of 5'-AMP-activated protein kinase in human skeletal muscle

    DEFF Research Database (Denmark)

    Åkerström, Thorbjörn; Birk, Jesper Bratz; Klein, Ditte Kjærsgaard

    2006-01-01

    5'-AMP-activated protein kinase (AMPK) has been suggested to be a 'metabolic master switch' regulating various aspects of muscle glucose and fat metabolism. In isolated rat skeletal muscle, glucose suppresses the activity of AMPK and in human muscle glycogen loading decreases exercise-induced AMPK...... activation. We hypothesized that oral glucose ingestion during exercise would attenuate muscle AMPK activation. Nine male subjects performed two bouts of one-legged knee-extensor exercise at 60% of maximal workload. The subjects were randomly assigned to either consume a glucose containing drink or a placebo...... drink during the two trials. Muscle biopsies were taken from the vastus lateralis before and after 2 h of exercise. Plasma glucose was higher (6.0 +/- 0.2 vs. 4.9 +/- 0.1 mmol L-1, P

  14. Infliximab attenuates activated charcoal and polyethylene glycol aspiration-induced lung injury in rats.

    Science.gov (United States)

    Güzel, Aygül; Günaydin, Mithat; Güzel, Ahmet; Alaçam, Hasan; Murat, Naci; Gacar, Ayhan; Güvenç, Tolga

    2012-04-01

    Aspiration is a serious complication of gastrointestinal (GI) decontamination procedure. Studies have shown that tumor necrosis factor-α (TNF-α) blockers have beneficial effects on lung injury. Therefore, the authors investigated the attenuation by infliximab (INF) on activated charcoal (AC)- and polyethylene glycol (PEG)-induced lung injury in rat model. Forty-two male Sprague-Dawley rats were allotted into 1 of 6 groups: saline (NS), activated charcoal (AC), polyethylene glycol (PEG), NS+INF treated, AC+INF treated, and PEG+INF treated. All materials were aspirated into the lungs at a volume of 1 mL/kg. Before aspiration, the rats were injected subcutaneously with INF. Seven days later, both lungs and serum specimens in all groups were evaluated histopathologically, immunohistochemically, and biochemically. Following aspiration of AC and PEG, evident histopathological changes were assigned in the lung tissue that were associated with increased expression of inducible nitric oxide synthase (iNOS), increased serum levels of oxidative stress markers (malondialdehyde [MDA], surfactant protein-D [SP-D], TNF-α), and decreased antioxidant enzyme (glutathione peroxidase [GSH-Px]) activities. INF treatment significantly decreased the elevated serum MDA and TNF-α levels and increased serum GSH-Px levels. Furthermore, the current results show that there is a significant reduction in the activity of iNOS in lung tissue and increased serum SP-D levels of AC and PEG aspiration-induced lung injury with INF treatment. These findings suggest that INF attenuates lung inflammation and prevents GI decontamination agent-induced lung injury in rats.

  15. Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone attenuates postincisional pain by regulating macrophage polarization

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa-Moriyama, Maiko, E-mail: hase-mai@m3.kufm.kagoshima-u.ac.jp [Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan); Ohnou, Tetsuya; Godai, Kohei; Kurimoto, Tae; Nakama, Mayo; Kanmura, Yuichi [Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520 (Japan)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Rosiglitazone attenuated postincisional pain. Black-Right-Pointing-Pointer Rosiglitazone alters macrophage polarization to F4/80{sup +}CD206{sup +} M2 macrophages at the incisional sites. Black-Right-Pointing-Pointer Transplantation of rosiglitazone-treated macrophages produced analgesic effects. -- Abstract: Acute inflammation triggered by macrophage infiltration to injured tissue promotes wound repair and may induce pain hypersensitivity. Peroxisome proliferator-activated receptor {gamma} (PPAR){gamma} signaling is known to regulate heterogeneity of macrophages, which are often referred to as classically activated (M1) and alternatively activated (M2) macrophages. M1 macrophages have considerable antimicrobial activity and produce a wide variety of proinflammatory cytokines. In contrast, M2 macrophages are involved in anti-inflammatory and homeostatic functions linked to wound healing and tissue repair. Although it has been suggested that PPAR{gamma} agonists attenuate pain hypersensitivity, the molecular mechanism of macrophage-mediated effects of PPAR{gamma} signaling on pain development has not been explored. In this study, we investigated the link between the phenotype switching of macrophage polarization induced by PPAR{gamma} signaling and the development of acute pain hypersensitivity. Local administration of rosiglitazone significantly ameliorated hypersensitivity to heat and mechanical stimuli, and paw swelling. Consistent with the down-regulation of nuclear factor {kappa}B (NF{kappa}B) phosphorylation by rosiglitazone at the incisional sites, the number of F4/80{sup +}iNOS{sup +} M1 macrophages was decreased whereas numbers of F4/80{sup +}CD206{sup +} M2 macrophages were increased in rosiglitazone-treated incisional sites 24 h after the procedure. In addition, gene induction of anti-inflammatory M2-macrophage-associated markers such as arginase1, FIZZ1 and interleukin (IL)-10 were significantly increased, whereas

  16. Activated protein C attenuates acute ischaemia reperfusion injury in skeletal muscle.

    LENUS (Irish Health Repository)

    Dillon, J P

    2012-02-03

    Activated protein C (APC) is an endogenous anti-coagulant with anti-inflammatory properties. The purpose of the present study was to evaluate the effects of activated protein C in the setting of skeletal muscle ischaemia reperfusion injury (IRI). IRI was induced in rats by applying rubber bands above the levels of the greater trochanters bilaterally for a period of 2h followed by 12h reperfusion. Treatment groups received either equal volumes of normal saline or activated protein C prior to tourniquet release. Following 12h reperfusion, muscle function was assessed electrophysiologically by electrical field stimulation. The animals were then sacrificed and skeletal muscle harvested for evaluation. Activated protein C significantly attenuated skeletal muscle reperfusion injury as shown by reduced myeloperoxidase content, wet to dry ratio and electrical properties of skeletal muscle. Further in vitro work was carried out on neutrophils isolated from healthy volunteers to determine the direct effect of APC on neutrophil function. The effects of APC on TNF-alpha stimulated neutrophils were examined by measuring CD18 expression as well as reactive oxygen species generation. The in vitro work demonstrated a reduction in CD18 expression and reactive oxygen species generation. We conclude that activated protein C may have a protective role in the setting of skeletal muscle ischaemia reperfusion injury and that this is in part mediated by a direct inhibitory effect on neutrophil activation.

  17. Three-dimensional morphometric analysis of microglial changes in a mouse model of virus encephalitis: age and environmental influences.

    Science.gov (United States)

    de Sousa, Aline A; Dos Reis, Renata R; de Lima, Camila M; de Oliveira, Marcus A; Fernandes, Taiany N; Gomes, Giovanni F; Diniz, Daniel G; Magalhães, Nara M; Diniz, Cristovam G; Sosthenes, Marcia C K; Bento-Torres, João; Diniz, José Antonio P; Vasconcelos, Pedro F da C; Diniz, Cristovam Wanderley P

    2015-08-01

    Many RNA virus CNS infections cause neurological disease. Because Piry virus has a limited human pathogenicity and exercise reduces activation of microglia in aged mice, possible influences of environment and aging on microglial morphology and behavior in mice sublethal encephalitis were investigated. Female albino Swiss mice were raised either in standard (S) or in enriched (EE) cages from age 2 to 6 months (young - Y), or from 2 to 16 months (aged - A). After behavioral tests, mice nostrils were instilled with Piry-virus-infected or with normal brain homogenates. Brain sections were immunolabeled for virus antigens or microglia at 8 days post-infection (dpi), when behavioral changes became apparent, and at 20 and 40 dpi, after additional behavioral testing. Young infected mice from standard (SYPy) and enriched (EYPy) groups showed similar transient impairment in burrowing activity and olfactory discrimination, whereas aged infected mice from both environments (EAPy, SAPy) showed permanent reduction in both tasks. The beneficial effects of an enriched environment were smaller in aged than in young mice. Six-hundred and forty microglial cells, 80 from each group were reconstructed. An unbiased, stereological sampling approach and multivariate statistical analysis were used to search for microglial morphological families. This procedure allowed distinguishing between microglial morphology of infected and control subjects. More severe virus-associated microglial changes were observed in young than in aged mice, and EYPy seem to recover microglial homeostatic morphology earlier than SYPy . Because Piry-virus encephalitis outcomes were more severe in aged mice, it is suggested that the reduced inflammatory response in those individuals may aggravate encephalitis outcomes.

  18. Activation of GR but not PXR by dexamethasone attenuated acetaminophen hepatotoxicities via Fgf21 induction.

    Science.gov (United States)

    Vispute, Saurabh G; Bu, Pengli; Le, Yuan; Cheng, Xingguo

    2017-03-01

    Glucocorticoid receptor (GR) signaling is indispensable for cell growth and development, and plays important roles in drug metabolism. Fibroblast growth factor (Fgf) 21, an important regulator of glucose, lipid, and energy metabolism, plays a cytoprotective role by attenuating toxicities induced by chemicals such as dioxins, acetaminophen (APAP), and alcohols. The present study investigates the impact of dexamethasone (DEX)-activated GR on Fgf21 expression and how it affects the progression of APAP-induced hepatotoxicity. Our results showed that DEX dose/concentration- and time-dependently increased Fgf21 mRNA and protein expression in mouse liver as well as cultured mouse and human hepatoma cells. By using PXR-null mouse model, we demonstrated that DEX induced Fgf21 expression by a PXR-independent mechanism. In cultured mouse and human hepatoma cells, inhibition of GR signaling, by RU486 (Mifepristone) or GR silencing using GR-specific siRNA, attenuated DEX-induced Fgf21 expression. In addition, DEX increased luciferase reporter activity driven by the 3.0-kb mouse and human Fgf21/FGF21 gene promoter. Further, ChIP-qPCR assays demonstrated that DEX increased the binding of GR to the specific cis-regulatory elements located in the 3.0-kb mouse and human Fgf21/FGF21 gene promoter. Pretreatment of 2mg/kg DEX ameliorated APAP-induced liver injury in wild-type but not Fgf21-null mice. In conclusion, via GR activation, DEX induced Fgf21 expression in mouse liver and human hepatoma cells.

  19. Quantification of microglial phagocytosis by a flow cytometer-based assay.

    Science.gov (United States)

    Pul, Refik; Chittappen, Kandiyil Prajeeth; Stangel, Martin

    2013-01-01

    Microglia represent the largest population of phagocytes in the CNS and have a principal role in immune defense and inflammatory responses in the CNS. Their phagocytic activity can be studied by a variety of techniques, including a flow cytometry-based approach utilizing polystyrene latex beads. The flow cytometry-based microglial phagocytosis assay, which is presented here, offers the advantage of rapid and reliable analysis of thousands of cells in a quantitative fashion.

  20. Compound K Attenuates the Development of Atherosclerosis in ApoE−/− Mice via LXRα Activation

    Directory of Open Access Journals (Sweden)

    Li Zhou

    2016-07-01

    Full Text Available Background: Atherosclerosis is a fundamental pathological process responded to some serious cardiovascular events. Although the cholesterol-lowering drugs are widely prescribed for atherosclerosis therapy, it is still the leading cause of death in the developed world. Here we measured the effects of compound K in atherosclerosis formation and investigated the probably mechanisms of the anti-antherosclerosis roles of compound K. Methods: We treated the atherosclerotic model animals (apoE−/− mice on western diet with compound K and measured the size of atherosclerotic lesions, inflammatory cytokine levels and serum lipid profile. Peritoneal macrophages were collected in vitro for the foam cell and inflammasome experiments. Results: Our results show that treatment with compound K dose-dependently attenuates the formation of atherosclerotic plaques by 55% through activation of reverse cholesterol transport pathway, reduction of systemic inflammatory cytokines and inhibition of local inflammasome activity. Compound K increases the cholesterol efflux of macrophage-derived foam cells, and reduces the inflammasome activity in cholesterol crystal stimulated macrophages. The activation of LXRα may contribute to the athero-protective effects of compound K. Conclusion: These observations provide evidence for an athero-protective effect of compound K via LXRα activation, and support its further evaluation as a potential effective modulator for the prevention and treatment of atherosclerosis.

  1. Enhancement of LPS-Induced Microglial Inflammation Response via TLR4 Under High Glucose Conditions

    Directory of Open Access Journals (Sweden)

    Xiang Zhang

    2015-03-01

    Full Text Available Background: Microglia activation mediated by toll-like receptor 4 (TLR4 plays an important role in neuroinflammation and postoperative cognitive dysfunction (POCD. Diabetes mellitus (DM has been recently suggested as an independent risk factor for POCD. In this study, we investigate the potential exacerbation of the inflammatory response in primary microglia due to high glucose conditions. Methods: Primary microglial cells were exposed to normal glucose (25 mmol/L and high glucose (35 mmol/L levels alone or with lipopolyscaccharide (LPS 0, 2, 5, 10 ng/mL. The pro-inflammatory response of the cells was assessed by measuring changes in cytokine levels and the evaluation of associated signaling pathways. Results: Neither high glucose nor low LPS (≤5ng/ml alone had an effect on TNF-a and IL-6 levels, but the combination of low LPS and high glucose stimulated the inflammatory response. Analyses of the associated signaling pathways demonstrated that high glucose enhanced the LPS-induced microglial activation via the TLR4/JAK2/STAT3 pathway. Conclusion: This study demonstrates that high glucose, one of the key abnormalities characteristic of DM, can augment LPS-induced microglial activation and inflammatory cytokine levels through the TLR4/JAK2/STAT3 pathway, offering new insight into the pathophysiological relationship between DM and POCD.

  2. Nonlinear disturbance attenuation control for four-leg active power filter based on voltage source inverter

    Institute of Scientific and Technical Information of China (English)

    Juming CHEN; Feng LIU; Shengwei MEI

    2006-01-01

    Active power filter (APF) based on voltage source inverter (VSI) is one of the important measures for handling the power quality problem. Mathematically, the APF model in a power grid is a typical nonlinear one. The idea of passivity is a powerful tool to study the stabilization of such a nonlinear system. In this paper, a state-space model of the four-leg APF is derived, based on which a new H-infinity controller for current tracking is proposed from the passivity point of view. It can achieve not only asymptotic tracking, but also disturbance attenuation in the sense of L2-gain. Subsequently,a sufficient condition to guarantee the boundedness and desired mean of the DC voltage is also given. This straightforward condition is consistent with the power-balancing law of electrical circuits. Simulations performed on PSCAD platform verify the validity of the new approach.

  3. N-Docosahexaenoyl Dopamine, an Endocannabinoid-like Conjugate of Dopamine and the n-3 Fatty Acid Docosahexaenoic Acid, Attenuates Lipopolysaccharide-Induced Activation of Microglia and Macrophages via COX-2.

    Science.gov (United States)

    Wang, Ya; Plastina, Pierluigi; Vincken, Jean-Paul; Jansen, Renate; Balvers, Michiel; Ten Klooster, Jean Paul; Gruppen, Harry; Witkamp, Renger; Meijerink, Jocelijn

    2017-03-15

    Several studies indicate that the n-3 long-chain polyunsaturated fatty acid docosahexaenoic acid (DHA) contributes to an attenuated inflammatory status in the development of neurodegenerative disorders, such as Alzheimer's and Parkinson's disease. To explain these effects, different mechanisms are being proposed, including those involving endocannabinoids and related signaling molecules. Many of these compounds belong to the fatty acid amides, conjugates of fatty acids with biogenic amines. Conjugates of DHA with ethanolamine or serotonin have previously been shown to possess anti-inflammatory and potentially neuroprotective properties. Here, we synthesized another amine conjugate of DHA, N-docosahexaenoyl dopamine (DHDA), and tested its immune-modulatory properties in both RAW 264.7 macrophages and BV-2 microglial cells. N-Docosahexaenoyl dopamine significantly suppressed the production of nitric oxide (NO), the cytokine interleukin-6 (IL-6), and the chemokines macrophage-inflammatory protein-3α (CCL20) and monocyte chemoattractant protein-1 (MCP-1), whereas its parent compounds, dopamine and DHA, were ineffective. Further exploration of potential effects of DHDA on key inflammatory mediators revealed that cyclooxygenase-2 (COX-2) mRNA level and production of prostaglandin E2 (PGE2) were concentration-dependently inhibited in macrophages. In activated BV-2 cells, PGE2 production was also reduced, without changes in COX-2 mRNA levels. In addition, DHDA did not affect NF-kB activity in a reporter cell line. Finally, the immune-modulatory activities of DHDA were compared with those of N-arachidonoyl dopamine (NADA) and similar potencies were found in both cell types. Taken together, our data suggest that DHDA, a potentially endogenous endocannabinoid, may be an additional member of the group of immune-modulating n-3 fatty acid-derived lipid mediators.

  4. Rapamycin attenuates mitochondrial dysfunction via activation of mitophagy in experimental ischemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qiang [Department of Neurology, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200233 (China); Department of Neurology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Zhang, Ting [Department of Neurology, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200233 (China); Wang, Jixian [Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China); Zhang, Zhijun [Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China); Zhai, Yu [Department of Neurology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Yang, Guo-Yuan, E-mail: gyyang0626@gmail.com [Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China); Sun, Xiaojiang, E-mail: sunxj19@gmail.com [Department of Neurology, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200233 (China)

    2014-02-07

    Highlights: • Rapamycin enhances mitophagy via increasing p62 translocation to the mitochondria. • Rapamycin attenuates brain ischemic damage and improves mitochondrial function. • The protection of rapamycin to mitochondrial is linked to enhanced mitophagy. - Abstract: Rapamycin has been demonstrated to exhibit neuroprotective functions via the activation of autophagy in a cerebral ischemia model. However, the involvement of mitophagy in this process and its contribution to the protection of mitochondrial function remains unknown. The present study explored the characteristics of mitophagy after cerebral ischemia and the effect of rapamycin on mitochondrial function. Male Sprague–Dawley rats underwent transient middle cerebral artery occlusion (tMCAO). Neurological deficits scores; infarct volumes; mitophagy morphology; and the levels of malondialdehyde (MDA), adenosine triphosphate (ATP) and mitochondrial membrane potentials (Δψm) were examined. The expression of LC3, Beclin-1 and p62 in the mitochondrial fraction combined with transmission electronic microscopy were used to explore mitophagic activity after ischemia. We also blocked autophagosome formation using 3-methyladenine (3-MA) to check the linkage between the mitochondrial protective effect of rapamycin and enhanced mitophagy. We observed that rapamycin significantly enhanced mitophagy, as evidenced by the increase in LC3-II and Beclin-1 expression in the mitochondria and p62 translocation to the mitochondria. Rapamycin reduced infarct volume, improved neurological outcomes and inhibited mitochondrial dysfunction compared with the control animals (p < 0.05). However, these protective effects were reversed by 3-methyladenine treatment after rapamycin. The present study indicates that rapamycin treatment attenuates mitochondrial dysfunction following cerebral ischemia, which is linked to enhanced mitophagy.

  5. Inhibition of classical complement activation attenuates liver ischaemia and reperfusion injury in a rat model.

    Science.gov (United States)

    Heijnen, B H M; Straatsburg, I H; Padilla, N D; Van Mierlo, G J; Hack, C E; Van Gulik, T M

    2006-01-01

    Activation of the complement system contributes to the pathogenesis of ischaemia/reperfusion (I/R) injury. We evaluated inhibition of the classical pathway of complement using C1-inhibitor (C1-inh) in a model of 70% partial liver I/R injury in male Wistar rats (n = 35). C1-inh was administered at 100, 200 or 400 IU/kg bodyweight, 5 min before 60 min ischaemia (pre-I) or 5 min before 24 h reperfusion (end-I). One hundred IU/kg bodyweight significantly reduced the increase of plasma levels of activated C4 as compared to albumin-treated control rats and attenuated the increase of alanine aminotransferase (ALT). These effects were not better with higher doses of C1-inh. Administration of C1-inh pre-I resulted in lower ALT levels and higher bile secretion after 24 h of reperfusion than administration at end-I. Immunohistochemical assessment indicated that activated C3, the membrane attack complex C5b9 and C-reactive protein (CRP) colocalized in hepatocytes within midzonal areas, suggesting CRP is a mediator of I/R-induced, classical complement activation in rats. Pre-ischaemic administration of C1-inh is an effective pharmacological intervention to protect against liver I/R injury.

  6. A non canonical subtilase attenuates the transcriptional activation of defence responses in Arabidopsis thaliana

    Science.gov (United States)

    Serrano, Irene; Buscaill, Pierre; Audran, Corinne; Pouzet, Cécile; Jauneau, Alain; Rivas, Susana

    2016-01-01

    Proteases play crucial physiological functions in all organisms by controlling the lifetime of proteins. Here, we identified an atypical protease of the subtilase family [SBT5.2(b)] that attenuates the transcriptional activation of plant defence independently of its protease activity. The SBT5.2 gene produces two distinct transcripts encoding a canonical secreted subtilase [SBT5.2(a)] and an intracellular protein [SBT5.2(b)]. Concomitant to SBT5.2(a) downregulation, SBT5.2(b) expression is induced after bacterial inoculation. SBT5.2(b) localizes to endosomes where it interacts with and retains the defence-related transcription factor MYB30. Nuclear exclusion of MYB30 results in its reduced transcriptional activation and, thus, suppressed resistance. sbt5.2 mutants, with abolished SBT5.2(a) and SBT5.2(b) expression, display enhanced defence that is suppressed in a myb30 mutant background. Moreover, overexpression of SBT5.2(b), but not SBT5.2(a), in sbt5.2 plants reverts the phenotypes displayed by sbt5.2 mutants. Overall, we uncover a regulatory mode of the transcriptional activation of defence responses previously undescribed in eukaryotes. DOI: http://dx.doi.org/10.7554/eLife.19755.001 PMID:27685353

  7. Attachment-security priming attenuates amygdala activation to social and linguistic threat.

    Science.gov (United States)

    Norman, Luke; Lawrence, Natalia; Iles, Andrew; Benattayallah, Abdelmalek; Karl, Anke

    2015-06-01

    A predominant expectation that social relationships with others are safe (a secure attachment style), has been linked with reduced threat-related amygdala activation. Experimental priming of mental representations of attachment security can modulate neural responding, but the effects of attachment-security priming on threat-related amygdala activation remains untested. Using functional magnetic resonance imaging, the present study examined the effects of trait and primed attachment security on amygdala reactivity to threatening stimuli in an emotional faces and a linguistic dot-probe task in 42 healthy participants. Trait attachment anxiety and attachment avoidance were positively correlated with amygdala activation to threatening faces in the control group, but not in the attachment primed group. Furthermore, participants who received attachment-security priming showed attenuated amygdala activation in both the emotional faces and dot-probe tasks. The current findings demonstrate that variation in state and trait attachment security modulates amygdala reactivity to threat. These findings support the potential use of attachment security-boosting methods as interventions and suggest a neural mechanism for the protective effect of social bonds in anxiety disorders.

  8. Strawberry polyphenols attenuate ethanol-induced gastric lesions in rats by activation of antioxidant enzymes and attenuation of MDA increase.

    Directory of Open Access Journals (Sweden)

    José M Alvarez-Suarez

    Full Text Available BACKGROUND AND AIM: Free radicals are implicated in the aetiology of gastrointestinal disorders such as gastric ulcer, colorectal cancer and inflammatory bowel disease. Strawberries are common and important fruit due to their high content of essential nutrient and beneficial phytochemicals which seem to have relevant biological activity on human health. In the present study we investigated the antioxidant and protective effects of three strawberry extracts against ethanol-induced gastric mucosa damage in an experimental in vivo model and to test whether strawberry extracts affect antioxidant enzyme activities in gastric mucosa. METHODS/PRINCIPAL FINDINGS: Strawberry extracts were obtained from Adria, Sveva and Alba cultivars. Total antioxidant capacity and radical scavenging capacity were performed by TEAC, ORAC and electron paramagnetic resonance assays. Identification and quantification of anthocyanins was carried out by HPLC-DAD-MS analyses. Different groups of animals received 40 mg/day/kg body weight of strawberry crude extracts for 10 days. Gastric damage was induced by ethanol. The ulcer index was calculated together with the determination of catalase and SOD activities and MDA contents. Strawberry extracts are rich in anthocyanins and present important antioxidant capacity. Ethanol caused severe gastric damage and strawberry consumption protected against its deleterious role. Antioxidant enzyme activities increased significantly after strawberry extract intake and a concomitantly decrease in gastric lipid peroxidation was found. A significant correlation between total anthocyanin content and percent of inhibition of ulcer index was also found. CONCLUSIONS: Strawberry extracts prevented exogenous ethanol-induced damage to rats' gastric mucosa. These effects seem to be associated with the antioxidant activity and phenolic content in the extract as well as with the capacity of promoting the action of antioxidant enzymes. A diet rich in

  9. Microglial imaging with positron emission tomography and atrophy measurements with magnetic resonance imaging in multiple sclerosis : a correlative study

    NARCIS (Netherlands)

    Versijpt, J; Debruyne, JC; Van Laere, KJ; De Vos, F; Keppens, J; Strijckmans, K; Achten, E; Slegers, G; Dierckx, RA; Korf, J; De Reuck, JL

    2005-01-01

    Objective: The objectives of the present study were to assess brain atrophy in multiple sclerosis (MS) patients during different disease stages and to investigate by PET and [C-11]PK11195, a marker of microglial activation, the relationship between inflammation, atrophy and clinically relevant measu

  10. Salidroside Reduces Cell Mobility via NF-κB and MAPK Signaling in LPS-Induced BV2 Microglial Cells

    Directory of Open Access Journals (Sweden)

    Haixia Hu

    2014-01-01

    Full Text Available The unregulated activation of microglia following stroke results in the production of toxic factors that propagate secondary neuronal injury. Salidroside has been shown to exhibit protective effects against neuronal death induced by different insults. However, the molecular mechanisms responsible for the anti-inflammatory activity of salidroside have not been elucidated clearly in microglia. In the present study, we investigated the molecular mechanism underlying inhibiting LPS-stimulated BV2 microglial cell mobility of salidroside. The protective effect of salidroside was investigated in microglial BV2 cell, subjected to stretch injury. Moreover, transwell migration assay demonstrated that salidroside significantly reduced cell motility. Our results also indicated that salidroside suppressed LPS-induced chemokines production in a dose-dependent manner, without causing cytotoxicity in BV2 microglial cells. Moreover, salidroside suppressed LPS-induced activation of nuclear factor kappa B (NF-κB by blocking degradation of IκBα and phosphorylation of MAPK (p38, JNK, ERK1/2, which resulted in inhibition of chemokine expression. These results suggest that salidroside possesses a potent suppressive effect on cell migration of BV2 microglia and this compound may offer substantial therapeutic potential for treatment of ischemic strokes that are accompanied by microglial activation.

  11. Music Attenuated a Decrease in Parasympathetic Nervous System Activity after Exercise.

    Science.gov (United States)

    Jia, Tiantian; Ogawa, Yoshiko; Miura, Misa; Ito, Osamu; Kohzuki, Masahiro

    2016-01-01

    Music and exercise can both affect autonomic nervous system activity. However, the effects of the combination of music and exercise on autonomic activity are poorly understood. Additionally, it remains unknown whether music affects post-exercise orthostatic tolerance. The aim of this study was to evaluate the effects of music on autonomic nervous system activity in orthostatic tolerance after exercise. Twenty-six healthy graduate students participated in four sessions in a random order on four separate days: a sedentary session, a music session, a bicycling session, and a bicycling with music session. Participants were asked to listen to their favorite music and to exercise on a cycle ergometer. We evaluated autonomic nervous system activity before and after each session using frequency analysis of heart rate variability. High frequency power, an index of parasympathetic nervous system activity, was significantly increased in the music session. Heart rate was increased, and high frequency power was decreased, in the bicycling session. There was no significant difference in high frequency power before and after the bicycling with music session, although heart rate was significantly increased. Additionally, both music and exercise did not significantly affect heart rate, systolic blood pressure or also heart rate variability indices in the orthostatic test. These data suggest that music increased parasympathetic activity and attenuated the exercise-induced decrease in parasympathetic activity without altering the orthostatic tolerance after exercise. Therefore, music may be an effective approach for improving post-exercise parasympathetic reactivation, resulting in a faster recovery and a reduction in cardiac stress after exercise.

  12. iNKT-CELL ACTIVATION INDUCES LATE PRETERM BIRTH THAT IS ATTENUATED BY ROSIGLITAZONE1

    Science.gov (United States)

    St Louis, Derek; Romero, Roberto; Plazyo, Olesya; Arenas-Hernandez, Marcia; Panaitescu, Bogdan; Xu, Yi; Milovic, Tatjana; Xu, Zhonghui; Bhatti, Gaurav; Qing-Sheng, Mi; Drewlo, Sascha; Tarca, Adi L.; Hassan, Sonia S.; Gomez-Lopez, Nardhy

    2015-01-01

    Preterm birth (PTB) is a leading cause of neonatal morbidity and mortality; however, its non-infection-related mechanisms are poorly understood. Herein, we show that the expansion of activated CD1d-restricted invariant NKT (iNKT) cells in the third trimester by administration of α-galactosylceramide (α-GalCer) induces late PTB and neonatal mortality. In vivo imaging revealed that fetuses from mice that underwent α-GalCer-induced late PTB had bradycardia and died shortly after delivery. Yet, administration of α-GalCer in the second trimester did not cause pregnancy loss. PPARγ activation, through rosiglitazone treatment, reduced the rate of α-GalCer-induced late PTB and improved neonatal survival. Administration of α-GalCer in the third trimester suppressed PPARγ activation as shown by the down-regulation of Fabp4 and Fatp4 in myometrial and decidual tissues, respectively; this suppression was rescued by rosiglitazone treatment. Administration of α-GalCer in the third trimester induced an increase in the activation of conventional CD4+ T cells in myometrial tissues and the infiltration of activated macrophages, neutrophils and mature DCs to myometrial and/or decidual tissues. All of these effects were blunted after rosiglitazone treatment. Administration of α-GalCer also up-regulated the expression of inflammatory genes at the maternal-fetal interface and systemically, and rosiglitazone treatment partially attenuated these responses. Finally, an increased infiltration of activated iNKT-like cells in human decidual tissues is associated with non-infection-related preterm labor/birth. Collectively, these results demonstrate that iNKT-cell activation in vivo leads to late PTB by initiating innate and adaptive immune responses and suggest that the PPARγ pathway has potential as a target for prevention of this syndrome. PMID:26740111

  13. Music Attenuated a Decrease in Parasympathetic Nervous System Activity after Exercise.

    Directory of Open Access Journals (Sweden)

    Tiantian Jia

    Full Text Available Music and exercise can both affect autonomic nervous system activity. However, the effects of the combination of music and exercise on autonomic activity are poorly understood. Additionally, it remains unknown whether music affects post-exercise orthostatic tolerance. The aim of this study was to evaluate the effects of music on autonomic nervous system activity in orthostatic tolerance after exercise. Twenty-six healthy graduate students participated in four sessions in a random order on four separate days: a sedentary session, a music session, a bicycling session, and a bicycling with music session. Participants were asked to listen to their favorite music and to exercise on a cycle ergometer. We evaluated autonomic nervous system activity before and after each session using frequency analysis of heart rate variability. High frequency power, an index of parasympathetic nervous system activity, was significantly increased in the music session. Heart rate was increased, and high frequency power was decreased, in the bicycling session. There was no significant difference in high frequency power before and after the bicycling with music session, although heart rate was significantly increased. Additionally, both music and exercise did not significantly affect heart rate, systolic blood pressure or also heart rate variability indices in the orthostatic test. These data suggest that music increased parasympathetic activity and attenuated the exercise-induced decrease in parasympathetic activity without altering the orthostatic tolerance after exercise. Therefore, music may be an effective approach for improving post-exercise parasympathetic reactivation, resulting in a faster recovery and a reduction in cardiac stress after exercise.

  14. Metformin attenuates ventricular hypertrophy by activating the AMP-activated protein kinase-endothelial nitric oxide synthase pathway in rats.

    Science.gov (United States)

    Zhang, Cheng-Xi; Pan, Si-Nian; Meng, Rong-Sen; Peng, Chao-Quan; Xiong, Zhao-Jun; Chen, Bao-Lin; Chen, Guang-Qin; Yao, Feng-Juan; Chen, Yi-Li; Ma, Yue-Dong; Dong, Yu-Gang

    2011-01-01

    1. Metformin is an activator of AMP-activated protein kinase (AMPK). Recent studies suggest that pharmacological activation of AMPK inhibits cardiac hypertrophy. In the present study, we examined whether long-term treatment with metformin could attenuate ventricular hypertrophy in a rat model. The potential involvement of nitric oxide (NO) in the effects of metformin was also investigated. 2. Ventricular hypertrophy was established in rats by transaortic constriction (TAC). Starting 1 week after the TAC procedure, rats were treated with metformin (300 mg/kg per day, p.o.), N(G)-nitro-L-arginine methyl ester (L-NAME; 50 mg/kg per day, p.o.) or both for 8 weeks prior to the assessment of haemodynamic function and cardiac hypertrophy. 3. Cultured cardiomyocytes were used to examine the effects of metformin on the AMPK-endothelial NO synthase (eNOS) pathway. Cells were exposed to angiotensin (Ang) II (10⁻⁶ mol/L) for 24 h under serum-free conditions in the presence or absence of metformin (10⁻³ mol/L), compound C (10⁻⁶ mol/L), L-NAME (10⁻⁶ mol/L) or their combination. The rate of incorporation of [³H]-leucine was determined, western blotting analyses of AMPK-eNOS, neuronal nitric oxide synthase (nNOS) and inducible nitric oxide synthase (iNOS) were undertaken and the concentration of NO in culture media was determined. 4. Transaortic constriction resulted in significant haemodynamic dysfunction and ventricular hypertrophy. Myocardial fibrosis was also evident. Treatment with metformin improved haemodynamic function and significantly attenuated ventricular hypertrophy. Most of the effects of metformin were abolished by concomitant L-NAME treatment. L-NAME on its own had no effect on haemodynamic function and ventricular hypertrophy in TAC rats. 5. In cardiomyocytes, metformin inhibited AngII-induced protein synthesis, an effect that was suppressed by the AMPK inhibitor compound C or the eNOS inhibitor L-NAME. The improvement in cardiac structure and

  15. The use of an active controlled enclosure to attenuate sound radiation from a heavy radiator

    Science.gov (United States)

    Sun, Yao; Yang, Tiejun; Zhu, Minggang; Pan, Jie

    2017-03-01

    Active structural acoustical control usually experiences difficulty in the control of heavy sources or sources where direct applications of control forces are not practical. To overcome this difficulty, an active controlled enclosure, which forms a cavity with both flexible and open boundary, is employed. This configuration permits indirect implementation of active control in which the control inputs can be applied to subsidiary structures other than the sources. To determine the control effectiveness of the configuration, the vibro-acoustic behavior of the system, which consists of a top plate with an open, a sound cavity and a source panel, is investigated in this paper. A complete mathematical model of the system is formulated involving modified Fourier series formulations and the governing equations are solved using the Rayleigh-Ritz method. The coupling mechanisms of a partly opened cavity and a plate are analysed in terms of modal responses and directivity patterns. Furthermore, to attenuate sound power radiated from both the top panel and the open, two strategies are studied: minimizing the total radiated power and the cancellation of volume velocity. Moreover, three control configurations are compared, using a point force on the control panel (structural control), using a sound source in the cavity (acoustical control) and applying hybrid structural-acoustical control. In addition, the effects of boundary condition of the control panel on the sound radiation and control performance are discussed.

  16. Amiloride lowers blood pressure and attenuates urine plasminogen activation in patients with treatment-resistant hypertension.

    Science.gov (United States)

    Oxlund, Christina S; Buhl, Kristian B; Jacobsen, Ib A; Hansen, Mie R; Gram, Jeppe; Henriksen, Jan Erik; Schousboe, Karoline; Tarnow, Lise; Jensen, Boye L

    2014-12-01

    In conditions with albuminuria, plasminogen is aberrantly filtered across the glomerular barrier and activated along the tubular system to plasmin. In the collecting duct, plasmin activates epithelial sodium channels (ENaC) proteolytically. Hyperactivity of ENaC could link microalbuminuria/proteinuria to resistant hypertension. Amiloride, an ENaC inhibitor, inhibits urokinase-type plasminogen activator. We hypothesized that amiloride (1) reduces blood pressure (BP); (2) attenuates plasminogen-to-plasmin activation; and (3) inhibits urine urokinase-type plasminogen activator in patients with resistant hypertension and type 2 diabetes mellitus (T2DM).In an open-label, non-randomized, 8-week intervention study, a cohort (n = 80) of patients with resistant hypertension and T2DM were included. Amiloride (5 mg/d) was added to previous triple antihypertensive treatment (including a diuretic and an inhibitor of the renin-angiotensin-aldosterone system) and increased to 10 mg if BP control was not achieved at 4 weeks. Complete dataset for urine analysis was available in 60 patients. Systolic and diastolic BP measured by ambulatory BP monitoring and office monitoring were significantly reduced. Average daytime BP was reduced by 6.3/3.0 mm Hg. Seven of 80 cases (9%) discontinued amiloride due to hyperkalemia >5.5 mol/L, the most frequent adverse event. Urinary plasmin(ogen) and albumin excretions were significantly reduced after amiloride treatment (P treatment. Amiloride lowers BP, urine plasminogen excretion and activation, and albumin/creatinine ratio, and is a relevant add-on medication for the treatment of resistant hypertension in patients with T2DM and microalbuminuria.

  17. Role of very-late antigen-4 (VLA-4) in myelin basic protein-primed T cell contact-induced expression of proinflammatory cytokines in microglial cells.

    Science.gov (United States)

    Dasgupta, Subhajit; Jana, Malabendu; Liu, Xiaojuan; Pahan, Kalipada

    2003-06-20

    The presence of neuroantigen-primed T cells recognizing self-myelin antigens within the CNS is necessary for the development of demyelinating autoimmune disease like multiple sclerosis. This study was undertaken to investigate the role of myelin basic protein (MBP)-primed T cells in the expression of proinflammatory cytokines in microglial cells. MBP-primed T cells alone induced specifically the microglial expression of interleukin (IL)-1beta, IL-1alpha tumor necrosis factor alpha, and IL-6, proinflammatory cytokines that are primarily involved in the pathogenesis of MS. This induction was primarily dependent on the contact between MBP-primed T cells and microglia. The activation of microglial NF-kappaB and CCAAT/enhancer-binding protein beta (C/EBPbeta) by MBP-primed T cell contact and inhibition of contact-mediated microglial expression of proinflammatory cytokines by dominant-negative mutants of p65 and C/EBPbeta suggest that MBP-primed T cells induce microglial expression of cytokines through the activation of NF-kappaB and C/EBPbeta. In addition, we show that MBP-primed T cells express very late antigen-4 (VLA-4), and functional blocking antibodies to alpha4 chain of VLA-4 (CD49d) inhibited the ability of MBP-primed T cells to induce microglial proinflammatory cytokines. Interestingly, the blocking of VLA-4 impaired the ability of MBP-primed T cells to induce microglial activation of only C/EBPbeta but not that of NF-kappaB. This study illustrates a novel role of VLA-4 in regulating neuroantigen-primed T cell-induced activation of microglia through C/EBPbeta

  18. Repetitive cryotherapy attenuates the in vitro and in vivo mononuclear cell activation response.

    Science.gov (United States)

    Lindsay, Angus; Othman, Mohd Izani; Prebble, Hannah; Davies, Sian; Gieseg, Steven P

    2016-07-01

    What is the central question of this study? Acute and repetitive cryotherapy are routinely used to accelerate postexercise recovery, although the effect on resident immune cells and repetitive exposure has largely been unexplored and neglected. What is the main finding and its importance? Using blood-derived mononuclear cells and semi-professional mixed martial artists, we show that acute and repetitive cryotherapy reduces the in vitro and in vivo T-cell and monocyte activation response whilst remaining independent of the physical performance of elite athletes. We investigated the effect of repetitive cryotherapy on the in vitro (cold exposure) and in vivo (cold water immersion) activation of blood-derived mononuclear cells following high-intensity exercise. Single and repeated cold exposure (5°C) of a mixed cell culture (T cells and monocytes) was investigated using in vitro tissue culture experimentation for total neopterin production (neopterin plus 7,8-dihydroneopterin). Fourteen elite mixed martial art fighters were also randomly assigned to either a cold water immersion (15 min at 10°C) or passive recovery protocol, which they completed three times per week during a 6 week training camp. Urine was collected and analysed for neopterin and total neopterin three times per week, and perceived soreness, fatigue, physical performance (broad jump, push-ups and pull-ups) and training performance were also assessed. Single and repetitive cold exposure significantly (P < 0.001) reduced total neopterin production from the mixed cell culture, whereas cold water immersion significantly (P < 0.05) attenuated urinary neopterin and total neopterin during the training camp without having any effect on physical performance parameters. Soreness and fatigue showed little variation between the groups, whereas training session performance was significantly (P < 0.05) elevated in the cold water immersion group. The data suggest that acute and repetitive cryotherapy

  19. Sesamin attenuates allergic airway inflammation through the suppression of nuclear factor-kappa B activation.

    Science.gov (United States)

    Li, Liangchang; Piao, Hongmei; Zheng, Mingyu; Jin, Zhewu; Zhao, Liguang; Yan, Guanghai

    2016-12-01

    The aim of the present study is to determine the role of sesamin, the most abundant lignan in sesame seed oil, on the regulation of allergic airway inflammation in a murine asthma model. A BALB/c mouse model with allergic asthma was used to evaluate the effects of sesamin on nuclear factor-kappa B (NF-κB) activation. An enzyme-linked immunosorbent assay was used to determine protein expression in bronchoalveolar lavage (BAL) fluids. Hematoxylin and eosin staining was performed to examine histological changes. Moreover, western blot analysis was used to detect the expression of proteins in tissues. Prior to administering sesamin, the mice developed the following pathophysiological features of asthma: An increase in the number of inflammatory cells, increased levels of interleukin (IL)-4, IL-5 and IL-13, decreased levels of interferon-γ in BAL fluids and lung tissues, increased immunoglobulin E (IgE) levels in the serum and an increased activation of NF-κB in lung tissues. Following treatment with sesamin, the mice had evidently reduced peribronchiolar inflammation and airway inflammatory cell recruitment, inhibited production of several cytokines in BAL fluids and lung tissues, and decreased IgE levels. Following inhalation of ovalbumin, the administration of sesamin also inhibited the activation of NF-κB. In addition, sesamin administration reduced the phosphorylation of p38 mitogen-activated protein kinases (MAPKs). The present study demonstrates that sesamin decreases the activation of NF-κB in order to attenuate allergic airway inflammation in a murine model of asthma, possibly via the regulation of phosphorylation of p38 MAPK. These observations provide an important molecular mechanism for the potential use of sesamin in preventing and/or treating asthma, as well as other airway inflammatory disorders.

  20. Altered microglial copper homeostasis in a mouse model of Alzheimer's disease.

    Science.gov (United States)

    Zheng, Zhiqiang; White, Carine; Lee, Jaekwon; Peterson, Troy S; Bush, Ashley I; Sun, Grace Y; Weisman, Gary A; Petris, Michael J

    2010-09-01

    Alzheimer's disease (AD) is characterized by progressive neurodegeneration associated with the aggregation and deposition of β-amyloid (Aβ(40) and Aβ(42) ) peptide in senile plaques. Recent studies suggest that copper may play an important role in AD pathology. Copper concentrations are elevated in amyloid plaques and copper binds with high affinity to the Aβ peptide and promotes Aβ oligomerization and neurotoxicity. Despite this connection between copper and AD, it is unknown whether the expression of proteins involved in regulating copper homeostasis is altered in this disorder. In this study, we demonstrate that the copper transporting P-type ATPase, ATP7A, is highly expressed in activated microglial cells that are specifically clustered around amyloid plaques in the TgCRND8 mouse model of AD. Using a cultured microglial cell line, ATP7A expression was found to be increased by the pro-inflammatory cytokine interferon-gamma, but not by TNF-α or IL-1β. Interferon-gamma also elicited marked changes in copper homeostasis, including copper-dependent trafficking of ATP7A from the Golgi to cytoplasmic vesicles, increased copper uptake and elevated expression of the CTR1 copper importer. These findings suggest that pro-inflammatory conditions associated with AD cause marked changes in microglial copper trafficking, which may underlie the changes in copper homeostasis in AD. It is concluded that copper sequestration by microglia may provide a neuroprotective mechanism in AD.

  1. Molecular hydrogen attenuates hypoxia/reoxygenation injury of intrahepatic cholangiocytes by activating Nrf2 expression.

    Science.gov (United States)

    Yu, Jianhua; Zhang, Weiguang; Zhang, Rongguo; Jiang, Guixing; Tang, Haijun; Ruan, Xinxian; Ren, Peitu; Lu, Baochun

    2015-11-01

    Hypoxia/reoxygenation (H/R) injury of cholangiocytes causes serious biliary complications during hepatobiliary surgeries. Molecular hydrogen (H2) has been shown to be effective in protecting various cells and organs against oxidative stress injury. Human liver cholangiocytes were used to determine the potential protective effects of hydrogen against cholangiocyte H/R injury and explore the underlying mechanisms. We found that H2 ameliorated H/R-induced cholangiocytes apoptosis. Our study revealed that H2 activated NF-E2-related factor 2 (Nrf2) and downstream cytoprotective protein expression. However, the protective function of H2 was abolished when Nrf2 was silenced. Apoptosis in cholangiocytes isolated from a rat model of liver ischemia/reperfusion injury indicated that H2 significantly attenuates ischemia/reperfusion cholangiocyte injury in vivo. In conclusion, our study shows that H2 protects intrahepatic cholangiocytes from hypoxia/reoxygenation-induced apoptosis in vitro or in vivo, and this phenomenon may depend on activating Nrf2 expression.

  2. Omega-3 Polyunsaturated Fatty Acids Attenuate Fibroblast Activation and Kidney Fibrosis Involving MTORC2 Signaling Suppression

    Science.gov (United States)

    Zeng, Zhifeng; Yang, Haiyuan; Wang, Ying; Ren, Jiafa; Dai, Yifan; Dai, Chunsun

    2017-01-01

    Epidemiologic studies showed the correlation between the deficiency of omega-3 polyunsaturated fatty acids (n-3 PUFAs) and the progression of chronic kidney diseases (CKD), however, the role and mechanisms for n-3 PUFAs in protecting against kidney fibrosis remain obscure. In this study, NRK-49F cells, a rat kidney interstitial fibroblast cell line, were stimulated with TGFβ1. A Caenorhabditis elegans fat-1 transgenic mouse model in which n-3 PUFAs are endogenously produced from n-6 PUFAs owing to the expression of n-3 fatty acid desaturase were deployed. Docosahexaenoic acid (DHA), one member of n-3 PUFAs family, could suppress TGFβ1-induced fibroblast activation at a dose and time dependent manner. Additionally, DHA could largely inhibit TGFβ1-stimulated Akt but not S6 or Smad3 phosphorylation at a time dependent manner. To decipher the role for n-3 PUFAs in protecting against kidney fibrosis, fat-1 transgenic mice were operated with unilateral ureter obstruction (UUO). Compared to the wild types, fat-1 transgenics developed much less kidney fibrosis and inflammatory cell accumulation accompanied by less p-Akt (Ser473), p-Akt (Thr308), p-S6 and p-Smad3 in kidney tissues at day 7 after UUO. Thus, n-3 PUFAs can attenuate fibroblast activation and kidney fibrosis, which may be associated with the inhibition of mTORC2 signaling. PMID:28393852

  3. Loss of CARD9-mediated innate activation attenuates severe influenza pneumonia without compromising host viral immunity.

    Science.gov (United States)

    Uematsu, Takayuki; Iizasa, Ei'ichi; Kobayashi, Noritada; Yoshida, Hiroki; Hara, Hiromitsu

    2015-12-02

    Influenza virus (IFV) infection is a common cause of severe viral pneumonia associated with acute respiratory distress syndrome (ARDS), which is difficult to control with general immunosuppressive therapy including corticosteroids due to the unfavorable effect on viral replication. Studies have suggested that the excessive activation of the innate immunity by IFV is responsible for severe pathologies. In this study, we focused on CARD9, a signaling adaptor known to regulate innate immune activation through multiple innate sensor proteins, and investigated its role in anti-IFV defense and lung pathogenesis in a mouse model recapitulating severe influenza pneumonia with ARDS. We found that influenza pneumonia was dramatically attenuated in Card9-deficient mice, which showed improved mortality with reduced inflammatory cytokines and chemokines in the infected lungs. However, viral clearance, type-I interferon production, and the development of anti-viral B and T cell immunity were not compromised by CARD9 deficiency. Syk or CARD9-deficient DCs but not macrophages showed impaired cytokine but not type-I interferon production in response to IFV in vitro, indicating a possible role for the Syk-CARD9 pathway in DCs in excessive inflammation of IFV-infected lungs. Therefore, inhibition of this pathway is an ideal therapeutic target for severe influenza pneumonia without affecting viral clearance.

  4. Endogenous n-3 polyunsaturated fatty acids attenuate T cell-mediated hepatitis via autophagy activation

    Directory of Open Access Journals (Sweden)

    Yanli Li

    2016-09-01

    Full Text Available Omega-3 polyunsaturated fatty acids (n-3 PUFAs exert anti-inflammatory effects in several liver disorders, including cirrhosis, acute liver failure, and fatty liver disease. To date, little is known about their role in immune-mediated liver diseases. In this study, we used fat-1 transgenic mice rich in endogenous n-3 PUFAs to examine the role of n-3 PUFAs in immune-mediated liver injury. Concanavalin A (Con A was administered intravenously to wild-type (WT and fat-1 transgenic mice to induce T cell-mediated hepatitis. Reduced liver damage was shown in Con A-administrated fat-1 transgenic mice, as evidenced by decreased mortality, attenuated hepatic necrosis, lessened serum alanine aminotransferase (ALT activity, and inhibited production of pro-inflammatory cytokines (e.g. TNF-α, IL-6, IL-17A and IFN-γ. In vivo and in vitro studies demonstrated that n-3 PUFAs significantly inhibited the activation of hepatic T cells and the differentiation of Th1 cells after Con A challenge. Further studies showed that n-3 PUFAs markedly increased autophagy level in Con A-treated fat-1 T cells compared with the WT counterparts. Blocking hepatic autophagy activity with chloroquine diminished the differences in T cell activation and liver injury between Con A-injected WT and fat-1 transgenic mice. We conclude that n-3 PUFAs limit Con A-induced hepatitis via an autophagy-dependent mechanism, and could be exploited as a new therapeutic approach for autoimmune hepatitis.

  5. Serum thymic factor, FTS, attenuates cisplatin nephrotoxicity by suppressing cisplatin-induced ERK activation.

    Science.gov (United States)

    Kohda, Yuka; Kawai, Yoshiko; Iwamoto, Noriaki; Matsunaga, Yoshiko; Aiga, Hiromi; Awaya, Akira; Gemba, Munekazu

    2005-11-01

    Serum thymic factor (FTS), a thymic peptide hormone, has been reported to attenuate the bleomycin-induced pulmonary injury and also experimental pancreatitis and diabetes. In the present study, we investigated the effect of FTS on cis-diamminedichloroplatinum II (cisplatin)-induced nephrotoxicity. We have already demonstrated that cephaloridine, a nephrotoxic antibiotic, leads to extracellular signal-regulated protein kinase (ERK) activation in the rat kidney, which probably contributes to cephaloridine-induced renal dysfunction. The aim of this study was to examine the effect of cisplatin on ERK activation in the rat kidney and also the effect of FTS on cisplatin-induced nephrotoxicity in rats. In vitro treatment of LLC-PK1 cells with FTS significantly ameliorated cisplatin-induced cell injury. Treatment of rats with intravenous cisplatin for 3 days markedly induced renal dysfunction and increased platinum contents in the kidney cortex. An increase in pERK was detected in the nuclear fraction prepared from the rat kidney cortex from days 1 to 3 after injection of cisplatin. FTS suppressed cisplatin-induced renal dysfunction and ERK activation in the kidney. FTS did not influence any Pt contents in the kidney after cisplatin administration. FTS has been shown to enhance the in vivo expression of heat shock protein (HSP) 70 in the kidney cortex. The beneficial role of FTS against cisplatin nephrotoxicity may be mediated in part by HSP70, as suggested by its up-regulation in the kidney cortex treated with FTS alone. Our results suggest that FTS participates in protection from cisplatin-induced nephrotoxicity by suppressing ERK activation caused by cisplatin.

  6. Endogenous n-3 Polyunsaturated Fatty Acids Attenuate T Cell-Mediated Hepatitis via Autophagy Activation

    Science.gov (United States)

    Li, Yanli; Tang, Yuan; Wang, Shoujie; Zhou, Jing; Zhou, Jia; Lu, Xiao; Bai, Xiaochun; Wang, Xiang-Yang; Chen, Zhengliang; Zuo, Daming

    2016-01-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) exert anti-inflammatory effects in several liver disorders, including cirrhosis, acute liver failure, and fatty liver disease. To date, little is known about their role in immune-mediated liver diseases. In this study, we used fat-1 transgenic mice rich in endogenous n-3 PUFAs to examine the role of n-3 PUFAs in immune-mediated liver injury. Concanavalin A (Con A) was administered intravenously to wild-type (WT) and fat-1 transgenic mice to induce T cell-mediated hepatitis. Reduced liver damage was shown in Con A-administrated fat-1 transgenic mice, as evidenced by decreased mortality, attenuated hepatic necrosis, lessened serum alanine aminotransferase activity, and inhibited production of pro-inflammatory cytokines (e.g., TNF-α, IL-6, IL-17A, and IFN-γ). In vivo and in vitro studies demonstrated that n-3 PUFAs significantly inhibited the activation of hepatic T cells and the differentiation of Th1 cells after Con A challenge. Further studies showed that n-3 PUFAs markedly increased autophagy level in Con A-treated fat-1 T cells compared with the WT counterparts. Blocking hepatic autophagy activity with chloroquine diminished the differences in T cell activation and liver injury between Con A-injected WT and fat-1 transgenic mice. We conclude that n-3 PUFAs limit Con A-induced hepatitis via an autophagy-dependent mechanism and could be exploited as a new therapeutic approach for autoimmune hepatitis. PMID:27679638

  7. Attenuated food anticipatory activity and abnormal circadian locomotor rhythms in Rgs16 knockdown mice.

    Directory of Open Access Journals (Sweden)

    Naoto Hayasaka

    Full Text Available Regulators of G protein signaling (RGS are a multi-functional protein family, which functions in part as GTPase-activating proteins (GAPs of G protein α-subunits to terminate G protein signaling. Previous studies have demonstrated that the Rgs16 transcripts exhibit robust circadian rhythms both in the suprachiasmatic nucleus (SCN, the master circadian light-entrainable oscillator (LEO of the hypothalamus, and in the liver. To investigate the role of RGS16 in the circadian clock in vivo, we generated two independent transgenic mouse lines using lentiviral vectors expressing short hairpin RNA (shRNA targeting the Rgs16 mRNA. The knockdown mice demonstrated significantly shorter free-running period of locomotor activity rhythms and reduced total activity as compared to the wild-type siblings. In addition, when feeding was restricted during the daytime, food-entrainable oscillator (FEO-driven elevated food-anticipatory activity (FAA observed prior to the scheduled feeding time was significantly attenuated in the knockdown mice. Whereas the restricted feeding phase-advanced the rhythmic expression of the Per2 clock gene in liver and thalamus in the wild-type animals, the above phase shift was not observed in the knockdown mice. This is the first in vivo demonstration that a common regulator of G protein signaling is involved in the two separate, but interactive circadian timing systems, LEO and FEO. The present study also suggests that liver and/or thalamus regulate the food-entrained circadian behavior through G protein-mediated signal transduction pathway(s.

  8. Notch activation by phenethyl isothiocyanate attenuates its inhibitory effect on prostate cancer cell migration.

    Directory of Open Access Journals (Sweden)

    Su-Hyeong Kim

    Full Text Available Phenethyl isothiocyanate (PEITC is a promising cancer chemopreventive component of edible cruciferous vegetables with in vivo efficacy against prostate cancer in experimental rodents. Cancer chemopreventive response to PEITC is characterized by its ability to inhibit multiple oncogenic signaling pathways, including nuclear factor-κB, Akt, and androgen receptor. The present study demonstrates, for the first time, that PEITC treatment activates Notch signaling in malignant as well as normal human prostate cells. Exposure of human prostate cancer cells (LNCaP, PC-3, and DU145 and a normal human prostate epithelial cell line (PrEC to PEITC resulted in cleavage (active form of Notch1 and Notch2, and increased transcriptional activity of Notch. In PC-3 and LNCaP cells, PEITC treatment caused induction of Notch ligands Jagged1 and Jagged2 (PC-3, overexpression of γ-secretase complex components Presenilin1 and Nicastrin (PC-3, nuclear enrichment of cleaved Notch2, and/or up-regulation of Notch1, Notch2, Jagged1, and/or Jagged2 mRNA. PEITC-induced apoptosis in LNCaP and PC-3 cells was significantly attenuated by RNA interference of Notch2, but not by pharmacological inhibition of Notch1. Inhibition of PC-3 and LNCaP cell migration resulting from PEITC exposure was significantly augmented by knockdown of Notch2 protein as well as pharmacological inhibition of Notch1 activation. Nuclear expression of cleaved Notch2 protein was significantly higher in PC-3 xenografts from PEITC-treated mice and dorsolateral prostates from PEITC-fed TRAMP mice compared with respective control. Because Notch signaling is implicated in epithelial-mesenchymal transition and metastasis, the present study suggests that anti-metastatic effect of PEITC may be augmented by a combination regimen involving a Notch inhibitor.

  9. Autophagy down regulates pro-inflammatory mediators in BV2 microglial cells and rescues both LPS and alpha-synuclein induced neuronal cell death

    Science.gov (United States)

    Bussi, Claudio; Ramos, Javier Maria Peralta; Arroyo, Daniela S.; Gaviglio, Emilia A.; Gallea, Jose Ignacio; Wang, Ji Ming; Celej, Maria Soledad; Iribarren, Pablo

    2017-01-01

    Autophagy is a fundamental cellular homeostatic mechanism, whereby cells autodigest parts of their cytoplasm for removal or turnover. Neurodegenerative disorders are associated with autophagy dysregulation, and drugs modulating autophagy have been successful in several animal models. Microglial cells are phagocytes in the central nervous system (CNS) that become activated in pathological conditions and determine the fate of other neural cells. Here, we studied the effects of autophagy on the production of pro-inflammatory molecules in microglial cells and their effects on neuronal cells. We observed that both trehalose and rapamycin activate autophagy in BV2 microglial cells and down-regulate the production of pro-inflammatory cytokines and nitric oxide (NO), in response to LPS and alpha-synuclein. Autophagy also modulated the phosphorylation of p38 and ERK1/2 MAPKs in BV2 cells, which was required for NO production. These actions of autophagy modified the impact of microglial activation on neuronal cells, leading to suppression of neurotoxicity. Our results demonstrate a novel role for autophagy in the regulation of microglial cell activation and pro-inflammatory molecule secretion, which may be important for the control of inflammatory responses in the CNS and neurotoxicity. PMID:28256519

  10. Quercetin and sesamin protect dopaminergic cells from MPP+-induced neuroinflammation in a microglial (N9)-neuronal (PC12) coculture system.

    Science.gov (United States)

    Bournival, Julie; Plouffe, Marilyn; Renaud, Justine; Provencher, Cindy; Martinoli, Maria-Grazia

    2012-01-01

    A growing body of evidence indicates that the majority of Parkinson's disease (PD) cases are associated with microglia activation with resultant elevation of various inflammatory mediators and neuroinflammation. In this study, we investigated the effects of 2 natural molecules, quercetin and sesamin, on neuroinflammation induced by the Parkinsonian toxin 1-methyl-4-phenylpyridinium (MPP(+)) in a glial-neuronal system. We first established that quercetin and sesamin defend microglial cells against MPP(+)-induced increases in the mRNA or protein levels of 3 pro-inflammatory cytokines (interleukin-6, IL-1β and tumor necrosis factor-alpha), as revealed by real time-quantitative polymerase chain reaction and enzyme-linked immunoabsorbent assay, respectively. Quercetin and sesamin also decrease MPP(+)-induced oxidative stress in microglial cells by reducing inducible nitric oxide synthase protein expression as well as mitochondrial superoxide radicals. We then measured neuronal cell death and apoptosis after MPP(+) activation of microglia, in a microglial (N9)-neuronal (PC12) coculture system. Our results revealed that quercetin and sesamin rescued neuronal PC12 cells from apoptotic death induced by MPP(+) activation of microglial cells. Altogether, our data demonstrate that the phytoestrogen quercetin and the lignan sesamin diminish MPP(+)-evoked microglial activation and suggest that both these molecules may be regarded as potent, natural, anti-inflammatory compounds.

  11. Quercetin and Sesamin Protect Dopaminergic Cells from MPP+-Induced Neuroinflammation in a Microglial (N9-Neuronal (PC12 Coculture System

    Directory of Open Access Journals (Sweden)

    Julie Bournival

    2012-01-01

    Full Text Available A growing body of evidence indicates that the majority of Parkinson’s disease (PD cases are associated with microglia activation with resultant elevation of various inflammatory mediators and neuroinflammation. In this study, we investigated the effects of 2 natural molecules, quercetin and sesamin, on neuroinflammation induced by the Parkinsonian toxin 1-methyl-4-phenylpyridinium (MPP+ in a glial-neuronal system. We first established that quercetin and sesamin defend microglial cells against MPP+-induced increases in the mRNA or protein levels of 3 pro-inflammatory cytokines (interleukin-6, IL-1β and tumor necrosis factor-alpha, as revealed by real time-quantitative polymerase chain reaction and enzyme-linked immunoabsorbent assay, respectively. Quercetin and sesamin also decrease MPP+-induced oxidative stress in microglial cells by reducing inducible nitric oxide synthase protein expression as well as mitochondrial superoxide radicals. We then measured neuronal cell death and apoptosis after MPP+ activation of microglia, in a microglial (N9-neuronal (PC12 coculture system. Our results revealed that quercetin and sesamin rescued neuronal PC12 cells from apoptotic death induced by MPP+ activation of microglial cells. Altogether, our data demonstrate that the phytoestrogen quercetin and the lignan sesamin diminish MPP+-evoked microglial activation and suggest that both these molecules may be regarded as potent, natural, anti-inflammatory compounds.

  12. Recombinant human leptin attenuates stress axis activity in common carp (Cyprinus carpio L.).

    Science.gov (United States)

    Gorissen, Marnix; Bernier, Nicholas J; Manuel, Remy; de Gelder, Stefan; Metz, Juriaan R; Huising, Mark O; Flik, Gert

    2012-08-01

    Proper functioning of the endocrine stress axis requires communication between the stress axis and other regulatory mechanisms. We here describe an intimate interplay between the stress axis and recombinant human leptin (rhLeptin) in a teleostean fish, the common carp Cyprinus carpio. Restraint stress (by netting up to 96h) increased plasma cortisol but did not affect hepatic leptin expression. Perifusion of pituitary glands or head kidneys with rhLeptin revealed direct effects of rhLeptin on both tissues. RhLeptin suppresses basal and CRF-induced ACTH-secretion in a rapid and concentration-dependent manner. The rhLeptin effect persisted for over an hour after administration had been terminated. RhLeptin decreases basal interrenal cortisol secretion in vitro, and by doing so attenuates ACTH-stimulated cortisol production; rhLeptin does not affect interrenal ACTH-sensitivity. Our findings show that the endocrine stress axis activity and leptin are inseparably linked in a teleostean fish, a notion relevant to further our insights in the evolution of leptin physiology in vertebrates.

  13. Prostaglandin signaling suppresses beneficial microglial function in Alzheimer's disease models.

    Science.gov (United States)

    Johansson, Jenny U; Woodling, Nathaniel S; Wang, Qian; Panchal, Maharshi; Liang, Xibin; Trueba-Saiz, Angel; Brown, Holden D; Mhatre, Siddhita D; Loui, Taylor; Andreasson, Katrin I

    2015-01-01

    Microglia, the innate immune cells of the CNS, perform critical inflammatory and noninflammatory functions that maintain normal neural function. For example, microglia clear misfolded proteins, elaborate trophic factors, and regulate and terminate toxic inflammation. In Alzheimer's disease (AD), however, beneficial microglial functions become impaired, accelerating synaptic and neuronal loss. Better understanding of the molecular mechanisms that contribute to microglial dysfunction is an important objective for identifying potential strategies to delay progression to AD. The inflammatory cyclooxygenase/prostaglandin E2 (COX/PGE2) pathway has been implicated in preclinical AD development, both in human epidemiology studies and in transgenic rodent models of AD. Here, we evaluated murine models that recapitulate microglial responses to Aβ peptides and determined that microglia-specific deletion of the gene encoding the PGE2 receptor EP2 restores microglial chemotaxis and Aβ clearance, suppresses toxic inflammation, increases cytoprotective insulin-like growth factor 1 (IGF1) signaling, and prevents synaptic injury and memory deficits. Our findings indicate that EP2 signaling suppresses beneficial microglia functions that falter during AD development and suggest that inhibition of the COX/PGE2/EP2 immune pathway has potential as a strategy to restore healthy microglial function and prevent progression to AD.

  14. Early correlation of microglial activation with enhanced tumor necrosis factor-alpha and monocyte chemoattractant protein-1 expression specifically within the entorhinal cortex of triple transgenic Alzheimer's disease mice

    Directory of Open Access Journals (Sweden)

    LaFerla Frank M

    2005-10-01

    Full Text Available Abstract Background Alzheimer's disease is a complex neurodegenerative disorder characterized pathologically by a temporal and spatial progression of beta-amyloid (Aβ deposition, neurofibrillary tangle formation, and synaptic degeneration. Inflammatory processes have been implicated in initiating and/or propagating AD-associated pathology within the brain, as inflammatory cytokine expression and other markers of inflammation are pronounced in individuals with AD pathology. The current study examines whether inflammatory processes are evident early in the disease process in the 3xTg-AD mouse model and if regional differences in inflammatory profiles exist. Methods Coronal brain sections were used to identify Aβ in 2, 3, and 6-month 3xTg-AD and non-transgenic control mice. Quantitative real-time RT-PCR was performed on microdissected entorhinal cortex and hippocampus tissue of 2, 3, and 6-month 3xTg-AD and non-transgenic mice. Microglial/macrophage cell numbers were quantified using unbiased stereology in 3xTg-AD and non-transgenic entorhinal cortex and hippocampus containing sections. Results We observed human Aβ deposition at 3 months in 3xTg-AD mice which is enhanced by 6 months of age. Interestingly, we observed a 14.8-fold up-regulation of TNF-α and 10.8-fold up-regulation of MCP-1 in the entorhinal cortex of 3xTg-AD mice but no change was detected over time in the hippocampus or in either region of non-transgenic mice. Additionally, this increase correlated with a specific increase in F4/80-positive microglia and macrophages in 3xTg-AD entorhinal cortex. Conclusion Our data provide evidence for early induction of inflammatory processes in a model that develops amyloid and neurofibrillary tangle pathology. Additionally, our results link inflammatory processes within the entorhinal cortex, which represents one of the earliest AD-affected brain regions.

  15. Inhibition of Src tyrosine kinase activity by squamosamide derivative FLZ attenuates neuroinflammation in both in vivo and in vitro Parkinson's disease models.

    Science.gov (United States)

    Tai, Wenjiao; Ye, Xuan; Bao, Xiuqi; Zhao, Baozhong; Wang, Xiaoliang; Zhang, Dan

    2013-12-01

    The participation of neuroinflammation in the pathogenesis of Parkinson's disease (PD) has long been validated. Excessive activated microglia release a large number of pro-inflammatory factors, damage surrounding neurons and eventually induce neurodegeneration. Inhibition of microglial over-activation might be a promising strategy for PD treatment. FLZ (formulated as: N-(2-(4-hydroxy-phenyl)-ethyl)-2-(2, 5-dimethoxy-phenyl)-3-(3-methoxy-4-hydroxy-phenyl)-acrylamide, the code name: FLZ), a natural squamosamide derivative from a Chinese herb, has been shown to inhibit over-activated microglia and protect dopaminergic neurons in previous studies, but the mechanism remains unclear. In the present study, we further investigated the mechanism in lipopolysaccharide (LPS)-induced in vivo and in vitro PD models. FLZ treatment significantly improved the motor dysfunction of PD model rats induced by intra-nigral injection of LPS and this beneficial effect of FLZ attributed to the inhibition of microglial over-activation and the protection on dopaminergic neurons in the substantia nigra (SN). In vitro mechanistic study revealed that the inhibitive effect of FLZ on microglia was mediated by suppressing Src kinase related inflammatory signaling pathway activation and subsequent NF-κBp65 nuclear translocation, inhibiting nitric oxide (NO) and reactive oxygen species (ROS) production, decreasing nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation. In conclusion, the present study supports that FLZ exerts neuroprotection against LPS-induced dopaminergic neurodegeneration through its anti-inflammatory effect, which is mediated by suppressing Src tyrosine kinase and the downstream inflammatory signaling pathway. Furthermore, this study defines a critical role of Src tyrosine kinase in neuroinflammation, and suggests that particular tyrosine kinase inhibition may be a potential anti-inflammatory approach for PD treatment.

  16. Virus Infections on Prion Diseased Mice Exacerbate Inflammatory Microglial Response

    Science.gov (United States)

    Lins, Nara; Mourão, Luiz; Trévia, Nonata; Passos, Aline; Farias, José Augusto; Assunção, Jarila; Bento-Torres, João; Consentino Kronka Sosthenes, Marcia; Diniz, José Antonio Picanço; Vasconcelos, Pedro Fernando da Costa

    2016-01-01

    We investigated possible interaction between an arbovirus infection and the ME7 induced mice prion disease. C57BL/6, females, 6-week-old, were submitted to a bilateral intrahippocampal injection of ME7 prion strain (ME7) or normal brain homogenate (NBH). After injections, animals were organized into two groups: NBH (n = 26) and ME7 (n = 29). At 15th week after injections (wpi), animals were challenged intranasally with a suspension of Piry arbovirus 0.001% or with NBH. Behavioral changes in ME7 animals appeared in burrowing activity at 14 wpi. Hyperactivity on open field test, errors on rod bridge, and time reduction in inverted screen were detected at 15th, 19th, and 20th wpi respectively. Burrowing was more sensitive to earlier hippocampus dysfunction. However, Piry-infection did not significantly affect the already ongoing burrowing decline in the ME7-treated mice. After behavioral tests, brains were processed for IBA1, protease-resistant form of PrP, and Piry virus antigens. Although virus infection in isolation did not change the number of microglia in CA1, virus infection in prion diseased mice (at 17th wpi) induced changes in number and morphology of microglia in a laminar-dependent way. We suggest that virus infection exacerbates microglial inflammatory response to a greater degree in prion-infected mice, and this is not necessarily correlated with hippocampal-dependent behavioral deficits. PMID:28003864

  17. Does Replacing Sodium Excreted in Sweat Attenuate the Health Benefits of Physical Activity?

    Science.gov (United States)

    Turner, Martin J; Avolio, Alberto P

    2016-08-01

    International guidelines suggest limiting sodium intake to 86-100 mmol/day, but average intake exceeds 150 mmol/day. Participants in physical activities are, however, advised to increase sodium intake before, during and after exercise to ensure euhydration, replace sodium lost in sweat, speed rehydration and maintain performance. A similar range of health benefits is attributable to exercise and to reduction in sodium intake, including reductions in blood pressure (BP) and the increase of BP with age, reduced risk of stroke and other cardiovascular diseases, and reduced risk of osteoporosis and dementia. Sweat typically contains 40-60 mmol/L of sodium, leading to approximately 20-90 mmol of sodium lost in one exercise session with sweat rates of 0.5-1.5 L/h. Reductions in sodium intake of 20-90 mmol/day have been associated with substantial health benefits. Homeostatic systems reduce sweat sodium as low as 3-10 mmol/L to prevent excessive sodium loss. "Salty sweaters" may be individuals with high sodium intake who perpetuate their "salty sweat" condition by continual replacement of sodium excreted in sweat. Studies of prolonged high intensity exercise in hot environments suggest that sodium supplementation is not necessary to prevent hyponatremia during exercise lasting up to 6 hr. We examine the novel hypothesis that sodium excreted in sweat during physical activity offsets a significant fraction of excess dietary sodium, and hence may contribute part of the health benefits of exercise. Replacing sodium lost in sweat during exercise may improve physical performance, but may attenuate the long-term health benefits of exercise.

  18. Salvianolic acid B attenuates apoptosis and inflammation via SIRT1 activation in experimental stroke rats.

    Science.gov (United States)

    Lv, Hongdi; Wang, Ling; Shen, Jinchang; Hao, Shaojun; Ming, Aimin; Wang, Xidong; Su, Feng; Zhang, Zhengchen

    2015-06-01

    Silent information regulator 1 (SIRT1), a histone deacetylase, has been suggested to be effective in ischemic brain diseases. Salvianolic acid B (SalB) is a polyphenolic and one of the active components of Salvia miltiorrhiza Bunge. Previous studies suggested that SalB is protective against ischemic stroke. However, the role of SIRT1 in the protective effect of SalB against cerebral ischemia has not been explored. In this study, the rat brain was subjected to middle cerebral artery occlusion (MCAO). Before this surgery, rats were intraperitoneally administrated SalB with or without EX527, a specific SIRT1 inhibitor. The infarct volume, neurological score and brain water content were assessed. In addition, levels of TNF-α and IL-1β in the brain tissues were detected by commercial ELISA kits. And the expression levels of SIRT, Ac-FOXO1, Bcl-2 and Bax were detected by Western blot. The results suggested that SalB exerted a cerebral-protective effect, as shown by reduced infarct volume, lowered brain edema and increased neurological scores. SalB also exerted anti-inflammatory effects as indicated by the decreased TNF-α and IL-1β levels in the brain tissue. Moreover, SalB upregulated the expression of SIRT1 and Bcl-2 and downregulated the expression of Ac-FOXO1 and Bax. These effects of SalB were abolished by EX527 treatment. In summary, our results demonstrate that SalB treatment attenuates brain injury induced by ischemic stoke via reducing apoptosis and inflammation through the activation of SIRT1 signaling.

  19. Andrographolide inhibits NF-kappaBeta activation and attenuates neointimal hyperplasia in arterial restenosis.

    Science.gov (United States)

    Wang, Yu-Jiu; Wang, Jin-Tao; Fan, Quan-Xin; Geng, Jian-Guo

    2007-11-01

    The NF-kappaBeta transcription factors modulate the expression of tissue factor (TF), E-selectin (CD62E) and vascular cell adhesion molecule-1 (VCAM-1), which are essential for thrombosis and inflammation. We have previously shown that andrographolide (Andro) covalently modifies the reduced cysteine(62) of p50 - a major subunit of NF-kappaBeta transcription factors, thus blocking the binding of NF-kappaBeta transcription factors to the promoters of their target genes, preventing NF-kappaBeta activation and inhibiting inflammation in vitro and in vivo. Here we report that Andro, but not its inactive structural analog 4H-Andro, significantly suppressed the proliferation of arterial neointima ( approximately 60% reduction) in a murine model of arterial restenosis. Consistently, p50(-/-) mice manifested attenuated neointimal hyperplasia upon arterial ligation. Notably, the same dosage of Andro did not further reduce neointimal formation in p50(-/-) mice, which implicates the specificity of Andro on p50 for treating experimental arterial restenosis. The upregulation of NF-kappaBeta target genes, including TF, E-selectin and VCAM-1, and the increased deposition of leukocytes (mainly CD68+ macrophages) were clearly detected within the injured arterial walls, all of which were significantly abolished by treatment with Andro or genetic deletion of p50. The expression of TF, E-selectin and VCAM-1 was also markedly upregulated in the patient sample of thrombotic vasculitis, indicating the clinical relevance of NF-kappaBeta activation in the pathogeneses of occlusive arterial diseases. Our data thus indicate that, by the downregulation of the NF-kappaBeta target genes that are critical in thrombosis and inflammation, specific inhibitors of p50, such as Andro, may be therapeutically valuable for preventing and treating thrombotic arterial diseases, including neointimal hyperplasia in arterial restenosis.

  20. Stat1 activation attenuates IL-6 induced Stat3 activity but does not alter apoptosis sensitivity in multiple myeloma

    Directory of Open Access Journals (Sweden)

    Dimberg Lina Y

    2012-07-01

    Full Text Available Abstract Background Multiple myeloma (MM is at present an incurable malignancy, characterized by apoptosis-resistant tumor cells. Interferon (IFN treatment sensitizes MM cells to Fas-induced apoptosis and is associated with an increased activation of Signal transducer and activator of transcription (Stat1. The role of Stat1 in MM has not been elucidated, but Stat1 has in several studies been ascribed a pro-apoptotic role. Conversely, IL-6 induction of Stat3 is known to confer resistance to apoptosis in MM. Methods To delineate the role of Stat1 in IFN mediated sensitization to apoptosis, sub-lines of the U-266-1970 MM cell line with a stable expression of the active mutant Stat1C were utilized. The influence of Stat1C constitutive transcriptional activation on endogenous Stat3 expression and activation, and the expression of apoptosis-related genes were analyzed. To determine whether Stat1 alone would be an important determinant in sensitizing MM cells to apoptosis, the U-266-1970-Stat1C cell line and control cells were exposed to high throughput compound screening (HTS. Results To explore the role of Stat1 in IFN mediated apoptosis sensitization of MM, we established sublines of the MM cell line U-266-1970 constitutively expressing the active mutant Stat1C. We found that constitutive nuclear localization and transcriptional activity of Stat1 was associated with an attenuation of IL-6-induced Stat3 activation and up-regulation of mRNA for the pro-apoptotic Bcl-2 protein family genes Harakiri, the short form of Mcl-1 and Noxa. However, Stat1 activation alone was not sufficient to sensitize cells to Fas-induced apoptosis. In a screening of > 3000 compounds including bortezomib, dexamethasone, etoposide, suberoylanilide hydroxamic acid (SAHA, geldanamycin (17-AAG, doxorubicin and thalidomide, we found that the drug response and IC50 in cells constitutively expressing active Stat1 was mainly unaltered. Conclusion We conclude that Stat1 alters IL-6

  1. Interleukin-4, interleukin-10, and interleukin-1-receptor antagonist but not transforming growth factor-beta induce ramification and reduce adhesion molecule expression of rat microglial cells.

    Science.gov (United States)

    Wirjatijasa, Florentina; Dehghani, Faramarz; Blaheta, Roman A; Korf, Horst-Werner; Hailer, Nils P

    2002-06-01

    The activity of microglial cells is strictly controlled in order to maintain central nervous system (CNS) immune privilege. We hypothesized that several immunomodulatory factors present in the CNS parenchyma, i.e., the Th2-derived cytokines interleukin (IL)-4 and IL-10, interleukin-1-receptor-antagonist (IL-1-ra), or transforming growth factor (TGF)-beta can modulate microglial morphology and functions. Microglial cells were incubated with IL-4, IL-10, IL-1-ra, TGF-beta, or with astrocyte conditioned media (ACM) and were analyzed for morphological changes, expression of intercellular adhesion molecule (ICAM)-1, and secretion of IL-1beta or tumor necrosis factor (TNF)-alpha. Whereas untreated controls showed an amoeboid morphology both Th2-derived cytokines, IL-1-ra, and ACM induced a morphological transformation to the ramified phenotype. In contrast, TGF-beta-treated microglial cells showed an amoeboid morphology. Even combined with the neutralizing antibodies against IL-4, IL-10, or TGF-beta ACM induced microglial ramification. Furthermore, ACM did not contain relevant amounts of IL-4 and IL-10, as measured by enzyme-linked immunosorbent assay (ELISA). Flow cytometry showed that lipopolysaccharide (LPS)-induced ICAM-1-expression on microglial cells was strongly suppressed by ACM, significantly modulated by IL-4, IL-10, or IL-1-ra, but not influenced by TGF-beta. The LPS-induced secretion of IL-1beta and TNF-alpha was only reduced after application of ACM, whereas IL-4 or IL-10 did not inhibit IL-1beta- or TNF-alpha secretion. TGF-beta enhanced IL-1beta- but not TNF-alpha secretion. In summary, we demonstrate that IL-4, IL-10, and IL-1-ra induce microglial ramification and reduce ICAM-1-expression, whereas the secretion of proinflammatory cytokines is not prevented. TGF-beta has no modulating effects. Importantly, unidentified astrocytic factors that are not identical with IL-4, IL-10, or TGF-beta possess strong immunomodulatory properties.

  2. [Microglial cells and development of the embryonic central nervous system].

    Science.gov (United States)

    Legendre, Pascal; Le Corronc, Hervé

    2014-02-01

    Microglia cells are the macrophages of the central nervous system with a crucial function in the homeostasis of the adult brain. However, recent studies showed that microglial cells may also have important functions during early embryonic central nervous system development. In this review we summarize recent works on the extra embryonic origin of microglia, their progenitor niche, the pattern of their invasion of the embryonic central nervous system and on interactions between embryonic microglia and their local environment during invasion. We describe microglial functions during development of embryonic neuronal networks, including their roles in neurogenesis, in angiogenesis and developmental cell death. These recent discoveries open a new field of research on the functions of neural-microglial interactions during the development of the embryonic central nervous system.

  3. Estimation of absolute microglial cell numbers in mouse fascia dentata using unbiased and efficient stereological cell counting principles.

    Science.gov (United States)

    Wirenfeldt, Martin; Dalmau, Ishar; Finsen, Bente

    2003-11-01

    Stereology offers a set of unbiased principles to obtain precise estimates of total cell numbers in a defined region. In terms of microglia, which in the traumatized and diseased CNS is an extremely dynamic cell population, the strength of stereology is that the resultant estimate is unaffected by shrinkage or expansion of the tissue. The optical fractionator technique is very efficient but requires relatively thick sections (e.g., > or =20 microm after coverslipping) and the unequivocal identification of labeled cells throughout the section thickness. We have adapted our protocol for Mac-1 immunohistochemical visualization of microglial cells in thick (70 microm) vibratome sections for stereological counting within the murine hippocampus, and we have compared the staining results with other selective microglial markers: the histochemical demonstration of nucleotide diphosphatase (NDPase) activity and the tomato lectin histochemistry. The protocol gives sections of high quality with a final mean section thickness of >20 microm (h=22.3 microm +/- 0.64 microm), and with excellent rendition of Mac-1+ microglia through the entire height of the section. The NDPase staining gives an excellent visualization of microglia, although with this thickness, the intensity of the staining is too high to distinguish single cells. Lectin histochemistry does not visualize microglia throughout the section and, accordingly, is not suited for the optical fractionator. The mean total number of Mac-1+ microglial cells in the unilateral dentate gyrus of the normal young adult male C57BL/6 mouse was estimated to be 12,300 (coefficient of variation (CV)=0.13) with a mean coefficient of error (CE) of 0.06. The perspective of estimating microglial cell numbers using stereology is to establish a solid basis for studying the dynamics of the microglial cell population in the developing and in the injured, diseased and normal adult CNS.

  4. Troglitazone inhibits cell proliferation by attenuation of epidermal growth factor receptor signaling independent of peroxisome proliferator-activated receptor γ

    Institute of Scientific and Technical Information of China (English)

    Xiaoqi Li; Xuanming Yang; Youli Xu; Xuejun Jiang; Xin Li; Fajun Nan; Hong Tang

    2009-01-01

    Peroxisome proliferator-activated receptors (PPAR) belong to the nuclear hormone receptor superfamily of ligand-dependent transcription factors. Recent results have shown that agonists of PPARy, such as troglitazone (TGZ), can inhibit cell proliferation and promote cell differentiation independent of PPARγ. In the present study, we provide evidence that TGZ may bind directly to EGFR and trigger its signaling and internalization independent of PPARγ. Detailed studies revealed that prolonged incubation with TGZ effectively attenuated EGFR signaling by target-ing the receptor to the endo-lysosomal degradation machinery. Although the extracellular signal-regulated kinase-signaling pathway was transiently activated by TGZ in EGFR overexpressing cancer cells, inhibition of EGF-induced Akt phosphorylation most likely accounted for the growth arrest of tumor cells caused by TGZ at pharmacologically achievable concentrations. Therefore, we have provided a new line of evidence indicating that TGZ inhibits cell pro-liferation by promoting EGFR degradation and attenuating Akt phosphorylation.

  5. Activation and Genetic Modification of Human Monocyte-Derived Dendritic Cells using Attenuated Salmonella typhimurium

    Directory of Open Access Journals (Sweden)

    Agnieszka Michael

    2010-01-01

    Full Text Available Live attenuated bacterial vectors, such as Salmonella typhimurium, have shown promise as delivery vehicles for DNA. We have examined two new strains of S. typhimurium and their impact on dendritic cell maturation (CD12-sifA/aroC mutant and WT05-ssaV/aroC, both in TML background. Strain WT05 matured dendritic cells in a more efficient way; caused higher release of cytokines TNF-α, IL-12, IL-1β; and was efficient for gene transfer. These findings suggest that the genetic background of the attenuation can influence the pattern of inflammatory immune response to Salmonella infection.

  6. Integrating finite elements with optimal control to simulate active vibrations attenuation

    Science.gov (United States)

    Woods, S.; Szyszkowski, W.

    2016-12-01

    Continuous mechanical systems controlled by discrete actuators are inherently under-actuated and involve second-order non-holonomic constraints. A method of simulating optimal vibrations attenuation for such systems is proposed, in which the system is modeled by the finite elements (with possibly a large number of DOFs) and Pontryagin's Principle is applied to control several significant vibration modes by a small number of discrete actuators. For an assumed set of actuators the complete dynamic response of the system can be obtained, as well as the rate and effort parameters to evaluate efficiency of the whole attenuation process.

  7. Low LBNP tolerance in men is associated with attenuated activation of the renin-angiotensin system

    Science.gov (United States)

    Greenleaf, J. E.; Petersen, T. W.; Gabrielsen, A.; Pump, B.; Bie, P.; Christensen, N. J.; Warberg, J.; Videbaek, R.; Simonson, S. R.; Norsk, P.

    2000-01-01

    Plasma vasoactive hormone concentrations [epinephrine (p(Epi)), norepinephrine (p(NE)), ANG II (p(ANG II)), vasopressin (p(VP)), endothelin-1 (p(ET-1))] and plasma renin activity (p(RA)) were measured periodically and compared during lower body negative pressure (LBNP) to test the hypothesis that responsiveness of the renin-angiotensin system, the latter being one of the most powerful vasoconstrictors in the body, is of major importance for LBNP tolerance. Healthy men on a controlled diet (2,822 cal/day, 2 mmol. kg(-1). day(-1) Na(+)) were exposed to 30 min of LBNP from -15 to -50 mmHg. LBNP was uneventful for seven men [25 +/- 2 yr, high-tolerance (HiTol) group], but eight men (26 +/- 3 yr) reached presyncope after 11 +/- 1 min [P concentrations were similar between groups, however, p(RA) differed between them (LoTol 0.6 +/- 0.1, HiTol 1.2 +/- 0.1 ng ANG I. ml(-1). h(-1), P < 0.05). LBNP increased (P < 0. 05) p(RA) and p(ANG II), respectively, more in the HiTol group (9.9 +/- 2.2 ng ANG I. ml(-1). h(-1) and 58 +/- 12 pg/ml) than in LoTol subjects (4.3 +/- 0.9 ng ANG I. ml(-1). h(-1) and 28 +/- 6 pg/ml). In contrast, the increase in p(VP) was higher (P < 0.05) in the LoTol than in the HiTol group. The increases (P < 0.05) for p(NE) were nonsignificant between groups, and p(ET-1) remained unchanged. Thus there may be a causal relationship between attenuated activation of p(RA) and p(ANG II) and presyncope, with p(VP) being a possible cofactor. Measurement of resting p(RA) may be of predictive value for those with lower hypotensive tolerance.

  8. Minocycline Effects on IL-6 Concentration in Macrophage and Microglial Cells in a Rat Model of Neuropathic Pain

    Science.gov (United States)

    Moini-Zanjani, Taraneh; Ostad, Seyed-Nasser; Labibi, Farzaneh; Ameli, Haleh; Mosaffa, Nariman; Sabetkasaei, Masoumeh

    2016-01-01

    Background: Evidence indicates that neuropathic pain pathogenesis is not confined to changes in the activity of neuronal systems but involves interactions between neurons, inflammatory immune and immune-like glial cells. Substances released from immune cells during inflammation play an important role in development and maintenance of neuropathic pain. It has been found that minocycline suppresses the development of neuropathic pain. Here, we evaluated the analgesic effect of minocycline in a chronic constriction injury (CCI) model of neuropathic pain in rat and assessed IL-6 concentration from cultured macrophage and microglia cells. Methods: Male Wistar rat (n=6, 150-200 g) were divided into three different groups: 1) CCI+vehicle, 2) sham+vehicle, and 3) CCI+drug. Minocycline (10, 20, and 40 mg/kg) was injected one hour before surgery and continued daily to day 14 post ligation. Von Frey filaments and acetone, as pain behavioral tests, were used for mechanical allodynia and cold allodynia, respectively. Experiments were performed on day 0 (before surgery) and days 1, 3, 5, 7, 10, and 14 post -injury. At day 14, rats were killed and monocyte-derived macrophage from right ventricle and microglia from lumbar part of the spinal cord were isolated and cultured in RPMI and Leibovitz’s media, respectively. IL-6 concentration was evaluated in cell culture supernatant after 24 h. Results: Minocycline (10, 20, and 40 mg/kg) attenuated pain behavior, and a decrease in IL-6 concentration was observed in immune cells compared to CCI vehicle-treated animals. Conclusion: Minocycline reduced pain behavior and decreased IL-6 concentration in macrophage and microglial cells. PMID:27221523

  9. Adiponectin attenuates lung fibroblasts activation and pulmonary fibrosis induced by paraquat.

    Directory of Open Access Journals (Sweden)

    Rong Yao

    Full Text Available Pulmonary fibrosis is one of the most common complications of paraquat (PQ poisoning, which demands for more effective therapies. Accumulating evidence suggests adiponectin (APN may be a promising therapy against fibrotic diseases. In the current study, we determine whether the exogenous globular APN isoform protects against pulmonary fibrosis in PQ-treated mice and human lung fibroblasts, and dissect the responsible underlying mechanisms. BALB/C mice were divided into control group, PQ group, PQ + low-dose APN group, and PQ + high-dose APN group. Mice were sacrificed 3, 7, 14, and 21 days after PQ treatment. We compared pulmonary histopathological changes among different groups on the basis of fibrosis scores, TGF-β1, CTGF and α-SMA pulmonary content via Western blot and real-time quantitative fluorescence-PCR (RT-PCR. Blood levels of MMP-9 and TIMP-1 were determined by ELISA. Human lung fibroblasts WI-38 were divided into control group, PQ group, APN group, and APN receptor (AdipoR 1 small-interfering RNA (siRNA group. Fibroblasts were collected 24, 48, and 72 hours after PQ exposure for assay. Cell viability and apoptosis were determined via Kit-8 (CCK-8 and fluorescein Annexin V-FITC/PI double labeling. The protein and mRNA expression level of collagen type III, AdipoR1, and AdipoR2 were measured by Western blot and RT-PCR. APN treatment significantly decreased the lung fibrosis scores, protein and mRNA expression of pulmonary TGF-β1, CTGF and α-SMA content, and blood MMP-9 and TIMP-1 in a dose-dependent manner (p<0.05. Pretreatment with APN significantly attenuated the reduced cell viability and up-regulated collagen type III expression induced by PQ in lung fibroblasts, (p<0.05. APN pretreatment up-regulated AdipoR1, but not AdipoR2, expression in WI-38 fibroblasts. AdipoR1 siRNA abrogated APN-mediated protective effects in PQ-exposed fibroblasts. Taken together, our data suggests APN protects against PQ-induced pulmonary fibrosis in a

  10. System xC- is a mediator of microglial function and its deletion slows symptoms in amyotrophic lateral sclerosis mice.

    Science.gov (United States)

    Mesci, Pinar; Zaïdi, Sakina; Lobsiger, Christian S; Millecamps, Stéphanie; Escartin, Carole; Seilhean, Danielle; Sato, Hideyo; Mallat, Michel; Boillée, Séverine

    2015-01-01

    Amyotrophic lateral sclerosis is the most common adult-onset motor neuron disease and evidence from mice expressing amyotrophic lateral sclerosis-causing SOD1 mutations suggest that neurodegeneration is a non-cell autonomous process where microglial cells influence disease progression. However, microglial-derived neurotoxic factors still remain largely unidentified in amyotrophic lateral sclerosis. With excitotoxicity being a major mechanism proposed to cause motor neuron death in amyotrophic lateral sclerosis, our hypothesis was that excessive glutamate release by activated microglia through their system [Formula: see text] (a cystine/glutamate antiporter with the specific subunit xCT/Slc7a11) could contribute to neurodegeneration. Here we show that xCT expression is enriched in microglia compared to total mouse spinal cord and absent from motor neurons. Activated microglia induced xCT expression and during disease, xCT levels were increased in both spinal cord and isolated microglia from mutant SOD1 amyotrophic lateral sclerosis mice. Expression of xCT was also detectable in spinal cord post-mortem tissues of patients with amyotrophic lateral sclerosis and correlated with increased inflammation. Genetic deletion of xCT in mice demonstrated that activated microglia released glutamate mainly through system [Formula: see text]. Interestingly, xCT deletion also led to decreased production of specific microglial pro-inflammatory/neurotoxic factors including nitric oxide, TNFa and IL6, whereas expression of anti-inflammatory/neuroprotective markers such as Ym1/Chil3 were increased, indicating that xCT regulates microglial functions. In amyotrophic lateral sclerosis mice, xCT deletion surprisingly led to earlier symptom onset but, importantly, this was followed by a significantly slowed progressive disease phase, which resulted in more surviving motor neurons. These results are consistent with a deleterious contribution of microglial-derived glutamate during symptomatic

  11. Fractalkine regulation of microglial physiology and consequences on the brain and behaviour

    Directory of Open Access Journals (Sweden)

    Rosa Chiara Paolicelli

    2014-05-01

    Full Text Available Neural circuits are constantly monitored and supported by the surrounding microglial cells, using finely tuned mechanisms which include both direct contact and release of soluble factors. These bidirectional interactions are not only triggered by pathological conditions as a S.O.S. response to noxious stimuli, but they rather represent an established repertoire of dynamic communication for ensuring continuous immune surveillance and homeostasis in the healthy brain. In addition, recent studies are revealing key tasks for microglial interactions with neurons during normal physiological conditions, especially in regulating the maturation of neural circuits and shaping their connectivity in an activity- and experience-dependent manner.Chemokines, a family of soluble and membrane-bound cytokines, play an essential role in mediating neuron-microglia crosstalk in the developing and mature brain. As part of this special issue on Cytokines as players of neuronal plasticity and sensitivity to environment in healthy and pathological brain, our review focuses on the fractalkine signalling pathway, involving the ligand CX3CL1 which is mainly expressed by neurons, and its receptor CX3CR1 that is exclusively found on microglia within the brain. An extensive literature largely based on transgenic mouse models has revealed that fractalkine signalling plays a critical role in regulating a broad spectrum of microglial properties during normal physiological conditions, especially their migration and dynamic surveillance of the brain parenchyma, in addition to influencing the survival of developing neurons, the maturation, activity and plasticity of developing and mature synapses, the brain functional connectivity, adult hippocampal neurogenesis, as well as learning and memory, and the behavioural outcome.

  12. IFNgamma enhances microglial reactions to hippocampal axonal degeneration

    DEFF Research Database (Denmark)

    Jensen, M B; Hegelund, I V; Lomholt, N D;

    2000-01-01

    periods. Message for the immune cytokine interferon-gamma (IFNgamma) was undetectable, and glial reactivity to axonal lesions occurred as normal in IFNgamma-deficient mice. Microglial responses to lesion-induced neuronal injury were markedly enhanced in myelin basic protein promoter-driven transgenic mice...

  13. Quantification of microglial proliferation and apoptosis by flow cytometry

    DEFF Research Database (Denmark)

    Babcock, Alicia A; Wirenfeldt, Martin; Finsen, Bente

    2013-01-01

    Microglia are innate immune cells that survey the central nervous system (CNS) and respond almost immediately to any disturbance in CNS homeostasis. They are derived from primitive yolk sac myeloid progenitors and in the mouse colonize the CNS during fetal development. As a population, microglia ...... expression of CD45. These methods can be applied to analyze microglial turnover in various models of neuroinflammation....

  14. A remediation strategy based on active phytoremediation followed by natural attenuation in a soil contaminated by pyrite waste

    Energy Technology Data Exchange (ETDEWEB)

    Clemente, Rafael [Department of Soil and Water Conservation and Organic Waste Management, Centro de Edafologia y Biologia Aplicada del Segura, CSIC, Campus Universitario de Espinardo, Apartado 164, 30100 Espinardo, Murcia (Spain)]. E-mail: rclemente@cebas.csic.es; Almela, Concepcion [Instituto de Agroquimica y Tecnologia de Alimentos, CSIC, Apartado 73, 46100 Burjassot, Valencia (Spain); Bernal, M. Pilar [Department of Soil and Water Conservation and Organic Waste Management, Centro de Edafologia y Biologia Aplicada del Segura, CSIC, Campus Universitario de Espinardo, Apartado 164, 30100 Espinardo, Murcia (Spain)

    2006-10-15

    Phytoremediation of metal-polluted soils can be promoted by the proper use of soil amendments and agricultural practices. A 4-year phytoremediation programme was applied to a site affected by the toxic spill of pyrite residue at Aznalcollar (Spain) in 1998, contaminated with heavy metals (Zn, Cu, Pb, Cd) and arsenic. This consisted of active phytoremediation, using organic amendments (cow manure and compost) and lime and growing two successive crops of Brassica juncea (L.) Czern., followed by natural attenuation without further intervention. Changes in soil pH, extractable metal and As concentrations, organic carbon content and microbial biomass was evaluated. The initial oxidation of metal sulphides from pyrite residues released soluble metals and reduced soil pH to extremely acidic values (mean 4.1, range 2.0-7.0). The addition of lime (up to 64 t ha{sup -1}) increased soil pH to adequate values for plant growth, resulting in a significant decrease in DTPA-extractable metal concentrations in all plots. Natural attenuation phase showed also a decrease in extractable metals. Organic treatments increased the soil total organic carbon, which led to higher values of microbial biomass (11.6, 15.2 and 14.9 g kg{sup -1} TOC and 123, 170 and 275 {mu}g g{sup -1} biomass-C in control, compost and manure plots, respectively). Active phytoremediation followed by natural attenuation, was effective for remediation of this pyrite-polluted soil. - The addition of lime and organic amendments decreased heavy metal solubility and promoted Natural attenuation of a recently-contaminated soil.

  15. Regulatory Effects of Caffeic Acid Phenethyl Ester on Neuroinflammation in Microglial Cells

    Directory of Open Access Journals (Sweden)

    Cheng-Fang Tsai

    2015-03-01

    Full Text Available Microglial activation has been widely demonstrated to mediate inflammatory processes that are crucial in several neurodegenerative disorders. Pharmaceuticals that can deliver direct inhibitory effects on microglia are therefore considered as a potential strategy to counter balance neurodegenerative progression. Caffeic acid phenethyl ester (CAPE, a natural phenol in honeybee propolis, is known to possess antioxidant, anti-inflammatory and anti-microbial properties. Accordingly, the current study intended to probe the effects of CAPE on microglia activation by using in vitro and in vivo models. Western blot and Griess reaction assay revealed CAPE significantly inhibited the expressions of inducible nitric oxide synthase (NOS, cyclooxygenase (COX-2 and the production of nitric oxide (NO. Administration of CAPE resulted in increased expressions of hemeoxygenase (HO-1and erythropoietin (EPO in microglia. The phosphorylated adenosine monophosphate-activated protein kinase (AMPK-α was further found to regulate the anti-inflammatory effects of caffeic acid. In vivo results from immunohistochemistry along with rotarod test also revealed the anti-neuroinflammatory effects of CAPE in microglia activation. The current study has evidenced several possible molecular determinants, AMPKα, EPO, and HO-1, in mediating anti-neuroinflammatory responses in microglial cells.

  16. Attenuated inflammatory response in triggering receptor expressed on myeloid cells 2 (TREM2 knock-out mice following stroke.

    Directory of Open Access Journals (Sweden)

    Matthias W Sieber

    Full Text Available BACKGROUND: Triggering receptor expressed on myeloid cells-2 (TREM2 is a microglial surface receptor involved in phagocytosis. Clearance of apoptotic debris after stroke represents an important mechanism to re-attain tissue homeostasis and thereby ensure functional recovery. The role of TREM2 following stroke is currently unclear. METHODS AND RESULTS: As an experimental stroke model, the middle cerebral artery of mice was occluded for 30 minutes with a range of reperfusion times (duration of reperfusion: 6 h/12 h/24 h/2 d/7 d/28 d. Quantitative PCR (qPCR revealed a greatly increased transcription of TREM2 after stroke. We subsequently analyzed the expression of pro-inflammatory cytokines, chemokines and their receptors in TREM2-knockout (TREM2-KO mice via qPCR. Microglial activation (CD68, Iba1 and CD3-positive T-cell invasion were analyzed via qPCR and immunohistochemistry. Functional consequences of TREM2 knockout were assessed by infarct volumetry. The acute inflammatory response (12 h reperfusion was very similar between TREM2-KO mice and their littermate controls. However, in the sub-acute phase (7 d reperfusion following stroke, TREM2-KO mice showed a decreased transcription of pro-inflammatory cytokines TNFα, IL-1α and IL-1β, associated with a reduced microglial activity (CD68, Iba1. Furthermore, TREM2-KO mice showed a reduced transcription of chemokines CCL2 (MCP1, CCL3 (MIP1α and the chemokine receptor CX3CR1, followed by a diminished invasion of CD3-positive T-cells. No effect on the lesion size was observed. CONCLUSIONS: Although we initially expected an exaggerated pro-inflammatory response following ablation of TREM2, our data support a contradictory scenario that the sub-acute inflammatory reaction after stroke is attenuated in TREM2-KO mice. We therefore conclude that TREM2 appears to sustain a distinct inflammatory response after stroke.

  17. Attenuated Inflammatory Response in Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) Knock-Out Mice following Stroke

    Science.gov (United States)

    Brehm, Martin; Guenther, Madlen; Linnartz-Gerlach, Bettina; Neumann, Harald; Witte, Otto W.; Frahm, Christiane

    2013-01-01

    Background Triggering receptor expressed on myeloid cells-2 (TREM2) is a microglial surface receptor involved in phagocytosis. Clearance of apoptotic debris after stroke represents an important mechanism to re-attain tissue homeostasis and thereby ensure functional recovery. The role of TREM2 following stroke is currently unclear. Methods and Results As an experimental stroke model, the middle cerebral artery of mice was occluded for 30 minutes with a range of reperfusion times (duration of reperfusion: 6 h/12 h/24 h/2 d/7 d/28 d). Quantitative PCR (qPCR) revealed a greatly increased transcription of TREM2 after stroke. We subsequently analyzed the expression of pro-inflammatory cytokines, chemokines and their receptors in TREM2-knockout (TREM2-KO) mice via qPCR. Microglial activation (CD68, Iba1) and CD3-positive T-cell invasion were analyzed via qPCR and immunohistochemistry. Functional consequences of TREM2 knockout were assessed by infarct volumetry. The acute inflammatory response (12 h reperfusion) was very similar between TREM2-KO mice and their littermate controls. However, in the sub-acute phase (7 d reperfusion) following stroke, TREM2-KO mice showed a decreased transcription of pro-inflammatory cytokines TNFα, IL-1α and IL-1β, associated with a reduced microglial activity (CD68, Iba1). Furthermore, TREM2-KO mice showed a reduced transcription of chemokines CCL2 (MCP1), CCL3 (MIP1α) and the chemokine receptor CX3CR1, followed by a diminished invasion of CD3-positive T-cells. No effect on the lesion size was observed. Conclusions Although we initially expected an exaggerated pro-inflammatory response following ablation of TREM2, our data support a contradictory scenario that the sub-acute inflammatory reaction after stroke is attenuated in TREM2-KO mice. We therefore conclude that TREM2 appears to sustain a distinct inflammatory response after stroke. PMID:23301011

  18. Oxidation of HMGB1 causes attenuation of its pro-inflammatory activity and occurs during liver ischemia and reperfusion.

    Directory of Open Access Journals (Sweden)

    Anding Liu

    Full Text Available High mobility group box 1 (HMGB1 is a nuclear transcription factor. Once HMGB1 is released by damaged cells or activated immune cells, it acts as danger molecule and triggers the inflammatory signaling cascade. Currently, evidence is accumulating that posttranslational modifications such as oxidation may modulate the pro-inflammatory potential of danger signals. We hypothesized that oxidation of HMGB1 may reduce its pro-inflammatory potential and could take place during prolonged ischemia and upon reperfusion.Liver grafts were cold preserved for 24 h and flushed with saline in hourly intervals to collect the effluent. Liver grafts, cold-preserved for 6 h, were transplanted into syngeneic recipients to obtain serum and liver samples 24 h after initiation of reperfusion. Addition of the effluent to a macrophage culture induced the synthesis of tumor necrosis factor-alpha (TNF-α and interleukin (IL-6. The stimulatory activity of graft effluent was reduced after depletion of HMGB1 via immunoprecipitation. Oxidation of the effluent HMGB1 using H(2O(2 attenuated its stimulatory activity as well. Liver transplantation of cold preserved grafts caused HMGB1 translocation and release as determined by immunohistochemistry and ELISA-assay, respectively. Using Western blot with non-reducing conditions revealed the presence of oxidized HMGB1 in liver samples obtained after 12 h and in effluent samples after 16 h of cold preservation as well as in liver and serum samples obtained 24 h after reperfusion.These observations confirm that post-translational oxidation of HMGB1 attenuates its pro-inflammatory activity. Oxidation of HMGB1 as induced during prolonged ischemia and by reoxygenation during reperfusion in vivo might also attenuate its pro-inflammatory activity. Our findings also call for future studies to investigate the mechanism of the inhibitory effect of oxidized HMGB1 on the pro-inflammatory potential.

  19. Antioxidant and Anti-Inflammatory Activities of a Natural Compound, Shizukahenriol, through Nrf2 Activation

    Directory of Open Access Journals (Sweden)

    Jong-Hyun Park

    2015-09-01

    Full Text Available Imbalance in the antioxidant defense system leads to detrimental consequences, such as neurological disorders. The Nrf2 signaling is known as a main pathway involved in cellular defense system. Nrf2 is a transcription factor that regulates oxidative stress response by inducing expression of various antioxidant enzyme genes. In this study, we screened several pure natural compounds for Nrf2 activator. Among them, shizukahenriol (SZH, isolated from Chloranthus henryi, activated Nrf2, and induced expression of the Nrf2-dependent antioxidant enzymes HO-1, GCLC, and GCLM in BV-2 microglial cells. This natural compound was also effective in suppressing production of inflammatory molecules NO, TNF-α, and inhibition of NF-κB p65 translocation to the nucleus in a dose-dependent manner. We also examined whether SZH rescued the microglial cells from oxidative stress-induced cell death. Pretreatment with SZH dose-dependently attenuated H2O2-induced cytotoxicity in BV-2 microglial cells. These results suggested SZH as a potential neuroprotective agent for neurological disorders.

  20. Neuronal Hyperactivity Disturbs ATP Microgradients, Impairs Microglial Motility, and Reduces Phagocytic Receptor Expression Triggering Apoptosis/Microglial Phagocytosis Uncoupling.

    Directory of Open Access Journals (Sweden)

    Oihane Abiega

    2016-05-01

    Full Text Available Phagocytosis is essential to maintain tissue homeostasis in a large number of inflammatory and autoimmune diseases, but its role in the diseased brain is poorly explored. Recent findings suggest that in the adult hippocampal neurogenic niche, where the excess of newborn cells undergo apoptosis in physiological conditions, phagocytosis is efficiently executed by surveillant, ramified microglia. To test whether microglia are efficient phagocytes in the diseased brain as well, we confronted them with a series of apoptotic challenges and discovered a generalized response. When challenged with excitotoxicity in vitro (via the glutamate agonist NMDA or inflammation in vivo (via systemic administration of bacterial lipopolysaccharides or by omega 3 fatty acid deficient diets, microglia resorted to different strategies to boost their phagocytic efficiency and compensate for the increased number of apoptotic cells, thus maintaining phagocytosis and apoptosis tightly coupled. Unexpectedly, this coupling was chronically lost in a mouse model of mesial temporal lobe epilepsy (MTLE as well as in hippocampal tissue resected from individuals with MTLE, a major neurological disorder characterized by seizures, excitotoxicity, and inflammation. Importantly, the loss of phagocytosis/apoptosis coupling correlated with the expression of microglial proinflammatory, epileptogenic cytokines, suggesting its contribution to the pathophysiology of epilepsy. The phagocytic blockade resulted from reduced microglial surveillance and apoptotic cell recognition receptor expression and was not directly mediated by signaling through microglial glutamate receptors. Instead, it was related to the disruption of local ATP microgradients caused by the hyperactivity of the hippocampal network, at least in the acute phase of epilepsy. Finally, the uncoupling led to an accumulation of apoptotic newborn cells in the neurogenic niche that was due not to decreased survival but to delayed

  1. Zinc Oxide Nanoparticle Induces Microglial Death by NADPH-Oxidase-Independent Reactive Oxygen Species as well as Energy Depletion.

    Science.gov (United States)

    Sharma, Anuj Kumar; Singh, Vikas; Gera, Ruchi; Purohit, Mahaveer Prasad; Ghosh, Debabrata

    2016-10-06

    Zinc oxide nanoparticle (ZnO-NP) is one of the most widely used engineered nanoparticles. Upon exposure, nanoparticle can eventually reach the brain through various routes, interact with different brain cells, and alter their activity. Microglia is the fastest glial cell to respond to any toxic insult. Nanoparticle exposure can activate microglia and induce neuroinflammation. Simultaneous to activation, microglial death can exacerbate the scenario. Therefore, we focused on studying the effect of ZnO-NP on microglia and finding out the pathway involved in the microglial death. The present study showed that the 24 h inhibitory concentration 50 (IC50) of ZnO-NP for microglia is 6.6 μg/ml. Early events following ZnO-NP exposure involved increase in intracellular calcium level as well as reactive oxygen species (ROS). Neither of NADPH oxidase inhibitors, apocynin, (APO) and diphenyleneiodonium chloride (DPIC) were able to reduce the ROS level and rescue microglia from ZnO-NP toxicity. In contrary, N-acetyl cysteine (NAC) showed opposite effect. Exogenous supplementation of superoxide dismutase (SOD) reduced ROS significantly even beyond control level but partially rescued microglial viability. Interestingly, pyruvate supplementation rescued microglia near to control level. Following 10 h of ZnO-NP exposure, intracellular ATP level was measured to be almost 50 % to the control. ZnO-NP-induced ROS as well as ATP depletion both disturbed mitochondrial membrane potential and subsequently triggered the apoptotic pathway. The level of apoptosis-inducing proteins was measured by western blot analysis and found to be upregulated. Taken together, we have deciphered that ZnO-NP induced microglial apoptosis by NADPH oxidase-independent ROS as well as ATP depletion.

  2. Acupuncture Attenuates Renal Sympathetic Activity and Blood Pressure via Beta-Adrenergic Receptors in Spontaneously Hypertensive Rats

    Science.gov (United States)

    Ye, Yang; Wang, Xue-Rui; Li, Fang; Xiao, Ling-Yong; Shi, Guang-Xia

    2017-01-01

    The sympathetic nervous system, via epinephrine and norepinephrine, regulates β-adrenergic receptor (β-AR) expression, and renal sympathetic activation causes sustained increases in blood pressure by enhanced renin release. In this study, we aim to investigate the effect and underlying mechanism of acupuncture at Taichong (LR3) on renal sympathetic activity in spontaneously hypertensive rats. Unanesthetized rats were subject to daily acupuncture for 2 weeks. Mean blood pressure (MBP) and heart rate variability (HRV) were monitored at days 0, 7, and 14 by radiotelemetry. After euthanasia on the 14th day, blood and the kidneys were collected and subject to the following analyses. Epinephrine and norepinephrine were detected by ELISA. The expression of β-ARs was studied by western blotting and PCR. The renin content was analyzed by radioimmunoassay. 14-day acupuncture significantly attenuates the increase of MBP. The HRV indices, the standard deviation of all normal NN intervals (SDNN), and the ratio of the low-frequency component to the high-frequency component (LF/HF) were improved following acupuncture. Renal sympathetic activation induced upregulation of epinephrine, norepinephrine, and renin content were attenuated by acupuncture. In addition, acupuncture decreased β1-AR expression and improved β2-AR expression. These results indicated that acupuncture relieves the increased MBP via the regulation of renal sympathetic activity and β-ARs. PMID:28270938

  3. Induction of xanthine oxidase activity, endoplasmic reticulum stress and caspase activation by sodium metabisulfite in rat liver and their attenuation by Ghrelin.

    Science.gov (United States)

    Ercan, Sevim; Kencebay, Ceren; Basaranlar, Goksun; Derin, Narin; Aslan, Mutay

    2015-02-01

    Sodium metabisulfite is used as a preservative in many food preparations but can oxidize to sulfite radicals initiating molecular oxidation. Ghrelin is a peptide hormone primarily produced in the stomach and has anti-inflammatory and anti-oxidant effects on gastrointestinal and cardiovascular systems. This study was performed to elucidate the effect of ghrelin on sulfite-induced endoplasmic reticulum (ER) stress and caspase activation in rat peripheral organs. Xanthine oxidase (XO), xanthine dehydrogenase (XDH) enzyme activities, ER stress markers [phosphorylated PKR-like ER kinase (pPERK); C/EBP-homologous protein (CHOP)], caspase-3, -8, -9 activities, nuclear factor kappa-B (NF-κB) levels were determined in liver, heart and kidney of rats treated with sodium metabisulfite and/or ghrelin for 5 weeks. Sodium metabisulfite treatment significantly elevated XO activity, induced expression of GRP78, CHOP and increased caspase-3, -8 and -9 activities in liver but had no significant effect in heart and kidney. Ghrelin treatment decreased XO activity to baseline levels and attenuated ER stress and caspase activation in liver tissue of sodium metabisulfite treated rats. In conclusion, metabolism of sodium metabisulfite in liver tissue increased XO activity, induced ER stress and caused caspase activation which was attenuated by ghrelin treatment. Ghrelin's hepatoprotective effect could be through modulation of XO activity.

  4. Attenuation of Immune-Mediated Renal Injury by Telmisartan, an Angiotensin Receptor Blocker and a Selective PPAR-γ Activator

    Directory of Open Access Journals (Sweden)

    Yuki Hamano

    2011-09-01

    Full Text Available Background/Aims: Anti-glomerular basement membrane (GBM nephritis is characterized by activation of the renin-angiotensin system. This study aimed to determine the question of whether a temporary angiotensin II blockade at the initial stage of anti-GBM nephritis is able to attenuate the disease as well as differences in renoprotection among angiotensin II receptor blockers (ARBs with distinct peroxisome proliferator-activated receptor (PPAR-γ-modulating activities. Methods: C57BL/6J mice were immunized with rabbit IgG, followed by intravenous injection of rabbit anti-mouse antibodies. Mice were then treated with telmisartan, losartan, and telmisartan + GW9662 (a PPAR-γ antagonist for 5 days, or hydralazine for 9 days. On days 8 and 13, mice were sacrificed to obtain tissues for histological analysis. Results: The temporary administration of telmisartan significantly suppressed glomerular damage compared to hydralazine. Losartan showed a similar effect but was less effective. Co-administration of GW9662 attenuated the renoprotective effect of telmisartan, almost to levels observed with losartan. In particular, it limited the decreased infiltration of inflammatory cells and preservation of capillaries in the glomeruli induced by telmisartan. Conclusion: Temporary angiotensin II blockade at the initial stage of anti-GBM disease dramatically inhibited its progression. In addition to a class effect of ARBs, telmisartan modified inflammation and endothelial damage in the kidney through its PPAR-γ-agonistic action.

  5. Omeprazole Attenuates Pulmonary Aryl Hydrocarbon Receptor Activation and Potentiates Hyperoxia-Induced Developmental Lung Injury in Newborn Mice

    Science.gov (United States)

    Shivanna, Binoy; Zhang, Shaojie; Patel, Ananddeep; Jiang, Weiwu; Wang, Lihua; Welty, Stephen E.; Moorthy, Bhagavatula

    2015-01-01

    Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in human preterm infants and a similar lung phenotype characterized by alveolar simplification in newborn mice. Omeprazole (OM) is a proton pump inhibitor that is used to treat humans with gastric acid related disorders. OM-mediated aryl hydrocarbon receptor (AhR) activation attenuates acute hyperoxic lung injury (HLI) in adult mice. Whether OM activates pulmonary AhR and protects C57BL/6J newborn mice against hyperoxia-induced developmental lung (alveolar and pulmonary vascular simplification, inflammation, and oxidative stress) injury (HDLI) is unknown. Therefore, we tested the hypothesis that OM will activate pulmonary AhR and mitigate HDLI in newborn mice. Newborn mice were treated daily with i.p. injections of OM at doses of 10 (OM10) or 25 (OM25) mg/kg while being exposed to air or hyperoxia (FiO2 of 85%) for 14 days, following which their lungs were harvested to determine alveolarization, pulmonary vascularization, inflammation, oxidative stress, vascular injury, and AhR activation. To our surprise, hyperoxia-induced alveolar and pulmonary vascular simplification, inflammation, oxidative stress, and vascular injury were augmented in OM25-treated animals. These findings were associated with attenuated pulmonary vascular endothelial growth factor receptor 2 expression and decreased pulmonary AhR activation in the OM25 group. We conclude that contrary to our hypothesis, OM decreases functional activation of pulmonary AhR and potentiates HDLI in newborn mice. These observations are consistent with our previous findings, which suggest that AhR activation plays a protective role in HDLI in newborn mice. PMID:26272953

  6. Sirtuin 7 promotes cellular survival following genomic stress by attenuation of DNA damage, SAPK activation and p53 response

    Energy Technology Data Exchange (ETDEWEB)

    Kiran, Shashi; Oddi, Vineesha [Laboratory of Cancer Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500001 (India); Ramakrishna, Gayatri, E-mail: gayatrirama1@gmail.com [Laboratory of Cancer Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500001 (India); Laboratory of Cancer Cell Biology, Department of Research, Institute of Liver and Biliary Sciences, Delhi 110070 (India)

    2015-02-01

    Maintaining the genomic integrity is a constant challenge in proliferating cells. Amongst various proteins involved in this process, Sirtuins play a key role in DNA damage repair mechanisms in yeast as well as mammals. In the present work we report the role of one of the least explored Sirtuin viz., SIRT7, under conditions of genomic stress when treated with doxorubicin. Knockdown of SIRT7 sensitized osteosarcoma (U2OS) cells to DNA damage induced cell death by doxorubicin. SIRT7 overexpression in NIH3T3 delayed cell cycle progression by causing delay in G1 to S transition. SIRT7 overexpressing cells when treated with low dose of doxorubicin (0.25 µM) showed delayed onset of senescence, lesser accumulation of DNA damage marker γH2AX and lowered levels of growth arrest markers viz., p53 and p21 when compared to doxorubicin treated control GFP expressing cells. Resistance to DNA damage following SIRT7 overexpression was also evident by EdU incorporation studies where cellular growth arrest was significantly delayed. When treated with higher dose of doxorubicin (>1 µM), SIRT7 conferred resistance to apoptosis by attenuating stress activated kinases (SAPK viz., p38 and JNK) and p53 response thereby shifting the cellular fate towards senescence. Interestingly, relocalization of SIRT7 from nucleolus to nucleoplasm together with its co-localization with SAPK was an important feature associated with DNA damage. SIRT7 mediated resistance to doxorubicin induced apoptosis and senescence was lost when p53 level was restored by nutlin treatment. Overall, we propose SIRT7 attenuates DNA damage, SAPK activation and p53 response thereby promoting cellular survival under conditions of genomic stress. - Highlights: • Knockdown of SIRT7 sensitized cells to DNA damage induced apoptosis. • SIRT7 delayed onset of premature senescence by attenuating DNA damage response. • Overexpression of SIRT7 delayed cell cycle progression by delaying G1/S transition. • Upon DNA damage SIRT

  7. Inhibition of p300 histone acetyltransferase activity in palate mesenchyme cells attenuates Wnt signaling via aberrant E-cadherin expression.

    Science.gov (United States)

    Warner, Dennis R; Smith, Scott C; Smolenkova, Irina A; Pisano, M Michele; Greene, Robert M

    2016-03-01

    p300 is a multifunctional transcriptional coactivator that interacts with numerous transcription factors and exhibits protein/histone acetyltransferase activity. Loss of p300 function in humans and in mice leads to craniofacial defects. In this study, we demonstrated that inhibition of p300 histone acetyltransferase activity with the compound, C646, altered the expression of several genes, including Cdh1 (E-cadherin) in mouse maxillary mesenchyme cells, which are the cells that give rise to the secondary palate. The increased expression of plasma membrane-bound E-cadherin was associated with reduced cytosolic β-catenin, that led to attenuated signaling through the canonical Wnt pathway. Furthermore, C646 reduced both cell proliferation and the migratory ability of these cells. These results suggest that p300 histone acetyltransferase activity is critical for Wnt-dependent palate mesenchymal cell proliferation and migration, both processes that play a significant role in morphogenesis of the palate.

  8. Effects of low dose GM-CSF on microglial inflammatory profiles to diverse pathogen-associated molecular patterns (PAMPs

    Directory of Open Access Journals (Sweden)

    Kielian Tammy

    2007-03-01

    -α (TNF-α, macrophage inflammatory protein-2 (MIP-2/CXCL2, and major histocompatibility complex (MHC class II, CD80, CD86 expression by microglia in response to S. aureus were similar regardless of whether cells had been exposed to GM-CSF during the mixed culture period. In addition, microglial phagocytosis of intact bacteria was unaffected by GM-CSF. In contrast, upon S. aureus stimulation, CD40 expression was induced more prominently in microglia expanded in GM-CSF. Analysis of microglial responses to additional pathogen-associate molecular patterns (PAMPs revealed that low dose GM-CSF did not significantly alter TNF-α or MIP-2 production in response to the TLR3 and TLR4 agonists polyI:C or LPS, respectively; however, cells expanded in the presence of GM-CSF produced lower levels of both mediators following CpG-ODN stimulation. Conclusion We demonstrate that low levels of GM-CSF are sufficient to expand microglial numbers without significantly affecting their immunological responses following activation of TLR2, TLR4 or TLR3 signaling. Therefore, low dose GM-CSF can be considered as a reliable method to achieve higher microglial yields without introducing dramatic activation artifacts.

  9. Leptin attenuates BACE1 expression and amyloid-β genesis via the activation of SIRT1 signaling pathway.

    Science.gov (United States)

    Marwarha, Gurdeep; Raza, Shaneabbas; Meiers, Craig; Ghribi, Othman

    2014-09-01

    The aspartyl protease β-site AβPP-cleaving enzyme 1 (BACE1) catalyzes the rate-limiting step in Aβ production, a peptide at the nexus of neurodegenerative cascades in Alzheimer Disease (AD). The adipocytokine leptin has been demonstrated to reduce Aβ production and decrease BACE1 activity and expression levels. However, the signaling cascades involved in the leptin-induced mitigation in Aβ levels and BACE1 expression levels have not been elucidated. We have demonstrated that the transcription factor nuclear factor - kappa B (NF-κB) positively regulates BACE1 transcription. NF-κB activity is tightly regulated by the mammalian sirtuin SIRT1. Multiple studies have cogently evinced that leptin activates the metabolic master regulator SIRT1. In this study, we determined the extent to which SIRT1 expression and activity regulate the leptin-induced attenuation in BACE1 expression and Aβ levels in cultured human neuroblastoma SH-SY5Y cells. This study also elucidated and delineated the signal transduction pathways involved in the leptin induced mitigation in BACE1 expression. Our results demonstrate for the first time that leptin attenuates the activation and transcriptional activity of NF-κB by reducing the acetylation of the p65 subunit in a SIRT1-dependent manner. Furthermore, our data shows that leptin reduces the NF-κB-mediated transcription of BACE1 and consequently reduces Amyloid-β genesis. Our study provides a valuable insight and a novel mechanism by which leptin reduces BACE1 expression and Amyloid-β production and may help design potential therapeutic interventions.

  10. Defining microglial phenotypic diversity and the impact of ageing

    OpenAIRE

    2015-01-01

    Microglia are the resident macrophages of the central nervous system (CNS) and, as key immune effector cells, form the first line of defence. Microglial cells also provide support for maintaining neuronal homeostasis and more generally normal brain physiology and cognitive function. It has been speculated that in order to support homeostasis, microglia adapt to a variety of brain microenvironments leading to regional phenotypic heterogeneity. To date this hypothesis lacks convi...

  11. Neuropeptide Y protects cerebral cortical neurons by regulating microglial immune function

    Institute of Scientific and Technical Information of China (English)

    Qijun Li; Changzheng Dong; Wenling Li; Wei Bu; Jiang Wu; Wenqing Zhao

    2014-01-01

    Neuropeptide Y has been shown to inhibit the immunological activity of reactive microglia in the rat cerebral cortex, to reduce N-methyl-D-aspartate current (INMDA) in cortical neurons, and protect neurons. In this study, after primary cultured microglia from the cerebral cortex of rats were treated with lipopolysaccharide, interleukin-1β and tumor necrosis factor-α levels in the cell culture medium increased, and mRNA expression of these cytokines also increased. After primary cultured cortical neurons were incubated with the lipopolysaccharide-treated microg-lial conditioned medium, peak INMDA in neurons increased. These effects of lipopolysaccharide were suppressed by neuropeptide Y. After addition of the neuropeptide Y Y1 receptor antago-nist BIBP3226, the effects of neuropeptide Y completely disappeared. These results suggest that neuropeptide Y prevents excessive production of interleukin-1β and tumor necrosis factor-α by inhibiting microglial reactivity. This reduces INMDA in rat cortical neurons, preventing excitotoxic-ity, thereby protecting neurons.

  12. Clk1 deficiency promotes neuroinflammation and subsequent dopaminergic cell death through regulation of microglial metabolic reprogramming.

    Science.gov (United States)

    Gu, Ruinan; Zhang, Fali; Chen, Gang; Han, Chaojun; Liu, Jay; Ren, Zhaoxiang; Zhu, Yi; Waddington, John L; Zheng, Long Tai; Zhen, Xuechu

    2017-02-01

    Clock (Clk)1/COQ7 is a mitochondrial hydroxylase that is necessary for the biosynthesis of ubiquinone (coenzyme Q or UQ). Here, we investigate the role of Clk1 in neuroinflammation and consequentially dopaminergic (DA) neuron survival. Reduced expression of Clk1 in microglia enhanced the LPS-induced proinflammatory response and promoted aerobic glycolysis. Inhibition of glycolysis abolished Clk1 deficiency-induced hypersensitivity to the inflammatory stimulation. Mechanistic studies demonstrated that mTOR/HIF-1α and ROS/HIF-1α signaling pathways were involved in Clk1 deficiency-induced aerobic glycolysis. The increase in neuronal cell death was observed following treatment with conditioned media from Clk1 deficient microglia. Increased DA neuron loss and microgliosis were observed in Clk1(+/-) mice after treatment with MPTP, a rodent model of Parkinson's disease (PD). This increase in DA neuron loss was due to an exacerbated microglial inflammatory response, rather than direct susceptibility of Clk1(+/-) DA cells to MPP(+), the active species of MPTP. Exaggerated expressions of proinflammatory genes and loss of DA neurons were also observed in Clk1(+/-) mice after stereotaxic injection of LPS. Our results suggest that Clk1 regulates microglial metabolic reprogramming that is, in turn, involved in the neuroinflammatory processes and PD.

  13. The ectonucleotidase cd39/ENTPDase1 modulates purinergic-mediated microglial migration.

    Science.gov (United States)

    Färber, Katrin; Markworth, Sören; Pannasch, Ulrike; Nolte, Christiane; Prinz, Vincent; Kronenberg, Golo; Gertz, Karen; Endres, Matthias; Bechmann, Ingo; Enjyoji, Keiichi; Robson, Simon C; Kettenmann, Helmut

    2008-02-01

    Microglia is activated by brain injury. They migrate in response to ATP and although adenosine alone has no effect on wild type microglial migration, we show that inhibition of adenosine receptors impedes ATP triggered migration. CD39 is the dominant cellular ectonucleotidase that degrades nucleotides to nucleosides, including adenosine. Importantly, ATP fails to stimulate P2 receptor mediated migration in cd39(-/-) microglia. However, the effects of ATP on migration in cd39(-/-) microglia can be restored by co-stimulation with adenosine or by addition of a soluble ectonucleotidase. We also tested the impact of cd39-deletion in a model of ischemia, in an entorhinal cortex lesion and in the facial nucleus after facial nerve lesion. The accumulation of microglia at the pathological sites was markedly decreased in cd39(-/-) animals. We conclude that the co-stimulation of purinergic and adenosine receptors is a requirement for microglial migration and that the expression of cd39 controls the ATP/adenosine balance.

  14. Bioturbation delays attenuation of DDT by clean sediment cap but promotes sequestration by thin-layered activated carbon.

    Science.gov (United States)

    Lin, Diana; Cho, Yeo-Myoung; Werner, David; Luthy, Richard G

    2014-01-21

    The effects of bioturbation on the performance of attenuation by sediment deposition and activated carbon to reduce risks from DDT-contaminated sediment were assessed for DDT sediment-water flux, biouptake, and passive sampler (PE) uptake in microcosm experiments with a freshwater worm, Lumbriculus variegatus. A thin-layer of clean sediment (0.5 cm) did not reduce the DDT flux when bioturbation was present, while a thin (0.3 cm) AC cap was still capable of reducing the DDT flux by 94%. Bioturbation promoted AC sequestration by reducing the 28-day DDT biouptake (66%) and DDT uptake into PE (>99%) compared to controls. Bioturbation further promoted AC-sediment contact by mixing AC particles into underlying sediment layers, reducing PE uptake (55%) in sediment compared to the AC cap without bioturbation. To account for the observed effects from bioturbation, a mass transfer model together with a biodynamic model were developed to simulate DDT flux and biouptake, respectively, and models confirmed experimental results. Both experimental measurements and modeling predictions imply that thin-layer activated carbon placement on sediment is effective in reducing the risks from contaminated sediments in the presence of bioturbation, while natural attenuation process by clean sediment deposition may be delayed by bioturbation.

  15. HIF-1α Activation Attenuates IL-6 and TNF-α Pathways in Hippocampus of Rats Following Transient Global Ischemia

    Directory of Open Access Journals (Sweden)

    Jihong Xing

    2016-07-01

    Full Text Available Background/Aims: This study was to examine the role played by hypoxia inducible factor-1 (HIF-1α in regulating pro-inflammatory cytokines (PICs pathway in the rat hippocampus after cardiac arrest (CA induced-transient global ischemia followed by cardiopulmonary resuscitation (CPR. Those PICs include interleukin-1β (IL-1β, interleukin-6 (IL-6 and tumor necrosis factor-α (TNF-α. Methods: A rat model of CA induced by asphyxia was used in the current study. Following CPR, the hippocampus CA1 region was obtained for ELISA to determine the levels of HIF-1α and PICs; and Western Blot analysis to determine the protein levels of PIC receptors. Results: Our data show that IL-1β, IL-6 and TNF-α were significant elevated in the hippocampus after CPR as compared with control group. This was companied with increasing of HIF-1α and the time courses for HIF-1α and PICs were similar. In addition, PIC receptors, namely IL-1R, IL-6R and TNFR1 were upregulated in CA rats. Also, stimulation of HIF-1α by systemic administration of ML228, HIF-1α activator, significantly attenuated the amplified IL-6/IL-6R and TNF-α /TNFR1 pathway in the hippocampus of CA rats, but did not modify IL-1β and its receptor. Moreover, ML228 attenuated upregulated expression of Caspase-3 indicating cell apoptosis evoked by CA. Conclusion: Transient global ischemia induced by CA increases the levels of IL-1β, IL-6 and TNF-α and thereby leads to enhancement in their respective receptor in the rat hippocampus. Stabilization of HIF-1α plays a role in attenuating amplified expression IL-6R, TNFR1 and Caspase-3 in the processing of transient global ischemia. Results of our study suggest that PICs contribute to cerebral injuries evoked by transient global ischemia and in this pathophysiological process activation of HIF-1α improves tissues against ischemic injuries. Our data revealed specific signaling pathways in alleviating CA-evoked global cerebral ischemia by elucidating that

  16. High-content analysis of factors affecting gold nanoparticle uptake by neuronal and microglial cells in culture.

    Science.gov (United States)

    Stojiljković, A; Kuehni-Boghenbor, K; Gaschen, V; Schüpbach, G; Mevissen, M; Kinnear, C; Möller, A-M; Stoffel, M H

    2016-09-22

    Owing to their ubiquitous distribution, expected beneficial effects and suspected adverse effects, nanoparticles are viewed as a double-edged sword, necessitating a better understanding of their interactions with tissues and organisms. Thus, the goals of the present study were to develop and present a method to generate quantitative data on nanoparticle entry into cells in culture and to exemplarily demonstrate the usefulness of this approach by analyzing the impact of size, charge and various proteinaceous coatings on particle internalization. N9 microglial cells and both undifferentiated and differentiated SH-SY5Y neuroblastoma cells were exposed to customized gold nanoparticles. After silver enhancement, the particles were visualized by epipolarization microscopy and analysed by high-content analysis. The value of this approach was substantiated by assessing the impact of various parameters on nanoparticle uptake. Uptake was higher in microglial cells than in neuronal cells. Only microglial cells showed a distinct size preference, preferring particles with a diameter of 80 nm. Positive surface charge had the greatest impact on particle uptake. Coating with bovine serum albumin, fetuin or protein G significantly increased particle internalization in microglial cells but not in neuronal cells. Coating with wheat germ agglutinin increased particle uptake in both N9 and differentiated SH-SY5Y cells but not in undifferentiated SH-SY5Y cells. Furthermore, internalization was shown to be an active process and indicators of caspase-dependent apoptosis revealed that gold nanoparticles did not have any cytotoxic effects. The present study thus demonstrates the suitability of gold nanoparticles and high-content analysis for assessing numerous variables in a stringently quantitative and statistically significant manner. Furthermore, the results presented herein showcase the feasibility of specifically targeting nanoparticles to distinct cell types.

  17. Selective Activation of At2 Receptor Attenuates Progression of Pulmonary Hypertension and Inhibits Cardiopulmonary Fibrosis

    DEFF Research Database (Denmark)

    Bruce, E; Shenoy, V; Rathinasabapathy, A;

    2015-01-01

    -ventricular hemodynamic parameters were measured and tissues collected for gene expression and histological analyses. KEY RESULTS: Initiation of C21 treatment significantly attenuated much of the pathophysiology associated with MCT-induced PH. Most notably, C21 reversed pulmonary fibrosis and prevented right ventricular...... fibrosis. These beneficial effects were associated with improvement in right heart function, decreased pulmonary vessel wall thickness, reduced pro-inflammatory cytokines, and favorable modulation of the lung RAS. Conversely, co-administration of the AT2 receptor antagonist, PD-123319, or the Mas......BACKGROUND AND PURPOSE: Pulmonary hypertension (PH) is a devastating disease characterized by increased pulmonary arterial pressure, which progressively leads to right heart failure and death. A dysregulated renin angiotensin system (RAS) has been implicated in the development and progression of PH...

  18. Direct optical activation of skeletal muscle fibres efficiently controls muscle contraction and attenuates denervation atrophy.

    Science.gov (United States)

    Magown, Philippe; Shettar, Basavaraj; Zhang, Ying; Rafuse, Victor F

    2015-10-13

    Neural prostheses can restore meaningful function to paralysed muscles by electrically stimulating innervating motor axons, but fail when muscles are completely denervated, as seen in amyotrophic lateral sclerosis, or after a peripheral nerve or spinal cord injury. Here we show that channelrhodopsin-2 is expressed within the sarcolemma and T-tubules of skeletal muscle fibres in transgenic mice. This expression pattern allows for optical control of muscle contraction with comparable forces to nerve stimulation. Force can be controlled by varying light pulse intensity, duration or frequency. Light-stimulated muscle fibres depolarize proportionally to light intensity and duration. Denervated triceps surae muscles transcutaneously stimulated optically on a daily basis for 10 days show a significant attenuation in atrophy resulting in significantly greater contractile forces compared with chronically denervated muscles. Together, this study shows that channelrhodopsin-2/H134R can be used to restore function to permanently denervated muscles and reduce pathophysiological changes associated with denervation pathologies.

  19. Aquaporin-4 deficiency attenuates acute lesions but aggravates delayed lesions and microgliosis after cryoinjury to mouse brain

    Institute of Scientific and Technical Information of China (English)

    Wen-Zhen Shi; Chun-Zhen Zhao; Bing Zhao; Xiao-Liang Zheng; San-Hua Fang; Yun-Bi Lu; Wei-Ping Zhang; Zhong Chen; Er-Qing Wei

    2012-01-01

    Objective To determine whether aquaporin-4 (AQP4) regulates acute lesions,delayed lesions,and the associated microglial activation after cryoinjury to the brain.Methods Brain cryoinjury was applied to AQP4 knockout (KO)and wild-type mice.At 24 h and on days 7 and 14 after cryoinjury,lesion volume,neuronal loss,and densities of microglia and astrocytes were determined,and their changes were compared between AQP4 KO and wild-type mice.Results Lesion volume and neuronal loss in AQP4 KO mice were milder at 24 h following cryoinjury,but worsened on days 7 and 14,compared to those in wild-type mice.Besides,microglial density increased more,and astrocyte proliferation and glial scar formation were attenuated on days 7 and 14 in AQP4 KO mice.Conclusion AQP4 deficiency ameliorates acute lesions,but worsens delayed lesions,perhaps due to the microgliosis in the late phase.

  20. BZ-26, a novel GW9662 derivate, attenuated inflammation by inhibiting the differentiation and activation of inflammatory macrophages.

    Science.gov (United States)

    Bei, Yuncheng; Chen, Jiajia; Zhou, Feifei; Huang, Yahong; Jiang, Nan; Tan, Renxiang; Shen, Pingping

    2016-12-01

    Peroxisome proliferator-activated receptor-gamma (PPARγ) is considered to be an important transcriptional factor in regulation of macrophages differentiation and activation. We have synthesized a series of novel structural molecules based on GW9662's structure (named BZ-24, BZ-25 and BZ-26), and interaction activity was calculated by computational docking. BZ-26 had shown stronger interaction with PPARγ and had higher transcriptional inhibitory activity of PPARγ with lower dosage compared with GW9662. BZ-26 was proved to inhibit inflammatory macrophage differentiation. LPS-induced acute inflammation mouse model was applied to demonstrate its anti-inflammatory activity. And the results showed that BZ-26 administration attenuated plasma tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) secretion, which are vital cytokines in acute inflammation. The anti-inflammatory activity was examined in THP-1 cell line, and TNF-α, IL-6 and MCP-1, were significantly inhibited. The results of Western blot and luciferase reporter assay indicated that BZ-26 not only inhibited NF-κB transcriptional activity, but also abolished LPS-induce nuclear translocation of P65. We also test BZ-26 action in tumor-bearing chronic inflammation mouse model, and BZ-26 was able to alter macrophages phenotype, resulting in antitumor effect. All our data revealed that BZ-26 modulated LPS-induced acute inflammation via inhibiting inflammatory macrophages differentiation and activation, potentially via inhibition of NF-κB signal pathway.

  1. Restoration of Akt activity by the bisperoxovanadium compound bpV(pic) attenuates hippocampal apoptosis in experimental neonatal pneumococcal meningitis.

    Science.gov (United States)

    Sury, Matthias D; Vorlet-Fawer, Lorianne; Agarinis, Claudia; Yousefi, Shida; Grandgirard, Denis; Leib, Stephen L; Christen, Stephan

    2011-01-01

    Pneumococcal meningitis causes apoptosis of developing neurons in the dentate gyrus of the hippocampus. The death of these cells is accompanied with long-term learning and memory deficits in meningitis survivors. Here, we studied the role of the PI3K/Akt (protein kinase B) survival pathway in hippocampal apoptosis in a well-characterized infant rat model of pneumococcal meningitis. Meningitis was accompanied by a significant decrease of the PI3K product phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) and of phosphorylated (i.e., activated) Akt in the hippocampus. At the cellular level, phosphorylated Akt was decreased in both the granular layer and the subgranular zone of the dentate gyrus, the region where the developing neurons undergo apoptosis. Protein levels and activity of PTEN, the major antagonist of PI3K, were unaltered by infection, suggesting that the observed decrease in PIP(3) and Akt phosphorylation is a result of decreased PI3K signaling. Treatment with the PTEN inhibitor bpV(pic) restored Akt activity and significantly attenuated hippocampal apoptosis. Co-treatment with the specific PI3K inhibitor LY294002 reversed the restoration of Akt activity and attenuation of hippocampal apoptosis, while it had no significant effect on these parameters on its own. These results indicate that the inhibitory effect of bpV(pic) on apoptosis was mediated by PI3K-dependent activation of Akt, strongly suggesting that bpV(pic) acted on PTEN. Treatment with bpV(pic) also partially inhibited the concentration of bacteria and cytokines in the CSF, but this effect was not reversed by LY294002, indicating that the effect of bpV(pic) on apoptosis was independent of its effect on CSF bacterial burden and cytokine levels. These results indicate that the PI3K/Akt pathway plays an important role in the death and survival of developing hippocampal neurons during the acute phase of pneumococcal meningitis.

  2. Effects of triptolide on hippocampal microglial cells and astrocytes in the APP/PS1 double transgenic mouse model of Alzheimer’s disease

    Institute of Scientific and Technical Information of China (English)

    Jian-ming Li; Yan Zhang; Liang Tang; Yong-heng Chen; Qian Gao; Mei-hua Bao; Ju Xiang; De-liang Lei

    2016-01-01

    The principal pathology of Alzheimer’s disease includes neuronal extracellular deposition of amyloid-beta peptides and formation of senile pl aques, which in turn induce neuroinlfammation in the brain. Triptolide, a natural extract from the vine-like herb Tripterygium wilfordiiHook F, has potent anti-inlfammatory and immunosuppressive efifcacy. Therefore, we determined if triptolide can inhibit activation and proliferation of microglial cells and astrocytes in the APP/PS1 double transgenic mouse model of Alzheimer’s disease. We used 1 or 5 μg/kg/d triptolide to treat APP/PS1 double transgenic mice (aged 4–4.5 months) for 45 days. Unbiased stereology analysis found that triptolide dose-dependent-ly reduced the total number of microglial cells, and transformed microglial cells into the resting state. Further, triptolide (5 μg/kg/d) also reduced the total number of hippocampal astrocytes. Our in vivo test results indicate that triptolide suppresses activation and proliferation of microglial cells and astrocytes in the hippocampus of APP/PS1 double transgenic mice with Alzheimer’s disease.

  3. Proteomic analysis of the effects of aged garlic extract and its FruArg component on lipopolysaccharide-induced neuroinflammatory response in microglial cells.

    Directory of Open Access Journals (Sweden)

    Hui Zhou

    Full Text Available Aged garlic extract (AGE is widely used as a dietary supplement, and is claimed to promote human health through anti-oxidant/anti-inflammatory activities with hypolipidemic, antiplatelet and neuroprotective effects. Prior studies of AGE have mainly focused on its organosulfur compounds, with little attention paid to its carbohydrate derivatives, such as N-α-(1-deoxy-D-fructos-1-yl-L-arginine (FruArg. The goal of this study is to investigate actions of AGE and FruArg on antioxidative and neuroinflammatory responses in lipopolysaccharide (LPS-activated murine BV-2 microglial cells using a proteomic approach. Our data show that both AGE and FruArg can significantly inhibit LPS-induced nitric oxide (NO production in BV-2 cells. Quantitative proteomic analysis by combining two dimensional differential in-gel electrophoresis (2D-DIGE with mass spectrometry revealed that expressions of 26 proteins were significantly altered upon LPS exposure, while levels of 20 and 21 proteins exhibited significant changes in response to AGE and FruArg treatments, respectively, in LPS-stimulated BV-2 cells. Notably, approximate 78% of the proteins responding to AGE and FruArg treatments are in common, suggesting that FruArg is a major active component of AGE. MULTICOM-PDCN and Ingenuity Pathway Analyses indicate that the proteins differentially affected by treatment with AGE and FruArg are involved in inflammatory responses and the Nrf2-mediated oxidative stress response. Collectively, these results suggest that AGE and FruArg attenuate neuroinflammatory responses and promote resilience in LPS-activated BV-2 cells by suppressing NO production and by regulating expression of multiple protein targets associated with oxidative stress.

  4. Suppressing active replication of a live attenuated simian immunodeficiency virus vaccine does not abrogate protection from challenge

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, Benjamin; Fiebig, Uwe; Hohn, Oliver [Robert Koch-Institut, Berlin (Germany); Plesker, Roland; Coulibaly, Cheick; Cichutek, Klaus; Mühlebach, Michael D. [Paul-Ehrlich-Institut, Langen (Germany); Bannert, Norbert; Kurth, Reinhard [Robert Koch-Institut, Berlin (Germany); Norley, Stephen, E-mail: NorleyS@rki.de [Robert Koch-Institut, Berlin (Germany)

    2016-02-15

    Although safety concerns preclude the use of live attenuated HIV vaccines in humans, they provide a useful system for identifying the elusive correlates of protective immunity in the SIV/macaque animal model. However, a number of pieces of evidence suggest that protection may result from prior occupancy of susceptible target cells by the vaccine virus rather than the immune response. To address this, we developed a Nef-deletion variant of an RT-SHIV whose active replication could be shut off by treatment with RT-inhibitors. Groups of macaques were inoculated with the ∆Nef-RT-SHIV and immune responses allowed to develop before antiretroviral treatment and subsequent challenge with wild-type SIVmac239. Vaccinated animals either resisted infection fully or significantly controlled the subsequent viremia. However, there was no difference between animals undergoing replication of the vaccine virus and those without. This strongly suggests that competition for available target cells does not play a role in protection. - Highlights: • A Nef-deleted RT-SHIV was used as a live attenuated vaccine in macaques. • Vaccine virus replication was shut down to investigate its role in protection. • Ongoing vaccine virus replication did not appear to be necessary for protection. • An analysis of T- and B-cell responses failed to identify a correlate of protection.

  5. Immobilized nickel hexacyanoferrate on activated carbons for efficient attenuation of radio toxic Cs(I) from aqueous solutions

    Science.gov (United States)

    Lalhmunsiama; Lalhriatpuia, C.; Tiwari, Diwakar; Lee, Seung-Mok

    2014-12-01

    The aim of this study is to immobilize nickel hexacyanoferrate onto the large surface of activated carbons (ACs) precursor to rice hulls and areca nut waste materials. These nickel hexacyanoferrate immobilized materials are then assessed in the effective attenuation of radio logically important cesium ions from aqueous solutions. The solid samples are characterized by the XRD analytical method and surface morphology is obtained from the SEM images. The batch reactor experiments show that an increase in sorptive pH (2.0-10.0) apparently not affecting the high percent uptake of Cs(I). Equilibrium modeling studies suggest that the data are reasonably and relatively fitted well to the Langmuir adsorption isotherm. Kinetic studies show that sorption process is fairly rapid and the kinetic data are fitted well to the pseudo-second order rate model. Increasing the background electrolyte concentration from 0.001 to 0.1 mol/L NaCl causes insignificant decrease in Cs(I) removal which infers the higher selectivity of these materials for Cs(I) from aqueous solutions. Further, the column reactor operations enable to obtain the breakthrough data which are then fitted to the Thomas non-linear equation as to obtain the loading capacity of column for Cs(I). The results show that the modified materials show potential applicability in the attenuation of radio toxic cesium from aqueous solution.

  6. Propofol pretreatment attenuates lipopolysaccharide-induced acute lung injury in rats by activating the phosphoinositide-3-kinase/Akt pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.L. [Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province (China); Hu, G.C. [Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL (United States); Zhu, S.S. [Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province (China); Li, J.F. [Department of Anesthesiology, Tengzhou Central People' s Hospital, Liaocheng, Shandong Province (China); Liu, G.J. [Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province (China)

    2014-10-14

    The aim of this study was to investigate the effect of propofol pretreatment on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and the role of the phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) pathway in this procedure. Survival was determined 48 h after LPS injection. At 1 h after LPS challenge, the lung wet- to dry-weight ratio was examined, and concentrations of protein, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in bronchoalveolar lavage fluid (BALF) were determined using the bicinchoninic acid method or ELISA. Lung injury was assayed via lung histological examination. PI3K and p-Akt expression levels in the lung tissue were determined by Western blotting. Propofol pretreatment prolonged survival, decreased the concentrations of protein, TNF-α, and IL-6 in BALF, attenuated ALI, and increased PI3K and p-Akt expression in the lung tissue of LPS-challenged rats, whereas treatment with wortmannin, a PI3K/Akt pathway specific inhibitor, blunted this effect. Our study indicates that propofol pretreatment attenuated LPS-induced ALI, partly by activation of the PI3K/Akt pathway.

  7. Estrogen Attenuates Local Inflammasome Expression and Activation after Spinal Cord Injury.

    Science.gov (United States)

    Zendedel, Adib; Mönnink, Fabian; Hassanzadeh, Gholamreza; Zaminy, Arash; Ansar, Malek Masoud; Habib, Pardes; Slowik, Alexander; Kipp, Markus; Beyer, Cordian

    2017-01-27

    17-estradiol (E2) is a neuroprotective hormone with a high anti-inflammatory potential in different neurological disorders. The inflammatory response initiated by spinal cord injury (SCI) involves the processing of interleukin-1beta (IL-1b) and IL-18 mediated by caspase-1 which is under the control of an intracellular multiprotein complex called inflammasome. We recently described in a SCI model that between 24 and 72 h post-injury, most of inflammasome components including IL-18, IL-1b, NLRP3, ASC, and caspase-1 are upregulated. In this study, we investigated the influence of E2 treatment after spinal cord contusion on inflammasome regulation. After contusion of T9 spinal segment, 12-week-old male Wistar rats were treated subcutaneously with E2 immediately after injury and every 12 h for the next 3 days. Behavioral scores were significantly improved in E2-treated animals compared to vehicle-treated groups. Functional improvement in E2-treated animals was paralleled by the attenuated expression of certain inflammasome components such as ASC, NLRP1b, and NLRP3 together with IL1b, IL-18, and caspase-1. On the histopathological level, microgliosis and oligodendrocyte injury was ameliorated. These findings support and extend the knowledge of the E2-mediated neuroprotective function during SCI. The control of the inflammasome machinery by E2 might be a missing piece of the puzzle to understand the anti-inflammatory potency of E2.

  8. Pharmacological activation of cannabinoid 2 receptor attenuates inflammation, fibrogenesis, and promotes re-epithelialization during skin wound healing.

    Science.gov (United States)

    Wang, Lin-Lin; Zhao, Rui; Li, Jiao-Yong; Li, Shan-Shan; Liu, Min; Wang, Meng; Zhang, Meng-Zhou; Dong, Wen-Wen; Jiang, Shu-Kun; Zhang, Miao; Tian, Zhi-Ling; Liu, Chang-Sheng; Guan, Da-Wei

    2016-09-05

    Previous studies showed that cannabinoid 2 (CB2) receptor is expressed in multiple effector cells during skin wound healing. Meanwhile, its functional involvement in inflammation, fibrosis, and cell proliferation in other organs and skin diseases implied CB2 receptor might also regulate skin wound healing. To verify this hypothesis, mice excisional wounds were created and treated with highly selective CB2 receptor agonist GP1a (1-(2,4-dichlorophenyl)-6-methyl- N-piperidin-1-yl-4H-indeno[1,2-c]pyrazole-3-carboxamide) and antagonist AM630 ([6-iodo-2- methyl-1-(2-morpholin-4-ylethyl)indol-3-yl]-(4-methoxyphenyl)methanone) respectively. The inflammatory infiltration, cytokine expression, fibrogenesis, and wound re-epithelialization were analyzed. After CB2 receptor activation, neutrophil and macrophage infiltrations were reduced, and expressions of monocyte chemotactic protein (MCP)-1, stromal cell-derived factor (SDF)-1, Interleukin (IL)-6, IL-1β, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β1 and vascular endothelial growth factor (VEGF)-A were decreased. Keratinocyte proliferation and migration were enhanced. Wound re-epithelialization was accelerated. Fibroblast accumulation and fibroblast-to-myofibroblast transformation were attenuated, and expression of pro-collagen I was decreased. Furthermore, HaCaT cells in vitro were treated with GP1a or AM630, which revealed that CB2 receptor activation promoted keratinocyte migration by inducing the epithelial to mesenchymal transition. These results, taken together, indicate that activating CB2 receptor could ameliorate wound healing by reducing inflammation, accelerating re-epithelialization, and attenuating scar formation. Thus, CB2 receptor agonist might be a novel perspective for skin wound therapy.

  9. Modulation of Microglial Cell Fcγ Receptor Expression Following Viral Brain Infection

    Science.gov (United States)

    Chauhan, Priyanka; Hu, Shuxian; Sheng, Wen S.; Prasad, Sujata; Lokensgard, James R.

    2017-01-01

    Fcγ receptors (FcγRs) for IgG couple innate and adaptive immunity through activation of effector cells by antigen-antibody complexes. We investigated relative levels of activating and inhibitory FcγRs on brain-resident microglia following murine cytomegalovirus (MCMV) infection. Flow cytometric analysis of microglial cells obtained from infected brain tissue demonstrated that activating FcγRs were expressed maximally at 5 d post-infection (dpi), while the inhibitory receptor (FcγRIIB) remained highly elevated during both acute and chronic phases of infection. The highly induced expression of activating FcγRIV during the acute phase of infection was also noteworthy. Furthermore, in vitro analysis using cultured primary microglia demonstrated the role of interferon (IFN)γ and interleukin (IL)-4 in polarizing these cells towards a M1 or M2 phenotype, respectively. Microglial cell-polarization correlated with maximal expression of either FcγRIV or FcγRIIB following stimulation with IFNγ or IL-4, respectively. Finally, we observed a significant delay in polarization of microglia towards an M2 phenotype in the absence of FcγRs in MCMV-infected Fcer1g and FcgR2b knockout mice. These studies demonstrate that neuro-inflammation following viral infection increases expression of activating FcγRs on M1-polarized microglia. In contrast, expression of the inhibitory FcγRIIB receptor promotes M2-polarization in order to shut-down deleterious immune responses and limit bystander brain damage. PMID:28165503

  10. Possible impact of microglial cells and the monocyte-macrophage system on suicidal behavior.

    Science.gov (United States)

    Steiner, Johann; Gos, Tomasz; Bogerts, Bernhard; Bielau, Hendrik; Drexhage, Hemmo A; Bernstein, Hans-Gert

    2013-11-01

    Immune dysfunction, including monocytosis, increased blood levels of interleukin-1 (IL-1), interleukin-6 (IL- 6) and tumor necrosis factor-alpha (TNF-alpha), as well as an increased microglial density in certain brain areas, have been described in schizophrenia and depression. Interestingly, similar immune alterations have been observed in suicide patients regardless of their underlying psychiatric diagnosis. This review summarizes relevant data from previous studies that have examined peripheral blood, cerebrospinal fluid and human brains (using postmortem histology and in vivo positron emission tomography) to investigate immune mechanisms in suicidal patients. We discuss whether the observed findings indicate that microgliosis and monocyte-macrophage system activation may be a useful marker of disease acuity/severity or whether they instead indicate a distinct neurobiology of suicide. Notably, pathophysiological mechanisms could change during the long-term course of psychiatric diseases. Therefore, different patterns of immune activation may be observed when comparing newly diseased patients with those who are chronically ill.

  11. Demethyleneberberine attenuates non-alcoholic fatty liver disease with activation of AMPK and inhibition of oxidative stress.

    Science.gov (United States)

    Qiang, Xiaoyan; Xu, Lulu; Zhang, Miao; Zhang, Pengcheng; Wang, Yinhang; Wang, Yongchen; Zhao, Zheng; Chen, Huan; Liu, Xie; Zhang, Yubin

    2016-04-15

    Non-alcoholic fatty liver disease (NAFLD) has reached an epidemic level globally, which is recognized to form non-alcoholic steatohepatitis (NASH) by the "two-hit" model, including oxidative stress and inflammation. AMP-activated protein kinase (AMPK) has long been regarded as a key regulator of energy metabolism, which is recognized as a critical target for NAFLD treatment. Here we introduce a natural product, demethyleneberberine (DMB), which potentially ameliorated NAFLD by activating AMPK pathways. Our study showed that the intraperitoneal injection of DMB (20 or 40 mg/kg body weight) decreased hepatic lipid accumulation in methionine and choline deficient (MCD) high-fat diet feeding mice and db/db mice. The further investigation demonstrated that DMB activated AMPK by increasing its phosphorylation in vitro and in vivo. Accompanied with AMPK activation, the expression of lipogenic genes were significantly reduced while genes responsible for the fatty acid β-oxidation were restored in DMB-treated NAFLD mice. In addition, the remarkable oxidative damage and inflammation induced by NAFLD were both attenuated by DMB treatment, which is reflected by decreased lipid oxidative product, malonaldehyde (MDA) and inflammatory factors, tumor necrosis factor α (TNFα) and interleukin 1β (IL-1β). Based on all above, DMB could serve as a novel AMPK activator for treating NAFLD and preventing the pathologic progression from NAFLD to NASH by inhibiting the oxidative stress and inflammation.

  12. Minocycline injection in the ventral posterolateral thalamus reverses microglial reactivity and thermal hyperalgesia secondary to sciatic neuropathy.

    Science.gov (United States)

    LeBlanc, Brian W; Zerah, Michele L; Kadasi, Laith M; Chai, Noori; Saab, Carl Y

    2011-07-08

    We hypothesized that microglia in the ventral posterolateral (VPL) nucleus of the thalamus are reactive following peripheral nerve injury, and that inhibition of microglia by minocycline injection in the VPL attenuates thermal hyperalgesia. Our results show increased expression of OX-42 co-localized with phosphorylated p38MAPK (P-p38) in the VPL seven days after chronic constriction injury (CCI) of the sciatic nerve. However, astrocytic GFAP expression in the VPL is unchanged 7 and 14 days after CCI. Microinjection of minocycline into the VPL contralateral to CCI reverses thermal hyperalgesia, whereas vehicle injection has no effect on paw withdrawal latency. Minocycline abrogates the increased expression of OX-42 in the VPL after CCI. Therefore, peripheral nerve injury favors a hyperactive microglial phenotype in the VPL, suggesting remote neuroimmune signaling from the damaged nerve to the brain, concomitant with neuropathic behavior that is reversed by local intervention in the VPL to inhibit microglia.

  13. Thy-1 attenuates TNF-alpha-activated gene expression in mouse embryonic fibroblasts via Src family kinase.

    Directory of Open Access Journals (Sweden)

    Bin Shan

    Full Text Available Heterogeneous surface expression of Thy-1 in fibroblasts modulates inflammation and may thereby modulate injury and repair. As a paradigm, patients with idiopathic pulmonary fibrosis, a disease with pathologic features of chronic inflammation, demonstrate an absence of Thy-1 immunoreactivity within areas of fibrotic activity (fibroblast foci in contrast to the predominant Thy-1 expressing fibroblasts in the normal lung. Likewise, Thy-1 deficient mice display more severe lung fibrosis in response to an inflammatory injury than wildtype littermates. We investigated the role of Thy-1 in the response of fibroblasts to the pro-inflammatory cytokine TNF-alpha. Our study demonstrates distinct profiles of TNF-alpha-activated gene expression in Thy-1 positive (Thy-1+ and negative (Thy-1- subsets of mouse embryonic fibroblasts (MEF. TNF-alpha induced a robust activation of MMP-9, ICAM-1, and the IL-8 promoter driven reporter in Thy-1- MEFs, in contrast to only a modest increase in Thy-1+ counterparts. Consistently, ectopic expression of Thy-1 in Thy-1- MEFs significantly attenuated TNF-alpha-activated gene expression. Mechanistically, TNF-alpha activated Src family kinase (SFK only in Thy-1- MEFs. Blockade of SFK activation abrogated TNF-alpha-activated gene expression in Thy-1- MEFs, whereas restoration of SFK activation rescued the TNF-alpha response in Thy-1+ MEFs. Our findings suggest that Thy-1 down-regulates TNF-alpha-activated gene expression via interfering with SFK- and NF-kappaB-mediated transactivation. The current study provides a novel mechanistic insight to the distinct roles of fibroblast Thy-1 subsets in inflammation.

  14. Honokiol activates the LKB1–AMPK signaling pathway and attenuates the lipid accumulation in hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Min Suk; Kim, Jung Hwan; Kim, Hye Jung; Chang, Ki Churl; Park, Sang Won, E-mail: parksw@gnu.ac.kr

    2015-04-15

    Honokiol is a bioactive neolignan compound isolated from the species of Magnolia. This study was designed to elucidate the cellular mechanism by which honokiol alleviates the development of non-alcoholic steatosis. HepG2 cells were treated with honokiol for 1 h, and then exposed to 1 mM free fatty acid (FFA) for 24 h to simulate non-alcoholic steatosis in vitro. C57BL/6 mice were fed with a high-fat diet for 28 days, and honokiol (10 mg/kg/day) was daily treated. Honokiol concentration-dependently attenuated intracellular fat overloading and triglyceride (TG) accumulation in FFA-exposed HepG2 cells. These effects were blocked by pretreatment with an AMP-activated protein kinase (AMPK) inhibitor. Honokiol significantly inhibited sterol regulatory element-binding protein-1c (SREBP-1c) maturation and the induction of lipogenic proteins, stearoyl-CoA desaturase-1 (SCD-1) and fatty acid synthase (FAS) in FFA-exposed HepG2 cells, but these effects were blocked by pretreatment of an AMPK inhibitor. Honokiol induced AMPK phosphorylation and subsequent acetyl-CoA carboxylase (ACC) phosphorylation, which were inhibited by genetic deletion of liver kinase B1 (LKB1). Honokiol stimulated LKB1 phosphorylation, and genetic deletion of LKB1 blocked the effect of honokiol on SREBP-1c maturation and the induction of SCD-1 and FAS proteins in FFA-exposed HepG2 cells. Honokiol attenuated the increases in hepatic TG and lipogenic protein levels and fat accumulation in the mice fed with high-fat diet, while significantly induced LKB1 and AMPK phosphorylation. Taken together, our findings suggest that honokiol has an anti-lipogenic effect in hepatocytes, and this effect may be mediated by the LKB1–AMPK signaling pathway, which induces ACC phosphorylation and inhibits SREBP-1c maturation in hepatocytes. - Highlights: • Honokiol attenuates lipid accumulation induced by free fatty acid in hepatocyte. • Honokiol inhibits the increase in lipogenic enzyme levels induced by free fatty

  15. Music Attenuated a Decrease in Parasympathetic Nervous System Activity after Exercise

    OpenAIRE

    Tiantian Jia; Yoshiko Ogawa; Misa Miura; Osamu Ito; Masahiro Kohzuki

    2016-01-01

    Music and exercise can both affect autonomic nervous system activity. However, the effects of the combination of music and exercise on autonomic activity are poorly understood. Additionally, it remains unknown whether music affects post-exercise orthostatic tolerance. The aim of this study was to evaluate the effects of music on autonomic nervous system activity in orthostatic tolerance after exercise. Twenty-six healthy graduate students participated in four sessions in a random order on fou...

  16. A novel natural Nrf2 activator with PPARγ-agonist (monascin) attenuates the toxicity of methylglyoxal and hyperglycemia

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Wei-Hsuan; Lee, Bao-Hong; Chang, Yu-Ying [Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); Hsu, Ya-Wen [SunWay Biotechnology Company, Taipei, Taiwan (China); Pan, Tzu-Ming, E-mail: tmpan@ntu.edu.tw [Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China)

    2013-11-01

    Methylglyoxal (MG) is a toxic-glucose metabolite and a major precursor of advanced glycation endproducts (AGEs). MG has been reported to result in inflammation by activating receptor for AGEs (RAGE). We recently found that Monascus-fermented metabolite monascin acts as a novel natural peroxisome proliferator-activated receptor-γ (PPARγ) agonist that improves insulin sensitivity. We investigated the metabolic, biochemical, and molecular abnormalities characteristic of type 2 diabetes in MG-treated Wistar rats treated with oral administration of monascin or rosiglitazone. Monascin (a novel PPARγ agonist) activated nuclear factor-erythroid 2-related factor 2 (Nrf2) and down-regulated hyperinsulinmia in oral glucose tolerance test (OGTT). Monascin was able to elevate glyoxalase-1 expression via activation of hepatic Nrf2, hence, resulting in MG metabolism to D-lactic acid and protected from AGEs production in MG-treated rats. Rosiglitazone did not activate Nrf2 nor glyoxalase expression to lower serum and hepatic AGEs levels. Monascin acts as a novel natural Nrf2 activator with PPARγ-agonist activity were confirmed by Nrf2 and PPARγ reporter assays in Hep G2 cells. These findings suggest that monascin acts as an anti-diabetic and anti-oxidative stress agent to a greater degree than rosiglitazone and thus may have therapeutic potential for the prevention of diabetes. - Highlights: • Monascin acts as a PPARgamma agonist. • Monascin activates Nrf2 and AMPK. • Monascin promotes MG metabolism into D-lactic acid. • Monascin attenuates inflammation and diabetes in vivo.

  17. 小胶质细胞活化对海马长时程增强影响的研究进展%Recent advance in effect of microglial activation on long-term potentiation of hippocampus

    Institute of Scientific and Technical Information of China (English)

    张占刚; 付岩; 杨拼; 董献文; 徐颖

    2016-01-01

    在对神经退行性疾病如阿尔茨海默病、帕金森病等的研究中,人们提出了神经炎症假说,认为是小胶质细胞活化导致炎症介质持续释放,并损伤神经元结构和功能,出现学习记忆障碍等临床表现.其中神经元突触结构的破坏导致突触可塑性下降,出现长时程增强(LTP)改变,表现为高频刺激后兴奋性突触后电位幅值减小、持续时间缩短等现象.活化的小胶质细胞本身及其释放的炎症因子如白介素-1β、肿瘤坏死因子-α、一氧化氮等都参与了疾病中LTP损伤的病理过程.本文对近几年神经退行性疾病中小胶质细胞活化与LTP损伤关系的研究进展作一综述,希望能为神经退行性疾病的临床诊治和科学研究提供一定的指导.%In the study of neurodegenerative diseases,a hypothesis of inflammation in central nervous system is raised:the activated microglia leads to sustained release of preinflammatory cytokines and injury of normal neural structures and function,resulting in learning and memory deficits,such as Alzheimer's disease (AD) and Parkinson's disease (PD).Synapses structural disorders are responsible for deficit of synaptic plasticity;after high frequency stimulation,changes of long-term potentiation (LTP) are most obvious in synaptic plasticity,characterized by decrease of amplitude and excitatory postsynaptic potential duration.Activated microglia and inflammatory cytokines released by activated microglia,such as interleukin-1β,tumor necrosis factor-α and nitric oxide are involved in the pathological process of LTP changes in these kinds of disease.The aim of this paper is to give a review about progress in the relations between microglia activation and LTP in neurodegenerative diseases researches in recent years and hope to have something to guide the research of neurodegenerative disease.

  18. Glatiramer acetate attenuates the activation of CD4+ T cells by modulating STAT1 and −3 signaling in glia

    Science.gov (United States)

    Ahn, Ye-Hyeon; Jeon, Sae-Bom; Chang, Chi Young; Goh, Eun-Ah; Kim, Sang Soo; Kim, Ho Jin; Song, Jaewhan; Park, Eun Jung

    2017-01-01

    Interactions between immune effector cells of the central nervous system appear to directly or indirectly influence the progress/regression of multiple sclerosis (MS). Here, we report that glial STAT1 and −3 are distinctively phosphorylated following the interaction of activated lymphocytes and glia, and this effect is significantly inhibited by glatiramer acetate (GA), a disease-modifying drug for MS. GA also reduces the activations of STAT1 and −3 by MS-associated stimuli such as IFNγ or LPS in primary glia, but not neurons. Experiments in IFNγ- and IFNγ receptor-deficient mice revealed that GA-induced inhibitions of STAT signaling are independent of IFNγ and its receptor. Interestingly, GA induces the expression levels of suppressor of cytokine signaling-1 and −3, representative negative regulators of STAT signaling in glia. We further found that GA attenuates the LPS-triggered enhancement of IL-2, a highly produced cytokine in patients with active MS, in CD4+ T cells co-cultured with glia, but not in CD4+ T cells alone. Collectively, these results provide that activation of glial STATs is an essential event in the interaction between glia and T cells, which is a possible underlying mechanism of GA action in MS. These findings provide an insight for the development of targeted therapies against MS. PMID:28094337

  19. D-pinitol attenuates the impaired activities of hepatic key enzymes in carbohydrate metabolism of streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Sivakumar, Selvaraj; Subramanian, Sorimuthu P

    2009-09-01

    During diabetes mellitus, endogenous hepatic glucose production is increased as a result of impaired activities of the key enzymes of carbohydrate metabolism, which leads to the condition known as hyperglycemia. D-pinitol, a bioactive constituent isolated from soybeans, has been shown to reduce hyperglycemia in experimental diabetes. We therefore designed this study to investigate the effect of oral administration of D-pinitol (50 mg/kg b. w. for 30 days) on the activities of key enzymes in carbohydrate and glycogen metabolism in the liver tissues of streptozotocin-induced diabetic rats. The efficacy was compared with glyclazide, a standard hypoglycemic drug. Oral administration of D-pinitol to diabetic group of rats showed a marked decrease in the levels of blood glucose, glycosylated hemoglobin and an increase in plasma insulin and body weight. The activities of the hepatic enzymes such as hexokinase, pyruvate kinase, glucose-6-phosphate dehydrogenase, glycogen synthase and hepatic glycogen content were significantly (p pinitol. The results suggest that alterations in the activities of key metabolic enzymes of carbohydrate metabolism could be one of the biochemical rationale by which D-pinitol attenuates the hyperglycemic effect in diabetic rats.

  20. A 2-wk reduction of ambulatory activity attenuates peripheral insulin sensitivity

    DEFF Research Database (Denmark)

    Krogh-Madsen, Rikke; Thyfault, John P; Broholm, Christa;

    2010-01-01

    US adults take between approximately 2,000 and approximately 12,000 steps per day, a wide range of ambulatory activity that at the low range could increase risk for developing chronic metabolic diseases. Dramatic reductions in physical activity induce insulin resistance; however, it is uncertain...... possible biological cause for the public health problem of Type 2 diabetes has been identified. Reduced ambulatory activity for 2 wk in healthy, nonexercising young men significantly reduced peripheral insulin sensitivity, cardiovascular fitness, and lean leg mass....... if and how low ambulatory activity would influence peripheral insulin sensitivity. We aimed to explore if healthy, nonexercising subjects who went from a normal to a low level of ambulatory activity for 2 wk would display metabolic alterations including reduced peripheral insulin sensitivity. To do this, ten...

  1. Microglial Amyloid-β1-40 Phagocytosis Dysfunction Is Caused by High-Mobility Group Box Protein-1: Implications for the Pathological Progression of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Kazuyuki Takata

    2012-01-01

    Full Text Available In Alzheimer disease (AD patient brains, the accumulation of amyloid-β (Aβ peptides is associated with activated microglia. Aβ is derived from the amyloid precursor protein; two major forms of Aβ, that is, Aβ1-40 (Aβ40 and Aβ1-42 (Aβ42, exist. We previously reported that rat microglia phagocytose Aβ42, and high mobility group box protein 1 (HMGB1, a chromosomal protein, inhibits phagocytosis. In the present study, we investigated the effects of exogenous HMGB1 on rat microglial Aβ40 phagocytosis. In the presence of exogenous HMGB1, Aβ40 markedly increased in microglial cytoplasm, and the reduction of extracellular Aβ40 was inhibited. During this period, HMGB1 was colocalized with Aβ40 in the cytoplasm. Furthermore, exogenous HMGB1 inhibited the degradation of Aβ40 induced by the rat microglial cytosolic fraction. Thus, extracellular HMGB1 may internalize with Aβ40 in the microglial cytoplasm and inhibit Aβ40 degradation by microglia. This may subsequently delay Aβ40 clearance. We further confirmed that in AD brains, the parts of senile plaques surrounded by activated microglia are composed of Aβ40, and extracellular HMGB1 is deposited on these plaques. Taken together, microglial Aβ phagocytosis dysfunction may be caused by HMGB1 that accumulates extracellularly on Aβ plaques, and it may be critically involved in the pathological progression of AD.

  2. Cytopathic changes and pro-inflammatory cytokines induced by Naegleria fowleri trophozoites in rat microglial cells and protective effects of an anti-Nfa1 antibody.

    Science.gov (United States)

    Oh, Y-H; Jeong, S-R; Kim, J-H; Song, K-J; Kim, K; Park, S; Sohn, S; Shin, H-J

    2005-12-01

    Naegleria fowleri, a free-living amoeba, causes fatal primary amoebic meningoencephalitis in experimental animals and humans. The nfa1 gene (360 bp) was previously cloned from a cDNA library of pathogenic N. fowleri by immunoscreening, and produced a 13.1-kDa recombinant protein that showed pseudopodia-specific localization by immunocytochemistry. On the basis of an idea that the pseudopodia-specific Nfa1 protein seems to be involved in the pathogenicity of N. fowleri, the cytopathic activity of N. fowleri trophozoites co-cultured with rat microglial cells was observed, and the effects of an anti-Nfa1 antibody in a co-culture system were elucidated. Using light, scanning and transmission electron microscopy, it was seen that N. fowleri trophozoites in contact with microglial cells produced vigorous pseudopodia and a food-cup structure. Microglial cells were destroyed by N. fowleri trophozoites as seen from necrotic cell death in a time-dependent manner. In a(51)Cr release assay, N. fowleri showed 17.8%, 24.9%, 54.6% and 98% cytotoxicity against microglial cells at 3, 6, 12 and 24 h post-incubation, respectively. However, when anti-Nfa1 antibody was added in a coculture system, N. fowleri cytotoxicity was reduced to 15.5%, 20.3%, 46.7% and 66.9%, respectively. Moreover, microglial cells co-cultured with N. fowleri trophozoites secreted the pro-inflammatory cytokines, TNF-alpha, IL-1beta and IL-6. In the presence of anti-Nfa1 antibody, the secretion of TNF-alpha was slightly, but not significantly, decreased.

  3. Power transformers: disturbances caused by noise and vibrations; Transformateurs de puissance: nuisances sonores et vibratoires. Solutions passives et actives pour attenuer le bruit et les vibrations des transformateurs

    Energy Technology Data Exchange (ETDEWEB)

    Boss, P. [ABB Secheron, Meyrin (Switzerland); Pompei, M. [Paulstra-Vibrachoc, Paris (France); Masson, C. [RTEICNER, Paris (France); Krummen, B. [Service Electricite de Lausanne, Lausanne (Switzerland); Chritin, V. [Swiss Federal Institue of Techonolgy (EPFL), IAV Engineering, Lausanne (Switzerland); Herzog, Ph. [National Research Center (CNRS), Laboratoire de Mecanique et d' Acoustique (LMA), Marseille (France)

    2004-07-01

    The challenge to reduce the emission of noise from transformer stations is increasing constantly. This is due both to the expansion of urban areas and to the evolution of stronger European regulations. Noise is not only generated by the transformer itself, but also by the cooling system. The article describes the possibilities for noise attenuation using two different principles: reduction of noise and vibrations at the source, or attenuation of generated noise by passive or active measures. Passive measures are based on construction elements like sound-insulating walls, sound attenuation covers or stations installed within a building. Active measures use an acoustic field generated by loudspeakers to annihilate the sound waves emitted by the station.

  4. Alternating-direction method of multipliers estimation of attenuation and activity distributions in time-of-flight flat-panel positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Yueh; Chou, Cheng-Ying [National Taiwan University, Taipei, Taiwan (China)

    2015-05-18

    A quantitative reconstruction of radiotracer activity distribution in positron emission tomography (PET) requires correction of attenuation, which was typically estimated through transmission measurements. The advancement in hardware development has prompted the use of time-of-flight (TOF) to improve PET imaging. Recently, the application of TOF-PET has been further extended to obtain attenuation map in addition to activity distribution simultaneously by use of iterative algorithms. Two flat-panel detectors are employed thus many transaxial lines of response are not detected. In this work, we applied the alternating-direction method of multipliers (ADMM) to simultaneously reconstruct TOF-PET and attenuation estimation in a dualhead small-animal PET system. The results were compared with those obtained by use of the maximum-likelihood algorithm. The computer simulation results showed that the application of the ADMM algorithm could greatly improve the image quality and reduce noisy appearance.

  5. Palladium and platinum nanoparticles attenuate aging-like skin atrophy via antioxidant activity in mice.

    Science.gov (United States)

    Shibuya, Shuichi; Ozawa, Yusuke; Watanabe, Kenji; Izuo, Naotaka; Toda, Toshihiko; Yokote, Koutaro; Shimizu, Takahiko

    2014-01-01

    Cu-Zn superoxide dismutase (Sod1) loss causes a redox imbalance as it leads to excess superoxide generation, which results in the appearance of various aging-related phenotypes, including skin atrophy. Noble metal nanoparticles, such as palladium (Pd) and platinum (Pt) nanoparticles, are considered to function as antioxidants due to their strong catalytic activity. In Japan, a mixture of Pd and Pt nanoparticles called PAPLAL has been used to treat chronic diseases over the past 60 years. In the present study, we investigated the protective effects of PAPLAL against aging-related skin pathologies in mice. Transdermal PAPLAL treatment reversed skin thinning associated with increased lipid peroxidation in Sod1-/- mice. Furthermore, PAPLAL normalized the gene expression levels of Col1a1, Mmp2, Has2, Tnf-α, Il-6, and p53 in the skin of the Sod1-/- mice. Pt nanoparticles exhibited marked SOD and catalase activity, while Pd nanoparticles only displayed weak SOD and catalase activity in vitro. Although the SOD and catalase activity of the Pt nanoparticles significantly declined after they had been oxidized in air, a mixture of Pd and Pt nanoparticles continued to exhibit SOD and catalase activity after oxidation. Importantly, a mixture of Pd and Pt nanoparticles with a molar ratio of 3 or 4 to 1 continued to exhibit SOD and catalase activity after oxidation, indicating that Pd nanoparticles prevent the oxidative deterioration of Pt nanoparticles. These findings indicate that PAPLAL stably suppresses intrinsic superoxide generation both in vivo and in vitro via SOD and catalase activity. PAPLAL is a potentially powerful tool for the treatment of aging-related skin diseases caused by oxidative damage.

  6. Palladium and platinum nanoparticles attenuate aging-like skin atrophy via antioxidant activity in mice.

    Directory of Open Access Journals (Sweden)

    Shuichi Shibuya

    Full Text Available Cu-Zn superoxide dismutase (Sod1 loss causes a redox imbalance as it leads to excess superoxide generation, which results in the appearance of various aging-related phenotypes, including skin atrophy. Noble metal nanoparticles, such as palladium (Pd and platinum (Pt nanoparticles, are considered to function as antioxidants due to their strong catalytic activity. In Japan, a mixture of Pd and Pt nanoparticles called PAPLAL has been used to treat chronic diseases over the past 60 years. In the present study, we investigated the protective effects of PAPLAL against aging-related skin pathologies in mice. Transdermal PAPLAL treatment reversed skin thinning associated with increased lipid peroxidation in Sod1-/- mice. Furthermore, PAPLAL normalized the gene expression levels of Col1a1, Mmp2, Has2, Tnf-α, Il-6, and p53 in the skin of the Sod1-/- mice. Pt nanoparticles exhibited marked SOD and catalase activity, while Pd nanoparticles only displayed weak SOD and catalase activity in vitro. Although the SOD and catalase activity of the Pt nanoparticles significantly declined after they had been oxidized in air, a mixture of Pd and Pt nanoparticles continued to exhibit SOD and catalase activity after oxidation. Importantly, a mixture of Pd and Pt nanoparticles with a molar ratio of 3 or 4 to 1 continued to exhibit SOD and catalase activity after oxidation, indicating that Pd nanoparticles prevent the oxidative deterioration of Pt nanoparticles. These findings indicate that PAPLAL stably suppresses intrinsic superoxide generation both in vivo and in vitro via SOD and catalase activity. PAPLAL is a potentially powerful tool for the treatment of aging-related skin diseases caused by oxidative damage.

  7. Cannabidiol attenuates catalepsy induced by distinct pharmacological mechanisms via 5-HT1A receptor activation in mice.

    Science.gov (United States)

    Gomes, Felipe V; Del Bel, Elaine A; Guimarães, Francisco S

    2013-10-01

    Cannabidiol (CBD) is a non-psychotomimetic compound from Cannabis sativa plant that produces antipsychotic effects in rodents and humans. It also reverses L-dopa-induced psychotic symptoms and improves motor function in Parkinson's patients. This latter effect raised the possibility that CBD could have beneficial effects on motor related striatal disorders. To investigate this possibility we evaluated if CBD would prevent catalepsy induced by drugs with distinct pharmacological mechanisms. The catalepsy test is largely used to investigate impairments of motor function caused by interference on striatal function. Male Swiss mice received acute pretreatment with CBD (5, 15, 30 or 60mg/kg, ip) 30min prior to the D2 receptor antagonist haloperidol (0.6mg/kg), the non-selective nitric oxide synthase (NOS) inhibitor L-nitro-N-arginine (L-NOARG, 80mg/kg) or the CB1 receptor agonist WIN55,212-2 (5mg/kg). The mice were tested 1, 2 or 4h after haloperidol, L-NOARG or WIN55,212-2 injection. These drugs significantly increased catalepsy time and this effect was attenuated dose-dependently by CBD. CBD, by itself, did not induce catalepsy. In a second set of experiments the mechanism of CBD effects was investigated. Thirty minutes before CBD (30mg/kg) the animals received the 5-HT1A receptor antagonist WAY100635 (0.1mg/kg). The anticataleptic effect of CBD was prevented by WAY100635. These findings indicate that CBD can attenuate catalepsy caused by different mechanisms (D2 blockade, NOS inhibition and CB1 agonism) via 5-HT1A receptor activation, suggesting that it could be useful in the treatment of striatal disorders.

  8. Suppression of activity-regulated cytoskeleton-associated gene expression in the dorsal striatum attenuates extinction of cocaine-seeking.

    Science.gov (United States)

    Hearing, Matthew C; Schwendt, Marek; McGinty, Jacqueline F

    2011-07-01

    The caudate putamen (CPu) has been implicated in habit learning and neuroadaptive changes that mediate the compulsive nature of drug-seeking following chronic cocaine self-administration. Re-exposure to an operant chamber previously associated with cocaine, but not yoked-saline, increases activity-regulated cytoskeleton-associated (Arc) gene mRNA expression within the dorsolateral (dl) CPu following prolonged abstinence. In this study, we tested the hypothesis that antisense gene knockdown of Arc within the dlCPu would alter cocaine-seeking. Initial studies showed that a single infusion of Arc antisense oligodeoxynucleotide (ODN) into the dlCPu significantly attenuated the induction of Arc mRNA and Arc protein by a single cocaine exposure (20 mg/kg i.p.) compared to scrambled-ODN-infused controls. In cocaine self-administering rats, infusion of Arc antisense ODN into the dlCPu 3 h prior to a test of context-driven drug-seeking significantly attenuated Arc protein induction, but failed to alter responding during testing, suggesting striatal Arc does not facilitate context-induced drug-seeking following prolonged abstinence. However, Arc antisense ODN infusion blunted the decrease in responding during subsequent 1-h extinction tests 24 and 48 h later. Following re-exposure to a cocaine-paired context, surface expression of the AMPA-type glutamate receptor GluR1 was significantly reduced whereas GluR2 was significantly increased in the dlCPu, independent of Arc antisense ODN infusion. Together, these findings indicate an important role for Arc in neuroadaptations within brain regions responsible for drug-seeking after abstinence and direct attention to changes occurring within striatal circuitry that are necessary to break down the habitual behaviour that leads to relapse.

  9. Kaiso depletion attenuates transforming growth factor-β signaling and metastatic activity of triple-negative breast cancer cells.

    Science.gov (United States)

    Bassey-Archibong, B I; Kwiecien, J M; Milosavljevic, S B; Hallett, R M; Rayner, L G A; Erb, M J; Crawford-Brown, C J; Stephenson, K B; Bédard, P-A; Hassell, J A; Daniel, J M

    2016-03-21

    Triple-negative breast cancers (TNBCs) represent a subset of breast tumors that are highly aggressive and metastatic, and are responsible for a disproportionate number of breast cancer-related deaths. Several studies have postulated a role for the epithelial-to-mesenchymal transition (EMT) program in the increased aggressiveness and metastatic propensity of TNBCs. Although EMT is essential for early vertebrate development and wound healing, it is frequently co-opted by cancer cells during tumorigenesis. One prominent signaling pathway involved in EMT is the transforming growth factor-β (TGFβ) pathway. In this study, we report that the novel POZ-ZF transcription factor Kaiso is highly expressed in TNBCs and correlates with a shorter metastasis-free survival. Notably, Kaiso expression is induced by the TGFβ pathway and silencing Kaiso expression in the highly invasive breast cancer cell lines, MDA-MB-231 (hereafter MDA-231) and Hs578T, attenuated the expression of several EMT-associated proteins (Vimentin, Slug and ZEB1), abrogated TGFβ signaling and TGFβ-dependent EMT. Moreover, Kaiso depletion attenuated the metastasis of TNBC cells (MDA-231 and Hs578T) in a mouse model. Although high Kaiso and high TGFβR1 expression is associated with poor overall survival in breast cancer patients, overexpression of a kinase-active TGFβR1 in the Kaiso-depleted cells was insufficient to restore the metastatic potential of these cells, suggesting that Kaiso is a key downstream component of TGFβ-mediated pro-metastatic responses. Collectively, these findings suggest a critical role for Kaiso in TGFβ signaling and the metastasis of TNBCs.

  10. Intrathecal injection of spironolactone attenuates radicular pain by inhibition of spinal microglia activation in a rat model.

    Directory of Open Access Journals (Sweden)

    Yu-e Sun

    Full Text Available BACKGROUND: Microglia might play an important role in nociceptive processing and hyperalgesia by neuroinflammatory process. Mineralocorticoid receptor (MR expressed on microglia might play a central role in the modulation of microglia activity. However the roles of microglia and MR in radicular pain were not well understood. This study sought to investigate whether selective MR antagonist spironolactone develop antinociceptive effects on radicular pain by inhibition neuroinflammation induced by spinal microglia activation. RESULTS: Radicular pain was produced by chronic compression of the dorsal root ganglia with SURGIFLO™. The expression of microglia, interleukin beta (IL-1β, interleukin 6 (IL-6, tumor necrosis factor alpha (TNF-α, NR1 subunit of the NMDA receptor (t-NR1, and NR1 subunit phosphorylated at Ser896 (p-NR1 were also markedly up-regulated. Intrathecal injection of spironolactone significantly attenuated pain behaviors as well as the expression of microglia, IL-1β, TNF-α, t-NR1, and p-NR1, whereas the production of IL-6 wasn't affected. CONCLUSION: These results suggest that intrathecal delivery spironolactone has therapeutic effects on radicular pain in rats. Decreasing the activation of glial cells, the production of proinflammatory cytokines and down-regulating the expression and phosphorylation of NMDA receptors in the spinal dorsal horn and dorsal root ganglia are the main mechanisms contributing to its beneficial effects.

  11. Attenuation of morphine tolerance by minocycline and pentoxifylline in naive and neuropathic mice.

    Science.gov (United States)

    Mika, Joanna; Wawrzczak-Bargiela, Agnieszka; Osikowicz, Maria; Makuch, Wioletta; Przewlocka, Barbara

    2009-01-01

    We have previously demonstrated that glial inhibitors reduce the development of allodynia and hyperalgesia, potentiating the effect of a single morphine dose in a neuropathic pain model. This study explores the effects of two glial activation inhibitors, minocycline and pentoxifylline, on the development of tolerance to morphine in naive and chronic constriction injury (CCI)-exposed mice. Administration of morphine to naive (20 mg/kg; i.p.) and CCI-exposed mice (40 mg/kg; i.p.) twice daily resulted in tolerance to its anti-nociceptive effect after 6 days. Injections of morphine were combined with minocycline (30 mg/kg, i.p.) or pentoxifylline (20 mg/kg, i.p.) administered as two preemptive doses before first morphine administration in naive or pre-injury in CCI-exposed mice, and repeated twice daily 30 min before each morphine administration. With treatment, development of morphine tolerance was delayed by 5 days (from 6 to 11 days), as measured by the tail-flick test in naive and by tail-flick, von Frey, and cold plate tests in CCI-exposed mice. Western blot analysis of CD11b/c and GFAP protein demonstrated that minocycline and pentoxifylline, at doses delaying development of tolerance to morphine analgesia, significantly diminished the morphine-induced increase in CD11b/c protein level. We found that repeated systemic administration of glial inhibitors significantly delays development of morphine tolerance by attenuating the level of this microglial marker under normal and neuropathic pain conditions. Our results support the idea that targeting microglial activation during morphine therapy/treatment is a novel and clinically promising method for enhancing morphine's analgesic effects, especially in neuropathic pain.

  12. Cocaine dependent individuals with attenuated striatal activation during reinforcement learning are more susceptible to relapse.

    Science.gov (United States)

    Stewart, Jennifer L; Connolly, Colm G; May, April C; Tapert, Susan F; Wittmann, Marc; Paulus, Martin P

    2014-08-30

    Cocaine-dependent individuals show altered brain activation during decision making. It is unclear, however, whether these activation differences are related to relapse vulnerability. This study tested the hypothesis that brain-activation patterns during reinforcement learning are linked to relapse 1 year later in individuals entering treatment for cocaine dependence. Subjects performed a Paper-Scissors-Rock task during functional magnetic resonance imaging (fMRI). A year later, we examined whether subjects had remained abstinent (n=15) or relapsed (n=15). Although the groups did not differ on demographic characteristics, behavioral performance, or lifetime substance use, abstinent patients reported greater motivation to win than relapsed patients. The fMRI results indicated that compared with abstinent individuals, relapsed users exhibited lower activation in (1) bilateral inferior frontal gyrus and striatum during decision making more generally; and (2) bilateral middle frontal gyrus and anterior insula during reward contingency learning in particular. Moreover, whereas abstinent patients exhibited greater left middle frontal and striatal activation to wins than losses, relapsed users did not demonstrate modulation in these regions as a function of outcome valence. Thus, individuals at high risk for relapse relative to those who are able to abstain allocate fewer neural resources to action-outcome contingency formation and decision making, as well as having less motivation to win on a laboratory-based task.

  13. Selenium Deficiency Attenuates Chicken Duodenal Mucosal Immunity via Activation of the NF-κb Signaling Pathway.

    Science.gov (United States)

    Liu, Zhe; Qu, Yanpeng; Wang, Jianfa; Wu, Rui

    2016-08-01

    Selenium (Se) deficiency can cause intestinal mucosal inflammation, which is related to activation of nuclear transcription factor kappa-B (NF-κB) signaling pathway. However, the mechanism of inflammatory response in chicken duodenal mucosa caused by Se deficiency and its relationship with the NF-κB signaling pathway remain elusive. In this study, we firstly obtained Se-deficient chickens bred with 0.01 mg/kg Se and the normal chickens bred with 0.4 mg/kg Se for 35 days. Then, NF-κB signaling pathway, secretory immunoglobulin A (SIgA), inflammatory cytokines, oxidized glutathione, glutathione peroxidase, and glutathione activities were determined. The results showed that Se deficiency obviously enhanced p50, p65, and p65 DNA-binding activities. The phosphorylation of IκB-α and phosphorylation of kappa-B kinase subunit alpha (IKKα) and IKKα were elevated, but IκB-α was decreased (P mucosal immunity via activation of NF-κB signaling pathway regulated by redox activity, which suggested that Se is a crucial host factor involved in regulating inflammation.

  14. Suppression of Excessive Histone Deacetylases Activity in Diabetic Hearts Attenuates Myocardial Ischemia/Reperfusion Injury via Mitochondria Apoptosis Pathway

    Directory of Open Access Journals (Sweden)

    Yang Wu

    2017-01-01

    Full Text Available Background. Histone deacetylases (HDACs play a pivotal role in signaling modification and gene transcriptional regulation that are essential for cardiovascular pathophysiology. Diabetic hearts with higher HDACs activity were more vulnerable to myocardial ischemia/reperfusion (MI/R injury compared with nondiabetic hearts. We are curious about whether suppression of excessive HDACs activity in diabetic heart protects against MI/R injury. Methods. Diabetic rats were subjected to 45 min of ischemia, followed by 3 h of reperfusion. H9C2 cardiomyocytes were exposed to high glucose for 24 h, followed by 4 h of hypoxia and 2 h of reoxygenation (H/R. Results. Both MI/R injury and diabetes mellitus elevated myocardium HDACs activity. MI/R induced apoptotic cell death was significantly decreased in diabetic rats treated with HDACs inhibitor trichostatin A (TSA. TSA administration markedly moderated dissipation of mitochondrial membrane potential, protected the integrity of mitochondrial permeability transition pore (mPTP, and decreased cell apoptosis. Notably, cotreatment with Akt inhibitor partly or absolutely inhibited the protective effect of TSA in vivo and in vitro. Furthermore, TSA administration activated Akt/Foxo3a pathway, leading to Foxo3a cytoplasm translocation and attenuation proapoptosis protein Bim expression. Conclusions. Both diabetes mellitus and MI/R injury increased cardiac HDACs activity. Suppression of HDACs activity triggered protective effects against MI/R and H/R injury under hyperglycemia conditions through Akt-modulated mitochondrial apoptotic pathways via Foxo3a/Bim.

  15. Suppression of Excessive Histone Deacetylases Activity in Diabetic Hearts Attenuates Myocardial Ischemia/Reperfusion Injury via Mitochondria Apoptosis Pathway

    Science.gov (United States)

    Wu, Yang; Leng, Yan; Meng, Qingtao; Xue, Rui; Zhao, Bo; Zhan, Liying

    2017-01-01

    Background. Histone deacetylases (HDACs) play a pivotal role in signaling modification and gene transcriptional regulation that are essential for cardiovascular pathophysiology. Diabetic hearts with higher HDACs activity were more vulnerable to myocardial ischemia/reperfusion (MI/R) injury compared with nondiabetic hearts. We are curious about whether suppression of excessive HDACs activity in diabetic heart protects against MI/R injury. Methods. Diabetic rats were subjected to 45 min of ischemia, followed by 3 h of reperfusion. H9C2 cardiomyocytes were exposed to high glucose for 24 h, followed by 4 h of hypoxia and 2 h of reoxygenation (H/R). Results. Both MI/R injury and diabetes mellitus elevated myocardium HDACs activity. MI/R induced apoptotic cell death was significantly decreased in diabetic rats treated with HDACs inhibitor trichostatin A (TSA). TSA administration markedly moderated dissipation of mitochondrial membrane potential, protected the integrity of mitochondrial permeability transition pore (mPTP), and decreased cell apoptosis. Notably, cotreatment with Akt inhibitor partly or absolutely inhibited the protective effect of TSA in vivo and in vitro. Furthermore, TSA administration activated Akt/Foxo3a pathway, leading to Foxo3a cytoplasm translocation and attenuation proapoptosis protein Bim expression. Conclusions. Both diabetes mellitus and MI/R injury increased cardiac HDACs activity. Suppression of HDACs activity triggered protective effects against MI/R and H/R injury under hyperglycemia conditions through Akt-modulated mitochondrial apoptotic pathways via Foxo3a/Bim. PMID:28191472

  16. A two-week reduction of ambulatory activity attenuates peripheral insulin sensitivity

    DEFF Research Database (Denmark)

    Krogh-Madsen, Rikke; Thyfault, John P; Broholm, Christa

    2009-01-01

    possible biological cause for the public health problem of type 2 diabetes has been identified. Reduced ambulatory activity for two weeks in healthy, non-exercising young men significantly reduced peripheral insulin sensitivity, cardiovascular fitness, and lean leg mass. Key words: Inactivity, Insulin...... activity would influence peripheral insulin sensitivity. We aimed to explore if healthy, non-exercising subjects who went from a normal to a low level of ambulatory activity for two weeks would display metabolic alterations including reduced peripheral insulin sensitivity. -To do this, ten healthy young...... after step reduction, with a post hoc analysis revealing the most pronounced effect after 4 h of insulin infusion. In addition, the two-week period induced a 7% decline in VO2max (ml/min; cardiovascular fitness). Lean mass of legs, but not arms and truck, decreased concurrently. Taken together, one...

  17. Local NMDA receptor blockade attenuates chronic tinnitus and associated brain activity in an animal model.

    Directory of Open Access Journals (Sweden)

    Thomas J Brozoski

    Full Text Available Chronic tinnitus has no broadly effective treatment. Identification of specific markers for tinnitus should facilitate the development of effective therapeutics. Recently it was shown that glutamatergic blockade in the cerebellar paraflocculus, using an antagonist cocktail was successful in reducing chronic tinnitus. The present experiment examined the effect of selective N-methyl d-aspartate (NMDA receptor blockade on tinnitus and associated spontaneous brain activity in a rat model. The NMDA antagonist, D(--2-amino-5-phosphonopentanoic acid (D-AP5 (0.5 mM, was continuously infused for 2 weeks directly to the ipsilateral paraflocculus of rats with tinnitus induced months prior by unilateral noise exposure. Treated rats were compared to untreated normal controls without tinnitus, and to untreated positive controls with tinnitus. D-AP5 significantly decreased tinnitus within three days of beginning treatment, and continued to significantly reduce tinnitus throughout the course of treatment and for 23 days thereafter, at which time testing was halted. At the conclusion of psychophysical testing, neural activity was assessed using manganese enhanced magnetic resonance imaging (MEMRI. In agreement with previous research, untreated animals with chronic tinnitus showed significantly elevated bilateral activity in their paraflocculus and brainstem cochlear nuclei, but not in mid or forebrain structures. In contrast, D-AP5-treated-tinnitus animals showed significantly less bilateral parafloccular and dorsal cochlear nucleus activity, as well as significantly less contralateral ventral cochlear nucleus activity. It was concluded that NMDA-mediated glutamatergic transmission in the paraflocculus appears to be a necessary component of chronic noise-induced tinnitus in a rat model. Additionally, it was confirmed that in this model, elevated spontaneous activity in the cerebellar paraflocculus and auditory brainstem is associated with tinnitus.

  18. Deficiency in the voltage-gated proton channel Hv1 increases M2 polarization of microglia and attenuates brain damage from photothrombotic ischemic stroke.

    Science.gov (United States)

    Tian, Dai-Shi; Li, Chun-Yu; Qin, Chuan; Murugan, Madhuvika; Wu, Long-Jun; Liu, Jun-Li

    2016-10-01

    Microglia become activated during cerebral ischemia and exert pro-inflammatory or anti-inflammatory role dependent of microglial polarization. NADPH oxidase (NOX)-dependent reactive oxygen species (ROS) production in microglia plays an important role in neuronal damage after ischemic stroke. Recently, NOX and ROS are consistently reported to participate in the microglial activation and polarization; NOX2 inhibition or suppression of ROS production are shown to shift the microglial polarization from M1 toward M2 state after stroke. The voltage-gated proton channel, Hv1, is selectively expressed in microglia and is required for NOX-dependent ROS generation in the brain. However, the effect of Hv1 proton channel on microglial M1/M2 polarization state after cerebral ischemia remains unknown. In this study, we investigated the role of microglial Hv1 proton channel in modulating microglial M1/M2 polarization during the pathogenesis of ischemic cerebral injury using a mouse model of photothrombosis. Following photothrombotic ischemic stroke, wild-type mice presented obvious brain infarct, neuronal damage, and impaired motor coordination. However, mice lacking Hv1 (Hv1(-/-)) were partially protected from brain damage and motor deficits compared to wild-type mice. These rescued phenotypes in Hv1(-/-) mice in ischemic stroke is accompanied by reduced ROS production, shifted the microglial polarization from M1 to M2 state. Hv1 deficiency was also found to shift the M1/M2 polarization in primary cultured microglia. Our study suggests that the microglial Hv1 proton channel is a unique target for modulation of microglial M1/M2 polarization in the pathogenesis of ischemic stroke. The voltage-gated proton channel, Hv1, is selectively expressed in microglia and is required for NOX-dependent generation of reactive oxygen species (ROS) in the brain. ROS participate in microglial activation and polarization. However, the effect of Hv1 on microglial M1/M2 polarization state after

  19. Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis

    Directory of Open Access Journals (Sweden)

    Amanda eSierra

    2013-01-01

    Full Text Available Microglia are the resident brain macrophages and they have been traditionally studied as orchestrators of the brain inflammatory response during infections and disease. In addition, microglia has a more benign, less explored role as the brain professional phagocytes. Phagocytosis is a term coined from the Greek to describe the receptor-mediated engulfment and degradation of dead cells and microbes. In addition, microglia phagocytoses brain-specific cargo, such as axonal and myelin debris in spinal cord injury or multiple sclerosis, amyloid-beta deposits in Alzheimer’s disease, and supernumerary synapses in postnatal development. Common mechanisms of recognition, engulfment and degradation of the different types of cargo are assumed, but very little is known about the shared and specific molecules involved in the phagocytosis of each target by microglia. More importantly, the functional consequences of microglial phagocytosis remain largely unexplored. Overall, phagocytosis is considered a beneficial phenomenon, since it eliminates dead cells and induces an anti-inflammatory response. However, phagocytosis can also activate the respiratory burst, which produces toxic reactive oxygen species. Phagocytosis has been traditionally studied in pathological conditions, leading to the assumption that microglia have to be activated in order to become efficient phagocytes. Recent data, however, has shown that unchallenged microglia phagocytose apoptotic cells during development and in adult neurogenic niches, suggesting an overlooked role in brain remodeling throughout the normal lifespan. The present review will summarize the current state of the literature regarding the role of microglial phagocytosis in maintaining tissue homeostasis in health as in disease.

  20. Does a physically active lifestyle attenuate decline in all cognitive functions in old age?

    Science.gov (United States)

    Ballesteros, Soledad; Mayas, Julia; Reales, Jose Manuel

    2013-07-01

    In this study, the performance of a group of 20 physically active older adults was compared with that of a group of 20 sedentary healthy older adults while performing a series of cognitive tasks. These tasks were designed to assess processes that deteriorate most with age, namely executive control (assessed with the Wisconsin Card Sorting Task) and processing speed (simple and choice reaction time tasks). A repetition priming task that does not decline with age, involving attended and unattended picture outlines at encoding, was also included as a control task. The results show that a physically active lifestyle has a positive influence on executive control, processing speed, and controlled processing. As expected, a physically active lifestyle did not enhance repetition priming for attended stimuli, nor did it produce priming for unattended stimuli at encoding. Both groups exhibited robust priming for attended stimuli and no priming for unattended ones. Executive control functions are of vital importance for independent living in old age. These results have practical implications for enhancing the cognitive processes that decline most in old age. Promoting a physically active lifestyle throughout adulthood could significantly reduce the decline of effortful executive control functions in old age.

  1. Phytochemicals attenuating aberrant activation of ß-catenin in cancer cells

    Science.gov (United States)

    Phytochemicals are a rich source of chemoprevention agents but their effects on modulating the Wnt/ß-catenin signaling pathway have remained largely uninvestigated. Aberrantly activated Wnt signaling can result in the abnormal stabilization of ß-catenin, a key causative step in a broad spectrum of c...

  2. Inhibition of classical complement activation attenuates liver ischaemia and reperfusion injury in a rat model

    NARCIS (Netherlands)

    B.H.M. Heijnen; I.H. Straatsburg; N.D. Padilla; G.J. Mierlo; C.E. Hack; T.M. van Gulik

    2006-01-01

    Activation of the complement system contributes to the pathogenesis of ischaemia/reperfusion (I/R) injury. We evaluated inhibition of the classical pathway of complement using C1-inhibitor (C1-inh) in a model of 70% partial liver I/R injury in male Wistar rats (n = 35). C1-inh was administered at 10

  3. SIRT1/3 Activation by Resveratrol Attenuates Acute Kidney Injury in a Septic Rat Model

    Science.gov (United States)

    Xu, Siqi; Wei, Siwei; Dai, Xingui

    2016-01-01

    Sepsis often results in damage to multiple organ systems, possibly due to severe mitochondrial dysfunction. Two members of the sirtuin family, SIRT1 and SIRT3, have been implicated in the reversal of mitochondrial damage. The aim of this study was to determine the role of SIRT1/3 in acute kidney injury (AKI) following sepsis in a septic rat model. After drug pretreatment and cecal ligation and puncture (CLP) model reproduction in the rats, we performed survival time evaluation and kidney tissue extraction and renal tubular epithelial cell (RTEC) isolation. We observed reduced SIRT1/3 activity, elevated acetylated SOD2 (ac-SOD2) levels and oxidative stress, and damaged mitochondria in RTECs following sepsis. Treatment with resveratrol (RSV), a chemical SIRT1 activator, effectively restored SIRT1/3 activity, reduced acetylated SOD2 levels, ameliorated oxidative stress and mitochondrial function of RTECs, and prolonged survival time. However, the beneficial effects of RSV were greatly abrogated by Ex527, a selective inhibitor of SIRT1. These results suggest a therapeutic role for SIRT1 in the reversal of AKI in septic rat, which may rely on SIRT3-mediated deacetylation of SOD2. SIRT1/3 activation could therefore be a promising therapeutic strategy to treat sepsis-associated AKI. PMID:28003866

  4. Morin Attenuates Streptococcus suis Pathogenicity in Mice by Neutralizing Suilysin Activity

    Science.gov (United States)

    Li, Gen; Lu, Gejin; Qi, Zhimin; Li, Hongen; Wang, Lin; Wang, Yanhui; Liu, Bowen; Niu, Xiaodi; Deng, Xuming; Wang, Jianfeng

    2017-01-01

    Streptococcus suis, a Gram-positive pathogen, is widely recognized as an important agent of swine infection, and it is also known to cause a variety of zoonoses, such as meningitis, polyarthritis and pneumonia. Suilysin (SLY), an extracellular pore-forming toxin that belongs to the cholesterol-dependent cytolysin family, is an essential virulence factor of S. suis capsular type 2 (SS2). Here, we found that morin hydrate (morin), a natural flavonoid that lacks anti-SS2 activity, inhibits the hemolytic activity of SLY, protects J774 cells from SS2-induced injury and protects mice from SS2 infection. Further, by molecular modeling and mutational analysis, we found that morin binds to the “stem” domain 2 in SLY and hinders its transformation from the monomer form to the oligomer form, which causes the loss of SLY activity. Our study demonstrates that morin hinders the cell lysis activity of SLY through a novel mechanism of interrupting the heptamer formation. These findings may lead to the development of promising therapeutic candidates for the treatment of SS2 infections. PMID:28373868

  5. Running for REST: Physical activity attenuates neuroinflammation in the hippocampus of aged mice.

    Science.gov (United States)

    Dallagnol, Karine Mathilde Campestrini; Remor, Aline Pertile; da Silva, Rodrigo Augusto; Prediger, Rui Daniel; Latini, Alexandra; Aguiar, Aderbal Silva

    2017-03-01

    Exercise improves mental health and synaptic function in the aged brain. However, the molecular mechanisms involved in exercise-induced healthy brain aging are not well understood. Evidence supports the role of neurogenesis and neurotrophins in exercise-induced neuroplasticity. The gene silencing transcription factor neuronal RE1-silencing transcription factor (REST)/neuron-restrictive silencer factor (NRSF) and an anti-inflammatory role of exercise are also candidate mechanisms. We evaluate the effect of 8weeks of physical activity on running wheels (RW) on motor and depressive-like behavior and hippocampal gene expression of brain-derived neurotrophic factor (BDNF), REST, and interleukins IL-1β and IL-10 of adult and aged C57BL/6 mice. The aged animals exhibited impaired motor function and a depressive-like behavior: decreased mobility in the RW and open field and severe immobility in the tail suspension test. The gene expression of REST, IL-1β, and IL-10 was increased in the hippocampus of aged mice. Physical activity was anxiolytic and antidepressant and improved motor behavior in aged animals. Physical activity also boosted BDNF and REST expression and decreased IL-1β and IL-10 expression in the hippocampus of aged animals. These results support the beneficial role of REST in the aged brain, which can be further enhanced by regular physical activity.

  6. Preconditioning of Carbon Monoxide Releasing Molecule-derived CO Attenuates LPS-induced Activation of HUVEC

    Directory of Open Access Journals (Sweden)

    Bingwei Sun, Xiangqian Zou, Yueling Chen, Ping Zhang, Gengsheng Shi

    2008-01-01

    Full Text Available Objective: To investigate the effects and potential mechanisms of preconditioning of tricarbonyldichlororuthenium (III dimer (CORM-2-liberated CO on LPS-induced activation of endothelial cells (HUVEC. Methods: HUVEC were pretreated with CORM-2 at the concentration of 50 or 100μM for 2 hrs, washed and stimulated with LPS (10μg/ml for additional 4 hrs. Activation (oxidative stress of HUVEC was assessed by measuring intracellular oxidation of DHR 123 or nitration of DAF-FM, specific H2O2 and NO fluorochromes, respectively. The expression of HO-1, iNOS (Western blot and ICAM-1 (cell ELISA proteins and activation of inflammation-relevant transcription factor, NF-κB (EMSA were assessed. In addition, PMN adhesion to HUVEC was also assessed. Results: The obtained data indicate that pretreatment of HUVEC with CORM-2 results in: 1 decrease of LPS-induced production of ROS and NO; 2 up-regulation of HO-1 but decrease in iNOS at the protein levels; 3 inhibition of LPS-induced activation of NF-κB; and 4 downregulation of expression of ICAM-1, and this was accompanied by a decrease of PMN adhesion to LPS-stimulated HUVEC. Conclusions: Preconditioning of CO liberated by CORM-2 elicited its anti-inflammatory effects by interfering with the induction of intracellular oxidative stress. In addition, it also supports the notion that CO is a potent inhibitor of iNOS and NF-κB.

  7. Maintenance of Paraoxonase 2 Activity as a Strategy to Attenuate P. Aeruginosa Virulence

    Science.gov (United States)

    2013-10-01

    µM 3OC12 (previously shown to inactivate > 90% of PON2 activity) and PON2 immunoprecipitated (IP). The IP PON2 was run on an SDS- PAGE gel and the...protein coupled taste receptor T2R38 in sinonasal epithelial cells, mediating direct antibacterial effects(10). These diverse responses suggest that

  8. Attenuated apoptosis response to Fas-ligand in active ulcerative colitis

    DEFF Research Database (Denmark)

    Seidelin, J.B.; Nielsen, Ole Haagen

    2008-01-01

    BACKGROUND: From mainly carcinoma cell line studies, apoptosis has been thought to play a major role in the pathogenesis of ulcerative colitis (UC). Apoptosis has been suggested to be due to a Fas ligand / Fas receptor interaction, but has never been studied in cells from patients with active UC...

  9. Pharmacological Inhibition of Vanin Activity Attenuates Transplant Vasculopathy in Rat Aortic Allografts

    NARCIS (Netherlands)

    Wedel, Johannes; Jansen, Patrick A. M.; Botman, Peter N. M.; Rutjes, Floris P. J. T.; Schalkwijk, Joost; Hillebrands, Jan-Luuk

    2016-01-01

    Background. Development of transplant vasculopathy is a major cause of graft loss and mortality in solid organ transplant recipients. Previous studies in mice have indicated that vanin-1, a member of the vanin protein family with pantetheinase activity, is possibly involved in neointima formation. H

  10. BMI1 attenuates etoposide-induced G2/M checkpoints via reducing ATM activation.

    Science.gov (United States)

    Wei, F; Ojo, D; Lin, X; Wong, N; He, L; Yan, J; Xu, S; Major, P; Tang, D

    2015-06-04

    The BMI1 protein contributes to stem cell pluripotency and oncogenesis via multiple functions, including its newly identified role in DNA damage response (DDR). Although evidence clearly demonstrates that BMI1 facilitates the repair of double-stranded breaks via homologous recombination (HR), it remains unclear how BMI1 regulates checkpoint activation during DDR. We report here that BMI1 has a role in G2/M checkpoint activation in response to etoposide (ETOP) treatment. Ectopic expression of BMI1 in MCF7 breast cancer and DU145 prostate cancer cells significantly reduced ETOP-induced G2/M arrest. Conversely, knockdown of BMI1 in both lines enhanced the arrest. Consistent with ETOP-induced activation of the G2/M checkpoints via the ATM pathway, overexpression and knockdown of BMI1, respectively, reduced and enhanced ETOP-induced phosphorylation of ATM at serine 1981 (ATM pS1981). Furthermore, the phosphorylation of ATM targets, including γH2AX, threonine 68 (T68) on CHK2 (CHK2 pT68) and serine 15 (S15) on p53 were decreased in overexpression and increased in knockdown BMI1 cells in response to ETOP. In line with the requirement of NBS1 in ATM activation, we were able to show that BMI1 associates with NBS1 and that this interaction altered the binding of NBS1 with ATM. BMI1 consists of a ring finger (RF), helix-turn-helix-turn-helix-turn (HT), proline/serine (PS) domain and two nuclear localization signals (NLS). Although deletion of either RF or HT did not affect the association of BMI1 with NBS1, the individual deletions of PS and one NLS (KRMK) robustly reduced the interaction. Stable expression of these BMI1 mutants decreased ETOP-induced ATM pS1981 and CHK2 pT68, but not ETOP-elicited γH2AX in MCF7 cells. Furthermore, ectopic expression of BMI1 in non-transformed breast epithelial MCF10A cells also compromised ETOP-initiated ATM pS1981 and γH2AX. Taken together, we provide compelling evidence that BMI1 decreases ETOP-induced G2/M checkpoint activation via

  11. Activation of ALDH2 with Low Concentration of Ethanol Attenuates Myocardial Ischemia/Reperfusion Injury in Diabetes Rat Model

    Directory of Open Access Journals (Sweden)

    Pin-Fang Kang

    2016-01-01

    Full Text Available The aim of this paper is to observe the change of mitochondrial aldehyde dehydrogenase 2 (ALDH2 when diabetes mellitus (DM rat heart was subjected to ischemia/reperfusion (I/R intervention and analyze its underlying mechanisms. DM rat hearts were subjected to 30 min regional ischemia and 120 min reperfusion in vitro and pretreated with ALDH2 activator ethanol (EtOH; cardiomyocyte in high glucose (HG condition was pretreated with ALDH2 activator Alda-1. In control I/R group, myocardial tissue structure collapse appeared. Compared with control I/R group, left ventricular parameters, SOD activity, the level of Bcl-2/Bax mRNA, ALDH2 mRNA, and protein expressions were decreased and LDH and MDA contents were increased, meanwhile the aggravation of myocardial structure injury in DM I/R group. When DM I/R rats were pretreated with EtOH, left ventricular parameters, SOD, Bcl-2/Bax, and ALDH2 expression were increased; LDH, MDA, and myocardial structure injury were attenuated. Compared with DM + EtOH I/R group, cyanamide (ALDH2 nonspecific blocker, atractyloside (mitoPTP opener, and wortmannin (PI3K inhibitor groups all decreased left ventricular parameters, SOD, Bcl-2/Bax, and ALDH2 and increased LDH, MDA, and myocardial injury. When cardiomyocyte was under HG condition, CCK-8 activity and ALDH2 protein expression were decreased. Alda-1 increased CCK-8 and ALDH2. Our findings suggested enhanced ALDH2 expression in diabetic I/R rats played the cardioprotective role, maybe through activating PI3K and inhibiting mitoPTP opening.

  12. D-Methionine attenuated cisplatin-induced vestibulotoxicity through altering ATPase activities and oxidative stress in guinea pigs.

    Science.gov (United States)

    Cheng, Po-Wen; Liu, Shing-Hwa; Young, Yi-Ho; Lin-Shiau, Shoei-Yn

    2006-09-01

    Cisplatin has been used as a chemotherapeutic agent to treat many kinds of malignancies. Its damage to the vestibulo-ocular reflex (VOR) system has been reported. However, the underlying biochemical change in the inner ear or central vestibular nervous system is not fully understood. In this study, we attempted to examine whether cisplatin-induced vestibulotoxicity and D-methionine protection were correlated with the changes of ATPase activities and oxidative stress of ampullary tissue of vestibules as well as cerebellar cortex (the inhibitory center of VOR system) of guinea pigs. By means of a caloric test coupled with electronystagmographic recordings, we found that cisplatin exposure caused a dose-dependent (1, 3, or 5 mg/kg) vestibular dysfunction as revealed by a decrease of slow phase velocity (SPV). In addition, cisplatin significantly inhibited the Na(+), K(+)-ATPase and Ca(2+)-ATPase activities in the ampullary tissue with a good dose-response relationship but not those of cerebellar cortex. Regression analysis indicated that a decrease of SPV was well correlated with the reduction of Na(+), K(+)-ATPase and Ca(2+)-ATPase activities of the ampullary tissue. D-Methionine (300 mg/kg) reduced both abnormalities of SPV and ATPase activities in a correlated manner. Moreover, cisplatin exposure led to a significant dose-dependent increase of lipid peroxidation and nitric oxide concentrations of the vestibules, which could be significantly suppressed by D-methionine. However, cisplatin did not alter the levels of lipid peroxidation and nitric oxide of the cerebellum. In conclusion, cisplatin inhibited ATPase activities and increased oxidative stress in guinea pig vestibular labyrinths. D-Methionine attenuated cisplatin-induced vestibulotoxicity associated with ionic disturbance through its antioxidative property.

  13. Sinomenine induces the generation of intestinal Treg cells and attenuates arthritis via activation of aryl hydrocarbon receptor.

    Science.gov (United States)

    Tong, Bei; Yuan, Xusheng; Dou, Yannong; Wu, Xin; Wang, Yuhui; Xia, Yufeng; Dai, Yue

    2016-10-01

    Sinomenine (SIN), an anti-arthritis drug, has previously been proven to exert immunomodulatory activity in rats by inducing intestinal regulatory T-cells (Treg cells). Here, we assessed the effect of SIN on the generation and function of Treg cells in autoimmune arthritis, and the underlying mechanisms in view of aryl hydrocarbon receptor (AhR). The proportions of Treg cells and IL-17-producing T-cells (Th17 cells) differentiated from naive T-cells were analyzed by flow cytometric analysis. The AhR agonistic effect of SIN was tested by analyzing the activation of downstream signaling pathways and target genes. The dependence of intestinal Treg cell induction and arthritis alleviation by SIN on AhR activation was confirmed in a mouse collagen-induced arthritis (CIA) model. SIN promoted the differentiation and function of intestinal Treg cells in vitro. It induced the expression and activity of AhR target gene, promoted AhR/Hsp90 dissociation and AhR nuclear translocation, induced XRE reporter activity, and facilitated AhR/XRE binding in vitro, displaying the potential to be an agonist of AhR. In CIA mice, SIN induced the generation of intestinal Treg cells, and facilitated the immunosuppressive function of these Treg cells as shown by an adoptive transfer test. In addition, the induction of intestinal Treg cells and the anti-arthritic effect of SIN in CIA mice could be largely diminished by the AhR antagonist resveratrol. SIN attenuates arthritis by promoting the generation and function of Treg cells in an AhR-dependent manner.

  14. Valproate Attenuates Nitroglycerin-Induced Trigeminovascular Activation by Preserving Mitochondrial Function in a Rat Model of Migraine

    Science.gov (United States)

    Li, Ruxian; Liu, Yushuang; Chen, Nan; Zhang, Yitong; Song, Ge; Zhang, Zhongling

    2016-01-01

    Background Migraine is a chronic disease that interferes with life quality and work productivity. Valproate shows protective effects against migraine, yet the underlying mechanisms are unclear. This study aimed to evaluate the potential effect of valproate on migraine using a rat model of nitroglycerin-induced trigeminovascular activation, as well as to explore the underlying mechanism. Material/Methods Intraperitoneal injection of nitroglycerin was conducted to induce trigeminovascular activation in rats. To explore the protective effect of valproate, a low dose (100 mg/kg) or a high dose (200 mg/kg) of valproate was intraperitoneally injected into rats, and then the levels of 5-hydroxytryptamine and nitric oxide in the peripheral blood were examined. The mtDNA copy number and the protein levels of peroxisome proliferator-activated receptor-γ coactivator 1α, mitochondrial transcription factor A, and peroxisome proliferator-activated receptor-γ in the spinal trigeminal nucleus were detected to evaluate the biogenesis of mitochondria. The mitochondrial energy metabolism was determined by the mitochondrial membrane potential and the levels of adenosine triphosphate, cytochrome C oxidase, and reactive oxygen species. Results Valproate attenuated nitroglycerin-induced trigeminovascular activation in rats, with reduced scratching behavior and restored 5-hydroxytryptamine and nitric oxide levels. Moreover, the mitochondrial energy metabolism and the biogenesis of mitochondria were preserved by valproate in nitroglycerin-treated rats. Conclusions The protective effect of valproate against migraine may be achieved through the modulation of mitochondrial biogenesis and function. Our study provides evidence for the potential use of valproate in the treatment of migraine. PMID:27618395

  15. Inhibition of Neuroinflammation in LPS-Activated Microglia by Cryptolepine

    Science.gov (United States)

    Olajide, Olumayokun A.; Bhatia, Harsharan S.; de Oliveira, Antonio C. P.; Wright, Colin W.; Fiebich, Bernd L.

    2013-01-01

    Cryptolepine, an indoloquinoline alkaloid in Cryptolepis sanguinolenta, has anti-inflammatory property. In this study, we aimed to evaluate the effects of cryptolepine on lipopolysaccharide (LPS)- induced neuroinflammation in rat microglia and its potential mechanisms. Microglial activation was induced by stimulation with LPS, and the effects of cryptolepine pretreatment on microglial activation and production of proinflammatory mediators, PGE2/COX-2, microsomal prostaglandin E2 synthase and nitric oxide/iNOS were investigated. We further elucidated the role of Nuclear Factor-kappa B (NF-κB) and the mitogen-activated protein kinases in the antiinflammatory actions of cryptolepine in LPS-stimulated microglia. Our results showed that cryptolepine significantly inhibited LPS-induced production of tumour necrosis factor-alpha (TNFα), interleukin-6 (IL-6), interleukin-1beta (IL-1β), nitric oxide, and PGE2. Protein and mRNA levels of COX-2 and iNOS were also attenuated by cryptolepine. Further experiments on intracellular signalling mechanisms show that IκB-independent inhibition of NF-κB nuclear translocation contributes to the anti-neuroinflammatory actions of cryptolepine. Results also show that cryptolepine inhibited LPS-induced p38 and MAPKAPK2 phosphorylation in the microglia. Cell viability experiments revealed that cryptolepine (2.5 and 5 μM) did not produce cytotoxicity in microglia. Taken together, our results suggest that cryptolepine inhibits LPS-induced microglial inflammation by partial targeting of NF-κB signalling and attenuation of p38/MAPKAPK2. PMID:23737832

  16. Inhibition of Neuroinflammation in LPS-Activated Microglia by Cryptolepine

    Directory of Open Access Journals (Sweden)

    Olumayokun A. Olajide

    2013-01-01

    Full Text Available Cryptolepine, an indoloquinoline alkaloid in Cryptolepis sanguinolenta, has anti-inflammatory property. In this study, we aimed to evaluate the effects of cryptolepine on lipopolysaccharide (LPS- induced neuroinflammation in rat microglia and its potential mechanisms. Microglial activation was induced by stimulation with LPS, and the effects of cryptolepine pretreatment on microglial activation and production of proinflammatory mediators, PGE2/COX-2, microsomal prostaglandin E2 synthase and nitric oxide/iNOS were investigated. We further elucidated the role of Nuclear Factor-kappa B (NF-κB and the mitogen-activated protein kinases in the antiinflammatory actions of cryptolepine in LPS-stimulated microglia. Our results showed that cryptolepine significantly inhibited LPS-induced production of tumour necrosis factor-alpha (TNFα, interleukin-6 (IL-6, interleukin-1beta (IL-1β, nitric oxide, and PGE2. Protein and mRNA levels of COX-2 and iNOS were also attenuated by cryptolepine. Further experiments on intracellular signalling mechanisms show that IκB-independent inhibition of NF-κB nuclear translocation contributes to the anti-neuroinflammatory actions of cryptolepine. Results also show that cryptolepine inhibited LPS-induced p38 and MAPKAPK2 phosphorylation in the microglia. Cell viability experiments revealed that cryptolepine (2.5 and 5 μM did not produce cytotoxicity in microglia. Taken together, our results suggest that cryptolepine inhibits LPS-induced microglial inflammation by partial targeting of NF-κB signalling and attenuation of p38/MAPKAPK2.

  17. Attenuated apoptosis response to Fas-ligand in active ulcerative colitis

    DEFF Research Database (Denmark)

    Seidelin, Jakob B; Nielsen, Ole H

    2008-01-01

    From mainly carcinoma cell line studies, apoptosis has been thought to play a major role in the pathogenesis of ulcerative colitis (UC). Apoptosis has been suggested to be due to a Fas ligand / Fas receptor interaction, but has never been studied in cells from patients with active UC. The aim...... was to investigate both the spontaneous and the cell death receptor ligand-induced apoptosis in UC....

  18. Attenuation of quorum sensing-regulated behaviour by Tinospora cordifolia extract & identification of its active constituents

    OpenAIRE

    Viraj C Gala; Nithya R John; Bhagwat, Ashok M.; Ajit G Datar; Kharkar, Prashant S.; Desai, Krutika B.

    2016-01-01

    Background & objectives: The pathogenicity of the nosocomial pathogens, Pseudomonas aeruginosa and Acinetobacter baumannii is regulated by their quorum sensing (QS) systems. The objective of the present study was to examine the effect of the cold ethyl acetate extract of Tinospora cordifolia stem on virulence and biofilm development in the wild type and clinical strains of P. aeruginosa and A. baumannii. The study was further aimed to identify the probable active constituents in the plant ext...

  19. Effects of the live attenuated measles-mumps-rubella booster vaccination on disease activity in patients with juvenile idiopathic arthritis : a randomized trial

    NARCIS (Netherlands)

    Heijstek, Marloes W; Kamphuis, Sylvia; Armbrust, Wineke; Swart, Joost; Gorter, Simone; de Vries, Lara D; Smits, Gaby P; van Gageldonk, Pieter G; Berbers, Guy A M; Wulffraat, Nico M

    2013-01-01

    IMPORTANCE: The immunogenicity and the effects of live attenuated measles-mumps-rubella (MMR) vaccination on disease activity in patients with juvenile idiopathic arthritis (JIA) are matters of concern, especially in patients treated with immunocompromising therapies. OBJECTIVES: To assess whether M

  20. Novel matrine derivative MD-1 attenuates hepatic fibrosis by inhibiting EGFR activation of hepatic stellate cells.

    Science.gov (United States)

    Feng, Yi; Ying, Hai-Yan; Qu, Ying; Cai, Xiao-Bo; Xu, Ming-Yi; Lu, Lun-Gen

    2016-09-01

    Matrine (MT), the effective component of Sophora flavescens Ait, has been shown to have anti-inflammation, immune-suppressive, anti-tumor, and anti-hepatic fibrosis activities. However, the pharmacological effects of MT still need to be strengthened due to its relatively low efficacy and short half-life. In the present study, we report a more effective thio derivative of MT, MD-1, and its inhibitory effects on the activation of hepatic stellate cells (HSCs) in both cell culture and animal models. Cytological experiments showed that MD-1 can inhibit the proliferation of HSC-T6 cells with a half-maximal inhibitory concentration (IC50) of 62 μmol/L. In addition, MD-1 more strongly inhibits the migration of HSC-T6 cells compared to MT and can more effectively induce G0/G1 arrest and apoptosis. Investigating the biological mechanisms underlying anti-hepatic fibrosis in the presence of MD-1, we found that MD-1 can bind the epidermal growth factor receptor (EGFR) on the surface of HSC-T6 cells, which can further inhibit the phosphorylation of EGFR and its downstream protein kinase B (Akt), resulting in decreased expression of cyclin D1 and eventual inhibition of the activation of HSC-T6 cells. Furthermore, in rats with dimethylnitrosamine (DMN)-induced hepatic fibrosis, MD-1 slowed the development and progression of hepatic fibrosis, protecting hepatic parenchymal cells and improving hepatic functions. Therefore, MD-1 is a potential drug for anti-hepatic fibrosis.

  1. Matrine attenuates focal cerebral ischemic injury by improving antioxidant activity and inhibiting apoptosis in mice.

    Science.gov (United States)

    Zhao, Peng; Zhou, Ru; Zhu, Xiao-Yun; Hao, Yin-Ju; Li, Nan; Wang, Jie; Niu, Yang; Sun, Tao; Li, Yu-Xiang; Yu, Jian-Qiang

    2015-09-01

    Matrine, an active constituent of the Chinese herb, Sophora flavescens Ait., and it is known for its antioxidant, anti-inflammatory and antitumor activities. It has been demonstrated that matrine exerts protective effects against heart failure by decreasing the expression of caspase-3 and Bax, and increasing Bcl‑2 levels. In this study, we aimed to determine whether these protective effects of matrine can be applied to cerebral ischemia. Following 7 successive days of treatment with matrine (7.5, 15 and 30 mg/kg) and nimodipine (1 mg/kg) by intraperitoneal injection, male Institute of Cancer Research (ICR) mice were subjected to middle cerebral artery occlusion (MCAO). Following reperfusion, the neurobehavioral score and brain infarct volume were estimated, and morphological changes were analyzed by hematoxylin and eosin (H&E) staining and electron microscopy. The percentage of apoptotic neurons was determined by flow cytometry. The levels of oxidative stress were assessed by measuring the levels of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT), and the total antioxidant capacity (T-AOC). Western blot analysis and immunofluorescence staining were used to examine the expression of the apoptosis-related proteins, caspase-3, Bax and Bcl-2. Our results revealed that pre-treatment with matrine significantly decreased the infarct volume and improved the neurological scores. Matrine also reduced the percentage of apoptotic neurons and relieved neuronal morphological damage. Furthermore, matrine markedly decreased the MDA levels, and increased SOD, GSH-Px and CAT activity, and T-AOC. Western blot analysis and immunofluorescence staining revealed a marked decrease in caspase-3 expression and an increase in the Bcl-2/Bax ratio in the group pre-treated with matrine (30 mg/kg) as compared with the vehicle-treated group. The findings of the present study demonstrate that matrine exerts neuroprotective effects against

  2. Activation of the kinin B1 receptor attenuates melanoma tumor growth and metastasis.

    Directory of Open Access Journals (Sweden)

    Patricia Dillenburg-Pilla

    Full Text Available Melanoma is a very aggressive tumor that does not respond well to standard therapeutic approaches, such as radio- and chemotherapies. Furthermore, acquiring the ability to metastasize in melanoma and many other tumor types is directly related to incurable disease. The B1 kinin receptor participates in a variety of cancer-related pathophysiological events, such as inflammation and angiogenesis. Therefore, we investigated whether this G protein-coupled receptor plays a role in tumor progression. We used a murine melanoma cell line that expresses the kinin B1 receptor and does not express the kinin B2 receptor to investigate the precise contribution of activation of the B1 receptor in tumor progression and correlated events using various in vitro and in vivo approaches. Activation of the kinin B1 receptor in the absence of B2 receptor inhibits cell migration in vitro and decreases tumor formation in vivo. Moreover, tumors formed from cells stimulated with B1-specific agonist showed several features of decreased aggressiveness, such as smaller size and infiltration of inflammatory cells within the tumor area, higher levels of pro-inflammatory cytokines implicated in the host anti-tumor immune response, lower number of cells undergoing mitosis, a poorer vascular network, no signs of invasion of surrounding tissues or metastasis and increased animal survival. Our findings reveal that activation of the kinin B1 receptor has a host protective role during murine melanoma tumor progression, suggesting that the B1 receptor could be a new anti-tumor GPCR and provide new opportunities for therapeutic targeting.

  3. Quercitrin attenuates osteoporosis in ovariectomized rats by regulating mitogen-activated protein kinase (MAPK) signaling pathways.

    Science.gov (United States)

    Xing, Li-Zhi; Ni, Huai-Jun; Wang, Yu-Ling

    2017-03-13

    MAPK signaling pathways are crucial in regulating osteogenesis, a genetic disorder affecting the bones. Quercitrin, a type of flavonoid, is widely distributed in nature and involved in many pharmacological activities. But its osteoprotective functions and mechanism in osteoporosis are far from being understood clearly. In this paper, the MAPK upregulation was observed in the ovariectomy-induced bone loss. Quercitrin was found to downregulate MAPK signaling pathways and prevent the ovariectomy-induced deterioration of bone mineral density (BMD), trabecular microstructure, and bone mechanical characteristics. In this study, quercitrin was seen to prevent the progression of the postmenopausal osteoporosis among the rats, which may be mediated by the downregulated MAPK signaling pathways.

  4. Microglial AGE-albumin is critical for neuronal death in Parkinson's disease: a possible implication for theranostics

    Directory of Open Access Journals (Sweden)

    Bayarsaikhan E

    2016-08-01

    Full Text Available Enkhjargal Bayarsaikhan,1,2,* Delger Bayarsaikhan,1,* Jaesuk Lee,1 Myeongjoo Son,1,3 Seyeon Oh,1 Jeongsik Moon,1 Hye-Jeong Park,1 Arivazhagan Roshini,1 Seung U Kim,4 Byoung-Joon Song,5 Seung-Mook Jo,6 Kyunghee Byun,1,3 Bonghee Lee1,3 1Center for Regenerative Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea; 2Department of General Laboratory, National Cancer Center of Mongolia, Ulaanbaatar, Mongolia; 3Department of Anatomy and Cell Biology, Graduate School of Medicine, Gachon University, Incheon, Republic of Korea; 4Department of Medicine, University of British Columbia, Vancouver, Canada; 5Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA; 6Department of Emergency Medical Services, Eulji University, Seongnam-si, Gyeonggi-do, Republic of Korea *These authors contributed equally to this work Abstract: Advanced glycation end products (AGEs are known to play an important role in the pathogenesis of neurodegenerative diseases, including Parkinson’s disease (PD, by inducing protein aggregation and cross-link, formation of Lewy body, and neuronal death. In this study, we observed that AGE-albumin, the most abundant AGE product in the human PD brain, is synthesized in activated microglial cells and accumulates in the extracellular space. AGE-albumin synthesis in human-activated microglial cells is distinctly inhibited by ascorbic acid and cytochalasin treatment. Accumulated AGE-albumin upregulates the receptor to AGE, leading to apoptosis of human primary dopamine (DA neurons. In animal experiments, we observed reduced DA neuronal cell death by treatment with soluble receptor to AGE. Our study provides evidence that activated microglial cells are one of the main contributors in AGE-albumin accumulation, deleterious to DA neurons in human and animal PD brains. Finally, activated microglial AGE

  5. Brain-targeted angiotensin-converting enzyme 2 overexpression attenuates neurogenic hypertension by inhibiting cyclooxygenase-mediated inflammation.

    Science.gov (United States)

    Sriramula, Srinivas; Xia, Huijing; Xu, Ping; Lazartigues, Eric

    2015-03-01

    Overactivity of the renin-angiotensin system, oxidative stress, and cyclooxygenases (COX) in the brain are implicated in the pathogenesis of hypertension. We previously reported that angiotensin-converting enzyme 2 (ACE2) overexpression in the brain attenuates the development of deoxycorticosterone acetate-salt hypertension, a neurogenic hypertension model with enhanced brain renin-angiotensin system and sympathetic activity. To elucidate the mechanisms involved, we investigated whether oxidative stress, mitogen-activated protein kinase signaling and cyclooxygenase (COX) activation in the brain are modulated by ACE2 in neurogenic hypertension. Deoxycorticosterone acetate-salt hypertension significantly increased expression of Nox-2 (+61±5%), Nox-4 (+50±13%), and nitrotyrosine (+89±32%) and reduced activity of the antioxidant enzymes, catalase (-29±4%) and superoxide dismutase (-31±7%), indicating increased oxidative stress in the brain of nontransgenic mice. This increased oxidative stress was attenuated in transgenic mice overexpressing ACE2 in the brain. Deoxycorticosterone acetate-salt-induced reduction of neuronal nitric oxide synthase expression (-26±7%) and phosphorylated endothelial nitric oxide synthase/total endothelial nitric oxide synthase (-30±3%), and enhanced phosphorylation of protein kinase B and extracellular signal-regulated kinase 1/2 in the paraventricular nucleus, were reversed by ACE2 overexpression. In addition, ACE2 overexpression blunted the hypertension-mediated increase in gene and protein expression of COX-1 and COX-2 in the paraventricular nucleus. Furthermore, gene silencing of either COX-1 or COX-2 in the brain, reduced microglial activation and accompanied neuroinflammation, ultimately attenuating Deoxycorticosterone acetate-salt hypertension. Together, these data provide evidence that brain ACE2 overexpression reduces oxidative stress and COX-mediated neuroinflammation, improves antioxidant and nitric oxide signaling, and

  6. Faulty Suppression of Irrelevant Material in Patients with Thought Disorder Linked to Attenuated Frontotemporal Activation

    Directory of Open Access Journals (Sweden)

    S. M. Arcuri

    2012-01-01

    Full Text Available Formal thought disorder is a feature schizophrenia that manifests as disorganized, incoherent speech, and is associated with a poor clinical outcome. The neurocognitive basis of this symptom is unclear but it is thought to involve an impairment in semantic processing classically described as a loosening of meaningful associations. Using a paradigm derived from the n400 event-related, potential, we examined the extent to which regional activation during semantic processing is altered in schizophrenic patients with formal thought disorder. Ten healthy control and 18 schizophrenic participants (9 with and 9 without formal thought disorder performed a semantic decision sentence task during an event-related functional magnetic resonance imaging experiment. We employed analysis of variance to estimate the main effects of semantic congruency and groups on activation and specific effects of formal thought disorder were addressed using post-hoc comparisons. We found that the frontotemporal network, normally engaged by a semantic decision task, was underactivated in schizophrenia, particularly in patients with FTD. This network is implicated in the inhibition of automatically primed stimuli and impairment of its function interferes with language processing and contributes to the production of incoherent speech.

  7. Piperine, an active ingredient of black pepper attenuates acetaminophen-induced hepatotoxicity in mice

    Institute of Scientific and Technical Information of China (English)

    Evan Prince Sabina; Annie Deborah Harris Souriyan; Deborah Jackline; Mahaboob Khan Rasool

    2010-01-01

    Objective: To explore the hepatoprotective and antioxidant effects of piperine against acetaminophen-induced hepatotoxicity in mice. Methods: In mice, hepatotoxicity was induced by a single dose of acetaminophen (900 mg/kg b.w. i.p.). Piperine (25 mg/kg b.w. i.p.) and standard drug silymarin (25 mg/kg b.w. i.p.) were given to mice, 30 min after the single injection of acetaminophen. After 4 h, the mice were decapitated. Activities of liver marker enzymes [(aspartate transaminase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP)] and inflammatory mediator tumour necrosis factor-alpha (TNF-α) were estimated in serum, while lipid peroxidation and antioxidant status (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione-s-transferase and glutathione) were determined in liver homogenate of control and experimental mice. Results: Acetaminophen induction (900 mg/kg b.w. i.p.) significantly increased the levels of liver marker enzymes, TNF-α, and lipid peroxidation, and caused the depletion of antioxidant status. Piperine and silymarin treatment to acetaminophen challenged mice resulted in decreased liver marker enzymes activity, TNF-α and lipid peroxidation levels with increase in antioxidant status. Conclusions: The results clearly demonstrate that piperine shows promising hepatoprotective effect as comparable to standard drug silymarin.

  8. Coenzyme Q10 Attenuates High Glucose-Induced Endothelial Progenitor Cell Dysfunction through AMP-Activated Protein Kinase Pathways

    Science.gov (United States)

    Tsai, Hsiao-Ya; Lin, Chih-Pei; Huang, Po-Hsun; Li, Szu-Yuan; Chen, Jia-Shiong; Lin, Feng-Yen; Chen, Jaw-Wen; Lin, Shing-Jong

    2016-01-01

    Coenzyme Q10 (CoQ10), an antiapoptosis enzyme, is stored in the mitochondria of cells. We investigated whether CoQ10 can attenuate high glucose-induced endothelial progenitor cell (EPC) apoptosis and clarified its mechanism. EPCs were incubated with normal glucose (5 mM) or high glucose (25 mM) enviroment for 3 days, followed by treatment with CoQ10 (10 μM) for 24 hr. Cell proliferation, nitric oxide (NO) production, and JC-1 assay were examined. The specific signal pathways of AMP-activated protein kinase (AMPK), eNOS/Akt, and heme oxygenase-1 (HO-1) were also assessed. High glucose reduced EPC functional activities, including proliferation and migration. Additionally, Akt/eNOS activity and NO production were downregulated in high glucose-stimulated EPCs. Administration of CoQ10 ameliorated high glucose-induced EPC apoptosis, including downregulation of caspase 3, upregulation of Bcl-2, and increase in mitochondrial membrane potential. Furthermore, treatment with CoQ10 reduced reactive oxygen species, enhanced eNOS/Akt activity, and increased HO-1 expression in high glucose-treated EPCs. These effects were negated by administration of AMPK inhibitor. Transplantation of CoQ10-treated EPCs under high glucose conditions into ischemic hindlimbs improved blood flow recovery. CoQ10 reduced high glucose-induced EPC apoptosis and dysfunction through upregulation of eNOS, HO-1 through the AMPK pathway. Our findings provide a potential treatment strategy targeting dysfunctional EPC in diabetic patients. PMID:26682233

  9. Microglial cells (BV-2) internalize titanium dioxide (TiO2) nanoparticles: toxicity and cellular responses.

    Science.gov (United States)

    Rihane, Naima; Nury, Thomas; M'rad, Imen; El Mir, Lassaad; Sakly, Mohsen; Amara, Salem; Lizard, Gérard

    2016-05-01

    Because of their whitening and photocatalytic effects, titanium dioxide nanoparticles (TiO2-NPs) are widely used in daily life. These NPs can be found in paints, plastics, papers, sunscreens, foods, medicines (pills), toothpastes, and cosmetics. However, the biological effect of TiO2-NPs on the human body, especially on the central nervous system, is still unclear. Many studies have demonstrated that the brain is one of the target organs in acute or chronic TiO2-NPs toxicity. The present study aimed to investigate the effect of TiO2-NPs at different concentrations (0.1 to 200 μg/mL) on murine microglial cells (BV-2) to assess their activity on cell growth and viability, as well as their neurotoxicity. Different parameters were measured: cell viability, cell proliferation and DNA content (SubG1 peak), mitochondrial depolarization, overproduction of reactive oxygen species (especially superoxide anions), and ultrastructural changes. Results showed that TiO2-NPs induced some cytotoxic effects with a slight inhibition of cell growth. Thus, at high concentrations, TiO2-NPs were not only able to inhibit cell adhesion but also enhanced cytoplasmic membrane permeability to propidium iodide associated with a loss of mitochondrial transmembrane potential and an overproduction of superoxide anions. No induction of apoptosis based on the presence of a SubG1 peak was detected. The microscopic observations also indicated that small groups of nanosized particles and micron-sized aggregates were engulfed by the BV-2 cells and sequestered as intracytoplasmic aggregates after 24-h exposure to TiO2-NPs. Altogether, our data show that the accumulation TiO2-NPs in microglial BV-2 cells favors mitochondrial dysfunctions and oxidative stress.

  10. Prunella vulgaris aqueous extract attenuates IL-1β-induced apoptosis and NF-κB activation in INS-1 cells.

    Science.gov (United States)

    Wu, Huiping; Gao, Ming; Ha, Tuanzhu; Kelley, Jim; Young, Ada; Breuel, Kevin

    2012-06-01

    We previously reported that Prunella vulgaris aqueous extract (PVAE) promotes hepatic glycogen synthesis and decreases postprandial hyperglycemia in ICR mice. Inflammatory cytokines play a critical role in the pathogenesis of diabetes. This study was designed to examine whether PVAE has a protective effect on IL-1β-induced apoptosis in INS-1 cells. INS-1 pancreatic β cells were plated at 2×10(6)/ml and treated with PVAE (100 µg/ml) 30 min before the cells were challenged with IL-1β (10 ng/ml). Untreated INS-1 cells served as control. INS-1 cell cytotoxicity was examined by MTT and lactate dehydrogenase (LDH) activity assays. Caspase-3 activity and activation of the apoptotic signaling pathway were analyzed by western blotting. NF-κB binding activity was examined by EMSA. The levels of inflammatory cytokines in the supernatant were measured by ELISA. IL-1β treatment significantly induced INS-1 cell death by 49.2%, increased LDH activity by 1.5-fold and caspase-3 activity by 7.6-fold, respectively, compared with control cells. However, PVAE administration significantly prevented IL-1β-increased INS-1 cell death and LDH activity and attenuated IL-1β-increased caspase-3 activity. Western blot data showed that PVAE also significantly attenuated IL-1β-increased Fas, FasL and phospho-JNK levels in the INS-1 cells. In addition, PVAE treatment significantly attenuated IL-1β-increased NF-κB binding activity and prevented IL-1β-increased TNF-α and IL-6 expression in INS-1 cells. Our data suggest that PVAE has a protective effect on IL-1β-induced INS-1 cell apoptosis. PVAE also attenuates IL-1β-increased NF-κB binding activity and inflammatory cytokine expression in INS-1 cells. PVAE may have a benefit for type I diabetic patients.

  11. Microglial recruitment, activation, and proliferation in response to primary demyelination

    DEFF Research Database (Denmark)

    Remington, Leah T; Babcock, Alicia A; Zehntner, Simone P;

    2007-01-01

    We have characterized the cellular response to demyelination/remyelination in the central nervous system using the toxin cuprizone, which causes reproducible demyelination in the corpus callosum. Microglia were distinguished from macrophages by relative CD45 expression (CD45(dim)) using flow cyto...

  12. Imaging Striatal Microglial Activation in Patients with Parkinson's Disease.

    Directory of Open Access Journals (Sweden)

    Yuko Koshimori

    Full Text Available This study investigated whether the second-generation translocator protein 18kDa (TSPO radioligand, [18F]-FEPPA, could be used in neurodegenerative parkinsonian disorders as a biomarker for detecting neuroinflammation in the striatum. Neuroinflammation has been implicated as a potential mechanism for the progression of Parkinson's disease (PD. Positron Emission Tomography (PET radioligand targeting for TSPO allows for the quantification of neuroinflammation in vivo. Based on genotype of the rs6791 polymorphism in the TSPO gene, 16 mixed-affinity binders (MABs (8 PD and age-matched 8 healthy controls (HCs, 16 high-affinity binders (HABs (8 PD and age-matched 8 HCs and 4 low-affinity binders (LABs (3 PD and 1 HCs were identified. Total distribution volume (VT values in the striatum were derived from a two-tissue compartment model with arterial plasma as an input function. There was a significant main effect of genotype on [18F]-FEPPA VT values in the caudate nucleus (p = 0.001 and putamen (p < 0.001, but no main effect of disease or disease x genotype interaction in either ROI. In the HAB group, the percentage difference between PD and HC was 16% in both caudate nucleus and putamen; in the MAB group, it was -8% and 3%, respectively. While this PET study showed no evidence of increased striatal TSPO expression in PD patients, the current findings provide some insights on the possible interactions between rs6791 polymorphism and neuroinflammation in PD.

  13. Flavonoid derivative 7,8-DHF attenuates TBI pathology via TrkB activation.

    Science.gov (United States)

    Agrawal, Rahul; Noble, Emily; Tyagi, Ethika; Zhuang, Yumei; Ying, Zhe; Gomez-Pinilla, Fernando

    2015-05-01

    Traumatic brain injury (TBI) is followed by a state of metabolic dysfunction, affecting the ability of neurons to use energy and support brain plasticity; there is no effective therapy to counteract the TBI pathology. Brain-derived neurotrophic factor (BDNF) has an exceptional capacity to support metabolism and plasticity, which highly contrasts with its poor pharmacological profile. We evaluated the action of a flavonoid derivative 7,8-dihydroxyflavone (7,8-DHF), a BDNF receptor (TrkB) agonist with the pharmacological profile congruent for potential human therapies. Treatment with 7,8-DHF (5mg/kg, ip, daily for 7 days) was effective to ameliorate the effects of TBI on plasticity markers (CREB phosphorylation, GAP-43 and syntaxin-3 levels) and memory function in Barnes maze test. Treatment with 7,8-DHF restored the decrease in protein and phenotypic expression of TrkB phosphorylation after TBI. In turn, intrahippocampal injections of K252a, a TrkB antagonist, counteracted the 7,8-DHF induced TrkB signaling activation and memory improvement in TBI, suggesting the pivotal role of TrkB signaling in cognitive performance after brain injury. A potential action of 7,8-DHF on cell energy homeostasis was corroborated by the normalization in levels of PGC-1α, TFAM, COII, AMPK and SIRT1 in animals subjected to TBI. Results suggest a potential mechanism by which 7,8-DHF counteracts TBI pathology via activation of the TrkB receptor and engaging the interplay between cell energy management and synaptic plasticity. Since metabolic dysfunction is an important risk factor for the development of neurological and psychiatric disorders, these results set a precedent for the therapeutic use of 7,8-DHF in a larger context.

  14. Copper Ion Attenuated the Antiproliferative Activity of Di-2-pyridylhydrazone Dithiocarbamate Derivative; However, There Was a Lack of Correlation between ROS Generation and Antiproliferative Activity.

    Science.gov (United States)

    Wang, Tingting; Fu, Yun; Huang, Tengfei; Liu, Youxun; Wu, Meihao; Yuan, Yanbin; Li, Shaoshan; Li, Changzheng

    2016-08-20

    The use of chelators for cancer treatment has been an alternative option. Dithiocarbamates have recently attracted considerable attention owning to their diverse biological activities; thus, the preparation of new dithiocarbamate derivatives with improved antitumor activity and selectivity as well as probing the underlying molecular mechanism are required. In this study, di-2-pyridylhydrazone dithiocarbamate S-propionic acid (DpdtpA) and its copper complex were prepared and characterized, and its antiproliferative activity was evaluated. The proliferation inhibition assay showed that DpdtpA exhibited excellent antiproliferative effect in hepatocellular carcinoma (IC50 = 1.3 ± 0.3 μM for HepG2, and 2.5 ± 0.6 μM for Bel-7402). However, in the presence of copper ion, the antiproliferative activity of DpdtpA was dramatically attenuated (20-30 fold) owing to the formation of copper chelate. A preliminarily mechanistic study revealed that reactive oxygen species (ROS) generation mediated the antiproliferative activity of DpdtpA, and accordingly induced apoptosis, DNA cleavage, and autophagy. Surprisingly, the cytotoxicity of DpdtpA copper complex (DpdtpA-Cu) was also involved in ROS generation; however, a paradoxical relation between cellular ROS level and cytotoxicity was observed. Further investigation indicated that DpdtpA could induce cell cycle arrest at the S phase; however, DpdtpA-Cu lacked this effect, which explained the difference in their antiproliferative activity.

  15. Copper Ion Attenuated the Antiproliferative Activity of Di-2-pyridylhydrazone Dithiocarbamate Derivative; However, There Was a Lack of Correlation between ROS Generation and Antiproliferative Activity

    Directory of Open Access Journals (Sweden)

    Tingting Wang

    2016-08-01

    Full Text Available The use of chelators for cancer treatment has been an alternative option. Dithiocarbamates have recently attracted considerable attention owning to their diverse biological activities; thus, the preparation of new dithiocarbamate derivatives with improved antitumor activity and selectivity as well as probing the underlying molecular mechanism are required. In this study, di-2-pyridylhydrazone dithiocarbamate S-propionic acid (DpdtpA and its copper complex were prepared and characterized, and its antiproliferative activity was evaluated. The proliferation inhibition assay showed that DpdtpA exhibited excellent antiproliferative effect in hepatocellular carcinoma (IC50 = 1.3 ± 0.3 μM for HepG2, and 2.5 ± 0.6 μM for Bel-7402. However, in the presence of copper ion, the antiproliferative activity of DpdtpA was dramatically attenuated (20–30 fold owing to the formation of copper chelate. A preliminarily mechanistic study revealed that reactive oxygen species (ROS generation mediated the antiproliferative activity of DpdtpA, and accordingly induced apoptosis, DNA cleavage, and autophagy. Surprisingly, the cytotoxicity of DpdtpA copper complex (DpdtpA–Cu was also involved in ROS generation; however, a paradoxical relation between cellular ROS level and cytotoxicity was observed. Further investigation indicated that DpdtpA could induce cell cycle arrest at the S phase; however, DpdtpA–Cu lacked this effect, which explained the difference in their antiproliferative activity.

  16. Linalool attenuates lung inflammation induced by Pasteurella multocida via activating Nrf-2 signaling pathway.

    Science.gov (United States)

    Wu, Qianchao; Yu, Lijun; Qiu, Jiaming; Shen, Bingyu; Wang, Di; Soromou, Lanan Wassy; Feng, Haihua

    2014-08-01

    Pasteurellosis caused by Pasteurella multocida manifest often as respiratory infection in farmed small ruminants. Although the incidence of pasteurellosis due to P. multocida mainly takes the form of pneumonia, there is limited information on host factors that play a role in disease pathogenesis in the milieu of host-pathogen interactions. Nuclear factor-erythroid 2 related factor 2 (Nrf-2), a critical regulator for various inflammatory and immune responses by controlling oxidative stress, may play an important role in the processes of inflammation induced by P. multocida. In this study, linalool, a natural compound of the essential oils in several aromatic plant species, elevated nuclear Nrf-2 protein translocation in the A549 lung cell line and in vivo. The P. multocida-induced pro-inflammatory cytokines expression was abrogated by Nrf-2 siRNA. Postponed treatment with linalool decreased lung neutrophil accumulation and enhanced clearance of P. multocida. Furthermore, linalool significantly increased the expression of antioxidant enzymes regulated by Nrf-2 and diminished lung tissue levels of several pro-inflammatory cytokines, including tumor necrosis factor α (TNF-α) and interleukin (IL)-6. In addition, animals treated with linalool had a marked improvement in survival. These findings have uncovered that linalool acts as a novel Nrf-2 activator for a novel therapeutic strategy in pathogen-mediated lung inflammation.

  17. 5-HT7 receptor activation attenuates thermal hyperalgesia in streptozocin-induced diabetic mice.

    Science.gov (United States)

    Ulugol, Ahmet; Oltulu, Cagatay; Gunduz, Ozgur; Citak, Cihad; Carrara, Roberto; Shaqaqi, Mohammad Reza; Sanchez, Alicia Mansilla; Dogrul, Ahmet

    2012-08-01

    The role of 5-HT7 receptors in the nociceptive processing received most attention during the last few years. The involvement of 5-HT₇ receptors in nerve injury-induced neuropathic pain states have been reported only recently; however, there are no reports on its contribution in diabetic neuropathic pain. We therefore planned to investigate the effect of 5-HT₇ receptor activation on the changes of nociceptive threshold in diabetic mice. Diabetes was induced by a single intraperitoneal injection of streptozocin (150 mg/kg, i.p.). The nociceptive responses in normal and diabetic animals were tested in the hot-plate and tail-flick assays. Both hot-plate and tail-flick latencies significantly shortened at 1-3/4 weeks (thermal hyperalgesia) and prolonged at 6-7 weeks (thermal hypoalgesia) after streptozocin administration. At the dose of 10 mg/kg, systemic injections of AS-19, a selective 5-HT₇ receptor agonist, reduced thermal hyperalgesia at early stage of diabetes, but did not influence thermal hypoalgesia at late stage. Co-administration of SB-258719, a selective 5-HT₇ receptor antagonist, at a dose that had no effect on its own (10 mg/kg), reversed the anti-hyperalgesic effect of AS-19. Our results indicate that systemic administration of 5-HT₇ receptor agonists may have clinical utility in treating diabetic neuropathic pain.

  18. Inhibition of 5-Lipoxygenase Pathway Attenuates Acute Liver Failure by Inhibiting Macrophage Activation

    Directory of Open Access Journals (Sweden)

    Lu Li

    2014-01-01

    Full Text Available This study aimed to investigate the role of 5-lipoxygenase (5-LO in acute liver failure (ALF and changes in macrophage activation by blocking it. ALF was induced in rats by administration of D-galactosamine (D-GalN/lipopolysaccharide (LPS. Rats were injected intraperitoneally with AA-861 (a specific 5-LO inhibitor, 24 hr before D-GalN/LPS administration. After D-GalN/LPS injection, the liver tissue was collected for assessment of histology, macrophage microstructure, macrophage counts, 5-LO mRNA formation, protein expression, and concentration of leukotrienes. Serum was collected for detecting alanine aminotransferase (ALT, aspartate transaminase (AST, total bilirubin (Tbil, and tumor necrosis factor- (TNF-α. Twenty-four hours after injection, compared with controls, ALF rats were characterized by widespread hepatocyte necrosis and elevated ALT, AST, and Tbil, and 5-LO protein expression reached a peak. Liver leukotriene B4 was also significantly elevated. However, 5-LO mRNA reached a peak 8 hr after D-GalN/LPS injection. Simultaneously, the microstructure of macrophages was changed most significantly and macrophages counts were increased significantly. Moreover, serum TNF-α was also elevated. By contrast, AA-861 pretreatment significantly decreased liver necrosis as well as all of the parameters compared with the rats without pretreatment. Macrophages, via the 5-LO pathway, play a critical role in ALF, and 5-LO inhibitor significantly alleviates ALF, possibly related to macrophage inhibition.

  19. Dextromethorphan Efficiently Increases Bactericidal Activity, Attenuates Inflammatory Responses, and Prevents Group A Streptococcal Sepsis▿ †

    Science.gov (United States)

    Li, Ming-Han; Luo, Yueh-Hsia; Lin, Chiou-Feng; Chang, Yu-Tzu; Lu, Shiou-Ling; Kuo, Chih-Feng; Hong, Jau-Shyong; Lin, Yee-Shin

    2011-01-01

    Group A streptococcus (GAS) is an important human pathogen that causes a wide spectrum of diseases, ranging from mild throat and skin infections to severe invasive diseases such as necrotizing fasciitis and streptococcal toxic shock syndrome. Dextromethorphan (DM), a dextrorotatory morphinan and a widely used antitussive drug, has recently been reported to possess anti-inflammatory properties. In this study, we investigated the potential protective effect of DM in GAS infection using an air pouch infection mouse model. Our results showed that DM treatment increased the survival rate of GAS-infected mice. Bacterial numbers in the air pouch were lower in mice treated with DM than in those infected with GAS alone. The bacterial elimination efficacy was associated with increased cell viability and bactericidal activity of air-pouch-infiltrating cells. Moreover, DM treatment prevented bacterial dissemination in the blood and reduced serum levels of the proinflammatory cytokines interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and IL-1β and the chemokines monocyte chemotactic protein 1 (MCP-1), macrophage inflammatory protein 2 (MIP-2), and RANTES. In addition, GAS-induced mouse liver injury was reduced by DM treatment. Taken together, DM can increase bacterial killing and reduce inflammatory responses to prevent sepsis in GAS infection. The consideration of DM as an adjunct treatment in combination with antibiotics against bacterial infection warrants further study. PMID:21199930

  20. Streptococcus pyogenes CAMP factor attenuates phagocytic activity of RAW 264.7 cells.

    Science.gov (United States)

    Kurosawa, Mie; Oda, Masataka; Domon, Hisanori; Saitoh, Issei; Hayasaki, Haruaki; Terao, Yutaka

    2016-02-01

    Streptococcus pyogenes produces molecules that inhibit the function of human immune system, thus allowing the pathogen to grow and spread in tissues. It is known that S. pyogenes CAMP factor increases erythrocytosis induced by Staphylococcus aureus β-hemolysin. However, the effects of CAMP factor for immune cells are unclear. In this study, we investigated the effects of CAMP factor to macrophages. Western blotting analysis demonstrated that all examined strains expressed CAMP factor protein. In the presence of calcium or magnesium ion, CAMP factor was significantly released in the supernatant. In addition, both culture supernatant from S. pyogenes strain SSI-9 and recombinant CAMP factor dose-dependently induced vacuolation in RAW 264.7 cells, but the culture supernatant from Δcfa isogenic mutant strain did not. CAMP factor formed oligomers in RAW 264.7 cells in a time-dependent manner. CAMP factor suppressed cell proliferation via G2 phase cell cycle arrest without inducing cell death. Furthermore, CAMP factor reduced the uptake of S. pyogenes and phagocytic activity indicator by RAW 264.7 cells. These results suggest that CAMP factor works as a macrophage dysfunction factor. Therefore, we conclude that CAMP factor allows S. pyogenes to escape the host immune system, and contribute to the spread of streptococcal infection.

  1. Valproic acid attenuates microgliosis in injured spinal cord and purinergic P2X4 receptor expression in activated microglia.

    Science.gov (United States)

    Lu, Wen-Hsin; Wang, Chih-Yen; Chen, Po-See; Wang, Jing-Wen; Chuang, De-Maw; Yang, Chung-Shi; Tzeng, Shun-Fen

    2013-05-01

    Peripheral injection with a high dose of valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, into animals with mild or moderate spinal cord injury (SCI) for 1 week can reduce spinal cord tissue loss and promote hindlimb locomotor recovery. A purinergic adenosine triphosphate (ATP) receptor subtype, P2X4 receptor (P2X4 R), has been considered as a potential target to diminish SCI-associated inflammatory responses. In this study, using a minipump-based infusion system, we found that intraspinal infusion with VPA for 3 days into injured spinal cord significantly improved hindlimb locomotion of rats with severe SCI induced by a 10-g NYU impactor dropping from the height of 50 mm onto the spinal T9/10 segment. The neuronal fibers in the injured spinal cord tissues were significantly preserved in VPA-treated rats compared with those observed in vehicle-treated animals. Moreover, the accumulation of microglia/macrophages and astrocytes in the injured spinal cord was attenuated in the animal group receiving VPA infusion. VPA also significantly reduced P2X4 R expression post-SCI. Furthermore, in vitro study indicated that VPA, but not the other HDAC inhibitors, sodium butyrate and trichostatin A (TSA), caused downregulation of P2X4 R in microglia activated with lipopolysaccharide (LPS). Moreover, p38 mitogen-activated protein kinase (MAPK)-triggered signaling was involved in the effect of VPA on the inhibition of P2X4 R gene expression. In addition to the findings from others, our results also provide important evidence to show the inhibitory effect of VPA on P2X4 R expression in activated microglia, which may contribute to reduction of SCI-induced gliosis and subsequently preservation of spinal cord tissues. © 2013 Wiley Periodicals, Inc.

  2. CpG-ODN attenuates pathological cardiac hypertrophy and heart failure by activation of PI3Kα-Akt signaling.