WorldWideScience

Sample records for attenuates endotoxin induced

  1. Escin attenuates acute lung injury induced by endotoxin in mice.

    Science.gov (United States)

    Xin, Wenyu; Zhang, Leiming; Fan, Huaying; Jiang, Na; Wang, Tian; Fu, Fenghua

    2011-01-18

    Endotoxin causes multiple organ dysfunctions, including acute lung injury (ALI). The current therapeutic strategies for endotoxemia are designed to neutralize one or more of the inflammatory mediators. Accumulating experimental evidence suggests that escin exerts anti-inflammatory and anti-edematous effects. The aim of this study was to evaluate the effect of escin on ALI induced by endotoxin in mice. ALI was induced by injection of lipopolysaccharide (LPS) intravenously. The mice were given dexamethasone or escin before injection of LPS. The mortality rate was recorded. Tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β) and nitric oxide (NO) were measured. Pulmonary superoxide dismutase (SOD), glutathione peroxidase (GPx) activity, glutathione (GSH), malondialdehyde (MDA) contents, and myeloperoxidase (MPO) activity were also determined. The expression of glucocorticoid receptor (GR) level was detected by Western blotting. Pretreatment with escin could decrease the mortality rate, attenuate lung injury resulted from LPS, down-regulate the level of the inflammation mediators, including NO, TNF-α, and IL-1β, enhance the endogenous antioxidant capacity, and up-regulating the GR expression in lung. The results suggest that escin may have potent protective effect on the LPS-induced ALI by inhibiting of the inflammatory response, and its mechanism involves in up-regulating the GR and enhancing the endogenous antioxidant capacity. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. An anti-interleukin-2 receptor drug attenuates T- helper 1 lymphocytes-mediated inflammation in an acute model of endotoxin-induced uveitis.

    Directory of Open Access Journals (Sweden)

    Salvador Mérida

    Full Text Available The aim of the present study was to evaluate the anti-inflammatory efficacy of Daclizumab, an anti-interleukin-2 receptor drug, in an experimental uveitis model upon a subcutaneous injection of lipopolysaccharide into Lewis rats, a valuable model for ocular acute inflammatory processes. The integrity of the blood-aqueous barrier was assessed 24 h after endotoxin-induced uveitis by evaluating two parameters: cell count and protein concentration in aqueous humors. The histopathology of all the ocular structures (cornea, lens, sclera, choroid, retina, uvea, and anterior and posterior chambers was also considered. Enzyme-linked immunosorbent assays of the aqueous humor samples were performed to quantify the levels of the different chemokine and cytokine proteins. Similarly, a biochemical analysis of oxidative stress-related markers was also assessed. The inflammation observed in the anterior chamber of the eyes when Daclizumab was administered with endotoxin was largely prevented since the aqueous humor protein concentration substantially lowered concomitantly with a significant reduction in the uveal and vitreous histopathological grading. Th1 lymphocytes-related cytokines, such as Interleukin-2 and Interferon-γ, also significantly reduced with related anti-oxidant systems recovery. Daclizumab treatment in endotoxin-induced uveitis reduced Th1 lymphocytes-related cytokines, such as Interleukin-2 and Interferon gamma, by about 60-70% and presented a preventive role in endotoxin-induced oxidative stress. This antioxidant protective effect of Daclizumab may be related to several of the observed Daclizumab effects in our study, including IL-6 cytokine regulatory properties and a substantial concomitant drop in INFγ. Concurrently, Daclizumab treatment triggered a significant reduction in both the uveal histopathological grading and protein concentration in aqueous humors, but not in cellular infiltration.

  3. Endotoxin pretreatment modifies peristalsis and attenuates the antipropulsive action of adrenoceptor agonists in the guinea-pig small intestine.

    Science.gov (United States)

    Fruhwald, S; Herk, E; Schöll, G; Shahbazian, A; Hammer, H F; Metzler, H; Holzer, P

    2004-04-01

    The action of endotoxin to alter gastrointestinal motility in vivo may reflect a direct effect on the gut or result from vascular and other systemic manifestations of this sepsis model. Here we examined whether in vivo pretreatment of guinea-pigs with endotoxin modifies peristalsis in the isolated gut and influences the antipropulsive action of adrenoceptor agonists. Distension-induced peristalsis was recorded in fluid-perfused segments of the small intestine taken from animals pretreated intraperitoneally with endotoxin (1 mg kg(-1)Escherichia coli lipopolysaccharide) or vehicle 4 or 20 h before. Clonidine, adrenaline, noradrenaline, dopamine and dobutamine inhibited peristalsis with differential potency. Endotoxin pretreatment lowered the peristaltic pressure threshold and altered other parameters of baseline peristalsis in a time-related manner. The potency and efficacy of clonidine to inhibit peristalsis were markedly decreased after endotoxin administration, while the potency of the other test drugs was less attenuated. The antipropulsive action of clonidine in control segments was reduced by yohimbine and prazosin, whereas in segments from endotoxin-pretreated animals it was antagonized by yohimbine but not prazosin. We conclude that systemic endotoxin pretreatment of guinea-pigs modifies baseline peristalsis by an action on the gut and inhibits the antipropulsive action of adrenoceptor agonists through changes in adrenoceptor activity.

  4. The redistribution of granulocytes following E. coli endotoxin induced sepsis

    DEFF Research Database (Denmark)

    Toft, P; Lillevang, S T; Tønnesen, Else Kirstine

    1994-01-01

    Infusion of endotoxin elicits granulocytopenia followed by increased numbers of granulocytes in peripheral blood. The purpose of this study was to investigate the redistribution and sequestration of granulocytes in the tissues following E. coli endotoxin induced sepsis. From 16 rabbits granulocytes...

  5. Analysis of interleukin-6 in endotoxin-induced uveitis

    NARCIS (Netherlands)

    Hoekzema, R.; Murray, P. I.; van Haren, M. A.; Helle, M.; Kijlstra, A.

    1991-01-01

    The mechanisms underlying the induction of intraocular inflammation in the rat model of endotoxin-induced uveitis (EIU) and the subsequent development of tolerance after repeated endotoxin injections are poorly understood. Interleukin-6 (IL-6) was measured in the aqueous humor and serum of Lewis

  6. The redistribution of granulocytes following E. coli endotoxin induced sepsis

    DEFF Research Database (Denmark)

    Toft, P; Lillevang, S T; Tønnesen, Else Kirstine

    1994-01-01

    Infusion of endotoxin elicits granulocytopenia followed by increased numbers of granulocytes in peripheral blood. The purpose of this study was to investigate the redistribution and sequestration of granulocytes in the tissues following E. coli endotoxin induced sepsis. From 16 rabbits granulocytes...... were isolated, labelled with Indium and reinjected intravenously. Eight rabbits received an infusion of E. coli endotoxin 2 micrograms kg-1 while eight received isotonic saline. The redistribution of granulocytes was imaged with a gamma camera and calculated with a connected computer before and 2 and 6...... hours after infusion of endotoxin or saline. Serum cortisol and interleukin-1 beta were measured. In another seven rabbits, respiratory burst activity and degranulation of granulocytes were measured prior to and from 5 min to 6 hours after infusion of E. coli endotoxin 2 micrograms kg-1 BW. Following...

  7. Inhibiting TNF-α signaling does not attenuate induction of endotoxin tolerance

    Directory of Open Access Journals (Sweden)

    Loosbroock C

    2014-12-01

    Full Text Available Christopher Loosbroock, Kenneth W Hunter Department of Microbiology and Immunology, University of Nevada School of Medicine, Reno, NV, USA Abstract: Tumor necrosis factor-alpha (TNF-α is a central mediator of inflammatory responses elicited by Toll-like receptor agonists, such as the Gram-negative bacterial outer membrane antigen lipopolysaccharide (LPS. TNF-α is responsible for altering vascular permeability and activating infiltrating inflammatory cells, such as monocytes and neutrophils. Interestingly, TNF-α has also demonstrated the ability to induce tolerance to subsequent challenges with TNF-α or LPS in monocyte and macrophage cell populations. Tolerance is characterized by the inability to mount a typical inflammatory response during subsequent challenges following the initial exposure to an inflammatory mediator such as LPS. The ability of TNF-α to induce a tolerant-like state with regard to LPS is most likely a regulatory mechanism to prevent excessive inflammation. We hypothesized that the induction of tolerance or the degree of tolerance is dependent upon the production of TNF-α during the primary response to LPS. To investigate TNF-α-dependent tolerance, human monocytic THP-1 cells were treated with TNF-α-neutralizing antibodies or antagonistic TNF-α receptor antibodies before primary LPS stimulation and then monitored for the production of TNF-α during the primary and challenge stimulation. During the primary stimulation, anti-TNF-α treatment effectively attenuated the production of TNF-α and interleukin-1β; however, this reduced production did not impact the induction of endotoxin tolerance. These results demonstrate that interfering with TNF-α signaling attenuates production of inflammatory cytokines without affecting the induction of tolerance. Keywords: endotoxin tolerance, lipopolysaccharide, tumor necrosis factor-alpha, anti-tumor necrosis factor-alpha, THP-1 cells

  8. Butyrate pretreatment attenuates heart depression in a mice model of endotoxin-induced sepsis via anti-inflammation and anti-oxidation.

    Science.gov (United States)

    Wang, Fangyan; Jin, Zengyou; Shen, Kaiyi; Weng, Tingting; Chen, Zhisong; Feng, Jiahui; Zhang, Zhengzheng; Liu, Jiaming; Zhang, Xiaolong; Chu, Maoping

    2017-03-01

    The depressed heart function is the main complication to cause death of septic patients in clinic. It is urgent to find effective interventions for this intractable disease. In this study, we investigated whether butyrate could be protective for heart against sepsis and the underlying mechanism. Mice were randomly divided into three groups. Model group challenged with LPS (30 mg/kg, i.p.) only. Butyrate group received butyrate (200 mg/kg·d) for 3days prior to LPS administration (30 mg/kg). Normal group received saline only. 6h and 12h after LPS administration were chosen for detection the parameters to estimate the effects or mechanism of butyrate pretreatment on heart of sepsis. The data showed that septic heart depression was attenuated by butyrate pretreatment through improvement of heart function depression (Pbutyrate pretreatment (Pbutyrate pretreatment (Pbutyrate attenuated septic heart depression via anti-inflammation and anti-oxidation. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Fingolimod against endotoxin-induced fetal brain injury in a rat model.

    Science.gov (United States)

    Yavuz, And; Sezik, Mekin; Ozmen, Ozlem; Asci, Halil

    2017-11-01

    Fingolimod is a sphingosine-1-phosphate receptor modulator used for multiple sclerosis treatment and acts on cellular processes such as apoptosis, endothelial permeability, and inflammation. We hypothesized that fingolimod has a positive effect on alleviating preterm fetal brain injury. Sixteen pregnant rats were divided into four groups of four rats each. On gestational day 17, i.p. endotoxin was injected to induce fetal brain injury, followed by i.p. fingolimod (4 mg/kg maternal weight). Hysterotomy for preterm delivery was performed 6 h after fingolimod. The study groups included (i) vehicle controls (i.p. normal saline only); (ii) positive controls (endotoxin plus saline); (iii) saline plus fingolimod; and (iv) endotoxin plus fingolimod treatment. Brain tissues of the pups were dissected for evaluation of interleukin (IL)-6, caspase-3, and S100β on immunohistochemistry. Maternal fingolimod treatment attenuated endotoxin-related fetal brain injury and led to lower immunoreactions for IL-6, caspase-3, and S100β compared with endotoxin controls (P < 0.0001 for all comparisons). Antenatal maternal fingolimod therapy had fetal neuroprotective effects by alleviating preterm birth-related fetal brain injury with inhibitory effects on inflammation and apoptosis. © 2017 Japan Society of Obstetrics and Gynecology.

  10. A Meningococcal Outer Membrane Vesicle Vaccine Incorporating Genetically Attenuated Endotoxin Dissociates Inflammation From Immunogenicity

    Directory of Open Access Journals (Sweden)

    David J. Dowling

    2016-12-01

    Full Text Available Background. Group B Neisseria meningitidis, an endotoxin-producing gram-negative bacterium, causes the highest incidence of group B meningococcus (MenB disease in the first year of life. The Bexsero vaccine is indicated in Europe from 8 weeks of age. Endotoxin components of outer membrane vesicles (OMVs or soluble lipopolysaccharide (LPS represent a potential source of inflammation and residual reactogenicity. The purpose of this study was to compare novel candidate MenB vaccine formulations with licensed vaccines, including Bexsero, using age-specific in vitro culture systems.Methods. OMVs from wild type and inactivated lpxL1 gene mutant N. meningitidis strains were characterized in human neonatal and adult in vitro whole blood assays and dendritic cell arrays. OMVs were benchmarked against licensed vaccines, including Bexsero and whole cell pertussis formulations, with respect to Th-polarizing cytokine and PGE2 production, as well as cell surface activation markers (HLA-DR, CD86, CCR7. OMV immunogenicity was assessed in mice.Results. ΔlpxLI native OMVs demonstrated significantly less cytokine induction in human blood and DCs than Bexsero and most of the other pediatric vaccines (e.g., PedvaxHib, EasyFive, Bacillus Calmette–Guérin (BCG tested. Despite a much lower inflammatory profile in vitro than Bexsero, ΔlpxLI native OMVs still had moderate DC maturing ability and induced robust anti-N. meningitidis antibody responses after murine immunization.Conclusions. A meningococcal vaccine comprised of attenuated LPS-based OMVs with a limited inflammatory profile in vitro induces robust antigen-specific immunogenicity in vivo.

  11. Endotoxin-induced antitumor activity in the mouse is highly potentiated by muramyl dipeptide

    NARCIS (Netherlands)

    Hofhuis, F.M.A.; Bloksma, N.; Willers, J.M.N.

    1984-01-01

    The ability of aqueous solutions of various endotoxin preparations, muramyl dipeptide (MDP) and combinations of endotoxin and MDP, to induce necrosis and regression of subcutaneous Meth A transplants in mice and their toxicity were studied. While intravenously injected toxic endotoxins, in contrast

  12. Binding of /sup 125/I-labeled endotoxin to bovine, canine, and equine platelets and endotoxin-induced agglutination of canine platelets

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, K.M.; Boehme, M.; Inbar, O.

    1982-10-01

    Endotoxin from Escherichia coli O127:B8, Salmonella abortus-equi and S minnesota induced clumping of some canine platelets (PLT) at a final endotoxin concentration of 1 microgram/ml. Endotoxin-induced clumping of canine PLT was independent of PLT energy-requiring processes, because clumping was observed with canine PLT incubated with 2-deoxy-D-glucose and antimycin A. The PLT responded to adenosine diphosphate before, but not after, incubation with the metabolic inhibitors. Endotoxin induced a slight and inconsistant clumping of bovine and equine PLT at high (mg/ml) endotoxin concentration. High-affinity binding sites could not be demonstrated on canine, bovine, and equine PLT, using /sup 125/I-labeled E coli O127:B8 endotoxin. Nonspecific binding was observed and appeared to be due primarily to an extraneous coat on the PLT surface that was removed by gel filtration. The endotoxin that was bound to PLT did not appear to modify PLT function. An attempt to identify plasma proteins that bound physiologically relevant amounts of endotoxin was not successful. The significance of the endotoxin-induced clumping or lack of it on the pathophysiology of endotoxemia is discussed.

  13. Inhalation toxicology models of endotoxin- and bioaerosol-induced inflammation.

    Science.gov (United States)

    Thorne, P S

    2000-11-02

    Inhalation toxicology studies in rodents have proven their usefulness for furthering our understanding of the causal agents, mechanisms, and pathology associated with exposures to environmental endotoxins and bioaerosols. Inhalation animal models are used to determine which components of a mixture are the most important toxicants for inducing the observed adverse outcome. They are used to obtain exposure-response relationships for allergens and pro-inflammatory agents to help elucidate disease mechanisms and contribute quantitative data to the risk assessment process. Inhalation models serve as important adjuncts to epidemiology studies and human exposure studies. They are also useful for establishing phenotype in studies of genetic polymorphisms and disease susceptibility and are widely applied for evaluation of safety and efficacy for potential therapeutic agents. In order to produce reliable data, rigorous exposure chamber design, aerosol generation systems, exposure quantitation and experimental protocols must be utilized.

  14. Acute hemodynamic changes during lung recruitment in lavage and endotoxin-induced ALI.

    Science.gov (United States)

    Odenstedt, Helena; Aneman, Anders; Kárason, Sigurbergur; Stenqvist, Ola; Lundin, Stefan

    2005-01-01

    To assess acute cardiorespiratory effects of recruitment manoeuvres in experimental acute lung injury. Experimental study in animal models of acute lung injury. Experimental laboratory at a University Medical Centre. Ten pigs with bronchoalveolar lavage and eight pigs with endotoxin-induced ALI. Two kinds of recruitment manoeuvres during 1 min; a) vital capacity manoeuvres (ViCM) consisting in a sustained inflation at 30 cmH(2)O and 40 cmH(2)O; b) manoeuvres obtained during ongoing pressure-controlled ventilation (PCRM) with peak airway pressure 30 cmH(2)O, positive end-expiratory pressure (PEEP) 15 and peak airway pressure 40, PEEP 20. Recruitment manoeuvres were repeated after volume expansion (dextran 8 ml/kg). Oxygenation, mean arterial, and pulmonary artery pressures, aortic, mesenteric, and renal blood flow were monitored. Lower pressure recruitment manoeuvres (ViCM30 and PCRM30/15) did not significantly improve oxygenation. With ViCM and PCRM at peak airway pressure 40 cmH(2)O, PaO(2) increased to similar levels in both lavage and endotoxin groups. Aortic blood flow was reduced from baseline during PCRM40/20 and ViCM40 by 57+/-3% and 61+/-6% in the lavage group and by 57+/-8% and 82+/-7% (Pdepression may be attenuated using recruitment manoeuvres during ongoing pressure-controlled ventilation and by prior volume expansion.

  15. Comparison Between the Polymyxins and Gentamicin in Preventing Endotoxin-Induced Intravascular Coagulation and Leukopenia

    Science.gov (United States)

    Corrigan, James J.; Bell, Bobbie M.

    1971-01-01

    Three antimicrobial agents were evaluated as to their ability to neutralize the toxic effects of endotoxin in rabbits. These consisted of two cyclic polypeptides, polymyxin B sulfate and colymycin M (sodium colistimethate), and an aminoglycoside, gentamicin sulfate. Polymyxin B regularly prevented endotoxin-induced leukopenia, thrombocytopenia, and disseminated intravascular coagulation. Colymycin M had similar activity but was not as effective as polymyxin B. Gentamicin demonstrated no neutralizing ability in this study. PMID:4343409

  16. Influence of endotoxin-induced sepsis on the requirements of propofol-fentanyl infusion rate in pigs

    DEFF Research Database (Denmark)

    Bollen, Peter; Nielsen, Bjørn J; Toft, Palle

    2007-01-01

    Endotoxin-induced sepsis in pigs is a recognized experimental model for the study of human septic shock. Generally, pigs are brought into general anaesthesia before sepsis is induced. It is our experience that drug dosages of propofol and fentanyl need to be reduced during endotoxin-induced sepsi...

  17. Expression Profile of Cationic Amino Acid Transporters in Rats with Endotoxin-Induced Uveitis

    Directory of Open Access Journals (Sweden)

    Yung-Ray Hsu

    2016-01-01

    Full Text Available Purpose. The transcellular arginine transportation via cationic amino acid transporter (CAT is the rate-limiting step in nitric oxide (NO synthesis, which is crucial in intraocular inflammation. In this study, CAT isoforms and inducible nitric oxide synthase (iNOS expression was investigated in endotoxin-induced uveitis (EIU. Methods. EIU was induced in Lewis rats by lipopolysaccharide (LPS injection. In the treatment group, the rats were injected intraperitoneally with the proteasome inhibitor bortezomib before EIU induction. After 24 hours, leukocyte quantification, NO measurement of the aqueous humor, and histopathological examination were evaluated. The expression of CAT isoforms and iNOS was determined by reverse transcription-polymerase chain reaction, western blotting, and immunofluorescence staining. Nuclear factor-kappa B (NF-κB binding activity was evaluated by electrophoretic mobility shift assay. The mouse macrophage cell line RAW 264.7 was used to validate the in vivo findings. Results. LPS significantly stimulated iNOS, CAT-2A, and CAT-2B mRNA and protein expression but did not affect CAT-1 in EIU rats and RAW 264.7 cells. Bortezomib attenuated inflammation and inhibited iNOS, CAT-2A, and CAT-2B expression through NF-κB inhibition. Conclusions. CAT-2 and iNOS, but not CAT-1, are specifically involved in EIU. NF-κB is essential in the induction of CAT-2 and iNOS in EIU.

  18. Endotoxin-induced liver damage in rats is minimized by beta 2-adrenoceptor stimulation.

    NARCIS (Netherlands)

    Izeboud, C.A.; Hoebe, K.H.; Grootendorst, A.F.; Nijmeijer, S.M.; Miert, A.S. van; Witkamp, R.R.; Rodenburg, R.J.T.

    2004-01-01

    OBJECTIVE AND DESIGN: To investigate the effects of beta(2)-adrenoceptor (beta(2)-AR) stimulation on endotoxin-induced liver damage and systemic cytokine levels in rats. SUBJECTS: Standard male Wistar rats. TREATMENT: A disease-model of lipopolysaccharide (LPS)-induced acute systemic inflammation

  19. Endotoxin-induced liver damage in rats is minimized by β2- adrenoceptor stimulation

    NARCIS (Netherlands)

    Izeboud, C.A.; Hoebe, K.H.N.; Grootendorst, A.F.; Nijmeijer, S.M.; Miert, A.S. van; Witkamp, R.F.; Rodenburg, R.J.T.

    2004-01-01

    Objective and Design: To investigate the effects of β2- adrenoceptor (β2-AR) stimulation on endotoxin-induced liver damage and systemic cytokine levels in rats. Subjects: Standard male Wistar rats. Treatment: A disease-model of lipolysaccharide (LPS)-induced acute systemic inflammation was used. The

  20. Looped limulus anti-lipopolysaccharide derived peptide CLP-19 induces endotoxin tolerance involved inhibition of NF-κB activation.

    Science.gov (United States)

    Yang, Ya; Li, Di; Tian, Zhiqiang; Lv, Jun; Sun, Fengjun; Wang, Qian; Liu, Yao; Xia, Peiyuan

    2016-11-18

    Endotoxin tolerance (ET) is a complex protective mechanism against endotoxin shock. The looped CLP-19 peptide derived from Limulus anti-LPS peptide induced the ET phenomenon but the molecular mechanism has yet to be fully elucidated. Here, we confirmed that CLP-19 attenuated upon LPS stimulated pro-inflammatory factor secretion of TNF-α and IL-6 but increased anti-inflammatory factor production of IL-10 in dose- and time-dependent manners. CLP-19 also inhibited subsequent LPS stimulated expression of TLR4 on the cell membrane. Moreover, the CLP-19 inhibited degradation of the inhibitor of NF-κB (IκBα and IκBβ) and reduced LPS induced NF-κB activity, but not of effects on expression of MyD88 and TRAF-6. Finally CLP-19 significantly increased survival of lethal LPS shock mouse models with significantly less pathological injury to lung. These findings collectively suggest that CLP-19 induces ET phenomenon involved inhibition of NF-κB activation. In conclusion, this study has revealed a novel function of CLP-19 that appears to represent a potential therapeutic agent for clinical treatment of septic shock. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Effect of plasmapheresis on the immune system in endotoxin-induced sepsis

    DEFF Research Database (Denmark)

    Toft, P; Schmidt, R; Broechner, A C

    2008-01-01

    BACKGROUND: It has been proposed that plasmapheresis is most effective when applied early in Gram-negative sepsis. We therefore studied the effect of early plasmapheresis on immunity in experimental Escherichia coli endotoxin-induced sepsis. METHODS: 20 pigs received 30 microg/kg of E. coli...

  2. Endotoxin-induced uveitis in the rat. The significance of intraocular interleukin-6

    NARCIS (Netherlands)

    Hoekzema, R.; Verhagen, C.; van Haren, M.; Kijlstra, A.

    1992-01-01

    The potential role of interleukin-6 (IL-6) was studied as an inflammatory mediator of endotoxin (or lipopolysaccharide [LPS])-induced uveitis (EIU) in the rat. In young Lewis rats, levels of intraocular IL-6, but not serum IL-6, correlated with the severity of uveitis and with aqueous humor protein

  3. Endotoxin induced chorioamnionitis prevents intestinal development during gestation in fetal sheep.

    Directory of Open Access Journals (Sweden)

    Tim G A M Wolfs

    Full Text Available Chorioamnionitis is the most significant source of prenatal inflammation and preterm delivery. Prematurity and prenatal inflammation are associated with compromised postnatal developmental outcomes, of the intestinal immune defence, gut barrier function and the vascular system. We developed a sheep model to study how the antenatal development of the gut was affected by gestation and/or by endotoxin induced chorioamnionitis.Chorioamnionitis was induced at different gestational ages (GA. Animals were sacrificed at low GA after 2d or 14d exposure to chorioamnionitis. Long term effects of 30d exposure to chorioamnionitis were studied in near term animals after induction of chorioamnionitis. The cellular distribution of tight junction protein ZO-1 was shown to be underdeveloped at low GA whereas endotoxin induced chorioamnionitis prevented the maturation of tight junctions during later gestation. Endotoxin induced chorioamnionitis did not induce an early (2d inflammatory response in the gut in preterm animals. However, 14d after endotoxin administration preterm animals had increased numbers of T-lymphocytes, myeloperoxidase-positive cells and gammadelta T-cells which lasted till 30d after induction of chorioamnionitis in then near term animals. At early GA, low intestinal TLR-4 and MD-2 mRNA levels were detected which were further down regulated during endotoxin-induced chorioamnionitis. Predisposition to organ injury by ischemia was assessed by the vascular function of third-generation mesenteric arteries. Endotoxin-exposed animals of low GA had increased contractile response to the thromboxane A2 mimetic U46619 and reduced endothelium-dependent relaxation in responses to acetylcholine. The administration of a nitric oxide (NO donor completely restored endothelial dysfunction suggesting reduced NO bioavailability which was not due to low expression of endothelial nitric oxide synthase.Our results indicate that the distribution of the tight

  4. Endotoxin-induced and vaccine-induced systemic inflammation both impair endothelium-dependent vasodilation, but not pulse wave reflection

    Directory of Open Access Journals (Sweden)

    Lind L

    2012-07-01

    Full Text Available Lars Lind,1 Johannes Hulthe,2,3 Annika Johansson,3 Ewa Hedner31Department of Medicine, University Hospital, Uppsala, 2Sahlgrenska Hospital, Gothenburg, 3AstraZeneca Research and Development, Mölndal, SwedenBackground: Inflammation induced by either endotoxin or vaccination has previously been shown to impair endothelium-dependent vasodilation (EDV in healthy young individuals. However, the vascular effects of these two mechanisms of inducing inflammation have not been compared in the same individuals.Methods: Twelve young healthy males were studied at the same time of the day on three occasions in a random order; on one occasion 4 hours following an endotoxin injection (Escherichia coli endotoxin, 20 IU/kg, on another occasion 8 hours following vaccination against Salmonella typhi, and on a third occasion 4 hours following a saline control injection. EDV and endothelium-independent vasodilation (EIDV were evaluated by local infusions of acetylcholine and sodium nitroprusside in the brachial artery, and forearm blood flow was measured with venous occlusion plethysmography. The augmentation index was determined by pulse wave analysis as an index of pulse wave reflection.Results: Both endotoxin and vaccination impaired EDV to a similar degree compared with the saline control (P = 0.005 and P = 0.014, respectively. EIDV was not significantly affected by inflammation. Endotoxin, but not vaccination, increased body temperature and circulating levels of intracellular adhesion molecule-1 and interleukin-6. Augmentation index was not affected by the interventions.Conclusion: Despite the fact that endotoxin induced a more pronounced degree of inflammation than vaccination, both inflammatory challenges impaired EDV to a similar degree, supporting the view that different inflammatory stimuli could induce harmful effects on the vasculature.Keywords: endothelium, endotoxin, vaccination, vasodilation, inflammation

  5. Effects of the immunomodulator, VGX-1027, in endotoxin-induced uveitis in Lewis rats

    DEFF Research Database (Denmark)

    Mangano, K; Sardesai, N Y; Quattrocchi, C

    2008-01-01

    VGX-1027 is a novel, low molecular weight, immunomodulatory compound that has shown efficacy against a variety of immuno-inflammatory disease models in animals including autoimmune diabetes in NOD mice, collagen-induced arthritis and chemically induced inflammatory colitis. Here, we have studied ...... the effects of VGX-1027 on the development of endotoxin-induced uveitis (EIU) in male Lewis rats, as a model of inflammatory ocular diseases in humans....

  6. Expression Profile of Cationic Amino Acid Transporters in Rats with Endotoxin-Induced Uveitis

    OpenAIRE

    Yung-Ray Hsu; Shu-Wen Chang; Chang-Hao Yang; Yi-An Lee; Tzu-Yun Kao

    2016-01-01

    Purpose. The transcellular arginine transportation via cationic amino acid transporter (CAT) is the rate-limiting step in nitric oxide (NO) synthesis, which is crucial in intraocular inflammation. In this study, CAT isoforms and inducible nitric oxide synthase (iNOS) expression was investigated in endotoxin-induced uveitis (EIU). Methods. EIU was induced in Lewis rats by lipopolysaccharide (LPS) injection. In the treatment group, the rats were injected intraperitoneally with the proteasome in...

  7. Endotoxin induces fibrosis in vascular endothelial cells through a mechanism dependent on transient receptor protein melastatin 7 activity.

    Directory of Open Access Journals (Sweden)

    Cesar Echeverría

    Full Text Available The pathogenesis of systemic inflammatory diseases, including endotoxemia-derived sepsis syndrome, is characterized by endothelial dysfunction. It has been demonstrated that the endotoxin lipopolysaccharide (LPS induces the conversion of endothelial cells (ECs into activated fibroblasts through endothelial-to-mesenchymal transition mechanism. Fibrogenesis is highly dependent on intracellular Ca2+ concentration increases through the participation of calcium channels. However, the specific molecular identity of the calcium channel that mediates the Ca2+ influx during endotoxin-induced endothelial fibrosis is still unknown. Transient receptor potential melastatin 7 (TRPM7 is a calcium channel that is expressed in many cell types, including ECs. TRPM7 is involved in a number of crucial processes such as the conversion of fibroblasts into activated fibroblasts, or myofibroblasts, being responsible for the development of several characteristics of them. However, the role of the TRPM7 ion channel in endotoxin-induced endothelial fibrosis is unknown. Thus, our aim was to study whether the TRPM7 calcium channel participates in endotoxin-induced endothelial fibrosis. Using primary cultures of ECs, we demonstrated that TRPM7 is a crucial protein involved in endotoxin-induced endothelial fibrosis. Suppression of TRPM7 expression protected ECs from the fibrogenic process stimulated by endotoxin. Downregulation of TRPM7 prevented the endotoxin-induced endothelial markers decrease and fibrotic genes increase in ECs. In addition, TRPM7 downregulation abolished the endotoxin-induced increase in ECM proteins in ECs. Furthermore, we showed that intracellular Ca2+ levels were greatly increased upon LPS challenge in a mechanism dependent on TRPM7 expression. These results demonstrate that TRPM7 is a key protein involved in the mechanism underlying endotoxin-induced endothelial fibrosis.

  8. Piroxicam Reverses Endotoxin-Induced Hypotension in Rats: Contribution of Vasoactive Eicosanoids and Nitric Oxide

    Science.gov (United States)

    Buharalioglu, C. Kemal; Korkmaz, Belma; Cuez, Tuba; Sahan-Firat, Seyhan; Sari, Ayşe Nihal; Malik, Kafait U.; Tunctan, Bahar

    2011-01-01

    Nitric oxide (NO) produced by inducible NO synthase (iNOS) is responsible for endotoxin-induced vascular hyporeactivity and hypotension resulting in multiple organ failure. Endotoxic shock is also characterized by decreased expression of constitutive cyclooxygenase (COX-1), cytochrome P450 (CYP) 4A and endothelial NOS (eNOS). Our previous studies demonstrated that dual inhibition of iNOS and COX with a selective COX-2 inhibitor, NS-398, or a non-selective COX inhibitor, indomethacin, restores blood pressure presumably due to increased production of 20-hydroxyeicosatetraenoic acid (20-HETE) derived from arachidonic acid (AA) by CYP4A in endotoxaemic rats. The aim of this study was to investigate the effects of piroxicam, a preferential COX-1 inhibitor, on the endotoxin-induced changes in blood pressure, expression of COX-1, inducible COX (COX-2), CYP4A1, eNOS, iNOS and heat shock protein 90 (hsp90), and production of PGI2, PGE2, 20-HETE and NO. Injection of endotoxin (10 mg/kg, i.p.) to male Wistar rats caused a fall in blood pressure and an increase in heart rate associated with elevated renal 6-keto-PGF1α and PGE2 levels as well as an increase in COX-2 protein expression. Endotoxin also caused an elevation in systemic and renal nitrite levels associated with increased renal iNOS protein expression. In contrast, systemic and renal 20-HETE levels and renal expression of eNOS, COX-1 and CYP4A1 were decreased in endotoxaemic rats. The effects of endotoxin, except for renal COX-1 and eNOS protein expression, were prevented by piroxicam (10 mg/kg, i.p.), given 1 hr after injection of endotoxin. Endotoxin did not change renal hsp90 protein expression. These data suggest that a decrease in the expression and activity of COX-2 and iNOS associated with an increase in CYP4A1 expression and 20-HETE synthesis contributes to the effect of piroxicam to prevent the hypotension during rat endotoxaemia. PMID:21463481

  9. Endotoxin-induced inflammation disturbs melatonin secretion in ewe.

    Science.gov (United States)

    Herman, Andrzej Przemysław; Wojtulewicz, Karolina; Bochenek, Joanna; Krawczyńska, Agata; Antushevich, Hanna; Pawlina, Bartosz; Zielińska-Górska, Marlena; Herman, Anna; Romanowicz, Katarzyna; Tomaszewska-Zaremba, Dorota

    2017-12-01

    The study examined the effect of intravenous administration of bacterial endotoxin-lipopolysaccharide (LPS) -on the nocturnal secretion of melatonin and on the expression of enzymes of the melatonin biosynthetic pathway in the pineal gland of ewes, taking into account two different photoperiodic conditions: short-night (SN; n = 12) and long-night (LN; n = 12). In both experiments, animals (n = 12) were randomly divided into two groups: control (n = 6) and LPS-treated (n = 6) one. Two hours after sunset, animals received an injection of LPS or saline. Blood samples were collected starting one hour after sunset and continuing for 3 hours after the treatment. The ewes were euthanized 3 hours after LPS/saline treatment. The concentration of hormones in plasma was assayed by radioimmunoassay. In the pineal gland, the content of serotonin and its metabolite was determined by HPLC; whereas the expression of examined genes and protein was assayed using real-time polymerase chain reaction and Western Blot, respectively. Endotoxin administration lowered (pewes from SN photoperiod only in the third hour after the injection. Inflammation more substantially suppressed biosynthesis of melatonin in ewes from SN photoperiod, which were also characterised by lower (pewes subjected to SN photoperiod, LPS reduced (p<0.05) serotonin content and the expression of melatonin biosynthetic pathway enzymes, such as tryptophan hydroxylase and arylalkylamine-N-acetyltransferase. Pineal activity may be disturbed by circulating LPS and proinflammatory cytokines because the expression of mRNAs encoding their corresponding receptors was determined in this gland. The present study showed that peripheral inflammation reduces the secretion of melatonin, but this effect may be influenced by the photoperiod.

  10. Endotoxin-induced inflammation disturbs melatonin secretion in ewe

    Directory of Open Access Journals (Sweden)

    Andrzej Przemysław Herman

    2017-12-01

    Full Text Available Objective The study examined the effect of intravenous administration of bacterial endotoxin—lipopolysaccharide (LPS —on the nocturnal secretion of melatonin and on the expression of enzymes of the melatonin biosynthetic pathway in the pineal gland of ewes, taking into account two different photoperiodic conditions: short-night (SN; n = 12 and long-night (LN; n = 12. Methods In both experiments, animals (n = 12 were randomly divided into two groups: control (n = 6 and LPS-treated (n = 6 one. Two hours after sunset, animals received an injection of LPS or saline. Blood samples were collected starting one hour after sunset and continuing for 3 hours after the treatment. The ewes were euthanized 3 hours after LPS/saline treatment. The concentration of hormones in plasma was assayed by radioimmunoassay. In the pineal gland, the content of serotonin and its metabolite was determined by HPLC; whereas the expression of examined genes and protein was assayed using real-time polymerase chain reaction and Western Blot, respectively. Results Endotoxin administration lowered (p<0.05 levels of circulating melatonin in animals from LN photoperiod only during the first hour after treatment, while in ewes from SN photoperiod only in the third hour after the injection. Inflammation more substantially suppressed biosynthesis of melatonin in ewes from SN photoperiod, which were also characterised by lower (p<0.05 cortisol concentrations after LPS treatment compared with animals from LN photoperiod. In the pineal gland of ewes subjected to SN photoperiod, LPS reduced (p<0.05 serotonin content and the expression of melatonin biosynthetic pathway enzymes, such as tryptophan hydroxylase and arylalkylamine-N-acetyltransferase. Pineal activity may be disturbed by circulating LPS and proinflammatory cytokines because the expression of mRNAs encoding their corresponding receptors was determined in this gland. Conclusion The present study showed that peripheral

  11. Effects of aging on endotoxin tolerance induced by lipopolysaccharides derived from Porphyromonas gingivalis and Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Ying Sun

    Full Text Available Periodontitis is a bacterially induced chronic inflammatory disease. Exposure of the host to periodontal pathogens and their virulence factors induces a state of hyporesponsiveness to subsequent stimulations, termed endotoxin tolerance. Aging has a profound effect on immune response to bacteria challenge. The aim of this study was to explore the effects of aging on endotoxin tolerance induced by Porphyromonas gingivalis (P. gingivalis lipopolysaccharide (LPS and Escherichia coli (E. coli LPS in murine peritoneal macrophages.We studied the cytokine production (TNF-α and IL-10 and Toll-like receptor 2, 4 (TLR2, 4 gene and protein expressions in peritoneal macrophages from young (2-month-old and middle-aged (12-month-old ICR mice following single or repeated P. gingivalis LPS or E. coli LPS stimulation. Pretreatment of peritoneal macrophages with P. gingivalis LPS or E. coli LPS resulted in a reduction in TNF-α production and an increase in IL-10 production upon secondary stimulation (p<0.05, and the markedly lower levels of TNF-α and higher levels of IL-10 were observed in macrophages from young mice compared with those from middle-aged mice (p<0.05. In addition, LPS restimulations also led to the significantly lower expression levels of TLR2, 4 mRNA and protein in macrophages from young mice (p<0.05.Repeated LPS stimulations triggered endotoxin tolerance in peritoneal macrophages and the ability to develop tolerance in young mice was more excellent. The impaired ability to develop endotoxin tolerance resulted from aging might be related to TLR2, 4 and might lead to the incontrollable periodontal inflammation in older adults.

  12. Fucoidan Extracted from Fucus evanescens Prevents Endotoxin-Induced Damage in a Mouse Model of Endotoxemia

    Directory of Open Access Journals (Sweden)

    Tatyana A. Kuznetsova

    2014-01-01

    Full Text Available An important problem of treating patients with endotoxemia is to find drugs to reduce the negative effects of endotoxin on the organism. We tested fucoidan (sulfated polysaccharide from the brown alga Fucus evanescens as a potential drug in a mouse model of endotoxemia inducted by lipopolysaccharide (LPS. The survival time of mice injected with LPS increased under fucoidan treatment compared with the group of mice injected with LPS only. The preventive administration of fucoidan to mice with endotoxemia resulted in inhibition of increased levels of proinflammatory cytokines (TNFα and IL-6, as well as decreasing of the processes of hypercoagulability. The parenteral or per os administration of fucoidan resulted in decreasing the degree of microcirculatory disorders and secondary dystrophic-destructive changes in parenchymal organs of mice with endotoxemia. Taken together, these results demonstrate that fucoidan prevents endotoxin-induced damage in a mouse model of endotoxemia and increases the mice’s resistance to LPS.

  13. Mitochondrial DAMPs induce endotoxin tolerance in human monocytes: an observation in patients with myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Irene Fernández-Ruiz

    Full Text Available Monocyte exposure to mitochondrial Danger Associated Molecular Patterns (DAMPs, including mitochondrial DNA (mtDNA, induces a transient state in which these cells are refractory to further endotoxin stimulation. In this context, IRAK-M up-regulation and impaired p65 activity were observed. This phenomenon, termed endotoxin tolerance (ET, is characterized by decreased production of cytokines in response to the pro-inflammatory stimulus. We also show that monocytes isolated from patients with myocardial infarction (MI exhibited high levels of circulating mtDNA, which correlated with ET status. Moreover, a significant incidence of infection was observed in those patients with a strong tolerant phenotype. The present data extend our current understanding of the implications of endotoxin tolerance. Furthermore, our data suggest that the levels of mitochondrial antigens in plasma, such as plasma mtDNA, should be useful as a marker of increased risk of susceptibility to nosocomial infections in MI and in other pathologies involving tissue damage.

  14. Immunization of cows with novel core glycolipid vaccine induces anti-endotoxin antibodies in bovine colostrum.

    Science.gov (United States)

    Cross, Alan S; Karreman, Hubert J; Zhang, Lei; Rosenberg, Zeil; Opal, Steven M; Lees, Andrew

    2014-10-21

    Translocation of gut-derived Gram-negative bacterial (GNB) lipopolysaccharide (LPS, or endotoxin) is a source of systemic inflammation that exacerbates HIV, cardiovascular and gastrointestinal diseases and malnutrition. The oral administration of bovine colostrum (BC) reduces endotoxemia in patients with impaired gut barrier function. Consequently, BC enriched in antibodies to LPS may ameliorate endotoxemia-related morbidities. We developed a detoxified J5 LPS/group B meningococcal outer membrane protein (J5dLPS/OMP) vaccine that induces antibodies against a highly conserved core region of LPS and protects against heterologous GNB infection. We now examine the ability of this vaccine to elicit anti-core endotoxin antibodies in BC. Two cohorts of pregnant cows were immunized with this vaccine in combination with FICA (Cohort 1) or Emulsigen-D (Cohort 2) adjuvants. Antibody responses to the J5 core LPS antigen were measured in both serum and colostrum and compared to antibody levels elicited by a commercially available veterinary vaccine (J5 Bacterin) comprised of heat-killed Escherichia coli O111, J5 mutant bacteria, from which the J5 LPS was purified. The J5dLPS/OMP vaccine induced high titers of serum IgG antibody to J5 LPS in all seven cows. Both IgG and to a lesser extent IgA anti-J5 LPS antibodies were generated in the colostrum. The J5dLPS/OMP vaccine was significantly more immunogenic in mice than was the J5 Bacterin. BC enriched in anti-J5 LPS antibody reduced circulating endotoxin levels in neutropenic rats, a model of "leaky gut". The J5dLPS/OMP vaccine elicits high titers of serum anti-endotoxin antibodies in cows that is passed to the colostrum. This BC enriched in anti-core LPS antibodies has the potential to reduce endotoxemia and ameliorate endotoxin-related systemic inflammation in patients with impaired gut barrier function. Since this vaccine is significantly more immunogenic than the J5 Bacterin vaccine, this J5dLPS/OMP vaccine might prove to be

  15. IgA against gut-derived endotoxins: does it contribute to suppression of hepatic inflammation in alcohol-induced liver disease?

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Schäfer, C.; Bode, C.

    2002-01-01

    , endotoxin, and acute-phase proteins were measured in patients with different stages of alcoholic liver disease and in healthy controls. Antibodies of type IgA, but not IgG, against fecal endotoxins were significantly increased in patients with alcohol-induced liver disease. IgA antibodies against fecal......Endotoxins of intestinal origin are supposed to play an important role in the development of alcoholic hepatitis in man. To estimate the role of immunoglobulin response to gut-derived endotoxin in the development of alcohol-induced liver disease, serum levels of IgA and IgG against fecal endotoxin...... endotoxin were found to be closely correlated with the plasma concentrations of alanine aminotransferase, gamma-glutamyl transferase, and C-reactive protein in patients with alcoholic liver disease. In conclusion, as IgA located in body tissue was shown to suppress the inflammatory process, enhanced...

  16. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans

    DEFF Research Database (Denmark)

    Starkie, Rebecca; Ostrowski, Sisse Rye; Jauffred, Sune

    2003-01-01

    and atherosclerosis. To test this hypothesis, we performed three experiments in which eight healthy males either rested (CON), rode a bicycle for 3 h (EX), or were infused with recombinant human IL-6 (rhIL-6) for 3 h while they rested. After 2.5 h, the volunteers received a bolus of Escherichia coli...... exercise and rhIL-6 infusion at physiological concentrations inhibit endotoxin-induced TNF-alpha production in humans. Hence, these data provide the first experimental evidence that physical activity mediates antiinflammatory activity and suggest that the mechanism include IL-6, which is produced...

  17. Effects of aging on endotoxin tolerance induced by lipopolysaccharides derived from Porphyromonas gingivalis and Escherichia coli.

    Science.gov (United States)

    Sun, Ying; Li, Hui; Yang, Mi-Fang; Shu, Wei; Sun, Meng-Jun; Xu, Yan

    2012-01-01

    Periodontitis is a bacterially induced chronic inflammatory disease. Exposure of the host to periodontal pathogens and their virulence factors induces a state of hyporesponsiveness to subsequent stimulations, termed endotoxin tolerance. Aging has a profound effect on immune response to bacteria challenge. The aim of this study was to explore the effects of aging on endotoxin tolerance induced by Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS) and Escherichia coli (E. coli) LPS in murine peritoneal macrophages. We studied the cytokine production (TNF-α and IL-10) and Toll-like receptor 2, 4 (TLR2, 4) gene and protein expressions in peritoneal macrophages from young (2-month-old) and middle-aged (12-month-old) ICR mice following single or repeated P. gingivalis LPS or E. coli LPS stimulation. Pretreatment of peritoneal macrophages with P. gingivalis LPS or E. coli LPS resulted in a reduction in TNF-α production and an increase in IL-10 production upon secondary stimulation (plead to the incontrollable periodontal inflammation in older adults.

  18. Autotaxin and Endotoxin-Induced Acute Lung Injury

    Science.gov (United States)

    Oikonomou, Nikos; Katsifa, Aggeliki; Prestwich, Glenn D.; Kaffe, Eleanna; Aidinis, Vassilis

    2015-01-01

    Acute Lung Injury (ALI) is a life-threatening, diffuse heterogeneous lung injury characterized by acute onset, pulmonary edema and respiratory failure. Lipopolysaccharide (LPS) is a common cause of both direct and indirect lung injury and when administered to a mouse induces a lung phenotype exhibiting some of the clinical characteristics of human ALI. Here, we report that LPS inhalation in mice results in increased bronchoalveolar lavage fluid (BALF) levels of Autotaxin (ATX, Enpp2), a lysophospholipase D largely responsible for the conversion of lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA) in biological fluids and chronically inflamed sites. In agreement, gradual increases were also detected in BALF LPA levels, following inflammation and pulmonary edema. However, genetic or pharmacologic targeting of ATX had minor effects in ALI severity, suggesting no major involvement of the ATX/LPA axis in acute inflammation. Moreover, systemic, chronic exposure to increased ATX/LPA levels was shown to predispose to and/or to promote acute inflammation and ALI unlike chronic inflammatory pathophysiological situations, further suggesting a differential involvement of the ATX/LPA axis in acute versus chronic pulmonary inflammation. PMID:26196781

  19. Autotaxin and Endotoxin-Induced Acute Lung Injury.

    Directory of Open Access Journals (Sweden)

    Marios-Angelos Mouratis

    Full Text Available Acute Lung Injury (ALI is a life-threatening, diffuse heterogeneous lung injury characterized by acute onset, pulmonary edema and respiratory failure. Lipopolysaccharide (LPS is a common cause of both direct and indirect lung injury and when administered to a mouse induces a lung phenotype exhibiting some of the clinical characteristics of human ALI. Here, we report that LPS inhalation in mice results in increased bronchoalveolar lavage fluid (BALF levels of Autotaxin (ATX, Enpp2, a lysophospholipase D largely responsible for the conversion of lysophosphatidylcholine (LPC to lysophosphatidic acid (LPA in biological fluids and chronically inflamed sites. In agreement, gradual increases were also detected in BALF LPA levels, following inflammation and pulmonary edema. However, genetic or pharmacologic targeting of ATX had minor effects in ALI severity, suggesting no major involvement of the ATX/LPA axis in acute inflammation. Moreover, systemic, chronic exposure to increased ATX/LPA levels was shown to predispose to and/or to promote acute inflammation and ALI unlike chronic inflammatory pathophysiological situations, further suggesting a differential involvement of the ATX/LPA axis in acute versus chronic pulmonary inflammation.

  20. (−-Epigallocatechin gallate inhibits endotoxin-induced expression of inflammatory cytokines in human cerebral microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Li Jieliang

    2012-07-01

    Full Text Available Abstract Background (−-Epigallocatechin gallate (EGCG is a major polyphenol component of green tea that has antioxidant activities. Lipopolysaccharide (LPS induces inflammatory cytokine production and impairs blood–brain barrier (BBB integrity. We examined the effect of EGCG on LPS-induced expression of the inflammatory cytokines in human cerebral microvascular endothelial cells (hCMECs and BBB permeability. Methods The expression of TNF-α, IL-1β and monocyte chemotactic protein-1 (MCP-1/CCL2 was determined by quantitative real time PCR (qRT-PCR and ELISA. Intercellular adhesion molecule 1 (ICAM-1 and vascular cell adhesion molecule (VCAM in hCMECs were examined by qRT-PCR and Western blotting. Monocytes that adhered to LPS-stimulated endothelial cells were measured by monocyte adhesion assay. Tight junctional factors were detected by qRT-PCR (Claudin 5 and Occludin and immunofluorescence staining (Claudin 5 and ZO-1. The permeability of the hCMEC monolayer was determined by fluorescence spectrophotometry of transmembrane fluorescin and transendothelial electrical resistance (TEER. NF-kB activation was measured by luciferase assay. Results EGCG significantly suppressed the LPS-induced expression of IL-1β and TNF-α in hCMECs. EGCG also inhibited the expression of MCP-1/CCL2, VCAM-1 and ICAM-1. Functional analysis showed that EGCG induced the expression of tight junction proteins (Occludin and Claudin-5 in hCMECs. Investigation of the mechanism showed that EGCG had the ability to inhibit LPS-mediated NF-κB activation. In addition, 67-kD laminin receptor was involved in the anti-inflammatory effect of EGCG. Conclusions Our results demonstrated that LPS induced inflammatory cytokine production in hCMECs, which could be attenuated by EGCG. These data indicate that EGCG has a therapeutic potential for endotoxin-mediated endothelial inflammation.

  1. Low dose endotoxin priming is accountable for coagulation abnormalities and organ damage observed in the Shwartzman reaction. A comparison between a single-dose endotoxemia model and a double-hit endotoxin-induced Shwartzman reaction

    Directory of Open Access Journals (Sweden)

    Cate Hugo

    2006-08-01

    Full Text Available Abstract The clinical response of sepsis to a systemic inflammatory infection may be complicated by disseminated intravascular coagulation or DIC. In order to experimentally study the syndrome of DIC, we aimed for a severe sepsis model complicated by disseminated coagulation. Most -simplified- experimental models describing coagulation abnormalities as a consequence of sepsis are based on single dose endotoxemia. The so called-Shwartzman reaction contrarily, is elicited by a low dose endotoxin priming followed by an LPS challenge and is characterized by pathological manifestations that represent the syndrome of DIC. In order to investigate whether the Shwartzman reaction is superior to a single endotoxin challenge as a model for sepsis-induced DIC and to determine what the pathological effect is of an encounter of low endotoxin prior to an LPS challenge, we undertook the present study. In this study we demonstrate that low-dose endotoxin priming prior to an LPS challenge in the Shwartzman reaction is accountable for micro-vascular thrombosis in lung and liver and subsequent (multi- organ failure, not observed after a single-dose endotoxin challenge, which indicates that the Shwartzman reaction is well suited-model to study sepsis-induced DIC adversities. Remarkably, only minor differences in the innate immune response were established between the single-dose endotoxin challenge and the Shwartzman reaction.

  2. Kinetics of intraocular tumor necrosis factor and interleukin-6 in endotoxin-induced uveitis in the rat

    NARCIS (Netherlands)

    de Vos, A. F.; van Haren, M. A.; Verhagen, C.; Hoekzema, R.; Kijlstra, A.

    1994-01-01

    To determine the kinetics of tumor necrosis factor (TNF) and interleukin-6 (IL-6) in serum and aqueous humor of rats with different susceptibilities to endotoxin-induced uveitis (EIU), after footpad injection of lipopolysaccharide (LPS). Samples were collected from EIU-susceptible Lewis rats and

  3. T-bet expression in the iris and spleen parallels disease expression during endotoxin-induced uveitis

    NARCIS (Netherlands)

    Li, B.; Yang, P.; Chu, L.; Zhou, H.; Huang, X.; Zhu, L.; Kijlstra, A.

    2007-01-01

    T lymphocytes have been implicated in the development of endotoxin-induced uveitis (EIU). T-bet is a Th1 cell-specific transcription factor that is involved in differentiation and effector functions. The aim of this study was to investigate kinetics of T-bet expression at the mRNA and protein levels

  4. Moderate postnatal hyperoxia accelerates lung growth and attenuates pulmonary hypertension in infant rats after exposure to intra-amniotic endotoxin.

    Science.gov (United States)

    Tang, Jen-Ruey; Seedorf, Gregory J; Muehlethaler, Vincent; Walker, Deandra L; Markham, Neil E; Balasubramaniam, Vivek; Abman, Steven H

    2010-12-01

    To determine the separate and interactive effects of fetal inflammation and neonatal hyperoxia on the developing lung, we hypothesized that: 1) antenatal endotoxin (ETX) causes sustained abnormalities of infant lung structure; and 2) postnatal hyperoxia augments the adverse effects of antenatal ETX on infant lung growth. Escherichia coli ETX or saline (SA) was injected into amniotic sacs in pregnant Sprague-Dawley rats at 20 days of gestation. Pups were delivered 2 days later and raised in room air (RA) or moderate hyperoxia (O₂, 80% O₂ at Denver's altitude, ∼65% O₂ at sea level) from birth through 14 days of age. Heart and lung tissues were harvested for measurements. Intra-amniotic ETX caused right ventricular hypertrophy (RVH) and decreased lung vascular endothelial growth factor (VEGF) and VEGF receptor-2 (VEGFR-2) protein contents at birth. In ETX-exposed rats (ETX-RA), alveolarization and vessel density were decreased, pulmonary vascular wall thickness percentage was increased, and RVH was persistent throughout the study period compared with controls (SA-RA). After antenatal ETX, moderate hyperoxia increased lung VEGF and VEGFR-2 protein contents in ETX-O₂ rats and improved their alveolar and vascular structure and RVH compared with ETX-RA rats. In contrast, severe hyperoxia (≥95% O₂ at Denver's altitude) further reduced lung vessel density after intra-amniotic ETX exposure. We conclude that intra-amniotic ETX induces fetal pulmonary hypertension and causes persistent abnormalities of lung structure with sustained pulmonary hypertension in infant rats. Moreover, moderate postnatal hyperoxia after antenatal ETX restores lung growth and prevents pulmonary hypertension during infancy.

  5. Experiments on prevention of the endotoxin-abortifacient effect by radiodetoxified endotoxin pretreatment in rats

    Energy Technology Data Exchange (ETDEWEB)

    Csordas, T.; Bertok, L.; Csapo, Z.

    1978-01-01

    Endotoxemia has been induced in pregnant rats by intravenous injection of 1 mg Escherichia coli endotoxin which resulted in intrauterine death and abortion of fetuses in 24 h. The abortifacient effect of endotoxin, injected intravenously 24 h earlier. The authors suppose that the radiodetoxified endotoxin can be a good tool also in the prevention of human septic (endotoxin) shock in pregnancy.

  6. Selective HDAC6 inhibition prevents TNF-α-induced lung endothelial cell barrier disruption and endotoxin-induced pulmonary edema.

    Science.gov (United States)

    Yu, Jinyan; Ma, Zhongsen; Shetty, Sreerama; Ma, Mengshi; Fu, Jian

    2016-07-01

    Lung endothelial damage contributes to the pathogenesis of acute lung injury. New strategies against lung endothelial barrier dysfunction may provide therapeutic benefits against lung vascular injury. Cell-cell junctions and microtubule cytoskeleton are basic components in maintaining endothelial barrier integrity. HDAC6, a deacetylase primarily localized in the cytoplasm, has been reported to modulate nonnuclear protein function through deacetylation. Both α-tubulin and β-catenin are substrates for HDAC6. Here, we examined the effects of tubastatin A, a highly selective HDAC6 inhibitor, on TNF-α induced lung endothelial cell barrier disruption and endotoxin-induced pulmonary edema. Selective HDAC6 inhibition by tubastatin A blocked TNF-α-induced lung endothelial cell hyperpermeability, which was associated with increased α-tubulin acetylation and microtubule stability. Tubastatin A pretreatment inhibited TNF-α-induced endothelial cell contraction and actin stress fiber formation with reduced myosin light chain phosphorylation. Selective HDAC6 inhibition by tubastatin A also induced β-catenin acetylation in human lung endothelial cells, which was associated with increased membrane localization of β-catenin and stabilization of adherens junctions. HDAC6 knockdown by small interfering RNA also prevented TNF-α-induced barrier dysfunction and increased α-tubulin and β-catenin acetylation in endothelial cells. Furthermore, in a mouse model of endotoxemia, tubastatin A was able to prevent endotoxin-induced deacetylation of α-tubulin and β-catenin in lung tissues, which was associated with reduced pulmonary edema. Collectively, our data indicate that selective HDAC6 inhibition by tubastatin A is a potent approach against lung endothelial barrier dysfunction. Copyright © 2016 the American Physiological Society.

  7. Vasorelaxing Action of the Kynurenine Metabolite, Xanthurenic Acid: The Missing Link in Endotoxin-Induced Hypotension?

    Directory of Open Access Journals (Sweden)

    Carmine Vecchione

    2017-05-01

    Full Text Available The kynurenine pathway of tryptophan metabolism is activated by pro-inflammatory cytokines. L-kynurenine, an upstream metabolite of the pathway, acts as a putative endothelium-derived relaxing factor, and has been hypothesized to play a causative role in the pathophysiology of inflammation-induced hypotension. Here, we show that xanthurenic acid (XA, the transamination product of 3-hydroxykynurenine, is more efficacious than L-kynurenine in causing relaxation of a resistance artery, but fails to relax pre-contracted aortic rings. In the mesenteric artery, XA enhanced activating phosphorylation of endothelial nitric oxide synthase (NOS, and the relaxing action of XA was abrogated by pharmacological inhibition of NOS and endothelial-derived hyperpolarizing factor. Systemic injection of XA reduced blood pressure in mice, and serum levels of XA increased by several fold in response to a pulse with the endotoxin, lipopolysaccharide (LPS. LPS-induced hypotension in mice was prevented by pre-treatment with the kynurenine monooxygenase (KMO inhibitor, Ro-618048, which lowered serum levels of XA but enhanced serum levels of L-kynurenine. UPF 648, another KMO inhibitor, could also abrogate LPS-induced hypotension. Our data identify XA as a novel vasoactive compound and suggest that formation of XA is a key event in the pathophysiology of inflammation-induced hypotension.

  8. Endotoxin-induced monocytic microparticles have contrasting effects on endothelial inflammatory responses.

    Science.gov (United States)

    Wen, Beryl; Combes, Valery; Bonhoure, Amandine; Weksler, Babette B; Couraud, Pierre-Olivier; Grau, Georges E R

    2014-01-01

    Septic shock is a severe disease state characterised by the body's life threatening response to infection. Complex interactions between endothelial cells and circulating monocytes are responsible for microvasculature dysfunction contributing to the pathogenesis of this syndrome. Here, we intended to determine whether microparticles derived from activated monocytes contribute towards inflammatory processes and notably vascular permeability. We found that endotoxin stimulation of human monocytes enhances the release of microparticles of varying phenotypes and mRNA contents. Elevated numbers of LPS-induced monocytic microparticles (mMP) expressed CD54 and contained higher levels of transcripts for pro-inflammatory cytokines such as TNF, IL-6 and IL-8. Using a prothrombin time assay, a greater reduction in plasma coagulation time was observed with LPS-induced mMP than with non-stimulated mMP. Co-incubation of mMP with the human brain endothelial cell line hCMEC/D3 triggered their time-dependent uptake and significantly enhanced endothelial microparticle release. Unexpectedly, mMP also modified signalling pathways by diminishing pSrc (tyr416) expression and promoted endothelial monolayer tightness, as demonstrated by endothelial impedance and permeability assays. Altogether, these data strongly suggest that LPS-induced mMP have contrasting effects on the intercellular communication network and display a dual potential: enhanced pro-inflammatory and procoagulant properties, together with protective function of the endothelium.

  9. MMP-3 Deficiency Alleviates Endotoxin-Induced Acute Inflammation in the Posterior Eye Segment

    Directory of Open Access Journals (Sweden)

    Inge Van Hove

    2016-11-01

    Full Text Available Matrix metalloproteinase-3 (MMP-3 is known to mediate neuroinflammatory processes by activating microglia, disrupting blood–central nervous system barriers and supporting neutrophil influx into the brain. In addition, the posterior part of the eye, more specifically the retina, the retinal pigment epithelium (RPE and the blood–retinal barrier, is affected upon neuroinflammation, but a role for MMP-3 during ocular inflammation remains elusive. We investigated whether MMP-3 contributes to acute inflammation in the eye using the endotoxin-induced uveitis (EIU model. Systemic administration of lipopolysaccharide induced an increase in MMP-3 mRNA and protein expression level in the posterior part of the eye. MMP-3 deficiency or knockdown suppressed retinal leukocyte adhesion and leukocyte infiltration into the vitreous cavity in mice subjected to EIU. Moreover, retinal and RPE mRNA levels of intercellular adhesion molecule 1 (Icam1, interleukin 6 (Il6, cytokine-inducible nitrogen oxide synthase (Nos2 and tumor necrosis factor α (Tnfα, which are key molecules involved in EIU, were clearly reduced in MMP-3 deficient mice. In addition, loss of MMP-3 repressed the upregulation of the chemokines monocyte chemoattractant protein (MCP-1 and (C-X-C motif ligand 1 (CXCL1. These findings suggest a contribution of MMP-3 during EIU, and its potential use as a therapeutic drug target in reducing ocular inflammation.

  10. Chlorogenic acid ameliorates endotoxin-induced liver injury by promoting mitochondrial oxidative phosphorylation

    International Nuclear Information System (INIS)

    Zhou, Yan; Ruan, Zheng; Zhou, Lili; Shu, Xugang; Sun, Xiaohong; Mi, Shumei; Yang, Yuhui; Yin, Yulong

    2016-01-01

    Acute or chronic hepatic injury is a common pathology worldwide. Mitochondrial dysfunction and the depletion of adenosine triphosphate (ATP) play important roles in liver injury. Chlorogenic acids (CGA) are some of the most abundant phenolic acids in human diet. This study was designed to test the hypothesis that CGA may protect against chronic lipopolysaccharide (LPS)-induced liver injury by modulating mitochondrial energy generation. CGA decreased the activities of serum alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase. The contents of ATP and adenosine monophosphate (AMP), as well as the ratio of AMP/ATP, were increased after CGA supplementation. The activities of enzymes that are involved in glycolysis were reduced, while those of enzymes involved in oxidative phosphorylation were increased. Moreover, phosphorylated AMP-activated protein kinase (AMPK), and mRNA levels of AMPK-α, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), nuclear respiratory factor 1, and mitochondrial DNA transcription factor A were increased after CGA supplementation. Collectively, these findings suggest that the hepatoprotective effect of CGA might be associated with enhanced ATP production, the stimulation of mitochondrial oxidative phosphorylation and the inhibition of glycolysis. - Highlights: • Dietary supplementation with chlorogenic acid (CGA) improved endotoxin-induced liver injury. • Chlorogenic acid enhances ATP increase and shifts energy metabolism, which is correlated with up-regulation AMPK and PGC-1α. • The possible mechanism of CGA on mitochondrial biogenesis was correlated with up-regulation AMPK and PGC-1α.

  11. Chlorogenic acid ameliorates endotoxin-induced liver injury by promoting mitochondrial oxidative phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yan [State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang 330047 (China); College of Food Safety, Guizhou Medical University, Guiyang 550025 (China); Ruan, Zheng, E-mail: ruanzheng@ncu.edu.cn [State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang 330047 (China); Zhou, Lili; Shu, Xugang [State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang 330047 (China); Sun, Xiaohong [College of Food Safety, Guizhou Medical University, Guiyang 550025 (China); Mi, Shumei; Yang, Yuhui [State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang 330047 (China); Yin, Yulong, E-mail: yinyulong@isa.ac.cn [State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang 330047 (China); Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China)

    2016-01-22

    Acute or chronic hepatic injury is a common pathology worldwide. Mitochondrial dysfunction and the depletion of adenosine triphosphate (ATP) play important roles in liver injury. Chlorogenic acids (CGA) are some of the most abundant phenolic acids in human diet. This study was designed to test the hypothesis that CGA may protect against chronic lipopolysaccharide (LPS)-induced liver injury by modulating mitochondrial energy generation. CGA decreased the activities of serum alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase. The contents of ATP and adenosine monophosphate (AMP), as well as the ratio of AMP/ATP, were increased after CGA supplementation. The activities of enzymes that are involved in glycolysis were reduced, while those of enzymes involved in oxidative phosphorylation were increased. Moreover, phosphorylated AMP-activated protein kinase (AMPK), and mRNA levels of AMPK-α, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), nuclear respiratory factor 1, and mitochondrial DNA transcription factor A were increased after CGA supplementation. Collectively, these findings suggest that the hepatoprotective effect of CGA might be associated with enhanced ATP production, the stimulation of mitochondrial oxidative phosphorylation and the inhibition of glycolysis. - Highlights: • Dietary supplementation with chlorogenic acid (CGA) improved endotoxin-induced liver injury. • Chlorogenic acid enhances ATP increase and shifts energy metabolism, which is correlated with up-regulation AMPK and PGC-1α. • The possible mechanism of CGA on mitochondrial biogenesis was correlated with up-regulation AMPK and PGC-1α.

  12. Gender Difference in Bacteria Endotoxin-Induced Inflammatory and Anorexic Responses.

    Science.gov (United States)

    Kuo, Shiu-Ming

    2016-01-01

    Inflammation-related anorexic response has been observed in systemic diseases as well as in localized infection and is an important issue in patient care. We tested the hypothesis that upon the same endotoxin exposure, males have more severe inflammatory responses and thus suffer from more negative effect on appetite. Ten-week old male and female mice were compared in their plasma levels of pro-inflammatory cytokines after a body weight-based i.p. injection of bacterial endotoxin lipopolysaccharide. Male mice consistently showed significantly higher levels of IL6 and TNFα than female mice. The difference was observed starting at 3 hours after the systemic endotoxin exposure. It was independent of the level of endotoxin dosage and of the genotype of the anti-inflammatory cytokine, IL10. Interestingly, endotoxin-injected male mice also had significantly higher plasma IL10 levels compared to the female mice. Pre-puberty young mice showed no gender differences in the plasma levels of IL6, TNFα and IL10. Their cytokine levels were mostly between that of the adult males and females. Consistent with the higher inflammatory response in male mice, the endotoxin exposure also led to significantly more appetite loss in male mice at a range of doses in two strains of mice. Saline injection in the absence of endotoxin affected neither the cytokine levels nor the appetite. Although a direct mechanistic link between inflammation parameters and appetite was not addressed here, the results support that male gender could be a risk factor for higher pro-inflammatory cytokines and anorexic response after the endotoxin exposure.

  13. Therapeutic Effects of Procainamide on Endotoxin-Induced Rhabdomyolysis in Rats.

    Science.gov (United States)

    Shih, Chih-Chin; Hii, Hiong-Ping; Tsao, Cheng-Ming; Chen, Shiu-Jen; Ka, Shuk-Man; Liao, Mei-Hui; Wu, Chin-Chen

    2016-01-01

    Overt systemic inflammatory response is a predisposing mechanism for infection-induced skeletal muscle damage and rhabdomyolysis. Aberrant DNA methylation plays a crucial role in the pathophysiology of excessive inflammatory response. The antiarrhythmic drug procainamide is a non-nucleoside inhibitor of DNA methyltransferase 1 (DNMT1) used to alleviate DNA hypermethylation. Therefore, we evaluated the effects of procainamide on the syndromes and complications of rhabdomyolysis rats induced by lipopolysaccharide (LPS). Rhabdomyolysis animal model was established by intravenous infusion of LPS (5 mg/kg) accompanied by procainamide therapy (50 mg/kg). During the experimental period, the changes of hemodynamics, muscle injury index, kidney function, blood gas, blood electrolytes, blood glucose, and plasma interleukin-6 (IL-6) levels were examined. Kidneys and lungs were exercised to analyze superoxide production, neutrophil infiltration, and DNMTs expression. The rats in this model showed similar clinical syndromes and complications of rhabdomyolysis including high levels of plasma creatine kinase, acute kidney injury, hyperkalemia, hypocalcemia, metabolic acidosis, hypotension, tachycardia, and hypoglycemia. The increases of lung DNMT1 expression and plasma IL-6 concentration were also observed in rhabdomyolysis animals induced by LPS. Treatment with procainamide not only inhibited the overexpression of DNMT1 but also diminished the overproduction of IL-6 in rhabdomyolysis rats. In addition, procainamide improved muscle damage, renal dysfunction, electrolytes disturbance, metabolic acidosis, hypotension, and hypoglycemia in the rats with rhabdomyolysis. Moreover, another DNMT inhibitor hydralazine mitigated hypoglycemia, muscle damage, and renal dysfunction in rhabdomyolysis rats. These findings reveal that therapeutic effects of procainamide could be based on the suppression of DNMT1 and pro-inflammatory cytokine in endotoxin-induced rhabdomyolysis.

  14. Anthrapyrazolone analogues intercept inflammatory JNK signals to moderate endotoxin induced septic shock

    Science.gov (United States)

    Prasad, Karothu Durga; Trinath, Jamma; Biswas, Ansuman; Sekar, Kanagaraj; Balaji, Kithiganahalli N.; Guru Row, Tayur N.

    2014-11-01

    Severe sepsis or septic shock is one of the rising causes for mortality worldwide representing nearly 10% of intensive care unit admissions. Susceptibility to sepsis is identified to be mediated by innate pattern recognition receptors and responsive signaling pathways of the host. The c-Jun N-terminal Kinase (JNK)-mediated signaling events play critical role in bacterial infection triggered multi-organ failure, cardiac dysfunction and mortality. In the context of kinase specificities, an extensive library of anthrapyrazolone analogues has been investigated for the selective inhibition of c-JNK and thereby to gain control over the inflammation associated risks. In our comprehensive biochemical characterization, it is observed that alkyl and halogen substitution on the periphery of anthrapyrazolone increases the binding potency of the inhibitors specifically towards JNK. Further, it is demonstrated that hydrophobic and hydrophilic interactions generated by these small molecules effectively block endotoxin-induced inflammatory genes expression in in vitro and septic shock in vivo, in a mouse model, with remarkable efficacies. Altogether, the obtained results rationalize the significance of the diversity oriented synthesis of small molecules for selective inhibition of JNK and their potential in the treatment of severe sepsis.

  15. Anti-inflammatory and ultrastructural effects of Turkish propolis in a rat model of endotoxin-induced uveitis.

    Science.gov (United States)

    Ertürküner, Salime Pelin; Yaprak Saraç, Elif; Göçmez, Semil Selcen; Ekmekçi, Hakan; Öztürk, Zeynep Banu; Seçkin, İsmail; Sever, Özkan; Keskinbora, Kadircan

    2016-01-01

    Experimental animal models of acute uveitis, an inflammatory eye disease, can be established via endotoxin-induced inflammation. Propolis, a natural substance collected by honeybees from buds and tree exudates, has antioxidant, antibacterial, antiviral, and anti-inflammatory effects. We investigated the effects of propolis, obtained from the Sakarya province of Turkey, on endotoxin-induced uveitis using immunohistochemical, ultrastructural, and biochemical approaches. Male Wistar albino rats (n = 6/group) received intraperitoneal (ip) lipopolysaccharide (LPS) endotoxin (150 μg/kg) followed by aqueous extract of propolis (50 mg/kg ip) or vehicle; two additional groups received either saline (control) or propolis only. After 24 h, aqueous humor (AH) was collected from both eyes of each animal for analysis of tumor necrosis factor-α (TNF-α) and hypoxia-inducible factor-1α (HIF-1α). Right eyeballs were paraffin-embedded for immunohistochemical staining of nuclear factor κB (NF-κB)/p65 and left eyeballs were araldite-embedded for ultrastructural analysis. Treatment of LPS-induced uveitis with propolis significantly reduced ciliary body NF-κB/p65 immunoreactivity and AH levels of HIF-1α and TNF-α. Ultrastructural analysis showed fewer vacuoles and reduced mitochondrial degeneration in the retinal pigment epithelium, as compared to the uveitis group. The intercellular spaces of the inner nuclear layer and outer limiting membrane were comparable with those of the control group; no polymorphonuclear cells or stasis was observed in intravascular or extravascular spaces. This is the first report demonstrating an anti-inflammatory effect of Turkish propolis in a rat model of LPS-induced acute uveitis, suggesting a therapeutic potential of propolis for the treatment of inflammatory ophthalmic diseases.

  16. Aspirin-triggered resolvin D1 down-regulates inflammatory responses and protects against endotoxin-induced acute kidney injury

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiao [Center for Research on Environmental Disease, University of Kentucky, Lexington, KY 40536 (United States); Shetty, Sreerama [Center for Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, TX 75708 (United States); Zhang, Ping [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Gao, Rong; Hu, Yuxin [Center for Research on Environmental Disease, University of Kentucky, Lexington, KY 40536 (United States); Wang, Shuxia [Graduate Center for Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Li, Zhenyu [Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY 40536 (United States); Fu, Jian, E-mail: jian.fu@uky.edu [Center for Research on Environmental Disease, University of Kentucky, Lexington, KY 40536 (United States); Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536 (United States)

    2014-06-01

    The presence of endotoxin in blood can lead to acute kidney injury (AKI) and septic shock. Resolvins, the endogenous lipid mediators derived from docosahexaenoic acid, have been reported to exhibit potent anti-inflammatory action. Using a mouse model of lipopolysaccharide (LPS)-induced AKI, we investigated the effects of aspirin-triggered resolvin D1 (AT-RvD1) on inflammatory kidney injury. Administration of AT-RvD1 1 h after LPS challenge protected the mice from kidney injury as indicated by the measurements of blood urea nitrogen, serum creatinine, and morphological alterations associated with tubular damage. The protective effects were evidenced by decreased neutrophil infiltration in the kidney indicating reduction in inflammation. AT-RvD1 treatment restored kidney cell junction protein claudin-4 expression, which was otherwise reduced after LPS challenge. AT-RvD1 treatment inhibited endotoxin-induced NF-κB activation and suppressed LPS-induced ICAM-1 and VCAM-1 expression in the kidney. Moreover, AT-RvD1 treatment markedly decreased LPS-induced IL-6 level in the kidney and blocked IL-6-mediated signaling including STAT3 and ERK phosphorylation. Our findings demonstrate that AT-RvD1 is a potent anti-inflammatory mediator in LPS-induced kidney injury, and AT-RvD1 has therapeutic potential against AKI during endotoxemia.

  17. Aspirin-triggered resolvin D1 down-regulates inflammatory responses and protects against endotoxin-induced acute kidney injury

    International Nuclear Information System (INIS)

    Chen, Jiao; Shetty, Sreerama; Zhang, Ping; Gao, Rong; Hu, Yuxin; Wang, Shuxia; Li, Zhenyu; Fu, Jian

    2014-01-01

    The presence of endotoxin in blood can lead to acute kidney injury (AKI) and septic shock. Resolvins, the endogenous lipid mediators derived from docosahexaenoic acid, have been reported to exhibit potent anti-inflammatory action. Using a mouse model of lipopolysaccharide (LPS)-induced AKI, we investigated the effects of aspirin-triggered resolvin D1 (AT-RvD1) on inflammatory kidney injury. Administration of AT-RvD1 1 h after LPS challenge protected the mice from kidney injury as indicated by the measurements of blood urea nitrogen, serum creatinine, and morphological alterations associated with tubular damage. The protective effects were evidenced by decreased neutrophil infiltration in the kidney indicating reduction in inflammation. AT-RvD1 treatment restored kidney cell junction protein claudin-4 expression, which was otherwise reduced after LPS challenge. AT-RvD1 treatment inhibited endotoxin-induced NF-κB activation and suppressed LPS-induced ICAM-1 and VCAM-1 expression in the kidney. Moreover, AT-RvD1 treatment markedly decreased LPS-induced IL-6 level in the kidney and blocked IL-6-mediated signaling including STAT3 and ERK phosphorylation. Our findings demonstrate that AT-RvD1 is a potent anti-inflammatory mediator in LPS-induced kidney injury, and AT-RvD1 has therapeutic potential against AKI during endotoxemia

  18. Pharmacological modulation of the endotoxin-induced increase in plasminogen activator inhibitor activity in rats

    NARCIS (Netherlands)

    Emeis, J.J.; Hoogen, C.M. van den

    1992-01-01

    Pharmacological modulation of the in vivo induction of plasminogen activator inhibitor type-1 (PAI-1) synthesis was studied in rats using the induction of PAI-1 by endotoxin as a model system. Both the cyclooxygenase inhibitors acetylsalicylic acid and indomethacin enhanced PAI-1 induction. The

  19. Anti-inflammatory effect of lycopene on endotoxin-induced uveitis in rats

    Directory of Open Access Journals (Sweden)

    Tuğba Göncü

    Full Text Available ABSTRACT Purpose: We evaluated the efficacy of lycopene, a dietary carotenoid and potent antioxidant, against ocular inflammation and oxidative stress in an experimental uveitis model. Methods: Endotoxin-induced uveitis (EIU was induced in Sprague-Dawley rats by a single subcutaneous injection of 200 μg lipopolysaccharide (LPS. Induction of EIU was preceded by daily intraperitoneal injection of 10 mg/kg lycopene for three consecutive days (Lycopene + LPS group or equivolume vehicle (Vehicle + LPS group. A positive control group received 1 mg/kg dexamethasone pretreatment (DEX + LPS, and a negative control group received daily vehicle injection but no LPS (Vehicle Control. Twenty-four hours after LPS or final vehicle administration, eyes were enucleated, and aqueous humor was collected for measurement of the number of infiltrating cells, total protein concentration, and levels of nitric oxide (NO, tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6, and oxidative stress markers. Inflammatory response severity was compared among groups clinically and histopathologically. Results: Infiltrating cell number, total protein concentration, and NO, TNF-α, and IL-6 levels were significantly elevated in the aqueous humor of Vehicle + LPS group rats compared to Vehicle Controls. Compared to the Vehicle + LPS group, lycopene pretreatment significantly reduced aqueous humor concentrations of oxidative stress markers, NO (0.29 ± 0.1 μM vs. 0.19 ± 0.1 μM, p=0.003, TNF-α (71.0 ± 22.3 ng/ml vs. 50.1 ± 2.1 ng/ml, p=0.043, and IL-6 (121.6 ± 3.0 pg/ml vs. 111.1 ± 5.6 pg/ml, p=0.008. Inflammatory score was also reduced (2.0 ± 0.0 vs. 0.4 ± 0.5, p=0.001. Lycopene reduced the infiltrating cell count and protein concentration, but differences did not reach significance. Most lycopene effects were equivalent to dexamethasone. Conclusions: Lycopene may aid in the clinical management of uveitis by suppressing inflammation and oxidative stress.

  20. Endotoxin dosage in sepsis

    Directory of Open Access Journals (Sweden)

    Vincenzo Rondinelli

    2012-03-01

    Full Text Available Introduction. Endotoxin, a component of the cell wall of Gram-negative bacteria is a major contributor to the pathogenesis of septic shock and multiple organ failure (MOF. Its entry into the bloodstream stimulates monocytes/macrophages which once activated produce and release cytokines, nitric oxide and other mediators that induce systemic inflammation, endothelial damage, organ dysfunction, hypotension (shock and MOF.The aim of this study is to evaluate the usefulness of a quantitative test for the dosage of endotoxin to determine the risk of severe Gram-negative sepsis. Materials and methods. In the period January 2009 - June 2011 we performed 897 tests for 765 patients, mostly coming from the emergency room and intensive care, of which 328 (43% women (mean age 53 and 437 (57% male (mean age 49. Fifty-nine patients, no statistically significant difference in sex, were monitored by an average of two determinations of EA.All patients had procalcitonin values significantly altered.The kit used was EAA (Endotoxin Activity Assay Estor Company, Milan, which has three ranges of endotoxin activity (EA: low risk of sepsis if <0.40 units, medium if between 0.40 and 0.59; high if 0.60. Results. 78 out of 765 patients (10% had a low risk, 447 (58% a medium risk and 240 (32% a high risk.The dosage of EA, combined with that of procalcitonin, has allowed a more targeted antibiotic therapy. Six patients in serious clinical conditions were treated by direct hemoperfusion with Toraymyxin, a device comprising a housing containing a fiber polypropylene and polystyrene with surface-bound polymyxin B, an antibiotic that removes bacterial endotoxins from the blood. Conclusions.The test is useful in risk stratification as well as Gram negative sepsis, to set and monitor targeted therapies, also based on the neutralization of endotoxin.

  1. Endothelin B receptors preserve renal blood flow in a normotensive model of endotoxin-induced acute kidney dysfunction.

    Science.gov (United States)

    Nitescu, Nicoletta; Grimberg, Elisabeth; Ricksten, Sven-Erik; Herlitz, Hans; Guron, Gregor

    2008-03-01

    The aim was to investigate the role of endothelin 1 receptor subtypes in the early renal response to lipopolysaccharide (LPS) during normotensive endotoxemia with acute kidney dysfunction. Endotoxemia was induced in thiobutabarbital-anesthetized rats (n = 9 per group) by infusion of LPS (dosage, 1 mg/kg per hour i.v.). The study groups (1) sham-saline, (2) LPS-saline, (3) LPS-BQ123, (4) LPS-BQ788 and (5) LPS-BQ123 + BQ788 received isotonic saline, the ETA receptor antagonist BQ-123 (dosage, 30 nmol/kg per minute i.v.), and/or the ETB receptor antagonist BQ-788 (dosage, 30 nmol/kg per minute i.v.) before and during 2 h of LPS infusion. Renal clearance measurements, renal blood flow (RBF), and cortical and outer medullary perfusion (laser-Doppler flowmetry) and oxygen tension (Clark-type microelectrodes) were analyzed throughout. Before LPS administration, there were no significant differences between groups in glomerular filtration rate (GFR), RBF, or in cortical (CLDF) and outer medullary perfusion. However, mean arterial pressure (MAP) was elevated in LPS-BQ788 group compared with LPS-BQ123 + BQ788 group (P < 0.05). In saline-treated rats, endotoxin induced an approximate 35% reduction in GFR (P < 0.05), without significant effects on MAP, RBF, or on CLDF and cortical PO2. In addition, LPS increased outer medullary perfusion and PO2 (P < 0.05). The fractional urinary excretion rates of sodium, potassium, and water were not significantly different in LPS-saline group compared with sham-saline group. Neither selective nor combined ETA and ETB receptor blockade improved GFR. In BQ-788-infused rats, endotoxin produced marked reductions in RBF (-18% +/- 4% [P < 0.05]) and CLDF (-18% +/- 2% [P < 0.05]). Similarly, endotoxin decreased RBF (-14% +/- 3% [P < 0.05]) and CLDF (-10% +/- 2% [P < 0.05]) in LPS-BQ123 + BQ788 group. Endotoxin reduced MAP (-22% +/- 4% [P < 0.05]) in BQ-123-treated rats but did not significantly influence MAP in other groups. We conclude that in

  2. Effects of hydrogen-rich saline on endotoxin-induced uveitis

    Directory of Open Access Journals (Sweden)

    Wei-ming Yan

    2017-01-01

    Full Text Available The therapeutic effects of hydrogen-rich saline (HRS have been reported for a wide range of diseases mainly via selectively reducing the amount of reactive oxygen species. Oxidative stress plays an important role in the pathogenesis of uveitis and endotoxin-induced uveitis (EIU. In this study, we investigated whether HRS can mitigate EIU in rats. Sprague-Dawley rats were randomly divided into Norm group, Model group, HRS group, dexamethasone (DEX group, and rats in the latter three groups were injected with equal amount of lipopolysaccharide (LPS to induce EIU of different severities (by 1 mg/kg of LPS, or 1/8 mg/kg of LPS. Rats in HRS group were injected with HRS intraperitoneally at three different modes to purse an ameliorating effect of EIU (10 mL/kg of HRS immediately after injection of 1 mg/kg of LPS, 20 mL/kg of HRS once a day for 1 week before injection of 1 mg/kg of LPS and at 0, 0.5, 1, 2, 6, 8, 12 hours after LPS administration, or 20 mL/kg of HRS once a day for 1 week before injection of 1/8 mg/kg of LPS, and at 0, 0.5, 1, 2, 6, 8, 12, 24 hours and once a day for 3 weeks after LPS administration. Rats of DEX group were injected with 1 mL/kg of DEX solution intraperitoneally immediately after LPS administration. Rats in Norm and Model groups did not receive any treatment. All rats were examined under slit lamp microscope and graded according to the clinical signs of uveitis. Electroretinogram, quantitative analysis of protein in aqueous humor (AqH and histological examination of iris and ciliary body were also carried out. Our results showed that HRS did not obviously ameliorate the signs of uveitis under slit lamp examination and the inflammatory cells infiltration around iris and cilliary body of EIU induced by 1 mg/kg or 1/8 mg/kg of LPS (P > 0.05, while DEX significantly reduced the inflammation reflected by the above two indicators (P 0.05, while DEX had an obvious therapeutic effect (P < 0.05. However, HRS exerted an inhibition

  3. Cigarette Smoke Exposure Worsens Endotoxin-Induced Lung Injury and Pulmonary Edema in Mice.

    Science.gov (United States)

    Gotts, Jeffrey E; Abbott, Jason; Fang, Xiaohui; Yanagisawa, Haru; Takasaka, Naoki; Nishimura, Stephen L; Calfee, Carolyn S; Matthay, Michael A

    2017-09-01

    Cigarette smoking (CS) remains a major public health concern and has recently been associated with an increased risk of developing acute respiratory distress syndrome (ARDS). Bronchoalveolar lavage (BAL) experiments in human volunteers have demonstrated that active smokers develop increased alveolar-epithelial barrier permeability to protein after inhaling lipopolysaccharide (LPS). Here we tested the hypothesis that short-term whole-body CS exposure would increase LPS-induced lung edema in mice. Adult mice were exposed in a Teague TE-10 machine to CS from 3R4F cigarettes at 100 mg/m3 total suspended particulates for 12 days, then given LPS or saline intratracheally. Control mice were housed in the same room without CS exposure. Post-mortem measurements included gravimetric lung water and BAL protein, cell counts, and lung histology. Cytokines were measured in lung homogenate by ELISA and in plasma by Luminex and ELISA. In CS-exposed mice, intratracheal LPS caused greater increases in pulmonary edema by gravimetric measurement and histologic scoring. CS-exposed mice also had an increase in BAL neutrophilia, lung IL-6, and plasma CXCL9, a T-cell chemoattractant. Intratracheal LPS concentrated blood hemoglobin to a greater degree in CS-exposed mice, consistent with an increase in systemic vascular permeability. These results demonstrate that CS exposure in endotoxin injured mice increases the severity of acute lung injury. The increased lung IL-6 in CS-exposed LPS-injured mice indicates that this potent cytokine, previously shown to predict mortality in patients with ARDS, may play a role in exacerbating lung injury in smokers and may have utility as a biomarker of tobacco-related lung injury. Our results suggest that short-term CS exposure at levels that cause no overt lung injury may still prime the lung for acute inflammatory damage from a "second hit", a finding that mirrors the increased risk of developing ARDS in patients who smoke. This model may be useful for

  4. Protective role of vascular endothelial growth factor in endotoxin-induced acute lung injury in mice

    Directory of Open Access Journals (Sweden)

    Adachi Yoshiyuki

    2007-08-01

    Full Text Available Abstract Background Vascular endothelial growth factor (VEGF, a substance that stimulates new blood vessel formation, is an important survival factor for endothelial cells. Although overexpressed VEGF in the lung induces pulmonary edema with increased lung vascular permeability, the role of VEGF in the development of acute lung injury remains to be determined. Methods To evaluate the role of VEGF in the pathogenesis of acute lung injury, we first evaluated the effects of exogenous VEGF and VEGF blockade using monoclonal antibody on LPS-induced lung injury in mice. Using the lung specimens, we performed TUNEL staining to detect apoptotic cells and immunostaining to evaluate the expression of apoptosis-associated molecules, including caspase-3, Bax, apoptosis inducing factor (AIF, and cytochrome C. As a parameter of endothelial permeability, we measured the albumin transferred across human pulmonary artery endothelial cell (HPAEC monolayers cultured on porous filters with various concentrations of VEGF. The effect of VEGF on apoptosis HPAECs was also examined by TUNEL staining and active caspase-3 immunoassay. Results Exogenous VEGF significantly decreased LPS-induced extravascular albumin leakage and edema formation. Treatment with anti-VEGF antibody significantly enhanced lung edema formation and neutrophil emigration after intratracheal LPS administration, whereas extravascular albumin leakage was not significantly changed by VEGF blockade. In lung pathology, pretreatment with VEGF significantly decreased the numbers of TUNEL positive cells and those with positive immunostaining of the pro-apoptotic molecules examined. VEGF attenuated the increases in the permeability of the HPAEC monolayer and the apoptosis of HPAECs induced by TNF-α and LPS. In addition, VEGF significantly reduced the levels of TNF-α- and LPS-induced active caspase-3 in HPAEC lysates. Conclusion These results suggest that VEGF suppresses the apoptosis induced by

  5. Cathelicidin peptide sheep myeloid antimicrobial peptide-29 prevents endotoxin-induced mortality in rat models of septic shock.

    Science.gov (United States)

    Giacometti, Andrea; Cirioni, Oscar; Ghiselli, Roberto; Mocchegiani, Federico; D'Amato, Giuseppina; Circo, Raffaella; Orlando, Fiorenza; Skerlavaj, Barbara; Silvestri, Carmela; Saba, Vittorio; Zanetti, Margherita; Scalise, Giorgio

    2004-01-15

    The present study was designed to investigate the antiendotoxin activity and therapeutic efficacy of sheep myeloid antimicrobial peptide (SMAP)-29, a cathelicidin-derived peptide. The in vitro ability of SMAP-29 to bind LPS from Escherichia coli 0111:B4 was determined using a sensitive limulus chromogenic assay. Two rat models of septic shock were performed: (1) rats were injected intraperitoneally with 1 mg E. coli 0111:B4 LPS and (2) intraabdominal sepsis was induced via cecal ligation and single puncture. All animals were randomized to receive parenterally isotonic sodium chloride solution, 1 mg/kg SMAP-29, 1 mg/kg polymyxin B or 20 mg/kg imipenem. The main outcome measures were: abdominal exudate and plasma bacterial growth, plasma endotoxin and tumor necrosis factor-alpha concentrations, and lethality. The in vitro study showed that SMAP-29 completely inhibited the LPS procoagulant activity at approximately 10 microM peptide concentration. The in vivo experiments showed that all compounds reduced the lethality when compared with control animals. SMAP-29 achieved a substantial decrease in endotoxin and tumor necrosis factor-alpha plasma concentrations when compared with imipenem and saline treatment and exhibited a slightly lower antimicrobial activity than imipenem. No statistically significant differences were noted between SMAP-29 and polymyxin B. SMAP-29, because of its double antiendotoxin and antimicrobial activities, could be an interesting compound for septic shock treatment.

  6. Infusion of freshly isolated autologous bone marrow derived mononuclear cells prevents endotoxin-induced lung injury in an ex-vivo perfused swine model.

    Science.gov (United States)

    Rojas, Mauricio; Parker, Richard E; Thorn, Natalie; Corredor, Claudia; Iyer, Smita S; Bueno, Marta; Mroz, Lyle; Cardenes, Nayra; Mora, Ana L; Stecenko, Arlene A; Brigham, Kenneth L

    2013-03-04

    The acute respiratory distress syndrome (ARDS), affects up to 150,000 patients per year in the United States. We and other groups have demonstrated that bone marrow derived mesenchymal stromal stem cells prevent ARDS induced by systemic and local administration of endotoxin (lipopolysaccharide (LPS)) in mice. A study was undertaken to determine the effects of the diverse populations of bone marrow derived cells on the pathophysiology of ARDS, using a unique ex-vivo swine preparation, in which only the ventilated lung and the liver are perfused with autologous blood. Six experimental groups were designated as: 1) endotoxin alone, 2) endotoxin + total fresh whole bone marrow nuclear cells (BMC), 3) endotoxin + non-hematopoietic bone marrow cells (CD45 neg), 4) endotoxin + hematopoietic bone marrow cells (CD45 positive), 5) endotoxin + buffy coat and 6) endotoxin + in vitro expanded swine CD45 negative adherent allogeneic bone marrow cells (cultured CD45neg). We measured at different levels the biological consequences of the infusion of the different subsets of cells. The measured parameters were: pulmonary vascular resistance (PVR), gas exchange (PO2), lung edema (lung wet/dry weight), gene expression and serum concentrations of the pro-inflammatory cytokines IL-1β, TNF-α and IL-6. Infusion of freshly purified autologous total BMCs, as well as non-hematopoietic CD45(-) bone marrow cells significantly reduced endotoxin-induced pulmonary hypertension and hypoxemia and reduced the lung edema. Also, in the groups that received BMCs and cultured CD45neg we observed a decrease in the levels of IL-1β and TNF-α in plasma. Infusion of hematopoietic CD45(+) bone marrow cells or peripheral blood buffy coat cells did not protect against LPS-induced lung injury. We conclude that infusion of freshly isolated autologous whole bone marrow cells and the subset of non-hematopoietic cells can suppress the acute humoral and physiologic responses induced by endotoxemia by modulating

  7. Expression of cyclin D{sub 1} during endotoxin-induced aleveolar type II cell hyperplasia in rat lung and the detection of apoptotic cells during the remodeling process

    Energy Technology Data Exchange (ETDEWEB)

    Tesfaigzi, J.; Wood, M.B.; Johnson, N.F.

    1995-12-01

    Our studies have shown that endotoxin intratracheally instilled into the rat lung induces proliferation of alveolar type II cells. In that study, the alveolar type II cells. In that study, the alveolar type II cell hyperplasia occurred 2 d after instillation of endotoxin and persisted for a further 2 d. After hyperplasia, the lung remodeled and returned to a normal state within 24-48 h. Understanding the mechanisms involved in the remodeling process of this transient hyperplasia may be useful to identify molecular changes that are altered in neoplasia. The purpose of the present study was to corroborate induction of epithelial cell hyperplasia by endotoxin and to delineate mechanisms involved in tissue remodeling after endotoxin-induced alveolar type II cell hyperplasia. In conclusion, immonostaining with cyclin D1 and cytokeratin shows that endotoxin induced epithelial cell proliferation and resulted in hyperplasia in the lung which persisted through 4 d post-instillation.

  8. Topically applied standardized aqueous extract of Curcuma longa Linn. suppresses endotoxin-induced uveal inflammation in rats.

    Science.gov (United States)

    Agarwal, Renu; Gupta, S K; Agarwal, Puneet; Srivastava, Sushma

    2013-10-01

    Aqueous extract of C. longa when administered 4 h after induction of E. coli lipopolysaccharide-induced uveitis in rats showed significantly suppressed inflammation with a significantly lower mean clinical grade, histopathological grade and aqueous humor (AH) protein level compared to vehicle treated group. Although, prednisolone group showed significantly lower clinical grade, histopathological grades and AH protein levels compared to C. longa group, TNF-alpha levels did not differ significantly. Moreover, when the aqueous extract was administered starting from 3 days before induction of uveitis, the mean clinical and histopathological grade as well as AH protein and TNF-alpha levels were comparable to C. longa group when treatment was administered 4 h after induction of uveitis. It is concluded that topically applied standardized aqueous extract of C. longa suppresses endotoxin-induced uveitis in rats by reducing TNF-alpha activity.

  9. Endotoxin-induced reduction of beta-adrenergic binding sites on splenic lymphocytes in vivo and in vitro : its modulation by anterior hypothalamic lesions

    NARCIS (Netherlands)

    Van Oosterhout, A J; Van Heuven-Nolsen, D; Thijssen, J H; Nijkamp, F P; de Boer, S.F.

    1989-01-01

    Bacterial endotoxin induced a 38% decrease in the number of beta-adrenergic binding sites (Bmax) on splenic lymphocytes, four days after intraperitoneal administration to guinea pigs. No change in the affinity (Kd) for [125-I]-cyanopindolol ([125-I]-CYP) binding was observed. Incubation of guinea

  10. Expression of multiple cytokines and IL-1RA in the uvea and retina during endotoxin-induced uveitis in the rat

    NARCIS (Netherlands)

    de Vos, A. F.; Klaren, V. N.; Kijlstra, A.

    1994-01-01

    Ample evidence is available demonstrating that cytokines play a pivotal role in the pathogenesis of uveitis. Because little is known concerning the site of cytokine synthesis in the eye, cytokine mRNA expression was analyzed in the uvea, retina, and cornea during endotoxin-induced uveitis (EIU) in

  11. The Role of Mitochondrial Oxidation in Endotoxin-Induced Liver-Dependent Swine Pulmonary Edema

    Science.gov (United States)

    Siore, Amsel M.; Parker, Richard E.; Cuppels, Chris; Thorn, Natalie; Hansen, Jason M.; Stecenko, Arlene A.; Brigham, Kenneth L.

    2012-01-01

    We reported previously studies in an in situ perfused swine preparation demonstrating that endotoxemia induced lung injury required the presence of the liver and that the response was accompanied by oxidative stress. To determine whether lung and liver mitochondrial oxidative stress was important to the response, we compared the effects of equimolar amounts of two antioxidants, n-acetylcysteine, which does not replenish mitochondrial glutathione, and procysteine which does, on endotoxemia induced lung injury in the swine preparation. In a swine perfused liver-lung preparation, we measured physiologic, biochemical and cellular responses of liver and lung to endotoxemia with and without the drugs. Endotoxemia caused oxidation of the mitochondria-specific protein, thioredoxin-2, in both the lungs and the liver. Procysteine reduced thioredoxin-2 oxidation, attenuated hemodynamic, gas exchange, hepatocellular dysfunction, and cytokine responses and prevented lung edema. n-acetylcysteine had more modest effects and did not prevent lung edema. Conclusions: We conclude that mitochondrial oxidation may be critical to the pathogenesis of endotoxemia-induced liver-dependent lung injury and that choices of antioxidant therapy for such conditions must consider the desired subcellular target in order to be optimally effective. PMID:22925572

  12. Phosphatidylcholine Reverses Ethanol-Induced Increase in Transepithelial Endotoxin Permeability and Abolishes Transepithelial Leukocyte Activation

    DEFF Research Database (Denmark)

    Mitzscherling, Katja; Volynets, Valentina; Parlesak, Alexandr

    2009-01-01

    activation of human leukocytes. For this purpose, we used a model in which intestinal epithelial cells (Caco-2) were basolaterally cocultivated with mononuclear leukocytes. Cells were challenged apically with endotoxin from Escherichia coli K12 and were incubated with or without the addition of CPBS (1.5 m...... of leukocytes were nearly completely abolished after the apical supplementation of PC with CPBS, but not by CPBS alone. Ethanol up to 66 mM was not able to reverse this effect. A considerable part of the therapeutic and preventive effect of PC supplementation in ALD might result from a reduction of ethanol...

  13. Erythropoietin augments the cytokine response to acute endotoxin-induced inflammation in humans

    DEFF Research Database (Denmark)

    Hojman, Pernille; Taudorf, Sarah; Lundby, Carsten

    2009-01-01

    Recent studies have shown that erythropoietin (EPO) offers protection against ischemia, hemorrhagic shock and systemic inflammation in many tissues and it has been suggested that EPO has anti-inflammatory effects. With the aim of investigating the potential acute anti-inflammatory effects of EPO...... in a human in vivo model of acute systemic low-grade inflammation, we measured circulating inflammatory mediators after intravenous administration of Escherichia coli endotoxin (LPS) bolus injection (0.1 ng/kg of body weight) in young healthy male subjects. The subjects were divided into three groups...

  14. Maternal endotoxin-induced fetal growth restriction in rats: Fetal responses in toll-like receptor

    Directory of Open Access Journals (Sweden)

    Banun Kusumawardani

    2012-09-01

    Full Text Available Background: Porphyromonas gingivalis as a major etiology of periodontal disease can produce virulence factor, lipopolysaccharide/LPS, which is expected to play a role in the intrauterine fetal growth. Trophoblast at the maternal-fetal interface actively participates in response to infection through the expression of a family of natural immune receptors, toll-like receptor (TLR. Purpose: the aims of study were to identify endotoxin concentration in maternal blood serum of Porphyromonas gingivalis-infected pregnant rats, to characterize the TLR-4 expression in trophoblast cells, and to determine its effect on fetal growth. Methods: Female rats were infected with live-Porphyromonas gingivalis at concentration of 2 x 109 cells/ml into subgingival sulcus area of the maxillary first molar before and/or during pregnancy. They were sacrified on 14th and 20th gestational day. Fetuses were evaluated for weight and length. Endotoxin was detected by limulus amebocyte lysate assay in the maternal blood serum. The TLR-4 expression in trophoblast cells was detected by immunohistochemistry. Histone Deacetylase Inhibitor Trichostatin A Ameliorated Endotoxin-Induced Neuroinflammation and Cognitive Dysfunction

    Directory of Open Access Journals (Sweden)

    Chung-Hsi Hsing

    2015-01-01

    Full Text Available Excessive production of cytokines by microglia may cause cognitive dysfunction and long-lasting behavioral changes. Activating the peripheral innate immune system stimulates cytokine secretion in the central nervous system, which modulates cognitive function. Histone deacetylases (HDACs modulate cytokine synthesis and release. Trichostatin A (TSA, an HDAC inhibitor, is documented to be anti-inflammatory and neuroprotective. We investigated whether TSA reduces lipopolysaccharide- (LPS- induced neuroinflammation and cognitive dysfunction. ICR mice were first intraperitoneally (i.p. injected with vehicle or TSA (0.3 mg/kg. One hour later, they were injected (i.p. with saline or Escherichia coli LPS (1 mg/kg. We analyzed the food and water intake, body weight loss, and sucrose preference of the injected mice and then determined the microglia activation and inflammatory cytokine expression in the brains of LPS-treated mice and LPS-treated BV-2 microglial cells. In the TSA-pretreated mice, microglial activation was lower, anhedonia did not occur, and LPS-induced cognitive dysfunction (anorexia, weight loss, and social withdrawal was attenuated. Moreover, mRNA expression of HDAC2, HDAC5, indoleamine 2,3-dioxygenase (IDO, TNF-α, MCP-1, and IL-1β in the brain of LPS-challenged mice and in the LPS-treated BV-2 microglial cells was lower. TSA diminished LPS-induced inflammatory responses in the mouse brain and modulated the cytokine-associated changes in cognitive function, which might be specifically related to reducing HDAC2 and HDAC5 expression.

  15. Protective effect of porphyran isolated from discolored nori (Porphyra yezoensis) on lipopolysaccharide-induced endotoxin shock in mice.

    Science.gov (United States)

    Nishiguchi, Tomoki; Cho, Kichul; Isaka, Shogo; Ueno, Mikinori; Jin, Jun-O; Yamaguchi, Kenichi; Kim, Daekyung; Oda, Tatsuya

    2016-12-01

    Porphyran, a sulfated polysaccharide, isolated from discolored nori (Porphyra yezoensis) (dc-porphyran) and one fraction (F1) purified from dc-porphyran by DEAE-chromatography showed the protective effects on LPS-induced endotoxin shock in mice. Intraperitoneal (i.p.) treatment with dc-porphyran or F1 (100mg/kg) 60min prior to i.p. injection of LPS (30mg/kg) completely protected mice from LPS lethality. At 10mg/kg concentration, F1 demonstrated more protection than dc-porphyran. Intravenous (i.v.) challenge of LPS, even at 20mg/kg, was more lethal than i.p. administration; i.v. injection of F1 (100mg/kg) with LPS significantly improved the survival rate. However, i.v. dc-porphyran (100mg/kg) produced an even lower survival rate than that of LPS alone. We examined pro-inflammatory mediators such as NO and TNF-α in serum. F1 significantly reduced the levels of these markers. Additionally, F1 significantly decreased the malondialdehyde level in the liver, a marker of oxidative stress, while dc-porphyran had almost no effect. Furthermore, F1 significantly decreased the production of TNF-α and NO in peritoneal exudate cells harvested from LPS-challenged mice, while dc-porphyran treatment showed a lesser decrease. Our results suggest that porphyran isolated from discolored nori, especially F1, is capable of suppressing LPS-induced endotoxin shock in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Targeting naproxen coupled to human serum albumin to nonparenchymal cells reduces endotoxin-induced mortality in rats with biliary cirrhosis

    NARCIS (Netherlands)

    Albrecht, C.; Meijer, D.K F; Lebbe, C; Sägesser, H; Melgert, B.N; Poelstra, Klaas; Reichen, J

    1997-01-01

    Endotoxin is thought to play a major role in cirrhotic liver disease, Cyclo-oxygenase inhibitors were shown to be partially protective against endotoxin but cannot be used in cirrhotic patients because of renal side-effects, We argued that administration of naproxen (NAP) linked to human serum

  17. Inhibition of IRAK-4 activity for rescuing endotoxin LPS-induced septic mortality in mice by lonicerae flos extract

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Hong; Roh, Eunmiri [College of Pharmacy, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Kim, Hyun Soo [Pharmaceutical R and D Center, Huons Co., Ltd., Anyang (Korea, Republic of); Baek, Seung-Il [College of Pharmacy, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Choi, Nam Song [Pharmaceutical R and D Center, Huons Co., Ltd., Anyang (Korea, Republic of); Kim, Narae; Hwang, Bang Yeon; Han, Sang-Bae [College of Pharmacy, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Kim, Youngsoo, E-mail: youngsoo@chungbuk.ac.kr [College of Pharmacy, Chungbuk National University, Cheongju 361-763 (Korea, Republic of)

    2013-12-13

    Highlights: •Lonicerae flos extract (HS-23) is a clinical candidate, Phase I for sepsis treatment. •Here, HS-23 or its major constituents rescued LPS-induced septic mortality in mice. •As a mechanism, they directly inhibited IRAK-4-catalyzed kinase activity. •Thus, they suppressed LPS-induced expression of NF-κB/AP-1-target inflammatory genes. -- Abstract: Lonicerae flos extract (HS-23) is a clinical candidate currently undergoing Phase I trial in lipopolysaccharide (LPS)-injected healthy human volunteers, but its molecular basis remains to be defined. Here, we investigated protective effects of HS-23 or its major constituents on Escherichia coli LPS-induced septic mortality in mice. Intravenous treatment with HS-23 rescued LPS-intoxicated C57BL/6J mice under septic conditions, and decreased the levels of cytokines such as tumor necrosis factor α (TNF-α), interleukin (IL)-1β and high-mobility group box-1 (HMGB-1) in the blood. Chlorogenic acid (CGA) and its isomers were assigned as major constituents of HS-23 in the protection against endotoxemia. As a molecular mechanism, HS-23 or CGA isomers inhibited endotoxin LPS-induced autophosphorylation of the IL-1 receptor-associated kinase 4 (IRAK-4) in mouse peritoneal macrophages as well as the kinase activity of IRAK-4 in cell-free reactions. HS-23 consequently suppressed downstream pathways critical for LPS-induced activation of nuclear factor (NF)-κB or activating protein 1 (AP-1) in the peritoneal macrophages. HS-23 also inhibited various toll-like receptor agonists-induced nitric oxide (NO) production, and down-regulated LPS-induced expression of NF-κB/AP-1-target inflammatory genes in the cells. Taken together, HS-23 or CGA isomers exhibited anti-inflammatory therapy against LPS-induced septic mortality in mice, at least in part, mediated through the inhibition of IRAK-4.

  18. The effect of endotoxin and anti-endotoxin serum on synovial fluid parameters in the horse

    Directory of Open Access Journals (Sweden)

    R.D. Gottschalk

    1998-07-01

    Full Text Available The effects of a commercially available equine hyperimmune anti-endotoxin serum on synovial fluid parameters were evaluated in an induced synovitis model in normal horses. Four groups of 3 horses each received lipopolysaccharide (LPS plus hyperimmune antiendotoxin (anti-LPS, LPS, anti-LPS, and Ringers lactate (control respectively injected into the left intercarpal joint. Synovial fluid parameters were measured at 4, 8, 24 and 72 h. It was found that anti-LPS had no attenuating effect on the LPS and that it induced a synovitis almost equivalent to that induced by LPS alone. The introduction of sterile Ringers lactate solution into the carpal joint together with repeated aseptic arthrocentesis induces a mild inflammatory response.

  19. Hypo-responsiveness of interleukin-8 production in human embryonic epithelial intestine 407 cells independent of NF-κB pathway: New lessons from endotoxin and ribotoxic deoxynivalenol

    International Nuclear Information System (INIS)

    Moon, Yuseok; Yang, Hyun; Park, Seung-Hwan

    2008-01-01

    Mucosal epithelium senses external toxic insults and transmits the danger signals into the epithelial cells in order to activate a broad range of inflammatory responses. However, pre-exposure to the commensal endotoxins can induce inflammatory tolerance and maintain the homeostasis without excessive immune responses. We recently reported that ribotoxin deoxynivalenol (DON) and its derivatives elicited the pro-inflammatory response as the mucosal insults in human epithelial cells. Taking the knowledge into consideration, we tested the hypothesis that endotoxin pre-exposure can attenuate ribotoxin-induced epithelial interleukin-8 (IL-8) production via a tolerance mechanism. Pre-exposure to endotoxin repressed IL-8 release and its gene expression. However, inflammatory tolerance was not mediated by the attenuated NF-κB activation which has been generally recognized as the major mediator of LPS-mediated toll-like receptor (TLR) signaling pathway. Instead, pre-exposure to endotoxin was observed to trigger the delayed induction of peroxisome proliferator-activated receptor gamma (PPAR-γ) which contributed to the diminished IL-8 production in the human epithelial cells. Moreover, endogenous PPAR-γ agonist suppressed toxicant-mediated interleukin-8 production and IL-8 mRNA stability. Taken together, endotoxin induced hypo-production of pro-inflammatory cytokine IL-8 in the human epithelial cells, which was associated with the delayed activation of PPAR-γ expression by pre-existing endotoxin

  1. Sickness behavior induced by endotoxin can be mitigated by the dietary soluble fiber, pectin, through up-regulation of IL-4 and Th2 polarization

    OpenAIRE

    Sherry, Christina L.; Kim, Stephanie S.; Dilger, Ryan N.; Bauer, Laura L.; Moon, Morgan L.; Tapping, Richard I.; Fahey, George C.; Tappenden, Kelly A.; Freund, Gregory G.

    2010-01-01

    Peripheral activation of the immune system by infectious agents triggers the brain-cytokine system causing sickness behaviors which profoundly impact well-being. Dietary fiber is a beneficial foodstuff that, from a gastrointestinal tract perspective, exists in both insoluble and soluble forms. We show that a diet rich in soluble fiber protects mice from endotoxin-induced sickness behavior by polarizing mice Th2 when compared to a diet containing only insoluble fiber. Mice fed soluble fiber be...

  2. Endotoxin mediated-iNOS induction causes insulin resistance via ONOO⁻ induced tyrosine nitration of IRS-1 in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Geneviève Pilon

    2010-12-01

    Full Text Available It is believed that the endotoxin lipopolysaccharide (LPS is implicated in the metabolic perturbations associated with both sepsis and obesity (metabolic endotoxemia. Here we examined the role of inducible nitric oxide synthase (iNOS in skeletal muscle insulin resistance using LPS challenge in rats and mice as in vivo models of endotoxemia.Pharmacological (aminoguanidine and genetic strategies (iNOS⁻/⁻ mice were used to counter iNOS induction in vivo. In vitro studies using peroxynitrite (ONOO⁻ or inhibitors of the iNOS pathway, 1400 W and EGCG were conducted in L6 myocytes to determine the mechanism by which iNOS mediates LPS-dependent insulin resistance. In vivo, both pharmacological and genetic invalidation of iNOS prevented LPS-induced muscle insulin resistance. Inhibition of iNOS also prevented insulin resistance in myocytes exposed to cytokine/LPS while exposure of myocytes to ONOO⁻ fully reproduced the inhibitory effect of cytokine/LPS on both insulin-stimulated glucose uptake and PI3K activity. Importantly, LPS treatment in vivo and iNOS induction and ONOO⁻ treatment in vitro promoted tyrosine nitration of IRS-1 and reduced insulin-dependent tyrosine phosphorylation.Our work demonstrates that iNOS-mediated tyrosine nitration of IRS-1 is a key mechanism of skeletal muscle insulin resistance in endotoxemia, and presents nitrosative modification of insulin signaling proteins as a novel therapeutic target for combating muscle insulin resistance in inflammatory settings.

  3. Curcumin attenuated paracetamol overdose induced hepatitis

    Science.gov (United States)

    Somanawat, Kanjana; Thong-Ngam, Duangporn; Klaikeaw, Naruemon

    2013-01-01

    AIM: To investigate whether curcumin could attenuate hepatitis in mice with paracetamol overdose. METHODS: Male mice were divided into four groups. Group 1 (control, n = 8); was fed with distilled water; Group 2 [N-acetyl-P-aminophenol (APAP), n = 8]; was fed with a single dose of 400 mg/kg APAP dissolved in distilled water; Group 3 [APAP + curcumin (CUR) 200, n = 8], was fed with a single dose of 400 mg/kg APAP and 200 mg/kg CUR; Group 4 (APAP + CUR 600, n = 8), was fed with a single dose of 400 mg/kg APAP and 600 mg/kg CUR. Twenty-four hours later, the liver was removed to examine hepatic glutathione (GSH), hepatic malondialdehyde (MDA), and histopathologically. Then whole blood was withdrawn from heart to determine transaminase (serum glutamic oxaloacetic transaminase and serum glutamic pyruvic transaminase) and inflammatory cytokines [interleukin (IL)-12 and IL-18] levels by enzyme linked immunosorbent assay. RESULTS: Serum transaminase, hepatic MDA, and inflammatory cytokines increased significantly in the APAP compared with the control group. Curcumin supplementation in APAP + CUR 200 and APAP + CUR 600 groups significantly decreased these parameters compared with the APAP group. The level of GSH decreased significantly in the APAP compared with the control group. Curcumin supplementation in APAP + CUR 200 and APAP + CUR 600 groups significantly increased these parameters compared with the APAP group. The histological appearance of the liver in the control group showed normal. In the APAP-treated group, the liver showed extensive hemorrhagic hepatic necrosis at all zones. Curcumin supplementation in APAP + CUR 200 and APAP + CUR 600 groups, caused the liver histopathology to improve. In the APAP + CUR 200 group, the liver showed focal necrosis and but the normal architecture was well preserved in APAP + CUR 600 group. CONCLUSION: APAP overdose can cause liver injury. Results indicate that curcumin prevents APAP-induced hepatitis through the improvement of

  4. Inhalation of activated protein C inhibits endotoxin-induced pulmonary inflammation in mice independent of neutrophil recruitment

    NARCIS (Netherlands)

    Slofstra, S. H.; Groot, A. P.; Maris, N. A.; Reitsma, P. H.; Cate, H. Ten; Spek, C. A.

    2006-01-01

    BACKGROUND AND PURPOSE: Intravenous administration of recombinant human activated protein C (rhAPC) is known to reduce lipopolysaccharide (LPS)-induced pulmonary inflammation by attenuating neutrophil chemotaxis towards the alveolar compartment. Ideally, one would administer rhAPC in pulmonary

  5. Twist1 controls lung vascular permeability and endotoxin-induced pulmonary edema by altering Tie2 expression.

    Science.gov (United States)

    Mammoto, Tadanori; Jiang, Elisabeth; Jiang, Amanda; Lu, Yongbo; Juan, Aimee M; Chen, Jing; Mammoto, Akiko

    2013-01-01

    Tight regulation of vascular permeability is necessary for normal development and deregulated vascular barrier function contributes to the pathogenesis of various diseases, including acute respiratory distress syndrome, cancer and inflammation. The angiopoietin (Ang)-Tie2 pathway is known to control vascular permeability. However, the mechanism by which the expression of Tie2 is regulated to control vascular permeability has not been fully elucidated. Here we show that transcription factor Twist1 modulates pulmonary vascular leakage by altering the expression of Tie2 in a context-dependent way. Twist1 knockdown in cultured human lung microvascular endothelial cells decreases Tie2 expression and phosphorylation and increases RhoA activity, which disrupts cell-cell junctional integrity and increases vascular permeability in vitro. In physiological conditions, where Ang1 is dominant, pulmonary vascular permeability is elevated in the Tie2-specific Twist1 knockout mice. However, depletion of Twist1 and resultant suppression of Tie2 expression prevent increase in vascular permeability in an endotoxin-induced lung injury model, where the balance of Angs shifts toward Ang2. These results suggest that Twist1-Tie2-Angs signaling is important for controlling vascular permeability and modulation of this mechanism may lead to the development of new therapeutic approaches for pulmonary edema and other diseases caused by abnormal vascular permeability.

  6. Metformin reduces the endotoxin-induced down-regulation of apolipoprotein E gene expression in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Stavri, Simona; Trusca, Violeta G.; Simionescu, Maya; Gafencu, Anca V., E-mail: anca.gafencu@icbp.ro

    2015-05-29

    The atheroprotective role of macrophage-derived apolipoprotein E (apoE) is well known. Our previous reports demonstrated that inflammatory stress down-regulates apoE expression in macrophages, aggravating atherogenesis. Metformin, extensively used as an anti-diabetic drug, has also anti-inflammatory properties, and thus confers vascular protection. In this study, we questioned whether metformin could have an effect on apoE expression in macrophages in normal conditions or under lipopolysaccharide (LPS)-induced stress. The results showed that metformin slightly increases the apoE expression only at high doses (5–10 mM). Low doses of metformin (1–3 mM) significantly reduce the LPS down-regulatory effect on apoE expression in macrophages. Our experiments demonstrated that LPS-induced NF-κB binds to the macrophage-specific distal regulatory element of apoE gene, namely to the multienhancer 2 (ME.2) and its 5′-deletion fragments. The NF-κB binding on ME.2 and apoE promoter has a down-regulatory effect. In addition, data revealed that metformin impairs NF-κB nuclear translocation, and thus, improves the apoE levels in macrophages under inflammatory stress. The positive effect of metformin in the inflammatory states, its clinical safety and low cost, make this drug a potential adjuvant in the therapeutic strategies for atherosclerosis. - Highlights: • High doses of metformin slightly increase apoE expression in macrophages. • Low doses of metformin up-regulate apoE gene in endotoxin-stressed macrophages. • Metformin reduces the negative effect of LPS on apoE expression by NF-κB inhibition.

  7. Systemic administration of an anti-tumor necrosis factor-alpha monoclonal antibody protects against endotoxin-induced uveitis in rats

    OpenAIRE

    Ge, Qingman; Wang, Shaocheng; Zheng, Yuezhong

    2016-01-01

    Objective: This study was to evaluate the effect of systemic injection of an anti-tumor necrosis factor alpha (TNF-?) monoclonal antibody (mAb) on endotoxin-induced uveitis (EIU). Materials and Methods: Fifty-six male Wistar rats (6?8 weeks old) were randomly divided into three groups: EIU, anti-TNF-? mAb + EIU, and control. EIU was induced by injecting Escherichia coli O55:B5 lipopolysaccharide (LPS) into the hind footpad of the rats (150 ?g/rat). The anti-TNF-? mAb (1 ?g/kg) was administrat...

  8. Effects of the immunomodulator, VGX-1027, in endotoxin-induced uveitis in Lewis rats

    DEFF Research Database (Denmark)

    Mangano, K; Sardesai, N Y; Quattrocchi, C

    2008-01-01

    VGX-1027 is a novel, low molecular weight, immunomodulatory compound that has shown efficacy against a variety of immuno-inflammatory disease models in animals including autoimmune diabetes in NOD mice, collagen-induced arthritis and chemically induced inflammatory colitis. Here, we have studied...

  9. Anti-inflammatory effect of cinnamaldehyde and linalool from the leaf essential oil of Cinnamomum osmophloeum Kanehira in endotoxin-induced mice.

    Science.gov (United States)

    Lee, Shih-Chieh; Wang, Shih-Yun; Li, Chien-Chun; Liu, Cheng-Tzu

    2018-01-01

    Cinnamomum osmophloeum Kanehira is a Taiwan native plant that belongs to genus Cinnamomum and is also known as pseudocinnamomum or indigenous cinnamon. Its leaf is traditionally used by local people in cooking and as folk therapy. We previously demonstrated the chemical composition and anti-inflammatory effect of leaf essential oil of Cinnamomum osmophloeum Kanehira of linalool chemotype in streptozotocin-induced diabetic rats and on endotoxin-injected mice. The aim of the present study is to evaluate whether cinnamaldehyde and linalool the active anti-inflammatory compounds in leaf essential oil of Cinnamomum osmophloeum Kanehira. Before the injection of endotoxin, C57BL/6 mice of the experimental groups were administered cinnamaldehyde (0.45 or 0.9 mg/kg body weight) or linalool (2.6 or 5.2 mg/kg body weight), mice of the positive control group were administered the leaf essential oil (13 mg/kg body weight), and mice of the negative group were administered vehicle (corn oil, 4 mL/kg body weight) by gavage every other day for two weeks. All mice received endotoxin (i.p. 10 mg/mL/kg body weight) the next day after the final administration and were killed 12 h after the injection. Normal control mice were pretreated with vehicle followed by the injection with saline. None of the treatment found to affect body weight or food or water intake of mice before the injection of endotoxin. Cinnamaldehyde and linalool were found significantly reversed endotoxin-induced body weight loss and lymphoid organ enlargement compared with vehicle (P essential oil, which was 0.9 mg/kg and 5.2 mg/kg, respectively, showed similar or slightly less inhibitory activity for most of these inflammatory parameters compared with that of the leaf essential oil. Our data confirmed the potential use of leaf essential oil of Cinnamomum osmophloeum Kanehira as an anti-inflammatory natural product and provide evidence for cinnamaldehyde and linalool as two potent agents for prophylactic use

  10. Comparison of acute effect of systemic versus intravitreal infliximab treatment in an experimental model of endotoxin-induced uveitis.

    Science.gov (United States)

    Yuksel, Erdem; Hasanreisoglu, Berati; Yuksel, Nilay; Yilmaz, Guldal; Ercin, Ugur; Bilgihan, Ayse

    2014-02-01

    In this study, we investigated the efficacy of systemic and intravitreal (IV) infliximab treatments and compared these 2 different treatment modalities in an experimental model of endotoxin-induced uveitis (EIU). Twenty-four white New Zealand rabbits were equally divided into 4 groups. Group 1 received IV injection of lipopolysaccharide (LPS), group 2 received IV injections of LPS and saline, group 3 received IV LPS and IV 2 mg/0.1 cc infliximab, and group 4 received IV LPS and 5 mg/kg intravenous infliximab. Inflammation was determined with objective and subjective tests. The subjective test was clinical determination of uveitis, the objective tests were determination of protein concentrations and tumor necrosis factor alpha (TNF-α) levels and histopathology. Clinical examination score was lower in group 3 and group 4 (4±0.6 and 3.5±1.6, respectively) when compared with group 1 (P=0.02; P=0.04, respectively) and group 2. In group 3 and 4, the aqueous and vitreous protein and TNF-α concentration measured significantly lower than group 1 and 2. In histopathologic examination, there was no statistically significant difference between group 1, 2, and 3 (3.5±0.5, 3.6±0.5, 3.6±0.5, respectively). However, the lowest histopathologic inflammation was determined in group 4 (2.5±0.5) (compared with group 1 and group 3, respectively; P=0.03; P=0.014). In a rabbit model of experimental EIU, intravenous administration of infliximab was more effective than IV route in an acute period.

  11. Wogonin Induces Eosinophil Apoptosis and Attenuates Allergic Airway Inflammation

    Science.gov (United States)

    Dorward, David A.; Sharma, Sidharth; Rennie, Jillian; Felton, Jennifer M.; Alessandri, Ana L.; Duffin, Rodger; Schwarze, Jurgen; Haslett, Christopher; Rossi, Adriano G.

    2015-01-01

    Rationale: Eosinophils are key effector cells in allergic diseases, including allergic rhinitis, eczema, and asthma. Their tissue presence is regulated by both recruitment and increased longevity at inflamed sites. Objectives: To investigate the ability of the flavone wogonin to induce eosinophil apoptosis in vitro and attenuate eosinophil-dominant allergic inflammation in vivo in mice. Methods: Human and mouse eosinophil apoptosis in response to wogonin was investigated by cellular morphology, flow cytometry, mitochondrial membrane permeability, and pharmacological caspase inhibition. Allergic lung inflammation was modeled in mice sensitized and challenged with ovalbumin. Bronchoalveolar lavage (BAL) and lung tissue were examined for inflammation, mucus production, and inflammatory mediator production. Airway hyperresponsiveness to aerosolized methacholine was measured. Measurements and Main Results: Wogonin induced time- and concentration-dependent human and mouse eosinophil apoptosis in vitro. Wogonin-induced eosinophil apoptosis occurred with activation of caspase-3 and was inhibited by pharmacological caspase inhibition. Wogonin administration attenuated allergic airway inflammation in vivo with reductions in BAL and interstitial eosinophil numbers, increased eosinophil apoptosis, reduced airway mucus production, and attenuated airway hyperresponsiveness. This wogonin-induced reduction in allergic airway inflammation was prevented by concurrent caspase inhibition in vivo. Conclusions: Wogonin induces eosinophil apoptosis and attenuates allergic airway inflammation, suggesting that it has therapeutic potential for the treatment of allergic inflammation in humans. PMID:25629436

  12. Differential effects of nitric oxide synthase inhibitors on endotoxin-induced liver damage in rats

    NARCIS (Netherlands)

    Vos, TA; Gouw, ASH; Klok, PA; Havinga, R; vanGoor, H; Roelofsen, H; Kuipers, F; Jansen, PLM; Moshage, H

    1997-01-01

    Background & Aims: During endotoxemia, expression of inducible nitric oxide synthase (iNOS) and nitric oxide production in the liver is increased, NO has been suggested to have a hepatoprotective function. The aim of this study was to investigate the distribution of iNOS and the effect of different

  13. Nicotine Administration Attenuates Methamphetamine-Induced Novel Object Recognition Deficits.

    Science.gov (United States)

    Vieira-Brock, Paula L; McFadden, Lisa M; Nielsen, Shannon M; Smith, Misty D; Hanson, Glen R; Fleckenstein, Annette E

    2015-07-11

    Previous studies have demonstrated that methamphetamine abuse leads to memory deficits and these are associated with relapse. Furthermore, extensive evidence indicates that nicotine prevents and/or improves memory deficits in different models of cognitive dysfunction and these nicotinic effects might be mediated by hippocampal or cortical nicotinic acetylcholine receptors. The present study investigated whether nicotine attenuates methamphetamine-induced novel object recognition deficits in rats and explored potential underlying mechanisms. Adolescent or adult male Sprague-Dawley rats received either nicotine water (10-75 μg/mL) or tap water for several weeks. Methamphetamine (4 × 7.5mg/kg/injection) or saline was administered either before or after chronic nicotine exposure. Novel object recognition was evaluated 6 days after methamphetamine or saline. Serotonin transporter function and density and α4β2 nicotinic acetylcholine receptor density were assessed on the following day. Chronic nicotine intake via drinking water beginning during either adolescence or adulthood attenuated the novel object recognition deficits caused by a high-dose methamphetamine administration. Similarly, nicotine attenuated methamphetamine-induced deficits in novel object recognition when administered after methamphetamine treatment. However, nicotine did not attenuate the serotonergic deficits caused by methamphetamine in adults. Conversely, nicotine attenuated methamphetamine-induced deficits in α4β2 nicotinic acetylcholine receptor density in the hippocampal CA1 region. Furthermore, nicotine increased α4β2 nicotinic acetylcholine receptor density in the hippocampal CA3, dentate gyrus and perirhinal cortex in both saline- and methamphetamine-treated rats. Overall, these findings suggest that nicotine-induced increases in α4β2 nicotinic acetylcholine receptors in the hippocampus and perirhinal cortex might be one mechanism by which novel object recognition deficits are

  14. Diet-induced obesity reprograms the inflammatory response of the murine lung to inhaled endotoxin

    International Nuclear Information System (INIS)

    Tilton, Susan C.; Waters, Katrina M.; Karin, Norman J.; Webb-Robertson, Bobbie-Jo M.; Zangar, Richard C.; Lee, K. Monica; Bigelow, Diana J.; Pounds, Joel G.; Corley, Richard A.

    2013-01-01

    The co-occurrence of environmental factors is common in complex human diseases and, as such, understanding the molecular responses involved is essential to determine risk and susceptibility to disease. We have investigated the key biological pathways that define susceptibility for pulmonary infection during obesity in diet-induced obese (DIO) and regular weight (RW) C57BL/6 mice exposed to inhaled lipopolysaccharide (LPS). LPS induced a strong inflammatory response in all mice as indicated by elevated cell counts of macrophages and neutrophils and levels of proinflammatory cytokines (MDC, MIP-1γ, IL-12, RANTES) in the bronchoalveolar lavage fluid. Additionally, DIO mice exhibited 50% greater macrophage cell counts, but decreased levels of the cytokines, IL-6, TARC, TNF-α, and VEGF relative to RW mice. Microarray analysis of lung tissue showed over half of the LPS-induced expression in DIO mice consisted of genes unique for obese mice, suggesting that obesity reprograms how the lung responds to subsequent insult. In particular, we found that obese animals exposed to LPS have gene signatures showing increased inflammatory and oxidative stress response and decreased antioxidant capacity compared with RW. Because signaling pathways for these responses can be common to various sources of environmentally induced lung damage, we further identified biomarkers that are indicative of specific toxicant exposure by comparing gene signatures after LPS exposure to those from a parallel study with cigarette smoke. These data show obesity may increase sensitivity to further insult and that co-occurrence of environmental stressors result in complex biosignatures that are not predicted from analysis of individual exposures. - Highlights: ► Obesity modulates inflammatory markers in BAL fluid after LPS exposure. ► Obese animals have a unique transcriptional signature in lung after LPS exposure. ► Obesity elevates inflammatory stress and reduces antioxidant capacity in the lung

  15. Diet-Induced Obesity Reprograms the Inflammatory Response of the Murine Lung to Inhaled Endotoxin

    Energy Technology Data Exchange (ETDEWEB)

    Tilton, Susan C.; Waters, Katrina M.; Karin, Norman J.; Webb-Robertson, Bobbie-Jo M.; Zangar, Richard C.; Lee, Monika K.; Bigelow, Diana J.; Pounds, Joel G.; Corley, Richard A.

    2013-03-01

    The co-occurrence of environmental factors is common in complex human diseases and, as such, understanding the molecular responses involved is essential to determine risk and susceptibility to disease. We have investigated the key biological pathways that define susceptibility for pulmonary infection during obesity in diet-induced obese (DIO) and regular weight (RW) C57BL/6 mice exposed to inhaled lipopolysaccharide (LPS). LPS induced a strong inflammatory response in all mice as indicated by elevated cell counts of macrophages and neutrophils and levels of proinflammatory cytokines (MDC, MIP-1γ, IL-12, RANTES) in the bronchoalveolar lavage fluid. Additionally, DIO mice exhibited 50% greater macrophage cell counts, but decreased levels of the cytokines, IL-6, TARC, TNF-α, and VEGF relative to RW mice. Microarray analysis of lung tissue showed over half of the LPS-induced expression in DIO mice consisted of genes unique for obese mice, suggesting that obesity reprograms how the lung responds to subsequent insult. In particular, we found that obese animals exposed to LPS have gene signatures showing increased inflammatory and oxidative stress response and decreased antioxidant capacity compared with RW. Because signaling pathways for these responses can be common to various sources of environmentally induced lung damage, we further identified biomarkers that are indicative of specific toxicant exposure by comparing gene signatures after LPS exposure to those from a parallel study with cigarette smoke. These data show obesity may increase sensitivity to further insult and that co-occurrence of environmental stressors result in complex biosignatures that are not predicted from analysis of individual exposures.

  16. Diet-induced obesity reprograms the inflammatory response of the murine lung to inhaled endotoxin

    Energy Technology Data Exchange (ETDEWEB)

    Tilton, Susan C., E-mail: susan.tilton@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Waters, Katrina M.; Karin, Norman J.; Webb-Robertson, Bobbie-Jo M.; Zangar, Richard C. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Lee, K. Monica [Battelle Toxicology Northwest, Richland, WA 99352 (United States); Bigelow, Diana J.; Pounds, Joel G.; Corley, Richard A. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

    2013-03-01

    The co-occurrence of environmental factors is common in complex human diseases and, as such, understanding the molecular responses involved is essential to determine risk and susceptibility to disease. We have investigated the key biological pathways that define susceptibility for pulmonary infection during obesity in diet-induced obese (DIO) and regular weight (RW) C57BL/6 mice exposed to inhaled lipopolysaccharide (LPS). LPS induced a strong inflammatory response in all mice as indicated by elevated cell counts of macrophages and neutrophils and levels of proinflammatory cytokines (MDC, MIP-1γ, IL-12, RANTES) in the bronchoalveolar lavage fluid. Additionally, DIO mice exhibited 50% greater macrophage cell counts, but decreased levels of the cytokines, IL-6, TARC, TNF-α, and VEGF relative to RW mice. Microarray analysis of lung tissue showed over half of the LPS-induced expression in DIO mice consisted of genes unique for obese mice, suggesting that obesity reprograms how the lung responds to subsequent insult. In particular, we found that obese animals exposed to LPS have gene signatures showing increased inflammatory and oxidative stress response and decreased antioxidant capacity compared with RW. Because signaling pathways for these responses can be common to various sources of environmentally induced lung damage, we further identified biomarkers that are indicative of specific toxicant exposure by comparing gene signatures after LPS exposure to those from a parallel study with cigarette smoke. These data show obesity may increase sensitivity to further insult and that co-occurrence of environmental stressors result in complex biosignatures that are not predicted from analysis of individual exposures. - Highlights: ► Obesity modulates inflammatory markers in BAL fluid after LPS exposure. ► Obese animals have a unique transcriptional signature in lung after LPS exposure. ► Obesity elevates inflammatory stress and reduces antioxidant capacity in the lung

  17. Attenuation of salt-induced changes in photosynthesis by ...

    African Journals Online (AJOL)

    Attenuation of salt-induced changes in photosynthesis by exogenous nitric oxide in tomato ( Lycopersicon esculentum Mill. ... African Journal of Biotechnology ... Exogenous sodium nitroprusside (SNP), a NO donor, was applied in this study to investigate the potential role of NO in photosynthetic performance of tomato ...

  18. Pyrrolidine Dithiocarbamate Attenuates Paraquat-Induced Lung Injury in Rats

    Directory of Open Access Journals (Sweden)

    Xiuli Chang

    2009-01-01

    PQ+PDTC-treated groups than that of PQ-treated groups (P<.05. The histopathological changes in the PQ+PDTC-treated groups were milder than those of PQ groups. Our results suggested that PDTC treatment significantly attenuated paraquat-induced pulmonary damage.

  19. (--Phenserine attenuates soman-induced neuropathology.

    Directory of Open Access Journals (Sweden)

    Jun Chen

    Full Text Available Organophosphorus (OP nerve agents are deadly chemical weapons that pose an alarming threat to military and civilian populations. The irreversible inhibition of the critical cholinergic degradative enzyme acetylcholinesterase (AChE by OP nerve agents leads to cholinergic crisis. Resulting excessive synaptic acetylcholine levels leads to status epilepticus that, in turn, results in brain damage. Current countermeasures are only modestly effective in protecting against OP-induced brain damage, supporting interest for evaluation of new ones. (--Phenserine is a reversible AChE inhibitor possessing neuroprotective and amyloid precursor protein lowering actions that reached Phase III clinical trials for Alzheimer's Disease where it exhibited a wide safety margin. This compound preferentially enters the CNS and has potential to impede soman binding to the active site of AChE to, thereby, serve in a protective capacity. Herein, we demonstrate that (--phenserine protects neurons against soman-induced neuronal cell death in rats when administered either as a pretreatment or post-treatment paradigm, improves motoric movement in soman-exposed animals and reduces mortality when given as a pretreatment. Gene expression analysis, undertaken to elucidate mechanism, showed that (--phenserine pretreatment increased select neuroprotective genes and reversed a Homer1 expression elevation induced by soman exposure. These studies suggest that (--phenserine warrants further evaluation as an OP nerve agent protective strategy.

  20. Pentoxifylline Attenuates Cardiac Remodeling Induced by Tobacco Smoke Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Minicucci, Marcos; Oliveira, Fernando; Santos, Priscila; Polegato, Bertha; Roscani, Meliza; Fernandes, Ana Angelica; Lustosa, Beatriz; Paiva, Sergio; Zornoff, Leonardo; Azevedo, Paula, E-mail: paulasa@fmb.unesp.br [Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, São Paulo, SP (Brazil)

    2016-05-15

    Tobacco smoke exposure is an important risk factor for cardiac remodeling. Under this condition, inflammation, oxidative stress, energy metabolism abnormalities, apoptosis, and hypertrophy are present. Pentoxifylline has anti‑inflammatory, anti-apoptotic, anti-thrombotic and anti-proliferative properties. The present study tested the hypothesis that pentoxifylline would attenuate cardiac remodeling induced by smoking. Wistar rats were distributed in four groups: Control (C), Pentoxifylline (PX), Tobacco Smoke (TS), and PX-TS. After two months, echocardiography, invasive blood pressure measurement, biochemical, and histological studies were performed. The groups were compared by two-way ANOVA with a significance level of 5%. TS increased left atrium diameter and area, which was attenuated by PX. In the isolated heart study, TS lowered the positive derivate (+dp/dt), and this was attenuated by PX. The antioxidants enzyme superoxide dismutase and glutathione peroxidase were decreased in the TS group; PX recovered these activities. TS increased lactate dehydrogenase (LDH) and decreased 3-hydroxyacyl Coenzyme A dehydrogenases (OH-DHA) and citrate synthase (CS). PX attenuated LDH, 3-OH-DHA and CS alterations in TS-PX group. TS increased IL-10, ICAM-1, and caspase-3. PX did not influence these variables. TS induced cardiac remodeling, associated with increased inflammation, oxidative stress, apoptosis, and changed energy metabolism. PX attenuated cardiac remodeling by reducing oxidative stress and improving cardiac bioenergetics, but did not act upon cardiac cytokines and apoptosis.

  1. Important role of platelets in modulating endotoxin-induced lung inflammation in CFTR-deficient mice.

    Directory of Open Access Journals (Sweden)

    Caiqi Zhao

    Full Text Available Mutation of CFTR (cystic fibrosis transmembrane conductance regulator leads to cystic fibrosis (CF. Patients with CF develop abnormalities of blood platelets and recurrent lung inflammation. However, whether CFTR-mutated platelets play a role in the development of lung inflammation is elusive. Therefore, we intratracheally challenged wildtype and F508del (a common type of CFTR mutation mice with LPS to observe changes of F508del platelets in the peripheral blood and indexes of lung inflammation (BAL neutrophils and protein levels. Furthermore, we investigated whether or not and how F508del platelets modulate the LPS-induced acute lung inflammation by targeting anti-platelet aggregation, depletion of neutrophils, reconstitution of bone marrow or neutrophils, blockade of P-selectin glycoprotein ligand-1 (PSGL-1, platelet activating factor (PAF, and correction of mutated CFTR trafficking. We found that LPS-challenged F508del mice developed severe thrombocytopenia and had higher levels of plasma TXB2 coincided with neutrophilic lung inflammation relative to wildtype control. Inhibition of F508del platelet aggregation or depletion of F508del neutrophils diminished the LPS-induced lung inflammation in the F508del mice. Moreover, wildtype mice reconstituted with either F508del bone marrow or neutrophils developed worse thrombocytopenia. Blocking PSGL-1, platelet activating factor (PAF, or rectifying trafficking of mutated CFTR in F508del mice diminished and alveolar neutrophil transmigration in the LPS-challenged F508del mice. These findings suggest that F508del platelets and their interaction with neutrophils are requisite for the development of LPS-induced lung inflammation and injury. As such, targeting platelets might be an emerging strategy for dampening recurrent lung inflammation in cystic fibrosis patients.

  2. The angiotensin-converting enzyme inhibitor captopril rescues mice from endotoxin-induced lethal hepatitis.

    Science.gov (United States)

    Ge, Pu; Jiang, Rong; Yao, Xin; Li, Jing; Dai, Jie; Zhang, Li; Ye, Bin

    2017-02-01

    The renin-angiotensin system is classically regarded as a crucial regulator of circulatory homeostasis, but recent studies also revealed its pro-inflammatory roles. The beneficial effects of the angiotensin-converting enzyme inhibitor (ACEI) in severe inflammatory injury in the lung and heart have been previously reported, but its potential effects on lethal hepatitis were unknown. In this study, a mouse model with LPS/d-galactosamine (GalN)-induced fulminant hepatitis were used to test the protective potential of captopril, a representative ACEI. The results indicated that treatment with captopril significantly decreased the plasma level of alanine aminotransferase and aspartate aminotransferase, alleviated the histopathological damage of the liver tissue and improve the survival rate of LPS/GalN-challenged mice. These effects were accompanied by reduced mRNA levels of TNF-α and IL-6 in the liver, and decreased protein level of TNF-α and IL-6 in the plasma. In addition, the activation of caspases 3, 8 and 9, and the presence of TUNEL-positive apoptotic cells, were also suppressed by captopril treatment. The above evidence suggested that the renin-angiotensin system might be involved in the development of LPS/GalN-induced fulminant hepatitis and ACEI might have potential value in lethal hepatitis.

  3. Mild Hypothermia Attenuates the Anesthetic Isoflurane-Induced Cytotoxicity.

    Science.gov (United States)

    Li, Cheng; Dong, Yuanlin; Chen, Dan; Xie, Zhongcong; Zhang, Yiying

    2017-01-01

    The commonly used inhalation anesthetic isoflurane has been reported to induce DNA damage and cytotoxicity. However, the methods to attenuate these effects remain largely to be determined. Mild hypothermia has neuroprotective effects. We therefore set out to assess whether mild hypothermia could protect the isoflurane-induced DNA damage and cytotoxicity. Moreover, we investigated the underlying mechanisms by assessing the effects of mild hypothermia on the isoflurane-induced changes in ATP levels. H4 human neuroglioma cells were treated with 2% isoflurane for 3 or 6 h with and without mild hypothermia (35°C). We assessed the cell viability by using 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) and lactate dehydrogenase (LDH) assay. We determined DNA damage by measuring levels of phosphorylation of the histone protein H2A variant X at Ser139 (γH2A.X), the marker of DNA damage. We also measured ATP levels in the cells. Here we showed that the treatment with 2% isoflurane for 6 h induced cytotoxicity and DNA damage in the cells. Moreover, the treatment with 2% isoflurane for 3 h decreased ATP levels without inducing cytotoxicity. Mild hypothermia attenuated the isoflurane-induced cytotoxicity, DNA damage, and ATP reduction in the cells. Taken together, these data suggest that the isoflurane-induced reduction in ATP levels occurred before the isoflurane-induced cytotoxicity. Isoflurane may induce DNA damage and cause cytotoxicity through reducing ATP levels. Mild hypothermia would ameliorate isoflurane-induced DNA damage and cytotoxicity by attenuating the isoflurane-induced reduction in ATP levels. These pilot studies have established a system and will promote the future investigations of anesthesia neurotoxicity.

  4. The Tm7sf2 Gene Deficiency Protects Mice against Endotoxin-Induced Acute Kidney Injury.

    Directory of Open Access Journals (Sweden)

    Leonardo Gatticchi

    Full Text Available Cholesterol is essential for diverse cellular functions and cellular and whole-body cholesterol homeostasis is highly controlled. Cholesterol can also influence cellular susceptibility to injury. The connection between cholesterol metabolism and inflammation is exemplified by the Tm7sf2 gene, the absence of which reveals an essential role in cholesterol biosynthesis under stress conditions but also results in an inflammatory phenotype, i.e. NF-κB activation and TNFα up-regulation. Here, by using Tm7sf2+/+and Tm7sf2-/- mice, we investigated whether the Tm7sf2 gene, through its role in cholesterol biosynthesis under stress conditions, is involved in the renal failure induced by the administration of LPS. We found that the loss of Tm7sf2 gene results in significantly reduced blood urea nitrogen levels accompanied by decreased renal inflammatory response and neutral lipid accumulation. The increased expression of fatty acids catabolic enzymes reduces the need of the renal autophagy, a known crucial nutrient-sensing pathway in lipid metabolism. Moreover, we observed that the Tm7sf2 insufficiency is responsible for the inhibition of the NF-κB signalling thus dampening the inflammatory response and leading to a reduced renal damage. These results suggest a pivotal role for Tm7sf2 in renal inflammatory and lipotoxic response under endotoxemic conditions.

  5. Endotoxin induces a delayed loss of TH-IR neurons in substantia nigra and motor behavioral deficits.

    Science.gov (United States)

    Liu, Yuxin; Qin, Liya; Wilson, Belinda; Wu, Xuefei; Qian, Li; Granholm, Ann-Charlotte; Crews, Fulton T; Hong, Jau-Shyong

    2008-09-01

    We have previously reported that a single injection of endotoxin, lipopolysaccharide (LPS, 5mg/kg, i.p.), causes a delayed and progressive loss of TH-IR neurons in the substantia nigra (SN) in C57BL/six male mice. In this study, we determined sex differences and behavioral deficits accompanying the loss of TH-IR neurons in response to peripheral LPS injection. A single injection of LPS (5mg/kg, i.p.) failed to produce any loss of TH-IR neurons in the SN of female mice over a 12-month period. To determine if multiple-injections were required, female mice received five injections of LPS (5mg/kg, i.p.) at either weekly or monthly intervals. Behavioral motor ability and TH-IR neuronal loss were determined after the first injection of LPS. We found significant differences in both behavioral activities and neuronal loss between these two injection paradigms. Between 7 and 20 months after the first injection of LPS, progressive behavioral changes, measured by rotor-rod and open-field activities, and neuronal loss in SN were observed in monthly injected, but not in weekly injected mice. In addition, reduced rotor-rod ability in monthly injected mice were restored following treatment of l-dopa/carbidopa (30 mg/3mg/kg), i.p.). Approximately 40 and 50% loss of TH-IR neurons at 9 and 20 months, respectively, was observed after exposure to LPS, suggesting that the behavioral deficit is related to loss of dopamine function in the nigra-striatal pathway. More intense immuno-staining of alpha-synuclein and inflammatory markers were detected in brain sections exposed to LPS. In conclusion, these results show that multi-LPS monthly injections can induce a delayed and progressive loss of TH-IR neurons and motor deficits which resemble the progressive nature of Parkinson's disease. Further, the present study reveals a clear sex difference: female mice are more resistant to LPS than male mice. Repeated monthly LPS injections are required to cause both motor behavioral deficits and DA

  6. Increased expression of Bcl-2 during mucous cell metaplasia induced by endotoxin and ozone

    Energy Technology Data Exchange (ETDEWEB)

    Tesfaigzi, J.; Ray, L.M.; Hotchkiss, J.A. [Michigan State Univ., East Lansing, MI (United States)] [and others

    1995-12-01

    Apoptosis or programmed cell death is accompanied by characteristic morphological changes that distinguish apoptosis from other forms of cell death. These changes include DNA fragmentation, chromatin condensation, cell shrinkage, cell surface pseudopodia, and finally the cellular collapse into membrane-enclosed apoptotic bodies which are rapidly engulfed by macrophages or neighboring cells. Although the morphological features of apoptotic cells are well studied, the biochemical events that control apoptosis are not understood. Programmed cell death is triggered by a variety of pathways that are initiated by different stimuli including noxious agents, DNA damage, the activation of TNF receptors, or the withdrawl of growth factors. The central process of programmed cell death involves a cascade of biochemical events that begins with the initiation of a family of cysteine proteases, including the interleukin-1-{Beta}-converting enzyme, CPP-32, and Apopain. The ratio of Bax, a death-inducer gene, to Bcl-2, an apoptosis suppressor gene, determines whether or not the main apoptotic pathyway is blocked. Apoptosis is suppressed if the ratio of Bcl-2/Bax is > 1, and cells undergo apoptosis if the ratio is < 1. The overexpression of Bcl-2 has been shown to block the apoptotic program triggered by a variety of agents. Therefore, Bcl-2 must be involved in blocking the central pathway of the cell death program. In conclusion, this study showed that high levels of Bcl-2 were detected in some mucous cells at specific time points during mucous cell metaplasia, and this expression was reduced at later time points or was absent after remodeling of this epithelium.

  7. Effect of the Toll-Like Receptor 4 Antagonist Eritoran on Retinochoroidal Inflammatory Damage in a Rat Model of Endotoxin-Induced Inflammation

    Directory of Open Access Journals (Sweden)

    Feyzahan Ekici

    2014-01-01

    Full Text Available Purpose. We investigated the effect of eritoran, a Toll-like receptor 4 antagonist, on retinochoroidal inflammatory damage in an endotoxin-induced inflammatory rat model. Methods. Endotoxin-induced inflammatory model was obtained by intraperitoneal injection of 1.5 mg/kg lipopolysaccharide (LPS. Group 1 had control rats; in groups 2-3 LPS and 0.5 mg/kg sterile saline were injected; and in groups 4-5 LPS and 0.5 mg/kg eritoran were injected. Blood samples were taken and eyes were enucleated after 12 hours (h (groups 2 and 4 or 24 hours (Groups 3 and 5. Tumor necrosis factor-α (TNF-α and malondialdehyde (MDA levels in the serum and retinochoroidal tissue and nuclear factor kappa-B (NFκB levels in retinochoroidal tissue were determined. Histopathological examination was performed and retinochoroidal changes were scored. Results. Eritoran treatment resulted in lower levels of TNF-α, MDA, and NFκB after 12 h which became significant after 24 h. Serum TNF-α and retinochoroidal tissue NFκB levels were similar to control animals at the 24th h of the study. Eritoran significantly reversed histopathological damage after 24 h. Conclusions. Eritoran treatment resulted in less inflammatory damage in terms of serum and retinochoroidal tissue parameters.

  8. Effects of morphine on the expression of cytokines and inflammatory mediators in a rabbit model of endotoxin-induced experimental uveitis

    Directory of Open Access Journals (Sweden)

    Kethye P. Ortencio

    2015-12-01

    Full Text Available ABSTRACT Purpose: To evaluate the effects of 1% morphine instillation on clinical parameters, aqueous humor turbidity, and expression levels of tumor necrosis factor alpha (TNF-α, interleukin-1 beta (IL-1beta, prostaglandin E2 (PGE2, and myeloperoxidase (MPO in rabbits with endotoxin-induced experimental uveitis. Methods: Twenty four New Zealand white rabbits were divided into four groups (n=6 each: control (CG, morphine (MG, naloxone (NG, and morphine-naloxone (MNG groups. Under dissociative anesthesia, 0.1 mL of solution containing 0.2 µg of lipopolysaccharide (LPS endotoxin from the Salmonella typhimurium cell wall was injected in the vitreous chamber. Clinical evaluations (conjunctical hyperemia, chemosis blepharospasm, and ocular discharge and laser flaremetry were performed before (baseline, and 10 and 20 hours after induction of uveitis. Rabbits were subsequently euthanized and eyes were enucleated to quantify expression levels of TNF-α, IL-1 beta, PGE2, and MPO. Results: No significant differences in clinical parameters and flare values were observed between the study groups. TNF-α and IL-1 beta levels increased significantly in the CG, MG, NG, and MNG groups compared to baseline (P0.05. Conclusions: Morphine has no effect on clinical parameters, flare, or expression levels of inflammatory mediators in a rabbit model of uveitis induced by intravitreal injection of LPS.

  9. Acetazolamide Attenuates Lithium-Induced Nephrogenic Diabetes Insipidus.

    Science.gov (United States)

    de Groot, Theun; Sinke, Anne P; Kortenoeven, Marleen L A; Alsady, Mohammad; Baumgarten, Ruben; Devuyst, Olivier; Loffing, Johannes; Wetzels, Jack F; Deen, Peter M T

    2016-07-01

    To reduce lithium-induced nephrogenic diabetes insipidus (lithium-NDI), patients with bipolar disorder are treated with thiazide and amiloride, which are thought to induce antidiuresis by a compensatory increase in prourine uptake in proximal tubules. However, thiazides induced antidiuresis and alkalinized the urine in lithium-NDI mice lacking the sodium-chloride cotransporter, suggesting that inhibition of carbonic anhydrases (CAs) confers the beneficial thiazide effect. Therefore, we tested the effect of the CA-specific blocker acetazolamide in lithium-NDI. In collecting duct (mpkCCD) cells, acetazolamide reduced the cellular lithium content and attenuated lithium-induced downregulation of aquaporin-2 through a mechanism different from that of amiloride. Treatment of lithium-NDI mice with acetazolamide or thiazide/amiloride induced similar antidiuresis and increased urine osmolality and aquaporin-2 abundance. Thiazide/amiloride-treated mice showed hyponatremia, hyperkalemia, hypercalcemia, metabolic acidosis, and increased serum lithium concentrations, adverse effects previously observed in patients but not in acetazolamide-treated mice in this study. Furthermore, acetazolamide treatment reduced inulin clearance and cortical expression of sodium/hydrogen exchanger 3 and attenuated the increased expression of urinary PGE2 observed in lithium-NDI mice. These results show that the antidiuresis with acetazolamide was partially caused by a tubular-glomerular feedback response and reduced GFR. The tubular-glomerular feedback response and/or direct effect on collecting duct principal or intercalated cells may underlie the reduced urinary PGE2 levels with acetazolamide, thereby contributing to the attenuation of lithium-NDI. In conclusion, CA activity contributes to lithium-NDI development, and acetazolamide attenuates lithium-NDI development in mice similar to thiazide/amiloride but with fewer adverse effects. Copyright © 2016 by the American Society of Nephrology.

  10. Endotoxin removal by radio frequency gas plasma (glow discharge)

    Science.gov (United States)

    Poon, Angela

    2011-12-01

    Contaminants remaining on implantable medical devices, even following sterilization, include dangerous fever-causing residues of the outer lipopolysaccharide-rich membranes of Gram-negative bacteria such as the common gut microorganism E. coli. The conventional method for endotoxin removal is by Food & Drug Administration (FDA)-recommended dry-heat depyrogenation at 250°C for at least 45 minutes, an excessively time-consuming high-temperature technique not suitable for low-melting or heat-distortable biomaterials. This investigation evaluated the mechanism by which E. coli endotoxin contamination can be eliminated from surfaces during ambient temperature single 3-minute to cumulative 15-minute exposures to radio-frequency glow discharge (RFGD)-generated residual room air plasmas activated at 0.1-0.2 torr in a 35MHz electrodeless chamber. The main analytical technique for retained pyrogenic bio-activity was the Kinetic Chromogenic Limulus Amebocyte Lysate (LAL) Assay, sufficiently sensitive to document compliance with FDA-required Endotoxin Unit (EU) titers less than 20 EU per medical device by optical detection of enzymatic color development corresponding to < 0.5 EU/ml in sterile water extracts of each device. The main analytical technique for identification of chemical compositions, amounts, and changes during sequential reference Endotoxin additions and subsequent RFGD-treatment removals from infrared (IR)-transparent germanium (Ge) prisms was Multiple Attenuated Internal Reflection (MAIR) infrared spectroscopy sensitive to even monolayer amounts of retained bio-contaminant. KimaxRTM 60 mm x 15 mm and 50mm x 15mm laboratory glass dishes and germanium internal reflection prisms were inoculated with E. coli bacterial endotoxin water suspensions at increments of 0.005, 0.05, 0.5, and 5 EU, and characterized by MAIR-IR spectroscopy of the dried residues on the Ge prisms and LAL Assay of sterile water extracts from both glass and Ge specimens. The Ge prism MAIR

  11. Resveratrol Attenuates Copper-Induced Senescence by Improving Cellular Proteostasis

    Directory of Open Access Journals (Sweden)

    Liliana Matos

    2017-01-01

    Full Text Available Copper sulfate-induced premature senescence (CuSO4-SIPS consistently mimetized molecular mechanisms of replicative senescence, particularly at the endoplasmic reticulum proteostasis level. In fact, disruption of protein homeostasis has been associated to age-related cell/tissue dysfunction and human disorders susceptibility. Resveratrol is a polyphenolic compound with proved antiaging properties under particular conditions. In this setting, we aimed to evaluate resveratrol ability to attenuate cellular senescence induction and to unravel related molecular mechanisms. Using CuSO4-SIPS WI-38 fibroblasts, resveratrol is shown to attenuate typical senescence alterations on cell morphology, senescence-associated beta-galactosidase activity, and cell proliferation. The mechanisms implicated in this antisenescence effect seem to be independent of senescence-associated genes and proteins regulation but are reliant on cellular proteostasis improvement. In fact, resveratrol supplementation restores copper-induced increased protein content, attenuates BiP level, and reduces carbonylated and polyubiquitinated proteins by autophagy induction. Our data provide compelling evidence for the beneficial effects of resveratrol by mitigating CuSO4-SIPS stressful consequences by the modulation of protein quality control systems. These findings highlight the importance of a balanced cellular proteostasis and add further knowledge on molecular mechanisms mediating resveratrol antisenescence effects. Moreover, they contribute to identifying specific molecular targets whose modulation will prevent age-associated cell dysfunction and improve human healthspan.

  12. Sulforaphane Attenuates Gentamicin-Induced Nephrotoxicity: Role of Mitochondrial Protection

    Directory of Open Access Journals (Sweden)

    Mario Negrette-Guzmán

    2013-01-01

    Full Text Available Sulforaphane (SFN, an isothiocyanate naturally occurring in Cruciferae, induces cytoprotection in several tissues. Its protective effect has been associated with its ability to induce cytoprotective enzymes through an Nrf2-dependent pathway. Gentamicin (GM is a widely used antibiotic; nephrotoxicity is the main side effect of this compound. In this study, it was investigated if SFN is able to induce protection against GM-induced nephropathy both in renal epithelial LLC-PK1 cells in culture and in rats. SFN prevented GM-induced death and loss of mitochondrial membrane potential in LLC-PK1 cells. In addition, it attenuated GM-induced renal injury (proteinuria, increases in serum creatinine, in blood urea nitrogen, and in urinary excretion on N-acetyl-β-D-glucosaminidase, and decrease in creatinine clearance and in plasma glutathione peroxidase activity and necrosis and apoptosis in rats. The apoptotic death was associated with enhanced active caspase-9. Caspase-8 was unchanged in all the studied groups. In addition, SFN was able to prevent GM-induced protein nitration and decrease in the activity of antioxidant enzymes catalase and glutathione peroxidase in renal cortex. In conclusion, the protective effect of SFN against GM-induced acute kidney injury could be associated with the preservation in mitochondrial function that would prevent the intrinsic apoptosis and nitrosative stress.

  13. Sulforaphane Attenuates Gentamicin-Induced Nephrotoxicity: Role of Mitochondrial Protection

    Science.gov (United States)

    Huerta-Yepez, Sara; Medina-Campos, Omar Noel; Zatarain-Barrón, Zyanya Lucía; Hernández-Pando, Rogelio; Torres, Ismael; Tapia, Edilia; Pedraza-Chaverri, José

    2013-01-01

    Sulforaphane (SFN), an isothiocyanate naturally occurring in Cruciferae, induces cytoprotection in several tissues. Its protective effect has been associated with its ability to induce cytoprotective enzymes through an Nrf2-dependent pathway. Gentamicin (GM) is a widely used antibiotic; nephrotoxicity is the main side effect of this compound. In this study, it was investigated if SFN is able to induce protection against GM-induced nephropathy both in renal epithelial LLC-PK1 cells in culture and in rats. SFN prevented GM-induced death and loss of mitochondrial membrane potential in LLC-PK1 cells. In addition, it attenuated GM-induced renal injury (proteinuria, increases in serum creatinine, in blood urea nitrogen, and in urinary excretion on N-acetyl-β-D-glucosaminidase, and decrease in creatinine clearance and in plasma glutathione peroxidase activity) and necrosis and apoptosis in rats. The apoptotic death was associated with enhanced active caspase-9. Caspase-8 was unchanged in all the studied groups. In addition, SFN was able to prevent GM-induced protein nitration and decrease in the activity of antioxidant enzymes catalase and glutathione peroxidase in renal cortex. In conclusion, the protective effect of SFN against GM-induced acute kidney injury could be associated with the preservation in mitochondrial function that would prevent the intrinsic apoptosis and nitrosative stress. PMID:23662110

  14. Escin attenuates cerebral edema induced by acute omethoate poisoning.

    Science.gov (United States)

    Wang, Tian; Jiang, Na; Han, Bing; Liu, Wenbo; Liu, Tongshen; Fu, Fenghua; Zhao, Delu

    2011-06-01

    Organophosphorus exposure affects different organs such as skeletal muscles, the gastrointestinal tract, liver, lung, and brain. The present experiment aimed to evaluate the effect of escin on cerebral edema induced by acute omethoate poisoning. Sprague-Dawley rats were administered subcutaneously with omethoate at a single dose of 60 mg/kg followed by escin treatment. The results showed that escin reduced the brain water content and the amount of Evans blue in omethoate-poisoned animals. Treatment with escin decreased the levels of tumor necrosis factor-alpha (TNF-α), matrix metalloproteinase-9 (MMP-9), cyclooxygenase-2 (COX-2), and prostaglandin E₂ (PGE₂) in the brain. Escin also alleviated the histopathological change induced by acute omethoate poisoning. The findings demonstrated that escin can attenuate cerebral edema induced by acute omethoate poisoning, and the underlying mechanism was associated with ameliorating the permeability of the blood-brain barrier.

  15. Hypobaric intermittent hypoxia attenuates hypoxia-induced depressor response.

    Directory of Open Access Journals (Sweden)

    Fang Cui

    Full Text Available Hypobaric intermittent hypoxia (HIH produces many favorable effects in the cardiovascular system such as anti-hypertensive effect. In this study, we showed that HIH significantly attenuated a depressor response induced by acute hypoxia.Sprague-Dawley rats received HIH in a hypobaric chamber simulating an altitude of 5000 m. The artery blood pressure (ABP, heart rate (HR and renal sympathetic nerve activity (RSNA were recorded in anesthetized control rats and rats received HIH. The baseline ABP, HR and RSNA were not different between HIH and control rats. Acute hypoxia-induced decrease in ABP was significantly attenuated in HIH rat compared with control rats. However, acute hypoxia-induced increases in HR and RSNA were greater in HIH rat than in control rats. After removal of bilateral ascending depressor nerves, acute hypoxia-induced depressor and sympathoexcitatory responses were comparable in control and HIH rats. Furthermore, acute hypoxia-induced depressor and sympathoexcitatory responses did not differ between control and HIH groups after blocking ATP-dependent K(+ channels by glibenclamide. The baroreflex function evaluated by intravenous injection of phenylephrine and sodium nitroprusside was markedly augmented in HIH rats compared with control rats. The pressor and sympathoexcitatory responses evoked by intravenous injection of cyanide potassium were also significantly greater in HIH rats than in control rats.Our findings suggest that HIH suppresses acute hypoxia-induced depressor response through enhancement of baroreflex and chemoreflex function, which involves activation of ATP-dependent K(+ channels. This study provides new information and underlying mechanism on the beneficiary effect of HIH on maintaining cardiovascular homeostasis.

  16. Bezafibrate Attenuates Pressure Overload-Induced Cardiac Hypertrophy and Fibrosis

    Directory of Open Access Journals (Sweden)

    Si-Chi Xu

    2017-01-01

    Full Text Available Background. Peroxisome proliferator-activated receptor-α (PPAR-α is closely associated with the development of cardiac hypertrophy. Previous studies have indicated that bezafibrate (BZA, a PPAR-α agonist, could attenuate insulin resistance and obesity. This study was designed to determine whether BZA could protect against pressure overload-induced cardiac hypertrophy. Methods. Mice were orally given BZA (100 mg/kg for 7 weeks beginning 1 week after aortic banding (AB surgery. Cardiac hypertrophy was assessed based on echocardiographic, histological, and molecular aspects. Moreover, neonatal rat ventricular cardiomyocytes (NRVMs were used to investigate the effects of BZA on the cardiomyocyte hypertrophic response in vitro. Results. Our study demonstrated that BZA could alleviate cardiac hypertrophy and fibrosis in mice subjected to AB surgery. BZA treatment also reduced the phosphorylation of protein kinase B (AKT/glycogen synthase kinase-3β (GSK3β and mitogen-activated protein kinases (MAPKs. BZA suppressed phenylephrine- (PE- induced hypertrophy of cardiomyocyte in vitro. The protective effects of BZA were abolished by the treatment of the PPAR-α antagonist in vitro. Conclusions. BZA could attenuate pressure overload-induced cardiac hypertrophy and fibrosis.

  17. H2S Attenuates LPS-Induced Acute Lung Injury by Reducing Oxidative/Nitrative Stress and Inflammation

    Directory of Open Access Journals (Sweden)

    Hong-Xia Zhang

    2016-12-01

    Full Text Available Background: Hydrogen sulfide (H2S, known as the third endogenous gaseous transmitter, has received increasing attention because of its diverse effects, including angiogenesis, vascular relaxation and myocardial protection.We aimed to investigate the role of H2S in oxidative/nitrative stress and inflammation in acute lung injury (ALI induced by endotoxemia. Methods: Male ICR mice were divided in six groups: (1 Control group; (2 GYY4137treatment group; (3 L-NAME treatment group; (4 lipopolysaccharide (LPS treatment group; (5 LPS with GYY4137 treatment group; and (6 LPS with L-NAME treatment group. The lungs were analysed by histology, NO production in the mouse lungs determined by modified Griess (Sigma-Aldrich reaction, cytokine levels utilizing commercialkits, and protein abundance by Western blotting. Results: GYY4137, a slowly-releasing H2S donor, improved the histopathological changes in the lungs of endotoxemic mice. Treatment with NG-nitro-L-arginine methyl ester (L-NAME, a nitric oxide synthase (NOS inhibitor, increased anti-oxidant biomarkers such as thetotal antioxidant capacity (T-AOC and theactivities of catalase (CAT and superoxide dismutase (SOD but decreased a marker of peroxynitrite (ONOO- action and 3-nitrotyrosine (3-NT in endotoxemic lung. L-NAME administration also suppressed inflammation in endotoxemic lung, as evidenced by the decreased pulmonary levels of interleukin (IL-6, IL-8, and myeloperoxidase (MPO and the increased level of anti-inflammatory cytokine IL-10. GYY4137 treatment reversed endotoxin-induced oxidative/nitrative stress, as evidenced by a decrease in malondialdehyde (MDA, hydrogenperoxide (H2O2 and 3-NT and an increase in the antioxidant biomarker ratio of reduced/oxidized glutathione(GSH/GSSG ratio and T-AOC, CAT and SOD activity. GYY4137 also attenuated endotoxin-induced lung inflammation. Moreover, treatment with GYY4137 inhibited inducible NOS (iNOS expression and nitric oxide (NO production in the

  18. Attenuation of cryocooler induced vibration in spaceborne infrared payloads

    Science.gov (United States)

    Veprik, A.; Twitto, A.

    2014-01-01

    Recent advancement of operational responsive space programs calls for a development of compact, reliable, low power and vibration free cryogenic cooling for sophisticated infrared payloads. The refrigeration in a typical closed cycle split Stirling linear cryocooler is achieved by a cyclic compression and expansion of a gaseous working agent due to a synchronized reciprocation of electro-dynamically and pneumatically actuated compressor and expander pistons. Attenuation of the cryocooler induced vibration usually relies on the concept of actively assisted momentum cancellation. In a typical dual-piston compressor this objective is achieved by actively synchronizing the motion of oppositely moving piston assemblies; a typical single-piston expander may be counterbalanced by a motorized counter-balancer. The above approach produces complexity, weight, size, high incurred costs and affects reliability. The authors analyze the case of passive attenuation the vibration export induced by the split Stirling linear cryocooler comprised of inline mounted single-piston compressor and expander. Placement of all the moving components onto a common axis results in a single axis consolidation of vibration export and enables use of single tuned dynamic absorber and low frequency vibration mount. From theoretical analysis and full-scale testing, the performance of such vibration protection arrangement is similar to known systems of active vibration cancellation.

  19. TLR ligands, but not modulators of histone modifiers, can induce the complex immune response pattern of endotoxin tolerance in mammary epithelial cells

    Science.gov (United States)

    Günther, Juliane; Petzl, Wolfram; Zerbe, Holm; Schuberth, Hans-Joachim

    2016-01-01

    Excessive stimulation of the TLR4 axis through LPS reduces the expression of some cytokine genes in immune cells, while stimulating the expression of immune defense genes during a subsequent bacterial infection. This endotoxin tolerance (ET) is mediated via epigenetic mechanisms. Priming the udder of cows with LPS was shown to induce ET in mammary epithelial cells (MEC), thereby protecting the udder against reinfection for some time. Seeking alternatives to LPS priming we tried to elicit ET by priming MEC with either lipopeptide (Pam2CSK4) via the TLR2/6 axis or inhibitors of histone-modifying enzymes. Pre-incubation of MEC with Pam2CSK4 enhanced baseline and induced expression of bactericidal (β-defensin; SLPI) and membrane protecting factors (SAA3, TGM3), while reducing the expression of cytokine- and chemokine-encoding genes (TNF, IL1β) after a subsequent pathogen challenge, the latter, however, not as efficiently as after LPS priming. Pre-treating MEC with various inhibitors of histone H3 modifiers (for demethylation, acetylation or deacetylation) all failed to induce any of the protective factors and only resulted in some dampening of cytokine gene expression after the re-challenge. Hence, triggering immune functions via the TLR axis, but not through those histone modifiers, induced the beneficial phenomenon of ET in MEC. PMID:27913794

  20. The effect of meloxicam on pain sensitivity, rumination time, and clinical signs in dairy cows with endotoxin-induced clinical mastitis.

    Science.gov (United States)

    Fitzpatrick, C E; Chapinal, N; Petersson-Wolfe, C S; DeVries, T J; Kelton, D F; Duffield, T F; Leslie, K E

    2013-05-01

    The objectives of this study were to (1) evaluate the use of a pressure algometer and an automated rumination monitoring system to assess changes in pain sensitivity and rumination time in response to endotoxin-induced clinical mastitis and (2) evaluate the effect of the nonsteroidal antiinflammatory drug meloxicam on pain sensitivity and rumination time, as well as other clinical signs, in dairy cattle with endotoxin-induced clinical mastitis. Clinical mastitis was induced in 12 primiparous and 12 multiparous lactating dairy cows by intramammary infusion of 25 µg of Escherichia coli lipopolysaccharide (LPS) into 1 uninfected quarter. Immediately after, half the cows were injected subcutaneously with meloxicam (treated group) and half with the same volume of a placebo solution (control group). Pain sensitivity was assessed by measuring the difference in pressure required to elicit a response on the control and challenged quarter using an algometer 3 d before, immediately before, and at 3, 6, 12, and 24h after LPS infusion and either meloxicam or placebo injection. Rumination was continuously monitored from 2 d before to 3 d after LPS infusion using rumination loggers. Udder edema, body temperature, somatic cell score, and dry matter intake were also monitored to evaluate the occurrence and the duration of the inflammation after LPS infusion. In control animals, the difference in the pressure applied to the control and challenged quarters (control - challenged quarter) increased by 1.1 ± 0.4 kg of force 6h after LPS infusion compared with the baseline, suggesting an increase in pain sensitivity in the challenged quarter. Neither the LPS infusion nor the meloxicam treatment had an effect on daily rumination time. However, the rumination diurnal pattern on the day of LPS infusion showed an overall deviation from the baseline pattern. Cows spent less time ruminating in the hours following LPS infusion and more time ruminating later in the day. Meloxicam did not alter

  1. Regulation of Lipolysis and Adipose Tissue Signaling during Acute Endotoxin-Induced Inflammation: A Human Randomized Crossover Trial.

    Directory of Open Access Journals (Sweden)

    Nikolaj Rittig

    Full Text Available Lipolysis is accelerated during the acute phase of inflammation, a process being regulated by pro-inflammatory cytokines (e.g. TNF-α, stress-hormones, and insulin. The intracellular mechanisms remain elusive and we therefore measured pro- and anti-lipolytic signaling pathways in adipocytes after in vivo endotoxin exposure.Eight healthy, lean, male subjects were investigated using a randomized cross over trial with two interventions: i bolus injection of saline (Placebo and ii bolus injection of lipopolysaccharide endotoxin (LPS. A 3H-palmitate tracer was used to measure palmitate rate of appearance (Rapalmitate and indirect calorimetry was performed to measure energy expenditures and lipid oxidation rates. A subcutaneous abdominal fat biopsy was obtained during both interventions and subjected to western blotting and qPCR quantifications.LPS caused a mean increase in serum free fatty acids (FFA concentrations of 90% (CI-95%: 37-142, p = 0.005, a median increase in Rapalmitate of 117% (CI-95%: 77-166, p<0.001, a mean increase in lipid oxidation of 49% (CI-95%: 1-96, p = 0.047, and a median increase in energy expenditure of 28% (CI-95%: 16-42, p = 0.001 compared with Placebo. These effects were associated with increased phosphorylation of hormone sensitive lipase (pHSL at ser650 in adipose tissue (p = 0.03, a trend towards elevated pHSL at ser552 (p = 0.09 and cAMP-dependent protein kinase A (PKA phosphorylation of perilipin 1 (PLIN1 (p = 0.09. Phosphatase and tensin homolog (PTEN also tended to increase (p = 0.08 while phosphorylation of Akt at Thr308 tended to decrease (p = 0.09 during LPS compared with Placebo. There was no difference between protein or mRNA expression of ATGL, G0S2, and CGI-58.LPS stimulated lipolysis in adipose tissue and is associated with increased pHSL and signs of increased PLIN1 phosphorylation combined with a trend toward decreased insulin signaling. The combination of these mechanisms appear to be the driving forces

  2. Intermittent fasting attenuates lipopolysaccharide-induced neuroinflammation and memory impairment.

    Science.gov (United States)

    Vasconcelos, Andrea R; Yshii, Lidia M; Viel, Tania A; Buck, Hudson S; Mattson, Mark P; Scavone, Cristoforo; Kawamoto, Elisa M

    2014-05-06

    Systemic bacterial infections often result in enduring cognitive impairment and are a risk factor for dementia. There are currently no effective treatments for infection-induced cognitive impairment. Previous studies have shown that intermittent fasting (IF) can increase the resistance of neurons to injury and disease by stimulating adaptive cellular stress responses. However, the impact of IF on the cognitive sequelae of systemic and brain inflammation is unknown. Rats on IF for 30 days received 1 mg/kg of lipopolysaccharide (LPS) or saline intravenously. Half of the rats were subjected to behavioral tests and the other half were euthanized two hours after LPS administration and the hippocampus was dissected and frozen for analyses. Here, we report that IF ameliorates cognitive deficits in a rat model of sepsis by a mechanism involving NF-κB activation, suppression of the expression of pro-inflammatory cytokines, and enhancement of neurotrophic support. Treatment of rats with LPS resulted in deficits in cognitive performance in the Barnes maze and inhibitory avoidance tests, without changing locomotor activity, that were ameliorated in rats that had been maintained on the IF diet. IF also resulted in reduced levels of mRNAs encoding the LPS receptor TLR4 and inducible nitric oxide synthase (iNOS) in the hippocampus. Moreover, IF prevented LPS-induced elevation of IL-1α, IL-1β and TNF-α levels, and prevented the LPS-induced reduction of BDNF levels in the hippocampus. IF also significantly attenuated LPS-induced elevations of serum IL-1β, IFN-γ, RANTES, TNF-α and IL-6 levels. Taken together, our results suggest that IF induces adaptive responses in the brain and periphery that can suppress inflammation and preserve cognitive function in an animal model of systemic bacterial infection.

  3. Curcumin and turmeric attenuate arsenic-induced angiogenesis in ovo.

    Science.gov (United States)

    Pantazis, Panayotis; Varman, Aarthi; Simpson-Durand, Cindy; Thorpe, Jessica; Ramalingam, Satish; Subramaniam, Dharmalingam; Houchen, Courtney; Ihnat, Michael; Anant, Shrikant; Ramanujam, Rama P

    2010-01-01

    Trivalent arsenic [As(III)] is currently approved by the FDA for the treatment of chronic and acute leukemias. However, As(III) has also demonstrated damaging effects on human health, including development of cardiovascular disease, diabetes, and cancer. Further, As(III) is a potent angiogenic agent. In this context, curcumin, an active ingredient in the dietary agent turmeric, has demonstrated potent antiproliferative, antiinflammatory, and antiangiogenic properties. In this report, we have shown that both curcumin and turmeric inhibit expression of vascular endothelial growth factor in HCT-116 human colon cancer cells exposed to As(III). Further, in the chicken chorioallantoic membrane assay model, treatment with low As(III) concentrations results in extensive increase in blood vessel density, which, however, is reduced in the presence of curcumin or turmeric. Collectively, the findings reported here strongly suggest that turmeric and curcumin can dramatically attenuate the process of angiogenesis induced by low As(III) concentrations.

  4. Stellate ganglion block attenuates chronic stress induced depression in rats.

    Directory of Open Access Journals (Sweden)

    Weiwei Wang

    Full Text Available Stress is a significant factor in the etiology of depression. Stellate ganglion block (SGB has been shown to maintain the stability of the autonomic system and to affect the neuroendocrine system, including the hypothalamic-pituitary-adrenal (HPA axis. The objective of this study was to determine the antidepressant-like effects of SGB on the autonomic system and the HPA axis, apoptosis-related proteins, related spatial learning and memory impairment, and sensorimotor dysfunction.Forty-eight Sprague Dawley rats were assigned to four experimental groups: control + saline (sham group, control + SGB (SGB group, unpredictable chronic mild stress (UCMS + saline (UCMS group, and UCMS + SGB (UCSG group. Stress-induced effects and the function of SGB were assessed using measures of body weight, coat state, sucrose consumption, and behavior in open-field and Y-maze tests. Neuronal damage was assessed histologically using the hematoxylin-eosin (HE staining method, while western blotting was used to investigate changes in the expression of apoptosis-related proteins. Plasma corticotropin-releasing factor (CRF, adrenocorticotropic hormone (ACTH, corticosterone (CORT, noradrenaline and adrenaline were measured to evaluate changes in the autonomic system and HPA axis.SGB treatment significantly improved sensorimotor dysfunction and spatial learning and memory impairment following UCMS. Moreover, UCMS significantly decreased body weight, sucrose preference and anti-apoptotic protein Bcl-2, and increased scores on measures of coat state, adrenal gland weight, levels of CORT, CRF, ACTH, noradrenaline and adrenaline, as well as increased neuronal loss, cell shrinkage, nuclear condensation, and the pro-apoptotic protein Bax. These symptoms were attenuated by treatment with SGB.These findings suggest that SGB can attenuate depression-like behaviors induced by chronic stress. These protective effects appear to be due to an anti-apoptotic mechanism of two stress

  5. Corilagin Attenuates Aerosol Bleomycin-Induced Experimental Lung Injury

    Science.gov (United States)

    Wang, Zheng; Guo, Qiong-Ya; Zhang, Xiao-Ju; Li, Xiao; Li, Wen-Ting; Ma, Xi-Tao; Ma, Li-Jun

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressing lethal disease with few clinically effective therapies. Corilagin is a tannin derivative which shows anti-inflammatory and antifibrotics properties and is potentiated in treating IPF. Here, we investigated the effect of corilagin on lung injury following bleomycin exposure in an animal model of pulmonary fibrosis. Corilagin abrogated bleomycin-induced lung fibrosis as assessed by H&E; Masson’s trichrome staining and lung hydroxyproline content in lung tissue. Corilagin reduced the number of apoptotic lung cells and prevented lung epithelial cells from membrane breakdown, effluence of lamellar bodies and thickening of the respiratory membrane. Bleomycin exposure induced expression of MDA, IKKα, phosphorylated IKKα (p-IKKα), NF-κB P65, TNF-α and IL-1β, and reduced I-κB expression in mice lung tissue or in BALF. These changes were reversed by high-dose corilagin (100 mg/kg i.p) more dramatically than by low dose (10 mg/kg i.p). Last, corilagin inhibits TGF-β1 production and α-SMA expression in lung tissue samples. Taken together, these findings confirmed that corilagin attenuates bleomycin-induced epithelial injury and fibrosis via inactivation of oxidative stress, proinflammatory cytokine release and NF-κB and TGF-β1 signaling. Corilagin may serve as a promising therapeutic agent for pulmonary fibrosis. PMID:24886817

  6. Triptolide Attenuates Endotoxin- and Staphylococcal Exotoxin-Induced T-Cell Proliferation and Production of Cytokines and Chemokines

    National Research Council Canada - National Science Library

    Krakauer, Teresa; Chen, Xin; Howard, O. M; Young, Howard A

    2005-01-01

    ...) and bacterial lipopolysaccharide (LPS). Triptolide, an oxygenated diterpene derived from a traditional Chinese medicinal herb, Tripterygium wilfordii, inhibited SE-stimulated T-cell proliferation (by 98...

  7. Antiflammin-1 attenuates bleomycin-induced pulmonary fibrosis in mice.

    Science.gov (United States)

    Liu, Wei; Wan, Jing; Han, Jian-Zhong; Li, Chen; Feng, Dan-Dan; Yue, Shao-Jie; Huang, Yan-Hong; Chen, Yi; Cheng, Qing-Mei; Li, Yang; Luo, Zi-Qiang

    2013-10-08

    Antiflammin-1 (AF-1), a derivative of uteroglobin (UG), is a synthetic nonapeptide with diverse biological functions. In the present study, we investigated whether AF-1 has a protective effect against bleomycin-induced pulmonary fibrosis. C57BL/6 mice were injected with bleomycin intratracheally to create an animal model of bleomycin-induced pulmonary fibrosis. On Day 7 and Day 28, we examined the anti-inflammatory effect and antifibrotic effect, respectively, of AF-1 on the bleomycin-treated mice. The effects of AF-1 on the transforming growth factor-beta 1 (TGF-β1)-induced proliferation of murine lung fibroblasts (NIH3T3) were examined by a bromodeoxycytidine (BrdU) incorporation assay and cell cycle analysis. Severe lung inflammation and fibrosis were observed in the bleomycin-treated mice on Day 7 and Day 28, respectively. Administration of AF-1 significantly reduced the number of neutrophils in the bronchoalveolar lavage fluid (BALF) and the levels of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) in the lung homogenates on Day 7. Histological examination revealed that AF-1 markedly reduced the number of infiltrating cells on Day 7 and attenuated the collagen deposition and destruction of lung architecture on Day 28. The hydroxyproline (HYP) content was significantly decreased in the AF-1-treated mice. In vitro, AF-1 inhibited the TGF-β1-induced proliferation of NIH3T3 cells, which was mediated by the UG receptor. AF-1 has anti-inflammatory and antifibrotic actions in bleomycin-induced lung injury. We propose that the antifibrotic effect of AF-1 might be related to its suppression of fibroblast growth in bleomycin-treated lungs and that AF-1 has potential as a new therapeutic tool for pulmonary fibrosis.

  8. Mechanisms of interleukin-2-induced hydrothoraxy in mice: protective effect of endotoxin tolerance and dexamethasone and possible role of reactive oxygen intermediates.

    Science.gov (United States)

    Faggioni, R; Allavena, P; Cantoni, L; Carelli, M; Demitri, M T; Delgado, R; Gatti, S; Gnocchi, P; Isetta, A M; Paganin, C

    1994-04-01

    Interleukin (IL)-2 is known to induce vascular leak syndrome (VLS), which was suggested to be mediated by immune system-derived cytokines, including tumor necrosis factor (TNF). To characterize the role of TNF in IL-2 toxicity in C3H/HeN mice, we used two approaches to downregulate TNF production in vivo: treatment with dexamethasone (DEX) and induction of endotoxin (lipopolysaccharide) (LPS) tolerance by a 4-day pretreatment with LPS (35 micrograms/mouse/day). Mice were then treated with IL-2 for 5 days (1.8 x 10(5) IU/mouse, twice daily). Both DEX and LPS tolerance blocked development of hydrothorax in IL-2-treated mice and inhibited TNF induction. DEX and LPS tolerance also ameliorated IL-2 toxicity in terms of decrease in food intake and inhibited the increase of the acute-phase protein, serum amyloid A (SAA). The IL-2 activation of splenic natural killer (NK) cell activity was also diminished by DEX and, to a lesser extent, by LPS-tolerance. Treatment with IL-2 also caused induction of the superoxide-generating enzyme xanthine oxidase (XO) in tissues and serum and induced bacterial translocation in the mesenteric lymph nodes (MLN). These data suggest that multiple mechanisms, including NK cell activity, cytokines, and reactive oxygen intermediates, might be important in the vascular toxicity of IL-2.

  9. The effect of endotoxin on preirradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Oehlert, W.; Oehlert, M. (Freiburg Univ. (Germany). Inst. fuer Pathologie); Moenig, H.; Konermann, G. (Freiburg Univ. (Germany). Inst. fuer Biophysik und Strahlenbiologie)

    1992-12-01

    Adult male mice were given a whole body irradiation with non-lethal doses of 2.5 or 5 Gy. Unirradiated animals served as controls. The animals (including controls) received a single injection of endotoxin (LPS from Salmonella abortus equi) with doses of 100, 200 or 400 [mu]g one day up to one year after irradiation. Twelve, 24 or 48 hours after lipopolysaccharide (LPS) application the animals were killed and dissected. Animals which died spontaneously were also examined. Liver, lung, kidney, small intestine, and stomach were histologically investigated. The histological findings showed, that differences exist between irradiated and unirradiated mice and that the cause of death is also different for animals dying spontaneously. The investigations have shown that after irradiation phases of different degrees of sensitivity with regard to the endotoxin response exist. This behaviour can be observed by different lethality rates or in the light of the histological results. Moreover, the histological findings have shown, that distinct regenerative changes occur first of all in the liver, in the mucosa of small intestine, and the gastric mucosa, in which the number of differntiated cells compared with the mitotic active cells is reduced. It can be ascertained, that a whole body irradiation with 2.5 to 5 Gy enhances an additional injury by endotoxin weeks to months later. Contrary to this a preirradiation a few days before endotoxin application leads to a 'protection' against the efficacy of endotoxin. These findings can be explained by modes of action described in literature, according to which endotoxins induce the formation of highly active mediators especially the tumor necrosis factor. (orig.).

  10. Endotoxin and CD14 in the progression of biliary atresia

    Directory of Open Access Journals (Sweden)

    Chen Ching-Mei

    2010-12-01

    Full Text Available Abstract Background Biliary atresia (BA is a typical cholestatic neonatal disease, characterized by obliteration of intra- and/or extra-hepatic bile ducts. However, the mechanisms contributing to the pathogenesis of BA remain uncertain. Because of decreased bile flow, infectious complications and damaging endotoxemia occur frequently in patients with BA. The aim of this study was to investigate endotoxin levels in patients with BA and the relation of these levels with the expression of the endotoxin receptor, CD14. Methods The plasma levels of endotoxin and soluble CD14 were measured with a pyrochrome Limulus amebocyte lysate assay and enzyme-linked immunosorbent assay in patients with early-stage BA when they received the Kasai procedure (KP, in patients who were jaundice-free post-KP and followed-up at the outpatient department, in patients with late-stage BA when they received liver transplantation, and in patients with choledochal cysts. The correlation of CD14 expression with endotoxin levels in rats following common bile duct ligation was investigated. Results The results demonstrated a significantly higher hepatic CD14 mRNA and soluble CD14 plasma levels in patients with early-stage BA relative to those with late-stage BA. However, plasma endotoxin levels were significantly higher in both the early and late stages of BA relative to controls. In rat model, the results demonstrated that both endotoxin and CD14 levels were significantly increased in liver tissues of rats following bile duct ligation. Conclusions The significant increase in plasma endotoxin and soluble CD14 levels during BA implies a possible involvement of endotoxin stimulated CD14 production by hepatocytes in the early stage of BA for removal of endotoxin; whereas, endotoxin signaling likely induced liver injury and impaired soluble CD14 synthesis in the late stages of BA.

  11. Pilose antler peptide attenuates LPS-induced inflammatory reaction.

    Science.gov (United States)

    Dong, Yu; Liu, Li; Shan, Xin; Tang, Juanjuan; Xia, Baomei; Cheng, Xiaolan; Chen, Yanyan; Tao, Weiwei

    2018-03-01

    The present study was designed to study the effects of pilose antler peptide (PAP) on primary culture of nucleus pulposus cells in intervertebral disc. We demonstrated that PAP significantly inhibited lipopolysaccharides (LPS) induced over-production of inflammatory factors including interleukin-1β (IL-1β), tumor necrosis Factor-α (TNF-α) and interleukin-6 (IL-6) in nucleus pulposus cells. PAP also attenuated increase of malondialdehyde (MDA) and decrease of superoxide dismutase (SOD) induced by LPS challenge in a concentration-dependent manner. Moreover, the expression of the protein levels of mitogen-activated protein kinase (MAPK)/nuclear transcription factor-κB(NF-κB) were increased accompanying with the LPS challenge, which were significantly reversed after PAP treatment. Our results demonstrated the ability of PAP to antagonize LPS-mediated inflammation in primary culture of nucleus pulposus in intervertebral disc, suggesting a beneficial potential for its clinical application. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Targeting sphingosine kinase 1 attenuates bleomycin-induced pulmonary fibrosis.

    Science.gov (United States)

    Huang, Long Shuang; Berdyshev, Evgeny; Mathew, Biji; Fu, Panfeng; Gorshkova, Irina A; He, Donghong; Ma, Wenli; Noth, Imre; Ma, Shwu-Fan; Pendyala, Srikanth; Reddy, Sekhar P; Zhou, Tong; Zhang, Wei; Garzon, Steven A; Garcia, Joe G N; Natarajan, Viswanathan

    2013-04-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease, wherein transforming growth factor β (TGF-β) and sphingosine-1-phosphate (S1P) contribute to the pathogenesis of fibrosis. However, the in vivo contribution of sphingosine kinase (SphK) in fibrotic processes has not been documented. Microarray analysis of blood mononuclear cells from patients with IPF and SphK1- or SphK2-knockdown mice and SphK inhibitor were used to assess the role of SphKs in fibrogenesis. The expression of SphK1/2 negatively correlated with lung function and survival in patients with IPF. Also, the expression of SphK1 was increased in lung tissues from patients with IPF and bleomycin-challenged mice. Knockdown of SphK1, but not SphK2, increased survival and resistance to pulmonary fibrosis in bleomycin-challenged mice. Administration of SphK inhibitor reduced bleomycin-induced mortality and pulmonary fibrosis in mice. Knockdown of SphK1 or treatment with SphK inhibitor attenuated S1P generation and TGF-β secretion in a bleomycin-induced lung fibrosis mouse model that was accompanied by reduced phosphorylation of Smad2 and MAPKs in lung tissue. In vitro, bleomycin-induced expression of SphK1 in lung fibroblast was found to be TGF-β dependent. Taken together, these data indicate that SphK1 plays a critical role in the pathology of lung fibrosis and is a novel therapeutic target.

  13. Experimental Study and Numerical Modeling of Wave Induced Pore Pressure Attenuation Inside a Rubble Mound Breakwater

    DEFF Research Database (Denmark)

    Troch, Peter; Rouck, Julien De; Burcharth, Hans Falk

    2003-01-01

    The main objective of this paper is to study the attenuation of the wave induced pore pressures inside the core of a rubble mound breakwater. The knowledge of the distribution and the attenuation of the pore pressures is important for the design of a stable and safe breakwater. The pore pressure...... and have been re-analysed in detail with respect to the attenuation characteristics. The analysis follows the method by Burcharth et al. (1999) and confirms the practical calculation method for the attenuation of the pore pressure in the core given in this reference. The attenuation of pore pressures...

  14. Endotoxin increases pulmonary vascular protein permeability in the dog

    International Nuclear Information System (INIS)

    Welsh, C.H.; Dauber, I.M.; Weil, J.V.

    1986-01-01

    Endotoxin increases pulmonary vascular permeability consistently in some species but fails to reliably cause injury in the dog. We wondered whether this phenomenon depended on the method of injury assessment, as others have relied on edema measurement; we quantified injury by monitoring the rate of extravascular protein accumulation. /sup 113m/In-labeled protein and /sup 99m/Tc-labeled erythrocytes were injected into anesthetized dogs and monitored by an externally placed lung probe. A protein leak index, the rate of extravascular protein accumulation, was derived from the rate of increase in lung protein counts corrected for changes in intravascular protein activity. After administration of Salmonella enteriditis endotoxin (4 micrograms/kg), the protein leak index was elevated 2.5-fold (41.1 +/- 4.6 X 10(-4) min-1) compared with control (16.0 +/- 2.8 X 10(-4) min-1). In contrast, wet-to-dry weight ratios failed to increase after endotoxin (4.6 +/- 0.8 vs. control values of 4.2 +/- 0.5 g/g dry bloodless lung). However, we observed that endotoxin increased lung dry weight (per unit body weight), which may have attenuated the change in wet-to-dry weight ratios. To determine whether low microvascular pressures following endotoxin attenuated edema formation, we increased pulmonary arterial wedge pressures in five dogs by saline infusion, which caused an increase in wet-to-dry weight ratios following endotoxin but no change in the five controls. We conclude that low dose endotoxin causes pulmonary vascular protein leak in the dog while edema formation is minimal or absent

  15. Panax notoginseng Attenuates Bleomycin-Induced Pulmonary Fibrosis in Mice

    Directory of Open Access Journals (Sweden)

    Kuen-Daw Tsai

    2011-01-01

    Full Text Available Panax notoginseng (PN is a traditional Chinese herb experimentally proven to have anti-inflammatory effects, and it is used clinically for the treatment of atherosclerosis, cerebral infarction, and cerebral ischemia. This study aimed to determine the anti-inflammatory effects of PN against bleomycin-induced pulmonary fibrosis in mice. First, in an in vitro study, culture media containing lipopolysaccharide (LPS was used to stimulate macrophage cells (RAW 264.7 cell line. TNF-α and IL-6 levels were then determined before and after treatment with PN extract. In an animal model (C57BL/6 mice, a single dose of PN (0.5 mg/kg was administered orally on Day 2 or Day 7 postbleomycin treatment. The results showed that TNF-α and IL-6 levels increased in the culture media of LPS-stimulated macrophage cells, and this effect was significantly inhibited in a concentration-dependent manner by PN extract. Histopathologic examination revealed that PN administered on Day 7 postbleomycin treatment significantly decreased inflammatory cell infiltrates, fibrosis scores, and TNF-α, TGF-β, IL-1β, and IL-6 levels in bronchoalveolar lavage fluid when compared with PN given on Day 2 postbleomycin treatment. These results suggest that PN administered in the early fibrotic stage can attenuate pulmonary fibrosis in an animal model of idiopathic pulmonary fibrosis.

  16. Curcumin Attenuates Hepatotoxicity Induced by Zinc Oxide Nanoparticles in Rats

    Directory of Open Access Journals (Sweden)

    Layasadat Khorsandi

    2016-06-01

    Full Text Available Background: Zinc oxide nanoparticles (NZnO are increasingly used in modern life. Most metal nanoparticles have adverse effects on the liver. Aims: To explore the protective action of curcumin (Cur against hepatotoxicity induced by NZnO in rats. Study Design: Animal experimentation. Methods: Control group animals received normal saline, while the Cur group animals were treated with 200 mg/kg of Cur orally for 21 days. NZnO-intoxicated rats received 50 mg/kg of NZnO for 14 days by gavage method. In the NZnO+Cur group, rats were pretreated with Cur for 7 days before NZnO administration. Plasma activities of Alanine aminotransferase (ALT, aspartate aminotransferase (AST and alkaline phosphatase (ALP were measured as biomarkers of hepatotoxicity. Hepatic levels of malondialdehyde (MDA and superoxide dismutase (SOD and glutathione peroxidase (GPx activities were measured for detection of oxidative stress in liver tissue. Histological changes and apoptosis in liver tissue were studied by using Hematoxylin-eosin staining and the transferase dUTP nick end labeling (TUNEL method. Results: NZnO induced a significant increase in plasma AST (2.8-fold, ALT (2.7-fold and ALP (1.97-fold activity in comparison to the control group (p<0.01. NZnO increased MDA content and reduced SOD and GPx activities. NZnO caused liver damage including centrilobular necrosis and microvesicular steatosis. The percentage of apoptosis in hepatocytes was increased in NZnO-treated rats (p<0.01. Pre-treatment of Cur significantly reduced lipid peroxidation (39%, increased SOD (156% and GPx (26% activities, and attenuated ALT (47%, AST (41% and ALP (30% activities. Pre-treatment with Cur also decreased the histology changes and apoptotic index of hepatocytes (p<0.05. Conclusion: These findings indicate that Cur effectively protects against NZnO-induced hepatotoxicity in rats. However, future studies are required to propose Cur as a potential protective agent against hepatotoxicity

  17. Doxycycline Attenuated Pulmonary Fibrosis Induced by Bleomycin in Mice

    OpenAIRE

    Fujita, Masaki; Ye, Qing; Ouchi, Hiroshi; Harada, Eiji; Inoshima, Ichiro; Kuwano, Kazuyoshi; Nakanishi, Yoichi

    2006-01-01

    The administration of doxycycline prior to bleomycin in mice attenuated pulmonary fibrosis. Bronchoalveolar neutrophil influx and gelatinase activity, but not caseinolytic activity, were attenuated by doxycycline. Established fibrosis was not affected by doxycycline. Thus, doxycycline might be useful for slowing down pulmonary fibrosis by biological activity other than antibacterial activity.

  18. Membrane adsorber for endotoxin removal

    Directory of Open Access Journals (Sweden)

    Karina Moita de Almeida

    Full Text Available ABSTRACT The surface of flat-sheet nylon membranes was modified using bisoxirane as the spacer and polyvinyl alcohol as the coating polymer. The amino acid histidine was explored as a ligand for endotoxins, aiming at its application for endotoxin removal from aqueous solutions. Characterization of the membrane adsorber, analysis of the depyrogenation procedures and the evaluation of endotoxin removal efficiency in static mode are discussed. Ligand density of the membranes was around 7 mg/g dry membrane, allowing removal of up to 65% of the endotoxins. The performance of the membrane adsorber prepared using nylon coated with polyvinyl alcohol and containing histidine as the ligand proved superior to other membrane adsorbers reported in the literature. The lack of endotoxin adsorption on nylon membranes without histidine confirmed that endotoxin removal was due to the presence of the ligand at the membrane surface. Modified membranes were highly stable, exhibiting a lifespan of approximately thirty months.

  19. Attenuation of tumor necrosis factor-induced endothelial cell cytotoxicity and neutrophil chemiluminescence

    International Nuclear Information System (INIS)

    Zheng, H.; Crowley, J.J.; Chan, J.C.; Hoffmann, H.; Hatherill, J.R.; Ishizaka, A.; Raffin, T.A.

    1990-01-01

    Our laboratory has previously shown that the administration of tumor necrosis factor (TNF), a cytokine produced by activated mononuclear cells, to guinea pigs produces a syndrome similar to gram-negative sepsis or ARDS. Pentoxifylline (PTX), a methylxanthine, protects against TNF-induced and sepsis-induced acute lung injury in vivo. We now report on in vitro cellular studies of PMN-mediated cellular injury and its attenuation. We studied TNF-induced bovine pulmonary artery endothelial cell (EC) cytotoxicity both with and without PMN. A 51Cr release assay was used to measure EC damage. Further, we investigated PMN function in response to TNF by measuring chemiluminescence. Agents that attenuate EC damage and PMN activation were evaluated in the above assays. Results revealed that TNF causes EC injury (p less than 0.05) and PMN increase TNF-induced EC injury. Furthermore, PTX, aminophylline (AMPH), caffeine, and forskolin attenuate TNF-induced EC cytotoxicity only in the presence of PMN (p less than 0.05). Of interest, dibutyryl cAMP (DBcAMP) protects EC from TNF-induced injury both with and without PMN. Agents that may increase cAMP levels in PMN (PTX, DBcAMP, forskolin, isobutyl methylxanthine, and terbutaline) significantly attenuate TNF-induced PMN chemiluminescence (p less than 0.05). We conclude that TNF causes EC damage and PMN increase this damage. Furthermore, PTX, AMPH, caffeine, and forskolin can attenuate TNF-induced EC injury in the presence of PMN, whereas DBcAMP attenuates TNF-induced EC injury with and without PMN. In addition, agents that may increase intracellular cAMP levels in PMN can attenuate TNF-induced PMN chemiluminescence. Thus, these agents likely attenuate TNF-induced PMN-mediated EC injury through their inhibitory effects on PMN

  20. Rosiglitazone attenuates pulmonary fibrosis and radiation-induced intestinal damage

    Energy Technology Data Exchange (ETDEWEB)

    Mangoni, M.; Gerini, C.; Sottili, M.; Cassani, S.; Stefania, G.; Biti, G. [Radiotherapy Unit, Clinical Physiopathology Department, University of Florence, Firenze (Italy); Castiglione, F. [Department of Human Pathology and Oncology, University of Florence, Firenze (Italy); Vanzi, E.; Bottoncetti, A.; Pupi, A. [Nuclear Medicine Unit, Clinical Physiopathology Department, University of Florence, Firenze (Italy)

    2011-10-15

    Full text of publication follows: Purpose.-The aim of the study was to evaluate radioprotective effect of rosiglitazone (RGZ) on a murine model of late pulmonary damage and of acute intestinal damage. Methods.- Lung fibrosis: C57 mice were treated with the radiomimetic agent bleomycin, with or without rosiglitazone (5 mg/kg/day). To obtain an independent qualitative and quantitative measure for lung fibrosis we used high resolution CT, performed twice a week during the entire observation period. Hounsfield Units (HU) of section slides from the upper and lower lung region were determined. On day 31 lungs were collected for histological analysis. Acute intestinal damage: mice underwent 12 Gy total body irradiation with or without rosiglitazone. Mice were sacrificed 24 or 72 h after total body irradiation and ileum and colon were collected. Results.- Lung fibrosis: after bleomycin treatment, mice showed typical CT features of lung fibrosis, including irregular septal thickening and patchy peripheral reticular abnormalities. Accordingly, HU lung density was dramatically increased. Rosiglitazone markedly attenuated the radiological signs of fibrosis and strongly inhibited HU lung density increase (60% inhibition at the end of the observation period). Histological analysis revealed that in bleomycin-treated mice, fibrosis involved 50-55% of pulmonary parenchyma and caused an alteration of the alveolar structures in 10% of parenchyma, while in rosiglitazone-treated mice, fibrosis involved only 20-25% of pulmonary parenchyma, without alterations of the alveolar structures. Acute intestinal damage: 24 h after 12 Gy of total body irradiation intestinal mucosa showed villi shortening, mucosal thickness and crypt necrotic changes. Rosiglitazone showed a histological improvement of tissue structure, with villi and crypts normalization and oedema reduction. Conclusion.- These results demonstrate that rosiglitazone displays a protective effect on pulmonary fibrosis and radiation-induced

  1. Endotoxin-Induced Inflammation Suppresses the Effect of Melatonin on the Release of LH from the Ovine Pars Tuberalis Explants—Ex Vivo Study

    Directory of Open Access Journals (Sweden)

    Karolina Wojtulewicz

    2017-11-01

    Full Text Available The secretion of the hormone melatonin reliably reflects environmental light conditions. Among numerous actions, in seasonal breeders, melatonin may regulate the secretion of the gonadotropins acting via its corresponding receptors occurring in the Pars Tuberalis (PT. However, it was previously found that the secretory activity of the pituitary may be dependent on the immune status of the animal. Therefore, this study was designed to determine the role of melatonin in the modulation of luteinizing hormone (LH secretion from the PT explants collected from saline- and endotoxin-treated ewes in the follicular phase of the oestrous cycle. Twelve Blackhead ewes were sacrificed 3 h after injection with lipopolysaccharide (LPS; 400 ng/kg or saline, and the PTs were collected. Each PT was cut into 4 explants, which were then divided into 4 groups: I, incubated with ‘pure’ medium 199; II, treated with gonadotropin-releasing hormone (GnRH (100 pg/mL; III, treated with melatonin (10 nmol/mL; and IV, incubated with GnRH and melatonin. Melatonin reduced (p < 0.05 GnRH-induced secretion of LH only in the PT from saline-treated ewes. Explants collected from LPS-treated ewes were characterized by lower (p < 0.05 GnRH-dependent response in LH release. It was also found that inflammation reduced the gene expression of the GnRH receptor and the MT1 melatonin receptors in the PT. Therefore, it was shown that inflammation affects the melatonin action on LH secretion from the PT, which may be one of the mechanisms via which immune/inflammatory challenges disturb reproduction processes in animals.

  2. Low-dose candesartan improves renal blood flow and kidney oxygen tension in rats with endotoxin-induced acute kidney dysfunction.

    Science.gov (United States)

    Nitescu, Nicoletta; Grimberg, Elisabeth; Guron, Gregor

    2008-08-01

    Sepsis is associated with an activation of the renin-angiotensin system and causes acute kidney injury. The aim was to examine the effects of a low, nondepressor dose of the selective angiotensin II type 1 receptor antagonist candesartan on renal hemodynamics and function in endotoxemic rats. Endotoxemia was induced in Sprague-Dawley rats by a dose of LPS (Escherichia coli O127:B8; 7.5 mg kg(-1), i.p.). At 16 h after endotoxin administration, renal clearance experiments were performed in thiobutabarbital anesthetized rats. Study groups (1) sham-saline, (2) LPS-saline, and (3) LPS-candesartan received isotonic saline or candesartan (10 microg kg(-1), i.v.) after baseline measurements. Kidney function, renal blood flow (RBF), and cortical and outer medullary perfusion (laser-Doppler flowmetry) and oxygen tension (P(O2); Clark-type microelectrodes) were analyzed during 2 h after drug administration. At baseline, endotoxemic rats showed an approximately 50% reduction in glomerular filtration rate and RBF (P < 0.05), a decline in cortical and outer medullary perfusion, and Po2 (P < 0.05), but no significant alterations in MAP compared with saline-injected controls. Candesartan treatment significantly improved RBF (+40% +/- 6% vs. baseline), cortical perfusion (+18% +/- 3% vs. baseline), and cortical (+19% +/- 7% vs. baseline) and outer medullary (+22% +/- 10% vs. baseline) P(O2) in endotoxemic rats (P < 0.05 vs. LPS-saline). Candesartan did not significantly influence MAP or glomerular filtration rate, whereas filtration fraction was reduced by 27% +/- 5% vs. baseline (P < 0.05 vs. LPS-saline). In conclusion, candesartan, in a dose that did not significantly decrease MAP, caused renal vasodilation and markedly improved RBF and intrarenal P(O2) in endotoxemic rats. These findings suggest renoprotective effects of candesartan in sepsis.

  3. Urotensin-II receptor antagonism does not improve renal haemodynamics or function in rats with endotoxin-induced acute kidney injury.

    Science.gov (United States)

    Nitescu, Nicoletta; Grimberg, Elisabeth; Guron, Gregor

    2010-12-01

    1. Urotensin-II (U-II) is a vasoactive peptide that influences renal haemodynamics and kidney function. The aim of the present study was to examine the effects of the selective U-II receptor antagonist, urantide, on renal haemodynamics, oxygenation and function in endotoxaemic rats. 2. Endotoxaemia was induced in Sprague-Dawley rats by an intraperitoneal dose of lipopolysaccharide (LPS; Escherichia coli O127:B8, 7.5 mg/kg). At 16 h after endotoxin was given, renal clearance experiments were carried out in thiobutabarbital anaesthetized rats. Group 1, sham-saline; group 2, sham-urantide; group 3 LPS-saline; and group 4, LPS-urantide received isotonic saline or urantide (0.2 mg/kg bolus intravenously, followed by an infusion of 1.2 mg/kg/h throughout) after baseline measurements. Kidney function, renal blood flow (RBF), and cortical and outer medullary perfusion (laser-Doppler flowmetry) and oxygen tension (Clark-type microelectrodes) were analysed during 2 h of drug administration. 3. At baseline, endotoxaemic rats showed approximately 50% reductions in glomerular filtration rate (GFR) and RBF (P < 0.05), a decline in cortical and outer medullary perfusion and pO(2) (P < 0.05), and a significant increase in mean arterial pressure (MAP; P < 0.05) compared with saline-injected controls. In sham animals, urantide in a dose that did not significantly influence MAP or RBF, increased GFR (P < 0.05 time × treatment interaction) and filtration fraction (P < 0.05 treatment effect). However, urantide had no statistically significant effects on any of the investigated variables in endotoxaemic rats. 4. These findings show that U-II, through the UT receptor, does not contribute to abnormalities in renal haemodynamics and function in endotoxaemic rats. © 2010 The Authors. Clinical and Experimental Pharmacology and Physiology © 2010 Blackwell Publishing Asia Pty Ltd.

  4. Medroxyprogesterone acetate attenuates estrogen-induced nitric oxide production in human umbilical vein endothelial cells

    International Nuclear Information System (INIS)

    Oishi, Akira; Ohmichi, Masahide; Takahashi, Kazuhiro; Takahashi, Toshifumi; Mori-Abe, Akiko; Kawagoe, Jun; Otsu, Reiko; Mochizuki, Yoshiko; Inaba, Noriyuki; Kurachi, Hirohisa

    2004-01-01

    We report the novel observation that medroxyprogesterone acetate (MPA) attenuates the induction by 17β estradiol (E2) of both nitric oxide (NO) production and endothelial nitric oxide synthase (eNOS) activity in human umbilical vein endothelial cells. Although MPA had no effect on basal NO production or basal eNOS phosphorylation or activity, it attenuated the E2-induced NO production and eNOS phosphorylation and activity. Moreover, we examined the mechanism by which MPA attenuated the E2-induced NO production and eNOS phosphorylation. MPA attenuated the E2-induced phosphorylation of Akt, a kinase that phosphorylates eNOS. Treatment with pure progesterone receptor (PR) antagonist RU486 completely abolished the inhibitory effect of MPA on E2-induced Akt phosphorylation and eNOS phosphorylation. In addition, the effects of actinomycin D were tested to rule out the influence of genomic events mediated by nuclear PRs. Actinomycin D did not affect the inhibitory effect of MPA on E2-induced Akt phosphorylation. Furthermore, the potential roles of PRA and PRB were evaluated. In COS cells transfected with either PRA or PRB, MPA attenuated E2-induced Akt phosphorylation. These results indicate that MPA attenuated E2-induced NO production via an Akt cascade through PRA or PRB in a non-genomic manner

  5. Centella asiatica Attenuates D-Galactose-Induced Cognitive Impairment, Oxidative and Mitochondrial Dysfunction in Mice

    Directory of Open Access Journals (Sweden)

    Anil Kumar

    2011-01-01

    l (D-galactose. Centella asiatica also attenuated enhanced acetylcholine esterase enzyme level in D-galactose senescence mice. Present study highlights the protective effect of Centella asiatica against D-galactose induced behavioral, biochemical and mitochondrial dysfunction in mice.

  6. Arginase attenuates inhibitory nonadrenergic noncholinergic nerve-induced nitric oxide generation and airway smooth muscle relaxation

    NARCIS (Netherlands)

    Maarsingh, H; Tio, MA; Zaagsma, J; Meurs, H

    2005-01-01

    Background: Recent evidence suggests that endogenous arginase activity potentiates airway responsiveness to methacholine by attenuation of agonist-induced nitric oxide (NO) production, presumably by competition with epithelial constitutive NO synthase for the common substrate, L-arginine. Using

  7. Variable photonic crystal fiber optical attenuator combining air hole reduction induced radiation and bending loss

    Science.gov (United States)

    Yokota, Hirohisa; Sano, Tomohiko; Imai, Yoh

    2018-02-01

    Recently, an optical attenuator has been important in fiber optic communication systems, because a transmission power in fiber has become higher due to a channel increment in wavelength division multiplexing transmission. A photonic crystal fiber (PCF) optical attenuator is fabricated by air hole diameter reduction in a part of PCF in which radiations are caused in the air hole diameter reduced part of PCF. A PCF optical attenuator has a high power resistance feature due to its radiation-induced operation of optical attenuation. In this paper, we proposed a variable PCF optical attenuator in which a bend was applied to the air hole diameter reduced part in PCF optical attenuator that was fabricated by CO2 laser irradiation. In PCF optical attenuator fabrication, the attenuation was adjusted by the reduced air hole diameter with laser irradiation time control. It was demonstrated that 10.6-13.5 dB of variable attenuation was obtained at 1550 nm-wavelength with 0°-90° bending angle applied to the air hole diameter reduced part in PCF optical attenuator.

  8. Lipoproteins/peptides are sepsis-inducing toxins from bacteria that can be neutralized by synthetic anti-endotoxin peptides.

    Science.gov (United States)

    Martinez de Tejada, Guillermo; Heinbockel, Lena; Ferrer-Espada, Raquel; Heine, Holger; Alexander, Christian; Bárcena-Varela, Sergio; Goldmann, Torsten; Correa, Wilmar; Wiesmüller, Karl-Heinz; Gisch, Nicolas; Sánchez-Gómez, Susana; Fukuoka, Satoshi; Schürholz, Tobias; Gutsmann, Thomas; Brandenburg, Klaus

    2015-09-22

    Sepsis, a life-threatening syndrome with increasing incidence worldwide, is triggered by an overwhelming inflammation induced by microbial toxins released into the bloodstream during infection. A well-known sepsis-inducing factor is the membrane constituent of Gram-negative bacteria, lipopolysaccharide (LPS), signalling via Toll-like receptor-4. Although sepsis is caused in more than 50% cases by Gram-positive and mycoplasma cells, the causative compounds are still poorly described. In contradicting investigations lipoproteins/-peptides (LP), lipoteichoic acids (LTA), and peptidoglycans (PGN), were made responsible for eliciting this pathology. Here, we used human mononuclear cells from healthy donors to determine the cytokine-inducing activity of various LPs from different bacterial origin, synthetic and natural, and compared their activity with that of natural LTA and PGN. We demonstrate that LP are the most potent non-LPS pro-inflammatory toxins of the bacterial cell walls, signalling via Toll-like receptor-2, not only in vitro, but also when inoculated into mice: A synthetic LP caused sepsis-related pathological symptoms in a dose-response manner. Additionally, these mice produced pro-inflammatory cytokines characteristic of a septic reaction. Importantly, the recently designed polypeptide Aspidasept(®) which has been proven to efficiently neutralize LPS in vivo, inhibited cytokines induced by the various non-LPS compounds protecting animals from the pro-inflammatory activity of synthetic LP.

  9. Melatonin attenuates thiocyanate-induced vasoconstriction in aortic rings

    Directory of Open Access Journals (Sweden)

    Alexander M. Prusa

    2017-11-01

    Full Text Available Cigarette smoking not only has a carcinogenic effect but also leads to an increase in arterial blood pressure. Besides its main components, i.e. nicotine, tar, and carbon monoxide, cigarette smoke also contains thiocyanate. Thiocyanate anions (SCN− arise from the detoxification of hydrogen cyanide and its plasma concentrations were found to correlate significantly with cigarette consumption. There is also evidence that atherosclerotic disease progression is much more rapid when serum SCN− levels are increased. Melatonin, a non-toxic indolamine with various physiologic functions, is believed to protect against inflammatory processes and oxidative stress. It has been demonstrated that melatonin serves as free radical scavenger and represents a potent antioxidant. Therefore, it is believed that melatonin with its atheroprotective effects may be useful either as a sole therapy or in conjunction with others. The aim of this study was to quantify the thiocyanate-induced vasomotor response in aortic tissue and further to examine the potential of melatonin in affecting the generated vasoreactivity. Aortic rings of adult male normotensive Wistar rats were cut into 4-mm rings. Following the administration of thiocyanate in various concentrations, vasomotor response of aortic vessel segments was measured. To assess the effect of melatonin on vasomotor activity, organ bath concentrations were modulated from 60 to 360 pM, which corresponds to physiologic plasma up to the levels of patients with regular oral intake of 3 mg of melatonin as a supplement. Thirty-six rat aortic rings were studied. When exposed to thiocyanate, vessel segments revealed vasoconstriction in a concentration-dependent manner. In rings which were preincubated with melatonin at a concentration of 360 pM, a 56.5% reduction of effect size could be achieved (4.09 ± 1.22 mN versus 9.41 ± 1.74 mN, P < 0.0001. Additionally, administration of 360 pM melatonin at a

  10. Splenectomy attenuates severe thermal trauma-induced intestinal barrier breakdown in rats.

    Science.gov (United States)

    Liu, Xiang-dong; Chen, Zhen-yong; Yang, Peng; Huang, Wen-guang; Jiang, Chun-fang

    2015-12-01

    The severe local thermal trauma activates a number of systemic inflammatory mediators, such as TNF-α, NF-κB, resulting in a disruption of gut barrier. The gastrointestinal tight junction (TJ) is highly regulated by membrane-associated proteins including zonula occludens protein-1 (ZO-1) and occludin, which can be modulated by inflammatory cytokines. As splenectomy has been shown to reduce secretion of cytokines, we hypothesized that (1) severe scald injury up-regulates TNF-α and NF-κB, meanwhile down-regulates expression of ZO-1 and occludin, leading to the increased intestinal permeability, and (2) splenectomy can prevent the burn-induced decrease in ZO-1 and occludin expression, resulting in improved intestinal barrier. Wistar rats undergoing a 30% total body surface area (TBSA) thermal trauma were randomized to receive an accessorial splenectomy meanwhile or not. Intestinal injury was assessed by histological morphological analysis, and serum endotoxin levels, TNF-α, NF-κB, ZO-1 and occludin levels were detected by Western blotting in the terminal ileum mucosal tissue. 30% TBSA burn caused a significant increase in serum endotoxin levels, but NF-κB, and TNF-α, and the average intestinal villus height and mucosal thickness were decreased significantly. Burn injury could also markedly decrease the levels of ZO-1 and occludin in terminal ileum mucosal tissue (all PSplenectomy at 7th day after burn significantly reversed the burn-induced breakdown of ZO-1 and occludin (all PSplenectomy may provide a therapeutic benefit in restoring burn-induced intestinal barrier by decreasing the release of inflammatory cytokines and recovering TJ proteins.

  11. A new method to determine tissue specific tissue factor thrombomodulin activities: endotoxin and particulate air pollution induced disbalance

    Directory of Open Access Journals (Sweden)

    Gerlofs-Nijland Miriam E

    2008-10-01

    Full Text Available Abstract Background Increase in tissue factor (TF and loss in thrombomodulin (TM antigen levels has been described in various inflammatory disorders. The functional consequences of such changes in antigen concentrations in the coagulation balance are, however, not known. This study was designed to assess the consequences of inflammation-driven organ specific functional properties of the procoagulant response. Methods Tissue specific procoagulant activity was assessed by adding tissue homogenate to normal human pool plasma and recording of the thrombin generation curve. The new technique was subsequently applied on two inflammation driven animal models: 1 mouse lipopolysaccharide (LPS induced endotoxemia and 2 spontaneously hypertensive rats exposed to environmental air pollution (particulate matter (PM. Results Addition of lung tissue from untreated animals to human plasma suppressed the endogenous thrombin potential (ETP (175 ± 61 vs. 1437 ± 112 nM.min for control. This inhibitory effect was due to TM, because a it was absent in protein C deficient plasma and b lungs from TMpro/pro mice allowed full thrombin generation (ETP: 1686 ± 209 nM.min. The inhibitory effect of TM was lost after LPS administration to mice, which induced TF activity in lungs of C57Bl/6 mice as well as increased the ETP (941 ± 523 vs. 194 ± 159 nM.min for control. Another pro-inflammatory stimulus, PM dose-dependently increased TF in the lungs of spontaneously hypertensive rats at 4 and 48 hours after PM exposure. The ETP increased up to 48 hours at the highest concentration of PM (1441 ± 289 nM.min vs. saline: 164 ± 64 nM.min, p Conclusion Inflammation associated procoagulant effects in tissues are dependent on variations in activity of the TF-TM balance. The application of these novel organ specific functional assays is a useful tool to monitor inflammation-driven shifts in the coagulation balance within animal or human tissues.

  12. Indomethacin attenuation of radiation-induced hyperthermia does not modify radiation-induced motor hypoactivity

    International Nuclear Information System (INIS)

    Ferguson, J.L.; Kandasamy, S.B.; Harris, A.H.; Davis, H.D.; Landauer, M.R.

    1996-01-01

    Exposure of rats to 5-10 Gy of ionizing radiation produces hyperthermia and reduces motor activity. Previous studies suggested that radiation-induced hyperthermia results from a relatively direct action on the brain and is mediated by prostaglandins. To test the hypothesis that hypoactivity may be, in part, a thermoregulatory response to this elevation in body temperature, adult male rats were given indomethacin (0.0, 0.5, 1.0, and 3.0 mg/kg, intraperitoneally), a blocker of prostaglandin synthesis, and were either irradiated (LINAC 18.6 MeV (nominal) high-energy electrons, 10 Gy at 10 Gy/min, 2.8 μsec pulses at 2 Hz) or sham-irradiated. The locomotor activity of all rats was then measured for 30 min in a photocell monitor for distance traveled and number of vertical movements. Rectal temperatures of irradiated rats administered vehicle only were elevated by 0.9±0.2degC at the beginning and the end of the activity session. Although indomethacin, at the two higher doses tested, attenuated the hyperthermia in irradiated rats by 52-75%, it did not attenuate radiation-induced reductions in motor activity. These results indicate that motor hypoactivity after exposure to 10 Gy of high-energy electrons is not due to elevated body temperature or to the increased synthesis of prostaglandins. (author)

  13. Exhaled nitric oxide in endotoxin-exposed adults: effect modification by smoking and atopy.

    NARCIS (Netherlands)

    Smit, L.A.; Heederik, D.J.J.; Doekes, G.; Wouters, I.M.

    2009-01-01

    OBJECTIVES: Occupational exposure to endotoxin is associated with non-allergic asthma and other airway inflammatory reactions. Little is known about the role of mucosal nitric oxide (NO) production in endotoxin-induced airway inflammation. The objective was to explore exposure-response relationships

  14. Attenuation of prostaglandin E1‑induced osteoprotegerin synthesis in osteoblasts by normoxic HIF inducers.

    Science.gov (United States)

    Kuroyanagi, Gen; Tokuda, Haruhiko; Yamamoto, Naohiro; Kainuma, Shingo; Fujita, Kazuhiko; Ohguchi, Reou; Matsushima-Nishiwaki, Rie; Kozawa, Osamu; Otsuka, Takanobu

    2017-04-01

    Mimosine, which is a natural plant amino acid present in the Leucaena genus, is able to induce hypoxia‑inducible factors (HIFs). Previous evidence has indicated that HIF regulates angiogenesis‑osteogenesis coupling in bone metabolism, and it has previously been reported that mimosine inhibits prostaglandin (PG)F2α‑induced osteoprotegerin (OPG) synthesis without affecting interleukin‑6 (IL‑6) production in osteoblast‑like MC3T3‑E1 cells. In addition, PGE1 has been demonstrated to induce OPG synthesis via activation of p38 mitogen‑activated protein (MAP) kinase and stress‑activated protein kinase/c‑Jun N‑terminal kinase (SAPK/JNK) in these cells, and PGE1 stimulates IL‑6 production via the activation of protein kinase A. In the present study, the effects of mimosine on the PGE1‑stimulated synthesis of OPG and IL‑6 were investigated in osteoblast‑like MC3T3‑E1 cells. The concentrations of OPG and IL‑6 were measured using relevant ELISA kits. OPG mRNA was measured by semi‑quantitative reverse transcription polymerase chain reaction. The phosphorylation of p38 MAP kinase and SAPK/JNK was analyzed by western blotting. Mimosine significantly reduced PGE1‑induced release of OPG and OPG mRNA expression levels without affecting the release of IL‑6. In addition, deferoxamine, which is also a normoxic HIF inducer, significantly inhibited PGE1‑induced OPG release and OPG mRNA expression levels; however, it had little effect on IL‑6 release. Furthermore, mimosine and deferoxamine failed to affect PGE1‑stimulated phosphorylation of p38 MAP kinase or SAPK/JNK. These results strongly suggest that normoxic HIF inducers attenuate PGE1‑stimulated OPG synthesis without affecting IL‑6 production in osteoblasts.

  15. Oridonin attenuates Aβ1-42-induced neuroinflammation and inhibits NF-κB pathway.

    Directory of Open Access Journals (Sweden)

    Sulei Wang

    Full Text Available Neuroinflammation induced by beta-amyloid (Aβ plays a critical role in the pathogenesis of Alzheimer's disease (AD, and inhibiting Aβ-induced neuroinflammation serves as a potential strategy for the treatment of AD. Oridonin (Ori, a compound of Rabdosia rubescens, has been shown to exert anti-inflammatory effects. In this study, we demonstrated that Ori inhibited glial activation and decreased the release of inflammatory cytokines in the hippocampus of Aβ1-42-induced AD mice. In addition, Ori inhibited the NF-κB pathway and Aβ1-42-induced apoptosis. Furthermore, Ori could attenuate memory deficits in Aβ1-42-induced AD mice. In conclusion, our study demonstrated that Ori inhibited the neuroinflammation and attenuated memory deficits induced by Aβ1-42, suggesting that Ori might be a promising candidate for AD treatment.

  16. Polymyxin B Attenuates LPS-Induced Death but Aggravates Radiation-Induced Death via TLR4-Myd88-IL-6 Pathway.

    Science.gov (United States)

    Cheng, Ying; Du, Jicong; Han, Jiaqi; Sun, Weimin; Gao, Fu; Zhang, Pei; Zhao, Hainan; Chen, Ming; Wang, Jianing; Wang, Mingyu; Dong, Suhe; Sun, Ding; Zhang, Yandong; Cui, Jianguo; Cai, Jianming; Liu, Cong

    2017-01-01

    Polymyxin B (PMB) is a cyclic cationic polypeptide antibiotic widely used to counteract the effects of endotoxin contamination, both in vitro and in vivo. Lipopolysaccharide (LPS) is an endotoxin that acts as a radiation protection factor. In this study, we focus on the role of PMB in LPS-induced and radiation-induced mortality in mice. Mice received total-body radiation or were pretreated by LPS or PMB, and the survival of mice was recorded. Elisa were used to detect the cytokines levels. PMB decreased LPS-induced, but increased radiation-induced mortality in mice. Moreover, PMB could block the LPS-induced radioprotective effect. The ELISA and gene knock-out experiments indicated that PMB reduces TNF-α level to block LPS-induced mortality in mice, and inhibits IL-6, G-CSF and IL-10 to increase radiation-induced mortality via the TLR4-Myd88-IL-6 pathway. Our study revealed a role of PMB in LPS-induced endotoxemia and radiation exposure. We infer that the TLR4-Myd88-IL-6 pathway may play a crucial role in the process. © 2017 The Author(s). Published by S. Karger AG, Basel.

  17. Hypercapnia attenuates ventilator-induced diaphragm atrophy and modulates dysfunction

    NARCIS (Netherlands)

    Schellekens, W.J.M.; Hees, H.W.H. van; Kox, M.; Linkels, M.; Acuna, G.L.; Dekhuijzen, P.N.R.; Scheffer, G.J.; Hoeven, J.G. van der; Heunks, L.M.A.

    2014-01-01

    INTRODUCTION: Diaphragm weakness induced by prolonged mechanical ventilation may contribute to difficult weaning from the ventilator. Hypercapnia is an accepted side effect of low tidal volume mechanical ventilation, but the effects of hypercapnia on respiratory muscle function are largely unknown.

  18. TENS attenuates repetition-induced summation of activity-related pain following experimentally induced muscle soreness.

    Science.gov (United States)

    Mankovsky-Arnold, Tsipora; Wideman, Timothy H; Larivière, Christian; Sullivan, Michael J L

    2013-11-01

    This study sought to determine whether repetition-induced summation of activity-related pain (RISP) could be demonstrated in healthy individuals in response to experimentally induced musculoskeletal pain. This study also assessed the effects of transcutaneous electrical nerve stimulation on RISP. The relation between the index of RISP and psychological factors such as catastrophizing and fear of pain was also explored. The sample consisted of 56 healthy (35 women, 21 men) participants who underwent 2 testing sessions, separated by 24 hours. In the first session, musculoskeletal pain was induced with a delayed-onset muscle soreness protocol. During the second session, participants were randomly assigned to the transcutaneous electrical nerve stimulation or placebo condition and were asked to rate their pain as they lifted a series of 18 weighted canisters. An index of RISP was derived as the change in pain ratings across repeated lifts. Approximately 25% of participants showed evidence of RISP. Results also revealed that transcutaneous electrical nerve stimulation attenuated the RISP effect. Psychological measures (fear of pain, catastrophizing) were not significantly correlated with the index of RISP, but the index of RISP was significantly correlated with a measure of physical tolerance. Discussion addresses the clinical implications of the findings as well as the potential mechanisms underlying RISP. This study showed that RISP could be demonstrated in healthy individuals in response to experimentally induced musculoskeletal pain with delayed-onset muscle soreness. Transcutaneous electrical nerve stimulation led to a significant reduction in RISP. Copyright © 2013 American Pain Society. Published by Elsevier Inc. All rights reserved.

  19. Immunomodulatory effects of honey cannot be distinguished from endotoxin

    DEFF Research Database (Denmark)

    Timm, Michael; Bartelt, Stine; Hansen, Erik Wind

    2008-01-01

    observed in the cell based assays were similar to the responses induced by endotoxin alone. In addition, we determined that the immunomodulatory component present in the natural honeys was retained in the ultra filtrated fraction with a molecular weight greater than 20 kDa. The component was resistant...... to boiling and its immunomodulatory activity could be abrogated by the addition of polymyxin B. We speculate that the observed in vitro immunomodulatory effects of honey might solely be explained by the endotoxin content in the natural honeys....

  20. A practical MGA-ARIMA model for forecasting real-time dynamic rain-induced attenuation

    Science.gov (United States)

    Gong, Shuhong; Gao, Yifeng; Shi, Houbao; Zhao, Ge

    2013-05-01

    novel and practical modified genetic algorithm (MGA)-autoregressive integrated moving average (ARIMA) model for forecasting real-time dynamic rain-induced attenuation has been established by combining genetic algorithm ideas with the ARIMA model. It is proved that due to the introduction of MGA into the ARIMA(1,1,7) model, the MGA-ARIMA model has the potential to be conveniently applied in every country or area by creating a parameter database used by the ARIMA(1,1,7) model. The parameter database is given in this paper based on attenuation data measured in Xi'an, China. The methods to create the parameter databases in other countries or areas are offered, too. Based on the experimental results, the MGA-ARIMA model has been proved practical for forecasting dynamic rain-induced attenuation in real time. The novel model given in this paper is significant for developing adaptive fade mitigation technologies at millimeter wave bands.

  1. Insoluble glycogen, a metabolizable internal adsorbent, decreases the lethality of endotoxin shock in rats

    Directory of Open Access Journals (Sweden)

    S. Sipka

    1997-01-01

    Full Text Available Insoluble glycogen is an enzymatically modified form of naturally occurring soluble glycogen with a great adsorbing capacity. It can be metabolized by phagocytes to glucose. In this study we used insoluble glycogen intravenously in the experimental endotoxin shock of rats. Wistar male rats were sensitized to endotoxin by Pb acetate. The survival of rats were compared in groups of animals endotoxin shock treated and non-treated with insoluble glycogen. Furthermore, we have determined in vitro the binding capacity of insoluble glycogen for endotoxin, tumour necrosis factor alpha, interleukin-1 and secretable phospholipase A2. Use of 10 mg/kg dose of insoluble glycogen could completely prevent the lethality of shock induced by LD50 quantity of endotoxin in rats. All animals treated survived. Insoluble glycogen is a form of ‘metabolizable internal adsorbents’. It can potentially be used for treatment of septic shock.

  2. Amyrin attenuates scopolamine-induced cognitive impairment in mice.

    Science.gov (United States)

    Park, Se Jin; Ahn, Young Je; Oh, Sa Rang; Lee, Younghwan; Kwon, Guyoung; Woo, Hyun; Lee, Hyung Eun; Jang, Dae Sik; Jung, Ji Wook; Ryu, Jong Hoon

    2014-01-01

    Alzheimer's disease, a neurodegenerative disorder, is characterized by progressive cognitive impairment associated with the disruption of cholinergic neurotransmission. The aim of the present study was to evaluate the effect of α- or β-amyrin, a type of pentacyclic triterpene, on the cognitive impairment induced by scopolamine, a muscarinic acetylcholine receptor antagonist. To measure the abilities of various types of learning and memory, we conducted step-through passive avoidance task. Scopolamine induced deficits in learning and memory processes in mice, which were antagonized by a single administration of α-amyrin (2 or 4 mg/kg) or β-amyrin (4 mg/kg), respectively. Additionally, in vitro analysis revealed that acetylcholinesterase activity was inhibited by β-amyrin, but not by α-amyrin. Furthermore, Western blot analysis revealed that the expression levels of phosphorylated extracellular signal-regulated kinase 1/2 (pERK) and phosphorylated glycogen synthase kinase-3β (pGSK-3β) were significantly enhanced by a single administration of α- and β-amyrin in the hippocampus. Finally, the memory ameliorating effects of α- or β-amyrin on the scopolamine-induced cognitive impairments were significantly blocked by ERK inhibitor U0126. The present study suggests that α- and β-amyrin may ameliorate the cognitive impairment induced by hypocholinergic neurotransmission via the activation of ERK as well as GSK-3β signaling.

  3. The effects of benfotiamine in attenuating hyperglycemia-induced ...

    African Journals Online (AJOL)

    In particular, we emphasize the role of hyperglycemia-induced oxidative stress in the activation of non-oxidative glucose pathways (NOGPs), that may contribute to cardiac pathology. For the second part, we evaluate the utility of benfotiamine (a vitamin B1 derivative) in treating diabetes-related cardiac pathology. The focus ...

  4. Attenuation of sepsis-induced rat liver injury by epigallocatechin ...

    African Journals Online (AJOL)

    Green tea contains four major polyphenols, of which EGCG is the most active antioxidant component [10]. In the present study, the protective role of EGCG against oxidative stress and liver injury in rats subjected to CLP-induced sepsis was investigated. EXPERIMENTAL. Animals and reagents. Adult male Wistar rats (mean ...

  5. extract attenuates MPTP-induced oxidative stress and behavioral

    African Journals Online (AJOL)

    immunomodulatory, nephroprotective, anti-stress and memory enhancing properties [8-10]. But so far their protective effect in neurodegenerative disorders such as PD has not been studied. The neurotoxin, 1-Methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP), is well studied for its ability to induce oxidative damage and.

  6. Attenuation of salt-induced hypertension by aqueous calyx extract of ...

    African Journals Online (AJOL)

    Attenuation of salt-induced hypertension by aqueous calyx extract of Hibiscus sabdariffa. ... a helpful Frequently Asked Questions about PDFs. Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

  7. Attenuation of salt-induced hypertension by aqueous calyx extract of ...

    African Journals Online (AJOL)

    The MAP of salt+HS and control rats did not differ significantly and the effect of HS was comparable to furosemide. The pressor response to noradrenalin or vasodilator response to acetylcholine remained similar in all groups. These results suggest that HS attenuated the development of salt-induced hypertension and this ...

  8. Taurine attenuates radiation-induced lung fibrosis in C57/Bl6 fibrosis prone mice.

    LENUS (Irish Health Repository)

    Robb, W B

    2010-03-01

    The amino acid taurine has an established role in attenuating lung fibrosis secondary to bleomycin-induced injury. This study evaluates taurine\\'s effect on TGF-beta1 expression and the development of lung fibrosis after single-dose thoracic radiotherapy.

  9. Cyclooxygenase inhibitors attenuate bradykinin-induced vasoconstriction in septic isolated rat lungs

    NARCIS (Netherlands)

    Fischer, L. G.; Hollmann, M. W.; Horstman, D. J.; Rich, G. F.

    2000-01-01

    Cyclooxygenase (COX) products play an important role in modulating sepsis and subsequent endothelial injury. We hypothesized that COX inhibitors may attenuate endothelial dysfunction during sepsis, as measured by receptor-mediated bradykinin (BK)-induced vasoconstriction and/or receptor-independent

  10. Curcumin attenuates surgery-induced cognitive dysfunction in aged mice.

    Science.gov (United States)

    Wu, Xiang; Chen, Huixin; Huang, Chunhui; Gu, Xinmei; Wang, Jialing; Xu, Dilin; Yu, Xin; Shuai, Chu; Chen, Liping; Li, Shun; Xu, Yiguo; Gao, Tao; Ye, Mingrui; Su, Wei; Liu, Haixiong; Zhang, Jinrong; Wang, Chuang; Chen, Junping; Wang, Qinwen; Cui, Wei

    2017-06-01

    Post-operative cognitive dysfunction (POCD) is associated with elderly patients undergoing surgery. However, pharmacological treatments for POCD are limited. In this study, we found that curcumin, an active compound derived from Curcuma longa, ameliorated the cognitive dysfunction following abdominal surgery in aged mice. Further, curcumin prevented surgery-induced anti-oxidant enzyme activity. Curcumin also increased brain-derived neurotrophic factor (BDNF)-positive area and expression of pAkt in the brain, suggesting that curcumin activated BDNF signaling in aged mice. Furthermore, curcumin neutralized cholinergic dysfunction involving choline acetyltransferase expression induced by surgery. These results strongly suggested that curcumin prevented cognitive impairments via multiple targets, possibly by increasing the activity of anti-oxidant enzymes, activation of BDNF signaling, and neutralization of cholinergic dysfunction, concurrently. Based on these novel findings, curcumin might be a potential agent in POCD prophylaxis and treatment.

  11. Vitamin C attenuates copper-induced oxidative damage in broiler ...

    African Journals Online (AJOL)

    This study was conducted to evaluate the protective effects of vitamin C on copper-induced oxidative damage in the erythrocyte and liver of broiler chickens. Three week old birds were fed a basal diet (n = 40), or basal diet supplemented with 250 mg CuSO4/kg diet (n = 40) for 56 days. On the 57th day, the birds of the two ...

  12. PTTG1 attenuates drug-induced cellular senescence.

    Directory of Open Access Journals (Sweden)

    Yunguang Tong

    Full Text Available As PTTG1 (pituitary tumor transforming gene abundance correlates with adverse outcomes in cancer treatment, we determined mechanisms underlying this observation by assessing the role of PTTG1 in regulating cell response to anti-neoplastic drugs. HCT116 cells devoid of PTTG1 (PTTG1(-/- exhibited enhanced drug sensitivity as assessed by measuring BrdU incorporation in vitro. Apoptosis, mitosis catastrophe or DNA damage were not detected, but features of senescence were observed using low doses of doxorubicin and TSA. The number of drug-induced PTTG1(-/- senescent cells increased ∼4 fold as compared to WT PTTG1-replete cells (p<0.001. p21, an important regulator of cell senescence, was induced ∼3 fold in HCT116 PTTG1(-/- cells upon doxorubicin or Trichostatin A treatment. Binding of Sp1, p53 and p300 to the p21 promoter was enhanced in PTTG1(-/- cells after treatment, suggesting transcriptional regulation of p21. p21 knock down abrogated the observed senescent effects of these drugs, indicating that PTTG1 likely suppresses p21 to regulate drug-induced senescence. PTTG1 also regulated SW620 colon cancer cells response to doxorubicin and TSA mediated by p21. Subcutaneously xenografted PTTG1(-/- HCT116 cells developed smaller tumors and exhibited enhanced responses to doxorubicin. PTTG1(-/- tumor tissue derived from excised tumors exhibited increased doxorubicin-induced senescence. As senescence is a determinant of cell responses to anti-neoplastic treatments, these findings suggest PTTG1 as a tumor cell marker to predict anti-neoplastic treatment outcomes.

  13. Faecal Endotoxin in Human Volunteers: Normal Values

    OpenAIRE

    Van Saene, J. J. M.; Stoutenbeek, C. P.; Van Saene, H. K. F.

    2011-01-01

    This paper presents a study measuring endotoxin levels in faeces of healthy adults using the Limulus amoebocyte lysate (LAL) microassay. Data showed mean faecal endotoxin levels of 1 mg (range 0.01-100 mg) per gram of faeces. No correlation was found with the concentration of Enterobacteriaceae in faeces and free Faecal endotoxin levels.Keywords: Endotoxin; LAL micro-assay; LPS; Faeccs; Human volunteers: Enterobacteriaceae.

  14. Dietary oil composition differentially modulates intestinal endotoxin transport and postprandial endotoxemia

    Directory of Open Access Journals (Sweden)

    Mani Venkatesh

    2013-01-01

    Full Text Available Abstract Background Intestinal derived endotoxin and the subsequent endotoxemia can be considered major predisposing factors for diseases such as atherosclerosis, sepsis, obesity and diabetes. Dietary fat has been shown to increase postprandial endotoxemia. Therefore, the aim of this study was to assess the effects of different dietary oils on intestinal endotoxin transport and postprandial endotoxemia using swine as a model. We hypothesized that oils rich in saturated fatty acids (SFA would augment, while oils rich in n-3 polyunsaturated fatty acids (PUFA would attenuate intestinal endotoxin transport and circulating concentrations. Methods Postprandial endotoxemia was measured in twenty four pigs following a porridge meal made with either water (Control, fish oil (FO, vegetable oil (VO or coconut oil (CO. Blood was collected at 0, 1, 2, 3 and 5 hours postprandial and measured for endotoxin. Furthermore, ex vivo ileum endotoxin transport was assessed using modified Ussing chambers and intestines were treated with either no oil or 12.5% (v/v VO, FO, cod liver oil (CLO, CO or olive oil (OO. Ex vivo mucosal to serosal endotoxin transport permeability (Papp was then measured by the addition of fluorescent labeled-lipopolysaccharide. Results Postprandial serum endotoxin concentrations were increased after a meal rich in saturated fatty acids and decreased with higher n-3 PUFA intake. Compared to the no oil control, fish oil and CLO which are rich in n-3 fatty acids reduced ex vivo endotoxin Papp by 50% (P  Conclusion Overall, these results indicate that saturated and n-3 PUFA differentially regulate intestinal epithelial endotoxin transport. This may be associated with fatty acid regulation of intestinal membrane lipid raft mediated permeability.

  15. RAGE deficiency attenuates the protective effect of Lidocaine against sepsis-induced acute lung injury.

    Science.gov (United States)

    Zhang, Zhuo; Zhou, Jie; Liao, Changli; Li, Xiaobing; Liu, Minghua; Song, Daqiang; Jiang, Xian

    2017-04-01

    Lidocaine (Lido) is reported to suppress inflammatory responses and exhibit a therapeutic effect in models of cecal ligation and puncture (CLP)-induced acute lung injury (ALI). The receptor for advanced glycation end product (RAGE) exerts pro-inflammatory effects by enhancing pro-inflammatory cytokine production. However, the precise mechanism by which Lido confers protection against ALI is not clear. ALI was induced in RAGE WT and RAGE knockout (KO) rats using cecal ligation and puncture (CLP) operations for 24 h. The results showed that Lido significantly inhibited CLP-induced lung inflammation and histopathological lung injury. Furthermore, Lido significantly reduced CLP-induced upregulation of HMGB1 and RAGE expression and activation of the NF-κB and MAPK signaling pathways. With the use of RAGE KO rats, we demonstrate here that RAGE deficiency attenuates the protective effect of Lido against CLP-induced lung inflammatory cell infiltration and histopathological lung injury. These results suggest that RAGE deficiency attenuates the protective effect of Lido against CLP-induced ALI by attenuating the pro-inflammatory cytokines production.

  16. Curcumin Attenuates Gentamicin-Induced Kidney Mitochondrial Alterations: Possible Role of a Mitochondrial Biogenesis Mechanism

    Directory of Open Access Journals (Sweden)

    Mario Negrette-Guzmán

    2015-01-01

    Full Text Available It has been shown that curcumin (CUR, a polyphenol derived from Curcuma longa, exerts a protective effect against gentamicin- (GM- induced nephrotoxicity in rats, associated with a preservation of the antioxidant status. Although mitochondrial dysfunction is a hallmark in the GM-induced renal injury, the role of CUR in mitochondrial protection has not been studied. In this work, LLC-PK1 cells were preincubated 24 h with CUR and then coincubated 48 h with CUR and 8 mM GM. Treatment with CUR attenuated GM-induced drop in cell viability and led to an increase in nuclear factor (erythroid-2-related factor 2 (Nrf2 nuclear accumulation and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α cell expression attenuating GM-induced losses in these proteins. In vivo, Wistar rats were injected subcutaneously with GM (75 mg/Kg/12 h during 7 days to develop kidney mitochondrial alterations. CUR (400 mg/Kg/day was administered orally 5 days before and during the GM exposure. The GM-induced mitochondrial alterations in ultrastructure and bioenergetics as well as decrease in activities of respiratory complexes I and IV and induction of calcium-dependent permeability transition were mostly attenuated by CUR. Protection of CUR against GM-induced nephrotoxicity could be in part mediated by maintenance of mitochondrial functions and biogenesis with some participation of the nuclear factor Nrf2.

  17. Endotoxin: From database to measurement strategy

    NARCIS (Netherlands)

    Spaan, S.; Schinkel, J.M.; Wouters, I.M.; Preller, E.A.; Tjoe Nij, E.I.M.; Heederik, D.; Tielemans, E.L.J.P.; Preller, L.

    2007-01-01

    Endotoxin is a well-known toxin which has been associated with several health effects. Many factors influence airborne endotoxin exposure and can cause high variability in exposure between and within workers. Additionally, since the source of endotoxin exposure - gram-negative bacteria - grow and

  18. Ranolazine attenuation of CFA-induced mechanical hyperalgesia.

    Science.gov (United States)

    Casey, Gregory P; Roberts, Jomar S; Paul, Dennis; Diamond, Ivan; Gould, Harry J

    2010-01-01

    To determine whether ranolazine, a new anti-angina medication, could be an effective analgesic agent in complete Freund's adjuvant-induced inflammatory pain. Plantar injection of complete Freund's adjuvant (CFA) produces an extended period of hyperalgesia that is associated with a dramatic up-regulation of Na(v) 1.7 sodium channels in populations of large and small dorsal root ganglion neurons related to the injection site. Ranolazine appears to produce its anti-angina effect through blocking the late sodium current associated with the voltage-gated sodium channel, Na(v) 1.5. Because ranolazine also inhibits Na(v) 1.7, and 1.8, we sought to determine whether it could be an effective analgesic agent in CFA-induced inflammatory pain. Baseline determinations of withdrawal from thermal and mechanical stimulation were made in Sprague-Dawley rats ( approximately 300-350 x g). Following determination of baseline, one hindpaw in each group was injected with 0.1 mL of CFA. The contralateral paw received saline. Thermal and mechanical stimulation was repeated on the third day post-injection. Vehicle (0.9% isotonic saline; pH 3.0) or ranolazine was then administered in randomized and blinded doses either by intraperitoneal (ip) injection (0, 10, 20, and 50 mg/kg) or by oral gavage (po; 0, 20, 50, 100, and 200 mg/kg). Animals were again tested 30 minutes (ip) and 1 hour (po) after drug administration. Ranolazine produced dose-dependant analgesia on mechanical allodynia induced by CFA injection, but had no effect on thermal hyperalgesia. Ranolazine's potential as a new option for managing both angina and chronic inflammatory pain warrants further study.

  19. Riboflavin attenuates lipopolysaccharide-induced lung injury in rats.

    Science.gov (United States)

    Al-Harbi, Naif O; Imam, Faisal; Nadeem, Ahmed; Al-Harbi, Mohammed M; Korashy, Hesham M; Sayed-Ahmed, Mohammed M; Hafez, Mohamed M; Al-Shabanah, Othman A; Nagi, Mahmoud N; Bahashwan, Saleh

    2015-01-01

    Riboflavin (vitamin B2) is an easily absorbed micronutrient with a key role in maintaining health in humans and animals. It is the central component of the cofactors flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) and is therefore required by all flavoproteins. Riboflavin also works as an antioxidant by scavenging free radicals. The present study was designed to evaluate the effects of riboflavin against acute lungs injury induced by the administration of a single intranasal dose (20 μg/rat) of lipopolysaccharides (LPS) in experimental rats. Administration of LPS resulted in marked increase in malondialdehyde (MDA) level (p riboflavin in a dose-dependent manner (30 and 100 mg/kg, respectively). Riboflavin (100 mg/kg, p.o.) showed similar protective effects as dexamethasone (1 mg/kg, p.o.). Administration of LPS showed marked cellular changes including interstitial edema, hemorrhage, infiltration of PMNs, etc., which were reversed by riboflavin administration. Histopathological examinations showed normal morphological structures of lungs tissue in the control group. These biochemical and histopathological examination were appended with iNOS and CAT gene expression. The iNOS mRNA expression was increased significantly (p riboflavin significantly (p riboflavin caused a protective effect against LPS-induced ALI. These results suggest that riboflavin may be used to protect against toxic effect of LPS in lungs.

  20. Attenuation of cisplathin-induced toxic oxidative stress by propofol.

    Science.gov (United States)

    Taheri Moghadam, Ghazaleh; Hosseini-Zijoud, Seyed-Mostafa; Heidary Shayesteh, Tavakol; Ghasemi, Hassan; Ranjbar, Akram

    2014-10-01

    Antioxidant effects of propofol (2, 6-diisopropylphenol) were evaluated against cisplatin-i‎nduced oxidative stress in rat. In this experimental study, 20 male rats were equally divided into 4 groups (5 rats each), and were treated by propofol (10 mg/kg/day, IP), or cisplatin (7 mg /kg/day, IP), or both. G‎roup one was control, while group 2 was given cisplatin (7 mg /kg/day, IP). Animals of the third group received only propofol (10 mg/kg/day, IP). Group 4 was given propofol with cisplatin once per day for 7 days. After treatment, blood urea nitrogen, creatinine levels, and oxidative stress m‎arkers such as total thiol groups (TTG), lipid peroxidation (LPO), and total antioxidant ‎capacity (TAC) were measured. Oxidative stress induced by cisplatin, was evident by a significant increase in LPO and decrease in TTG and TAC. Propofol recovered ‎cisplatin -induced changes in TAC, TTG and LPO in blood. It is concluded that oxidative ‎damage is the mechanism of cisplatin toxicity, which can be recovered by propofol.‎

  1. Simvastatin attenuates radiation-induced salivary gland dysfunction in mice

    Directory of Open Access Journals (Sweden)

    Xu L

    2016-07-01

    Full Text Available Liping Xu,* Xi Yang,* Jiayan Chen, Xiaolin Ge, Qin Qin, Hongcheng Zhu, Chi Zhang, Xinchen Sun Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China *These authors contributed equally to this work Objective: Statins are widely used lipid-lowering drugs, which have pleiotropic effects, such as anti-inflammation, and vascular protection. In our study, we investigated the radioprotective potential of simvastatin (SIM in a murine model of radiation-induced salivary gland dysfunction. Design: Ninety-six Institute of Cancer Research mice were randomly divided into four groups: solvent + sham irradiation (IR (Group I, SIM + sham IR (Group II, IR + solvent (Group III, and IR + SIM (Group IV. SIM (10 mg/kg body weight, three times per week was administered intraperitoneally 1 week prior to IR through to the end of the experiment. Saliva and submandibular gland tissues were obtained for biochemical, morphological (hematoxylin and eosin staining and Masson’s trichrome, and Western blot analysis at 8 hours, 24 hours, and 4 weeks after head and neck IR. Results: IR caused a significant reduction of salivary secretion and amylase activity but elevation of malondialdehyde. SIM remitted the reduction of saliva secretion and restored salivary amylase activity. The protective benefits of SIM may be attributed to scavenging malondialdehyde, remitting collagen deposition, and reducing and delaying the elevation of transforming growth factor β1 expression induced by radiation. Conclusion: SIM may be clinically useful to alleviate side effects of radiotherapy on salivary gland. Keywords: simvastatin, radiation protection, submandibular gland, transforming growth factor-β1, mice

  2. Nordihydroguaiaretic Acid Attenuates the Oxidative Stress-Induced Decrease of CD33 Expression in Human Monocytes

    Directory of Open Access Journals (Sweden)

    Silvia Guzmán-Beltrán

    2013-01-01

    Full Text Available Nordihydroguaiaretic acid (NDGA is a natural lignan with recognized antioxidant and beneficial properties that is isolated from Larrea tridentata. In this study, we evaluated the effect of NDGA on the downregulation of oxidant stress-induced CD33 in human monocytes (MNs. Oxidative stress was induced by iodoacetate (IAA or hydrogen peroxide (H2O2 and was evaluated using reactive oxygen species (ROS production, and cell viability. NDGA attenuates toxicity, ROS production and the oxidative stress-induced decrease of CD33 expression secondary to IAA or H2O2 in human MNs. It was also shown that NDGA (20 μM attenuates cell death in the THP-1 cell line that is caused by treatment with either IAA or H2O2. These results suggest that NDGA has a protective effect on CD33 expression, which is associated with its antioxidant activity in human MNs.

  3. Nordihydroguaiaretic acid attenuates the oxidative stress-induced decrease of CD33 expression in human monocytes.

    Science.gov (United States)

    Guzmán-Beltrán, Silvia; Pedraza-Chaverri, José; Gonzalez-Reyes, Susana; Hernández-Sánchez, Fernando; Juarez-Figueroa, Ulises E; Gonzalez, Yolanda; Bobadilla, Karen; Torres, Martha

    2013-01-01

    Nordihydroguaiaretic acid (NDGA) is a natural lignan with recognized antioxidant and beneficial properties that is isolated from Larrea tridentata. In this study, we evaluated the effect of NDGA on the downregulation of oxidant stress-induced CD33 in human monocytes (MNs). Oxidative stress was induced by iodoacetate (IAA) or hydrogen peroxide (H(2)O(2)) and was evaluated using reactive oxygen species (ROS) production, and cell viability. NDGA attenuates toxicity, ROS production and the oxidative stress-induced decrease of CD33 expression secondary to IAA or H(2)O(2) in human MNs. It was also shown that NDGA (20  μ M) attenuates cell death in the THP-1 cell line that is caused by treatment with either IAA or H(2)O(2). These results suggest that NDGA has a protective effect on CD33 expression, which is associated with its antioxidant activity in human MNs.

  4. Irisolidone attenuates ethanol-induced gastric injury in mice by inhibiting the infiltration of neutrophils.

    Science.gov (United States)

    Kang, Geum-Dan; Lee, Sang-Yoon; Jang, Se-Eun; Han, Myung Joo; Kim, Dong-Hyun

    2017-02-01

    This study was designed to determine whether irisolidone and its glycoside kakkalide, which are the major constituents of the flower of Pueraria lobata (Kudzu) can attenuate ethanol-induced gastritic injury in mice. Irisolidone and kakkalide inhibited IL-8 secretion and NF-κB activation in lipopolysaccharide-stimulated KATO III cells. Therefore, we investigated their protective effects against ethanol-induced gastric injury in mice. Pretreatment with kakkalide or irisolidone decreased the area of hemorrhagic ulcerative lesions caused by ethanol and suppressed stomach myeloperoxidase activity, CXCL4 secretion, and NF-κB activation. The ameliorating effect of irisolidone was more potent than that of kakkalide. Irisolidone may attenuate ethanol-induced gastritis by inhibiting the infiltration of immune cells, particularly neutrophils, through the regulation of CXCL-4 or IL-8 secretion. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Endotoxin detection--from limulus amebocyte lysate to recombinant factor C.

    Science.gov (United States)

    Ding, Jeak Ling; Ho, Bow

    2010-01-01

    Gram negative bacterial endotoxin is a biological pyrogen that causes fever when introduced intravenously. The endotoxin, also known as lipopolysaccharide (LPS), is found in the outer membrane of Gram-negative bacteria. During Gram-negative sepsis, endotoxin stimulates host macrophages to release inflammatory cytokines. However, excessive inflammation causes multiple organ failure and death. Endotoxins, which are ubiquitous pathogenic molecules, are a bane to the pharmaceutical industry and healthcare community. Thus early and sensitive detection of endotoxin is crucial to prevent endotoxaemia. The limulus amebocyte lysate (LAL) has been widely used for ~30 years for the detection of endotoxin in the quality assurance of injectable drugs and medical devices. The LAL constitutes a cascade of serine proteases which are triggered by trace levels of endotoxin, culminating in a gel clot at the end of the reaction. The Factor C, which normally exists as a zymogen, is the primer of this coagulation cascade. In vivo, Factor C is the perfect biosensor, which alerts the horseshoe crab of the presence of a Gram-negative invader. The hemostatic end-point entraps the invader, killing it and limiting further infection. However, as an in vitro endotoxin detection tool, variations in the sensitivity and specificity of LAL to endotoxin, and the dwindling supply of horseshoe crabs are posing increasing challenges to the biotechnology industry. This has necessitated the innovation of an alternative test for endotoxin. Thus, Factor C became the obvious, albeit tricky target for the recombinant technology effort. This chapter documents the backwater of mining the natural blood lysate of the endangered species to the monumental effort of genetic engineering, to produce recombinant Factor C (rFC). The rFC is a 132 kDa molecule, which was produced as a proenzyme inducible by the presence of trace levels of endotoxin. The rFC forms the basis of the "PyroGene" kit, which is a novel micro

  6. Astaxanthin pretreatment attenuates acetaminophen-induced liver injury in mice.

    Science.gov (United States)

    Zhang, Jingyao; Zhang, Simin; Bi, Jianbin; Gu, Jingxian; Deng, Yan; Liu, Chang

    2017-04-01

    Acetaminophen (APAP) is a conventional drug widely used in the clinic because of its antipyretic-analgesic effects. However, accidental or intentional APAP overdoses induce liver injury and even acute liver failure (ALF). Astaxanthin (ASX) is the strongest antioxidant in nature that shows preventive and therapeutic properties, such as ocular protection, anti-tumor, anti-diabetes, anti-inflammatory, and immunomodulatory effects. The aim of present study was to determine whether ASX pretreatment provides protection against APAP-induced liver failure. Male C57BL/6 mice were randomly divided into 7 groups, including control, oil, ASX (30mg/kg or 60mg/kg), APAP and APAP+ASX (30mg/kg or 60mg/kg) groups. Saline, olive oil and ASX were administered for 14days. The APAP and APAP+ASX groups were given a peritoneal injection of 700mg/kg or 300mg/kg APAP to determine the 5-day survival rate and for further observation, respectively. Blood and liver samples were collected to detect alanine transaminase (ALT), aspartate transaminase (AST), inflammation, oxidative stress and antioxidant systems, and to observe histopathologic changes and key proteins in the mitogen-activated protein kinase (MAPK) family. ASX pretreatment before APAP increased the 5-day survival rate in a dose-dependent manner and reduced the ALT, AST, hepatic necrosis, reactive oxygen species (ROS) generation, lipid peroxidation (LPO), oxidative stress and pro-inflammatory factors. ASX protected against APAP toxicity by inhibiting the depletion of glutathione (GSH) and superoxide dismutase (SOD). Administration of ASX did not change the expression of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and P38. However, phosphorylation of JNK, ERK and P38 was reduced, consistent with the level of tumor necrosis factor alpha (TNF-α) and TNF receptor-associated factor 2 (TRAF2). ASX provided protection for the liver against APAP hepatotoxicity by alleviating hepatocyte necrosis, blocking ROS

  7. Rikkunshi-to attenuates adverse gastrointestinal symptoms induced by fluvoxamine

    Directory of Open Access Journals (Sweden)

    Kodama Naoki

    2007-11-01

    Full Text Available Abstract Background Upper gastrointestinal (GI symptoms such as nausea and vomiting are common adverse events associated with selective serotonin reuptake inhibitors (SSRIs, and may result in discontinuation of drug therapy in patients with depressive disorder. Rikkunshi-to (formulation TJ-43, a traditional herbal medicine, has been reported to improve upper GI symptoms and comorbid depressive symptoms in patients with functional dyspepsia. The aim of the present study was to determine if TJ-43 reduces GI symptoms and potentiates an antidepressant effect in a randomized controlled study of depressed patients treated with fluvoxamine (FLV. Methods Fifty patients with depressive disorder (19–78 years, mean age 40.2 years were treated with FLV (n = 25 or FLV in combination with TJ-43 (FLV+TJ-43 (n = 25 for eight weeks. The following parameters of the two groups were compared: The number of patients who complained of adverse events and their symptoms; GI symptoms quality of life (QOL score, assessed by the Gastrointestinal Symptom Rating Scale (GSRS, Japanese edition, before and two weeks after beginning treatment; and depressive symptoms assessed by the Self-Rating Depression Scale (SDS, before and 2, 4, and 8 weeks after beginning treatment. Results The number of patients who complained of adverse events in the FLV+TJ-43 group (n = 6 was significantly lower than the number complaining in the FLV group (n = 13 (P P Conclusion This study suggests that Rikkunshi-to reduces FLV-induced adverse events, especially nausea, and improves QOL related to GI symptoms without affecting the antidepressant effect of FLV.

  8. Capacitive biosensor for detection of endotoxin.

    Science.gov (United States)

    Limbut, Warakorn; Hedström, Martin; Thavarungkul, Panote; Kanatharana, Proespichaya; Mattiasson, Bo

    2007-09-01

    A capacitive biosensor for the detection of bacterial endotoxin has been developed. Endotoxin-neutralizing protein derived from American horseshoe crab was immobilized to a self-assembled thiol layer on a biosensor transducer (Au). Upon injection of a sample containing endotoxin, a decrease in the observed capacitive signal was registered. Endotoxin could be determined under optimum conditions with a detection limit of 1.0 x 10(-13) M and linearity ranging from 1.0 x 10(-13) to 1.0 x 10(-10) M. Good agreement was achieved when applying endotoxin preparations purified from an Escherichia coli cultivation to the capacitive biosensor system, utilizing the conventional method for quantitative endotoxin determination, the Limulus amebocyte lysate test as a reference. The capacitive biosensor method was statistically tested with the Wilcoxon signed rank test, which proved the system is acceptable for the quantitative analysis of bacterial endotoxin (P<0.05).

  9. Doxycycline attenuates acrolein-induced mucin production, in part by inhibiting MMP-9.

    Science.gov (United States)

    Ren, Shuang; Guo, Ling-Li; Yang, Jie; Liu, Dai-Shun; Wang, Tao; Chen, Lei; Chen, Ya-Juan; Xu, Dan; Feng, Yu-Lin; Wen, Fu-Qiang

    2011-01-10

    Matrix metalloproteinases (MMPs), especially MMP-9, have been found to increase the expression of epidermal growth factor (EGF) receptor, a possible regulator of acrolein-induced mucin expression in the airway epithelium. The aim of this study was to investigate whether doxycycline, a tetracycline antibiotic that inhibits MMPs, attenuates mucus production and synthesis of mucin MUC5AC in acrolein-exposed rats. Sprague-Dawley rats were exposed to acrolein aerosol [3.0parts/million (ppm), 6h/day, 12days] and they received 20mg/kg doxycycline daily by gavage, beginning two days before exposure to acrolein until the end of the experiment. The production of mucin glycoproteins and expression of the MMP-9 and MUC5AC genes were measured in rat trachea. The increase in levels of MMP-9 mRNA and protein in airway epithelium after acrolein exposure was accompanied by an increase in MUC5AC mRNA expression. Doxycycline significantly prevented these increases in acrolein-induced expression of MMP-9 and MUC5AC and attenuated mucus production in tracheal epithelium. These results indicate that doxycycline attenuated acrolein-induced mucin synthesis, in part by inhibiting expression of MMP-9. Thus doxycycline may have a prophylactic effect in the treatment of smoking-induced mucus hypersecretion. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  10. Heat stress attenuates skeletal muscle atrophy of extensor digitorum longus in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Nonaka, K; Une, S; Akiyama, J

    2015-09-01

    To investigate whether heat stress attenuates skeletal muscle atrophy of the extensor digitorum longus (EDL) muscle in streptozotocin-induced diabetic rats, 12-week-old male Wistar rats were randomly assigned to four groups (n = 6 per group): control (Con), heat stress (HS), diabetes mellitus (DM), and diabetes mellitus/heat stress (DM + HS). Diabetes was induced by intraperitoneal injection of streptozotocin (50 mg/kg). Heat stress was induced in the HS and DM + HS groups by immersion of the lower half of the body in hot water at 42 °C for 30 min; it was initiated 7 days after injection of streptozotocin, and was performed once a day, five times a week for 3 weeks. The muscle fiber cross-sectional area of EDL muscles from diabetic and non-diabetic rats was determined; heat stress protein (HSP) 72 and HSP25 expression levels were also analyzed by western blotting. Diabetes-induced muscle fiber atrophy was attenuated upon heat stress treatment in diabetic rats. HSP72 and HSP25 expression was upregulated in the DM + HS group compared with the DM group. Our findings suggest that heat stress attenuates atrophy of the EDL muscle by upregulating HSP72 and HSP25 expression.

  11. Centella asiatica attenuates β-amyloid-induced oxidative stress and mitochondrial dysfunction

    Science.gov (United States)

    Gray, Nora E.; Sampath, Harini; Zweig, Jonathan A.; Quinn, Joseph F.; Soumyanath, Amala

    2015-01-01

    Background We previously showed that a water extract of the medicinal plant Centella asiatica (CAW) attenuates β-amyloid (Aβ)-induced cognitive deficits in vivo, and prevents Aβ-induced cytotoxicity in vitro. Yet the neuroprotective mechanism of CAW is unknown. Objective The goal of this study was to identify biochemical pathways altered by CAW using in vitro models of Aβ toxicity. Methods The effects of CAW on aberrations in antioxidant response, calcium homeostasis and mitochondrial function induced by Aβ were evaluated in MC65 and SH-SY5Y neuroblastoma cells. Results CAW decreased intracellular ROS and calcium levels elevated in response to Aβ, and induced the expression of antioxidant response genes in both cell lines. In SH-SY5Y cells, CAW increased basal and maximal oxygen consumption without altering spare capacity, and attenuated Aβ-induced decreases in mitochondrial respiration. CAW also prevented Aβ –induced decreases in ATP and induced the expression of mitochondrial genes and proteins in both cell types. Caffeoylquinic acids from CAW were shown to have a similar effect on antioxidant and mitochondrial gene expression in neuroblastoma cells. Primary rat hippocampal neurons treated with CAW also showed an increase in mitochondrial and antioxidant gene expression. Conclusions These data suggest an effect of CAW on mitochondrial biogenesis, which in conjunction with activation of antioxidant response genes and normalizing calcium homeostasis, likely contributes to its neuroprotective action against Aβ toxicity. PMID:25633675

  12. Centella asiatica Attenuates Amyloid-β-Induced Oxidative Stress and Mitochondrial Dysfunction.

    Science.gov (United States)

    Gray, Nora E; Sampath, Harini; Zweig, Jonathan A; Quinn, Joseph F; Soumyanath, Amala

    2015-01-01

    We previously showed that a water extract of the medicinal plant Centella asiatica (CAW) attenuates amyloid-β (Aβ)-induced cognitive deficits in vivo, and prevents Aβ-induced cytotoxicity in vitro. Yet the neuroprotective mechanism of CAW is unknown. The goal of this study was to identify biochemical pathways altered by CAW using in vitro models of Aβ toxicity. The effects of CAW on aberrations in antioxidant response, calcium homeostasis, and mitochondrial function induced by Aβ were evaluated in MC65 and SH-SY5Y neuroblastoma cells. CAW decreased intracellular reactive oxygen species and calcium levels elevated in response to Aβ, and induced the expression of antioxidant response genes in both cell lines. In SH-SY5Y cells, CAW increased basal and maximal oxygen consumption without altering spare capacity, and attenuated Aβ-induced decreases in mitochondrial respiration. CAW also prevented Aβ-induced decreases in ATP and induced the expression of mitochondrial genes and proteins in both cell types. Caffeoylquinic acids from CAW were shown to have a similar effect on antioxidant and mitochondrial gene expression in neuroblastoma cells. Primary rat hippocampal neurons treated with CAW also showed an increase in mitochondrial and antioxidant gene expression. These data suggest an effect of CAW on mitochondrial biogenesis, which in conjunction with activation of antioxidant response genes and normalizing calcium homeostasis, likely contributes to its neuroprotective action against Aβ toxicity.

  13. [The protective properties of the endotoxin protein].

    Science.gov (United States)

    Levenson, V I; Belkin, Z P; Egorova, T P

    1991-08-01

    The isolation and properties of endotoxin protein, or lipid A-associated protein (LAP), from Shigella sonnei were described earlier (Zh. mikrobiol. epidemiol. immunobiol., 1991, No. 4, pp. 11-17, and No. 7). In this report the data on its protective activity are presented. In experiments on mice one nanogram of LAP injected i. v. protected 50% of the animals against i. p. challenge with 40 LD50 of virulent S. sonnei. Guinea pigs injected s. c. with 10 micrograms of LAP were protected against local (keratoconjunctival) challenge with S. sonnei, the efficiency of immunization being 58%. LAP preparations containing no detectable amounts of O-antigen (less than 0.003%) were found to have a protective effect. Hyperimmune anti-LAP rabbit serum prevented local infection when incubated with S. sonnei challenge inoculum before injection into guinea pigs. Both active and passive protection induced by LAP was specific since no effect was observed in animals challenged with Shigella flexneri. In the homologous system the protective effect of anti-LAP serum was abolished by the addition of protein-free LPS. These results are compatible with the hypothesis that the protective activity of LAP depends on the presence of minute amounts of O-antigen whose immunogenic effect is greatly amplified by the protein component of the natural endotoxin complex.

  14. Intestinal radiation syndrome: sepsis and endotoxin

    International Nuclear Information System (INIS)

    Geraci, J.P.; Jackson, K.L.; Mariano, M.S.

    1985-01-01

    Rats were whole-body irradiated with 8-MeV cyclotron-produced neutrons and 137 Cs γ rays to study the role of enteric bacteria and endotoxin in the intestinal radiation syndrome. Decrease in intestinal weight was used as an index of radiation-induced breakdown of the mucosa. Neutron and γ-ray doses that were sublethal for intestinal death resulted in a dose-dependent decrease in intestinal weight, reaching minimal values 2 to 3 days after exposure, followed by recovery within 5 days after irradiation. Neutron and photon doses that caused intestinal death resulted in greater mucosal breakdown with little or no evidence of mucosal recovery. The presence of fluid in the intestine and diarrhea, but not bacteremia or endotoxemia, were related to mucosal breakdown and recovery. Neither sepsis nor endotoxin could be detected in liver samples taken at autopsy from animals which died a short time earlier from intestinal injury. These results suggest that overt sepsis and endotoxemia do not play a significant role in the intestinal radiation syndrome

  15. Probiotic Cheese Attenuates Exercise-induced Immune Suppression In Wistar Rats

    OpenAIRE

    Lollo P.C.B.; Cruz A.G.; Morato P.N.; Moura C.S.; Carvalho-Silva L.B.; Oliveira C.A.F.; Faria J.A.F.; Amaya-Farfan J.

    2012-01-01

    Intense physical activity results in a substantial volume of stress and hence a significant probability of immunosuppression in athletes, with milk proteins being, perhaps, the most recommended protein supplements. Consumption of a probiotic cheese can attenuate immune suppression induced by exhausting exercise in rats. A popular Brazilian fresh cheese (Minas Frescal cheese) containing Lactobacillus acidophilus LA14 and Bifidobacterium longum BL05 was fed for 2 wk to adult Wistar rats, which ...

  16. Attenuation of CCl4-induced hepatic fibrosis in mice by vaccinating against TGF-β1.

    Directory of Open Access Journals (Sweden)

    Xiaobao Fan

    Full Text Available Transforming growth factor β1 (TGF-β1 is the pivotal pro-fibrogenic cytokine in hepatic fibrosis. Reducing the over-produced expression of TGF-β1 or blocking its signaling pathways is considered to be a promising therapeutic strategy for hepatic fibrosis. In this study, we evaluated the feasibility of attenuating hepatic fibrosis by vaccination against TGF-β1 with TGF-β1 kinoids. Two TGF-β1 kinoid vaccines were prepared by cross-linking TGF-β1-derived polypeptides (TGF-β1(25-[41-65] and TGF-β1(30-[83-112] to keyhole limpet hemocyanin (KLH. Immunization with the two TGF-β1 kinoids efficiently elicited the production of high-levels of TGF-β1-specific antibodies against in BALB/c mice as tested by enzyme-linked immunosorbent assay (ELISA and Western blotting. The antisera neutralized TGF-β1-induced growth-inhibition on mink lung epithelial cells (Mv1Lu and attenuated TGF-β1-induced Smad2/3 phosphorylation, α-SMA, collagen type 1 alpha 2 (COL1A2, plasminogen activator inhibitor-1 (PAI-1 and tissue inhibitor of metalloproteinase-1 (TIMP-1 expression in the rat hepatic stellate cell (HSC line, HSC-T6. Vaccination against TGF-β1 with the kinoids significantly suppressed CCl4-induced collagen deposition and the expression of α-SMA and desmin, attenuated hepatocyte apoptosis and accelerated hepatocyte proliferation in BALB/c mice. These results demonstrated that immunization with the TGF-β1 kinoids efficiently attenuated CCl4-induced hepatic fibrosis and liver injury. Our study suggests that vaccination against TGF-β1 might be developed into a feasible therapeutic approach for the treatment of chronic fibrotic liver diseases.

  17. IL-33 attenuates anoxia/reoxygenation-induced cardiomyocyte apoptosis by inhibition of PKCβ/JNK pathway.

    Directory of Open Access Journals (Sweden)

    Tao Rui

    Full Text Available Interleukin-33 (IL-33 is a new member of the IL-1 cytokine family. The objectives of present study are to assess whether IL-33 can protect cardiomyocytes from anoxia/reoxygenation (A/R-induced injury and the mechanism involved in the protection.Cardiomyocytes derived from either wild type or JNK1(-/- mice were challenged with an A/R with or without IL-33. Myocyte apoptosis was assessed by measuring caspase 3 activity, fragmented DNA and TUNEL staining. In addition, cardiomyocyte oxidative stress was assessed by measuring DHR123 oxidation; PKCβII and JNK phosphorylation were assessed with Western blot.Challenge of cardiomyocytes with an A/R resulted in cardiomyocyte oxidative stress, PKCβII and JNK phosphorylation, and myocyte apoptosis. Treatment of the cardiomyocytes with IL-33 attenuated the A/R-induced myocyte oxidative stress, prevented PKCβII and JNK phosphorylation and attenuated the A/R-induced myocyte apoptosis. The protective effect of the IL-33 did not show in cardiac myocytes with siRNA specific to PKCβII or myocytes deficient in JNK1. Inhibition of PKCβII prevented the A/R-induced JNK phosphorylation, but inhibition of JNK1 showed no effect on A/R-induced PKCβII phosphorylation.Our results indicate that IL-33 prevents the A/R-induced myocyte apoptosis through inhibition of PKCβ/JNK pathway.

  18. Blueberry Anthocyanins-Enriched Extracts Attenuate Cyclophosphamide-Induced Cardiac Injury.

    Directory of Open Access Journals (Sweden)

    Yunen Liu

    Full Text Available We sought to explore the effect of blueberry anthocyanins-enriched extracts (BAE on cyclophosphamide (CTX-induced cardiac injury. The rats were divided randomly into five groups including normal control, CTX 100 mg/kg, BAE 80mg/kg, CTX+BAE 20mg/kg and CTX+BAE 80mg/kg groups. The rats in the three BAE-treated groups were administered BAE for four weeks. Seven days after BAE administration, rats in CTX group and two BAE-treated groups were intraperitoneally injected with a single dose of 100 mg/kg CTX. Cardiac injury was assessed using physiological parameters, Echo, morphological staining, real-time PCR and western blot. In addition, cardiotoxicity indices, inflammatory cytokines expression and oxidative stress markers were also detected. Four weeks 20mg/kg and 80mg/kg dose of BAE treatment following CTX exposure attenuated mean arterial blood pressure, heart rate and activities of heart enzymes, improved cardiac dysfunction, left ventricular hypertrophy and fibrosis. Importantly, BAE also attenuated CTX-induced LV leukocyte infiltration and inflammatory cytokines expression, ameliorated oxidative stress as well as cardiomyocyte apoptosis. In conclusion, BAE attenuated the CTX-induced cardiac injury and the protective mechanisms were related closely to the anti-inflammatory, antioxidant and anti-inflammatory characteristics of BAE.

  19. Myricetin attenuated LPS induced cardiac injury in vivo and in vitro.

    Science.gov (United States)

    Zhang, Nan; Feng, Hong; Liao, Hai-Han; Chen, Si; Yang, Zheng; Deng, Wei; Tang, Qi-Zhu

    2018-03-01

    Sepsis induced myocardial dysfunction (SIMD) is a common complication and leads to an increased mortality. SIMD is closely related to inflammation and oxidative stress. Myricetin exhibits strong capacities of anti-inflammation and anti-oxidative stress, but its pharmacological effects for lipopolysaccharide (LPS) induced cardiac injury remains undefined. This study aimed to explore whether myricetin was efficient to alleviate SIMD in mice and neonatal rat cardiomyocytes injury. Mice administrated with myricetin (100 mg/kg, po, bid) or vehicle groups were challenged with LPS (10 mg/kg, ip), and cardiac functions examined by echocardiography after 12 hr LPS exposure. LPS markedly impaired mouse cardiac functions, which were significantly attenuated by myricetin administration. Myricetin significantly reduced the production of inflammatory cytokines both in serum and cardiac tissue. Myricetin could inhibit the nuclear translocation of p65, degradation of IκBα, and cellular apoptosis in vivo and in vitro. Myricetin also prevented overexpression of iNOS and reduction of oxidoreductase (SOD and GPx) activity. Besides, Myricetin treatment could attenuate production of inflammatory cytokines of peritoneal macrophages stimulated with LPS in vitro. Thus we concluded that myricetin could attenuate the LPS induced cardiac inflammation injury in vivo and in vitro. Myricetin may be a potential therapy or adjuvant therapy for SIMD. Copyright © 2017 John Wiley & Sons, Ltd.

  20. ONO1714, a new inducible nitric oxide synthase inhibitor, attenuates sepsis-induced diaphragmatic dysfunction in hamsters.

    Science.gov (United States)

    Nishina, K; Mikawa, K; Kodama , S; Obara, H

    2001-04-01

    Sepsis causes impairment of diaphragmatic contractility and endurance capacity. Nitric oxide (NO) produced via inducible NO synthase (iNOS) has been implicated in the pathogenesis. Peroxynitrite, a NO-derived powerful oxidant, may be responsible for infection-induced diaphragmatic muscle failure. Therefore, we examined whether ONO1714, a new selective iNOS inhibitor, prevents sepsis-induced diaphragmatic dysfunction. Fifty male Golden-Syrian hamsters were randomly divided into five groups: hamsters that underwent sham laparotomy alone and received saline injection (Group Sham), those that underwent cecal ligation with puncture (CLP) and received saline injection (Group Sepsis), those that underwent sham laparotomy and received injection of ONO1714 0.3 mg/kg (Group Sham-ONO1714high), those that underwent CLP and received ONO1714 0.1 mg/kg (Group Sepsis-ONO1714low), and those that underwent CLP and received ONO1714 0.3 mg/kg (Group Sepsis-ONO1714high). ONO1714 or saline was intraperitoneally injected 10 min before surgery. Diaphragmatic contractility was assessed in vitro using diaphragm muscle strips excised 24 h after operation. Diaphragm fatigability was assessed by time until tension decreased to 50% of the initial value (T50%) during fatigue trials. Twitch, tetanic tensions, and T50% during fatigue trials were reduced in Group Sepsis. Pretreatment with ONO1714 dose-dependently attenuated sepsis-induced diaphragmatic contractile profiles and endurance capacity. CLP increased plasma nitrite/nitrate (NOx; stable NO metabolites), and diaphragm malondialdehyde (MDA; a product of lipid peroxidation), positive immunostaining for nitrotyrosine (peroxynitrite footprint), and iNOS activity. ONO1714 attenuated the increase. This beneficial effect of ONO1714 may be attributable, in part, to inhibition of peroxynitrite-induced lipid peroxidation in the diaphragm. Sepsis impairs diaphragmatic contractility and endurance capacity, which may be involved in acute respiratory

  1. Resveratrol attenuates methylglyoxal-induced mitochondrial dysfunction and apoptosis by Sestrin2 induction

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Kyuhwa; Seo, Suho; Han, Jae Yun; Ki, Sung Hwan; Shin, Sang Mi, E-mail: smshin@chosun.ac.kr

    2014-10-15

    Methylglyoxal is found in high levels in the blood and other tissues of diabetic patients and exerts deleterious effects on cells and tissues. Previously, we reported that resveratrol, a polyphenol in grapes, induced the expression of Sestrin2 (SESN2), a novel antioxidant protein, and inhibited hepatic lipogenesis. This study investigated whether resveratrol protects cells from the methylglyoxal-induced toxicity via SESN2 induction. Methylglyoxal significantly induced cell death in HepG2 cells. However, cells pretreated with resveratrol were rescued from methylglyoxal-induced apoptosis. Resveratrol attenuated glutathione (GSH) depletion and ROS production promoted by methylglyoxal. Moreover, mitochondrial damage was observed by methylglyoxal treatment, but resveratrol restored mitochondrial function, as evidenced by the observed lack of mitochondrial permeability transition and increased ADP/ATP ratio. Resveratrol treatment inhibited SESN2 depletion elicited by methylglyoxal. SESN2 overexpression repressed methylglyoxal-induced mitochondrial dysfunction and apoptosis. Likewise, rotenone-induced cytotoxicity was not observed in SESN2 overexpressed cells. Furthermore, siRNA knockdown of SESN2 reduced the ability of resveratrol to prevent methylglyoxal-induced mitochondrial permeability transition. In addition, when mice were exposed to methylglyoxal after infection of Ad-SESN2, the plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and GSH depletion by methylglyoxal in liver was reduced in Ad-SESN2 infected mice. Our results demonstrated that resveratrol is capable of protecting cells from methylglyoxal-induced mitochondrial dysfunction and oxidative stress via SESN2 induction. - Highlights: • Resveratrol decreased methylglyoxal-induced apoptosis. • Resveratrol attenuated GSH depletion and ROS production promoted by methylglyoxal. • Resveratrol restored the mitochondrial function by Sestrin2 induction. • Induction of Sestrin2

  2. TART calculations of neutron attenuation and neutron-induced photons on 5% and 20% borated polyethylene slabs

    International Nuclear Information System (INIS)

    Wuest, C.R.

    1993-01-01

    The coupled neutron/photon transport code TART has been used to calculate the attenuation of neutrons and the production of induced photons for neutrons incidents on 5% and 20% borated polyethylene slabs. The neutron attenuation lengths are found to be 2.4 cm and 2.9 cm for 5% and 20% borated polyethylene, respectively

  3. Spectral and kinetic analysis of radiation induced optical attenuation in silica: towards intrinsic fibre optic dosimetry?

    International Nuclear Information System (INIS)

    Borgermans, P.

    2002-01-01

    The document is an abstract of a PhD thesis. The PhD work concerns the detailed investigation of the behaviour of optical fibres in radiation fields such as is the case for various nuclear and space application,s. The core of the work concerns the spectral and kinetic analysis of the radiation induced optical attenuation. Models describing underlying physical phenomena, both for the spectral and the time dimensions, have been developed. The potential of silica optical fibre waveguides for intrinsic dosimetry has been assessed by employing specific properties of radiation induced defects in the silica waveguide material

  4. Hyperbaric oxygen therapy attenuates central sensitization induced by a thermal injury in humans.

    Science.gov (United States)

    Rasmussen, V M; Borgen, A E; Jansen, E C; Rotbøll Nielsen, P H; Werner, M U

    2015-07-01

    Hyperbaric oxygen (HBO2 ) treatment has in animal experiments demonstrated antinociceptive effects. It was hypothesized that these effects would attenuate secondary hyperalgesia areas (SHAs), an expression of central sensitization, after a first-degree thermal injury in humans. Seventeen healthy volunteers were examined during two sessions using a randomized crossover design. Volunteers were studied during control conditions (ambient pressure, FI O2  = 0.21) and during HBO2 (2.4 standard atmosphere, FI O2  = 1.0, 90 min) conditions in a pressure chamber. Quantitative sensory testing, including assessment of SHAs was performed. A statistically significant overall attenuation of SHAs was seen during the HBO2 sessions compared with the control-sessions (P = 0.011). In the eight volunteers starting with the HBO2 session, no difference in SHAs compared with control was demonstrated. However, in the nine volunteers starting with the control session, a statistical significant attenuation of SHAs was demonstrated in the HBO2 session (P = 0.004). The results indicate that HBO2 therapy in humans attenuates central sensitization induced by a thermal skin injury, compared with control. These new and original findings in humans corroborate animal experimental data. The thermal injury model may give impetus to future human neurophysiological studies exploring the central effects of hyperbaric oxygen treatment. © 2015 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  5. Bisphenol A attenuates phenylbiguanide-induced cardio-respiratory reflexes in anaesthetized rats.

    Science.gov (United States)

    Pant, Jayanti; Pant, Mahendra K; Deshpande, Shripad B

    2012-11-14

    Bisphenol A (BPA), a toxic chemical released from plastics, produces respiratory arrest and hypotension after a latency. The latency was similar to the reflex apnoea induced by the vagal C fibre stimulation. Therefore, the present study was undertaken to examine the effects of chronic and acute exposure to BPA on cardio-respiratory reflexes elicited by phenylbiguanide (PBG). Acute and chronic experiments were performed on adult female rats. In chronic experiments, the animals were ingested with pellets containing BPA (2 μg/kg body weight) or without BPA (time-matched control) for 30 days. Subsequently, the animals were anaesthetized and prepared for recording blood pressure, ECG and respiratory excursions. PBG was injected through jugular vein to evoke reflexes in these animals. In acute experiments, the PBG reflexes were obtained before and after injecting BPA/ethanol. Also vagal afferent activity was recorded in some rats. In time-matched control rats, PBG produced bradycardia, hypotension and tachypnoea over a period of time. The maximal changes were around 50-65%. In BPA treated group, the PBG-induced heart rate and respiratory frequency changes were attenuated significantly. Acute exposure of animals to BPA (35 mg/kg body weight) for 30 min also attenuated the PBG-induced responses significantly. The attenuation of the PBG reflex responses by BPA in acute experiments was associated with decreased vagal afferent activity. The present results indicate that BPA attenuates the protective cardio-respiratory reflexes due to decreased vagal afferent activity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Edaravone attenuates monocyte adhesion to endothelial cells induced by oxidized low-density lipoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhijuan, E-mail: zjlee038@163.com; Cheng, Jianxin; Wang, Liping

    2015-10-30

    Oxidized low-density lipoprotein (oxLDL) plays a vital role in recruitment of monocytes to endothelial cells, which is important during early stages of atherosclerosis development. Edaravone, a potent and novel scavenger of free radicals inhibiting hydroxyl radicals, has been clinically used to reduce the neuronal damage following ischemic stroke. In the present study, Edaravone was revealed to markedly reduce oxLDL-induced monocyte adhesion to human umbilical vein endothelial cells (HUVECs). The inhibitory mechanism of Edaravone was associated with suppression of the chemokine MCP-1 and adhesion molecule VCAM-1 and ICAM-1 expression. In addition, luciferase reporter assay results revealed that administration of Edaravone attenuated the increase in NF-κB transcriptional activity induced by oxLDL. Notably, it's also shown that Edaravone treatment blocked oxLDL induced p65 nuclear translocation in HUVECs. Results indicate that Edaravone negatively regulates endothelial inflammation. - Highlights: • Edaravone reduces oxLDL-induced monocyte adhesion to HUVECs. • Edaravone attenuates oxLDL-induced expression of MCP-1, VCAM-1, and ICAM-1. • Edaravone reduces NF-κB transcriptional activity and p65 nuclear translocation.

  7. Sulfuretin Attenuates MPP+-Induced Neurotoxicity through Akt/GSK3β and ERK Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Ramesh Pariyar

    2017-12-01

    Full Text Available Parkinson’s disease (PD is the second most common neurodegenerative disease. It is caused by the death of dopaminergic neurons in the substantia nigra pars compacta. Oxidative stress and mitochondrial dysfunction contribute to the loss of dopaminergic neurons in PD. Sulfuretin is a potent antioxidant that is reported to be beneficial in the treatment of neurodegenerative diseases. In this study, we examined the protective effect of sulfuretin against 1-methyl-4-phenyl pyridinium (MPP+-induced cell model of PD in SH-SY5Y cells and the underlying molecular mechanisms. Sulfuretin significantly decreased MPP+-induced apoptotic cell death, accompanied by a reduction in caspase 3 activity and polyADP-ribose polymerase (PARP cleavage. Furthermore, it attenuated MPP+-induced production of intracellular reactive oxygen species (ROS and disruption of mitochondrial membrane potential (MMP. Consistently, sulfuretin decreased p53 expression and the Bax/Bcl-2 ratio. Moreover, sulfuretin significantly increased the phosphorylation of Akt, GSK3β, and ERK. Pharmacological inhibitors of PI3K/Akt and ERK abolished the cytoprotective effects of sulfuretin against MPP+. An inhibitor of GSK3β mimicked sulfuretin-induced protection against MPP+. Taken together, these results suggest that sulfuretin significantly attenuates MPP+-induced neurotoxicity through Akt/GSK3β and ERK signaling pathways in SH-SY5Y cells. Our findings suggest that sulfuretin might be one of the potential candidates for the treatment of PD.

  8. Low-Dose Aronia melanocarpa Concentrate Attenuates Paraquat-Induced Neurotoxicity.

    Science.gov (United States)

    Case, A J; Agraz, D; Ahmad, I M; Zimmerman, M C

    2016-01-01

    Herbicides containing paraquat may contribute to the pathogenesis of neurodegenerative disorders such as Parkinson's disease. Paraquat induces reactive oxygen species-mediated apoptosis in neurons, which is a primary mechanism behind its toxicity. We sought to test the effectiveness of a commercially available polyphenol-rich Aronia melanocarpa (aronia berry) concentrate in the amelioration of paraquat-induced neurotoxicity. Considering the abundance of antioxidants in aronia berries, we hypothesized that aronia berry concentrate attenuates the paraquat-induced increase in reactive oxygen species and protects against paraquat-mediated neuronal cell death. Using a neuronal cell culture model, we observed that low doses of aronia berry concentrate protected against paraquat-mediated neurotoxicity. Additionally, low doses of the concentrate attenuated the paraquat-induced increase in superoxide, hydrogen peroxide, and oxidized glutathione levels. Interestingly, high doses of aronia berry concentrate increased neuronal superoxide levels independent of paraquat, while at the same time decreasing hydrogen peroxide. Moreover, high-dose aronia berry concentrate potentiated paraquat-induced superoxide production and neuronal cell death. In summary, aronia berry concentrate at low doses restores the homeostatic redox environment of neurons treated with paraquat, while high doses exacerbate the imbalance leading to further cell death. Our findings support that moderate levels of aronia berry concentrate may prevent reactive oxygen species-mediated neurotoxicity.

  9. Deletion of Interleukin-6 Attenuates Pressure Overload-Induced Left Ventricular Hypertrophy and Dysfunction

    Science.gov (United States)

    Afzal, Muhammad R.; Samanta, Anweshan; Xuan, Yu-Ting; Girgis, Magdy; Elias, Harold K; Zhu, Yanqing; Davani, Arash; Yang, Yanjuan; Chen, Xing; Ye, Sheng; Wang, Ou-Li; Chen, Lei; Hauptman, Jeryl; Vincent, Robert J.; Dawn, Buddhadeb

    2016-01-01

    Rationale The role of interleukin (IL)-6 in the pathogenesis of cardiac myocyte hypertrophy remains controversial. Objective To conclusively determine whether IL-6 signaling is essential for the development of pressure overload-induced left ventricular (LV) hypertrophy, and to elucidate the underlying molecular pathways. Methods and Results Wild-type (WT) and IL-6 knockout (IL-6−/−) mice underwent sham surgery or transverse aortic constriction (TAC) to induce pressure overload. Serial echocardiograms and terminal hemodynamic studies revealed attenuated LV hypertrophy and superior preservation of LV function in IL-6−/− mice after TAC. The extents of LV remodeling, fibrosis, and apoptosis were reduced in IL-6−/− hearts after TAC. Transcriptional and protein assays of myocardial tissue identified CaMKII and STAT3 activation as important underlying mechanisms during cardiac hypertrophy induced by TAC. The involvement of these pathways in myocyte hypertrophy was verified in isolated cardiac myocytes from WT and IL-6−/− mice exposed to pro-hypertrophy agents. Furthermore, overexpression of CaMKII in H9c2 cells increased STAT3 phosphorylation, and exposure of H9c2 cells to IL-6 resulted in STAT3 activation that was attenuated by CaMKII inhibition. Together these results identify the importance of CaMKII-dependent activation of STAT3 during cardiac myocyte hypertrophy via IL-6 signaling. Conclusions Genetic deletion of IL-6 attenuates TAC-induced LV hypertrophy and dysfunction, indicating a critical role played by IL-6 in the pathogenesis of LV hypertrophy in response to pressure overload. CaMKII plays an important role in IL-6-induced STAT3 activation and consequent cardiac myocyte hypertrophy. These findings may have significant therapeutic implications for LV hypertrophy and failure in patients with hypertension. PMID:27126808

  10. Recent advances in biosensor based endotoxin detection.

    Science.gov (United States)

    Das, A P; Kumar, P S; Swain, S

    2014-01-15

    Endotoxins also referred to as pyrogens are chemically lipopolysaccharides habitually found in food, environment and clinical products of bacterial origin and are unavoidable ubiquitous microbiological contaminants. Pernicious issues of its contamination result in high mortality and severe morbidities. Standard traditional techniques are slow and cumbersome, highlighting the pressing need for evoking agile endotoxin detection system. The early and prompt detection of endotoxin assumes prime importance in health care, pharmacological and biomedical sectors. The unparalleled recognition abilities of LAL biosensors perched with remarkable sensitivity, high stability and reproducibility have bestowed it with persistent reliability and their possible fabrication for commercial applicability. This review paper entails an overview of various trends in current techniques available and other possible alternatives in biosensor based endotoxin detection together with its classification, epidemiological aspects, thrust areas demanding endotoxin control, commercially available detection sensors and a revolutionary unprecedented approach narrating the influence of omics for endotoxin detection. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Toxic Chemical from Plastics Attenuates Phenylbiguanide-induced Cardio-respiratory Reflexes in Anaesthetized Rats.

    Science.gov (United States)

    Pant, Jayanti; Pant, Mahendra K; Chouhan, Shikha; Singh, Surya P; Deshpande, Shripad B

    2015-01-01

    Bisphenol A (BPA) attenuated phenylbiguanide (PBG)-induced cardio-respiratory reflexes involving decreased vagal afferent activity. BPA leaches out from plastics thus it is expected that chronic exposure to plastic boiled (PBW) water will also produce similar changes. Therefore, the present study was undertaken to evaluate the effects of chronic ingestion of PBW on PBG evoked reflexes and were compared with BPA. Adult female rats were ingested BPA containing pellets (2 µg/kg body weight)/PBW/tap water (ad libitum) for 30 days. On day 30, the animals were anaesthetized and BP, ECG and respiratory excursions were recorded. Further, PBG was injected intravenously to evoke cardio-respiratory reflexes and at the end lungs were excised for histopathological examination. BPA concentration in PBW was 6.6 µg/ml estimated by HPLC. In rats receiving tap water, PBG produced bradycardia, hypotension and tachypnoea. In PBW/BPA treated groups, PBG-induced reflexes were attenuated significantly along with emphysematous and consolidative changes in lungs. The present results indicate that PBW attenuates the protective cardio-respiratory reflexes and also produces histopathological changes in lungs.

  12. Puerarin attenuates learning and memory impairments and inhibits oxidative stress in STZ-induced SAD mice.

    Science.gov (United States)

    Zhao, Shan-shan; Yang, Wei-na; Jin, Hui; Ma, Kai-ge; Feng, Gai-feng

    2015-12-01

    Puerarin (PUE), an isoflavone purified from the root of Pueraria lobata (Chinese herb), has been reported to attenuate learning and memory impairments in the transgenic mouse model of Alzheimer's disease (AD). In the present study, we tested PUE in a sporadic AD (SAD) mouse model which was induced by the intracerebroventricular injection of streptozotocin (STZ). The mice were administrated PUE (25, 50, or 100mg/kg/d) for 28 days. Learning and memory abilities were assessed by the Morris water maze test. After behavioral test, the biochemical parameters of oxidative stress (glutathione peroxidase (GSH-Px), superoxide dismutases (SOD), and malondialdehyde (MDA)) were measured in the cerebral cortex and hippocampus. The SAD mice exhibited significantly decreased learning and memory ability, while PUE attenuated these impairments. The activities of GSH-Px and SOD were decreased while MDA was increased in the SAD animals. After PUE treatment, the activities of GSH-Px and SOD were elevated, and the level of MDA was decreased. The middle dose PUE was more effective than others. These results indicate that PUE attenuates learning and memory impairments and inhibits oxidative stress in STZ-induced SAD mice. PUE may be a promising therapeutic agent for SAD. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Cloricromene, a coumarine derivative, protects against lethal endotoxin shock in rats.

    Science.gov (United States)

    Squadrito, F; Altavilla, D; Campo, G M; Calapai, G; Ioculano, M; Zingarelli, B; Saitta, A; Prosdocimi, M; Caputi, A P

    1992-01-14

    Endotoxin shock was induced in male rats by an intravenous (i.v.) injection of Salmonella enteriditis lipopolysaccharide (LPS; 20 mg/kg i.v.). Survival rate, macrophage and serum tumor necrosis factor (TNF-alpha), mean arterial blood pressure (MAP) and white blood cell count were then evaluated. Furthermore the in vitro effect of cloricromene on peritoneal macrophage phagocytosis and TNF-alpha release by primed peritoneal macrophages was investigated. LPS administration caused animal death (0% survival 24 h after endotoxin challenge), hypotension, marked leukopenia and increased the levels of TNF-alpha in both serum and macrophage supernatants. Cloricromene administration (0.5, 1 and 2 mg/kg i.v. 15 min after endotoxin) protected against LPS-induced lethality (100% survival rate 24 h after endotoxin challenge), reverted LPS-induced hypotension and leukopenia, and decreased TNF-alpha in both serum and macrophage supernatants. Finally, cloricromene, added in vitro to peritoneal macrophages collected from endotoxin-treated rats increased macrophage phagocytosis and reduced TNF-alpha formation by activated mononuclear phagocytes. Our data suggest that cloricromene increases survival rate in endotoxin shock through an inhibition of TNF-alpha production.

  14. Flavanone silibinin treatment attenuates nitrogen mustard-induced toxic effects in mouse skin

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Anil K.; Tewari-Singh, Neera; Inturi, Swetha; Kumar, Dileep [Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 (United States); Orlicky, David J. [Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 (United States); Agarwal, Chapla [Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 (United States); White, Carl W. [Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045USA (United States); Agarwal, Rajesh, E-mail: Rajesh.Agarwal@UCDenver.edu [Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 (United States)

    2015-05-15

    Currently, there is no effective antidote to prevent skin injuries by sulfur mustard (SM) and nitrogen mustard (NM), which are vesicating agents with potential relevance to chemical warfare, terrorist attacks, or industrial/laboratory accidents. Our earlier report has demonstrated the therapeutic efficacy of silibinin, a natural flavanone, in reversing monofunctional alkylating SM analog 2-chloroethyl ethyl sulfide-induced toxic effects in mouse skin. To translate this effect to a bifunctional alkylating vesicant, herein, efficacy studies were carried out with NM. Topical application of silibinin (1 or 2 mg) 30 min after NM exposure on the dorsal skin of male SKH-1 hairless mice significantly decreased NM-induced toxic lesions at 24, 72 or 120 h post-exposure. Specifically, silibinin treatment resulted in dose-dependent reduction of NM-induced increase in epidermal thickness, dead and denuded epidermis, parakeratosis and microvesication. Higher silibinin dose also caused a 79% and 51%reversal in NM-induced increases in myeloperoxidase activity and COX-2 levels, respectively. Furthermore, silibinin completely prevented NM-induced H2A.X phosphorylation, indicating reversal of DNA damage which could be an oxidative DNA damage as evidenced by high levels of 8-oxodG in NM-exposed mouse skin that was significantly reversed by silibinin. Together, these findings suggest that attenuation of NM-induced skin injury by silibinin is due to its effects on the pathways associated with DNA damage, inflammation, vesication and oxidative stress. In conclusion, results presented here support the optimization of silibinin as an effective treatment of skin injury by vesicants. - Highlights: • Silibinin treatment attenuated nitrogen mustard (NM)-induced skin injury. • Silibinin affects pathways associated with DNA damage, inflammation and vesication. • The efficacy of silibinin could also be associated with oxidative stress. • These results support testing and optimization of

  15. Flavanone silibinin treatment attenuates nitrogen mustard-induced toxic effects in mouse skin

    International Nuclear Information System (INIS)

    Jain, Anil K.; Tewari-Singh, Neera; Inturi, Swetha; Kumar, Dileep; Orlicky, David J.; Agarwal, Chapla; White, Carl W.; Agarwal, Rajesh

    2015-01-01

    Currently, there is no effective antidote to prevent skin injuries by sulfur mustard (SM) and nitrogen mustard (NM), which are vesicating agents with potential relevance to chemical warfare, terrorist attacks, or industrial/laboratory accidents. Our earlier report has demonstrated the therapeutic efficacy of silibinin, a natural flavanone, in reversing monofunctional alkylating SM analog 2-chloroethyl ethyl sulfide-induced toxic effects in mouse skin. To translate this effect to a bifunctional alkylating vesicant, herein, efficacy studies were carried out with NM. Topical application of silibinin (1 or 2 mg) 30 min after NM exposure on the dorsal skin of male SKH-1 hairless mice significantly decreased NM-induced toxic lesions at 24, 72 or 120 h post-exposure. Specifically, silibinin treatment resulted in dose-dependent reduction of NM-induced increase in epidermal thickness, dead and denuded epidermis, parakeratosis and microvesication. Higher silibinin dose also caused a 79% and 51%reversal in NM-induced increases in myeloperoxidase activity and COX-2 levels, respectively. Furthermore, silibinin completely prevented NM-induced H2A.X phosphorylation, indicating reversal of DNA damage which could be an oxidative DNA damage as evidenced by high levels of 8-oxodG in NM-exposed mouse skin that was significantly reversed by silibinin. Together, these findings suggest that attenuation of NM-induced skin injury by silibinin is due to its effects on the pathways associated with DNA damage, inflammation, vesication and oxidative stress. In conclusion, results presented here support the optimization of silibinin as an effective treatment of skin injury by vesicants. - Highlights: • Silibinin treatment attenuated nitrogen mustard (NM)-induced skin injury. • Silibinin affects pathways associated with DNA damage, inflammation and vesication. • The efficacy of silibinin could also be associated with oxidative stress. • These results support testing and optimization of

  16. Erythropoietin Pretreatment Attenuates Seawater Aspiration-Induced Acute Lung Injury in Rats.

    Science.gov (United States)

    Ji, Mu-Huo; Tong, Jian-Hua; Tan, Yuan-Hui; Cao, Zhen-Yu; Ou, Cong-Yang; Li, Wei-Yan; Yang, Jian-Jun; Peng, Y G; Zhu, Si-Hai

    2016-02-01

    Seawater drowning-induced acute lung injury (ALI) is a serious clinical condition characterized by increased alveolar-capillary permeability, excessive inflammatory responses, and refractory hypoxemia. However, current therapeutic options are largely supportive; thus, it is of great interest to search for alternative agents to treat seawater aspiration-induced ALI. Erythropoietin (EPO) is a multifunctional agent with antiinflammatory, antioxidative, and antiapoptotic properties. However, the effects of EPO on seawater aspiration-induced ALI remain unclear. In the present study, male rats were randomly assigned to the naive group, normal saline group, seawater group, or seawater + EPO group. EPO was administered intraperitoneally at 48 and 24 h before seawater aspiration. Arterial blood gas analysis was performed with a gas analyzer at baseline, 30 min, 1 h, 4 h, and 24 h after seawater aspiration, respectively. Histological scores, computed tomography scan, nuclear factor kappa B p65, inducible nitric oxide synthase, caspase-3, tumor necrosis factor-alpha, interleukin (IL)-1β, IL-6, IL-10, wet-to-dry weight ratio, myeloperoxidase activity, malondialdehyde, and superoxide dismutase in the lung were determined 30 min after seawater aspiration. Our results showed that EPO pretreatment alleviated seawater aspiration-induced ALI, as indicated by increased arterial partial oxygen tension and decreased lung histological scores. Furthermore, EPO pretreatment attenuated seawater aspiration-induced increase in the expressions of pulmonary nuclear factor kappa B p65, inducible nitric oxide synthase, caspase-3, tumor necrosis factor-alpha, IL-1β, myeloperoxidase activity, and malondialdehyde when compared with the seawater group. Collectively, our study suggested that EPO pretreatment attenuates seawater aspiration-induced ALI by down-regulation of pulmonary pro-inflammatory cytokines, oxidative stress, and apoptosis.

  17. Statin Treatment in Hypercholesterolemic Men Does Not Attenuate Angiotensin II-Induced Venoconstriction

    Science.gov (United States)

    Schindler, Christoph; Guenther, Kristina; Hermann, Cosima; Ferrario, Carlos M.; Schroeder, Christoph; Haufe, Sven

    2014-01-01

    Experimental studies suggested that statins attenuate vascular AT1 receptor responsiveness. Moreover, the augmented excessive pressor response to systemic angiotensin II infusions in hypercholesterolemic patients was normalized with statin treatment. In 12 hypercholesterolemic patients, we tested the hypothesis that statin treatment attenuates angiotensin II-mediated vasoconstriction in hand veins assessed by a linear variable differential transducer. Subjects ingested daily doses of either atorvastatin (40 mg) or positive control irbesartan (150 mg) for 30 days in a randomized and cross-over fashion. Ang II–induced venoconstriction at minute 4 averaged 59%±10% before and 28%±9% after irbesartan (mean ± SEM; Pblood pressure buffering reflexes. Trial Registration ClinicalTrials.gov NCT00154024 PMID:25264877

  18. Ferulic acid attenuates the cerebral ischemic injury-induced decrease in peroxiredoxin-2 and thioredoxin expression.

    Science.gov (United States)

    Sung, Jin-Hee; Gim, Sang-Ah; Koh, Phil-Ok

    2014-04-30

    Ferulic acid, a phenolic phytochemical compound found in various plants, has a neuroprotective effect through its anti-oxidant and anti-inflammation functions. Peroxiredoxin-2 and thioredoxin play a potent neuroprotective function against oxidative stress. We investigated whether ferulic acid regulates peroxiredoxin-2 and thioredoxin levels in cerebral ischemia. Sprague-Dawley rats (male, 210-230g) were treated with vehicle or ferulic acid (100mg/kg) after middle cerebral artery occlusion (MCAO), and cerebral cortex tissues were collected 24h after MCAO. Decreases in peroxiredoxin-2 and thioredoxin levels were elucidated in MCAO-operated animals using a proteomics approach. We found that ferulic acid treatment prevented the MCAO-induced decrease in the expression of peroxiredoxin-2 and thioredoxin. RT-PCR and Western blot analyses confirmed that ferulic acid treatment attenuated the MCAO-induced decrease in peroxiredoxin-2 and thioredoxin levels. Moreover, immunoprecipitation analysis showed that the interaction between thioredoxin and apoptosis signal-regulating kinase 1 (ASK1) decreased during MCAO, whereas ferulic acid prevented the MCAO-induced decrease in this interaction. Our findings suggest that ferulic acid plays a neuroprotective role by attenuating injury-induced decreases in peroxiredoxin-2 and thioredoxin levels in neuronal cell injury. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Proanthocyanidin-based Endotoxin Removal

    Science.gov (United States)

    2014-01-16

    synthesis or purification of a variety of compounds with LPS-binding activities [2–11]. Polymyxin B (PMB) is the most commonly employed agent for removal... polyphenolics are accessible to the reagents in a manner similar to those in free in solution. The analysis also assumes that all degrees of... Synthesis and Application of a Novel Ligand for Affinity Chromatography Based Removal of Endotoxin from Antibodies,” Bioconjugate Chemistry 18, 559

  20. Chloroquine attenuates paraquat-induced lung injury in mice by altering inflammation, oxidative stress and fibrosis.

    Science.gov (United States)

    Shen, Haitao; Wu, Na; Wang, Yu; Zhao, Hongyu; Zhang, Lichun; Li, Tiegang; Zhao, Min

    2017-05-01

    Paraquat is one of the most extensively used herbicides and has high toxicity for humans and animals. However, there is no effective treatment for paraquat poisoning. The aim of the present study was to evaluate the effects of chloroquine on paraquat-induced lung injury in mice. Mice received a single intraperitoneal injection of paraquat and a daily intraperitoneal injection of the indicated dosages of chloroquine or dexamethasone. The histological changes, inflammation and oxidative stress in the lungs were examined at day 3, and the degree of pulmonary fibrosis was examined at day 28. H&E staining showed that chloroquine markedly attenuated lung injury induced by paraquat. In addition, the inflammatory responses induced by paraquat were inhibited after treatment with chloroquine, as indicated by the decreased number of leukocytes, the reduced levels of TNF-α, IL-1β and IL-6 in the bronchoalveolar lavage fluid, the reduced NO content, and downregulation of iNOS expression in lung tissues. No different effect was found between high-dose chloroquine and dexamethasone. Additionally, the treatment with chloroquine increased the activity of SOD and decreased the level of MDA in the lung tissues. The expressions of the anti-oxidative proteins, Nrf2, HO-1 and NQO1, were also upregulated by chloroquine treatment. The high-dose chloroquine was more effective than dexamethasone in its anti-oxidation ability. Finally, the results of Masson's staining illustrated that chloroquine markedly attenuated fibrosis in the paraquat-exposed lungs. Immunohistochemistry staining showed that the expressions of the pro-fibrotic proteins TGF-β and α-SMA were downregulated after treatment with chloroquine. In conclusion, chloroquine effectively attenuated paraquat-induced lung injury in mice. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Lovastatin attenuates ionizing radiation-induced normal tissue damage in vivo

    International Nuclear Information System (INIS)

    Ostrau, Christian; Huelsenbeck, Johannes; Herzog, Melanie; Schad, Arno; Torzewski, Michael; Lackner, Karl J.; Fritz, Gerhard

    2009-01-01

    Background and purpose: HMG-CoA-reductase inhibitors (statins) are widely used lipid-lowering drugs. Moreover, they have pleiotropic effects on cellular stress responses, proliferation and apoptosis in vitro. Here, we investigated whether lovastatin attenuates acute and subchronic ionizing radiation-induced normal tissue toxicity in vivo. Materials and methods: Four hours to 24 h after total body irradiation (6 Gy) of Balb/c mice, acute pro-inflammatory and pro-fibrotic responses were analyzed. To comprise subchronic radiation toxicity, mice were irradiated twice with 2.5 Gy and analyses were performed 3 weeks after the first radiation treatment. Molecular markers of inflammation and fibrosis as well as organ toxicities were measured. Results: Lovastatin attenuated IR-induced activation of NF-κB, mRNA expression of cell adhesion molecules and mRNA expression of pro-inflammatory and pro-fibrotic marker genes (i.e. TNFα, IL-6, TGFβ, CTGF, and type I and type III collagen) in a tissue- and time-dependent manner. γH2AX phosphorylation stimulated by IR was not affected by lovastatin, indicating that the statin has no major impact on the induction of DNA damage in vivo. Radiation-induced thrombopenia was significantly alleviated by lovastatin. Conclusions: Lovastatin inhibits both acute and subchronic IR-induced pro-inflammatory and pro-fibrotic responses and cell death in normal tissue in vivo. Therefore, lovastatin might be useful for selectively attenuating acute and subchronic normal tissue damage caused by radiotherapy.

  2. Ultra-low dose naltrexone attenuates chronic morphine-induced gliosis in rats

    Directory of Open Access Journals (Sweden)

    Milne Brian

    2010-04-01

    Full Text Available Abstract Background The development of analgesic tolerance following chronic morphine administration can be a significant clinical problem. Preclinical studies demonstrate that chronic morphine administration induces spinal gliosis and that inhibition of gliosis prevents the development of analgesic tolerance to opioids. Many studies have also demonstrated that ultra-low doses of naltrexone inhibit the development of spinal morphine antinociceptive tolerance and clinical studies demonstrate that it has opioid sparing effects. In this study we demonstrate that ultra-low dose naltrexone attenuates glial activation, which may contribute to its effects on attenuating tolerance. Results Spinal cord sections from rats administered chronic morphine showed significantly increased immuno-labelling of astrocytes and microglia compared to saline controls, consistent with activation. 3-D images of astrocytes from animals administered chronic morphine had significantly larger volumes compared to saline controls. Co-injection of ultra-low dose naltrexone attenuated this increase in volume, but the mean volume differed from saline-treated and naltrexone-treated controls. Astrocyte and microglial immuno-labelling was attenuated in rats co-administered ultra-low dose naltrexone compared to morphine-treated rats and did not differ from controls. Glial activation, as characterized by immunohistochemical labelling and cell size, was positively correlated with the extent of tolerance developed. Morphine-induced glial activation was not due to cell proliferation as there was no difference observed in the total number of glial cells following chronic morphine treatment compared to controls. Furthermore, using 5-bromo-2-deoxyuridine, no increase in spinal cord cell proliferation was observed following chronic morphine administration. Conclusion Taken together, we demonstrate a positive correlation between the prevention of analgesic tolerance and the inhibition of

  3. Ultra-low dose naltrexone attenuates chronic morphine-induced gliosis in rats.

    Science.gov (United States)

    Mattioli, Theresa-Alexandra M; Milne, Brian; Cahill, Catherine M

    2010-04-16

    The development of analgesic tolerance following chronic morphine administration can be a significant clinical problem. Preclinical studies demonstrate that chronic morphine administration induces spinal gliosis and that inhibition of gliosis prevents the development of analgesic tolerance to opioids. Many studies have also demonstrated that ultra-low doses of naltrexone inhibit the development of spinal morphine antinociceptive tolerance and clinical studies demonstrate that it has opioid sparing effects. In this study we demonstrate that ultra-low dose naltrexone attenuates glial activation, which may contribute to its effects on attenuating tolerance. Spinal cord sections from rats administered chronic morphine showed significantly increased immuno-labelling of astrocytes and microglia compared to saline controls, consistent with activation. 3-D images of astrocytes from animals administered chronic morphine had significantly larger volumes compared to saline controls. Co-injection of ultra-low dose naltrexone attenuated this increase in volume, but the mean volume differed from saline-treated and naltrexone-treated controls. Astrocyte and microglial immuno-labelling was attenuated in rats co-administered ultra-low dose naltrexone compared to morphine-treated rats and did not differ from controls. Glial activation, as characterized by immunohistochemical labelling and cell size, was positively correlated with the extent of tolerance developed. Morphine-induced glial activation was not due to cell proliferation as there was no difference observed in the total number of glial cells following chronic morphine treatment compared to controls. Furthermore, using 5-bromo-2-deoxyuridine, no increase in spinal cord cell proliferation was observed following chronic morphine administration. Taken together, we demonstrate a positive correlation between the prevention of analgesic tolerance and the inhibition of spinal gliosis by treatment with ultra-low dose naltrexone

  4. CELECOXIB ATTENUATES SYSTEMIC LIPOPOLYSACCHARIDE-INDUCED BRAIN INFLAMMATION AND WHITE MATTER INJURY IN THE NEONATAL RATS

    Science.gov (United States)

    FAN, L.-W.; KAIZAKI, A.; TIEN, L.-T.; PANG, Y.; TANAKA, S.; NUMAZAWA, S.; BHATT, A. J.; CAI, Z.

    2013-01-01

    Lipopolysaccharide (LPS)-induced white matter injury in the neonatal rat brain is associated with inflammatory processes. Cyclooxygenase-2 (COX-2) can be induced by inflammatory stimuli, such as cytokines and pro-inflammatory molecules, suggesting that COX-2 may be considered as the target for anti-inflammation. The objective of the present study was to examine whether celecoxib, a selective COX-2 inhibitor, can reduce systemic LPS-induced brain inflammation and brain damage. Intraperitoneal (i.p.) injection of LPS (2 mg/kg) was performed in postnatal day 5 (P5) of Sprague-Dawley rat pups and celecoxib (20 mg/kg) or vehicle was administered i.p. 5 min after LPS injection. The body weight and wire hanging maneuver test were performed 24 hr after the LPS exposure, and brain injury was examined after these tests. Systemic LPS exposure resulted in an impairment of behavioral performance and acute brain injury, as indicated by apoptotic death of oligodendrocytes (OLs) and loss of OL immunoreactivity in the neonatal rat brain. Treatments with celecoxib significantly reduced systemic LPS-induced neurobehavioral disturbance and brain damage. Celecoxib administration significantly attenuated systemic LPS-induced increments in the number of activated microglia and astrocytes, concentrations of IL-1β and TNFα, and protein levels of phosphorylated-p38 MAPK in the neonatal rat brain. The protection of celecoxib was also associated with a reduction of systemic LPS-induced COX-2+ cells which were double labeled with GFAP+ (astrocyte) cells. The overall results suggest that celecoxib was capable of attenuating the brain injury and neurobehavioral disturbance induced by systemic LPS exposure, and the protective effects are associated with its anti-inflammatory properties. PMID:23485816

  5. Arginase attenuates inhibitory nonadrenergic noncholinergic nerve-induced nitric oxide generation and airway smooth muscle relaxation

    Directory of Open Access Journals (Sweden)

    Meurs Herman

    2005-03-01

    Full Text Available Abstract Background Recent evidence suggests that endogenous arginase activity potentiates airway responsiveness to methacholine by attenuation of agonist-induced nitric oxide (NO production, presumably by competition with epithelial constitutive NO synthase for the common substrate, L-arginine. Using guinea pig tracheal open-ring preparations, we now investigated the involvement of arginase in the modulation of neuronal nitric oxide synthase (nNOS-mediated relaxation induced by inhibitory nonadrenergic noncholinergic (iNANC nerve stimulation. Methods Electrical field stimulation (EFS; 150 mA, 4 ms, 4 s, 0.5 – 16 Hz-induced relaxation was measured in tracheal preparations precontracted to 30% with histamine, in the presence of 1 μM atropine and 3 μM indomethacin. The contribution of NO to the EFS-induced relaxation was assessed by the nonselective NOS inhibitor L-NNA (0.1 mM, while the involvement of arginase activity in the regulation of EFS-induced NO production and relaxation was investigated by the effect of the specific arginase inhibitor nor-NOHA (10 μM. Furthermore, the role of substrate availability to nNOS in EFS-induced relaxation was measured in the presence of various concentrations of exogenous L-arginine. Results EFS induced a frequency-dependent relaxation, ranging from 6.6 ± 0.8% at 0.5 Hz to 74.6 ± 1.2% at 16 Hz, which was inhibited with the NOS inhibitor L-NNA by 78.0 ± 10.5% at 0.5 Hz to 26.7 ± 7.7% at 8 Hz (P Conclusion The results indicate that endogenous arginase activity attenuates iNANC nerve-mediated airway relaxation by inhibition of NO generation, presumably by limiting L-arginine availability to nNOS.

  6. FOXL2-induced follistatin attenuates activin A-stimulated cell proliferation in human granulosa cell tumors

    International Nuclear Information System (INIS)

    Cheng, Jung-Chien; Chang, Hsun-Ming; Qiu, Xin; Fang, Lanlan; Leung, Peter C.K.

    2014-01-01

    Highlights: •Activin A stimulates cell proliferation in KGN human granulosa cell tumor-derived cell line. •Cyclin D2 mediates activin A-induced KGN cell proliferation. •FOXL2 induces follistatin expression in KGN cells. •FOXL2-induced follistatin attenuates activin A-stimulated KGN cell proliferation. -- Abstract: Human granulosa cell tumors (GCTs) are rare, and their etiology remains largely unknown. Recently, the FOXL2 402C > G (C134W) mutation was found to be specifically expressed in human adult-type GCTs; however, its function in the development of human GCTs is not fully understood. Activins are members of the transforming growth factor-beta superfamily, which has been shown to stimulate normal granulosa cell proliferation; however, little is known regarding the function of activins in human GCTs. In this study, we examined the effect of activin A on cell proliferation in the human GCT-derived cell line KGN. We show that activin A treatment stimulates KGN cell proliferation. Treatment with the activin type I receptor inhibitor SB431542 blocks activin A-stimulated cell proliferation. In addition, our results show that cyclin D2 is induced by treatment with activin A and is involved in activin A-stimulated cell proliferation. Moreover, the activation of Smad signaling is required for activin A-induced cyclin D2 expression. Finally, we show that the overexpression of the wild-type FOXL2 but not the C134W mutant FOXL2 induced follistatin production. Treatment with exogenous follistatin blocks activin A-stimulated cell proliferation, and the overexpression of wild-type FOXL2 attenuates activin A-stimulated cell proliferation. These results suggest that FOXL2 may act as a tumor suppressor in human adult-type GCTs by inducing follistatin expression, which subsequently inhibits activin-stimulated cell proliferation

  7. Inhibition of Receptor Interacting Protein Kinases Attenuates Cardiomyocyte Hypertrophy Induced by Palmitic Acid.

    Science.gov (United States)

    Zhao, Mingyue; Lu, Lihui; Lei, Song; Chai, Hua; Wu, Siyuan; Tang, Xiaoju; Bao, Qinxue; Chen, Li; Wu, Wenchao; Liu, Xiaojing

    2016-01-01

    Palmitic acid (PA) is known to cause cardiomyocyte dysfunction. Cardiac hypertrophy is one of the important pathological features of PA-induced lipotoxicity, but the mechanism by which PA induces cardiomyocyte hypertrophy is still unclear. Therefore, our study was to test whether necroptosis, a receptor interacting protein kinase 1 and 3 (RIPK1 and RIPK3-) dependent programmed necrosis, was involved in the PA-induced cardiomyocyte hypertrophy. We used the PA-treated primary neonatal rat cardiac myocytes (NCMs) or H9c2 cells to study lipotoxicity. Our results demonstrated that cardiomyocyte hypertrophy was induced by PA treatment, determined by upregulation of hypertrophic marker genes and cell surface area enlargement. Upon PA treatment, the expression of RIPK1 and RIPK3 was increased. Pretreatment with the RIPK1 inhibitor necrostatin-1 (Nec-1), the PA-induced cardiomyocyte hypertrophy, was attenuated. Knockdown of RIPK1 or RIPK3 by siRNA suppressed the PA-induced myocardial hypertrophy. Moreover, a crosstalk between necroptosis and endoplasmic reticulum (ER) stress was observed in PA-treated cardiomyocytes. Inhibition of RIPK1 with Nec-1, phosphorylation level of AKT (Ser473), and mTOR (Ser2481) was significantly reduced in PA-treated cardiomyocytes. In conclusion, RIPKs-dependent necroptosis might be crucial in PA-induced myocardial hypertrophy. Activation of mTOR may mediate the effect of necroptosis in cardiomyocyte hypertrophy induced by PA.

  8. Experimental study of 『PERSICAE SEMEN』 on the blood injected by Endotoxin in rats

    Directory of Open Access Journals (Sweden)

    Chang-Keun

    2005-06-01

    Full Text Available This study was performed to investigate the effects of 「Persicae Semen」(PS on the blood injected by Endotoxin in rats. The blood was induced by Endotoxin injection into the caudal vein of rats and PS group taken a measurement of RBC, Hb, Hct, Platelet, WBC, ESR, CRP. The results were obtained as follows: 1. RBC, Hb, Hct, Platelet, WBC were increased with statistical significance at PS group as compared with those of the control group. 2. ESR, CRP were decreased with statistical significance at PS group as compared with those of the control group. It is concluded that PS group has significant effects on the blood injected by Endotoxin in rats. Therefore, PS group seems to be applicable to the diseases related to Endotoxin in clinics.

  9. Effect of Solcoseryl on the clinical course of experimental Escherichia coli-endotoxin mastitis.

    Science.gov (United States)

    Ziv, G; Jöchle, W

    1981-09-01

    Experimental Escherichia coli-endotoxin mastitis was induced in a single quarter in twenty-eight cows. The inflamed quarters of six of the cows were treated with 50 mg Solcoseryl infusion in an oil base starting 4-6 h after endotoxin infusion, and four additional infusions were given at 12-h intervals. The inflamed quarters of eight of the cows were similarly treated with 200 mg Solcoseryl whereas the remaining fourteen cows served as control. Solcoseryl treatment did not alter the systemic or local course of acute mastitis. Local reaction, as assessed by the California Mastitis Test (CMT), however, subsided considerably sooner in quarters treated with Solcoseryl, and the effect of Solcoseryl in hastening udder tissue repair processes appeared to be dose dependent. The 200 mg dose of Solcoseryl resulted in pre-endotoxin CMT scores as early as 6 days after endotoxin infusion.

  10. Investigations on the specificity of the Limulus test for the detection of endotoxin.

    Science.gov (United States)

    Wildfeuer, A; Heymer, B; Schleifer, K H; Haferkamp, O

    1974-11-01

    Lysates obtained from amoebocytes of Limulus polyphemus, the horseshoe crab, showed gel formation after the addition of bacterial endotoxin. In contrast to living gram-negative bacteria, viable gram-positive microorganisms did not cause gelation of lysate. Nevertheless, peptidoglycan isolated from the cell walls of various gram-positive organisms did induce the reaction. However, the activity of peptidoglycan was 1,000 to 400,000 times less than that of Escherichia coli lipopolysaccharide. After exposure to lysozyme, peptidoglycan no longer gelled amoebocyte lysate, therefore apparently excluding endotoxin contamination. Gelation of amoebocyte lysate by endotoxin or peptidoglycan was inhibited by different concentrations of sodium polystyrolsulfonate. Whereas these studies confirm the specificity of the Limulus test for bacterial endotoxins, they also indicate that other substances of bacterial origin should be investigated for their ability to gel amoebocyte lysate.

  11. Chromogenic substrates for horseshoe crab clotting enzyme. Its application for the assay of bacterial endotoxins.

    Science.gov (United States)

    Iwanaga, S; Morita, T; Harada, T; Nakamura, S; Niwa, M; Takada, K; Kimura, T; Sakakibara, S

    1978-01-01

    An endotoxin-activated hemocyte lysate from the horseshoe crab (Tachypleus and Limulus) was found to hydrolyze Bz-Ile-Glu-(gamma-OR)-Gly-Arg-p-nitroanilide (PNA), Bz-Val-Gly-Arg-PNA, Boc-Val-Leu-Gly-Arg-PNA, and Boc-Leu-Gly-Arg-PNA, all of which have the COOH-terminal Gly-Arg sequence. This amidase activity was due to a clottting enzyme contained in the lysate. Furthermore, the amidase activity increased by increasing the concentration of bacterial endotoxin (E. coli, 0111-B4) added to the lysate. Therefore, the measurement of the endotoxin-induced amidase activity made it possible to determine the concentration of the endotoxin.

  12. Attenuating effect of bioactive coumarins from Convolvulus pluricaulis on scopolamine-induced amnesia in mice.

    Science.gov (United States)

    Malik, Jai; Karan, Maninder; Vasisht, Karan

    2016-01-01

    Convolvulus pluricaulis Chois. (Convolvulaceae) has been used in Ayurveda as Medhya Rasyana (nervine tonic) to treat various mental disorders. This study was designed to isolate the bioactive compound(s) of this plant and to evaluate their effect against scopolamine-induced amnesia. Column chromatography of the chloroform and ethyl-acetate fractions led to the isolation of three coumarins identified as scopoletin, ayapanin and scopolin. All the three compounds at 2.5, 5, 10 and 15 mg/kg, p.o. were evaluated for memory-enhancing activity against scopolamine-induced amnesia using elevated plus maze and step down paradigms. Effect on acetylcholinesterase activity in mice brain was also evaluated. Scopoletin and scopolin, in both the paradigms, significantly and dose dependently attenuated the scopolamine-induced amnesic effect. Furthermore, these compounds at 10 and 15 mg/kg exhibited activity comparable to that of standard drug, donepezil. The compounds also exhibited significant acetylcholinesterase inhibitory activity.

  13. Dynamic and selective nucleosome repositioning during endotoxin tolerance.

    Science.gov (United States)

    El Gazzar, Mohamed; Liu, Tiefu; Yoza, Barbara K; McCall, Charles E

    2010-01-08

    Sepsis is encoded by a sequel of transcription activation and repression events that initiate, sustain, and resolve severe systemic inflammation. The repression/silencing phase occurs in blood leukocytes of animals and humans following the initiation of systemic inflammation due to developing endotoxin tolerance. We previously reported that NF-kappaB transcription factor RelB and histone H3 lysine methyltransferase G9a directly interact to induce facultative heterochromatin assembly and regulate epigenetic silencing during endotoxin tolerance, which is a major feature of sepsis. The general objective of this study was to assess whether dynamic temporal, structural, and positional changes of nucleosomes influence the sepsis phenotype. We used the THP-1 sepsis cell model to isolate mononucleosomes by rapid cell permeabilization and digestion of chromatin with micrococcal nuclease and then compared tumor necrosis factor alpha (TNFalpha) proximal promoter nucleosome alignment in endotoxin-responsive and -tolerant phenotypes. We found differential and dynamic repositioning of nucleosomes from permissive to repressive locations during the activation and silencing phases of transcription reprogramming and identified the following mechanisms that may participate in the process. 1) Two proximal nucleosomes repositioned to expose the primary NF-kappaB DNA binding site in endotoxin-responsive cells, and this "promoter opening" required the ATP-independent chaperone NAP1 to replace the core histone H2A with the H2A.Z variant. 2) During RelB-dependent endotoxin tolerance, the two nucleosomes repositioned and masked the primary NF-kappaB DNA binding site. 3) Small interfering RNA-mediated inhibition of RelB expression prevented repressive nucleosome repositioning and tolerance induction, but the "open" promoter required endotoxin-induced NF-kappaB p65 promoter binding to initiate transcription, supporting the known requirement of p65 posttranslational modifications for

  14. [Penehyclidine hydrochloride attenuates LPS-induced acute lung injury in rats].

    Science.gov (United States)

    Guo, Yan; Wei, Min; Yan, Zhiqiang; Wang, Guoxia

    2017-11-01

    Objective To study the protective effect of penehyclidine hydrochloride (PHCD) against acute lung injury induced by lipopolysaccharide (LPS) in rats. Methods 36 Sprague Dawley (SD) rats were randomly divided into control group, LPS-induced shock group (LPS group), and PHCD treated group (PHCD group). Rat shock model was prepared by intraperitoneal injection of LPS (5 mg/kg). The rats of PHCD group were treated with PHCD (1.0 mg/kg) by caudal vein injection. Rat blood gas analysis was performed 6 hours after the injection. Lung wet/dry mass ratio (W/D) was detected after the rats were sacrificed. The levels of tumor necrosis factor α (TNF-α), interleukin 8 (IL-8), and IL-6 in bronchoalveolar lavage fluid (BALF) were tested by ELISA. The lung tissue inflammation was observed by HE staining. The expression of inducible nitric oxide synthase (iNOS) was detected by real-time quantitative PCR and Western blot analysis. Results Compared with the control group, lung W/D and blood lactate acid (LAC) increased significantly in the LPS group, while the blood pH and the arterial oxygen partial pressure (PaO 2 ) decreased markedly. The levels of TNF-α, IL-8 and IL-6 significantly increased in lung BALF of the LPS-induced rats, and the expression of iNOS increased significantly. HE staining showed that LPS treatment caused pulmonary edema, congestion and inflammatory cell infiltration. After PHCD treatment, lung W/D and LAC were reduced; the pH and PaO 2 were elevated compared with LPS-induced rats; the levels of TNF-α, IL-8 and IL-6 in BALF were evidently down-regulated; the expression of iNOS decreased obviously. HE staining showed that the lung inflammation was attenuated by PHCD treatment. Conclusion PHCD attenuates lung injury by inhibiting LPS-induced lung inflammation.

  15. Quercetin attenuates neuronal death against aluminum-induced neurodegeneration in the rat hippocampus.

    Science.gov (United States)

    Sharma, D R; Wani, W Y; Sunkaria, A; Kandimalla, R J; Sharma, R K; Verma, D; Bal, A; Gill, K D

    2016-06-02

    Aluminum is a light weight and toxic metal present ubiquitously on earth, which has gained considerable attention due to its neurotoxic effects. It also has been linked ecologically and epidemiologically to several neurological disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), Guamanian-Parkinsonian complex and Amyotrophic lateral sclerosis (ALS). The mechanism of aluminum neurotoxicity is poorly understood, but it is well documented that aluminum generates reactive oxygen species (ROS). Enhanced ROS production leads to disruption of cellular antioxidant defense systems and release of cytochrome c (cyt-c) from mitochondria to cytosol resulting in apoptotic cell death. Quercetin (a natural flavonoid) protects it from oxidative damage and has been shown to decrease mitochondrial damage in various animal models of oxidative stress. We hypothesized that if oxidative damage to mitochondria does play a significant role in aluminum-induced neurodegeneration, and then quercetin should ameliorate neuronal apoptosis. Administration of quercetin (10 mg/kg body wt/day) reduced aluminum (10 mg/kg body wt/day)-induced oxidative stress (decreased ROS production, increased mitochondrial superoxide dismutase (MnSOD) activity). In addition, quercetin also prevents aluminum-induced translocation of cyt-c, and up-regulates Bcl-2, down-regulates Bax, p53, caspase-3 activation and reduces DNA fragmentation. Quercetin also obstructs aluminum-induced neurodegenerative changes in aluminum-treated rats as seen by Hematoxylin and Eosin (H&E) staining. Further electron microscopic studies revealed that quercetin attenuates aluminum-induced mitochondrial swelling, loss of cristae and chromatin condensation. These results indicate that treatment with quercetin may represent a therapeutic strategy to attenuate the neuronal death against aluminum-induced neurodegeneration. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Loss of Matrix Metalloproteinase-13 Attenuates Murine Radiation-Induced Pulmonary Fibrosis

    International Nuclear Information System (INIS)

    Flechsig, Paul; Hartenstein, Bettina; Teurich, Sybille; Dadrich, Monika; Hauser, Kai; Abdollahi, Amir; Groene, Hermann-Josef; Angel, Peter; Huber, Peter E.

    2010-01-01

    Purpose: Pulmonary fibrosis is a disorder of the lungs with limited treatment options. Matrix metalloproteinases (MMPs) constitute a family of proteases that degrade extracellular matrix with roles in fibrosis. Here we studied the role of MMP13 in a radiation-induced lung fibrosis model using a MMP13 knockout mouse. Methods and Materials: We investigated the role of MMP13 in lung fibrosis by investigating the effects of MMP13 deficiency in C57Bl/6 mice after 20-Gy thoracic irradiation (6-MV Linac). The morphologic results in histology were correlated with qualitative and quantitative results of volume computed tomography (VCT), magnetic resonance imaging (MRI), and clinical outcome. Results: We found that MMP13 deficient mice developed less pulmonary fibrosis than their wildtype counterparts, showed attenuated acute pulmonary inflammation (days after irradiation), and a reduction of inflammation during the later fibrogenic phase (5-6 months after irradiation). The reduced fibrosis in MMP13 deficient mice was evident in histology with reduced thickening of alveolar septi and reduced remodeling of the lung architecture in good correlation with reduced features of lung fibrosis in qualitative and quantitative VCT and MRI studies. The partial resistance of MMP13-deficient mice to fibrosis was associated with a tendency towards a prolonged mouse survival. Conclusions: Our data indicate that MMP13 has a role in the development of radiation-induced pulmonary fibrosis. Further, our findings suggest that MMP13 constitutes a potential drug target to attenuate radiation-induced lung fibrosis.

  17. MicroRNA-208a Silencing Attenuates Doxorubicin Induced Myocyte Apoptosis and Cardiac Dysfunction

    Directory of Open Access Journals (Sweden)

    Hasahya Tony

    2015-01-01

    Full Text Available Aims. GATA4 depletion is a distinct mechanism by which doxorubicin leads to cardiomyocyte apoptosis, and preservation of GATA4 mitigates doxorubicin induced myocyte apoptosis and cardiac dysfunction. We investigated a novel approach of attenuating doxorubicin induced cardiac toxicity by silencing miR-208a, a heart specific microRNA known to target GATA4. Methods and Results. Eight-week-old female Balb/C mice were randomly assigned to sham, antagomir, and control groups. Antagomir group were pretreated with miR-208a antagomir 4 days before doxorubicin administration. At day 0, control and antagomir groups received 20 mg/kg of doxorubicin, while sham mice received phosphate buffered solution. Echocardiography was done at day 7, after which animals were sacrificed and hearts harvested and assessed for apoptosis and expression of miR-208a, GATA4, and BCL-2. Doxorubicin significantly upregulated miR-208a, downregulated GATA4, and increased myocyte apoptosis, with resulting decrease in cardiac function. In contrast, therapeutic silencing of miR-208a salvaged GATA4 and BCL-2 and decreased apoptosis, with improvement in cardiac function. Conclusion. Doxorubicin upregulates miR-208a and promotes cardiomyocyte apoptosis, while therapeutic silencing of miR-208a attenuates doxorubicin induced myocyte apoptosis with subsequent improvement in cardiac function. These novel results highlight the therapeutic potential of targeting miR-208a to prevent doxorubicin cardiotoxicity.

  18. Curcumin Mediated Attenuation of Carbofuran Induced Oxidative Stress in Rat Brain

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Jaiswal

    2016-01-01

    Full Text Available The indiscriminate use of carbofuran to improve crop productivity causes adverse effects in nontargets including mammalian systems. The objective of this study was to evaluate carbofuran induced oxidative stress in rat brain stem and its attenuation by curcumin, a herbal product. Out of 6 groups of rats, 2 groups received two different doses of carbofuran, that is, 15 and 30% of LD50, respectively, for 30 days. Out of these, 2 groups receiving same doses of carbofuran were pretreated with curcumin (100 mg/kg body weight. The levels of antioxidants, TBARS, GSH, SOD, catalase, and GST were determined in rat brain stem. The 2 remaining groups served as placebo and curcumin treated, respectively. The data suggested that carbofuran at different doses caused significant alterations in the levels of TBARS and GSH in dose dependent manner. The TBARS and GSH contents were elevated. The activities of SOD, catalase, and GST were significantly inhibited at both doses of carbofuran. The ratio of P/A was also found to be sharply increased. The pretreatment of curcumin exhibited significant protection from carbofuran induced toxicity. The results suggested that carbofuran at sublethal doses was able to induce oxidative stress in rat brain which could be attenuated by curcumin.

  19. Ingestion of transient receptor potential channel agonists attenuates exercise-induced muscle cramps.

    Science.gov (United States)

    Craighead, Daniel H; Shank, Sean W; Gottschall, Jinger S; Passe, Dennis H; Murray, Bob; Alexander, Lacy M; Kenney, W Larry

    2017-09-01

    Exercise-associated muscle cramping (EAMC) is a poorly understood problem that is neuromuscular in origin. Ingestion of transient receptor potential (TRP) channel agonists has been efficacious in attenuating electrically induced muscle cramps. This study examines the effect of TRP agonist ingestion on voluntarily induced EAMC and motor function. Study 1: Thirty-nine participants completed 2 trials after ingesting TRP agonist-containing active treatment (A), or vehicle (V) control. Cramping in the triceps surae muscle was induced via voluntary isometric contraction. Study 2: After ingesting A or V, 31 participants performed kinematic and psychomotor tests of manual dexterity. A increased precramp contraction duration (A, 36.9 ± 4.1 s; V, 27.8 ± 3.1 s), decreased cramp EMG area under the curve (A, 37.3 ± 7.7 %EMG max ·s; V, 77.2 ± 17.7 %EMG max ·s), increased contraction force to produce the cramp (A, 13.8 ± 1.8 kg; V, 9.9 ± 1.6 kg), and decreased postcramp soreness (A, 4.1 ± 0.3 arbitrary units (a.u.); V, 4.7 ± 0.3 a.u.). Kinematic and psychomotor tests were not affected. TRP agonist ingestion attenuated EAMC characteristics without affecting motor function. Muscle Nerve 56: 379-385, 2017. © 2017 Wiley Periodicals, Inc.

  20. Static Magnetic Field Attenuates Lipopolysaccharide-Induced Inflammation in Pulp Cells by Affecting Cell Membrane Stability

    Directory of Open Access Journals (Sweden)

    Sung-Chih Hsieh

    2015-01-01

    Full Text Available One of the causes of dental pulpitis is lipopolysaccharide- (LPS- induced inflammatory response. Following pulp tissue inflammation, odontoblasts, dental pulp cells (DPCs, and dental pulp stem cells (DPSCs will activate and repair damaged tissue to maintain homeostasis. However, when LPS infection is too serious, dental repair is impossible and disease may progress to irreversible pulpitis. Therefore, the aim of this study was to examine whether static magnetic field (SMF can attenuate inflammatory response of dental pulp cells challenged with LPS. In methodology, dental pulp cells were isolated from extracted teeth. The population of DPSCs in the cultured DPCs was identified by phenotypes and multilineage differentiation. The effects of 0.4 T SMF on DPCs were observed through MTT assay and fluorescent anisotropy assay. Our results showed that the SMF exposure had no effect on surface markers or multilineage differentiation capability. However, SMF exposure increases cell viability by 15%. In addition, SMF increased cell membrane rigidity which is directly related to higher fluorescent anisotropy. In the LPS-challenged condition, DPCs treated with SMF demonstrated a higher tolerance to LPS-induced inflammatory response when compared to untreated controls. According to these results, we suggest that 0.4 T SMF attenuates LPS-induced inflammatory response to DPCs by changing cell membrane stability.

  1. Pretreatment or Posttreatment with Aripiprazole Attenuates Methamphetamine-induced Stereotyped Behavior in Mice

    Directory of Open Access Journals (Sweden)

    Nobue Kitanaka

    2015-01-01

    Full Text Available Aripiprazole is a third-generation atypical antipsychotic and a dopamine D 2 receptor partial agonist. In the present study, we investigated whether a single administration of aripiprazole to mice, either as a pretreatment or as a posttreatment, would affect stereotypy induced by methamphetamine (METH. Pretreatment of male ICR mice with aripiprazole (1 or 10 mg/kg, i.p. attenuated the incidence of METH-induced stereotypical behavior in a dose-dependent manner. Pretreatment of mice with 1 mg/kg aripiprazole produced an increase in the locomotor activity in mice treated with METH compared with mice treated with vehicle plus METH and with 10 mg/kg aripiprazole plus METH. This increase in locomotion is indicative of a rightward shift in the dose-response curve for METH, consistent with a shift in the type of stereotypical behavior observed from biting to sniffing. Aripiprazole posttreatment, after METH-induced stereotypical behavior, was fully expressed and also significantly attenuated overall stereotypy in an aripiprazole dose-dependent manner. These data suggest that the antagonism of METH effects by aripiprazole should be investigated as a potential treatment for acute METH overdose.

  2. Rabdosia japonica var. glaucocalyx Flavonoids Fraction Attenuates Lipopolysaccharide-Induced Acute Lung Injury in Mice

    Directory of Open Access Journals (Sweden)

    Chun-jun Chu

    2014-01-01

    Full Text Available Rabdosia japonica var. glaucocalyx (Maxim. Hara, belonging to the Labiatae family, is widely used as an anti-inflammatory and antitumor drug for the treatment of different inflammations and cancers. Aim of the Study. To investigate therapeutic effects and possible mechanism of the flavonoids fraction of Rabdosia japonica var. glaucocalyx (Maxim. Hara (RJFs in acute lung injury (ALI mice induced by lipopolysaccharide (LPS. Materials and Methods. Mice were orally administrated with RJFs (6.4, 12.8, and 25.6 mg/kg per day for 7 days, consecutively, before LPS challenge. Lung specimens and the bronchoalveolar lavage fluid (BALF were isolated for histopathological examinations and biochemical analysis. The level of complement 3 (C3 in serum was quantified by a sandwich ELISA kit. Results. RJFs significantly attenuated LPS-induced ALI via reducing productions of the level of inflammatory mediators (TNF-α, IL-6, and IL-1β, and significantly reduced complement deposition with decreasing the level of C3 in serum, which was exhibited together with the lowered myeloperoxidase (MPO activity and nitric oxide (NO and protein concentration in BALF. Conclusions. RJFs significantly attenuate LPS-induced ALI via reducing productions of proinflammatory mediators, decreasing the level of complement, and reducing radicals.

  3. Melatonin attenuates dextran sodium sulfate induced colitis with sleep deprivation: possible mechanism by microarray analysis.

    Science.gov (United States)

    Chung, Sook Hee; Park, Young Sook; Kim, Ok Soon; Kim, Ja Hyun; Baik, Haing Woon; Hong, Young Ok; Kim, Sang Su; Shin, Jae-Ho; Jun, Jin-Hyun; Jo, Yunju; Ahn, Sang Bong; Jo, Young Kwan; Son, Byoung Kwan; Kim, Seong Hwan

    2014-06-01

    Inflammatory bowel disease is a chronic inflammatory condition of the gastrointestinal tract. It can be aggravated by stress, like sleep deprivation, and improved by anti-inflammatory agents, like melatonin. We aimed to investigate the effects of sleep deprivation and melatonin on inflammation. We also investigated genes regulated by sleep deprivation and melatonin. In the 2% DSS induced colitis mice model, sleep deprivation was induced using modified multiple platform water bath. Melatonin was injected after induction of colitis and colitis with sleep deprivation. Also mRNA was isolated from the colon of mice and analyzed via microarray and real-time PCR. Sleep deprivation induced reduction of body weight, and it was difficult for half of the mice to survive. Sleep deprivation aggravated, and melatonin attenuated the severity of colitis. In microarrays and real-time PCR of mice colon tissues, mRNA of adiponectin and aquaporin 8 were downregulated by sleep deprivation and upregulated by melatonin. However, mRNA of E2F transcription factor (E2F2) and histocompatibility class II antigen A, beta 1 (H2-Ab1) were upregulated by sleep deprivation and downregulated by melatonin. Melatonin improves and sleep deprivation aggravates inflammation of colitis in mice. Adiponectin, aquaporin 8, E2F2 and H2-Ab1 may be involved in the inflammatory change aggravated by sleep deprivation and attenuated by melatonin.

  4. Inhibition of Uncoupling Protein 2 Attenuates Cardiac Hypertrophy Induced by Transverse Aortic Constriction in Mice

    Directory of Open Access Journals (Sweden)

    Xiao-Bing Ji

    2015-07-01

    Full Text Available Background: Uncoupling protein 2 (UCP2 is critical in regulating energy metabolism. Due to the significant change in energy metabolism of myocardium upon pressure overload, we hypothesize that UCP2 could contribute to the etiology of cardiac hypertrophy. Methods: Adult male C57BL/6J mice were subjected to pressure overload by using transverse aortic constriction (TAC, and then received genipin (a UCP2 selective inhibitor; 25 mg/kg/d, ip or vehicle for three weeks prior to histologic assessment of myocardial hypertrophy. ATP concentration, ROS level, and myocardial apoptosis were also examined. A parallel set of experiments was also conducted in UCP2-/- mice. Results: TAC induced left ventricular hypertrophy, as reflected by increased ventricular weight/thickness and increased size of myocardial cell (vs. sham controls. ATP concentration was decreased; ROS level was increased. Apoptosis and fibrosis markers were increased. TAC increased mitochondrial UCP2 expression in the myocardium at both mRNA and protein levels. Genipin treatment attenuated cardiac hypertrophy and the histologic/biochemical changes described above. Hypertrophy and associated changes induced by TAC in UCP2-/- mice were much less pronounced than in WT mice. Conclusions: Blocking UCP2 expression attenuates cardiac hypertrophy induced by pressure overload.

  5. Acute volume expansion attenuates hyperthermia-induced reductions in cerebral perfusion during simulated hemorrhage

    DEFF Research Database (Denmark)

    Schlader, Zachary J; Seifert, Thomas; Wilson, Thad E

    2013-01-01

    Hyperthermia reduces the capacity to withstand a simulated hemorrhagic challenge, but volume loading preserves this capacity. This study tested the hypotheses that acute volume expansion during hyperthermia increases cerebral perfusion and attenuates reductions in cerebral perfusion during...... a simulated hemorrhagic challenge induced by lower-body negative pressure (LBNP). Eight healthy young male subjects underwent a supine baseline period (pre-LBNP), followed by 15- and 30-mmHg LBNP while normothermic, hyperthermic (increased pulmonary artery blood temperature ~1.1°C), and following acute volume...

  6. Nicorandil attenuates monocrotaline-induced vascular endothelial damage and pulmonary arterial hypertension.

    Directory of Open Access Journals (Sweden)

    Makoto Sahara

    Full Text Available BACKGROUND: An antianginal K(ATP channel opener nicorandil has various beneficial effects on cardiovascular systems; however, its effects on pulmonary vasculature under pulmonary arterial hypertension (PAH have not yet been elucidated. Therefore, we attempted to determine whether nicorandil can attenuate monocrotaline (MCT-induced PAH in rats. MATERIALS AND METHODS: Sprague-Dawley rats injected intraperitoneally with 60 mg/kg MCT were randomized to receive either vehicle; nicorandil (5.0 mg·kg(-1·day(-1 alone; or nicorandil as well as either a K(ATP channel blocker glibenclamide or a nitric oxide synthase (NOS inhibitor N(ω-nitro-L-arginine methyl ester (L-NAME, from immediately or 21 days after MCT injection. Four or five weeks later, right ventricular systolic pressure (RVSP was measured, and lung tissue was harvested. Also, we evaluated the nicorandil-induced anti-apoptotic effects and activation status of several molecules in cell survival signaling pathway in vitro using human umbilical vein endothelial cells (HUVECs. RESULTS: Four weeks after MCT injection, RVSP was significantly increased in the vehicle-treated group (51.0±4.7 mm Hg, whereas it was attenuated by nicorandil treatment (33.2±3.9 mm Hg; P<0.01. Nicorandil protected pulmonary endothelium from the MCT-induced thromboemboli formation and induction of apoptosis, accompanied with both upregulation of endothelial NOS (eNOS expression and downregulation of cleaved caspase-3 expression. Late treatment with nicorandil for the established PAH was also effective in suppressing the additional progression of PAH. These beneficial effects of nicorandil were blocked similarly by glibenclamide and l-NAME. Next, HUVECs were incubated in serum-free medium and then exhibited apoptotic morphology, while these changes were significantly attenuated by nicorandil administration. Nicorandil activated the phosphatidylinositol 3-kinase (PI3K/Akt and extracellular signal-regulated kinase (ERK

  7. Taurine supplementation attenuates delayed increase in exercise-induced arterial stiffness.

    Science.gov (United States)

    Ra, Song-Gyu; Choi, Youngju; Akazawa, Nobuhiko; Ohmori, Hajime; Maeda, Seiji

    2016-06-01

    There is a delayed increase in arterial stiffness after eccentric exercise that is possibly mediated by the concurrent delayed increase in circulating oxidative stress. Taurine has anti-oxidant action, and taurine supplementation may be able to attenuate the increase in oxidative stress after exercise. The purpose of the present study was to investigate whether taurine supplementation attenuates the delayed increase in arterial stiffness after eccentric exercise. In the present double-blind, randomized, and placebo-controlled trial, we divided 29 young, healthy men into 2 groups. Subjects received either 2.0 g of placebo (n = 14) or taurine (n = 15) 3 times per day for 14 days prior to the exercise, on the day of exercise, and the following 3 days. The exercise consisted of 2 sets of 20 maximal-effort eccentric repetitions with the nondominant arm only. On the morning of exercise and for 4 days thereafter, we measured serum malondialdehyde (MDA) and carotid-femoral pulse wave velocity (cfPWV) as indices of oxidative stress and arterial stiffness, respectively. On the third and fourth days after exercise, both MDA and cfPWV significantly increased in the placebo group. However, these elevations were significantly attenuated in the taurine group. The increase in MDA was associated with an increase in cfPWV from before exercise to 4 days after exercise (r = 0.597, p taurine group. Our results suggest that delayed increase in arterial stiffness after eccentric exercise was probably affected by the exercise-induced oxidative stress and was attenuated by the taurine supplementation.

  8. Carbonic anhydrase inhibitor attenuates ischemia-reperfusion induced acute lung injury.

    Directory of Open Access Journals (Sweden)

    Chou-Chin Lan

    Full Text Available Ischemia-reperfusion (IR-induced acute lung injury (ALI is implicated in several clinical conditions including lung transplantation, cardiopulmonary bypass surgery, re-expansion of collapsed lung from pneumothorax or pleural effusion and etc. IR-induced ALI remains a challenge in the current treatment. Carbonic anhydrase has important physiological function and influences on transport of CO2. Some investigators suggest that CO2 influences lung injury. Therefore, carbonic anhydrase should have the role in ALI. This study was undertaken to define the effect of a carbonic anhydrase inhibitor, acetazolamide (AZA, in IR-induced ALI, that was conducted in a rat model of isolated-perfused lung with 30 minutes of ischemia and 90 minutes of reperfusion. The animals were divided into six groups (n = 6 per group: sham, sham + AZA 200 mg/kg body weight (BW, IR, IR + AZA 100 mg/kg BW, IR + AZA 200 mg/kg BW and IR+ AZA 400 mg/kg BW. IR caused significant pulmonary micro-vascular hyper-permeability, pulmonary edema, pulmonary hypertension, neutrophilic sequestration, and an increase in the expression of pro-inflammatory cytokines. Increases in carbonic anhydrase expression and perfusate pCO2 levels were noted, while decreased Na-K-ATPase expression was noted after IR. Administration of 200mg/kg BW and 400mg/kg BW AZA significantly suppressed the expression of pro-inflammatory cytokines (TNF-α, IL-1, IL-6 and IL-17 and attenuated IR-induced lung injury, represented by decreases in pulmonary hyper-permeability, pulmonary edema, pulmonary hypertension and neutrophilic sequestration. AZA attenuated IR-induced lung injury, associated with decreases in carbonic anhydrase expression and pCO2 levels, as well as restoration of Na-K-ATPase expression.

  9. Olmesartan Attenuates Tacrolimus-Induced Biochemical and Ultrastructural Changes in Rat Kidney Tissue

    Directory of Open Access Journals (Sweden)

    Naif O. Al-Harbi

    2014-01-01

    Full Text Available Tacrolimus, a calcineurin inhibitor, is clinically used as an immunosuppressive agent in organ transplantation, but its use is limited due to its marked nephrotoxicity. The present study investigated the effect of olmesartan (angiotensin receptor blocker on tacrolimus-induced nephrotoxicity in rats. A total of 24 rats were divided into four groups, which included control, tacrolimus, tacrolimus + olmesartan, and olmesartan groups. Tacrolimus-induced nephrotoxicity was assessed biochemically and histopathologically. Tacrolimus significantly increased BUN and creatinine level. Treatment with olmesartan reversed tacrolimus-induced changes in the biochemical markers (BUN and creatinine of nephrotoxicity. Tacrolimus significantly decreased GSH level and catalase activity while increasing MDA level. Olmesartan also attenuated the effects of tacrolimus on MDA, GSH, and catalase. In tacrolimus group histological examination showed marked changes in renal tubule, mitochondria, and podocyte processes. Histopathological and ultrastructural studies showed that treatment with olmesartan prevented tacrolimus-induced renal damage. These results suggest that olmesartan has protective effects on tacrolimus-induced nephrotoxicity, implying that RAS might be playing role in tacrolimus-induced nephrotoxicity.

  10. Effects of CTGF Blockade on Attenuation and Reversal of Radiation-Induced Pulmonary Fibrosis.

    Science.gov (United States)

    Bickelhaupt, Sebastian; Erbel, Christian; Timke, Carmen; Wirkner, Ute; Dadrich, Monika; Flechsig, Paul; Tietz, Alexandra; Pföhler, Johanna; Gross, Wolfgang; Peschke, Peter; Hoeltgen, Line; Katus, Hugo A; Gröne, Hermann-Josef; Nicolay, Nils H; Saffrich, Rainer; Debus, Jürgen; Sternlicht, Mark D; Seeley, Todd W; Lipson, Kenneth E; Huber, Peter E

    2017-08-01

    Radiotherapy is a mainstay for the treatment of lung cancer that can induce pneumonitis or pulmonary fibrosis. The matricellular protein connective tissue growth factor (CTGF) is a central mediator of tissue remodeling. A radiation-induced mouse model of pulmonary fibrosis was used to determine if transient administration of a human antibody to CTGF (FG-3019) started at different times before or after 20 Gy thoracic irradiation reduced acute and chronic radiation toxicity. Mice (25 mice/group; 10 mice/group in a confirmation study) were examined by computed tomography, histology, gene expression changes, and for survival. In vitro experiments were performed to directly study the interaction of CTGF blockade and radiation. All statistical tests were two-sided. Administration of FG-3019 prevented (∼50%-80%) or reversed (∼50%) lung remodeling, improved lung function, improved mouse health, and rescued mice from lethal irradiation ( P radiation-induced gene expression changes, and reduced myofibroblast abundance and Osteopontin expression. These results indicate that blocking CTGF attenuates radiation-induced pulmonary remodeling and can reverse the process after initiation. CTGF has a central role in radiation-induced fibrogenesis, and FG-3019 may benefit patients with radiation-induced pulmonary fibrosis or patients with other forms or origin of chronic fibrotic diseases. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. The histone deacetylase inhibitor suberoylanilide hydroxamic acid attenuates human astrocyte neurotoxicity induced by interferon-γ

    Directory of Open Access Journals (Sweden)

    Hashioka Sadayuki

    2012-05-01

    Full Text Available Abstract Backgrounds Increasing evidence shows that the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA possesses potent anti-inflammatory and immunomodulatory properties. It is tempting to evaluate the potential of SAHA as a therapeutic agent in various neuroinflammatory and neurodegenerative disorders. Methods We examined the effects of SAHA on interferon (IFN-γ-induced neurotoxicity of human astrocytes and on IFN-γ-induced phosphorylation of signal transducer and activator of transcription (STAT 3 in human astrocytes. We also studied the effects of SAHA on the astrocytic production of two representative IFN-γ-inducible inflammatory molecules, namely IFN-γ-inducible T cell α chemoattractant (I-TAC and intercellular adhesion molecule-1 (ICAM-1. Results SAHA significantly attenuated the toxicity of astrocytes activated by IFN-γ towards SH-SY5Y human neuronal cells. In the IFN-γ-activated astrocytes, SAHA reduced the STAT3 phosphorylation. SAHA also inhibited the IFN-γ-induced astrocytic production of I-TAC, but not ICAM-1. These results indicate that SAHA suppresses IFN-γ-induced neurotoxicity of human astrocytes through inhibition of the STAT3 signaling pathway. Conclusion Due to its anti-neurotoxic and anti-inflammatory properties, SAHA appears to have the therapeutic or preventive potential for a wide range of neuroinflammatory disorders associated with activated astrocytes.

  12. Curcumin attenuates insulin resistance in hepatocytes by inducing Nrf2 nuclear translocation.

    Science.gov (United States)

    Zhao, Shu-Guang; Li, Qiang; Liu, Zhen-Xiong; Wang, Jing-Jie; Wang, Xv-Xia; Qin, Ming; Wen, Qin-Sheng

    2011-01-01

    NF-E2-Related Factor-2 (Nrf2) is a transcription factor that plays a crucial role in the cellular protection against oxidative stress. Curcumin has been reported to induce Nrf2 nuclear translocation and upregulate the expression of numerous reactive oxygen species (ROS) detoxifying and antioxidant genes in hepatocytes. This study was designed to investigate whether curcumin-induced Nrf2 nuclear translocation could reduce ROS-mediated insulin resistance in cultured LO2 hepatocytes. Human LO2 hepatocytes were incubated with curcumine and glucose oxidase (GO) in the presence/absence of wortmannin (a phosphatidyinositol 3-kinase (PI3K) inhibitor), oxidative stress, cellular damage, Nrf2 nuclear translocation and insulin resistance were measured. GO exposure significantly increased intracellular ROS, glutathione (GSH) depletion, malondialdehyde (MDA) formation, and increased activities of cellular lactate dehydrogenase (LDH) and aspartate amino transferase (AST), as well as causing insulin resistance. Curcumin pretreatment significantly attenuated these disturbances in intracellular ROS, liver enzyme activity and significantly antagonized the lipid peroxidation, GSH depletion and insulin resistance induced by GO in LO2 hepatocytes. These effects paralleled Nrf2 nuclear translocation induced by curcumin. Wortmannin partially blocked curcumin-induced Nrf2 nuclear translocation. In addition, wortmannin prevented curcumin-induced improvements in intracellular ROS, MDA formation, GSH depletion, liver enzyme activity and insulin resistance in cultured LO2 hepatocytes. These findings suggest that curcumin could reduce ROS-mediated insulin resistance in hepatocytes, at least in part through nuclear translocation of Nrf2.

  13. Attenuation of salt-induced hypertension by aqueous calyx extract of Hibiscus sabdariffa.

    Science.gov (United States)

    Mojiminiyi, F B O; Audu, Z; Etuk, E U; Ajagbonna, O P

    2012-12-18

    The aqueous calyx extract of Hibiscus sabdariffa (HS) has a folk reputation as an antihypertensive agent. On account of its antioxidant properties and probably high K+ concentration, we hypothesized that HS may attenuate the development of salt-induced hypertension. Sprague-Dawley rats (n=8 each) were treated for 12 weeks as follows: control (normal diet + water), salt-loaded (8% salt diet + water), HS (normal diet + 6 mg/ml HS), salt+HS (8% salt diet + 6 mg/ml HS) and furosemide (normal diet+ 0.25mg/Kg furosemide). Their blood pressure and heart rates were measured and responses to noradrenalin and acetylcholine (0.01 mg/kg respectively) were estimated. The cationic concentration of 6 mg/ml HS was determined. The Na+ and K+ concentrations of 6 mg/ml HS were 3.6 and 840 mmol/l respectively. The mean arterial pressure (MAP±SEM; mmHg) of salt loaded rats (184.6±29.8) was significantly higher than control (113.2±3.0; P<0.05), HS (90.0±7.4; P<0.001) salt+HS (119.4±8.9; P<0.05) and furosemide (94.9±11.5; P<0.01). The MAP of salt+HS and control rats did not differ significantly and the effect of HS was comparable to furosemide. The pressor response to noradrenalin or vasodilator response to acetylcholine remained similar in all groups. These results suggest that HS attenuated the development of salt-induced hypertension and this attenuation may be associated with its high K+ content or high potassium: sodium ratio and not with altered pressor/depressor response to noradrenalin or acetylcholine. Also the effects of HS and furosemide on blood pressure are comparable.

  14. A pilot study on an attenuated Chinese EIAV vaccine inducing broadly neutralizing antibodies.

    Science.gov (United States)

    Meng, Qinglai; Lin, Yuezhi; Ma, Jian; Ma, Yan; Zhao, Liping; Li, Shenwei; Liang, Hua; Zhou, Jianhua; Shen, Rongxian; Zhang, Xiaoyan; Shao, Yiming

    2011-08-01

    The attenuated Chinese equine infectious anemia virus (EIAV) vaccine has successfully protected millions of equine animals from EIA disease in China. In this pilot study, to determine whether this attenuated vaccine can induce broadly neutralizing antibodies, we immunized four horses with the attenuated Chinese vaccine strain EIAVFDDV and then observed the evolution of neutralizing antibodies against different EIAV strains. During the vaccination phase, all vaccinees rapidly developed high levels of neutralizing antibodies against the homologous vaccine strain (pLGFD3V), and 3 out of 4 horses showed a gradual increase in serum neutralizing activity against two relatively heterologous virulent variants of the challenge strain (pLGFD3Mu12V and DLV34). After challenge, the three horses that had developed high levels of neutralizing antibodies against pLGFD3Mu12V and DLV34 did not show signs of infection, which was demonstrated by immune suppression, while the one horse producing serum that could only neutralize pLGFD3V developed a febrile episode during the 8-month observation period. To assess whether the broadly neutralizing activity is associated with immune protection, sera drawn on the day of challenge from these four vaccinees and an additional four EIAVFDDV-vaccinated horses were analyzed for neutralizing antibodies against pLGFD3V, pLGFD3Mu12V and DLV34. Although there was no significant correlation between protection from infection and serum neutralizing activity against any of these three viral strains, protection from infection was observed to correlate better with serum neutralizing activity against the two heterologous virulent strains than against the homologous vaccine strain. These data indicate that EIAVFDDV induced broadly neutralizing antibodies, which might confer enhanced protection of vaccinees from infection by the challenge virus.

  15. Prenatal tactile stimulation attenuates drug-induced behavioral sensitization, modifies behavior, and alters brain architecture.

    Science.gov (United States)

    Muhammad, Arif; Kolb, Bryan

    2011-07-11

    Based on the findings of postnatal tactile stimulation (TS), a favorable experience in rats, the present study examined the influence of prenatal TS on juvenile behavior, adult amphetamine (AMPH) sensitization, and structural alteration in the prefrontal cortex (PFC) and the striatum. Female rats received TS through a baby hair brush throughout pregnancy, and the pups born were tested for open field locomotion, elevated plus maze (EPM), novel object recognition (NOR), and play fighting behaviors. Development and persistence of drug-induced behavioral sensitization in adults were tested by repeated AMPH administration and a challenge, respectively. Structural plasticity in the brain was assessed from the prefrontal cortical thickness and striatum size from serial coronal sections. The results indicate that TS females showed enhanced exploration in the open field. TS decreased the frequency of playful attacks whereas the response to face or evade an attack was not affected. Anxiety-like behavior and cognitive performance were not influenced by TS. AMPH administration resulted in gradual increase in locomotor activity (i.e., behavioral sensitization) that persisted at least for 2 weeks. However, both male and female TS rats exhibited attenuated AMPH sensitization compared to sex-matched controls. Furthermore, the drug-associated alteration in the prefrontal cortical thickness and striatum size observed in controls were prevented by TS experience. In summary, TS during prenatal development modified juvenile behavior, attenuated drug-induced behavioral sensitization in adulthood, and reorganized brain regions implicated in drug addiction. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. The heat shock protein 90 inhibitor, 17-AAG, attenuates thioacetamide induced liver fibrosis in mice.

    Science.gov (United States)

    Abu-Elsaad, Nashwa M; Serrya, Marwa S; El-Karef, Amr M; Ibrahim, Tarek M

    2016-04-01

    Heat shock protein 90 (Hsp90) is proposed to be involved in liver disorders. This study was conducted to test effect of 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), an inhibitor of Hsp90, on attenuating thioacetamide induced liver fibrosis in vivo. Four groups of Swiss albino male mice (CD-1 strain) were used as follows: control group; thioacetamide group (received 100mg/kg thioacetamide, ip injection, 3 times/week for 8 weeks); thioacetamide plus 17-AAG groups (received 100mg/kg thioacetamide, ip injection, 3 times/week for 8 weeks plus 25 or 50mg/kg 17-AAG, ip injection, 5 days/week along the last 4 weeks). Fibrosis was quantified by measuring hydroxyproline level and by morphometry and oxidative stress biomarkers were assigned. Relative hepatic mRNA expressions of α-smooth muscle actin (α-SMA), collagen-1-alpha-1 (Col1A1) and tissue inhibitor metalloproteinase-1 (TIMP-1) mRNAs were measured by RT-PCR. Levels of the apoptotic markers caspase-3, factor related apoptosis (Fas) and Hsp-90 were assigned in tissue homogenate. 17-AAG (50mg/kg) significantly decreased fibrosis percentage significantly (pAAG (50mg/kg) compared to other groups. The Hsp90 inhibitor, 17-AAG, can attenuate thioacetamide hepatotoxicity through oxidative stress counterbalance, reducing stellate cells activity and inducing apoptosis. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  17. Aerobic exercise attenuates inhibitory avoidance memory deficit induced by paradoxical sleep deprivation in rats.

    Science.gov (United States)

    Fernandes, Jansen; Baliego, Luiz Guilherme Zaccaro; Peixinho-Pena, Luiz Fernando; de Almeida, Alexandre Aparecido; Venancio, Daniel Paulino; Scorza, Fulvio Alexandre; de Mello, Marco Tulio; Arida, Ricardo Mario

    2013-09-05

    The deleterious effects of paradoxical sleep deprivation (SD) on memory processes are well documented. Physical exercise improves many aspects of brain functions and induces neuroprotection. In the present study, we investigated the influence of 4 weeks of treadmill aerobic exercise on both long-term memory and the expression of synaptic proteins (GAP-43, synapsin I, synaptophysin, and PSD-95) in normal and sleep-deprived rats. Adult Wistar rats were subjected to 4 weeks of treadmill exercise training for 35 min, five times per week. Twenty-four hours after the last exercise session, the rats were sleep-deprived for 96 h using the modified multiple platform method. To assess memory after SD, all animals underwent training for the inhibitory avoidance task and were tested 24h later. The aerobic exercise attenuated the long-term memory deficit induced by 96 h of paradoxical SD. Western blot analysis of the hippocampus revealed increased levels of GAP-43 in exercised rats. However, the expression of synapsin I, synaptophysin, and PSD-95 was not modified by either exercise or SD. Our results suggest that an aerobic exercise program can attenuate the deleterious effects of SD on long-term memory and that this effect is not directly related to changes in the expression of the pre- and post-synaptic proteins analyzed in the study. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Possible Mechanisms Involved in Attenuation of Lipopolysaccharide-Induced Memory Deficits by Methyl Jasmonate in Mice.

    Science.gov (United States)

    Eduviere, Anthony Taghogho; Umukoro, Solomon; Adeoluwa, Olusegun A; Omogbiya, Itivere Adrian; Aluko, Oritoke Modupe

    2016-12-01

    This present study was carried out to investigate the likely mechanisms by which methyl jasmonate (MJ), 'an agent widely used in aromatherapy for neurological disorders, attenuates lipopolysaccharide (LPS)-induced memory deficits in mice. Mice were given intraperitoneal administration of LPS (250 µg/kg) alone or in combination with MJ (10-40 mg/kg), donepezil, DP (1 mg/kg), or vehicle for 7 successive days. Thereafter, memory was assessed using object recognition test (ORT). Acetylcholinesterase and myeloperoxidase activities were estimated in brain tissue homogenates. Brain levels of nitric oxide and markers of oxidative stress as well as histopathologic changes of the prefrontal cortex and cornu ammonis 1 (CA1) of the hippocampal region were also assessed. MJ (10-40 mg/kg) attenuated LPS-induced memory impairment in ORT. Moreover, the increased brain activities of acetylcholinesterase and myeloperoxidase enzymes were suppressed by MJ when compared with control (p memory deficits via mechanisms related to inhibition of acetylcholinesterase, myeloperoxidase, oxidative stress and neuronal degeneration.

  19. Melatonin attenuated brain death tissue extract-induced cardiac damage by suppressing DAMP signaling.

    Science.gov (United States)

    Sung, Pei-Hsun; Lee, Fan-Yen; Lin, Ling-Chun; Chen, Kuan-Hung; Lin, Hung-Sheng; Shao, Pei-Lin; Li, Yi-Chen; Chen, Yi-Ling; Lin, Kun-Chen; Yuen, Chun-Man; Chang, Hsueh-Wen; Lee, Mel S; Yip, Hon-Kan

    2018-01-09

    We tested the hypothesis that melatonin prevents brain death (BD) tissue extract (BDEX)-induced cardiac damage by suppressing inflammatory damage-associated molecular pattern (DAMP) signaling in rats. Six hours after BD induction, levels of a DAMP component (HMGB1) and inflammatory markers (TLR-2, TLR-4, MYD88, IκB, NF-κB, IL-1β, IFN-γ, TNF-α and IL-6) were higher in brain tissue from BD animals than controls. Levels of HMGB1 and inflammatory markers were higher in BDEX-treated H9C2 cardiac myoblasts than in cells treated with healthy brain tissue extract. These increases were attenuated by melatonin but re-induced with luzindole (all P DAMP inflammatory axis.

  20. Fisetin enhances behavioral performances and attenuates reactive gliosis and inflammation during aluminum chloride-induced neurotoxicity.

    Science.gov (United States)

    Prakash, Dharmalingam; Gopinath, Kulasekaran; Sudhandiran, Ganapasam

    2013-03-01

    Aluminum (Al) is an environmental neurotoxin that affects cerebral functions and causes health complications. However, the role of Al in arbitrating glia homeostasis and pathophysiology remains obscure. Astrocyte, microglia activation (reactive gliosis), and associated inflammatory events play a decisive role in neurodegeneration and may represent a target for treating neurodegenerative disorders. In this study, we have analyzed the role of aluminum chloride (AlCl3) in causing reactive gliosis in the brain of mice and the ability of fisetin, a flavonoid to attenuate reactive gliosis and neuronal inflammation. Reports suggest that fisetin exerts antioxidant and anti-inflammatory actions. Fisetin at a dose of 15 mg/kg body weight was orally administered, daily (pre-treated for 4 weeks before AlCl3 induction and co-treated until experimental period of 8 weeks) to mice induced with AlCl3 (200 mg/kg b.wt./day/8 weeks, orally). Administration of AlCl3 developed behavioral deficits, triggered lipid peroxidation (LPO), compromised acetylcholine esterase (AChE) activity, and reduced the levels of superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), and reduced glutathione (GSH), and caused histologic aberrations. These effects were accompanied by increased expressions of Glial fibrillary acidic protein and ionized calcium-binding adapter molecule 1. Pro-inflammatory cytokines, such as tumor necrosis factor alpha, interleukin-1β, inducible nitric oxide synthase, were increased upon AlCl3 administration. AlCl3-induced alterations in the activities of SOD, CAT, GST, AChE and levels of GSH, LPO, activity of AChE, behavioral deficits, histologic aberrations, reactive gliosis, and inflammatory niche were attenuated on treatment with fisetin. Collectively, our results indicate that fisetin exerts neuroprotection against AlCl3-induced brain pathology.

  1. Infliximab attenuates activated charcoal and polyethylene glycol aspiration-induced lung injury in rats.

    Science.gov (United States)

    Güzel, Aygül; Günaydin, Mithat; Güzel, Ahmet; Alaçam, Hasan; Murat, Naci; Gacar, Ayhan; Güvenç, Tolga

    2012-04-01

    Aspiration is a serious complication of gastrointestinal (GI) decontamination procedure. Studies have shown that tumor necrosis factor-α (TNF-α) blockers have beneficial effects on lung injury. Therefore, the authors investigated the attenuation by infliximab (INF) on activated charcoal (AC)- and polyethylene glycol (PEG)-induced lung injury in rat model. Forty-two male Sprague-Dawley rats were allotted into 1 of 6 groups: saline (NS), activated charcoal (AC), polyethylene glycol (PEG), NS+INF treated, AC+INF treated, and PEG+INF treated. All materials were aspirated into the lungs at a volume of 1 mL/kg. Before aspiration, the rats were injected subcutaneously with INF. Seven days later, both lungs and serum specimens in all groups were evaluated histopathologically, immunohistochemically, and biochemically. Following aspiration of AC and PEG, evident histopathological changes were assigned in the lung tissue that were associated with increased expression of inducible nitric oxide synthase (iNOS), increased serum levels of oxidative stress markers (malondialdehyde [MDA], surfactant protein-D [SP-D], TNF-α), and decreased antioxidant enzyme (glutathione peroxidase [GSH-Px]) activities. INF treatment significantly decreased the elevated serum MDA and TNF-α levels and increased serum GSH-Px levels. Furthermore, the current results show that there is a significant reduction in the activity of iNOS in lung tissue and increased serum SP-D levels of AC and PEG aspiration-induced lung injury with INF treatment. These findings suggest that INF attenuates lung inflammation and prevents GI decontamination agent-induced lung injury in rats.

  2. Cepharanthine attenuates lipopolysaccharide-induced mice mastitis by suppressing the NF-κB signaling pathway.

    Science.gov (United States)

    Ershun, Zhou; Yunhe, Fu; Zhengkai, Wei; Yongguo, Cao; Naisheng, Zhang; Zhengtao, Yang

    2014-04-01

    Cepharanthine (CEP), a biscoclaurine alkaloid isolated from Stephania cepharantha Hayata, has been reported to have potent anti-inflammatory properties. However, the anti-inflammatory effects of CEP on a mouse model of lipopolysaccharide (LPS)-induced mastitis and its underlying molecular mechanisms remain to be elucidated. The purpose of the present study was to investigate the effects of CEP on LPS-induced mouse mastitis. The mouse model of mastitis was induced by inoculation of LPS through the canals of the mammary gland. CEP was administered intraperitoneally at 1 h before and 12 h after induction of LPS. The results show that CEP significantly attenuates the infiltration of neutrophils, suppresses myeloperoxidase activity, and reduces the levels of TNF-α, IL-1β, and IL-6 in LPS-induced mouse mastitis. Furthermore, CEP inhibited the phosphorylation of NF-κB p65 subunit and the degradation of its inhibitor IκBα. All the results suggest that CEP exerts potent anti-inflammatory effects on LPS-induced mouse mastitis. Accordingly, CEP might be a potential therapeutic agent for mastitis.

  3. Adventitial gene transfer of catalase attenuates angiotensin II-induced vascular remodeling.

    Science.gov (United States)

    Liu, Cun-Fei; Zhang, Jia; Shen, Kai; Gao, Ping-Jin; Wang, Hai-Ya; Jin, Xin; Meng, Chao; Fang, Ning-Yuan

    2015-04-01

    Vascular adventitia and adventitia‑derived reactive oxygen species (ROS) contribute to vascular remodeling following vascular injury. A previous ex vivo study in adventitial fibroblasts showed that catalase, one of most important anti‑oxide enzymes, was downregulated by angiotensin II (AngII). The aim of the present study was to investigate whether adventitial gene transfer of catalase affects AngII‑induced vascular remodeling in vivo. Adenoviruses co‑expressing catalase and enhanced green fluorescent protein (eGFP) or expressing eGFP only were applied to the adventitial surface of common carotid arteries of Sprague‑Dawley rats. Alzet minipumps administering AngII (0.75 mg/kg/day) were then implanted subcutaneously for 14 days. Systolic blood pressure and biological parameters of vascular remodeling were measured in each group. Adventitial fibroblasts were cultured and p38 mitogen‑activated protein kinase (MAPK) phosphorylation was measured using western blot analysis. The results showed that adventitial gene transfer of catalase had no effect on AngII‑induced systolic blood pressure elevation. However, catalase adenovirus transfection significantly inhibited AngII‑induced media hypertrophy compared with that of the control virus (Padventitial α‑smooth muscle actin expression. Furthermore, catalase transfection significantly inhibited the AngII‑induced increase in p38MAPK phosphorylation. In conclusion, the results of the present study demonstrated that adventitial gene transfer of catalase significantly attenuated AngII‑induced vascular remodeling in rats via inhibition of adventitial p38MAPK phosphorylation.

  4. Binding of receptor for advanced glycation end products (RAGE) ligands is not sufficient to induce inflammatory signals: lack of activity of endotoxin-free albumin-derived advanced glycation end products.

    Science.gov (United States)

    Valencia, J V; Mone, M; Koehne, C; Rediske, J; Hughes, T E

    2004-05-01

    Activation of the receptor for advanced glycation end products (RAGE) reportedly triggers cellular responses implicated in the pathogenesis of diabetes, such as increasing vascular cell adhesion molecule-1 (VCAM-1) expression on vascular endothelial cells and inducing TNF-alpha secretion by mononuclear cells. The objective of this study was to evaluate whether RAGE binding affinity of AGE-BSAs and cellular activation correlate. To produce AGEs with varying glycation, bovine albumin AGEs were prepared with 500 mmol/l of glucose, fructose or ribose at times of incubation from 1 to 12 weeks. In addition, AGE-BSA was generated using either glyoxylic acid or glycolaldehyde. Cellular binding of the AGE-BSAs and the effect on endothelial cell VCAM-1 expression were studied in RAGE-expressing human microvascular endothelial cell line-4 cells. Induction of TNF-alpha secretion was assessed using RAGE-expressing human peripheral blood mononuclear cells (PBMCs). Cellular binding of the different AGE preparations correlated well with RAGE affinity. Interestingly, we found that the AGE preparations, which were essentially endotoxin free (RAGE binding affinity, AGE concentration or incubation time. In contrast, the reported RAGE ligand S100b was confirmed to induce VCAM-1 expression on endothelial cells and TNF-alpha secretion by PBMCs after 24 h of treatment. The results of this study suggest that AGE modification and high RAGE binding affinity are not sufficient to generate pro-inflammatory signalling molecules. Thus, RAGE binding affinity of AGE-BSAs does not seem to correlate with cellular activation. Our findings using AGEs with strong RAGE-binding properties indicate that AGEs may not uniformly play a role in cellular activation.

  5. Δ9-Tetrahydrocannabinol attenuates MDMA-induced hyperthermia in rhesus monkeys.

    Science.gov (United States)

    Taffe, M A

    2012-01-10

    Cannabis is commonly consumed by Ecstasy (3,4-methylenedioxymethamphetamine; MDMA) users, including as an intentional strategy to manipulate the drug experience. The most active psychoactive constituent in cannabis, Δ(9)-tetrahydrocannabinol (THC), and other drugs with partial or full agonist activity at the CB(1) receptor, produces a reduction of body temperature in rodents. Reports show that administration of THC can attenuate temperature increases caused by MDMA in mice or rats; however, a recent study in humans shows that THC potentiates MDMA-induced temperature elevations. Relatively little scientific evidence on the thermoregulatory effects of THC in monkeys is available. The body temperature of male rhesus macaques was recorded after challenge with THC (0.1-0.3 mg/kg, i.m.) or combined challenge of THC with the CB(1) receptor antagonist SR141716 (Rimonabant; 0.3 mg/kg, i.m.) or combined challenge of THC (0.1, 0.3 mg/kg, i.m.) with MDMA (1.78 mg/kg p.o.) using minimally-invasive, implanted radiotelemetry techniques. THC reduced the body temperature of monkeys in a dose-dependent manner with the nadir observed 3-5 h post-injection; however, an attenuation of normal circadian cooling was also produced overnight following dosing. Hypothermia induced by THC (0.3 mg/kg, i.m.) was prevented by Rimonabant (0.3 mg/kg, i.m.). Finally, 0.3 mg/kg THC (i.m.) attenuated the elevation of body temperature produced by MDMA for about 4 h after oral dosing. As with rodents THC produces a robust and lasting decrement in the body temperature of rhesus monkeys; this effect is mediated by the CB(1) receptor. THC also protects against the immediate hyperthermic effects of MDMA in monkeys in a dose-dependent manner. Nevertheless, a paradoxical attenuation of circadian cooling overnight after the THC/MDMA combination cautions that longer-term effects may be critical in assessing risks for the recreational user of cannabis in combination with MDMA. Copyright © 2011 IBRO. Published

  6. Effects of the immunomodulator, VGX-1027, in endotoxin-induced uveitis in Lewis ratsTumor necrosis factor-alpha binding capacity and anti-infliximab antibodies measured by fluid-phase radioimmunoassays as predictors of clinical efficacy of infliximab in Crohn's disease

    DEFF Research Database (Denmark)

    Mangano, K.; Sardesai, N.Y.; Quattrocchi, C.

    2008-01-01

    . Here, we have studied the effects of VGX-1027 on the development of endotoxin-induced uveitis (EIU) in male Lewis rats, as a model of inflammatory ocular diseases in humans. EXPERIMENTAL APPROACH: EIU was induced by a single footpad injection of 200 microg lipopolysaccharide (LPS). Groups of rats were......, immunological and histological signs of EIU. KEY RESULTS: The rats treated with VGX-1027 within 6 h after LPS challenge exhibited milder clinical, histological and laboratory signs of EIU than those treated with vehicle. CONCLUSION AND IMPLICATIONS: This study provides the first evidence that systemic treatment...

  7. Hexane extract from Polygonum multiflorum attenuates glutamate-induced apoptosis in primary cultured cortical neurons.

    Science.gov (United States)

    Jang, Ji Yeon; Kim, Ha Neui; Kim, Yu Ri; Choi, Young Whan; Choi, Yung Hyun; Lee, Jun Hyuk; Shin, Hwa Kyoung; Choi, Byung Tae

    2013-01-09

    Polygonum multiflorum has traditionally had wide use as an anti-aging treatment in East Asian countries. We investigated the neuroprotective effects of Polygonum multiflorum against glutamate-induced neurotoxicity with a focus on the anti-apoptotic mechanism in primary cultured cortical neurons. Cell viability, cytotoxicity, morphological, flow cytometry, Western blot, and caspase activity assays were performed for examination of the neuroprotective effects of active hexane extract from Polygonum multiflorum (HEPM). Pretreatment with HEPM resulted in significantly decreased glutamate-induced neurotoxicity in a concentration-dependent manner and also resulted in drastically inhibited glutamate-induced apoptosis. Treatment with HEPM resulted in decreased expression of glutamate-induced death receptor (DR)4, and enhanced expression of glutamate-attenuated anti-apoptotic proteins, including Bcl-2, XIAP, and cIAP-1, and slightly reduced glutamate-induced cleavage of Bid. In addition, treatment with HEPM resulted in suppressed glutamate-induced activation of caspase-8, caspase-9, and caspase-3, and, subsequently, decreased degradation of poly(ADP-ribose) polymerase, β-catenin, and phospholipase Cγ1 protein, which are downstream targets of activated caspase-3. The results of this study demonstrated that HEPM exerts a neuroprotective effect against glutamate-induced neurotoxicity via inhibition of apoptosis. This protection may be mediated through suppression of DR4 and up-regulation of Bcl-2, XIAP, and cIAP-1, as well as inhibition of caspase activation, resulting in prevention of apoptosis of cortical neurons. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. Anti-RAGE antibody attenuates isoflurane-induced cognitive dysfunction in aged rats.

    Science.gov (United States)

    Shi, Chengmei; Yi, Duan; Li, Zhengqian; Zhou, Yongde; Cao, Yiyun; Sun, Yan; Chui, Dehua; Guo, Xiangyang

    2017-03-30

    Several animal studies demonstrated that the volatile anesthetic isoflurane could influence the blood-brain barrier (BBB) integrity, which involved the cognitive impairment. Increasing evidence has also shown that the receptor for advanced glycation end-products (RAGE) played a major role in maintaining the integrity of BBB. The present study aimed to determine whether the RAGE-specific antibody protects against BBB disruption and cognitive impairment induced by isoflurane exposure in aged rats. 108 aged rats were randomly divided into four groups: (1) control group (Control); (2) 4h of 2% isoflurane exposure group (ISO); (3) RAGE antibody (20μL, 2.5μg/μL) treated+4h of 2% isoflurane exposure group (anti-RAGE+ISO); (4) RAGE antibody (20μL, 2.5μg/μL) treated group (anti-RAGE). The isoflurane anesthesia resulted in the upregulation of hippocampal RAGE expression, disruption of BBB integrity, neuroinflammation, and beta-amyloid (Aβ) accumulation in aged rats. In addition, significant cognitive deficits in the Morris water maze test was also observed. The antibody pretreatment resulted in significant improvements in BBB integrity. Furthermore, the expression of RAGE and proinflammatory mediators, as well as, Aβ accumulation were attenuated. Moreover, the antibody administration attenuated the isoflurane-induced cognitive impairment in aged rats. These results demonstrate that RAGE signaling is involved in BBB damage after isoflurane exposure. Thus, the RAGE antibody represents a novel therapeutic intervention to prevent isoflurane-induced cognitive impairment. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Simvastatin Attenuates Neurogenetic Damage and Improves Neurocongnitive Deficits Induced by Isoflurane in Neonatal Rats

    Directory of Open Access Journals (Sweden)

    Ning Wang

    2018-03-01

    Full Text Available Background/Aims: Isoflurane inhibited neurogenesis and induced subsequent neurocognitive deficits in developing brain. Simvastatin exerts neuroprotection in a wide range of brain injury models. In the present study, we investigated whether simvastatin could attenuate neurogenetic inhibition and cognitive deficits induced by isoflurane exposure in neonatal rats. Methods: Sprague-Dawley rats at postnatal day (PND 7 and neural stem cells (NSCs were treated with either gas mixture, isoflurane, or simvastatin 60 min prior to isoflurane exposure, respectively. The rats were decapitated at PND 8 and PND 10 for detection of neurogenesis in the subventricular zone (SVZ and subgranular zone (SGZ of the hippocampus by immunostaining. NSC proliferation, viability and apoptosis were assessed by immunohistochemistry, CCK-8 and TUNEL, respectively. The protein expressions of caspase-3, p-Akt and p-GSK-3β both in vivo and vitro were assessed by western blotting. Cognitive functions were assessed by Morris Water Maze test and context fear conditioning test at the adult. Results: Isoflurane exposure inhibited neurogenesis in the SVZ and SGZ, decreased NSC proliferation and viability, promoted NSC apoptosis and led to late cognitive deficits. Furthermore, isoflurane increased caspase-3 expression and decreased protein expressions of p-Akt and p-GSK-3β both in vivo and in vitro. Pretreatment with simvastatin attenuated isoflurane-elicited changes in NSCs and cognitive function. Co-treatment with LY294002 reversed the effect of simvastatin on NSCs in vitro. Conclusion: We for the first time showed that simvastatin, by upregulating Akt/GSK-3β signaling pathway, alleviated isoflurane-induced neurogenetic damage and neurocognitive deficits in developing rat brain.

  10. Clusterin/apolipoprotein J attenuates angiotensin II-induced renal fibrosis.

    Directory of Open Access Journals (Sweden)

    Gwon-Soo Jung

    Full Text Available The blockade of angiotensin II (Ang II is a major therapeutic strategy for diabetic nephropathy. The main roles of Ang II in renal disease are mediated via the Ang type 1 receptor (AT1R. Upregulation of clusterin/apolipoprotein J has been reported in nephropathy models, suggesting it has a protective role in nephropathogenesis. Here, we studied how clusterin acts against Ang II-induced renal fibrosis. Levels of AT1R and fibrotic markers in clusterin-/- mice and Ang II infused rats transfected with an adenovirus encoding clusterin were evaluated by immunoblot analysis, real time RT-PCR, and immunohistochemical staining. The effect of clusterin on renal fibrosis was evaluated in NRK-52E cells, a cultured renal tubular epithelial cell line, using immunoblot analysis and real time RT-PCR. Nuclear localization of NF-κB was evaluated using immunofluorecence and co-immunoprecipitation. Renal fibrosis and expression of AT1R was higher in the kidneys of clusterin-/- mice than in those of wild-type mice. Furthermore, loss of clusterin accelerated Ang II-stimulated renal fibrosis and AT1R expression. Overexpression of clusterin in proximal tubular epithelial cells decreased the levels of Ang II-stimulated fibrotic markers and AT1R. Moreover, intrarenal delivery of clusterin attenuated Ang II-mediated expression of fibrotic markers and AT1R in rats. Fluorescence microscopy and co-immunoprecipitation in conjunction with western blot revealed that clusterin inhibited Ang II-stimulated nuclear localization of p-NF-κB via a direct physical interaction and subsequently decreased the AT1R level in proximal tubular epithelial cells. These data suggest that clusterin attenuates Ang II-induced renal fibrosis by inhibition of NF-κB activation and subsequent downregulation of AT1R. This study raises the possibility that clusterin could be used as a therapeutic target for Ang II-induced renal diseases.

  11. Acute Ethanol Gavage Attenuates Hemorrhage/Resuscitation-Induced Hepatic Oxidative Stress in Rats

    Directory of Open Access Journals (Sweden)

    B. Relja

    2012-01-01

    Full Text Available Acute ethanol intoxication increases the production of reactive oxygen species (ROS. Hemorrhagic shock with subsequent resuscitation (H/R also induces ROS resulting in cellular and hepatic damage in vivo. We examined the role of acute ethanol intoxication upon oxidative stress and subsequent hepatic cell death after H/R. 14 h before H/R, rats were gavaged with single dose of ethanol or saline (5 g/kg, EtOH and ctrl; H/R_EtOH or H/R_ctrl, resp.. Then, rats were hemorrhaged to a mean arterial blood pressure of 30±2 mmHg for 60 min and resuscitated. Two control groups underwent surgical procedures without H/R (sham_ctrl and sham_EtOH, resp.. Liver tissues were harvested at 2, 24, and 72 h after resuscitation. EtOH-gavage induced histological picture of acute fatty liver. Hepatic oxidative (4-hydroxynonenal, 4-HNE and nitrosative (3-nitrotyrosine, 3-NT stress were significantly reduced in EtOH-gavaged rats compared to controls after H/R. Proapoptotic caspase-8 and Bax expressions were markedly diminished in EtOH-gavaged animals compared with controls 2 h after resuscitation. EtOH-gavage increased antiapoptotic Bcl-2 gene expression compared with controls 2 h after resuscitation. iNOS protein expression increased following H/R but was attenuated in EtOH-gavaged animals after H/R. Taken together, the data suggest that acute EtOH-gavage may attenuate H/R-induced oxidative stress thereby reducing cellular injury in rat liver.

  12. Angiotensin-Converting Enzyme 2 Attenuates Bleomycin-Induced Lung Fibrosis in Mice

    Directory of Open Access Journals (Sweden)

    Lifang Wang

    2015-05-01

    Full Text Available Background: Local renin-angiotensin system (RAS activation has been shown to play an important role in the pathogenesis of idiopathic pulmonary fibrosis (IPF. It has been reported that angiotensin-converting enzyme 2 (ACE2 could inhibit RAS-mediated epithelial injury and fibrogenesis and that ACE2 deficiency could aggravate acute and chronic lung injury. Through research, it could be deduced that ACE2 could protect against pulmonary fibrosis as a therapeutic target. Methods: Time-course analysis of the pathological characteristics of bleomycin-induced lung fibrosis was undertaken in a mouse model, and the effect of exogenous ACE2 on lung fibrosis was studied. Immunohistchemistry (IHC staining and western blot (WB testing for AGT and ACE2 were performed to evaluate the regulation of local RAS. TUNEL staining was used to observe epithelial apoptosis. Leukocyte common antigen (LCA and pulmonary surfactant-associated protein A (SP-A IHC staining and WB testing were performed to assess the inflammatory response and epithelial regeneration. Masson's staining and a hydroxyproline assay were performed to examine collagen deposition. IHC staining and WB testing for TGF-β1 and α-SMA were performed to investigate the regulation of pro-fibrotic cytokines and the activation of fibroblasts. Results: Exogenous ACE2 attenuated bleomycin-induced lung fibrosis by reversing the reduction of local ACE2 and by suppressing the elevation of AGT. ACE2 decreased the apoptosis index and LCA levels and ameliorated the dynamic change in SP-A level, thus protecting against epithelial injury. Reductions of TGF-β1 and α-SMA were also found in ACE2-treated mice, indicating the inhibition of fibrogenesis. Conclusion: ACE2 attenuated bleomycin-induced lung fibrosis as an anti-inflammatory anti-apoptotic and anti-fibrotic agent, and it might be a promising therapeutic target for IPF.

  13. Angiotensin-Converting Enzyme 2 Attenuates Bleomycin-Induced Lung Fibrosis in Mice.

    Science.gov (United States)

    Wang, Lifang; Wang, Yuxiang; Yang, Tuo; Guo, Yanfei; Sun, Tieying

    2015-01-01

    Local renin-angiotensin system (RAS) activation has been shown to play an important role in the pathogenesis of idiopathic pulmonary fibrosis (IPF). It has been reported that angiotensin-converting enzyme 2 (ACE2) could inhibit RAS-mediated epithelial injury and fibrogenesis and that ACE2 deficiency could aggravate acute and chronic lung injury. Through research, it could be deduced that ACE2 could protect against pulmonary fibrosis as a therapeutic target. Time-course analysis of the pathological characteristics of bleomycin-induced lung fibrosis was undertaken in a mouse model, and the effect of exogenous ACE2 on lung fibrosis was studied. Immunohistchemistry (IHC) staining and western blot (WB) testing for AGT and ACE2 were performed to evaluate the regulation of local RAS. TUNEL staining was used to observe epithelial apoptosis. Leukocyte common antigen (LCA) and pulmonary surfactant-associated protein A (SP-A) IHC staining and WB testing were performed to assess the inflammatory response and epithelial regeneration. Masson's staining and a hydroxyproline assay were performed to examine collagen deposition. IHC staining and WB testing for TGF-β1 and α-SMA were performed to investigate the regulation of pro-fibrotic cytokines and the activation of fibroblasts. Exogenous ACE2 attenuated bleomycin-induced lung fibrosis by reversing the reduction of local ACE2 and by suppressing the elevation of AGT. ACE2 decreased the apoptosis index and LCA levels and ameliorated the dynamic change in SP-A level, thus protecting against epithelial injury. Reductions of TGF-β1 and α-SMA were also found in ACE2-treated mice, indicating the inhibition of fibrogenesis. ACE2 attenuated bleomycin-induced lung fibrosis as an anti-inflammatory anti-apoptotic and anti-fibrotic agent, and it might be a promising therapeutic target for IPF. © 2015 S. Karger AG, Basel.

  14. Clarithromycin attenuates IL-13–induced periostin production in human lung fibroblasts

    Directory of Open Access Journals (Sweden)

    Kosaku Komiya

    2017-02-01

    Full Text Available Abstract Background Periostin is a biomarker indicating the presence of type 2 inflammation and submucosal fibrosis; serum periostin levels have been associated with asthma severity. Macrolides have immunomodulatory effects and are considered a potential therapy for patients with severe asthma. Therefore, we investigated whether macrolides can also modulate pulmonary periostin production. Methods Using quantitative PCR and ELISA, we measured periostin production in human lung fibroblasts stimulated by interleukin-13 (IL-13 in the presence of two 14-member–ring macrolides—clarithromycin or erythromycin—or a 16-member–ring macrolide, josamycin. Phosphorylation of signal transducers and activators of transcription 6 (STAT6, downstream of IL-13 signaling, was evaluated by Western blotting. Changes in global gene expression profile induced by IL-13 and/or clarithromycin were assessed by DNA microarray analysis. Results Clarithromycin and erythromycin, but not josamycin, inhibited IL-13–stimulated periostin production. The inhibitory effects of clarithromycin were stronger than those of erythromycin. Clarithromycin significantly attenuated STAT6 phosphorylation induced by IL-13. Global gene expression analyses demonstrated that IL-13 increased mRNA expression of 454 genes more than 4-fold, while decreasing its expression in 390 of these genes (85.9%, mainly “extracellular,” “plasma membrane,” or “defense response” genes. On the other hand, clarithromycin suppressed 9.8% of the genes in the absence of IL-13. Clarithromycin primarily attenuated the gene expression of extracellular matrix protein, including periostin, especially after IL-13. Conclusions Clarithromycin suppressed IL-13–induced periostin production in human lung fibroblasts, in part by inhibiting STAT6 phosphorylation. This suggests a novel mechanism of the immunomodulatory effect of clarithromycin in asthmatic airway inflammation and fibrosis.

  15. Simvastatin Attenuates Contrast-Induced Nephropathy through Modulation of Oxidative Stress, Proinflammatory Myeloperoxidase, and Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Ketab E. Al-Otaibi

    2012-01-01

    Full Text Available Contrast media- (CM- induced nephropathy is a serious complication of radiodiagnostic procedures. Available data suggests that the development of prophylaxis strategies is limited by poor understanding of pathophysiology of CM-induced nephropathy. Present study was designed to determine the role of oxidative stress, myeloperoxidase, and nitric oxide in the pathogenesis of iohexol model of nephropathy and its modification with simvastatin (SSTN. Adult Sprague Dawley rats were divided into seven groups. After 24 h of water deprivation, all the rats except in control and SSTN-only groups were injected (10 ml/kg with 25% glycerol. After 30 min, SSTN (15, 30, and 60 mg/kg was administered orally, daily for 4 days. Twenty-four hours after the glycerol injection, iohexol was infused (8 ml/kg through femoral vein over a period of 2 min. All the animals were sacrificed on day 5 and blood and kidneys were collected for biochemical and histological studies. The results showed that SSTN dose dependently attenuated CM-induced rise of creatinine, urea, and structural abnormalities suggesting its nephroprotective effect. A significant increase in oxidative stress (increased lipid hydroperoxides and reduced glutathione levels and myeloperoxidase (MPO and decreased nitric oxide in CM group were reversed by SSTN. These findings support the use of SSTN to combat CM-induced nephrotoxicity.

  16. Carvacrol attenuates N-nitrosodiethylamine induced liver injury in experimental Wistar rats

    Directory of Open Access Journals (Sweden)

    Balan Rajan

    2015-06-01

    Full Text Available Carvacrol is a main constituent in the essential oils of countless aromatic plants including Origanum Vulgare and Thymus vulgari, which has been assessed for substantial pharmacological properties. In recent years, notable research has been embarked on to establish the biological actions of Carvacrol for its promising use in clinical applications. The present study is an attempt to reveal the protective role of Carvacrol against N-Nitrosodiethylamine (DEN induced hepatic injury in male Wistar albino rats. DEN is an egregious toxin, present in numerous environmental factors, which enhances chemical driven liver damage by inducing oxidative stress and cellular injury. Administration of DEN (200 mg/kg bodyweight, I.P to rats results in elevated marker enzymes (in both serum and tissue. Carvacrol (15 mg/kg body weight suppressed the elevation of marker enzymes (in both serum and tissue and augmented the antioxidants levels. The hoisted activities of Phase I enzymes and inferior activities of Phase II enzymes were observed in DEN-administered animals, whereas Carvacrol treated animals showed improved near normal activity. Histological observations also support the protective role of Carvacrol against DEN induced liver damage. Final outcome from our findings intimate that Carvacrol might be beneficial in attenuating toxin induced liver damage.

  17. Novel Toll-like receptor-4 deficiency attenuates trastuzumab (Herceptin induced cardiac injury in mice

    Directory of Open Access Journals (Sweden)

    Yousif Nasser

    2011-10-01

    Full Text Available Abstract Background Cardiac inflammation and generation of oxidative stress are known to contribute to trastuzumab (herceptin induced cardiac toxicity. Toll-like receptors (TLRs are a part of the innate immune system and are involved in cardiac stress reactions. Since TLR4 might play a relevant role in cardiac inflammatory signaling, we investigated whether or not TLR4 is involved in trastuzumab induced cardiotoxicity. Methods Seven days after a single injection of herceptin (2 mg/kg; i.p., left ventricular pressure volume loops were measured in HeN compotent (TLR4+/+ and HeJ mutant (TLR4-/- treated with trastuzumab and control mice. Immunofluorescent staining for monocyte infiltration and analyses of plasma by (ELISAs for different chemokines including: MCP-1and tumor necrosis factor-α (TNF-α, Western immunoblotting assay for ICAM-1, and used troponin I for cardiac injury marker. Results Trastuzumab injection resulted in an impairment of left ventricular function in TLR-4 competent (HeN, in contrast TLR4-/- trastuzumab mice showed improved left ventricular function EF%, CO; p -/-; p -/-, marked reduction of myocardial troponin-I levels in TLR4-deficient mice. Data are presented as means ± SE; n = 8 in each group p Conclusions Treatment with trastuzumab induces an inflammatory response that contributes to myocardial tissue TLR4 mediates chemokine expression (TNF-α, MCP-1and ICAM-1, so in experimental animals TLR4 deficiency improves left ventricular function and attenuates pathophysiological key mechanisms in trastuzumab induced cardiomyopathy.

  18. Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats

    Directory of Open Access Journals (Sweden)

    Xue-ying Chang

    2017-01-01

    Full Text Available Background. This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. Methods. 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d, 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS/p38 mitogen activated protein kinase (p38MAPK pathway was determined to explore the potential mechanism. Results. Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA and creatinine levels, malonaldehyde (MDA content, and superoxide dismutase (SOD activity in serum and the increases of calcium and alkaline phosphatase (ALP activity in the aorta (P<0.05 and attenuated calcification and calcium accumulation in the medial layer of vasculature in histopathology. Western blot analysis showed that iNOS/p38MAPK pathway was normalized by the quercetin supplementation. Conclusions. Quercetin exerted a protective effect on vascular calcification in adenine-induced chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway.

  19. Complement C3 deficiency attenuates chronic hypoxia-induced pulmonary hypertension in mice.

    Directory of Open Access Journals (Sweden)

    Eileen M Bauer

    Full Text Available Evidence suggests a role of both innate and adaptive immunity in the development of pulmonary arterial hypertension. The complement system is a key sentry of the innate immune system and bridges innate and adaptive immunity. To date there are no studies addressing a role for the complement system in pulmonary arterial hypertension.Immunofluorescent staining revealed significant C3d deposition in lung sections from IPAH patients and C57Bl6/J wild-type mice exposed to three weeks of chronic hypoxia to induce pulmonary hypertension. Right ventricular systolic pressure and right ventricular hypertrophy were increased in hypoxic vs. normoxic wild-type mice, which were attenuated in C3-/- hypoxic mice. Likewise, pulmonary vascular remodeling was attenuated in the C3-/- mice compared to wild-type mice as determined by the number of muscularized peripheral arterioles and morphometric analysis of vessel wall thickness. The loss of C3 attenuated the increase in interleukin-6 and intracellular adhesion molecule-1 expression in response to chronic hypoxia, but not endothelin-1 levels. In wild-type mice, but not C3-/- mice, chronic hypoxia led to platelet activation as assessed by bleeding time, and flow cytometry of platelets to determine cell surface P-selectin expression. In addition, tissue factor expression and fibrin deposition were increased in the lungs of WT mice in response to chronic hypoxia. These pro-thrombotic effects of hypoxia were abrogated in C3-/- mice.Herein, we provide compelling genetic evidence that the complement system plays a pathophysiologic role in the development of PAH in mice, promoting pulmonary vascular remodeling and a pro-thrombotic phenotype. In addition we demonstrate C3d deposition in IPAH patients suggesting that complement activation plays a role in the development of PAH in humans.

  20. Induced Pluripotent Stem Cells-Derived Mesenchymal Stem Cells Attenuate Cigarette Smoke-Induced Cardiac Remodeling and Dysfunction

    Directory of Open Access Journals (Sweden)

    Yingmin Liang

    2017-07-01

    Full Text Available The strong relationship between cigarette smoking and cardiovascular disease (CVD has been well-documented, but the mechanisms by which smoking increases CVD risk appear to be multifactorial and incompletely understood. Mesenchymal stem cells (MSCs are regarded as an important candidate for cell-based therapy in CVD. We hypothesized that MSCs derived from induced pluripotent stem cell (iPSC-MSCs or bone marrow (BM-MSCs might alleviate cigarette smoke (CS-induced cardiac injury. This study aimed to investigate the effects of BM-MSCs or iPSC-MSCs on CS-induced changes in serum and cardiac lipid profiles, oxidative stress and inflammation as well as cardiac function in a rat model of passive smoking. Male Sprague-Dawley rats were randomly selected for exposure to either sham air (SA as control or 4% CS for 1 h per day for 56 days. On day 29 and 43, human adult BM-MSCs, iPSC-MSCs or PBS were administered intravenously to CS-exposed rats. Results from echocardiography, serum and cardiac lipid profiles, cardiac antioxidant capacity, cardiac pro- and anti-inflammatory cytokines and cardiac morphological changes were evaluated at the end of treatment. iPSC-MSC-treated group showed a greater effect in the improvement of CS-induced cardiac dysfunction over BM-MSCs-treated group as shown by increased percentage left ventricular ejection fraction and percentage fractional shortening, in line with the greater reversal of cardiac lipid abnormality. In addition, iPSC-MSCs administration attenuated CS-induced elevation of cardiac pro-inflammatory cytokines as well as restoration of anti-inflammatory cytokines and anti-oxidative markers, leading to ameliorate cardiac morphological abnormalities. These data suggest that iPSC-MSCs on one hand may restore CS-induced cardiac lipid abnormality and on the other hand may attenuate cardiac oxidative stress and inflammation via inhibition of CS-induced NF-κB activation, leading to improvement of cardiac remodeling and

  1. A metabolically-stabilized phosphonate analog of lysophosphatidic acid attenuates collagen-induced arthritis.

    Directory of Open Access Journals (Sweden)

    Ioanna Nikitopoulou

    Full Text Available Rheumatoid arthritis (RA is a destructive arthropathy with systemic manifestations, characterized by chronic synovial inflammation. Under the influence of the pro-inflammatory milieu synovial fibroblasts (SFs, the main effector cells in disease pathogenesis become activated and hyperplastic while releasing a number of signals that include pro-inflammatory factors and tissue remodeling enzymes. Activated RA SFs in mouse or human arthritic joints express significant quantities of autotaxin (ATX, a lysophospholipase D responsible for the majority of lysophosphatidic acid (LPA production in the serum and inflamed sites. Conditional genetic ablation of ATX from SFs resulted in attenuation of disease symptoms in animal models, an effect attributed to diminished LPA signaling in the synovium, shown to activate SF effector functions. Here we show that administration of 1-bromo-3(S-hydroxy-4-(palmitoyloxybutyl-phosphonate (BrP-LPA, a metabolically stabilized analog of LPA and a dual function inhibitor of ATX and pan-antagonist of LPA receptors, attenuates collagen induced arthritis (CIA development, thus validating the ATX/LPA axis as a novel therapeutic target in RA.

  2. A Metabolically-Stabilized Phosphonate Analog of Lysophosphatidic Acid Attenuates Collagen-Induced Arthritis

    Science.gov (United States)

    Sevastou, Ioanna; Sirioti, Ivi; Samiotaki, Martina; Madan, Damian; Prestwich, Glenn D.; Aidinis, Vassilis

    2013-01-01

    Rheumatoid arthritis (RA) is a destructive arthropathy with systemic manifestations, characterized by chronic synovial inflammation. Under the influence of the pro-inflammatory milieu synovial fibroblasts (SFs), the main effector cells in disease pathogenesis become activated and hyperplastic while releasing a number of signals that include pro-inflammatory factors and tissue remodeling enzymes. Activated RA SFs in mouse or human arthritic joints express significant quantities of autotaxin (ATX), a lysophospholipase D responsible for the majority of lysophosphatidic acid (LPA) production in the serum and inflamed sites. Conditional genetic ablation of ATX from SFs resulted in attenuation of disease symptoms in animal models, an effect attributed to diminished LPA signaling in the synovium, shown to activate SF effector functions. Here we show that administration of 1-bromo-3(S)-hydroxy-4-(palmitoyloxy)butyl-phosphonate (BrP-LPA), a metabolically stabilized analog of LPA and a dual function inhibitor of ATX and pan-antagonist of LPA receptors, attenuates collagen induced arthritis (CIA) development, thus validating the ATX/LPA axis as a novel therapeutic target in RA. PMID:23923032

  3. Inhibition of matrix metalloproteins 9 attenuated Candida albicans induced inflammation in mouse cornea.

    Science.gov (United States)

    Dong, C; Yang, M G

    2016-10-31

    Since the severe corneal ulceration of mouse cornea is known to occur with inflammation. As one of imperative matrix metalloproteinase, the potential roles of matrix metalloproteins 9 (MMP9) in corneal ulceration and keratitis are still unveiled caused by fungal invasion. In this study, Candida albicans (CA) inoculated wild-type KM mice cornea was used as a model pathogen in corneal inflammation.  CA invasion significantly stimulated the expression of collagen IV and MMP9 detected by RT-PCR, Real-time PCR and Immunofluorescent staining in mouse cornea as soon as 6 hours post infection, and relatively decreased at 1 day post infection. For examining the role of MMP9 in fungal keratitis, the mice corneas were subconjunctivally injected MMP9 antibody or recombinant MMP9 protein 6 hours prior to CA inoculation, using rabbit IgG as control. Subconjunctival injection of recombinant MMP9 protein prior to CA inoculation enhanced, whereas MMP9 antibody attenuated corneal ulceration and inflammation, examining basement membrane, fungal load, myeloperoxidase (MPO) and proinflammatory cytokines including Macrophage inflammatory protein 2 (MIP2), Interleukin-1β (IL-1β) and Tumor necrosis factor-α (TNF-α). Inhibition of MMP9 could potentially attenuate Candida albicans induced inflammation in mouse cornea.

  4. Polygalasaponin XXXII, a triterpenoid saponin from Polygalae Radix, attenuates scopolamine-induced cognitive impairments in mice.

    Science.gov (United States)

    Zhou, Heng; Xue, Wei; Chu, Shi-Feng; Wang, Zhen-Zhen; Li, Chuang-Jun; Jiang, Yi-Na; Luo, Lin-Ming; Luo, Piao; Li, Gang; Zhang, Dong-Ming; Chen, Nai-Hong

    2016-08-01

    Recent studies show that the extract of a Chinese herb Polygalae Radix exerts cognition-enhancing actions in rats and humans. The aim of this study was to characterize the pharmacological profiles of active compounds extracted from Polygalae Radix. Two fractions P3 and P6 and two compounds PTM-15 and polygalasaponin XXXII (PGS32) were prepared. Neuroprotective effects were evaluated in primary cortical neurons exposed to high concentration glutamate, serum deficiency or H2O2. Anti-dementia actions were assessed in scopolamine-induced amnesia in mice using step-through avoidance tests and channel water maze tests. After conducting the channel water maze tests, TrkB phosphorylation in mouse hippocampus was detected using Western blotting. Long-term potentiation (LTP) was induced in the dentate gyrus in adult rats; PGS32 (5 μL 400 μmol/L) was injected into the lateral cerebral ventricle 20 min after high frequency stimulation (HFS). Compared to the fraction P6, the fraction P3 showed more prominent neuroprotective effects in vitro and cognition-enhancing effects in scopolamine-induced amnesia in mice. One active compound PGS32 in the fraction P3 exerted potent cognition-enhancing action: oral administration of PGS32 (0.125 mg·kg(-1)·d(-1)) for 19 days abolished scopolamine-induced memory impairment in mice. Furthermore, PGS32 (0.5 and 2 mg·kg(-1)·d(-1)) significantly stimulated the phosphorylation of TrkB in the hippocampus. Intracerebroventricular injection of PGS32 significantly enhanced HFS-induced LTP in the dentate gyrus of rats. PGS32 attenuates scopolamine-induced cognitive impairments in mice, suggesting that it has a potential for the treatment of cognitive dysfunction and dementia.

  5. Palmitoylethanolamide attenuates cocaine-induced behavioral sensitization and conditioned place preference in mice.

    Science.gov (United States)

    Zambrana-Infantes, Emma; Rosell Del Valle, Cristina; Ladrón de Guevara-Miranda, David; Galeano, Pablo; Castilla-Ortega, Estela; Rodríguez De Fonseca, Fernando; Blanco, Eduardo; Santín, Luis Javier

    2018-03-01

    Cocaine addiction is a chronically relapsing disorder characterized by compulsive drug-seeking and drug-taking behaviors. Previous studies have demonstrated that cocaine, as well as other drugs of abuse, alters the levels of lipid-based signaling molecules, such as N-acylethanolamines (NAEs). Moreover, brain levels of NAEs have shown sensitivity to cocaine self-administration and extinction training in rodents. Given this background, the aim of this study was to investigate the effects of repeated or acute administration of palmitoylethanolamide (PEA), an endogenous NAE, on psychomotor sensitization and cocaine-induced contextual conditioning. To this end, the potential ability of repeated PEA administration (1 or 10 mg/kg, i.p.) to modulate the acquisition of cocaine-induced behavioral sensitization (BS) and conditioned place preference (CPP) was assessed in male C57BL/6J mice. In addition, the expression of cocaine-induced BS and CPP following acute PEA administration were also studied. Results showed that repeated administration of both doses of PEA were able to block the acquisition of cocaine-induced BS. Furthermore, acute administration of both doses of PEA was able to abolish the expression of BS, while the highest dose also abolished the expression of cocaine-induced CPP. Taken together, these results indicate that exogenous administration of PEA attenuated psychomotor sensitization, while the effect of PEA in cocaine-induced CPP depended on whether PEA was administered repeatedly or acutely. These findings could be relevant to understand the role that NAEs play in processes underlying the development and maintenance of cocaine addiction. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Angiotensin-(1-7) attenuates hyposmolarity-induced ANP secretion via the Na+-K+ pump.

    Science.gov (United States)

    Shah, Amin; Oh, Young-Bin; Shan, Gao; Song, Chang Ho; Park, Byung-Hyun; Kim, Suhn Hee

    2010-09-01

    The alteration in osmolarity challenges cell volume regulation, a vital element for cell survival. Hyposmolarity causes an increase in cell volume. Recently, it has been reported that the renin-angiotensin system (RAS) plays a role in cell volume regulation. We investigated the effect of angiotensin-(1-7) [Ang-(1-7)] on hyposmolarity-induced atrial natriuretic peptide (ANP) secretion in normal and diabetic (DM) rat atria and modulation of the effect of Ang-(1-7) by the Na(+)-K(+) pump. Using isolated control rat atria, we observed that perfusion of hyposmotic solution into the atria increased ANP secretion. When Ang-(1-7) [0.1 microM or 1 microM] was perfused in a hyposmolar solution, it decreased the hyposmolarity-induced ANP secretion in a dose-dependent manner. This effect of Ang-(1-7) could be mediated by the Na(+)-K(+) pump, since ouabain, an Na(+)-K(+) pump inhibitor, significantly decreased the effect of Ang-(1-7) on hyposmolarity-induced ANP secretion. In contrast, N(omega) Nitro-l-arginine methyl ester hydrochloride (l-NAME) did not modify the effect of Ang-(1-7) on the hyposmolarity-induced ANP secretion. Interestingly, the ANP secretion was increased robustly by the perfusion of the hyposmolar solution in the DM atria, as compared to the control atria. However, the inhibitory effect of Ang-(1-7) on the hyposmolarity-induced ANP secretion was not observed in the DM atria. In the DM atria, atrial contractility was significantly increased. Taken together, we concluded that Ang-(1-7) attenuated hyposmolarity-induced ANP secretion via the Na(+)-K(+) pump and a lack of Ang-(1-7) response in DM atria may partly relate to change in Na(+)-K(+) pump activity. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Piracetam Attenuates LPS-Induced Neuroinflammation and Cognitive Impairment in Rats.

    Science.gov (United States)

    Tripathi, Alok; Paliwal, Pankaj; Krishnamurthy, Sairam

    2017-11-01

    The present study was performed to investigate the effect of piracetam on neuroinflammation induced by lipopolysaccharide (LPS) and resulting changes in cognitive behavior. Neuroinflammation was induced by a single dose of LPS solution infused into each of the lateral cerebral ventricles in concentrations of 1 μg/μl, at a rate of 1 μl/min over a 5-min period, with a 5-min waiting period between the two infusions. Piracetam in doses of 50, 100, and 200 mg/kg i.p. was administered 30 min before LPS infusion and continued for 9 days. On ninth day, the behavioral test for memory and anxiety was done followed by blood collection and microdissection of the hippocampus (HIP) and prefrontal cortex brain regions. Piracetam attenuated the LPS-induced decrease in coping strategy to novel environment indicating anxiolytic activity. It also reversed the LPS-induced changes in the known arm and novel arm entries in the Y-maze test indicating amelioration of spatial memory impairment. Further, piracetam moderated LPS-induced decrease in the mitochondrial complex enzyme activities (I, II, IV, and V) and mitochondrial membrane potential. It ameliorated changes in hippocampal lipid peroxidation and nitrite levels including the activity of superoxide dismutase. Piracetam region specifically ameliorated LPS-induced increase in the level of IL-6 in HIP indicating anti-neuroinflammatory effect. Further, piracetam reduced HIP Aβ (1-40) and increased blood Aβ level suggesting efflux of Aβ from HIP to blood. Therefore, the present study indicates preclinical evidence for the use of piracetam in the treatment of neuroinflammatory disorders.

  8. Tanshinone IIA Sodium Sulfonate Attenuates LPS-Induced Intestinal Injury in Mice

    Directory of Open Access Journals (Sweden)

    Xin-Jing Yang

    2018-01-01

    Full Text Available Background. Tanshinone IIA sodium sulfonate (TSS is known to possess anti-inflammatory effects and has exhibited protective effects in various inflammatory conditions; however, its role in lipopolysaccharide- (LPS- induced intestinal injury is still unknown. Objective. The present study is designed to explore the role and possible mechanism of TSS in LPS-induced intestinal injury. Methods. Male C57BL/6J mice, challenged with intraperitoneal LPS injection, were treated with or without TSS 0.5 h prior to LPS exposure. At 1, 6, and 12 h after LPS injection, mice were sacrificed, and the small intestine was excised. The intestinal tissue injury was analyzed by HE staining. Inflammatory factors (TNF-α, IL-1β, and IL-6 in the intestinal tissue were examined by ELISA and RT-PCR. In addition, expressions of autophagy markers (microtubule-associated light chain 3 (LC3 and Beclin-1 were detected by western blot and RT-PCR. A number of autophagosomes were also observed under electron microscopy. Results. TSS treatment significantly attenuated small intestinal epithelium injury induced by LPS. LPS-induced release of inflammatory mediators, including TNF-α, IL-1β, and IL-6, were markedly inhibited by TSS. Furthermore, TSS treatment could effectively upregulate LPS-induced decrease of autophagy levels, as evidenced by the increased expression of LC3 and Beclin-1, and more autophagosomes. Conclusion. The protective effect of TSS on LPS-induced small intestinal injury may be attributed to the inhibition of inflammatory factors and promotion of autophagy levels. The present study may provide novel insight into the molecular mechanisms of TSS on the treatment of intestinal injury.

  9. Thymoquinone attenuates monocrotaline-induced pulmonary artery hypertension via inhibiting pulmonary arterial remodeling in rats.

    Science.gov (United States)

    Zhu, Ning; Zhao, Xuyong; Xiang, Yijia; Ye, Shiyong; Huang, Jie; Hu, Wuming; Lv, Linchun; Zeng, Chunlai

    2016-10-15

    Pulmonary artery remodeling induced by excess proliferation, migration and apoptosis resistance of pulmonary arterial smooth muscle cells (PASMCs) is a key component in pulmonary artery hypertension (PAH). Thymoquinone (TQ) triggers cancer cells apoptosis through multiple mechanisms. In addition, TQ inhibits migration of human nonsmall-cell lung cancer cells and human glioblastoma cells. In the current study, we investigated effects of TQ on MCT-induced PAH in rats and its underlying mechanisms. After 2weeks of monocrotaline injection (MCT, 60mg/kg), Male Sprague-Dawley rats received TQ (8mg/kg, 12mg/kg, 16mg/kg) or olive oil per day for 2weeks. Hemodynamic changes, right ventricular hypertrophy, and lung morphological features were examined 4weeks later. In addition, TUNEL, PCNA, α-SMA, Bax and Bcl-2 were detected by immunohistochemistry staining. Bax, Bcl-2, cleaved caspase-3, cleaved poly (ADP-ribose) polymerase (PARP) MMP2, MMP9 and activation of p38MAPK and NF-κB were assessed by Western blot. MCT-induced an increase in pulmonary blood pressure and right ventricular hypertrophy, which were attenuated by TQ treatment. TQ also blocked MCT-induced pulmonary arterial remodeling, proliferation of PASMCs, elevation of MMP2 and downregulation of ratio of Bax/Bcl-2, cleaved caspase-3 and cleaved PARP. Furthermore, TQ inhibited MCT-induced activation of p38MAPK and NF-κB. TQ ameliorates MCT-induced pulmonary artery hypertension by inhibiting pulmonary arterial remodeling partially via p38MAPK/NF-κB signaling pathway in rats. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Measurement of 60CO gamma radiation induced attenuation in multimode step-index POF at 530 nm

    Directory of Open Access Journals (Sweden)

    Kovačević Milan S.

    2013-01-01

    Full Text Available As optical fibres are used ever more extensively in space applications, nuclear industry, medicine and high-energy physics experiments, it has become essential to investigate the influence of ionizing radiation on their characteristics. In this work, the radiation-induced attenuation at 530 nm is investigated experimentally in step-index multimode polymethyl-methacrylate plastic optical fibres exposed to low dose-rate gamma radiation. Cumulative doses ranged from 50 Gy to 500 Gy. The radiation induced attenuation has been empirically found to obey the power law RIA= aDb, where D is the total radiation dose and a and b are the constants determined by fitting.

  11. Ursolic acid inhibits superoxide production in activated neutrophils and attenuates trauma-hemorrhage shock-induced organ injury in rats.

    Directory of Open Access Journals (Sweden)

    Tsong-Long Hwang

    Full Text Available Neutrophil activation is associated with the development of organ injury after trauma-hemorrhagic shock. In the present study, ursolic acid inhibited the superoxide anion generation and elastase release in human neutrophils. Administration of ursolic acid attenuated trauma-hemorrhagic shock-induced hepatic and lung injuries in rats. In addition, administration of ursolic acid attenuated the hepatic malondialdehyde levels and reduced the plasma aspartate aminotransferase and alanine aminotransferase levels after trauma-hemorrhagic shock. In conclusion, ursolic acid, a bioactive natural compound, inhibits superoxide anion generation and elastase release in human neutrophils and ameliorates trauma-hemorrhagic shock-induced organ injury in rats.

  12. Ginkgo biloba extract inhibits endotoxin-induced human aortic smooth muscle cell proliferation via suppression of toll-like receptor 4 expression and NADPH oxidase activation.

    Science.gov (United States)

    Lin, Feng-Yen; Chen, Yung-Hsiang; Chen, Yuh-Lien; Wu, Tao-Cheng; Li, Chi-Yuan; Chen, Jaw-Wen; Lin, Shing-Jong

    2007-03-07

    Toll-like receptor 4 (TLR4) initiates the inflammatory response in blood vessels in reaction to immune stimuli such as lipopolysaccharide (LPS) produced by gram-negative bacteria. LPS-induced proliferation and functional perturbation in vascular smooth muscle cells play important roles during atherogenesis. Ginkgo biloba extract is an antiatherothrombotic Chinese herbal medicine with anti-inflammatory properties. The effects of G. biloba extract on LPS-induced proliferation and TLR4 expression and the underlying mechanisms for these actions, in human aortic smooth muscle cells (HASMCs), were examined in vitro. LPS-induced proliferation was mediated by the expression of TLR4 in HASMCs. LPS increased the expression of TLR4 in HASMCs, and this effect was mediated by the activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, phosphorylation of intracellular mitogen-activated protein kinases (MAPKs), and increases in the cytoplasmic level of HuR and TLR4 mRNA stability. G. biloba extract inhibited LPS-induced HASMC proliferation and decreased the expression of TLR4 by inhibiting LPS-induced NADPH oxidase activation, mRNA stabilization, and MAPK signaling pathways. These results suggest that LPS-induced TLR4 expression contributes to HASMC proliferation and that G. biloba inhibits LPS-stimulated proliferation of HASMCs by decreasing TLR4 expression.

  13. Role of TFEB Mediated Autophagy, Oxidative Stress, Inflammation, and Cell Death in Endotoxin Induced Myocardial Toxicity of Young and Aged Mice

    Directory of Open Access Journals (Sweden)

    Fang Li

    2016-01-01

    Full Text Available Elderly patients are susceptible to sepsis. LPS induced myocardial injury is a widely used animal model to assess sepsis induced cardiac dysfunction. The age dependent mechanisms behind sepsis susceptibility were not studied. We analyzed age associated changes to cardiac function, cell death, inflammation, oxidative stress, and autophagy in LPS induced myocardial injury. Both young and aged C57BL/6 mice were used for LPS administration. The results demonstrated that LPS induced more cardiac injury (creatine kinase, lactate dehydrogenase, troponin I, and cardiac myosin-light chains 1, cardiac dysfunction (left ventricular inner dimension, LVID, and ejection fraction (EF, cell death, inflammation, and oxidative stress in aged mice compared to young mice. However, a significant age dependent decline in autophagy was observed. Translocation of Transcription Factor EB (TFEB to nucleus and formation of LC3-II were significantly reduced in LPS administered aged mice compared to young ones. In addition to that, downstream effector of TFEB, LAMP-1, was induced in response to LPS challenge in young mice. The present study newly demonstrates that TFEB mediated autophagy is crucial for protection against LPS induced myocardial injury particularly in aging senescent heart. Targeting this autophagy-oxidative stress-inflammation-cell death axis may provide a novel therapeutic strategy for cardioprotection in the elderly.

  14. Lipid Emulsion Inhibits Vasodilation Induced by a Toxic Dose of Bupivacaine via Attenuated Dephosphorylation of Myosin Phosphatase Target Subunit 1 in Isolated Rat Aorta

    Science.gov (United States)

    Ok, Seong-Ho; Byon, Hyo-Jin; Kwon, Seong-Chun; Park, Jungchul; Lee, Youngju; Hwang, Yeran; Baik, Jiseok; Choi, Mun-Jeoung; Sohn, Ju-Tae

    2015-01-01

    Lipid emulsions are widely used for the treatment of systemic toxicity that arises from local anesthetics. The goal of this in vitro study was to examine the cellular mechanism associated with the lipid emulsion-mediated attenuation of vasodilation induced by a toxic dose of bupivacaine in isolated endothelium-denuded rat aorta. The effects of lipid emulsion on vasodilation induced by bupivacaine, mepivacaine, and verapamil were assessed in isolated aorta precontracted with phenylephrine, the Rho kinase stimulant NaF, and the protein kinase C activator phorbol 12,13-dibutyrate (PDBu). The effects of Rho kinase inhibitor Y-27632 on contraction induced by phenylephrine or NaF were assessed. The effects of bupivacaine on intracellular calcium concentrations ([Ca2+]i) and tension induced by NaF were simultaneously measured. The effects of bupivacaine alone and lipid emulsion plus bupivacaine on myosin phosphatase target subunit 1 (MYPT1) phosphorylation induced by NaF were examined in rat aortic vascular smooth muscle cells. In precontracted aorta, the lipid emulsion attenuated bupivacaine-induced vasodilation but had no effect on mepivacaine-induced vasodilation. Y-27632 attenuated contraction induced by either phenylephrine or NaF. The lipid emulsion attenuated verapamil-induced vasodilation. Compared with phenylephrine-induced precontracted aorta, bupivacaine-induced vasodilation was slightly attenuated in NaF-induced precontracted aorta. The magnitude of the bupivacaine-induced vasodilation was higher than that of a bupivacaine-induced decrease in [Ca2+]i. Bupivacaine attenuated NaF-induced MYPT1 phosphorylation, whereas lipid emulsion pretreatment attenuated the bupivacaine-induced inhibition of MYPT1 phosphorylation induced by NaF. Taken together, these results suggest that lipid emulsions attenuate bupivacaine-induced vasodilation via the attenuation of inhibition of MYPT1 phosphorylation evoked by NaF. PMID:26664257

  15. Attenuating effect of Ginsenoside Rb1 on LPS-induced lung injury in rats.

    Science.gov (United States)

    Yuan, Qing; Jiang, Yan-Wen; Ma, Ting-Ting; Fang, Qiu-Hong; Pan, Lei

    2014-01-01

    Sepsis causes neutrophil sequestration in the lung which leads to acute lung injury (ALI). Radix Ginseng (RG), a traditional herb used as herbal remedy in eastern Asia for thousands of years, which has been traditionally used in China to improve blood circulation and ameliorate pathological hemostasis. This study investigated whether Ginsenoside Rb1, the main components of RG, can attenuate ALI induced by LPS. In vivo, 30 male Wistar rats were divided into three groups (n = 10 each groups) on the basis of the reagent used, which were subjected to LPS injection with or without Ginsenoside Rb1 (5 mg/kg) treatments to induce ALI model. Lung injury was assessed by pulmonary histology, lung wet-weight to dry-weight (W/D) ratio, the number of myeloperoxidase (MPO) positive cells, immunohistochemical analysis of intercellular adhesion molecule-1 (ICAM-1), gene expression of ICAM-1, ultrastructure changes of pulmonary microvasculature, concentration of inflammatory markers and in plasma. In vitro, pulmonary microvascular endothelial cells (PMVECs) were stimulated with LPS in the presence and absence of Ginsenoside Rb1 (50 mM), nuclear factor-κB (NF-κB) p65 was measured by immunocytochemistry staining and western blotting. Infusion of LPS induced lung injury, in vivo, as demonstrated by pulmonary edema with infiltration of neutrophils and hemorrhage, the increase in lung W/D ratio, the number of MPO positive cells, the level of inflammatory markers such as TNF-α, MCP-1 and IL-8, enhanced expression of ICAM-1 and ICAM-1 gene. Moreover, resulted in the changes of intercellular junctions in the endothelial cells of pulmonary microvasculature. In vitro, the significant increased release of NF-κB p65 and its subsequent translocation into the nucleus in PMVECs were observed. In contrast, Ginsenoside Rb1 treatment significantly ameliorated the LPS-induced lung injury, as judged by the marked improvement in all these indices. These results indicate that Ginsenoside Rb1

  16. Oral administration of Cimicifuga racemosa extract attenuates immobilization stress-induced reactions.

    Science.gov (United States)

    Nadaoka, Isao; Watanabe, Kazuki; Yasue, Masaaki; Sami, Manabu; Kitagawa, Yasushi; Mimaki, Yoshihiro

    2012-01-01

    Dried rhizomes of Cimicifuga racemosa (CR), known as black cohosh, have been widely used as a herbal dietary supplement in the treatment of menopausal symptoms. Here we used experimental mouse stress models to investigate the role of anti-stress food factors, and found that a CR extract had stress-relieving effects. A single oral administration of CR extract (1,000 mg/kg) significantly attenuated plasma corticosterone and aspartate aminotransferase (AST) levels that had increased as a result of enforced immobilization. Bioassay-guided fractionation of the CR extract resulted in the isolation of 10 triterpenes, among which actein, 23-epi-26-deoxyactein, and cimiracemoside F (100 mg/kg, per os) were shown to contribute to the anti-stress effects. Furthermore, the CR extract significantly prevented the development of water immersion stress-induced gastric mucosal ulcers in rats. We propose that the CR extract might be suitable for the prevention and treatment of stress-related disorders.

  17. Endotoxin levels and contribution factors of endotoxins in resident, school, and office environments - A review

    Science.gov (United States)

    Salonen, Heidi; Duchaine, Caroline; Létourneau, Valérie; Mazaheri, Mandana; Laitinen, Sirpa; Clifford, Sam; Mikkola, Raimo; Lappalainen, Sanna; Reijula, Kari; Morawska, Lidia

    2016-10-01

    As endotoxin exposure has known effects on human health, it is important to know the generally existing levels of endotoxins as well as their contributing factors. This work reviews current knowledge on the endotoxin loads in settled floor dust, concentrations of endotoxins in indoor air, and different environmental factors potentially affecting endotoxin levels. The literature review consists of peer-reviewed manuscripts located using Google and PubMed, with search terms based on individual words and combinations. References from relevant articles have also been searched. Analysis of the data showed that in residential, school, and office environments, the mean endotoxin loads in settled floor dust varied between 660 and 107,000 EU/m2, 2180 and 48,000 EU/m2, and 2700 and 12,890 EU/m2, respectively. Correspondingly, the mean endotoxin concentrations in indoor air varied between 0.04 and 1610 EU/m3 in residences, and 0.07 and 9.30 EU/m3 in schools and offices. There is strong scientific evidence indicating that age of houses (or housing unit year category), cleaning, farm or rural living, flooring materials (the presence of carpets), number of occupants, the presence of dogs or cats indoors, and relative humidity affect endotoxin loads in settled floor dust. The presence of pets (especially dogs) was extremely strongly associated with endotoxin concentrations in indoor air. However, as reviewed articles show inconsistency, additional studies on these and other possible predicting factors are needed.

  18. Aerobic Exercise Attenuated Bleomycin-Induced Lung Fibrosis in Th2-Dominant Mice.

    Directory of Open Access Journals (Sweden)

    Adilson Santos Andrade-Sousa

    Full Text Available The aim of this study was to investigate the effect of aerobic exercise (AE in reducing bleomycin-induced fibrosis in mice of a Th2-dominant immune background (BALB/c.BALB/c mice were distributed into: sedentary, control (CON, Exercise-only (EX, sedentary, bleomycin-treated (BLEO and bleomycin-treated+exercised (BLEO+EX; (n = 8/group. Following treadmill adaptation, 15 days following a single, oro-tracheal administration of bleomycin (1.5U/kg, AE was performed 5 days/week, 60min/day for 4 weeks at moderate intensity (60% of maximum velocity reached during a physical test and assessed for pulmonary inflammation and remodeling, and cytokine levels in bronchoalveolar lavage (BAL.At 45 days post injury, compared to BLEO, BLEO+EX demonstrated reduced collagen deposition in the airways (p<0.001 and also in the lung parenchyma (p<0.001. In BAL, a decreased number of total leukocytes (p<0.01, eosinophils (p<0.001, lymphocytes (p<0.01, macrophages (p<0.01, and neutrophils (p<0.01, as well as reduced pro-inflammatory cytokines (CXCL-1; p<0.01, (IL-1β; p<0.001, (IL-5; p<0.01, (IL-6; p<0.001, (IL-13; p<0.01 and pro-fibrotic growth factor IGF-1 (p<0.001 were observed. Anti-inflammatory cytokine IL-10 was increased (p<0.001.AE attenuated bleomycin-induced collagen deposition, inflammation and cytokines accumulation in the lungs of mice with a predominately Th2-background suggesting that therapeutic AE (15-44 days post injury attenuates the pro-inflammatory, Th2 immune response and fibrosis in the bleomycin model.

  19. Attenuation of pancreatitis-induced pulmonary injury by aerosolized hypertonic saline.

    LENUS (Irish Health Repository)

    Shields, C J

    2012-02-03

    BACKGROUND: The immunomodulatory effects of hypertonic saline (HTS) provide potential strategies to attenuate inappropriate inflammatory reactions. This study tested the hypothesis that administration of intratracheal aerosolized HTS modulates the development of lung injury in pancreatitis. METHODS: Pancreatitis was induced in 24 male Sprague-Dawley rats by intraperitoneal injection of 20% L-arginine (500 mg\\/100 g body weight). At 24 and 48 h, intratracheal aerosolized HTS (7.5% NaCl, 0.5 mL) was administered to 8 rats, while a further 8 received 0.5 mL of aerosolized normal saline (NS). At 72 hours, pulmonary neutrophil infiltration (myeloperoxidase activity) and endothelial permeability (bronchoalveolar lavage and wet:dry weight ratios) were assessed. In addition, histological assessment of representative lung tissue was performed by a blinded assessor. In a separate experiment, polymorphonucleocytes (PMN) were isolated from human donors, and exposed to increments of HTS. Neutrophil transmigration across an endothelial cell layer, VEGF release, and apoptosis at 1, 6, 12, 18, and 24 h were assessed. RESULTS: Histopathological lung injury scores were significantly reduced in the HTS group (4.78 +\\/- 1.43 vs. 8.64 +\\/- 0.86); p < 0.001). Pulmonary neutrophil sequestration (1.40 +\\/- 0.2) and increased endothelial permeability (6.77 +\\/- 1.14) were evident in the animals resuscitated with normal saline when compared with HTS (0.70 +\\/- 0.1 and 3.57 +\\/- 1.32), respectively; p < 0.04). HTS significantly reduced PMN transmigration (by 97.1, p = 0.002, and induced PMN apoptosis (p < 0.03). HTS did not impact significantly upon neutrophil VEGF release (p > 0.05). CONCLUSIONS: Intratracheal aerosolized HTS attenuates the neutrophil-mediated pulmonary insult subsequent to pancreatitis. This may represent a novel therapeutic strategy.

  20. Centella asiatica Attenuates D-Galactose-Induced Cognitive Impairment, Oxidative and Mitochondrial Dysfunction in Mice

    Science.gov (United States)

    Kumar, Anil; Prakash, Atish; Dogra, Samrita

    2011-01-01

    D-galactose induced neurotoxicity is well known model for studying aging and related oxidative damage and memory impairment. Aging is a biological process, characterized by the gradual loss of physiological functions by unknown mechanism. Centella asiatica, Indian pennywort has been documented in the treatment of various neurological disorders including aging. Therefore, present study has been conducted in order to explore the possible role of Centella asiatica against D-galactose induced cognitive impairment, oxidative and mitochondrial dysfunction in mice. Chronic administration of D-galactose (100 mg/kg s.c.) for a period of six weeks significantly impaired cognitive task (both in both Morris water maze and elevated plus maze) and oxidative defense (Increased lipid peroxidation, nitrite concentration and decreased activity of superoxide dismutase, catalase and non-protein thiols) and impaired mitochondrial complex (I, II and III) enzymes activities as compared to sham group. Six weeks Centella asiatica (150 and 300 mg/kg, p.o) treatment significantly improved behavioral alterations, oxidative damage and mitochondrial enzyme complex activities as compared to contro l (D-galactose). Centella asiatica also attenuated enhanced acetylcholine esterase enzyme level in D-galactose senescence mice. Present study highlights the protective effect of Centella asiatica against D-galactose induced behavioral, biochemical and mitochondrial dysfunction in mice. PMID:21629743

  1. Somatostatin does not attenuate intestinal injury in dextran sodium sulphate-induced subacute colitis

    Directory of Open Access Journals (Sweden)

    J. D. van Bergeijk

    1998-01-01

    Full Text Available From several in vitro and in vivo studies involvement of som atostatin (SMS in intestinal inflammation emerge. Acute colitis induced in rats is attenuated by the long-acting SMS analogue octreotide. We studied the potential beneficial effect of SMS on non-acute experimental colitis. BALB/c mice received either saline, SMS-14 (36 or 120 μg daily or octreotide (3 μg daily subcutaneously delivered by implant osmotic pumps. A non-acute colitis was induced by administration of dextran sodium sulphate (DSS 10% in drinking water during 7 days. DSS evoked a mild, superficial pancolitis, most characterized by mucosal ulceration and submucosal influx of neutrophils. Neither SMS-14 nor octreotide reduced mucosal inflammatory score or macroscopical disease activity, although reduction of intestinal levels of interleukin1 β (IL-1 β, IL-6 and IL-10 during DSS was augmented both by SMS and octreotide. A slight increase of neutrophil influx was seen during SMS administration in animals not exposed to DSS. In conclusion, SMS or its long-acting analogue did not reduce intestinal inflammation in non-acute DSS-induced colitis. According to the cytokine profile observed, SMS-14 and octreotide further diminished the reduction of intestinal macrophage and Th2 lymphocyte activity.

  2. Salidroside Attenuates Ventilation Induced Lung Injury via SIRT1-Dependent Inhibition of NLRP3 Inflammasome

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2017-05-01

    Full Text Available Background: Salidroside (SDS is the main effective ingredient of Rhodiola rosea L with a variety of pharmacologic properties. We aim to investigate the effects of SDS on ventilation induced lung injury (VILI and explore the possible underlying molecular mechanism. Methods: Lung injury was induced in male ICR mice via mechanical ventilation (30 ml/kg for 4h. The mice were divided in four groups:(1 Control group; (2 Ventilation group; (3 SDS group; (4 Ventilation with SDS group. SDS (50 mg/kg was injected intraperitoneally 1h before operation. Mouse lung vascular endothelial cells (MLVECs were subjected to cyclic stretch for 4h. Results: It was found that SDS attenuated VILI as shown in HE staining, cell count and protein content levels in BAL fluid, W/D and Evans blue dye leakage into the lung tissue. SDS treatment inhibited the activation of NLRP3 inflammasome and subsequent caspase-1 cleavage as well as interleukin (IL-1β secretion both in vivo and in vitro. Moreover, SDS administration up-regulated SIRT1 expression. Importantly, knockdown of SIRT1 reversed the inhibitory effect of SDS on NLRP3 inflammasome activation. Conclusions: Taken together, these findings indicate that SDS may confer protection against ventilation induced lung injury via SIRT1-de-pendent inhibition of NLRP3 inflammasome activation.

  3. Panax notoginseng saponins attenuates cisplatin-induced nephrotoxicity via inhibiting the mitochondrial pathway of apoptosis.

    Science.gov (United States)

    Liu, Xinwen; Huang, Zhenguang; Zou, Xiaoqin; Yang, Yufang; Qiu, Yue; Wen, Yan

    2014-01-01

    The goal of this experiment was to investigate the protective effect and the molecular mechanism of Panax Notoginseng Saponins (PNS) on cisplatin-induced nephrotoxicity through mitochondrial pathway of apoptosis. The rats underwent intraperitoneal injection with a single dose of cisplatin, a subset of rats were also intraperitoneally injected with 31.35 mg/kg PNS once a day for 8 days. At day 1, 4 and 8 after exposure to cisplatin, the concentrations of blood urea nitrogen (BUN), serum creatinine (Scr) and urinary N-acetyl-β-D-Glucosaminidase (NAG) were determined using commercial kits. The pathological change of renal tissue were examined using H & E staining and transmission electron microscopy. The rate of apoptosis and the expression of Bcl-2 in rat renal tissue were detected by using TUNEL staining and Western bloting, respectively. And the expressions of Bax and caspases 9 were detected by immunnohistochemistry. The results showed that PNS significantly protected against cisplatin-induced nephrotoxicity, as evidenced by the decrease in concentration of blood BUN, Scr and urinary NAG, as well as the attenuation of renal histopathological damage. Furthermore, PNS reduced the rate of apoptosis, and the mechanism studies showed that PNS inhibited the expression of Bax and caspase 9, while increased the expression of Bcl-2. This study first demonstrated that PNS can protect against cisplatin-induced nephrotoxicity and reduce renal tissue apoptosis via inhibiting the mitochondrial pathway.

  4. Repeated resveratrol treatment attenuates methamphetamine-induced hyperactivity and [3H]dopamine overflow in rodents.

    Science.gov (United States)

    Miller, Dennis K; Oelrichs, Clark E; Sage, Andrew S; Sun, Grace Y; Simonyi, Agnes

    2013-10-25

    Resveratrol (3,4',5-trihydroxy-trans-stilbene) has been investigated for its potential as a prophylactic against degenerative diseases. It is a sirtulin activator that has recently been shown to regulate dopaminergic systems that contribute to the behavioral effects of methamphetamine and cocaine. The present study examined the impact of resveratrol on stimulant neuropsychopharmacology in rodents. Acute resveratrol treatment (20-40mg/kg) was ineffective to alter methamphetamine (0.5mg/kg)-induced hyperactivity in mice. Rodents received resveratrol once-daily for seven days to determine the effect of repeated polyphenolic treatment. Repeated resveratrol treatment (1-20mg/kg) decreased methamphetamine (0.5mg/kg)-induced hyperactivity in mice. Methamphetamine's (0.1-60μM) efficacy to evoke [(3)H]overflow from rat striatal slices preloaded with [(3)H]dopamine was also attenuated by repeated resveratrol (1mg/kg) treatment. Repeated resveratrol treatment (10-20mg/kg) did not affect cocaine-induced hyperactivity in mice. Overall, these data suggest that resveratrol appears to have metaplastic and prophylactic activity to minimize the effects of methamphetamine to increase locomotor activity and evoke dopamine release. These data encourage future research to further investigate the relationship between polyphenolics and psychostimulant abuse and dependence. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Blockade of advanced glycation end product formation attenuates bleomycin-induced pulmonary fibrosis in rats

    Directory of Open Access Journals (Sweden)

    Liu Dai-Shun

    2009-06-01

    Full Text Available Abstract Background Advanced glycation end products (AGEs have been proposed to be involved in pulmonary fibrosis, but its role in this process has not been fully understood. To investigate the role of AGE formation in pulmonary fibrosis, we used a bleomycin (BLM-stimulated rat model treated with aminoguanidine (AG, a crosslink inhibitor of AGE formation. Methods Rats were intratracheally instilled with BLM (5 mg/kg and orally administered with AG (40, 80, 120 mg/kg once daily for two weeks. AGEs level in lung tissue was determined by ELISA and pulmonary fibrosis was evaluated by Ashcroft score and hydroxyproline assay. The expression of heat shock protein 47 (HSP47, a collagen specific molecular chaperone, was measured with RT-PCR and Western blot. Moreover, TGFβ1 and its downstream Smad proteins were analyzed by Western blot. Results AGEs level in rat lungs, as well as lung hydroxyproline content and Ashcroft score, was significantly enhanced by BLM stimulation, which was abrogated by AG treatment. BLM significantly increased the expression of HSP47 mRNA and protein in lung tissues, and AG treatment markedly decreased BLM-induced HSP47 expression in a dose-dependent manner (p Conclusion These findings suggest AGE formation may participate in the process of BLM-induced pulmonary fibrosis, and blockade of AGE formation by AG treatment attenuates BLM-induced pulmonary fibrosis in rats, which is implicated in inhibition of HSP47 expression and TGFβ/Smads signaling.

  6. Ferric Carboxymaltose-Mediated Attenuation of Doxorubicin-Induced Cardiotoxicity in an Iron Deficiency Rat Model

    Directory of Open Access Journals (Sweden)

    Jorge Eduardo Toblli

    2014-01-01

    Full Text Available Since anthracycline-induced cardiotoxicity (AIC, a complication of anthracycline-based chemotherapies, is thought to involve iron, concerns exist about using iron for anaemia treatment in anthracycline-receiving cancer patients. This study evaluated how intravenous ferric carboxymaltose (FCM modulates the influence of iron deficiency anaemia (IDA and doxorubicin (3–5 mg per kg body weight [BW] on oxidative/nitrosative stress, inflammation, and cardiorenal function in spontaneously hypertensive stroke-prone (SHR-SP rats. FCM was given as repeated small or single total dose (15 mg iron per kg BW, either concurrent with or three days after doxorubicin. IDA (after dietary iron restriction induced cardiac and renal oxidative stress (markers included malondialdehyde, catalase, Cu,Zn-superoxide dismutase, and glutathione peroxidase, nitrosative stress (inducible nitric oxide synthase and nitrotyrosine, inflammation (tumour necrosis factor-alpha and interleukin-6, and functional/morphological abnormalities (left ventricle end-diastolic and end-systolic diameter, fractional shortening, density of cardiomyocytes and capillaries, caveolin-1 expression, creatinine clearance, and urine neutrophil gelatinase-associated lipocalin that were aggravated by doxorubicin. Notably, iron treatment with FCM did not exacerbate but attenuated the cardiorenal effects of IDA and doxorubicin independent of the iron dosing regimen. The results of this model suggest that intravenous FCM can be used concomitantly with an anthracycline-based chemotherapy without increasing signs of AIC.

  7. Ginger attenuated di (n-butyl phthalate-induced reproductive toxicity in pubertal male rabbits

    Directory of Open Access Journals (Sweden)

    S. S. Oda

    2017-12-01

    Full Text Available This study was conducted to investigate the toxic effects of di (n-butyl phthalate (DBP on reproductive functions in male rabbits and the probable protective role of ginger. Twenty rabbits were divided equally into 4 groups: control group; DBP group (520 mg/kg body weight [BW] DBP orally, DBP+ginger group (520 mg/kg BW DBP and 400 mg/kg BW ginger and ginger group (400 mg/kg BW ginger orally. Treatments were given three-times/week. After 7 wk of the experiment, DBP induced significant reduction in testis and prostate weights, serum and intratesticular testosterone concentrations, sperm counts both mass and progressive sperm motility and live sperms percentage as well as significant elevation of testicular malondialdehyde compared to control group. No significant changes were detected in epididymal weights, serum FSH and serum LH concentrations and testicular total superoxide dismutase and glutathione peroxidase activities in all treated groups. DBP induced considerable histopathological alterations in testis and to minimal extent in epididymis and prostates. Ginger treatment attenuated the significant changes to a certain extent induced by DBP intoxication in male rabbits probably due to its potential to scavenge free radicals.

  8. Gut microbiota drives the attenuation of dextran sulphate sodium-induced colitis by Huangqin decoction.

    Science.gov (United States)

    Yang, Yang; Chen, Gang; Yang, Qian; Ye, Juan; Cai, Xueting; Tsering, Pamo; Cheng, Xiaolan; Hu, Chunping; Zhang, Shuangquan; Cao, Peng

    2017-07-25

    The gut microbiota, including probiotics and pathogenic microorganisms, is involved in ulcerative colitis (UC) by regulating pathogenic microorganisms and the production of intestinal mucosal antibodies. Huangqin decoction (HQD), a traditional Chinese formula chronicled in the Shanghan lun, has been recognized as an effective drug for UC, owing to its anti-inflammatory and anti-oxidative properties. In the present study, we investigated whether HQD ameliorates dextran sulphate sodium (DSS)-induced colitis through alteration of the gut microbiota. We found that HQD significantly inhibited colitis, alleviating the loss of body weight, disease activity index, colon shortening, tissue injury, and inflammatory cytokine changes induced by DSS treatment. Principal component analysis and principal co-ordinate analysis showed an obvious difference among the groups, with increased diversity in the DSS and DSS+HQD groups. Linear discriminant analysis effect size was used to determine differences between the groups. The relative abundance of Lactococcus was higher in the DSS+HQD group than in the DSS group, whereas Desulfovibrio and Helicobacter were decreased. Furthermore, the protective effect of HQD was attenuated only in antibiotic-treated mice. In conclusion, our results suggest that HQD could ameliorate DSS-induced inflammation through alteration of the gut microbiota.

  9. CTRP3 attenuates diet-induced hepatic steatosis by regulating triglyceride metabolism.

    Science.gov (United States)

    Peterson, Jonathan M; Seldin, Marcus M; Wei, Zhikui; Aja, Susan; Wong, G William

    2013-08-01

    CTRP3 is a secreted plasma protein of the C1q family that helps regulate hepatic gluconeogenesis and is downregulated in a diet-induced obese state. However, the role of CTRP3 in regulating lipid metabolism has not been established. Here, we used a transgenic mouse model to address the potential function of CTRP3 in ameliorating high-fat diet-induced metabolic stress. Both transgenic and wild-type mice fed a high-fat diet showed similar body weight gain, food intake, and energy expenditure. Despite similar adiposity to wild-type mice upon diet-induced obesity (DIO), CTRP3 transgenic mice were strikingly resistant to the development of hepatic steatosis, had reduced serum TNF-α levels, and demonstrated a modest improvement in systemic insulin sensitivity. Additionally, reduced hepatic triglyceride levels were due to decreased expression of enzymes (GPAT, AGPAT, and DGAT) involved in triglyceride synthesis. Importantly, short-term daily administration of recombinant CTRP3 to DIO mice for 5 days was sufficient to improve the fatty liver phenotype, evident as reduced hepatic triglyceride content and expression of triglyceride synthesis genes. Consistent with a direct effect on liver cells, recombinant CTRP3 treatment reduced fatty acid synthesis and neutral lipid accumulation in cultured rat H4IIE hepatocytes. Together, these results establish a novel role for CTRP3 hormone in regulating hepatic lipid metabolism and highlight its protective function and therapeutic potential in attenuating hepatic steatosis.

  10. Characterization of immune responses induced by inactivated, live attenuated and DNA vaccines against Japanese encephalitis virus in mice.

    Science.gov (United States)

    Li, Jieqiong; Chen, Hui; Wu, Na; Fan, Dongying; Liang, Guodong; Gao, Na; An, Jing

    2013-08-28

    Vaccination is the most effective countermeasure for protecting individuals from Japanese encephalitis virus (JEV) infection. There are two types of JEV vaccines currently used in China: the Vero cell-derived inactivated vaccine and the live attenuated vaccine. In this study, we characterized the immune response and protective efficacy induced in mice by the inactivated vaccine, live attenuated vaccine and the DNA vaccine candidate pCAG-JME, which expresses JEV prM-E proteins. We found that the live attenuated vaccine conferred 100% protection and resulted in the generation of high levels of specific anti-JEV antibodies and cytokines. The pCAG-JME vaccine induced protective immunity as well as the live attenuated vaccine. Unexpectedly, immunization with the inactivated vaccine only induced a limited immune response and partial protection, which may be due to the decreased activity of dendritic cells and the expansion of CD4+CD25+Foxp3+ regulatory T cells observed in these mice. Altogether, our results suggest that the live attenuated vaccine is more effective in providing protection against JEV infection than the inactivated vaccine and that pCAG-JME will be a potential JEV vaccine candidate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Giardia duodenalis cathepsin B proteases degrade intestinal epithelial interleukin-8 and attenuate interleukin-8-induced neutrophil chemotaxis.

    Science.gov (United States)

    Cotton, James A; Bhargava, Amol; Ferraz, Jose G; Yates, Robin M; Beck, Paul L; Buret, Andre G

    2014-07-01

    Giardia duodenalis (syn. G. intestinalis, G. lamblia) infections are a leading cause of waterborne diarrheal disease that can also result in the development of postinfectious functional gastrointestinal disorders via mechanisms that remain unclear. Parasite numbers exceed 10(6) trophozoites per centimeter of gut at the height of an infection. Yet the intestinal mucosa of G. duodenalis-infected individuals is devoid of signs of overt inflammation. G. duodenalis infections can also occur concurrently with infections with other proinflammatory gastrointestinal pathogens. Little is known of whether and how this parasite can attenuate host inflammatory responses induced by other proinflammatory stimuli, such as a gastrointestinal pathogen. Identifying hitherto-unrecognized parasitic immunomodulatory pathways, the present studies demonstrated that G. duodenalis trophozoites attenuate secretion of the potent neutrophil chemoattractant interleukin-8 (CXCL8); these effects were observed in human small intestinal mucosal tissues and from intestinal epithelial monolayers, activated through administration of proinflammatory interleukin-1β or Salmonella enterica serovar Typhimurium. This attenuation is caused by the secretion of G. duodenalis cathepsin B cysteine proteases that degrade CXCL8 posttranscriptionally. Furthermore, the degradation of CXCL8 via G. duodenalis cathepsin B cysteine proteases attenuates CXCL8-induced chemotaxis of human neutrophils. Taken together, these data demonstrate for the first time that G. duodenalis trophozoite cathepsins are capable of attenuating a component of their host's proinflammatory response induced by a separate proinflammatory stimulus. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  12. Melatonin attenuates methamphetamine-induced inhibition of proliferation of adult rat hippocampal progenitor cells in vitro.

    Science.gov (United States)

    Ekthuwapranee, Kasima; Sotthibundhu, Areechun; Govitrapong, Piyarat

    2015-05-01

    Methamphetamine (METH) is an extremely addictive stimulatory drug. A recent study suggested that METH may cause an impairment in the proliferation of hippocampal neural progenitor cells, but the underlying mechanism of this effect remains unknown. Blood and cerebrospinal levels of melatonin derive primarily from the pineal gland, and that performs many biological functions. Our previous study demonstrated that melatonin promotes the proliferation of progenitor cells originating from the hippocampus. In this study, hippocampal progenitor cells from adult Wistar rats were used to determine the effects of METH on cell proliferation and the mechanisms underlying these effects. We investigated the effects of melatonin on the METH-induced alteration in cell proliferation. The results demonstrated that 500 μm METH induced a decrease (63.0%) in neurosphere cell proliferation and altered the expression of neuronal phenotype markers in the neurosphere cell population. Moreover, METH induced an increase in the protein expression of the tumor suppressor p53 (124.4%) and the cell cycle inhibitor p21(CIP) (1) (p21) (128.1%), resulting in the accumulation of p21 in the nucleus. We also found that METH altered the expression of the N-methyl-d-aspartate (NMDA) receptor subunits NR2A (79.6%) and NR2B (126.7%) and Ca(2+) /calmodulin-dependent protein kinase II (CAMKII) (74.0%). In addition, pretreatment with 1 μm melatonin attenuated the effects induced by METH treatment. According to these results, we concluded that METH induces a reduction in cell proliferation by upregulating the cell cycle regulators p53/p21 and promoting the accumulation of p21 in the nucleus and that melatonin ameliorates these negative effects of METH. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Low concentrations of doxycycline attenuates FasL-induced apoptosis in HeLa cells.

    Science.gov (United States)

    Yoon, Jung Mi; Koppula, Sushruta; Huh, Se Jong; Hur, Sun Jin; Kim, Chan Gil

    2015-07-24

    Doxycycline (DC) has been shown to possess non-antibiotic properties including Fas/Fas Ligand (FasL)-mediated apoptosis against several tumor types in the concentration range of 10-40 µg/mL. However, the effect of DC in apoptotic signaling at much low concentrations was not studied. The present study investigated the attenuation effect of low dose of DC on FasL-induced apoptosis in HeLa cell by the methods of MTT assay, fluorescence microscopy, DNA fragmentation, flow cytometry analysis, and western blotting. In the present findings we showed that low concentration of DC (HeLa cells. FasL treatment to HeLa cells resulted in a concentration-dependent induction of cell death, and treatment with low concentrations of DC (0.1-2 µg/mL) significantly (p cell death as measured by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Further, the FasL-induced apoptotic features in HeLa cells, such as morphological changes, DNA fragmentation and cell cycle arrest was also inhibited by DC (0.5 µg/mL). Tetracycline and minocycline also showed similar anti-apoptotic effects but were not significant when compared to DC, tested at same concentrations. Further, DC (0.01-16 µg/mL) did not influence the hydrogen peroxide- or cisplatin-induced intrinsic apoptotic pathway in HeLa cells. Protein analysis using Western blotting confirmed that FasL-induced cleavage/activation of caspase-8 and caspase-3, were inhibited by DC treatment at low concentration (0.5 µg/mL). Considering the overall data, we report for the first time that DC exhibited anti-apoptotic effects at low concentrations in HeLa cells by inhibition of caspase activation via FasL-induced extrinsic pathway.

  14. Silibinin attenuates ionizing radiation-induced pro-angiogenic response and EMT in prostate cancer cells

    International Nuclear Information System (INIS)

    Nambiar, Dhanya K.; Rajamani, Paulraj; Singh, Rana P.

    2015-01-01

    Graphical abstract: Potential model showing mechanism of silibinin-mediated attenuation of IR-induced angiogenic phenotype and EMT in tumor cells. Silibinin counters radiation induced invasive and migratory phenotype of cancer cells by down-regulating mitogenic pathways activated by IR, leading to inhibition of molecules including VEGF, iNOS, MMPs and N-cadherin. Silibinin also reverses IR mediated E-cadherin down-regulation, inhibiting EMT in tumor cells. Silibinin also radiosensitizes endothelial cells, reduces capillary tube formation by targeting various pro-angiogenic molecules. Further, silibinin may inhibit autocrine and paracrine signaling between tumor and endothelial cells by decreasing the levels of VEGF and other signaling molecules activated in response to IR. - Highlights: • Silibinin radiosensitizes endothelial cells. • Silibinin targets ionization radiation (IR)-induced EMT in PCa cells. • Silibinin is in phase II clinical trial in PCa patients, hence clinically relevant. - Abstract: Radiotherapy of is well established and frequently utilized in prostate cancer (PCa) patients. However, recurrence following therapy and distant metastases are commonly encountered problems. Previous studies underline that, in addition to its therapeutic effects, ionizing radiation (IR) increases the vascularity and invasiveness of surviving radioresistant cancer cells. This invasive phenotype of radioresistant cells is an upshot of IR-induced pro-survival and mitogenic signaling in cancer as well as endothelial cells. Here, we demonstrate that a plant flavonoid, silibinin can radiosensitize endothelial cells by inhibiting expression of pro-angiogenic factors. Combining silibinin with IR not only strongly down-regulated endothelial cell proliferation, clonogenicity and tube formation ability rather it strongly (p < 0.001) reduced migratory and invasive properties of PCa cells which were otherwise marginally affected by IR treatment alone. Most of the pro

  15. Silibinin attenuates ionizing radiation-induced pro-angiogenic response and EMT in prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Nambiar, Dhanya K. [Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi (India); School of Environmental Sciences, Jawaharlal Nehru University, New Delhi (India); Rajamani, Paulraj [School of Environmental Sciences, Jawaharlal Nehru University, New Delhi (India); Singh, Rana P., E-mail: rana_singh@mail.jnu.ac.in [Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi (India); School of Life Sciences, Central University of Gujarat, Gandhinagar (India)

    2015-01-02

    Graphical abstract: Potential model showing mechanism of silibinin-mediated attenuation of IR-induced angiogenic phenotype and EMT in tumor cells. Silibinin counters radiation induced invasive and migratory phenotype of cancer cells by down-regulating mitogenic pathways activated by IR, leading to inhibition of molecules including VEGF, iNOS, MMPs and N-cadherin. Silibinin also reverses IR mediated E-cadherin down-regulation, inhibiting EMT in tumor cells. Silibinin also radiosensitizes endothelial cells, reduces capillary tube formation by targeting various pro-angiogenic molecules. Further, silibinin may inhibit autocrine and paracrine signaling between tumor and endothelial cells by decreasing the levels of VEGF and other signaling molecules activated in response to IR. - Highlights: • Silibinin radiosensitizes endothelial cells. • Silibinin targets ionization radiation (IR)-induced EMT in PCa cells. • Silibinin is in phase II clinical trial in PCa patients, hence clinically relevant. - Abstract: Radiotherapy of is well established and frequently utilized in prostate cancer (PCa) patients. However, recurrence following therapy and distant metastases are commonly encountered problems. Previous studies underline that, in addition to its therapeutic effects, ionizing radiation (IR) increases the vascularity and invasiveness of surviving radioresistant cancer cells. This invasive phenotype of radioresistant cells is an upshot of IR-induced pro-survival and mitogenic signaling in cancer as well as endothelial cells. Here, we demonstrate that a plant flavonoid, silibinin can radiosensitize endothelial cells by inhibiting expression of pro-angiogenic factors. Combining silibinin with IR not only strongly down-regulated endothelial cell proliferation, clonogenicity and tube formation ability rather it strongly (p < 0.001) reduced migratory and invasive properties of PCa cells which were otherwise marginally affected by IR treatment alone. Most of the pro

  16. Electroacupuncture-Induced Attenuation of Experimental Epilepsy: A Comparative Evaluation of Acupoints and Stimulation Parameters

    Directory of Open Access Journals (Sweden)

    Xuezhi Kang

    2013-01-01

    Full Text Available The efficacy of electroacupuncture (EA on epilepsy remains to be verified because of previous controversies that might be due to the complexity of the effects induced by different acupoints and stimulation approaches adopted. Therefore, we investigated the effects of EA on epilepsy to determine the specific acupoints and optimal stimulation parameters in this work. Experimental epilepsy was induced by injecting kainic acid to the lateral cerebral ventricle of adult male SD rats. EA with a low-frequency (10 Hz/1 mA or high-frequency (100 Hz/1 mA current was applied to the epileptic model for 30 minutes starting at 0.5 hour after the injection. Four pairs of acupoints were tested, that is, Shuigou (DU26 + Dazhui (DU14, Jinsuo (DU8 + Yaoqi (EXB9, Neiguan (PC6 + Quchi (LI11, and Fenglong (ST40 + Yongquan (KI1. We found that (1 low- or high-frequency EA at different acupoints reduced epileptic seizures (P<0.05 versus the control with an exception of low-frequency EA at Neiguan (PC6 and Quchi (LI11; (2 low-frequency EA induced a better effect at Fenglong (ST40 plus Yongquan (KI1 than that of the other acupoints (P<0.05; (3 there is no significant difference in the effects of high-frequency EA at these acupoints; and (4 the high-frequency EA elicited a greater effect than that of low-frequency EA in all groups (P<0.05, with an exception at Jinsuo (DU8 + Yaoqi (EXB9. The EA-induced attenuation appeared 1–1.5 hours after EA with no appreciable effect in the first hour after EA in either the EEG or the behavioral tests. We conclude that EA attenuation of epileptic seizures is dependent on the stimulation parameters and acupoints and that the delay in appearance of the EA effect could be a reflection of the time required by the EA signal to regulate neural function in the central nervous system.

  17. Effects of Endotoxin and Psychological Stress on Redox Physiology, Immunity and Feather Corticosterone in Greenfinches.

    Directory of Open Access Journals (Sweden)

    Richard Meitern

    Full Text Available Assessment of costs accompanying activation of immune system and related neuroendocrine pathways is essential for understanding the selective forces operating on these systems. Here we attempted to detect such costs in terms of disruption to redox balance and interference between different immune system components in captive wild-caught greenfinches (Carduelis chloris. Study birds were subjected to an endotoxin-induced inflammatory challenge and temporary exposure to a psychological stressor (an image of a predator in a 2*2 factorial experiment. Injection of bacterial endotoxin resulted in up-regulation of two markers of antioxidant protection - erythrocyte glutathione, and plasma oxygen radical absorbance (OXY. These findings suggest that inflammatory responses alter redox homeostasis. However, no effect on markers of oxidative damage to proteins or DNA in erythrocytes could be detected. We found no evidence that the endotoxin injection interfered with antibody production against Brucella abortus antigen or the intensity of chronic coccidiosis. The hypothesis of within-immune system trade-offs as a cost of immunity was thus not supported in our model system. We showed for the first time that administration of endotoxin can reduce the level of corticosterone deposited into feathers. This finding suggests a down-regulation of the corticosterone secretion cascade due to an endotoxin-induced immune response, a phenomenon that has not been reported previously. Exposure to the predator image did not affect any of the measured physiological parameters.

  18. Effects of Endotoxin and Psychological Stress on Redox Physiology, Immunity and Feather Corticosterone in Greenfinches

    Science.gov (United States)

    Meitern, Richard; Sild, Elin; Lind, Mari-Ann; Männiste, Marju; Sepp, Tuul; Karu, Ulvi; Hõrak, Peeter

    2013-01-01

    Assessment of costs accompanying activation of immune system and related neuroendocrine pathways is essential for understanding the selective forces operating on these systems. Here we attempted to detect such costs in terms of disruption to redox balance and interference between different immune system components in captive wild-caught greenfinches (Carduelis chloris). Study birds were subjected to an endotoxin-induced inflammatory challenge and temporary exposure to a psychological stressor (an image of a predator) in a 2*2 factorial experiment. Injection of bacterial endotoxin resulted in up-regulation of two markers of antioxidant protection – erythrocyte glutathione, and plasma oxygen radical absorbance (OXY). These findings suggest that inflammatory responses alter redox homeostasis. However, no effect on markers of oxidative damage to proteins or DNA in erythrocytes could be detected. We found no evidence that the endotoxin injection interfered with antibody production against Brucella abortus antigen or the intensity of chronic coccidiosis. The hypothesis of within-immune system trade-offs as a cost of immunity was thus not supported in our model system. We showed for the first time that administration of endotoxin can reduce the level of corticosterone deposited into feathers. This finding suggests a down-regulation of the corticosterone secretion cascade due to an endotoxin-induced immune response, a phenomenon that has not been reported previously. Exposure to the predator image did not affect any of the measured physiological parameters. PMID:23805316

  19. Effects of Endotoxin and Psychological Stress on Redox Physiology, Immunity and Feather Corticosterone in Greenfinches.

    Science.gov (United States)

    Meitern, Richard; Sild, Elin; Lind, Mari-Ann; Männiste, Marju; Sepp, Tuul; Karu, Ulvi; Hõrak, Peeter

    2013-01-01

    Assessment of costs accompanying activation of immune system and related neuroendocrine pathways is essential for understanding the selective forces operating on these systems. Here we attempted to detect such costs in terms of disruption to redox balance and interference between different immune system components in captive wild-caught greenfinches (Carduelis chloris). Study birds were subjected to an endotoxin-induced inflammatory challenge and temporary exposure to a psychological stressor (an image of a predator) in a 2*2 factorial experiment. Injection of bacterial endotoxin resulted in up-regulation of two markers of antioxidant protection - erythrocyte glutathione, and plasma oxygen radical absorbance (OXY). These findings suggest that inflammatory responses alter redox homeostasis. However, no effect on markers of oxidative damage to proteins or DNA in erythrocytes could be detected. We found no evidence that the endotoxin injection interfered with antibody production against Brucella abortus antigen or the intensity of chronic coccidiosis. The hypothesis of within-immune system trade-offs as a cost of immunity was thus not supported in our model system. We showed for the first time that administration of endotoxin can reduce the level of corticosterone deposited into feathers. This finding suggests a down-regulation of the corticosterone secretion cascade due to an endotoxin-induced immune response, a phenomenon that has not been reported previously. Exposure to the predator image did not affect any of the measured physiological parameters.

  20. Common studied polymorphisms do not affect plasma cytokine levels upon endotoxin exposure in humans

    DEFF Research Database (Denmark)

    Taudorf, Sarah; Krabbe, K.S.; Berg, R.M.

    2008-01-01

    The aim of this study was to investigate to what extent single nucleotide polymorphisms (SNPs) in promoter regions of genes of Toll-like receptor (TLR)-4, tumour necrosis factor (TNF)-alpha, interleukin (IL)-18, interferon (IFN)-gamma, IL-6 and IL-10 affect the cytokine response during a controlled......-607, IFN-gamma+874, IL-6-174, IL-10-592 and IL-10-1082) and endotoxin-induced changes in plasma levels of TNF-alpha, IL-6 and IL-10. IL-18 levels were unaffected by endotoxin. In conclusion, the investigated SNPs did not affect endotoxin-induced low-grade cytokine production of TNF-alpha, IL-6, IL-18 or IL......-10 in healthy young men. Previous reports of a major heritability factor in the inflammatory response may be due to other target genes or effects in older age groups or women Udgivelsesdato: 2008/4...

  1. Effects of the immunomodulator, VGX-1027, in endotoxin-induced uveitis in Lewis ratsTumor necrosis factor-alpha binding capacity and anti-infliximab antibodies measured by fluid-phase radioimmunoassays as predictors of clinical efficacy of infliximab in Crohn's disease

    DEFF Research Database (Denmark)

    Mangano, K.; Sardesai, N.Y.; Quattrocchi, C.

    2008-01-01

    . Here, we have studied the effects of VGX-1027 on the development of endotoxin-induced uveitis (EIU) in male Lewis rats, as a model of inflammatory ocular diseases in humans. EXPERIMENTAL APPROACH: EIU was induced by a single footpad injection of 200 microg lipopolysaccharide (LPS). Groups of rats were...... with VGX-1027 counteracts the uveitis-inducing effect of LPS in rats and suggests that this drug may have potential in the treatment of immuno-inflammatory conditions of the eye in humans Udgivelsesdato: 2008/11......BACKGROUND AND PURPOSE: VGX-1027 is a novel, low molecular weight, immunomodulatory compound that has shown efficacy against a variety of immuno-inflammatory disease models in animals including autoimmune diabetes in NOD mice, collagen-induced arthritis and chemically induced inflammatory colitis...

  2. Doxycycline Attenuates Leptospira-Induced IL-1β by Suppressing NLRP3 Inflammasome Priming

    Directory of Open Access Journals (Sweden)

    Wenlong Zhang

    2017-07-01

    Full Text Available Doxycycline (Dox, a semisynthetic antibiotic, has been reported to exert multiple immunomodulatory effects. Treatment with Dox has a satisfactory curative effect against leptospirosis. In addition to its antibacterial action, we supposed that Dox also modulated immune response in controlling leptospira infection. Using J774A.1 mouse macrophages, the effects of Dox on protein and mRNA levels of IL-1β and TNF-α were investigated after infection with live or sonicated Leptospira interrogans serovar Lai strain Lai (56601. Specifically, the level of IL-1β but not TNF-α was sharply decreased when treated with Dox in leptospira-infected macrophages. Western blot analysis showed that Dox suppressed the activation of leptospira-induced MAPK and NF-κB signaling pathways. Using NLRP3-deficient and NLRC4-deficient mice, the data showed that the expression of leptospira-induced IL-1β was mainly dependent on the presence of NLRP3 inflammasome in macrophages. Meanwhile, Dox suppressed leptospira-induced NLRP3 inflammasome priming with the upregulation of the Na/K-ATPase Pump β1 subunit. The inhibition effect of Dox on IL-1β was also conspicuous in cells with lipopolysaccharide and ATP stimulation. These results were confirmed in vivo, as peritoneal fluids of mice and organs of hamsters expressed less IL-1β after treatment of leptospiral infection with Dox. Our results indicated that Dox also modulated immune response to attenuate leptospira-induced IL-1β by suppressing p38, JNK, p65, and NLRP3 inflammasome priming.

  3. Cardiac-Specific Overexpression of Catalase Attenuates Lipopolysaccharide-Induced Myocardial Contractile Dysfunction: Role of Autophagy

    Science.gov (United States)

    Turdi, Subat; Han, Xuefeng; Huff, Anna F.; Roe, Nathan D.; Hu, Nan; Gao, Feng; Ren, Jun

    2012-01-01

    Lipopolysaccharide (LPS) from Gram-negative bacteria is a major initiator of sepsis, leading to cardiovascular collapse. Accumulating evidence has indicated a role of reactive oxygen species (ROS) in cardiovascular complication in sepsis. This study was designed to examine the effect of cardiac-specific overexpression of catalase in LPS-induced cardiac contractile dysfunction and the underlying mechanism(s) with a focus on autophagy. Catalase transgenic and wild-type FVB mice were challenged with LPS (6 mg/kg) and cardiac function was evaluated. Levels of oxidative stress, autophagy, apoptosis and protein damage were examined using fluorescence microscopy, Western blot, TUNEL assay, caspase-3 activity and carbonyl formation. Kaplan-Meier curve was constructed for survival following LPS treatment. Our results revealed a lower mortality in catalase mice compared with FVB mice following LPS challenge. LPS injection led to depressed cardiac contractile capacity as evidenced by echocardiography and cardiomyocyte contractile function, the effect of which was ablated by catalase overexpression. LPS treatment induced elevated TNF-α level, autophagy, apoptosis (TUNEL, caspase-3 activation, cleaved caspase-3), production of ROS and O2−, and protein carbonyl formation, the effects of which were significantly attenuated by catalase overexpression. Electron microscopy revealed focal myocardial damage characterized by mitochondrial injury following LPS treatment, which was less severe in catalase mice. Interestingly, LPS-induced cardiomyocyte contractile dysfunction was prevented by antioxidant NAC and the autophagy inhibitor 3-methyladenine. Taken together, our data revealed that catalase protects against LPS-induced cardiac dysfunction and mortality, which may be associated with inhibition of oxidative stress and autophagy. PMID:22902401

  4. Cardiac-specific overexpression of catalase attenuates lipopolysaccharide-induced myocardial contractile dysfunction: role of autophagy.

    Science.gov (United States)

    Turdi, Subat; Han, Xuefeng; Huff, Anna F; Roe, Nathan D; Hu, Nan; Gao, Feng; Ren, Jun

    2012-09-15

    Lipopolysaccharide (LPS) from gram-negative bacteria is a major initiator of sepsis, leading to cardiovascular collapse. Accumulating evidence has indicated a role of reactive oxygen species (ROS) in cardiovascular complications in sepsis. This study was designed to examine the effect of cardiac-specific overexpression of catalase in LPS-induced cardiac contractile dysfunction and the underlying mechanism(s) with a focus on autophagy. Catalase transgenic and wild-type FVB mice were challenged with LPS (6 mg/kg) and cardiac function was evaluated. Levels of oxidative stress, autophagy, apoptosis, and protein damage were examined using fluorescence microscopy, Western blot, TUNEL assay, caspase-3 activity, and carbonyl formation. A Kaplan-Meier curve was constructed for survival after LPS treatment. Our results revealed a lower mortality in catalase mice compared with FVB mice after LPS challenge. LPS injection led to depressed cardiac contractile capacity as evidenced by echocardiography and cardiomyocyte contractile function, the effect of which was ablated by catalase overexpression. LPS treatment induced elevated TNF-α level, autophagy, apoptosis (TUNEL, caspase-3 activation, cleaved caspase-3), production of ROS and O(2)(-), and protein carbonyl formation, the effects of which were significantly attenuated by catalase overexpression. Electron microscopy revealed focal myocardial damage characterized by mitochondrial injury after LPS treatment, which was less severe in catalase mice. Interestingly, LPS-induced cardiomyocyte contractile dysfunction was prevented by the antioxidant N-acetylcysteine and the autophagy inhibitor 3-methyladenine. Taken together, our data revealed that catalase protects against LPS-induced cardiac dysfunction and mortality, which may be associated with inhibition of oxidative stress and autophagy. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Doxycycline Attenuates Leptospira-Induced IL-1β by Suppressing NLRP3 Inflammasome Priming

    Science.gov (United States)

    Zhang, Wenlong; Xie, Xufeng; Wu, Dianjun; Jin, Xuemin; Liu, Runxia; Hu, Xiaoyu; Fu, Yunhe; Ding, Zhuang; Zhang, Naisheng; Cao, Yongguo

    2017-01-01

    Doxycycline (Dox), a semisynthetic antibiotic, has been reported to exert multiple immunomodulatory effects. Treatment with Dox has a satisfactory curative effect against leptospirosis. In addition to its antibacterial action, we supposed that Dox also modulated immune response in controlling leptospira infection. Using J774A.1 mouse macrophages, the effects of Dox on protein and mRNA levels of IL-1β and TNF-α were investigated after infection with live or sonicated Leptospira interrogans serovar Lai strain Lai (56601). Specifically, the level of IL-1β but not TNF-α was sharply decreased when treated with Dox in leptospira-infected macrophages. Western blot analysis showed that Dox suppressed the activation of leptospira-induced MAPK and NF-κB signaling pathways. Using NLRP3-deficient and NLRC4-deficient mice, the data showed that the expression of leptospira-induced IL-1β was mainly dependent on the presence of NLRP3 inflammasome in macrophages. Meanwhile, Dox suppressed leptospira-induced NLRP3 inflammasome priming with the upregulation of the Na/K-ATPase Pump β1 subunit. The inhibition effect of Dox on IL-1β was also conspicuous in cells with lipopolysaccharide and ATP stimulation. These results were confirmed in vivo, as peritoneal fluids of mice and organs of hamsters expressed less IL-1β after treatment of leptospiral infection with Dox. Our results indicated that Dox also modulated immune response to attenuate leptospira-induced IL-1β by suppressing p38, JNK, p65, and NLRP3 inflammasome priming. PMID:28791016

  6. Doxycycline Attenuates Leptospira-Induced IL-1β by Suppressing NLRP3 Inflammasome Priming.

    Science.gov (United States)

    Zhang, Wenlong; Xie, Xufeng; Wu, Dianjun; Jin, Xuemin; Liu, Runxia; Hu, Xiaoyu; Fu, Yunhe; Ding, Zhuang; Zhang, Naisheng; Cao, Yongguo

    2017-01-01

    Doxycycline (Dox), a semisynthetic antibiotic, has been reported to exert multiple immunomodulatory effects. Treatment with Dox has a satisfactory curative effect against leptospirosis. In addition to its antibacterial action, we supposed that Dox also modulated immune response in controlling leptospira infection. Using J774A.1 mouse macrophages, the effects of Dox on protein and mRNA levels of IL-1β and TNF-α were investigated after infection with live or sonicated Leptospira interrogans serovar Lai strain Lai (56601). Specifically, the level of IL-1β but not TNF-α was sharply decreased when treated with Dox in leptospira-infected macrophages. Western blot analysis showed that Dox suppressed the activation of leptospira-induced MAPK and NF-κB signaling pathways. Using NLRP3-deficient and NLRC4-deficient mice, the data showed that the expression of leptospira-induced IL-1β was mainly dependent on the presence of NLRP3 inflammasome in macrophages. Meanwhile, Dox suppressed leptospira-induced NLRP3 inflammasome priming with the upregulation of the Na/K-ATPase Pump β1 subunit. The inhibition effect of Dox on IL-1β was also conspicuous in cells with lipopolysaccharide and ATP stimulation. These results were confirmed in vivo , as peritoneal fluids of mice and organs of hamsters expressed less IL-1β after treatment of leptospiral infection with Dox. Our results indicated that Dox also modulated immune response to attenuate leptospira-induced IL-1β by suppressing p38, JNK, p65, and NLRP3 inflammasome priming.

  7. Iptakalim attenuates hypoxia-induced pulmonary arterial hypertension in rats by endothelial function protection.

    Science.gov (United States)

    Zhu, Rong; Bi, Li-Qing; Wu, Su-Ling; Li, Lan; Kong, Hui; Xie, Wei-Ping; Wang, Hong; Meng, Zi-Li

    2015-08-01

    The present study aimed to investigate the protective effects of iptakalim, an adenosine triphosphate (ATP)-sensitive potassium channel opener, on the inflammation of the pulmonary artery and endothelial cell injury in a hypoxia-induced pulmonary arterial hypertension (PAH) rat model. Ninety-six Sprague-Dawley rats were placed into normobaric hypoxia chambers for four weeks and were treated with iptakalim (1.5 mg/kg/day) or saline for 28 days. The right ventricle systolic pressures (RVSP) were measured and small pulmonary arterial morphological alterations were analyzed with hematoxylin and eosin staining. Enzyme-linked immunosorbent assay (ELISA) was performed to analyze the content of interleukin (IL)-1β and IL-10. Immunohistochemical analysis for ED1(+) monocytes was performed to detect the inflammatory cells surrounding the pulmonary arterioles. Western blot analysis was performed to analyze the expression levels of platelet endothelial cell adhesion molecule-1 (PECAM-1) and endothelial nitric oxide synthase (eNOS) in the lung tissue. Alterations in small pulmonary arteriole morphology and the ultrastructure of pulmonary arterial endothelial cells were observed via light and transmission electron microscopy, respectively. Iptakalim significantly attenuated the increase in mean pulmonary artery pressure, RVSP, right ventricle to left ventricle plus septum ratio and small pulmonary artery wall remodeling in hypoxia-induced PAH rats. Iptakalim also prevented an increase in IL-1β and a decrease in IL-10 in the peripheral blood and lung tissue, and alleviated inflammatory cell infiltration in hypoxia-induced PAH rats. Furthermore, iptakalim enhanced PECAM-1 and eNOS expression and prevented the endothelial cell injury induced by hypoxic stimuli. Iptakalim suppressed the pulmonary arteriole and systemic inflammatory responses and protected against the endothelial damage associated with the upregulation of PECAM-1 and eNOS, suggesting that iptakalim may represent a

  8. Autophagy attenuates noise-induced hearing loss by reducing oxidative stress.

    Science.gov (United States)

    Yuan, Hu; Wang, Xianren; Hill, Kayla; Chen, Jun; Lemasters, John; Yang, Shi-Ming; Sha, Su-Hua

    2015-05-20

    Reactive oxygen species play a dual role in mediating both cell stress and defense pathways. Here, we used pharmacological manipulations and siRNA silencing to investigate the relationship between autophagy and oxidative stress under conditions of noise-induced temporary, permanent, and severe permanent auditory threshold shifts (temporary threshold shift [TTS], permanent threshold shift [PTS], and severe PTS [sPTS], respectively) in adult CBA/J mice. Levels of oxidative stress markers (4-hydroxynonenal [4-HNE] and 3-nitrotyrosine [3-NT]) increased in outer hair cells (OHCs) in a noise-dose-dependent manner, whereas levels of the autophagy marker microtubule-associated protein light chain 3 B (LC3B) were sharply elevated after TTS but rose only slightly in response to PTS and were unaltered by sPTS noise. Furthermore, green fluorescent protein (GFP) intensity increased in GFP-LC3 mice after TTS-noise exposure. Treatment with rapamycin, an autophagy activator, significantly increased LC3B expression, while diminishing 4-HNE and 3-NT levels, reducing noise-induced hair cell loss, and, subsequently, noise-induced hearing loss (NIHL). In contrast, treatment with either the autophagy inhibitor 3-methyladenine (3MA) or LC3B siRNA reduced LC3B expression, increased 3-NT and 4-HNE levels, and exacerbated TTS to PTS. This study demonstrates a relationship between oxidative stress and autophagy in OHCs and reveals that autophagy is an intrinsic cellular process that protects against NIHL by attenuating oxidative stress. The results suggest that the lower levels of oxidative stress incurred by TTS-noise exposure induce autophagy, which promotes OHC survival. However, excessive oxidative stress under sPTS-noise conditions overwhelms the beneficial potential of autophagy in OHCs and leads to OHC death and NIHL.

  9. Inhibition of airway epithelial-to-mesenchymal transition and fibrosis by kaempferol in endotoxin-induced epithelial cells and ovalbumin-sensitized mice.

    Science.gov (United States)

    Gong, Ju-Hyun; Cho, In-Hee; Shin, Daekeun; Han, Seon-Young; Park, Sin-Hye; Kang, Young-Hee

    2014-03-01

    Chronic airway remodeling is characterized by structural changes within the airway wall, including smooth muscle hypertrophy, submucosal fibrosis and epithelial shedding. Epithelial-to-mesenchymal transition (EMT) is a fundamental mechanism of organ fibrosis, which can be induced by TGF-β. In the in vitro study, we investigated whether 1-20 μM kaempferol inhibited lipopolysaccharide (LPS)-induced bronchial EMT in BEAS-2B cells. The in vivo study explored demoting effects of 10-20 mg/kg kaempferol on airway fibrosis in BALB/c mice sensitized with ovalbumin (OVA). LPS induced airway epithelial TGF-β1 signaling that promoted EMT with concurrent loss of E-cadherin and induction of α-smooth muscle actin (α-SMA). Nontoxic kaempferol significantly inhibited TGF-β-induced EMT process through reversing E-cadherin expression and retarding the induction of N-cadherin and α-SMA. Consistently, OVA inhalation resulted in a striking loss of epithelial morphology by displaying myofibroblast appearance, which led to bronchial fibrosis with submucosal accumulation of collagen fibers. Oral administration of kaempferol suppressed collagen deposition, epithelial excrescency and goblet hyperplasia observed in the lung of OVA-challenged mice. The specific inhibition of TGF-β entailed epithelial protease-activated receptor-1 (PAR-1) as with 20 μM kaempferol. The epithelial PAR-1 inhibition by SCH-79797 restored E-cadherin induction and deterred α-SMA induction, indicating that epithelial PAR-1 localization was responsible for resulting in airway EMT. These results demonstrate that dietary kaempferol alleviated fibrotic airway remodeling via bronchial EMT by modulating PAR1 activation. Therefore, kaempferol may be a potential therapeutic agent targeting asthmatic airway constriction.

  10. Anti-inflammatory activity of a novel family of aryl ureas compounds in an endotoxin-induced airway epithelial cell injury model.

    Directory of Open Access Journals (Sweden)

    Nuria E Cabrera-Benitez

    Full Text Available Despite our increased understanding of the mechanisms involved in acute lung injury (ALI and the acute respiratory distress syndrome (ARDS, there is no specific pharmacological treatment of proven benefit. We used a novel screening methodology to examine potential anti-inflammatory effects of a small structure-focused library of synthetic carbamate and urea derivatives in a well established cell model of lipopolysaccharide (LPS-induced ALI/ARDS.After a pilot study to develop an in vitro LPS-induced airway epithelial cell injury model, a library of synthetic carbamate and urea derivates was screened against representative panels of human solid tumor cell lines and bacterial and fungal strains. Molecules that were non-cytotoxic and were inactive in terms of antiproliferative and antimicrobial activities were selected to study the effects on LPS-induced inflammatory response in an in vitro cell culture model using A549 human alveolar and BEAS-2B human bronchial cells. These cells were exposed for 18 h to LPS obtained from Escherichia coli, either alone or in combination with the test compounds. The LPS antagonists rhein and emodin were used as reference compounds. The most active compound (CKT0103 was selected as the lead compound and the impact of CKT0103 on pro-inflammatory IL-6 and IL-8 cytokine levels, expression of toll-like receptor-4 (TLR4 and nuclear factor kappa B inhibitor alpha (IκBα was measured. CKT0103 significantly inhibited the synthesis and release of IL-6 and IL-8 induced by LPS. This suppression was associated with inhibition of TLR4 up-regulation and IκBα down-regulation. Immunocytochemical staining for TLR4 and IκBα supported these findings.Using a novel screening methodology, we identified a compound - CKT0103 - with potent anti-inflammatory effects. These findings suggest that CKT0103 is a potential target for the treatment of the acute phase of sepsis and sepsis-induced ALI/ARDS.

  11. Antibody-Directed Glucocorticoid Targeting to CD163 in M2-type Macrophages Attenuates Fructose-Induced Liver Inflammatory Changes

    DEFF Research Database (Denmark)

    Svendsen, Pia; Graversen, Jonas H.; Etzerodt, Anders

    2017-01-01

    Increased consumption of high-caloric carbohydrates contributes substantially to endemic non-alcoholic fatty liver disease in humans, covering a histological spectrum from fatty liver to steatohepatitis. Hypercaloric intake and lipogenetic effects of fructose and endotoxin-driven activation...

  12. In vivo evidence of methamphetamine induced attenuation of brain tissue oxygenation as measured by EPR oximetry

    International Nuclear Information System (INIS)

    Weaver, John; Yang, Yirong; Purvis, Rebecca; Weatherwax, Theodore; Rosen, Gerald M.; Liu, Ke Jian

    2014-01-01

    Abuse of methamphetamine (METH) is a major and significant societal problem in the US, as a number of studies have suggested that METH is associated with increased cerebrovascular events, hemorrhage or vasospasm. Although cellular and molecular mechanisms involved in METH-induced toxicity are not completely understood, changes in brain O 2 may play an important role and contribute to METH-induced neurotoxicity including dopaminergic receptor degradation. Given that O 2 is the terminal electron acceptor for many enzymes that are important in brain function, the impact of METH on brain tissue pO 2 in vivo remains largely uncharacterized. This study investigated striatal tissue pO 2 changes in male C57BL/6 mice (16–20 g) following METH administration using EPR oximetry, a highly sensitive modality to measure pO 2 in vivo, in situ and in real time. We demonstrate that 20 min after a single injection of METH (8 mg/kg i.v.), the striatal pO 2 was reduced to 81% of the pretreatment level and exposure to METH for 3 consecutive days further attenuated striatal pO 2 to 64%. More importantly, pO 2 did not recover fully to control levels even 24 h after administration of a single dose of METH and continual exposure to METH exacerbates the condition. We also show a reduction in cerebral blood flow associated with a decreased brain pO 2 indicating an ischemic condition. Our findings suggests that administration of METH can attenuate brain tissue pO 2 , which may lead to hypoxic insult, thus a risk factor for METH-induced brain injury and the development of stroke in young adults. - Highlights: • Explored striatal tissue pO 2 in vivo after METH administration by EPR oximetry. • pO 2 was reduced by 81% after a single dose and 64% after 3 consecutive daily doses. • pO 2 did not recover fully to control levels even 24 h after a single dose. • Decrease in brain tissue pO 2 may be associated with a decrease in CBF. • Administration of methamphetamine may lead to hypoxic

  13. In vivo evidence of methamphetamine induced attenuation of brain tissue oxygenation as measured by EPR oximetry

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, John, E-mail: jmweaver@salud.unm.edu [Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Yang, Yirong [Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Purvis, Rebecca [Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Weatherwax, Theodore [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Rosen, Gerald M. [Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, MD 21201 (United States); Center for EPR Imaging In Vivo Physiology, University of Maryland, Baltimore, MD 21201 (United States); Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201 (United States); Liu, Ke Jian [Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States)

    2014-03-01

    Abuse of methamphetamine (METH) is a major and significant societal problem in the US, as a number of studies have suggested that METH is associated with increased cerebrovascular events, hemorrhage or vasospasm. Although cellular and molecular mechanisms involved in METH-induced toxicity are not completely understood, changes in brain O{sub 2} may play an important role and contribute to METH-induced neurotoxicity including dopaminergic receptor degradation. Given that O{sub 2} is the terminal electron acceptor for many enzymes that are important in brain function, the impact of METH on brain tissue pO{sub 2}in vivo remains largely uncharacterized. This study investigated striatal tissue pO{sub 2} changes in male C57BL/6 mice (16–20 g) following METH administration using EPR oximetry, a highly sensitive modality to measure pO{sub 2}in vivo, in situ and in real time. We demonstrate that 20 min after a single injection of METH (8 mg/kg i.v.), the striatal pO{sub 2} was reduced to 81% of the pretreatment level and exposure to METH for 3 consecutive days further attenuated striatal pO{sub 2} to 64%. More importantly, pO{sub 2} did not recover fully to control levels even 24 h after administration of a single dose of METH and continual exposure to METH exacerbates the condition. We also show a reduction in cerebral blood flow associated with a decreased brain pO{sub 2} indicating an ischemic condition. Our findings suggests that administration of METH can attenuate brain tissue pO{sub 2}, which may lead to hypoxic insult, thus a risk factor for METH-induced brain injury and the development of stroke in young adults. - Highlights: • Explored striatal tissue pO{sub 2}in vivo after METH administration by EPR oximetry. • pO{sub 2} was reduced by 81% after a single dose and 64% after 3 consecutive daily doses. • pO{sub 2} did not recover fully to control levels even 24 h after a single dose. • Decrease in brain tissue pO{sub 2} may be associated with a decrease in

  14. Attenuation of morphine-induced dependence and tolerance by ceftriaxone and amitriptyline in mice.

    Science.gov (United States)

    Habibi-Asl, Bohlul; Vaez, Haleh; Najafi, Moslem; Bidaghi, Ali; Ghanbarzadeh, Saeed

    2014-12-01

    Tolerance to and dependence on the analgesic effect of opioids is a pharmacological phenomenon that occurs after their prolonged administration. The aim of this study was to evaluate the protective effects of ceftriaxone and amitriptyline on the development of morphine-induced tolerance and dependence. In this study, 18 groups (9 groups each for tolerance and dependency tests) of mice (n = 8) received saline [10 mL/kg, intraperitoneally (i.p.)], morphine (50 mg/kg, i.p.), ceftriaxone (50 mg/kg, i.p., 100 mg/kg, i.p., and 200 mg/kg, i.p.), amitriptyline (5 mg/kg, i.p., 10 mg/kg, i.p., and 15 mg/kg, i.p.), or a combination of ceftriaxone (50 mg/kg, i.p.) and amitriptyline (5 mg/kg, i.p.) once per day for 4 days for investigation and comparison of the effects of ceftriaxone and amitriptyline on the prevention of dependency and tolerance to morphine. Tolerance was assessed with administration of morphine (9 mg/kg, i.p.) and using the hot plate test on the 5(th) day. In dependency tests, withdrawal symptoms were assessed on the 4(th) day for each animal 30 minutes after the administration of naloxone (4 mg/kg, i.p.; 2 hours after the last dose of morphine). It was found that treatment with ceftriaxone or amitriptyline attenuated the development of tolerance to the antinociceptive effect of morphine and also reduced naloxone-precipitated withdrawal jumping and standing on feet. Furthermore, coadministration of ceftriaxone and amitriptyline at low doses (50 mg/kg, i.p. and 5 mg/kg, i.p., respectively) prior to morphine injection also decreased both morphine-induced tolerance and dependence. Results indicate that the treatment with ceftriaxone and amitriptyline, alone or in combination, could attenuate the development of morphine-induced tolerance and dependence. Copyright © 2014. Published by Elsevier B.V.

  15. Sweet potato (Ipomoea batatas) attenuates diet-induced aortic stiffening independent of changes in body composition.

    Science.gov (United States)

    Garner, Tyler; Ouyang, An; Berrones, Adam J; Campbell, Marilyn S; Du, Bing; Fleenor, Bradley S

    2017-08-01

    We hypothesized a sweet potato intervention would prevent high-fat (HF) diet-induced aortic stiffness, which would be associated with decreased arterial oxidative stress and increased mitochondrial uncoupling. Young (8-week old) C57BL/6J mice were randomly divided into 4 groups: low fat (LF; 10% fat), HF (60% fat), low-fat sweet potato (LFSP; 10% fat containing 260.3 μg/kcal sweet potato), or high-fat sweet potato diet (HFSP; 60% fat containing 260.3 μg/kcal sweet potato) for 16 weeks. Compared with LF and LFSP, HF- and HFSP-fed mice had increased body mass and percent fat mass with lower percent lean mass (all, P Sweet potato intervention did not influence body composition (all, P > 0.05). Arterial stiffness, assessed by aortic pulse wave velocity and ex vivo mechanical testing of the elastin region elastic modulus (EEM) was greater in HF compared with LF and HFSP animals (all, P sweet potato attenuates diet-induced aortic stiffness independent of body mass and composition, which is associated with a normalization of arterial oxidative stress possibly due to mitochondrial uncoupling.

  16. Ambient ultraviolet radiation induces protective responses in soybean but does not attenuate indirect defense

    International Nuclear Information System (INIS)

    Winter, Thorsten R.; Rostas, Michael

    2008-01-01

    We investigated the effects of ambient ultraviolet (UV) radiation on (i) the performance and chemistry of soybean plants, (ii) the performance of Spodoptera frugiperda and (iii) the foraging behavior of the herbivore's natural enemy Cotesia marginiventris which exploits herbivore-induced plant volatiles (VOC) for host location. The accumulation of protective phenolics was faster in plants receiving ambient UV than in controls exposed to sun light lacking UV. Accordingly, isorhamnetin- and quercetin-based flavonoids were increased in UV exposed plants. No UV effects were found on the performance and feeding behavior of S. frugiperda. Herbivore-damaged plants emitted the same VOC when grown under ambient or attenuated UV for 5, 10 or 30 days. Consequently, C. marginiventris was attracted but did not discriminate between exposed and unexposed soybeans. In summary, ambient UV radiation affected soybean morphology and physiology but did not destabilize interactions between trophic levels. - Ambient ultraviolet radiation does not alter induced VOC emission in soybean and thus host location of the parasitoid Cotesia marginiventris remains effective

  17. Blood-brain barrier dysfunction in mice induced by lipopolysaccharide is attenuated by dapsone.

    Science.gov (United States)

    Zhou, Ting; Zhao, Lei; Zhan, Rui; He, Qihua; Tong, Yawei; Tian, Xiaosheng; Wang, Hecheng; Zhang, Tao; Fu, Yaoyun; Sun, Yang; Xu, Feng; Guo, Xiangyang; Fan, Dongsheng; Han, Hongbin; Chui, Dehua

    2014-10-24

    Blood-brain barrier (BBB) dysfunction is a key event in the development of many central nervous system (CNS) diseases, such as septic encephalopathy and stroke. 4,4'-Diaminodiphenylsulfone (DDS, Dapsone) has displayed neuroprotective effect, but whether DDS has protective role on BBB integrity is not clear. This study was designed to examine the effect of DDS on lipopolysaccharide (LPS)-induced BBB disruption and oxidative stress in brain vessels. Using in vivo multiphoton imaging, we found that DDS administration significantly restored BBB integrity compromised by LPS. DDS also increased the expression of tight junction proteins occludin, zona occludens-1 (ZO-1) and claudin-5 in brain vessels. Level of reactive oxygen species (ROS) was reduced by DDS treatment, which may due to decreased nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and NOX2 expression. Our results showed that LPS-induced BBB dysfunction could be attenuated by DDS, indicated that DDS has a therapeutic potential for treating CNS infection and other BBB related diseases. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Cannabidiol attenuates high glucose-induced endothelial cell inflammatory response and barrier disruption

    Science.gov (United States)

    Rajesh, Mohanraj; Mukhopadhyay, Partha; Bátkai, Sándor; Haskó, György; Liaudet, Lucas; Drel, Viktor R.; Obrosova, Irina G.; Pacher, Pál

    2008-01-01

    A nonpsychoactive cannabinoid cannabidiol (CBD) has been shown to exert potent anti-inflammatory and antioxidant effects and has recently been reported to lower the incidence of diabetes in nonobese diabetic mice and to preserve the blood-retinal barrier in experimental diabetes. In this study we have investigated the effects of CBD on high glucose (HG)-induced, mitochondrial superoxide generation, NF-κB activation, nitrotyrosine formation, inducible nitric oxide synthase (iNOS) and adhesion molecules ICAM-1 and VCAM-1 expression, monocyte-endothelial adhesion, transendothelial migration of monocytes, and disruption of endothelial barrier function in human coronary artery endothelial cells (HCAECs). HG markedly increased mitochondrial superoxide generation (measured by flow cytometry using MitoSOX), NF-κB activation, nitrotyrosine formation, upregulation of iNOS and adhesion molecules ICAM-1 and VCAM-1, transendothelial migration of monocytes, and monocyte-endothelial adhesion in HCAECs. HG also decreased endothelial barrier function measured by increased permeability and diminished expression of vascular endothelial cadherin in HCAECs. Remarkably, all the above mentioned effects of HG were attenuated by CBD pretreatment. Since a disruption of the endothelial function and integrity by HG is a crucial early event underlying the development of various diabetic complications, our results suggest that CBD, which has recently been approved for the treatment of inflammation, pain, and spasticity associated with multiple sclerosis in humans, may have significant therapeutic benefits against diabetic complications and atherosclerosis. PMID:17384130

  19. Gelam Honey Attenuates Carrageenan-Induced Rat Paw Inflammation via NF-κB Pathway

    Science.gov (United States)

    Hussein, Saba Zuhair; Mohd Yusoff, Kamaruddin; Makpol, Suzana; Mohd Yusof, Yasmin Anum

    2013-01-01

    The activation of nuclear factor kappa B (NF-κB) plays a major role in the pathogenesis of a number of inflammatory diseases. In this study, we investigated the anti-inflammatory mechanism of Gelam honey in inflammation induced rats via NF-κB signalling pathway. Rats paw edema was induced by subplantar injection of 1% carrageenan into the right hind paw. Rats were pre-treated with Gelam honey at different doses (1 or 2 g/kg, p.o.) and NSAID Indomethacin (10 mg/kg, p.o.), in two time points (1 and 7 days). Our results showed that Gelam honey at both concentrations suppressed the gene expressions of NF-κB (p65 & p50) and IκBα in inflamed rats paw tissues. In addition, Gelam honey inhibited the nuclear translocation and activation of NF-κB and decreased the cytosolic degradation of IκBα dose dependently in inflamed rats paw tissues. The immunohistochemical expressions of pro-inflammatory mediators COX-2 and TNF-α were also decreased in inflamed rats paw tissues when treated with Gelam honey. The results of our findings suggest that Gelam honey exhibits its inhibitory effects by attenuating NF-κB translocation to the nucleus and inhibiting IκBα degradation, with subsequent decrease of inflammatory mediators COX-2 and TNF-α. PMID:24015236

  20. Fasudil, a Rho-Kinase Inhibitor, Attenuates Bleomycin-Induced Pulmonary Fibrosis in Mice

    Directory of Open Access Journals (Sweden)

    Zuojun Xu

    2012-07-01

    Full Text Available The mechanisms underlying the pathogenesis of idiopathic pulmonary fibrosis (IPF involve multiple pathways, such as inflammation, epithelial mesenchymal transition, coagulation, oxidative stress, and developmental processes. The small GTPase, RhoA, and its target protein, Rho-kinase (ROCK, may interact with other signaling pathways known to contribute to pulmonary fibrosis. This study aimed to determine the beneficial effects and mechanisms of fasudil, a selective ROCK inhibitor, on bleomycin-induced pulmonary fibrosis in mice. Our results showed that the Aschcroft score and hydroxyproline content of the bleomycin-treated mouse lung decreased in response to fasudil treatment. The number of infiltrated inflammatory cells in the bronchoalveolar lavage fluid (BALF was attenuated by fasudil. In addition, fasudil reduced the production of transforming growth factor-β1 (TGF-β1, connective tissue growth factor (CTGF, alpha-smooth muscle actin (α-SMA, and plasminogen activator inhibitor-1 (PAI-1 mRNA and protein expression in bleomycin-induced pulmonary fibrosis. These findings suggest that fasudil may be a potential therapeutic candidate for the treatment of pulmonary fibrosis.

  1. Dietary uptake of Wedelia chinensis extract attenuates dextran sulfate sodium-induced colitis in mice.

    Directory of Open Access Journals (Sweden)

    Yuh-Ting Huang

    Full Text Available SCOPE: Traditional medicinal herbs are increasingly used as alternative therapies in patients with inflammatory diseases. Here we evaluated the effect of Wedelia chinensis, a medicinal herb commonly used in Asia, on the prevention of dextran sulfate sodium (DSS-induced acute colitis in mice. General safety and the effect of different extraction methods on the bioactivity of W. chinensis were also explored. METHODS AND RESULTS: C57BL/6 mice were administrated hot water extract of fresh W. chinensis (WCHF orally for one week followed by drinking water containing 2% DSS for nine days. WCHF significantly attenuated the symptoms of colitis including diarrhea, rectal bleeding and loss of body weight; it also reduced the shortening of colon length and histopathological damage caused by colonic inflammation. Among four W. chinensis extracts prepared using different extraction techniques, WCHF showed the highest anti-colitis efficacy. Analyses of specific T-cell regulatory cytokines (TNF-α, IL-4, IFN-γ, IL-17, TGF-β, IL-12 revealed that WCHF treatment can suppress the Th1 and Th17, but not Th2, responses in colon tissues and dendritic cells of DSS-induced colitis mice. A 28-day subacute toxicity study showed that daily oral administration of WCHF (100, 500, 1000 mg/kg body weight was not toxic to mice. CONCLUSION: Together, our findings suggest that specific extracts of W. chinensis have nutritional potential for future development into nutraceuticals or dietary supplements for treatment of inflammatory bowel disease.

  2. Ambient ultraviolet radiation induces protective responses in soybean but does not attenuate indirect defense

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Thorsten R. [Department of Botany II, Julius-von-Sachs Institute for Biosciences, University of Wuerzburg, Julius-von-Sachs-Platz 3, 97082 Wuerzburg (Germany); Rostas, Michael [Department of Botany II, Julius-von-Sachs Institute for Biosciences, University of Wuerzburg, Julius-von-Sachs-Platz 3, 97082 Wuerzburg (Germany)], E-mail: rostas@botanik.uni-wuerzburg.de

    2008-09-15

    We investigated the effects of ambient ultraviolet (UV) radiation on (i) the performance and chemistry of soybean plants, (ii) the performance of Spodoptera frugiperda and (iii) the foraging behavior of the herbivore's natural enemy Cotesia marginiventris which exploits herbivore-induced plant volatiles (VOC) for host location. The accumulation of protective phenolics was faster in plants receiving ambient UV than in controls exposed to sun light lacking UV. Accordingly, isorhamnetin- and quercetin-based flavonoids were increased in UV exposed plants. No UV effects were found on the performance and feeding behavior of S. frugiperda. Herbivore-damaged plants emitted the same VOC when grown under ambient or attenuated UV for 5, 10 or 30 days. Consequently, C. marginiventris was attracted but did not discriminate between exposed and unexposed soybeans. In summary, ambient UV radiation affected soybean morphology and physiology but did not destabilize interactions between trophic levels. - Ambient ultraviolet radiation does not alter induced VOC emission in soybean and thus host location of the parasitoid Cotesia marginiventris remains effective.

  3. Whey protein isolate attenuates strength decline after eccentrically-induced muscle damage in healthy individuals

    Directory of Open Access Journals (Sweden)

    Cribb Paul J

    2010-09-01

    Full Text Available Abstract Background We examined the effects of short-term consumption of whey protein isolate on muscle proteins and force recovery after eccentrically-induced muscle damage in healthy individuals. Methods Seventeen untrained male participants (23 ± 5 yr, 180 ± 6 cm, 80 ± 11 kg were randomly separated into two supplement groups: i whey protein isolate (WPH; n = 9; or ii carbohydrate (CHO; n = 8. Participants consumed 1.5 g/kg.bw/day supplement (~30 g consumed immediately, and then once with breakfast, lunch, in the afternoon and after the evening meal for a period of 14 days following a unilateral eccentric contraction-based resistance exercise session, consisting of 4 sets of 10 repetitions at 120% of maximum voluntary contraction on the leg press, leg extension and leg flexion exercise machine. Plasma creatine kinase and lactate dehydrogenase (LDH levels were assessed as blood markers of muscle damage. Muscle strength was examined by voluntary isokinetic knee extension using a Cybex dynamometer. Data were analyzed using repeated measures ANOVA with an alpha of 0.05. Results Isometric knee extension strength was significantly higher following WPH supplementation 3 (P Conclusions The major finding of this investigation was that whey protein isolate supplementation attenuated the impairment in isometric and isokinetic muscle forces during recovery from exercise-induced muscle injury.

  4. Portulaca Extract Attenuates Development of Dextran Sulfate Sodium Induced Colitis in Mice through Activation of PPARγ.

    Science.gov (United States)

    Kong, Rui; Luo, Hui; Wang, Nan; Li, Jingjing; Xu, Shizan; Chen, Kan; Feng, Jiao; Wu, Liwei; Li, Sainan; Liu, Tong; Lu, Xiya; Xia, Yujing; Shi, Yanhong; Zhou, Yingqun; He, Weigang; Dai, Qi; Zheng, Yuejuan; Lu, Jie

    2018-01-01

    Portulaca oleracea L. is a traditional Chinese medicine, which has been used as adjuvant therapy for inflammatory bowel disease (IBD). However, the mechanism of its activity in IBD still remains unclear. Since previous studies have documented the anti-inflammatory effect of peroxisome proliferator activated receptors- γ (PPAR- γ ), Portulaca regulation of PPAR- γ in inflammation was examined in current study. Ulcerative colitis (UC) was generated by 5% dextran sulfate sodium (DSS) in mice and four groups were established as normal control, DSS alone, DSS plus mesalamine, and DSS plus Portulaca . Severity of UC was evaluated by body weight, stool blood form, and length of colorectum. Inflammation was examined by determination of inflammatory cytokines (TNF-a, IL-6, and IL-1a). Portulaca extract was able to attenuate development of UC in DSS model similar to the treatment of mesalazine. Moreover, Portulaca extract inhibited proinflammatory cytokines release and reduced the level of DSS-induced NF- κ B phosphorylation. Furthermore, Portulaca extract restored PPAR- γ level, which was reduced by DSS. In addition, Portulaca extract protected DSS induced apoptosis in mice. In conclusion, Portulaca extract can alleviate colitis in mice through regulation of inflammatory reaction, apoptosis, and PPAR- γ level; therefore, Portulaca extract can be a potential candidate for the treatment of IBD.

  5. Garlic-supplemented diet attenuates gentamicin-induced ototoxicity: an experimental study.

    Science.gov (United States)

    Uzun, Lokman; Balbaloglu, Evrim; Akinci, Harun

    2012-02-01

    Gentamicin sulfate is a potent aminoglycoside antibiotic associated with serious side effects, including ototoxicity. Garlic, with its intrinsic antioxidant activity, may prove beneficial in prevention of ototoxicity. In this study, we investigated the effect of a 4% garlic-supplemented diet on the ototoxicity induced by gentamicin in rats by using brain stem evoked response audiometry. Eighteen male Wistar rats with an intact Preyer's reflex and an initial weight of 220 to 260 g were randomly assigned to a group with gentamicin injection and garlic supplementation, a group with gentamicin injection without garlic supplementation, or a control group (6 rats each group). Gentamicin was given by intraperitoneal injection at 120 mg/kg body weight once daily for 16 days. The garlic-supplemented diet was prepared by adding pulverized whole garlic cloves to standard chow in a 4% proportion. After 21 days, hearing thresholds were evaluated by use of brain stem evoked response audiometry at 10 kHz. The mean (+/- SD) amplitudes of the auditory thresholds (sensation level) measured by use of brain stem evoked response audiometry for the group with garlic supplementation, the group without garlic, and the control group were 43.3 +/- 8.16, 78.0 +/- 4.47, and 16.7 +/- 5.16 dB sensation level, respectively. The differences were statistically significant (p garlic-supplemented diet seems to attenuate aminoglycoside-induced hearing loss.

  6. NOX2 deficiency attenuates markers of adiposopathy and brain injury induced by high-fat diet.

    Science.gov (United States)

    Pepping, Jennifer K; Freeman, Linnea R; Gupta, Sunita; Keller, Jeffrey N; Bruce-Keller, Annadora J

    2013-02-15

    The consumption of high-fat/calorie diets in modern societies is likely a major contributor to the obesity epidemic, which can increase the prevalence of cancer, cardiovascular disease, and neurological impairment. Obesity may precipitate decline via inflammatory and oxidative signaling, and one factor linking inflammation to oxidative stress is the proinflammatory, pro-oxidant enzyme NADPH oxidase. To reveal the role of NADPH oxidase in the metabolic and neurological consequences of obesity, the effects of high-fat diet were compared in wild-type C57Bl/6 (WT) mice and in mice deficient in the NAPDH oxidase subunit NOX2 (NOX2KO). While diet-induced weight gains in WT and NOX2KO mice were similar, NOX2KO mice had smaller visceral adipose deposits, attenuated visceral adipocyte hypertrophy, and diminished visceral adipose macrophage infiltration. Moreover, the detrimental effects of HFD on markers of adipocyte function and injury were attenuated in NOX2KO mice; NOX2KO mice had improved glucose regulation, and evaluation of NOX2 expression identified macrophages as the primary population of NOX2-positive cells in visceral adipose. Finally, brain injury was assessed using markers of cerebrovascular integrity, synaptic density, and reactive gliosis, and data show that high-fat diet disrupted marker expression in WT but not NOX2KO mice. Collectively, these data indicate that NOX2 is a significant contributor to the pathogenic effects of high-fat diet and reinforce a key role for visceral adipose inflammation in metabolic and neurological decline. Development of NOX-based therapies could accordingly preserve metabolic and neurological function in the context of metabolic syndrome.

  7. Mulberry Leaf Extract Attenuates Oxidative Stress-Mediated Testosterone Depletion in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Hajizadeh

    2014-03-01

    Full Text Available Background: It has been proposed that oxidative stress may contribute to the development of testicular abnormalities in diabetes. Morus alba leaf extract (MAE has hypoglycemic and antioxidant properties. We, therefore, explored the impact of the administration of MAE on steroidogenesis in diabetic rats. Methods: To address this hypothesis, we measured the serum level of glucose, insulin, and free testosterone (Ts as well as oxidative stress parameters (including glutathione peroxidase, glutathione reductase, total antioxidant capacity, and malondialdehyde in the testis of control, untreated and MAE-treated (1 g/day/kg diabetic rats. In order to determine the likely mechanism of MAE action on Ts levels, we analyzed the quantitative mRNA expression level of the two key steroidogenic proteins, namely steroid acute regulatory protein (StAR and P450 cholesterol side-chain cleavage enzyme (P450scc, by real-time PCR. Results: The MAE-treated diabetic rats had significantly decreased glucose levels and on the other hand increased insulin and free Ts levels than the untreated diabetic rats. In addition, the administration of MAE to the diabetic rats restored the oxidative stress parameters toward control. Induction of diabetes decreased testicular StAR mRNA expression by 66% and MAE treatment enhanced mRNA expression to the same level of the control group. However, the expression of P540scc was not significantly decreased in the diabetic group as compared to the control group. Conclusion: Our findings indicated that MAE significantly increased Ts production in the diabetic rats, probably through the induction of StAR mRNA expression levels. Administration of MAE to experimental models of diabetes can effectively attenuate oxidative stress-mediated testosterone depletion. Please cite this article as: Hajizadeh MR, Eftekhar E, Zal F, Jaffarian A, Mostafavi-Pour Z. Mulberry Leaf Extract Attenuates Oxidative Stress-Mediated Testosterone Depletion in

  8. Vaccination using live attenuated Leishmania donovani centrin deleted parasites induces protection in dogs against Leishmania infantum.

    Science.gov (United States)

    Fiuza, Jacqueline Araújo; Gannavaram, Sreenivas; Santiago, Helton da Costa; Selvapandiyan, Angamuthu; Souza, Daniel Menezes; Passos, Lívia Silva Araújo; de Mendonça, Ludmila Zanandreis; Lemos-Giunchetti, Denise da Silveira; Ricci, Natasha Delaqua; Bartholomeu, Daniella Castanheira; Giunchetti, Rodolfo Cordeiro; Bueno, Lilian Lacerda; Correa-Oliveira, Rodrigo; Nakhasi, Hira L; Fujiwara, Ricardo Toshio

    2015-01-03

    Live attenuated Leishmania donovani parasites such as LdCen(-/-) have been shown elicit protective immunity against leishmanial infection in mice and hamster models. Previously, we have reported on the induction of strong immunogenicity in dogs upon vaccination with LdCen(-/-) including an increase in immunoglobulin isotypes, higher lymphoproliferative response, higher frequencies of activated CD4(+) and CD8(+) T cells, IFN-γ production by CD8(+) T cells, increased secretion of TNF-α and IL-12/IL-23p40 and, finally, decreased secretion of IL-4. To further explore the potential of LdCen(-/-) parasites as vaccine candidates, we performed a 24-month follow up of LdCen(-/-) immunized dogs after challenge with virulent Leishmania infantum, aiming determination of parasite burden by qPCR, antibody production (ELISA) and cellular responses (T cell activation and cytokine production) by flow cytometry and sandwich ELISA. Our data demonstrated that vaccination with a single dose of LdCen(-/-) (without any adjuvant) resulted in the reduction of up to 87.3% of parasite burden after 18 months of virulent challenge. These results are comparable to those obtained with commercially available vaccine in Brazil (Leishmune(®)). The protection was associated with antibody production and CD4(+) and CD8(+) proliferative responses, as well as T cell activation and significantly higher production of IFN-γ, IL-12/IL-23p40 and TNF-α, which was comparable to responses induced by immunization with Leishmune(®), with significant differences when compared to control animals (Placebo). Moreover, only animals immunized with LdCen(-/-) expressed lower levels of IL-4 when compared to animals vaccinated either with Leishmune(®) or PBS. Our results support further studies aiming to demonstrate the potential of genetically modified live attenuated L. donovani vaccine to control L. infantum transmission in endemic areas for CVL. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Human mesenchymal stem cells attenuate pulmonary hypertension induced by prenatal lipopolysaccharide treatment in rats.

    Science.gov (United States)

    Chou, Hsiu-Chu; Lin, Willie; Chen, Chung-Ming

    2016-10-01

    Intra-amniotic injection of lipopolysaccharide (LPS) induces pulmonary hypertension in newborn rats. This study was designed to test whether human mesenchymal stem cells (MSCs) reduce pulmonary hypertension and alleviate cardiac hypertrophy in prenatal LPS-treated rats. Pregnant Sprague-Dawley rats were injected intraperitoneally with LPS (0.5 mg/kg per day) or untreated on gestational days 20 and 21. Human MSCs (3×10(5) cells and 1×10(6) cells) in 0.03 mL of normal saline (NS) were transplanted intratracheally on postnatal day 5. Four study groups were considered: normal, LPS+NS, LPS+MSCs (3×10(5) cells), and LPS+MSCs (1×10(6) cells). On postnatal day 14, lung and heart tissues were collected for measuring the arterial medial wall thickness (MWT) and β-myosin heavy chain (β-MHC) level as markers of pulmonary hypertension and cardiac hypertrophy, respectively. The LPS+NS group exhibited a significantly higher right ventricle (RV)/[left ventricle (LV)+ interventricular septum (IVS)] thickness ratio and MWT, a greater cardiomyocyte width, a greater number of cardiomyocyte nuclei per squared millimeter, and higher β-MHC expression than those observed in the normal group. Human MSC transplantation (3×10(5) cells and 1×10(6) cells) in LPS-treated rats reduced MWT and the RV/(LV+IVS) thickness ratio to normal levels. This improvement in right ventricular hypertrophy was accompanied by a decrease in toll-like receptor 4 (TLR4), nuclear factor-κB, and tumor necrosis factor-α expression in the heart. Intratracheal human MSCs transplantation can attenuate pulmonary hypertension and right ventricular hypertrophy in prenatal LPS-treated rats; this attenuation may be associated with suppression of TLR4 expression via paracrine pathways. © 2016 John Wiley & Sons Australia, Ltd.

  10. Inhibition of ghrelin O-acyltransferase attenuates food deprivation-induced increases in ingestive behavior.

    Science.gov (United States)

    Teubner, Brett J W; Garretson, John T; Hwang, Yousang; Cole, Philip A; Bartness, Timothy J

    2013-04-01

    Ghrelin is an orexigenic hormone produced by the stomach in direct proportion to the time since the last meal and has therefore been called a 'hunger signal'. The octanoylation of ghrelin is critical for its orexigenic functions and is dependent upon ghrelin O-acyltransferase (GOAT) catalyzation. The GOAT inhibitor, GO-CoA-Tat, decreases the circulating concentrations of octanoylated ghrelin and attenuates weight gain on a high fat diet in mice. Unlike rats and mice, Siberian hamsters and humans do not increase food intake after food deprivation, but increase food hoarding after food deprivation. In Siberian hamsters, exogenous ghrelin increases ingestive behaviors similarly to 48-56 h food deprivation. Therefore, we tested the necessity of increased ghrelin in food-deprived Siberian hamsters to stimulate ingestive behaviors. To do so we used our simulated natural housing system that allows hamsters to forage for and hoard food. Animals were given an injection of GO-CoA-Tat (i.p., 11 μmol/kg) every 6h because that is the duration of its effective inhibition of octanoylated ghrelin concentrations during a 48 h food deprivation. We found that GO-CoA-Tat attenuated food foraging (0-1h), food intake (0-1 and 2-4h), and food hoarding (0-1h and 2 and 3 days) post-refeeding compared with saline treated animals. This suggests that increased octanoylated ghrelin concentrations play a role in the food deprivation-induced increases in ingestive behavior. Therefore, ghrelin is a critical aspect of the multi-faceted mechanisms that stimulate ingestive behaviors, and might be a critical point for a successful clinical intervention scheme in humans. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. The administration of Fructus Schisandrae attenuates dexamethasone-induced muscle atrophy in mice

    Science.gov (United States)

    KIM, JOO WAN; KU, SAE-KWANG; HAN, MIN HO; KIM, KI YOUNG; KIM, SUNG GOO; KIM, GI-YOUNG; HWANG, HYE JIN; KIM, BYUNG WOO; KIM, CHEOL MIN; CHOI, YUNG HYUN

    2015-01-01

    In the present study, we aimed to determine whether ethanol extracts of Fructus Schisandrae (FS), the dried fruit of Schizandra chinensis Baillon, mitigates the development of dexamethasone-induced muscle atrophy. Adult SPF/VAT outbred CrljOri:CD1 (ICR) mice were either treated with dexamethasone to induce muscle atrophy. Some mice were treated with various concentrations of FS or oxymetholone, a 17α-alkylated anabolic-androgenic steroid. Muscle thickness and weight, calf muscle strength, and serum creatine and creatine kinase (CK) levels were then measured. The administration of FS attenuated the decrease in calf thickness, gastrocnemius muscle thickness, muscle strength and weight, fiber diameter and serum lactate dehydrogenase levels in the gastrocnemius muscle bundles which was induced by dexamethasone in a dose-dependent manner. Treatment with FS also prevented the dexamethasone-induced increase in serum creatine and creatine kinase levels, histopathological muscle fiber microvacuolation and fibrosis, and the immunoreactivity of muscle fibers for nitrotyrosine, 4-hydroxynonenal, inducible nitric oxide synthase and myostatin. In addition, the destruction of the gastrocnemius antioxidant defense system was also inhibited by the administration of FS in a dose-dependent manner. FS downregulated the mRNA expression of atrogin-1 and muscle RING-finger protein-1 (involved in muscle protein degradation), myostatin (a potent negative regulator of muscle growth) and sirtuin 1 (a representative inhibitor of muscle regeneration), but upregulated the mRNA expression of phosphatidylinositol 3-kinase, Akt1, adenosine A1 receptor and transient receptor potential cation channel subfamily V member 4, involved in muscle growth and the activation of protein synthesis. The overall effects of treatment with 500 mg/kg FS were comparable to those observed following treatment with 50 mg/kg oxymetholone. The results from the present study support the hypothesis that FS has a favorable

  12. Melatonin attenuates titanium particle-induced osteolysis via activation of Wnt/β-catenin signaling pathway.

    Science.gov (United States)

    Ping, Zichuan; Hu, Xuanyang; Wang, Liangliang; Shi, Jiawei; Tao, Yunxia; Wu, Xiexing; Hou, Zhenyang; Guo, Xiaobin; Zhang, Wen; Yang, Huilin; Xu, Yaozeng; Wang, Zhirong; Geng, Dechun

    2017-03-15

    Wear debris-induced inhibition of bone regeneration and extensive bone resorption were common features in peri-prosthetic osteolysis (PPO). Here, we investigated the effect of melatonin on titanium particle-stimulated osteolysis in a murine calvariae model and mouse-mesenchymal-stem cells (mMSCs) culture system. Melatonin inhibited titanium particle-induced osteolysis and increased bone formation at osteolytic sites, confirmed by radiological and histomorphometric data. Furthermore, osteoclast numbers decreased dramatically in the low- and high-melatonin administration mice, as respectively, compared with the untreated animals. Melatonin alleviated titanium particle-induced depression of osteoblastic differentiation and mineralization in mMSCs. Mechanistically, melatonin was found to reduce the degradation of β-catenin, levels of which were decreased in presence of titanium particles both in vivo and in vitro. To further ensure whether the protective effect of melatonin was mediated by the Wnt/β-catenin signaling pathway, ICG-001, a selective β-catenin inhibitor, was added to the melatonin-treated groups and was found to attenuate the effect of melatonin on mMSC mineralization. We also demonstrated that melatonin modulated the balance between receptor activator of nuclear factor kappa-B ligand and osteoprotegerin via activation of Wnt/β-catenin signaling pathway. These findings strongly suggest that melatonin represents a promising candidate in the treatment of PPO. Peri-prosthetic osteolysis, initiated by wear debris-induced inhibition of bone regeneration and extensive bone resorption, is the leading cause for implant failure and reason for revision surgery. In the current study, we demonstrated for the first time that melatonin can induce bone regeneration and reduce bone resorption at osteolytic sites caused by titanium-particle stimulation. These effects might be mediated by activating Wnt/β-catenin signaling pathway and enhancing osteogenic

  13. Metabolic enhancer piracetam attenuates rotenone induced oxidative stress: a study in different rat brain regions.

    Science.gov (United States)

    Verma, Dinesh Kumar; Joshi, Neeraj; Raju, Kunumuri Sivarama; Wahajuddin, Muhammad; Singh, Rama Kant; Singh, Sarika

    2015-01-01

    Piracetam is clinically being used nootropic drug but the details of its neuroprotective mechanism are not well studied. The present study was conducted to assess the effects of piracetam on rotenone induced oxidative stress by using both ex vivo and in vivo test systems. Rats were treated with piracetam (600 mg/kg b.w. oral) for seven constitutive days prior to rotenone administration (intracerebroventricular, 12 µg) in rat brain. Rotenone induced oxidative stress was assessed after 1 h and 24 h of rotenone administration. Ex vivo estimations were performed by using two experimental designs. In one experimental design the rat brain homogenate was treated with rotenone (1 mM, 2 mM and 4 mM) and rotenone+piracetam (10 mM) for 1 h. While in second experimental design the rats were pretreated with piracetam for seven consecutive days. On eighth day the rats were sacrificed, brain homogenate was prepared and treated with rotenone (1 mM, 2 mM and 4mM) for 1h. After treatment the glutathione (GSH) and malondialdehyde (MDA) levels were estimated in brain homogenate. In vivo study showed that pretreatment of piracetam offered significant protection against rotenone induced decreased GSH and increased MDA level though the protection was region specific. But the co-treatment of piracetam with rotenone did not offer significant protection against rotenone induced oxidative stress in ex vivo study. Whereas ex vivo experiments in rat brain homogenate of piracetam pretreated rats, showed the significant protection against rotenone induced oxidative stress. Findings indicated that pretreatment of piracetam significantly attenuated the rotenone induced oxidative stress though the protection was region specific. Piracetam treatment to rats led to its absorption and accumulation in different brain regions as assessed by liquid chromatography mass spectrometry/mass spectrometry. In conclusion, study indicates the piracetam is able to enhance the antioxidant capacity in brain cells

  14. NAC attenuates LPS-induced toxicity in aspirin-sensitized mouse macrophages via suppression of oxidative stress and mitochondrial dysfunction.

    Directory of Open Access Journals (Sweden)

    Haider Raza

    Full Text Available Bacterial endotoxin lipopolysaccharide (LPS induces the production of inflammatory cytokines and reactive oxygen species (ROS under in vivo and in vitro conditions. Acetylsalicylic acid (ASA, aspirin is a commonly used anti-inflammatory drug. Our aim was to study the effects of N-acetyl cysteine (NAC, an antioxidant precursor of GSH synthesis, on aspirin-sensitized macrophages treated with LPS. We investigated the effects of LPS alone and in conjunction with a sub-toxic concentration of ASA, on metabolic and oxidative stress, apoptosis, and mitochondrial function using J774.2 mouse macrophage cell line. Protection from LPS-induced toxicity by NAC was also studied. LPS alone markedly induced ROS production and oxidative stress in macrophage cells. When ASA was added to LPS-treated macrophages, the increase in oxidative stress was significantly higher than that with LPS alone. Similarly, alteration in glutathione-dependent redox metabolism was also observed in macrophages after treatment with LPS and ASA. The combination of LPS and ASA selectively altered the CYP 3A4, CYP 2E1 and CYP 1A1 catalytic activities. Mitochondrial respiratory complexes and ATP production were also inhibited by LPS-ASA treatment. Furthermore a higher apoptotic cell death was also observed in LPS-ASA treated macrophages. NAC pre-treatment showed protection against oxidative stress induced apoptosis and mitochondrial dysfunction. These effects are presumed, at least in part, to be associated with alterations in NF-κB/Nrf-2 mediated cell signaling. These results suggest that macrophages are more sensitive to LPS when challenged with ASA and that NAC pre-treatment protects the macrophages from these deleterious effects.

  15. Scoparone attenuates RANKL-induced osteoclastic differentiation through controlling reactive oxygen species production and scavenging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Hyun; Jang, Hae-Dong, E-mail: haedong@hnu.kr

    2015-02-15

    Scoparone, one of the bioactive components of Artemisia capillaris Thunb, has various biological properties including immunosuppressive, hepatoprotective, anti-allergic, anti-inflammatory, and antioxidant effects. This study aims at evaluating the anti-osteoporotic effect of scoparone and its underlying mechanism in vitro. Scoparone demonstrated potent cellular antioxidant capacity. It was also found that scoparone inhibited the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation and suppressed cathepsin K and tartrate-resistant acid phosphatase (TRAP) expression via c-jun N-terminal kinase (JNK)/extracellular signal-regulated kinase (ERK)/p38-mediated c-Fos–nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) signaling pathway. During osteoclast differentiation, the production of general reactive oxygen species (ROS) and superoxide anions was dose-dependently attenuated by scoparone. In addition, scoparone diminished NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 1 (Nox1) expression and activation via the tumor necrosis factor receptor-associated factor 6 (TRAF6)–cSrc–phosphatidylinositol 3-kinase (PI3k) signaling pathway and prevented the disruption of mitochondrial electron transport chain system. Furthermore, scoparone augmented the expression of superoxide dismutase 1 (SOD1) and catalase (CAT). The overall results indicate that the inhibitory effect of scoparone on RANKL-induced osteoclast differentiation is attributed to the suppressive effect on ROS and superoxide anion production by inhibiting Nox1 expression and activation and protecting the mitochondrial electron transport chain system and the scavenging effect of ROS resulting from elevated SOD1 and CAT expression. - Highlights: • Scoparone dose-dependently inhibited RANKL-induced osteoclast differentiation. • Scoparone diminished general ROS and superoxide anions in a dose-dependent manner. • Scoparone inhibited Nox1 expression and

  16. Praeruptorin D and E attenuate lipopolysaccharide/hydrochloric acid induced acute lung injury in mice.

    Science.gov (United States)

    Yu, Peng-Jiu; Li, Jing-Rong; Zhu, Zheng-Guang; Kong, Huan-Yu; Jin, Hong; Zhang, Jun-Yan; Tian, Yuan-Xin; Li, Zhong-Huang; Wu, Xiao-Yun; Zhang, Jia-Jie; Wu, Shu-Guang

    2013-06-15

    Acute lung injury is a life-threatening syndrome characterized by overwhelming lung inflammation and increased microvascular permeability, which causes a high mortality rate worldwide. The dry root of Peucedanum praeruptorum Dunn has been long used to treat respiratory diseases in China. In the present study, Praeruptorin A, C, D and E (PA, PC, PD and PE), four pyranocoumarins extracted from this herb, have been investigated for the pharmacological effects in experimental lung injury mouse models. In lipopolysaccharide (LPS) challenged mice, PA and PC did not show protective effect against lung injury at the dose of 80 mg/kg. However, PD and PE significantly inhibited the infiltration of activated polymorphonuclear leukocytes (PMNs) and decreased the levels of TNF-α and IL-6 in bronchoalveolar lavage fluid at the same dose. There was no statistically significant difference between PD and PE group. Further study demonstrated that PD and PE suppressed protein extravasations in bronchoalveolar lavage fluid, attenuated myeloperoxidase (MPO) activity and the pathological changes in the lung. Both PD and PE suppressed LPS induced Nuclear Factor-kappa B (NF-κB) pathway activation in the lung by decreasing the cytoplasmic loss of Inhibitor κB-α (IκB-α) protein and inhibiting the translocation of p65 from cytoplasm to nucleus. We also extended our study to acid-induced acute lung injury and found that these two compounds protected mice from hydrochloric acid (HCl)-induced lung injury by inhibiting PMNs influx, IL-6 release and protein exudation. Taken together, these results suggested that PD and PE might be useful in the therapy of lung injury. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Astragalus Polysaccharide Attenuated Iron Overload-Induced Dysfunction of Mesenchymal Stem Cells via Suppressing Mitochondrial ROS

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2016-09-01

    Full Text Available Background/Aims: Bone marrow-derived mesenchymal stem cells (BMSCs have the ability to differentiate into multilineage cells such as osteoblasts, chondrocytes, and cardiomyocytes. Dysfunction of BMSCs in response to pathological stimuli participates in the development of diseases such as osteoporosis. Astragalus polysaccharide (APS is a major active ingredient of Astragalus membranaceus, a commonly used anti-aging herb in traditional Chinese medicine. The aim of this study was to investigate whether APS protects against iron overload-induced dysfunction of BMSCs and its underlying mechanisms. Methods: BMSCs were exposed to ferric ammonium citrate (FAC with or without different concentrations of APS. The viability and proliferation of BMSCs were assessed by CCK-8 assay and EdU staining. Cell apoptosis, senescence and pluripotency were examined utilizing TUNEL staining, β-galactosidase staining and qRT-PCR respectively. The reactive oxygen species (ROS level was assessed in BMSCs with a DCFH-DA probe and MitoSOX Red staining. Results: Firstly, we found that iron overload induced by FAC markedly reduced the viability and proliferation of BMSCs, but treatment with APS at 10, 30 and 100 μg/mL was able to counter the reduction of cell proliferation. Furthermore, exposure to FAC led to apoptosis and senescence in BMSCs, which were partially attenuated by APS. The pluripotent genes Nanog, Sox2 and Oct4 were shown to be downregulated in BMSCs after FAC treatment, however APS inhibited the reduction of Nanog, Sox2 and Oct4 expression. Further study uncovered that APS treatment abrogated the increase of intracellular and mitochondrial ROS level in FAC-treated BMSCs. Conclusion: Treatment of BMSCs with APS to impede mitochondrial ROS accumulation can remarkably inhibit apoptosis, senescence, and the reduction of proliferation and pluripotency of BMSCs caused by FAC-induced iron overload.

  18. Glucosamine attenuates hydrogen peroxide-induced premature senescence in human retinal pigment epithelial cells in vitro

    Directory of Open Access Journals (Sweden)

    Ching-Long Chen

    2018-01-01

    Full Text Available Aims: The purpose of this study was to investigate the effects of glucosamine (GlcN on hydrogen peroxide (H2O2-induced premature senescence in human retinal pigment epithelial (RPE cells in vitro. Materials and Methods: We analyzed the cell viability of H2O2-treated human RPE cells by the 4-[3-(4-iodophenyl-2-(4-nitrophenyl-2H-5-tetrazolio]-1,3-benzene disulfonate assay. The effect of GlcN on the intracellular levels of reactive oxygen species (ROS in H2O2-treated human RPE cells was examined by the fluorescent dye 2′, 7′-dichlorodihydrofluorescein diacetate. The effect of GlcN on the stress-induced premature senescence (SIPS in H2O2-treated human RPE cells was evaluated by senescence-associated β-galactosidase (SA-β-Gal staining. We quantified the effect of GlcN on the protein levels of p21 in H2O2-treated human RPE cells by western blotting. Results: H2O2reduced the cell viability of human RPE cells. H2O2induced the increase of intracellular ROS, whereas GlcN reduced the increase of intracellular ROS due to H2O2treatment in human RPE cells. GlcN reduced the SIPS in H2O2-treated human RPE cells and reduced the increase of the p21 protein level in H2O2-treated human RPE cells. Conclusions: GlcN attenuates the oxidative stress caused by H2O2on the increase of ROS and the induction of SIPS in human RPE cells, at least in part, by suppressing the p21 pathway. These effects may contribute to the GlcN-mediated antioxidative effects in the eye in age-related macular degeneration.

  19. Wheat Germ Oil Attenuates Gamma Radiation- Induced Skeletal Muscles Damage in Rats

    International Nuclear Information System (INIS)

    Said, U.Z.; Saada, H.N.; Shedid, Sh.M.; Mahdy, E.M.E.; Shousha, W.Gh.

    2008-01-01

    Muscular strength is important in sport as well as in daily activities. Exposure to ionizing radiation is thought to increase oxidative stress and damage muscle tissue. Wheat germ oil is a natural unrefined vegetable oil. It is an excellent source of vitamin E, octacosanol, linoleic and linolenic essential fatty acids, which may be beneficial in neutralizing the free oxygen radicals. The present study was designed to investigate the efficacy of wheat germ oil, on radiation-induced oxidative damage in rats skeletal muscle. Wheat germ oil was supplemented orally via gavages to rats at a dose of 54 mg/ kg body weight/day for 14 successive days pre- and 7 post-exposure to 5 Gy (one shot dose) of whole body gamma irradiation. Animals were sacrificed 7, 14 and 21 days post radiation exposure. The results revealed that whole body gamma-irradiation of rats induces oxidative stress in skeletal muscles obvious by significant elevation in the level of thiobarbituric acid reactive substances (TBARS) associated with significant decreases in the content of reduced glutathione (GSE1), as well as decreases in superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities. Irradiated rats showed, also, significant decreases in creatine phosphokinase (CPK), glutamate dehydrogenase (GDH) and glucose-6-phosphate dehydrogenase (G-6-PD) activities. Furthermore, total iron, total copper and total calcium levels were significantly increased in skeletal muscles of irradiated rats group compared to control group. Wheat germ oil treated-irradiated rats showed significantly less sever damage and remarkable improvement in all the measured parameters, compared to irradiated rats. It could be concluded that wheat germ oil by attenuating radiation induced oxidative stress might play a role in maintaining skeletal muscle integrity

  20. Polaprezinc attenuates cyclophosphamide-induced cystitis and related bladder pain in mice

    Directory of Open Access Journals (Sweden)

    Masahiro Murakami-Nakayama

    2015-02-01

    Full Text Available Cav3.2 T-type Ca2+ channels targeted by H2S, a gasotransmitter, participate in cyclophosphamide-induced cystitis and bladder pain. Given that zinc selectively inhibits Cav3.2 among T-channel isoforms and also exhibits antioxidant activity, we examined whether polaprezinc (zinc-l-carnosine, a medicine for peptic ulcer treatment and zinc supplementation, reveals preventive or therapeutic effects on bladder inflammation and/or pain in the mouse with cyclophosphamide-induced cystitis, a model for interstitial cystitis. Systemic administration of cyclophosphamide caused cystitis-related symptoms including increased bladder weight and vascular permeability, and histological signs of bladder edema, accompanied by bladder pain-like nociceptive behavior/referred hyperalgesia. All these symptoms were significantly attenuated by oral preadministration of polaprezinc at 400 mg/kg. The same dose of polaprezinc also prevented the increased malondialdehyde level, an indicator of lipid peroxidation, and protein upregulation of cystathionine-γ-lyase, an H2S-generating enzyme, but not occludin, a tight junction-related membrane protein, in the bladder tissue of cyclophosphamide-treated mice. Oral posttreatment with polaprezinc at 30–100 mg/kg reversed the nociceptive behavior/referred hyperalgesia in a dose-dependent manner without affecting the increased bladder weight. Together, our data show that zinc supplementation with polaprezinc prevents the cyclophosphamide-induced cystitis probably through the antioxidant activity, and, like T-channel blockers, reverses the established cystitis-related bladder pain in mice, suggesting novel therapeutic usefulness of polaprezinc.

  1. Attenuation of NK cells facilitates mammary tumor growth in streptozotocin-induced diabetes in mice.

    Science.gov (United States)

    Gajovic, Nevena; Jurisevic, Milena; Pantic, Jelena; Radosavljevic, Gordana; Arsenijevic, Nebojsa; Lukic, Miodrag L; Jovanovic, Ivan

    2018-04-01

    Diabetic patients have higher incidence and mortality of cancer. Recent study revealed that hyperglycemia-induced oxidative stress is involved in the acceleration of tumor metastasis. We used model of high-dose streptozotocin-induced diabetes to investigate its effect on tumor growth and modulation of antitumor immune response of 4T1 murine breast cancer in BALB/c mice. Diabetes accelerated tumor appearance, growth and weight, which was associated with decreased NK cells cytotoxicity against 4T1 tumor cells in vitro Diabetes reduced frequencies of systemic NKG2D + , perforin + , granzyme + , IFN-γ + and IL-17 + NK cells, while increased level of PD-1 expression and production of IL-10 in NK cells. Diabetes decreased percentage of NKG2D + NK cells and increased percentage of PD-1 + NK cells also in primary tumor. Diabetes increased accumulation of IL-10 + Tregs and TGF-β + myeloid-derived suppressor cells (MDSCs) in spleen and tumor. Diabetic sera in vitro significantly increased the percentage of KLRG-1 + and PD-1 + NK cells, decreased the percentage of IFN-γ + NK cells, expression of NKp46 and production of perforin, granzyme, CD107a and IL-17 per NK cell in comparison to glucose-added mouse sera and control sera. Significantly increased percentages of inducible nitric oxide synthase (iNOS) and indoleamine 2,3-dioxygenase (IDO) producing MDSCs and dendritic cells (DC) were found in the spleens of diabetic mice prior to tumor induction. 1- methyl -DL- tryptophan , specific IDO inhibitor, almost completely restored phenotype of NK cells cultivated in diabetic sera. These findings indicate that diabetes promotes breast cancer growth at least in part through increased accumulation of immunosuppressive cells and IDO-mediated attenuation of NK cells. © 2018 Society for Endocrinology.

  2. Nicaraven attenuates radiation-induced injury in hematopoietic stem/progenitor cells in mice.

    Directory of Open Access Journals (Sweden)

    Miho Kawakatsu

    Full Text Available Nicaraven, a chemically synthesized hydroxyl radical-specific scavenger, has been demonstrated to protect against ischemia-reperfusion injury in various organs. We investigated whether nicaraven can attenuate radiation-induced injury in hematopoietic stem/progenitor cells, which is the conmen complication of radiotherapy and one of the major causes of death in sub-acute phase after accidental exposure to high dose radiation. C57BL/6 mice were exposed to 1 Gy γ-ray radiation daily for 5 days in succession (a total of 5 Gy, and given nicaraven or a placebo after each exposure. The mice were sacrificed 2 days after the last radiation treatment, and the protective effects and relevant mechanisms of nicaraven in hematopoietic stem/progenitor cells with radiation-induced damage were investigated by ex vivo examination. We found that post-radiation administration of nicaraven significantly increased the number, improved the colony-forming capacity, and decreased the DNA damage of hematopoietic stem/progenitor cells. The urinary levels of 8-oxo-2'-deoxyguanosine, a marker of DNA oxidation, were significantly lower in mice that were given nicaraven compared with those that received a placebo treatment, although the levels of intracellular and mitochondrial reactive oxygen species in the bone marrow cells did not differ significantly between the two groups. Interestingly, compared with the placebo treatment, the administration of nicaraven significantly decreased the levels of the inflammatory cytokines IL-6 and TNF-α in the plasma of mice. Our data suggest that nicaraven effectively diminished the effects of radiation-induced injury in hematopoietic stem/progenitor cells, which is likely associated with the anti-oxidative and anti-inflammatory properties of this compound.

  3. Methyl jasmonate attenuated lipopolysaccharide-induced depressive-like behaviour in mice.

    Science.gov (United States)

    Adebesin, Adaeze; Adeoluwa, Olusegun A; Eduviere, Anthony T; Umukoro, Solomon

    2017-11-01

    Depression is a recurrent neuropsychiatric disorder that affects millions of individuals worldwide and impact negatively on the patients' social functions and quality of life. Studies have shown that i.p injection of lipopolysaccharide (LPS) induces depressive-like behavior in rodents via induction of oxidative stress and neuroinflammation. Methyl jasmonate (MJ), an isolated compound from jasmine plant has gained reputation in aromatherapy for treatment of depression, nervousness and memory deficits. This study was designed to evaluate the effects of MJ on LPS-induced depressive-like behavior in mice. Mice were given MJ (5-20 mg/kg), imipramine (10 mg/kg) or vehicle (10 mL/kg) intraperitoneally for 7 consecutive days. On day 7, treatment was carried out 30 min prior to i.p injection of LPS (830 μg/kg). Twenty four hours after LPS administration, tail suspension, forced swim and sucrose preference tests were carried out. Thereafter, serum corticosterone levels were determined using ELISA. The levels of malondialdehyde (MDA), glutathione (GSH) and tumor necrosis factor-alpha (TNF-α) were determined in brain tissue homogenates. LPS significantly increased immobility time in the tail suspension and forced swim tests when compared with vehicle (p < 0.05), which indicates depressive-like syndromes. However, the increased immobility time was significantly reduced by MJ (5-20 mg/kg) when compared with LPS-treated group. LPS administration also altered the levels of MDA, GSH, corticosterone and TNF alpha in mice, which was significantly reversed by MJ. These findings suggest that attenuation of LPS-induced depressive-like behavior by MJ may be related to suppression of oxidative stress and release of TNF alpha. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. THE EFFECTS OF BACTERIAL ENDOTOXIN ON LIPIDE METABOLISM

    Science.gov (United States)

    LeQuire, V. S.; Hutcherson, J. D.; Hamilton, R. L.; Gray, M. E.

    1959-01-01

    Single intravenous injections of Shear's polysaccharide in varying dosages invariably produced an elevation in the levels of the total serum lipides 24 hours after injection of endotoxin. The total serum cholesterol and lipide phosphorus were also affected, although they did not change with smaller doses of endotoxin and were rarely elevated to the same degree as were the total serum lipides. The degree of elevation of the serum lipides was apparently related to the amount of endotoxin injected up to a certain point, beyond which there was no further increase. There were two types of response to endotoxin by the serum lipides, a moderate increase and an uncontrolled increase. Higher dosages of endotoxin and fasting apparently increased the incidence of the latter response. No direct correlation could be made between serum lipide responses and histologic evidence typical of the generalized Shwartzman reaction following this regimen of endotoxin injection. The Shwartzman reaction did occur with greater frequency and with lower dosages of endotoxin in fasted animals. Animals given repeated injections of endotoxin showed an initial increase in serum lipides followed by a progressive decrease to normal levels as tolerance to the febrile action of endotoxin appeared. The febrile tolerance as well as the unresponsiveness of the serum lipides to endotoxin was abolished by thorium dioxide (thorotrast) in these animals. In similar experiments a "breakthrough" of lipide unresponsiveness to endotoxin was obtained by increasing the amount of endotoxin injected. Some of the implications of these results for the metabolic alterations produced by bacterial endotoxins are discussed. PMID:13673140

  5. Endotoxin Preconditioning Reprograms S1 Tubules and Macrophages to Protect the Kidney.

    Science.gov (United States)

    Hato, Takashi; Zollman, Amy; Plotkin, Zoya; El-Achkar, Tarek M; Maier, Bernhard F; Pay, S Louise; Dube, Shataakshi; Cabral, Pablo; Yoshimoto, Momoko; McClintick, Jeanette; Dagher, Pierre C

    2018-01-01

    Preconditioning with a low dose of endotoxin confers unparalleled protection against otherwise lethal models of sepsis. The mechanisms of preconditioning have been investigated extensively in isolated immune cells such as macrophages. However, the role of tissue in mediating the protective response generated by preconditioning remains unknown. Here, using the kidney as a model organ, we investigated cell type-specific responses to preconditioning. Compared with preadministration of vehicle, endotoxin preconditioning in the cecal ligation and puncture mouse model of sepsis led to significantly enhanced survival and reduced bacterial load in several organs. Furthermore, endotoxin preconditioning reduced serum levels of proinflammatory cytokines, upregulated molecular pathways involved in phagocytosis, and prevented the renal function decline and injury induced in mice by a toxic dose of endotoxin. The protective phenotype involved the clustering of macrophages around S1 segments of proximal tubules, and full renal protection required both macrophages and renal tubular cells. Using unbiased S1 transcriptomic and tissue metabolomic approaches, we identified multiple protective molecules that were operative in preconditioned animals, including molecules involved in antibacterial defense, redox balance, and tissue healing. We conclude that preconditioning reprograms macrophages and tubules to generate a protective environment, in which tissue health is preserved and immunity is controlled yet effective. Endotoxin preconditioning can thus be used as a discovery platform, and understanding the role and participation of both tissue and macrophages will help refine targeted therapies for sepsis. Copyright © 2018 by the American Society of Nephrology.

  6. Purified rutin and rutin-rich asparagus attenuates disease severity and tissue damage following dextran sodium sulfate-induced colitis.

    Science.gov (United States)

    Power, Krista A; Lu, Jenifer T; Monk, Jennifer M; Lepp, Dion; Wu, Wenqing; Zhang, Claire; Liu, Ronghua; Tsao, Rong; Robinson, Lindsay E; Wood, Geoffrey A; Wolyn, David J

    2016-11-01

    This study investigated the effects of cooked whole asparagus (ASP) versus its equivalent level of purified flavonoid glycoside, rutin (RUT), on dextran sodium sulfate (DSS)-induced colitis and subsequent colitis recovery in mice. C57BL/6 male mice were fed an AIN-93G basal diet (BD), or BD supplemented with 2% cooked ASP or 0.025% RUT for 2 wks prior to and during colitis induction with 2% DSS in water for 7 days, followed by 5 days colitis recovery. In colitic mice, both ASP and RUT upregulated mediators of improved barrier integrity and enhanced mucosal injury repair (e.g. Muc1, IL-22, Rho-A, Rac1, and Reg3γ), increased the proportion of mouse survival, and improved disease activity index. RUT had the greatest effect in attenuating DSS-induced colonic damage indicated by increased crypt and goblet cell restitution, reduced colonic myeloperoxidase, as well as attenuated DSS-induced microbial dysbiosis (reduced Enterobacteriaceae and Bacteroides, and increased unassigned Clostridales, Oscillospira, Lactobacillus, and Bifidobacterium). These findings demonstrate that dietary cooked ASP and its flavonoid glycoside, RUT, may be useful in attenuating colitis severity by modulating the colonic microenvironment resulting in reduced colonic inflammation, promotion of colonic mucosal injury repair, and attenuation of colitis-associated microbial dysbiosis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Strawberry Polyphenols Attenuate Ethanol-Induced Gastric Lesions in Rats by Activation of Antioxidant Enzymes and Attenuation of MDA Increase

    Science.gov (United States)

    Alvarez-Suarez, José M.; Dekanski, Dragana; Ristić, Slavica; Radonjić, Nevena V.; Petronijević, Nataša D.; Giampieri, Francesca; Astolfi, Paola; González-Paramás, Ana M.; Santos-Buelga, Celestino; Tulipani, Sara; Quiles, José L.; Mezzetti, Bruno; Battino, Maurizio

    2011-01-01

    Background and Aim Free radicals are implicated in the aetiology of gastrointestinal disorders such as gastric ulcer, colorectal cancer and inflammatory bowel disease. Strawberries are common and important fruit due to their high content of essential nutrient and beneficial phytochemicals which seem to have relevant biological activity on human health. In the present study we investigated the antioxidant and protective effects of three strawberry extracts against ethanol-induced gastric mucosa damage in an experimental in vivo model and to test whether strawberry extracts affect antioxidant enzyme activities in gastric mucosa. Methods/Principal Findings Strawberry extracts were obtained from Adria, Sveva and Alba cultivars. Total antioxidant capacity and radical scavenging capacity were performed by TEAC, ORAC and electron paramagnetic resonance assays. Identification and quantification of anthocyanins was carried out by HPLC-DAD-MS analyses. Different groups of animals received 40 mg/day/kg body weight of strawberry crude extracts for 10 days. Gastric damage was induced by ethanol. The ulcer index was calculated together with the determination of catalase and SOD activities and MDA contents. Strawberry extracts are rich in anthocyanins and present important antioxidant capacity. Ethanol caused severe gastric damage and strawberry consumption protected against its deleterious role. Antioxidant enzyme activities increased significantly after strawberry extract intake and a concomitantly decrease in gastric lipid peroxidation was found. A significant correlation between total anthocyanin content and percent of inhibition of ulcer index was also found. Conclusions Strawberry extracts prevented exogenous ethanol-induced damage to rats' gastric mucosa. These effects seem to be associated with the antioxidant activity and phenolic content in the extract as well as with the capacity of promoting the action of antioxidant enzymes. A diet rich in strawberries might exert a

  8. Panum's studies on "putrid poison" 1856. An early description of endotoxin

    DEFF Research Database (Denmark)

    Kolmos, Hans Jørn

    2006-01-01

    In 1855-1856 the Danish physiologist, Peter Ludvig Panum (1820-1885) performed a series of remarkable experiments on "putrid poison", a hypothetical substance claimed to be responsible for the symptoms and signs seen in patients with sepsis. Dogs were given intravenous infusions of putrefying......, but insoluble in alcohol, and with preserved activity after long-term boiling. "Putrid poison" has striking similarities with endotoxin, a cell wall product of Gram-negative bacteria and a powerful inducer of inflammation and septic shock. Thanks to Panum's carefully arranged experiments and meticulous...... recording of observations it is fair to conclude that "putrid poison" was endotoxin, and as such he deserves credit for being the first to have described endotoxin. Panum published his observations twice, in Danish in 1856, and in German in 1874. At first he rejected the possibility that bacteria could play...

  9. Blackberry, raspberry and black raspberry polyphenol extracts attenuate angiotensin II-induced senescence in vascular smooth muscle cells.

    Science.gov (United States)

    Feresin, Rafaela G; Huang, Jingwen; Klarich, DawnKylee S; Zhao, Yitong; Pourafshar, Shirin; Arjmandi, Bahram H; Salazar, Gloria

    2016-10-12

    Activation of angiotensin II (Ang II) signaling during aging increases reactive oxygen species (ROS) leading to vascular senescence, a process linked to the onset and progression of cardiovascular diseases (CVD). Consumption of fruits and vegetables, particularly berries, is associated with decreased incidence of CVD, which has mainly been attributed to the polyphenol content of these foods. Thus, the objective of this study was to investigate the role of blackberry (BL), raspberry (RB), and black raspberry (BRB) polyphenol extracts in attenuating Ang II-induced senescence in vascular smooth muscle cells (VSMCs) and to determine the molecular mechanisms involved. BL, RB and BRB polyphenol extracts (200 μg ml -1 ) attenuated Ang II-induced senescence, denoted by decreased number of cells positive for senescence associated β-galactosidase (SA-β-gal) and down-regulation of p21 and p53 expression, which were associated with decreased ROS levels and Ang II signaling. BL polyphenol extract increased superoxide dismutase (SOD) 1 expression, attenuated the up-regulation of Nox1 expression and the phosphorylation of Akt, p38MAPK and ERK1/2 induced by Ang II, and reduced senescence in response to Nox1 overexpression. In contrast, RB and BRB polyphenol extracts up-regulated the expression of SOD1, SOD2, and glutathione peroxidase 1 (GPx1), but exerted no effect on Nox1 expression nor on senescence induced by Nox1 overexpression. BRB reduced signaling similar to BL, while RB was unable to reduce Akt phosphorylation. Furthermore, we demonstrated that inhibition of Akt, p38MAPK and ERK1/2 as well as down-regulation of Nox1 by siRNA prevented senescence induced by Ang II. Our findings indicate that Ang II-induced senescence is attenuated by BL polyphenols through a Nox1-dependent mechanism and by RB and BRB polyphenols in a Nox1-independent manner, likely by increasing the cellular antioxidant capacity.

  10. A single intraperitoneal injection of endotoxin in rats induces long-lasting modifications in behavior and brain protein levels of TNF-α and IL-18

    Directory of Open Access Journals (Sweden)

    Bossù Paola

    2012-05-01

    Full Text Available Abstract Background Systemic inflammation might cause neuronal damage and sustain neurodegenerative diseases and behavior impairment, with the participation of pro-inflammatory cytokines, like tumor necrosis factor (TNF-α and interleukin (IL-18. However, the potential contribution of these cytokines to behavioral impairment in the long-term period has not been fully investigated. Methods Wistar rats were treated with a single intraperitoneal injection of LPS (5 mg/kg or vehicle. After 7 days and 10 months, the animal behavior was evaluated by testing specific cognitive functions, as mnesic, discriminative, and attentional functions, as well as anxiety levels. Contextually, TNF-α and IL-18 protein levels were measured by ELISA in defined brain regions (that is, frontal cortex, hippocampus, striatum, cerebellum, and hypothalamus. Results Behavioral testing demonstrated a specific and persistent cognitive impairment characterized by marked deficits in reacting to environment modifications, possibly linked to reduced motivational or attentional deficits. Concomitantly, LPS induced a TNF-α increase in the hippocampus and frontal cortex (from 7 days onward and cerebellum (only at 10 months. Interestingly, LPS treatment enhanced IL-18 expression in these same areas only at 10 months after injection. Conclusions Overall, these results indicate that the chronic neuroinflammatory network elicited by systemic inflammation involves a persistent participation of TNF-α accompanied by a differently regulated contribution of IL-18. This leads to speculation that, though with still unclear mechanisms, both cytokines might take part in long-lasting modifications of brain functions, including behavioral alteration.

  11. Surfactant Proteins-A and -D Attenuate LPS-Induced Apoptosis in Primary Intestinal Epithelial Cells (IECs).

    Science.gov (United States)

    Zhang, Linlin; Meng, Qinghe; Yepuri, Natesh; Wang, Guirong; Xi, Xiuming; Cooney, Robert N

    2018-01-01

    SP-A/D KO mice with sepsis demonstrate more severe lung, kidney, and gut injury/apoptosis than WT controls. We hypothesize SP-A and SP-D directly regulate lipopolysaccharide (LPS)-induced P38 mitogen-activated protein kinase (MAPK) activation and gut apoptosis during sepsis. Primary IECs were established from SP-A/D KO or C57BL/6 WT mice, stimulated with LPS and harvested at 24 h. IECs from WT mice were treated with SP-A, SP-D, or vehicle for 20 h, then LPS for 24 h. Apoptosis, cleaved caspase-3 levels and the ratio of BAX/Bcl-2 were assayed. The role of P38 MAPK was examined using the P38 MAPK-agonist U46619 and inhibitor SB203580 in LPS-treated cells. p-P38 MAPK/t-P38 MAPK, TLR4, and CD14 were measured by Western Blot. LPS-induced apoptosis, caspase-3 levels, BAX/Bcl-2, and p-P38/t-P38 MAPK were increased in SP-A/D KO IECs. SP-A and SP-D attenuate LPS-induced increase in apoptosis, cleaved caspase-3, BAX/Bcl-2, and p-P38/t-P38 MAPK in WT IECs. U46619 increased apoptosis, caspase-3, and BAX/Bcl-2 in IECs which was attenuated by SP-A/D. SB203580 attenuates the LPS-induced increase in apoptosis, caspase-3, and BAX/Bcl-2 in WT IECs. Addition of SP-A or SP-D to SB203580 completely ameliorates LPS-induced apoptosis. The LPS-induced increase in TLR4 and CD14 expression is greater in IECs from SP-A/D KO mice and treatment of WT IECs with SP-A or SP-D prevents the LPS-induced increase in TLR4 and CD14. SP-A and SP-D attenuate LPS-induced increases in apoptosis, caspase-3, and BAX/Bcl-2 in IECs. Attenuation of LPS-induced activation of TLR4 and P38 MAPK signaling pathways represents potential mechanisms for the protective effects of SP-A/D on apoptosis.

  12. Effect of enrofloxacin treatment on plasma endotoxin during bovine Escherichia coli mastitis

    NARCIS (Netherlands)

    Dosogne, H.; Meyer, E.; Sturk, A.; van Loon, J.; Massart-Leën, A. M.; Burvenich, C.

    2002-01-01

    OBJECTIVE AND DESIGN: To investigate the effect of enrofloxacin on endotoxin resorption during bovine Escherichia coli mastitis. ANIMALS: 12 healthy early post partum Holstein cows. TREATMENT: Mastitis was induced by intramammary infusion of 10(4) cfu E. coli P4:032. Six cows were treated twice

  13. Neuronal Damage Induced by Perinatal Asphyxia Is Attenuated by Postinjury Glutaredoxin-2 Administration

    Directory of Open Access Journals (Sweden)

    Juan Ignacio Romero

    2017-01-01

    Full Text Available The general disruption of redox signaling following an ischemia-reperfusion episode has been proposed as a crucial component in neuronal death and consequently brain damage. Thioredoxin (Trx family proteins control redox reactions and ensure protein regulation via specific, oxidative posttranslational modifications as part of cellular signaling processes. Trx proteins function in the manifestation, progression, and recovery following hypoxic/ischemic damage. Here, we analyzed the neuroprotective effects of postinjury, exogenous administration of Grx2 and Trx1 in a neonatal hypoxia/ischemia model. P7 Sprague-Dawley rats were subjected to right common carotid ligation or sham surgery, followed by an exposure to nitrogen. 1 h later, animals were injected i.p. with saline solution, 10 mg/kg recombinant Grx2 or Trx1, and euthanized 72 h postinjury. Results showed that Grx2 administration, and to some extent Trx1, attenuated part of the neuronal damage associated with a perinatal hypoxic/ischemic damage, such as glutamate excitotoxicity, axonal integrity, and astrogliosis. Moreover, these treatments also prevented some of the consequences of the induced neural injury, such as the delay of neurobehavioral development. To our knowledge, this is the first study demonstrating neuroprotective effects of recombinant Trx proteins on the outcome of neonatal hypoxia/ischemia, implying clinical potential as neuroprotective agents that might counteract neonatal hypoxia/ischemia injury.

  14. RAGE-aptamer attenuates deoxycorticosterone acetate/salt-induced renal injury in mice.

    Science.gov (United States)

    Taguchi, Kensei; Yamagishi, Sho-Ichi; Yokoro, Miyuki; Ito, Sakuya; Kodama, Goh; Kaida, Yusuke; Nakayama, Yosuke; Ando, Ryotaro; Yamada-Obara, Nana; Asanuma, Katsuhiko; Matsui, Takanori; Higashimoto, Yuichiro; Brooks, Craig R; Ueda, Seiji; Okuda, Seiya; Fukami, Kei

    2018-02-08

    The mineralocorticoid receptor (MR) and its downstream signaling play an important role in hypertensive renal injury. The interaction of advanced glycation end products (AGE) with their receptor (RAGE) is involved in the progression of renal disease. However, the pathological crosstalk between AGE-RAGE axis and MR system in kidney derangement remains unclear. We screened DNA-aptamer directed against RAGE (RAGE-apt) in vitro and examined its effects on renal injury in uninephrectomized deoxycorticosterone acetate (DOCA)/salt-induced hypertensive mice. RAGE, GTP-bound Rac-1 (Rac1), and MR were co-localized in the podocytes of DOCA mice. The deletion of RAGE gene significantly inhibited mesangial matrix expansion and tubulointerstitial fibrosis in DOCA mice, which was associated with the reduction of glomerular oxidative stress, MR, Rac1, and urinary albumin excretion (UAE) levels. RAGE-apt attenuated the increase in carboxymethyllysine (CML), RAGE, nitrotyrosine, Rac1, and MR levels in the kidneys and reduced UAE in DOCA mice. Aldosterone (Aldo) increased nitrotyrosine, CML, and RAGE gene expression in murine podocytes, whereas CML stimulated MR and Rac1 levels, which were blocked by RAGE-apt. The present study indicates the crosstalk between the AGE-RAGE axis and Aldo-MR system, suggesting that RAGE-apt may be a novel therapeutic tool for the treatment of MR-associated renal diseases.

  15. Attenuation of antagonist-induced impairment of dopamine receptors by L-prolyl-L-leucyl-glycinamide

    International Nuclear Information System (INIS)

    Saleh, M.I.M.

    1988-01-01

    The present study was undertaken in order to determine whether chronic,long-term postnatal challenge of rat pups per se, with specific dopamine D1 and D2 receptor antagonists, would modify the ontogeny of the respective receptor types. Since the neuropeptide L-prolyl-L-leucyl-glycinamide (PLG) attenuates the effect of haloperidol on dopamine D2 receptors in adult rats it was of interest to determine whether PLG would modulate antagonists-induced alterations in the ontogeny of striatal dopamine D1 and D2 receptors. Half of the rats were treated daily for 32 days from birth with SCH-23390, a selective dopamine D1 antagonist; or spiroperidol, a selective dopamine D2 antagonists; or both SCH-23390 and spiroperidol; or saline. The other half of the litters were treated with PLG, in combination with the other treatments. Animals were decapitated at 5, 8, and 12 weeks from birth for neurochemical analysis of the striatum. Chronic SCH-23390 treatment produced a 70-80% decrease in the binding of [ 3 H] SCH-23390 to striatal homogenates. The alteration at 5 weeks was associated with a 78% decrease in the Bmax for [ 3 H] SCH-23390 binding, and no change in the K D . Similarly, at 5, 8, and 12 weeks, chronic spiroperidol treatment reduced the binding of [ 3 H] spiroperidol to striatal homogenates by 70-80%

  16. Neuronal Damage Induced by Perinatal Asphyxia Is Attenuated by Postinjury Glutaredoxin-2 Administration.

    Science.gov (United States)

    Romero, Juan Ignacio; Holubiec, Mariana Inés; Tornatore, Tamara Logica; Rivière, Stéphanie; Hanschmann, Eva-Maria; Kölliker-Frers, Rodolfo Alberto; Tau, Julia; Blanco, Eduardo; Galeano, Pablo; Rodríguez de Fonseca, Fernando; Lillig, Christopher Horst; Capani, Francisco

    2017-01-01

    The general disruption of redox signaling following an ischemia-reperfusion episode has been proposed as a crucial component in neuronal death and consequently brain damage. Thioredoxin (Trx) family proteins control redox reactions and ensure protein regulation via specific, oxidative posttranslational modifications as part of cellular signaling processes. Trx proteins function in the manifestation, progression, and recovery following hypoxic/ischemic damage. Here, we analyzed the neuroprotective effects of postinjury, exogenous administration of Grx2 and Trx1 in a neonatal hypoxia/ischemia model. P7 Sprague-Dawley rats were subjected to right common carotid ligation or sham surgery, followed by an exposure to nitrogen. 1 h later, animals were injected i.p. with saline solution, 10 mg/kg recombinant Grx2 or Trx1, and euthanized 72 h postinjury. Results showed that Grx2 administration, and to some extent Trx1, attenuated part of the neuronal damage associated with a perinatal hypoxic/ischemic damage, such as glutamate excitotoxicity, axonal integrity, and astrogliosis. Moreover, these treatments also prevented some of the consequences of the induced neural injury, such as the delay of neurobehavioral development. To our knowledge, this is the first study demonstrating neuroprotective effects of recombinant Trx proteins on the outcome of neonatal hypoxia/ischemia, implying clinical potential as neuroprotective agents that might counteract neonatal hypoxia/ischemia injury.

  17. Red Palm Oil Attenuates Lead Acetate Induced Testicular Damage in Adult Male Sprague-Dawley Rats

    Directory of Open Access Journals (Sweden)

    A. I. Jegede

    2015-01-01

    Full Text Available To study the protective effect of Red Palm Oil (RPO on testicular damage induced by administration of lead acetate on male Sprague-Dawley rats, 28 rats divided into four groups of 7 animals each were used. They were administered orally with RPO (1 mL and 2 mL and lead acetate (i.p. 6 mg/kg body weight/day, respectively. Treatment was conducted for 8 weeks, and 24 hrs after the last treatment the rats were sacrificed using cervical dislocation. Sperms collected from epididymis were used for seminal fluid analyses; while the testes sample was used for ROS and oxidative enzyme activities assessment. Statistical analysis was carried out using GraphPad Prism 5.02 statistical analysis package. Administration of lead acetate increased generation of reactive oxygen species (ROS significantly (p<0.05 as evidenced by the elevated value of H2O2 and LPO and decreased GSH level. Also there was reduced epididymal sperm count, poor grade of sperm motility, and lower percentage of normal sperm morphology significantly. Coadministration with RPO, however, has a protective effect against lead toxicity by decreasing H2O2 production, increased GSH level, and increased sperm qualities especially. This shows that RPO has a potential to attenuate the toxic effect of lead on testicular cells preventing possible resultant male infertility.

  18. Narciclasine attenuates diet-induced obesity by promoting oxidative metabolism in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Sofi G Julien

    2017-02-01

    Full Text Available Obesity develops when caloric intake exceeds metabolic needs. Promoting energy expenditure represents an attractive approach in the prevention of this fast-spreading epidemic. Here, we report a novel pharmacological strategy in which a natural compound, narciclasine (ncls, attenuates diet-induced obesity (DIO in mice by promoting energy expenditure. Moreover, ncls promotes fat clearance from peripheral metabolic tissues, improves blood metabolic parameters in DIO mice, and protects these mice from the loss of voluntary physical activity. Further investigation suggested that ncls achieves these beneficial effects by promoting a shift from glycolytic to oxidative muscle fibers in the DIO mice thereby enhancing mitochondrial respiration and fatty acid oxidation (FAO in the skeletal muscle. Moreover, ncls strongly activates AMPK signaling specifically in the skeletal muscle. The beneficial effects of ncls treatment in fat clearance and AMPK activation were faithfully reproduced in vitro in cultured murine and human primary myotubes. Mechanistically, ncls increases cellular cAMP concentration and ADP/ATP ratio, which further lead to the activation of AMPK signaling. Blocking AMPK signaling through a specific inhibitor significantly reduces FAO in myotubes. Finally, ncls also enhances mitochondrial membrane potential and reduces the formation of reactive oxygen species in cultured myotubes.

  19. Neuronal Damage Induced by Perinatal Asphyxia Is Attenuated by Postinjury Glutaredoxin-2 Administration

    Science.gov (United States)

    Holubiec, Mariana Inés; Tornatore, Tamara Logica; Rivière, Stéphanie; Kölliker-Frers, Rodolfo Alberto; Tau, Julia; Blanco, Eduardo; Galeano, Pablo; Lillig, Christopher Horst

    2017-01-01

    The general disruption of redox signaling following an ischemia-reperfusion episode has been proposed as a crucial component in neuronal death and consequently brain damage. Thioredoxin (Trx) family proteins control redox reactions and ensure protein regulation via specific, oxidative posttranslational modifications as part of cellular signaling processes. Trx proteins function in the manifestation, progression, and recovery following hypoxic/ischemic damage. Here, we analyzed the neuroprotective effects of postinjury, exogenous administration of Grx2 and Trx1 in a neonatal hypoxia/ischemia model. P7 Sprague-Dawley rats were subjected to right common carotid ligation or sham surgery, followed by an exposure to nitrogen. 1 h later, animals were injected i.p. with saline solution, 10 mg/kg recombinant Grx2 or Trx1, and euthanized 72 h postinjury. Results showed that Grx2 administration, and to some extent Trx1, attenuated part of the neuronal damage associated with a perinatal hypoxic/ischemic damage, such as glutamate excitotoxicity, axonal integrity, and astrogliosis. Moreover, these treatments also prevented some of the consequences of the induced neural injury, such as the delay of neurobehavioral development. To our knowledge, this is the first study demonstrating neuroprotective effects of recombinant Trx proteins on the outcome of neonatal hypoxia/ischemia, implying clinical potential as neuroprotective agents that might counteract neonatal hypoxia/ischemia injury. PMID:28706574

  20. Sodium Tanshinone IIA Sulfonate Attenuates Scopolamine-Induced Cognitive Dysfunctions via Improving Cholinergic System

    Directory of Open Access Journals (Sweden)

    Qing-Qing Xu

    2016-01-01

    Full Text Available Sodium Tanshinone IIA sulfonate (STS is a derivative of Tanshinone IIA (Tan IIA. Tan IIA has been reported to possess neuroprotective effects against Alzheimer’s disease (AD. However, whether STS possesses effect on AD remains unclear. This study aims to estimate whether STS could protect against scopolamine- (SCOP- induced learning and memory deficit in Kunming mice. Morris water maze results showed that oral administration of STS (10 mg/kg and 20 mg/kg and Donepezil shortened escape latency, increased crossing times of the original position of the platform, and increased the time spent in the target quadrant. STS decreased the activity of acetylcholinesterase (AChE and increased the activity of choline acetyltransferase (ChAT in the hippocampus and cortex of SCOP-treated mice. Oxidative stress results showed that STS increased the activity of superoxide dismutase (SOD and decreased the levels of malondialdehyde (MDA and reactive oxygen species (ROS in hippocampus and cortex. In addition, western blot was carried out to detect the expression of apoptosis related proteins (Bcl-2, Bax, and Caspase-3. STS upregulated the protein expression of Bcl-2 and downregulated the proteins expression of Bax and Caspase-3. These results indicated that STS might become a promising therapeutic candidate for attenuating AD-like pathological dysfunction.

  1. Narciclasine attenuates diet-induced obesity by promoting oxidative metabolism in skeletal muscle

    Science.gov (United States)

    Sinnakannu, Joanna R.; Ge, Xiaojia; Ma, Wei; Velan, Sendhil S.; Röder, Pia V.; Zhang, Qiongyi; Sim, Choon Kiat; Wu, Jingyi; Garcia-Miralles, Marta; Xie, Wei; McFarlane, Craig

    2017-01-01

    Obesity develops when caloric intake exceeds metabolic needs. Promoting energy expenditure represents an attractive approach in the prevention of this fast-spreading epidemic. Here, we report a novel pharmacological strategy in which a natural compound, narciclasine (ncls), attenuates diet-induced obesity (DIO) in mice by promoting energy expenditure. Moreover, ncls promotes fat clearance from peripheral metabolic tissues, improves blood metabolic parameters in DIO mice, and protects these mice from the loss of voluntary physical activity. Further investigation suggested that ncls achieves these beneficial effects by promoting a shift from glycolytic to oxidative muscle fibers in the DIO mice thereby enhancing mitochondrial respiration and fatty acid oxidation (FAO) in the skeletal muscle. Moreover, ncls strongly activates AMPK signaling specifically in the skeletal muscle. The beneficial effects of ncls treatment in fat clearance and AMPK activation were faithfully reproduced in vitro in cultured murine and human primary myotubes. Mechanistically, ncls increases cellular cAMP concentration and ADP/ATP ratio, which further lead to the activation of AMPK signaling. Blocking AMPK signaling through a specific inhibitor significantly reduces FAO in myotubes. Finally, ncls also enhances mitochondrial membrane potential and reduces the formation of reactive oxygen species in cultured myotubes. PMID:28207742

  2. Taurine zinc solid dispersions attenuate doxorubicin-induced hepatotoxicity and cardiotoxicity in rats.

    Science.gov (United States)

    Wang, Yu; Mei, Xueting; Yuan, Jingquan; Lu, Wenping; Li, Binglong; Xu, Donghui

    2015-11-15

    The clinical efficacy of anthracycline anti-neoplastic agents is limited by cardiac and hepatic toxicities. The aim of this study was to assess the hepatoprotective and cardioprotective effects of taurine zinc solid dispersions, which is a newly-synthesized taurine zinc compound, against doxorubicin-induced toxicity in Sprague-Dawley rats intraperitoneally injected with doxorubicin hydrochloride (3mg/kg) three times a week (seven injections) over 28 days. Hemodynamic parameters, levels of liver toxicity markers and oxidative stress were assessed. Taurine zinc significantly attenuated the reductions in blood pressure, left ventricular pressure and ± dp/dtmax, increases in serum alanine aminotransferase and aspartate aminotransferase activities, and reductions in serum Zn(2+) and albumin levels (Ptaurine zinc dose-dependently increased liver superoxide dismutase activity and glutathione concentration, and decreased malondialdehyde level (PTaurine zinc dose-dependently increased liver heme oxygenase-1 and UDP-glucuronyl transferase mRNA and protein expression (Ptaurine zinc inhibited c-Jun N-terminal kinase phosphorylation by upregulating dual-specificity phosphoprotein phosphatase-1. Additionally, taurine zinc inhibited cardiomyocyte apoptosis as there was decreased TUNEL/DAPI positivity and protein expression of caspase-3. These results indicate that taurine zinc solid dispersions prevent the side-effects of anthracycline-based anticancer therapy. The mechanisms might be associated with the enhancement of antioxidant defense system partly through activating transcription to synthesize endogenous phase II medicine enzymes and anti-apoptosis through inhibiting JNK phosphorylation. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Ethanol at Low Concentration Attenuates Diabetes Induced Lung Injury in Rats Model

    Directory of Open Access Journals (Sweden)

    Jun-Feng Hu

    2014-01-01

    Full Text Available To observe the changes of lung injury when diabetic rats were treated with low concentration of ethanol (EtOH and analyze the related mechanisms, male Sprague-Dawley (SD rats were divided into control, diabetic (DM, and EtOH+DM groups. Diabetic rat was mimicked by injection of streptozotocin intraperitoneally. Fasting blood glucose (FBG level, lung weight (LW, body weight (BW, and LW/BW were measured. The changes of lung tissue and Type II alveolar cell were detected. Pulmonary malondialdehyde (MDA content and superoxide dismutase (SOD activity were measured; meanwhile, ALDH2 mRNA and protein expressions were detected by RT-PCR and western blotting, respectively. Compared with control group, in DM group, SOD activity was decreased; FBG level, LW/BW, MDA content, ALDH2 mRNA, and protein expressions were decreased. Compared with DM group, in EtOH+DM group, SOD activity, ALDH2 mRNA, and protein expressions were increased; LW/BW and MDA content were decreased. The structures of lung tissue and lamellar bodies were collapsed in DM group; the injury was attenuated in EtOH+DM group. Our findings suggested that, in diabetic rat, pulmonary ALDH2 expression was decreased accompanying lung injury. EtOH at low concentration decreased diabetes induced lung injury through activating ALDH2 expression.

  4. The LIM-only protein FHL2 attenuates lung inflammation during bleomycin-induced fibrosis.

    Directory of Open Access Journals (Sweden)

    Abdulaleem Alnajar

    Full Text Available Fibrogenesis is usually initiated when regenerative processes have failed and/or chronic inflammation occurs. It is characterised by the activation of tissue fibroblasts and dysregulated synthesis of extracellular matrix proteins. FHL2 (four-and-a-half LIM domain protein 2 is a scaffolding protein that interacts with numerous cellular proteins, regulating signalling cascades and gene transcription. It is involved in tissue remodelling and tumour progression. Recent data suggest that FHL2 might support fibrogenesis by maintaining the transcriptional expression of alpha smooth muscle actin and the excessive synthesis and assembly of matrix proteins in activated fibroblasts. Here, we present evidence that FHL2 does not promote bleomycin-induced lung fibrosis, but rather suppresses this process by attenuating lung inflammation. Loss of FHL2 results in increased expression of the pro-inflammatory matrix protein tenascin C and downregulation of the macrophage activating C-type lectin receptor DC-SIGN. Consequently, FHL2 knockout mice developed a severe and long-lasting lung pathology following bleomycin administration due to enhanced expression of tenascin C and impaired activation of inflammation-resolving macrophages.

  5. Mice deficient in CD38 develop an attenuated form of collagen type II-induced arthritis.

    Science.gov (United States)

    Postigo, Jorge; Iglesias, Marcos; Cerezo-Wallis, Daniela; Rosal-Vela, Antonio; García-Rodríguez, Sonia; Zubiaur, Mercedes; Sancho, Jaime; Merino, Ramón; Merino, Jesús

    2012-01-01

    CD38, a type II transmembrane glycoprotein expressed in many cells of the immune system, is involved in cell signaling, migration and differentiation. Studies in CD38 deficient mice (CD38 KO mice) indicate that this molecule controls inflammatory immune responses, although its involvement in these responses depends on the disease model analyzed. Here, we explored the role of CD38 in the control of autoimmune responses using chicken collagen type II (col II) immunized C57BL/6-CD38 KO mice as a model of collagen-induced arthritis (CIA). We demonstrate that CD38 KO mice develop an attenuated CIA that is accompanied by a limited joint induction of IL-1β and IL-6 expression, by the lack of induction of IFNγ expression in the joints and by a reduction in the percentages of invariant NKT (iNKT) cells in the spleen. Immunized CD38 KO mice produce high levels of circulating IgG1 and low of IgG2a anti-col II antibodies in association with reduced percentages of Th1 cells in the draining lymph nodes. Altogether, our results show that CD38 participates in the pathogenesis of CIA controlling the number of iNKT cells and promoting Th1 inflammatory responses.

  6. Mice deficient in CD38 develop an attenuated form of collagen type II-induced arthritis.

    Directory of Open Access Journals (Sweden)

    Jorge Postigo

    Full Text Available CD38, a type II transmembrane glycoprotein expressed in many cells of the immune system, is involved in cell signaling, migration and differentiation. Studies in CD38 deficient mice (CD38 KO mice indicate that this molecule controls inflammatory immune responses, although its involvement in these responses depends on the disease model analyzed. Here, we explored the role of CD38 in the control of autoimmune responses using chicken collagen type II (col II immunized C57BL/6-CD38 KO mice as a model of collagen-induced arthritis (CIA. We demonstrate that CD38 KO mice develop an attenuated CIA that is accompanied by a limited joint induction of IL-1β and IL-6 expression, by the lack of induction of IFNγ expression in the joints and by a reduction in the percentages of invariant NKT (iNKT cells in the spleen. Immunized CD38 KO mice produce high levels of circulating IgG1 and low of IgG2a anti-col II antibodies in association with reduced percentages of Th1 cells in the draining lymph nodes. Altogether, our results show that CD38 participates in the pathogenesis of CIA controlling the number of iNKT cells and promoting Th1 inflammatory responses.

  7. Inflammation induced by increased frequency of intermittent hypoxia is attenuated by tempol administration.

    Science.gov (United States)

    Zhang, J; Zheng, L; Cao, J; Chen, B; Jin, D

    2015-12-01

    The levels of serum inflammatory cytokines and the activation of nuclear factor kappa B (NF-κB) and hypoxia inducible factor-1α (HIF-1α) in heart tissues in response to different frequencies of intermittent hypoxia (IH) and the antioxidant tempol were evaluated. Wistar rats (64 males, 200-220 g) were randomly divided into 6 experimental groups and 2 control groups. Four groups were exposed to IH 10, 20, 30, or 40 times/h. The other 2 experimental groups were challenged with IH (30 times/h) plus tempol, either beginning on day 0 (IH30T0) or on day 29 (IH30T29). After 6 weeks of challenge, serum levels of tumor necrosis factor (TNF)-α, intracellular adhesion molecule (ICAM)-1, and interleukin-10 were measured, and western blot analysis was used to detect NF-κB p65 and HIF-1α in myocardial tissues. Serum levels of TNF-α and ICAM-1 and myocardial expression of NF-κB p65 and HIF-1α were all significantly higher in IH rats than in controls (Ptempol in IH rats significantly reduced levels of TNF-α, ICAM-1, NF-κB and HIF-1α compared with the non-tempol-treated group (F=16.936, Ptempol treatment attenuated this effect.

  8. Attenuated RANKL-induced cytotoxicity by Portulaca oleracea ethanol extract enhances RANKL-mediated osteoclastogenesis.

    Science.gov (United States)

    Erkhembaatar, Munkhsoyol; Choi, Eun-Joo; Lee, Hak-Yong; Lee, Choong Hun; Lee, Young-Rae; Kim, Min Seuk

    2015-07-14

    Portulaca oleracea (PO) has been widely used as traditional medicine because of its pharmacological activities. However, the effects of PO on osteoclasts that modulate bone homeostasis are still elusive. In this study, we examined the effects of PO ethanol extract (POEE) on receptor activator of nuclear factor-κB ligand (RANKL)-mediated Ca(2+) mobilization, nuclear factor of activated T-cell c1 (NFATc1) amplification, tartrate-resistant acid phosphatase-positive (TRAP+) multinucleated cell (MNC) formation, and cytotoxicity. Our results demonstrated that POEE suppressed RANKL-induced Ca(2+) oscillations by inhibition of Ca(2+) release from internal Ca(2+) stores, resulting in reduction of NFATc1 amplification. Notably, POEE attenuated RANKL-mediated cytotoxicity and cleavage of polyadenosine 5'-diphosphate-ribose polymerase (PARP), resulted in enhanced formation of TRAP+ MNCs. These results present in vitro effects of POEE on RANKL-mediated osteoclastogenesis and suggest the possible use of PO in treating bone disorders, such as osteopetrosis.

  9. Probiotic cheese attenuates exercise-induced immune suppression in Wistar rats.

    Science.gov (United States)

    Lollo, P C B; Cruz, A G; Morato, P N; Moura, C S; Carvalho-Silva, L B; Oliveira, C A F; Faria, J A F; Amaya-Farfan, J

    2012-07-01

    Intense physical activity results in a substantial volume of stress and hence a significant probability of immunosuppression in athletes, with milk proteins being, perhaps, the most recommended protein supplements. Consumption of a probiotic cheese can attenuate immune suppression induced by exhausting exercise in rats. A popular Brazilian fresh cheese (Minas Frescal cheese) containing Lactobacillus acidophilus LA14 and Bifidobacterium longum BL05 was fed for 2wk to adult Wistar rats, which then were brought to exhaustion on the treadmill. Two hours after exhaustion, the rats were killed and material was collected for the determination of serum uric acid, total and high-density lipoprotein cholesterol fraction, total protein, triacylglycerols, aspartate aminotransferase, alanine aminotransferase, creatine kinase, and blood cell (monocyte, lymphocyte, neutrophil, and leukocyte) counts. Exercise was efficient in reducing lymphocyte counts, irrespective of the type of ingested cheese, but the decrease in the group fed the probiotic cheese was 22% compared with 48% in the animals fed regular cheese. Monocyte counts were unaltered in the rats fed probiotic cheese compared with a significant decrease in the rats fed the regular cheese. Most importantly, ingestion of the probiotic cheese resulted in a >100% increase in serum high-density lipoprotein cholesterol and a 50% decrease in triacylglycerols. We conclude that probiotic Minas Frescal cheese may be a viable alternative to enhance the immune system and could be used to prevent infections, particularly those related to the physical overexertion of athletes. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Urtica dioica attenuate effect of Doxorobicin‐Induced changes on sperm parameters in the mice

    Directory of Open Access Journals (Sweden)

    Zahra Baninameh

    2016-11-01

    Full Text Available Doxorubicin (DXR is used as an antitumor agent for the treatment of human neoplasm. The use of DXR has adverse effect on reproductive system including testicular toxicity and alteration in semen quality. The aim of this study was to evaluate the protective effects of Urtica dioica against Doxorobicin‐Induced changes on sperm parameters. 24 male mice were randomly divided into 4 groups. Control group received normal saline solution throughout the course of the study. Urtica dioica (UD control group, received UD (100 mg/kg body weight thrice in a week and DOX (3 mg/kg body weight once in a week injected intraperitoneally in Doxorubicin (DXR control group and Urtica dioica- Doxorubicin (UD-DXR group, received Urtica dioica (100 mg/kg body weight three times in a week and DOX (3 mg/kg body weight once in a week through the route for a period of 2 weeks. At the end of experimental period, all animal were sacrificed by cervical dislocation, their epididymes were removed and sperm analysis were done. In mice with DXR administration, epididymal sperm motility, progressive motility, sperm count and viability significantly decrease while sperm cells with abnormal morphology significantly increase when compared with control groups. Co-treatment with UD attenuate toxicity effect of DXR and improve sperm parameters. Results of our study showed that UD diminished DXR-induced testicular toxicity and improve semen parameters, thus suggesting its co-administration as a protective agent during doxorubicin treatment. Further studies should be aimed to determine protective effect of UD against chemotherapeutic agents such as DXR.

  11. Melatonin attenuates prenatal dexamethasone-induced blood pressure increase in a rat model.

    Science.gov (United States)

    Tain, You-Lin; Chen, Chih-Cheng; Sheen, Jiunn-Ming; Yu, Hong-Ren; Tiao, Mao-Meng; Kuo, Ho-Chang; Huang, Li-Tung

    2014-04-01

    Although antenatal corticosteroid is recommended to accelerate fetal lung maturation, prenatal dexamethasone exposure results in hypertension in the adult offspring. Since melatonin is a potent antioxidant and has been known to regulate blood pressure, we examined the beneficial effects of melatonin therapy in preventing prenatal dexamethasone-induced programmed hypertension. Male offspring of Sprague-Dawley rats were assigned to four groups (n = 12/group): control, dexamethasone (DEX), control + melatonin, and DEX + melatonin. Pregnant rats received intraperitoneal dexamethasone (0.1 mg/kg) from gestational day 16 to 22. In the melatonin-treatment groups, rats received 0.01% melatonin in drinking water during their entire pregnancy and lactation. Blood pressure was measured by an indirect tail-cuff method. Gene expression and protein levels were analyzed by real-time quantitative polymerase chain reaction and Western blotting, respectively. At 16 weeks of age, the DEX group developed hypertension, which was partly reversed by maternal melatonin therapy. Reduced nephron numbers due to prenatal dexamethasone exposure were prevented by melatonin therapy. Renal superoxide and NO levels were similar in all groups. Prenatal dexamethasone exposure led to increased mRNA expression of renin and prorenin receptor and up-regulated histone deacetylase (HDAC)-1 expression in the kidneys of 4-month-old offspring. Maternal melatonin therapy augmented renal Mas protein levels in DEX + melatonin group, and increased renal mRNA expression of HDAC-1, HDAC-2, and HDAC-8 in control and DEX offspring. Melatonin attenuated prenatal DEX-induced hypertension by restoring nephron numbers, altering RAS components, and modulating HDACs. Copyright © 2014 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  12. Bifidobacterium breve attenuates murine dextran sodium sulfate-induced colitis and increases regulatory T cell responses.

    Directory of Open Access Journals (Sweden)

    Bin Zheng

    Full Text Available While some probiotics have shown beneficial effects on preventing or treating colitis development, others have shown no effects. In this study, we have assessed the immunomodulating effects of two probiotic strains, Lactobacillus rhamnosus (L. rhamnosus and Bifidobacterium breve (B. breve on T cell polarization in vitro, using human peripheral blood mononuclear cells (PBMC, and in vivo, using murine dextran sodium sulfate (DSS colitis model. With respect to the latter, the mRNA expression of T cell subset-associated transcription factors and cytokines in the colon was measured and the T helper type (Th 17 and regulatory T cell (Treg subsets were determined in the Peyer's patches. Both L. rhamnosus and B. breve incubations in vitro reduced Th17 and increased Th2 cell subsets in human PBMCs. In addition, B. breve incubation was also able to reduce Th1 and increase Treg cell subsets in contrast to L. rhamnosus. In vivo intervention with B. breve, but not L. rhamnosus, significantly attenuated the severity of DSS-induced colitis. In DSS-treated C57BL/6 mice, intervention with B. breve increased the expression of mRNA encoding for Th2- and Treg-associated cytokines in the distal colon. In addition, intervention with B. breve led to increases of Treg and decreases of Th17 cell subsets in Peyer's patches of DSS-treated mice. B. breve modulates T cell polarization towards Th2 and Treg cell-associated responses in vitro and in vivo. In vivo B. breve intervention ameliorates DSS-induced colitis symptoms and this protective effect may mediated by its effects on the T-cell composition.

  13. Natural killer cells attenuate cytomegalovirus-induced hearing loss in mice.

    Directory of Open Access Journals (Sweden)

    Ali A Almishaal

    2017-08-01

    Full Text Available Congenital cytomegalovirus (CMV infection is the most common non-hereditary cause of sensorineural hearing loss (SNHL yet the mechanisms of hearing loss remain obscure. Natural Killer (NK cells play a critical role in regulating murine CMV infection via NK cell recognition of the Ly49H cell surface receptor of the viral-encoded m157 ligand expressed at the infected cell surface. This Ly49H NK receptor/m157 ligand interaction has been found to mediate host resistance to CMV in the spleen, and lung, but is much less effective in the liver, so it is not known if this interaction is important in the context of SNHL. Using a murine model for CMV-induced labyrinthitis, we have demonstrated that the Ly49H/m157 interaction mediates host resistance in the temporal bone. BALB/c mice, which lack functional Ly49H, inoculated with mCMV at post-natal day 3 developed profound hearing loss and significant outer hair cell loss by 28 days of life. In contrast, C57BL/6 mice, competent for the Ly49H/m157 interaction, had minimal hearing loss and attenuated outer hair cell loss with the same mCMV dose. Administration of Ly49H blocking antibody or inoculation with a mCMV viral strain deleted for the m157 gene rendered the previously resistant C57BL/6 mouse strain susceptible to hearing loss to a similar extent as the BALB/c mouse strain indicating a direct role of the Ly49H/m157 interaction in mCMV-dependent hearing loss. Additionally, NK cell recruitment to sites of infection was evident in the temporal bone of inoculated susceptible mouse strains. These results demonstrate participation of NK cells in protection from CMV-induced labyrinthitis and SNHL in mice.

  14. Betahistine attenuates murine collagen-induced arthritis by suppressing both inflammatory and Th17 cell responses.

    Science.gov (United States)

    Tang, Kuo-Tung; Chao, Ya-Hsuan; Chen, Der-Yuan; Lim, Yun-Ping; Chen, Yi-Ming; Li, Yi-Rong; Yang, Deng-Ho; Lin, Chi-Chen

    2016-10-01

    The objective of this study was to evaluate the potential therapeutic effects of betahistine dihydrochloride (betahistine) in a collagen-induced arthritis (CIA) mouse model. CIA was induced in DBA/1 male mice by primary immunization with 100μl of emulsion containing 2mg/ml chicken type II collagen (CII) mixed with complete Freund's adjuvant (CFA) in an 1:1 ratio, and booster immunization with 100μl of emulsion containing 2mg/ml CII mixed with incomplete Freund's adjuvant (IFA) in an 1:1 ratio. Immunization was performed subcutaneously at the base of the tail. After being boosted on day 21, betahistine (1 and 5mg/kg) was orally administered daily for 2weeks. The severity of CIA was determined by arthritic scores and assessment of histopathological joint destruction. Expression of cytokines in the paw and anti-CII antibodies in the serum was evaluated by ELISA. The proliferative response against CII in the lymph node cells was measured by (3)H-thymidine incorporation assay. The frequencies of different CII specific CD4(+) T cell subsets in the lymph node were determined by flow-cytometric analysis. Betahistine treatment attenuated the severity of arthritis and reduced the levels of pro-inflammatory cytokines, including TNF-α, IL-6, IL-23 and IL-17A, in the paw tissues of CIA mice. Lymph node cells from betahistine-treated mice showed a decrease in proliferation, as well as a lower frequency of Th17 cells. In vitro, betahistine suppressed CD4(+) T cell differentiation into Th17 cells. These results indicate that betahistine is effective in suppressing both inflammatory and Th17 responses in mouse CIA and that it may have therapeutic value as an adjunct treatment for rheumatoid arthritis. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Occlusion of blood flow attenuates exercise-induced hypoalgesia in the occluded limb of healthy adults.

    Science.gov (United States)

    Jones, Matthew D; Taylor, Janet L; Barry, Benjamin K

    2017-05-01

    Animal studies have demonstrated an important role of peripheral mechanisms as contributors to exercise-induced hypoalgesia (EIH). Whether these same mechanisms contribute to EIH in humans is not known. In the current study, pain thresholds were assessed in healthy volunteers ( n = 36) before and after 5 min of high-intensity leg cycling exercise and an equivalent period of quiet rest. Pressure pain thresholds (PPTs) were assessed over the rectus femoris muscle of one leg and first dorsal interosseous muscles (FDIs) of both arms. Blood flow to one arm was occluded by a cuff throughout the 5-min period of exercise (or rest) and postexercise (or rest) assessments. Ratings of pain intensity and pain unpleasantness during occlusion were also measured. Pain ratings during occlusion increased over time (range, 1.5 to 3.5/10, all d > 0.63, P exercise conditions ( d 0.4). PPTs at all sites were unchanged following rest (range, -1.3% to +0.9%, all d 0.51). Consistent with EIH, exercise significantly increased PPT at the leg (+29%, d = 0.69, P exercise attenuates EIH, suggesting that peripheral factors contribute to EIH in healthy adults. NEW & NOTEWORTHY This is the first demonstration in humans that a factor carried by the circulation and acting at the periphery is important for exercise-induced hypoalgesia. Further understanding of this mechanism may provide new insight to pain relief with exercise as well as potential interactions between analgesic medications and exercise. Copyright © 2017 the American Physiological Society.

  16. COX-2 inhibition attenuates lung injury induced by skeletal muscle ischemia reperfusion in rats.

    Science.gov (United States)

    Wang, Liangrong; Shan, Yuanlu; Ye, Yuzhu; Jin, Lida; Zhuo, Qian; Xiong, Xiangqing; Zhao, Xiyue; Lin, Lina; Miao, JianXia

    2016-02-01

    Skeletal muscle ischemia reperfusion accounts for high morbidity and mortality, and cyclooxygenase (COX)-2 is implicated in causing muscle damage. Downregulation of aquaporin-1 (AQP-1) transmembrane protein is implicated in skeletal muscle ischemia reperfusion induced remote lung injury. The expression of COX-2 in lung tissue and the effect of COX-2 inhibition on AQP-1 expression and lung injury during skeletal muscle ischemia reperfusion are not known. We investigated the role of COX-2 in lung injury induced by skeletal muscle ischemia reperfusion in rats and evaluated the effects of NS-398, a specific COX-2 inhibitor. Twenty-four Sprague Dawley rats were randomized into 4 groups: sham group (SM group), sham+NS-398 group (SN group), ischemia reperfusion group (IR group) and ischemia reperfusion+NS-398 group (IN group). Rats in the IR and IN groups were subjected to 3h of bilateral ischemia followed by 6h of reperfusion in hindlimbs, and intravenous NS-398 8 mg/kg was administered in the IN group. In the SM and SN groups, rubber bands were in place without inflation. At the end of reperfusion, myeloperoxidase (MPO) activity, COX-2 and AQP-1 protein expression in lung tissue, PGE2 metabolite (PGEM), tumor necrosis factor (TNF)-α and interleukin (IL)-1β levels in bronchoalveolar lavage (BAL) fluid were assessed. Histological changes in lung and muscle tissues and wet/dry (W/D) ratio were also evaluated. MPO activity, COX-2 expression, W/D ratio in lung tissue, and PGEM, TNF-α and IL-1β levels in BAL fluid were significantly increased, while AQP-1 protein expression downregulated in the IR group as compared to that in the SM group (Pinjury. COX-2 protein expression was upregulated in lung tissue in response to skeletal muscle ischemia reperfusion. COX-2 inhibition may modulate pulmonary AQP-1 expression and attenuate lung injury. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Curcumin attenuates collagen-induced inflammatory response through the "gut-brain axis".

    Science.gov (United States)

    Dou, Yannong; Luo, Jinque; Wu, Xin; Wei, Zhifeng; Tong, Bei; Yu, Juntao; Wang, Ting; Zhang, Xinyu; Yang, Yan; Yuan, Xusheng; Zhao, Peng; Xia, Yufeng; Hu, Huijuan; Dai, Yue

    2018-01-06

    Previous studies have demonstrated that oral administration of curcumin exhibited an anti-arthritic effect despite its poor bioavailability. The present study aimed to explore whether the gut-brain axis is involved in the therapeutic effect of curcumin. The collagen-induced arthritis (CIA) rat model was induced by immunization with an emulsion of collagen II and complete Freund's adjuvant. Sympathetic and parasympathetic tones were measured by electrocardiographic recordings. Unilateral cervical vagotomy (VGX) was performed before the induction of CIA. The ChAT, AChE activities, and serum cytokine levels were determined by ELISA. The expression of the high-affinity choline transporter 1 (CHT1), ChAT, and vesicular acetylcholine transporter (VAChT) were determined by real-time PCR and immunohistochemical staining. The neuronal excitability of the vagus nerve was determined by whole-cell patch clamp recording. Oral administration of curcumin restored the imbalance between the sympathetic and parasympathetic tones in CIA rats and increased ChAT activity and expression of ChAT and VAChT in the gut, brain, and synovium. Additionally, VGX eliminated the effects of curcumin on arthritis and ACh biosynthesis and transport. Electrophysiological data showed that curcumin markedly increased neuronal excitability of the vagus nerve. Furthermore, selective α7 nAChR antagonists abolished the effects of curcumin on CIA. Our results demonstrate that curcumin attenuates CIA through the "gut-brain axis" by modulating the function of the cholinergic system. These findings provide a novel approach for mechanistic studies of anti-arthritic compounds with low oral absorption and bioavailability.

  18. Dok2 mediates the CD200Fc attenuation of Aβ-induced changes in glia

    Directory of Open Access Journals (Sweden)

    Lyons Anthony

    2012-05-01

    Full Text Available Abstract Background The interaction between the membrane glycoprotein, CD200 and its cognate receptor CD200 receptor (CD200R, has been shown to play a role in maintaining microglia in a quiescent state. There is evidence of increased activation under resting and stimulated conditions in microglia prepared from CD200-deficient mice compared with wild-type mice, whereas activation of the receptor by CD200 fusion protein (CD200Fc ameliorates inflammatory changes which are evident in the central nervous system (CNS of the mouse model of multiple sclerosis (MS, experimental autoimmune encephalomyelitis (EAE and also in the hippocampus of aged rats. Additionally, an inverse relationship between microglial activation and expression of CD200 has been observed in animals treated with lipopolysaccharide (LPS or amyloid-β (Aβ. Methods We assessed the effect of CD200R activation by CD200Fc on Aβ-induced production of the pro-inflammatory cytokines, interleukin-1β (IL-1β and tumor necrosis factor-α (TNFα and the expression of microglial activation markers, CD68 and CD40 in cultured glia. The role played by downstream of tyrosine kinase 2 (Dok2 phosphorylation in mediating the effects of CD200R activation was evaluated by siRNA knockdown of Dok2. To further examine the impact of inflammatory changes on synaptic plasticity, the effect of CD200Fc on Aβ-induced impairment of long-term potentiation (LTP in the CA1 region of hippocampal slices was also investigated. Results We demonstrate that Aβ-induced increases in IL-1β, TNFα, CD68 and CD40 were inhibited by CD200Fc. The evidence suggests that Dok2 phosphorylation is a key factor in mediating the effect of CD200Fc, since Dok2 knockdown by siRNA abrogated its effects on microglial activation and inflammatory cytokine production. Consistent with evidence that inflammatory changes negatively impact on LTP, we show that the Aβ-induced impairment of LTP was attenuated by CD200Fc. Conclusions The findings

  19. [Role of non-receptor tyrosine kinase Tec in the production of pro-inflammatory cytokines from macrophages induced by endotoxin/lipopolysaccharide].

    Science.gov (United States)

    Wang, Chao; Wang, Fei; Zhou, Bo; Qiu, Le; Wang, Jian; Liu, Sheng; Chen, Xulin

    2015-02-01

    To investigate the role of non-receptor tyrosine kinase Tec in the production of TNF-α and IL-1β from macrophages induced by LPS and its related mechanism. RAW264.7 mononuclear-macrophages cultured in 6-well plates were divided into 4 groups according to the random number table, with 24 wells in each group. Cells in blank group were routinely cultured (cultured with DMEM medium containing 10% FBS) for 2 hours. Cells in LFM-A13 group were pretreated with 75 µmol/L Tec specific inhibitor LFM-A13 for 1 hour and then routinely cultured for 1 hour. Cells in LPS group were routinely cultured for 1 hour and then treated with 0.1 µg/mL LPS for 1 hour. Cells in LPS+LFM-A13 group were pretreated with 75 µmol/L LFM-A13 for 1 hour and then treated with 0.1 µg/mL LPS for 1 hour. The content of TNF-α and IL-1β in culture supernatant of cells was determined with ELISA. The mRNA expressions of TNF-α and IL-1β in cells were assayed with real-time fluorescent quantitative RT-PCR. The activity of intracellular Tec, p38 MAPK, and transforming growth factor activated kinase 1 (TAK1) was determined with Western blotting. Data were processed with one-way analysis of variance and LSD test. The content of TNF-α and IL-1β in culture supernatant of cells in LFM-A13 group was close to that in blank group (with P values above 0.05). The mRNA expressions of TNF-α and IL-1β in the cells of LFM-A13 group were close to those of blank group (with P values above 0.05). The content of TNF-α and IL-1β in culture supernatant of cells in LPS group was respectively (1 213 ± 154) and (636 ± 90) pg/mL, which was higher than that in blank group [(330 ± 44) and (211 ± 31) pg/mL, with P values below 0.01]. The mRNA expressions of TNF-α and IL-1β in the cells of LPS group were respectively 1.57 ± 0.22 and 1.44 ± 0.24, which were significantly higher than those of blank group (1.00 ± 0.18 and 1.00 ± 0.19, with P values below 0.01). The content of TNF-α and IL-1β in culture

  20. A matrix of cholesterol crystals, but not cholesterol alone, primes human monocytes/macrophages for excessive endotoxin-induced production of tumor necrosis factor-alpha. Role in atherosclerotic inflammation?

    DEFF Research Database (Denmark)

    Bendtzen, Klaus; Christensen, Ole; Nielsen, Claus Henrik

    2014-01-01

    When exposed to small amounts of bacterial endotoxin, matrices of cholesterol crystals, but not cholesterol itself, primed human monocytes/macrophages to a highly augmented (>10-fold) production of inflammatory tumor necrosis factor-α. Priming also sensitized the cells, as 10- to 100-fold lower...... suggest that cholesterol matrix formation may play a pathogenic role in atherosclerotic inflammation, and they indicate a mechanism by which bacteria and/or bacterial products may play a role in processes leading to arteriosclerosis....

  1. A matrix of cholesterol crystals, but not cholesterol alone, primes human monocytes/macrophages for excessive endotoxin-induced production of tumor necrosis factor-alpha. Role in atherosclerotic inflammation?

    DEFF Research Database (Denmark)

    Bendtzen, Klaus; Christensen, Ole; Nielsen, Claus Henrik

    2014-01-01

    When exposed to small amounts of bacterial endotoxin, matrices of cholesterol crystals, but not cholesterol itself, primed human monocytes/macrophages to a highly augmented (>10-fold) production of inflammatory tumor necrosis factor-α. Priming also sensitized the cells, as 10- to 100-fold lower l...... suggest that cholesterol matrix formation may play a pathogenic role in atherosclerotic inflammation, and they indicate a mechanism by which bacteria and/or bacterial products may play a role in processes leading to arteriosclerosis....

  2. Metal ions potentiate microglia responsiveness to endotoxin.

    Science.gov (United States)

    Rachmawati, Dessy; Peferoen, Laura A N; Vogel, Daphne Y S; Alsalem, Inás W A; Amor, Sandra; Bontkes, Hetty J; von Blomberg, B Mary E; Scheper, Rik J; van Hoogstraten, Ingrid M W

    2016-02-15

    Oral metal exposure has been associated with diverse adverse reactions, including neurotoxicity. We showed previously that dentally applied metals activate dendritic cells (MoDC) via TLR4 (Ni, Co, Pd) and TLR3 (Au). It is still unknown whether the low levels of dental metals reaching the brain can trigger local innate cells or prime them to become more responsive. Here we tested whether dentally applied metals (Cr, Fe, Co, Ni, Cu, Zn, Au, Hg) activate primary human microglia in vitro and, as a model, monocytic THP-1-cells, in high non-toxic as well as near-physiological concentrations. In addition the effects of 'near-physiological' metal exposure on endotoxin (LPS) responsiveness of these cells were evaluated. IL-8 and IL-6 production after 24h was used as read out. In high, non-toxic concentrations all transition metals except Cr induced IL-8 and IL-6 production in microglia, with Ni and Co providing the strongest stimulation. When using near-physiological doses (up to 10× the normal plasma concentration), only Zn and Cu induced significant IL-8 production. Of note, the latter metals also markedly potentiated LPS responsiveness of microglia and THP-1 cells. In conclusion, transition metals activate microglia similar to MoDCs. In near-physiological concentrations Zn and Cu are the most effective mediators of innate immune activation. A clear synergism between innate responses to Zn/Cu and LPS was observed, shedding new light on the possible relation between oral metal exposure and neurotoxicity. Copyright © 2015. Published by Elsevier B.V.

  3. Induction of heme oxygenase-1 attenuates lipopolysaccharide-induced cyclooxygenase-2 expression in mouse brain endothelial cells

    Directory of Open Access Journals (Sweden)

    Yang Chuen-Mao

    2010-11-01

    Full Text Available Abstract Background Prostaglandin E2 (PGE2, an arachidonic acid metabolite converted by cyclooxygenase-2 (COX-2, plays important roles in the regulation of endothelial functions in response to bacterial infection. The enzymatic activity of COX-2 can be down-regulated by heme oxygenase-1 (HO-1 induction. However, the mechanisms underlying HO-1 modulating COX-2 protein expression are not known. Objective The aim of the present study was to investigate whether the up-regulation of HO-1 regulates COX-2 expression induced by lipopolysaccharide (LPS, an endotoxin produced by Gram negative bacteria, in mouse brain endothelial cells (bEnd.3 Methods Cultured bEnd.3 cells were used to investigate LPS-induced COX-2 expression and PGE2 production. Cobalt protoporphyrin IX (CoPP, an HO-1 inducer, infection with a recombinant adenovirus carried with HO-1 gene (Adv-HO-1, or zinc protoporphyrin (ZnPP, an HO-1 inhibitor was used to stimulate HO-1 induction or inhibit HO-1 activity. The expressions of COX-2 and HO-1 were evaluated by western blotting. PGE2 levels were detected by an enzyme-linked immunoassay. Hemoglobin (a chelator of carbon monoxide, CO, one of metabolites of HO-1 and CO-RM2 (a CO releasing molecule were used to investigate the mechanisms of HO-1 regulating COX-2 expression. Results We found that LPS-induced COX-2 expression and PGE2 production were mediated through NF-κB (p65 via activation of Toll-like receptor 4 (TLR4. LPS-induced COX-2 expression was inhibited by HO-1 induction by pretreatment with CoPP or infection with Adv-HO-1. This inhibitory effect of HO-1 was reversed by pretreatment with either ZnPP or hemoglobin. Pretreatment with CO-RM2 also inhibited TLR4/MyD88 complex formation, NF-κB (p65 activation, COX-2 expression, and PGE2 production induced by LPS. Conclusions We show here a novel inhibition of HO-1 on LPS-induced COX-2/PGE2 production in bEnd.3. Our results reinforce the emerging role of cerebral endothelium-derived HO-1

  4. Intratracheal transplantation of endothelial progenitor cells attenuates smoking-induced COPD in mice

    Directory of Open Access Journals (Sweden)

    Shi Z

    2017-03-01

    Full Text Available Zhihui Shi,1 Yan Chen,1 Jun Cao,2 Huihui Zeng,1 Yue Yang,1 Ping Chen,1 Hong Luo,1 Hong Peng,1 Shan Cai,1 Chaxiang Guan3 1Department of Internal Medicine, Division of Respiratory Disease, The Second Xiangya Hospital, Central-South University, 2Department of Internal Medicine, Division of Respiratory Disease, The People’s Hospital of Hunan Province, 3Department of Physiology, Xiangya Medical School, Central-South University, Changsha, Hunan, People’s Republic of China Background: Endothelial progenitor cells (EPCs might play a protective role in COPD. The aim of this study was to investigate whether intratracheal allogeneic transplantation of bone-marrow-derived EPCs would attenuate the development of smoking-induced COPD in mice.Methods: Isolated mononuclear cells from the bone marrow of C57BL/6J mice were cultured in endothelial cell growth medium-2 for 10 days, yielding EPCs. A murine model of COPD was established by passive 90-day exposure of cigarette smoke. On day 30, EPCs or phosphate-buffered saline alone was administered into the trachea. On day 90, EPCs or 30 µL phosphate-buffered saline alone was administered into the trachea, and on day 120, inflammatory cells, antioxidant activity, apoptosis, matrix metalloproteinase (MMP-2, and MMP-9 were measured.Results: After EPC treatment, the lung function of the mice had improved compared with the untreated mice. Mean linear intercept and destructive index were reduced in the EPCs-treated group compared with the untreated group. In addition, the EPCs-treated mice exhibited less antioxidant activity in bronchoalveolar lavage fluid compared with the untreated mice. Moreover, decreased activities of MMP-2, MMP-9, and TUNEL-positive cells in lung tissues were detected in EPCs-treated mice.Conclusion: Intratracheal transplantation of EPCs attenuated the development of pulmonary emphysema and lung function disorder probably by alleviating inflammatory infiltration, decelerating apoptosis

  5. Exercise attenuates dexamethasone-induced hypertension through an improvement of baroreflex activity independently of the renin-angiotensin system.

    Science.gov (United States)

    Constantino, Paula B; Dionísio, Thiago J; Duchatsch, Francine; Herrera, Naiara A; Duarte, Josiane O; Santos, Carlos F; Crestani, Carlos C; Amaral, Sandra L

    2017-12-01

    Dexamethasone-induced hypertension may be caused by baroreflex alterations or renin-angiotensin system (RAS) exacerbation. Aerobic training has been recommended for hypertension treatment, but the mechanisms responsible for reduction of arterial pressure (AP) in dexamethasone (DEX) treated rats are still inconclusive.This study evaluated whether mechanisms responsible for training-induced attenuation of hypertension involve changes in autonomic nervous system and in RAS components. Rats underwent aerobic training protocol on treadmill or were kept sedentary for 8 weeks. Additionally, animals were treated with DEX during the last 10 days of exercise. Body weight (BW), AP and baroreflex activity were analyzed. Tibialis anterior (TA), soleus (SOL) and left ventricle (LV) were collected for evaluation of RAS components gene expression and protein levels. Dexamethasone decreased BW (20%), caused TA atrophy (16%) and increased systolic AP (SAP, 16%) as well as decreased baroreflex activity. Training attenuated SAP increase and improved baroreflex activity, although it did not prevent DEX-induced BW reduction and muscle atrophy. Neither DEX nor training caused expressive changes in RAS components. In conclusion, exercise training was effective in attenuating hypertension induced by DEX and this response may be mediated by a better autonomic balance through an improvement of baroreflex activity rather than changes in RAS components. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Geraniin attenuates LPS-induced acute lung injury via inhibiting NF-κB and activating Nrf2 signaling pathways.

    Science.gov (United States)

    Zhu, Guangfa; Xin, Xi; Liu, Yan; Huang, Yan; Li, Keng; Wu, Chunting

    2017-04-04

    Geraniin, a typical ellagitannin isolated from Phyllanthusurinaria Linn, has been reported to have anti-inflammatory effect. The aim of the study is to investigate the therapeutic effects of geraniin on LPS-induced acute lung injury (ALI) in mice. The mice were intranasal adminisration of LPS for 12 h. Geraniin was intra-peritoneal injection 1 h after LPS treatment. The results showed that geraniin significantly attenuated LPS-induced pathological changes in the lung. Geraniin also inhibited LPS-induced macrophages and neutrophils infiltration in the lung. Geraniin significantly attenuated LPS-induced elevation of MPO level. LPS-induced TNF-α, IL-6 and IL-1β production were markedly suppressed by treatment of geraniin. Furthermore, geraniin inhibited NF-κB activation in LPS-induced ALI. In addition, geraniin was found to up-regulate the expression of Nrf2 and HO-1. In conclusion, these data suggested that geraniin had therapeutic effects in LPS-induced ALI by inhibiting NF-κB and activating Nrf2 signaling pathways.

  7. Taurine zinc solid dispersions attenuate doxorubicin-induced hepatotoxicity and cardiotoxicity in rats

    International Nuclear Information System (INIS)

    Wang, Yu; Mei, Xueting; Yuan, Jingquan; Lu, Wenping; Li, Binglong; Xu, Donghui

    2015-01-01

    The clinical efficacy of anthracycline anti-neoplastic agents is limited by cardiac and hepatic toxicities. The aim of this study was to assess the hepatoprotective and cardioprotective effects of taurine zinc solid dispersions, which is a newly-synthesized taurine zinc compound, against doxorubicin-induced toxicity in Sprague–Dawley rats intraperitoneally injected with doxorubicin hydrochloride (3 mg/kg) three times a week (seven injections) over 28 days. Hemodynamic parameters, levels of liver toxicity markers and oxidative stress were assessed. Taurine zinc significantly attenuated the reductions in blood pressure, left ventricular pressure and ± dp/dtmax, increases in serum alanine aminotransferase and aspartate aminotransferase activities, and reductions in serum Zn 2+ and albumin levels (P < 0.05 or 0.01) induced by doxorubicin. In rats treated with doxorubicin, taurine zinc dose-dependently increased liver superoxide dismutase activity and glutathione concentration, and decreased malondialdehyde level (P < 0.01). qBase + was used to evaluate the stability of eight candidate reference genes for real-time quantitative reverse-transcription PCR. Taurine zinc dose-dependently increased liver heme oxygenase-1 and UDP-glucuronyl transferase mRNA and protein expression (P < 0.01). Western blotting demonstrated that taurine zinc inhibited c-Jun N-terminal kinase phosphorylation by upregulating dual-specificity phosphoprotein phosphatase-1. Additionally, taurine zinc inhibited cardiomyocyte apoptosis as there was decreased TUNEL/DAPI positivity and protein expression of caspase-3. These results indicate that taurine zinc solid dispersions prevent the side-effects of anthracycline-based anticancer therapy. The mechanisms might be associated with the enhancement of antioxidant defense system partly through activating transcription to synthesize endogenous phase II medicine enzymes and anti-apoptosis through inhibiting JNK phosphorylation. - Highlights:

  8. Hypoxia-preconditioned mesenchymal stem cells attenuate bleomycin-induced pulmonary fibrosis.

    Science.gov (United States)

    Lan, Ying-Wei; Choo, Kong-Bung; Chen, Chuan-Mu; Hung, Tsai-Hsien; Chen, Young-Bin; Hsieh, Chung-Hsing; Kuo, Han-Pin; Chong, Kowit-Yu

    2015-05-20

    Idiopathic pulmonary fibrosis is a progressive diffuse parenchymal lung disorder of unknown etiology. Mesenchymal stem cell (MSC)-based therapy is a novel approach with great therapeutic potential for the treatment of lung diseases. Despite demonstration of MSC grafting, the populations of engrafted MSCs have been shown to decrease dramatically 24 hours post-transplantation due to exposure to harsh microenvironments. Hypoxia is known to induce expression of cytoprotective genes and also secretion of anti-inflammatory, anti-apoptotic and anti-fibrotic factors. Hypoxic preconditioning is thought to enhance the therapeutic potency and duration of survival of engrafted MSCs. In this work, we aimed to prolong the duration of survival of engrafted MSCs and to enhance the effectiveness of idiopathic pulmonary fibrosis transplantation therapy by the use of hypoxia-preconditioned MSCs. Hypoxic preconditioning was achieved in MSCs under an optimal hypoxic environment. The expression levels of cytoprotective factors and their biological effects on damaged alveolar epithelial cells or transforming growth factor-beta 1-treated fibroblast cells were studied in co-culture experiments in vitro. Furthermore, hypoxia-preconditioned MSCs (HP-MSCs) were intratracheally instilled into bleomycin-induced pulmonary fibrosis mice at day 3, and lung functions, cellular, molecular and pathological changes were assessed at 7 and 21 days after bleomycin administration. The expression of genes for pro-survival, anti-apoptotic, anti-oxidant and growth factors was upregulated in MSCs under hypoxic conditions. In transforming growth factor-beta 1-treated MRC-5 fibroblast cells, hypoxia-preconditioned MSCs attenuated extracellular matrix production through paracrine effects. The pulmonary respiratory functions significantly improved for up to 18 days of hypoxia-preconditioned MSC treatment. Expression of inflammatory factors and fibrotic factor were all downregulated in the lung tissues of the

  9. Endotoxins in surgical instruments of hip arthroplasty

    Directory of Open Access Journals (Sweden)

    Vania Regina Goveia

    2016-06-01

    Full Text Available Abstract OBJECTIVE To investigate endotoxins in sterilized surgical instruments used in hip arthroplasties. METHOD A descriptive exploratory study conducted in a public teaching hospital. Six types of surgical instruments were selected, namely: acetabulum rasp, femoral rasp, femoral head remover, chisel box, flexible bone reamer and femoral head test. The selection was based on the analysis of the difficulty in removing bone and blood residues during cleaning. The sample was made up of 60 surgical instruments, which were tested for endotoxins in three different stages. The EndosafeTM Gel-Clot LAL (Limulus Amebocyte Lysate method was used. RESULT There was consistent gel formation with positive analysis in eight instruments, corresponding to 13.3%, being four femoral rasps and four bone reamers. CONCLUSION Endotoxins in quantity ≥0.125 UE/mL were detected in 13.3% of the instruments tested.

  10. Effects of endotoxin on the lactating mouse

    International Nuclear Information System (INIS)

    Carr, J.K.

    1985-01-01

    The regulation of endogenous mouse mammary tumor virus (MMTV) sequences in trans by a host gene, the Lps locus on mouse chromosome 4, was suspected from a genetic linkage analysis. The Lps locus mediates the mouse's response to the injection of lipopolysaccharide (LPS) in the responder mouse while mice with the deficient allele are incapable of responding. Others have found that endotoxin exposure reduces milk production in lactating animals. This observation was confirmed in mice and extended by examining 125 I-prolactin binding to liver membranes of lactating mice. Endotoxin treatment of responder mice increases liver prolactin binding within 15 minutes, followed by a decline over 6 hours. Scatchard analysis shows that the immediate increase comes from both increased affinity and abundance of the prolactin receptor. No such change in prolactin binding is seen in the non-responder following endotoxin treatment nor in 125 I-insulin binding in responders

  11. Macrophage-stimulating protein attenuates gentamicin-induced inflammation and apoptosis in human renal proximal tubular epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ko Eun [Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Eun Young [Department of Physiology, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Chang Seong; Choi, Joon Seok; Bae, Eun Hui; Ma, Seong Kwon [Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Kyung Keun [Department of Pharmacology, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Lee, Jong Un [Department of Physiology, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of); Kim, Soo Wan, E-mail: skimw@chonnam.ac.kr [Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501-757 (Korea, Republic of)

    2013-05-10

    Highlights: •MSP/RON system is activated in rat kidney damaged by gentamicin. •MSP inhibits GM-induced cellular apoptosis and inflammation in HK-2 cells. •MSP attenuates GM-induced activation of MAPKs and NF-κB pathways in HK-2 cells. -- Abstract: The present study aimed to investigate whether macrophage-stimulating protein (MSP) treatment attenuates renal apoptosis and inflammation in gentamicin (GM)-induced tubule injury and its underlying molecular mechanisms. To examine changes in MSP and its receptor, recepteur d’origine nantais (RON) in GM-induced nephropathy, rats were injected with GM for 7 days. Human renal proximal tubular epithelial (HK-2) cells were incubated with GM for 24 h in the presence of different concentrations of MSP and cell viability was measured by MTT assay. Apoptosis was determined by flow cytometry of cells stained with fluorescein isothiocyanate-conjugated annexin V protein and propidium iodide. Expression of Bcl-2, Bax, caspase-3, cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS), nuclear factor-kappa B (NF-κB), IκB-α, and mitogen-activated protein kinases (MAPKs) was analyzed by semiquantitative immunoblotting. MSP and RON expression was significantly greater in GM-treated rats, than in untreated controls. GM-treatment reduced HK-2 cell viability, an effect that was counteracted by MSP. Flow cytometry and DAPI staining revealed GM-induced apoptosis was prevented by MSP. GM reduced expression of anti-apoptotic protein Bcl-2 and induced expression of Bax and cleaved caspase 3; these effects and GM-induced expression of COX-2 and iNOS were also attenuated by MSP. GM caused MSP-reversible induction of phospho-ERK, phospho-JNK, and phospho-p38. GM induced NF-κB activation and degradation of IκB-α; the increase in nuclear NF-κB was blocked by inhibitors of ERK, JNK, p-38, or MSP pretreatment. These findings suggest that MSP attenuates GM-induced inflammation and apoptosis by inhibition of the MAPKs

  12. Cannabidiol attenuates sensorimotor gating disruption and molecular changes induced by chronic antagonism of NMDA receptors in mice.

    Science.gov (United States)

    Gomes, Felipe V; Issy, Ana Carolina; Ferreira, Frederico R; Viveros, Maria-Paz; Del Bel, Elaine A; Guimarães, Francisco S

    2014-10-31

    Preclinical and clinical data suggest that cannabidiol (CBD), a major non-psychotomimetic compound from Cannabis sativa, induces antipsychotic-like effects. However, the antipsychotic properties of repeated CBD treatment have been poorly investigated. Behavioral changes induced by repeated treatment with glutamate N-methyl-D-aspartate receptor (NMDAR) antagonists have been proposed as an animal model of schizophrenia-like signs. In the present study, we evaluated if repeated treatment with CBD would attenuate the behavioral and molecular modifications induced by chronic administration of one of these antagonists, MK-801. Male C57BL/6J mice received daily i.p. injections of MK-801 (0.1, 0.5, or 1mg/kg) for 14, 21, or 28 days. Twenty-four hours after the last injection, animals were submitted to the prepulse inhibition (PPI) test. After that, we investigated if repeated treatment with CBD (15, 30, and 60mg/kg) would attenuate the PPI impairment induced by chronic treatment with MK-801 (1mg/kg; 28 days). CBD treatment began on the 6th day after the start of MK-801 administration and continued until the end of the treatment. Immediately after the PPI, the mice brains were removed and processed to evaluate the molecular changes. We measured changes in FosB/ΔFosB and parvalbumin (PV) expression, a marker of neuronal activity and a calcium-binding protein expressed in a subclass of GABAergic interneurons, respectively. Changes in mRNA expression of the NMDAR GluN1 subunit gene (GRN1) were also evaluated. CBD effects were compared to those induced by the atypical antipsychotic clozapine. MK-801 administration at the dose of 1mg/kg for 28 days impaired PPI responses. Chronic treatment with CBD (30 and 60mg/kg) attenuated PPI impairment. MK-801 treatment increased FosB/ΔFosB expression and decreased PV expression in the medial prefrontal cortex. A decreased mRNA level of GRN1 in the hippocampus was also observed. All the molecular changes were attenuated by CBD. CBD by

  13. Cannabidiol Attenuates Sensorimotor Gating Disruption and Molecular Changes Induced by Chronic Antagonism of NMDA receptors in Mice

    Science.gov (United States)

    Issy, Ana Carolina; Ferreira, Frederico R.; Viveros, Maria-Paz; Del Bel, Elaine A.; Guimarães, Francisco S.

    2015-01-01

    Background: Preclinical and clinical data suggest that cannabidiol (CBD), a major non-psychotomimetic compound from Cannabis sativa, induces antipsychotic-like effects. However, the antipsychotic properties of repeated CBD treatment have been poorly investigated. Behavioral changes induced by repeated treatment with glutamate N-methyl-D-aspartate receptor (NMDAR) antagonists have been proposed as an animal model of schizophrenia-like signs. In the present study, we evaluated if repeated treatment with CBD would attenuate the behavioral and molecular modifications induced by chronic administration of one of these antagonists, MK-801. Methods: Male C57BL/6J mice received daily i.p. injections of MK-801 (0.1, 0.5, or 1mg/kg) for 14, 21, or 28 days. Twenty-four hours after the last injection, animals were submitted to the prepulse inhibition (PPI) test. After that, we investigated if repeated treatment with CBD (15, 30, and 60mg/kg) would attenuate the PPI impairment induced by chronic treatment with MK-801 (1mg/kg; 28 days). CBD treatment began on the 6th day after the start of MK-801 administration and continued until the end of the treatment. Immediately after the PPI, the mice brains were removed and processed to evaluate the molecular changes. We measured changes in FosB/ΔFosB and parvalbumin (PV) expression, a marker of neuronal activity and a calcium-binding protein expressed in a subclass of GABAergic interneurons, respectively. Changes in mRNA expression of the NMDAR GluN1 subunit gene (GRN1) were also evaluated. CBD effects were compared to those induced by the atypical antipsychotic clozapine. Results: MK-801 administration at the dose of 1mg/kg for 28 days impaired PPI responses. Chronic treatment with CBD (30 and 60mg/kg) attenuated PPI impairment. MK-801 treatment increased FosB/ΔFosB expression and decreased PV expression in the medial prefrontal cortex. A decreased mRNA level of GRN1 in the hippocampus was also observed. All the molecular changes were

  14. Spinal histamine in attenuation of mechanical hypersensitivity in the spinal nerve ligation-induced model of experimental neuropathy.

    Science.gov (United States)

    Wei, Hong; Viisanen, Hanna; You, Hao-Jun; Pertovaara, Antti

    2016-02-05

    Here we studied whether and through which mechanisms spinal administration of histamine dihydrochloride (histamine) attenuates pain behavior in neuropathic animals. Experiments were performed in rats with spinal nerve ligation-induced neuropathy and a chronic intrathecal catheter for spinal drug delivery. Mechanical hypersensitivity was assessed with monofilaments while radiant heat was used for assessing nociception. Ongoing neuropathic pain and its attenuation by histamine was assessed using conditioned place-preference test. Following spinal administration, histamine at doses 0.1-10µg produced a dose-related mechanical antihypersensitivity effect. With prolonged treatment (twice daily 10µg for five days), the antihypersensitivity effect of spinal histamine was reduced. In place-preference test, neuropathic animals preferred the chamber paired with histamine (10µg). Histamine (10µg) failed to influence heat nociception in neuropathic animals or mechanically induced pain behavior in a group of healthy control rats. Histamine-induced mechanical antihypersensitivity effect was prevented by spinal pretreatment with zolantidine (histamine H2 receptor antagonist), prazosine (α1-adrenoceptor antagonist) and bicuculline (γ-aminobutyric acid subtype A, GABA(A), receptor antagonist), but not by pyrilamine (histamine H1 receptor antagonist), atipamezole (α2-adrenoceptor antagonist), or raclopride (dopamine D2 receptor antagonist). A-960656, a histamine H3 receptor antagonist alone that presumably increased endogenous histamine levels reduced hypersensitivity. Additionally, histamine prevented central (presumably postsynaptically-induced) facilitation of hypersensitivity induced by N-methyl-d-aspartate. The results indicate that spinal histamine at the dose range of 0.1-10µg selectively attenuates mechanical hypersensitivity and ongoing pain in neuropathy. The spinal histamine-induced antihypersensitivity effect involves histamine H2 and GABA(A) receptors and

  15. Targeting nitrative stress for attenuating cisplatin-induced downregulation of cochlear LIM domain only 4 and ototoxicity

    Directory of Open Access Journals (Sweden)

    Samson Jamesdaniel

    2016-12-01

    Full Text Available Cisplatin-induced ototoxicity remains a primary dose-limiting adverse effect of this highly effective anticancer drug. The clinical utility of cisplatin could be enhanced if the signaling pathways that regulate the toxic side-effects are delineated. In previous studies, we reported cisplatin-induced nitration of cochlear proteins and provided the first evidence for nitration and downregulation of cochlear LIM domain only 4 (LMO4 in cisplatin ototoxicity. Here, we extend these findings to define the critical role of nitrative stress in cisplatin-induced downregulation of LMO4 and its consequent ototoxic effects in UBOC1 cell cultures derived from sensory epithelial cells of the inner ear and in CBA/J mice. Cisplatin treatment increased the levels of nitrotyrosine and active caspase 3 in UBOC1 cells, which was detected by immunocytochemical and flow cytometry analysis, respectively. The cisplatin-induced nitrative stress and apoptosis were attenuated by co-treatment with SRI110, a peroxynitrite decomposition catalyst (PNDC, which also attenuated the cisplatin-induced downregulation of LMO4 in a dose-dependent manner. Furthermore, transient overexpression of LMO4 in UBOC1 cells prevented cisplatin-induced cytotoxicity while repression of LMO4 exacerbated cisplatin-induced cell death, indicating a direct link between LMO4 protein levels and cisplatin ototoxicity. Finally, auditory brainstem responses (ABR recorded from CBA/J mice indicated that co-treatment with SRI110 mitigated cisplatin-induced hearing loss. Together, these results suggest that cisplatin-induced nitrative stress leads to a decrease in the levels of LMO4, downregulation of LMO4 is a critical determinant in cisplatin-induced ototoxicity, and targeting peroxynitrite could be a promising strategy for mitigating cisplatin-induced hearing loss.

  16. Curcumin Attenuated Bupivacaine-Induced Neurotoxicity in SH-SY5Y Cells Via Activation of the Akt Signaling Pathway.

    Science.gov (United States)

    Fan, You-Ling; Li, Heng-Chang; Zhao, Wei; Peng, Hui-Hua; Huang, Fang; Jiang, Wei-Hang; Xu, Shi-Yuan

    2016-09-01

    Bupivacaine is widely used for regional anesthesia, spinal anesthesia, and pain management. However, bupivacaine could cause neuronal injury. Curcumin, a low molecular weight polyphenol, has a variety of bioactivities and may exert neuroprotective effects against damage induced by some stimuli. In the present study, we tested whether curcumin could attenuate bupivacaine-induced neurotoxicity in SH-SY5Y cells. Cell injury was evaluated by examining cell viability, mitochondrial damage and apoptosis. We also investigated the levels of activation of the Akt signaling pathway and the effect of Akt inhibition by triciribine on cell injury following bupivacaine and curcumin treatment. Our findings showed that the bupivacaine treatment could induce neurotoxicity. Pretreatment of the SH-SY5Y cells with curcumin significantly attenuated bupivacaine-induced neurotoxicity. Interestingly, the curcumin treatment increased the levels of Akt phosphorylation. More significantly, the pharmacological inhibition of Akt abolished the cytoprotective effect of curcumin against bupivacaine-induced cell injury. Our data suggest that pretreating SH-SY5Y cells with curcumin provides a protective effect on bupivacaine-induced neuronal injury via activation of the Akt signaling pathway.

  17. Silibinin attenuates sulfur mustard analog-induced skin injury by targeting multiple pathways connecting oxidative stress and inflammation.

    Directory of Open Access Journals (Sweden)

    Neera Tewari-Singh

    Full Text Available Chemical warfare agent sulfur mustard (HD inflicts delayed blistering and incapacitating skin injuries. To identify effective countermeasures against HD-induced skin injuries, efficacy studies were carried out employing HD analog 2-chloroethyl ethyl sulfide (CEES-induced injury biomarkers in skin cells and SKH-1 hairless mouse skin. The data demonstrate strong therapeutic efficacy of silibinin, a natural flavanone, in attenuating CEES-induced skin injury and oxidative stress. In skin cells, silibinin (10 µM treatment 30 min after 0.35/0.5 mM CEES exposure caused a significant (p90%, and activation of transcription factors NF-κB and AP-1 (complete reversal. Similarly, silibinin treatment was also effective in attenuating CEES-induced oxidative stress measured by 4-hydroxynonenal and 5,5-dimethyl-2-(8-octanoic acid-1-pyrolline N-oxide protein adduct formation, and 8-oxo-2-deoxyguanosine levels. Since our previous studies implicated oxidative stress, in part, in CEES-induced toxic responses, the reversal of CEES-induced oxidative stress and other toxic effects by silibinin in this study indicate its pleiotropic therapeutic efficacy. Together, these findings support further optimization of silibinin in HD skin toxicity model to develop a novel effective therapy for skin injuries by vesicants.

  18. Dopamine Attenuates Ketamine-Induced Neuronal Apoptosis in the Developing Rat Retina Independent of Early Synchronized Spontaneous Network Activity.

    Science.gov (United States)

    Dong, Jing; Gao, Lingqi; Han, Junde; Zhang, Junjie; Zheng, Jijian

    2017-07-01

    Deprivation of spontaneous rhythmic electrical activity in early development by anesthesia administration, among other interventions, induces neuronal apoptosis. However, it is unclear whether enhancement of neuronal electrical activity attenuates neuronal apoptosis in either normal development or after anesthesia exposure. The present study investigated the effects of dopamine, an enhancer of spontaneous rhythmic electrical activity, on ketamine-induced neuronal apoptosis in the developing rat retina. TUNEL and immunohistochemical assays indicated that ketamine time- and dose-dependently aggravated physiological and ketamine-induced apoptosis and inhibited early-synchronized spontaneous network activity. Dopamine administration reversed ketamine-induced neuronal apoptosis, but did not reverse the inhibitory effects of ketamine on early synchronized spontaneous network activity despite enhancing it in controls. Blockade of D1, D2, and A2A receptors and inhibition of cAMP/PKA signaling partially antagonized the protective effect of dopamine against ketamine-induced apoptosis. Together, these data indicate that dopamine attenuates ketamine-induced neuronal apoptosis in the developing rat retina by activating the D1, D2, and A2A receptors, and upregulating cAMP/PKA signaling, rather than through modulation of early synchronized spontaneous network activity.

  19. Enriched Environment Attenuates Surgery-Induced Impairment of Learning, Memory, and Neurogenesis Possibly by Preserving BDNF Expression.

    Science.gov (United States)

    Fan, Dan; Li, Jun; Zheng, Bin; Hua, Lei; Zuo, Zhiyi

    2016-01-01

    Postoperative cognitive dysfunction (POCD) is a significant clinical syndrome. Neurogenesis contributes to cognition. It is known that enriched environment (EE) enhances neurogenesis. We determined whether EE attenuated surgery-induced cognitive impairment and whether growth factors and neurogenesis played a role in the EE effect. Eight-week-old C57BL/6J mice were subjected to carotid artery exposure. Their learning and memory were assessed by Barnes maze, and fear conditioning started 2 weeks after the surgery. Growth factor expression and cell genesis were determined at various times after the surgery. Surgery increased the time for the mice to identify the target hole in the Barnes maze and reduced context-related freezing behavior. Surgery also reduced the expression of brain-derived neurotrophic factor (BDNF) and neurogenesis in the hippocampus. These effects were attenuated by EE. EE also attenuated surgery-induced reduction of phosphorylated/activated tropomyosin-related kinase B (TrkB) and extracellular signal-regulated kinases (ERK), components of BDNF signaling pathway. ANA-12, a selective TrkB antagonist, blocked the effects of EE on cognition, phosphorylation of TrkB and ERK, and neurogenesis. These results provide initial evidence that surgery reduces BDNF expression and neurogenesis in the hippocampus. Our results suggest that EE reduces surgery-induced impairment of learning, memory, and neurogenesis by preserving BDNF expression.

  20. A new pharmacological role for donepezil: attenuation of morphine-induced tolerance and apoptosis in rat central nervous system

    Science.gov (United States)

    2014-01-01

    Background Tolerance to the analgesic effect of opioids is a pharmacological phenomenon that occurs after their prolonged administration. It has been shown that morphine-induced tolerance is associated with apoptosis in the central nervous system and neuroprotective agents which prevented apoptosis signaling could attenuate tolerance to the analgesic effects. On the other hand donepezil, an acetylcholinesterase inhibitor, has been reported to have neuroprotective effects. Therefore in this study, the effect of systemic administration of donepezil on morphine-induced tolerance and apoptosis in the rat cerebral cortex and lumbar spinal cord was evaluated. Various groups of rats received morphine (ip) and different doses of donepezil (0, 0.5, 1, 1.5 mg/kg/day). Nociception was assessed using tail flick apparatus. Tail flick latency was recorded when the rat shook its tail. For apoptosis assay other groups of rats received the above treatment and apoptosis was evaluated by in situ terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) method. Results The results showed that administration of donepezil (0.5, 1, 1.5 mg/kg, ip) delayed the morphine tolerance for 9, 12 and 17 days, respectively. Furthermore pretreatment injection of donepezil attenuated the number of apoptotic cells in the cerebral cortex and lumbar spinal cord compared to the control group. Conclusion In conclusion, we found that systemic administration of donepezil attenuated morphine-induced tolerance and apoptosis in the rat cerebral cortex and lumbar spinal cord. PMID:24455992

  1. Melandrii Herba Extract Attenuates H₂O₂-Induced Neurotoxicity in Human Neuroblastoma SH-SY5Y Cells and Scopolamine-Induced Memory Impairment in Mice.

    Science.gov (United States)

    Lee, Kwang Min; Lee, Ae Sin; Choi, Inwook

    2017-09-30

    Oxidative stress plays a significant role in the etiology of a variety of neurodegenerative diseases. In this study, we found that Melandrii Herba extract (ME) attenuated oxidative-induced damage in cells. Mechanistically, ME exhibited protection from H₂O₂-induced neurotoxicity via caspase-3 inactivation, Bcl-2 downregulation, Bax upregulation, and MAPK activation (ERK 1/2, JNK 1/2, and p38 MAPK) in vitro. Moreover, our in vivo data showed that ME was able to attenuate scopolamine-induced cognitive impairment. These results provide in vitro and in vivo evidence that ME exhibits neuroprotective properties against oxidative stress, which suggests that ME is worthy of further investigation as a complementary, or even as an alternative, product for preventing and treating neurodegenerative disorders.

  2. Melandrii Herba Extract Attenuates H2O2-Induced Neurotoxicity in Human Neuroblastoma SH-SY5Y Cells and Scopolamine-Induced Memory Impairment in Mice

    Directory of Open Access Journals (Sweden)

    Kwang Min Lee

    2017-09-01

    Full Text Available Oxidative stress plays a significant role in the etiology of a variety of neurodegenerative diseases. In this study, we found that Melandrii Herba extract (ME attenuated oxidative-induced damage in cells. Mechanistically, ME exhibited protection from H2O2-induced neurotoxicity via caspase-3 inactivation, Bcl-2 downregulation, Bax upregulation, and MAPK activation (ERK 1/2, JNK 1/2, and p38 MAPK in vitro. Moreover, our in vivo data showed that ME was able to attenuate scopolamine-induced cognitive impairment. These results provide in vitro and in vivo evidence that ME exhibits neuroprotective properties against oxidative stress, which suggests that ME is worthy of further investigation as a complementary, or even as an alternative, product for preventing and treating neurodegenerative disorders.

  3. Ghrelin attenuates heat-induced degenerative effects in the rat testis.

    Science.gov (United States)

    Kheradmand, Arash; Dezfoulian, Omid; Tarrahi, Mohammad Javad

    2011-02-25

    This study was conducted to examine the efficacy of ghrelin in prevention of deleterious effects of heat stress in rat testicular tissue. Forty five adult male rats were scheduled for this study and were divided equally into three groups: heat-saline, heat-ghrelin and control-saline. The scrota of heated-designed rats were immersed once in water bath at 43 °C for 15 min. Immediately upon heating, 2 nmol of ghrelin were given subcutaneously to heat-ghrelin animals every other day up to day 60 and physiological saline to the other two groups using the same method. The animals were sacrificed at 10, 30 and 60 days after heat treatment and their testes were taken for later photomicrograph and immunohistochemical analysis. Testicular histopathology revealed a significant reduction in the means of seminiferous tubules and Sertoli cell nucleus diameters as well as germinal epithelium height on day 10 in both heated groups. Furthermore, other testicular components including miotic index, spermatogenesis rate, presence of spermatocytes and volume densities were dramatically decreased following heat exposure. Notably, ghrelin caused a partial recovery in all of the above-mentioned parameters and accelerated testicular regeneration process by day 30 compared to the heat-saline group (P0.05). However, immunohistochemistry evaluation for in situ detection of Bcl-2 protein did not exhibit any germ cells-positive of this factor among groups at different experimental days. In conclusion, the results of the present study indicate for the first time the novel evidences of ghrelin ability in attenuation of heat-induced testicular damage and also that ghrelin therapy may be useful as a suppressor of degenerative effects following testicular hyperthermia. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Amygdala dysfunction attenuates frustration-induced aggression in psychopathic individuals in a non-criminal population.

    Science.gov (United States)

    Osumi, Takahiro; Nakao, Takashi; Kasuya, Yukinori; Shinoda, Jun; Yamada, Jitsuhiro; Ohira, Hideki

    2012-12-15

    Individuals with psychopathy have an increased tendency toward certain types of aggression. We hypothesized that successful psychopaths, who have no criminal convictions but can be diagnosed with psychopathy in terms of personality characteristics, are skilled at regulating aggressive impulses, compared to incarcerated unsuccessful psychopaths. In this block-designed functional magnetic resonance imaging (fMRI) study, we sought to clarify the neural mechanisms underlying differences in frustration-induced aggression as a function of psychopathy in non-criminal populations. Twenty male undergraduate students who completed a self-report psychopathy questionnaire were scanned while they completed a task in which they either could or could not punish other individuals who made unfair offers of monetary distribution. Individuals with high psychopathic tendencies were less likely to make a decision to inflict costly punishment on people proposing unfair offers. During this decision-making, psychopathy was associated with less amygdala activity in response to the unfairness of offers. Moreover, the amygdala dysfunction in psychopathic individuals was associated with reduced functional connectivity with dopaminergic-related areas, including the striatum, when punishment was available compared to when it was unavailable. The possibility that levels of psychopathic traits in a regular population were milder than in incarcerated populations cannot be ruled out. The findings indicate that amygdala dysfunction underlies affective deficits of psychopathy. We propose that the insensitivity of the amygdala to the affective significance of social stimuli contributes to an increased risk of violation of social norms, but enhances the ability to attenuate impulses toward maladaptive aggression in successful psychopaths. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Secoisolariciresinol diglucoside attenuates cardiac hypertrophy and oxidative stress in monocrotaline-induced right heart dysfunction.

    Science.gov (United States)

    Puukila, Stephanie; Fernandes, Rafael Oliveira; Türck, Patrick; Carraro, Cristina Campos; Bonetto, Jéssica Hellen Poletto; de Lima-Seolin, Bruna Gazzi; da Rosa Araujo, Alex Sander; Belló-Klein, Adriane; Boreham, Douglas; Khaper, Neelam

    2017-08-01

    Pulmonary arterial hypertension (PAH) occurs when remodeling of pulmonary vessels leads to increased pulmonary vascular resistance resulting in increased pulmonary arterial pressure. Increased pulmonary arterial pressure results in right ventricle hypertrophy and eventually heart failure. Oxidative stress has been implicated in the pathogenesis of PAH and may play a role in the regulation of cellular signaling involved in cardiac response to pressure overload. Secoisolariciresinol diglucoside (SDG), a component from flaxseed, has been shown to reduce cardiac oxidative stress in various pathophysiological conditions. We investigated the potential protective effects of SDG in a monocrotaline-induced model of PAH. Five- to six-week-old male Wistar rats were given a single intraperitoneal injection of monocrotaline (60 mg/kg) and sacrificed 21 days later where heart, lung, and plasma were collected. SDG (25 mg/kg) was given via gavage as either a 21-day co-treatment or pre-treatment of 14 days before monocrotaline administration and continued for 21 days. Monocrotaline led to right ventricle hypertrophy, increased lipid peroxidation, and elevated plasma levels of alanine transaminase (ALT) and aspartate transaminase (AST). Co-treatment with SDG did not attenuate hypertrophy or ALT and AST levels but decreased reactive oxygen species (ROS) levels and catalase and superoxide dismutase activity compared to the monocrotaline-treated group. Pre-treatment with SDG decreased right ventricle hypertrophy, ROS levels, lipid peroxidation, catalase, superoxide dismutase, and glutathione peroxidase activity and plasma levels of ALT and AST when compared to the monocrotaline group. These findings indicate that pre-treatment with SDG provided better protection than co-treatment in this model of right heart dysfunction, suggesting an important role for SDG in PAH and right ventricular remodeling.

  6. Heme Attenuation Ameliorates Irritant Gas Inhalation-Induced Acute Lung Injury

    Science.gov (United States)

    Aggarwal, Saurabh; Lam, Adam; Bolisetty, Subhashini; Carlisle, Matthew A.; Traylor, Amie; Agarwal, Anupam

    2016-01-01

    Abstract Aims: Exposure to irritant gases, such as bromine (Br2), poses an environmental and occupational hazard that results in severe lung and systemic injury. However, the mechanism(s) of Br2 toxicity and the therapeutic responses required to mitigate lung damage are not known. Previously, it was demonstrated that Br2 upregulates the heme degrading enzyme, heme oxygenase-1 (HO-1). Since heme is a major inducer of HO-1, we determined whether an increase in heme and heme-dependent oxidative injury underlies the pathogenesis of Br2 toxicity. Results: C57BL/6 mice were exposed to Br2 gas (600 ppm, 30 min) and returned to room air. Thirty minutes postexposure, mice were injected intraperitoneally with a single dose of the heme scavenging protein, hemopexin (Hx) (3 μg/gm body weight), or saline. Twenty-four hours postexposure, saline-treated mice had elevated total heme in bronchoalveolar lavage fluid (BALF) and plasma and acute lung injury (ALI) culminating in 80% mortality after 10 days. Hx treatment significantly lowered heme, decreased evidence of ALI (lower protein and inflammatory cells in BALF, lower lung wet-to-dry weight ratios, and decreased airway hyperreactivity to methacholine), and reduced mortality. In addition, Br2 caused more severe ALI and mortality in mice with HO-1 gene deletion (HO-1−/−) compared to wild-type controls, while transgenic mice overexpressing the human HO-1 gene (hHO-1) showed significant protection. Innovation: This is the first study delineating the role of heme in ALI caused by Br2. Conclusion: The data suggest that attenuating heme may prove to be a useful adjuvant therapy to treat patients with ALI. Antioxid. Redox Signal. 24, 99–112. PMID:26376667

  7. Cannabidiol attenuates deficits of visuospatial associative memory induced by Δ9tetrahydrocannabinol

    Science.gov (United States)

    Wright, M Jerry; Vandewater, Sophia A; Taffe, Michael A

    2013-01-01

    BACKGROUND AND PURPOSE Recent human studies suggest that recreational cannabis strains that are relatively high in cannabidiol (CBD) content produce less cognitive impairment than do strains with negligible CBD and similar Δ9tetrahydrocannabinol (THC) content. Self-selection in such studies means it is impossible to rule out additional variables which may determine both cannabis strain selection and basal cognitive performance level. Controlled laboratory studies can better determine a direct relationship. EXPERIMENTAL APPROACH In this study, adult male rhesus monkeys were assessed on visuospatial Paired Associates Learning and Self-Ordered Spatial Search memory tasks, as well as additional tests of motivation and manual dexterity. Subjects were challenged with THC (0.2, 0.5 mg·kg−1, i.m.) in randomized order and evaluated in the presence or absence of 0.5 mg·kg−1 CBD. KEY RESULTS CBD attenuated the effects of THC on paired associates learning and a bimanual motor task without affecting the detrimental effects of THC on a Self-Ordered Spatial Search task of working memory. CBD did not significantly reverse THC-induced impairment of a progressive ratio or a rotating turntable task. CONCLUSIONS AND IMPLICATIONS This study provides direct evidence that CBD can oppose the cognitive-impairing effects of THC and that it does so in a task-selective manner when administered simultaneously in a 1:1 ratio with THC. The addition of CBD to THC-containing therapeutic products may therefore help to ameliorate unwanted cognitive side-effects. LINKED ARTICLE This article is commented on by Mechoulam and Parker, pp 1363–1364 of this issue. To view this commentary visit http://dx.doi.org/10.1111/bph.12400 PMID:23550724

  8. Cannabidiol attenuates deficits of visuospatial associative memory induced by Δ(9) tetrahydrocannabinol.

    Science.gov (United States)

    Wright, M Jerry; Vandewater, Sophia A; Taffe, Michael A

    2013-12-01

    Recent human studies suggest that recreational cannabis strains that are relatively high in cannabidiol (CBD) content produce less cognitive impairment than do strains with negligible CBD and similar Δ(9) tetrahydrocannabinol (THC) content. Self-selection in such studies means it is impossible to rule out additional variables which may determine both cannabis strain selection and basal cognitive performance level. Controlled laboratory studies can better determine a direct relationship. In this study, adult male rhesus monkeys were assessed on visuospatial Paired Associates Learning and Self-Ordered Spatial Search memory tasks, as well as additional tests of motivation and manual dexterity. Subjects were challenged with THC (0.2, 0.5 mg·kg(-1) , i.m.) in randomized order and evaluated in the presence or absence of 0.5 mg·kg(-1) CBD. CBD attenuated the effects of THC on paired associates learning and a bimanual motor task without affecting the detrimental effects of THC on a Self-Ordered Spatial Search task of working memory. CBD did not significantly reverse THC-induced impairment of a progressive ratio or a rotating turntable task. This study provides direct evidence that CBD can oppose the cognitive-impairing effects of THC and that it does so in a task-selective manner when administered simultaneously in a 1:1 ratio with THC. The addition of CBD to THC-containing therapeutic products may therefore help to ameliorate unwanted cognitive side-effects. This article is commented on by Mechoulam and Parker, pp 1363-1364 of this issue. To view this commentary visit http://dx.doi.org/10.1111/bph.12400. © 2013 The Authors. British Journal of Pharmacology © 2013 The British Pharmacological Society.

  9. Polyamine Depletion Attenuates Isoproterenol-Induced Hypertrophy and Endoplasmic Reticulum Stress in Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Yan Lin

    2014-10-01

    Full Text Available Background/Aim: Polyamines (putrescine, spermidine and spermine play an essential role in cell growth, differentiation and apoptosis. Hypertrophy is accompanied by an increase in polyamine synthesis and endoplasmic reticulum stress (ERS in cardiomyocytes. The present study was undertaken to elucidate the molecular interactions between polyamines, ERS and cardiac hypertrophy. Methods: Myocardial hypertrophy was simulated by incubating cultured neonatal rat cardiomyocytes in 100 nM isoproterenol (ISO. Polyamine deletion was achieved using 0.5 mM difluoromethylornithine (DFMO. Hypertrophy was estimated using cell surface area measurements, total protein concentrations and atrial natriuretic peptide (ANP gene expression. Apoptosis was measured using flow cytometry and transmission electron microscopy. Expression of ornithine decarboxylase (ODC and spermidine/spermine N1-acetyltransferase (SSAT were analyzed via real-time PCR and Western blotting. Protein expression of ERS and apoptosis factors were analyzed using Western blotting. Results: DFMO (0.5 mM and 2 mM treatments significantly attenuated hypertrophy and apoptosis induced by ISO in cardiomyocytes. DFMO also decreased lactate dehydrogenase (LDH and malondialdehyde (MDA level in the culture medium. In addition, DFMO (0.5 mM down regulated the expression of ODC, glucose-regulated protein 78 (GRP78, C/EBP homologous protein (CHOP, cleaved caspase-12, and Bax and up regulated the expression of SSAT and Bcl-2. Finally, these changes were partly reversed by the addition of exogenous putrescine (0.5 mM. Conclusion: The data presented here suggest that polyamine depletion could inhibit cardiac hypertrophy and apoptosis, which is closely related to the ERS pathway.

  10. Bcl-2 silencing attenuates hypoxia-induced apoptosis resistance in pulmonary microvascular endothelial cells.

    Science.gov (United States)

    Cao, Yongmei; Jiang, Zhen; Zeng, Zhen; Liu, Yujing; Gu, Yuchun; Ji, Yingying; Zhao, Yupeng; Li, Yingchuan

    2016-01-01

    Pulmonary arterial hypertension (PAH) is a life-threatening disorder that ultimately causes heart failure. While the underlying causes of this condition are not well understood, previous studies suggest that the anti-apoptotic nature of pulmonary microvascular endothelial cells (PMVECs) in hypoxic environments contributes to PAH pathogenesis. In this study, we focus on the contribution of Bcl-2 and hypoxia response element (HRE) to apoptosis-resistant endothelial cells and investigate the mechanism. PMVECs obtained from either normal rats or apoptosis-resistant PMVECs obtained from PAH rats were transduced with recombinant lentiviral vectors carrying either Bcl-2-shRNA or HRE combined Bcl-2-shRNA, and then cultured these cells for 24 h under hypoxic (5% O2) or normoxic (21% O2) conditions. In normal PMVECs, Bcl-2-shRNA or HRE combined with Bcl-2-shRNA transduction successfully decreased Bcl-2 expression, while increasing apoptosis as well as caspase-3 and P53 expression in a normoxic environment. In a hypoxic environment, the effects of Bcl-2-shRNA treatment on cell apoptosis, and on Bcl-2, caspase-3, P53 expression were significantly suppressed. Conversely, HRE activation combined with Bcl-2-shRNA transduction markedly enhanced cell apoptosis and upregulated caspase-3 and P53 expression, while decreasing Bcl-2 expression. Furthermore, in apoptosis-resistant PMVECs, HRE-mediated Bcl-2 silencing effectively enhanced cell apoptosis and caspase-3 activity. The apoptosis rate was significantly depressed when Lv-HRE-Bcl-2-shRNA was combined with Lv-P53-shRNA or Lv-caspase3-shRNA transduction in a hypoxic environment. These results suggest that HRE-mediated Bcl-2 inhibition can effectively attenuate hypoxia-induced apoptosis resistance in PMVECs by downregulating Bcl-2 expression and upregulating caspase-3 and P53 expression. This study therefore reveals critical insight into potential therapeutic targets for treating PAH.

  11. High-Intensity Interval Training Attenuates Insulin Resistance Induced by Sleep Deprivation in Healthy Males.

    Science.gov (United States)

    de Souza, Jorge F T; Dáttilo, Murilo; de Mello, Marco T; Tufik, Sergio; Antunes, Hanna K M

    2017-01-01

    Introduction: Sleep deprivation can impair several physiological systems and recently, new evidence has pointed to the relationship between a lack of sleep and carbohydrate metabolism, consequently resulting in insulin resistance. To minimize this effect, High-Intensity Interval Training (HIIT) is emerging as a potential strategy. Objective: The aim of this study was to investigate the effects of HIIT on insulin resistance induced by sleep deprivation. Method: Eleven healthy male volunteers were recruited, aged 18-35 years, who declared taking 7-8 h sleep per night. All volunteers were submitted to four different conditions: a single night of regular sleep (RS condition), 24 h of total sleep deprivation ( SD condition), HIIT training followed by regular sleep (HIIT+RS condition), and HIIT training followed by 24 h of total sleep deprivation (HIIT+ SD condition). They performed six training sessions over 2 weeks and each session consisted of 8-12 × 60 s intervals at 100% of peak power output. In each experimental condition, tests for glucose, insulin, cortisol, free fatty acids, and insulin sensitivity, measured by oral glucose tolerance test (OGTT), were performed. Results: Sleep deprivation increased glycaemia and insulin levels, as well as the area under the curve. Furthermore, an increase in free fatty acids concentrations and basal metabolism was observed. There were no differences in the concentrations of cortisol. However, HIIT before 24 h of sleep deprivation attenuated the increase of glucose, insulin, and free fatty acids. Conclusion: Twenty-four hours of sleep deprivation resulted in acute insulin resistance. However, HIIT is an effective strategy to minimize the deleterious effects promoted by this condition.

  12. Classic myrosinase-dependent degradation of indole glucosinolate attenuates fumonisin B1-induced programmed cell death in Arabidopsis.

    Science.gov (United States)

    Zhao, Yanting; Wang, Jiansheng; Liu, Yuanyuan; Miao, Huiying; Cai, Congxi; Shao, Zhiyong; Guo, Rongfang; Sun, Bo; Jia, Chengguo; Zhang, Liping; Gigolashvili, Tamara; Wang, Qiaomei

    2015-03-01

    The mycotoxin fumonisin B1 (FB1) causes the accumulation of reactive oxygen species (ROS) which then leads to programmed cell death (PCD) in Arabidopsis. In the process of studying FB1-induced biosynthesis of glucosinolates, we found that indole glucosinolate (IGS) is involved in attenuating FB1-induced PCD. Treatment with FB1 elevates the expression of genes related to the biosynthesis of camalexin and IGS. Mutants deficient in aliphatic glucosinolate (AGS) or camalexin biosynthesis display similar lesions to Col-0 upon FB1 infiltration; however, the cyp79B2 cyp79B3 double mutant, which lacks induction of both IGS and camalexin, displays more severe lesions. Based on the fact that the classic myrosinase β-thioglucoside glucohydrolase (TGG)-deficient double mutant tgg1 tgg2, rather than atypical myrosinase-deficient mutant pen2-2, is more sensitive to FB1 than Col-0, and the elevated expression of TGG1, but not of PEN2, correlates with the decrease in IGS, we conclude that TGG-dependent IGS hydrolysis is involved in FB1-induced PCD. Indole-3-acetonitrile (IAN) and indole-3-carbinol (I3C), the common derivatives of IGS, were used in feeding experiments, and this rescued the severe cell death phenotype, which is associated with reduced accumulation of ROS as well as increased activity of antioxidant enzymes and ROS-scavenging ability. Despite the involvement of indole-3-acetic acid (IAA) in restricting FB1-induced PCD, feeding of IAN and I3C attenuated FB1-induced PCD in the IAA receptor mutant tir1-1 just as in Col-0. Taken together, our results indicate that TGG-catalyzed breakdown products of IGS decrease the accumulation of ROS by their antioxidant behavior, and attenuate FB1 induced PCD in an IAA-independent way. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  13. Caffeine Ingestion Attenuates Fatigue-induced Loss of Muscle Torque Complexity.

    Science.gov (United States)

    Pethick, Jamie; Winter, Samantha L; Burnley, Mark

    2018-02-01

    The temporal structure, or complexity, of muscle torque output decreases with neuromuscular fatigue. The role of central fatigue in this process is unclear. We tested the hypothesis that caffeine administration would attenuate the fatigue-induced loss of torque complexity. Eleven healthy participants performed intermittent isometric contractions of the knee extensors to task failure at a target torque of 50% maximal voluntary contraction, with a 60% duty factor (6-s contraction, 4-s rest), 60 min after ingesting 6 mg·kg caffeine or a placebo. Torque and surface EMG signals were sampled continuously. Complexity and fractal scaling of torque were quantified using approximate entropy (ApEn) and the detrended fluctuation analysis (DFA) α scaling exponent. Global, central, and peripheral fatigue was quantified using maximal voluntary contractions with femoral nerve stimulation. Caffeine ingestion increased endurance by 30% ± 16% (mean ± SD; P = 0.019). Complexity decreased in both trials (decreased ApEn, increased DFA α; both P < 0.01), as global, central, and peripheral fatigue developed (all P < 0.01). Complexity decreased significantly more slowly after caffeine ingestion (ApEn, -0.04 ± 0.02 vs -0.06 ± 0.01 (P = 0.004); DFA α, 0.03 ± 0.02 vs 0.04 ± 0.03 (P = 0.024)), as did the rates of global (-18.2 ± 14.1 vs -23.0 ± 17.4 N·m·min, P = 0.004) and central (-3.5 ± 3.4 vs -5.7 ± 3.9 %·min, P = 0.02) but not peripheral (-6.1 ± 4.1 vs -7.9 ± 6.3 N·m·min, P = 0.06) fatigue. Caffeine ingestion slowed the fatigue-induced loss of torque complexity and increased the time to task failure during intermittent isometric contractions, most likely through central mechanisms.

  14. Adiponectin attenuates lung fibroblasts activation and pulmonary fibrosis induced by paraquat.

    Directory of Open Access Journals (Sweden)

    Rong Yao

    Full Text Available Pulmonary fibrosis is one of the most common complications of paraquat (PQ poisoning, which demands for more effective therapies. Accumulating evidence suggests adiponectin (APN may be a promising therapy against fibrotic diseases. In the current study, we determine whether the exogenous globular APN isoform protects against pulmonary fibrosis in PQ-treated mice and human lung fibroblasts, and dissect the responsible underlying mechanisms. BALB/C mice were divided into control group, PQ group, PQ + low-dose APN group, and PQ + high-dose APN group. Mice were sacrificed 3, 7, 14, and 21 days after PQ treatment. We compared pulmonary histopathological changes among different groups on the basis of fibrosis scores, TGF-β1, CTGF and α-SMA pulmonary content via Western blot and real-time quantitative fluorescence-PCR (RT-PCR. Blood levels of MMP-9 and TIMP-1 were determined by ELISA. Human lung fibroblasts WI-38 were divided into control group, PQ group, APN group, and APN receptor (AdipoR 1 small-interfering RNA (siRNA group. Fibroblasts were collected 24, 48, and 72 hours after PQ exposure for assay. Cell viability and apoptosis were determined via Kit-8 (CCK-8 and fluorescein Annexin V-FITC/PI double labeling. The protein and mRNA expression level of collagen type III, AdipoR1, and AdipoR2 were measured by Western blot and RT-PCR. APN treatment significantly decreased the lung fibrosis scores, protein and mRNA expression of pulmonary TGF-β1, CTGF and α-SMA content, and blood MMP-9 and TIMP-1 in a dose-dependent manner (p<0.05. Pretreatment with APN significantly attenuated the reduced cell viability and up-regulated collagen type III expression induced by PQ in lung fibroblasts, (p<0.05. APN pretreatment up-regulated AdipoR1, but not AdipoR2, expression in WI-38 fibroblasts. AdipoR1 siRNA abrogated APN-mediated protective effects in PQ-exposed fibroblasts. Taken together, our data suggests APN protects against PQ-induced pulmonary fibrosis in a

  15. A highly attenuated recombinant human respiratory syncytial virus lacking the G protein induces long-lasting protection in cotton rats

    Directory of Open Access Journals (Sweden)

    van Remmerden Yvonne

    2010-06-01

    Full Text Available Abstract Background Respiratory syncytial virus (RSV is a primary cause of serious lower respiratory tract illness for which there is still no safe and effective vaccine available. Using reverse genetics, recombinant (rRSV and an rRSV lacking the G gene (ΔG were constructed based on a clinical RSV isolate (strain 98-25147-X. Results Growth of both recombinant viruses was equivalent to that of wild type virus in Vero cells, but was reduced in human epithelial cells like Hep-2. Replication in cotton rat lungs could not be detected for ΔG, while rRSV was 100-fold attenuated compared to wild type virus. Upon single dose intranasal administration in cotton rats, both recombinant viruses developed high levels of neutralizing antibodies and conferred comparable long-lasting protection against RSV challenge; protection against replication in the lungs lasted at least 147 days and protection against pulmonary inflammation lasted at least 75 days. Conclusion Collectively, the data indicate that a single dose immunization with the highly attenuated ΔG as well as the attenuated rRSV conferred long term protection in the cotton rat against subsequent RSV challenge, without inducing vaccine enhanced pathology. Since ΔG is not likely to revert to a less attenuated phenotype, we plan to evaluate this deletion mutant further and to investigate its potential as a vaccine candidate against RSV infection.

  16. Pyrrolidinedithiocarbamate attenuates bleomycin-induced pulmonary fibrosis in rats: Modulation of oxidative stress, fibrosis, and inflammatory parameters.

    Science.gov (United States)

    Zaafan, Mai A; Zaki, Hala F; El-Brairy, Amany I; Kenawy, Sanaa A

    The current study aimed to investigate the modulatory effects of pyrrolidinedithiocarbamate (PDTC; 100 mg/kg) on bleomycin-induced pulmonary fibrosis (5 mg/kg; intratracheal) in rats. Rats were randomly assigned to three groups: normal control, bleomycin control, and PDTC-treated groups. Lung injury was evaluated through histological examination, immunohistochemical detection of inducible nitric oxide synthase (iNOS) in lung tissue and evaluating the total and differential leucocytes count in bronchoalveolar lavage fluid. Lung tissue was used for biochemical assessment of lung content of hydroxyproline, transforming growth factor beta-1 (TGF-β1), tumor necrosis factor-alpha (TNF-α) as well as analysis of lipid peroxides, reduced glutathione (GSH), and total nitrite contents. PDTC attenuated bleomycin-induced pulmonary fibrosis as evidenced by histological observations, decreased iNOS expression and prevention of bleomycin-induced altered total and differential leukocytes count. Additionally, PDTC caused a significant decrease in lung contents of hydroxyproline, TGF-β1, TNF-α, lipid peroxides, and total nitrite coupled with increase in lung GSH content as compared to bleomycin control group. PDTC attenuated bleomycin-induced pulmonary fibrosis in rats via its anti-inflammatory, antioxidant, and antifibrotic activities.

  17. Dexmedetomidine attenuates tourniquet-induced hyperdynamic response in patients undergoing lower limb surgeries: a randomized controlled study.

    Science.gov (United States)

    Lao, Hsuan-Chih; Tsai, Pei-Shan; Su, Jung-Yuan; Kwok, Tiew-Guan; Huang, Chun-Jen

    2013-01-01

    Activation of sympathetic nervous system has a crucial role in mediating the pneumatic tourniquet inflation induced hyperdynamic response. Dexmedetomidine, a selective α(2)-adrenergic receptor agonist, has potent sympatholytic effects. We conducted this prospective, randomized, placebo-controlled, double-blinded study to elucidate the effects of dexmedetomidine on attenuating the tourniquet-induced hyperdynamic response during general anesthesia. We included a total of 72 healthy adult patients undergoing elective lower limb surgery. Under general anesthesia, patients were randomized to the dexmedetomidine or the control group (n = 36 in each group). The dexmedetomidine group received a loading dose of dexmedetomidine (0.8 μg·kg(-1) over 10 min) followed by continuous infusion of dexmedetomidine (0.4 μg·kg(-1).h(-1)) until tourniquet deflation. The control group received normal saline instead. We compared tourniquet-induced changes in hemodynamic parameters between groups to elucidate the effects of dexmedetomidine. Tourniquet inflation induced significant increases in hemodynamic parameters, including heart rate, systolic arterial pressure, mean arterial pressure, diastolic arterial pressure, rate pressure product, cardiac output, and stroke volume in the control group. The effects of tourniquet inflation on increasing hemodynamic parameters were significantly attenuated by dexmedetomidine: heart rate (P product (P < 0.001), and cardiac output (P = 0.001) of the dexmedetomidine group were significantly lower than those of the control group. However, the stroke volume of these groups was comparable. Dexmedetomidine attenuates tourniquet-induced hyperdynamic response in general anesthesia patients undergoing lower limb surgeries. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Endotoxin exposure assessment - measurement and characterization

    NARCIS (Netherlands)

    Spaan, S.

    2008-01-01

    Endotoxin, one of the specific agents in organic dust that cause health effects, is part of the cell wall of Gram-negative bacteria. Gram-negative bacteria are present on for instance the surfaces of plants and in animal feces, and their occurrence, growth and amplification is influenced by many

  19. P2X7 Receptor Antagonism Attenuates the Intermittent Hypoxia-induced Spatial Deficits in a Murine Model of Sleep Apnea Via Inhibiting Neuroinflammation and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Yan Deng

    2015-01-01

    Conclusions: The P2X7R antagonism attenuates the CIH-induced neuroinflammation, oxidative stress, and spatial deficits, demonstrating that the P2X7R is an important therapeutic target in the cognition deficits accompanied OSAS.

  20. Pitavastatin attenuates the PDGF-induced LR11/uPA receptor-mediated migration of smooth muscle cells

    International Nuclear Information System (INIS)

    Jiang, Meizi; Bujo, Hideaki; Zhu, Yanjuan; Yamazaki, Hiroyuki; Hirayama, Satoshi; Kanaki, Tatsuro; Shibasaki, Manabu; Takahashi, Kazuo; Schneider, Wolfgang J.; Saito, Yasushi

    2006-01-01

    Statins, inhibitors of HMG-CoA reductase, elicit various actions on vascular cells including the modulation of proliferation and migration of smooth muscle cells (SMCs). Here, we have elucidated the mechanism by which statins, in particular pitavastatin, attenuate the migration activity of SMCs. The expression of LR11, a member of the LDL receptor family and an enhancer of cell surface localization of urokinase-type plasminogen activator receptor (uPAR), is increased in cultured SMCs by treatment with PDGF-BB. Pitavastatin attenuates the PDGF-BB -induced surface expression of LR11 and uPAR. The increased migration of SMCs observed both upon overexpression of LR11 and via stimulation of secretion of soluble LR11 is not reversed by pitavastatin. In vivo studies showed that the SMCs expressing LR11 in plaques are almost congruent with intimal cells expressing nonmuscle myosin heavy chain (SMemb). Pitavastatin reduced the expression of LR11 and SMemb, and the levels of LR11, uPAR, and SMemb in cultured intimal SMCs were reduced to those seen in medial SMCs. We propose that this statin reduces PDGF-induced migration through the attenuation of the LR11/uPAR system in SMCs. Modulation of the LR11/uPAR system with statins suggests a novel treatment strategy for atherogenesis based on suppression of intimal SMC migration

  1. Inhibition of soluble epoxide hydrolase attenuates high-fat-diet-induced hepatic steatosis by reduced systemic inflammatory status in mice.

    Directory of Open Access Journals (Sweden)

    Yan Liu

    Full Text Available Non-alcoholic fatty liver disease is associated with obesity and considered an inflammatory disease. Soluble epoxide hydrolase (sEH is a major enzyme hydrolyzing epoxyeicosatrienoic acids and attenuates their cardiovascular protective and anti-inflammatory effects. We examined whether sEH inhibition can protect against high-fat (HF-diet-induced fatty liver in mice and the underlying mechanism. Compared with wild-type littermates, sEH-null mice showed lower diet-induced lipid accumulation in liver, as seen by Oil-red O staining and triglycerides levels. We studied the effect of sEH inhibition on diet-induced fatty liver by feeding C57BL/6 mice an HF diet for