WorldWideScience

Sample records for attenuates cardiac hypertrophy

  1. Cardiac ankyrin repeat protein attenuates cardiac hypertrophy by inhibition of ERK1/2 and TGF-β signaling pathways.

    Directory of Open Access Journals (Sweden)

    Yao Song

    Full Text Available AIMS: It has been reported that cardiac ankyrin repeat protein is associated with heart development and diseases. This study is aimed to investigate the role of CARP in heart hypertrophy in vivo. METHODS AND RESULTS: We generated a cardiac-specific CARP-overexpressing transgenic mouse. Although such animals did not display any overt physiological abnormality, they developed less cardiac hypertrophy in response to pressure overload than did wildtype mice, as indicated by heart weight/body weight ratios, echocardiographic and histological analyses, and expression of hypertrophic markers. These mice also exhibited less cardiac hypertrophy after infusion of isoproterenol. To gain a molecular insight into how CARP attenuated heart hypertrophy, we examined expression of the mitogen-activated protein kinase cascade and found that the concentrations of phosphorylated ERK1/2 and MEK were markedly reduced in the hearts of transgenic mice subjected to pressure overload. In addition, the expressions of TGF-β and phosphorylated Smad3 were significantly downregulated in the hearts of CARP Tg mice in response to pressure overload. Furthermore, addition of human TGF-β1 could reverse the inhibitory effect of CARP on the hypertrophic response induced by phenylephrine in cardiomyocytes. It was also evidenced that the inhibitory effect of CARP on cardiac hypertrophy was not attributed to apoptosis. CONCLUSION: CARP attenuates cardiac hypertrophy, in which the ERK and TGF-β pathways may be involved. Our findings highlight the significance of CARP as an anti-hypertrophic factor in therapy of cardiac hypertrophy.

  2. Inhibition of Uncoupling Protein 2 Attenuates Cardiac Hypertrophy Induced by Transverse Aortic Constriction in Mice

    Directory of Open Access Journals (Sweden)

    Xiao-Bing Ji

    2015-07-01

    Full Text Available Background: Uncoupling protein 2 (UCP2 is critical in regulating energy metabolism. Due to the significant change in energy metabolism of myocardium upon pressure overload, we hypothesize that UCP2 could contribute to the etiology of cardiac hypertrophy. Methods: Adult male C57BL/6J mice were subjected to pressure overload by using transverse aortic constriction (TAC, and then received genipin (a UCP2 selective inhibitor; 25 mg/kg/d, ip or vehicle for three weeks prior to histologic assessment of myocardial hypertrophy. ATP concentration, ROS level, and myocardial apoptosis were also examined. A parallel set of experiments was also conducted in UCP2-/- mice. Results: TAC induced left ventricular hypertrophy, as reflected by increased ventricular weight/thickness and increased size of myocardial cell (vs. sham controls. ATP concentration was decreased; ROS level was increased. Apoptosis and fibrosis markers were increased. TAC increased mitochondrial UCP2 expression in the myocardium at both mRNA and protein levels. Genipin treatment attenuated cardiac hypertrophy and the histologic/biochemical changes described above. Hypertrophy and associated changes induced by TAC in UCP2-/- mice were much less pronounced than in WT mice. Conclusions: Blocking UCP2 expression attenuates cardiac hypertrophy induced by pressure overload.

  3. Histone deacetylase inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats

    OpenAIRE

    Lee, Eunjo; Song, Min-ji; Lee, Hae-Ahm; Kang, Seol-Hee; Kim, Mina; Yang, Eun Kyoung; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung; Kim, Inkyeom

    2016-01-01

    CG200745 is a novel inhibitor of histone deacetylases (HDACs), initially developed for treatment of various hematological and solid cancers. Because it is water-soluble, it can be administered orally. We hypothesized that the HDAC inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in deoxycorticosterone acetate (DOCA)-induced hypertensive rats. For establishment of hypertension, 40 mg/kg of DOCA was subcutaneously injected four times weekly into Sprague-Dawley rats. All the rats...

  4. Kaempferol Attenuates Cardiac Hypertrophy via Regulation of ASK1/MAPK Signaling Pathway and Oxidative Stress.

    Science.gov (United States)

    Feng, Hong; Cao, Jianlei; Zhang, Guangyu; Wang, Yanggan

    2017-07-01

    Kaempferol has been demonstrated to provide benefits for the treatment of atherosclerosis, coronary heart disease, hyperlipidemia, and diabetes through its antioxidant and anti-inflammatory properties. However, its role in cardiac hypertrophy remains to be elucidated. The aim of our study was to investigate the effects of kaempferol on cardiac hypertrophy and the underlying mechanism. Mice subjected to aorta banding were treated with or without kaempferol (100 mg/kg/d, p. o.) for 6 weeks. Echocardiography was performed to evaluate cardiac function. Mice hearts were collected for pathological observation and molecular mechanism investigation. H9c2 cardiomyocytes were stimulated with or without phenylephrine for in vitro study. Kaempferol significantly attenuated cardiac hypertrophy induced by aorta banding as evidenced by decreased cardiomyocyte areas and interstitial fibrosis, accompanied with improved cardiac functions and decreased apoptosis. The ASK1/MAPK signaling pathways (JNK1/2 and p38) were markedly activated in the aorta banding mouse heart but inhibited by kaempferol treatment. In in vitro experiments, kaempferol also inhibited the activity of ASK1/JNK1/2/p38 signaling pathway and the enlargement of H9c2 cardiomyocytes. Furthermore, our study revealed that kaempferol could protect the mouse heart and H9c2 cells from pathological oxidative stress. Our investigation indicated that treatment with kaempferol protects against cardiac hypertrophy, and its cardioprotection may be partially explained by the inhibition of the ASK1/MAPK signaling pathway and the regulation of oxidative stress. Georg Thieme Verlag KG Stuttgart · New York.

  5. Histone deacetylase inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats.

    Science.gov (United States)

    Lee, Eunjo; Song, Min-Ji; Lee, Hae-Ahm; Kang, Seol-Hee; Kim, Mina; Yang, Eun Kyoung; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung; Kim, Inkyeom

    2016-09-01

    CG200745 is a novel inhibitor of histone deacetylases (HDACs), initially developed for treatment of various hematological and solid cancers. Because it is water-soluble, it can be administered orally. We hypothesized that the HDAC inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in deoxycorticosterone acetate (DOCA)-induced hypertensive rats. For establishment of hypertension, 40 mg/kg of DOCA was subcutaneously injected four times weekly into Sprague-Dawley rats. All the rats used in this study including those in the sham group had been unilaterally nephrectomized and allowed free access to drinking water containing 1% NaCl. Systolic blood pressure was measured by the tail-cuff method. Blood chemistry including sodium, potassium, glucose, triglyceride, and cholesterol levels was analyzed. Sections of the heart were visualized after trichrome and hematoxylin and eosin stain. The expression of hypertrophic genes such as atrial natriuretic peptide A (Nppa) and atrial natriuretic peptide B (Nppb) in addition to fibrotic genes such as Collagen-1, Collagen-3, connective tissue growth factor (Ctgf), and Fibronectin were measured by quantitative real-time PCR (qRT-PCR). Injection of DOCA increased systolic blood pressure, heart weight, and cardiac fibrosis, which was attenuated by CG200745. Neither DOCA nor CG200745 affected body weight, vascular contraction and relaxation responses, and blood chemistry. Injection of DOCA increased expression of both hypertrophic and fibrotic genes, which was abrogated by CG200745. These results indicate that CG200745 attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats.

  6. Secoisolariciresinol diglucoside attenuates cardiac hypertrophy and oxidative stress in monocrotaline-induced right heart dysfunction.

    Science.gov (United States)

    Puukila, Stephanie; Fernandes, Rafael Oliveira; Türck, Patrick; Carraro, Cristina Campos; Bonetto, Jéssica Hellen Poletto; de Lima-Seolin, Bruna Gazzi; da Rosa Araujo, Alex Sander; Belló-Klein, Adriane; Boreham, Douglas; Khaper, Neelam

    2017-08-01

    Pulmonary arterial hypertension (PAH) occurs when remodeling of pulmonary vessels leads to increased pulmonary vascular resistance resulting in increased pulmonary arterial pressure. Increased pulmonary arterial pressure results in right ventricle hypertrophy and eventually heart failure. Oxidative stress has been implicated in the pathogenesis of PAH and may play a role in the regulation of cellular signaling involved in cardiac response to pressure overload. Secoisolariciresinol diglucoside (SDG), a component from flaxseed, has been shown to reduce cardiac oxidative stress in various pathophysiological conditions. We investigated the potential protective effects of SDG in a monocrotaline-induced model of PAH. Five- to six-week-old male Wistar rats were given a single intraperitoneal injection of monocrotaline (60 mg/kg) and sacrificed 21 days later where heart, lung, and plasma were collected. SDG (25 mg/kg) was given via gavage as either a 21-day co-treatment or pre-treatment of 14 days before monocrotaline administration and continued for 21 days. Monocrotaline led to right ventricle hypertrophy, increased lipid peroxidation, and elevated plasma levels of alanine transaminase (ALT) and aspartate transaminase (AST). Co-treatment with SDG did not attenuate hypertrophy or ALT and AST levels but decreased reactive oxygen species (ROS) levels and catalase and superoxide dismutase activity compared to the monocrotaline-treated group. Pre-treatment with SDG decreased right ventricle hypertrophy, ROS levels, lipid peroxidation, catalase, superoxide dismutase, and glutathione peroxidase activity and plasma levels of ALT and AST when compared to the monocrotaline group. These findings indicate that pre-treatment with SDG provided better protection than co-treatment in this model of right heart dysfunction, suggesting an important role for SDG in PAH and right ventricular remodeling.

  7. Novel Sulfur Metabolites of Garlic Attenuate Cardiac Hypertrophy and Remodeling through Induction of Na+/K+-ATPase Expression.

    Science.gov (United States)

    Khatua, Tarak N; Borkar, Roshan M; Mohammed, Soheb A; Dinda, Amit K; Srinivas, R; Banerjee, Sanjay K

    2017-01-01

    Epidemiologic studies show an inverse correlation between garlic consumption and progression of cardiovascular disease. However, the molecular basis for the beneficial effect of garlic on the heart is not known. Therefore, the objective of the present study was to (1) investigate the effect of raw garlic on isoproterenol (Iso) induced cardiac hypertrophy (2) find the active metabolites of garlic responsible for the beneficial effect. Cardiac hypertrophy was induced in rats by subcutaneous single injection of Iso 5 mg kg -1 day -1 for 15 days and the effect of garlic (250 mg/kg/day orally) was evaluated. Garlic metabolites in in vivo were identified by LC/MS study. The effect of garlic and its metabolites were evaluated against hypertrophy in H9C2 cells. Garlic normalized cardiac oxidative stress after Iso administration. Cardiac pathology and mitochondrial enzyme activities were improved in hypertrophy heart after garlic administration. Decreased Na + /K + -ATPase protein level that observed in hypertrophy heart was increased after garlic administration. We identified three garlic metabolites in rat serum. To confirm the role of garlic metabolites on cardiac hypertrophy, Na + /K + -ATPase expression and intracellular calcium levels were measured after treating H9C2 cells with raw garlic and two of its active metabolites, allyl methyl sulfide and allyl methyl sulfoxide. Raw garlic and both metabolites increased Na + /K + -ATPase protein level and decreased intracellular calcium levels and cell size in Iso treated H9C2 cells. This antihypertrophic effect of garlic and its sulfur metabolites were lost in H9C2 cells in presence of Na + /K + -ATPase inhibitor. In conclusion, garlic and its active metabolites increased Na + /K + -ATPase in rat heart, and attenuated cardiac hypertrophy and associated remodeling. Our data suggest that identified new garlic metabolites may be useful for therapeutic intervention against cardiac hypertrophy.

  8. Valsartan attenuates cardiac and renal hypertrophy in rats with experimental cardiorenal syndrome possibly through down-regulating galectin-3 signaling.

    Science.gov (United States)

    Zhang, M-J; Gu, Y; Wang, H; Zhu, P-F; Liu, X-Y; Wu, J

    2016-01-01

    Aortocaval fistula (AV) induced chronic volume overload in rats with preexisting mild renal dysfunction (right kidney remove: UNX) could mimic the type 4 cardiorenal syndrome (CRS): chronic renocardiac syndrome. Galectin-3, a β-galactoside binding lectin, is an emerging biomarker in cardiovascular as well as renal diseases. We observed the impact of valsartan on cardiac and renal hypertrophy and galectin-3 changes in this model. Adult male Sprague-Dawley (SD) rats (200-250 g) were divided into S (Sham, n = 7), M (UNX+AV, n = 7) and M+V (UNX+AV+valsartan, n = 7) groups. Eight weeks later, cardiac function was measured by echocardiography. Renal outcome was measured by glomerular filtration rate, effective renal plasma flow, renal blood flow and 24 hours albuminuria. Immunohistochemistry and real-time PCR were used to evaluate the expressions of galectin-3 in heart and renal. Cardiac hypertrophy and renal hypertrophy as well as cardiac enlargement were evidenced in this AV shunt induced chronic volume overload rat model with preexisting mild renal dysfunction. Cardiac and renal hypertrophy were significantly attenuated but cardiac enlargement was unaffected by valsartan independent of its blood pressure lowering effect. 24 hours urine albumin was significantly increased, which was significantly reduced by valsartan in this model. Immunohistochemistry and real-time PCR evidenced significantly up-regulated galectin-3 expression in heart and kidney and borderline increased myocardial collagen I expression, which tended to be lower post valsartan treatment. Up-regulated galectin-3 signaling might also be involved in the pathogenesis in this CRS model. The beneficial effects of valsartan in terms of attenuating cardiac and renal hypertrophy and reducing 24 hours albumin in this model might partly be mediated through down-regulating galectin-3 signal pathway.

  9. Vitamin D treatment attenuates cardiac FGF23/FGFR4 signaling and hypertrophy in uremic rats.

    Science.gov (United States)

    Leifheit-Nestler, Maren; Grabner, Alexander; Hermann, Laura; Richter, Beatrice; Schmitz, Karin; Fischer, Dagmar-Christiane; Yanucil, Christopher; Faul, Christian; Haffner, Dieter

    2017-09-01

    Vitamin D deficiency and excess of circulating fibroblast growth factor 23 (FGF23) contribute to cardiovascular mortality in patients with chronic kidney disease (CKD). FGF23 activates FGF receptor 4 and (FGFR4) calcineurin/nuclear factor of activated T cells (NFAT) signaling in cardiac myocytes, thereby causing left ventricular hypertrophy (LVH). Here, we determined if 1,25-dihydroxyvitamin D (calcitriol) inhibits FGF23-induced cardiac signaling and LVH. 5/6 nephrectomized (5/6 Nx) rats were treated with different doses of calcitriol for 4 or 10 weeks and cardiac expression of FGF23/FGFR4 and activation of calcineurin/NFAT as well as LVH were analyzed. FGFR4 activation and hypertrophic cell growth were studied in cultured cardiac myocytes that were co-treated with FGF23 and calcitriol. In 5/6Nx rats with LVH, we detected elevated FGF23 expression in bone and myocardium, increased cardiac expression of FGFR4 and elevated cardiac activation of calcineurin/NFAT signaling. Cardiac expression levels of FGF23 and FGFR4 significantly correlated with the presence of LVH in uremic rats. Treatment with calcitriol reduced LVH as well as cardiac FGFR4 expression and calcineurin/NFAT activation. Bone and cardiac FGF23 expression were further stimulated by calcitriol in a dose-dependent manner, but levels of intact cardiac FGF23 protein were suppressed by high-dose calcitriol. In cultured cardiac myocytes, co-treatment with calcitriol blocked FGF23-induced activation of FGFR4 and hypertrophic cell growth. Our data suggest that in CKD, cardioprotective effects of calcitriol stem from its inhibitory actions on the cardiac FGF23/FGFR4 system, and based on their counterbalancing effects on cardiac myocytes, high FGF23 and low calcitriol synergistically contribute to cardiac hypertrophy. © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  10. Inhibition of NF-κB activity in the hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by modulating cytokines and attenuating oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiao-Jing [Department of Physiology and Pathophysiology, Xi' an Jiaotong University School of Basic Medical Sciences, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China); Zhang, Dong-Mei [Department of Physiology, Dalian Medical University, Dalian 116044 (China); Jia, Lin-Lin; Qi, Jie; Song, Xin-Ai; Tan, Hong [Department of Physiology and Pathophysiology, Xi' an Jiaotong University School of Basic Medical Sciences, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China); Cui, Wei [Department of Endocrinology and Metabolism, First Affiliated Hospital of Xi' an Jiaotong University, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China); Chen, Wensheng [Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi' an 710032 (China); Zhu, Guo-Qing [Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029 (China); Qin, Da-Nian, E-mail: dnqin@stu.edu.cn [Department of Physiology, Shantou University Medical College, Shantou 515041 (China); Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn [Department of Physiology and Pathophysiology, Xi' an Jiaotong University School of Basic Medical Sciences, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China)

    2015-05-01

    We hypothesized that chronic inhibition of NF-κB activity in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), attenuating nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase in the PVN of young spontaneously hypertensive rats (SHR). Young normotensive Wistar–Kyoto (WKY) and SHR rats received bilateral PVN infusions with NF–κB inhibitor pyrrolidine dithiocarbamate (PDTC) or vehicle for 4 weeks. SHR rats had higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, cardiomyocyte diameters of the left cardiac ventricle, and mRNA expressions of cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC). These SHR rats had higher PVN levels of proinflammatory cytokines (PICs), reactive oxygen species (ROS), the chemokine monocyte chemoattractant protein-1 (MCP-1), NAD(P)H oxidase activity, mRNA expression of NOX-2 and NOX-4, and lower PVN IL-10, and higher plasma levels of PICs and NE, and lower plasma IL-10. PVN infusion of NF-κB inhibitor PDTC attenuated all these changes. These findings suggest that NF-κB activation in the PVN increases sympathoexcitation and hypertensive response, which are associated with the increases of PICs and oxidative stress in the PVN; PVN inhibition of NF-κB activity attenuates PICs and oxidative stress in the PVN, thereby attenuates hypertension and cardiac hypertrophy. - Highlights: • Spontaneously hypertensive rats exhibit neurohormonal excitation in the PVN. • PVN inhibition of NF-κB attenuates hypertension-induced cardiac hypertrophy. • PVN inhibition of NF-κB attenuates hypertension-induced neurohormonal excitation. • PVN inhibition of NF-κB attenuates hypertension-induced imbalance of cytokines

  11. Triptolide Upregulates Myocardial Forkhead Helix Transcription Factor p3 Expression and Attenuates Cardiac Hypertrophy

    Science.gov (United States)

    Ding, Yuan-Yuan; Li, Jing-Mei; Guo, Feng-Jie; Liu, Ya; Tong, Yang-Fei; Pan, Xi-Chun; Lu, Xiao-Lan; Ye, Wen; Chen, Xiao-Hong; Zhang, Hai-Gang

    2016-01-01

    The forkhead/winged helix transcription factor (Fox) p3 can regulate the expression of various genes, and it has been reported that the transfer of Foxp3-positive T cells could ameliorate cardiac hypertrophy and fibrosis. Triptolide (TP) can elevate the expression of Foxp3, but its effects on cardiac hypertrophy remain unclear. In the present study, neonatal rat ventricular myocytes (NRVM) were isolated and stimulated with angiotensin II (1 μmol/L) to induce hypertrophic response. The expression of Foxp3 in NRVM was observed by using immunofluorescence assay. Fifty mice were randomly divided into five groups and received vehicle (control), isoproterenol (Iso, 5 mg/kg, s.c.), one of three doses of TP (10, 30, or 90 μg/kg, i.p.) for 14 days, respectively. The pathological morphology changes were observed after Hematoxylin and eosin, lectin and Masson’s trichrome staining. The levels of serum brain natriuretic peptide (BNP) and troponin I were determined by enzyme-linked immunosorbent assay and chemiluminescence, respectively. The mRNA and protein expressions of α- myosin heavy chain (MHC), β-MHC and Foxp3 were determined using real-time PCR and immunohistochemistry, respectively. It was shown that TP (1, 3, 10 μg/L) treatment significantly decreased cell size, mRNA and protein expression of β-MHC, and upregulated Foxp3 expression in NRVM. TP also decreased heart weight index, left ventricular weight index and, improved myocardial injury and fibrosis; and decreased the cross-scetional area of the myocardium, serum cardiac troponin and BNP. Additionally, TP markedly reduced the mRNA and protein expression of myocardial β-MHC and elevated the mRNA and protein expression of α-MHC and Foxp3 in a dose-dependent manner. In conclusion, TP can effectively ameliorate myocardial damage and inhibit cardiac hypertrophy, which is at least partly related to the elevation of Foxp3 expression in cardiomyocytes. PMID:27965581

  12. Andrographis paniculata extract attenuates pathological cardiac hypertrophy and apoptosis in high-fat diet fed mice.

    Science.gov (United States)

    Hsieh, You-Liang; Shibu, Marthandam Asokan; Lii, Chong-Kuei; Viswanadha, Vijaya Padma; Lin, Yi-Lin; Lai, Chao-Hung; Chen, Yu-Feng; Lin, Kuan-Ho; Kuo, Wei-Wen; Huang, Chih-Yang

    2016-11-04

    Andrographis paniculata (Burm. f.) Nees (Acanthaceae) has a considerable medicinal reputation in most parts of Asia as a potent medicine in the treatment of Endocrine disorders, inflammation and hypertension. Water extract of A. paniculata and its active constituent andrographolide are known to possess anti-inflammatory and anti-apoptotic effects. Our aim is to identify whether A. paniculata extract could protect myocardial damage in high-fat diet induced obese mice. The test mice were divided into three groups fed either with normal chow or with high fat diet (obese) or with high fat diet treated with A. paniculata extract (2g/kg/day, through gavage, for a week). We found that the myocardial inflammation pathway related proteins were increased in the obese mouse which potentially contributes to cardiac hypertrophy and myocardial apoptosis. But feeding with A. paniculata extract showed significant inhibition on the effects of high fat diet. Our study strongly suggests that supplementation of A. paniculata extract can be used for prevention and treatment of cardiovascular disease in obese patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Restoration of Circulating MFGE8 (Milk Fat Globule-EGF Factor 8) Attenuates Cardiac Hypertrophy Through Inhibition of Akt Pathway.

    Science.gov (United States)

    Deng, Ke-Qiong; Li, Jing; She, Zhi-Gang; Gong, Jun; Cheng, Wen-Lin; Gong, Fu-Han; Zhu, Xue-Yong; Zhang, Yan; Wang, Zhihua; Li, Hongliang

    2017-10-01

    Cardiac hypertrophy occurs in response to numerous stimuli like neurohumoral stress, pressure overload, infection, and injury, and leads to heart failure. Mfge8 (milk fat globule-EGF factor 8) is a secreted protein involved in various human diseases, but its regulation and function during cardiac hypertrophy remain unexplored. Here, we found that circulating MFGE8 levels declined significantly in failing hearts from patients with dilated cardiomyopathy. Correlation analyses revealed that circulating MFGE8 levels were negatively correlated with the severity of cardiac dysfunction and remodeling in affected patients. Deleting Mfge8 in mice maintained normal heart function at basal level but substantially exacerbated the hypertrophic enlargement of cardiomyocytes, reprogramming of pathological genes, contractile dysfunction, and myocardial fibrosis after aortic banding surgery. In contrast, cardiac-specific Mfge8 overexpression in transgenic mice significantly blunted aortic banding-induced cardiac hypertrophy. Whereas MAPK (mitogen-activated protein kinase) pathways were unaffected in either Mfge8 -knockout or Mfge8 -overexpressing mice, the activated Akt/PKB (protein kinase B)-Gsk-3β (glycogen synthase kinase-3β)/mTOR (mammalian target of rapamycin) pathway after aortic banding was significantly potentiated by Mfge8 deficiency but suppressed by Mfge8 overexpression. Inhibition of Akt with MK-2206 blocked the prohypertrophic effects of Mfge8 deficiency in angiotensin II-treated neonatal rat cardiomyocytes. Finally, administering a recombinant human MFGE8 in mice in vivo alleviated cardiac hypertrophy induced by aortic banding. Our findings indicate that Mfge8 is an endogenous negative regulator of pathological cardiac hypertrophy and may, thus, have potential both as a novel biomarker and as a therapeutic target for treatment of cardiac hypertrophy. © 2017 American Heart Association, Inc.

  14. Inhibition of TNF-α in hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by inhibiting neurohormonal excitation in spontaneously hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xin-Ai; Jia, Lin-Lin [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Cui, Wei [Department of Endocrinology and Metabolism, First Affiliated Hospital of Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Zhang, Meng [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Chen, Wensheng [Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi' an 710032 (China); Yuan, Zu-Yi [Department of Cardiovascular Medicine, First Affiliated Hospital of Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Guo, Jing [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Li, Hui-Hua [Key Laboratory of Remodeling-related Cardiovascular Diseases, Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069 (China); Zhu, Guo-Qing [Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029 (China); Liu, Hao, E-mail: haoliu75@163.com [Department of Neurosurgery, First Affiliated Hospital of Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China)

    2014-11-15

    We hypothesized that chronic inhibition of tumor necrosis factor-alpha (TNF-α) in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), decreasing nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase activities, as well as restoring the neurotransmitters balance in the PVN of spontaneously hypertensive rats (SHR). Adult normotensive Wistar–Kyoto (WKY) and SHR rats received bilateral PVN infusion of a TNF-α blocker (pentoxifylline or etanercept) or vehicle for 4 weeks. SHR rats showed higher mean arterial pressure and cardiac hypertrophy compared with WKY rats, as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC) mRNA expressions. Compared with WKY rats, SHR rats had higher PVN levels of tyrosine hydroxylase, PICs, the chemokine monocyte chemoattractant protein-1 (MCP-1), NF-κB p65 activity, mRNA expressions of NOX-2 and NOX-4, and lower PVN levels of IL-10 and 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma norepinephrine. PVN infusion of pentoxifylline or etanercept attenuated all these changes in SHR rats. These findings suggest that SHR rats have an imbalance between excitatory and inhibitory neurotransmitters, as well as an imbalance between pro- and anti-inflammatory cytokines in the PVN; and chronic inhibition of TNF-α in the PVN delays the progression of hypertension by restoring the balances of neurotransmitters and cytokines in the PVN, and attenuating PVN NF-κB p65 activity and oxidative stress, thereby attenuating hypertension-induced sympathetic hyperactivity and cardiac hypertrophy. - Highlights: • Spontaneously hypertensive rats exhibit neurohormonal excitation in the PVN. • PVN inhibition of

  15. Chronic infusion of enalaprilat into hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension and cardiac hypertrophy by restoring neurotransmitters and cytokines

    International Nuclear Information System (INIS)

    Kang, Yu-Ming; Zhang, Dong-Mei; Yu, Xiao-Jing; Yang, Qing; Qi, Jie; Su, Qing; Suo, Yu-Ping; Yue, Li-Ying; Zhu, Guo-Qing; Qin, Da-Nian

    2014-01-01

    The renin–angiotensin system (RAS) in the brain is involved in the pathogenesis of hypertension. We hypothesized that inhibition of angiotensin-converting enzyme (ACE) in the hypothalamic paraventricular nucleus (PVN) attenuates angiotensin II (ANG II)-induced hypertension via restoring neurotransmitters and cytokines. Rats underwent subcutaneous infusions of ANG II or saline and bilateral PVN infusions of ACE inhibitor enalaprilat (ENL, 2.5 μg/h) or vehicle for 4 weeks. ANG II infusion resulted in higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and mRNA expressions of cardiac atrial natriuretic peptide and beta-myosin heavy chain. These ANG II-infused rats had higher PVN levels of glutamate, norepinephrine, tyrosine hydroxylase, pro-inflammatory cytokines (PICs) and the chemokine monocyte chemoattractant protein-1, and lower PVN levels of gamma-aminobutyric acid, interleukin (IL)-10 and the 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma levels of PICs, norepinephrine and aldosterone, and lower plasma IL-10, and higher renal sympathetic nerve activity. However, PVN treatment with ENL attenuated these changes. PVN microinjection of ANG II induced increases in IL-1β and IL-6, and a decrease in IL-10 in the PVN, and pretreatment with angiotensin II type 1 receptor (AT1-R) antagonist losartan attenuated these changes. These findings suggest that ANG II infusion induces an imbalance between excitatory and inhibitory neurotransmitters and an imbalance between pro- and anti-inflammatory cytokines in the PVN, and PVN inhibition of the RAS restores neurotransmitters and cytokines in the PVN, thereby attenuating ANG II-induced hypertension and cardiac hypertrophy. - Highlights: • Chronic ANG II infusion results in sympathetic hyperactivity and cardiac hypertrophy. • PVN inhibition of ACE

  16. Chronic infusion of enalaprilat into hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension and cardiac hypertrophy by restoring neurotransmitters and cytokines

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Zhang, Dong-Mei [Department of Physiology, Dalian Medical University, Dalian 116044 (China); Yu, Xiao-Jing; Yang, Qing; Qi, Jie; Su, Qing [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Suo, Yu-Ping [Department of Obstetrics and Gynecology, Shanxi Provincial People' s Hospital, Taiyuan 030012 (China); Yue, Li-Ying [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Zhu, Guo-Qing [Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029 (China); Qin, Da-Nian, E-mail: dnqin@stu.edu.cn [Department of Physiology, Shantou University Medical College, Shantou 515041 (China)

    2014-02-01

    The renin–angiotensin system (RAS) in the brain is involved in the pathogenesis of hypertension. We hypothesized that inhibition of angiotensin-converting enzyme (ACE) in the hypothalamic paraventricular nucleus (PVN) attenuates angiotensin II (ANG II)-induced hypertension via restoring neurotransmitters and cytokines. Rats underwent subcutaneous infusions of ANG II or saline and bilateral PVN infusions of ACE inhibitor enalaprilat (ENL, 2.5 μg/h) or vehicle for 4 weeks. ANG II infusion resulted in higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and mRNA expressions of cardiac atrial natriuretic peptide and beta-myosin heavy chain. These ANG II-infused rats had higher PVN levels of glutamate, norepinephrine, tyrosine hydroxylase, pro-inflammatory cytokines (PICs) and the chemokine monocyte chemoattractant protein-1, and lower PVN levels of gamma-aminobutyric acid, interleukin (IL)-10 and the 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma levels of PICs, norepinephrine and aldosterone, and lower plasma IL-10, and higher renal sympathetic nerve activity. However, PVN treatment with ENL attenuated these changes. PVN microinjection of ANG II induced increases in IL-1β and IL-6, and a decrease in IL-10 in the PVN, and pretreatment with angiotensin II type 1 receptor (AT1-R) antagonist losartan attenuated these changes. These findings suggest that ANG II infusion induces an imbalance between excitatory and inhibitory neurotransmitters and an imbalance between pro- and anti-inflammatory cytokines in the PVN, and PVN inhibition of the RAS restores neurotransmitters and cytokines in the PVN, thereby attenuating ANG II-induced hypertension and cardiac hypertrophy. - Highlights: • Chronic ANG II infusion results in sympathetic hyperactivity and cardiac hypertrophy. • PVN inhibition of ACE

  17. Cardiac myocyte follistatin-like 1 functions to attenuate hypertrophy following pressure overload

    NARCIS (Netherlands)

    Shimano, Masayuki; Ouchi, Noriyuki; Nakamura, Kazuto; van Wijk, Bram; Ohashi, Koji; Asaumi, Yasuhide; Higuchi, Akiko; Pimentel, David R.; Sam, Flora; Murohara, Toyoaki; van den Hoff, Maurice J. B.; Walsh, Kenneth

    2011-01-01

    Factors secreted by the heart, referred to as "cardiokines," have diverse actions in the maintenance of cardiac homeostasis and remodeling. Follistatin-like 1 (Fstl1) is a secreted glycoprotein expressed in the adult heart and is induced in response to injurious conditions that promote myocardial

  18. Nanotized PPARα Overexpression Targeted to Hypertrophied Myocardium Improves Cardiac Function by Attenuating the p53-GSK3β-Mediated Mitochondrial Death Pathway.

    Science.gov (United States)

    Rana, Santanu; Datta, Ritwik; Chaudhuri, Ratul Datta; Chatterjee, Emeli; Chawla-Sarkar, Mamta; Sarkar, Sagartirtha

    2018-05-09

    Metabolic remodeling of cardiac muscles during pathological hypertrophy is characterized by downregulation of fatty acid oxidation (FAO) regulator, peroxisome proliferator-activated receptor alpha (PPARα). Thereby, we hypothesized that a cardiac-specific induction of PPARα might restore the FAO-related protein expression and resultant energy deficit. In the present study, consequences of PPARα augmentation were evaluated for amelioration of chronic oxidative stress, myocyte apoptosis, and cardiac function during pathological cardiac hypertrophy. Nanotized PPARα overexpression targeted to myocardium was done by a stearic acid-modified carboxymethyl-chitosan (CMC) conjugated to a 20-mer myocyte-targeted peptide (CMCP). Overexpression of PPARα ameliorated pathological hypertrophy and improved cardiac function. Augmented PPARα in hypertrophied myocytes revealed downregulated p53 acetylation (lys 382), leading to reduced apoptosis. Such cells showed increased binding of PPARα with p53 that in turn reduced interaction of p53 with glycogen synthase kinase-3β (GSK3β), which upregulated inactive phospho-GSK3β (serine [Ser]9) expression within mitochondrial protein fraction. Altogether, the altered molecular milieu in PPARα-overexpressed hypertrophy groups restored mitochondrial structure and function both in vitro and in vivo. Cardiomyocyte-targeted overexpression of a protein of interest (PPARα) by nanotized plasmid has been described for the first time in this study. Our data provide a novel insight towards regression of pathological hypertrophy by ameliorating mitochondrial oxidative stress in targeted PPARα-overexpressed myocardium. PPARα-overexpression during pathological hypertrophy showed substantial betterment of mitochondrial structure and function, along with downregulated apoptosis. Myocardium-targeted overexpression of PPARα during pathological cardiac hypertrophy led to an overall improvement of cardiac energy deficit and subsequent cardiac

  19. Deletion of Interleukin-6 Attenuates Pressure Overload-Induced Left Ventricular Hypertrophy and Dysfunction

    Science.gov (United States)

    Afzal, Muhammad R.; Samanta, Anweshan; Xuan, Yu-Ting; Girgis, Magdy; Elias, Harold K; Zhu, Yanqing; Davani, Arash; Yang, Yanjuan; Chen, Xing; Ye, Sheng; Wang, Ou-Li; Chen, Lei; Hauptman, Jeryl; Vincent, Robert J.; Dawn, Buddhadeb

    2016-01-01

    Rationale The role of interleukin (IL)-6 in the pathogenesis of cardiac myocyte hypertrophy remains controversial. Objective To conclusively determine whether IL-6 signaling is essential for the development of pressure overload-induced left ventricular (LV) hypertrophy, and to elucidate the underlying molecular pathways. Methods and Results Wild-type (WT) and IL-6 knockout (IL-6−/−) mice underwent sham surgery or transverse aortic constriction (TAC) to induce pressure overload. Serial echocardiograms and terminal hemodynamic studies revealed attenuated LV hypertrophy and superior preservation of LV function in IL-6−/− mice after TAC. The extents of LV remodeling, fibrosis, and apoptosis were reduced in IL-6−/− hearts after TAC. Transcriptional and protein assays of myocardial tissue identified CaMKII and STAT3 activation as important underlying mechanisms during cardiac hypertrophy induced by TAC. The involvement of these pathways in myocyte hypertrophy was verified in isolated cardiac myocytes from WT and IL-6−/− mice exposed to pro-hypertrophy agents. Furthermore, overexpression of CaMKII in H9c2 cells increased STAT3 phosphorylation, and exposure of H9c2 cells to IL-6 resulted in STAT3 activation that was attenuated by CaMKII inhibition. Together these results identify the importance of CaMKII-dependent activation of STAT3 during cardiac myocyte hypertrophy via IL-6 signaling. Conclusions Genetic deletion of IL-6 attenuates TAC-induced LV hypertrophy and dysfunction, indicating a critical role played by IL-6 in the pathogenesis of LV hypertrophy in response to pressure overload. CaMKII plays an important role in IL-6-induced STAT3 activation and consequent cardiac myocyte hypertrophy. These findings may have significant therapeutic implications for LV hypertrophy and failure in patients with hypertension. PMID:27126808

  20. HSF1 and NF-κB p65 participate in the process of exercise preconditioning attenuating pressure overload-induced pathological cardiac hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tongyi [Department of Cardiothoracic Surgery, No. 401 Hospital of PLA, Qingdao (China); Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China); Zhang, Ben [Centre of Cardiovascular Surgery, Guangzhou General Hospital of Guangzhou Military Region, Guangzhou (China); Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China); Yang, Fan; Cai, Chengliang; Wang, Guokun [Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China); Han, Qingqi, E-mail: handoctor@gmail.com [Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China); Zou, Liangjian, E-mail: zouliangjiansh@gmail.com [Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai (China)

    2015-05-08

    Pathological cardiac hypertrophy, often accompanied by hypertension, aortic stenosis and valvular defects, is typically associated with myocyte remodeling and cardiac dysfunction. Exercise preconditioning (EP) has been proven to enhance the tolerance of the myocardium to cardiac ischemia-reperfusion injury. However, the effects of EP in pathological cardiac hypertrophy are rarely reported. 10-wk-old male Sprague–Dawley rats (n = 80) were randomly divided into four groups: sham, TAC, EP + sham and EP + TAC. Two EP groups were subjected to 4 weeks of treadmill training, and the EP + TAC and TAC groups were followed by TAC operations. The sham and EP + sham groups underwent the same operation without aortic constriction. Eight weeks after the surgery, we evaluated the effects of EP by echocardiography, morphology, and histology and observed the expressions of the associated proteins. Compared with the respective control groups, hypertrophy-related indicators were significantly increased in the TAC and EP + TAC groups (p < 0.05). However, between the TAC and EP + TAC groups, all of these changes were effectively inhibited by EP treatment (p < 0.05). Furthermore, EP treatment upregulated the expression of HSF1 and HSP70, increased the HSF1 levels in the nuclear fraction, inhibited the expression of the NF-κB p65 subunit, decreased the NF-κB p65 subunit levels in the nuclear fraction, and reduced the IL2 levels in the myocardia of rats. EP could effectively reduce the cardiac hypertrophic responses induced by TAC and may play a protective role by upregulating the expressions of HSF1 and HSP70, activating HSF1 and then inhibiting the expression of NF-κB p65 and nuclear translocation. - Highlights: • EP could effectively reduce the cardiac hypertrophic responses induced by TAC. • EP may play a protective role by upregulating the expressions of HSF1 and HSP70 and then activating HSF1. • EP may play a protective role by inhibiting the expression

  1. Herbal Supplement Ameliorates Cardiac Hypertrophy in Rats with CCl4-Induced Liver Cirrhosis

    Directory of Open Access Journals (Sweden)

    Ping-Chun Li

    2012-01-01

    Full Text Available We used the carbon tetrachloride (CCl4 induced liver cirrhosis model to test the molecular mechanism of action involved in cirrhosis-associated cardiac hypertrophy and the effectiveness of Ocimum gratissimum extract (OGE and silymarin against cardiac hypertrophy. We treated male wistar rats with CCl4 and either OGE (0.02 g/kg B.W. or 0.04 g/kg B.W. or silymarin (0.2 g/kg B.W.. Cardiac eccentric hypertrophy was induced by CCl4 along with cirrhosis and increased expression of cardiac hypertrophy related genes NFAT, TAGA4, and NBP, and the interleukin-6 (IL-6 signaling pathway related genes MEK5, ERK5, JAK, and STAT3. OGE or silymarin co-treatment attenuated CCl4-induced cardiac abnormalities, and lowered expression of genes which were elevated by this hepatotoxin. Our results suggest that the IL-6 signaling pathway may be related to CCl4-induced cardiac hypertrophy. OGE and silymarin were able to lower liver fibrosis, which reduces the chance of cardiac hypertrophy perhaps by lowering the expressions of IL-6 signaling pathway related genes. We conclude that treatment of cirrhosis using herbal supplements is a viable option for protecting cardiac tissues against cirrhosis-related cardiac hypertrophy.

  2. Gastrodin Inhibits Store-Operated Ca2+ Entry and Alleviates Cardiac Hypertrophy

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Yao

    2017-04-01

    Full Text Available Cardiac hypertrophy is a major risk factor for heart failure, which are among the leading causes of human death. Gastrodin is a small molecule that has been used clinically to treat neurological and vascular diseases for many years without safety issues. In the present study, we examined protective effect of gastrodin against cardiac hypertrophy and explored the underlying mechanism. Phenylephrine and angiotensin II were used to induce cardiac hypertrophy in a mouse model and a cultured cardiomyocyte model. Gastrodin was found to alleviate the cardiac hypertrophy in both models. Mechanistically, gastrodin attenuated the store-operated Ca2+ entry (SOCE by reducing the expression of STIM1 and Orai1, two key proteins in SOCE, in animal models as well as in cultured cardiomyocyte model. Furthermore, suppressing SOCE by RO2959, Orai1-siRNAs or STIM1-siRNAs markedly attenuated the phenylephrine-induced hypertrophy in cultured cardiomyocyte model. Together, these results showed that gastrodin inhibited cardiac hypertrophy and it also reduced the SOCE via its action on the expression of STIM1 and Orai1. Furthermore, suppression of SOCE could reduce the phenylephrine-induced cardiomyocyte hypertrophy, suggesting that SOCE-STIM1-Orai1 is located upstream of hypertrophy.

  3. Improved bioavailability of targeted Curcumin delivery efficiently regressed cardiac hypertrophy by modulating apoptotic load within cardiac microenvironment

    International Nuclear Information System (INIS)

    Ray, Aramita; Rana, Santanu; Banerjee, Durba; Mitra, Arkadeep; Datta, Ritwik; Naskar, Shaon; Sarkar, Sagartirtha

    2016-01-01

    Cardiomyocyte apoptosis acts as a prime modulator of cardiac hypertrophy leading to heart failure, a major cause of human mortality worldwide. Recent therapeutic interventions have focussed on translational applications of diverse pharmaceutical regimes among which, Curcumin (from Curcuma longa) is known to have an anti-hypertrophic potential but with limited pharmacological efficacies due to low aqueous solubility and poor bioavailability. In this study, Curcumin encapsulated by carboxymethyl chitosan (CMC) nanoparticle conjugated to a myocyte specific homing peptide was successfully delivered in bioactive form to pathological myocardium for effective regression of cardiac hypertrophy in a rat (Rattus norvegicus) model. Targeted nanotization showed higher cardiac bioavailability of Curcumin at a low dose of 5 mg/kg body weight compared to free Curcumin at 35 mg/kg body weight. Moreover, Curcumin/CMC-peptide treatment during hypertrophy significantly improved cardiac function by downregulating expression of hypertrophy marker genes (ANF, β-MHC), apoptotic mediators (Bax, Cytochrome-c) and activity of apoptotic markers (Caspase 3 and PARP); whereas free Curcumin in much higher dose showed minimal improvement during compromised cardiac function. Targeted Curcumin treatment significantly lowered p53 expression and activation in diseased myocardium via inhibited interaction of p53 with p300-HAT. Thus attenuated acetylation of p53 facilitated p53 ubiquitination and reduced the apoptotic load in hypertrophied cardiomyocytes; thereby limiting cardiomyocytes' need to enter the regeneration cycle during hypertrophy. This study elucidates for the first time an efficient targeted delivery regimen for Curcumin and also attributes towards probable mechanistic insight into its therapeutic potential as a cardio-protective agent for regression of cardiac hypertrophy. - Highlights: • Cardiomyocyte targeted Curcumin/CMC-peptide increases bioavailability of the drug.

  4. Taxifolin protects against cardiac hypertrophy and fibrosis during biomechanical stress of pressure overload

    International Nuclear Information System (INIS)

    Guo, Haipeng; Zhang, Xin; Cui, Yuqian; Zhou, Heng; Xu, Dachun; Shan, Tichao; Zhang, Fan; Guo, Yuan; Chen, Yuguo; Wu, Dawei

    2015-01-01

    Cardiac hypertrophy is a key pathophysiological component to biomechanical stress, which has been considered to be an independent and predictive risk factor for adverse cardiovascular events. Taxifolin (TAX) is a typical plant flavonoid, which has long been used clinically for treatment of cardiovascular and cerebrovascular diseases. However, very little is known about whether TAX can influence the development of cardiac hypertrophy. In vitro studies, we found that TAX concentration-dependently inhibited angiotensin II (Ang II) induced hypertrophy and protein synthesis in cardiac myocytes. Then we established a mouse model by transverse aortic constriction (TAC) to further confirm our findings. It was demonstrated that TAX prevented pressure overload induced cardiac hypertrophy in mice, as assessed by ventricular mass/body weight, echocardiographic parameters, myocyte cross-sectional area, and the expression of ANP, BNP and β-MHC. The excess production of reactive oxygen species (ROS) played critical role in the development of cardiac hypertrophy. TAX arrested oxidative stress and decreased the expression of 4-HNE induced by pressure overload. Moreover, TAX negatively modulated TAC-induced phosphorylation of ERK1/2 and JNK1/2. Further studies showed that TAX significantly attenuated left ventricular fibrosis and collagen synthesis through abrogating the phosphorylation of Smad2 and Smad2/3 nuclear translocation. These results demonstrated that TAX could inhibit cardiac hypertrophy and attenuate ventricular fibrosis after pressure overload. These beneficial effects were at least through the inhibition of the excess production of ROS, ERK1/2, JNK1/2 and Smad signaling pathways. Therefore, TAX might be a potential candidate for the treatment of cardiac hypertrophy and fibrosis. - Highlights: • We focus on the protective effect of taxifolin on cardiac remodeling. • Taxifolin inhibited cardiac hypertrophy and attenuated ventricular fibrosis. • Taxifolin

  5. Taxifolin protects against cardiac hypertrophy and fibrosis during biomechanical stress of pressure overload

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Haipeng; Zhang, Xin [Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan (China); Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China); Cui, Yuqian [Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China); Zhou, Heng [Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan (China); Xu, Dachun [Department of Cardiology, Shanghai Tenth People' s Hospital of Tongji University, Shanghai (China); Shan, Tichao; Zhang, Fan [Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan (China); Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China); Guo, Yuan [Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China); Chen, Yuguo, E-mail: chen919085@163.com [Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China); Department of Emergency, Qilu Hospital of Shandong University, Jinan (China); Wu, Dawei, E-mail: wdwu55@163.com [Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan (China); Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan (China)

    2015-09-01

    Cardiac hypertrophy is a key pathophysiological component to biomechanical stress, which has been considered to be an independent and predictive risk factor for adverse cardiovascular events. Taxifolin (TAX) is a typical plant flavonoid, which has long been used clinically for treatment of cardiovascular and cerebrovascular diseases. However, very little is known about whether TAX can influence the development of cardiac hypertrophy. In vitro studies, we found that TAX concentration-dependently inhibited angiotensin II (Ang II) induced hypertrophy and protein synthesis in cardiac myocytes. Then we established a mouse model by transverse aortic constriction (TAC) to further confirm our findings. It was demonstrated that TAX prevented pressure overload induced cardiac hypertrophy in mice, as assessed by ventricular mass/body weight, echocardiographic parameters, myocyte cross-sectional area, and the expression of ANP, BNP and β-MHC. The excess production of reactive oxygen species (ROS) played critical role in the development of cardiac hypertrophy. TAX arrested oxidative stress and decreased the expression of 4-HNE induced by pressure overload. Moreover, TAX negatively modulated TAC-induced phosphorylation of ERK1/2 and JNK1/2. Further studies showed that TAX significantly attenuated left ventricular fibrosis and collagen synthesis through abrogating the phosphorylation of Smad2 and Smad2/3 nuclear translocation. These results demonstrated that TAX could inhibit cardiac hypertrophy and attenuate ventricular fibrosis after pressure overload. These beneficial effects were at least through the inhibition of the excess production of ROS, ERK1/2, JNK1/2 and Smad signaling pathways. Therefore, TAX might be a potential candidate for the treatment of cardiac hypertrophy and fibrosis. - Highlights: • We focus on the protective effect of taxifolin on cardiac remodeling. • Taxifolin inhibited cardiac hypertrophy and attenuated ventricular fibrosis. • Taxifolin

  6. Transcription Factors in Heart: Promising Therapeutic Targets in Cardiac Hypertrophy

    OpenAIRE

    Kohli, Shrey; Ahuja, Suchit; Rani, Vibha

    2011-01-01

    Regulation of gene expression is central to cell growth, differentiation and diseases. Context specific and signal dependent regulation of gene expression is achieved to a large part by transcription factors. Cardiac transcription factors regulate heart development and are also involved in stress regulation of the adult heart, which may lead to cardiac hypertrophy. Hypertrophy of cardiac myocytes is an outcome of the imbalance between prohypertrophic factors and anti-hypertrophic factors. Thi...

  7. Raf-mediated cardiac hypertrophy in adult Drosophila

    Directory of Open Access Journals (Sweden)

    Lin Yu

    2013-07-01

    In response to stress and extracellular signals, the heart undergoes a process called cardiac hypertrophy during which cardiomyocytes increase in size. If untreated, cardiac hypertrophy can progress to overt heart failure that causes significant morbidity and mortality. The identification of molecular signals that cause or modify cardiomyopathies is necessary to understand how the normal heart progresses to cardiac hypertrophy and heart failure. Receptor tyrosine kinase (RTK signaling is essential for normal human cardiac function, and the inhibition of RTKs can cause dilated cardiomyopathies. However, neither investigations of activated RTK signaling pathways nor the characterization of hypertrophic cardiomyopathy in the adult fly heart has been previously described. Therefore, we developed strategies using Drosophila as a model to circumvent some of the complexities associated with mammalian models of cardiovascular disease. Transgenes encoding activated EGFRA887T, Ras85DV12 and Ras85DV12S35, which preferentially signal to Raf, or constitutively active human or fly Raf caused hypertrophic cardiomyopathy as determined by decreased end diastolic lumen dimensions, abnormal cardiomyocyte fiber morphology and increased heart wall thicknesses. There were no changes in cardiomyocyte cell numbers. Additionally, activated Raf also induced an increase in cardiomyocyte ploidy compared with control hearts. However, preventing increases in cardiomyocyte ploidy using fizzy-related (Fzr RNAi did not rescue Raf-mediated cardiac hypertrophy, suggesting that Raf-mediated polyploidization is not required for cardiac hypertrophy. Similar to mammals, the cardiac-specific expression of RNAi directed against MEK or ERK rescued Raf-mediated cardiac hypertrophy. However, the cardiac-specific expression of activated ERKD334N, which promotes hyperplasia in non-cardiac tissues, did not cause myocyte hypertrophy. These results suggest that ERK is necessary, but not sufficient, for Raf

  8. Egr-1 mediated cardiac miR-99 family expression diverges physiological hypertrophy from pathological hypertrophy.

    Science.gov (United States)

    Ramasamy, Subbiah; Velmurugan, Ganesan; Rekha, Balakrishnan; Anusha, Sivakumar; Shanmugha Rajan, K; Shanmugarajan, Suresh; Ramprasath, Tharmarajan; Gopal, Pandi; Tomar, Dhanendra; Karthik, Karuppusamy V; Verma, Suresh Kumar; Garikipati, Venkata Naga Srikanth; Sudarsan, Rajan

    2018-04-01

    The physiological cardiac hypertrophy is an adaptive condition without myocyte cell death, while pathological hypertrophy is a maladaptive condition associated with myocyte cell death. This study explores the miRNome of α-2M-induced physiologically hypertrophied cardiomyocytes and the role of miRNA-99 family during cardiac hypertrophy. Physiological and pathological cardiac hypertrophy was induced in H9c2 cardiomyoblast cell lines using α-2M and isoproterenol respectively. Total RNA isolation and small RNA sequencing were executed for physiological hypertrophy model. The differentially expressed miRNAs and its target mRNAs were validated in animal models. Transcription factor binding sites were predicted in the promoter of specific miRNAs and validated by ChIP-PCR. Subsequently, the selected miRNA was functionally characterized by overexpression and silencing. The effects of silencing of upstream regulator and downstream target gene were studied. Analysis of small RNA reads revealed the differential expression of a large set of miRNAs during hypertrophy, of which miR-99 family was highly downregulated upon α-2M treatment. However, this miR-99 family expression was upregulated during pathological hypertrophy and confirmed in animal models. ChIP-PCR confirms the binding of Egr-1 transcription factor to the miR-99 promoter. Further, silencing of Egr-1 decreased the expression of miR-99. The overexpression or silencing of miR-99 diverges the physiological hypertrophy to pathological hypertrophy and vice versa by regulating Akt-1 pathway. Silencing of Akt-1 replicates the effect of overexpression of miR-99. The results proved Egr-1 mediated regulation of miR-99 family that plays a key role in determining the fate of cardiac hypertrophy by regulating Akt-1 signaling. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Macrophage microRNA-155 promotes cardiac hypertrophy and failure

    NARCIS (Netherlands)

    Heymans, Stephane; Corsten, Maarten F.; Verhesen, Wouter; Carai, Paolo; van Leeuwen, Rick E. W.; Custers, Kevin; Peters, Tim; Hazebroek, Mark; Stöger, Lauran; Wijnands, Erwin; Janssen, Ben J.; Creemers, Esther E.; Pinto, Yigal M.; Grimm, Dirk; Schürmann, Nina; Vigorito, Elena; Thum, Thomas; Stassen, Frank; Yin, Xiaoke; Mayr, Manuel; de Windt, Leon J.; Lutgens, Esther; Wouters, Kristiaan; de Winther, Menno P. J.; Zacchigna, Serena; Giacca, Mauro; van Bilsen, Marc; Papageorgiou, Anna-Pia; Schroen, Blanche

    2013-01-01

    Cardiac hypertrophy and subsequent heart failure triggered by chronic hypertension represent major challenges for cardiovascular research. Beyond neurohormonal and myocyte signaling pathways, growing evidence suggests inflammatory signaling pathways as therapeutically targetable contributors to this

  10. Short-Term Caloric Restriction Suppresses Cardiac Oxidative Stress and Hypertrophy Caused by Chronic Pressure Overload.

    Science.gov (United States)

    Kobara, Miyuki; Furumori-Yukiya, Akiko; Kitamura, Miho; Matsumura, Mihoko; Ohigashi, Makoto; Toba, Hiroe; Nakata, Tetsuo

    2015-08-01

    Caloric restriction (CR) prevents senescent changes, in which reactive oxygen species (ROS) have a critical role. Left ventricular (LV) hypertrophy is a risk factor for cardiovascular diseases. We examined whether CR alters cardiac redox state and hypertrophy from chronic pressure overload. Male c57BL6 mice were subjected to ascending aortic constriction (AAC) with ad libitum caloric intake (AL + AAC group) or 40% restricted caloric intake (CR + AAC group). CR was initiated 2 weeks before AAC and was continued for 4 weeks. Two weeks after constriction, AAC increased LV wall thickness, impaired transmitral flow velocity, and augmented myocyte hypertrophy and fibrosis, in association with enhancement of BNP and collagen III expressions in the AL + AAC group. In the AL + AAC group, oxidative stress in cardiac tissue and mitochondria were enhanced, and NADPH oxidase activity and mitochondrial ROS production were elevated. These changes were significantly attenuated in the CR + AAC group. Additionally, in antioxidant systems, myocardial glutathione peroxidase and superoxide dismutase activities were enhanced in the CR + AAC group. Chronic pressure overload increased cardiac oxidative damage, in association with cardiac hypertrophy and fibrosis. Short-term CR suppressed oxidative stress and improved cardiac function, suggesting that short-term CR could be a useful strategy to prevent pressure overload-induced cardiac injury. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. How does pressure overload cause cardiac hypertrophy and dysfunction? High-ouabain affinity cardiac Na+ pumps are crucial.

    Science.gov (United States)

    Blaustein, Mordecai P

    2017-11-01

    Left ventricular hypertrophy is frequently observed in hypertensive patients and is believed to be due to the pressure overload and cardiomyocyte stretch. Three recent reports on mice with genetically engineered Na + pumps, however, have demonstrated that cardiac ouabain-sensitive α 2 -Na + pumps play a key role in the pathogenesis of transaortic constriction-induced hypertrophy. Hypertrophy was delayed/attenuated in mice with mutant, ouabain-resistant α 2 -Na + pumps and in mice with cardiac-selective knockout or transgenic overexpression of α 2 -Na + pumps. The latter, seemingly paradoxical, findings can be explained by comparing the numbers of available (ouabain-free) high-affinity (α 2 ) ouabain-binding sites in wild-type, knockout, and transgenic hearts. Conversely, hypertrophy was accelerated in α 2 -ouabain-resistant (R) mice in which the normally ouabain-resistant α 1 -Na + pumps were mutated to an ouabain-sensitive (S) form (α 1 S/S α 2 R/R or "SWAP" vs. wild-type or α 1 R/R α 2 S/S mice). Furthermore, transaortic constriction-induced hypertrophy in SWAP mice was prevented/reversed by immunoneutralizing circulating endogenous ouabain (EO). These findings show that EO and its receptor, ouabain-sensitive α 2 , are critical factors in pressure overload-induced cardiac hypertrophy. This complements reports linking elevated plasma EO to hypertension, cardiac hypertrophy, and failure in humans and elucidates the underappreciated role of the EO-Na + pump pathway in cardiovascular disease. Copyright © 2017 the American Physiological Society.

  12. Pharmacological targeting of CDK9 in cardiac hypertrophy.

    Science.gov (United States)

    Krystof, Vladimír; Chamrád, Ivo; Jorda, Radek; Kohoutek, Jirí

    2010-07-01

    Cardiac hypertrophy allows the heart to adapt to workload, but persistent or unphysiological stimulus can result in pump failure. Cardiac hypertrophy is characterized by an increase in the size of differentiated cardiac myocytes. At the molecular level, growth of cells is linked to intensive transcription and translation. Several cyclin-dependent kinases (CDKs) have been identified as principal regulators of transcription, and among these CDK9 is directly associated with cardiac hypertrophy. CDK9 phosphorylates the C-terminal domain of RNA polymerase II and thus stimulates the elongation phase of transcription. Chronic activation of CDK9 causes not only cardiac myocyte enlargement but also confers predisposition to heart failure. Due to the long interest of molecular oncologists and medicinal chemists in CDKs as potential targets of anticancer drugs, a portfolio of small-molecule inhibitors of CDK9 is available. Recent determination of CDK9's crystal structure now allows the development of selective inhibitors and their further optimization in terms of biochemical potency and selectivity. CDK9 may therefore constitute a novel target for drugs against cardiac hypertrophy.

  13. Role of Oxidative Stress in Thyroid Hormone-Induced Cardiomyocyte Hypertrophy and Associated Cardiac Dysfunction: An Undisclosed Story

    Directory of Open Access Journals (Sweden)

    Mohammad T. Elnakish

    2015-01-01

    Full Text Available Cardiac hypertrophy is the most documented cardiomyopathy following hyperthyroidism in experimental animals. Thyroid hormone-induced cardiac hypertrophy is described as a relative ventricular hypertrophy that encompasses the whole heart and is linked with contractile abnormalities in both right and left ventricles. The increase in oxidative stress that takes place in experimental hyperthyroidism proposes that reactive oxygen species are key players in the cardiomyopathy frequently reported in this endocrine disorder. The goal of this review is to shed light on the effects of thyroid hormones on the development of oxidative stress in the heart along with the subsequent cellular and molecular changes. In particular, we will review the role of thyroid hormone-induced oxidative stress in the development of cardiomyocyte hypertrophy and associated cardiac dysfunction, as well as the potential effectiveness of antioxidant treatments in attenuating these hyperthyroidism-induced abnormalities in experimental animal models.

  14. Pharmacological targeting of CDK9 in cardiac hypertrophy

    Czech Academy of Sciences Publication Activity Database

    Kryštof, Vladimír; Chamrád, Ivo; Jorda, Radek; Kohoutek, J.

    2010-01-01

    Roč. 30, č. 4 (2010), s. 646-666 ISSN 0198-6325 R&D Projects: GA ČR GA204/08/0511; GA ČR GA301/09/1832; GA ČR GA301/08/1649 Institutional research plan: CEZ:AV0Z50380511 Keywords : P-TEFb * cardiac myocyte * cardiac hypertrophy Subject RIV: CE - Biochemistry Impact factor: 10.228, year: 2010

  15. Dance band on the Titanic: biomechanical signaling in cardiac hypertrophy.

    Science.gov (United States)

    Sussman, Mark A; McCulloch, Andrew; Borg, Thomas K

    2002-11-15

    Biomechanical signaling is a complex interaction of both intracellular and extracellular components. Both passive and active components are involved in the extracellular environment to signal through specific receptors to multiple signaling pathways. This review provides an overview of extracellular matrix, specific receptors, and signaling pathways for biomechanical stimulation in cardiac hypertrophy.

  16. Myocardial uptake of thallium-201 in rat with cardiac hypertrophy

    International Nuclear Information System (INIS)

    Torii, Yukio; Adachi, Haruhiko; Kizu, Akira; Nakagawa, Masao; Ijichi, Hamao

    1985-01-01

    The thallium-201 (TL) has been used in order to diagnose myocardial infarction and ischemia. Although it is well known that TL distributes in the myocardium in proportion to the distribution of coronary blood flow, the biological property of TL in the loaded myocardium remains unclear. We studied the myocardial uptake of TL in rat with cardiac hypertrophy. Experiments were performed in 30 anesthetized rats devided into 3 groups; control group (C,N=14), hypertrophy group (H,N=6) and diltiazem group (D, 0.3 mg/kg/min. IV. N=10). Cardiac hypertrophy was produced with the banding of the ascending aorta. Myocardial blood flow (MBF) was measured by microspheres labeled with Strontium-85. Cardiac weight was increased in H, and both MBF and TL uptake were proportionally increased. MBF was negatively correlated with the extraction fraction in C (r=-0.71), in H (r=-0.66) and in D (r=-0.85), and this relationship in H was significantly different from it in C (p<0.05), but not in D. From these results, we concluded that TL uptake in H is not always dependant on MBF and affected by the altered metabolism of hypertrophied myocardium. (author)

  17. Zinc-finger protein 418 overexpression protects against cardiac hypertrophy and fibrosis.

    Directory of Open Access Journals (Sweden)

    Liming Pan

    Full Text Available This study aimed to investigated the effect and mechanism of zinc-finger protein 418 (ZNF418 on cardiac hypertrophy caused by aortic banding (AB, phenylephrine (PE or angiotensin II (Ang II in vivo and in vitro.The expression of ZNF418 in hearts of patients with dilated cardiomyopathy (DCM or hypertrophic cardiomyopathy (HCM and AB-induced cardiac hypertrophy mice, as well as in Ang II- or PE-induced hypertrophic primary cardiomyocytes was detected by western blotting. Then, the expression of ZNF418 was up-regulated or down-regulated in AB-induced cardiac hypertrophy mice and Ang II -induced hypertrophic primary cardiomyocytes. The hypertrophic responses and fibrosis were evaluated by echocardiography and histological analysis. The mRNA levels of hypertrophy markers and fibrotic markers were detected by RT-qPCR. Furthermore, the phosphorylation and total levels of c-Jun were measured by western blotting.ZNF418 was markedly down-regulated in hearts of cardiac hypertrophy and hypertrophic primary cardiomyocytes. Down-regulated ZNF418 exacerbated the myocyte size and fibrosis, moreover increased the mRNA levels of ANP, BNP, β-MHC, MCIP1.4, collagen 1a, collagen III, MMP-2 and fibronection in hearts of AB-treated ZNF418 knockout mice or Ang II-treated cardiomyocytes with AdshZNF418. Conversely, these hypertrophic responses were reduced in the ZNF418 transgenic (TG mice treated by AB and the AdZNF418-transfected primary cardiomyocytes treated by Ang II. Additionally, the deficiency of ZNF418 enhanced the phosphorylation level of c-jun, and overexpression of ZNF418 suppressed the phosphorylation level of c-jun in vivo and in vitro.ZNF418 maybe attenuate hypertrophic responses by inhibiting the activity of c-jun/AP-1.

  18. Pentoxifylline Attenuates Cardiac Remodeling Induced by Tobacco Smoke Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Minicucci, Marcos; Oliveira, Fernando; Santos, Priscila; Polegato, Bertha; Roscani, Meliza; Fernandes, Ana Angelica; Lustosa, Beatriz; Paiva, Sergio; Zornoff, Leonardo; Azevedo, Paula, E-mail: paulasa@fmb.unesp.br [Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, São Paulo, SP (Brazil)

    2016-05-15

    Tobacco smoke exposure is an important risk factor for cardiac remodeling. Under this condition, inflammation, oxidative stress, energy metabolism abnormalities, apoptosis, and hypertrophy are present. Pentoxifylline has anti‑inflammatory, anti-apoptotic, anti-thrombotic and anti-proliferative properties. The present study tested the hypothesis that pentoxifylline would attenuate cardiac remodeling induced by smoking. Wistar rats were distributed in four groups: Control (C), Pentoxifylline (PX), Tobacco Smoke (TS), and PX-TS. After two months, echocardiography, invasive blood pressure measurement, biochemical, and histological studies were performed. The groups were compared by two-way ANOVA with a significance level of 5%. TS increased left atrium diameter and area, which was attenuated by PX. In the isolated heart study, TS lowered the positive derivate (+dp/dt), and this was attenuated by PX. The antioxidants enzyme superoxide dismutase and glutathione peroxidase were decreased in the TS group; PX recovered these activities. TS increased lactate dehydrogenase (LDH) and decreased 3-hydroxyacyl Coenzyme A dehydrogenases (OH-DHA) and citrate synthase (CS). PX attenuated LDH, 3-OH-DHA and CS alterations in TS-PX group. TS increased IL-10, ICAM-1, and caspase-3. PX did not influence these variables. TS induced cardiac remodeling, associated with increased inflammation, oxidative stress, apoptosis, and changed energy metabolism. PX attenuated cardiac remodeling by reducing oxidative stress and improving cardiac bioenergetics, but did not act upon cardiac cytokines and apoptosis.

  19. Adiponectin and Cardiac Hypertrophy in Acromegaly.

    Science.gov (United States)

    Gurbulak, Sabriye; Akin, Fulya; Yerlikaya, Emrah; Yaylali, Guzin F; Topsakal, Senay; Tanriverdi, Halil; Akdag, Beyza; Kaptanoglu, Bunyamin

    2016-01-01

    Adiponectin is an adipocytes-derived hormone which has been shown to possess insulin-sensitizing, antiatherogenic, and anti-inflammatory properties. In acromegaly, the data on adiponectin is contradictory. The relationship between adiponectin levels and cardiac parameters has not been studied. The aim of this study was to find out how adiponectin levels were affected in acromegalic patients and the relationship between adiponectin levels and cardiac parameters. We included 30 subjects (15 male, 15 female), diagnosed with acromegaly and 30 healthy (10 male, 20 female) subjects. Serum glucose, insulin, GH, IGF-1 and adiponectin levels were obtained and the insulin resistance of the subjects was calculated. Echocardiographic studies of the subjects were performed. We determined that adiponectin levels were significantly higher in the acromegalic group than the control group. In the acromegalic group, there was no statistically significant relation between serum adiponectin and growth hormone (GH), or insulin-like growth factor-1 (IGF-1) levels (p = 0.3, p = 0.1). We demonstrated that cardiac function and structure are affected by acromegaly. IVST, PWT, LVMI, E/A ratio, DT, ET, IVRT, VPR, and LVESV values were increased and the results were statistically significant. In the acromegalic group, adiponectin levels were positively related with left ventricle mass index (LVMI) but this correlation was found to be statistically weak (p = 0.03). In our study, there was a positive correlation between VAI and LVM. We also could not find any correlation between VAI and adiponectin levels. Although insulin resistance and high insulin levels occur in active acromegaly patients, adiponectin levels were higher in our study as a consequence of GH lowering therapies. Our study showed that adiponectin levels may be an indicator of the cardiac involvement acromegaly. However, the usage of serum adiponectin levels in acromegalic patients as an indicator of cardiac involvement should be

  20. Empagliflozin lessened cardiac injury and reduced visceral adipocyte hypertrophy in prediabetic rats with metabolic syndrome.

    Science.gov (United States)

    Kusaka, Hiroaki; Koibuchi, Nobutaka; Hasegawa, Yu; Ogawa, Hisao; Kim-Mitsuyama, Shokei

    2016-11-11

    The potential benefit of SGLT2 inhibitors in metabolic syndrome is with prediabetic stage unclear. This work was undertaken to investigate the non-glycemic effect of empagliflozin on metabolic syndrome rats with prediabetes. SHR/NDmcr-cp(+/+) rats (SHRcp), a model of metabolic syndrome with prediabetes, were given empagliflozin for 10 weeks to examine the effects on urinary sodium and water balance, visceral and subcutaneous adipocyte, and cardiac injury. Further, the effect of empagliflozin on blood pressure and autonomic nervous system was continuously investigated by using radiotelemetry system. Empagliflozin significantly reduced urinary sodium and water balance of SHRcp only within 1 week of the treatment, but later than 1 week did not alter them throughout the treatment. Empagliflozin significantly reduced body weight of SHRcp, which was mainly attributed to the significant reduction of subcutaneous fat mass. Empagliflozin significantly reduced the size of visceral adipocytes and increased the number of smaller size of adipocytes, which was associated with the attenuation of oxidative stress. Empagliflozin ameliorated cardiac hypertrophy and fibrosis of SHRcp, in association with the attenuation of cardiac oxidative stress and inflammation. However, empagliflozin did not significantly change blood pressure, heart rate, sympathetic activity, or baroreceptor function, as evidenced by radiotelemetry analysis. Our present work provided the evidence that SGLT2 inhibition reduced visceral adipocytes hypertrophy and ameliorated cardiac injury in prediabetic metabolic syndrome rat, independently of diuretic effect or blood pressure lowering effect. Thus, SGLT2 inhibition seems to be a promising therapeutic strategy for prediabetic metabolic syndrome.

  1. Association of myocardial cell necrosis with experimental cardiac hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Revis, N W; Cameron, A J.V.

    1979-01-01

    Cardiac hypertrophy was induced in rabbits by injecting thyroxime or isoprenaline, or by surgically constricting the abdominal aorta. An increase in heart weight was associated with a change in the ratios of bound to free forms of five lysosomal enzymes, a change in serum creatine phosphokinase and lactate dehydrogenase, and a change in the morphology of the myocardial cells. Isoprenaline treatment for 5 days induced a maximal change in heart weight, in the ratio of lysosomal enzymes, and in the serum enzymes. Thyroxine treatment was required for 15 days before maximal changes in heart weight, ratio, and serum enzymes were observed. In contrast, coarctation of the aorta caused a progressive change in heart weight, in the ratio of lysosomal enzymes, and in serum enzymes. These results suggest that necrosis of the myocardial cells does indeed accompany cardiac hypertrophy. It was further observed that autophagosomes, degenerating mitochondria in the myocardial cells during the induction of cardiac hypertrophy, and myofibril lysis were found, all of which confirms the suggestion of myocardial cell necrosis in the experimentally enlarged heart.

  2. Mouse models for the study of postnatal cardiac hypertrophy

    Directory of Open Access Journals (Sweden)

    A. Del Olmo-Turrubiarte

    2015-06-01

    Full Text Available The main objective of this study was to create a postnatal model for cardiac hypertrophy (CH, in order to explain the mechanisms that are present in childhood cardiac hypertrophy. Five days after implantation, intraperitoneal (IP isoproterenol (ISO was injected for 7 days to pregnant female mice. The fetuses were obtained at 15, 17 and 19 dpc from both groups, also newborns (NB, neonates (7–15 days and young adults (6 weeks of age. Histopathological exams were done on the hearts. Immunohistochemistry and western blot demonstrated GATA4 and PCNA protein expression, qPCR real time the mRNA of adrenergic receptors (α-AR and β-AR, alpha and beta myosins (α-MHC, β-MHC and GATA4. After the administration of ISO, there was no change in the number of offsprings. We observed significant structural changes in the size of the offspring hearts. Morphometric analysis revealed an increase in the size of the left ventricular wall and interventricular septum (IVS. Histopathological analysis demonstrated loss of cellular compaction and presence of left ventricular small fibrous foci after birth. Adrenergic receptors might be responsible for changing a physiological into a pathological hypertrophy. However GATA4 seemed to be the determining factor in the pathology. A new animal model was established for the study of pathologic CH in early postnatal stages.

  3. UCP3 Ablation Exacerbates High-Salt Induced Cardiac Hypertrophy and Cardiac Dysfunction

    Directory of Open Access Journals (Sweden)

    Hongmei Lang

    2018-04-01

    Full Text Available Background/Aims: Excessive salt intake and left ventricular hypertrophy (LVH are both critical for the development of hypertension and heart failure. The uncoupling protein 3 (UCP3 plays a cardio-protective role in early heart failure development. However, the potential role for UCP3 in salt intake and LVH is unclear. Methods: UCP3-/- and C57BL/6 mice were placed on either a normal-salt (NS, 0.5% or a high-salt (HS, 8% diet for 24 weeks. The cardiac function, endurance capacity, energy expenditure, and mitochondrial functional capacity were measured in each group. Results: Elevated blood pressure was only observed in HS-fed UCP3-/- mice. High salt induced cardiac hypertrophy and dysfunction were observed in both C57BL/6 and UCP3-/- mice. However, the cardiac lesions were more profound in HS-fed UCP3-/- mice. Furthermore, HS-fed UCP3-/-mice experienced more severe mitochondrial respiratory dysfunction compared with HS-fed C57BL/6 mice, represented by the decreased volume of oxygen consumption and heat production at the whole-body level. Conclusion: UCP3 protein was involved in the incidence of high-salt induced hypertension and the progression of cardiac dysfunction in the early stages of heart failure. UCP3 ablation exacerbated high-salt-induced cardiac hypertrophy and cardiac dysfunction.

  4. Brain renin angiotensin system in cardiac hypertrophy and failure

    Directory of Open Access Journals (Sweden)

    Luciana eCampos

    2012-01-01

    Full Text Available Brain renin-angiotensin system (RAS is significantly involved in the roles of the endocrine RAS in cardiovascular regulation. Our studies indicate that the brain RAS participates in the development of cardiac hypertrophy and fibrosis through sympathetic activation. Inhibition of sympathetic hyperactivity after myocardial infarction through suppression of the brain RAS appears beneficial. The brain RAS is involved in the modulation of circadian rhythms of arterial pressure, contributing to nondipping hypertension. We conclude that the brain RAS in pathophysiological states interacts synergistically with the chronically overactive RAS through a positive biofeedback in order to maintain a state of alert diseased conditions, such as cardiac hypertrophy and failure. Therefore, targeting brain RAS with drugs such as angiotensin converting inhibitors or receptor blockers having increased brain penetrability could be of advantage. These RAS-targeting drugs are first-line therapy for all heart failure patients. Since the RAS has both endocrine and local tissue components, RAS drugs are being developed to attain increased tissue penetrability and volume of distribution and consequently an efficient inhibition of both RAS components.

  5. A Systems Biology Approach to Investigating Sex Differences in Cardiac Hypertrophy.

    Science.gov (United States)

    Harrington, Josephine; Fillmore, Natasha; Gao, Shouguo; Yang, Yanqin; Zhang, Xue; Liu, Poching; Stoehr, Andrea; Chen, Ye; Springer, Danielle; Zhu, Jun; Wang, Xujing; Murphy, Elizabeth

    2017-08-19

    Heart failure preceded by hypertrophy is a leading cause of death, and sex differences in hypertrophy are well known, although the basis for these sex differences is poorly understood. This study used a systems biology approach to investigate mechanisms underlying sex differences in cardiac hypertrophy. Male and female mice were treated for 2 and 3 weeks with angiotensin II to induce hypertrophy. Sex differences in cardiac hypertrophy were apparent after 3 weeks of treatment. RNA sequencing was performed on hearts, and sex differences in mRNA expression at baseline and following hypertrophy were observed, as well as within-sex differences between baseline and hypertrophy. Sex differences in mRNA were substantial at baseline and reduced somewhat with hypertrophy, as the mRNA differences induced by hypertrophy tended to overwhelm the sex differences. We performed an integrative analysis to identify mRNA networks that were differentially regulated in the 2 sexes by hypertrophy and obtained a network centered on PPARα (peroxisome proliferator-activated receptor α). Mouse experiments further showed that acute inhibition of PPARα blocked sex differences in the development of hypertrophy. The data in this study suggest that PPARα is involved in the sex-dimorphic regulation of cardiac hypertrophy. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  6. Eccentric and concentric cardiac hypertrophy induced by exercise training: microRNAs and molecular determinants.

    Science.gov (United States)

    Fernandes, T; Soci, U P R; Oliveira, E M

    2011-09-01

    Among the molecular, biochemical and cellular processes that orchestrate the development of the different phenotypes of cardiac hypertrophy in response to physiological stimuli or pathological insults, the specific contribution of exercise training has recently become appreciated. Physiological cardiac hypertrophy involves complex cardiac remodeling that occurs as an adaptive response to static or dynamic chronic exercise, but the stimuli and molecular mechanisms underlying transduction of the hemodynamic overload into myocardial growth are poorly understood. This review summarizes the physiological stimuli that induce concentric and eccentric physiological hypertrophy, and discusses the molecular mechanisms, sarcomeric organization, and signaling pathway involved, also showing that the cardiac markers of pathological hypertrophy (atrial natriuretic factor, β-myosin heavy chain and α-skeletal actin) are not increased. There is no fibrosis and no cardiac dysfunction in eccentric or concentric hypertrophy induced by exercise training. Therefore, the renin-angiotensin system has been implicated as one of the regulatory mechanisms for the control of cardiac function and structure. Here, we show that the angiotensin II type 1 (AT1) receptor is locally activated in pathological and physiological cardiac hypertrophy, although with exercise training it can be stimulated independently of the involvement of angiotensin II. Recently, microRNAs (miRs) have been investigated as a possible therapeutic approach since they regulate the translation of the target mRNAs involved in cardiac hypertrophy; however, miRs in relation to physiological hypertrophy have not been extensively investigated. We summarize here profiling studies that have examined miRs in pathological and physiological cardiac hypertrophy. An understanding of physiological cardiac remodeling may provide a strategy to improve ventricular function in cardiac dysfunction.

  7. Eccentric and concentric cardiac hypertrophy induced by exercise training: microRNAs and molecular determinants

    Directory of Open Access Journals (Sweden)

    T. Fernandes

    2011-09-01

    Full Text Available Among the molecular, biochemical and cellular processes that orchestrate the development of the different phenotypes of cardiac hypertrophy in response to physiological stimuli or pathological insults, the specific contribution of exercise training has recently become appreciated. Physiological cardiac hypertrophy involves complex cardiac remodeling that occurs as an adaptive response to static or dynamic chronic exercise, but the stimuli and molecular mechanisms underlying transduction of the hemodynamic overload into myocardial growth are poorly understood. This review summarizes the physiological stimuli that induce concentric and eccentric physiological hypertrophy, and discusses the molecular mechanisms, sarcomeric organization, and signaling pathway involved, also showing that the cardiac markers of pathological hypertrophy (atrial natriuretic factor, β-myosin heavy chain and α-skeletal actin are not increased. There is no fibrosis and no cardiac dysfunction in eccentric or concentric hypertrophy induced by exercise training. Therefore, the renin-angiotensin system has been implicated as one of the regulatory mechanisms for the control of cardiac function and structure. Here, we show that the angiotensin II type 1 (AT1 receptor is locally activated in pathological and physiological cardiac hypertrophy, although with exercise training it can be stimulated independently of the involvement of angiotensin II. Recently, microRNAs (miRs have been investigated as a possible therapeutic approach since they regulate the translation of the target mRNAs involved in cardiac hypertrophy; however, miRs in relation to physiological hypertrophy have not been extensively investigated. We summarize here profiling studies that have examined miRs in pathological and physiological cardiac hypertrophy. An understanding of physiological cardiac remodeling may provide a strategy to improve ventricular function in cardiac dysfunction.

  8. Transcriptional profile of isoproterenol-induced cardiomyopathy and comparison to exercise-induced cardiac hypertrophy and human cardiac failure

    Directory of Open Access Journals (Sweden)

    McIver Lauren J

    2009-12-01

    Full Text Available Abstract Background Isoproterenol-induced cardiac hypertrophy in mice has been used in a number of studies to model human cardiac disease. In this study, we compared the transcriptional response of the heart in this model to other animal models of heart failure, as well as to the transcriptional response of human hearts suffering heart failure. Results We performed microarray analyses on RNA from mice with isoproterenol-induced cardiac hypertrophy and mice with exercise-induced physiological hypertrophy and identified 865 and 2,534 genes that were significantly altered in pathological and physiological cardiac hypertrophy models, respectively. We compared our results to 18 different microarray data sets (318 individual arrays representing various other animal models and four human cardiac diseases and identified a canonical set of 64 genes that are generally altered in failing hearts. We also produced a pairwise similarity matrix to illustrate relatedness of animal models with human heart disease and identified ischemia as the human condition that most resembles isoproterenol treatment. Conclusion The overall patterns of gene expression are consistent with observed structural and molecular differences between normal and maladaptive cardiac hypertrophy and support a role for the immune system (or immune cell infiltration in the pathology of stress-induced hypertrophy. Cross-study comparisons such as the results presented here provide targets for further research of cardiac disease that might generally apply to maladaptive cardiac stresses and are also a means of identifying which animal models best recapitulate human disease at the transcriptional level.

  9. Obesity-associated cardiac pathogenesis in broiler breeder hens: Pathological adaption of cardiac hypertrophy.

    Science.gov (United States)

    Chen, C Y; Lin, H Y; Chen, Y W; Ko, Y J; Liu, Y J; Chen, Y H; Walzem, R L; Chen, S E

    2017-07-01

    Broiler hens consuming feed to appetite (ad libitum; AL) show increased mortality. Feed restriction (R) typically improves reproductive performance and livability of hens. Rapidly growing broilers can exhibit increased mortality due to cardiac insufficiency but it is unknown whether the increased mortality of non-R broiler hens is also due to cardiac compromise. To assess cardiac growth and physiology in fully mature birds, 45-week-old hens were either continued on R rations or assigned to AL feeding for 7 or 21 days. AL hens exhibited increased bodyweight, adiposity, absolute and relative heart weight, ventricular hypertrophy, and cardiac protein/DNA ratio by d 21 (P hens (P Hens allowed AL feeding for 70 d exhibited a higher incidence of mortality (40% vs. 10%) in association with ascites, pericardial effusion, and ventricle dilation. A higher incidence of irregular ECG patterns and rhythmicity consistent with persistently elevated systolic blood pressure and ventricle fibrosis were observed in AL hens (P feeding in broiler hens results in maladaptive cardiac hypertrophy that progresses to overt pathogenesis in contractility and thereby increases mortality. Feed restriction provides clear physiological benefit to heart function of adult broiler hens. © 2017 Poultry Science Association Inc.

  10. 19-Hydroxyeicosatetraenoic acid and isoniazid protect against angiotensin II-induced cardiac hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Elkhatali, Samya; El-Sherbeni, Ahmed A.; Elshenawy, Osama H. [Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada); Abdelhamid, Ghada [Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Helwan (Egypt); El-Kadi, Ayman O.S., E-mail: aelkadi@ualberta.ca [Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada)

    2015-12-15

    We have recently demonstrated that 19-hydroxyeicosatetraenoic acid (19-HETE) is the major subterminal-HETE formed in the heart tissue, and its formation was decreased during cardiac hypertrophy. In the current study, we examined whether 19-HETE confers cardioprotection against angiotensin II (Ang II)-induced cardiac hypertrophy. The effect of Ang II, with and without 19-HETE (20 μM), on the development of cellular hypertrophy in cardiomyocyte RL-14 cells was assessed by real-time PCR. Also, cardiac hypertrophy was induced in Sprague–Dawley rats by Ang II, and the effect of increasing 19-HETE by isoniazid (INH; 200 mg/kg/day) was assessed by heart weight and echocardiography. Also, alterations in cardiac cytochrome P450 (CYP) and their associated arachidonic acid (AA) metabolites were determined by real-time PCR, Western blotting and liquid-chromatography–mass-spectrometry. Our results demonstrated that 19-HETE conferred a cardioprotective effect against Ang II-induced cellular hypertrophy in vitro, as indicated by the significant reduction in β/α-myosin heavy chain ratio. In vivo, INH improved heart dimensions, and reversed the increase in heart weight to tibia length ratio caused by Ang II. We found a significant increase in cardiac 19-HETE, as well as a significant reduction in AA and its metabolite, 20-HETE. In conclusion, 19-HETE, incubated with cardiomyocytes in vitro or induced in the heart by INH in vivo, provides cardioprotection against Ang II-induced hypertrophy. This further confirms the role of CYP, and their associated AA metabolites in the development of cardiac hypertrophy. - Highlights: • We found 19-hydroxy arachidonic acid to protect cardiomyocytes from hypertrophy. • We validated the use of isoniazid as a cardiac 19-hydroxy arachidonic acid inducer. • We found isoniazid to increase protective and inhibit toxic eicosanoides. • We found isoniazid to protect against angiotensin-induced cardiac hypertrophy. • This will help to

  11. Gallic acid prevents isoproterenol-induced cardiac hypertrophy and fibrosis through regulation of JNK2 signaling and Smad3 binding activity

    Science.gov (United States)

    Ryu, Yuhee; Jin, Li; Kee, Hae Jin; Piao, Zhe Hao; Cho, Jae Yeong; Kim, Gwi Ran; Choi, Sin Young; Lin, Ming Quan; Jeong, Myung Ho

    2016-01-01

    Gallic acid, a type of phenolic acid, has been shown to have beneficial effects in inflammation, vascular calcification, and metabolic diseases. The present study was aimed at determining the effect and regulatory mechanism of gallic acid in cardiac hypertrophy and fibrosis. Cardiac hypertrophy was induced by isoproterenol (ISP) in mice and primary neonatal cardiomyocytes. Gallic acid pretreatment attenuated concentric cardiac hypertrophy. It downregulated the expression of atrial natriuretic peptide, brain natriuretic peptide, and beta-myosin heavy chain in vivo and in vitro. Moreover, it prevented interstitial collagen deposition and expression of fibrosis-associated genes. Upregulation of collagen type I by Smad3 overexpression was observed in cardiac myoblast H9c2 cells but not in cardiac fibroblasts. Gallic acid reduced the DNA binding activity of phosphorylated Smad3 in Smad binding sites of collagen type I promoter in rat cardiac fibroblasts. Furthermore, it decreased the ISP-induced phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular signal regulated kinase (ERK) protein in mice. JNK2 overexpression reduced collagen type I and Smad3 expression as well as GATA4 expression in H9c2 cells and cardiac fibroblasts. Gallic acid might be a novel therapeutic agent for the prevention of cardiac hypertrophy and fibrosis by regulating the JNK2 and Smad3 signaling pathway. PMID:27703224

  12. Over-expression of angiotensin converting enzyme-1 augments cardiac hypertrophy in transgenic rats

    NARCIS (Netherlands)

    Tian, Xiao-Li; Pinto, Yigal Martin; Costerousse, Olivier; Franz, Wolfgang M.; Lippoldt, Andrea; Hoffmann, Sigrid; Unger, Thomas; Paul, Martin

    2004-01-01

    Increased cardiac angiotensin converting enzyme-1 (ACE1) is found in individuals who carry a deletion in intron 16 of ACE1 gene or in individuals who suffer from cardiac disorders, such as hypertrophy. However, whether a single increase in ACE1 expression leads to spontaneous cardiac defects remains

  13. Solving the cardiac hypertrophy riddle: The angiotensin II-mechanical stress connection.

    Science.gov (United States)

    Zablocki, Daniela; Sadoshima, Junichi

    2013-11-08

    A series of studies conducted 20 years ago, documenting the cardiac hypertrophy phenotype and its underlying signaling mechanism induced by angiotensin II (Ang II) and mechanical stress, showed a remarkable similarity between the effect of the Gαq agonist and that of mechanical forces on cardiac hypertrophy. Subsequent studies confirmed the involvement of autocrine/paracrine mechanisms, including stretch-induced release of Ang II in load-induced cardiac hypertrophy. Recent studies showed that the Ang II type 1 (AT1) receptor is also directly activated by mechanical forces, suggesting that AT1 receptors play an important role in mediating load-induced cardiac hypertrophy through both ligand- and mechanical stress-dependent mechanisms.

  14. Local renin–angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy

    OpenAIRE

    Kobori, H; Ichihara, A; Miyashita, Y; Hayashi, M; Saruta, T

    1999-01-01

    We have reported previously that thyroid hormone activates the circulating and tissue renin–angiotensin systems without involving the sympathetic nervous system, which contributes to cardiac hypertrophy in hyperthyroidism. This study examined whether the circulating or tissue renin–angiotensin system plays the principal role in hyperthyroidism-induced cardiac hypertrophy. The circulating renin–angiotensin system in Sprague–Dawley rats was fixed by chronic angiotensin II infusion (40 ng/ min, ...

  15. Aberrant Glycosylation in the Left Ventricle and Plasma of Rats with Cardiac Hypertrophy and Heart Failure.

    Directory of Open Access Journals (Sweden)

    Chiaki Nagai-Okatani

    Full Text Available Targeted proteomics focusing on post-translational modifications, including glycosylation, is a useful strategy for discovering novel biomarkers. To apply this strategy effectively to cardiac hypertrophy and resultant heart failure, we aimed to characterize glycosylation profiles in the left ventricle and plasma of rats with cardiac hypertrophy. Dahl salt-sensitive hypertensive rats, a model of hypertension-induced cardiac hypertrophy, were fed a high-salt (8% NaCl diet starting at 6 weeks. As a result, they exhibited cardiac hypertrophy at 12 weeks and partially impaired cardiac function at 16 weeks compared with control rats fed a low-salt (0.3% NaCl diet. Gene expression analysis revealed significant changes in the expression of genes encoding glycosyltransferases and glycosidases. Glycoproteome profiling using lectin microarrays indicated upregulation of mucin-type O-glycosylation, especially disialyl-T, and downregulation of core fucosylation on N-glycans, detected by specific interactions with Amaranthus caudatus and Aspergillus oryzae lectins, respectively. Upregulation of plasma α-l-fucosidase activity was identified as a biomarker candidate for cardiac hypertrophy, which is expected to support the existing marker, atrial natriuretic peptide and its related peptides. Proteomic analysis identified cysteine and glycine-rich protein 3, a master regulator of cardiac muscle function, as an O-glycosylated protein with altered glycosylation in the rats with cardiac hypertrophy, suggesting that alternations in O-glycosylation affect its oligomerization and function. In conclusion, our data provide evidence of significant changes in glycosylation pattern, specifically mucin-type O-glycosylation and core defucosylation, in the pathogenesis of cardiac hypertrophy and heart failure, suggesting that they are potential biomarkers for these diseases.

  16. Ghrelin and its promoter variant associated with cardiac hypertrophy.

    Science.gov (United States)

    Ukkola, O; Pääkkö, T; Kesäniemi, Y A

    2012-07-01

    The roles of ghrelin, a peptide hormone that has a role in regulating food intake and energy homeostasis, in the cardiovascular system have not yet been unambiguously established. We evaluated the association between plasma ghrelin concentrations and -501A>C single-nucleotide polymorphism (SNP) in the ghrelin gene 5' flanking area and echocardiographic measurements in 1037 middle-aged subjects. Left ventricular mass index (LVMI) was calculated according to Devereux's method. The ambulatory blood pressure (BP) was recorded using the fully automatic SpaceLabs 90207 oscillometric unit. Results suggested that plasma ghrelin was not related to mean ambulatory BP values. However, the highest plasma ghrelin tertile was associated with increased intraventricular septum (P=0.043) and posterior ventricular wall (P=0.002) thicknesses as well as left ventricular mass (P=0.05). After adjustment for age, sex, body mass index and systolic BP, the association persisted between ghrelin tertiles and intraventricular septum (P=0.05) and posterior ventricular wall (P=0.001) thicknesses. The SNP -501A>C polymorphism was associated with LVMI after adjustments for age, sex and systolic BP. In conclusion, ghrelin and its promoter variant are associated with cardiac hypertrophy indexes independent of BP. Positive correlation between ghrelin levels and increased wall thickness parameters may reflect compensatory up-regulation of ghrelin concentrations or direct effects of ghrelin on myocardium. The effects of the SNP seem not to be mediated through its effects on ghrelin plasma levels.

  17. Deficiency of cardiac Acyl-CoA synthetase-1 induces diastolic dysfunction, but pathologic hypertrophy is reversed by rapamycin

    DEFF Research Database (Denmark)

    Paul, David S; Grevengoed, Trisha J; Pascual, Florencia

    2014-01-01

    In mice with temporally-induced cardiac-specific deficiency of acyl-CoA synthetase-1 (Acsl1(H-/-)), the heart is unable to oxidize long-chain fatty acids and relies primarily on glucose for energy. These metabolic changes result in the development of both a spontaneous cardiac hypertrophy...... and B-type natriuretic peptide. mTOR activation of the related Acsl3 gene, usually associated with pathologic hypertrophy, was also attenuated in the Acsl1(H-/-) hearts, indicating that alternative pathways of fatty acid activation did not compensate for the loss of Acsl1. Compared to controls, Acsl1(H......-/-) hearts exhibited an 8-fold higher uptake of 2-deoxy[1-(14)C]glucose and a 35% lower uptake of the fatty acid analog 2-bromo[1-(14)C]palmitate. These data indicate that Acsl1-deficiency causes diastolic dysfunction and that mTOR activation is linked to the development of cardiac hypertrophy in Acsl1(H...

  18. Reduction of blood oxygen levels enhances postprandial cardiac hypertrophy in Burmese python (Python bivittatus).

    Science.gov (United States)

    Slay, Christopher E; Enok, Sanne; Hicks, James W; Wang, Tobias

    2014-05-15

    Physiological cardiac hypertrophy is characterized by reversible enlargement of cardiomyocytes and changes in chamber architecture, which increase stroke volume and via augmented convective oxygen transport. Cardiac hypertrophy is known to occur in response to repeated elevations of O2 demand and/or reduced O2 supply in several species of vertebrate ectotherms, including postprandial Burmese pythons (Python bivittatus). Recent data suggest postprandial cardiac hypertrophy in P. bivittatus is a facultative rather than obligatory response to digestion, though the triggers of this response are unknown. Here, we hypothesized that an O2 supply-demand mismatch stimulates postprandial cardiac enlargement in Burmese pythons. To test this hypothesis, we rendered animals anemic prior to feeding, essentially halving blood oxygen content during the postprandial period. Fed anemic animals had heart rates 126% higher than those of fasted controls, which, coupled with a 71% increase in mean arterial pressure, suggests fed anemic animals were experiencing significantly elevated cardiac work. We found significant cardiac hypertrophy in fed anemic animals, which exhibited ventricles 39% larger than those of fasted controls and 28% larger than in fed controls. These findings support our hypothesis that those animals with a greater magnitude of O2 supply-demand mismatch exhibit the largest hearts. The 'low O2 signal' stimulating postprandial cardiac hypertrophy is likely mediated by elevated ventricular wall stress associated with postprandial hemodynamics. © 2014. Published by The Company of Biologists Ltd.

  19. Experimental and clinical study of cardiac hypertrophy by thallium-201 myocardial scintigraphy

    International Nuclear Information System (INIS)

    Torii, Yukio

    1983-01-01

    I studied experimentally the myocardial uptake of 201 Tl in cardiac hypertrophy in rat, and clinically evaluated cardiac shape and dimension in the patients with various types of cardiac hypertrophy. Experimentally, both myocardial blood flow (MBF) and Tl uptake were increased with cardiac weight. There were negative correlations between the extraction fraction and MBF. Tl uptake in Hypertrophy is not always dependent on MBF and affected by the altered metabolism of hypertrophied myocardium. Clinical study was performed in 29 normal subjects and in 90 patients with heart disease. The measurements of left ventricular (LV) size by Tl scintigraphy were well correlated with them by echocardiography. Aortic stenosis and hypertensive heart disease showed thick wall and spherical shape. Both mitral (MR) and aortic (AR) regurgitation showed ventricular dilatation, spherical shape (in chronic MR) and ellipsoid shape (in acute MR and in AR). Decreased ventricular size but normal shape was observed in mitral stenosis and cor pulmonale. Hypertrophic cardiomyopathy showed thick wall with asymmetric septal hypertrophy, while congestive cardiomyopathy showed thin wall with marked ventricular dilatation and spherical shape. I conclude that heart disease has characteristic figures in dimension and shape which may be reflecting cardiac performance or compensating for the load to the heart, and that 201 Tl scintigraphy is useful evaluating cardiac morphology as well as in diagnosing myocardial ischemia. (J.P.N.)

  20. Global microRNA profiles and signaling pathways in the development of cardiac hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Feng, H.J.; Ouyang, W.; Liu, J.H.; Sun, Y.G.; Hu, R.; Huang, L.H.; Xian, J.L. [Southern Medical University, Department of Nuclear Medicine, Zhujiang Hospital, Guangzhou, China, Department of Nuclear Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou (China); Jing, C.F.; Zhou, M.J. [Sun Yat-Sen University, South China Sea Marine Biotechnology, National Engineering Research Center, Guangzhou, China, National Engineering Research Center, South China Sea Marine Biotechnology, Sun Yat-Sen University, Guangzhou (China)

    2014-04-11

    Hypertrophy is a major predictor of progressive heart disease and has an adverse prognosis. MicroRNAs (miRNAs) that accumulate during the course of cardiac hypertrophy may participate in the process. However, the nature of any interaction between a hypertrophy-specific signaling pathway and aberrant expression of miRNAs remains unclear. In this study, Spague Dawley male rats were treated with transverse aortic constriction (TAC) surgery to mimic pathological hypertrophy. Hearts were isolated from TAC and sham operated rats (n=5 for each group at 5, 10, 15, and 20 days after surgery) for miRNA microarray assay. The miRNAs dysexpressed during hypertrophy were further analyzed using a combination of bioinformatics algorithms in order to predict possible targets. Increased expression of the target genes identified in diverse signaling pathways was also analyzed. Two sets of miRNAs were identified, showing different expression patterns during hypertrophy. Bioinformatics analysis suggested the miRNAs may regulate multiple hypertrophy-specific signaling pathways by targeting the member genes and the interaction of miRNA and mRNA might form a network that leads to cardiac hypertrophy. In addition, the multifold changes in several miRNAs suggested that upregulation of rno-miR-331*, rno-miR-3596b, rno-miR-3557-5p and downregulation of rno-miR-10a, miR-221, miR-190, miR-451 could be seen as biomarkers of prognosis in clinical therapy of heart failure. This study described, for the first time, a potential mechanism of cardiac hypertrophy involving multiple signaling pathways that control up- and downregulation of miRNAs. It represents a first step in the systematic discovery of miRNA function in cardiovascular hypertrophy.

  1. Cardiac arrhythmias and left ventricular hypertrophy in systemic hypertension

    International Nuclear Information System (INIS)

    Sultana, R.; Sultana, N.; Rashid, A.; Rasheed, S.Z.; Ahmed, M.; Ishaq, M.; Samad, A.

    2010-01-01

    Background: Hypertensive left ventricular hypertrophy (LVH) is associated with increased risk of arrhythmias and mortality. Objective was to investigate the prevalence of cardiac arrhythmias and LVH in systemic hypertension. Methods: In all subjects blood pressure was measured, electrocardiography and echocardiography was done. Holter monitoring and exercise test perform in certain cases. There were 500 hypertensive patients, 156 (31.2%) men and 344 (69%) women >30 years of age in the study. Among them 177 (35.4%) were diabetic, 224 (45%) were dyslipidemia, 188 (37.6%) were smokers, and 14 (3%) had homocysteinemia. Mean systolic BP (SBP) was 180 +- 20 mm Hg and diastolic BP (DBP) was 95 +- 12 in male and female patients. Left ventricular mass index (LVMI) was 119.2 +- 30 2 2gm/m in male while 103 +- 22 gm/m in female patients. Palpitation was seen in 126 (25%) male and 299 (59.8%) female patients. Atrial fibrillation was noted in 108 (21.6%) male and 125 (25%) female patients, 30 (6%) male and 82 (16.4%) female patients had atrial flutter. Ventricular tachycardia was noted in 37 (7.4%) male and 59 (11.8%) female patients. Holter monitoring showed significant premature ventricular contractions (PVC'S) in 109 (21.8%) male and 128 (25.69%) female patients while Holter showed atrial arrhythmias (APC'S) in 89 (17.8%) males and 119 (23.8%) females. Angiography findings diagnosed coronary artery disease in 119 (23.8%) with CAD male and 225 (45%) without CAD while 47 (9.4%) females presented with CAD and 109 (21.8%) without CAD. Conclusion: A significant association has been demonstrated between hypertension and arrhythmias. Diastolic dysfunction of the left ventricle, left atrial size and function, as well as LVH have been suggested as the underlying risk factors for supraventricular, ventricular arrhythmias and sudden death in hypertensives with LVH. (author)

  2. Cardiac arrhythmias and left ventricular hypertrophy in systemic hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Sultana, R; Sultana, N; Rashid, A; Rasheed, S Z; Ahmed, M; Ishaq, M; Samad, A [Karachi Institute of Heart Diseases, Karachi (Pakistan)

    2010-10-15

    Background: Hypertensive left ventricular hypertrophy (LVH) is associated with increased risk of arrhythmias and mortality. Objective was to investigate the prevalence of cardiac arrhythmias and LVH in systemic hypertension. Methods: In all subjects blood pressure was measured, electrocardiography and echocardiography was done. Holter monitoring and exercise test perform in certain cases. There were 500 hypertensive patients, 156 (31.2%) men and 344 (69%) women >30 years of age in the study. Among them 177 (35.4%) were diabetic, 224 (45%) were dyslipidemia, 188 (37.6%) were smokers, and 14 (3%) had homocysteinemia. Mean systolic BP (SBP) was 180 +- 20 mm Hg and diastolic BP (DBP) was 95 +- 12 in male and female patients. Left ventricular mass index (LVMI) was 119.2 +- 30 2 2gm/m in male while 103 +- 22 gm/m in female patients. Palpitation was seen in 126 (25%) male and 299 (59.8%) female patients. Atrial fibrillation was noted in 108 (21.6%) male and 125 (25%) female patients, 30 (6%) male and 82 (16.4%) female patients had atrial flutter. Ventricular tachycardia was noted in 37 (7.4%) male and 59 (11.8%) female patients. Holter monitoring showed significant premature ventricular contractions (PVC'S) in 109 (21.8%) male and 128 (25.69%) female patients while Holter showed atrial arrhythmias (APC'S) in 89 (17.8%) males and 119 (23.8%) females. Angiography findings diagnosed coronary artery disease in 119 (23.8%) with CAD male and 225 (45%) without CAD while 47 (9.4%) females presented with CAD and 109 (21.8%) without CAD. Conclusion: A significant association has been demonstrated between hypertension and arrhythmias. Diastolic dysfunction of the left ventricle, left atrial size and function, as well as LVH have been suggested as the underlying risk factors for supraventricular, ventricular arrhythmias and sudden death in hypertensives with LVH. (author)

  3. Effect of vildagliptin, a dipeptidyl peptidase 4 inhibitor, on cardiac hypertrophy induced by chronic beta-adrenergic stimulation in rats

    Science.gov (United States)

    2014-01-01

    Background Heart failure with left ventricular (LV) hypertrophy is often associated with insulin resistance and inflammation. Recent studies have shown that dipeptidyl peptidase 4 (DPP4) inhibitors improve glucose metabolism and inflammatory status. We therefore evaluated whether vildagliptin, a DPP4 inhibitor, prevents LV hypertrophy and improves diastolic function in isoproterenol-treated rats. Methods Male Wistar rats received vehicle (n = 20), subcutaneous isoproterenol (2.4 mg/kg/day, n = 20) (ISO), subcutaneous isoproterenol (2.4 mg/kg/day + oral vildagliptin (30 mg/kg/day, n = 20) (ISO-VL), or vehicle + oral vildagliptin (30 mg/kg/day, n = 20) (vehicle-VL) for 7 days. Results Blood pressure was similar among the four groups, whereas LV hypertrophy was significantly decreased in the ISO-VL group compared with the ISO group (heart weight/body weight, vehicle: 3.2 ± 0.40, ISO: 4.43 ± 0.39, ISO-VL: 4.14 ± 0.29, vehicle-VL: 3.16 ± 0.16, p vildagliptin lowered the elevated LV end-diastolic pressure observed in the ISO group, but other parameters regarding LV diastolic function such as the decreased minimum dp/dt were not ameliorated in the ISO-VL group. Histological analysis showed that vildagliptin attenuated the increased cardiomyocyte hypertrophy and perivascular fibrosis, but it did not affect angiogenesis in cardiac tissue. In the ISO-VL group, quantitative PCR showed attenuation of increased mRNA expression of tumor necrosis factor-α, interleukin-6, insulin-like growth factor-l, and restoration of decreased mRNA expression of glucose transporter type 4. Conclusions Vildagliptin may prevent LV hypertrophy caused by continuous exposure to isoproterenol in rats. PMID:24521405

  4. Dyrk1A-ASF-CaMKIIδ Signaling Is Involved in Valsartan Inhibition of Cardiac Hypertrophy in Renovascular Hypertensive Rats.

    Science.gov (United States)

    Yao, Jian; Qin, Xiaotong; Zhu, Jianhua; Sheng, Hongzhuan

    2016-01-01

    It is known that the expression, activity and alternative splicing of Ca2+/calmodulin-dependent protein kinase IIδ (CaMKIIδ) are dysregulated in the cardiac remodeling process. Recently, we found a further signaling pathway, by which dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A) regulates the alternative splicing of CaMKIIδ via the alternative splicing factor (ASF), i.e., Dyrk1A-ASF-CaMKIIδ. In this study, we aimed to investigate whether Dyrk1A-ASF-CaMKIIδ signaling was involved in valsartan inhibition of cardiac hypertrophy in renovascular hypertensive rats. Rats were subjected to two kidney-one clip (2K1C) surgery and then treated with valsartan (30 mg/kg/day) for 8 weeks. Hypertrophic parameter analysis was then performed. Western blot analysis was used to determine the protein expression of Dyrk1A and ASF and RT-PCR was used to analyze the alternative splicing of CaMKIIδ in the left ventricular (LV) sample. Valsartan attenuated cardiac hypertrophy in 2K1C rats but without impairment of cardiac systolic function. Increased protein expression of Dyrk1A and decreased protein expression of ASF were observed in the LV sample of 2K1C rats. Treatment of 2K1C rats with valsartan reversed the changes in Dyrk1A and ASF expression in the LV sample. Valsartan adjusted the 2K1C-induced imbalance in alternative splicing of CaMKIIδ by upregulating the mRNA expression of CaMKIIδC and downregulating the mRNA expression of CaMKIIδA and CaMKIIδB. Valsartan inhibition of cardiac hypertrophy in renovascular hypertensive rats was mediated, at least partly, by Dyrk1A-ASF-CaMKIIδ signaling. © 2015 S. Karger AG, Basel.

  5. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets.

    Science.gov (United States)

    Tham, Yow Keat; Bernardo, Bianca C; Ooi, Jenny Y Y; Weeks, Kate L; McMullen, Julie R

    2015-09-01

    The onset of heart failure is typically preceded by cardiac hypertrophy, a response of the heart to increased workload, a cardiac insult such as a heart attack or genetic mutation. Cardiac hypertrophy is usually characterized by an increase in cardiomyocyte size and thickening of ventricular walls. Initially, such growth is an adaptive response to maintain cardiac function; however, in settings of sustained stress and as time progresses, these changes become maladaptive and the heart ultimately fails. In this review, we discuss the key features of pathological cardiac hypertrophy and the numerous mediators that have been found to be involved in the pathogenesis of cardiac hypertrophy affecting gene transcription, calcium handling, protein synthesis, metabolism, autophagy, oxidative stress and inflammation. We also discuss new mediators including signaling proteins, microRNAs, long noncoding RNAs and new findings related to the role of calcineurin and calcium-/calmodulin-dependent protein kinases. We also highlight mediators and processes which contribute to the transition from adaptive cardiac remodeling to maladaptive remodeling and heart failure. Treatment strategies for heart failure commonly include diuretics, angiotensin converting enzyme inhibitors, angiotensin II receptor blockers and β-blockers; however, mortality rates remain high. Here, we discuss new therapeutic approaches (e.g., RNA-based therapies, dietary supplementation, small molecules) either entering clinical trials or in preclinical development. Finally, we address the challenges that remain in translating these discoveries to new and approved therapies for heart failure.

  6. MURC/Cavin-4 facilitates recruitment of ERK to caveolae and concentric cardiac hypertrophy induced by α1-adrenergic receptors.

    Science.gov (United States)

    Ogata, Takehiro; Naito, Daisuke; Nakanishi, Naohiko; Hayashi, Yukiko K; Taniguchi, Takuya; Miyagawa, Kotaro; Hamaoka, Tetsuro; Maruyama, Naoki; Matoba, Satoaki; Ikeda, Koji; Yamada, Hiroyuki; Oh, Hidemasa; Ueyama, Tomomi

    2014-03-11

    The actions of catecholamines on adrenergic receptors (ARs) induce sympathetic responses, and sustained activation of the sympathetic nervous system results in disrupted circulatory homeostasis. In cardiomyocytes, α1-ARs localize to flask-shaped membrane microdomains known as "caveolae." Caveolae require both caveolin and cavin proteins for their biogenesis and function. However, the functional roles and molecular interactions of caveolar components in cardiomyocytes are poorly understood. Here, we showed that muscle-restricted coiled-coil protein (MURC)/Cavin-4 regulated α1-AR-induced cardiomyocyte hypertrophy through enhancement of ERK1/2 activation in caveolae. MURC/Cavin-4 was expressed in the caveolae and T tubules of cardiomyocytes. MURC/Cavin-4 overexpression distended the caveolae, whereas MURC/Cavin-4 was not essential for their formation. MURC/Cavin-4 deficiency attenuated cardiac hypertrophy induced by α1-AR stimulation in the presence of caveolae. Interestingly, MURC/Cavin-4 bound to α1A- and α1B-ARs as well as ERK1/2 in caveolae, and spatiotemporally modulated MEK/ERK signaling in response to α1-AR stimulation. Thus, MURC/Cavin-4 facilitates ERK1/2 recruitment to caveolae and efficient α1-AR signaling mediated by caveolae in cardiomyocytes, which provides a unique insight into the molecular mechanisms underlying caveola-mediated signaling in cardiac hypertrophy.

  7. Negative feedback regulation of Homer 1a on norepinephrine-dependent cardiac hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Chiarello, Carmelina; Bortoloso, Elena; Carpi, Andrea; Furlan, Sandra; Volpe, Pompeo, E-mail: pompeo.volpe@unipd.it

    2013-07-15

    Homers are scaffolding proteins that modulate diverse cell functions being able to assemble signalling complexes. In this study, the presence, sub-cellular distribution and function of Homer 1 was investigated. Homer 1a and Homer 1b/c are constitutively expressed in cardiac muscle of both mouse and rat and in HL-1 cells, a cardiac cell line. As judged by confocal immunofluorescence microscopy, Homer 1a displays sarcomeric and peri-nuclear localization. In cardiomyocytes and cultured HL-1 cells, the hypertrophic agonist norepinephrine (NE) induces α{sub 1}-adrenergic specific Homer 1a over-expression, with a two-to-three-fold increase within 1 h, and no up-regulation of Homer 1b/c, as judged by Western blot and qPCR. In HL-1 cells, plasmid-driven over-expression of Homer 1a partially antagonizes activation of ERK phosphorylation and ANF up-regulation, two well-established, early markers of hypertrophy. At the morphometric level, NE-induced increase of cell size is likewise and partially counteracted by exogenous Homer 1a. Under the same experimental conditions, Homer 1b/c does not have any effect on ANF up-regulation nor on cell hypertrophy. Thus, Homer 1a up-regulation is associated to early stages of cardiac hypertrophy and appears to play a negative feedback regulation on molecular transducers of hypertrophy. -- Highlights: • Homer 1a is constitutively expressed in cardiac tissue. • In HL-1 cells, norepinephrine activates signaling pathways leading to hypertrophy. • Homer 1a up-regulation is an early event of norepinephrine-induced hypertrophy. • Homer 1a plays a negative feedback regulation modulating pathological hypertrophy. • Over-expression of Homer 1a per se does not induce hypertrophy.

  8. Negative feedback regulation of Homer 1a on norepinephrine-dependent cardiac hypertrophy

    International Nuclear Information System (INIS)

    Chiarello, Carmelina; Bortoloso, Elena; Carpi, Andrea; Furlan, Sandra; Volpe, Pompeo

    2013-01-01

    Homers are scaffolding proteins that modulate diverse cell functions being able to assemble signalling complexes. In this study, the presence, sub-cellular distribution and function of Homer 1 was investigated. Homer 1a and Homer 1b/c are constitutively expressed in cardiac muscle of both mouse and rat and in HL-1 cells, a cardiac cell line. As judged by confocal immunofluorescence microscopy, Homer 1a displays sarcomeric and peri-nuclear localization. In cardiomyocytes and cultured HL-1 cells, the hypertrophic agonist norepinephrine (NE) induces α 1 -adrenergic specific Homer 1a over-expression, with a two-to-three-fold increase within 1 h, and no up-regulation of Homer 1b/c, as judged by Western blot and qPCR. In HL-1 cells, plasmid-driven over-expression of Homer 1a partially antagonizes activation of ERK phosphorylation and ANF up-regulation, two well-established, early markers of hypertrophy. At the morphometric level, NE-induced increase of cell size is likewise and partially counteracted by exogenous Homer 1a. Under the same experimental conditions, Homer 1b/c does not have any effect on ANF up-regulation nor on cell hypertrophy. Thus, Homer 1a up-regulation is associated to early stages of cardiac hypertrophy and appears to play a negative feedback regulation on molecular transducers of hypertrophy. -- Highlights: • Homer 1a is constitutively expressed in cardiac tissue. • In HL-1 cells, norepinephrine activates signaling pathways leading to hypertrophy. • Homer 1a up-regulation is an early event of norepinephrine-induced hypertrophy. • Homer 1a plays a negative feedback regulation modulating pathological hypertrophy. • Over-expression of Homer 1a per se does not induce hypertrophy

  9. Ameliorative role of gemfibrozil against partial abdominal aortic constriction-induced cardiac hypertrophy in rats.

    Science.gov (United States)

    Singh, Amrit Pal; Singh, Randhir; Krishan, Pawan

    2015-04-01

    Fibrates are peroxisome proliferator-activated receptor-α agonists and are clinically used for treatment of dyslipidemia and hypertriglyceridemia. Fenofibrate is reported as a cardioprotective agent in various models of cardiac dysfunction; however, limited literature is available regarding the role of gemfibrozil as a possible cardioprotective agent, especially in a non-obese model of cardiac remodelling. The present study investigated the role of gemfibrozil against partial abdominal aortic constriction-induced cardiac hypertrophy in rats. Cardiac hypertrophy was induced by partial abdominal aortic constriction in rats and they survived for 4 weeks. The cardiac hypertrophy was assessed by measuring left ventricular weight to body weight ratio, left ventricular wall thickness, and protein and collagen content. The oxidative stress in the cardiac tissues was assessed by measuring thiobarbituric acid-reactive substances, superoxide anion generation, and reduced glutathione level. The haematoxylin-eosin and picrosirius red staining was used to observe cardiomyocyte diameter and collagen deposition, respectively. Moreover, serum levels of cholesterol, high-density lipoproteins, triglycerides, and glucose were also measured. Gemfibrozil (30 mg/kg, p.o.) was administered since the first day of partial abdominal aortic constriction and continued for 4 weeks. The partial abdominal aortic constriction-induced cardiac oxidative stress and hypertrophy are indicated by significant change in various parameters used in the present study that were ameliorated with gemfibrozil treatment in rats. No significant change in serum parameters was observed between various groups used in the present study. It is concluded that gemfibrozil ameliorates partial abdominal aortic constriction-induced cardiac oxidative stress and hypertrophy and in rats.

  10. Local renin–angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy

    Science.gov (United States)

    Kobori, H; Ichihara, A; Miyashita, Y; Hayashi, M; Saruta, T

    2008-01-01

    We have reported previously that thyroid hormone activates the circulating and tissue renin–angiotensin systems without involving the sympathetic nervous system, which contributes to cardiac hypertrophy in hyperthyroidism. This study examined whether the circulating or tissue renin–angiotensin system plays the principal role in hyperthyroidism-induced cardiac hypertrophy. The circulating renin–angiotensin system in Sprague–Dawley rats was fixed by chronic angiotensin II infusion (40 ng/ min, 28 days) via mini-osmotic pumps. Daily i.p. injection of thyroxine (0·1 mg/kg per day, 28 days) was used to mimic hyperthyroidism. Serum free tri-iodothyronine, plasma renin activity, plasma angiotensin II, cardiac renin and cardiac angiotensin II were measured with RIAs. The cardiac expression of renin mRNA was evaluated by semiquantitative reverse transcriptase-polymerase chain reaction. Plasma renin activity and plasma angiotensin II were kept constant in the angiotensin II and angiotensin II+thyroxine groups (0·12 ± 0·03 and 0·15 ± 0·03 μg/h per liter, 126 ± 5 and 130 ± 5 ng/l respectively) (means ± s.e.m.). Despite stabilization of the circulating renin–angiotensin system, thyroid hormone induced cardiac hypertrophy (5·0 ± 0·5 vs 3·5 ± 0·1 mg/g) in conjunction with the increases in cardiac expression of renin mRNA, cardiac renin and cardiac angiotensin II (74 ± 2 vs 48 ± 2%, 6·5 ± 0·8 vs 3·8 ± 0·4 ng/h per g, 231 ± 30 vs 149 ± 2 pg/g respectively). These results indicate that the local renin–angiotensin system plays the primary role in the development of hyperthyroidism-induced cardiac hypertrophy. PMID:9854175

  11. Local renin-angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy.

    Science.gov (United States)

    Kobori, H; Ichihara, A; Miyashita, Y; Hayashi, M; Saruta, T

    1999-01-01

    We have reported previously that thyroid hormone activates the circulating and tissue renin-angiotensin systems without involving the sympathetic nervous system, which contributes to cardiac hypertrophy in hyperthyroidism. This study examined whether the circulating or tissue renin-angiotensin system plays the principal role in hyperthyroidism-induced cardiac hypertrophy. The circulating renin-angiotensin system in Sprague-Dawley rats was fixed by chronic angiotensin II infusion (40 ng/min, 28 days) via mini-osmotic pumps. Daily i.p. injection of thyroxine (0.1 mg/kg per day, 28 days) was used to mimic hyperthyroidism. Serum free tri-iodothyronine, plasma renin activity, plasma angiotensin II, cardiac renin and cardiac angiotensin II were measured with RIAs. The cardiac expression of renin mRNA was evaluated by semiquantitative reverse transcriptase-polymerase chain reaction. Plasma renin activity and plasma angiotensin II were kept constant in the angiotensin II and angiotensin II+thyroxine groups (0.12+/-0.03 and 0.15+/-0.03 microgram/h per liter, 126+/-5 and 130+/-5 ng/l respectively) (means+/-s.e.m.). Despite stabilization of the circulating renin-angiotensin system, thyroid hormone induced cardiac hypertrophy (5.0+/-0.5 vs 3.5+/-0.1 mg/g) in conjunction with the increases in cardiac expression of renin mRNA, cardiac renin and cardiac angiotensin II (74+/-2 vs 48+/-2%, 6.5+/-0.8 vs 3.8+/-0.4 ng/h per g, 231+/-30 vs 149+/-2 pg/g respectively). These results indicate that the local renin-angiotensin system plays the primary role in the development of hyperthyroidism-induced cardiac hypertrophy.

  12. Overexpression of the human angiotensin II type 1 receptor in the rat heart augments load induced cardiac hypertrophy

    NARCIS (Netherlands)

    Hoffmann, S.; Krause, T.; van Geel, P. P.; Willenbrock, R.; Pagel, I.; Pinto, Y. M.; Buikema, H.; van Gilst, W. H.; Lindschau, C.; Paul, M.; Inagami, T.; Ganten, D.; Urata, H.

    2001-01-01

    Angiotensin II is known to stimulate cardiac hypertrophy and contractility. Most angiotensin II effects are mediated via membrane bound AT1 receptors. However, the role of myocardial AT1 receptors in cardiac hypertrophy and contractility is still rarely defined. To address the hypothesis that

  13. Overexpression of the human angiotensin II type 1 receptor in the rat heart augments load induced cardiac hypertrophy

    NARCIS (Netherlands)

    Hoffmann, S; van Geel, PP; Willenbrock, R; Pagel, [No Value; Pinto, YM; Buikema, H; van Gilst, WH; Lindschau, C; Paul, M; Inagami, T; Ganten, D; Urata, H

    2001-01-01

    Angiotensin II is known to stimulate cardiac hypertrophy and contractility. Most angiotensin II effects are mediated via membrane bound AT(1) receptors. However, the role of myocardial AT(1) receptors in cardiac hypertrophy and contractility is still rarely defined. To address the hypothesis that

  14. Early dystrophin loss is coincident with the transition of compensated cardiac hypertrophy to heart failure.

    Directory of Open Access Journals (Sweden)

    Fernanda P Prado

    Full Text Available Hypertension causes cardiac hypertrophy, one of the most important risk factors for heart failure (HF. Despite the importance of cardiac hypertrophy as a risk factor for the development of HF, not all hypertrophied hearts will ultimately fail. Alterations of cytoskeletal and sarcolemma-associated proteins are considered markers cardiac remodeling during HF. Dystrophin provides mechanical stability to the plasma membrane through its interactions with the actin cytoskeleton and, indirectly, to extracellular matrix proteins. This study was undertaken to evaluate dystrophin and calpain-1 in the transition from compensated cardiac hypertrophy to HF. Wistar rats were subjected to abdominal aorta constriction and killed at 30, 60 and 90 days post surgery (dps. Cardiac function and blood pressure were evaluated. The hearts were collected and Western blotting and immunofluorescence performed for dystrophin, calpain-1, alpha-fodrin and calpastatin. Statistical analyses were performed and considered significant when p<0.05. After 90 dps, 70% of the animals showed hypertrophic hearts (HH and 30% hypertrophic+dilated hearts (HD. Systolic and diastolic functions were preserved at 30 and 60 dps, however, decreased in the HD group. Blood pressure, cardiomyocyte diameter and collagen content were increased at all time points. Dystrophin expression was lightly increased at 30 and 60 dps and HH group. HD group showed decreased expression of dystrophin and calpastatin and increased expression of calpain-1 and alpha-fodrin fragments. The first signals of dystrophin reduction were observed as early as 60 dps. In conclusion, some hearts present a distinct molecular pattern at an early stage of the disease; this pattern could provide an opportunity to identify these failure-prone hearts during the development of the cardiac disease. We showed that decreased expression of dystrophin and increased expression of calpains are coincident and could work as possible

  15. Investigating β-adrenergic-induced cardiac hypertrophy through computational approach: classical and non-classical pathways.

    Science.gov (United States)

    Khalilimeybodi, Ali; Daneshmehr, Alireza; Sharif-Kashani, Babak

    2018-07-01

    The chronic stimulation of β-adrenergic receptors plays a crucial role in cardiac hypertrophy and its progression to heart failure. In β-adrenergic signaling, in addition to the well-established classical pathway, Gs/AC/cAMP/PKA, activation of non-classical pathways such as Gi/PI3K/Akt/GSK3β and Gi/Ras/Raf/MEK/ERK contribute in cardiac hypertrophy. The signaling network of β-adrenergic-induced hypertrophy is very complex and not fully understood. So, we use a computational approach to investigate the dynamic response and contribution of β-adrenergic mediators in cardiac hypertrophy. The proposed computational model provides insights into the effects of β-adrenergic classical and non-classical pathways on the activity of hypertrophic transcription factors CREB and GATA4. The results illustrate that the model captures the dynamics of the main signaling mediators and reproduces the experimental observations well. The results also show that despite the low portion of β2 receptors out of total cardiac β-adrenergic receptors, their contribution in the activation of hypertrophic mediators and regulation of β-adrenergic-induced hypertrophy is noticeable and variations in β1/β2 receptors ratio greatly affect the ISO-induced hypertrophic response. The model results illustrate that GSK3β deactivation after β-adrenergic receptor stimulation has a major influence on CREB and GATA4 activation and consequent cardiac hypertrophy. Also, it is found through sensitivity analysis that PKB (Akt) activation has both pro-hypertrophic and anti-hypertrophic effects in β-adrenergic signaling.

  16. Alterations in NO/ROS ratio and expression of Trx1 and Prdx2 in isoproterenol-induced cardiac hypertrophy

    Institute of Scientific and Technical Information of China (English)

    Hao Su; Marco Pistolozzi; Xingjuan Shi; Xiaoou Sun; Wen Tan

    2017-01-01

    The development of cardiac hypertrophy is a complicated process,which undergoes a transition from compensatory hypertrophy to heart failure,and the identification of new biomarkers and targets for this disease is greatly needed.Here we investigated the development of isoproterenol (ISO)-induced cardiac hypertrophy in an in vitro experimental model.After the induction of hypertrophy with ISO treatment in H9c2 cells,cell surface area,cell viability,cellular reactive oxygen species (ROS),and nitric oxide (NO) levels were tested.Our data showed that the cell viability,mitochondrial membrane potential,and NO/ROS balance varied during the development of cardiac hypertrophy in H9c2 cells.It was also found that the expression of thioredoxin1 (Trx1) and peroxiredoxin2 (Prdx2) was decreased during the cardiac hypertrophy of H9c2 cells.These results suggest a critical role for Trx1 and Prdx2 in the cardiac hypertrophy of H9c2 cells and in the transition from compensated hypertrophy to de-compensated hypertrophy in H9c2 cells,and our findings may have important implications for the management of this disease.

  17. Cardiac hypertrophy and IGF-1 response to testosterone propionate treatment in trained male rats

    Directory of Open Access Journals (Sweden)

    Żebrowska Aleksandra

    2017-04-01

    Full Text Available Several studies have suggested that testosterone exerts a growth-promoting effect in the heart. Limited data are available regarding interactions between possible endocrine/paracrine effects in response to exercise training. Therefore, we examined supraphysiological testosterone-induced heart hypertrophy and cardiac insulin-like growth factor (IGF-1 content in sedentary and exercise-trained rats.

  18. Heat shock transcription factor 1-deficiency attenuates overloading-associated hypertrophy of mouse soleus muscle.

    Science.gov (United States)

    Koya, Tomoyuki; Nishizawa, Sono; Ohno, Yoshitaka; Goto, Ayumi; Ikuta, Akihiro; Suzuki, Miho; Ohira, Tomotaka; Egawa, Tatsuro; Nakai, Akira; Sugiura, Takao; Ohira, Yoshinobu; Yoshioka, Toshitada; Beppu, Moroe; Goto, Katsumasa

    2013-01-01

    Hypertrophic stimuli, such as mechanical stress and overloading, induce stress response, which is mediated by heat shock transcription factor 1 (HSF1), and up-regulate heat shock proteins (HSPs) in mammalian skeletal muscles. Therefore, HSF1-associated stress response may play a key role in loading-associated skeletal muscle hypertrophy. The purpose of this study was to investigate the effects of HSF1-deficiency on skeletal muscle hypertrophy caused by overloading. Functional overloading on the left soleus was performed by cutting the distal tendons of gastrocnemius and plantaris muscles for 4 weeks. The right muscle served as the control. Soleus muscles from both hindlimbs were dissected 2 and 4 weeks after the operation. Hypertrophy of soleus muscle in HSF1-null mice was partially inhibited, compared with that in wild-type (C57BL/6J) mice. Absence of HSF1 partially attenuated the increase of muscle wet weight and fiber cross-sectional area of overloaded soleus muscle. Population of Pax7-positive muscle satellite cells in HSF1-null mice was significantly less than that in wild-type mice following 2 weeks of overloading (pmuscle hypertrophy might be attributed to the greater and prolonged enhancement of IL-6 expression. HSF1 and/or HSF1-mediated stress response may, in part, play a key role in loading-induced skeletal muscle hypertrophy.

  19. Role of the renin-angiotensin system in cardiac hypertrophy induced in rats by hyperthyroidism.

    Science.gov (United States)

    Kobori, H; Ichihara, A; Suzuki, H; Takenaka, T; Miyashita, Y; Hayashi, M; Saruta, T

    1997-08-01

    This study was conducted to examine whether the renin-angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy without involving the sympathetic nervous system. Sprague-Dawley rats were divided into control-innervated, control-denervated, hyperthyroid-innervated, and hyperthyroid-denervated groups using intraperitoneal injections of thyroxine and 6-hydroxydopamine. After 8 wk, the heart-to-body weight ratio increased in hyperthyroid groups (63%), and this increase was only partially inhibited by sympathetic denervation. Radioimmunoassays and reverse transcription-polymerase chain reaction revealed increased cardiac levels of renin (33%) and angiotensin II (53%) and enhanced cardiac expression of renin mRNA (225%) in the hyperthyroid groups. These increases were unaffected by sympathetic denervation or 24-h bilateral nephrectomy. In addition, losartan and nicardipine decreased systolic blood pressure to the same extent, but only losartan caused regression of thyroxine-induced cardiac hypertrophy. These results suggest that thyroid hormone activates the cardiac renin-angiotensin system without involving the sympathetic nervous system or the circulating renin-angiotensin system; the activated renin-angiotensin system contributes to cardiac hypertrophy in hyperthyroidism.

  20. GSK-3β/NFAT Signaling Is Involved in Testosterone-Induced Cardiac Myocyte Hypertrophy.

    Directory of Open Access Journals (Sweden)

    Javier Duran

    Full Text Available Testosterone induces cardiac hypertrophy through a mechanism that involves a concerted crosstalk between cytosolic and nuclear signaling pathways. Nuclear factor of activated T-cells (NFAT is associated with the promotion of cardiac hypertrophy, glycogen synthase kinase-3β (GSK-3β is considered to function as a negative regulator, mainly by modulating NFAT activity. However, the role played by calcineurin-NFAT and GSK-3β signaling in testosterone-induced cardiac hypertrophy has remained unknown. Here, we determined that testosterone stimulates cardiac myocyte hypertrophy through NFAT activation and GSK-3β inhibition. Testosterone increased the activity of NFAT-luciferase (NFAT-Luc in a time- and dose-dependent manner, with the activity peaking after 24 h of stimulation with 100 nM testosterone. NFAT-Luc activity induced by testosterone was blocked by the calcineurin inhibitors FK506 and cyclosporine A and by 11R-VIVIT, a specific peptide inhibitor of NFAT. Conversely, testosterone inhibited GSK-3β activity as determined by increased GSK-3β phosphorylation at Ser9 and β-catenin protein accumulation, and also by reduction in β-catenin phosphorylation at residues Ser33, Ser37, and Thr41. GSK-3β inhibition with 1-azakenpaullone or a GSK-3β-targeting siRNA increased NFAT-Luc activity, whereas overexpression of a constitutively active GSK-3β mutant (GSK-3βS9A inhibited NFAT-Luc activation mediated by testosterone. Testosterone-induced cardiac myocyte hypertrophy was established by increased cardiac myocyte size and [3H]-leucine incorporation (as a measurement of cellular protein synthesis. Calcineurin-NFAT inhibition abolished and GSK-3β inhibition promoted the hypertrophy stimulated by testosterone. GSK-3β activation by GSK-3βS9A blocked the increase of hypertrophic markers induced by testosterone. Moreover, inhibition of intracellular androgen receptor prevented testosterone-induced NFAT-Luc activation. Collectively, these results

  1. Lysyl oxidase overexpression accelerates cardiac remodeling and aggravates angiotensin II-induced hypertrophy.

    Science.gov (United States)

    Galán, María; Varona, Saray; Guadall, Anna; Orriols, Mar; Navas, Miquel; Aguiló, Silvia; de Diego, Alicia; Navarro, María A; García-Dorado, David; Rodríguez-Sinovas, Antonio; Martínez-González, José; Rodriguez, Cristina

    2017-09-01

    Lysyl oxidase (LOX) controls matrix remodeling, a key process that underlies cardiovascular diseases and heart failure; however, a lack of suitable animal models has limited our knowledge with regard to the contribution of LOX to cardiac dysfunction. Here, we assessed the impact of LOX overexpression on ventricular function and cardiac hypertrophy in a transgenic LOX (TgLOX) mouse model with a strong cardiac expression of human LOX. TgLOX mice exhibited high expression of the transgene in cardiomyocytes and cardiofibroblasts, which are associated with enhanced LOX activity and H 2 O 2 production and with cardiofibroblast reprogramming. LOX overexpression promoted an age-associated concentric remodeling of the left ventricle and impaired diastolic function. Furthermore, LOX transgenesis aggravated angiotensin II (Ang II)-induced cardiac hypertrophy and dysfunction, which triggered a greater fibrotic response that was characterized by stronger collagen deposition and cross-linking and high expression of fibrotic markers. In addition, LOX transgenesis increased the Ang II-induced myocardial inflammatory infiltrate, exacerbated expression of proinflammatory markers, and decreased that of cardioprotective factors. Mechanistically, LOX overexpression enhanced oxidative stress and potentiated the Ang II-mediated cardiac activation of p38 MAPK while reducing AMPK activation. Our findings suggest that LOX induces an age-dependent disturbance of diastolic function and aggravates Ang II-induced hypertrophy, which provides novel insights into the role of LOX in cardiac performance.-Galán, M., Varona, S., Guadall, A., Orriols, M., Navas, M., Aguiló, S., de Diego, A., Navarro, M. A., García-Dorado, D., Rodríguez-Sinovas, A., Martínez-González, J., Rodriguez, C. Lysyl oxidase overexpression accelerates cardiac remodeling and aggravates angiotensin II-induced hypertrophy. © FASEB.

  2. Cyclin D2 is a critical mediator of exercise-induced cardiac hypertrophy.

    Science.gov (United States)

    Luckey, Stephen W; Haines, Chris D; Konhilas, John P; Luczak, Elizabeth D; Messmer-Kratzsch, Antke; Leinwand, Leslie A

    2017-12-01

    A number of signaling pathways underlying pathological cardiac hypertrophy have been identified. However, few studies have probed the functional significance of these signaling pathways in the context of exercise or physiological pathways. Exercise studies were performed on females from six different genetic mouse models that have been shown to exhibit alterations in pathological cardiac adaptation and hypertrophy. These include mice expressing constitutively active glycogen synthase kinase-3β (GSK-3βS9A), an inhibitor of CaMK II (AC3-I), both GSK-3βS9A and AC3-I (GSK-3βS9A/AC3-I), constitutively active Akt (myrAkt), mice deficient in MAPK/ERK kinase kinase-1 (MEKK1 -/- ), and mice deficient in cyclin D2 (cyclin D2 -/- ). Voluntary wheel running performance was similar to NTG littermates for five of the mouse lines. Exercise induced significant cardiac growth in all mouse models except the cyclin D2 -/- mice. Cardiac function was not impacted in the cyclin D2 -/- mice and studies using a phospho-antibody array identified six proteins with increased phosphorylation (greater than 150%) and nine proteins with decreased phosphorylation (greater than 33% decrease) in the hearts of exercised cyclin D2 -/- mice compared to exercised NTG littermate controls. Our results demonstrate that unlike the other hypertrophic signaling molecules tested here, cyclin D2 is an important regulator of both pathologic and physiological hypertrophy. Impact statement This research is relevant as the hypertrophic signaling pathways tested here have only been characterized for their role in pathological hypertrophy, and not in the context of exercise or physiological hypertrophy. By using the same transgenic mouse lines utilized in previous studies, our findings provide a novel and important understanding for the role of these signaling pathways in physiological hypertrophy. We found that alterations in the signaling pathways tested here had no impact on exercise performance. Exercise

  3. Estrogen deprivation aggravates cardiac hypertrophy in nonobese Type 2 diabetic Goto-Kakizaki (GK) rats.

    Science.gov (United States)

    Apaijai, Nattayaporn; Charoenphandhu, Narattaphol; Ittichaichareon, Jitjiroj; Suntornsaratoon, Panan; Krishnamra, Nateetip; Aeimlapa, Ratchaneevan; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2017-10-31

    Both Type 2 diabetes mellitus (T2DM) and estrogen deprivation have been shown to be associated with the development of cardiovascular disease and adverse cardiac remodeling. However, the role of estrogen deprivation on adverse cardiac remodeling in nonobese T2DM rats has not been clearly elucidated. We hypothesized that estrogen-deprivation aggravates adverse cardiac remodeling in Goto-Kakizaki (GK) rats. Wild-type (WT) and GK rats at the age of 9 months old were divided into two subgroups to have either a sham operation (WTS, GKS) or a bilateral ovariectomy (WTO, GKO) ( n = 6/subgroup). Four months after the operation, the rats were killed, and the heart was excised rapidly. Metabolic parameters, cardiomyocytes hypertrophy, cardiac fibrosis, and biochemical parameters were determined. GK rats had hyperglycemia with hypoinsulinemia, and estrogen deprivation did not increase the severity of T2DM. Cardiac hypertrophy, cardiac oxidative stress, and phosphor-antinuclear factor κB were higher in WTO and GKS rats than WTS rats, and they markedly increased in GKO rats compared with GKS rats. Furthermore, cardiac fibrosis, transforming growth factor-β, Bax, phosphor-p38, and peroxisome proliferator- activated receptor γ coactivator-1α expression were increased in GKS and GKO rats compared with the lean rats. However, mitochondrial dynamics proteins including dynamin-related protein 1 and mitofusin-2 were not altered by T2DM and estrogen deprivation. Although estrogen deprivation did not aggravate T2DM in GK rats, it increased the severity of cardiac hypertrophy by provoking cardiac inflammation and oxidative stress in nonobese GK rats. © 2017 The Author(s).

  4. Trichostatin A accentuates doxorubicin-induced hypertrophy in cardiac myocytes.

    Science.gov (United States)

    Karagiannis, Tom C; Lin, Ann J E; Ververis, Katherine; Chang, Lisa; Tang, Michelle M; Okabe, Jun; El-Osta, Assam

    2010-10-01

    Histone deacetylase inhibitors represent a new class of anticancer therapeutics and the expectation is that they will be most effective when used in combination with conventional cancer therapies, such as the anthracycline, doxorubicin. The dose-limiting side effect of doxorubicin is severe cardiotoxicity and evaluation of the effects of combinations of the anthracycline with histone deacetylase inhibitors in relevant models is important. We used a well-established in vitro model of doxorubicin-induced hypertrophy to examine the effects of the prototypical histone deacetylase inhibitor, Trichostatin A. Our findings indicate that doxorubicin modulates the expression of the hypertrophy-associated genes, ventricular myosin light chain-2, the alpha isoform of myosin heavy chain and atrial natriuretic peptide, an effect which is augmented by Trichostatin A. Furthermore, we show that Trichostatin A amplifies doxorubicin-induced DNA double strand breaks, as assessed by γH2AX formation. More generally, our findings highlight the importance of investigating potential side effects that may be associated with emerging combination therapies for cancer.

  5. Accessory papillary muscles and papillary muscle hypertrophy are associated with sudden cardiac arrest of unknown cause.

    Science.gov (United States)

    Uhm, Jae-Sun; Youn, Jong-Chan; Lee, Hye-Jeong; Park, Junbeom; Park, Jin-Kyu; Shim, Chi Young; Hong, Geu-Ru; Joung, Boyoung; Pak, Hui-Nam; Lee, Moon-Hyoung

    2015-10-15

    The present study was performed for elucidating the associations between the morphology of the papillary muscles (PMs) and sudden cardiac arrest (SCA). We retrospectively reviewed history, laboratory data, electrocardiography, echocardiography, coronary angiography, and cardiac CT/MRI for 190 patients with SCA. The prevalence of accessory PMs and PM hypertrophy in patients with SCA of unknown cause was compared with that in patients with SCA of known causes and 98 age- and sex-matched patients without SCA. An accessory PM was defined as a PM with origins separated from the anterolateral and posteromedial PMs, or a PM that branched into two or three bellies at the base of the anterolateral or posteromedial PM. PM hypertrophy was defined as at least one of the two PMs having a diameter of ≥1.1cm. In 49 patients (age 49.9±15.9years; 38 men) the cause of SCA was unknown, whereas 141 (age 54.2±16.6years; 121 men) had a known cause. The prevalence of accessory PMs was significantly higher in the unknown-cause group than in the known-cause group (24.5% and 7.8%, respectively; p=0.002) or the no-SCA group (7.1%, p=0.003). The same was true for PM hypertrophy (unknown-cause 12.2%, known-cause 2.1%, p=0.010; no SCA group 1.0%, p=0.006). By logistic regression, accessory PM and PM hypertrophy were independently associated with sudden cardiac arrest of unknown cause. An accessory PM and PM hypertrophy are associated with SCA of unknown cause. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Apigenin ameliorates hypertension-induced cardiac hypertrophy and down-regulates cardiac hypoxia inducible factor-lα in rats.

    Science.gov (United States)

    Zhu, Zeng-Yan; Gao, Tian; Huang, Yan; Xue, Jie; Xie, Mei-Lin

    2016-04-01

    Apigenin is a natural flavonoid compound that can inhibit hypoxia-inducible factor (HIF)-1α expression in cultured tumor cells under hypoxic conditions. Hypertension-induced cardiac hypertrophy is always accompanied by abnormal myocardial glucolipid metabolism due to an increase of HIF-1α. However, whether or not apigenin may ameliorate the cardiac hypertrophy and abnormal myocardial glucolipid metabolism remains unknown. This study aimed to examine the effects of apigenin. Rats with cardiac hypertrophy induced by renovascular hypertension were treated with apigenin 50-100 mg kg(-1) (the doses can be achieved by pharmacological or dietary supplementation for an adult person) by gavage for 4 weeks. The results showed that after treatment with apigenin, the blood pressure, heart weight, heart weight index, cardiomyocyte cross-sectional area, serum angiotensin II, and serum and myocardial free fatty acids were reduced. It is important to note that apigenin decreased the expression level of myocardial HIF-1α protein. Moreover, apigenin simultaneously increased the expression levels of myocardial peroxisome proliferator-activated receptor (PPAR) α, carnitine palmitoyltransferase (CPT)-1, and pyruvate dehydrogenase kinase (PDK)-4 proteins and decreased the expression levels of myocardial PPARγ, glycerol-3-phosphate acyltransferase genes (GPAT), and glucose transporter (GLUT)-4 proteins. These findings demonstrated that apigenin could improve hypertensive cardiac hypertrophy and abnormal myocardial glucolipid metabolism in rats, and its mechanisms might be associated with the down-regulation of myocardial HIF-1α expression and, subsequently increasing the expressions of myocardial PPARα and its target genes CPT-1 and PDK-4, and decreasing the expressions of myocardial PPARγ and its target genes GPAT and GLUT-4.

  7. Role of the renin-angiotensin system in cardiac hypertrophy induced in rats by hyperthyroidism

    OpenAIRE

    KOBORI, HIROYUKI; ICHIHARA, ATSUHIRO; SUZUKI, HIROMICHI; TAKENAKA, TSUNEO; MIYASHITA, YUTAKA; HAYASHI, MATSUHIKO; SARUTA, TAKAO

    1997-01-01

    This study was conducted to examine whether the renin-angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy without involving the sympathetic nervous system. Sprague-Dawley rats were divided into control-innervated, control-denervated, hyperthyroid-innervated, and hyperthyroid-denervated groups using intraperitoneal injections of thyroxine and 6-hydroxydopamine. After 8 wk, the heart-to-body weight ratio increased in hyperthyroid groups (63%), and this increase was onl...

  8. Loss of microRNA-22 prevents high-fat diet induced dyslipidemia and increases energy expenditure without affecting cardiac hypertrophy.

    Science.gov (United States)

    Diniz, Gabriela Placoná; Huang, Zhan-Peng; Liu, Jianming; Chen, Jinghai; Ding, Jian; Fonseca, Renata Inzinna; Barreto-Chaves, Maria Luiza; Donato, Jose; Hu, Xiaoyun; Wang, Da-Zhi

    2017-12-15

    Obesity is associated with development of diverse diseases, including cardiovascular diseases and dyslipidemia. MiRNA-22 (miR-22) is a critical regulator of cardiac function and targets genes involved in metabolic processes. Previously, we generated miR-22 null mice and we showed that loss of miR-22 blunted cardiac hypertrophy induced by mechanohormornal stress. In the present study, we examined the role of miR-22 in the cardiac and metabolic alterations promoted by high-fat (HF) diet. We found that loss of miR-22 attenuated the gain of fat mass and prevented dyslipidemia induced by HF diet, although the body weight gain, or glucose intolerance and insulin resistance did not seem to be affected. Mechanistically, loss of miR-22 attenuated the increased expression of genes involved in lipogenesis and inflammation mediated by HF diet. Similarly, we found that miR-22 mediates metabolic alterations and inflammation induced by obesity in the liver. However, loss of miR-22 did not appear to alter HF diet induced cardiac hypertrophy or fibrosis in the heart. Our study therefore establishes miR-22 as an important regulator of dyslipidemia and suggests it may serve as a potential candidate in the treatment of dyslipidemia associated with obesity. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  9. Cardiac hypertrophy in chick embryos induced by hypothermia

    International Nuclear Information System (INIS)

    Boehm, C.; Johnson, T.R.; Caston, J.D.; Przybylski, R.J.

    1987-01-01

    A decrease in incubation temperature from 38 to 32 0 C elicits a decrease in chicken embryo size and weight with concomitant heart enlargement if done after day 10 of incubation. When assayed at day 18 of incubation with the hypothermia started on day 11 or 14, evidence is presented that the heart enlargement is an hypertrophy with no detectable hyperplasia. Supporting data are presented for various physical parameters showing increases in heart wet and dry weight, volume, area, wall thickness, and cell size. There was little difference in DNA content and nuclear [ 3 H]thymidine labeling index between hearts of control and hypothermic embryos. Hearts of hypothermic embryos showed a slight increase in water content and considerable increases in RNA, protein, and glycogen content per unit DNA. The average size of polysomes isolated from hypothermic hearts was larger than that of polysomes isolated from controls. Microscopic studies showed no obvious increase in amount of capillary beds, connective tissue, and myocardial cells. Annulate lamellae were found only in myocardial cells of hypothermic embryos in sparse amounts and low frequency but always associated with large deposits of glycogen

  10. Effects of protein-calorie restriction on mechanical function of hypertrophied cardiac muscle

    Directory of Open Access Journals (Sweden)

    Antônio Carlos Cicogna

    1999-04-01

    Full Text Available OBJECTIVE: To assess the effect of food restriction (FR on hypertrophied cardiac muscle in spontaneously hypertensive rats (SHR. METHODS: Isolated papillary muscle preparations of the left ventricle (LV of 60-day-old SHR and of normotensive Wistar-Kyoto (WKY rats were studied. The rats were fed either an unrestricted diet or FR diet (50% of the intake of the control diet for 30 days. The mechanical function of the muscles was evaluated through monitoring isometric and isotonic contractions. RESULTS: FR caused: 1 reduction in the body weight and LV weight of SHR and WKY rats; 2 increase in the time to peak shortening and the time to peak developed tension (DT in the hypertrophied myocardium of the SHR; 3 diverging changes in the mechanical function of the normal cardiac muscles of WKY rats with reduction in maximum velocity of isotonic shortening and of the time for DT to decrease 50% of its maximum value, and increase of the resting tension and of the rate of tension decline. CONCLUSION: Short-term FR causes prolongation of the contraction time of hypertrophied muscles and paradoxal changes in mechanical performance of normal cardiac fibers, with worsening of the shortening indices and of the resting tension, and improvement of the isometric relaxation.

  11. Regression of electrocardiographic left ventricular hypertrophy during antihypertensive therapy and reduction in sudden cardiac death: the LIFE Study

    DEFF Research Database (Denmark)

    Wachtell, Kristian; Okin, Peter M; Olsen, Michael H

    2007-01-01

    BACKGROUND: Sudden cardiac death (SCD) occurs more often in patients with ECG left ventricular (LV) hypertrophy. However, whether LV hypertrophy regression is associated with a reduced risk of SCD remains unclear. METHODS AND RESULTS: The Losartan Intervention for End Point Reduction in Hypertens......BACKGROUND: Sudden cardiac death (SCD) occurs more often in patients with ECG left ventricular (LV) hypertrophy. However, whether LV hypertrophy regression is associated with a reduced risk of SCD remains unclear. METHODS AND RESULTS: The Losartan Intervention for End Point Reduction...... risk of SCD independently of treatment modality, blood pressure reduction, prevalent coronary heart disease, and other cardiovascular risk factors in hypertensive patients with LV hypertrophy. Udgivelsesdato: 2007-Aug-14...

  12. Extracellular signal-regulated kinases 1/2 as regulators of cardiac hypertrophy

    Directory of Open Access Journals (Sweden)

    Michael eMutlak

    2015-07-01

    Full Text Available Cardiac hypertrophy results from increased mechanical load on the heart and through the actions of local and systemic neuro-humoral factors, cytokines and growth factors. These mechanical and neuroendocrine effectors act through stretch, G protein-coupled receptors and tyrosine kinases to induce the activation of a myriad of intracellular signaling pathways including the extracellular signal-regulated kinases 1/2 (ERK1/2. Since most stimuli that provoke myocardial hypertrophy also elicit an acute phosphorylation of the threonine-glutamate-tyrosine (TEY motif within the activation loops of ERK1 and ERK2 kinases, resulting in their activation, ERKs have long been considered promotors of cardiac hypertrophy. Several mouse models were generated in order to directly understand the causal role of ERK1/2 activation in the heart. These models include direct manipulation of ERK1/2 such as overexpression, mutagenesis or knockout models, manipulations of upstream kinases such as MEK1 and manipulations of the phosphatases that depohosphorylate ERK1/2 such as DUSP6. The emerging understanding from these studies, as will be discussed here, is more complex than originally considered. While there is little doubt that ERK1/2 activation or the lack of it modulates the hypertrophic process or the type of hypertrophy that develops, it appears that not all ERK1/2 activation events are the same. While much has been learned, some questions remain regarding the exact role of ERK1/2 in the heart, the upstream events that result in ERK1/2 activation and the downstream effector in hypertrophy.

  13. Amlodipine decreases fibrosis and cardiac hypertrophy in spontaneously hypertensive rats: persistent effects after withdrawal.

    Science.gov (United States)

    Sevilla, María A; Voces, Felipe; Carrón, Rosalía; Guerrero, Estela I; Ardanaz, Noelia; San Román, Luis; Arévalo, Miguel A; Montero, María J

    2004-07-02

    Our objective was to examine the effect of chronic treatment with amlodipine on blood pressure, left ventricular hypertrophy, and fibrosis in spontaneously hypertensive rats and the persistence of such an effect after drug withdrawal. We investigated the effects of treatment with 2, 8 and 20 mg/kg/day of amlodipine given orally for six months and at three months after drug withdrawal. Systolic blood pressure was measured using the tail-cuff method. At the end of the study period, the heart was excised, the left ventricle was isolated, and the left ventricle weight/body weight ratio was calculated as a left ventricular hypertrophy index. Fibrosis, expressed as collagen volume fraction, was evaluated using an automated image-analysis system on sections stained with Sirius red. Age-matched untreated Wistar-Kyoto and SHR were used as normotensive and hypertensive controls, respectively. Systolic blood pressure was reduced in the treated SHR in a dose-dependent way and after amlodipine withdrawal it increased progressively, without reaching the values of the hypertensive controls. Cardiac hypertrophy was reduced by 8 and 20 mg/kg/day amlodipine, but when treatment was withdrawn only the group treated with 8 mg/kg/day maintained significant differences versus the hypertensive controls. All three doses of amlodipine reduced cardiac fibrosis and this regression persisted with the two highest doses after three months without treatment. We concluded that antihypertensive treatment with amlodipine is accompanied by a reduction in left ventricular hypertrophy and regression in collagen deposition. Treatment was more effective in preventing fibrosis than in preventing ventricular hypertrophy after drug withdrawal. Copyright 2004 Elsevier Inc.

  14. Loss of Akap1 Exacerbates Pressure Overload-Induced Cardiac Hypertrophy and Heart Failure

    Directory of Open Access Journals (Sweden)

    Gabriele G. Schiattarella

    2018-05-01

    Full Text Available Left ventricular hypertrophy (LVH is a major contributor to the development of heart failure (HF. Alterations in cyclic adenosine monophosphate (cAMP-dependent signaling pathways participate in cardiomyocyte hypertrophy and mitochondrial dysfunction occurring in LVH and HF. cAMP signals are received and integrated by a family of cAMP-dependent protein kinase A (PKA anchor proteins (AKAPs, tethering PKA to discrete cellular locations. AKAPs encoded by the Akap1 gene (mitoAKAPs promote PKA mitochondrial targeting, regulating mitochondrial structure and function, reactive oxygen species production, and cell survival. To determine the role of mitoAKAPs in LVH development, in the present investigation, mice with global genetic deletion of Akap1 (Akap1-/-, Akap1 heterozygous (Akap1+/-, and their wild-type (wt littermates underwent transverse aortic constriction (TAC or SHAM procedure for 1 week. In wt mice, pressure overload induced the downregulation of AKAP121, the major cardiac mitoAKAP. Compared to wt, Akap1-/- mice did not display basal alterations in cardiac structure or function and cardiomyocyte size or fibrosis. However, loss of Akap1 exacerbated LVH and cardiomyocyte hypertrophy induced by pressure overload and accelerated the progression toward HF in TAC mice, and these changes were not observed upon prevention of AKAP121 degradation in seven in absentia homolog 2 (Siah2 knockout mice (Siah2-/-. Loss of Akap1 was also associated to a significant increase in cardiac apoptosis as well as lack of activation of Akt signaling after pressure overload. Taken together, these results demonstrate that in vivo genetic deletion of Akap1 enhances LVH development and accelerates pressure overload-induced cardiac dysfunction, pointing at Akap1 as a novel repressor of pathological LVH. These results confirm and extend the important role of mitoAKAPs in cardiac response to stress.

  15. Loss of Akap1 Exacerbates Pressure Overload-Induced Cardiac Hypertrophy and Heart Failure.

    Science.gov (United States)

    Schiattarella, Gabriele G; Boccella, Nicola; Paolillo, Roberta; Cattaneo, Fabio; Trimarco, Valentina; Franzone, Anna; D'Apice, Stefania; Giugliano, Giuseppe; Rinaldi, Laura; Borzacchiello, Domenica; Gentile, Alessandra; Lombardi, Assunta; Feliciello, Antonio; Esposito, Giovanni; Perrino, Cinzia

    2018-01-01

    Left ventricular hypertrophy (LVH) is a major contributor to the development of heart failure (HF). Alterations in cyclic adenosine monophosphate (cAMP)-dependent signaling pathways participate in cardiomyocyte hypertrophy and mitochondrial dysfunction occurring in LVH and HF. cAMP signals are received and integrated by a family of cAMP-dependent protein kinase A (PKA) anchor proteins (AKAPs), tethering PKA to discrete cellular locations. AKAPs encoded by the Akap1 gene (mitoAKAPs) promote PKA mitochondrial targeting, regulating mitochondrial structure and function, reactive oxygen species production, and cell survival. To determine the role of mitoAKAPs in LVH development, in the present investigation, mice with global genetic deletion of Akap1 ( Akap1 -/- ), Akap1 heterozygous ( Akap1 +/- ), and their wild-type ( wt ) littermates underwent transverse aortic constriction (TAC) or SHAM procedure for 1 week. In wt mice, pressure overload induced the downregulation of AKAP121, the major cardiac mitoAKAP. Compared to wt, Akap1 -/- mice did not display basal alterations in cardiac structure or function and cardiomyocyte size or fibrosis. However, loss of Akap1 exacerbated LVH and cardiomyocyte hypertrophy induced by pressure overload and accelerated the progression toward HF in TAC mice, and these changes were not observed upon prevention of AKAP121 degradation in seven in absentia homolog 2 ( Siah2 ) knockout mice ( Siah2 -/- ). Loss of Akap1 was also associated to a significant increase in cardiac apoptosis as well as lack of activation of Akt signaling after pressure overload. Taken together, these results demonstrate that in vivo genetic deletion of Akap1 enhances LVH development and accelerates pressure overload-induced cardiac dysfunction, pointing at Akap1 as a novel repressor of pathological LVH. These results confirm and extend the important role of mitoAKAPs in cardiac response to stress.

  16. Blueberry Anthocyanins-Enriched Extracts Attenuate Cyclophosphamide-Induced Cardiac Injury.

    Directory of Open Access Journals (Sweden)

    Yunen Liu

    Full Text Available We sought to explore the effect of blueberry anthocyanins-enriched extracts (BAE on cyclophosphamide (CTX-induced cardiac injury. The rats were divided randomly into five groups including normal control, CTX 100 mg/kg, BAE 80mg/kg, CTX+BAE 20mg/kg and CTX+BAE 80mg/kg groups. The rats in the three BAE-treated groups were administered BAE for four weeks. Seven days after BAE administration, rats in CTX group and two BAE-treated groups were intraperitoneally injected with a single dose of 100 mg/kg CTX. Cardiac injury was assessed using physiological parameters, Echo, morphological staining, real-time PCR and western blot. In addition, cardiotoxicity indices, inflammatory cytokines expression and oxidative stress markers were also detected. Four weeks 20mg/kg and 80mg/kg dose of BAE treatment following CTX exposure attenuated mean arterial blood pressure, heart rate and activities of heart enzymes, improved cardiac dysfunction, left ventricular hypertrophy and fibrosis. Importantly, BAE also attenuated CTX-induced LV leukocyte infiltration and inflammatory cytokines expression, ameliorated oxidative stress as well as cardiomyocyte apoptosis. In conclusion, BAE attenuated the CTX-induced cardiac injury and the protective mechanisms were related closely to the anti-inflammatory, antioxidant and anti-inflammatory characteristics of BAE.

  17. Extracellular high-mobility group box 1 mediates pressure overload-induced cardiac hypertrophy and heart failure.

    Science.gov (United States)

    Zhang, Lei; Liu, Ming; Jiang, Hong; Yu, Ying; Yu, Peng; Tong, Rui; Wu, Jian; Zhang, Shuning; Yao, Kang; Zou, Yunzeng; Ge, Junbo

    2016-03-01

    Inflammation plays a key role in pressure overload-induced cardiac hypertrophy and heart failure, but the mechanisms have not been fully elucidated. High-mobility group box 1 (HMGB1), which is increased in myocardium under pressure overload, may be involved in pressure overload-induced cardiac injury. The objectives of this study are to determine the role of HMGB1 in cardiac hypertrophy and cardiac dysfunction under pressure overload. Pressure overload was imposed on the heart of male wild-type mice by transverse aortic constriction (TAC), while recombinant HMGB1, HMGB1 box A (a competitive antagonist of HMGB1) or PBS was injected into the LV wall. Moreover, cardiac myocytes were cultured and given sustained mechanical stress. Transthoracic echocardiography was performed after the operation and sections for histological analyses were generated from paraffin-embedded hearts. Relevant proteins and genes were detected. Cardiac HMGB1 expression was increased after TAC, which was accompanied by its translocation from nucleus to both cytoplasm and intercellular space. Exogenous HMGB1 aggravated TAC-induced cardiac hypertrophy and cardiac dysfunction, as demonstrated by echocardiographic analyses, histological analyses and foetal cardiac genes detection. Nevertheless, the aforementioned pathological change induced by TAC could partially be reversed by HMGB1 inhibition. Consistent with the in vivo observations, mechanical stress evoked the release and synthesis of HMGB1 in cultured cardiac myocytes. This study indicates that the activated and up-regulated HMGB1 in myocardium, which might partially be derived from cardiac myocytes under pressure overload, may be of crucial importance in pressure overload-induced cardiac hypertrophy and cardiac dysfunction. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  18. Vitamin D attenuates pressure overload-induced cardiac remodeling and dysfunction in mice.

    Science.gov (United States)

    Zhang, Liang; Yan, Xiao; Zhang, Yun-Long; Bai, Jie; Hidru, Tesfaldet Habtemariam; Wang, Qing-Shan; Li, Hui-Hua

    2018-04-01

    Vitamin D (VD) and its analogues play critical roles in metabolic and cardiovascular diseases. Recent studies have demonstrated that VD exerts a protective role in cardiovascular diseases. However, the beneficial effect of VD on pressure overload-induced cardiac remodeling and dysfunction and its underlying mechanisms are not fully elucidated. In this study, cardiac dysfunction and hypertrophic remodeling in mice were induced by pressure overload. Cardiac function was evaluated by echocardiography, and myocardial histology was detected by H&E and Masson's trichrome staining. Cardiomyocyte size was detected by wheat germ agglutinin staining. The protein levels of signaling mediators were examined by western blotting while mRNA expression of hypertrophic and fibrotic markers was examined by qPCR analysis. Oxidative stress was detected by dihydroethidine staining. Our results showed that administration of VD3 significantly ameliorates pressure overload-induced contractile dysfunction, cardiac hypertrophy, fibrosis and inflammation in mice. In addition, VD3 treatment also markedly inhibited cardiac oxidative stress and apoptosis. Moreover, protein levels of calcineurin A, ERK1/2, AKT, TGF-β, GRP78, cATF6, and CHOP were significantly reduced whereas SERCA2 level was upregulated in the VD3-treated hearts compared with control. These results suggest that VD3 attenuates cardiac remodeling and dysfunction induced by pressure overload, and this protective effect is associated with inhibition of multiple signaling pathways. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. YY1 Protects Cardiac Myocytes from Pathologic Hypertrophy by Interacting with HDAC5

    Science.gov (United States)

    Dockstader, Karen; McKinsey, Timothy A.

    2008-01-01

    YY1 is a transcription factor that can repress or activate the transcription of a variety of genes. Here, we show that the function of YY1 as a repressor in cardiac myocytes is tightly dependent on its ability to interact with histone deacetylase 5 (HDAC5). YY1 interacts with HDAC5, and overexpression of YY1 prevents HDAC5 nuclear export in response to hypertrophic stimuli and the increase in cell size and re-expression of fetal genes that accompany pathological cardiac hypertrophy. Knockdown of YY1 results in up-regulation of all genes present during fetal development and increases the cell size of neonatal cardiac myocytes. Moreover, overexpression of a YY1 deletion construct that does not interact with HDAC5 results in transcription activation, suggesting that HDAC5 is necessary for YY1 function as a transcription repressor. In support of this relationship, we show that knockdown of HDAC5 results in transcription activation by YY1. Finally, we show that YY1 interaction with HDAC5 is dependent on the HDAC5 phosphorylation domain and that overexpression of YY1 reduces HDAC5 phosphorylation in response to hypertrophic stimuli. Our results strongly suggest that YY1 functions as an antihypertrophic factor by preventing HDAC5 nuclear export and that up-regulation of YY1 in human heart failure may be a protective mechanism against pathological hypertrophy. PMID:18632988

  20. Hypertension is a conditional factor for the development of cardiac hypertrophy in type 2 diabetic mice.

    Directory of Open Access Journals (Sweden)

    Marc van Bilsen

    Full Text Available BACKGROUND: Type 2 diabetes is frequently associated with co-morbidities, including hypertension. Here we investigated if hypertension is a critical factor in myocardial remodeling and the development of cardiac dysfunction in type 2 diabetic db/db mice. METHODS: Thereto, 14-wks-old male db/db mice and non-diabetic db/+ mice received vehicle or angiotensin II (AngII for 4 wks to induce mild hypertension (n = 9-10 per group. Left ventricular (LV function was assessed by serial echocardiography and during a dobutamine stress test. LV tissue was subjected to molecular and (immunohistochemical analysis to assess effects on hypertrophy, fibrosis and inflammation. RESULTS: Vehicle-treated diabetic mice neither displayed marked myocardial structural remodeling nor cardiac dysfunction. AngII-treatment did not affect body weight and fasting glucose levels, and induced a comparable increase in blood pressure in diabetic and control mice. Nonetheless, AngII-induced LV hypertrophy was significantly more pronounced in diabetic than in control mice as assessed by LV mass (increase +51% and +34%, respectively, p<0.01 and cardiomyocyte size (+53% and +31%, p<0.001. This was associated with enhanced LV mRNA expression of markers of hypertrophy and fibrosis and reduced activation of AMP-activated protein kinase (AMPK, while accumulation of Advanced Glycation End products (AGEs and the expression levels of markers of inflammation were not altered. Moreover, AngII-treatment reduced LV fractional shortening and contractility in diabetic mice, but not in control mice. CONCLUSIONS: Collectively, the present findings indicate that type 2 diabetes in its early stage is not yet associated with adverse cardiac structural changes, but already renders the heart more susceptible to hypertension-induced hypertrophic remodeling.

  1. Renin angiotensin system and cardiac hypertrophy after sinoaortic denervation in rats

    Directory of Open Access Journals (Sweden)

    Aline Cristina Piratello

    2010-01-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the role of angiotensin I, II and 1-7 on left ventricular hypertrophy of Wistar and spontaneously hypertensive rats submitted to sinoaortic denervation. METHODS: Ten weeks after sinoaortic denervation, hemodynamic and morphofunctional parameters were analyzed, and the left ventricle was dissected for biochemical analyses. RESULTS: Hypertensive groups (controls and denervated showed an increase on mean blood pressure compared with normotensive ones (controls and denervated. Blood pressure variability was higher in denervated groups than in their respective controls. Left ventricular mass and collagen content were increased in the normotensive denervated and in both spontaneously hypertensive groups compared with Wistar controls. Both hypertensive groups presented a higher concentration of angiotensin II than Wistar controls, whereas angiotensin 1-7 concentration was decreased in the hypertensive denervated group in relation to the Wistar groups. There was no difference in angiotensin I concentration among groups. CONCLUSION: Our results suggest that not only blood pressure variability and reduced baroreflex sensitivity but also elevated levels of angiotensin II and a reduced concentration of angiotensin 1-7 may contribute to the development of left ventricular hypertrophy. These data indicate that baroreflex dysfunction associated with changes in the renin angiotensin system may be predictive factors of left ventricular hypertrophy and cardiac failure.

  2. Endurance training in the spontaneously hypertensive rat: conversion of pathological into physiological cardiac hypertrophy.

    Science.gov (United States)

    Garciarena, Carolina D; Pinilla, Oscar A; Nolly, Mariela B; Laguens, Ruben P; Escudero, Eduardo M; Cingolani, Horacio E; Ennis, Irene L

    2009-04-01

    The effect of endurance training (swimming 90 min/d for 5 days a week for 60 days) on cardiac hypertrophy was investigated in the spontaneously hypertensive rat (SHR). Sedentary SHRs (SHR-Cs) and normotensive Wistar rats were used as controls. Exercise training enhanced myocardial hypertrophy assessed by left ventricular weight/tibial length (228+/-7 versus 251+/-5 mg/cm in SHR-Cs and exercised SHRs [SHR-Es], respectively). Myocyte cross-sectional area increased approximately 40%, collagen volume fraction decreased approximately 50%, and capillary density increased approximately 45% in SHR-Es compared with SHR-Cs. The mRNA abundance of atrial natriuretic factor and myosin light chain 2 was decreased by the swimming routine (100+/-19% versus 41+/-10% and 100+/-8% versus 61+/-9% for atrial natriuretic factor and myosin light chain 2 in SHR-Cs and SHR-Es, respectively). The expression of sarcoplasmic reticulum Ca(2+) pump was significantly augmented, whereas that of Na(+)/Ca(2+) exchanger was unchanged (93+/-7% versus 167+/-8% and 158+/-13% versus 157+/-7%, sarcoplasmic reticulum Ca(2+) pump and Na(+)/Ca(2+) exchanger in SHR-Cs and SHR-Es, respectively; PEndurance training inhibited apoptosis, as reflected by a decrease in caspase 3 activation and poly(ADP-ribose) polymerase-1 cleavage, and normalized calcineurin activity without inducing significant changes in the phosphatidylinositol 3-kinase/Akt pathway. The swimming routine improved midventricular shortening determined by echocardiography (32.4+/-0.9% versus 36.9+/-1.1% in SHR-Cs and SHR-Es, respectively; Pendurance training to convert pathological into physiological hypertrophy improving cardiac performance. The reduction of myocardial fibrosis and calcineurin activity plus the increase in capillary density represent factors to be considered in determining this beneficial effect.

  3. Increased natriuretic peptide receptor A and C gene expression in rats with pressure-overload cardiac hypertrophy

    DEFF Research Database (Denmark)

    Christoffersen, Tue E.H.; Aplin, Mark; Strom, Claes C.

    2006-01-01

    also affects cardiac hypertrophy and fibrosis. In this study we examined the expression of genes for the NPRs in rats with pressure-overload cardiac hypertrophy. The ANG II type 1 receptor was blocked with losartan (10 mg.kg(-1).day(-1)) to investigate a possible role of the renin-angiotensin system......RNAs for the natriuretic peptides or their receptors. Although increased gene expression does not necessarily convey a higher concentration of the protein, the data suggest that pressure overload is accompanied by upregulation of not only ANP and BNP but also their receptors NPR-A and NPR-C in the left ventricle....

  4. Chronic Cardiac-Targeted RNA Interference for the Treatment of Heart Failure Restores Cardiac Function and Reduces Pathological Hypertrophy

    Science.gov (United States)

    Suckau, Lennart; Fechner, Henry; Chemaly, Elie; Krohn, Stefanie; Hadri, Lahouaria; Kockskämper, Jens; Westermann, Dirk; Bisping, Egbert; Ly, Hung; Wang, Xiaomin; Kawase, Yoshiaki; Chen, Jiqiu; Liang, Lifan; Sipo, Isaac; Vetter, Roland; Weger, Stefan; Kurreck, Jens; Erdmann, Volker; Tschope, Carsten; Pieske, Burkert; Lebeche, Djamel; Schultheiss, Heinz-Peter; Hajjar, Roger J.; Poller, Wolfgang Ch.

    2009-01-01

    Background RNA interference (RNAi) has the potential to be a novel therapeutic strategy in diverse areas of medicine. We report on targeted RNAi for the treatment of heart failure (HF), an important disorder in humans resulting from multiple etiologies. Successful treatment of HF is demonstrated in a rat model of transaortic banding by RNAi targeting of phospholamban (PLB), a key regulator of cardiac Ca2+ homeostasis. Whereas gene therapy rests on recombinant protein expression as its basic principle, RNAi therapy employs regulatory RNAs to achieve its effect. Methods and Results We describe structural requirements to obtain high RNAi activity from adenoviral (AdV) and adeno-associated virus (AAV9) vectors and show that an AdV short hairpin RNA vector (AdV-shRNA) silenced PLB in cardiomyocytes (NRCMs) and improved hemodynamics in HF rats 1 month after aortic root injection. For simplified long-term therapy we developed a dimeric cardiotropic AAV vector (rAAV9-shPLB) delivering RNAi activity to the heart via intravenous injection. Cardiac PLB protein was reduced to 25% and SERCA2a suppression in the HF groups was rescued. In contrast to traditional vectors rAAV9 shows high affinity for myocardium, but low affinity for liver and other organs. rAAV9-shPLB therapy restored diastolic (LVEDP, dp/dtmin, Tau) and systolic (fractional shortening) functional parameters to normal range. The massive cardiac dilation was normalized and the cardiac hypertrophy, cardiomyocyte diameter and cardiac fibrosis significantly reduced. Importantly, there was no evidence of microRNA deregulation or hepatotoxicity during these RNAi therapies. Conclusion Our data show, for the first time, high efficacy of an RNAi therapeutic strategy in a cardiac disease. PMID:19237664

  5. Sitagliptin reduces cardiac apoptosis, hypertrophy and fibrosis primarily by insulin-dependent mechanisms in experimental type-II diabetes. Potential roles of GLP-1 isoforms.

    Directory of Open Access Journals (Sweden)

    Belén Picatoste

    Full Text Available BACKGROUND: Myocardial fibrosis is a key process in diabetic cardiomyopathy. However, their underlying mechanisms have not been elucidated, leading to a lack of therapy. The glucagon-like peptide-1 (GLP-1 enhancer, sitagliptin, reduces hyperglycemia but may also trigger direct effects on the heart. METHODS: Goto-Kakizaki (GK rats developed type-II diabetes and received sitagliptin, an anti-hyperglycemic drug (metformin or vehicle (n=10, each. After cardiac structure and function assessment, plasma and left ventricles were isolated for biochemical studies. Cultured cardiomyocytes and fibroblasts were used for in vitro assays. RESULTS: Untreated GK rats exhibited hyperglycemia, hyperlipidemia, plasma GLP-1 decrease, and cardiac cell-death, hypertrophy, fibrosis and prolonged deceleration time. Moreover, cardiac pro-apoptotic/necrotic, hypertrophic and fibrotic factors were up-regulated. Importantly, both sitagliptin and metformin lessened all these parameters. In cultured cardiomyocytes and cardiac fibroblasts, high-concentration of palmitate or glucose induced cell-death, hypertrophy and fibrosis. Interestingly, GLP-1 and its insulinotropic-inactive metabolite, GLP-1(9-36, alleviated these responses. In addition, despite a specific GLP-1 receptor was only detected in cardiomyocytes, GLP-1 isoforms attenuated the pro-fibrotic expression in cardiomyocytes and fibroblasts. In addition, GLP-1 receptor signalling may be linked to PPARδ activation, and metformin may also exhibit anti-apoptotic/necrotic and anti-fibrotic direct effects in cardiac cells. CONCLUSIONS: Sitagliptin, via GLP-1 stabilization, promoted cardioprotection in type-II diabetic hearts primarily by limiting hyperglycemia e hyperlipidemia. However, GLP-1 and GLP-1(9-36 promoted survival and anti-hypertrophic/fibrotic effects on cultured cardiac cells, suggesting cell-autonomous cardioprotective actions.

  6. Hypertrophy of neurons within cardiac ganglia in human, canine, and rat heart failure: the potential role of nerve growth factor.

    Science.gov (United States)

    Singh, Sanjay; Sayers, Scott; Walter, James S; Thomas, Donald; Dieter, Robert S; Nee, Lisa M; Wurster, Robert D

    2013-08-19

    Autonomic imbalances including parasympathetic withdrawal and sympathetic overactivity are cardinal features of heart failure regardless of etiology; however, mechanisms underlying these imbalances remain unknown. Animal model studies of heart and visceral organ hypertrophy predict that nerve growth factor levels should be elevated in heart failure; whether this is so in human heart failure, though, remains unclear. We tested the hypotheses that neurons in cardiac ganglia are hypertrophied in human, canine, and rat heart failure and that nerve growth factor, which we hypothesize is elevated in the failing heart, contributes to this neuronal hypertrophy. Somal morphology of neurons from human (579.54±14.34 versus 327.45±9.17 μm(2); Phearts (767.80±18.37 versus 650.23±9.84 μm(2); Pneurons from spontaneously hypertensive rat hearts (327.98±3.15 versus 271.29±2.79 μm(2); Pneurons in cardiac ganglia compared with controls. Western blot analysis shows that nerve growth factor levels in the explanted, failing human heart are 250% greater than levels in healthy donor hearts. Neurons from cardiac ganglia cultured with nerve growth factor are significantly larger and have greater dendritic arborization than neurons in control cultures. Hypertrophied neurons are significantly less excitable than smaller ones; thus, hypertrophy of vagal postganglionic neurons in cardiac ganglia would help to explain the parasympathetic withdrawal that accompanies heart failure. Furthermore, our observations suggest that nerve growth factor, which is elevated in the failing human heart, causes hypertrophy of neurons in cardiac ganglia.

  7. Serum uric acid is associated with left ventricular hypertrophy independent of serum parathyroid hormone in male cardiac patients.

    Directory of Open Access Journals (Sweden)

    Shu-ichi Fujita

    Full Text Available BACKGROUND: Several studies have shown that serum uric acid (UA is associated with left ventricular (LV hypertrophy. Serum levels of parathyroid hormone (PTH, which has bbe shown to be correlated with UA, is also known to be associated with cardiac hypertrophy; however, whether the association between UA and cardiac hypertrophy is independent of PTH remains unknown. PURPOSE: We investigated whether the relationship between serum uric acid (UA and LV hypertrophy is independent of intact PTH and other calcium-phosphate metabolism-related factors in cardiac patients. METHODS AND RESULTS: In a retrospective study, the association between UA and left ventricular mass index was assessed among 116 male cardiac patients (mean age 65 ± 12 years who were not taking UA lowering drugs. The median UA value was 5.9 mg/dL. Neither age nor body mass index differed significantly among the UA quartile groups. Patients with higher UA levels were more likely to be taking loop diuretics. UA showed a significant correlation with intact PTH (R = 0.34, P<0.001 but not with other calcium-phosphate metabolism-related factors. Linear regression analysis showed that log-transformed UA showed a significant association with left ventricular mass index, and this relationship was found to be significant exclusively in patients who were not taking loop and/or thiazide diuretics. Multivariate logistic regression analysis showed that log-transformed UA was independently associated with LV hypertrophy with an odds ratio of 2.79 (95% confidence interval 1.48-5.28, P = 0.002 per one standard deviation increase. CONCLUSIONS: Among cardiac patients, serum UA was associated with LV hypertrophy, and this relationship was, at least in part, independent of intact PTH levels, which showed a significant correlation with UA in the same population.

  8. Exploring Regulatory Mechanisms of Atrial Myocyte Hypertrophy of Mitral Regurgitation through Gene Expression Profiling Analysis: Role of NFAT in Cardiac Hypertrophy.

    Directory of Open Access Journals (Sweden)

    Tzu-Hao Chang

    Full Text Available Left atrial enlargement in mitral regurgitation (MR predicts a poor prognosis. The regulatory mechanisms of atrial myocyte hypertrophy of MR patients remain unknown.This study comprised 14 patients with MR, 7 patients with aortic valve disease (AVD, and 6 purchased samples from normal subjects (NC. We used microarrays, enrichment analysis and quantitative RT-PCR to study the gene expression profiles in the left atria. Microarray results showed that 112 genes were differentially up-regulated and 132 genes were differentially down-regulated in the left atria between MR patients and NC. Enrichment analysis of differentially expressed genes demonstrated that "NFAT in cardiac hypertrophy" pathway was not only one of the significant associated canonical pathways, but also the only one predicted with a non-zero score of 1.34 (i.e. activated through Ingenuity Pathway Analysis molecule activity predictor. Ingenuity Pathway Analysis Global Molecular Network analysis exhibited that the highest score network also showed high association with cardiac related pathways and functions. Therefore, 5 NFAT associated genes (PPP3R1, PPP3CB, CAMK1, MEF2C, PLCE1 were studies for validation. The mRNA expressions of PPP3CB and MEF2C were significantly up-regulated, and CAMK1 and PPP3R1 were significantly down-regulated in MR patients compared to NC. Moreover, MR patients had significantly increased mRNA levels of PPP3CB, MEF2C and PLCE1 compared to AVD patients. The atrial myocyte size of MR patients significantly exceeded that of the AVD patients and NC.Differentially expressed genes in the "NFAT in cardiac hypertrophy" pathway may play a critical role in the atrial myocyte hypertrophy of MR patients.

  9. Relationship between plasma xanthine oxidoreductase activity and left ventricular ejection fraction and hypertrophy among cardiac patients.

    Directory of Open Access Journals (Sweden)

    Yuki Fujimura

    Full Text Available Xanthine oxidoreductase (XOR, which catalyzes purine catabolism, has two interconvertible forms, xanthine dehydrogenase and xanthine oxidase, the latter of which produces superoxide during uric acid (UA synthesis. An association between plasma XOR activity and cardiovascular and renal outcomes has been previously suggested. We investigated the potential association between cardiac parameters and plasma XOR activity among cardiology patients.Plasma XOR activity was measured by [13C2,15N2]xanthine coupled with liquid chromatography/triplequadrupole mass spectrometry. Among 270 patients who were not taking UA-lowering drugs, XOR activity was associated with body mass index (BMI, alanine aminotransferase (ALT, HbA1c and renal function. Although XOR activity was not associated with serum UA overall, patients with chronic kidney disease (CKD, those with higher XOR activity had higher serum UA among patients without CKD. Compared with patients with the lowest XOR activity quartile, those with higher three XOR activity quartiles more frequently had left ventricular hypertrophy. In addition, plasma XOR activity showed a U-shaped association with low left ventricular ejection fraction (LVEF and increased plasma B-type natriuretic peptide (BNP levels, and these associations were independent of age, gender, BMI, ALT, HbA1C, serum UA, and CKD stages.Among cardiac patients, left ventricular hypertrophy, low LVEF, and increased BNP were significantly associated with plasma XOR activity independent of various confounding factors. Whether pharmaceutical modification of plasma XOR activity might inhibit cardiac remodeling and improve cardiovascular outcome should be investigated in future studies.

  10. Postnatal ablation of Foxm1 from cardiomyocytes causes late onset cardiac hypertrophy and fibrosis without exacerbating pressure overload-induced cardiac remodeling.

    Directory of Open Access Journals (Sweden)

    Craig Bolte

    Full Text Available Heart disease remains a leading cause of morbidity and mortality in the industrialized world. Hypertrophic cardiomyopathy is the most common genetic cardiovascular disorder and the most common cause of sudden cardiac death. Foxm1 transcription factor (also known as HFH-11B, Trident, Win or MPP2 plays an important role in the pathogenesis of various cancers and is a critical mediator of post-injury repair in multiple organs. Foxm1 has been previously shown to be essential for heart development and proliferation of embryonic cardiomyocytes. However, the role of Foxm1 in postnatal heart development and in cardiac injury has not been evaluated. To delete Foxm1 in postnatal cardiomyocytes, αMHC-Cre/Foxm1(fl/fl mice were generated. Surprisingly, αMHC-Cre/Foxm1(fl/fl mice exhibited normal cardiomyocyte proliferation at postnatal day seven and had no defects in cardiac structure or function but developed cardiac hypertrophy and fibrosis late in life. The development of cardiomyocyte hypertrophy and cardiac fibrosis in aged Foxm1-deficient mice was associated with reduced expression of Hey2, an important regulator of cardiac homeostasis, and increased expression of genes critical for cardiac remodeling, including MMP9, αSMA, fibronectin and vimentin. We also found that following aortic constriction Foxm1 mRNA and protein were induced in cardiomyocytes. However, Foxm1 deletion did not exacerbate cardiac hypertrophy or fibrosis following chronic pressure overload. Our results demonstrate that Foxm1 regulates genes critical for age-induced cardiomyocyte hypertrophy and cardiac fibrosis.

  11. Calorie restriction attenuates cardiac remodeling and diastolic dysfunction in a rat model of metabolic syndrome.

    Science.gov (United States)

    Takatsu, Miwa; Nakashima, Chieko; Takahashi, Keiji; Murase, Tamayo; Hattori, Takuya; Ito, Hiromi; Murohara, Toyoaki; Nagata, Kohzo

    2013-11-01

    Calorie restriction (CR) can modulate the features of obesity-related metabolic and cardiovascular diseases. We have recently characterized DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats, derived from a cross between Dahl salt-sensitive and Zucker rats, as a new animal model of metabolic syndrome. DS/obese rats develop hypertension and manifest left ventricular remodeling and diastolic dysfunction, as well as increased cardiac oxidative stress and inflammation. We have now investigated the effects of CR on cardiac pathophysiology in DS/obese rats. DS/obese rats were fed either normal laboratory chow ad libitum or a calorie-restricted diet (65% of the average food intake for ad libitum) from 9 to 13 weeks. Age-matched homozygous lean (DahlS.Z-Lepr(+)/Lepr(+) or DS/lean) littermates served as controls. CR reduced body weight in both DS/obese and DS/lean rats, as well as attenuated the development of hypertension in DS/obese rats without affecting blood pressure in DS/lean rats. CR also reduced body fat content, ameliorated left ventricular hypertrophy, fibrosis, and diastolic dysfunction, and attenuated cardiac oxidative stress and inflammation in DS/obese rats. In addition, it increased serum adiponectin concentration, as well as downregulated the expression of angiotensin-converting enzyme and angiotensin II type 1A receptor genes in the heart of DS/obese rats. Our results thus show that CR attenuated obesity and hypertension, as well as left ventricular remodeling and diastolic dysfunction in DS/obese rats, with these latter effects being associated with reduced cardiac oxidative stress and inflammation.

  12. Aerobic exercise protects against pressure overload-induced cardiac dysfunction and hypertrophy via β3-AR-nNOS-NO activation

    Science.gov (United States)

    Li, Wenju; Li, Xiaoli; Zheng, Qiangsun; Niu, Xiaolin

    2017-01-01

    Aerobic exercise confers sustainable protection against cardiac hypertrophy and heart failure (HF). Nitric oxide synthase (NOS) and nitric oxide (NO) are known to play an important role in exercise-mediated cardioprotection, but the mechanism of NOS/NO stimulation during exercise remains unclear. The aim of this study is to determine the role of β3-adrenergic receptors (β3-ARs), NOS activation, and NO metabolites (nitrite and nitrosothiols) in the sustained cardioprotective effects of aerobic exercise. An HF model was constructed by transverse aortic constriction (TAC). Animals were treated with either moderate aerobic exercise by swimming for 9 weeks and/or the β3-AR-specific inhibitor SR59230A at 0.1 mg/kg/hour one day after TAC operation. Myocardial fibrosis, myocyte size, plasma catecholamine (CA) level, cardiac function and geometry were assessed using Masson’s trichrome staining, FITC-labeled wheat germ agglutinin staining, enzyme-linked immuno sorbent assay (ELISA) and echocardiography, respectively. Western blot analysis was performed to elucidate the expression of target proteins. The concentration of myocardial NO production was evaluated using the nitrate reductase method. Myocardial oxidative stress was assessed by detecting the concentration of myocardial super oxidative dismutase (SOD), malonyldialdehyde (MDA), and reactive oxygen species (ROS). Aerobic exercise training improved dilated left ventricular function and partially attenuated the degree of cardiac hypertrophy and fibrosis in TAC mice. Moreover, the increased expression of β3-AR, activation of neuronal NOS (nNOS), and production of NO were detected after aerobic exercise training in TAC mice. However, selective inhibition of β3-AR by SR59230A abolished the upregulation and activation of nNOS induced NO production. Furthermore, aerobic exercise training decreased the myocardial ROS and MDA contents and increased myocardial levels of SOD; both effects were partially attenuated by SR

  13. Aerobic exercise protects against pressure overload-induced cardiac dysfunction and hypertrophy via β3-AR-nNOS-NO activation.

    Science.gov (United States)

    Wang, Bin; Xu, Ming; Li, Wenju; Li, Xiaoli; Zheng, Qiangsun; Niu, Xiaolin

    2017-01-01

    Aerobic exercise confers sustainable protection against cardiac hypertrophy and heart failure (HF). Nitric oxide synthase (NOS) and nitric oxide (NO) are known to play an important role in exercise-mediated cardioprotection, but the mechanism of NOS/NO stimulation during exercise remains unclear. The aim of this study is to determine the role of β3-adrenergic receptors (β3-ARs), NOS activation, and NO metabolites (nitrite and nitrosothiols) in the sustained cardioprotective effects of aerobic exercise. An HF model was constructed by transverse aortic constriction (TAC). Animals were treated with either moderate aerobic exercise by swimming for 9 weeks and/or the β3-AR-specific inhibitor SR59230A at 0.1 mg/kg/hour one day after TAC operation. Myocardial fibrosis, myocyte size, plasma catecholamine (CA) level, cardiac function and geometry were assessed using Masson's trichrome staining, FITC-labeled wheat germ agglutinin staining, enzyme-linked immuno sorbent assay (ELISA) and echocardiography, respectively. Western blot analysis was performed to elucidate the expression of target proteins. The concentration of myocardial NO production was evaluated using the nitrate reductase method. Myocardial oxidative stress was assessed by detecting the concentration of myocardial super oxidative dismutase (SOD), malonyldialdehyde (MDA), and reactive oxygen species (ROS). Aerobic exercise training improved dilated left ventricular function and partially attenuated the degree of cardiac hypertrophy and fibrosis in TAC mice. Moreover, the increased expression of β3-AR, activation of neuronal NOS (nNOS), and production of NO were detected after aerobic exercise training in TAC mice. However, selective inhibition of β3-AR by SR59230A abolished the upregulation and activation of nNOS induced NO production. Furthermore, aerobic exercise training decreased the myocardial ROS and MDA contents and increased myocardial levels of SOD; both effects were partially attenuated by SR59230

  14. Resistance training-induced changes in integrated myofibrillar protein synthesis are related to hypertrophy only after attenuation of muscle damage.

    Science.gov (United States)

    Damas, Felipe; Phillips, Stuart M; Libardi, Cleiton A; Vechin, Felipe C; Lixandrão, Manoel E; Jannig, Paulo R; Costa, Luiz A R; Bacurau, Aline V; Snijders, Tim; Parise, Gianni; Tricoli, Valmor; Roschel, Hamilton; Ugrinowitsch, Carlos

    2016-09-15

    Skeletal muscle hypertrophy is one of the main outcomes from resistance training (RT), but how it is modulated throughout training is still unknown. We show that changes in myofibrillar protein synthesis (MyoPS) after an initial resistance exercise (RE) bout in the first week of RT (T1) were greater than those seen post-RE at the third (T2) and tenth week (T3) of RT, with values being similar at T2 and T3. Muscle damage (Z-band streaming) was the highest during post-RE recovery at T1, lower at T2 and minimal at T3. When muscle damage was the highest, so was the integrated MyoPS (at T1), but neither were related to hypertrophy; however, integrated MyoPS at T2 and T3 were correlated with hypertrophy. We conclude that muscle hypertrophy is the result of accumulated intermittent increases in MyoPS mainly after a progressive attenuation of muscle damage. Skeletal muscle hypertrophy is one of the main outcomes of resistance training (RT), but how hypertrophy is modulated and the mechanisms regulating it are still unknown. To investigate how muscle hypertrophy is modulated through RT, we measured day-to-day integrated myofibrillar protein synthesis (MyoPS) using deuterium oxide and assessed muscle damage at the beginning (T1), at 3 weeks (T2) and at 10 weeks of RT (T3). Ten young men (27 (1) years, mean (SEM)) had muscle biopsies (vastus lateralis) taken to measure integrated MyoPS and muscle damage (Z-band streaming and indirect parameters) before, and 24 h and 48 h post resistance exercise (post-RE) at T1, T2 and T3. Fibre cross-sectional area (fCSA) was evaluated using biopsies at T1, T2 and T3. Increases in fCSA were observed only at T3 (P = 0.017). Changes in MyoPS post-RE at T1, T2 and T3 were greater at T1 (P Muscle damage was the highest during post-RE recovery at T1, attenuated at T2 and further attenuated at T3. The change in MyoPS post-RE at both T2 and T3, but not at T1, was strongly correlated (r ≈ 0.9, P muscle hypertrophy. Initial Myo

  15. Perinatal DDT Exposure Induces Hypertension and Cardiac Hypertrophy in Adult Mice.

    Science.gov (United States)

    La Merrill, Michele A; Sethi, Sunjay; Benard, Ludovic; Moshier, Erin; Haraldsson, Borje; Buettner, Christoph

    2016-11-01

    Dichlorodiphenyltrichloroethane (DDT) was used extensively to control malaria, typhus, body lice, and bubonic plague worldwide, until countries began restricting its use in the 1970s. However, the use of DDT to control vector-borne diseases continues in developing countries. Prenatal DDT exposure is associated with elevated blood pressure in humans. We hypothesized that perinatal DDT exposure causes hypertension in adult mice. DDT was administered to C57BL/6J dams from gestational day 11.5 to postnatal day 5. Blood pressure (BP) and myocardial wall thickness were measured in male and female adult offspring. Adult mice were treated with an angiotensin converting enzyme (ACE) inhibitor, captopril, to evaluate sensitivity to amelioration of DDT-associated hypertension by ACE inhibition. We further assessed the influence of DDT exposure on the expression of mRNAs that regulate BP through renal ion transport. Adult mice perinatally exposed to DDT exhibited chronically increased systolic BP, increased myocardial wall thickness, and elevated expression of mRNAs of several renal ion transporters. Captopril completely reversed hypertension in mice perinatally exposed to DDT. These data demonstrate that perinatal exposure to DDT causes hypertension and cardiac hypertrophy in adult offspring. A key mechanism underpinning this hypertension is an overactivated renin angiotensin system because ACE inhibition reverses the hypertension induced by perinatal DDT exposure. Citation: La Merrill M, Sethi S, Benard L, Moshier E, Haraldsson B, Buettner C. 2016. Perinatal DDT exposure induces hypertension and cardiac hypertrophy in adult mice. Environ Health Perspect 124:1722-1727; http://dx.doi.org/10.1289/EHP164.

  16. Pregestational type 2 diabetes mellitus induces cardiac hypertrophy in the murine embryo through cardiac remodeling and fibrosis.

    Science.gov (United States)

    Lin, Xue; Yang, Penghua; Reece, E Albert; Yang, Peixin

    2017-08-01

    Cardiac hypertrophy is highly prevalent in patients with type 2 diabetes mellitus. Experimental evidence has implied that pregnant women with type 2 diabetes mellitus and their children are at an increased risk of cardiovascular diseases. Our previous mouse model study revealed that maternal type 2 diabetes mellitus induces structural heart defects in their offspring. This study aims to determine whether maternal type 2 diabetes mellitus induces embryonic heart hypertrophy in a murine model of diabetic embryopathy. The type 2 diabetes mellitus embryopathy model was established by feeding 4-week-old female C57BL/6J mice with a high-fat diet for 15 weeks. Cardiac hypertrophy in embryos at embryonic day 17.5 was characterized by measuring heart size and thickness of the right and left ventricle walls and the interventricular septum, as well as the expression of β-myosin heavy chain, atrial natriuretic peptide, insulin-like growth factor-1, desmin, and adrenomedullin. Cardiac remodeling was determined by collagen synthesis and fibronectin synthesis. Fibrosis was evaluated by Masson staining and determining the expression of connective tissue growth factor, osteopontin, and galectin-3 genes. Cell apoptosis also was measured in the developing heart. The thicknesses of the left ventricle walls and the interventricular septum of embryonic hearts exposed to maternal diabetes were significantly thicker than those in the nondiabetic group. Maternal diabetes significantly increased β-myosin heavy chain, atrial natriuretic peptide, insulin-like growth factor-1, and desmin expression, but decreased expression of adrenomedullin. Moreover, collagen synthesis was significantly elevated, whereas fibronectin synthesis was suppressed, in embryonic hearts from diabetic dams, suggesting that cardiac remodeling is a contributing factor to cardiac hypertrophy. The cardiac fibrosis marker, galectin-3, was induced by maternal diabetes. Furthermore, maternal type 2 diabetes mellitus

  17. Salt-Sensitive Hypertension and Cardiac Hypertrophy in Transgenic Mice Expressing a Corin Variant Identified in African Americans

    Science.gov (United States)

    Wang, Wei; Cui, Yujie; Shen, Jianzhong; Jiang, Jingjing; Chen, Shenghan; Peng, Jianhao; Wu, Qingyu

    2012-01-01

    African Americans represent a high risk population for salt-sensitive hypertension and heart disease but the underlying mechanism remains unclear. Corin is a cardiac protease that regulates blood pressure by activating natriuretic peptides. A corin gene variant (T555I/Q568P) was identified in African Americans with hypertension and cardiac hypertrophy. In this study, we test the hypothesis that the corin variant contributes to the hypertensive and cardiac hypertrophic phenotype in vivo. Transgenic mice were generated to express wild-type or T555I/Q568P variant corin in the heart under the control of α-myosin heavy chain promoter. The mice were crossed into a corin knockout background to create KO/TgWT and KO/TgV mice that expressed WT or variant corin, respectively, in the heart. Functional studies showed that KO/TgV mice had significantly higher levels of pro-atrial natriuretic peptide in the heart compared with that in control KO/TgWT mice, indicating that the corin variant was defective in processing natriuretic peptides in vivo. By radiotelemetry, corin KO/TgV mice were found to have hypertension that was sensitive to dietary salt loading. The mice also developed cardiac hypertrophy at 12–14 months of age when fed a normal salt diet or at a younger age when fed a high salt diet. The phenotype of salt-sensitive hypertension and cardiac hypertrophy in KO/TgV mice closely resembles the pathological findings in African Americans who carry the corin variant. The results indicate that corin defects may represent an important mechanism in salt-sensitive hypertension and cardiac hypertrophy in African Americans. PMID:22987923

  18. Cardiac Effects of Attenuating Gsα - Dependent Signaling.

    Directory of Open Access Journals (Sweden)

    Marcus R Streit

    Full Text Available Inhibition of β-adrenergic signalling plays a key role in treatment of heart failure. Gsα is essential for β-adrenergic signal transduction. In order to reduce side-effects of beta-adrenergic inhibition diminishing β-adrenergic signalling in the heart at the level of Gsα is a promising option.We analyzed the influence of Gsα on regulation of myocardial function and development of cardiac hypertrophy, using a transgenic mouse model (C57BL6/J mice overexpressing a dominant negative Gsα-mutant under control of the α-MHC-promotor. Cardiac phenotype was characterized in vivo and in vitro and under acute and chronic β-adrenergic stimulation. At rest, Gsα-DN-mice showed bradycardia (602 ± 13 vs. 660 ± 17 bpm, p<0.05 and decreased dp/dtmax (5037 ± 546- vs. 6835 ± 505 mmHg/s, p = 0.02. No significant differences were found regarding ejection fraction, heart weight and cardiomyocyte size. β-blockade by propranolol revealed no baseline differences of hemodynamic parameters between wildtype and Gsα-DN-mice. Acute adrenergic stimulation resulted in decreased β-adrenergic responsiveness in Gsα-DN-mice. Under chronic adrenergic stimulation, wildtype mice developed myocardial hypertrophy associated with increase of LV/BW-ratio by 23% (4.4 ± 0.2 vs. 3.5 ± 0.1 mg/g, p<0.01 and cardiac myocyte size by 24% (14927 ± 442 px vs. 12013 ± 583 px, p<0.001. In contrast, both parameters were unchanged in Gsα-DN-mice after chronic isoproterenol stimulation.Overexpression of a dominant negative mutant of Gsα leads to decreased β-adrenergic responsiveness and is protective against isoproterenol-induced hypertrophy. Thus, Gsα-DN-mice provide novel insights into β-adrenergic signal transduction and its modulation in myocardial overload and failure.

  19. GATA4-mediated cardiac hypertrophy induced by D-myo-inositol 1,4,5-tris-phosphate

    International Nuclear Information System (INIS)

    Zhu Zhiming; Zhu Shanjun; Liu Daoyan; Yu Zengping; Yang Yongjian; Giet, Markus van der; Tepel, Martin

    2005-01-01

    We evaluated the effects of D-myo-inositol 1,4,5-tris-phosphate on cardiac hypertrophy. D-myo-inositol 1,4,5-tris-phosphate augmented cardiac hypertrophy as evidenced by its effects on DNA synthesis, protein synthesis, and expression of immediate-early genes c-myc and c-fos, β-myosin heavy chain, and α-actin. The administration of D-myo-inositol 1,4,5-tris-phosphate increased the expression of nuclear factor of activated T-cells and cardiac-restricted zinc finger transcription factor (GATA4). Real-time quantitative RT-PCR showed that D-myo-inositol 1,4,5-tris-phosphate-induced GATA4 mRNA was significantly enhanced even in the presence of the calcineurin inhibitor, cyclosporine A. The effect of D-myo-inositol 1,4,5-tris-phosphate was blocked after inhibition of inositol-trisphosphate receptors but not after inhibition of c-Raf/mitogen-activated protein kinase kinase (MEK)/mitogen-activated protein kinase (ERK) or p38 mitogen-activated protein kinase pathways. The study shows that D-myo-inositol 1,4,5-tris-phosphate-induced cardiac hypertrophy is mediated by GATA4 but independent from the calcineurin pathway

  20. Elevated Levels of Asymmetric Dimethylarginine (ADMA in the Pericardial Fluid of Cardiac Patients Correlate with Cardiac Hypertrophy.

    Directory of Open Access Journals (Sweden)

    Zoltan Nemeth

    Full Text Available Pericardial fluid (PF contains several biologically active substances, which may provide information regarding the cardiac conditions. Nitric oxide (NO has been implicated in cardiac remodeling. We hypothesized that L-arginine (L-Arg precursor of NO-synthase (NOS and asymmetric dimethylarginine (ADMA, an inhibitor of NOS, are present in PF of cardiac patients and their altered levels may contribute to altered cardiac morphology.L-Arg and ADMA concentrations in plasma and PF, and echocardiographic parameters of patients undergoing coronary artery bypass graft (CABG, n = 28 or valve replacement (VR, n = 25 were determined.We have found LV hypertrophy in 35.7% of CABG, and 80% of VR patients. In all groups, plasma and PF L-Arg levels were higher than that of ADMA. Plasma L-Arg level was higher in CABG than VR (75.7 ± 4.6 μmol/L vs. 58.1 ± 4.9 μmol/L, p = 0.011, whereas PF ADMA level was higher in VR than CABG (0.9 ± 0.0 μmol/L vs. 0.7 ± 0.0 μmol/L, p = 0.009. L-Arg/ADMA ratio was lower in the VR than CABG (VRplasma: 76.1 ± 6.6 vs. CABGplasma: 125.4 ± 10.7, p = 0.004; VRPF: 81.7 ± 4.8 vs. CABGPF: 110.4 ± 7.2, p = 0.009. There was a positive correlation between plasma L-Arg and ADMA in CABG (r = 0.539, p = 0.015; and plasma and PF L-Arg in CABG (r = 0.357, p = 0.031; and plasma and PF ADMA in VR (r = 0.529, p = 0.003; and PF L-Arg and ADMA in both CABG and VR (CABG: r = 0.468, p = 0.006; VR: r = 0.371, p = 0.034. The following echocardiographic parameters were higher in VR compared to CABG: interventricular septum (14.7 ± 0.5 mm vs. 11.9 ± 0.4 mm, p = 0.000; posterior wall thickness (12.6 ± 0.3 mm vs. 11.5 ± 0.2 mm, p = 0.000; left ventricular (LV mass (318.6 ± 23.5 g vs. 234.6 ± 12.3 g, p = 0.007; right ventricular (RV (33.9 ± 0.9 cm2 vs. 29.7 ± 0.7 cm2, p = 0.004; right atrial (18.6 ± 1.0 cm2 vs. 15.4 ± 0.6 cm2, p = 0.020; left atrial (19.8 ± 1.0 cm2 vs. 16.9 ± 0.6 cm2, p = 0.033 areas. There was a positive correlation

  1. Neurotransmission to parasympathetic cardiac vagal neurons in the brain stem is altered with left ventricular hypertrophy-induced heart failure.

    Science.gov (United States)

    Cauley, Edmund; Wang, Xin; Dyavanapalli, Jhansi; Sun, Ke; Garrott, Kara; Kuzmiak-Glancy, Sarah; Kay, Matthew W; Mendelowitz, David

    2015-10-01

    Hypertension, cardiac hypertrophy, and heart failure (HF) are widespread and debilitating cardiovascular diseases that affect nearly 23 million people worldwide. A distinctive hallmark of these cardiovascular diseases is autonomic imbalance, with increased sympathetic activity and decreased parasympathetic vagal tone. Recent device-based approaches, such as implantable vagal stimulators that stimulate a multitude of visceral sensory and motor fibers in the vagus nerve, are being evaluated as new therapeutic approaches for these and other diseases. However, little is known about how parasympathetic activity to the heart is altered with these diseases, and this lack of knowledge is an obstacle in the goal of devising selective interventions that can target and selectively restore parasympathetic activity to the heart. To identify the changes that occur within the brain stem to diminish the parasympathetic cardiac activity, left ventricular hypertrophy was elicited in rats by aortic pressure overload using a transaortic constriction approach. Cardiac vagal neurons (CVNs) in the brain stem that generate parasympathetic activity to the heart were identified with a retrograde tracer and studied using patch-clamp electrophysiological recordings in vitro. Animals with left cardiac hypertrophy had diminished excitation of CVNs, which was mediated both by an augmented frequency of spontaneous inhibitory GABAergic neurotransmission (with no alteration of inhibitory glycinergic activity) as well as a diminished amplitude and frequency of excitatory neurotransmission to CVNs. Opportunities to alter these network pathways and neurotransmitter receptors provide future targets of intervention in the goal to restore parasympathetic activity and autonomic balance to the heart in cardiac hypertrophy and other cardiovascular diseases. Copyright © 2015 the American Physiological Society.

  2. Toll‐Like Receptor‐2 Mediates Adaptive Cardiac Hypertrophy in Response to Pressure Overload Through Interleukin‐1β Upregulation via Nuclear Factor κB Activation

    Science.gov (United States)

    Higashikuni, Yasutomi; Tanaka, Kimie; Kato, Megumi; Nureki, Osamu; Hirata, Yasunobu; Nagai, Ryozo; Komuro, Issei; Sata, Masataka

    2013-01-01

    Background Inflammation is induced in the heart during the development of cardiac hypertrophy. The initiating mechanisms and the role of inflammation in cardiac hypertrophy, however, remain unclear. Toll‐like receptor‐2 (TLR2) recognizes endogenous molecules that induce noninfectious inflammation. Here, we examined the role of TLR2‐mediated inflammation in cardiac hypertrophy. Methods and Results At 2 weeks after transverse aortic constriction, Tlr2−/− mice showed reduced cardiac hypertrophy and fibrosis with greater left ventricular dilatation and impaired systolic function compared with wild‐type mice, which indicated impaired cardiac adaptation in Tlr2−/− mice. Bone marrow transplantation experiment revealed that TLR2 expressed in the heart, but not in bone marrow–derived cells, is important for cardiac adaptive response to pressure overload. In vitro experiments demonstrated that TLR2 signaling can induce cardiomyocyte hypertrophy and fibroblast and vascular endothelial cell proliferation through nuclear factor–κB activation and interleukin‐1β upregulation. Systemic administration of a nuclear factor–κB inhibitor or anti–interleukin‐1β antibodies to wild‐type mice resulted in impaired adaptive cardiac hypertrophy after transverse aortic constriction. We also found that heat shock protein 70, which was increased in murine plasma after transverse aortic constriction, can activate TLR2 signaling in vitro and in vivo. Systemic administration of anti–heat shock protein 70 antibodies to wild‐type mice impaired adaptive cardiac hypertrophy after transverse aortic constriction. Conclusions Our results demonstrate that TLR2‐mediated inflammation induced by extracellularly released heat shock protein 70 is essential for adaptive cardiac hypertrophy in response to pressure overload. Thus, modulation of TLR2 signaling in the heart may provide a novel strategy for treating heart failure due to inadequate adaptation to hemodynamic

  3. Experimental and Human Evidence for Lipocalin-2 (Neutrophil Gelatinase-Associated Lipocalin [NGAL]) in the Development of Cardiac Hypertrophy and heart failure.

    Science.gov (United States)

    Marques, Francine Z; Prestes, Priscilla R; Byars, Sean G; Ritchie, Scott C; Würtz, Peter; Patel, Sheila K; Booth, Scott A; Rana, Indrajeetsinh; Minoda, Yosuke; Berzins, Stuart P; Curl, Claire L; Bell, James R; Wai, Bryan; Srivastava, Piyush M; Kangas, Antti J; Soininen, Pasi; Ruohonen, Saku; Kähönen, Mika; Lehtimäki, Terho; Raitoharju, Emma; Havulinna, Aki; Perola, Markus; Raitakari, Olli; Salomaa, Veikko; Ala-Korpela, Mika; Kettunen, Johannes; McGlynn, Maree; Kelly, Jason; Wlodek, Mary E; Lewandowski, Paul A; Delbridge, Lea M; Burrell, Louise M; Inouye, Michael; Harrap, Stephen B; Charchar, Fadi J

    2017-06-14

    Cardiac hypertrophy increases the risk of developing heart failure and cardiovascular death. The neutrophil inflammatory protein, lipocalin-2 (LCN2/NGAL), is elevated in certain forms of cardiac hypertrophy and acute heart failure. However, a specific role for LCN2 in predisposition and etiology of hypertrophy and the relevant genetic determinants are unclear. Here, we defined the role of LCN2 in concentric cardiac hypertrophy in terms of pathophysiology, inflammatory expression networks, and genomic determinants. We used 3 experimental models: a polygenic model of cardiac hypertrophy and heart failure, a model of intrauterine growth restriction and Lcn2 -knockout mouse; cultured cardiomyocytes; and 2 human cohorts: 114 type 2 diabetes mellitus patients and 2064 healthy subjects of the YFS (Young Finns Study). In hypertrophic heart rats, cardiac and circulating Lcn2 was significantly overexpressed before, during, and after development of cardiac hypertrophy and heart failure. Lcn2 expression was increased in hypertrophic hearts in a model of intrauterine growth restriction, whereas Lcn2 -knockout mice had smaller hearts. In cultured cardiomyocytes, Lcn2 activated molecular hypertrophic pathways and increased cell size, but reduced proliferation and cell numbers. Increased LCN2 was associated with cardiac hypertrophy and diastolic dysfunction in diabetes mellitus. In the YFS, LCN2 expression was associated with body mass index and cardiac mass and with levels of inflammatory markers. The single-nucleotide polymorphism, rs13297295, located near LCN2 defined a significant cis -eQTL for LCN2 expression. Direct effects of LCN2 on cardiomyocyte size and number and the consistent associations in experimental and human analyses reveal a central role for LCN2 in the ontogeny of cardiac hypertrophy and heart failure. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  4. Trpm4 gene invalidation leads to cardiac hypertrophy and electrophysiological alterations.

    Directory of Open Access Journals (Sweden)

    Marie Demion

    Full Text Available RATIONALE: TRPM4 is a non-selective Ca2+-activated cation channel expressed in the heart, particularly in the atria or conduction tissue. Mutations in the Trpm4 gene were recently associated with several human conduction disorders such as Brugada syndrome. TRPM4 channel has also been implicated at the ventricular level, in inotropism or in arrhythmia genesis due to stresses such as ß-adrenergic stimulation, ischemia-reperfusion, and hypoxia re-oxygenation. However, the physiological role of the TRPM4 channel in the healthy heart remains unclear. OBJECTIVES: We aimed to investigate the role of the TRPM4 channel on whole cardiac function with a Trpm4 gene knock-out mouse (Trpm4-/- model. METHODS AND RESULTS: Morpho-functional analysis revealed left ventricular (LV eccentric hypertrophy in Trpm4-/- mice, with an increase in both wall thickness and chamber size in the adult mouse (aged 32 weeks when compared to Trpm4+/+ littermate controls. Immunofluorescence on frozen heart cryosections and qPCR analysis showed no fibrosis or cellular hypertrophy. Instead, cardiomyocytes in Trpm4-/- mice were smaller than Trpm4+/+with a higher density. Immunofluorescent labeling for phospho-histone H3, a mitosis marker, showed that the number of mitotic myocytes was increased 3-fold in the Trpm4-/-neonatal stage, suggesting hyperplasia. Adult Trpm4-/- mice presented multilevel conduction blocks, as attested by PR and QRS lengthening in surface ECGs and confirmed by intracardiac exploration. Trpm4-/-mice also exhibited Luciani-Wenckebach atrioventricular blocks, which were reduced following atropine infusion, suggesting paroxysmal parasympathetic overdrive. In addition, Trpm4-/- mice exhibited shorter action potentials in atrial cells. This shortening was unrelated to modifications of the voltage-gated Ca2+ or K+ currents involved in the repolarizing phase. CONCLUSIONS: TRPM4 has pleiotropic roles in the heart, including the regulation of conduction and cellular

  5. Matrilin-3 chondrodysplasia mutations cause attenuated chondrogenesis, premature hypertrophy and aberrant response to TGF-β in chondroprogenitor cells.

    Science.gov (United States)

    Jayasuriya, Chathuraka T; Zhou, Fiona H; Pei, Ming; Wang, Zhengke; Lemme, Nicholas J; Haines, Paul; Chen, Qian

    2014-08-21

    Studies have shown that mutations in the matrilin-3 gene (MATN3) are associated with multiple epiphyseal dysplasia (MED) and spondyloepimetaphyseal dysplasia (SEMD). We tested whether MATN3 mutations affect the differentiation of chondroprogenitor and/or mesenchymal stem cells, which are precursors to chondrocytes. ATDC5 chondroprogenitors stably expressing wild-type (WT) MATN3 underwent spontaneous chondrogenesis. Expression of chondrogenic markers collagen II and aggrecan was inhibited in chondroprogenitors carrying the MED or SEMD MATN3 mutations. Hypertrophic marker collagen X remained attenuated in WT MATN3 chondroprogenitors, whereas its expression was elevated in chondroprogenitors expressing the MED or SEMD mutant MATN3 gene suggesting that these mutations inhibit chondrogenesis but promote hypertrophy. TGF-β treatment failed to rescue chondrogenesis markers but dramatically increased collagen X mRNA expression in mutant MATN3 expressing chondroprogenitors. Synovium derived mesenchymal stem cells harboring the SEMD mutation exhibited lower glycosaminoglycan content than those of WT MATN3 in response to TGF-β. Our results suggest that the properties of progenitor cells harboring MATN3 chondrodysplasia mutations were altered, as evidenced by attenuated chondrogenesis and premature hypertrophy. TGF-β treatment failed to completely rescue chondrogenesis but instead induced hypertrophy in mutant MATN3 chondroprogenitors. Our data suggest that chondroprogenitor cells should be considered as a potential target of chondrodysplasia therapy.

  6. Matrilin-3 Chondrodysplasia Mutations Cause Attenuated Chondrogenesis, Premature Hypertrophy and Aberrant Response to TGF-β in Chondroprogenitor Cells

    Directory of Open Access Journals (Sweden)

    Chathuraka T. Jayasuriya

    2014-08-01

    Full Text Available Studies have shown that mutations in the matrilin-3 gene (MATN3 are associated with multiple epiphyseal dysplasia (MED and spondyloepimetaphyseal dysplasia (SEMD. We tested whether MATN3 mutations affect the differentiation of chondroprogenitor and/or mesenchymal stem cells, which are precursors to chondrocytes. ATDC5 chondroprogenitors stably expressing wild-type (WT MATN3 underwent spontaneous chondrogenesis. Expression of chondrogenic markers collagen II and aggrecan was inhibited in chondroprogenitors carrying the MED or SEMD MATN3 mutations. Hypertrophic marker collagen X remained attenuated in WT MATN3 chondroprogenitors, whereas its expression was elevated in chondroprogenitors expressing the MED or SEMD mutant MATN3 gene suggesting that these mutations inhibit chondrogenesis but promote hypertrophy. TGF-β treatment failed to rescue chondrogenesis markers but dramatically increased collagen X mRNA expression in mutant MATN3 expressing chondroprogenitors. Synovium derived mesenchymal stem cells harboring the SEMD mutation exhibited lower glycosaminoglycan content than those of WT MATN3 in response to TGF-β. Our results suggest that the properties of progenitor cells harboring MATN3 chondrodysplasia mutations were altered, as evidenced by attenuated chondrogenesis and premature hypertrophy. TGF-β treatment failed to completely rescue chondrogenesis but instead induced hypertrophy in mutant MATN3 chondroprogenitors. Our data suggest that chondroprogenitor cells should be considered as a potential target of chondrodysplasia therapy.

  7. Connective Tissue Growth Factor Transgenic Mouse Develops Cardiac Hypertrophy, Lean Body Mass and Alopecia.

    Science.gov (United States)

    Nuglozeh, Edem

    2017-07-01

    compelled us to work at the level of hemizygosity. The histological characterisation of left ventricle shows cardiac hypertrophy together with decrease in body mass and alopecia, this compared to the wild type. The immunohistochemical staining of aorta root showed hyperplasia with increased expression and colocalisation of renin and CTGF demonstrating that CTGF may be involved in vascular tone control. Genetic engineering is a noble avenue to investigate the function of new or existing genes. Our data have shown that CTGF transgenic mouse has cardiac and aorta root hypertrophy and abnormal renin accumulation in aorta root as compared to the wild-type animals. The transgenic animals developed alopecia and lean body mass adding two new functions on pre-existing CTGF multiple functions.

  8. Hypertrophy of Neurons Within Cardiac Ganglia in Human, Canine, and Rat Heart Failure: The Potential Role of Nerve Growth Factor

    OpenAIRE

    Singh, Sanjay; Sayers, Scott; Walter, James S.; Thomas, Donald; Dieter, Robert S.; Nee, Lisa M.; Wurster, Robert D.

    2013-01-01

    Background Autonomic imbalances including parasympathetic withdrawal and sympathetic overactivity are cardinal features of heart failure regardless of etiology; however, mechanisms underlying these imbalances remain unknown. Animal model studies of heart and visceral organ hypertrophy predict that nerve growth factor levels should be elevated in heart failure; whether this is so in human heart failure, though, remains unclear. We tested the hypotheses that neurons in cardiac ganglia are hyper...

  9. The Impact of a Non-Functional Thyroid Receptor Beta upon Triiodotironine-Induced Cardiac Hypertrophy in Mice

    Directory of Open Access Journals (Sweden)

    Güínever Eustáquio do Império

    2015-08-01

    Full Text Available Background/Aims: Thyroid hormone (TH signalling is critical for heart function. The heart expresses thyroid hormone receptors (THRs; THRα1 and THRβ1. We aimed to investigate the regulation mechanisms of the THRβ isoform, its association with gene expression changes and implications for cardiac function. Methods: The experiments were performed using adult male mice expressing TRβΔ337T, which contains the Δ337T mutation of the human THRB gene and impairs ligand binding. Cardiac function and RNA expression were studied after hypo-or hyperthyroidism inductions. T3-induced cardiac hypertrophy was not observed in TRβΔ337T mice, showing the fundamental role of THRβ in cardiac hypertrophy. Results: We identified a group of independently regulated THRβ genes, which includes Adrb2, Myh7 and Hcn2 that were normally regulated by T3 in the TRβΔ337T group. However, Adrb1, Myh6 and Atp2a2 were regulated via THRβ. The TRβΔ337T mice exhibited a contractile deficit, decreased ejection fraction and stroke volume, as assessed by echocardiography. In our model, miR-208a and miR-199a may contribute to THRβ-mediated cardiac hypertrophy, as indicated by the absence of T3-regulated ventricular expression in TRβΔ337T mice. Conclusion: THRβ has important role in the regulation of specific mRNA and miRNA in T3-induced cardiac hypertrophic growth and in the alteration of heart functions.

  10. Patient position alters attenuation effects in multipinhole cardiac SPECT.

    Science.gov (United States)

    Timmins, Rachel; Ruddy, Terrence D; Wells, R Glenn

    2015-03-01

    Dedicated cardiac cameras offer improved sensitivity over conventional SPECT cameras. Sensitivity gains are obtained by large numbers of detectors and novel collimator arrangements such as an array of multiple pinholes that focus on the heart. Pinholes lead to variable amounts of attenuation as a source is moved within the camera field of view. This study evaluated the effects of this variable attenuation on myocardial SPECT images. Computer simulations were performed for a set of nine point sources distributed in the left ventricular wall (LV). Sources were placed at the location of the heart in both an anthropomorphic and a water-cylinder computer phantom. Sources were translated in x, y, and z by up to 5 cm from the center. Projections were simulated with and without attenuation and the changes in attenuation were compared. A LV with an inferior wall defect was also simulated in both phantoms over the same range of positions. Real camera data were acquired on a Discovery NM530c camera (GE Healthcare, Haifa, Israel) for five min in list-mode using an anthropomorphic phantom (DataSpectrum, Durham, NC) with 100 MBq of Tc-99m in the LV. Images were taken over the same range of positions as the simulations and were compared based on the summed perfusion score (SPS), defect width, and apparent defect uptake for each position. Point sources in the water phantom showed absolute changes in attenuation of ≤8% over the range of positions and relative changes of ≤5% compared to the apex. In the anthropomorphic computer simulations, absolute change increased to 20%. The changes in relative attenuation caused a change in SPS of position-dependent changes were removed with attenuation correction. Translation of a source relative to a multipinhole camera caused only small changes in homogeneous phantoms with SPS changing position-dependent changes in attenuation.

  11. Rosemary supplementation (Rosmarinus oficinallis L. attenuates cardiac remodeling after myocardial infarction in rats.

    Directory of Open Access Journals (Sweden)

    Bruna Paola Murino Rafacho

    Full Text Available Myocardial infarction (MI is one of the leading causes of morbidity and mortality worldwide. Dietary intervention on adverse cardiac remodeling after MI has significant clinical relevance. Rosemary leaves are a natural product with antioxidant/anti-inflammatory properties, but its effect on morphology and ventricular function after MI is unknown.To determine the effect of the dietary supplementation of rosemary leaves on cardiac remodeling after MI, male Wistar rats were divided into 6 groups after sham procedure or experimental induced MI: 1 Sham group fed standard chow (SR0, n = 23; 2 Sham group fed standard chow supplemented with 0.02% rosemary (R002 (SR002, n = 23; 3 Sham group fed standard chow supplemented with 0.2% rosemary (R02 (SR02, n = 22; 4 group submitted to MI and fed standard chow (IR0, n = 13; 5 group submitted to MI and fed standard chow supplemented with R002 (IR002, n = 8; and 6 group submitted to MI and fed standard chow supplemented with R02 (IR02, n = 9. After 3 months of the treatment, systolic pressure evaluation, echocardiography and euthanasia were performed. Left ventricular samples were evaluated for: fibrosis, cytokine levels, apoptosis, energy metabolism enzymes, and oxidative stress. Rosemary dietary supplementation attenuated cardiac remodeling by improving energy metabolism and decreasing oxidative stress. Rosemary supplementation of 0.02% improved diastolic function and reduced hypertrophy after MI. Regarding rosemary dose, 0.02% and 0.2% for rats are equivalent to 11 mg and 110 mg for humans, respectively.Our findings support further investigations of the rosemary use as adjuvant therapy in adverse cardiac remodeling.

  12. Intermittent cardiac overload results in adaptive hypertrophy and provides protection against left ventricular acute pressure overload insult.

    Science.gov (United States)

    Moreira-Gonçalves, Daniel; Henriques-Coelho, Tiago; Fonseca, Hélder; Ferreira, Rita; Padrão, Ana Isabel; Santa, Cátia; Vieira, Sara; Silva, Ana Filipa; Amado, Francisco; Leite-Moreira, Adelino; Duarte, José Alberto

    2015-09-01

    The present study aimed to test whether a chronic intermittent workload could induce an adaptive cardiac phenotype Chronic intermittent workload induced features of adaptive hypertrophy This was paralleled by protection against acute pressure overload insult The heart may adapt favourably to balanced demands, regardless of the nature of the stimuli. The present study aimed to test whether submitting the healthy heart to intermittent and tolerable amounts of workload, independently of its nature, could result in an adaptive cardiac phenotype. Male Wistar rats were subjected to treadmill running (Ex) (n = 20), intermittent cardiac overload with dobutamine (ITO) (2 mg kg(-1) , s.c.; n = 20) or placebo administration (Cont) (n = 20) for 5 days week(-1) for 8 weeks. Animals were then killed for histological and biochemical analysis or subjected to left ventricular haemodynamic evaluation under baseline conditions, in response to isovolumetric contractions and to sustained LV acute pressure overload (35% increase in peak systolic pressure maintained for 2 h). Baseline cardiac function was enhanced only in Ex, whereas the response to isovolumetric heartbeats was improved in both ITO and Ex. By contrast to the Cont group, in which rats developed diastolic dysfunction with sustained acute pressure overload, ITO and Ex showed increased tolerance to this stress test. Both ITO and Ex developed cardiomyocyte hypertrophy without fibrosis, no overexpression of osteopontin-1 or β-myosin heavy chain, and increased expression of sarcoplasmic reticulum Ca(2+) protein. Regarding hypertrophic pathways, ITO and Ex showed activation of the protein kinase B/mammalian target of rapamycin pathway but not calcineurin. Mitochondrial complex IV and V activities were also increased in ITO and Ex. Chronic submission to controlled intermittent cardiac overload, independently of its nature, results in an adaptive cardiac phenotype. Features of the cardiac overload, such as the duration and

  13. Patient position alters attenuation effects in multipinhole cardiac SPECT

    International Nuclear Information System (INIS)

    Timmins, Rachel; Ruddy, Terrence D.; Wells, R. Glenn

    2015-01-01

    Purpose: Dedicated cardiac cameras offer improved sensitivity over conventional SPECT cameras. Sensitivity gains are obtained by large numbers of detectors and novel collimator arrangements such as an array of multiple pinholes that focus on the heart. Pinholes lead to variable amounts of attenuation as a source is moved within the camera field of view. This study evaluated the effects of this variable attenuation on myocardial SPECT images. Methods: Computer simulations were performed for a set of nine point sources distributed in the left ventricular wall (LV). Sources were placed at the location of the heart in both an anthropomorphic and a water-cylinder computer phantom. Sources were translated in x, y, and z by up to 5 cm from the center. Projections were simulated with and without attenuation and the changes in attenuation were compared. A LV with an inferior wall defect was also simulated in both phantoms over the same range of positions. Real camera data were acquired on a Discovery NM530c camera (GE Healthcare, Haifa, Israel) for five min in list-mode using an anthropomorphic phantom (DataSpectrum, Durham, NC) with 100 MBq of Tc-99m in the LV. Images were taken over the same range of positions as the simulations and were compared based on the summed perfusion score (SPS), defect width, and apparent defect uptake for each position. Results: Point sources in the water phantom showed absolute changes in attenuation of ≤8% over the range of positions and relative changes of ≤5% compared to the apex. In the anthropomorphic computer simulations, absolute change increased to 20%. The changes in relative attenuation caused a change in SPS of <1.5 for the water phantom but up to 4.2 in the anthropomorphic phantom. Changes were larger for axial than for transverse translations. These results were supported by SPS changes of up to six seen in the physical anthropomorphic phantom for axial translations. Defect width was also seen to significantly increase. The

  14. Transgenic over-expression of YY1 induces pathologic cardiac hypertrophy in a sex-specific manner

    Science.gov (United States)

    Stauffer, Brian L.; Dockstader, Karen; Russell, Gloria; Hijmans, Jamie; Walker, Lisa; Cecil, Mackenzie; Demos-Davies, Kimberly; Medway, Allen; McKinsey, Timothy A.; Sucharov, Carmen C.

    2015-01-01

    YY1 can activate or repress transcription of various genes. In cardiac myocytes in culture YY1 has been shown to regulate expression of several genes involved in myocyte pathology. YY1 can also acutely protect the heart against detrimental changes in gene expression. In this study we show that cardiac over-expression of YY1 induces pathologic cardiac hypertrophy in male mice, measured by changes in gene expression and lower ejection fraction/fractional shortening. In contrast, female animals are protected against pathologic gene expression changes and cardiac dysfunction. Furthermore, we show that YY1 regulates, in a sex-specific manner, the expression of mammalian enable (Mena), a factor that regulates cytoskeletal actin dynamics and whose expression is increased in several models of cardiac pathology, and that Mena expression in humans with heart failure is sex-dependent. Finally, we show that sex differences in YY1 expression are also observed in human heart failure. In summary, this is the first work to show that YY1 has a sex-specific effect in the regulation of cardiac pathology. PMID:25935483

  15. Cardiac Hypertrophy and Brain Natriuretic Peptide Levels in an Ovariectomized Rat Model Fed a High-Fat Diet

    Science.gov (United States)

    Goncalves, Gleisy Kelly; de Oliveira, Thiago Henrique Caldeira; de Oliveira Belo, Najara

    2017-01-01

    Background Heart failure in women increases around the time of menopause when high-fat diets may result in obesity. The heart produces brain natriuretic peptide (BNP), also known as B-type natriuretic peptide. This aims of this study were to assess cardiac hypertrophy and BNP levels in ovariectomized rats fed a high-fat diet. Material/Methods Forty-eight female Wistar rats were divided into four groups: sham-operated rats fed a control diet (SC) (n=12); ovariectomized rats fed a control diet (OC) (n=12); sham-operated rats fed a high-fat diet (SF) (n=12); and ovariectomized rats fed a high-fat diet (OF) (n=12). Body weight and blood pressure were measured weekly for 24 weeks. Rats were then euthanized, and plasma samples and heart tissue were studied for gene expression, hydroxyproline levels, and histological examination. Results A high-fat diet and ovariectomy (group OF) increased the weight body and the systolic blood pressure after three months and five months, respectively. Cardiomyocyte hypertrophy was associated with increased expression of ventricular BNP, decreased natriuretic peptide receptor (NPR)-A and increased levels of hydroxyproline and transforming growth factor (TGF)-β. The plasma levels of BNP and estradiol were inversely correlated; expression of estrogen receptor (ER)β and ERα were reduced. Conclusions The findings of this study showed that, in the ovariectomized rats fed a high-fat diet, the BNP-NPR-A receptor complex was involved in cardiac remodeling. BNP may be a marker of cardiac hypertrophy in this animal model. PMID:29249795

  16. Molecular and cellular characterization of cardiac overload-induced hypertrophy and failure

    NARCIS (Netherlands)

    Umar, Soban

    2009-01-01

    In neonatal rat ventricular cardiomyocytes (NRVCs), we activated integrins by RGD to test whether integrin stimulation produced hypertrophy. Effect of RGD was compared with pro-hypertrophic effects of phenylephrine (chapter 2). Ventricular failure is associated with disturbed collagen turnover.

  17. Angiotensin II type 2 receptors and cardiac hypertrophy in women with hypertrophic cardiomyopathy

    NARCIS (Netherlands)

    J. Deinum (Jacob); J.M. van Gool (Jeanette); M.J.M. Kofflard (Marcel); A.H.J. Danser (Jan); F.J. ten Cate (Folkert)

    2001-01-01

    textabstractThe development of left ventricular hypertrophy in subjects with hypertrophic cardiomyopathy (HCM) is variable, suggesting a role for modifying factors such as angiotensin II. Angiotensin II mediates both trophic and antitrophic effects, via angiotensin II type 1

  18. Adaptations to iron deficiency: cardiac functional responsiveness to norepinephrine, arterial remodeling, and the effect of beta-blockade on cardiac hypertrophy

    Directory of Open Access Journals (Sweden)

    Walker LeeAnn

    2002-01-01

    Full Text Available Abstract Background Iron deficiency (ID results in ventricular hypertrophy, believed to involve sympathetic stimulation. We hypothesized that with ID 1 intravenous norepinephrine would alter heart rate (HR and contractility, 2 abdominal aorta would be larger and more distensible, and 3 the beta-blocker propanolol would reduce hypertrophy. Methods 1 30 CD rats were fed an ID or replete diet for 1 week or 1 month. Norepinephrine was infused via jugular vein; pressure was monitored at carotid artery. Saline infusions were used as a control. The pressure trace was analyzed for HR, contractility, systolic and diastolic pressures. 2 Abdominal aorta catheters inflated the aorta, while digital microscopic images were recorded at stepwise pressures to measure arterial diameter and distensibility. 3 An additional 10 rats (5 ID, 5 control were given a daily injection of propanolol or saline. After 1 month, the hearts were excised and weighed. Results Enhanced contractility, but not HR, was associated with ID hypertrophic hearts. Systolic and diastolic blood pressures were consistent with an increase in arterial diameter associated with ID. Aortic diameter at 100 mmHg and distensibility were increased with ID. Propanolol was associated with an increase in heart to body mass ratio. Conclusions ID cardiac hypertrophy results in an increased inotropic, but not chronotropic response to the sympathetic neurotransmitter, norepinephrine. Increased aortic diameter is consistent with a flow-dependent vascular remodeling; increased distensibility may reflect decreased vascular collagen content. The failure of propanolol to prevent hypertrophy suggests that ID hypertrophy is not mediated via beta-adrenergic neurotransmission.

  19. Cold stress accentuates pressure overload-induced cardiac hypertrophy and contractile dysfunction: role of TRPV1/AMPK-mediated autophagy.

    Science.gov (United States)

    Lu, Songhe; Xu, Dezhong

    2013-12-06

    Severe cold exposure and pressure overload are both known to prompt oxidative stress and pathological alterations in the heart although the interplay between the two remains elusive. Transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel activated in response to a variety of exogenous and endogenous physical and chemical stimuli including heat and capsaicin. The aim of this study was to examine the impact of cold exposure on pressure overload-induced cardiac pathological changes and the mechanism involved. Adult male C57 mice were subjected to abdominal aortic constriction (AAC) prior to exposure to cold temperature (4 °C) for 4 weeks. Cardiac geometry and function, levels of TRPV1, mitochondrial, and autophagy-associated proteins including AMPK, mTOR, LC3B, and P62 were evaluated. Sustained cold stress triggered cardiac hypertrophy, compromised depressed myocardial contractile capacity including lessened fractional shortening, peak shortening, and maximal velocity of shortening/relengthening, enhanced ROS production, and mitochondrial injury, the effects of which were negated by the TRPV1 antagonist SB366791. Western blot analysis revealed upregulated TRPV1 level and AMPK phosphorylation, enhanced ratio of LC3II/LC3I, and downregulated P62 following cold exposure. Cold exposure significantly augmented AAC-induced changes in TRPV1, phosphorylation of AMPK, LC3 isoform switch, and p62, the effects of which were negated by SB366791. In summary, these data suggest that cold exposure accentuates pressure overload-induced cardiac hypertrophy and contractile defect possibly through a TRPV1 and autophagy-dependent mechanism. Copyright © 2013. Published by Elsevier Inc.

  20. Characterizing the role of endothelin-1 in the progression of cardiac hypertrophy in aryl hydrocarbon receptor (AhR) null mice

    International Nuclear Information System (INIS)

    Lund, Amie K.; Goens, M. Beth; Nunez, Bethany A.; Walker, Mary K.

    2006-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor characterized to play a role in detection and adaptation to environmental stimuli. Genetic deletion of AhR results in hypertension, and cardiac hypertrophy and fibrosis, associated with elevated plasma angiotensin II (Ang II) and endothelin-1 (ET-1), thus AhR appears to contribute to cardiovascular homeostasis. In these studies, we tested the hypothesis that ET-1 mediates cardiovascular pathology in AhR null mice via ET A receptor activation. First, we determine the time courses of cardiac hypertrophy, and of plasma and tissue ET-1 expression in AhR wildtype and null mice. AhR null mice exhibited increases in heart-to-body weight ratio and age-related expression of cardiac hypertrophy markers, β-myosin heavy chain (β-MHC), and atrial natriuretic factor (ANF), which were significant at 2 months. Similarly, plasma and tissue ET-1 expression was significantly elevated at 2 months and increased further with age. Second, AhR null mice were treated with ET A receptor antagonist, BQ-123 (100 nmol/kg/day), for 7, 28, or 58 days and blood pressure, cardiac fibrosis, and cardiac hypertrophy assessed, respectively. BQ-123 for 7 days significantly reduced mean arterial pressure in conscious, catheterized mice. BQ-123 for 28 days significantly reduced the histological appearance of cardiac fibrosis. Treatment for 58 days significantly reduced cardiac mass, assessed by heart weight, echocardiography, and β-MHC and ANF expression; and reduced cardiac fibrosis as determined by osteopontin and collagen I mRNA expression. These findings establish ET-1 and the ET A receptor as primary determinants of hypertension and cardiac pathology in AhR null mice

  1. Phosphorylation of pRb by cyclin D kinase is necessary for development of cardiac hypertrophy

    DEFF Research Database (Denmark)

    Hinrichsen, Rebecca; Hansen, A.H.; Haunsø, S.

    2008-01-01

    /6-phosphorylated retinoblastoma protein (pRb) during hypertrophy and expression of an unphosphorylatable pRb mutant impaired hypertrophic growth in cardiomyocytes. Transcription factor E2F was activated by hypertrophic elicitors but activation was impaired by pharmacological inhibition of cyclin D-cdk4...

  2. TVP1022 attenuates cardiac remodeling and kidney dysfunction in experimental volume overload-induced congestive heart failure.

    Science.gov (United States)

    Abassi, Zaid A; Barac, Yaron D; Kostin, Sawa; Roguin, Ariel; Ovcharenko, Elena; Awad, Hoda; Blank, Ayelet; Bar-Am, Orit; Amit, Tamar; Schaper, Jutta; Youdim, Moussa; Binah, Ofer

    2011-07-01

    Despite the availability of many pharmacological and mechanical therapies, the mortality rate among patients with congestive heart failure (CHF) remains high. We tested the hypothesis that TVP1022 (the S-isomer of rasagiline; Azilect), a neuroprotective and cytoprotective molecule, is also cardioprotective in the settings of experimental CHF in rats. In rats with volume overload-induced CHF, we investigated the therapeutic efficacy of TVP1022 (7.5 mg/kg) on cardiac function, structure, biomarkers, and kidney function. Treatment with TVP1022 for 7 days before CHF induction prevented the increase in left ventricular end-diastolic area and end-systolic area, and the decrease in fractional shortening measured 14 days after CHF induction. Additionally, TVP1022 pretreatment attenuated CHF-induced cardiomyocyte hypertrophy, fibrosis, plasma and ventricular B-type natriuretic peptide levels, and reactive oxygen species expression. Further, in CHF rats, TVP1022 decreased cytochrome c and caspase 3 expression, thereby contributing to the cardioprotective efficacy of the drug. TVP1022 also enhanced the urinary Na(+) excretion and improved the glomerular filtration rate. Similar cardioprotective effects were obtained when TVP1022 was given to rats after CHF induction. TVP1022 attenuated the adverse functional, structural, and molecular alterations in CHF, rendering this drug a promising candidate for improving cardiac and renal function in this disease state.

  3. Importance of leptin signaling and signal transducer and activator of transcription-3 activation in mediating the cardiac hypertrophy associated with obesity.

    Science.gov (United States)

    Leifheit-Nestler, Maren; Wagner, Nana-Maria; Gogiraju, Rajinikanth; Didié, Michael; Konstantinides, Stavros; Hasenfuss, Gerd; Schäfer, Katrin

    2013-07-11

    The adipokine leptin and its receptor are expressed in the heart, and leptin has been shown to promote cardiomyocyte hypertrophy in vitro. Obesity is associated with hyperleptinemia and hypothalamic leptin resistance as well as an increased risk to develop cardiac hypertrophy and heart failure. However, the role of cardiac leptin signaling in mediating the cardiomyopathy associated with increased body weight is unclear, in particular, whether it develops subsequently to cardiac leptin resistance or overactivation of hypertrophic signaling pathways via elevated leptin levels. The cardiac phenotype of high-fat diet (HFD)-induced obese wildtype (WT) mice was examined and compared to age-matched genetically obese leptin receptor (LepR)-deficient (LepRdb/db) or lean WT mice. To study the role of leptin-mediated STAT3 activation during obesity-induced cardiac remodeling, mice in which tyrosine residue 1138 within LepR had been replaced with a serine (LepRS1138) were also analyzed. Obesity was associated with hyperleptinemia and elevated cardiac leptin expression in both diet-induced and genetically obese mice. Enhanced LepR and STAT3 phosphorylation levels were detected in hearts of obese WT mice, but not in those with LepR mutations. Moreover, exogenous leptin continued to induce cardiac STAT3 activation in diet-induced obese mice. Although echocardiography revealed signs of cardiac hypertrophy in all obese mice, the increase in left ventricular (LV) mass and diameter was significantly more pronounced in LepRS1138 animals. LepRS1138 mice also exhibited an increased activation of signaling proteins downstream of LepR, including Jak2 (1.8-fold), Src kinase (1.7-fold), protein kinase B (1.3-fold) or C (1.6-fold). Histological analysis of hearts revealed that the inability of leptin to activate STAT3 in LepRdb/db and LepRS1138 mice was associated with reduced cardiac angiogenesis as well as increased apoptosis and fibrosis. Our findings suggest that hearts from obese mice

  4. Sildenafil attenuates pulmonary inflammation and fibrin deposition, mortality and right ventricular hypertrophy in neonatal hyperoxic lung injury

    Directory of Open Access Journals (Sweden)

    Boersma Hester

    2009-04-01

    Full Text Available Abstract Background Phosphodiesterase-5 inhibition with sildenafil has been used to treat severe pulmonary hypertension and bronchopulmonary dysplasia (BPD, a chronic lung disease in very preterm infants who were mechanically ventilated for respiratory distress syndrome. Methods Sildenafil treatment was investigated in 2 models of experimental BPD: a lethal neonatal model, in which rat pups were continuously exposed to hyperoxia and treated daily with sildenafil (50–150 mg/kg body weight/day; injected subcutaneously and a neonatal lung injury-recovery model in which rat pups were exposed to hyperoxia for 9 days, followed by 9 days of recovery in room air and started sildenafil treatment on day 6 of hyperoxia exposure. Parameters investigated include survival, histopathology, fibrin deposition, alveolar vascular leakage, right ventricular hypertrophy, and differential mRNA expression in lung and heart tissue. Results Prophylactic treatment with an optimal dose of sildenafil (2 × 50 mg/kg/day significantly increased lung cGMP levels, prolonged median survival, reduced fibrin deposition, total protein content in bronchoalveolar lavage fluid, inflammation and septum thickness. Treatment with sildenafil partially corrected the differential mRNA expression of amphiregulin, plasminogen activator inhibitor-1, fibroblast growth factor receptor-4 and vascular endothelial growth factor receptor-2 in the lung and of brain and c-type natriuretic peptides and the natriuretic peptide receptors NPR-A, -B, and -C in the right ventricle. In the lethal and injury-recovery model we demonstrated improved alveolarization and angiogenesis by attenuating mean linear intercept and arteriolar wall thickness and increasing pulmonary blood vessel density, and right ventricular hypertrophy (RVH. Conclusion Sildenafil treatment, started simultaneously with exposure to hyperoxia after birth, prolongs survival, increases pulmonary cGMP levels, reduces the pulmonary

  5. Exposure to low dose benzo[a]pyrene during early life stages causes symptoms similar to cardiac hypertrophy in adult zebrafish.

    Science.gov (United States)

    Huang, Lixing; Gao, Dongxu; Zhang, Youyu; Wang, Chonggang; Zuo, Zhenghong

    2014-07-15

    Growing evidence indicates that polycyclic aromatic hydrocarbons (PAHs) can lead to cardiac hypertrophy and recent research indicates that exposure to low dose crude oil during early embryonic development may lead to impacts on heart health at later life stages. The aim of this study was to evaluate whether exposure during early life stages to low dose benzo[a]pyrene (BaP), as a high-ring PAH, would lead to cardiac hypertrophy at later life stages. Zebrafish were exposed to low dose BaP until 96 hpf, then transferred to clean water and maintained for a year before histological and molecular biological analysis. Our results showed that exposure to low level BaP during early life stages increased heart weight to body weight ratios and deposited collagen in the heart of adult zebrafish. ANP, BNP and c-Myc were also induced in the heart of adult zebrafish by BaP. These results proved that low level BaP exposure during early life stages caused symptoms similar to cardiac hypertrophy in adult zebrafish. Our results displayed an elevated expression of CdC42, RhoA, p-ERK1, 2 and Rac1. Therefore, the mechanism of the cardiac hypertrophy caused by BaP exposure during early life stages may be through inducing the expression of CdC42, RhoA and Rac1, together with activating ERK1, 2. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Pressure overload stimulated cardiac hypertrophy leads to a rapid decrease in the mRNA for creatine kinase

    International Nuclear Information System (INIS)

    Boheler, K.; Popovich, B.; Dillmann, W.H.

    1987-01-01

    Cardiac hypertrophy (CH) leads to a decrease in creatine kinase (CK) enzymatic activity. To determine if the mRNA for CK also decreases with CH, they performed the following studies. Cardiac RNA was isolated from rats subjected to either abdominal aortic stenosis (AS) or sham surgery. Through Northern blot analysis, total cardiac RNA was quantitated with a CK specific 32 P-labelled cDNA clone. At 3 and 8 days post-constriction, the mRNA for CK decreases by 54.6 +/- 7% and 65.3 +/- 18% respectively, whereas the heart weight increases by 19% and 37% relative to controls. Further studies indicate that CK mRNA also decreases by 41.8% in hypothyroid rats (Tx) but decreases by a total of 68.1% in Tx rats subjected to 8 days of AS. Pressure overload stimulated CH leads to a rapid decrease in CK mRNA in normal and Tx rats. This CK mRNA decrease may account for the decreased efficiency of contraction seen in CH

  7. Endonuclease G is a novel determinant of cardiac hypertrophy and mitochondrial function

    Czech Academy of Sciences Publication Activity Database

    McDermott-Roe, Ch.; Ye, J.; Ahmed, R.; Sun, X. M.; Serafín, A.; Ware, J.; Bottolo, L.; Muckett, P.; Caňas, X.; Zhang, J.; Rowe, G. C.; Buchan, R.; Lu, H.; Braithwaite, A.; Mancini, M.; Hauton, D.; Martí, R.; García-Arumí, E.; Hubner, N.; Jacob, H.; Serikawa, T.; Zídek, Václav; Papoušek, František; Kolář, František; Cardona, M.; Ruiz-Meana, M.; García-Dorado, D.; Comella, J. X.; Felkin, L. E.; Barton, P. J. R.; Arany, Z.; Pravenec, Michal; Petretto, E.; Sanchis, D.; Cook, S.A.

    2011-01-01

    Roč. 478, č. 7367 (2011), s. 114-118 ISSN 0028-0836 R&D Projects: GA MŠk(CZ) 1M0520; GA ČR(CZ) GA301/08/0166 Institutional research plan: CEZ:AV0Z50110509 Keywords : left ventricular hypertrophy * endonuclease G * mitochondrial dysfunction Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 36.280, year: 2011

  8. AKAP13 Rho-GEF and PKD-binding domain deficient mice develop normally but have an abnormal response to β-adrenergic-induced cardiac hypertrophy.

    Directory of Open Access Journals (Sweden)

    Matthew J Spindler

    Full Text Available A-kinase anchoring proteins (AKAPs are scaffolding molecules that coordinate and integrate G-protein signaling events to regulate development, physiology, and disease. One family member, AKAP13, encodes for multiple protein isoforms that contain binding sites for protein kinase A (PKA and D (PKD and an active Rho-guanine nucleotide exchange factor (Rho-GEF domain. In mice, AKAP13 is required for development as null embryos die by embryonic day 10.5 with cardiovascular phenotypes. Additionally, the AKAP13 Rho-GEF and PKD-binding domains mediate cardiomyocyte hypertrophy in cell culture. However, the requirements for the Rho-GEF and PKD-binding domains during development and cardiac hypertrophy are unknown.To determine if these AKAP13 protein domains are required for development, we used gene-trap events to create mutant mice that lacked the Rho-GEF and/or the protein kinase D-binding domains. Surprisingly, heterozygous matings produced mutant mice at Mendelian ratios that had normal viability and fertility. The adult mutant mice also had normal cardiac structure and electrocardiograms. To determine the role of these domains during β-adrenergic-induced cardiac hypertrophy, we stressed the mice with isoproterenol. We found that heart size was increased similarly in mice lacking the Rho-GEF and PKD-binding domains and wild-type controls. However, the mutant hearts had abnormal cardiac contractility as measured by fractional shortening and ejection fraction.These results indicate that the Rho-GEF and PKD-binding domains of AKAP13 are not required for mouse development, normal cardiac architecture, or β-adrenergic-induced cardiac hypertrophic remodeling. However, these domains regulate aspects of β-adrenergic-induced cardiac hypertrophy.

  9. Thyroxine-induced cardiac hypertrophy: influence of adrenergic nervous system versus renin-angiotensin system on myocyte remodeling.

    Science.gov (United States)

    Hu, L W; Benvenuti, L A; Liberti, E A; Carneiro-Ramos, M S; Barreto-Chaves, M L M

    2003-12-01

    The present study assessed the possible involvement of the renin-angiotensin system (RAS) and the sympathetic nervous system (SNS) in thyroxine (T4)-induced cardiac hypertrophy. Hemodynamic parameters, heart weight (HW), ratio of HW to body weight (HW/BW), and myocyte width were evaluated in absence of thyroid hormone (hypothyroidism) and after T4 administration. Male Wistar rats were used. Some were subjected to thyroidectomies, whereas hyperthyroidism was induced in others via daily intraperitoneal injection of T4 (25 or 100 microg x 100 g BW(-1) x day(-1)) for 7 days. In some cases, T4 administration was combined with the angiotensin I-converting enzyme inhibitor enalapril (Ena), with the angiotensin type 1 (AT1) receptor blocker losartan (Los) or with the beta-adrenergic blocker propanolol (Prop). Hemodynamics and morphology were then evaluated. Systolic blood pressure (SBP) was not altered by administration of either T4 alone or T4 in combination with the specific inhibitors. However, SBP decreased significantly in hypothyroid rats. An increased heart rate was seen after administration of either T4 alone or T4 in combination with either Los or Ena. Although the higher dose of T4 significantly increased HW, HW/BW increased in both T4-treated groups. Ena and Prop inhibited the increase in HW or HW/BW in hyperthyroid rats. Morphologically, both T4 dose levels significantly increased myocyte width, an occurrence prevented by RAS or SNS blockers. There was a good correlation between changes in HW/BW and myocyte width. These results indicate that T4-induced cardiac hypertrophy is associated with both the SNS and the RAS.

  10. Cardiac expression of microsomal triglyceride transfer protein is increased in obesity and serves to attenuate cardiac triglyceride accumulation.

    Directory of Open Access Journals (Sweden)

    Emil D Bartels

    Full Text Available Obesity causes lipid accumulation in the heart and may lead to lipotoxic heart disease. Traditionally, the size of the cardiac triglyceride pool is thought to reflect the balance between uptake and beta-oxidation of fatty acids. However, triglycerides can also be exported from cardiomyocytes via secretion of apolipoproteinB-containing (apoB lipoproteins. Lipoprotein formation depends on expression of microsomal triglyceride transfer protein (MTP; the mouse expresses two isoforms of MTP, A and B. Since many aspects of the link between obesity-induced cardiac disease and cardiac lipid metabolism remain unknown, we investigated how cardiac lipoprotein synthesis affects cardiac expression of triglyceride metabolism-controlling genes, insulin sensitivity, and function in obese mice. Heart-specific ablation of MTP-A in mice using Cre-loxP technology impaired upregulation of MTP expression in response to increased fatty acid availability during fasting and fat feeding. This resulted in cardiac triglyceride accumulation but unaffected cardiac insulin-stimulated glucose uptake. Long-term fat-feeding of male C57Bl/6 mice increased cardiac triglycerides, induced cardiac expression of triglyceride metabolism-controlling genes and attenuated heart function. Abolishing cardiac triglyceride accumulation in fat-fed mice by overexpression of an apoB transgene in the heart prevented the induction of triglyceride metabolism-controlling genes and improved heart function. The results suggest that in obesity, the physiological increase of cardiac MTP expression serves to attenuate cardiac triglyceride accumulation albeit without major effects on cardiac insulin sensitivity. Nevertheless, the data suggest that genetically increased lipoprotein secretion prevents development of obesity-induced lipotoxic heart disease.

  11. Chronic activation of hypothalamic oxytocin neurons improves cardiac function during left ventricular hypertrophy-induced heart failure.

    Science.gov (United States)

    Garrott, Kara; Dyavanapalli, Jhansi; Cauley, Edmund; Dwyer, Mary Kate; Kuzmiak-Glancy, Sarah; Wang, Xin; Mendelowitz, David; Kay, Matthew W

    2017-09-01

    A distinctive hallmark of heart failure (HF) is autonomic imbalance, consisting of increased sympathetic activity, and decreased parasympathetic tone. Recent work suggests that activation of hypothalamic oxytocin (OXT) neurons could improve autonomic balance during HF. We hypothesized that a novel method of chronic selective activation of hypothalamic OXT neurons will improve cardiac function and reduce inflammation and fibrosis in a rat model of HF. Two groups of male Sprague-Dawley rats underwent trans-ascending aortic constriction (TAC) to induce left ventricular (LV) hypertrophy that progresses to HF. In one TAC group, OXT neurons in the paraventricular nucleus of the hypothalamus were chronically activated by selective expression and activation of excitatory DREADDs receptors with daily injections of clozapine N-oxide (CNO) (TAC + OXT). Two additional age-matched groups received either saline injections (Control) or CNO injections for excitatory DREADDs activation (OXT NORM). Heart rate (HR), LV developed pressure (LVDP), and coronary flow rate were measured in isolated heart experiments. Isoproterenol (0.01 nM-1.0 µM) was administered to evaluate β-adrenergic sensitivity. We found that increases in cellular hypertrophy and myocardial collagen density in TAC were blunted in TAC + OXT animals. Inflammatory cytokine IL-1β expression was more than twice higher in TAC than all other hearts. LVDP, rate pressure product (RPP), contractility, and relaxation were depressed in TAC compared with all other groups. The response of TAC and TAC + OXT hearts to isoproterenol was blunted, with no significant increase in RPP, contractility, or relaxation. However, HR in TAC + OXT animals increased to match Control at higher doses of isoproterenol. Activation of hypothalamic OXT neurons to elevate parasympathetic tone reduced cellular hypertrophy, levels of IL-1β, and fibrosis during TAC-induced HF in rats. Cardiac contractility parameters were

  12. [Effect of down-regulation of IKs repolarization-reserve on ventricular arrhythmogenesis in a guinea pig model of cardiac hypertrophy].

    Science.gov (United States)

    Wang, Hegui; Huang, Ting; Wang, Zheng; Ge, Nannan; Ke, Yongsheng

    2018-04-28

    To observe the changes of rapidly activated delayed rectifier potassium channel (IKr) and slowly activated delayed rectifier potassium channel (IKs) in cardiac hypertrophy and to evaluate the effects of IKr and IKs blocker on the incidence of ventricular arrhythmias in guinea pigs with left ventricular hypertrophy (LVH).
 Methods: Guinea pigs were divided into a sham operation group and a left ventricular hypertrophy (LVH) group. LVH model was prepared. Whole cell patch-clamp technique was used to record IKr and IKs tail currents in a guinea pig model with LVH. The changes of QTc and the incidence rate of ventricular arrhythmias in LVH guinea pigs were observed by using the IKr and IKs blockers.
 Results: Compared with cardiac cells in the control group, the interventricular septal thickness at end systole (IVSs), left ventricular posterior wall thickness at end systole (LVPWs), QTc interval and cell capacitance in guinea pigs with LVH were significantly increased (Pguinea pigs with LVH compared with the control guinea pigs. In contrast, IKs blocker produced modest increase in QTc interval in guinea pigs of control group with no increase in LVH animals. IKs blocker did not induce ventricular arrhythmias incidence in either control or LVH animals.
 Conclusion: The cardiac hypertrophy-induced arrhythmogenesis is due to the down-regulation 
of IKs.

  13. Ischemic preconditioning effect of prodromal angina is attenuated in acute myocardial infarction patients with hypertensive left ventricular hypertrophy

    International Nuclear Information System (INIS)

    Takeuchi, Toshiharu; Kikuchi, Kenjiro; Hasebe, Naoyuki; Ishii, Yoshinao

    2011-01-01

    Several animal experiments on acute myocardial infarction (AMI) have shown that the cardioprotective effects of ischemic preconditioning are more significant in hypertensive subjects. However, because there are no clinical data on the impact of hypertension on ischemic preconditioning in patients with AMI, whether clinical ischemic preconditioning of prodromal angina was beneficial in AMI patients with hypertension was investigated in the present study. 125 patients with a first anterior AMI who had undergone successful reperfusion therapy were divided into 2 groups, with or without hypertension, and into 2 further subgroups based on the presence or absence of prodromal angina. Dual-isotope (thallium-201(TL)/Tc-99m pyrophosphate) single-photon emission computed tomography (SPECT) was performed within 1 week of reperfusion therapy. Left ventricular (LV) function and LV mass index (LVMI) were measured by left ventriculography and echocardiography, respectively. In patients without hypertension, prodromal angina resulted in significantly less myocardial damage on TL-SPECT, better LV ejection fraction and a greater myocardial blush grade compared to patients without prodromal angina. However, these cardioprotective effects of prodromal angina were significantly diminished in hypertensive patients. Importantly, the myocardial salvage effects of prodromal angina showed a significant negative correlation with LVMI, which was significantly greater in hypertensive patients. The cardioprotective effects of prodromal angina were attenuated in patients with hypertension. Hypertensive LV hypertrophy may crucially limit the effects of ischemic preconditioning in AMI. (author)

  14. Desmodium gangeticum root extract attenuates isoproterenol-induced cardiac hypertrophic growth in rats.

    OpenAIRE

    Divya Hitler; Parthasarathy Arumugam; Mathivanan Narayanasamy; Elangovan Vellaichamy

    2014-01-01

    Context: Desmodium gangeticum (L) DC (Fabaceae; DG), a medicinal plant that grows in tropical habitats, is widely used to treat various ailments including digestive and inflammatory disorders. Aims: To investigate the possible cardioprotective activity of a DG root extract against isoproterenol (ISO)-induced left ventricular cardiac hypertrophy (LVH) in adult Wistar rats. Methods: Daily intraperitoneal administration of ISO (10 mg/kg body weight, single injection) for 7 days induced LVH...

  15. Global Transcriptomic Profiling of Cardiac Hypertrophy and Fatty Heart Induced by Long-Term High-Energy Diet in Bama Miniature Pigs.

    Directory of Open Access Journals (Sweden)

    Jihan Xia

    Full Text Available A long-term high-energy diet affects human health and leads to obesity and metabolic syndrome in addition to cardiac steatosis and hypertrophy. Ectopic fat accumulation in the heart has been demonstrated to be a risk factor for heart disorders, but the molecular mechanism of heart disease remains largely unknown. Bama miniature pigs were fed a high-fat, high-sucrose diet (HFHSD for 23 months. These pigs developed symptoms of metabolic syndrome and showed cardiac steatosis and hypertrophy with a greatly increased body weight (2.73-fold, P<0.01, insulin level (4.60-fold, P<0.01, heart weight (1.82-fold, P<0.05 and heart volume (1.60-fold, P<0.05 compared with the control pigs. To understand the molecular mechanisms of cardiac steatosis and hypertrophy, nine pig heart cRNA samples were hybridized to porcine GeneChips. Microarray analyses revealed that 1,022 genes were significantly differentially expressed (P<0.05, ≥1.5-fold change, including 591 up-regulated and 431 down-regulated genes in the HFHSD group relative to the control group. KEGG analysis indicated that the observed heart disorder involved the signal transduction-related MAPK, cytokine, and PPAR signaling pathways, energy metabolism-related fatty acid and oxidative phosphorylation signaling pathways, heart function signaling-related focal adhesion, axon guidance, hypertrophic cardiomyopathy and actin cytoskeleton signaling pathways, inflammation and apoptosis pathways, and others. Quantitative RT-PCR assays identified several important differentially expressed heart-related genes, including STAT3, ACSL4, ATF4, FADD, PPP3CA, CD74, SLA-8, VCL, ACTN2 and FGFR1, which may be targets of further research. This study shows that a long-term, high-energy diet induces obesity, cardiac steatosis, and hypertrophy and provides insights into the molecular mechanisms of hypertrophy and fatty heart to facilitate further research.

  16. Chronic high fat diet induces cardiac hypertrophy and fibrosis in mice.

    Science.gov (United States)

    Wang, Zhi; Li, Liaoliao; Zhao, Huijuan; Peng, Shuling; Zuo, Zhiyi

    2015-08-01

    Obesity can cause pathological changes in organs. We determined the effects of chronic high fat diet (HFD) and intermittent fasting, a paradigm providing organ protection, on mouse heart. Seven-week old CD1 male mice were randomly assigned to control, HFD and intermittent fasting groups. Control mice had free access to regular diet (RD). RD was provided every other day to mice in the intermittent fasting group. Mice in HFD group had free access to HFD. Their left ventricles were harvested 11 months after they had been on these diet regimens. HFD increased cardiomyocyte cross-section area and fibrosis. HFD decreased active caspase 3, an apoptosis marker, and the ratio of microtubule-associated protein 1A/1B-light chain 3 (LC3) II/LC3I, an autophagy marker. HFD increased the phospho-glycogen synthase kinase-3β (GSK-3β) at Ser9, a sign of GSK-3β inhibition. Nuclear GATA binding protein 4 and yes-associated protein, two GSK-3β targeting transcription factors that can induce hypertrophy-related gene expression, were increased in HFD-fed mice. Mice on intermittent fasting did not have these changes except for the increased active caspase 3 and decreased ratio of LC3II/LC3I. These results suggest that chronic HFD induces myocardial hypertrophy and fibrosis, which may be mediated by GSK-3β inhibition. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Dipyridamole-thallium tests are predictive of severe cardiac arrhythmias in patients with left ventricular hypertrophy

    International Nuclear Information System (INIS)

    Saragoca, M.A.; Canziani, M.E.; Gil, M.A.; Castiglioni, M.L.; Cassiolato, J.L.; Barbieri, A.; Lima, V.C.; Draibe, S.A.; Martinez, E.E.

    1991-01-01

    In a population of patients with chronic renal failure (CRF) and a high prevalence of left ventricular hypertrophy (LVH) undergoing chronic hemodialysis, the authors investigated the association between the results of dipyridamole-thallium tests (DTTs) and the occurrence of ventricular arrhythmias. They observed a positive significant association between positive DTTs and the occurrence of severe forms of ventricular arrhythmias. A significant association was also observed between the presence of severe LVH and the occurrence of severe ventricular arrhythmias. However, no association was found between the presence of LVH and the positivity of the DTT. As most of their patients with positive DTTs had unimpaired coronary circulations, they conclude that positive DTTs, although falsely indicative of impaired myocardial blood supply, does have an important clinical relevance, indicating increased risk of morbidity (and, possibly, mortality) due to ventricular arrhythmias in a population of CRF patients submitted to chronic renal function replacement program

  18. Disproportionate cardiac hypertrophy during early postnatal development in infants born preterm.

    Science.gov (United States)

    Aye, Christina Y L; Lewandowski, Adam J; Lamata, Pablo; Upton, Ross; Davis, Esther; Ohuma, Eric O; Kenworthy, Yvonne; Boardman, Henry; Wopperer, Samuel; Packham, Alice; Adwani, Satish; McCormick, Kenny; Papageorghiou, Aris T; Leeson, Paul

    2017-07-01

    BackgroundAdults born very preterm have increased cardiac mass and reduced function. We investigated whether a hypertrophic phenomenon occurs in later preterm infants and when this occurs during early development.MethodsCardiac ultrasound was performed on 392 infants (33% preterm at mean gestation 34±2 weeks). Scans were performed during fetal development in 137, at birth and 3 months of postnatal age in 200, and during both fetal and postnatal development in 55. Cardiac morphology and function was quantified and computational models created to identify geometric changes.ResultsAt birth, preterm offspring had reduced cardiac mass and volume relative to body size with a more globular heart. By 3 months, ventricular shape had normalized but both left and right ventricular mass relative to body size were significantly higher than expected for postmenstrual age (left 57.8±41.9 vs. 27.3±29.4%, P<0.001; right 39.3±38.1 vs. 16.6±40.8, P=0.002). Greater changes were associated with lower gestational age at birth (left P<0.001; right P=0.001).ConclusionPreterm offspring, including those born in late gestation, have a disproportionate increase in ventricular mass from birth up to 3 months of postnatal age. These differences were not present before birth. Early postnatal development may provide a window for interventions relevant to long-term cardiovascular health.

  19. Zinc rescues obesity-induced cardiac hypertrophy via stimulating metallothionein to suppress oxidative stress-activated BCL10/CARD9/p38 MAPK pathway.

    Science.gov (United States)

    Wang, Shudong; Gu, Junlian; Xu, Zheng; Zhang, Zhiguo; Bai, Tao; Xu, Jianxiang; Cai, Jun; Barnes, Gregory; Liu, Qiu-Ju; Freedman, Jonathan H; Wang, Yonggang; Liu, Quan; Zheng, Yang; Cai, Lu

    2017-06-01

    Obesity often leads to obesity-related cardiac hypertrophy (ORCH), which is suppressed by zinc-induced inactivation of p38 mitogen-activated protein kinase (p38 MAPK). In this study, we investigated the mechanisms by which zinc inactivates p38 MAPK to prevent ORCH. Mice (4-week old) were fed either high fat diet (HFD, 60% kcal fat) or normal diet (ND, 10% kcal fat) containing variable amounts of zinc (deficiency, normal and supplement) for 3 and 6 months. P38 MAPK siRNA and the p38 MAPK inhibitor SB203580 were used to suppress p38 MAPK activity in vitro and in vivo, respectively. HFD activated p38 MAPK and increased expression of B-cell lymphoma/CLL 10 (BCL10) and caspase recruitment domain family member 9 (CARD9). These responses were enhanced by zinc deficiency and attenuated by zinc supplement. Administration of SB203580 to HFD mice or specific siRNA in palmitate-treated cardiomyocytes eliminated the HFD and zinc deficiency activation of p38 MAPK, but did not significantly impact the expression of BCL10 and CARD9. In cultured cardiomyocytes, inhibition of BCL10 expression by siRNA prevented palmitate-induced increased p38 MAPK activation and atrial natriuretic peptide (ANP) expression. In contrast, inhibition of p38 MAPK prevented ANP expression, but did not affect BCL10 expression. Deletion of metallothionein abolished the protective effect of zinc on palmitate-induced up-regulation of BCL10 and phospho-p38 MAPK. HFD and zinc deficiency synergistically induce ORCH by increasing oxidative stress-mediated activation of BCL10/CARD9/p38 MAPK signalling. Zinc supplement ameliorates ORCH through activation of metallothionein to repress oxidative stress-activated BCL10 expression and p38 MAPK activation. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  20. R Wave in aVL Lead is a Robust Index of Left Ventricular Hypertrophy: A Cardiac MRI Study.

    Science.gov (United States)

    Courand, Pierre-Yves; Grandjean, Adrien; Charles, Paul; Paget, Vinciane; Khettab, Fouad; Bricca, Giampiero; Boussel, Loïc; Lantelme, Pierre; Harbaoui, Brahim

    2015-08-01

    In patients free from overt cardiac disease, R wave in aVL lead (RaVL) is strongly correlated with left ventricular mass index (LVMI) assessed by transthoracic echocardiography. The aim of the present study was to extend this finding to other settings (cardiomyopathy or conduction disorders), by comparing ECG criteria of left ventricular hypertrophy (LVH) to cardiac MRI (CMR). In 501 patients, CMR and ECG were performed within a median-period of 5 days. CMR LVH cut-offs used were 83 g/m2 in men and 67 g/m2 in women. RaVL was independently correlated with LVMI in patients with or without myocardial infarction (MI) (N = 300 and N = 201, respectively). SV3 was independently correlated with LVMI and LV enlargement only in patients without MI. In the whole cohort, RaVL had area under receiver-operating characteristic curve of 0.729 (specificity 98.3%, sensitivity 19.6%, optimal cut-off 1.1 mV). The performance of RaVL was remarkable in women, in Caucasians, and in the presence of right bundle branch block. It decreased in case of MI. Overall, it is proposed that below 0.5 mV and above 1.0 mV, RaVL is sufficient to exclude or establish LVH. Between 0.5 and 1 mV, composite indices (Cornell voltage or product) should be used. Using this algorithm allowed classifying appropriately 85% of the patients. Our results showed that RaVL is a good index of LVH with a univocal threshold of 1.0 mV in various clinical conditions. SV3 may be combined to RaVL in some conditions, namely LV enlargement to increase its performance. © American Journal of Hypertension, Ltd 2015. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Genetically Modified Mouse Models Used for Studying the Role of the AT2 Receptor in Cardiac Hypertrophy and Heart Failure

    Directory of Open Access Journals (Sweden)

    Maria D. Avila

    2011-01-01

    Full Text Available The actions of Angiotensin II have been implicated in many cardiovascular conditions. It is widely accepted that the cardiovascular effects of Angiotensin II are mediated by different subtypes of receptors: AT1 and AT2. These membrane-bound receptors share a part of their nucleic acid but seem to have different distribution and pathophysiological actions. AT1 mediates most of the Angiotensin II actions since it is ubiquitously expressed in the cardiovascular system of the normal adult. Moreover AT2 is highly expressed in the developing fetus but its expression in the cardiovascular system is low and declines after birth. However the expression of AT2 appears to be modulated by pathological states such as hypertension, myocardial infarction or any pathology associated to tissue remodeling or inflammation. The specific role of this receptor is still unclear and different studies involving in vivo and in vitro experiments have shown conflicting data. It is essential to clarify the role of the AT2 receptor in the different pathological states as it is a potential site for an effective therapeutic regimen that targets the Angiotensin II system. We will review the different genetically modified mouse models used to study the AT2 receptor and its association with cardiac hypertrophy and heart failure.

  2. Vagus nerve stimulation mitigates intrinsic cardiac neuronal remodeling and cardiac hypertrophy induced by chronic pressure overload in guinea pig

    Science.gov (United States)

    Beaumont, Eric; Wright, Gary L.; Southerland, Elizabeth M.; Li, Ying; Chui, Ray; KenKnight, Bruce H.; Armour, J. Andrew

    2016-01-01

    Our objective was to determine whether chronic vagus nerve stimulation (VNS) mitigates pressure overload (PO)-induced remodeling of the cardioneural interface. Guinea pigs (n = 48) were randomized to right or left cervical vagus (RCV or LCV) implant. After 2 wk, chronic left ventricular PO was induced by partial (15–20%) aortic constriction. Of the 31 animals surviving PO induction, 10 were randomized to RCV VNS, 9 to LCV VNS, and 12 to sham VNS. VNS was delivered at 20 Hz and 1.14 ± 0.03 mA at a 22% duty cycle. VNS commenced 10 days after PO induction and was maintained for 40 days. Time-matched controls (n = 9) were evaluated concurrently. Echocardiograms were obtained before and 50 days after PO. At termination, intracellular current-clamp recordings of intrinsic cardiac (IC) neurons were studied in vitro to determine effects of therapy on soma characteristics. Ventricular cardiomyocyte sizes were assessed with histology along with immunoblot analysis of selected proteins in myocardial tissue extracts. In sham-treated animals, PO increased cardiac output (34%, P < 0.004), as well as systolic (114%, P < 0.04) and diastolic (49%, P < 0.002) left ventricular volumes, a hemodynamic response prevented by VNS. PO-induced enhancements of IC synaptic efficacy and muscarinic sensitivity of IC neurons were mitigated by chronic VNS. Increased myocyte size, which doubled in PO (P < 0.05), was mitigated by RCV. PO hypertrophic myocardium displayed decreased glycogen synthase (GS) protein levels and accumulation of the phosphorylated (inactive) form of GS. These PO-induced changes in GS were moderated by left VNS. Chronic VNS targets IC neurons accompanying PO to obtund associated adverse cardiomyocyte remodeling. PMID:26993230

  3. Practical method of breast attenuation correction for cardiac SPECT

    International Nuclear Information System (INIS)

    Oliveira, Anderson de; Nogueira, Tindyua; Gutterres, Ricardo Fraga; Megueriam, Berdj Aram; Santos, Goncalo Rodrigues dos

    2007-01-01

    The breast attenuation effects on SPECT (Single Photon Emission Tomography) myocardium perfusion procedures have been lately scope of continuous inquiry. The requested attenuation correction factors are usually achieved by transmission analysis, making up the exposure of a standard external source to the SPECT, as a routine step. However, its high cost makes this methodology not fully available to the most of nuclear medicines services in Brazil and abroad. To overcome the problem, a new trend is presented in this work, implementing computational models to balance the breast attenuation effects on the left ventricle anterior wall, during myocardium perfusion scintigraphy procedures with SPECT. A neural network was put on in order to provide the attenuation correction indexes, based upon the following patients individual biotypes features: mass, age, height, chest and breast thicknesses, heart size, as well as the imparted activity intake levels. (author)

  4. Practical method of breast attenuation correction for cardiac SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Anderson de; Nogueira, Tindyua; Gutterres, Ricardo Fraga [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Coordenacao Geral de Instalacoes Medicas e Industriais (CGMI)]. E-mails: anderson@cnen.gov.br; tnogueira@cnen.gov.br; rguterre@cnen.gov.br; Megueriam, Berdj Aram [Instituto Nacional do Cancer (INCA), Rio de Janeiro, RJ (Brazil)]. E-mail: megueriam@hotmail.com; Santos, Goncalo Rodrigues dos [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)]. E-mail: goncalo@cnen.gov.br

    2007-07-01

    The breast attenuation effects on SPECT (Single Photon Emission Tomography) myocardium perfusion procedures have been lately scope of continuous inquiry. The requested attenuation correction factors are usually achieved by transmission analysis, making up the exposure of a standard external source to the SPECT, as a routine step. However, its high cost makes this methodology not fully available to the most of nuclear medicines services in Brazil and abroad. To overcome the problem, a new trend is presented in this work, implementing computational models to balance the breast attenuation effects on the left ventricle anterior wall, during myocardium perfusion scintigraphy procedures with SPECT. A neural network was put on in order to provide the attenuation correction indexes, based upon the following patients individual biotypes features: mass, age, height, chest and breast thicknesses, heart size, as well as the imparted activity intake levels. (author)

  5. Melatonin attenuates angiotensin II-induced cardiomyocyte hypertrophy through the CyPA/CD147 signaling pathway.

    Science.gov (United States)

    Su, Hongyan; Li, Jingyuan; Chen, Tongshuai; Li, Na; Xiao, Jie; Wang, Shujian; Guo, Xiaobin; Yang, Yi; Bu, Peili

    2016-11-01

    Melatonin is well known for its cardioprotective effects; however, whether melatonin exerts therapeutic effects on cardiomyocyte hypertrophy remains to be investigated, as do the mechanisms underlying these effects, if they exist. Cyclophilin A (CyPA) and its corresponding receptor, CD147, which exists in a variety of cells, play crucial roles in modulating reactive oxygen species (ROS) production. In this study, we explored the role of the CyPA/CD147 signaling pathway in angiotensin II (Ang II)-induced cardiomyocyte hypertrophy and the protective effects exerted by melatonin against Ang II-induced injury in cultured H9C2 cells. Cyclosporine A, a specific CyPA/CD147 signaling pathway inhibitor, was used to manipulate CyPA/CD147 activity. H9C2 cells were then subjected to Ang II or CyPA treatment in either the absence or presence of melatonin. Our results indicate that Ang II induces cardiomyocyte hypertrophy through the CyPA/CD147 signaling pathway and promotes ROS production, which can be blocked by melatonin pretreatment in a concentration-dependent manner, in cultured H9C2 cells and that CyPA/CD147 signaling pathway inhibition protects against Ang II-induced cardiomyocyte hypertrophy. The protective effects of melatonin against Ang II-induced cardiomyocyte hypertrophy depend at least partially on CyPA/CD147 inhibition.

  6. Minocycline attenuates cardiac dysfunction in tumor-burdened mice.

    Science.gov (United States)

    Devine, Raymond D; Eichenseer, Clayton M; Wold, Loren E

    2016-11-01

    Cardiovascular dysfunction as a result of tumor burden is becoming a recognized complication; however, the mechanisms remain unknown. A murine model of cancer cachexia has shown marked increases of matrix metalloproteinases (MMPs), known mediators of cardiac remodeling, in the left ventricle. The extent to which MMPs are involved in remodeling remains obscured. To this end a common antibiotic, minocycline, with MMP inhibitory properties was used to elucidate MMP involvement in tumor induced cardiovascular dysfunction. Tumor-bearing mice showed decreased cardiac function with reduced posterior wall thickness (PWTs) during systole, increased MMP and collagen expression consistent with fibrotic remodeling. Administration of minocycline preserved cardiac function in tumor bearing mice and decreased collagen RNA expression in the left ventricle. MMP protein levels were unaffected by minocycline administration, with the exception of MMP-9, indicating minocycline inhibition mechanisms are directly affecting MMP activity. Cancer induced cardiovascular dysfunction is an increasing concern; novel therapeutics are needed to prevent cardiac complications. Minocycline is a well-known antibiotic and recently has been shown to possess MMP inhibitory properties. Our findings presented here show that minocycline could represent a novel use for a long established drug in the prevention and treatment of cancer induced cardiovascular dysfunction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Periodontitis and myocardial hypertrophy.

    Science.gov (United States)

    Suzuki, Jun-Ichi; Sato, Hiroki; Kaneko, Makoto; Yoshida, Asuka; Aoyama, Norio; Akimoto, Shouta; Wakayama, Kouji; Kumagai, Hidetoshi; Ikeda, Yuichi; Akazawa, Hiroshi; Izumi, Yuichi; Isobe, Mitsuaki; Komuro, Issei

    2017-04-01

    There is a deep relationship between cardiovascular disease and periodontitis. It has been reported that myocardial hypertrophy may be affected by periodontitis in clinical settings. Although these clinical observations had some study limitations, they strongly suggest a direct association between severity of periodontitis and left ventricular hypertrophy. However, the detailed mechanisms between myocardial hypertrophy and periodontitis have not yet been elucidated. Recently, we demonstrated that periodontal bacteria infection is closely related to myocardial hypertrophy. In murine transverse aortic constriction models, a periodontal pathogen, Aggregatibacter actinomycetemcomitans markedly enhanced cardiac hypertrophy with matrix metalloproteinase-2 activation, while another pathogen Porphyromonas gingivalis (P.g.) did not accelerate these pathological changes. In the isoproterenol-induced myocardial hypertrophy model, P.g. induced myocardial hypertrophy through Toll-like receptor-2 signaling. From our results and other reports, regulation of chronic inflammation induced by periodontitis may have a key role in the treatment of myocardial hypertrophy. In this article, we review the pathophysiological mechanism between myocardial hypertrophy and periodontitis.

  8. Pressure overload-induced mild cardiac hypertrophy reduces leftventricular transmural differences in mitochondrial respiratory chainactivity and increases oxidative stress

    Directory of Open Access Journals (Sweden)

    Michel eKINDO

    2012-08-01

    Full Text Available Objective: Increased mechanical stress and contractility characterizes normal left ventricular subendocardium (Endo but whether Endo mitochondrial respiratory chain complex activities is reduced as compared to subepicardium (Epi and whether pressure overload-induced left ventricular hypertrophy (LVH might modulate transmural gradients through increased reactive oxygen species (ROS production is unknown. Methods: LVH was induced by 6 weeks abdominal aortic banding and cardiac structure and function were determined with echocardiography and catheterization in sham-operated and LVH rats (n=10 for each group. Mitochondrial respiration rates, coupling, content and ROS production were measured in LV Endo and Epi, using saponin-permeabilised fibres, Amplex Red fluorescence and citrate synthase activity.Results: In sham, a transmural respiratory gradient was observed with decreases in endo maximal oxidative capacity (-36.7%, P<0.01 and complex IV activity (-57.4%, P<0.05. Mitochondrial hydrogen peroxide (H2O2 production was similar in both LV layers.Aortic banding induced mild LVH (+31.7% LV mass, associated with normal LV fractional shortening and end diastolic pressure. LVH reduced maximal oxidative capacity (-23.6 and -33.3%, increased mitochondrial H2O2 production (+86.9 and +73.1%, free radical leak (+27.2% and +36.3% and citrate synthase activity (+27.2% and +36.3% in Endo and Epi, respectively.Transmural mitochondrial respiratory chain complex IV activity was reduced in LVH (-57.4 vs –12.2%; P=0.02. Conclusions: Endo mitochondrial respiratory chain complexes activities are reduced compared to LV Epi. Mild LVH impairs mitochondrial oxidative capacity, increases oxidative stress and reduces transmural complex IV activity. Further studies will be helpful to determine whether reduced LV transmural gradient in mitochondrial respiration might be a new marker of a transition from uncomplicated toward complicated LVH.

  9. Left ventricular mass and hypertrophy by echocardiography and cardiac magnetic resonance: the multi-ethnic study of atherosclerosis.

    Science.gov (United States)

    Armstrong, Anderson C; Gjesdal, Ola; Almeida, André; Nacif, Marcelo; Wu, Colin; Bluemke, David A; Brumback, Lyndia; Lima, João A C

    2014-01-01

    Left ventricular mass (LVM) and hypertrophy (LVH) are important parameters, but their use is surrounded by controversies. We compare LVM by echocardiography and cardiac magnetic resonance (CMR), investigating reproducibility aspects and the effect of echocardiography image quality. We also compare indexing methods within and between imaging modalities for classification of LVH and cardiovascular risk. Multi-Ethnic Study of Atherosclerosis enrolled 880 participants in Baltimore city, 146 had echocardiograms and CMR on the same day. LVM was then assessed using standard techniques. Echocardiography image quality was rated (good/limited) according to the parasternal view. LVH was defined after indexing LVM to body surface area, height(1.7) , height(2.7) , or by the predicted LVM from a reference group. Participants were classified for cardiovascular risk according to Framingham score. Pearson's correlation, Bland-Altman plots, percent agreement, and kappa coefficient assessed agreement within and between modalities. Left ventricular mass by echocardiography (140 ± 40 g) and by CMR were correlated (r = 0.8, P echocardiography image quality. The reproducibility profile had strong correlations and agreement for both modalities. Image quality groups had similar characteristics; those with good images compared to CMR slightly superiorly. The prevalence of LVH tended to be higher with higher cardiovascular risk. The agreement for LVH between imaging modalities ranged from 77% to 98% and the kappa coefficient from 0.10 to 0.76. Echocardiography has a reliable performance for LVM assessment and classification of LVH, with limited influence of image quality. Echocardiography and CMR differ in the assessment of LVH, and additional differences rise from the indexing methods. © 2013. This article is a U.S. Government work and is in the public domain in the USA.

  10. Preventive effects of p-coumaric acid on cardiac hypertrophy and alterations in electrocardiogram, lipids, and lipoproteins in experimentally induced myocardial infarcted rats.

    Science.gov (United States)

    Roy, Abhro Jyoti; Stanely Mainzen Prince, P

    2013-10-01

    The present study evaluated the preventive effects of p-coumaric acid on cardiac hypertrophy and alterations in electrocardiogram, lipids, and lipoproteins in experimentally induced myocardial infarcted rats. Rats were pretreated with p-coumaric acid (8 mg/kg body weight) daily for a period of 7 days and then injected with isoproterenol (100mg/kg body weight) on 8th and 9th day to induce myocardial infarction. Myocardial infarction induced by isoproterenol was indicated by increased level of cardiac sensitive marker and elevated ST-segments in the electrocardiogram. Also, the levels/concentrations of serum and heart cholesterol, triglycerides and free fatty acids were increased in myocardial infarcted rats. Isoproterenol also increased the levels of serum low density and very low density lipoprotein cholesterol and decreased the levels of high density lipoprotein cholesterol. It also enhanced the activity of liver 3-hydroxy-3 methyl glutaryl-Coenzyme-A reductase. p-Coumaric acid pretreatment revealed preventive effects on all the biochemical parameters and electrocardiogram studied in myocardial infarcted rats. The in vitro study confirmed the free radical scavenging property of p-coumaric acid. Thus, p-coumaric acid prevented cardiac hypertrophy and alterations in lipids, lipoproteins, and electrocardiogram, by virtue of its antihypertrophic, antilipidemic, and free radical scavenging effects in isoproterenol induced myocardial infarcted rats. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Differential diagnosis of left ventricular hypertrophy: usefulness of multimodality imaging and tissue characterization with cardiac magnetic resonance.

    Science.gov (United States)

    Izgi, Cemil; Vassiliou, Vassilis; Baksi, A John; Prasad, Sanjay K

    2016-11-01

    Differential diagnosis of asymmetrical left ventricular hypertrophy may be challenging, particularly in patients with history of hypertension. A middle-aged man underwent an echocardiographic examination during workup for hypertension, which unexpectedly showed significant asymmetrical septal hypertrophy and raised suspicion for hypertrophic cardiomyopathy. Cardiovascular magnetic resonance confirmed the asymmetrical hypertrophy. No myocardial late gadolinium contrast enhancement was seen. However, precontrast T1 mapping revealed a low native myocardial T1 value. This was highly suggestive of Anderson-Fabry disease, which was subsequently proved with very low alpha galactosidase enzyme levels and mutation analysis. The case illustrates clinical usefulness of multimodality imaging and the novel tissue characterization techniques for assessment of left ventricular hypertrophy. © 2016, Wiley Periodicals, Inc.

  12. Cardiac Fibroblasts Adopt Osteogenic Fates and Can Be Targeted to Attenuate Pathological Heart Calcification.

    Science.gov (United States)

    Pillai, Indulekha C L; Li, Shen; Romay, Milagros; Lam, Larry; Lu, Yan; Huang, Jie; Dillard, Nathaniel; Zemanova, Marketa; Rubbi, Liudmilla; Wang, Yibin; Lee, Jason; Xia, Ming; Liang, Owen; Xie, Ya-Hong; Pellegrini, Matteo; Lusis, Aldons J; Deb, Arjun

    2017-02-02

    Mammalian tissues calcify with age and injury. Analogous to bone formation, osteogenic cells are thought to be recruited to the affected tissue and induce mineralization. In the heart, calcification of cardiac muscle leads to conduction system disturbances and is one of the most common pathologies underlying heart blocks. However the cell identity and mechanisms contributing to pathological heart muscle calcification remain unknown. Using lineage tracing, murine models of heart calcification and in vivo transplantation assays, we show that cardiac fibroblasts (CFs) adopt an osteoblast cell-like fate and contribute directly to heart muscle calcification. Small-molecule inhibition of ENPP1, an enzyme that is induced upon injury and regulates bone mineralization, significantly attenuated cardiac calcification. Inhibitors of bone mineralization completely prevented ectopic cardiac calcification and improved post injury heart function. Taken together, these findings highlight the plasticity of fibroblasts in contributing to ectopic calcification and identify pharmacological targets for therapeutic development. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Sources of attenuation-correction artefacts in cardiac PET/CT and SPECT/CT.

    Science.gov (United States)

    McQuaid, Sarah J; Hutton, Brian F

    2008-06-01

    Respiratory motion during myocardial perfusion imaging can cause artefacts in both positron emission tomography (PET) and single-photon emission computed tomography (SPECT) images when mismatches between emission and transmission datasets arise. In this study, artefacts from different breathing motions were quantified in both modalities to assess key factors in attenuation-correction accuracy. Activity maps were generated using the NURBS-based cardiac-torso phantom for different respiratory cycles, which were projected, attenuation-corrected and reconstructed to form PET and SPECT images. Attenuation-correction was performed with maps at mismatched respiratory phases to observe the effect on the left-ventricular myocardium. Myocardial non-uniformity was assessed in terms of the standard deviation in scores obtained from the 17-segment model and changes in uniformity were compared for each mismatch and modality. Certain types of mismatch led to artefacts and corresponding increases in the myocardial non-uniformity. For each mismatch in PET, the increases in non-uniformity relative to an artefact-free image were as follows: (a) cardiac translation mismatch, 84% +/- 11%; (b) liver mismatch, 59% +/- 10%, (c) lung mismatch from diaphragm contraction, 28% +/- 8%; and (d) lung mismatch from chest-wall motion, 6% +/- 7%. The corresponding factors for SPECT were (a) 61% +/- 8%, (b) 34% +/- 8%, (c) -2% +/- 7)% and (d) -4% +/- 6%. Attenuation-correction artefacts were seen in PET and SPECT images, with PET being more severely affected. The most severe artefacts were produced from mismatches in cardiac and liver position, whereas lung mismatches were less critical. Both cardiac and liver positions must, therefore, be correctly matched during attenuation correction.

  14. Transplantation of mesenchymal stem cells overexpressing IL10 attenuates cardiac impairments in rats with myocardial infarction.

    Science.gov (United States)

    Meng, Xin; Li, Jianping; Yu, Ming; Yang, Jian; Zheng, Minjuan; Zhang, Jinzhou; Sun, Chao; Liang, Hongliang; Liu, Liwen

    2018-01-01

    Mesenchymal stem cell (MSC) has been well known to exert therapeutic potential for patients with myocardial infarction (MI). In addition, interleukin-10 (IL10) could attenuate MI through suppressing inflammation. Thus, the combination of MSC implantation with IL10 delivery may extend health benefits to ameliorate cardiac injury after MI. Here we established overexpression of IL10 in bone marrow-derived MSC through adenoviral transduction. Cell viability, apoptosis, and IL10 secretion under ischemic challenge in vitro were examined. In addition, MSC was transplanted into the injured hearts in a rat model of MI. Four weeks after the MI induction, MI, cardiac functions, apoptotic cells, and inflammation cytokines were assessed. In response to in vitro oxygen-glucose deprivation (OGD), IL10 overexpression in MSC (Ad.IL10-MSC) enhanced cell viability, decreased apoptosis, and increased IL10 secretion. Consistently, the implantation of Ad.IL10-MSCs into MI animals resulted in more reductions in myocardial infarct size, cardiac impairment, and cell apoptosis, compared to the individual treatments of either MSC or IL10 administration. Moreover, the attenuation of both systemic and local inflammations was most prominent for Ad.IL10-MSC treatment. IL10 overexpression and MSC may exert a synergistic anti-inflammatory effect to alleviate cardiac injury after MI. © 2017 Wiley Periodicals, Inc.

  15. Exome Sequencing Identified a Splice Site Mutation in FHL1 that Causes Uruguay Syndrome, an X-Linked Disorder With Skeletal Muscle Hypertrophy and Premature Cardiac Death.

    Science.gov (United States)

    Xue, Yuan; Schoser, Benedikt; Rao, Aliz R; Quadrelli, Roberto; Vaglio, Alicia; Rupp, Verena; Beichler, Christine; Nelson, Stanley F; Schapacher-Tilp, Gudrun; Windpassinger, Christian; Wilcox, William R

    2016-04-01

    Previously, we reported a rare X-linked disorder, Uruguay syndrome in a single family. The main features are pugilistic facies, skeletal deformities, and muscular hypertrophy despite a lack of exercise and cardiac ventricular hypertrophy leading to premature death. An ≈19 Mb critical region on X chromosome was identified through identity-by-descent analysis of 3 affected males. Exome sequencing was conducted on one affected male to identify the disease-causing gene and variant. A splice site variant (c.502-2A>G) in the FHL1 gene was highly suspicious among other candidate genes and variants. FHL1A is the predominant isoform of FHL1 in cardiac and skeletal muscle. Sequencing cDNA showed the splice site variant led to skipping of exons 6 of the FHL1A isoform, equivalent to the FHL1C isoform. Targeted analysis showed that this splice site variant cosegregated with disease in the family. Western blot and immunohistochemical analysis of muscle from the proband showed a significant decrease in protein expression of FHL1A. Real-time polymerase chain reaction analysis of different isoforms of FHL1 demonstrated that the FHL1C is markedly increased. Mutations in the FHL1 gene have been reported in disorders with skeletal and cardiac myopathy but none has the skeletal or facial phenotype seen in patients with Uruguay syndrome. Our data suggest that a novel FHL1 splice site variant results in the absence of FHL1A and the abundance of FHL1C, which may contribute to the complex and severe phenotype. Mutation screening of the FHL1 gene should be considered for patients with uncharacterized myopathies and cardiomyopathies. © 2016 American Heart Association, Inc.

  16. Exercise-induced arterial hypertension - an independent factor for hypertrophy and a ticking clock for cardiac fatigue or atrial fibrillation in athletes?

    Science.gov (United States)

    Leischik, Roman; Spelsberg, Norman; Niggemann, Hiltrud; Dworrak, Birgit; Tiroch, Klaus

    2014-01-01

    Background : Exercise-induced arterial hypertension (EIAH) leads to myocardial hypertrophy and is associated with a poor prognosis. EIAH might be related to the "cardiac fatigue" caused by endurance training. The goal of this study was to examine whether there is any relationship between EIAH and left ventricular hypertrophy in Ironman-triathletes. We used echocardiography and spiroergometry to determine the left ventricular mass (LVM), the aerobic/anaerobic thresholds and the steady-state blood pressure of 51 healthy male triathletes. The main inclusion criterion was the participation in at least one middle or long distance triathlon. When comparing triathletes with LVM 220g there was a significant difference between blood pressure values (BP) at the anaerobic threshold (185.2± 21.5 mmHg vs. 198.8 ±22.3 mmHg, p=0.037). The spiroergometric results were: maximum oxygen uptake (relative VO 2max) 57.3 ±7.5ml/min/kg vs. 59.8±9.5ml/min/kg (p=ns). Cut-point analysis for the relationship of BP >170 mmHg at the aerobic threshold and the probability of LVM >220g showed a sensitivity of 95.8%, a specificity of 33.3%, with a positive predictive value of 56.8 %, a good negative predictive value of 90%. The probability of LVM >220g increased with higher BP during exercise (OR: 1.027, 95% CI 1.002-1.052, p= 0.034) or with higher training volume (OR: 1.23, 95% CI 1.04 -1.47, p = 0.019). Echocardiography showed predominantly concentric remodelling, followed by concentric hypertrophy. Significant left ventricular hypertrophy with LVM >220g is associated with higher arterial blood pressure at the aerobic or anaerobic threshold. The endurance athletes with EIAH may require a therapeutic intervention to at least prevent extensive stiffening of the heart muscle and exercise-induced cardiac fatigue.

  17. Alpha-lipoic acid attenuates cardiac fibrosis in Otsuka Long-Evans Tokushima Fatty rats

    Directory of Open Access Journals (Sweden)

    Lee Jung Eun

    2012-09-01

    Full Text Available Abstract Background Hyperglycemia leads to cardiac oxidative stress and an imbalance in glucose homeostasis. Diabetic cardiomyopathy is characterised by cardiac hypertrophy and fibrosis. However, the underlying mechanisms of diabetic cardiomyopathy are not fully understood. This study aimed to investigate the effects of alpha-lipoic acid (ALA on cardiac energy metabolism, antioxidant effect, and fibrosis in the hearts of Otsuka Long-Evans Tokushima fatty (OLETF rats. Methods Animals were separated into non-diabetic Long-Evans Tokushima Otsuka (LETO rats and diabetes-prone OLETF rats with or without ALA (200 mg/kg/day administration for 16 weeks. Diabetic cardiomyopathy was assessed by staining with Sirius Red. The effect of ALA on AMPK signalling, antioxidant enzymes, and fibrosis-related genes in the heart of OLETF rats were performed by Western blot analysis or immunohistochemistry. Results Western blot analysis showed that cardiac adenosine monophosphate-activated kinase (AMPK signalling was lower in OLETF rats than in LETO rats, and that ALA treatment increased the signalling in OLETF rats. Furthermore, the low antioxidant activity in OLETF rats was increased by ALA treatment. In addition to increased Sirius red staining of collagen deposits, transforming growth factor-β1 (TGF-β1 and connective tissue growth factor (CTGF were expressed at higher levels in OLETF rat hearts than in LETO rat hearts, and the levels of these factors were decreased by ALA. Conclusions ALA enhances AMPK signalling, antioxidant, and antifibrogenic effect. Theses findings suggest that ALA may have beneficial effects in the treatment of diabetic cardiomyopathy.

  18. Novel Toll-like receptor-4 deficiency attenuates trastuzumab (Herceptin induced cardiac injury in mice

    Directory of Open Access Journals (Sweden)

    Yousif Nasser

    2011-10-01

    Full Text Available Abstract Background Cardiac inflammation and generation of oxidative stress are known to contribute to trastuzumab (herceptin induced cardiac toxicity. Toll-like receptors (TLRs are a part of the innate immune system and are involved in cardiac stress reactions. Since TLR4 might play a relevant role in cardiac inflammatory signaling, we investigated whether or not TLR4 is involved in trastuzumab induced cardiotoxicity. Methods Seven days after a single injection of herceptin (2 mg/kg; i.p., left ventricular pressure volume loops were measured in HeN compotent (TLR4+/+ and HeJ mutant (TLR4-/- treated with trastuzumab and control mice. Immunofluorescent staining for monocyte infiltration and analyses of plasma by (ELISAs for different chemokines including: MCP-1and tumor necrosis factor-α (TNF-α, Western immunoblotting assay for ICAM-1, and used troponin I for cardiac injury marker. Results Trastuzumab injection resulted in an impairment of left ventricular function in TLR-4 competent (HeN, in contrast TLR4-/- trastuzumab mice showed improved left ventricular function EF%, CO; p -/-; p -/-, marked reduction of myocardial troponin-I levels in TLR4-deficient mice. Data are presented as means ± SE; n = 8 in each group p Conclusions Treatment with trastuzumab induces an inflammatory response that contributes to myocardial tissue TLR4 mediates chemokine expression (TNF-α, MCP-1and ICAM-1, so in experimental animals TLR4 deficiency improves left ventricular function and attenuates pathophysiological key mechanisms in trastuzumab induced cardiomyopathy.

  19. Living high training low induces physiological cardiac hypertrophy accompanied by down-regulation and redistribution of the renin-angiotensin system

    Science.gov (United States)

    Shi, Wei; Meszaros, J Gary; Zeng, Shao-ju; Sun, Ying-yu; Zuo, Ming-xue

    2013-01-01

    Aim: Living high training low” (LHTL) is an exercise-training protocol that refers living in hypoxia stress and training at normal level of O2. In this study, we investigated whether LHTL caused physiological heart hypertrophy accompanied by changes of biomarkers in renin-angiotensin system in rats. Methods: Adult male SD rats were randomly assigned into 4 groups, and trained on living low-sedentary (LLS, control), living low-training low (LLTL), living high-sedentary (LHS) and living high-training low (LHTL) protocols, respectively, for 4 weeks. Hematological parameters, hemodynamic measurement, heart hypertrophy and plasma angiotensin II (Ang II) level of the rats were measured. The gene and protein expression of angiotensin-converting enzyme (ACE), angiotensinogen (AGT) and angiotensin II receptor I (AT1) in heart tissue was assessed using RT-PCR and immunohistochemistry, respectively. Results: LLTL, LHS and LHTL significantly improved cardiac function, increased hemoglobin concentration and RBC. At the molecular level, LLTL, LHS and LHTL significantly decreased the expression of ACE, AGT and AT1 genes, but increased the expression of ACE and AT1 proteins in heart tissue. Moreover, ACE and AT1 protein expression was significantly increased in the endocardium, but unchanged in the epicardium. Conclusion: LHTL training protocol suppresses ACE, AGT and AT1 gene expression in heart tissue, but increases ACE and AT1 protein expression specifically in the endocardium, suggesting that the physiological heart hypertrophy induced by LHTL is regulated by region-specific expression of renin-angiotensin system components. PMID:23377552

  20. High-Intensity Exercise Reduces Cardiac Fibrosis and Hypertrophy but Does Not Restore the Nitroso-Redox Imbalance in Diabetic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Ulises Novoa

    2017-01-01

    Full Text Available Diabetic cardiomyopathy refers to the manifestations in the heart as a result of altered glucose homeostasis, reflected as fibrosis, cellular hypertrophy, increased oxidative stress, and apoptosis, leading to ventricular dysfunction. Since physical exercise has been indicated as cardioprotective, we tested the hypothesis that high-intensity exercise training could reverse the cardiac maladaptations produced by diabetes. For this, diabetes was induced in rats by a single dose of alloxan. Diabetic rats were randomly assigned to a sedentary group or submitted to a program of exercise on a treadmill for 4 weeks at 80% of maximal performance. Another group of normoglycemic rats was used as control. Diabetic rat hearts presented cardiomyocyte hypertrophy and interstitial fibrosis. Chronic exercise reduced both parameters but increased apoptosis. Diabetes increased the myocardial levels of the mRNA and proteins of NADPH oxidases NOX2 and NOX4. These altered levels were not reduced by exercise. Diabetes also increased the level of uncoupled endothelial nitric oxide synthase (eNOS that was not reversed by exercise. Finally, diabetic rats showed a lower degree of phosphorylated phospholamban and reduced levels of SERCA2 that were not restored by high-intensity exercise. These results suggest that high-intensity chronic exercise was able to reverse remodeling in the diabetic heart but was unable to restore the nitroso-redox imbalance imposed by diabetes.

  1. Dasatinib Attenuates Pressure Overload Induced Cardiac Fibrosis in a Murine Transverse Aortic Constriction Model.

    Directory of Open Access Journals (Sweden)

    Sundaravadivel Balasubramanian

    Full Text Available Reactive cardiac fibrosis resulting from chronic pressure overload (PO compromises ventricular function and contributes to congestive heart failure. We explored whether nonreceptor tyrosine kinases (NTKs play a key role in fibrosis by activating cardiac fibroblasts (CFb, and could potentially serve as a target to reduce PO-induced cardiac fibrosis. Our studies were carried out in PO mouse myocardium induced by transverse aortic constriction (TAC. Administration of a tyrosine kinase inhibitor, dasatinib, via an intraperitoneally implanted mini-osmotic pump at 0.44 mg/kg/day reduced PO-induced accumulation of extracellular matrix (ECM proteins and improved left ventricular geometry and function. Furthermore, dasatinib treatment inhibited NTK activation (primarily Pyk2 and Fak and reduced the level of FSP1 positive cells in the PO myocardium. In vitro studies using cultured mouse CFb showed that dasatinib treatment at 50 nM reduced: (i extracellular accumulation of both collagen and fibronectin, (ii both basal and PDGF-stimulated activation of Pyk2, (iii nuclear accumulation of Ki67, SKP2 and histone-H2B and (iv PDGF-stimulated CFb proliferation and migration. However, dasatinib did not affect cardiomyocyte morphologies in either the ventricular tissue after in vivo administration or in isolated cells after in vitro treatment. Mass spectrometric quantification of dasatinib in cultured cells indicated that the uptake of dasatinib by CFb was greater that that taken up by cardiomyocytes. Dasatinib treatment primarily suppressed PDGF but not insulin-stimulated signaling (Erk versus Akt activation in both CFb and cardiomyocytes. These data indicate that dasatinib treatment at lower doses than that used in chemotherapy has the capacity to reduce hypertrophy-associated fibrosis and improve ventricular function.

  2. Desmodium gangeticum root extract attenuates isoproterenol-induced cardiac hypertrophic growth in rats.

    Directory of Open Access Journals (Sweden)

    Divya Hitler

    2014-10-01

    Full Text Available Context: Desmodium gangeticum (L DC (Fabaceae; DG, a medicinal plant that grows in tropical habitats, is widely used to treat various ailments including digestive and inflammatory disorders. Aims: To investigate the possible cardioprotective activity of a DG root extract against isoproterenol (ISO-induced left ventricular cardiac hypertrophy (LVH in adult Wistar rats. Methods: Daily intraperitoneal administration of ISO (10 mg/kg body weight, single injection for 7 days induced LVH in rats. The LVH rats were post-treated orally with DG (100 mg/kg body weight for a period of 30 days. Thereafter, changes in heart weight (HW and body weight (BW, HW/BW ratio, percent of hypertrophy, collagen accumulation, activities of matrix metalloproteinase (MMP -2 and -9, superoxide dismutase (SOD and catalase (CAT enzymes, and the level of an oxidative stress marker, lipid peroxide (LPO, were determined. Results: HW/BW ratio, an indicator of hypertrophic growth, was significantly reduced in DG root post-treated LVH rats as compared with that for the non-treated LVH rats. The altered levels of ventricular LPO, collagen, MMPs-2 and -9, and antioxidant enzymes in the ISO-treated animals reverted back to near normal upon DG treatment. Further, the anti-hypertrophic activity of DG was comparable to that of the standard drug losartan (10 mg/kg. Conclusions: The results of the present study suggest that the aqueous root extract of DG exhibited anti-hypertrophic activity in-vivo by inhibiting ISO-induced ROS generation and MMP activities.

  3. Induction of HO-1 by carbon monoxide releasing molecule-2 attenuates thrombin-induced COX-2 expression and hypertrophy in primary human cardiomyocytes

    International Nuclear Information System (INIS)

    Chien, Peter Tzu-Yu; Lin, Chih-Chung; Hsiao, Li-Der; Yang, Chuen-Mao

    2015-01-01

    Carbon monoxide (CO) is one of the cytoprotective byproducts of heme oxygenase (HO)-1 and exerts anti-inflammatory action in various models. However, the detailed mechanisms underlying CO-induced HO-1 expression in primary human cardiomyocytes remain largely unidentified. We used primary left ventricle myocytes as a model and applied CO releasing molecule (CORM)-2 to investigate the relationship of CO and HO-1 expression. We herein used Western blot, real-time PCR, promoter activity and EIA to investigate the role of HO-1 expression protecting against thrombin-mediated responses. We found that thrombin-induced COX-2 expression, PGE 2 release and cardiomyocyte hypertrophy markers (increase in ANF/BNP, α-actin expression and cell surface area) was attenuated by pretreatment with CORM-2 which was partially reversed by hemoglobin (Hb) or ZnPP (an inhibitor of HO-1 activity), suggesting that HO-1/CO system may be of clinical importance to ameliorate heart failure through inhibition of inflammatory responses. CORM-2-induced HO-1 protein expression, mRNA and promoter was attenuated by pretreatment with the inhibitors of Pyk2 (PF431396), PDGFR (AG1296), PI3K (LY294002), Akt (SH-5), p38 (SB202530), JNK1/2 (SP600125), FoxO1 (AS1842856) and Sp1 (mithramycin A). The involvement of these signaling components was further confirmed by transfection with respective siRNAs, consistent with those of pharmacological inhibitors. These results suggested that CORM-2-induced HO-1 expression is mediated through a Pyk2/PDGFR/PI3K/Akt/FoxO1/Sp1-dependent manner and exerts a cytoprotective effect in human cardiomyocytes. - Graphical abstract: In summary, CORM-2 treatment induces Pyk2 transactivated PDGFR, which induces PI3K/Akt/MAPK activation, and then recruits Sp1/Foxo1 transcriptional factors to regulate HO-1 gene expression in primary human cardiomyocytes. - Highlights: • CORM-2 induces HO-1 expression. • Pyk2-dependent PDGFR activates PI3K/Akt/MAPK pathway in CORM-2-induced HO-1

  4. Induction of HO-1 by carbon monoxide releasing molecule-2 attenuates thrombin-induced COX-2 expression and hypertrophy in primary human cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Chien, Peter Tzu-Yu [Department of Physiology and Pharmacology and Health Ageing Research Center, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan (China); Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan (China); Lin, Chih-Chung; Hsiao, Li-Der [Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan (China); Yang, Chuen-Mao, E-mail: chuenmao@mail.cgu.edu.tw [Department of Physiology and Pharmacology and Health Ageing Research Center, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan (China); Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan (China); Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan (China)

    2015-12-01

    Carbon monoxide (CO) is one of the cytoprotective byproducts of heme oxygenase (HO)-1 and exerts anti-inflammatory action in various models. However, the detailed mechanisms underlying CO-induced HO-1 expression in primary human cardiomyocytes remain largely unidentified. We used primary left ventricle myocytes as a model and applied CO releasing molecule (CORM)-2 to investigate the relationship of CO and HO-1 expression. We herein used Western blot, real-time PCR, promoter activity and EIA to investigate the role of HO-1 expression protecting against thrombin-mediated responses. We found that thrombin-induced COX-2 expression, PGE{sub 2} release and cardiomyocyte hypertrophy markers (increase in ANF/BNP, α-actin expression and cell surface area) was attenuated by pretreatment with CORM-2 which was partially reversed by hemoglobin (Hb) or ZnPP (an inhibitor of HO-1 activity), suggesting that HO-1/CO system may be of clinical importance to ameliorate heart failure through inhibition of inflammatory responses. CORM-2-induced HO-1 protein expression, mRNA and promoter was attenuated by pretreatment with the inhibitors of Pyk2 (PF431396), PDGFR (AG1296), PI3K (LY294002), Akt (SH-5), p38 (SB202530), JNK1/2 (SP600125), FoxO1 (AS1842856) and Sp1 (mithramycin A). The involvement of these signaling components was further confirmed by transfection with respective siRNAs, consistent with those of pharmacological inhibitors. These results suggested that CORM-2-induced HO-1 expression is mediated through a Pyk2/PDGFR/PI3K/Akt/FoxO1/Sp1-dependent manner and exerts a cytoprotective effect in human cardiomyocytes. - Graphical abstract: In summary, CORM-2 treatment induces Pyk2 transactivated PDGFR, which induces PI3K/Akt/MAPK activation, and then recruits Sp1/Foxo1 transcriptional factors to regulate HO-1 gene expression in primary human cardiomyocytes. - Highlights: • CORM-2 induces HO-1 expression. • Pyk2-dependent PDGFR activates PI3K/Akt/MAPK pathway in CORM-2-induced HO

  5. Exercise training prior to myocardial infarction attenuates cardiac deterioration and cardiomyocyte dysfunction in rats

    Directory of Open Access Journals (Sweden)

    Luiz Henrique Marchesi Bozi

    2013-04-01

    Full Text Available OBJECTIVES: The present study was performed to investigate 1 whether aerobic exercise training prior to myocardial infarction would prevent cardiac dysfunction and structural deterioration and 2 whether the potential cardiac benefits of aerobic exercise training would be associated with preserved morphological and contractile properties of cardiomyocytes in post-infarct remodeled myocardium. METHODS: Male Wistar rats underwent an aerobic exercise training protocol for eight weeks. The rats were then assigned to sham surgery (SHAM, sedentary lifestyle and myocardial infarction or exercise training and myocardial infarction groups and were evaluated 15 days after the surgery. Left ventricular tissue was analyzed histologically, and the contractile function of isolated myocytes was measured. Student's t-test was used to analyze infarct size and ventricular wall thickness, and the other parameters were analyzed by the Kruskal-Wallis test followed by Dunn's test or a one-way analysis of variance followed by Tukey's test (p<0.05. RESULTS: Myocardial infarctions in exercise-trained animals resulted in a smaller myocardial infarction extension, a thicker infarcted wall and less collagen accumulation as compared to myocardial infarctions in sedentary animals. Myocardial infarction-induced left ventricular dilation and cardiac dysfunction, as evaluated by +dP/dt and -dP/dt, were both prevented by previous aerobic exercise training. Moreover, aerobic exercise training preserved cardiac myocyte shortening, improved the maximum shortening and relengthening velocities in infarcted hearts and enhanced responsiveness to calcium. CONCLUSION: Previous aerobic exercise training attenuated the cardiac dysfunction and structural deterioration promoted by myocardial infarction, and such benefits were associated with preserved cardiomyocyte morphological and contractile properties.

  6. Cardiac-specific overexpression of catalase attenuates lipopolysaccharide-induced myocardial contractile dysfunction: role of autophagy.

    Science.gov (United States)

    Turdi, Subat; Han, Xuefeng; Huff, Anna F; Roe, Nathan D; Hu, Nan; Gao, Feng; Ren, Jun

    2012-09-15

    Lipopolysaccharide (LPS) from gram-negative bacteria is a major initiator of sepsis, leading to cardiovascular collapse. Accumulating evidence has indicated a role of reactive oxygen species (ROS) in cardiovascular complications in sepsis. This study was designed to examine the effect of cardiac-specific overexpression of catalase in LPS-induced cardiac contractile dysfunction and the underlying mechanism(s) with a focus on autophagy. Catalase transgenic and wild-type FVB mice were challenged with LPS (6 mg/kg) and cardiac function was evaluated. Levels of oxidative stress, autophagy, apoptosis, and protein damage were examined using fluorescence microscopy, Western blot, TUNEL assay, caspase-3 activity, and carbonyl formation. A Kaplan-Meier curve was constructed for survival after LPS treatment. Our results revealed a lower mortality in catalase mice compared with FVB mice after LPS challenge. LPS injection led to depressed cardiac contractile capacity as evidenced by echocardiography and cardiomyocyte contractile function, the effect of which was ablated by catalase overexpression. LPS treatment induced elevated TNF-α level, autophagy, apoptosis (TUNEL, caspase-3 activation, cleaved caspase-3), production of ROS and O(2)(-), and protein carbonyl formation, the effects of which were significantly attenuated by catalase overexpression. Electron microscopy revealed focal myocardial damage characterized by mitochondrial injury after LPS treatment, which was less severe in catalase mice. Interestingly, LPS-induced cardiomyocyte contractile dysfunction was prevented by the antioxidant N-acetylcysteine and the autophagy inhibitor 3-methyladenine. Taken together, our data revealed that catalase protects against LPS-induced cardiac dysfunction and mortality, which may be associated with inhibition of oxidative stress and autophagy. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Cardiac-Specific Overexpression of Catalase Attenuates Lipopolysaccharide-Induced Myocardial Contractile Dysfunction: Role of Autophagy

    Science.gov (United States)

    Turdi, Subat; Han, Xuefeng; Huff, Anna F.; Roe, Nathan D.; Hu, Nan; Gao, Feng; Ren, Jun

    2012-01-01

    Lipopolysaccharide (LPS) from Gram-negative bacteria is a major initiator of sepsis, leading to cardiovascular collapse. Accumulating evidence has indicated a role of reactive oxygen species (ROS) in cardiovascular complication in sepsis. This study was designed to examine the effect of cardiac-specific overexpression of catalase in LPS-induced cardiac contractile dysfunction and the underlying mechanism(s) with a focus on autophagy. Catalase transgenic and wild-type FVB mice were challenged with LPS (6 mg/kg) and cardiac function was evaluated. Levels of oxidative stress, autophagy, apoptosis and protein damage were examined using fluorescence microscopy, Western blot, TUNEL assay, caspase-3 activity and carbonyl formation. Kaplan-Meier curve was constructed for survival following LPS treatment. Our results revealed a lower mortality in catalase mice compared with FVB mice following LPS challenge. LPS injection led to depressed cardiac contractile capacity as evidenced by echocardiography and cardiomyocyte contractile function, the effect of which was ablated by catalase overexpression. LPS treatment induced elevated TNF-α level, autophagy, apoptosis (TUNEL, caspase-3 activation, cleaved caspase-3), production of ROS and O2−, and protein carbonyl formation, the effects of which were significantly attenuated by catalase overexpression. Electron microscopy revealed focal myocardial damage characterized by mitochondrial injury following LPS treatment, which was less severe in catalase mice. Interestingly, LPS-induced cardiomyocyte contractile dysfunction was prevented by antioxidant NAC and the autophagy inhibitor 3-methyladenine. Taken together, our data revealed that catalase protects against LPS-induced cardiac dysfunction and mortality, which may be associated with inhibition of oxidative stress and autophagy. PMID:22902401

  8. PDE1C deficiency antagonizes pathological cardiac remodeling and dysfunction

    Science.gov (United States)

    Knight, Walter E.; Chen, Si; Zhang, Yishuai; Oikawa, Masayoshi; Wu, Meiping; Zhou, Qian; Miller, Clint L.; Cai, Yujun; Mickelsen, Deanne M.; Moravec, Christine; Small, Eric M.; Abe, Junichi; Yan, Chen

    2016-01-01

    Cyclic nucleotide phosphodiesterase 1C (PDE1C) represents a major phosphodiesterase activity in human myocardium, but its function in the heart remains unknown. Using genetic and pharmacological approaches, we studied the expression, regulation, function, and underlying mechanisms of PDE1C in the pathogenesis of cardiac remodeling and dysfunction. PDE1C expression is up-regulated in mouse and human failing hearts and is highly expressed in cardiac myocytes but not in fibroblasts. In adult mouse cardiac myocytes, PDE1C deficiency or inhibition attenuated myocyte death and apoptosis, which was largely dependent on cyclic AMP/PKA and PI3K/AKT signaling. PDE1C deficiency also attenuated cardiac myocyte hypertrophy in a PKA-dependent manner. Conditioned medium taken from PDE1C-deficient cardiac myocytes attenuated TGF-β–stimulated cardiac fibroblast activation through a mechanism involving the crosstalk between cardiac myocytes and fibroblasts. In vivo, cardiac remodeling and dysfunction induced by transverse aortic constriction, including myocardial hypertrophy, apoptosis, cardiac fibrosis, and loss of contractile function, were significantly attenuated in PDE1C-knockout mice relative to wild-type mice. These results indicate that PDE1C activation plays a causative role in pathological cardiac remodeling and dysfunction. Given the continued development of highly specific PDE1 inhibitors and the high expression level of PDE1C in the human heart, our findings could have considerable therapeutic significance. PMID:27791092

  9. Ultra-low Dose CT for Attenuation Correction of 82Rb Cardiac PET

    DEFF Research Database (Denmark)

    Sørensen, Maria Balshøj; Bouchelouche, Kirsten; Tolbod, Lars Poulsen

    Aim: Myocardial perfusion imaging (MPI) using cardiac PET with tracers like 82Rb and 15O-water is substantially lower in radiation dose than classic MIBI-based SPECT. However, for cardiac PET, the dose contribution of CT for attenuation correction (CTAC) is typically 20-30% of the total dose....... To reduce the total radiation dose of cardiac PET further, we set out to examine if the use of ultra-low dose CTAC (UL-CTAC) would affect the accuracy of the quantitative parameters related to MPI. Furthermore, we examined whether the low quality of the UL-CTAC would affect the technologist’s ability...... to perform manual adjustment for misalignment between PET and CTAC. The CT reconstruction algorithm Q.AC was used to improve quality and consistency of the CTAC. Method: 23 consecutive clinical patients (BMI: 26.9 [range: 15.4-38.8]) referred for 82Rb PET rest and stress imaging were included in the study...

  10. Impaired cardiac ischemic tolerance in spontaneously hypertensive rats is attenuated by adaptation to chronic and acute stress.

    Science.gov (United States)

    Ravingerová, T; Bernátová, I; Matejíková, J; Ledvényiová, V; Nemčeková, M; Pecháňová, O; Tribulová, N; Slezák, J

    2011-01-01

    Chronic hypertension may have a negative impact on the myocardial response to ischemia. On the other hand, intrinsic ischemic tolerance may persist even in the pathologically altered hearts of hypertensive animals, and may be modified by short- or long-term adaptation to different stressful conditions. The effects of long-term limitation of living space (ie, crowding stress [CS]) and brief ischemia-induced stress on cardiac response to ischemia/reperfusion (I/R) injury are not yet fully characterized in hypertensive subjects. The present study was designed to test the influence of chronic and acute stress on the myocardial response to I/R in spontaneously hypertensive rats (SHR) compared with their effects in normotensive counterparts. In both groups, chronic, eight-week CS was induced by caging five rats per cage in cages designed for two rats (200 cm(2)/rat), while controls (C) were housed four to a cage in cages designed for six animals (480 cm(2)/rat). Acute stress was evoked by one cycle of I/R (5 min each, ischemic preconditioning) before sustained I/R in isolated Langendorff-perfused hearts of normotensive and SHR rats. At baseline conditions, the effects of CS were manifested only as a further increase in blood pressure in SHR, and by marked limitation of coronary perfusion in normotensive animals, while no changes in heart mechanical function were observed in any of the groups. Postischemic recovery of contractile function, severity of ventricular arrhythmias and lethal injury (infarction size) were worsened in the hypertrophied hearts of C-SHR compared with normotensive C. However, myo-cardial stunning and reperfusion-induced ventricular arrhythmias were attenuated by CS in SHR, which was different from deterioration of I/R injury in the hearts of normotensive animals. In contrast, ischemic preconditioning conferred an effective protection against I/R in both groups, although the extent of anti-infarct and anti-arrhythmic effects was lower in SHR. Both

  11. A Novel α-Calcitonin Gene-Related Peptide Analogue Protects Against End-Organ Damage in Experimental Hypertension, Cardiac Hypertrophy and Heart Failure

    DEFF Research Database (Denmark)

    Aubdool, Aisah A; Thakore, Pratish; Argunhan, Fulye

    2017-01-01

    cardiovascular disease in two distinct murine models of hypertension and heart failure in vivoMethods -The ability of the αAnalogue to act selectively via the CGRP pathway was shown in skin using a CGRP receptor antagonist. The effect of the αAnalogue on Angiotensin II (AngII)-induced hypertension......, Western blot and histology. Results -The AngII-induced hypertension was attenuated by co-treatment with the αAnalogue (50nmol/kg/day, s.c., at a dose selected for lack of long term hypotensive effects at baseline). The αAnalogue protected against vascular, renal and cardiac dysfunction, characterised...... failure. It preserved heart function, assessed by echocardiography, whilst protecting against adverse cardiac remodelling and apoptosis. Moreover, treatment with the αAnalogue was well-tolerated with neither signs of desensitisation nor behavioural changes. Conclusions -These findings, in two distinct...

  12. The benefits of soluble non-bacterial fraction of kefir on blood pressure and cardiac hypertrophy in hypertensive rats are mediated by an increase in baroreflex sensitivity and decrease in angiotensin-converting enzyme activity.

    Science.gov (United States)

    Brasil, Girlandia Alexandre; Silva-Cutini, Mirian de Almeida; Moraes, Flávia de Souza Andrade; Pereira, Thiago de Melo Costa; Vasquez, Elisardo Corral; Lenz, Dominik; Bissoli, Nazaré Souza; Endringer, Denise Coutinho; de Lima, Ewelyne Miranda; Biancardi, Vinícia Campana; Maia, June Ferreira; de Andrade, Tadeu Uggere

    We aimed to evaluate whether long-term treatment with the soluble non-bacterial fraction of kefir affects mean arterial pressure (MAP) and cardiac hypertrophy through the modulation of baroreflex sensitivity, ACE activity, and the inflammatory-to-anti-inflammatory cytokine ratio in spontaneously hypertensive rats (SHRs). SHRs were treated with the soluble non-bacterial kefir fraction (SHR-kefir) or with kefir vehicle (SHR-soluble fraction of milk). Normotensive control Wistar Kyoto animals received the soluble fraction of milk. All treatments were administered by gavage (0.3 mL/100g/body weight), once daily for eight weeks. At the end, after basal MAP and Heart Rate (HT) measurement, barorreflex sensitivity was evaluated through in bolus administrations of sodium nitroprusside and phenylephrine (AP 50 [arterial pressure 50%], the lower plateau, and HR range were measured). ACE activity and cytokines (TNF-α and IL-10) were evaluated by ELISA. Cardiac hypertrophy was analysed morphometrically. Compared to SHR control, SHR-kefir exhibited a significant decrease in both MAP (SHR: 184 ± 5; SHR-Kefir: 142 ± 8 mmHg), and HR (SHR: 360 ± 10; SHR-kefir: 310 ± 14 bpm). The non-bacterial fraction of kefir also reduced cardiac hypertrophy, TNF-α-to-IL10 ratio, and ACE activity in SHRs. SHR-kefir baroreflex sensitivity, resulted in a partial but significant recovery of baroreflex gain, as demonstrated by improvements in AP 50 , the lower plateau, and HR range. In summary, our results indicate that long-term administration of the non-bacterial fraction of kefir promotes a significant decrease in both MAP and HR, by improving baroreflex, and reduces cardiac hypertrophy in SHRs, likely via ACE inhibition, and reduction of the TNF-α-to-IL10 ratio. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Cardiac hypertrophy and structural and metabolic remodeling related to seasonal dormancy in the first annual cycle in tegu lizards.

    Science.gov (United States)

    da Silveira, Lilian Cristina; do Nascimento, Lucas Francisco R; Colquhoun, Alison; Abe, Augusto S; de Souza, Silvia Cristina R

    2013-07-01

    Morpho-functional adjustments in the heart of juvenile tegu lizards (Tupinambis merianae) were analyzed at distinct seasonal periods to investigate how the demands of growth and of energy saving are reconciled during the first annual cycle. The relative ventricular mass (Mv) was 31% and 69% larger in late autumn and winter dormancy, respectively, compared to early autumn. This effect did not persist during unfed arousal, suggesting that protein accumulates in the heart during hypometabolism and is degraded on arousal. Both the hypertrophy and the atrophy were disproportionate in the largest individuals. In contrast, Mv was smaller in lizards that were starved during spring activity compared to fed lizards, this effect being larger in smaller individuals. In late autumn and winter dormancy the spongy myocardium had 8% of the section area covered by lacunary spaces, which expanded after food intake during arousal and reached 29% in spring activity together with higher density of cardiomyocytes. Total and soluble proteins per mass unity were unchanged, and maximum activities of selected enzymes suggest sustained glycolytic and aerobic capacities during hypometabolism. Results indicate that important structural adjustments occur in the heart in anticipation of dormancy, and that the protein balance in the tissue is maintained at winter temperatures ~17°C. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Induced Pluripotent Stem Cells-Derived Mesenchymal Stem Cells Attenuate Cigarette Smoke-Induced Cardiac Remodeling and Dysfunction

    Directory of Open Access Journals (Sweden)

    Yingmin Liang

    2017-07-01

    Full Text Available The strong relationship between cigarette smoking and cardiovascular disease (CVD has been well-documented, but the mechanisms by which smoking increases CVD risk appear to be multifactorial and incompletely understood. Mesenchymal stem cells (MSCs are regarded as an important candidate for cell-based therapy in CVD. We hypothesized that MSCs derived from induced pluripotent stem cell (iPSC-MSCs or bone marrow (BM-MSCs might alleviate cigarette smoke (CS-induced cardiac injury. This study aimed to investigate the effects of BM-MSCs or iPSC-MSCs on CS-induced changes in serum and cardiac lipid profiles, oxidative stress and inflammation as well as cardiac function in a rat model of passive smoking. Male Sprague-Dawley rats were randomly selected for exposure to either sham air (SA as control or 4% CS for 1 h per day for 56 days. On day 29 and 43, human adult BM-MSCs, iPSC-MSCs or PBS were administered intravenously to CS-exposed rats. Results from echocardiography, serum and cardiac lipid profiles, cardiac antioxidant capacity, cardiac pro- and anti-inflammatory cytokines and cardiac morphological changes were evaluated at the end of treatment. iPSC-MSC-treated group showed a greater effect in the improvement of CS-induced cardiac dysfunction over BM-MSCs-treated group as shown by increased percentage left ventricular ejection fraction and percentage fractional shortening, in line with the greater reversal of cardiac lipid abnormality. In addition, iPSC-MSCs administration attenuated CS-induced elevation of cardiac pro-inflammatory cytokines as well as restoration of anti-inflammatory cytokines and anti-oxidative markers, leading to ameliorate cardiac morphological abnormalities. These data suggest that iPSC-MSCs on one hand may restore CS-induced cardiac lipid abnormality and on the other hand may attenuate cardiac oxidative stress and inflammation via inhibition of CS-induced NF-κB activation, leading to improvement of cardiac remodeling and

  15. Characteristics of left ventricular hypertrophy estimated by MIBG and BMIPP cardiac scintigraphy in patients undergoing peritoneal dialysis

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Hiroshige; Oda, Hiroshi; Ohno, Michiya; Watanabe, Sachirow; Kotoo, Yasunori; Matsuno, Yukihiko [Gifu Prefectural Hospital (Japan)

    2002-12-01

    Left ventricular hypertrophy (LVH) has been reported as a major factor in morbidity and mortality in chronic dialysis patients. However, cardiovascular mortality in peritoneal dialysis (PD) patients with LVH is substantially similar to that in hemodialysis (HD) patients. The present study sought to study whether sympathetic nerve activity and fatty acid metabolism of the myocardium estimated by {sup 123}I metaiodobenzylguanidine (MIBG) and {sup 123}I {beta}-methyl-p-iodophenyl-pentadecanoic acid (BMIPP) myocardial scintigraphy are impaired or not in PD patients with LVH. The underlying disease of 45 PD patients enrolled in this study was chronic glomerulonephritis in all cases. Serum levels of natriuretic peptides (arterial natriuretic peptide (ANP), brain natriuretic peptide (BNP)) and free carnitine and MIBG, BMIPP myocardial scintigraphy and 2-dimensional echocardiography were measured in these 45 PD patients. The following results were obtained. The prevalence of increased left ventricular mass index (LVMI) was 84.4%. LVMI correlated with age, and serum levels of ANP and BNP, and inversely correlated with a heart-to-mediastinum ratio (H/M) estimated by MIBG and BMIPP myocardial scintigraphy. Percentages of the normal image of MIBG and BMIPP measured with a single photon emission computed tomography (SPECT) were 37.8% and 62.2%, respectively. The PD patients showing the diffuse defect of MIBG or BMIPP imaging had the decrease in left ventricular ejection fraction (LVEF). Especially, the serum level of free carnitine was reduced in the PD patients with diffuse defect of BMIPP SPECT. From these results, we concluded that PD patients with LVH showed impaired sympathetic nerve activity and fatty acid metabolism of the myocardium. Metabolic and functional disturbances of the myocardium may influence mortality in PD patients. (author)

  16. Regulation of the instantaneous inward rectifier and the delayed outward rectifier potassium channels by Captopril and Angiotensin II via the Phosphoinositide-3 kinase pathway in volume-overload-induced hypertrophied cardiac myocytes.

    Science.gov (United States)

    Alvin, Zikiar V; Laurence, Graham G; Coleman, Bernell R; Zhao, Aiqiu; Hajj-Moussa, Majd; Haddad, Georges E

    2011-07-01

    Early development of cardiac hypertrophy may be beneficial but sustained hypertrophic activation leads to myocardial dysfunction. Regulation of the repolarizing currents can be modulated by the activation of humoral factors, such as angiotensin II (ANG II) through protein kinases. The aim of this work is to assess the regulation of IK and IK1 by ANG II through the PI3-K pathway in hypertrophied ventricular myocytes. Cardiac eccentric hypertrophy was induced through volume-overload in adult male rats by aorto-caval shunt (3 weeks). After one week half of the rats were given captopril (2 weeks; 0.5 g/l/day) and the other half served as control. The voltage-clamp and western blot techniques were used to measure the delayed outward rectifier potassium current (IK) and the instantaneous inward rectifier potassium current (IK1) and Akt activity, respectively. Hypertrophied cardiomyocytes showed reduction in IK and IK1. Treatment with captopril alleviated this difference seen between sham and shunt cardiomyocytes. Acute administration of ANG II (10-6M) to cardiocytes treated with captopril reduced IK and IK1 in shunts, but not in sham. Captopril treatment reversed ANG II effects on IK and IK1 in a PI3-K-independent manner. However in the absence of angiotensin converting enzyme inhibition, ANG II increased both IK and IK1 in a PI3-K-dependent manner in hypertrophied cardiomyocytes. Thus, captopril treatment reveals a negative effect of ANG II on IK and IK1, which is PI3-K independent, whereas in the absence of angiotensin converting enzyme inhibition IK and IK1 regulation is dependent upon PI3-K.

  17. Exercise through a cardiac rehabilitation program attenuates oxidative stress in patients submitted to coronary artery bypass grafting.

    Science.gov (United States)

    Taty Zau, José Francisco; Costa Zeferino, Rodrigo; Sandrine Mota, Nádia; Fernandes Martins, Gerez; Manoel Serra, Salvador; Bonates da Cunha, Therezil; Medeiros Lima, Daniel; Bragança Pereira, Basilio de; Matos do Nascimento, Emília; Filho, Danilo Wilhelm; Curi Pedrosa, Rozangela; Pedrosa, Roberto Coury

    2018-12-01

    Cardiovascular disease is the main cause of morbidity and mortality in the world and oxidative stress has been implicated in the pathogenesis. Cardiac rehabilitation in patients with coronary artery disease submitted to coronary artery bypass grafting may prevent cardiovascular events probably through the attenuation of oxidative stress. The aim of this study was to evaluate the benefits of a cardiac rehabilitation program in the control of the systemic oxidative stress. The studied population consisted of 40 patients, with chronic stable coronary artery disease submitted to coronary artery bypass grafting, who attended a cardiac rehabilitation program. Biomarkers of oxidative stress were evaluated in the blood of these patients at different moments. After the onset of cardiac rehabilitation, there was a significant and progressive decrease in thiobarbituric acid reactive substances levels and protein carbonyls, an initial increase and subsequent decrease in superoxide dismutase, catalase and glutathione peroxidase activities. Also, a progressive increase of uric acid, while ferric reducing antioxidant power levels increased only at the end of the cardiac rehabilitation and a tendency to increase of glutathione contents. The results suggest that regular exercise through a cardiac rehabilitation program can attenuate oxidative stress in chronic coronary artery disease patients submitted to coronary artery bypass grafting.

  18. MicroRNA-155 attenuates late sepsis-induced cardiac dysfunction through JNK and β-arrestin 2.

    Science.gov (United States)

    Zhou, Yu; Song, Yan; Shaikh, Zahir; Li, Hui; Zhang, Haiju; Caudle, Yi; Zheng, Shouhua; Yan, Hui; Hu, Dan; Stuart, Charles; Yin, Deling

    2017-07-18

    Cardiac dysfunction is correlated with detrimental prognosis of sepsis and contributes to a high risk of mortality. After an initial hyperinflammatory reaction, most patients enter a protracted state of immunosuppression (late sepsis) that alters both innate and adaptive immunity. The changes of cardiac function in late sepsis are not yet known. MicroRNA-155 (miR-155) is previously found to play important roles in both regulations of immune activation and cardiac function. In this study, C57BL/6 mice were operated to develop into early and late sepsis phases, and miR-155 mimic was injected through the tail vein 48 h after cecal ligation and puncture (CLP). The effect of miR-155 on CLP-induced cardiac dysfunction was explored in late sepsis. We found that increased expression of miR-155 in the myocardium protected against cardiac dysfunction in late sepsis evidenced by attenuating sepsis-reduced cardiac output and enhancing left ventricular systolic function. We also observed that miR-155 markedly reduced the infiltration of macrophages and neutrophils into the myocardium and attenuated the inflammatory response via suppression of JNK signaling pathway. Moreover, overexpression of β-arrestin 2 (Arrb2) exacerbated the mice mortality and immunosuppression in late sepsis. Furthermore, transfection of miR-155 mimic reduced Arrb2 expression, and then restored immunocompetence and improved survival in late septic mice. We conclude that increased miR-155 expression through systemic administration of miR-155 mimic attenuates cardiac dysfunction and improves late sepsis survival by targeting JNK associated inflammatory signaling and Arrb2 mediated immunosuppression.

  19. Cell therapy attenuates cardiac dysfunction post myocardial infarction: effect of timing, routes of injection and a fibrin scaffold.

    Directory of Open Access Journals (Sweden)

    Juliana S Nakamuta

    Full Text Available BACKGROUND: Cell therapy approaches for biologic cardiac repair hold great promises, although basic fundamental issues remain poorly understood. In the present study we examined the effects of timing and routes of administration of bone marrow cells (BMC post-myocardial infarction (MI and the efficacy of an injectable biopolymer scaffold to improve cardiac cell retention and function. METHODOLOGY/PRINCIPAL FINDINGS: (99mTc-labeled BMC (6 x 10(6 cells were injected by 4 different routes in adult rats: intravenous (IV, left ventricular cavity (LV, left ventricular cavity with temporal aorta occlusion (LV(+ to mimic coronary injection, and intramyocardial (IM. The injections were performed 1, 2, 3, or 7 days post-MI and cell retention was estimated by gamma-emission counting of the organs excised 24 hs after cell injection. IM injection improved cell retention and attenuated cardiac dysfunction, whereas IV, LV or LV* routes were somewhat inefficient (<1%. Cardiac BMC retention was not influenced by timing except for the IM injection that showed greater cell retention at 7 (16% vs. 1, 2 or 3 (average of 7% days post-MI. Cardiac cell retention was further improved by an injectable fibrin scaffold at day 3 post-MI (17 vs. 7%, even though morphometric and function parameters evaluated 4 weeks later displayed similar improvements. CONCLUSIONS/SIGNIFICANCE: These results show that cells injected post-MI display comparable tissue distribution profile regardless of the route of injection and that there is no time effect for cardiac cell accumulation for injections performed 1 to 3 days post-MI. As expected the IM injection is the most efficient for cardiac cell retention, it can be further improved by co-injection with a fibrin scaffold and it significantly attenuates cardiac dysfunction evaluated 4 weeks post myocardial infarction. These pharmacokinetic data obtained under similar experimental conditions are essential for further development of these

  20. Evaluation of attenuation correction in cardiac PET using PET/MR.

    Science.gov (United States)

    Lau, Jeffrey M C; Laforest, R; Sotoudeh, H; Nie, X; Sharma, S; McConathy, J; Novak, E; Priatna, A; Gropler, R J; Woodard, P K

    2017-06-01

    Simultaneous acquisition Positron emission tomography/magnetic resonance (PET/MR) is a new technology that has potential as a tool both in research and clinical diagnosis. However, cardiac PET acquisition has not yet been validated using MR imaging for attenuation correction (AC). The goal of this study is to evaluate the feasibility of PET imaging using a standard 2-point Dixon volume interpolated breathhold examination (VIBE) MR sequence for AC. Evaluation was performed in both phantom and patient data. A chest phantom containing heart, lungs, and a lesion insert was scanned by both PET/MR and PET/CT. In addition, 30 patients underwent whole-body 18 F-fluorodeoxyglucose PET/CT followed by simultaneous cardiac PET/MR. Phantom study showed 3% reduction of activity values in the myocardium due to the non-inclusion of the phased array coil in the AC. In patient scans, average standardized uptake values (SUVs) obtained by PET/CT and PET/MR showed no significant difference (n = 30, 4.6 ± 3.5 vs 4.7 ± 2.8, P = 0.47). There was excellent per patient correlation between the values acquired by PET/CT and PET/MR (R 2  = 0.97). Myocardial SUVs PET imaging using MR for AC shows excellent correlation with myocardial SUVs obtained by standard PET/CT imaging. The 2-point Dixon VIBE MR technique can be used for AC in simultaneous PET/MR data acquisition.

  1. Nutritional leucine supplementation attenuates cardiac failure in tumour-bearing cachectic animals.

    Science.gov (United States)

    Toneto, Aline Tatiane; Ferreira Ramos, Luiz Alberto; Salomão, Emilianne Miguel; Tomasin, Rebeka; Aereas, Miguel Arcanjo; Gomes-Marcondes, Maria Cristina Cintra

    2016-12-01

    The condition known as cachexia presents in most patients with malignant tumours, leading to a poor quality of life and premature death. Although the cancer-cachexia state primarily affects skeletal muscle, possible damage in the cardiac muscle remains to be better characterized and elucidated. Leucine, which is a branched chain amino acid, is very useful for preserving lean body mass. Thus, this amino acid has been studied as a coadjuvant therapy in cachectic cancer patients, but whether this treatment attenuates the effects of cachexia and improves cardiac function remains poorly understood. Therefore, using an experimental cancer-cachexia model, we evaluated whether leucine supplementation ameliorates cachexia in the heart. Male Wistar rats were fed either a leucine-rich or a normoprotein diet and implanted or not with subcutaneous Walker-256 carcinoma. During the cachectic stage (approximately 21 days after tumour implantation), when the tumour mass was greater than 10% of body weight, the rats were subjected to an electrocardiogram analysis to evaluate the heart rate, QT-c, and T wave amplitude. The myocardial tissues were assayed for proteolytic enzymes (chymotrypsin, alkaline phosphatase, cathepsin, and calpain), cardiomyopathy biomarkers (myeloperoxidase, tissue inhibitor of metalloproteinases, and total plasminogen activator inhibitor 1), and caspase-8, -9, -3, and -7 activity. Both groups of tumour-bearing rats, especially the untreated group, had electrocardiography alterations that were suggestive of ischemia, dilated cardiomyopathy, and sudden death risk. Additionally, the rats in the untreated tumour-bearing group but not their leucine-supplemented littermates exhibited remarkable increases in chymotrypsin activity and all three heart failure biomarkers analysed, including an increase in caspase-3 and -7 activity. Our data suggest that a leucine-rich diet could modulate heart damage, cardiomyocyte proteolysis, and apoptosis driven by cancer

  2. Low Intensity Physical Exercise Attenuates Cardiac Remodeling and Myocardial Oxidative Stress and Dysfunction in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    C. Gimenes

    2015-01-01

    Full Text Available We evaluated the effects of a low intensity aerobic exercise protocol on cardiac remodeling and myocardial function in diabetic rats. Wistar rats were assigned into four groups: sedentary control (C-Sed, exercised control (C-Ex, sedentary diabetes (DM-Sed, and exercised diabetes (DM-Ex. Diabetes was induced by intraperitoneal injection of streptozotocin. Rats exercised for 9 weeks in treadmill at 11 m/min, 18 min/day. Myocardial function was evaluated in left ventricular (LV papillary muscles and oxidative stress in LV tissue. Statistical analysis was given by ANOVA or Kruskal-Wallis. Echocardiogram showed diabetic groups with higher LV diastolic diameter-to-body weight ratio and lower posterior wall shortening velocity than controls. Left atrium diameter was lower in DM-Ex than DM-Sed (C-Sed: 5.73±0.49; C-Ex: 5.67±0.53; DM-Sed: 6.41±0.54; DM-Ex: 5.81±0.50 mm; P<0.05 DM-Sed vs C-Sed and DM-Ex. Papillary muscle function was depressed in DM-Sed compared to C-Sed. Exercise attenuated this change in DM-Ex. Lipid hydroperoxide concentration was higher in DM-Sed than C-Sed and DM-Ex. Catalase and superoxide dismutase activities were lower in diabetics than controls and higher in DM-Ex than DM-Sed. Glutathione peroxidase activity was lower in DM-Sed than C-Sed and DM-Ex. Conclusion. Low intensity exercise attenuates left atrium dilation and myocardial oxidative stress and dysfunction in type 1 diabetic rats.

  3. Cardiac expression of microsomal triglyceride transfer protein is increased in obesity and serves to attenuate cardiac triglyceride accumulation

    DEFF Research Database (Denmark)

    Bartels, Emil D; Nielsen, Jan M; Hellgren, Lars I

    2009-01-01

    Obesity causes lipid accumulation in the heart and may lead to lipotoxic heart disease. Traditionally, the size of the cardiac triglyceride pool is thought to reflect the balance between uptake and beta-oxidation of fatty acids. However, triglycerides can also be exported from cardiomyocytes via...... secretion of apolipoproteinB-containing (apoB) lipoproteins. Lipoprotein formation depends on expression of microsomal triglyceride transfer protein (MTP); the mouse expresses two isoforms of MTP, A and B. Since many aspects of the link between obesity-induced cardiac disease and cardiac lipid metabolism...... remain unknown, we investigated how cardiac lipoprotein synthesis affects cardiac expression of triglyceride metabolism-controlling genes, insulin sensitivity, and function in obese mice. Heart-specific ablation of MTP-A in mice using Cre-loxP technology impaired upregulation of MTP expression...

  4. Gallic acid attenuates hypertension, cardiac remodeling, and fibrosis in mice with NG-nitro-L-arginine methyl ester-induced hypertension via regulation of histone deacetylase 1 or histone deacetylase 2.

    Science.gov (United States)

    Jin, Li; Lin, Ming Quan; Piao, Zhe Hao; Cho, Jae Yeong; Kim, Gwi Ran; Choi, Sin Young; Ryu, Yuhee; Sun, Simei; Kee, Hae Jin; Jeong, Myung Ho

    2017-07-01

    Gallic acid, a natural chemical found in plants, has been reported to show antioxidant, anticancer, and anti-inflammatory effects. We investigated the efficacy of a short-term or long-term treatment with gallic acid in N-nitro-L-arginine methyl ester (L-NAME)-induced hypertensive mice and the underlying regulatory mechanism. Hypertension was sufficiently induced after 2 weeks of L-NAME administration. Cardiac remodeling was assessed by echocardiography. Hypertrophic markers, transcription factors, and fibrosis-related gene expression were evaluated by quantitative real-time polymerase chain reaction and western blotting. Gallic acid effectively lowered SBP, regardless of the administration route (intraperitoneal or oral). L-NAME increased the left ventricular (LV) thickness without an increase in the total heart weight. Weekly echocardiography demonstrated that gallic acid significantly reduced LV posterior wall and septum thickness in chronic L-NAME mice from 3 to 7 weeks. The administration of gallic acid to mice showed a dual preventive and therapeutic effect on the L-NAME-induced LV remodeling. The effect was associated with the suppression of the gene expression of hypertrophy markers and the GATA-binding factor 6 (GATA6) transcription factor. Short-term or long-term treatment with gallic acid attenuated cardiac fibrosis and reduced the expression of histone deacetylase 1 and 2 in H9c2 cells and in rat primary cardiac fibroblasts, as well as in vivo. Small interfering RNA knockdown confirmed the association of these enzymes with L-NAME-induced cardiac remodeling and fibrosis. These results suggested that gallic acid may be a potential therapeutic agent for the treatment of cardiovascular diseases with hypertension and cardiac fibrosis.

  5. Andrographolide Attenuates LPS-Induced Cardiac Malfunctions Through Inhibition of IκB Phosphorylation and Apoptosis in Mice

    Directory of Open Access Journals (Sweden)

    Jinlong Zhang

    2015-11-01

    Full Text Available Background/Aims: Cardiac malfunction is a common complication in sepsis and significantly increases the mortality of patients in septic shock. However, no studies have examined whether andrographolide (And reduces LPS-induced myocardial malfunction. Methods: Left ventricular systolic and diastolic functions were examined using echocardiography. TNF-a and IL-1ß protein levels were detected by an enzyme-linked immunosorbent assay (ELISA. NO oxidation products were determined using Griess reagent. Protein expression levels of inhibitors of NF-κBa (IκB and phospho-IκB were determined via Western blot. Oxidative injury was determined by measuring myocardial lipid peroxidation and superoxide dismutase activity. Cardiac apoptosis was examined by terminal deoxynucleotidyl transferase-mediated dUTP nickend-labeling (TUNEL and cardiac caspase 3/7 activity. Results: And blunted LPS-induced myocardial malfunctions in mice. LPS induced TNF-a, IL-1ß, and NO production as well as I-κB phosphorylation. Cardiac apoptosis was attenuated via incubation with And, but the extent of oxidative injury remained unaffected. Conclusion: And prevents LPS-induced cardiac malfunctions in mice by inhibiting TNF-a, IL-1ß, and NO production, IκB phosphorylation, and cardiac apoptosis, indicating that And may be a potential agent for preventing myocardial malfunction during sepsis.

  6. MR-based attenuation correction for cardiac FDG PET on a hybrid PET/MRI scanner: comparison with standard CT attenuation correction

    Energy Technology Data Exchange (ETDEWEB)

    Vontobel, Jan; Liga, Riccardo; Possner, Mathias; Clerc, Olivier F.; Mikulicic, Fran; Veit-Haibach, Patrick; Voert, Edwin E.G.W. ter; Fuchs, Tobias A.; Stehli, Julia; Pazhenkottil, Aju P.; Benz, Dominik C.; Graeni, Christoph; Gaemperli, Oliver; Herzog, Bernhard; Buechel, Ronny R.; Kaufmann, Philipp A. [University Hospital Zurich, Department of Nuclear Medicine, Zurich (Switzerland)

    2015-09-15

    The aim of this study was to evaluate the feasibility of attenuation correction (AC) for cardiac {sup 18}F-labelled fluorodeoxyglucose (FDG) positron emission tomography (PET) using MR-based attenuation maps. We included 23 patients with no known cardiac history undergoing whole-body FDG PET/CT imaging for oncological indications on a PET/CT scanner using time-of-flight (TOF) and subsequent whole-body PET/MR imaging on an investigational hybrid PET/MRI scanner. Data sets from PET/MRI (with and without TOF) were reconstructed using MR AC and semi-quantitative segmental (20-segment model) myocardial tracer uptake (per cent of maximum) and compared to PET/CT which was reconstructed using CT AC and served as standard of reference. Excellent correlations were found for regional uptake values between PET/CT and PET/MRI with TOF (n = 460 segments in 23 patients; r = 0.913; p < 0.0001) with narrow Bland-Altman limits of agreement (-8.5 to +12.6 %). Correlation coefficients were slightly lower between PET/CT and PET/MRI without TOF (n = 460 segments in 23 patients; r = 0.851; p < 0.0001) with broader Bland-Altman limits of agreement (-12.5 to +15.0 %). PET/MRI with and without TOF showed minimal underestimation of tracer uptake (-2.08 and -1.29 %, respectively), compared to PET/CT. Relative myocardial FDG uptake obtained from MR-based attenuation corrected FDG PET is highly comparable to standard CT-based attenuation corrected FDG PET, suggesting interchangeability of both AC techniques. (orig.)

  7. Kinin B1 receptor blockade and ACE inhibition attenuate cardiac postinfarction remodeling and heart failure in rats

    International Nuclear Information System (INIS)

    Lin, Xinchun; Bernloehr, Christian; Hildebrandt, Tobias; Stadler, Florian J.; Doods, Henri; Wu, Dongmei

    2016-01-01

    Introduction: The aim of the present study was to evaluate the effects of the novel kinin B1 receptor antagonist BI113823 on postinfarction cardiac remodeling and heart failure, and to determine whether B1 receptor blockade alters the cardiovascular effects of an angiotensin 1 converting enzyme (ACE) inhibitor in rats. Methods and results: Sprague Dawley rats were subjected to permanent occlusion of the left coronary artery. Cardiovascular function was determined at 6 weeks postinfarction. Treatment with either B1 receptor antagonist (BI113823) or an ACE inhibitor (lisinopril) alone or in combination significantly reduced the heart weight-to-body weight and lung weight-to-body weight ratios, and improved postinfarction cardiac function as evidenced by greater cardiac output, the maximum rate of left ventricular pressure rise (± dP/dtmax), left ventricle ejection fraction, fractional shorting, better wall motion, and attenuation of elevated left ventricular end diastolic pressure (LVEDP). Furthermore, all three treatment groups exhibited significant reduction in cardiac interstitial fibrosis, collagen deposition, CD68 positive macrophages, neutrophils, and proinflammatory cytokine production (TNF-α and IL-1β), compared to vehicle controls. Conclusion: The present study shows that treatment with the novel kinin B1 receptor antagonist, BI113823, reduces postinfarction cardiac remodeling and heart failure, and does not influence the cardiovascular effects of the ACE inhibitor. - Highlights: • We examined the role of kinin B1 receptors in the development of heart failure. • Kinin B1 receptor blockade attenuates post-infarction cardiac remodeling. • Kinin B1 receptor blockade improves dysfunction, and prevented heart failure. • B1 receptor blockade does not affect the cardio-protection of an ACE inhibitor.

  8. Ultrasound-targeted microbubble destruction enhances delayed BMC delivery and attenuates post-infarction cardiac remodelling by inducing engraftment signals.

    Science.gov (United States)

    Chen, Yanmei; Zhang, Chuanxi; Shen, Shuxin; Guo, Shengcun; Zhong, Lintao; Li, Xinzhong; Chen, Guojun; Chen, Gangbin; He, Xiang; Huang, Chixiong; He, Nvqin; Liao, Wangjun; Liao, Yulin; Bin, Jianping

    2016-12-01

    Delayed administration of bone marrow cells (BMCs) at 2-4 weeks after successful reperfusion in patients with acute myocardial infarction (MI) does not improve cardiac function. The reduction in engraftment signals observed following this time interval might impair the effects of delayed BMC treatment. In the present study, we aimed to determine whether ultrasound-targeted microbubble destruction (UTMD) treatment could increase engraftment signals, enhance the delivery of delayed BMCs and subsequently attenuate post-infarction cardiac remodelling. A myocardial ischaemia/reperfusion (I/R) model was induced in Wistar rats via left coronary ligation for 45 min followed by reperfusion. Western blotting revealed that engraftment signals peaked at 7 days post-I/R and were dramatically lower at 14 days post-I/R. The lower engraftment signals at 14 days post-I/R could be triggered by UTMD treatment at a mechanical index of 1.0-1.9. The troponin I levels in the 1.9 mechanical index group were higher than in the other groups. Simultaneous haematoxylin and eosin staining and fluorescence revealed that the number of engrafted BMCs in the ischaemic zone was greater in the group treated with both UTMD and delayed BMC transplantation than in the control groups (PBMC transplantation improved cardiac function and decreased cardiac fibrosis at 4 weeks after treatment, as compared with control groups (both PBMC transplantation increased capillary density, myocardial cell proliferation and c-kit + cell proliferation. These findings indicated that UTMD treatment could induce engraftment signals and enhance homing of delayed BMCs to ischaemic myocardium, attenuating post-infarction cardiac remodelling by promoting neovascularization, cardiomyogenesis and expansion of cardiac c-kit + cells. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  9. Kinin B1 receptor blockade and ACE inhibition attenuate cardiac postinfarction remodeling and heart failure in rats

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Xinchun [Department of Research, Mount Sinai Medical Center, Miami Beach, FL 33140 (United States); Bernloehr, Christian; Hildebrandt, Tobias [Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach (Germany); Stadler, Florian J., E-mail: fjstadler@szu.edu.cn [Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Shenzhen 518060 (China); Doods, Henri [Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach (Germany); Wu, Dongmei, E-mail: dongmeiwu@bellsouth.net [Department of Research, Mount Sinai Medical Center, Miami Beach, FL 33140 (United States); Department of BIN Convergence Technology, Chonbuk National University (Korea, Republic of)

    2016-08-15

    Introduction: The aim of the present study was to evaluate the effects of the novel kinin B1 receptor antagonist BI113823 on postinfarction cardiac remodeling and heart failure, and to determine whether B1 receptor blockade alters the cardiovascular effects of an angiotensin 1 converting enzyme (ACE) inhibitor in rats. Methods and results: Sprague Dawley rats were subjected to permanent occlusion of the left coronary artery. Cardiovascular function was determined at 6 weeks postinfarction. Treatment with either B1 receptor antagonist (BI113823) or an ACE inhibitor (lisinopril) alone or in combination significantly reduced the heart weight-to-body weight and lung weight-to-body weight ratios, and improved postinfarction cardiac function as evidenced by greater cardiac output, the maximum rate of left ventricular pressure rise (± dP/dtmax), left ventricle ejection fraction, fractional shorting, better wall motion, and attenuation of elevated left ventricular end diastolic pressure (LVEDP). Furthermore, all three treatment groups exhibited significant reduction in cardiac interstitial fibrosis, collagen deposition, CD68 positive macrophages, neutrophils, and proinflammatory cytokine production (TNF-α and IL-1β), compared to vehicle controls. Conclusion: The present study shows that treatment with the novel kinin B1 receptor antagonist, BI113823, reduces postinfarction cardiac remodeling and heart failure, and does not influence the cardiovascular effects of the ACE inhibitor. - Highlights: • We examined the role of kinin B1 receptors in the development of heart failure. • Kinin B1 receptor blockade attenuates post-infarction cardiac remodeling. • Kinin B1 receptor blockade improves dysfunction, and prevented heart failure. • B1 receptor blockade does not affect the cardio-protection of an ACE inhibitor.

  10. Low-intensity interval exercise training attenuates coronary vascular dysfunction and preserves Ca2+-sensitive K+ current in miniature swine with LV hypertrophy

    Science.gov (United States)

    Tharp, Darla L.; Ivey, Jan R.; Ganjam, Venkataseshu K.; Bowles, Douglas K.

    2011-01-01

    Coronary vascular dysfunction has been observed in several models of heart failure (HF). Recent evidence indicates that exercise training is beneficial for patients with HF, but the precise intensity and underlying mechanisms are unknown. Left ventricular (LV) hypertrophy can play a significant role in the development of HF; therefore, the purpose of this study was to assess the effects of low-intensity interval exercise training on coronary vascular function in sedentary (HF) and exercise trained (HF-TR) aortic-banded miniature swine displaying LV hypertrophy. Six months postsurgery, in vivo coronary vascular responses to endothelin-1 (ET-1) and adenosine were measured in the left anterior descending coronary artery. Baseline and maximal coronary vascular conductance were similar between all groups. ET-1-induced reductions in coronary vascular conductance (P < 0.05) were greater in HF vs. sedentary control and HF-TR groups. Pretreatment with the ET type A (ETA) receptor blocker BQ-123 prevented ET-1 hypersensitivity in HF animals. Whole cell voltage clamp was used to characterize composite K+ currents (IK+) in coronary smooth muscle cells. Raising internal Ca2+ from 200 to 500 nM increased Ca2+-sensitive K+ current in HF-TR and control, but not HF animals. In conclusion, an ETA-receptor-mediated hypersensitivity to ET-1, elevated resting LV wall tension, and decreased coronary smooth muscle cell Ca2+-sensitive IK+ was found in sedentary animals with LV hypertrophy. Low-intensity interval exercise training preserved normal coronary vascular function and smooth muscle cell Ca2+-sensitive IK+, illustrating a potential mechanism underlying coronary vascular dysfunction in a large-animal model of LV hypertrophy. Our results demonstrate the potential clinical impact of exercise on coronary vascular function in HF patients displaying pathological LV hypertrophy. PMID:21841018

  11. Low-intensity interval exercise training attenuates coronary vascular dysfunction and preserves Ca²⁺-sensitive K⁺ current in miniature swine with LV hypertrophy.

    Science.gov (United States)

    Emter, Craig A; Tharp, Darla L; Ivey, Jan R; Ganjam, Venkataseshu K; Bowles, Douglas K

    2011-10-01

    Coronary vascular dysfunction has been observed in several models of heart failure (HF). Recent evidence indicates that exercise training is beneficial for patients with HF, but the precise intensity and underlying mechanisms are unknown. Left ventricular (LV) hypertrophy can play a significant role in the development of HF; therefore, the purpose of this study was to assess the effects of low-intensity interval exercise training on coronary vascular function in sedentary (HF) and exercise trained (HF-TR) aortic-banded miniature swine displaying LV hypertrophy. Six months postsurgery, in vivo coronary vascular responses to endothelin-1 (ET-1) and adenosine were measured in the left anterior descending coronary artery. Baseline and maximal coronary vascular conductance were similar between all groups. ET-1-induced reductions in coronary vascular conductance (P < 0.05) were greater in HF vs. sedentary control and HF-TR groups. Pretreatment with the ET type A (ET(A)) receptor blocker BQ-123 prevented ET-1 hypersensitivity in HF animals. Whole cell voltage clamp was used to characterize composite K(+) currents (I(K(+))) in coronary smooth muscle cells. Raising internal Ca(2+) from 200 to 500 nM increased Ca(2+)-sensitive K(+) current in HF-TR and control, but not HF animals. In conclusion, an ET(A)-receptor-mediated hypersensitivity to ET-1, elevated resting LV wall tension, and decreased coronary smooth muscle cell Ca(2+)-sensitive I(K(+)) was found in sedentary animals with LV hypertrophy. Low-intensity interval exercise training preserved normal coronary vascular function and smooth muscle cell Ca(2+)-sensitive I(K(+)), illustrating a potential mechanism underlying coronary vascular dysfunction in a large-animal model of LV hypertrophy. Our results demonstrate the potential clinical impact of exercise on coronary vascular function in HF patients displaying pathological LV hypertrophy.

  12. Cardiomyocyte specific expression of Acyl-coA thioesterase 1 attenuates sepsis induced cardiac dysfunction and mortality

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Congying [Departments of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Dong, Ruolan [Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 (China); Chen, Chen [Departments of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Wang, Hong, E-mail: hong.wang1988@yahoo.com [Departments of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Wang, Dao Wen, E-mail: dwwang@tjh.tjmu.edu.cn [Departments of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China)

    2015-12-25

    Compromised cardiac fatty acid oxidation (FAO) induced energy deprivation is a critical cause of cardiac dysfunction in sepsis. Acyl-CoA thioesterase 1 (ACOT1) is involved in regulating cardiac energy production via altering substrate metabolism. This study aims to clarify whether ACOT1 has a potency to ameliorate septic myocardial dysfunction via enhancing cardiac FAO. Transgenic mice with cardiomyocyte specific expression of ACOT1 (αMHC-ACOT1) and their wild type (WT) littermates were challenged with Escherichia coli lipopolysaccharide (LPS; 5 mg/kg i.p.) and myocardial function was assessed 6 h later using echocardiography and hemodynamics. Deteriorated cardiac function evidenced by reduction of the percentage of left ventricular ejection fraction and fractional shortening after LPS administration was significantly attenuated by cardiomyocyte specific expression of ACOT1. αMHC-ACOT1 mice exhibited a markedly increase in glucose utilization and cardiac FAO compared with LPS-treated WT mice. Suppression of cardiac peroxisome proliferator activated receptor alpha (PPARa) and PPARγ-coactivator-1α (PGC1a) signaling observed in LPS-challenged WT mice was activated by the presence of ACOT1. These results suggest that ACOT1 has potential therapeutic values to protect heart from sepsis mediated dysfunction, possibly through activating PPARa/PGC1a signaling. - Highlights: • ACOT1 has potential therapeutic values to protect heart from sepsis mediated dysfunction. • ACOT1 can regulate PPARa/PGC1a signaling pathway. • We first generate the transgenic mice with cardiomyocyte specific expression of ACOT1.

  13. Cardiomyocyte specific expression of Acyl-coA thioesterase 1 attenuates sepsis induced cardiac dysfunction and mortality

    International Nuclear Information System (INIS)

    Xia, Congying; Dong, Ruolan; Chen, Chen; Wang, Hong; Wang, Dao Wen

    2015-01-01

    Compromised cardiac fatty acid oxidation (FAO) induced energy deprivation is a critical cause of cardiac dysfunction in sepsis. Acyl-CoA thioesterase 1 (ACOT1) is involved in regulating cardiac energy production via altering substrate metabolism. This study aims to clarify whether ACOT1 has a potency to ameliorate septic myocardial dysfunction via enhancing cardiac FAO. Transgenic mice with cardiomyocyte specific expression of ACOT1 (αMHC-ACOT1) and their wild type (WT) littermates were challenged with Escherichia coli lipopolysaccharide (LPS; 5 mg/kg i.p.) and myocardial function was assessed 6 h later using echocardiography and hemodynamics. Deteriorated cardiac function evidenced by reduction of the percentage of left ventricular ejection fraction and fractional shortening after LPS administration was significantly attenuated by cardiomyocyte specific expression of ACOT1. αMHC-ACOT1 mice exhibited a markedly increase in glucose utilization and cardiac FAO compared with LPS-treated WT mice. Suppression of cardiac peroxisome proliferator activated receptor alpha (PPARa) and PPARγ-coactivator-1α (PGC1a) signaling observed in LPS-challenged WT mice was activated by the presence of ACOT1. These results suggest that ACOT1 has potential therapeutic values to protect heart from sepsis mediated dysfunction, possibly through activating PPARa/PGC1a signaling. - Highlights: • ACOT1 has potential therapeutic values to protect heart from sepsis mediated dysfunction. • ACOT1 can regulate PPARa/PGC1a signaling pathway. • We first generate the transgenic mice with cardiomyocyte specific expression of ACOT1.

  14. The Value of Attenuation Correction in Hybrid Cardiac SPECT/CT on Inferior Wall According to Body Mass Index

    International Nuclear Information System (INIS)

    Tamam, Muge; Mulazimoglu, Mehmet; Edis, Nurcan; Ozpacaci, Tevfik

    2016-01-01

    The purpose of this study was to evaluate the diagnostic value of attenuation-corrected single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) on the inferior wall compared to uncorrected (NC) SPECT MPI between obese and nonobese patients. A total of 157 consecutive patients (122 males and 35 females, with median age: 57.4 ± 11 years) who underwent AC technetium 99m-methoxyisobutylisonitrile (AC Tc99m-sestamibi) SPECT MPI were included to the study. A hybrid SPECT and transmission computed tomography (CT) system was used for the diagnosis with 1-day protocol, and stress imaging was performed first. During attenuation correction (AC) processing on a Xeleris Workstation using Myovation cardiac software with ordered subset expectation maximization (OSEM), iterative reconstruction with attenuation correction (IRAC) and NC images filtered back projection (FBP) were used. For statistical purposes, P < 0.05 was considered significant. This study included 73 patients with body mass index (BMI) <30 and 84 patients with BMI ≥ 30. In patients with higher BMI, increased amount of both visual and semiquantitative attenuation of the inferior wall was detected. IRAC reconstruction corrects the diaphragm attenuation of the inferior wall better than FBP. AC with OSEM iterative reconstruction significantly improves the diagnostic value of stress-only SPECT MPI in patients with normal weight and those who are obese, but the improvements are significantly greater in obese patients. Stress-only SPECT imaging with AC provides shorter and lower radiation exposure

  15. Myocardial hypertrophy in the recipient with twin-to-twin transfusion syndrome

    DEFF Research Database (Denmark)

    Jeppesen, D.L.; Jorgensen, F.S.; Pryds, O.A.

    2008-01-01

    pressure measurements revealed persistent systemic hypertension. Biventricular hypertrophy was demonstrated by echocardiography. Blood pressure normalised after treatment with Nifedipine and the cardiac hypertrophy subsided over the following weeks. A potential contributing mechanism is intrauterine...

  16. Exercise-induced arterial hypertension - an independent factor for hypertrophy and a ticking clock for cardiac fatigue or atrial fibrillation in athletes? [v1; ref status: indexed, http://f1000r.es/3b4

    Directory of Open Access Journals (Sweden)

    Roman Leischik

    2014-05-01

    Full Text Available Background: Exercise-induced arterial hypertension (EIAH leads to myocardial hypertrophy and is associated with a poor prognosis. EIAH might be related to the “cardiac fatigue” caused by endurance training. The goal of this study was to examine whether there is any relationship between EIAH and left ventricular hypertrophy in Ironman-triathletes. Methods: We used echocardiography and spiroergometry to determine the left ventricular mass (LVM, the aerobic/anaerobic thresholds and the steady-state blood pressure of 51 healthy male triathletes. The main inclusion criterion was the participation in at least one middle or long distance triathlon. Results: When comparing triathletes with LVM 220g there was a significant difference between blood pressure values (BP at the anaerobic threshold (185.2± 21.5 mmHg vs. 198.8 ±22.3 mmHg, p=0.037. The spiroergometric results were: maximum oxygen uptake (relative VO2max 57.3 ±7.5ml/min/kg vs. 59.8±9.5ml/min/kg (p=ns. Cut-point analysis for the relationship of BP >170 mmHg at the aerobic threshold and the probability of LVM >220g showed a sensitivity of 95.8%, a specificity of 33.3%, with a positive predictive value of 56.8 %, a good negative predictive value of 90%. The probability of LVM >220g increased with higher BP during exercise (OR: 1.027, 95% CI 1.002-1.052, p= 0.034 or with higher training volume (OR: 1.23, 95% CI 1.04 -1.47, p = 0.019. Echocardiography showed predominantly concentric remodelling, followed by concentric hypertrophy. Conclusion: Significant left ventricular hypertrophy with LVM >220g is associated with higher arterial blood pressure at the aerobic or anaerobic threshold. The endurance athletes with EIAH may require a therapeutic intervention to at least prevent extensive stiffening of the heart muscle and exercise-induced cardiac fatigue.

  17. Cardiac-Specific Overexpression of Catalase Attenuates Lipopolysaccharide-Induced Myocardial Contractile Dysfunction: Role of Autophagy

    OpenAIRE

    Turdi, Subat; Han, Xuefeng; Huff, Anna F.; Roe, Nathan D.; Hu, Nan; Gao, Feng; Ren, Jun

    2012-01-01

    Lipopolysaccharide (LPS) from Gram-negative bacteria is a major initiator of sepsis, leading to cardiovascular collapse. Accumulating evidence has indicated a role of reactive oxygen species (ROS) in cardiovascular complication in sepsis. This study was designed to examine the effect of cardiac-specific overexpression of catalase in LPS-induced cardiac contractile dysfunction and the underlying mechanism(s) with a focus on autophagy. Catalase transgenic and wild-type FVB mice were challenged ...

  18. Eicosapentenoic Acid Attenuates Allograft Rejection in an HLA-B27/EGFP Transgenic Rat Cardiac Transplantation Model.

    Science.gov (United States)

    Liu, Zhong; Hatayama, Naoyuki; Xie, Lin; Kato, Ken; Zhu, Ping; Ochiya, Takahiro; Nagahara, Yukitoshi; Hu, Xiang; Li, Xiao-Kang

    2012-01-01

    The development of an animal model bearing definite antigens is important to facilitate the evaluation and modulation of specific allo-antigen responses after transplantation. In the present study, heterotopic cardiac transplantation was performed from F344/EGFPTg and F344/HLA-B27Tg rats to F344 rats. The F344 recipients accepted the F344/EGFPTg transplants, whereas they rejected the cardiac tissue from the F344/HLA-B27Tg rats by 39.4 ± 6.5 days, due to high production of anti-HLA-B27 IgM- and IgG-specific antibodies. In addition, immunization of F344 rats with skin grafts from F344/HLA-B27Tg rats resulted in robust production of anti- HLA-B27 IgM and IgG antibodies and accelerated the rejection of a secondary cardiac allograft (7.4 ± 1.9 days). Of interest, the F344 recipients rejected cardiac grafts from double transgenic F344/HLA-B27&EGFPTg rats within 9.0 ± 3.2 days, and this was associated with a significant increase in the infiltration of lymphocytes by day 7, suggesting a role for cellular immune rejection. Eicosapentenoic acid (EPA), one of the ω-3 polyunsaturated fatty acids in fish oil, could attenuate the production of anti-HLA IgG antibodies and B-cell proliferation, significantly prolonging double transgenic F344HLA-B27&EGFPTg to F344 rat cardiac allograft survival (36.1 ± 13.6 days). Moreover, the mRNA expression in the grafts was assessed by quantitative reverse transcription polymerase chain reaction (qRT-PCR), revealing an increase in the expression of the HO-1, IL-10, TGF-β, IDO, and Foxp3 genes in the EPA-treated group. Hence, our data indicate that HLA-B27 and/or GFP transgenic proteins are useful for establishing a unique animal transplantation model to clarify the mechanism underlying the allogeneic cellular and humoral immune response, in which the transplant antigens are specifically presented. Furthermore, we also demonstrated that EPA was effective in the treatment of rat cardiac allograft rejection and may allow the development of

  19. Treatment with Fenofibrate plus a low dose of Benznidazole attenuates cardiac dysfunction in experimental Chagas disease

    Directory of Open Access Journals (Sweden)

    Ágata C. Cevey

    2017-12-01

    Full Text Available Trypanosoma cruzi induces serious cardiac alterations during the chronic infection. Intense inflammatory response observed from the beginning of infection, is critical for the control of parasite proliferation and evolution of Chagas disease. Peroxisome proliferator-activated receptors (PPAR-α, are known to modulate inflammation.In this study we investigated whether a PPAR-α agonist, Fenofibrate, improves cardiac function and inflammatory parameters in a murine model of T. cruzi infection. BALB/c mice were sequentially infected with two T. cruzi strains of different genetic background. Benznidazole, commonly used as trypanocidal drug, cleared parasites but did not preclude cardiac pathology, resembling what is found in human chronic chagasic cardiomyopathy. Fenofibrate treatment restored to normal values the ejection and shortening fractions, left ventricular end-diastolic, left ventricular end-systolic diameter, and isovolumic relaxation time. Moreover, it reduced cardiac inflammation and fibrosis, decreased the expression of pro-inflammatory (IL-6, TNF-α and NOS2 and heart remodeling mediators (MMP-9 and CTGF, and reduced serum creatine kinase activity. The fact that Fenofibrate partially inhibited NOS2 expression and NO release in the presence of a PPAR-α non-competitive inhibitor, suggested it also acted through PPAR-α-independent pathways. Since IκBα cytosolic degradation was inhibited by Fenofibrate, it can be concluded that the NFκB pathway has a role in its effects. Thus, we demonstrate that Fenofibrate acts through PPAR-α-dependent and -independent pathways.Our study shows that combined treatment with Fenofibrate plus Benznidazole is able both to reverse the cardiac dysfunction associated with the ongoing inflammatory response and fibrosis and to attain parasite clearance in an experimental model of Chagas disease. Keywords: Trypanosoma cruzi, Heart dysfunction, PPAR-α, Fenofibrate treatment, Inflammatory mediators

  20. Moringa oleifera extract (Lam) attenuates Aluminium phosphide-induced acute cardiac toxicity in rats.

    Science.gov (United States)

    Gouda, Ahmed S; El-Nabarawy, Nagla A; Ibrahim, Samah F

    2018-01-01

    Moringa oleifera extract (Lam) has many antioxidant and protective properties. Objective: to investigate the antioxidant activities of Lam in counteracting the high oxidative stress caused by acute sub-lethal aluminium phosphide (AlP) intoxication in rat heart. These activities will be detected by histopathological examination and some oxidative stress biomarkers. a single sub-lethal dose of Alp (2 mg/kg body weight) was administered orally, and Lam was given orally at a dose (100 mg/kg body weight) one hour after receiving AlP to rats. aluminium phosphide caused significant cardiac histopathological changes with a significant increase in malondialdehyde (MDA); lipid peroxidation marker; and a significant depletion of antioxidant enzymes (catalase and glutathione reductase). However, treatment with Lam protected efficiently the cardiac tissue of intoxicated rats by increasing antioxidants levels with slight decreasing in MDA production compared to untreated group. This study suggested that Moringa oleifera extract could possibly restore the altered cardiac histopathology and some antioxidant power in AlP intoxicated rats, and it could even be used as adjuvant therapy against AlP-induced cardiotoxicity.

  1. Inhibition of PKR protects against H2O2-induced injury on neonatal cardiac myocytes by attenuating apoptosis and inflammation.

    Science.gov (United States)

    Wang, Yongyi; Men, Min; Xie, Bo; Shan, Jianggui; Wang, Chengxi; Liu, Jidong; Zheng, Hui; Yang, Wengang; Xue, Song; Guo, Changfa

    2016-12-08

    Reactive oxygenation species (ROS) generated from reperfusion results in cardiac injury through apoptosis and inflammation, while PKR has the ability to promote apoptosis and inflammation. The aim of the study was to investigate whether PKR is involved in hydrogen peroxide (H 2 O 2 ) induced neonatal cardiac myocytes (NCM) injury. In our study, NCM, when exposed to H 2 O 2 , resulted in persistent activation of PKR due to NCM endogenous RNA. Inhibition of PKR by 2-aminopurine (2-AP) or siRNA protected against H 2 O 2 induced apoptosis and injury. To elucidate the mechanism, we revealed that inhibition of PKR alleviated H 2 O 2 induced apoptosis companied by decreased caspase3/7 activity, BAX and caspase-3 expression. We also revealed that inhibition of PKR suppressed H 2 O 2 induced NFκB pathway and NLRP3 activation. Finally, we found ADAR1 mRNA and protein expression were both induced after H 2 O 2 treatment through STAT-2 dependent pathway. By gain and loss of ADAR1 expression, we confirmed ADAR1 modulated PKR activity. Therefore, we concluded inhibition of PKR protected against H 2 O 2 -induced injury by attenuating apoptosis and inflammation. A self-preservation mechanism existed in NCM that ADAR1 expression is induced by H 2 O 2 to limit PKR activation simultaneously. These findings identify a novel role for PKR/ADAR1 in myocardial reperfusion injury.

  2. A knowledge-based method for reducing attenuation artefacts caused by cardiac appliances in myocardial PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Hamill, James J [Siemens Medical Solutions, Molecular Imaging, 810 Innovation Dr., Knoxville, TN (United States); Brunken, Richard C [Department of Molecular and Functional Imaging, Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, OH (United States); Bybel, Bohdan [Department of Molecular and Functional Imaging, Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, OH (United States); DiFilippo, Frank P [Department of Molecular and Functional Imaging, Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, OH (United States); Faul, David D [Siemens Medical Solutions, Molecular Imaging, 810 Innovation Dr., Knoxville, TN (United States)

    2006-06-07

    Attenuation artefacts due to implanted cardiac defibrillator leads have previously been shown to adversely impact cardiac PET/CT imaging. In this study, the severity of the problem is characterized, and an image-based method is described which reduces the resulting artefact in PET. Automatic implantable cardioverter defibrillator (AICD) leads cause a moving-metal artefact in the CT sections from which the PET attenuation correction factors (ACFs) are derived. Fluoroscopic cine images were measured to demonstrate that the defibrillator's highly attenuating distal shocking coil moves rhythmically across distances on the order of 1 cm. Rhythmic motion of this magnitude was created in a phantom with a moving defibrillator lead. A CT study of the phantom showed that the artefact contained regions of incorrect, very high CT values and adjacent regions of incorrect, very low CT values. The study also showed that motion made the artefact more severe. A knowledge-based metal artefact reduction method (MAR) is described that reduces the magnitude of the error in the CT images, without use of the corrupted sinograms. The method modifies the corrupted image through a sequence of artefact detection procedures, morphological operations, adjustments of CT values and three-dimensional filtering. The method treats bone the same as metal. The artefact reduction method is shown to run in a few seconds, and is validated by applying it to a series of phantom studies in which reconstructed PET tracer distribution values are wrong by as much as 60% in regions near the CT artefact when MAR is not applied, but the errors are reduced to about 10% of expected values when MAR is applied. MAR changes PET image values by a few per cent in regions not close to the artefact. The changes can be larger in the vicinity of bone. In patient studies, the PET reconstruction without MAR sometimes results in anomalously high values in the infero-septal wall. Clinical performance of MAR is assessed by

  3. A knowledge-based method for reducing attenuation artefacts caused by cardiac appliances in myocardial PET/CT

    International Nuclear Information System (INIS)

    Hamill, James J; Brunken, Richard C; Bybel, Bohdan; DiFilippo, Frank P; Faul, David D

    2006-01-01

    Attenuation artefacts due to implanted cardiac defibrillator leads have previously been shown to adversely impact cardiac PET/CT imaging. In this study, the severity of the problem is characterized, and an image-based method is described which reduces the resulting artefact in PET. Automatic implantable cardioverter defibrillator (AICD) leads cause a moving-metal artefact in the CT sections from which the PET attenuation correction factors (ACFs) are derived. Fluoroscopic cine images were measured to demonstrate that the defibrillator's highly attenuating distal shocking coil moves rhythmically across distances on the order of 1 cm. Rhythmic motion of this magnitude was created in a phantom with a moving defibrillator lead. A CT study of the phantom showed that the artefact contained regions of incorrect, very high CT values and adjacent regions of incorrect, very low CT values. The study also showed that motion made the artefact more severe. A knowledge-based metal artefact reduction method (MAR) is described that reduces the magnitude of the error in the CT images, without use of the corrupted sinograms. The method modifies the corrupted image through a sequence of artefact detection procedures, morphological operations, adjustments of CT values and three-dimensional filtering. The method treats bone the same as metal. The artefact reduction method is shown to run in a few seconds, and is validated by applying it to a series of phantom studies in which reconstructed PET tracer distribution values are wrong by as much as 60% in regions near the CT artefact when MAR is not applied, but the errors are reduced to about 10% of expected values when MAR is applied. MAR changes PET image values by a few per cent in regions not close to the artefact. The changes can be larger in the vicinity of bone. In patient studies, the PET reconstruction without MAR sometimes results in anomalously high values in the infero-septal wall. Clinical performance of MAR is assessed by two

  4. Role of adenosine A2A receptor signaling in the nicotine-evoked attenuation of reflex cardiac sympathetic control

    International Nuclear Information System (INIS)

    El-Mas, Mahmoud M.; El-gowilly, Sahar M.; Fouda, Mohamed A.; Saad, Evan I.

    2011-01-01

    Baroreflex dysfunction contributes to increased cardiovascular risk in cigarette smokers. Given the importance of adenosinergic pathways in baroreflex control, the hypothesis was tested that defective central adenosinergic modulation of cardiac autonomic activity mediates the nicotine-baroreflex interaction. Baroreflex curves relating changes in heart rate (HR) to increases or decreases in blood pressure (BP) evoked by i.v. doses (1-16 μg/kg) of phenylephrine (PE) and sodium nitroprusside (SNP), respectively, were constructed in conscious rats; slopes of the curves were taken as measures of baroreflex sensitivity (BRS). Nicotine (25 and 100 μg/kg i.v.) dose-dependently reduced BRS SNP in contrast to no effect on BRS PE . BRS SNP was also attenuated after intracisternal (i.c.) administration of nicotine. Similar reductions in BRS SNP were observed in rats pretreated with atropine or propranolol. The combined treatment with nicotine and atropine produced additive inhibitory effects on BRS, an effect that was not demonstrated upon concurrent exposure to nicotine and propranolol. BRS SNP was reduced in preparations treated with i.c. 8-phenyltheophylline (8-PT, nonselective adenosine receptor antagonist), 8-(3-Chlorostyryl) caffeine (CSC, A 2A antagonist), or VUF5574 (A 3 antagonist). In contrast, BRS SNP was preserved after blockade of A 1 (DPCPX) or A 2B (alloxazine) receptors or inhibition of adenosine uptake by dipyridamole. CSC or 8-PT abrogated the BRS SNP depressant effect of nicotine whereas other adenosinergic antagonists were without effect. Together, nicotine preferentially impairs reflex tachycardia via disruption of adenosine A 2A receptor-mediated facilitation of reflex cardiac sympathoexcitation. Clinically, the attenuation by nicotine of compensatory sympathoexcitation may be detrimental in conditions such as hypothalamic defense response, posture changes, and ventricular rhythms. - Research highlights: → The role of central adenosinergic sites in

  5. Oral Contraceptives Attenuate Cardiac Autonomic Responses to Musical Auditory Stimulation: Pilot Study.

    Science.gov (United States)

    Milan, Réveni Carmem; Plassa, Bruna Oliveira; Guida, Heraldo Lorena; de Abreu, Luiz Carlos; Gomes, Rayana L; Garner, David M; Valenti, Vitor E

    2015-01-01

    The literature presents contradictory results regarding the effects of contraceptives on cardiac autonomic regulation. The research team aimed to evaluate the effects of musical auditory stimulation on cardiac autonomic regulation in women who use oral contraceptives. The research team designed a transversal observational pilot study. The setting was the Centro de Estudos do Sistema Nervoso Autônomo (CESNA) in the Departamento de Fonoaudiologia at the Universidade Estadual Paulista (UNESP) in Marília, SP, Brazil. Participants were 22 healthy nonathletic and nonsedentary females, all nonsmokers and aged between 18 and 27 y. Participants were divided into 2 groups: (1) 12 women who were not taking oral contraceptives, the control group; and (2) 10 women who were taking oral contraceptives, the oral contraceptive group. In the first stage, a rest control, the women sat with their earphones turned off for 20 min. After that period, the participants were exposed to 20 min of classical baroque music (ie, "Canon in D Major," Johann Pachelbel), at 63-84 dB. Measurements of the equivalent sound levels were conducted in a soundproof room, and the intervals between consecutive heartbeats (R-R intervals) were recorded, with a sampling rate of 1000 Hz. For calculation of the linear indices, the research team used software to perform an analysis of heart rate variability (HRV). Linear indices of HRV were analyzed in the time domain: (1) the standard deviation of normal-to-normal R-R intervals (SDNN), (2) the root-mean square of differences between adjacent normal R-R intervals in a time interval (RMSSD), and (3) the percentage of adjacent R-R intervals with a difference of duration greater than 50 ms (pNN50). The study also analyzed the frequency domain-low frequency (LF), high frequency (HF), and LF/HF ratio. For the control group, the musical auditory stimulation reduced (1) the SDNN from 52.2 ± 10 ms to 48.4 ± 16 ms (P = .0034); (2) the RMSSD from 45.8 ± 22 ms to 41.2

  6. Targeted NGF siRNA delivery attenuates sympathetic nerve sprouting and deteriorates cardiac dysfunction in rats with myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Hesheng Hu

    Full Text Available Nerve growth factor (NGF is involved in nerve sprouting, hyper-innervation, angiogenesis, anti-apoptosis, and preservation of cardiac function after myocardial infarction (MI. Positively modulating NGF expression may represent a novel pharmacological strategy to improve post-infarction prognosis. In this study, lentivirus encoding NGF short interfering RNA (siRNA was prepared, and MI was modeled in the rat using left anterior descending coronary artery ligation. Rats were randomly grouped to receive intramyocardial injection of lentiviral solution containing NGF-siRNA (n = 19, MI-SiNGF group, lentiviral solution containing empty vector (n = 18, MI-GFP group or 0.9% NaCl solution (n = 18, MI-control group, or to receive thoracotomy and pericardiotomy (n = 17, sham-operated group. At 1, 2, 4, and 8 wk after transduction, rats in the MI-control group had higher levels of NGF mRNA and protein than those in the sham-operated group, rats in the MI-GFP group showed similar levels as the MI-control group, and rats in the MI-SiNGF group had lower levels compared to the MI-GFP group, indicating that MI model was successfully established and NGF siRNA effectively inhibited the expression of NGF. At 8 wk, echocardiographic and hemodynamic studies revealed a more severe cardiac dysfunction in the MI-siRNA group compared to the MI-GFP group. Moreover, rats in the MI-siRNA group had lower mRNA and protein expression levels of tyrosine hydroxylase (TH and growth-associated protein 43-positive nerve fibers (GAP-43 at both the infarcted border and within the non-infarcted left ventricles (LV. NGF silencing also reduced the vascular endothelial growth factor (VEGF expression and decreased the arteriolar and capillary densities at the infarcted border compared to the MI-GFP group. Histological analysis indicated a large infarcted size in the MI-SiNGF group. These findings suggested that endogenous NGF silencing attenuated sympathetic nerve sprouting

  7. Attenuation of cold stress-induced exacerbation of cardiac and adipose tissue pathology and metabolic disorders in a rat model of metabolic syndrome by the glucocorticoid receptor antagonist RU486.

    Science.gov (United States)

    Nagasawa, K; Matsuura, N; Takeshita, Y; Ito, S; Sano, Y; Yamada, Y; Uchinaka, A; Murohara, T; Nagata, K

    2016-04-25

    Chronic stress affects the central nervous system as well as endocrine, metabolic and immune systems. However, the effects of cold stress on cardiovascular and metabolic disorders in metabolic syndrome (MetS) have remained unclear. We recently characterized DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats, derived from a cross between Dahl salt-sensitive and Zucker rats, as a new animal model of MetS. We have now investigated the effects of chronic cold stress and glucocorticoid receptor (GR) blockade on cardiac and adipose tissue pathology as well as on metabolic parameters in this model. DS/obese rats were exposed to cold stress (immersion in ice-cold water to a depth of 1-2 cm for 2 h per day) with or without subcutaneous injection of the GR antagonist RU486 (2 mg kg(-1)day(-1)) for 4 weeks beginning at 9 weeks of age. Age-matched homozygous lean (DahlS.Z-Lepr(+)/Lepr(+)) littermates served as a control. Chronic cold stress exacerbated hypertension as well as left ventricular (LV) hypertrophy, fibrosis and diastolic dysfunction in DS/obese rats in a manner sensitive to RU486 treatment. Cold stress with or without RU486 did not affect body weight or fat mass. In contrast, cold stress further increased cardiac oxidative stress as well as macrophage infiltration and proinflammatory gene expression in LV and visceral fat tissue, with all of these effects being attenuated by RU486. Cold stress also further increased GR and 11β-hydroxysteroid dehydrogenase type 1 mRNA and protein abundance in LV and visceral adipose tissue, and these effects were again inhibited by RU486. In addition, RU486 ameliorated the stress-induced aggravation of dyslipidemia, glucose intolerance and insulin resistance in DS/obese rats. Our results implicate GR signaling in cold stress-induced exacerbation of cardiac and adipose tissue pathology as well as of abnormal glucose and lipid metabolism in a rat model of MetS.

  8. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts.

    Science.gov (United States)

    Lee, Tsung-Ming; Chang, Nen-Chung; Lin, Shinn-Zong

    2017-03-01

    During myocardial infarction, infiltrated macrophages have pivotal roles in cardiac remodeling and delayed M1 toward M2 macrophage phenotype transition is considered one of the major factors for adverse ventricular remodeling. We investigated whether dapagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, attenuates cardiac fibrosis via regulating macrophage phenotype by a reactive oxygen and nitrogen species (RONS)/STAT3-dependent pathway in postinfarcted rats. Normoglycemic male Wistar rats were subjected to coronary ligation and then randomized to either saline, dapagliflozin (a specific SGLT2 inhibitor), phlorizin (a nonspecific SGLT1/2 inhibitor), dapagliflozin + S3I-201 (a STAT3 inhibitor), or phlorizin + S3I-201 for 4 weeks. There were similar infarct sizes among the infarcted groups at the acute and chronic stages of infarction. At day 3 after infarction, post-infarction was associated with increased levels of superoxide and nitrotyrosine, which can be inhibited by administering either dapagliflozin or phlorizin. SGLT2 inhibitors significantly increased STAT3 activity, STAT3 nuclear translocation, myocardial IL-10 levels and the percentage of M2 macrophage infiltration. At day 28 after infarction, SGLT2 inhibitors were associated with attenuated myofibroblast infiltration and cardiac fibrosis. Although phlorizin decreased myofibroblast infiltration, the effect of dapagliflozin on attenuated myofibroblast infiltration was significantly higher than phlorizin. The effects of SGLT2 inhibitors on cardiac fibrosis were nullified by adding S3I-201. Furthermore, the effects of dapagliflozin on STAT3 activity and myocardial IL-10 levels can be reversed by 3-morpholinosydnonimine, a peroxynitrite generator. Taken together, these observations provide a novel mechanism of SGLT2 inhibitors-mediated M2 polarization through a RONS-dependent STAT3-mediated pathway and selective SGLT2 inhibitors are more effective in attenuating myofibroblast infiltration during

  9. Passive Heating Attenuates Post-exercise Cardiac Autonomic Recovery in Healthy Young Males

    Directory of Open Access Journals (Sweden)

    Tiago Peçanha

    2017-12-01

    Full Text Available Post-exercise heart rate (HR recovery (HRR presents a biphasic pattern, which is mediated by parasympathetic reactivation and sympathetic withdrawal. Several mechanisms regulate these post-exercise autonomic responses and thermoregulation has been proposed to play an important role. The aim of this study was to test the effects of heat stress on HRR and HR variability (HRV after aerobic exercise in healthy subjects. Twelve healthy males (25 ± 1 years, 23.8 ± 0.5 kg/m2 performed 14 min of moderate-intensity cycling exercise (40–60% HRreserve followed by 5 min of loadless active recovery in two conditions: heat stress (HS and normothermia (NT. In HS, subjects dressed in a whole-body water-perfused tube-lined suit to increase internal temperature (Tc by ~1°C. In NT, subjects did not wear the suit. HR, core and skin temperatures (Tc and Tsk, mean arterial pressure (MAP skin blood flow (SKBF, and cutaneous vascular conductance (CVC were measured throughout and analyzed during post-exercise recovery. HRR was assessed through calculations of HR decay after 60 and 300 s of recovery (HRR60s and HRR300s, and the short- and long-term time constants of HRR (T30 and HRRt. Post-exercise HRV was examined via calculations of RMSSD (root mean square of successive RR intervals and RMS (root mean square residual of RR intervals. The HS protocol promoted significant thermal stress and hemodynamic adjustments during the recovery (HS-NT differences: Tc = +0.7 ± 0.3°C; Tsk = +3.2 ± 1.5°C; MAP = −12 ± 14 mmHg; SKBF = +90 ± 80 a.u; CVC = +1.5 ± 1.3 a.u./mmHg. HRR and post-exercise HRV were significantly delayed in HS (e.g., HRR60s = 27 ± 9 vs. 44 ± 12 bpm, P < 0.01; HRR300s = 39 ± 12 vs. 59 ± 16 bpm, P < 0.01. The effects of heat stress (e.g., the HS-NT differences on HRR were associated with its effects on thermal and hemodynamic responses. In conclusion, heat stress delays HRR, and this effect seems to be mediated by an attenuated parasympathetic

  10. Exogenous cathepsin V protein protects human cardiomyocytes HCM from angiotensin Ⅱ-Induced hypertrophy.

    Science.gov (United States)

    Huang, Kun; Gao, Lu; Yang, Ming; Wang, Jiliang; Wang, Zheng; Wang, Lin; Wang, Guobin; Li, Huili

    2017-08-01

    Angiotensin (Ang) Ⅱ-induced cardiac hypertrophy can deteriorate to heart failure, a leading cause of mortality. Endogenous Cathepsin V (CTSV) has been reported to be cardioprotective against hypertrophy. However, little is known about the effect of exogenous CTSV on cardiac hypertrophy. We used the human cardiomyocytes HCM as a cell model to investigate the effects of exogenous CTSV on Ang Ⅱ-induced cardiac cell hypertrophy. Cell surface area and expression of classical markers of hypertrophy were analyzed. We further explored the mechanism of CTSV cardioprotective by assessing the levels and activities of PI3K/Akt/mTOR and MAPK signaling pathway proteins. We found that pre-treating cardiomyocytes with CTSV could significantly inhibit Ang Ⅱ-induced hypertrophy. The mRNA expression of hypertrophy markers ANP, BNP and β-MHC was obviously elevated in Ang Ⅱ-treated cardiac cells. Whereas, exogenous CTSV effectively halted this elevation. Further study revealed that the protective effects of exogenous CTSV might be mediated by repressing the phosphorylation of proteins in the PI3K/Akt/mTOR and MAPK pathways. Based on our results, we concluded that exogenous CTSV inhibited Ang Ⅱ-induced hypertrophy in HCM cells by inhibiting PI3K/Akt/mTOR. This study provides experimental evidence for the application of CTSV protein for the treatment of cardiac hypertrophy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Gender and post-ischemic recovery of hypertrophied rat hearts

    Directory of Open Access Journals (Sweden)

    Popov Kirill M

    2006-03-01

    Full Text Available Abstract Background Gender influences the cardiac response to prolonged increases in workload, with differences at structural, functional, and molecular levels. However, it is unknown if post-ischemic function or metabolism of female hypertrophied hearts differ from male hypertrophied hearts. Thus, we tested the hypothesis that gender influences post-ischemic function of pressure-overload hypertrophied hearts and determined if the effect of gender on post-ischemic outcome could be explained by differences in metabolism, especially the catabolic fate of glucose. Methods Function and metabolism of isolated working hearts from sham-operated and aortic-constricted male and female Sprague-Dawley rats before and after 20 min of no-flow ischemia (N = 17 to 27 per group were compared. Parallel series of hearts were perfused with Krebs-Henseleit solution containing 5.5 mM [5-3H/U-14C]-glucose, 1.2 mM [1-14C]-palmitate, 0.5 mM [U-14C]-lactate, and 100 mU/L insulin to measure glycolysis and glucose oxidation in one series and oxidation of palmitate and lactate in the second. Statistical analysis was performed using two-way analysis of variance. The sequential rejective Bonferroni procedure was used to correct for multiple comparisons and tests. Results Female gender negatively influenced post-ischemic function of non-hypertrophied hearts, but did not significantly influence function of hypertrophied hearts after ischemia such that mass-corrected hypertrophied heart function did not differ between genders. Before ischemia, glycolysis was accelerated in hypertrophied hearts, but to a greater extent in males, and did not differ between male and female non-hypertrophied hearts. Glycolysis fell in all groups after ischemia, except in non-hypertrophied female hearts, with the reduction in glycolysis after ischemia being greatest in males. Post-ischemic glycolytic rates were, therefore, similarly accelerated in hypertrophied male and female hearts and higher in

  12. Mechanical ventilation with high tidal volumes attenuates myocardial dysfunction by decreasing cardiac edema in a rat model of LPS-induced peritonitis

    Directory of Open Access Journals (Sweden)

    Smeding Lonneke

    2012-03-01

    Full Text Available Abstract Background Injurious mechanical ventilation (MV may augment organ injury remote from the lungs. During sepsis, myocardial dysfunction is common and increased endothelial activation and permeability can cause myocardial edema, which may, among other factors, hamper myocardial function. We investigated the effects of MV with injuriously high tidal volumes on the myocardium in an animal model of sepsis. Methods Normal rats and intraperitoneal (i.p. lipopolysaccharide (LPS-treated rats were ventilated with low (6 ml/kg and high (19 ml/kg tidal volumes (Vt under general anesthesia. Non-ventilated animals served as controls. Mean arterial pressure (MAP, central venous pressure (CVP, cardiac output (CO and pulmonary plateau pressure (Pplat were measured. Ex vivo myocardial function was measured in isolated Langendorff-perfused hearts. Cardiac expression of endothelial vascular cell adhesion molecule (VCAM-1 and edema were measured to evaluate endothelial inflammation and leakage. Results MAP decreased after LPS-treatment and Vt-dependently, both independent of each other and with interaction. MV Vt-dependently increased CVP and Pplat and decreased CO. LPS-induced peritonitis decreased myocardial function ex vivo but MV attenuated systolic dysfunction Vt-dependently. Cardiac endothelial VCAM-1 expression was increased by LPS treatment independent of MV. Cardiac edema was lowered Vt-dependently by MV, particularly after LPS, and correlated inversely with systolic myocardial function parameters ex vivo. Conclusion MV attenuated LPS-induced systolic myocardial dysfunction in a Vt-dependent manner. This was associated with a reduction in cardiac edema following a lower transmural coronary venous outflow pressure during LPS-induced coronary inflammation.

  13. Electrocardiography-triggered high-resolution CT for reducing cardiac motion artifact. Evaluation of the extent of ground-glass attenuation in patients with idiopathic pulmonary fibrosis

    International Nuclear Information System (INIS)

    Nishiura, Motoko; Johkoh, Takeshi; Yamamoto, Shuji

    2007-01-01

    The aim of this study was to evaluate the decreasing of cardiac motion artifact and whether the extent of ground-glass attenuation of idiopathic pulmonary fibrosis (IPF) was accurately assessed by electrocardiography (ECG)-triggered high-resolution computed tomography (HRCT) by 0.5-s/rotation multidetector-row CT (MDCT). ECG-triggered HRCT were scanned at the end-diastolic phase by a MDCT scanner with the following scan parameters; axial four-slice mode, 0.5 mm collimation, 0.5-s/rotation, 120 kVp, 200 mA/rotation, high-frequency algorithm, and half reconstruction. In 42 patients with IPF, both conventional HRCT (ECG gating (-), full reconstruction) and ECG-triggered HRCT were performed at the same levels (10-mm intervals) with the above scan parameters. The correlation between percent diffusion of carbon monoxide of the lung (%DLCO) and the mean extent of ground-glass attenuation on both conventional HRCT and ECG-triggered HRCT was evaluated with the Spearman rank correlation coefficient test. The correlation between %DLCO and the mean extent of ground-glass attenuation on ECG-triggered HRCT (observer A: r=-0.790, P<0.0001; observer B: r=-0.710, P<0.0001) was superior to that on conventional HRCT (observer A: r=-0.395, P<0.05; observer B: r=-0.577, P=0.002) for both observers. ECG-triggered HRCT by 0.5 s/rotation MDCT can reduce the cardiac motion artifact and is useful for evaluating the extent of ground-glass attenuation of IPF. (author)

  14. Role of bone marrow-derived CD11c+ dendritic cells in systolic overload-induced left ventricular inflammation, fibrosis and hypertrophy.

    Science.gov (United States)

    Wang, Huan; Kwak, Dongmin; Fassett, John; Liu, Xiaohong; Yao, Wu; Weng, Xinyu; Xu, Xin; Xu, Yawei; Bache, Robert J; Mueller, Daniel L; Chen, Yingjie

    2017-05-01

    Inflammatory responses play an important role in the development of left ventricular (LV) hypertrophy and dysfunction. Recent studies demonstrated that increased T-cell infiltration and T-cell activation contribute to LV hypertrophy and dysfunction. Dendritic cells (DCs) are professional antigen-presenting cells that orchestrate immune responses, especially by modulating T-cell function. In this study, we investigated the role of bone marrow-derived CD11c + DCs in transverse aortic constriction (TAC)-induced LV fibrosis and hypertrophy in mice. We observed that TAC increased the number of CD11c + cells and the percentage of CD11c + MHCII + (major histocompatibility complex class II molecule positive) DCs in the LV, spleen and peripheral blood in mice. Using bone marrow chimeras and an inducible CD11c + DC ablation model, we found that depletion of bone marrow-derived CD11c + DCs significantly attenuated LV fibrosis and hypertrophy in mice exposed to 24 weeks of moderate TAC. CD11c + DC ablation significantly reduced TAC-induced myocardial inflammation as indicated by reduced myocardial CD45 + cells, CD11b + cells, CD8 + T cells and activated effector CD8 + CD44 + T cells in LV tissues. Moreover, pulsing of autologous DCs with LV homogenates from TAC mice promoted T-cell proliferation. These data indicate that bone marrow-derived CD11c + DCs play a maladaptive role in hemodynamic overload-induced cardiac inflammation, hypertrophy and fibrosis through the presentation of cardiac self-antigens to T cells.

  15. Increased sarcolemmal Na+/H+ exchange activity in hypertrophied myocytes from dogs with chronic atrioventricular block

    NARCIS (Netherlands)

    van Borren, Marcel M. G. J.; Vos, Marc A.; Houtman, Marien J. C.; Antoons, Gudrun; Ravesloot, Jan H.

    2013-01-01

    Dogs with compensated biventricular hypertrophy due to chronic atrioventricular block (cAVB), are more susceptible to develop drug-induced Torsade-de-Pointes arrhythmias and sudden cardiac death. It has been suggested that the increased Na+ influx in hypertrophied cAVB ventricular myocytes

  16. Tacrolimus-related hypertrophic cardiomyopathy in an adult cardiac transplant patient

    Institute of Scientific and Technical Information of China (English)

    LIU Tong; DONG Jian-zeng; GAO Yun; GAO Yu-long; CHENG Yu-tong; WANG Su; LI Zhi-zhong; ZHANG Hai-bo; MENG Xu; MA Chang-sheng

    2012-01-01

    Left ventricular hypertrophy associated with the use of tacrolimus is a rare complication of solid organ transplantation in adult recipients.We present a cardiac transplant recipient who developed severe concentric left ventricular hypertrophy with congestive heart failure related to myocardial hypertrophy on tacrolimus.Hypertrophy improved when the drug was discontinued and replaced with sirolimus.

  17. RSK3 is required for concentric myocyte hypertrophy in an activated Raf1 model for Noonan syndrome.

    Science.gov (United States)

    Passariello, Catherine L; Martinez, Eliana C; Thakur, Hrishikesh; Cesareo, Maria; Li, Jinliang; Kapiloff, Michael S

    2016-04-01

    Noonan syndrome (NS) is a congenital disorder resulting from mutations of the Ras-Raf signaling pathway. Hypertrophic cardiomyopathy associated with RAF1 "RASopathy" mutations is a major risk factor for heart failure and death in NS and has been attributed to activation of MEK1/2-ERK1/2 mitogen-activated protein kinases. We recently discovered that type 3 p90 ribosomal S6 kinase (RSK3) is an ERK effector that is required, like ERK1/2, for concentric myocyte hypertrophy in response to pathological stress such as pressure overload. In order to test whether RSK3 also contributes to NS-associated hypertrophic cardiomyopathy, RSK3 knock-out mice were crossed with mice bearing the Raf1(L613V) human NS mutation. We confirmed that Raf1(L613V) knock-in confers a NS-like phenotype, including cardiac hypertrophy. Active RSK3 was increased in Raf1(L613V) mice. Constitutive RSK3 gene deletion prevented the Raf1(L613V)-dependent concentric growth in width of the cardiac myocyte and attenuated cardiac hypertrophy in female mice. These results are consistent with RSK3 being an important mediator of ERK1/2-dependent growth in RASopathy. In conjunction with previously published data showing that RSK3 is important for pathological remodeling of the heart, these data suggest that targeting of this downstream MAP-kinase pathway effector should be considered in the treatment of RASopathy-associated hypertrophic cardiomyopathy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Stimulation of ganglionated plexus attenuates cardiac neural remodeling and heart failure progression in a canine model of acute heart failure post-myocardial infarction.

    Science.gov (United States)

    Luo, Da; Hu, Huihui; Qin, Zhiliang; Liu, Shan; Yu, Xiaomei; Ma, Ruisong; He, Wenbo; Xie, Jing; Lu, Zhibing; He, Bo; Jiang, Hong

    2017-12-01

    Heart failure (HF) is associated with autonomic dysfunction. Vagus nerve stimulation has been shown to improve cardiac function both in HF patients and animal models of HF. The purpose of this present study is to investigate the effects of ganglionated plexus stimulation (GPS) on HF progression and autonomic remodeling in a canine model of acute HF post-myocardial infarction. Eighteen adult mongrel male dogs were randomized into the control (n=8) and GPS (n=10) groups. All dogs underwent left anterior descending artery ligation followed by 6-hour high-rate (180-220bpm) ventricular pacing to induce acute HF. Transthoracic 2-dimensional echocardiography was performed at different time points. The plasma levels of norepinephrine, B-type natriuretic peptide (BNP) and Ang-II were measured using ELISA kits. C-fos and nerve growth factor (NGF) proteins expressed in the left stellate ganglion as well as GAP43 and TH proteins expressed in the peri-infarct zone were measured using western blot. After 6h of GPS, the left ventricular end-diastolic volume, end-systolic volume and ejection fraction showed no significant differences between the 2 groups, but the interventricular septal thickness at end-systole in the GPS group was significantly higher than that in the control group. The plasma levels of norepinephrine, BNP, Ang-II were increased 1h after myocardial infarction while the increase was attenuated by GPS. The expression of c-fos and NGF proteins in the left stellate ganglion as well as GAP43 and TH proteins in cardiac peri-infarct zone in GPS group were significantly lower than that in control group. GPS inhibits cardiac sympathetic remodeling and attenuates HF progression in canines with acute HF induced by myocardial infarction and ventricular pacing. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Does Resistance Training Stimulate Cardiac Muscle Hypertrophy?

    Science.gov (United States)

    Bloomer, Richard J.

    2003-01-01

    Reviews the literature on the left ventricular structural adaptations induced by resistance/strength exercise, focusing on human work, particularly well-trained strength athletes engaged in regular, moderate- to high-intensity resistance training (RT). The article discusses both genders and examines the use of anabolic-androgenic steroids in…

  20. Role of hypoxia-inducible factor in diabetic myocardial hypertrophy ...

    African Journals Online (AJOL)

    Purpose: This study was carried out to investigate the role of hypoxia-inducible factor (HIF) in diabetic cardiomyopathy in vitro. Methods: Hypoxia was induced chemically in H9C2 cells (cardiac hypertrophy model), and the cells were treated with phenylephrine (PE), deferoxamine (DFO), PE + DFO, and HIF-1α siRNA under ...

  1. Role of hypoxia-inducible factor in diabetic myocardial hypertrophy

    African Journals Online (AJOL)

    Diabetes or hyperglycemia disrupts HIF-mediated cardiac hypertrophy adaptive regulatory mechanism [14]. In diabetic retinopathy, abnormal increase of ... detection system. Flow cytometry. After digesting with EDTA-free trypsin, the H9C2 cells were centrifuged at 1000 rpm for 5 min. After discarding the medium, the cells ...

  2. Exercise attenuates intermittent hypoxia-induced cardiac fibrosis associated with sodium-hydrogen exchanger-1 in rats

    Directory of Open Access Journals (Sweden)

    Tsung-I Chen

    2016-10-01

    Full Text Available Purpose: To investigate the role of sodium–hydrogen exchanger-1 (NHE-1 and exercise training on intermittent hypoxia-induced cardiac fibrosis in obstructive sleep apnea (OSA, using an animal model mimicking the intermittent hypoxia of OSA. Methods: Eight-week-old male Sprague–Dawley rats were randomly assigned to control (CON, intermittent hypoxia (IH, exercise (EXE or IH combined with exercise (IHEXE groups. These groups were randomly assigned to subgroups receiving either a vehicle or the NHE-1 inhibitor cariporide. The EXE and IHEXE rats underwent exercise training on an animal treadmill for 10 weeks (5 days/week, 60 minutes/day, 24–30 m/minute, 2–10% grade. The IH and IHEXE rats were exposed to 14 days of IH (30 seconds of hypoxia - nadir of 2-6% O2 - followed by 45 seconds of normoxia for 8 hours/day. At the end of 10 weeks, rats were sacrificed and then hearts were removed to determine the myocardial levels of fibrosis index, oxidative stress, antioxidant capacity and NHE-1 activation. Results: Compared to the CON rats, IH induced higher cardiac fibrosis, lower myocardial catalase and superoxidative dismutase activities, higher myocardial lipid and protein peroxidation and higher NHE-1 activation (p < 0.05 for each, which were all abolished by cariporide. Compared to the IH rats, lower cardiac fibrosis, higher myocardial antioxidant capacity, lower myocardial lipid and protein peroxidation and lower NHE-1 activation were found in the IHEXE rats (p < 0.05 for each. Conclusion: IH-induced cardiac fibrosis was associated with NHE-1 hyperactivity. However, exercise training and cariporide exerted an inhibitory effect to prevent myocardial NHE-1 hyperactivity, which contributed to reduced IH-induced cardiac fibrosis. Therefore, NHE-1 plays a critical role in the effect of exercise on IH-induced increased cardiac fibrosis.

  3. Skeletal muscle function and hypertrophy are diminished in old age.

    NARCIS (Netherlands)

    Degens, H.; Alway, S.E.

    2003-01-01

    Muscle loss occurs during aging. To investigate whether the hypertrophic response is attenuated at old age, we used male Fischer 344 (26 months old; n = 5) and Fischer 344 x Brown Norway rats (6, 9, and 33 months old; n = 8, 10, and 6, respectively). Hypertrophy of the left plantaris muscle was

  4. Probucol Attenuates Cyclophosphamide-induced Oxidative Apoptosis, p53 and Bax Signal Expression in Rat Cardiac Tissues

    Directory of Open Access Journals (Sweden)

    Yousif A. Asiri

    2010-01-01

    Full Text Available Cyclophosphamide (CP is a widely used drug in cancer chemotherapy and immunosuppression, which could cause toxicity of the normal cells due to its toxic metabolites. Probucol, a cholesterol-lowering drug, acts as potential inhibitor of DNA damage and shows to protect against doxorubicin-induced cardiomyopathy by enhancing the endogenous antioxidant system including glutathione peroxidase, catalase and superoxide dismutase. This study examined the possible protective effects of probucol, a lipid-lowering compound with strong antioxidant properties, against CPinduced cardiotoxicity. This objective could be achieved through studying the gene expression-based on the possible protective effects of probucol against CP-induced cardiac failure in rats. Adult male Wistar albino rats were assigned into four treatment groups: Animals in the first (control and second (probucol groups were injected intraperitoneally with corn oil and probucol (61 mg/kg/day, respectively, for two weeks. Animals in the third (CP and fourth (probucol plus CP groups were injected with the same doses of corn oil and probucol (61 mg/kg/day, respectively, for one week before and one week after a single dose of CP (200 mg/kg, I.P.. The p53, Bax, Bcl2 and oxidative genes signal expression were measured by real time PCR. CP-induced cardiotoxicity was clearly observed by a significant increase in serum creatine phosphokinase isoenzyme (CK-MB (117%, lactate dehydrogenase (LDH (64%, free (69% and esterified cholesterol (42% and triglyceride (69% compared to control group. In cardiac tissues, CP significantly increases the mRNA expression levels of apoptotic genes, p53 with two-fold and Bax with 1.6-fold, and decreases the anti-apoptotic gene Bcl2 with 0.5-fold. Moreover, CP caused downregulation of antioxidant genes, glutathione peroxidase, catalase, and superoxide dismutase and increased the lipid peroxidation and decreased adenosine triphosphate (ATP (40% and ATP/ADP (44% in cardiac

  5. Resveratrol Co-Treatment Attenuates the Effects of HIV Protease Inhibitors on Rat Body Weight and Enhances Cardiac Mitochondrial Respiration.

    Directory of Open Access Journals (Sweden)

    Burger Symington

    Full Text Available Since the early 1990s human immunodeficiency virus (HIV/acquired immunodeficiency syndrome (AIDS emerged as a global health pandemic, with sub-Saharan Africa the hardest hit. While the successful roll-out of antiretroviral (ARV therapy provided significant relief to HIV-positive individuals, such treatment can also elicit damaging side-effects. Here especially HIV protease inhibitors (PIs are implicated in the onset of cardio-metabolic complications such as type-2 diabetes and coronary heart disease. As there is a paucity of data regarding suitable co-treatments within this context, this preclinical study investigated whether resveratrol (RSV, aspirin (ASP or vitamin C (VitC co-treatment is able to blunt side-effects in a rat model of chronic PI exposure (Lopinavir/Ritonavir treatment for 4 months. Body weights and weight gain, blood metabolite levels (total cholesterol, HDL, LDL, triglycerides, echocardiography and cardiac mitochondrial respiration were assessed in PI-treated rats ± various co-treatments. Our data reveal that PI treatment significantly lowered body weight and cardiac respiratory function while no significant changes were found for heart function and blood metabolite levels. Moreover, all co-treatments ameliorated the PI-induced decrease in body weight after 4 months of PI treatment, while RSV co-treatment enhanced cardiac mitochondrial respiratory capacity in PI-treated rats. This pilot study therefore provides novel hypotheses regarding RSV co-treatment that should be further assessed in greater detail.

  6. Diosmin Attenuates Methotrexate-Induced Hepatic, Renal, and Cardiac Injury: A Biochemical and Histopathological Study in Mice

    Science.gov (United States)

    Khalifa, Hesham A.; Al-Quraishy, Saleh A.

    2017-01-01

    The current study was designed to investigate the beneficial role of diosmin, a biologically active flavonoid, against methotrexate- (MTX-) induced hepatic, renal, and cardiac injuries in mice. Male Swiss albino mice received a single intraperitoneal injection of MTX (at 20 mg/kg, body weight) either alone or in combination with oral diosmin (at 50 or 100 mg/kg body weight, for 10 days). Serum was used to evaluate tissue injury markers, while hepatic, renal, and cardiac tissue samples were obtained for determination of antioxidant activity as well as histopathological examination. Diosmin treatment ameliorated the MTX-induced elevation of serum alkaline phosphatase, aminotransferases, urea, creatinine, lactate dehydrogenase, and creatine kinases as well as plasma proinflammatory cytokines (interleukin-1-beta, interleukin-6, and tumor necrosis factor-alpha). Additionally, both diosmin doses significantly reduced tissue levels of malondialdehyde and nitric oxide and increased those of glutathione, glutathione peroxidase, glutathione reductase, glutathione S-transferase, superoxide dismutase, and catalase, compared to the MTX-intoxicated group. Histopathological examination showed that diosmin significantly minimized the MTX-induced histological alterations and nearly restored the normal architecture of hepatic, renal, and cardiac tissues. Based on these findings, diosmin may be a promising agent for protection against MTX-induced cytotoxicity in patients with cancer and autoimmune diseases. PMID:28819543

  7. Remote ischemic preconditioning differentially attenuates post-ischemic cardiac arrhythmia in streptozotocin-induced diabetic versus nondiabetic rats.

    Science.gov (United States)

    Hu, Zhaoyang; Chen, Mou; Zhang, Ping; Liu, Jin; Abbott, Geoffrey W

    2017-04-26

    Sudden cardiac death (SCD), a leading cause of global mortality, most commonly arises from a substrate of cardiac ischemia, but requires an additional trigger. Diabetes mellitus (DM) predisposes to SCD even after adjusting for other DM-linked cardiovascular pathology such as coronary artery disease. We previously showed that remote liver ischemia preconditioning (RLIPC) is highly protective against cardiac ischemia reperfusion injury (IRI) linked ventricular arrhythmias and myocardial infarction, via induction of the cardioprotective RISK pathway, and specifically, inhibitory phosphorylation of GSK-3β (Ser 9). We evaluated the impact of acute streptozotocin-induced DM on coronary artery ligation IRI-linked ventricular arrhythmogenesis and RLIPC therapy in rats. Post-IRI arrhythmia induction was similar in nondiabetic and DM rats, but, unexpectedly, DM rats exhibited lower incidence of SCD during reperfusion (41 vs. 100%), suggesting uncontrolled hyperglycemia does not acutely predispose to SCD. RLIPC was highly effective in both nondiabetic and DM rats at reducing incidence and duration of, and increasing latency to, all classes of ventricular tachyarrhythmias. In contrast, atrioventricular block (AVB) was highly responsive to RLIPC in nondiabetic rats (incidence reduced from 72 to 18%) but unresponsive in DM rats. RISK pathway induction was similar in nondiabetic and DM rats, thus not explaining the DM-specific resistance of AVB to therapy. Our findings uncover important acute DM-specific differences in responsiveness to remote preconditioning for ventricular tachyarrhythmias versus AVB, which may have clinical significance given that AVB is a malignant arrhythmia twofold more common in human diabetics than nondiabetics, and correlated to plasma glucose levels >10 mmol/L.

  8. Pitavastatin-attenuated cardiac dysfunction in mice with dilated cardiomyopathy via regulation of myocardial calcium handling proteins

    Directory of Open Access Journals (Sweden)

    Hu Wei

    2014-03-01

    Full Text Available C57BL/6 mice with dilated cardiomyopathy (DCM were randomly divided to receive placebo or pitavastatin at a dose of 1 or 3 mg kg-1d-1. After 8 weeks treatment, mice with dilated cardiomyopathy developed serious cardiac dysfunction characterized by significantly enhanced left ventricular end-diastolic diameter (LVIDd, decreased left ventricular ejection fraction (LVEF as well as left ventricular short axis fractional shortening (LVFS, accompanied with enlarged cardiomyocytes, and increased plasma levels of N-terminal pro-B type natriuretic peptide (NT-proBNP and plasma angiotensin II (AngII concentration. Moreover, myocardium sarcoplasmic reticulum Ca2+ pump (SERCA-2 activity was decreased. The ratio of phosphorylated phospholamban (PLB to total PLB decreased significantly with the down-regulation of SERCA- -2a and ryanodine receptor (RyR2 expression. Pitavastatin was found to ameliorate the cardiac dysfunction in mice with dilated cardiomyopathy by reversing the changes in the ratios of phosphorylated PLB to total PLB, SERCA-2a and RyR2 via reducing the plasma AngII concentration and the expressions of myocardium angiotensin II type 1 receptor (AT1R and protein kinase C (PKCb2. The possible underlying mechanism might be the regulation of myocardial AT1R-PKCb2-Ca2+ handling proteins.

  9. Enhanced expression of Gqα and PLC-β1 proteins contributes to vascular smooth muscle cell hypertrophy in SHR: role of endogenous angiotensin II and endothelin-1.

    Science.gov (United States)

    Atef, Mohammed Emehdi; Anand-Srivastava, Madhu B

    2014-07-01

    Vascular Gqα signaling has been shown to contribute to cardiac hypertrophy. In addition, angiotensin II (ANG II) was shown to induce vascular smooth muscle cell (VSMC) hypertrophy through Gqα signaling; however, the studies on the role of Gqα and PLC-β1 proteins in VSMC hypertrophy in animal model are lacking. The present study was therefore undertaken to examine the role of Gqα/PLC-β1 proteins and the signaling pathways in VSMC hypertrophy using spontaneously hypertensive rats (SHR). VSMC from 16-wk-old SHR and not from 12-wk-old SHR exhibited enhanced levels of Gqα/PLC-β1 proteins compared with age-matched Wistar-Kyoto (WKY) rats as determined by Western blotting. However, protein synthesis as determined by [(3)H]leucine incorporation was significantly enhanced in VSMC from both 12- and 16-wk-old SHR compared with VSMC from age-matched WKY rats. Furthermore, the knockdown of Gqα/PLC-β1 in VSMC from 16-wk-old SHR by antisense and small interfering RNA resulted in attenuation of protein synthesis. In addition, the enhanced expression of Gqα/PLC-β1 proteins, enhanced phosphorylation of ERK1/2, and enhanced protein synthesis in VSMC from SHR were attenuated by the ANG II AT1 and endothelin-1 (ET-1) ETA receptor antagonists losartan and BQ123, respectively, but not by the ETB receptor antagonist BQ788. In addition, PD98059 decreased the enhanced expression of Gqα/PLC-β1 and protein synthesis in VSMC from SHR. These results suggest that the enhanced levels of endogenous ANG II and ET-1 through the activation of AT1 and ETA receptors, respectively, and MAP kinase signaling, enhanced the expression of Gqα/PLC-β1 proteins in VSMC from 16-wk-old SHR and result in VSMC hypertrophy. Copyright © 2014 the American Physiological Society.

  10. Idiopathic masseter muscle hypertrophy.

    Science.gov (United States)

    Kebede, Biruktawit; Megersa, Shimalis

    2011-11-01

    Benign Masseteric Hypertrophy is a relatively uncommon condition that can occur unilaterally or bilaterally. Pain may be a symptom, but most frequently a clinician is consulted for cosmetic reasons. In some cases prominent Exostoses at the angle of the mandible are noted. Although it is tempting to point to Malocclusion, Bruxism, clenching, or Temporomandibular joint disorders, the etiology in the majority of cases is unclear. Diagnosis is based on awareness of the condition, clinical and radiographic findings, and exclusion of more serious Pathology such as Benign and Malignant Parotid Disease, Rhabdomyoma, and Lymphangioma. Treatment usually involves resection of a portion of the Masseter muscle with or without the underlying bone.

  11. Assessment of myocardial bridge by cardiac CT: Intracoronary transluminal attenuation gradient derived from diastolic phase predicts systolic compression

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Meng Meng; Zhang, Yang; Li, Yue Hua; Li, Wen Bin; Li, Ming Hua; Zhang, Jiayin [Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shangha (China)

    2017-08-01

    To study the predictive value of transluminal attenuation gradient (TAG) derived from diastolic phase of coronary computed tomography angiography (CCTA) for identifying systolic compression of myocardial bridge (MB). Consecutive patients diagnosed with MB based on CCTA findings and without obstructive coronary artery disease were retrospectively enrolled. In total, 143 patients with 144 MBs were included in the study. Patients were classified into three groups: without systolic compression, with systolic compression < 50%, and with systolic compression ≥ 50%. TAG was defined as the linear regression coefficient between intraluminal attenuation in Hounsfield units (HU) and length from the vessel ostium. Other indices such as the length and depth of the MB were also recorded. TAG was the lowest in MB patients with systolic compression ≥ 50% (-19.9 ± 8.7 HU/10 mm). Receiver operating characteristic curve analysis was performed to determine the optimal cutoff values for identifying systolic compression ≥ 50%. The result indicated an optimal cutoff value of TAG as -18.8 HU/10 mm (area under curve = 0.778, p < 0.001), which yielded higher sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy (54.1, 80.5, 72.8, and 75.0%, respectively). In addition, the TAG of MB with diastolic compression was significantly lower than the TAG of MB without diastolic compression (-21.4 ± 4.8 HU/10 mm vs. -12.7 ± 8 HU/10 mm, p < 0.001). TAG was a better predictor of MB with systolic compression ≥ 50%, compared to the length or depth of the MB. The TAG of MB with persistent diastolic compression was significantly lower than the TAG without diastolic compression.

  12. Tissue characteristics in left ventricular hypertrophy using magnetic resonance imaging

    International Nuclear Information System (INIS)

    Yoshida, Shigeru; Ueno, Yuji; Arita, Mikio; Nishio, Ichiro; Masuyama, Yoshiaki

    1988-01-01

    For 15 normotensive patients with asymmetric septal hypertrophy (ASH), 10 hypertensive patients with concentric hypertrophy (CH), and five normal subjects (N), we examined changes in myocardial T 1 and T 2 values related to the cardiac cycle. The usefulness of those values in differentiating diseases with left ventricular hypertrophy was evaluated. Left ventricular (LV) short-axis spin echo images and inversion recovery images were obtained at endsystolic and diastolic cardiac phases, and T 1 and T 2 images were calculated. The regional wall thickness (WT) and T 1 and T 2 values were measured in the anterior septum, anterior wall, lateral wall, posterior wall and posterior septum. Myocardial T 1 and T 2 values were significantly decreased in systole (T 1 : 185.6±37.9 msec, T 2 : 24.4±6.3 msec, mean±SD) compared to those in diastole (T 1 : 249.2±56.7 msec, T 2 : 31.7±9.4 msec). In both the ASH and CH groups, significant correlations were observed between diastolic T 1 values and WT (ASH: r = 0.80, p 2 values and WT (ASH: r = 0.58, p 1 values in the ASH group (343.4±40.5 msec) were significantly higher than those of the CH group (247.3±21.4 msec), although the mean wall thickness values were similar in both groups. The T 1 /WT and T 2 /WT were significantly lower in the CH group than those in the ASH and N groups. In conclusion, myocardial T 1 and T 2 values were related not only to the cardiac cycle, but to wall thickness and to types of hypertrophy. The T 1 and T 2 values may be useful for distinguishing hypertrophic cardiomyopathy from hypertrophy due to hypertension. (author)

  13. Podocyte hypertrophy precedes apoptosis under experimental diabetic conditions.

    Science.gov (United States)

    Lee, Sun Ha; Moon, Sung Jin; Paeng, Jisun; Kang, Hye-Young; Nam, Bo Young; Kim, Seonghun; Kim, Chan Ho; Lee, Mi Jung; Oh, Hyung Jung; Park, Jung Tak; Han, Seung Hyeok; Yoo, Tae-Hyun; Kang, Shin-Wook

    2015-08-01

    Podocyte hypertrophy and apoptosis are two hallmarks of diabetic glomeruli, but the sequence in which these processes occur remains a matter of debate. Here we investigated the effects of inhibiting hypertrophy on apoptosis, and vice versa, in both podocytes and glomeruli, under diabetic conditions. Hypertrophy and apoptosis were inhibited using an epidermal growth factor receptor inhibitor (PKI 166) and a pan-caspase inhibitor (zAsp-DCB), respectively. We observed significant increases in the protein expression of p27, p21, phospho-eukaryotic elongation factor 4E-binding protein 1, and phospho-p70 S6 ribosomal protein kinase, in both cultured podocytes exposed to high-glucose (HG) medium, and streptozotocin-induced diabetes mellitus (DM) rat glomeruli. These increases were significantly inhibited by PKI 166, but not by zAsp-DCB. In addition, the amount of protein per cell, the relative cell size, and the glomerular volume were all significantly increased under diabetic conditions, and these changes were also blocked by treatment with PKI 166, but not zAsp-DCB. Increased protein expression of cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase, together with increased Bax/Bcl-2 ratios, were also observed in HG-stimulated podocytes and DM glomeruli. Treatment with either zAsp-DCB or PKI 166 resulted in a significant attenuation of these effects. Both PKI 166 and zAsp-DCB also inhibited the increase in number of apoptotic cells, as assessed by Hoechst 33342 staining and TUNEL assay. Under diabetic conditions, inhibition of podocyte hypertrophy results in attenuated apoptosis, whereas blocking apoptosis has no effect on podocyte hypertrophy, suggesting that podocyte hypertrophy precedes apoptosis.

  14. Extracts of Crataegus oxyacantha and Rosmarinus officinalis Attenuate Ischemic Myocardial Damage by Decreasing Oxidative Stress and Regulating the Production of Cardiac Vasoactive Agents

    Directory of Open Access Journals (Sweden)

    Raúl Enrique Cuevas-Durán

    2017-11-01

    Full Text Available Numerous studies have supported a role for oxidative stress in the development of ischemic damage and endothelial dysfunction. Crataegus oxyacantha (Co and Rosmarinus officinalis (Ro extracts are polyphenolic-rich compounds that have proven to be efficient in the treatment of cardiovascular diseases. We studied the effect of extracts from Co and Ro on the myocardial damage associated with the oxidative status and to the production of different vasoactive agents. Rats were assigned to the following groups: (a sham; (b vehicle-treated myocardial infarction (MI (MI-V; (c Ro extract-treated myocardial infarction (MI-Ro; (d Co extract-treated myocardial infarction (MI-Co; or (e Ro+Co-treated myocardial infarction (MI-Ro+Co. Ro and Co treatments increased total antioxidant capacity, the expression of superoxide dismutase (SOD-Cu2+/Zn2+, SOD-Mn2+, and catalase, with the subsequent decline of malondialdehyde and 8-hydroxy-2′-deoxyguanosine levels. The extracts diminished vasoconstrictor peptide levels (angiotensin II and endothelin-1, increased vasodilators agents (angiotensin 1–7 and bradikinin and improved nitric oxide metabolism. Polyphenol treatment restored the left intraventricular pressure and cardiac mechanical work. We conclude that Ro and Co treatment attenuate morphological and functional ischemic-related changes by both an oxidant load reduction and improvement of the balance between vasoconstrictors and vasodilators.

  15. Gallic acid attenuates calcium calmodulin-dependent kinase II-induced apoptosis in spontaneously hypertensive rats.

    Science.gov (United States)

    Jin, Li; Piao, Zhe Hao; Liu, Chun Ping; Sun, Simei; Liu, Bin; Kim, Gwi Ran; Choi, Sin Young; Ryu, Yuhee; Kee, Hae Jin; Jeong, Myung Ho

    2018-03-01

    Hypertension causes cardiac hypertrophy and leads to heart failure. Apoptotic cells are common in hypertensive hearts. Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) is associated with apoptosis. We recently demonstrated that gallic acid reduces nitric oxide synthase inhibition-induced hypertension. Gallic acid is a trihydroxybenzoic acid and has been shown to have beneficial effects, such as anti-cancer, anti-calcification and anti-oxidant activity. The purpose of this study was to determine whether gallic acid regulates cardiac hypertrophy and apoptosis in essential hypertension. Gallic acid significantly lowered systolic and diastolic blood pressure in spontaneously hypertensive rats (SHRs). Wheat germ agglutinin (WGA) and H&E staining revealed that gallic acid reduced cardiac enlargement in SHRs. Gallic acid treatment decreased cardiac hypertrophy marker genes, including atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), in SHRs. The four isoforms, α, β, δ and γ, of CaMKII were increased in SHRs and were significantly reduced by gallic acid administration. Gallic acid reduced cleaved caspase-3 protein as well as bax, p53 and p300 mRNA levels in SHRs. CaMKII δ overexpression induced bax and p53 expression, which was attenuated by gallic acid treatment in H9c2 cells. Gallic acid treatment reduced DNA fragmentation and the TUNEL positive cells induced by angiotensin II. Taken together, gallic acid could be a novel therapeutic for the treatment of hypertension through suppression of CaMKII δ-induced apoptosis. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  16. Novel therapeutic effects of sesamin on diabetes-induced cardiac dysfunction

    Science.gov (United States)

    Thuy, Tran Duong; Phan, Nam Nhut; Wang, Chih-Yang; Yu, Han-Gang; Wang, Shu-Yin; Huang, Pung-Ling; Do, Yi-Yin; Lin, Yen-Chang

    2017-01-01

    Diabetes is a risk factor that increases the occurrence and severity of cardiovascular events. Cardiovascular complications are the leading cause of mortality of 75% of patients with diabetes >40 years old. Sesamin, the bioactive compound extracted from Sesamum indicum, is a natural compound that has diverse beneficial effects on hypoglycemia and reducing cholesterol. The aim of this study is to investigate sesamin effects to diabetes-inducing cardiac hypertrophy. In the present study bioinformatics analysis demonstrated cardiac hypertrophy signaling may be the most important pathway for upregulating genes in sesamin-treated groups. To verify the bioinformatics prediction, sesamin was used as the main bioactive compound to attenuate the impact of diabetes induced by streptozotocin (STZ) on cardiac function in a rat model. The results revealed that oral administration of sesamin for 4 weeks (100 and 200 mg/kg body weight) marginally improved blood glucose levels, body weight and significantly ameliorated the effects on heart rate and blood pressure in rats with type 1 diabetes relative to control rats. The QT interval of sesamin was also reduced relative to the control group. The findings indicated that sesamin has potential cardioprotective effects in the STZ-induced diabetes model. This suggested that this can be used as a novel treatment for patients with diabetes with cardiac dysfunction complication. PMID:28358428

  17. Pregnancy as a cardiac stress model

    Science.gov (United States)

    Chung, Eunhee; Leinwand, Leslie A.

    2014-01-01

    Cardiac hypertrophy occurs during pregnancy as a consequence of both volume overload and hormonal changes. Both pregnancy- and exercise-induced cardiac hypertrophy are generally thought to be similar and physiological. Despite the fact that there are shared transcriptional responses in both forms of cardiac adaptation, pregnancy results in a distinct signature of gene expression in the heart. In some cases, however, pregnancy can induce adverse cardiac events in previously healthy women without any known cardiovascular disease. Peripartum cardiomyopathy is the leading cause of non-obstetric mortality during pregnancy. To understand how pregnancy can cause heart disease, it is first important to understand cardiac adaptation during normal pregnancy. This review provides an overview of the cardiac consequences of pregnancy, including haemodynamic, functional, structural, and morphological adaptations, as well as molecular phenotypes. In addition, this review describes the signalling pathways responsible for pregnancy-induced cardiac hypertrophy and angiogenesis. We also compare and contrast cardiac adaptation in response to disease, exercise, and pregnancy. The comparisons of these settings of cardiac hypertrophy provide insight into pregnancy-associated cardiac adaptation. PMID:24448313

  18. Compensative hypertrophy of the kidney

    International Nuclear Information System (INIS)

    Raynaud, C.

    1976-01-01

    Several measurement methods are available to practitioners to reveal a compensative hypertrophy. Mensuration of the kidney has the advantage of simplicity but is in fact an unreliable and inaccurate method. Separate clearances in their traditional form have never entered into routine use because of the disadvantages of ureteral catheterism. The use of radioactive tracers avoids this drawback, but clearances calculated in this way are only valid in the absence of obstructive urinary disorders. Solutions have been proposed, but the values obtained are no longer identical with the clearances. The Hg uptake test quantifies quite accurately the function of each kidney. From the results obtained a complete compensative hypertrophy developed on a healthy kidney and an incomplete compensative hypertrophy developed on the diseased kidney have been described. In each of these situations the degree to which compensative hypertrophy develops seems to be fixed at a given level peculiar to each patient [fr

  19. MicroRNA-1 overexpression blunts cardiomyocyte hypertrophy elicited by thyroid hormone.

    Science.gov (United States)

    Diniz, Gabriela Placoná; Lino, Caroline Antunes; Moreno, Camila Rodrigues; Senger, Nathalia; Barreto-Chaves, Maria Luiza Morais

    2017-12-01

    It is well-known that increased thyroid hormone (TH) levels induce cardiomyocyte growth. MicroRNAs (miRNAs) have been identified as key players in cardiomyocyte hypertrophy, which is associated with increased risk of heart failure. In this study, we evaluated the miR-1 expression in TH-induced cardiac hypertrophy, as well as the potential involvement of miR-1 in cardiomyocyte hypertrophy elicited by TH in vitro. The possible role of type 1 angiotensin II receptor (AT1R) in the effect promoted by TH in miR-1 expression was also evaluated. Neonatal rat cardiac myocytes (NRCMs) were treated with T 3 for 24 hr and Wistar rats were subjected to hyperthyroidism for 14 days combined or not with AT1R blocker. Real Time RT-PCR analysis indicated that miR-1 expression was decreased in cardiac hypertrophy in response to TH in vitro and in vivo, and this effect was unchanged by AT1R blocker. In addition, HDAC4, which is target of miR-1, was increased in NRCMs after T 3 treatment. A gain-of-function study revealed that overexpression of miR-1 prevented T 3 -induced cardiomyocyte hypertrophy and reduced HADC4 mRNA levels in NRCMs. In vivo experiments confirmed the downregulation of miR-1 in cardiac tissue from hyperthyroid animals, which was accompanied by increased HDAC4 mRNA levels. In addition, HDAC inhibitor prevented T 3 -induced cardiomyocyte hypertrophy. Our data reveal a new mechanistic insight into cardiomyocyte growth in response to TH, suggesting that miR-1 plays a role in cardiomyocyte hypertrophy induced by TH potentially via targeting HADC4. © 2017 Wiley Periodicals, Inc.

  20. Regulation of cardiac remodeling by cardiac Na/K-ATPase isoforms

    Directory of Open Access Journals (Sweden)

    Lijun Catherine Liu

    2016-09-01

    Full Text Available Cardiac remodeling occurs after cardiac pressure/volume overload or myocardial injury during the development of heart failure and is a determinant of heart failure. Preventing or reversing remodeling is a goal of heart failure therapy. Human cardiomyocyte Na+/K+-ATPase has multiple α isoforms (1-3. The expression of the α subunit of the Na+/K+-ATPase is often altered in hypertrophic and failing hearts. The mechanisms are unclear. There are limited data from human cardiomyocytes. Abundant evidences from rodents show that Na+/K+-ATPase regulates cardiac contractility, cell signaling, hypertrophy and fibrosis. The α1 isoform of the Na+/K+-ATPase is the ubiquitous isoform and possesses both pumping and signaling functions. The α2 isoform of the Na+/K+-ATPase regulates intracellular Ca2+ signaling, contractility and pathological hypertrophy. The α3 isoform of the Na+/K+-ATPase may also be a target for cardiac hypertrophy. Restoration of cardiac Na+/K+-ATPase expression may be an effective approach for prevention of cardiac remodeling. In this article, we will overview: (1 the distribution and function of isoform specific Na+/K+-ATPase in the cardiomyocytes. (2 the role of cardiac Na+/K+-ATPase in the regulation of cell signaling, contractility, cardiac hypertrophy and fibrosis in vitro and in vivo. Selective targeting of cardiac Na+/K+-ATPase isoform may offer a new target for the prevention of cardiac remodeling.

  1. Oolong tea prevents cardiomyocyte loss against hypoxia by attenuating p-JNK mediated hypertrophy and enhancing P-IGF1R, p-akt, and p-Badser136 activity and by fortifying NRF2 antioxidation system.

    Science.gov (United States)

    Shibu, Marthandam Asokan; Kuo, Chia-Hua; Chen, Bih-Cheng; Ju, Da-Tong; Chen, Ray-Jade; Lai, Chao-Hung; Huang, Pei-Jane; Viswanadha, Vijaya Padma; Kuo, Wei-Wen; Huang, Chih-Yang

    2018-02-01

    Tea, the most widely consumed natural beverage has been associated with reduced mortality risk from cardiovascular disease. Oolong tea is a partially fermented tea containing high levels of catechins, their degree of oxidation varies between 20%-80% causing differences in their active metabolites. In this study we examined the effect of oolong tea extract (OTE) obtained by oxidation at low-temperature for short-time against hypoxic injury and found that oolong tea provides cyto-protective effects by suppressing the JNK mediated hypertrophic effects and by enhancing the innate antioxidant mechanisms in neonatal cardiomyocytes and in H9c2 cells. OTE effectively attenuates 24 h hypoxia-triggered cardiomyocyte loss by suppressing caspase-3-cleavage and apoptosis in a dose-dependent manner. OTE also enhances the IGFIR/p-Akt associated survival-mechanism involving the elevation of p-Bad ser136 in a dose-dependent manner to aid cellular adaptations against hypoxic challenge. The results show the effects and mechanism of Oolong tea to provide cardio-protective benefits during hypoxic conditions. © 2017 Wiley Periodicals, Inc.

  2. Cardiac Insulin Resistance and MicroRNA Modulators

    Directory of Open Access Journals (Sweden)

    Lakshmi Pulakat

    2012-01-01

    Full Text Available Cardiac insulin resistance is a metabolic and functional disorder that is often associated with obesity and/or the cardiorenal metabolic syndrome (CRS, and this disorder may be accentuated by chronic alcohol consumption. In conditions of over-nutrition, increased insulin (INS and angiotensin II (Ang II activate mammalian target for rapamycin (mTOR/p70 S6 kinase (S6K1 signaling, whereas chronic alcohol consumption inhibits mTOR/S6K1 activation in cardiac tissue. Although excessive activation of mTOR/S6K1 induces cardiac INS resistance via serine phosphorylation of INS receptor substrates (IRS-1/2, it also renders cardioprotection via increased Ang II receptor 2 (AT2R upregulation and adaptive hypertrophy. In the INS-resistant and hyperinsulinemic Zucker obese (ZO rat, a rodent model for CRS, activation of mTOR/S6K1signaling in cardiac tissue is regulated by protective feed-back mechanisms involving mTOR↔AT2R signaling loop and profile changes of microRNA that target S6K1. Such regulation may play a role in attenuating progressive heart failure. Conversely, alcohol-mediated inhibition of mTOR/S6K1, down-regulation of INS receptor and growth-inhibitory mir-200 family, and upregulation of mir-212 that promotes fetal gene program may exacerbate CRS-related cardiomyopathy.

  3. The effect of 12 weeks of aerobic exercise on plasma levels of fibroblast growth factor 23, Angiotensin converting enzyme and left ventricular hypertrophy in hypertensive elderly women

    Directory of Open Access Journals (Sweden)

    Z Keshavarzi

    2017-06-01

    Conclusion: The results of this study demonstrated that aerobic exercise has a positive effect on heart function and serum levels of ACE, and can potentially reverse cardiac dysfunction associated with left ventricular hypertrophy.

  4. Prolactin induces adrenal hypertrophy

    Directory of Open Access Journals (Sweden)

    E.J. Silva

    2004-02-01

    Full Text Available Although adrenocorticotropic hormone is generally considered to play a major role in the regulation of adrenal glucocorticoid secretion, several reports have suggested that other pituitary hormones (e.g., prolactin also play a significant role in the regulation of adrenal function. The aim of the present study was to measure the adrenocortical cell area and to determine the effects of the transition from the prepubertal to the postpubertal period on the hyperprolactinemic state induced by domperidone (4.0 mg kg-1 day-1, sc. In hyperprolactinemic adult and young rats, the adrenals were heavier, as determined at necropsy, than in the respective controls: adults (30 days: 0.16 ± 0.008 and 0.11 ± 0.007; 46 days: 0.17 ± 0.006 and 0.12 ± 0.008, and 61 days: 0.17 ± 0.008 and 0.10 ± 0.004 mg for treated and control animals, respectively; P < 0.05, and young rats (30 days: 0.19 ± 0.003 and 0.16 ± 0.007, and 60 days: 0.16 ± 0.006 and 0.13 ± 0.009 mg; P < 0.05. We selected randomly a circular area in which we counted the nuclei of adrenocortical cells. The area of zona fasciculata cells was increased in hyperprolactinemic adult and young rats compared to controls: adults: (61 days: 524.90 ± 47.85 and 244.84 ± 9.03 µm² for treated and control animals, respectively; P < 0.05, and young rats: (15 days: 462.30 ± 16.24 and 414.28 ± 18.19; 60 days: 640.51 ± 12.91 and 480.24 ± 22.79 µm²; P < 0.05. Based on these data we conclude that the increase in adrenal weight observed in the hyperprolactinemic animals may be due to prolactin-induced adrenocortical cell hypertrophy.

  5. Cardiac effects of noncardiac neoplasms

    International Nuclear Information System (INIS)

    Schoen, F.J.; Berger, B.M.; Guerina, N.G.

    1984-01-01

    Clinically significant cardiovascular abnormalities may occur as secondary manifestations of noncardiac neoplasms. The principal cardiac effects of noncardiac tumors include the direct results of metastases to the heart or lungs, the indirect effects of circulating tumor products (causing nonbacterial thrombotic endocarditis, myeloma-associated amyloidosis, pheochromocytoma-associated cardiac hypertrophy and myofibrillar degeneration, and carcinoid heart disease), and the undesired cardiotoxicities of chemotherapy and radiotherapy. 89 references

  6. Cardiorespiratory fitness attenuates risk for major adverse cardiac events in hyperlipidemic men and women independent of statin therapy: The Henry Ford ExercIse Testing Project.

    Science.gov (United States)

    Hung, Rupert K; Al-Mallah, Mouaz H; Qadi, Mohamud A; Shaya, Gabriel E; Blumenthal, Roger S; Nasir, Khurram; Brawner, Clinton A; Keteyian, Steven J; Blaha, Michael J

    2015-08-01

    We sought to evaluate the effect of cardiorespiratory fitness (CRF) in predicting mortality, myocardial infarction (MI), and revascularization in patients with hyperlipidemia after stratification by gender and statin therapy. This retrospective cohort study included 33,204 patients with hyperlipidemia (57 ± 12 years old, 56% men, 25% black) who underwent physician-referred treadmill stress testing at the Henry Ford Health System from 1991 to 2009. Patients were stratified by gender, baseline statin therapy, and estimated metabolic equivalents from stress testing. We computed hazard ratios using Cox regression models after adjusting for demographics, cardiac risk factors, comorbidities, pertinent medications, interaction terms, and indication for stress testing. There were 4,851 deaths, 1,962 MIs, and 2,686 revascularizations over a median follow-up of 10.3 years. In men and women not on statin therapy and men and women on statin therapy, each 1-metabolic equivalent increment in CRF was associated with hazard ratios of 0.86 (95% CI 0.85-0.88), 0.83 (95% CI 0.81-0.85), 0.85 (95% CI 0.83-0.87), and 0.84 (95% CI 0.81-0.87) for mortality; 0.93 (95% CI 0.90-0.96), 0.87 (95% CI 0.83-0.91), 0.89 (95% CI 0.86-0.92), and 0.90 (95% CI 0.86-0.95) for MI; and 0.91 (95% CI 0.88-0.93), 0.87 (95% CI 0.83-0.91), 0.89 (95% CI 0.87-0.92), and 0.90 (95% CI 0.86-0.94) for revascularization, respectively. No significant interactions were observed between CRF and statin therapy (P > .23). Higher CRF attenuated risk for mortality, MI, and revascularization independent of gender and statin therapy in patients with hyperlipidemia. These results reinforce the prognostic value of CRF and support greater promotion of CRF in this patient population. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. G protein-coupled receptor 56 regulates mechanical overload-induced muscle hypertrophy.

    Science.gov (United States)

    White, James P; Wrann, Christiane D; Rao, Rajesh R; Nair, Sreekumaran K; Jedrychowski, Mark P; You, Jae-Sung; Martínez-Redondo, Vicente; Gygi, Steven P; Ruas, Jorge L; Hornberger, Troy A; Wu, Zhidan; Glass, David J; Piao, Xianhua; Spiegelman, Bruce M

    2014-11-04

    Peroxisome proliferator-activated receptor gamma coactivator 1-alpha 4 (PGC-1α4) is a protein isoform derived by alternative splicing of the PGC1α mRNA and has been shown to promote muscle hypertrophy. We show here that G protein-coupled receptor 56 (GPR56) is a transcriptional target of PGC-1α4 and is induced in humans by resistance exercise. Furthermore, the anabolic effects of PGC-1α4 in cultured murine muscle cells are dependent on GPR56 signaling, because knockdown of GPR56 attenuates PGC-1α4-induced muscle hypertrophy in vitro. Forced expression of GPR56 results in myotube hypertrophy through the expression of insulin-like growth factor 1, which is dependent on Gα12/13 signaling. A murine model of overload-induced muscle hypertrophy is associated with increased expression of both GPR56 and its ligand collagen type III, whereas genetic ablation of GPR56 expression attenuates overload-induced muscle hypertrophy and associated anabolic signaling. These data illustrate a signaling pathway through GPR56 which regulates muscle hypertrophy associated with resistance/loading-type exercise.

  8. An experimental phantom study of the effect of gadolinium-based MR contrast agents on PET attenuation coefficients and PET quantification in PET-MR imaging: application to cardiac studies.

    Science.gov (United States)

    O' Doherty, Jim; Schleyer, Paul

    2017-12-01

    Simultaneous cardiac perfusion studies are an increasing trend in PET-MR imaging. During dynamic PET imaging, the introduction of gadolinium-based MR contrast agents (GBCA) at high concentrations during a dual injection of GBCA and PET radiotracer may cause increased attenuation effects of the PET signal, and thus errors in quantification of PET images. We thus aimed to calculate the change in linear attenuation coefficient (LAC) of a mixture of PET radiotracer and increasing concentrations of GBCA in solution and furthermore, to investigate if this change in LAC produced a measurable effect on the image-based PET activity concentration when attenuation corrected by three different AC strategies. We performed simultaneous PET-MR imaging of a phantom in a static scenario using a fixed activity of 40 MBq [18 F]-NaF, water, and an increasing GBCA concentration from 0 to 66 mM (based on an assumed maximum possible concentration of GBCA in the left ventricle in a clinical study). This simulated a range of clinical concentrations of GBCA. We investigated two methods to calculate the LAC of the solution mixture at 511 keV: (1) a mathematical mixture rule and (2) CT imaging of each concentration step and subsequent conversion to LAC at 511 keV. This comparison showed that the ranges of LAC produced by both methods are equivalent with an increase in LAC of the mixed solution of approximately 2% over the range of 0-66 mM. We then employed three different attenuation correction methods to the PET data: (1) each PET scan at a specific millimolar concentration of GBCA corrected by its corresponding CT scan, (2) each PET scan corrected by a CT scan with no GBCA present (i.e., at 0 mM GBCA), and (3) a manually generated attenuation map, whereby all CT voxels in the phantom at 0 mM were replaced by LAC = 0.1 cm -1 . All attenuation correction methods (1-3) were accurate to the true measured activity concentration within 5%, and there were no trends in image

  9. Compensatory Hypertrophy of Skeletal Muscle: Contractile Characteristics

    Science.gov (United States)

    Ianuzzo, C. D.; Chen, V.

    1977-01-01

    Describes an experiment using rats that demonstrates contractile characteristics of normal and hypertrophied muscle. Compensatory hypertrophy of the plantaris muscle is induced by surgical removal of the synergistic gastrocnemium muscle. Includes methods for determination of contractile properties of normal and hypertrophied muscle and…

  10. Melatonin protects against myocardial hypertrophy induced by lipopolysaccharide.

    Science.gov (United States)

    Lu, Qi; Yi, Xin; Cheng, Xiang; Sun, Xiaohui; Yang, Xiangjun

    2015-04-01

    Melatonin is thought to have the ability of antiatherogenic, antioxidant, and vasodilatory. It is not only a promising protective in acute myocardial infarction but is also a useful tool in the treatment of pathological remodeling. However, its role in myocardial hypertrophy remains unclear. In this study, we investigated the protective effects of melatonin on myocardial hypertrophy induced by lipopolysaccharide (LPS) and to identify their precise mechanisms. The cultured myocardial cell was divided into six groups: control group, LPS group, LPS + ethanol (4%), LPS + melatonin (1.5 mg/ml) group, LPS + melatonin (3 mg/ml) group, and LPS + melatonin (6 mg/ml) group. The morphologic change of myocardial cell was observed by inverted phase contrast microscope. The protein level of myocardial cell was measured by Coomassie brilliant blue protein kit. The secretion level of tumor necrosis factor-α (TNF-α) was evaluated by enzyme-linked immunosorbent assay (ELISA). Ca(2+) transient in Fura-2/AM-loaded cells was measured by Till image system. The expression of Ca(2+)/calmodulin-dependent kinase II (CaMKII) and calcineurin (CaN) was measured by Western blot analysis. Our data demonstrated that LPS induced myocardial hypertrophy, promoted the secretion levels of TNF-α, and increased Ca(2+) transient level and the expression of CaMKII and CaN. Administration of melatonin 30 min prior to LPS stimulation dose-dependently attenuated myocardial hypertrophy. In conclusion, the results revealed that melatonin had the potential to protect against myocardial hypertrophy induced by LPS in vitro through downregulation of the TNF-α expression and retains the intracellular Ca(2+) homeostasis.

  11. Tomato (Lycopersicon esculentum) or lycopene supplementation attenuates ventricular remodeling after myocardial infarction through different mechanistic pathways.

    Science.gov (United States)

    Pereira, Bruna L B; Reis, Patrícia P; Severino, Fábio E; Felix, Tainara F; Braz, Mariana G; Nogueira, Flávia R; Silva, Renata A C; Cardoso, Ana C; Lourenço, Maria A M; Figueiredo, Amanda M; Chiuso-Minicucci, Fernanda; Azevedo, Paula S; Polegato, Bertha F; Okoshi, Katashi; Fernandes, Ana A H; Paiva, Sergio A R; Zornoff, Leonardo A M; Minicucci, Marcos F

    2017-08-01

    The objective of this study was to evaluate the influence of tomato or lycopene supplementation on cardiac remodeling after myocardial infarction (MI). Male Wistar rats were assigned to four groups: the sham group (animals that underwent simulated surgery) that received a standard chow (S; n=18), the infarcted group that received a standard chow (MI; n=13), the infarcted group supplemented with lycopene (1 mg of lycopene/kg body weight/day) (MIL; n=16) and the infarcted group supplemented with tomato (MIT; n=16). After 3 months, morphological, functional and biochemical analyses were performed. The groups MIL and MIT showed decreased interstitial fibrosis induced by infarction. Tomato supplementation attenuated the hypertrophy induced by MI. In addition, tomato and lycopene improved diastolic dysfunction evaluated by echocardiographic and isolated heart studies, respectively. The MI group showed higher levels of cardiac TNF-α compared to the MIL and MIT groups. Decreased nuclear factor E2-related factor 2 was measured in the MIL group. Lipid hydroperoxide levels were higher in the infarcted groups; however, the MIT group had a lower concentration than did the MI group [S=223±20.8, MI=298±19.5, MIL=277±26.6, MIT=261±28.8 (nmol/g); n=8; Ptomato or lycopene supplementation attenuated the cardiac remodeling process and improved diastolic function after MI. However, the effect of lycopene and tomato supplementation occurred through different mechanistic pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Association between routine and standardized blood pressure measurements and left ventricular hypertrophy among patients on hemodialysis.

    Science.gov (United States)

    Khangura, Jaspreet; Culleton, Bruce F; Manns, Braden J; Zhang, Jianguo; Barnieh, Lianne; Walsh, Michael; Klarenbach, Scott W; Tonelli, Marcello; Sarna, Magdalena; Hemmelgarn, Brenda R

    2010-06-24

    Left ventricular (LV) hypertrophy is common among patients on hemodialysis. While a relationship between blood pressure (BP) and LV hypertrophy has been established, it is unclear which BP measurement method is the strongest correlate of LV hypertrophy. We sought to determine agreement between various blood pressure measurement methods, as well as identify which method was the strongest correlate of LV hypertrophy among patients on hemodialysis. This was a post-hoc analysis of data from a randomized controlled trial. We evaluated the agreement between seven BP measurement methods: standardized measurement at baseline; single pre- and post-dialysis, as well as mean intra-dialytic measurement at baseline; and cumulative pre-, intra- and post-dialysis readings (an average of 12 monthly readings based on a single day per month). Agreement was assessed using Lin's concordance correlation coefficient (CCC) and the Bland Altman method. Association between BP measurement method and LV hypertrophy on baseline cardiac MRI was determined using receiver operating characteristic curves and area under the curve (AUC). Agreement between BP measurement methods in the 39 patients on hemodialysis varied considerably, from a CCC of 0.35 to 0.94, with overlapping 95% confidence intervals. Pre-dialysis measurements were the weakest predictors of LV hypertrophy while standardized, post- and inter-dialytic measurements had similar and strong (AUC 0.79 to 0.80) predictive power for LV hypertrophy. A single standardized BP has strong predictive power for LV hypertrophy and performs just as well as more resource intensive cumulative measurements, whereas pre-dialysis blood pressure measurements have the weakest predictive power for LV hypertrophy. Current guidelines, which recommend using pre-dialysis measurements, should be revisited to confirm these results.

  13. Association between routine and standardized blood pressure measurements and left ventricular hypertrophy among patients on hemodialysis

    Directory of Open Access Journals (Sweden)

    Walsh Michael

    2010-06-01

    Full Text Available Abstract Background Left ventricular (LV hypertrophy is common among patients on hemodialysis. While a relationship between blood pressure (BP and LV hypertrophy has been established, it is unclear which BP measurement method is the strongest correlate of LV hypertrophy. We sought to determine agreement between various blood pressure measurement methods, as well as identify which method was the strongest correlate of LV hypertrophy among patients on hemodialysis. Methods This was a post-hoc analysis of data from a randomized controlled trial. We evaluated the agreement between seven BP measurement methods: standardized measurement at baseline; single pre- and post-dialysis, as well as mean intra-dialytic measurement at baseline; and cumulative pre-, intra- and post-dialysis readings (an average of 12 monthly readings based on a single day per month. Agreement was assessed using Lin's concordance correlation coefficient (CCC and the Bland Altman method. Association between BP measurement method and LV hypertrophy on baseline cardiac MRI was determined using receiver operating characteristic curves and area under the curve (AUC. Results Agreement between BP measurement methods in the 39 patients on hemodialysis varied considerably, from a CCC of 0.35 to 0.94, with overlapping 95% confidence intervals. Pre-dialysis measurements were the weakest predictors of LV hypertrophy while standardized, post- and inter-dialytic measurements had similar and strong (AUC 0.79 to 0.80 predictive power for LV hypertrophy. Conclusions A single standardized BP has strong predictive power for LV hypertrophy and performs just as well as more resource intensive cumulative measurements, whereas pre-dialysis blood pressure measurements have the weakest predictive power for LV hypertrophy. Current guidelines, which recommend using pre-dialysis measurements, should be revisited to confirm these results.

  14. Omega-3 Fatty Acid Supplementation Appears to Attenuate Particulate Air Pollution-induced Cardiac Effects and Lipid Changes in Healthy Middle-aged Adults.

    Science.gov (United States)

    Context: Air pollution exposure has been associated with adverse cardiovascular effects. A recent epidemiologic study reported that omega-3 fatty acid (fish oil) supplementation blunted the cardiac responses to air pollution exposure. Objective: To evaluate in a randomized contro...

  15. The characteristics of myocardial fatty acid metabolism in patients with left ventricular hypertrophy

    International Nuclear Information System (INIS)

    Isobe, Naoki; Toyama, Takuji; Hoshizaki, Hiroshi

    1999-01-01

    We evaluated the characteristics of myocardial fatty acid metabolism in patients with left ventricular hypertrophy (LVH). Myocardial imaging with 123 I-beta-methyl iodophenyl pentadecanoic acid (BMIPP) was performed in 28 patients with hypertrophic cardiomyopathy (HCM), 15 patients with hypertensive heart disease (HHD), 13 patients with aortic stenosis (AS) and 8 normal controls (NC). The patients with HCM consisted of 13 patients of asymmetric septal hypertrophy (ASH), 7 patients of diffuse hypertrophy (Diffuse-HCM) and 8 patients of apical hypertrophy (APH). Planar and SPECT images of BMIPP were acquired 15 minutes and 4 hours after tracer injection. Resting 201 Tl SPECT images and echocardiography were also performed on other days. We calculated heart/mediastinum count ratio and washout rate of BMIPP by using planar image. In patients with LVH, the incidence of reduced BMIPP uptake was more frequent than that of reduced 201 Tl uptake. In delayed images, more than 60% of patients with LVH reduced BMIPP uptake, especially remarkable for patients with ASH and APH. The washout rate of all cardiac hypertrophic disorders was tended to be higher than that of normal subjects. Reduced BMIPP uptake was frequently found in septal portion of anterior and inferior wall in patients with ASH, in inferior wall in patients with Diffuse-HCM and HHD, in apex in patients with APH and AS. These results suggest that BMIPP scintigraphy can differentiate three types of cardiac hypertrophy. (author)

  16. Cardiac chambers and their walls in cardiomyopathies as evaluated with CT

    International Nuclear Information System (INIS)

    Wojtowicz, J.; Pawlak, B.; Lehman, Z.; Karwowski, A.; Akademia Medyczna, Poznan

    1984-01-01

    Thirty-two patients with cardiomyopathy, 25 with hypertrophic and 7 with dilated form were examined by cardiac catheterisation, left ventriculography, selective coronary angiography and ungated cardiac computed tomography. Diffuse hypertrophy, localized hypertrophy and dilated cardiomyopathy were diagnosed and assessed quantitatively based on CT linear, surface and volumetric parameters of cardiac morphology. Absolute septal thickness and left ventricular mass measured in CT image are the most discriminative attributes. (orig.)

  17. Effect of prophylactic digitalization on the development of myocardial hypertrophy.

    Science.gov (United States)

    Cutilletta, A F; Rudnik, M; Arcilla, R A; Straube, R

    1977-11-01

    The effect of prophylactic digitalization on the development of left ventricular hypertrophy was studied in adult rats. Digitoxin, 0.1 mg/100 g body wt or solvent was given daily for 1 wk prior to either aortic constriction or sham operation and was continued until the animals were killed, either 1 or 4 wk after surgery. A hemodynamic study was done in those animals killed 1 wk after surgery; hearts of all animals were examined for evidence of myocardial hypertrophy. Constriction of the ascending aorta had no significant effect on cardiac output but did reduce peak flow velocity and flow acceleration. An increase in left ventricular mass, RNA, and hydroxyproline was found in the animals with aortic constriction. Digitoxin treatment did not alter peak flow velocity or flow acceleration, but did significantly increase isovolumic (dP/dt)P-1. Digitoxin had no effect on body weight, heart weight, RNA, or hydroxyproline in either the sham-operated animals or in the animals with aortic constriction. Therefore, despite plasma digitoxin levels sufficient to affect myocardial contractility, left ventricular hypertrophy still developed after aortic constriction.

  18. Down-regulation of fibroblast growth factor 2 and its co-receptors heparan sulfate proteoglycans by resveratrol underlies the improvement of cardiac dysfunction in experimental diabetes.

    Science.gov (United States)

    Strunz, Célia Maria Cássaro; Roggerio, Alessandra; Cruz, Paula Lázara; Pacanaro, Ana Paula; Salemi, Vera Maria Cury; Benvenuti, Luiz Alberto; Mansur, Antonio de Pádua; Irigoyen, Maria Cláudia

    2017-02-01

    Cardiac remodeling in diabetes involves cardiac hypertrophy and fibrosis, and fibroblast growth factor 2 (FGF2) is an important mediator of this process. Resveratrol, a polyphenolic antioxidant, reportedly promotes the improvement of cardiac dysfunction in diabetic rats. However, little information exists linking the amelioration of the cardiac function promoted by resveratrol and the expression of FGF2 and its co-receptors, heparan sulfate proteoglycans (HSPGs: Glypican-1 and Syndecan-4), in cardiac muscle of Type 2 diabetic rats. Diabetes was induced experimentally by the injection of streptozotocin and nicotinamide, and the rats were treated with resveratrol for 6 weeks. According to our results, there is an up-regulation of the expression of genes and/or proteins of Glypican-1, Syndecan-4, FGF2, peroxisome proliferator-activated receptor gamma and AMP-activated protein kinase in diabetic rats. On the other hand, resveratrol treatment promoted the attenuation of left ventricular diastolic dysfunction and the down-regulation of the expression of all proteins under study. The trigger for the changes in gene expression and protein synthesis promoted by resveratrol was the presence of diabetes. The negative modulation conducted by resveratrol on FGF2 and HSPGs expression, which are involved in cardiac remodeling, underlies the amelioration of cardiac function. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Clinical evaluation of left ventricular wall thickness by combined technique with gated planer 201Tl image and gated cardiac pool image

    International Nuclear Information System (INIS)

    Nakai, Kenji; Katsuragawa, Shigehiko; Takahashi, Tsuneo; Matsushita, Kazuo; Kawamura, Akiyoshi

    1983-01-01

    To evaluate the left ventricular (LV) wall thickness, combined technique with gated planer 201-Thallium image and gated cardiac pool image was applied to 6 patients with hypertrophic cardiomyopathy (HCM) and 4 patients with secondary hypertrophy due to hypertension (HHD) proven by electrocardiography and ultrasonic-echocardiography. Scintigraphic pattern of hypertrophy on reconstructed planer 201 Tl image showed diffuse or asymmetrical apical hypertrophy in HHD, asymmetrical septal hypertrophy in HCM. It was very interesting that abnormal perfusion was shown in 201 Tl image, despite symmetrical hypertrophy in echocardiography. This techniques provided useful information for evaluating the LV wall thickness and cardiac performance. (author)

  20. Clinical evaluation of left ventricular wall thickness by combined technique with gated planer /sup 201/Tl image and gated cardiac pool image

    Energy Technology Data Exchange (ETDEWEB)

    Nakai, Kenji; Katsuragawa, Shigehiko; Takahashi, Tsuneo; Matsushita, Kazuo; Kawamura, Akiyoshi

    1983-11-01

    To evaluate the left ventricular (LV) wall thickness, a combined technique with gated planer 201-thallium image and gated cardiac pool image was applied to 6 patients with hypertrophic cardiomyopathy (HCM) and 4 patients with secondary hypertrophy due to hypertension (HHD) proven by electrocardiography and ultrasonic-echocardiography. Scintigraphic pattern of hypertrophy on reconstructed planer /sup 201/Tl image showed diffuse or asymmetrical apical hypertrophy in HHD, asymmetrical septal hypertrophy in HCM. It was very interesting that abnormal perfusion was shown in /sup 201/Tl image, despite symmetrical hypertrophy in echocardiography. This techniques provided useful information for evaluating the LV wall thickness and cardiac performance.

  1. [Asymmetric hypertrophy of the masticatory muscles].

    Science.gov (United States)

    Arzul, L; Corre, P; Khonsari, R H; Mercier, J-M; Piot, B

    2012-06-01

    Hypertrophy of the masticatory muscles most commonly affects the masseter. Less common cases of isolated or associated temporalis hypertrophy are also reported. Parafunctional habits, and more precisely bruxism, can favor the onset of the hypertrophy. This condition is generally idiopathic and can require both medical and/or surgical management. A 29-year-old patient was referred to our department for an asymmetric swelling of the masticatory muscles. Physical examination revealed a bilateral hypertrophy of the masticatory muscles, predominantly affecting the right temporalis and the left masseter. Major bruxism was assessed by premature dental wearing. The additional examinations confirmed the isolated muscle hypertrophy. Benign asymmetric hypertrophy of the masticatory muscles promoted by bruxism was diagnosed. Treatment with injections of type A botulinum toxin was conducted in association with a splint and relaxation. Its effectiveness has been observed at six months. Few cases of unilateral or bilateral temporalis hypertrophy have been reported, added to the more common isolated masseter muscles hypertrophy. The diagnosis requires to rule out secondary hypertrophies and tumors using Magnetic Resonance Imaging. The condition is thought to be favoured by parafunctional habits such as bruxism. The conservative treatment consists in reducing the volume of the masticatory muscles using intramuscular injections of type A botulinum toxin. Other potential conservative treatments are wearing splints and muscle relaxant drugs. Surgical procedures aiming to reduce the muscle volume and/or the bone volume (mandibular gonioplasty) can be proposed. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  2. Residual glycosaminoglycan accumulation in mitral and aortic valves of a patient with attenuated MPS I (Scheie syndrome after 6 years of enzyme replacement therapy: Implications for early diagnosis and therapy

    Directory of Open Access Journals (Sweden)

    Yohei Sato

    2015-12-01

    Full Text Available Mucopolysaccharidosis (MPS is an inherited metabolic disease caused by deficiency of the enzymes needed for glycosaminoglycan (GAG degradation. MPS type I is caused by the deficiency of the lysosomal enzyme alpha-l-iduronidase and is classified into Hurler syndrome, Scheie syndrome, and Hurler–Scheie syndrome based on disease severity and onset. Cardiac complications such as left ventricular hypertrophy, cardiac valve disease, and coronary artery disease are often observed in MPS type I. Enzyme replacement therapy (ERT has been available for MPS type I, but the efficacy of this treatment for cardiac valve disease is unknown. We report on a 56-year-old female patient with attenuated MPS I (Scheie syndrome who developed aortic and mitral stenosis and coronary artery narrowing. The cardiac valve disease progressed despite ERT and she finally underwent double valve replacement and coronary artery bypass grafting. The pathology of the cardiac valves revealed GAG accumulation and lysosomal enlargement in both the mitral and aortic valves. Zebra body formation was also confirmed using electron microscopy. Our results suggest that ERT had limited efficacy in previously established cardiac valve disease. Early diagnosis and initiation of ERT is crucial to avoid further cardiac complications in MPS type I.

  3. Aldosterone Inhibits the Fetal Program and Increases Hypertrophy in the Heart of Hypertensive Mice

    Science.gov (United States)

    Azibani, Feriel; Devaux, Yvan; Coutance, Guillaume; Schlossarek, Saskia; Polidano, Evelyne; Fazal, Loubina; Merval, Regine; Carrier, Lucie; Solal, Alain Cohen; Chatziantoniou, Christos; Launay, Jean-Marie; Samuel, Jane-Lise; Delcayre, Claude

    2012-01-01

    Background Arterial hypertension (AH) induces cardiac hypertrophy and reactivation of “fetal” gene expression. In rodent heart, alpha-Myosin Heavy Chain (MyHC) and its micro-RNA miR-208a regulate the expression of beta-MyHC and of its intronic miR-208b. However, the role of aldosterone in these processes remains unclear. Methodology/Principal Findings RT-PCR and western-blot were used to investigate the genes modulated by arterial hypertension and cardiac hyperaldosteronism. We developed a model of double-transgenic mice (AS-Ren) with cardiac hyperaldosteronism (AS mice) and systemic hypertension (Ren). AS-Ren mice had increased (x2) angiotensin II in plasma and increased (x2) aldosterone in heart. Ren and AS-Ren mice had a robust and similar hypertension (+70%) versus their controls. Anatomical data and echocardiography showed a worsening of cardiac hypertrophy (+41%) in AS-Ren mice (P<0.05 vs Ren). The increase of ANP (x 2.5; P<0.01) mRNA observed in Ren mice was blunted in AS-Ren mice. This non-induction of antitrophic natriuretic peptides may be involved in the higher trophic cardiac response in AS-Ren mice, as indicated by the markedly reduced cardiac hypertrophy in ANP-infused AS-Ren mice for one month. Besides, the AH-induced increase of ßMyHC and its intronic miRNA-208b was prevented in AS-Ren. The inhibition of miR 208a (−75%, p<0.001) in AS-Ren mice compared to AS was associated with increased Sox 6 mRNA (x 1.34; p<0.05), an inhibitor of ßMyHC transcription. Eplerenone prevented all aldosterone-dependent effects. Conclusions/Significance Our results indicate that increased aldosterone in heart inhibits the induction of atrial natriuretic peptide expression, via the mineralocorticoid receptor. This worsens cardiac hypertrophy without changing blood pressure. Moreover, this work reveals an original aldosterone-dependent inhibition of miR-208a in hypertension, resulting in the inhibition of β-myosin heavy chain expression through the induction of

  4. Aldosterone inhibits the fetal program and increases hypertrophy in the heart of hypertensive mice.

    Directory of Open Access Journals (Sweden)

    Feriel Azibani

    Full Text Available BACKGROUND: Arterial hypertension (AH induces cardiac hypertrophy and reactivation of "fetal" gene expression. In rodent heart, alpha-Myosin Heavy Chain (MyHC and its micro-RNA miR-208a regulate the expression of beta-MyHC and of its intronic miR-208b. However, the role of aldosterone in these processes remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: RT-PCR and western-blot were used to investigate the genes modulated by arterial hypertension and cardiac hyperaldosteronism. We developed a model of double-transgenic mice (AS-Ren with cardiac hyperaldosteronism (AS mice and systemic hypertension (Ren. AS-Ren mice had increased (x2 angiotensin II in plasma and increased (x2 aldosterone in heart. Ren and AS-Ren mice had a robust and similar hypertension (+70% versus their controls. Anatomical data and echocardiography showed a worsening of cardiac hypertrophy (+41% in AS-Ren mice (P<0.05 vs Ren. The increase of ANP (x 2.5; P<0.01 mRNA observed in Ren mice was blunted in AS-Ren mice. This non-induction of antitrophic natriuretic peptides may be involved in the higher trophic cardiac response in AS-Ren mice, as indicated by the markedly reduced cardiac hypertrophy in ANP-infused AS-Ren mice for one month. Besides, the AH-induced increase of ßMyHC and its intronic miRNA-208b was prevented in AS-Ren. The inhibition of miR 208a (-75%, p<0.001 in AS-Ren mice compared to AS was associated with increased Sox 6 mRNA (x 1.34; p<0.05, an inhibitor of ßMyHC transcription. Eplerenone prevented all aldosterone-dependent effects. CONCLUSIONS/SIGNIFICANCE: Our results indicate that increased aldosterone in heart inhibits the induction of atrial natriuretic peptide expression, via the mineralocorticoid receptor. This worsens cardiac hypertrophy without changing blood pressure. Moreover, this work reveals an original aldosterone-dependent inhibition of miR-208a in hypertension, resulting in the inhibition of β-myosin heavy chain expression through the induction

  5. Longitudinal strain bull's eye plot patterns in patients with cardiomyopathy and concentric left ventricular hypertrophy.

    Science.gov (United States)

    Liu, Dan; Hu, Kai; Nordbeck, Peter; Ertl, Georg; Störk, Stefan; Weidemann, Frank

    2016-05-10

    Despite substantial advances in the imaging techniques and pathophysiological understanding over the last decades, identification of the underlying causes of left ventricular hypertrophy by means of echocardiographic examination remains a challenge in current clinical practice. The longitudinal strain bull's eye plot derived from 2D speckle tracking imaging offers an intuitive visual overview of the global and regional left ventricular myocardial function in a single diagram. The bull's eye mapping is clinically feasible and the plot patterns could provide clues to the etiology of cardiomyopathies. The present review summarizes the longitudinal strain, bull's eye plot features in patients with various cardiomyopathies and concentric left ventricular hypertrophy and the bull's eye plot features might serve as one of the cardiac workup steps on evaluating patients with left ventricular hypertrophy.

  6. Myosin light chain phosphorylation is critical for adaptation to cardiac stress.

    Science.gov (United States)

    Warren, Sonisha A; Briggs, Laura E; Zeng, Huadong; Chuang, Joyce; Chang, Eileen I; Terada, Ryota; Li, Moyi; Swanson, Maurice S; Lecker, Stewart H; Willis, Monte S; Spinale, Francis G; Maupin-Furlowe, Julie; McMullen, Julie R; Moss, Richard L; Kasahara, Hideko

    2012-11-27

    Cardiac hypertrophy is a common response to circulatory or neurohumoral stressors as a mechanism to augment contractility. When the heart is under sustained stress, the hypertrophic response can evolve into decompensated heart failure, although the mechanism(s) underlying this transition remain largely unknown. Because phosphorylation of cardiac myosin light chain 2 (MLC2v), bound to myosin at the head-rod junction, facilitates actin-myosin interactions and enhances contractility, we hypothesized that phosphorylation of MLC2v plays a role in the adaptation of the heart to stress. We previously identified an enzyme that predominantly phosphorylates MLC2v in cardiomyocytes, cardiac myosin light-chain kinase (cMLCK), yet the role(s) played by cMLCK in regulating cardiac function in health and disease remain to be determined. We found that pressure overload induced by transaortic constriction in wild-type mice reduced phosphorylated MLC2v levels by ≈40% and cMLCK levels by ≈85%. To examine how a reduction in cMLCK and the corresponding reduction in phosphorylated MLC2v affect function, we generated Mylk3 gene-targeted mice and transgenic mice overexpressing cMLCK specifically in cardiomyocytes. Pressure overload led to severe heart failure in cMLCK knockout mice but not in mice with cMLCK overexpression in which cMLCK protein synthesis exceeded degradation. The reduction in cMLCK protein during pressure overload was attenuated by inhibition of ubiquitin-proteasome protein degradation systems. Our results suggest the novel idea that accelerated cMLCK protein turnover by the ubiquitin-proteasome system underlies the transition from compensated hypertrophy to decompensated heart failure as a result of reduced phosphorylation of MLC2v.

  7. Genetics Home Reference: myostatin-related muscle hypertrophy

    Science.gov (United States)

    ... Twitter Home Health Conditions Myostatin-related muscle hypertrophy Myostatin-related muscle hypertrophy Printable PDF Open All Close ... Javascript to view the expand/collapse boxes. Description Myostatin-related muscle hypertrophy is a rare condition characterized ...

  8. The dual-specificity phosphatase MKP-1 limits the cardiac hypertrophic response in vitro and in vivo.

    Science.gov (United States)

    Bueno, O F; De Windt, L J; Lim, H W; Tymitz, K M; Witt, S A; Kimball, T R; Molkentin, J D

    2001-01-19

    Mitogen-activated protein kinase (MAPK) signaling pathways are important regulators of cell growth, proliferation, and stress responsiveness. A family of dual-specificity MAP kinase phosphatases (MKPs) act as critical counteracting factors that directly regulate the magnitude and duration of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) activation. Here we show that constitutive expression of MKP-1 in cultured primary cardiomyocytes using adenovirus-mediated gene transfer blocked the activation of p38, JNK1/2, and ERK1/2 and prevented agonist-induced hypertrophy. Transgenic mice expressing physiological levels of MKP-1 in the heart showed (1) no activation of p38, JNK1/2, or ERK1/2; (2) diminished developmental myocardial growth; and (3) attenuated hypertrophy in response to aortic banding and catecholamine infusion. These results provide further evidence implicating MAPK signaling factors as obligate regulators of cardiac growth and hypertrophy and demonstrate the importance of dual-specificity phosphatases as counterbalancing regulatory factors in the heart.

  9. Probiotic-fermented purple sweet potato yogurt activates compensatory IGF‑IR/PI3K/Akt survival pathways and attenuates cardiac apoptosis in the hearts of spontaneously hypertensive rats.

    Science.gov (United States)

    Lin, Pei-Pei; Hsieh, You-Miin; Kuo, Wei-Wen; Lin, Yueh-Min; Yeh, Yu-Lan; Lin, Chien-Chung; Tsai, Fuu-Jen; Tsai, Chang-Hai; Huang, Chih-Yang; Tsai, Cheng-Chih

    2013-12-01

    Apoptosis is recognized as a predictor of adverse outcomes in subjects with cardiac diseases. The aim of this study was to explore the effects of probiotic-fermented purple sweet potato yogurt (PSPY) with high γ-aminobutyric acid (GABA) content on cardiac apoptosis in spontaneously hypertensive rat (SHR) hearts. The rats were orally adminsitered with 2 different concentrations of PSPY (10 and 100%) or captopril, 15.6 mg/kg, body weight (BW)/day. The control group was administered distilled water. DAPI and TUNEL staining were used to detect the numbers of apoptotic cells. A decrease in the number of TUNEL-positive cardiac myocytes was observed in the SHR-PSPY (10 and 100%) groups. In addition, the levels of key components of the Fas receptor- and mitochondrial-dependent apoptotic pathways were determined by western blot analysis. The results revealed that the levels of the key components of the Fas receptor- and mitochondrial-dependent apoptotic pathway were significantly decreased in the SHR-captopril, and 10 and 100% PSPY groups. Additionally, the levels of phosphorylated insulin-like growth factor‑I receptor (p-IGF‑IR) were increased in SHR hearts from the SHR-control group; however, no recovery in the levels of downstream signaling components was observed. In addition, the levels of components of the compensatory IGF-IR-dependent survival pathway (p-PI3K and p-Akt) were all highly enhanced in the left ventricles in the hearts form the SHR-10 and 100% PSPY groups. Therefore, the oral administration of PSPY may attenuate cardiomyocyte apoptosis in SHR hearts by activating IGF‑IR-dependent survival signaling pathways.

  10. Glutaredoxin-2 controls cardiac mitochondrial dynamics and energetics in mice, and protects against human cardiac pathologies

    Directory of Open Access Journals (Sweden)

    Georges N. Kanaan

    2018-04-01

    Full Text Available Glutaredoxin 2 (GRX2, a mitochondrial glutathione-dependent oxidoreductase, is central to glutathione homeostasis and mitochondrial redox, which is crucial in highly metabolic tissues like the heart. Previous research showed that absence of Grx2, leads to impaired mitochondrial complex I function, hypertension and cardiac hypertrophy in mice but the impact on mitochondrial structure and function in intact cardiomyocytes and in humans has not been explored. We hypothesized that Grx2 controls cardiac mitochondrial dynamics and function in cellular and mouse models, and that low expression is associated with human cardiac dysfunction. Here we show that Grx2 absence impairs mitochondrial fusion, ultrastructure and energetics in primary cardiomyocytes and cardiac tissue. Moreover, provision of the glutathione precursor, N-acetylcysteine (NAC to Grx2-/- mice did not restore glutathione redox or prevent impairments. Using genetic and histopathological data from the human Genotype-Tissue Expression consortium we demonstrate that low GRX2 is associated with fibrosis, hypertrophy, and infarct in the left ventricle. Altogether, GRX2 is important in the control of cardiac mitochondrial structure and function, and protects against human cardiac pathologies. Keywords: Human heart, Mitochondria, Oxidative stress, Redox, Cardiac metabolism, Cardiac hypertrophy

  11. Attenuation correction for SPECT

    International Nuclear Information System (INIS)

    Hosoba, Minoru

    1986-01-01

    Attenuation correction is required for the reconstruction of a quantitative SPECT image. A new method for detecting body contours, which are important for the correction of tissue attenuation, is presented. The effect of body contours, detected by the newly developed method, on the reconstructed images was evaluated using various techniques for attenuation correction. The count rates in the specified region of interest in the phantom image by the Radial Post Correction (RPC) method, the Weighted Back Projection (WBP) method, Chang's method were strongly affected by the accuracy of the contours, as compared to those by Sorenson's method. To evaluate the effect of non-uniform attenuators on the cardiac SPECT, computer simulation experiments were performed using two types of models, the uniform attenuator model (UAM) and the non-uniform attenuator model (NUAM). The RPC method showed the lowest relative percent error (%ERROR) in UAM (11 %). However, 20 to 30 percent increase in %ERROR was observed for NUAM reconstructed with the RPC, WBP, and Chang's methods. Introducing an average attenuation coefficient (0.12/cm for Tc-99m and 0.14/cm for Tl-201) in the RPC method decreased %ERROR to the levels for UAM. Finally, a comparison between images, which were obtained by 180 deg and 360 deg scans and reconstructed from the RPC method, showed that the degree of the distortion of the contour of the simulated ventricles in the 180 deg scan was 15 % higher than that in the 360 deg scan. (Namekawa, K.)

  12. Morning surge of ventricular arrhythmias in a new arrhythmogenic canine model of chronic heart failure is associated with attenuation of time-of-day dependence of heart rate and autonomic adaptation, and reduced cardiac chaos.

    Science.gov (United States)

    Zhu, Yujie; Hanafy, Mohamed A; Killingsworth, Cheryl R; Walcott, Gregory P; Young, Martin E; Pogwizd, Steven M

    2014-01-01

    Patients with chronic heart failure (CHF) exhibit a morning surge in ventricular arrhythmias, but the underlying cause remains unknown. The aim of this study was to determine if heart rate dynamics, autonomic input (assessed by heart rate variability (HRV)) and nonlinear dynamics as well as their abnormal time-of-day-dependent oscillations in a newly developed arrhythmogenic canine heart failure model are associated with a morning surge in ventricular arrhythmias. CHF was induced in dogs by aortic insufficiency & aortic constriction, and assessed by echocardiography. Holter monitoring was performed to study time-of-day-dependent variation in ventricular arrhythmias (PVCs, VT), traditional HRV measures, and nonlinear dynamics (including detrended fluctuations analysis α1 and α2 (DFAα1 & DFAα2), correlation dimension (CD), and Shannon entropy (SE)) at baseline, as well as 240 days (240 d) and 720 days (720 d) following CHF induction. LV fractional shortening was decreased at both 240 d and 720 d. Both PVCs and VT increased with CHF duration and showed a morning rise (2.5-fold & 1.8-fold increase at 6 AM-noon vs midnight-6 AM) during CHF. The morning rise in HR at baseline was significantly attenuated by 52% with development of CHF (at both 240 d & 720 d). Morning rise in the ratio of low frequency to high frequency (LF/HF) HRV at baseline was markedly attenuated with CHF. DFAα1, DFAα2, CD and SE all decreased with CHF by 31, 17, 34 and 7%, respectively. Time-of-day-dependent variations in LF/HF, CD, DFA α1 and SE, observed at baseline, were lost during CHF. Thus in this new arrhythmogenic canine CHF model, attenuated morning HR rise, blunted autonomic oscillation, decreased cardiac chaos and complexity of heart rate, as well as aberrant time-of-day-dependent variations in many of these parameters were associated with a morning surge of ventricular arrhythmias.

  13. Morning surge of ventricular arrhythmias in a new arrhythmogenic canine model of chronic heart failure is associated with attenuation of time-of-day dependence of heart rate and autonomic adaptation, and reduced cardiac chaos.

    Directory of Open Access Journals (Sweden)

    Yujie Zhu

    Full Text Available Patients with chronic heart failure (CHF exhibit a morning surge in ventricular arrhythmias, but the underlying cause remains unknown. The aim of this study was to determine if heart rate dynamics, autonomic input (assessed by heart rate variability (HRV and nonlinear dynamics as well as their abnormal time-of-day-dependent oscillations in a newly developed arrhythmogenic canine heart failure model are associated with a morning surge in ventricular arrhythmias. CHF was induced in dogs by aortic insufficiency & aortic constriction, and assessed by echocardiography. Holter monitoring was performed to study time-of-day-dependent variation in ventricular arrhythmias (PVCs, VT, traditional HRV measures, and nonlinear dynamics (including detrended fluctuations analysis α1 and α2 (DFAα1 & DFAα2, correlation dimension (CD, and Shannon entropy (SE at baseline, as well as 240 days (240 d and 720 days (720 d following CHF induction. LV fractional shortening was decreased at both 240 d and 720 d. Both PVCs and VT increased with CHF duration and showed a morning rise (2.5-fold & 1.8-fold increase at 6 AM-noon vs midnight-6 AM during CHF. The morning rise in HR at baseline was significantly attenuated by 52% with development of CHF (at both 240 d & 720 d. Morning rise in the ratio of low frequency to high frequency (LF/HF HRV at baseline was markedly attenuated with CHF. DFAα1, DFAα2, CD and SE all decreased with CHF by 31, 17, 34 and 7%, respectively. Time-of-day-dependent variations in LF/HF, CD, DFA α1 and SE, observed at baseline, were lost during CHF. Thus in this new arrhythmogenic canine CHF model, attenuated morning HR rise, blunted autonomic oscillation, decreased cardiac chaos and complexity of heart rate, as well as aberrant time-of-day-dependent variations in many of these parameters were associated with a morning surge of ventricular arrhythmias.

  14. Resveratrol prevents angiotensin II-induced hypertrophy of vascular smooth muscle cells through the transactivation of growth factor receptors.

    Science.gov (United States)

    Hossain, Ekhtear; Anand-Srivastava, Madhu B

    2017-08-01

    We previously showed that augmented levels of endogenous angiotensin II (AngII) contribute to vascular smooth muscle cell (VSMC) hypertrophy through the transactivation of growth factor receptors in spontaneously hypertensive rats. Resveratrol (RV), a polyphenolic component of red wine, has also been shown to attenuate AngII-evoked VSMC hypertrophy; however, the molecular mechanism mediating this response is obscure. The present study was therefore undertaken to examine whether RV could prevent AngII-induced VSMC hypertrophy through the transactivation of growth factor receptor and associated signaling pathways. AngII treatment of VSMC enhanced the protein synthesis that was attenuated towards control levels by RV pretreatment as well as by the inhibitors of NADPH oxidase, c-Src, and growth factor receptors. Furthermore, RV pretreatment also inhibited enhanced levels of superoxide anion, NADPH oxidase activity, increased expression of NADPH oxidase subunits, and phosphorylation of c-Src, EGF-R, PDGE-R, ERK1/2, and AKT1/2. In conclusion, these results indicate that RV attenuates AngII-induced VSMC hypertrophy through the inhibition of enhanced oxidative stress and activation of c-Src, growth factor receptors, and MAPK/AKT signaling. We suggest that RV could be used as a therapeutic agent in the treatment of vascular complications associated with hypertension and hypertrophy.

  15. Trichostatin A accentuates doxorubicin-induced hypertrophy in cardiac myocytes

    OpenAIRE

    Karagiannis, Tom C; Lin, Ann JE; Ververis, Katherine; Chang, Lisa; Tang, Michelle M; Okabe, Jun; El-Osta, Assam

    2010-01-01

    Histone deacetylase inhibitors represent a new class of anticancer therapeutics and the expectation is that they will be most effective when used in combination with conventional cancer therapies, such as the anthracycline, doxorubicin. The dose-limiting side effect of doxorubicin is severe cardiotoxicity and evaluation of the effects of combinations of the anthracycline with histone deacetylase inhibitors in relevant models is important. We used a well-established in vitro model of doxorubic...

  16. Effects of Resistance Training on Ventricular Function and Hypertrophy in a Rat Model

    Science.gov (United States)

    Barauna, Valério Garrone; Rosa, Kaleizu Teodoro; Irigoyen, Maria Cláudia; de Oliveira, Edilamar Menezes

    2007-01-01

    Objective: The purpose of this study was to follow the ventricular function and cardiac hypertrophy in rats undergoing a resistance-training program for a period of 3 months. Design: Forty animals were divided into two major groups: control (n=16) and resistance trained (n=24). From the resistance-trained group, 12 animals were resistance trained for 1 month and another 12 for 3 months. The resistance-training protocol was performed with 4 sets of 12 repetitions using 65% to 75% of one repetition maximum (maximum lifted weight with the exercise apparatus). Methods: Echocardiographic analysis was performed at the beginning of the resistance-training period and at the end of each month. The repetition maximum was measured every 2 weeks. Cardiac hypertrophy was determined by echocardiography, by the absolute weight of the cardiac chambers and by histology of the left ventricle. Results: Before resistance training, both groups had similar repetition maximums, ranging from 1.8-fold to 2-fold the body weight; however, at the end of the resistance-training period, the repetition maximum of the resistance-trained group was 6-fold greater than the body weight. The left ventricular mass as assessed by echocardiography was 8%, 12% and 16% larger in the resistance-trained group than in the control group in the first, second and third months, respectively. This hypertrophy showed a similar increase in the interventricular septum and in the free posterior wall mass. There was no reduction in the end-diastolic left ventricular internal diameter during the 3-month resistance-training period. Systolic function did not differ between the groups throughout the resistance-training period. Conclusion: Resistance training induces the development of concentric cardiac hypertrophy without ventricular dysfunction or cavity reduction. Although diastolic function was not completely investigated, we cannot exclude the possibility that resistance training results in diastolic dysfunction. PMID

  17. Dual energy cardiac CT.

    Science.gov (United States)

    Carrascosa, Patricia; Deviggiano, Alejandro; Rodriguez-Granillo, Gastón

    2017-06-01

    Conventional single energy CT suffers from technical limitations related to the polychromatic nature of X-rays. Dual energy cardiac CT (DECT) shows promise to attenuate and even overcome some of these limitations, and might broaden the scope of patients eligible for cardiac CT towards the inclusion of higher risk patients. This might be achieved as a result of both safety (contrast reduction) and physiopathological (myocardial perfusion and characterization) issues. In this article, we will review the main clinical cardiac applications of DECT, that can be summarized in two core aspects: coronary artery evaluation, and myocardial evaluation.

  18. Visualization of hypertrophied papillary muscle mimicking left ventricular mass on gated blood pool and T1-201 myocardial perfusion imaging

    International Nuclear Information System (INIS)

    Bunko, H.; Nakajima, K.; Tonami, N.; Asanoi, H.; Hisada, K.

    1981-01-01

    A sixty-year old man with acute myocardial infarction was incidentally found to have a hypertrophied anterolateral papillary muscle (ALPPM) of the left ventricle on gated blood pool (GBP) and T1-201 myocardial perfusion images. Hypertrophy of the ALPPM was visualized as a movable defect in the lateral basal area on GBP imaging throughout the cardiac cycle and on the TI-201 study as a radionuclide accumulating structure, consistent with the defect in the GBP. A combination of these findings may suggest the presence of a hypertrophied papillary muscle of the left ventricle

  19. Isosteviol prevents the prolongation of action potential in hypertrophied cardiomyoctyes by regulating transient outward potassium and L-type calcium channels.

    Science.gov (United States)

    Fan, Zhuo; Lv, Nanying; Luo, Xiao; Tan, Wen

    2017-10-01

    Cardiac hypertrophy is a thickening of the heart muscle that is associated with cardiovascular diseases such as hypertension and myocardial infarction. It occurs initially as an adaptive process against increased workloads and often leads to sudden arrhythmic deaths. Studies suggest that the lethal arrhythmia is attributed to hypertrophy-induced destabilization of cardiac electrical activity, especially the prolongation of the action potential. The reduced activity of I to is demonstrated to be responsible for the ionic mechanism of prolonged action potential duration and arrhythmogeneity. Isosteviol (STV), a derivative of stevioside, plays a protective role in a variety of stress-induced cardiac diseases. Here we report effects of STV on rat ISO-induced hypertrophic cardiomyocytes. STV alleviated ISO-induced hypertrophy of cardiomyocytes by decreasing cell area of hypertrophied cardiomyocytes. STV application prevented the prolongation of action potential which was prominent in hypertrophied cells. The decrease and increase of current densities for I to and I CaL observed in hypertrophied myocytes were both prevented by STV application. In addition, the results of qRT-PCR suggested that the changes of electrophysiological activity of I to and I CaL are correlated to the alterations of the mRNA transcription level. Copyright © 2017. Published by Elsevier B.V.

  20. Butanolic fraction of Moringa oleifera Lam. (Moringaceae) attenuates isoprotrenol-induced cardiac necrosis and oxidative stress in rats: an EPR study

    Science.gov (United States)

    Panda, Sunanda

    2015-01-01

    The preventive effect of Moringa oleifera polyphenolic fraction (MOPF) on cardiac damage was evaluated in isoproterenol (ISO) induced cardiotoxicity model of Wistar rats. Male rats in different groups were treated with MOPF orally at the dose of 50, 100 and 150 mg/kg/day for 28 days and were subsequently administered (s.c.) with ISO (85 mg/kg body weight) for the last two days. At the end of the experiment levels of serum troponin-T, creatine kinase-MB, lactate dehydrogenase, content of malondialdehyde (MDA), activities/levels of different cellular antioxidants were estimated in control and experimental groups. Additionally, scavenging potential to the hydroxyl radical of the fraction was measured by electron paramagnetic resonance (EPR). ISO administered rats showed significant increase in the levels of serum troponin-I, creatine kinase, lactate dehydrogenase, and heart tissue MDA content. Furthermore, marked reduction in the activities of antioxidants such as superoxide dismutase, catalase, glutathione peroxidase and reduced glutathione levels were observed. EPR study showed an increase in signal intensity in ISO-induced rats. Triphenyl tetrazolium chloride (TTC) staining of heart section revealed a marked increase in infarcted area in ISO-induced rats. Histological features of the heart also indicated a disruption in the structure of cardiac myofibrils in these animals. MOPF (100 mg/kg body weight) pretreatment prevented all these adverse effects of ISO. Present results show that the rich polyphenolic content of Moringa oleifera significantly reduced the myocardial damage and decreased the oxidative stress, possibly through hydroxyl radical scavenging activity as evidenced from the EPR spectra. PMID:26417351

  1. Muscle Plasticity and β2-Adrenergic Receptors: Adaptive Responses of β2-Adrenergic Receptor Expression to Muscle Hypertrophy and Atrophy

    OpenAIRE

    Shogo Sato; Ken Shirato; Kaoru Tachiyashiki; Kazuhiko Imaizumi

    2011-01-01

    We discuss the functional roles of β2-adrenergic receptors in skeletal muscle hypertrophy and atrophy as well as the adaptive responses of β2-adrenergic receptor expression to anabolic and catabolic conditions. β2-Adrenergic receptor stimulation using anabolic drugs increases muscle mass by promoting muscle protein synthesis and/or attenuating protein degradation. These effects are prevented ...

  2. The thickened left ventricle: etiology, differential diagnosis and implications for cardiovascular radiology; Der dicke linke Ventrikel. Ursachen und Differenzialdiagnose der linksventrikulaeren Hypertrophie und Implikationen fuer die kardiovaskulaere Radiologie

    Energy Technology Data Exchange (ETDEWEB)

    Bischoff, P.; Barkhausen, J.; Hunold, P. [Universitaetsklinikum Schleswig-Holstein, Luebeck (Germany). Klinik fuer Radiologie und Nuklearmedizin; Radke, P.W. [Universitaetsklinikum Schleswig Holstein, Luebeck (Germany). Medizinische Klinik II

    2012-08-15

    Hypertrophy of the left ventricular myocardium is a common finding and can be reliably detected by echocardiography, CT and MRI. Common causes include diseases associated with increased cardiac afterload as well as primary and secondary cardiomyopathy. With the opportunity to determine functional parameters and myocardial mass precisely as well as to detect structural changes of the cardiac muscle simultaneously, cardiac MRI is the most precise imaging method for quantifying left ventricular hypertrophy as well as determining the cause and the exact characterization of the myocardial changes. It is mandatory, however, to create a flexible, individually adapted examination protocol. This review presents useful diagnostic algorithms in relation to different underlying pathologies in patients with left ventricular hypertrophy. (orig.)

  3. Skin Sodium Concentration Correlates with Left Ventricular Hypertrophy in CKD.

    Science.gov (United States)

    Schneider, Markus P; Raff, Ulrike; Kopp, Christoph; Scheppach, Johannes B; Toncar, Sebastian; Wanner, Christoph; Schlieper, Georg; Saritas, Turgay; Floege, Jürgen; Schmid, Matthias; Birukov, Anna; Dahlmann, Anke; Linz, Peter; Janka, Rolf; Uder, Michael; Schmieder, Roland E; Titze, Jens M; Eckardt, Kai-Uwe

    2017-06-01

    The pathogenesis of left ventricular hypertrophy in patients with CKD is incompletely understood. Sodium intake, which is usually assessed by measuring urinary sodium excretion, has been inconsistently linked with left ventricular hypertrophy. However, tissues such as skin and muscle may store sodium. Using 23 sodium-magnetic resonance imaging, a technique recently developed for the assessment of tissue sodium content in humans, we determined skin sodium content at the level of the calf in 99 patients with mild to moderate CKD (42 women; median [range] age, 65 [23-78] years). We also assessed total body overhydration (bioimpedance spectroscopy), 24-hour BP, and left ventricular mass (cardiac magnetic resonance imaging). Skin sodium content, but not total body overhydration, correlated with systolic BP ( r =0.33, P =0.002). Moreover, skin sodium content correlated more strongly than total body overhydration did with left ventricular mass ( r =0.56, P skin sodium content is a strong explanatory variable for left ventricular mass, unaffected by BP and total body overhydration. In conclusion, we found skin sodium content to be closely linked to left ventricular mass in patients with CKD. Interventions that reduce skin sodium content might improve cardiovascular outcomes in these patients. Copyright © 2017 by the American Society of Nephrology.

  4. Sildenafil prevents the up-regulation of transient receptor potential canonical channels in the development of cardiomyocyte hypertrophy

    International Nuclear Information System (INIS)

    Kiso, Hironori; Ohba, Takayoshi; Iino, Kenji; Sato, Kazuhiro; Terata, Yutaka; Murakami, Manabu; Ono, Kyoichi; Watanabe, Hiroyuki; Ito, Hiroshi

    2013-01-01

    Highlights: •Transient receptor potential canonical (TRPC1, 3 and 6) are up-regulated by ET-1. •Sildenafil inhibited hypertrophic responses (BNP, Ca entry, NFAT activation). •Sildenafil suppressed TRPC1, 3 and 6 expression. -- Abstract: Background: Transient receptor potential canonical (TRPCs) channels are up-regulated in the development of cardiac hypertrophy. Sildenafil inhibits TRPC6 activation and expression, leading to the prevention of cardiac hypertrophy. However, the effects of sildenafil on the expression of other TRPCs remain unknown. We hypothesized that in addition to its effects of TRPC6, sildenafil blocks the up-regulation of other TRPC channels to suppress cardiomyocyte hypertrophy. Methods and results: In cultured neonatal rat cardiomyocytes, a 48 h treatment with 10 nM endothelin (ET)-1 induced hypertrophic responses characterized by nuclear factor of activated T cells activation and enhancement of brain natriuretic peptide expression and cell surface area. Co-treatment with sildenafil (1 μM, 48 h) inhibited these ET-1-induced hypertrophic responses. Although ET-1 enhanced the gene expression of TRPCs, sildenafil inhibited the enhanced gene expression of TRPC1, C3 and C6. Moreover, co-treatment with sildenafil abolished the augmentation of SOCE in the hypertrophied cardiomyocytes. Conclusions: These results suggest that sildenafil inhibits cardiomyocyte hypertrophy by suppressing the up-regulation of TRPC expression

  5. SIRT1 Functions as an Important Regulator of Estrogen-Mediated Cardiomyocyte Protection in Angiotensin II-Induced Heart Hypertrophy

    Directory of Open Access Journals (Sweden)

    Tao Shen

    2014-01-01

    Full Text Available Background. Sirtuin 1 (SIRT1 is a member of the sirtuin family, which could activate cell survival machinery and has been shown to be protective in regulation of heart function. Here, we determined the mechanism by which SIRT1 regulates Angiotensin II- (AngII- induced cardiac hypertrophy and injury in vivo and in vitro. Methods. We analyzed SIRT1 expression in the hearts of control and AngII-induced mouse hypertrophy. Female C57BL/6 mice were ovariectomized and pretreated with 17β-estradiol to measure SIRT1 expression. Protein synthesis, cardiomyocyte surface area analysis, qRT-PCR, TUNEL staining, and Western blot were performed on AngII-induced mouse heart hypertrophy samples and cultured neonatal rat ventricular myocytes (NRVMs to investigate the function of SIRT1. Results. SIRT1 expression was slightly upregulated in AngII-induced mouse heart hypertrophy in vivo and in vitro, accompanied by elevated cardiomyocyte apoptosis. SIRT1 overexpression relieves AngII-induced cardiomyocyte hypertrophy and apoptosis. 17β-Estradiol was able to protect cardiomyocytes from AngII-induced injury with a profound upregulation of SIRT1 and activation of AMPK. Moreover, estrogen receptor inhibitor ICI 182,780 and SIRT1 inhibitor niacinamide could block SIRT1’s protective effect. Conclusions. These results indicate that SIRT1 functions as an important regulator of estrogen-mediated cardiomyocyte protection during AngII-induced heart hypertrophy and injury.

  6. Fruit vinegars attenuate cardiac injury via anti-inflammatory and anti-adiposity actions in high-fat diet-induced obese rats.

    Science.gov (United States)

    Bounihi, Abdenour; Bitam, Arezki; Bouazza, Asma; Yargui, Lyece; Koceir, Elhadj Ahmed

    2017-12-01

    Fruit vinegars (FVs) are used in Mediterranean folk medicine for their hypolipidemic and weight-reducing properties. To investigate the preventive effects of three types of FV, commonly available in Algeria, namely prickly pear [Opuntia ficus-indica (L.) Mill (Cectaceae)], pomegranate [Punica granatum L. (Punicaceae)], and apple [Malus domestica Borkh. (Rosaceae)], against obesity-induced cardiomyopathy and its underlying mechanisms. Seventy-two male Wistar rats were equally divided into 12 groups. The first group served as normal control (distilled water, 7 mL/kg bw), and the remaining groups were respectively treated with distilled water (7 mL/kg bw), acetic acid (0.5% w/v, 7 mL/kg bw) and vinegars of pomegranate, apple or prickly pear (at doses of 3.5, 7 and 14 mL/kg bw, acetic acid content as mentioned above) along with a high-fat diet (HFD). The effects of the oral administration of FV for 18 weeks on the body and visceral adipose tissue (VAT) weights, plasma inflammatory and cardiac enzymes biomarkers, and in heart tissue were evaluated. Vinegars treatments significantly (p inflammatory and anti-adiposity properties of these vinegars.

  7. Asymmetric septal hypertrophy of sporadic form with abnormal thallium perfusion and myocardial enzymes

    International Nuclear Information System (INIS)

    Nagata, Seiki; Minamikawa, Tetsuhiro; Park, Yung-Dae; Nishimura, Tsunehiko; Yutani, Chikao; Ohmori, Fumio; Sakakibara, Hiroshi; Nimura, Yasuharu

    1986-01-01

    Asymmetric septal hypertrophy with abnormal thallium scintigram and elevated cardiac enzymes were observed in five patients and were studied with special reference to the clinical significance of their clinicopathological features. They were not familial cardiomyopathy patients. Two of the five patients (Cases 1 and 2) exhibited the clinical features characteristic of hypertrophic cardiomyopathy without abnormal thallium perfusion and serum cardiac enzyme levels. A right endomyocardial biopsy for Case 1 disclosed myocardial fibrosis in addition to hypertrophy and disarray of myocardial fibers. The left ventricular cavities of two other patients (Cases 4 and 5) tended to be dilated with signs of impaired systolic function and asymmetric septal hypertrophy. A regional area of reduced thickness was observed in the medial portion of the left ventricular posterior wall of Case 4. The remaining case (Case 3) exhibited left ventricular dilatation and reduced left ventricular systolic function, disproportionate hypertrophy, and had clinical signs of congestive heart failure. Necropsy disclosed massive fibrosis and diffuse disarray of myocardial fibers. Some patients with familial hypertrophic cardiomyopathy progress to exhibit clinical features of dilated cardiomyopathy in the termimal stages, and have massive fibrosis of the myocardium histologically. Thallium scintigraphic abnormalities and elevated serum levels of cardiac enzymes, especially the LDH 1 isoenzyme, in patients with hypertrophic cardiomyopathy may be a meaningful indicator of such progression in its early stages. The five patients in the present study exhibited a variety of clinical and histological features which may comprise a spectrum of clinical conditions during the progression from hypertrophic cardiomyopathy to a condition like dilated cardiomyopathy, similar to that in familial patients. This progression and the factors promoting it should be studied further in the near future. (author)

  8. Dietary salt restriction improves cardiac and adipose tissue pathology independently of obesity in a rat model of metabolic syndrome.

    Science.gov (United States)

    Hattori, Takuya; Murase, Tamayo; Takatsu, Miwa; Nagasawa, Kai; Matsuura, Natsumi; Watanabe, Shogo; Murohara, Toyoaki; Nagata, Kohzo

    2014-12-02

    Metabolic syndrome (MetS) enhances salt sensitivity of blood pressure and is an important risk factor for cardiovascular disease. The effects of dietary salt restriction on cardiac pathology associated with metabolic syndrome remain unclear. We investigated whether dietary salt restriction might ameliorate cardiac injury in DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats, which are derived from a cross between Dahl salt-sensitive and Zucker rats and represent a model of metabolic syndrome. DS/obese rats were fed a normal-salt (0.36% NaCl in chow) or low-salt (0.0466% NaCl in chow) diet from 9 weeks of age and were compared with similarly treated homozygous lean littermates (DahlS.Z-Lepr(+)/Lepr(+), or DS/lean rats). DS/obese rats fed the normal-salt diet progressively developed hypertension and showed left ventricular hypertrophy, fibrosis, and diastolic dysfunction at 15 weeks. Dietary salt restriction attenuated all of these changes in DS/obese rats. The levels of cardiac oxidative stress and inflammation and the expression of cardiac renin-angiotensin-aldosterone system genes were increased in DS/obese rats fed the normal-salt diet, and dietary salt restriction downregulated these parameters in both DS/obese and DS/lean rats. In addition, dietary salt restriction attenuated the increase in visceral adipose tissue inflammation and the decrease in insulin signaling apparent in DS/obese rats without reducing body weight or visceral adipocyte size. Dietary salt restriction did not alter fasting serum glucose levels but it markedly decreased the fasting serum insulin concentration in DS/obese rats. Dietary salt restriction not only prevents hypertension and cardiac injury but also ameliorates insulin resistance, without reducing obesity, in this model of metabolic syndrome. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  9. Multidimensional structure-function relationships in human β-cardiac myosin from population-scale genetic variation

    NARCIS (Netherlands)

    Homburger, J.R. (Julian R.); Green, E.M. (Eric M.); Caleshu, C. (Colleen); Sunitha, M.S. (Margaret S.); Taylor, R.E. (Rebecca E.); Ruppel, K.M. (Kathleen M.); Metpally, R.P.R. (Raghu Prasad Rao); S.D. Colan (Steven); M. Michels (Michelle); Day, S.M. (Sharlene M.); I. Olivotto (Iacopo); Bustamante, C.D. (Carlos D.); Dewey, F.E. (Frederick E.); Ho, C.Y. (Carolyn Y.); Spudich, J.A. (James A.); Ashley, E.A. (Euan A.)

    2016-01-01

    textabstractMyosin motors are the fundamental force-generating elements of muscle contraction. Variation in the human β-cardiac myosin heavy chain gene (MYH7) can lead to hypertrophic cardiomyopathy (HCM), a heritable disease characterized by cardiac hypertrophy, heart failure, and sudden cardiac

  10. Distinct cardiac transcriptional profiles defining pregnancy and exercise.

    Directory of Open Access Journals (Sweden)

    Eunhee Chung

    Full Text Available BACKGROUND: Although the hypertrophic responses of the heart to pregnancy and exercise are both considered to be physiological processes, they occur in quite different hormonal and temporal settings. In this study, we have compared the global transcriptional profiles of left ventricular tissues at various time points during the progression of hypertrophy in exercise and pregnancy. METHODOLOGY/PRINCIPAL FINDINGS: The following groups of female mice were analyzed: non-pregnant diestrus cycle sedentary control, mid-pregnant, late-pregnant, and immediate-postpartum, and animals subjected to 7 and 21 days of voluntary wheel running. Hierarchical clustering analysis shows that while mid-pregnancy and both exercise groups share the closest relationship and similar gene ontology categories, late pregnancy and immediate post-partum are quite different with high representation of secreted/extracellular matrix-related genes. Moreover, pathway-oriented ontological analysis shows that metabolism regulated by cytochrome P450 and chemokine pathways are the most significant signaling pathways regulated in late pregnancy and immediate-postpartum, respectively. Finally, increases in expression of components of the proteasome observed in both mid-pregnancy and immediate-postpartum also result in enhanced proteasome activity. Interestingly, the gene expression profiles did not correlate with the degree of cardiac hypertrophy observed in the animal groups, suggesting that distinct pathways are employed to achieve similar amounts of cardiac hypertrophy. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that cardiac adaptation to the later stages of pregnancy is quite distinct from both mid-pregnancy and exercise. Furthermore, it is very dynamic since, by 12 hours post-partum, the heart has already initiated regression of cardiac growth, and 50 genes have changed expression significantly in the immediate-postpartum compared to late-pregnancy. Thus, pregnancy

  11. Postural control in women with breast hypertrophy

    Directory of Open Access Journals (Sweden)

    Alessandra Ferreira Barbosa

    2012-07-01

    Full Text Available OBJECTIVES: The consequences of breast hypertrophy have been described based on the alteration of body mass distribution, leading to an impact on psychological and physical aspects. The principles of motor control suggest that breast hypertrophy can lead to sensorimotor alterations and the impairment of body balance due to postural misalignment. The aim of this study is to evaluate the postural control of women with breast hypertrophy under different sensory information conditions. METHOD: This cross-sectional study included 14 women with breast hypertrophy and 14 without breast hypertrophy, and the mean ages of the groups were 39 ±15 years and 39±16 years, respectively. A force platform was used to assess the sensory systems that contribute to postural control: somatosensory, visual and vestibular. Four postural conditions were sequentially tested: eyes open and fixed platform, eyes closed and fixed platform, eyes open and mobile platform, and eyes closed and mobile platform. The data were processed, and variables related to the center of pressure were analyzed for each condition. The Kruskal-Wallis test was used to compare the conditions between the groups for the area of center of pressure displacement and the velocity of center of pressure displacement in the anterior-posterior and medial-lateral directions. The alpha level error was set at 0.05. RESULTS: Women with breast hypertrophy presented an area that was significantly higher for three out of four conditions and a higher velocity of center of pressure displacement in the anterior-posterior direction under two conditions: eyes open and mobile platform and eyes closed and mobile platform. CONCLUSIONS: Women with breast hypertrophy have altered postural control, which was demonstrated by the higher area and velocity of center of pressure displacement.

  12. Intermolecular failure of L-type Ca2+ channel and ryanodine receptor signaling in hypertrophy.

    Directory of Open Access Journals (Sweden)

    Ming Xu

    2007-02-01

    Full Text Available Pressure overload-induced hypertrophy is a key step leading to heart failure. The Ca(2+-induced Ca(2+ release (CICR process that governs cardiac contractility is defective in hypertrophy/heart failure, but the molecular mechanisms remain elusive. To examine the intermolecular aspects of CICR during hypertrophy, we utilized loose-patch confocal imaging to visualize the signaling between a single L-type Ca(2+ channel (LCC and ryanodine receptors (RyRs in aortic stenosis rat models of compensated (CHT and decompensated (DHT hypertrophy. We found that the LCC-RyR intermolecular coupling showed a 49% prolongation in coupling latency, a 47% decrease in chance of hit, and a 72% increase in chance of miss in DHT, demonstrating a state of "intermolecular failure." Unexpectedly, these modifications also occurred robustly in CHT due at least partially to decreased expression of junctophilin, indicating that intermolecular failure occurs prior to cellular manifestations. As a result, cell-wide Ca(2+ release, visualized as "Ca(2+ spikes," became desynchronized, which contrasted sharply with unaltered spike integrals and whole-cell Ca(2+ transients in CHT. These data suggested that, within a certain limit, termed the "stability margin," mild intermolecular failure does not damage the cellular integrity of excitation-contraction coupling. Only when the modification steps beyond the stability margin does global failure occur. The discovery of "hidden" intermolecular failure in CHT has important clinical implications.

  13. 123I-MIBG myocardial imaging in hypertensive patients. Abnormality progresses with left ventricular hypertrophy

    International Nuclear Information System (INIS)

    Mitani, Isao; Sumita, Shinichi; Takahashi, Nobukazu; Ochiai, Hisao; Ishii, Masao

    1996-01-01

    Twenty-seven patients with essential hypertension were prospectively studied with 123 I-labeled metaiodobenzyl-guanidine ( 123 I-MIBG) to assess the presence and location of impaired sympathetic innervation in hypertrophied myocardium. Thirteen patients had left ventricular hypertrophy on echocardiography, and 14 had normal echocardiograms. The wash-out ratio of 123 I-MIBG in these two groups did not differ significantly (35.3±6.1 and 35.4±5.1) but was higher than in control subjects (29.4±6.7). The delayed heart-to-mediastinum count ratio was lower in the patients with hypertrophy than in the patients without hypertrophy (1.93±0.28 and 2.22±0.21; p<0.05) and the control subjects (1.93±0.28 and 2.33±0.25; p<0.05). On SPECT imaging, abnormalities in segmental uptake were frequent at the posterior and postero-lateral wall in both groups, although the hypertrophic group had more significant impairment. Our results lead to the hypothesis that hypertension in more advanced stages may be associated not only with hypertrophic changes but also with more advanced regional impairment of cardiac sympathetic innervation. (author)

  14. VO(2peak), myocardial hypertrophy, and myocardial blood flow in endurance-trained men.

    Science.gov (United States)

    Laaksonen, Marko S; Heinonen, Ilkka; Luotolahti, Matti; Knuuti, Juhani; Kalliokoski, Kari K

    2014-08-01

    Endurance training induces cardiovascular and metabolic adaptations, leading to enhanced endurance capacity and exercise performance. Previous human studies have shown contradictory results in functional myocardial vascular adaptations to exercise training, and we hypothesized that this may be related to different degrees of hypertrophy in the trained heart. We studied the interrelationships between peak aerobic power (V˙O2peak), myocardial blood flow (MBF) at rest and during adenosine-induced vasodilation, and parameters of myocardial hypertrophy in endurance-trained (ET, n = 31) and untrained (n = 17) subjects. MBF and myocardial hypertrophy were studied using positron emission tomography and echocardiography, respectively. Both V˙O2peak (P negatively with adenosine-stimulated MBF, but when LV mass was taken into account as a partial correlate, this correlation disappeared. The present results show that increased LV mass in ET subjects explains the reduced hyperemic myocardial perfusion in this subject population and suggests that excessive LV hypertrophy has negative effect on cardiac blood flow capacity.

  15. QSYQ Attenuates Oxidative Stress and Apoptosis Induced Heart Remodeling Rats through Different Subtypes of NADPH-Oxidase

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2013-01-01

    Full Text Available We aim to investigate the therapeutic effects of QSYQ, a drug of heart failure (HF in clinical practice in China, on a rat heart failure (HF model. 3 groups were divided: HF model group (LAD ligation, QSYQ group (LAD ligation and treated with QSYQ, and sham-operated group. After 4 weeks, rats were sacrificed for cardiac injury measurements. Rats with HF showed obvious histological changes including necrosis and inflammation foci, elevated ventricular remodeling markers levels(matrix metalloproteinases-2, MMP-2, deregulated ejection fraction (EF value, increased formation of oxidative stress (Malondialdehyde, MDA, and up-regulated levels of apoptotic cells (caspase-3, p53 and tunnel in myocardial tissue. Treatment of QSYQ improved cardiac remodeling through counter-acting those events. The improvement of QSYQ was accompanied with a restoration of NADPH oxidase 4 (NOX4 and NADPH oxidase 2 (NOX2 pathways in different patterns. Administration of QSYQ could attenuate LAD-induced HF, and AngII-NOX2-ROS-MMPs pathway seemed to be the critical potential targets for QSYQ to reduce the remodeling. Moreover, NOX4 was another key targets to inhibit the p53 and Caspase3, thus to reduce the hypertrophy and apoptosis, and eventually provide a synergetic cardiac protective effect.

  16. Effects of Kefir on the Cardiac Autonomic Tones and Baroreflex Sensitivity in Spontaneously Hypertensive Rats

    Science.gov (United States)

    Klippel, Brunella F.; Duemke, Licia B.; Leal, Marcos A.; Friques, Andreia G. F.; Dantas, Eduardo M.; Dalvi, Rodolfo F.; Gava, Agata L.; Pereira, Thiago M. C.; Andrade, Tadeu U.; Meyrelles, Silvana S.; Campagnaro, Bianca P.; Vasquez, Elisardo C.

    2016-01-01

    Aims: It has been previously shown that the probiotic kefir (a symbiotic matrix containing acid bacteria and yeasts) attenuated the hypertension and the endothelial dysfunction in spontaneously hypertensive rats (SHR). In the present study, the effect of chronic administration of kefir on the cardiac autonomic control of heart rate (HR) and baroreflex sensitivity (BRS) in SHR was evaluated. Methods: SHR were treated with kefir (0.3 mL/100 g body weight) for 60 days and compared with non-treated SHR and with normotensive Wistar-Kyoto rats. Cardiac autonomic vagal (VT) and sympathetic (ST) tones were estimated through the blockade of the cardiac muscarinic receptors (methylatropine) and the blockade of β1−adrenoceptor (atenolol). The BRS was evaluated by the tachycardia and bradycardia responses to vasoactive drug-induced decreases and increases in arterial blood pressure (BP), respectively. Additionally, spontaneous BRS was estimated by autoregressive spectral analysis. Results: Kefir-treated SHR exhibited significant attenuation of basal BP, HR, and cardiac hypertrophy compared to non-treated SHR (12, 13, and 21%, respectively). Cardiac VT and ST were significantly altered in the SHR (~40 and ~90 bpm) compared with Wistar rats (~120 and ~30 bpm) and were partially recovered in SHR-kefir (~90 and ~25 bpm). SHR exhibited an impaired bradycardic BRS (~50%) compared with Wistar rats, which was reduced to ~40% in the kefir-treated SHR and abolished by methylatropine in all groups. SHR also exhibited a significant impairment of the tachycardic BRS (~23%) compared with Wistar rats and this difference was reduced to 8% in the SHR-kefir. Under the action of atenolol the residual reflex tachycardia was smaller in SHR than in Wistar rats and kefir attenuated this abnormality. Spectral analysis revealed increased low frequency components of BP (~3.5-fold) and pulse interval (~2-fold) compared with Wistar rats and these differences were reduced by kefir-treatment to ~1

  17. Effects of Kefir on the Cardiac Autonomic Tones and Baroreflex Sensitivity in Spontaneously Hypertensive Rats.

    Science.gov (United States)

    Klippel, Brunella F; Duemke, Licia B; Leal, Marcos A; Friques, Andreia G F; Dantas, Eduardo M; Dalvi, Rodolfo F; Gava, Agata L; Pereira, Thiago M C; Andrade, Tadeu U; Meyrelles, Silvana S; Campagnaro, Bianca P; Vasquez, Elisardo C

    2016-01-01

    It has been previously shown that the probiotic kefir (a symbiotic matrix containing acid bacteria and yeasts) attenuated the hypertension and the endothelial dysfunction in spontaneously hypertensive rats (SHR). In the present study, the effect of chronic administration of kefir on the cardiac autonomic control of heart rate (HR) and baroreflex sensitivity (BRS) in SHR was evaluated. SHR were treated with kefir (0.3 mL/100 g body weight) for 60 days and compared with non-treated SHR and with normotensive Wistar-Kyoto rats. Cardiac autonomic vagal (VT) and sympathetic (ST) tones were estimated through the blockade of the cardiac muscarinic receptors (methylatropine) and the blockade of β1-adrenoceptor (atenolol). The BRS was evaluated by the tachycardia and bradycardia responses to vasoactive drug-induced decreases and increases in arterial blood pressure (BP), respectively. Additionally, spontaneous BRS was estimated by autoregressive spectral analysis. Kefir-treated SHR exhibited significant attenuation of basal BP, HR, and cardiac hypertrophy compared to non-treated SHR (12, 13, and 21%, respectively). Cardiac VT and ST were significantly altered in the SHR (~40 and ~90 bpm) compared with Wistar rats (~120 and ~30 bpm) and were partially recovered in SHR-kefir (~90 and ~25 bpm). SHR exhibited an impaired bradycardic BRS (~50%) compared with Wistar rats, which was reduced to ~40% in the kefir-treated SHR and abolished by methylatropine in all groups. SHR also exhibited a significant impairment of the tachycardic BRS (~23%) compared with Wistar rats and this difference was reduced to 8% in the SHR-kefir. Under the action of atenolol the residual reflex tachycardia was smaller in SHR than in Wistar rats and kefir attenuated this abnormality. Spectral analysis revealed increased low frequency components of BP (~3.5-fold) and pulse interval (~2-fold) compared with Wistar rats and these differences were reduced by kefir-treatment to ~1.6- and ~1.5-fold, respectively

  18. Cardiomyocyte Overexpression of FABP4 Aggravates Pressure Overload-Induced Heart Hypertrophy.

    Directory of Open Access Journals (Sweden)

    Ji Zhang

    Full Text Available Fatty acid binding protein 4 (FABP4 is a member of the intracellular lipid-binding protein family, responsible for the transportation of fatty acids. It is considered to express mainly in adipose tissues, and be strongly associated with inflammation, obesity, diabetes and cardiovasculardiseases. Here we report that FABP4 is also expressed in cardiomyocytes and plays an important role in regulating heart function under pressure overload. We generated heart-specific transgenic FABP4 (FABP4-TG mice using α myosin-heavy chain (α-MHC promoter and human FABP4 sequence, resulting in over-expression of FABP4 in cardiomyocytes. The FABP4-TG mice displayed normal cardiac morphology and contractile function. When they were subjected to the transverse aorta constriction (TAC procedure, the FABP4-TG mice developed more cardiac hypertrophy correlated with significantly increased ERK phosphorylation, compared with wild type controls. FABP4 over-expression in cardiomyocytes activated phosphor-ERK signal and up-regulate the expression of cardiac hypertrophic marker genes. Conversely, FABP4 induced phosphor-ERK signal and hypertrophic gene expressions can be markedly inhibited by an ERK inhibitor PD098059 as well as the FABP4 inhibitor BMS309403. These results suggest that FABP4 over-expression in cardiomyocytes can aggravate the development of cardiac hypertrophy through the activation of ERK signal pathway.

  19. A Benign Cardiac Growth but Not So Indolent

    Directory of Open Access Journals (Sweden)

    Adil S. Wani

    2016-01-01

    Full Text Available Cardiac lipomatous hypertrophy is a rare benign condition that usually involves the interatrial septum. Due to its benign nature it rarely requires intervention. Its presence outside the interatrial septum is reported infrequently. We present a case of lipomatous hypertrophy in the intraventricular septum that was complicated by a severe, symptomatic, and disabling dynamic left ventricular outflow tract obstruction. The symptoms significantly improved following the excision of the mass. In our case transthoracic echocardiogram was used to visualize the mass and measure the severity of the obstruction; Cardiac Magnetic Resonance Imaging was used to characterize the mass and histopathology confirmed the diagnosis.

  20. A Benign Cardiac Growth but Not So Indolent

    Science.gov (United States)

    Reddy, Sahadev T.; Biederman, Robert W. W.

    2016-01-01

    Cardiac lipomatous hypertrophy is a rare benign condition that usually involves the interatrial septum. Due to its benign nature it rarely requires intervention. Its presence outside the interatrial septum is reported infrequently. We present a case of lipomatous hypertrophy in the intraventricular septum that was complicated by a severe, symptomatic, and disabling dynamic left ventricular outflow tract obstruction. The symptoms significantly improved following the excision of the mass. In our case transthoracic echocardiogram was used to visualize the mass and measure the severity of the obstruction; Cardiac Magnetic Resonance Imaging was used to characterize the mass and histopathology confirmed the diagnosis. PMID:27293911

  1. Akt1 deficiency diminishes skeletal muscle hypertrophy by reducing satellite cell proliferation.

    Science.gov (United States)

    Moriya, Nobuki; Miyazaki, Mitsunori

    2018-02-14

    Skeletal muscle mass is determined by the net dynamic balance between protein synthesis and degradation. Although the Akt/mechanistic target of rapamycin (mTOR)-dependent pathway plays an important role in promoting protein synthesis and subsequent skeletal muscle hypertrophy, the precise molecular regulation of mTOR activity by the upstream protein kinase Akt is largely unknown. In addition, the activation of satellite cells has been indicated as a key regulator of muscle mass. However, the requirement of satellite cells for load-induced skeletal muscle hypertrophy is still under intense debate. In this study, female germline Akt1 knockout (KO) mice were used to examine whether Akt1 deficiency attenuates load-induced skeletal muscle hypertrophy through suppressing mTOR-dependent signaling and satellite cell proliferation. Akt1 KO mice showed a blunted hypertrophic response of skeletal muscle, with a diminished rate of satellite cell proliferation following mechanical overload. In contrast, Akt1 deficiency did not affect the load-induced activation of mTOR signaling and the subsequent enhanced rate of protein synthesis in skeletal muscle. These observations suggest that the load-induced activation of mTOR signaling occurs independently of Akt1 regulation and that Akt1 plays a critical role in regulating satellite cell proliferation during load-induced muscle hypertrophy.

  2. Mitochondrial oxidative stress and cardiac ageing.

    Science.gov (United States)

    Martín-Fernández, Beatriz; Gredilla, Ricardo

    According with different international organizations, cardiovascular diseases are becoming the first cause of death in western countries. Although exposure to different risk factors, particularly those related to lifestyle, contribute to the etiopathogenesis of cardiac disorders, the increase in average lifespan and aging are considered major determinants of cardiac diseases events. Mitochondria and oxidative stress have been pointed out as relevant factors both in heart aging and in the development of cardiac diseases such as heart failure, cardiac hypertrophy and diabetic cardiomyopathy. During aging, cellular processes related with mitochondrial function, such as bioenergetics, apoptosis and inflammation are altered leading to cardiac dysfunction. Increasing our knowledge about the mitochondrial mechanisms related with the aging process, will provide new strategies in order to improve this process, particularly the cardiovascular ones. Copyright © 2017 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Histologically Measured Cardiomyocyte Hypertrophy Correlates with Body Height as Strongly as with Body Mass Index

    Directory of Open Access Journals (Sweden)

    Richard E. Tracy

    2011-01-01

    Full Text Available Cardiac myocytes are presumed to enlarge with left ventricular hypertrophy (LVH. This study correlates histologically measured myocytes with lean and fat body mass. Cases of LVH without coronary heart disease and normal controls came from forensic autopsies. The cross-sectional widths of myocytes in H&E-stained paraffin sections followed log normal distributions almost to perfection in all 104 specimens, with constant coefficient of variation across the full range of ventricular weight, as expected if myocytes of all sizes contribute proportionately to hypertrophy. Myocyte sizes increased with height. By regression analysis, height2.7 as a proxy for lean body mass and body mass index (BMI as a proxy for fat body mass, exerted equal effects in the multiple correlation with myocyte volume, and the equation rejected race and sex. In summary, myocyte sizes, as indexes of LVH, suggest that lean and fat body mass may contribute equally.

  4. The Role of PDH Inhibition in the Development of Hypertrophy in the Hyperthyroid Rat Heart: A Combined MRI and Hyperpolarized MRS Study

    Science.gov (United States)

    Atherton, Helen J.; Dodd, Michael S.; Heather, Lisa C.; Schroeder, Marie A.; Griffin, Julian L.; Radda, George K.; Clarke, Kieran; Tyler, Damian J.

    2015-01-01

    Background Hyperthyroidism increases heart rate, contractility and cardiac output, as well as metabolic rate. It is also accompanied by alterations in the regulation of cardiac substrate utilisation. Specifically, hyperthyroidism increases the ex vivo activity of pyruvate dehydrogenase kinase (PDK), thereby inhibiting glucose oxidation via pyruvate dehydrogenase (PDH). Cardiac hypertrophy is another effect of hyperthyroidism, with an increase in the abundance of mitochondria. Although the hypertrophy is initially beneficial, it can eventually lead to heart failure. The aim of this study was to use hyperpolarized magnetic resonance spectroscopy (MRS) to investigate the rate and regulation of in vivo pyruvate dehydrogenase (PDH) flux in the hyperthyroid heart, and to establish whether modulation of flux through PDH would alter cardiac hypertrophy. Methods & Results Hyperthyroidism was induced in 18 male Wistar rats with 7 daily intraperitoneal injections of freshly prepared triiodothyronine (T3; 0.2 mg/kg/day). In vivo PDH flux, assessed using hyperpolarized MRS, was reduced by 59% in hyperthyroid animals (0.0022 ± 0.0002 s−1 vs 0.0055 ± 0.0005 s−1, P = 0.0003) and this reduction was completely reversed by both acute and chronic delivery of the PDK inhibitor, dichloroacetic acid (DCA). Hyperpolarized [2-13C]pyruvate was also used to evaluate Krebs cycle metabolism and demonstrated a unique marker of anaplerosis, the level of which was significantly increased in the hyperthyroid heart. Cine MRI showed that chronic DCA treatment significantly reduced the hypertrophy observed in hyperthyroid animals (100 ± 20 mg vs 200 ± 30 mg; P = 0.04) despite no change to the increase observed in cardiac output. Conclusions This work has demonstrated that inhibition of glucose oxidation in the hyperthyroid heart in vivo is PDK mediated. Relieving this inhibition can increase the metabolic flexibility of the hyperthyroid heart and reduce the level of hypertrophy that develops

  5. Role of pyruvate dehydrogenase inhibition in the development of hypertrophy in the hyperthyroid rat heart: a combined magnetic resonance imaging and hyperpolarized magnetic resonance spectroscopy study.

    Science.gov (United States)

    Atherton, Helen J; Dodd, Michael S; Heather, Lisa C; Schroeder, Marie A; Griffin, Julian L; Radda, George K; Clarke, Kieran; Tyler, Damian J

    2011-06-07

    Hyperthyroidism increases heart rate, contractility, cardiac output, and metabolic rate. It is also accompanied by alterations in the regulation of cardiac substrate use. Specifically, hyperthyroidism increases the ex vivo activity of pyruvate dehydrogenase kinase, thereby inhibiting glucose oxidation via pyruvate dehydrogenase. Cardiac hypertrophy is another effect of hyperthyroidism, with an increase in the abundance of mitochondria. Although the hypertrophy is initially beneficial, it can eventually lead to heart failure. The aim of this study was to use hyperpolarized magnetic resonance spectroscopy to investigate the rate and regulation of in vivo pyruvate dehydrogenase flux in the hyperthyroid heart and to establish whether modulation of flux through pyruvate dehydrogenase would alter cardiac hypertrophy. Hyperthyroidism was induced in 18 male Wistar rats with 7 daily intraperitoneal injections of freshly prepared triiodothyronine (0.2 mg x kg(-1) x d(-1)). In vivo pyruvate dehydrogenase flux, assessed with hyperpolarized magnetic resonance spectroscopy, was reduced by 59% in hyperthyroid animals (0.0022 ± 0.0002 versus 0.0055 ± 0.0005 second(-1); P=0.0003), and this reduction was completely reversed by both short- and long-term delivery of dichloroacetic acid, a pyruvate dehydrogenase kinase inhibitor. Hyperpolarized [2-(13)C]pyruvate was also used to evaluate Krebs cycle metabolism and demonstrated a unique marker of anaplerosis, the level of which was significantly increased in the hyperthyroid heart. Cine magnetic resonance imaging showed that long-term dichloroacetic acid treatment significantly reduced the hypertrophy observed in hyperthyroid animals (100 ± 20 versus 200 ± 30 mg; P=0.04) despite no change in the increase observed in cardiac output. This work has demonstrated that inhibition of glucose oxidation in the hyperthyroid heart in vivo is mediated by pyruvate dehydrogenase kinase. Relieving this inhibition can increase the metabolic

  6. Calcineurin B homologous protein 3 negatively regulates cardiomyocyte hypertrophy via inhibition of glycogen synthase kinase 3 phosphorylation.

    Science.gov (United States)

    Kobayashi, Soushi; Nakamura, Tomoe Y; Wakabayashi, Shigeo

    2015-07-01

    Cardiac hypertrophy is a leading cause of serious heart diseases. Although many signaling molecules are involved in hypertrophy, the functions of some proteins in this process are still unknown. Calcineurin B homologous protein 3 (CHP3)/tescalcin is an EF-hand Ca(2+)-binding protein that is abundantly expressed in the heart; however, the function of CHP3 is unclear. Here, we aimed to identify the cardiac functions of CHP3. CHP3 was expressed in hearts at a wide range of developmental stages and was specifically detected in neonatal rat ventricular myocytes (NRVMs) but not in cardiac fibroblasts in culture. Moreover, knockdown of CHP3 expression using adenoviral-based RNA interference in NRVMs resulted in enlargement of cardiomyocyte size, concomitant with increased expression of a pathological hypertrophy marker ANP. This same treatment elevated glycogen synthase kinase (GSK3α/β) phosphorylation, which is known to inhibit GSK3 function. In contrast, CHP3 overexpression blocked the insulin-induced phosphorylation of GSK3α/β without affecting the phosphorylation of Akt, which is an upstream kinase of GSK3α/β, in HEK293 cells, and it inhibited both IGF-1-induced phosphorylation of GSK3β and cardiomyocyte hypertrophy in NRVMs. Co-immunoprecipitation experiments revealed that GSK3β interacted with CHP3. However, a Ca(2+)-binding-defective mutation of CHP3 (CHP3-D123A) also interacted with GSK3β and had the same inhibitory effect on GSK3α/β phosphorylation, suggesting that the action of CHP3 was independent of Ca(2+). These findings suggest that CHP3 functions as a novel negative regulator of cardiomyocyte hypertrophy via inhibition of GSK3α/β phosphorylation and subsequent enzymatic activation of GSK3α/β. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Isolated unilateral temporalis muscle hypertrophy in a child: a case report with literature review

    OpenAIRE

    Ranasinghe, Jagath C.; Wickramasinghe, Chandani; Rodrigo, Ganganath

    2018-01-01

    Background Temporalis muscle hypertrophy is a rare entity of masticatory muscle hypertrophy. All types of masticatory muscle hypertrophies have been documented of which temporalis muscle hypertrophy is one. Temporalis muscle hypertrophy is most commonly bilateral and usually associated with other types of masticatory muscles hypertrophy such as masseter or pterygoid hypertrophy. However, isolated unilateral temporalis muscle hypertrophy is extremely rare and only 9 cases have been reported to...

  8. Effect of Thymol on Serum Antioxidant Capacity of Rats Following Myocardial Hypertrophy

    Directory of Open Access Journals (Sweden)

    Mohabbat Jamhiri

    2017-07-01

    Full Text Available Abstract Background: Oxidative stress plays an important role in the pathogenesis of hypertension- induced cardiac hypertrophy. Plants are a rich source of antioxidant compounds. Thymol is a natural monoterpen phenol which is plentiful in some plants and shows many biological effects. The aim of the present study was to assess the effects of thymol on activity of antioxidant enzyme catalase, malondialdehyde (MDA level and the activity of the inhibition of free radical DPPH (2,2-Diphenyl-1-picryl-hydrazyl, following left ventricular hypertrophy in rats. Materials and Methods: In this experimental study, rats were divided into hypertrophied group without any treatment (H group and rats pretreated with 25 and 50 mg/kg/day of thymol (Thy25+H and Thy50+H groups, respectively. Intact animals were served as control (Ctl. Animal model of left ventricular hypertrophy was induced by abdominal aortic banding. Serum catalase (CAT activity, malondialdehyde (MDA level and the activity of inhibition of free radicals DPPH were determined by the biochemical methods. Results: In Thy25+H and Thy50+H groups, the CAT activity was increased significantly in serum (p<0.01, vs. Ctl. Also, serum level of MDA was decreased significantly compared to the group H in Thy25+H and Thy50+H groups (p<0.05 and p<0.001, respectively. The effect of inhibiting DPPH free radicals was increased significantly in Thy25+H and Thy50+H groups compared to the group H (p<0.001 and p<0.05, respectively. Conclusion: The findings of this study suggest that thymol as an antioxidant causes cardioprotective effects and as well as prevents left ventricular hypertrophy via augmentation of serum antioxidant capacity.

  9. Screening for Fabry Disease in Left Ventricular Hypertrophy: Documentation of a Novel Mutation

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Ana, E-mail: baptista-ana@hotmail.com; Magalhães, Pedro; Leão, Sílvia; Carvalho, Sofia; Mateus, Pedro; Moreira, Ilídio [Centro Hospitalar de Trás-os-Montes e Alto Douro, Unidade de Vila Real (Portugal)

    2015-08-15

    Fabry disease is a lysosomal storage disease caused by enzyme α-galactosidase A deficiency as a result of mutations in the GLA gene. Cardiac involvement is characterized by progressive left ventricular hypertrophy. To estimate the prevalence of Fabry disease in a population with left ventricular hypertrophy. The patients were assessed for the presence of left ventricular hypertrophy defined as a left ventricular mass index ≥ 96 g/m{sup 2} for women or ≥ 116 g/m{sup 2} for men. Severe aortic stenosis and arterial hypertension with mild left ventricular hypertrophy were exclusion criteria. All patients included were assessed for enzyme α-galactosidase A activity using dry spot testing. Genetic study was performed whenever the enzyme activity was decreased. A total of 47 patients with a mean left ventricular mass index of 141.1 g/m{sup 2} (± 28.5; 99.2 to 228.5 g/m{sup 2}] were included. Most of the patients were females (51.1%). Nine (19.1%) showed decreased α-galactosidase A activity, but only one positive genetic test − [GLA] c.785G>T; p.W262L (exon 5), a mutation not previously described in the literature. This clinical investigation was able to establish the association between the mutation and the clinical presentation. In a population of patients with left ventricular hypertrophy, we documented a Fabry disease prevalence of 2.1%. This novel case was defined in the sequence of a mutation of unknown meaning in the GLA gene with further pathogenicity study. Thus, this study permitted the definition of a novel causal mutation for Fabry disease - [GLA] c.785G>T; p.W262L (exon 5)

  10. Screening for Fabry Disease in Left Ventricular Hypertrophy: Documentation of a Novel Mutation

    International Nuclear Information System (INIS)

    Baptista, Ana; Magalhães, Pedro; Leão, Sílvia; Carvalho, Sofia; Mateus, Pedro; Moreira, Ilídio

    2015-01-01

    Fabry disease is a lysosomal storage disease caused by enzyme α-galactosidase A deficiency as a result of mutations in the GLA gene. Cardiac involvement is characterized by progressive left ventricular hypertrophy. To estimate the prevalence of Fabry disease in a population with left ventricular hypertrophy. The patients were assessed for the presence of left ventricular hypertrophy defined as a left ventricular mass index ≥ 96 g/m 2 for women or ≥ 116 g/m 2 for men. Severe aortic stenosis and arterial hypertension with mild left ventricular hypertrophy were exclusion criteria. All patients included were assessed for enzyme α-galactosidase A activity using dry spot testing. Genetic study was performed whenever the enzyme activity was decreased. A total of 47 patients with a mean left ventricular mass index of 141.1 g/m 2 (± 28.5; 99.2 to 228.5 g/m 2 ] were included. Most of the patients were females (51.1%). Nine (19.1%) showed decreased α-galactosidase A activity, but only one positive genetic test − [GLA] c.785G>T; p.W262L (exon 5), a mutation not previously described in the literature. This clinical investigation was able to establish the association between the mutation and the clinical presentation. In a population of patients with left ventricular hypertrophy, we documented a Fabry disease prevalence of 2.1%. This novel case was defined in the sequence of a mutation of unknown meaning in the GLA gene with further pathogenicity study. Thus, this study permitted the definition of a novel causal mutation for Fabry disease - [GLA] c.785G>T; p.W262L (exon 5)

  11. Screening for Fabry Disease in Left Ventricular Hypertrophy: Documentation of a Novel Mutation

    Directory of Open Access Journals (Sweden)

    Ana Baptista

    2015-01-01

    Full Text Available Abstract Background: Fabry disease is a lysosomal storage disease caused by enzyme α-galactosidase A deficiency as a result of mutations in the GLA gene. Cardiac involvement is characterized by progressive left ventricular hypertrophy. Objective: To estimate the prevalence of Fabry disease in a population with left ventricular hypertrophy. Methods: The patients were assessed for the presence of left ventricular hypertrophy defined as a left ventricular mass index ≥ 96 g/m2 for women or ≥ 116 g/m2 for men. Severe aortic stenosis and arterial hypertension with mild left ventricular hypertrophy were exclusion criteria. All patients included were assessed for enzyme α-galactosidase A activity using dry spot testing. Genetic study was performed whenever the enzyme activity was decreased. Results: A total of 47 patients with a mean left ventricular mass index of 141.1 g/m2 (± 28.5; 99.2 to 228.5 g/m2] were included. Most of the patients were females (51.1%. Nine (19.1% showed decreased α-galactosidase A activity, but only one positive genetic test − [GLA] c.785G>T; p.W262L (exon 5, a mutation not previously described in the literature. This clinical investigation was able to establish the association between the mutation and the clinical presentation. Conclusion: In a population of patients with left ventricular hypertrophy, we documented a Fabry disease prevalence of 2.1%. This novel case was defined in the sequence of a mutation of unknown meaning in the GLA gene with further pathogenicity study. Thus, this study permitted the definition of a novel causal mutation for Fabry disease - [GLA] c.785G>T; p.W262L (exon 5.

  12. Melatonin prevents fibrosis but not hypertrophy development in the left ventricle of NG-nitro-L-arginine-methyl ester hypertensive rats

    Czech Academy of Sciences Publication Activity Database

    Paulis, L.; Pecháňová, Olga; Zicha, Josef; Krajčírovičová, K.; Barta, A.; Pelouch, V.; Adamcová, M.; Šimko, F.

    2009-01-01

    Roč. 27, Suppl.6 (2009), S11-S16 ISSN 0263-6352 R&D Projects: GA ČR(CZ) GA305/08/0139 Institutional research plan: CEZ:AV0Z50110509 Keywords : hypertension * cardiac hypertrophy * collagen Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 4.988, year: 2009

  13. Benazepril inhibited the NF-κB and TGF-β networking on LV hypertrophy in rats.

    Science.gov (United States)

    Yan, Shi-Hai; Zhao, Ning-Wei; Zhu, Xuan-Xuan; Wang, Qiong; Wang, Hai-Dan; Fu, Rui; Sun, Yuan; Li, Qi-Yi

    2013-05-01

    Benazepril, an angiotensin-converting enzyme (ACE) inhibitor, has been used to treat hypertension, congestive heart failure, and chronic renal failure. However, its biological activity and mechanism of action in inflammation are not fully identified. The present study was designed to determine the in vivo anti-inflammatory effects of benazepril on LV hypertrophy in rats. LV hypertrophy was produced in rats by abdominal aortic coarctation. They were then divided into the following groups: sham operation; LV hypertrophy; LV hypertrophy+benazepril (1mg/kg in a gavage, once a day for 4 weeks). Both morphological assays (hemodynamic and hemorheological measurement; LV hypertrophy assessment), and molecular assays (protein levels of Collagen type I/III, TNF-α and VCAM-1; TGF-β gene expression; NF-κB or Smad activation; intracellular ROS production) were performed. The following effects were observed in rats treated with benazepril: (1) marked improvements in hemodynamic and hemorheological parameters; (2) significant reductions in LV hypertrophy, dilatation and fibrosis; (3) significantly attenuated protein levels of Collagen type I/III, TGF-β, TNF-α and VCAM-1, NF-κB or Smad activation, as well as intracellular ROS production. These results suggest that the anti-inflammatory properties of benazepril may be ascribed to their down-regulation of both NF-κB and TGF-β signaling pathways by acting on the intracellular ROS production in rats with LV hypertrophy, thus supporting the use of benazepril as an anti-inflammatory agent. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Cardiac-specific overexpression of aldehyde dehydrogenase 2 exacerbates cardiac remodeling in response to pressure overload

    Directory of Open Access Journals (Sweden)

    Sujith Dassanayaka

    2018-07-01

    Full Text Available Pathological cardiac remodeling during heart failure is associated with higher levels of lipid peroxidation products and lower abundance of several aldehyde detoxification enzymes, including aldehyde dehydrogenase 2 (ALDH2. An emerging idea that could explain these findings concerns the role of electrophilic species in redox signaling, which may be important for adaptive responses to stress or injury. The purpose of this study was to determine whether genetically increasing ALDH2 activity affects pressure overload-induced cardiac dysfunction. Mice subjected to transverse aortic constriction (TAC for 12 weeks developed myocardial hypertrophy and cardiac dysfunction, which were associated with diminished ALDH2 expression and activity. Cardiac-specific expression of the human ALDH2 gene in mice augmented myocardial ALDH2 activity but did not improve cardiac function in response to pressure overload. After 12 weeks of TAC, ALDH2 transgenic mice had larger hearts than their wild-type littermates and lower capillary density. These findings show that overexpression of ALDH2 augments the hypertrophic response to pressure overload and imply that downregulation of ALDH2 may be an adaptive response to certain forms of cardiac pathology. Keywords: Heart failure, Hypertrophy, Oxidative stress, Aldehydes, Cardiac remodeling, Hormesis

  15. [A girl with congenital hemifacial hypertrophy

    NARCIS (Netherlands)

    Broeke, S.M. van den; Wolvius, E.B.; Adrichem, L.N. van; Baat, C. de

    2006-01-01

    A girl with congenital hemifacial hypertrophy had been observed and treated by a multidisciplinary team for craniofacial disorders in an academic medical centre since birth. At the age of 8 she was treated on account of considerable facial asymmetry and multiple intraoral problems. The two-step

  16. Left ventricular hypertrophy : virtuous intentions, malign consequences

    NARCIS (Netherlands)

    Pokharel, S; Sharma, UC; Pinto, YM

    Left ventricular hypertrophy (LVH) is currently the focus of intense cardiovascular research, with the resultant rapid evolution of novel concepts relating to its exceedingly complex pathophysiology. In addition to the alterations in signal transduction and disturbances in Ca2+ homeostasis, there

  17. Left ventricular hypertrophy: virtuous intentions, malign consequences

    NARCIS (Netherlands)

    Pokharel, Saraswati; Sharma, Umesh C.; Pinto, Yigal M.

    2003-01-01

    Left ventricular hypertrophy (LVH) is currently the focus of intense cardiovascular research, with the resultant rapid evolution of novel concepts relating to its exceedingly complex pathophysiology. In addition to the alterations in signal transduction and disturbances in Ca(2+) homeostasis, there

  18. Hypertension and cardiac arrhythmias

    DEFF Research Database (Denmark)

    Lip, Gregory Y.H.; Coca, Antonio; Kahan, Thomas

    2017-01-01

    Hypertension is a common cardiovascular risk factor leading to heart failure (HF), coronary artery disease, stroke, peripheral artery disease and chronic renal insufficiency. Hypertensive heart disease can manifest as many cardiac arrhythmias, most commonly being atrial fibrillation (AF). Both...... supraventricular and ventricular arrhythmias may occur in hypertensive patients, especially in those with left ventricular hypertrophy (LVH) or HF. Also, some of the antihypertensive drugs commonly used to reduce blood pressure, such as thiazide diuretics, may result in electrolyte abnormalities (e.g. hypokalaemia......, hypomagnesemia), further contributing to arrhythmias, whereas effective control of blood pressure may prevent the development of the arrhythmias such as AF. In recognizing this close relationship between hypertension and arrhythmias, the European Heart Rhythm Association (EHRA) and the European Society...

  19. The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, Juan Pablo; Collao, Andres; Chiong, Mario; Maldonado, Carola; Adasme, Tatiana; Carrasco, Loreto; Ocaranza, Paula; Bravo, Roberto; Gonzalez, Leticia; Diaz-Araya, Guillermo [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Facultad de Ciencias Quimicas y Farmaceuticas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Hidalgo, Cecilia [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Lavandero, Sergio, E-mail: slavander@uchile.cl [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Facultad de Ciencias Quimicas y Farmaceuticas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile)

    2009-10-09

    Myocyte enhancer factor 2C (MEF2C) plays an important role in cardiovascular development and is a key transcription factor for cardiac hypertrophy. Here, we describe MEF2C regulation by insulin-like growth factor-1 (IGF-1) and its role in IGF-1-induced cardiac hypertrophy. We found that IGF-1 addition to cultured rat cardiomyocytes activated MEF2C, as evidenced by its increased nuclear localization and DNA binding activity. IGF-1 stimulated MEF2 dependent-gene transcription in a time-dependent manner, as indicated by increased MEF2 promoter-driven reporter gene activity; IGF-1 also induced p38-MAPK phosphorylation, while an inhibitor of p38-MAPK decreased both effects. Additionally, inhibitors of phosphatidylinositol 3-kinase and calcineurin prevented IGF-1-induced MEF2 transcriptional activity. Via MEF2C-dependent signaling, IGF-1 also stimulated transcription of atrial natriuretic factor and skeletal {alpha}-actin but not of fos-lux reporter genes. These novel data suggest that MEF2C activation by IGF-1 mediates the pro-hypertrophic effects of IGF-1 on cardiac gene expression.

  20. The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling

    International Nuclear Information System (INIS)

    Munoz, Juan Pablo; Collao, Andres; Chiong, Mario; Maldonado, Carola; Adasme, Tatiana; Carrasco, Loreto; Ocaranza, Paula; Bravo, Roberto; Gonzalez, Leticia; Diaz-Araya, Guillermo; Hidalgo, Cecilia; Lavandero, Sergio

    2009-01-01

    Myocyte enhancer factor 2C (MEF2C) plays an important role in cardiovascular development and is a key transcription factor for cardiac hypertrophy. Here, we describe MEF2C regulation by insulin-like growth factor-1 (IGF-1) and its role in IGF-1-induced cardiac hypertrophy. We found that IGF-1 addition to cultured rat cardiomyocytes activated MEF2C, as evidenced by its increased nuclear localization and DNA binding activity. IGF-1 stimulated MEF2 dependent-gene transcription in a time-dependent manner, as indicated by increased MEF2 promoter-driven reporter gene activity; IGF-1 also induced p38-MAPK phosphorylation, while an inhibitor of p38-MAPK decreased both effects. Additionally, inhibitors of phosphatidylinositol 3-kinase and calcineurin prevented IGF-1-induced MEF2 transcriptional activity. Via MEF2C-dependent signaling, IGF-1 also stimulated transcription of atrial natriuretic factor and skeletal α-actin but not of fos-lux reporter genes. These novel data suggest that MEF2C activation by IGF-1 mediates the pro-hypertrophic effects of IGF-1 on cardiac gene expression.

  1. Decreasing Compensatory Ability of Concentric Ventricular Hypertrophy in Aortic-Banded Rat Hearts

    Directory of Open Access Journals (Sweden)

    Alexandre Lewalle

    2018-02-01

    Full Text Available The cardiac system compensates for variations in physiological and pathophysiological conditions through a dynamic remodeling at the organ, tissue, and intracellular levels in order to maintain function. However, on longer time scales following the onset of ventricular pressure overload, such remodeling may begin to inhibit physiological function and ultimately lead to heart failure. This progression from compensatory to decompensatory behavior is poorly understood, in particular owing to the absence of a unified perspective of the concomitantly remodeling subsystems. To address this issue, the present study investigates the evolution of compensatory mechanisms, in response to overload, by integrating diffusion-tensor MRI, echocardiography, and intracellular and hemodynamic measurements within consistent computational simulations of aortic-banded rat hearts. This approach allows a comparison of the relative leverage of different cardiac properties (geometry, passive mechanical stiffness, fiber configuration, diastolic and peak calcium concentrations, calcium-binding affinity, and aortic impedance to affect cardiac contraction. Measurements indicate that, following aortic banding, an ejection fraction (EF of 75% was maintained, relative to control rats, despite significant remodeling of the left-ventricular wall thickness (increasing by ~90% over 4 weeks. Applying our framework, we identified the left-ventricular wall thickness (concentric hypertrophy and the intracellular calcium dynamics as playing the dominant roles in preserving EF acutely, whereas the significance of hypertrophy decreased subsequently. This trend suggests an increasing reliance on intracellular mechanisms (average increase ~50%, rather than on anatomical features (average decrease ~60%, to achieve compensation of pump function in the early phase of heart failure.

  2. Treatment with Docosahexaenoic Acid, but Not Eicosapentaenoic Acid, Delays Ca2+-Induced Mitochondria Permeability Transition in Normal and Hypertrophied Myocardium

    OpenAIRE

    Khairallah, Ramzi J.; O'Shea, Karen M.; Brown, Bethany H.; Khanna, Nishanth; Des Rosiers, Christine; Stanley, William C.

    2010-01-01

    Intake of fish oil containing docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) prevents heart failure; however, the mechanisms are unclear. Mitochondrial permeability transition pore (MPTP) opening contributes to myocardial pathology in cardiac hypertrophy and heart failure, and treatment with DHA + EPA delays MPTP opening. Here, we assessed: 1) whether supplementation with both DHA and EPA is needed for optimal prevention of MPTP opening, and 2) whether this benefit occurs in hyper...

  3. Triptolide attenuates pressure overload-induced myocardial remodeling in mice via the inhibition of NLRP3 inflammasome expression

    International Nuclear Information System (INIS)

    Li, Rujun; Lu, Kuiying; Wang, Yao; Chen, Mingxing; Zhang, Fengyu; Shen, Hui; Yao, Deshan; Gong, Kaizheng; Zhang, Zhengang

    2017-01-01

    Triptolide is the predominant active component of the Chinese herb Tripterygium wilfordii Hook F (TwHF) that has been widely used to treat several chronic inflammatory diseases due to its immunosuppressive, anti-inflammatory, and anti-proliferative properties. In the present study, we elucidated the cardioprotective effects of triptolide against cardiac dysfunction and myocardial remodeling in chronic pressure-overloaded hearts. Furthermore, the potential mechanisms of triptolide were investigated. For this purpose, C57/BL6 mice were anesthetized and subjected to transverse aortic constriction (TAC) or sham operation. Six weeks after the operation, all mice were randomly divided into 4 groups: sham-operated with vehicle group, TAC with vehicle group, and TAC with triptolide (20 or 100 μg/kg/day intraperitoneal injection) groups. Our data showed that the levels of NLRP3 inflammasome were significantly increased in the TAC group and were associated with increased inflammatory mediators and profibrotic factor production, resulting in myocardial fibrosis, cardiomyocyte hypertrophy, and impaired cardiac function. Triptolide treatment attenuated TAC-induced myocardial remodeling, improved cardiac diastolic and systolic function, inhibited the NLRP3 inflammasome and downstream inflammatory mediators (IL-1β, IL-18, MCP-1, VCAM-1), activated the profibrotic TGF-β1 pathway, and suppressed macrophage infiltration in a dose-dependent manner. Our study demonstrated that the protective effect of triptolide against pressure overload in the heart may act by inhibiting the NLRP3 inflammasome-induced inflammatory response and activating the profibrotic pathway. - Highlights: • Chronic pressure overload increases expression of NLRP3 inflammasome in the heart. • Triptolide attenuates chronic pressure overload-induced myocardial remodeling. • The mechanism appears to involve inhibition of NLRP3 inflammasome expression. • Triptolide is a therapeutic candidate for

  4. Long-term treatment with nebivolol improves arterial reactivity and reduces ventricular hypertrophy in spontaneously hypertensive rats.

    Science.gov (United States)

    Guerrero, Estela; Voces, Felipe; Ardanaz, Noelia; Montero, María José; Arévalo, Miguel; Sevilla, María Angeles

    2003-09-01

    The aim of this study was to assess the effects of long-term nebivolol therapy on high blood pressure, impaired endothelial function in aorta, and damage observed in heart and conductance arteries in spontaneously hypertensive rats (SHR). For this purpose, SHR were treated for 9 weeks with nebivolol (8 mg/kg per day). Untreated SHR and Wistar Kyoto rats were used as hypertensive and normotensive controls, respectively. The left ventricle/body weight ratio was used as an index of cardiac hypertrophy, and to evaluate vascular function, responses induced by potassium chloride, noradrenaline, acetylcholine, and sodium nitroprusside were tested on aortic rings. Aortic morphometry and fibrosis were determined in parallel by a quantitative technique. Systolic blood pressure, measured by the tail-cuff method, was lower in treated SHR than in the untreated group (194 +/- 3 versus 150 +/- 4 mm Hg). The cardiac hypertrophy index was significantly reduced by the treatment. In aortic rings, treatment with nebivolol significantly reduced the maximal response to both KCl and NA in SHR. In vessels precontracted with phenylephrine relaxant, activity due to acetylcholine was higher in normotensive rats than in SHR and the treatment significantly improved this response. The effect of sodium nitroprusside on aortic rings was similar in all groups. Medial thickness and collagen content were significantly reduced in comparison with SHR. In conclusion, the chronic antihypertensive effect of nebivolol in SHR was accompanied by an improvement in vascular structure and function and in the cardiac hypertrophy index.

  5. HSF1 phosphorylation by ERK/GSK3 suppresses RNF126 to sustain IGF-IIR expression for hypertension-induced cardiomyocyte hypertrophy.

    Science.gov (United States)

    Huang, Chih-Yang; Lee, Fa-Lun; Peng, Shu-Fen; Lin, Kuan-Ho; Chen, Ray-Jade; Ho, Tsung-Jung; Tsai, Fu-Jen; Padma, Vijaya V; Kuo, Wei-Wen; Huang, Chih-Yang

    2018-02-01

    Hypertension-induced cardiac hypertrophy and apoptosis are major characteristics of early-stage heart failure (HF). Inhibition of extracellular signal-regulated kinases (ERK) efficaciously suppressed angiotensin II (ANG II)-induced cardiomyocyte hypertrophy and apoptosis by blocking insulin-like growth factor II receptor (IGF-IIR) signaling. However, the detailed mechanism by which ANG II induces ERK-mediated IGF-IIR signaling remains elusive. Here, we found that ANG II activated ERK to upregulate IGF-IIR expression via the angiotensin II type I receptor (AT 1 R). ERK activation subsequently phosphorylates HSF1 at serine 307, leading to a secondary phosphorylation by glycogen synthase kinase III (GSK3) at serine 303. Moreover, we found that ANG II mediated ERK/GSK3-induced IGF-IIR protein stability by downregulating the E3 ubiquitin ligase of IGF-IIR RING finger protein CXXVI (RNF126). The expression of RNF126 decreased following ANG II-induced HSF1 S303 phosphorylation, resulting in IGF-IIR protein stability and increased cardiomyocyte injury. Inhibition of GSK3 significantly alleviated ANG II-induced cardiac hypertrophy in vivo and in vitro. Taken together, these results suggest that HSF1 phosphorylation stabilizes IGF-IIR protein stability by downregulating RNF126 during cardiac hypertrophy. ANG II activates ERK/GSK3 to phosphorylate HSF1, resulting in RNF126 degradation, which stabilizes IGF-IIR protein expression and eventually results in cardiac hypertrophy. HSF1 could be a valuable therapeutic target for cardiac diseases among hypertensive patients. © 2017 Wiley Periodicals, Inc.

  6. [Role of cardiac magnetic resonance in cardiac involvement of Fabry disease].

    Science.gov (United States)

    Serra, Viviana M; Barba, Miguel Angel; Torrá, Roser; Pérez De Isla, Leopoldo; López, Mónica; Calli, Andrea; Feltes, Gisela; Torras, Joan; Valverde, Victor; Zamorano, José L

    2010-09-04

    Fabry disease is a hereditary disorder. Clinical manifestations are multisystemic. The majority of the patients remain undiagnosed until late in life, when alterations could be irreversible. Early detection of cardiac symptoms is of major interest in Fabry's disease (FD) in order to gain access to enzyme replacement therapy. Echo-Doppler tissular imaging (TDI) has been used as a cardiologic early marker in FD. This study is intended to determine whether the cardiac magnetic resonance is as useful tool as TDI for the early detection of cardiac affectation in FD. Echocardiography, tissue Doppler and Cardio magnetic resonance was performed in 20 patients with confirmed Fabry Disease. Left ventricular hypertrophy was defined as septum and left ventricular posterior wall thickness ≥12 mm. An abnormal TDI velocity was defined as (Sa), (Ea) and/or (Aa) velocities gadolinium-enhanced images sequences were obtained using magnetic resonance. Twenty patients included in the study were divided into three groups: 1. Those without left ventricular hypertrophy nor tissue Doppler impairment 2. Those without left ventricular hypertrophy and tissue Doppler impairment 3. Those with left ventricular hypertrophy and Tissue Doppler impairment. Late gadolinium enhancement was found in only one patient, who has already altered DTI and LVH. Tissue Doppler imaging (TDI) is the only diagnostic tool able to provide early detection of cardiac affectation in patients with FD. Magnetic resonance provides information of the disease severity in patients with LVH, but can not be used as an early marker of cardiac disease in patients with FD. However MRI could be of great value for diagnostic stratification. Copyright © 2009 Elsevier España, S.L. All rights reserved.

  7. The soluble guanylyl cyclase activator bay 58-2667 selectively limits cardiomyocyte hypertrophy.

    Directory of Open Access Journals (Sweden)

    Jennifer C Irvine

    Full Text Available Although evidence now suggests cGMP is a negative regulator of cardiac hypertrophy, the direct consequences of the soluble guanylyl cyclase (sGC activator BAY 58-2667 on cardiac remodeling, independent of changes in hemodynamic load, has not been investigated. In the present study, we tested the hypothesis that the NO(•-independent sGC activator BAY 58-2667 inhibits cardiomyocyte hypertrophy in vitro. Concomitant impact of BAY 58-2667 on cardiac fibroblast proliferation, and insights into potential mechanisms of action, were also sought. Results were compared to the sGC stimulator BAY 41-2272.Neonatal rat cardiomyocytes were incubated with endothelin-1 (ET(1, 60nmol/L in the presence and absence of BAY 41-2272 and BAY 58-2667 (0.01-0.3 µmol/L. Hypertrophic responses and its triggers, as well as cGMP signaling, were determined. The impact of both sGC ligands on basal and stimulated cardiac fibroblast proliferation in vitro was also determined.We now demonstrate that BAY 58-2667 (0.01-0.3 µmol/L elicited concentration-dependent antihypertrophic actions, inhibiting ET(1-mediated increases in cardiomyocyte 2D area and de novo protein synthesis, as well as suppressing ET(1-induced cardiomyocyte superoxide generation. This was accompanied by potent increases in cardiomyocyte cGMP accumulation and activity of its downstream signal, vasodilator-stimulated phosphoprotein (VASP, without elevating cardiomyocyte cAMP. In contrast, submicromolar concentrations of BAY 58-2667 had no effect on basal or stimulated cardiac fibroblast proliferation. Indeed, only at concentrations ≥10 µmol/L was inhibition of cardiac fibrosis seen in vitro. The effects of BAY 58-2667 in both cell types were mimicked by BAY 41-2272.Our results demonstrate that BAY 58-2667 elicits protective, cardiomyocyte-selective effects in vitro. These actions are associated with sGC activation and are evident in the absence of confounding hemodynamic factors, at low (submicromolar

  8. Autonomic cardiac innervation

    Science.gov (United States)

    Hasan, Wohaib

    2013-01-01

    function, including in possible neurotransmitter changes. Certainly, neurotrophins and cytokines regulate transcriptional factors in adult autonomic neurons that have vital differentiation roles in development. Particularly for parasympathetic cardiac ganglion neurons, additional examinations of developmental regulatory mechanisms will potentially aid in understanding attenuated parasympathetic function in a number of conditions, including heart failure. PMID:23872607

  9. The cardioprotective efficacy of TVP1022 against ischemia/reperfusion injury and cardiac remodeling in rats.

    Science.gov (United States)

    Malka, Assaf; Ertracht, Offir; Bachner-Hinenzon, Noa; Reiter, Irina; Binah, Ofer

    2016-12-01

    Following acute myocardial infarction (MI), early and successful reperfusion is the most effective strategy for reducing infarct size and improving the clinical outcome. However, immediate restoration of blood flow to the ischemic zone results in myocardial damage, defined as "reperfusion-injury". Whereas we previously reported that TVP1022 (the S-isomer of rasagiline, FDA-approved anti-Parkinson drug) decreased infarct size 24 h post ischemia reperfusion (I/R) in rats, in this study we investigated the chronic cardioprotective efficacy of TVP1022 14 days post-I/R. To simulate the clinical settings of acute MI followed by reperfusion therapy, we employed a rat model of left anterior descending artery occlusion for 30 min followed by reperfusion and a follow-up for 14 days. TVP1022 was initially administered postocclusion-prereperfusion, followed by chronic daily administrations. Cardiac performance and remodeling were evaluated using customary and advanced echocardiographic methods, hemodynamic measurements by Millar Mikro-Tip ® catheter, and histopathological techniques. TVP1022 administration markedly decreased the remodeling process as illustrated by attenuation of left ventricular enlargement and cardiac hypertrophy (both at the whole heart and the cellular level). Furthermore, TVP1022 inhibited cardiac fibrosis and reduced ventricular BNP levels. Functionally, TVP1022 treatment preserved cardiac wall motion. Specifically, the echocardiographic and most of the direct hemodynamic measures were pronouncedly improved by TVP1022. Collectively, these findings indicate that TVP1022 provides prominent cardioprotection against I/R injury and post-MI remodeling in this I/R model.

  10. Neuregulin-1/erbB-activation improves cardiac function and survival in models of ischemic, dilated, and viral cardiomyopathy.

    Science.gov (United States)

    Liu, Xifu; Gu, Xinhua; Li, Zhaoming; Li, Xinyan; Li, Hui; Chang, Jianjie; Chen, Ping; Jin, Jing; Xi, Bing; Chen, Denghong; Lai, Donna; Graham, Robert M; Zhou, Mingdong

    2006-10-03

    We evaluated the therapeutic potential of a recombinant 61-residue neuregulin-1 (beta2a isoform) receptor-active peptide (rhNRG-1) in multiple animal models of heart disease. Activation of the erbB family of receptor tyrosine kinases by rhNRG-1 could provide a treatment option for heart failure, because neuregulin-stimulated erbB2/erbB4 heterodimerization is not only critical for myocardium formation in early heart development but prevents severe dysfunction of the adult heart and premature death. Disabled erbB-signaling is also implicated in the transition from compensatory hypertrophy to failure, whereas erbB receptor-activation promotes myocardial cell growth and survival and protects against anthracycline-induced cardiomyopathy. rhNRG-1 was administered IV to animal models of ischemic, dilated, and viral cardiomyopathy, and cardiac function and survival were evaluated. Short-term intravenous administration of rhNRG-1 to normal dogs and rats did not alter hemodynamics or cardiac contractility. In contrast, rhNRG-1 improved cardiac performance, attenuated pathological changes, and prolonged survival in rodent models of ischemic, dilated, and viral cardiomyopathy, with the survival benefits in the ischemic model being additive to those of angiotensin-converting enzyme inhibitor therapy. In addition, despite continued pacing, rhNRG-1 produced global improvements in cardiac function in a canine model of pacing-induced heart failure. These beneficial effects make rhNRG-1 promising as a broad-spectrum therapeutic for the treatment of heart failure due to a variety of common cardiac diseases.

  11. Left ventricular hypertrophy: virtuous intentions, malign consequences.

    Science.gov (United States)

    Pokharel, Saraswati; Sharma, Umesh C; Pinto, Yigal M

    2003-06-01

    Left ventricular hypertrophy (LVH) is currently the focus of intense cardiovascular research, with the resultant rapid evolution of novel concepts relating to its exceedingly complex pathophysiology. In addition to the alterations in signal transduction and disturbances in Ca(2+) homeostasis, there are structural changes in myofilaments, disorganization of the cytoskeletal framework and increased collagen synthesis. LVH is associated with progressive left ventricular remodeling that culminates to heart failure. The modern treatment of left ventricular hypertrophy is now largely based on the hypothesis that neuroendocrine activation is important in the progression of the disease and inhibition of neurohormones is likely to have long-term benefit with regard to morbidity and mortality. Drugs specifically designed to unload the left ventricle, such as diuretics and vasodilators, appears to be less effective in reducing LV mass and improving prognosis. Thus, the evolution of treatment for LVH itself has provided much enlightenment for our understanding of the fundamental biology of the disorder.

  12. Gallic acid attenuates pulmonary fibrosis in a mouse model of transverse aortic contraction-induced heart failure.

    Science.gov (United States)

    Jin, Li; Piao, Zhe Hao; Sun, Simei; Liu, Bin; Ryu, Yuhee; Choi, Sin Young; Kim, Gwi Ran; Kim, Hyung-Seok; Kee, Hae Jin; Jeong, Myung Ho

    2017-12-01

    Gallic acid, a trihydroxybenzoic acid found in tea and other plants, attenuates cardiac hypertrophy, fibrosis, and hypertension in animal models. However, the role of gallic acid in heart failure remains unknown. In this study, we show that gallic acid administration prevents heart failure-induced pulmonary fibrosis. Heart failure induced in mice, 8weeks after transverse aortic constriction (TAC) surgery, was confirmed by echocardiography. Treatment for 2weeks with gallic acid but not furosemide prevented cardiac dysfunction in mice. Gallic acid significantly inhibited TAC-induced pathological changes in the lungs, such as increased lung mass, pulmonary fibrosis, and damaged alveolar morphology. It also decreased the expression of fibrosis-related genes, including collagen types I and III, fibronectin, connective tissue growth factor (CTGF), and phosphorylated Smad3. Further, it inhibited the expression of epithelial-mesenchymal transition (EMT)-related genes, such as N-cadherin, vimentin, E-cadherin, SNAI1, and TWIST1. We suggest that gallic acid has therapeutic potential for the treatment of heart failure-induced pulmonary fibrosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Cardiac rehabilitation

    Science.gov (United States)

    ... rehab; Heart failure - cardiac rehab References Anderson L, Taylor RS. Cardiac rehabilitation for people with heart disease: ... of Medicine, Division of Cardiology, Harborview Medical Center, University of Washington Medical School, Seattle, WA. Also reviewed ...

  14. Left Ventricular Hypertrophy in Pediatric Hypertension: A Mini Review

    Directory of Open Access Journals (Sweden)

    Robert P. Woroniecki

    2017-05-01

    Full Text Available Adults with arterial hypertension (HTN have stroke, myocardial infarction, end-stage renal disease (ESRD, or die at higher rates than those without. In children, HTN leads to target organ damage, which includes kidney, brain, eye, blood vessels, and heart, which precedes “hard outcomes” observed in adults. Left ventricular hypertrophy (LVH or an anatomic and pathologic increase in left ventricular mass (LVM in response to the HTN is a pediatric surrogate marker for HTN-induced morbidity and mortality in adults. This mini review discusses current definitions, clinically relevant methods of LVM measurements and normalization methods, its epidemiology, management, and issue of reversibility in children with HTN. Pediatric definition of LVH and abnormal LVM is not uniformed. With multiple definitions, prevalence of pediatric HTN-induced LVH is difficult to ascertain. In addition while in adults cardiac magnetic resonance imaging is considered “the gold standard” for LVM and LVH determination, pediatric data are limited to “special populations”: ESRD, transplant, and obese children. We summarize available data on pediatric LVH treatment and reversibility and offer future directions in addressing LVH in children with HTN.

  15. Non-gated computed tomography of left ventricular hypertrophy

    International Nuclear Information System (INIS)

    Harada, Junta

    1983-01-01

    Non-ECG gated computed tomography (CT) of the heart was carried out in 19 cases with cardiovascular diseases; 4 with mitral stenosis, 3 with aortic valve disease, 2 with combined valve disease, 8 with hypertrophic cardiomyopathy and one myocardial infarction and one aortic aneurysm. All cardiac diseases were studied by echocardiography and 13 of them further investigated by intracadiac catheterization. The interventricular septum and the apical and posterolateral wall of the left ventricle were segmentally evaluated as to relative wall thickness of myocardium on CT. The wall thickness was directly measured on left ventricular cine angiograms in 13 cases. O-G vector calculated by CT was compatible with the palne of vectorcardiography in evaluating left ventricular hypertorphy. Conclusion were as follows: 1) The degree and site of myocardial hypertrophy were detected by CT with satisfaction. 2) The area of ventricular myocardium increased in aortic valve disease and hypertrophic cardiomyopathy. 3) The direction and magnitude of O-G vector calculated by CT were well correlated to the half area of QRS loop in horizontal plane of vectorcardiography. (author)

  16. Relationship between obesity and left ventricular hypertrophy in children

    Directory of Open Access Journals (Sweden)

    Johnny Rompis

    2016-10-01

    Full Text Available Background Obesity is a chronic metabolic disorder associated with cardiovascular disease (CVD increasing morbidity-mortality rates. It is apparent that a variety of adaptations/alterations in cardiac structure and function occurs as excessive adipose tissue accumulates. This leads to a decrease in diastolic compliance, eventually resulting in an increase in left ventricular filling pressure and left ventricular enlargement. Objective To evaluate left ventricular hypertrophy (LVH among  obese using electrocardiographic (ECG criteria. Methods A cross-sectional study was conducted on 74 children aged 10-15 years from February 2009 to October 2009. The subjects were divided into obese and control groups. Physical examination and standard 12 lead electrocardiography (ECG were done in both groups. Results Of 37 obese children, LVH were featured in 3 subjects, while in control group, only 1 child had LVH (P= 0.304. We found that mean RV6 in obese and control group were 9.8446 (SD 3.5854 and 11.9662 (SD 3.2857, respectively (P=0.005. As an additional findings, we found that birth weight was related to obesity in children. Conclusion There is no relation between obesity and left ventricular using ECG criteria in obese children aged 10-15 years.

  17. Breast Hypertrophy, Reduction Mammaplasty, and Body Image.

    Science.gov (United States)

    Fonseca, Cristiane Costa; Veiga, Daniela Francescato; Garcia, Edgard da Silva; Cabral, Isaías Vieira; de Carvalho, Monique Maçais; de Brito, Maria José Azevedo; Ferreira, Lydia Masako

    2018-02-07

    Body image dissatisfaction is one of the major factors that motivate patients to undergo plastic surgery. However, few studies have associated body satisfaction with reduction mammaplasty. The aim of this study was to evaluate the impact of breast hypertrophy and reduction mammaplasty on body image. Breast hypertrophy patients, with reduction mammaplasty already scheduled between June 2013 and December 2015 (mammaplasty group, MG), were prospectively evaluated through the body dysmorphic disorder examination (BDDE), body investment scale (BIS), and breast evaluation questionnaire (BEQ55) tools. Women with normal-sized breasts were also evaluated as study controls (normal-sized breast group, NSBG). All the participants were interviewed at the initial assessment and after six months. Data were analyzed before and after six months. Each group consisted of 103 women. The MG group had a significant improvement in BDDE, BIS, and BEQ55 scores six months postoperatively (P ≤ 0.001 for the three instruments), whereas the NSBG group showed no alteration in results over time (P = 0.876; P = 0.442; and P = 0.184, respectively). In the intergroup comparison it was observed that the MG group began to invest more in the body, similarly to the NSBG group, and surpassed the level of satisfaction and body image that the women of the NSBG group had after the surgery. Reduction mammaplasty promoted improvement in body image of women with breast hypertrophy. © 2018 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com

  18. Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy

    Science.gov (United States)

    Fry, Christopher S.; Lee, Jonah D.; Jackson, Janna R.; Kirby, Tyler J.; Stasko, Shawn A.; Liu, Honglu; Dupont-Versteegden, Esther E.; McCarthy, John J.; Peterson, Charlotte A.

    2014-01-01

    Our aim in the current study was to determine the necessity of satellite cells for long-term muscle growth and maintenance. We utilized a transgenic Pax7-DTA mouse model, allowing for the conditional depletion of > 90% of satellite cells with tamoxifen treatment. Synergist ablation surgery, where removal of synergist muscles places functional overload on the plantaris, was used to stimulate robust hypertrophy. Following 8 wk of overload, satellite cell-depleted muscle demonstrated an accumulation of extracellular matrix (ECM) and fibroblast expansion that resulted in reduced specific force of the plantaris. Although the early growth response was normal, an attenuation of hypertrophy measured by both muscle wet weight and fiber cross-sectional area occurred in satellite cell-depleted muscle. Isolated primary myogenic progenitor cells (MPCs) negatively regulated fibroblast ECM mRNA expression in vitro, suggesting a novel role for activated satellite cells/MPCs in muscle adaptation. These results provide evidence that satellite cells regulate the muscle environment during growth.—Fry, C. S., Lee, J. D., Jackson, J. R., Kirby, T. J., Stasko, S. A., Liu, H., Dupont-Versteegden, E. E., McCarthy, J. J., Peterson, C. A. Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy. PMID:24376025

  19. Cardiac overexpression of Mammalian enabled (Mena) exacerbates heart failure in mice.

    Science.gov (United States)

    Belmonte, Stephen L; Ram, Rashmi; Mickelsen, Deanne M; Gertler, Frank B; Blaxall, Burns C

    2013-09-15

    Mammalian enabled (Mena) is a key regulator of cytoskeletal actin dynamics, which has been implicated in heart failure (HF). We have previously demonstrated that cardiac Mena deletion produced cardiac dysfunction with conduction abnormalities and hypertrophy. Moreover, elevated Mena expression correlates with HF in human and animal models, yet the precise role of Mena in cardiac pathophysiology is unclear. In these studies, we evaluated mice with cardiac myocyte-specific Mena overexpression (TTA/TgTetMena) comparable to that observed in cardiac pathology. We found that the hearts of TTA/TgTetMena mice were functionally and morphologically comparable to wild-type littermates, except for mildly increased heart mass in the transgenic mice. Interestingly, TTA/TgTetMena mice were particularly susceptible to cardiac injury, as these animals experienced pronounced decreases in ejection fraction and fractional shortening as well as heart dilatation and hypertrophy after transverse aortic constriction (TAC). By "turning off" Mena overexpression in TTA/TgTetMena mice either immediately prior to or immediately after TAC surgery, we discovered that normalizing Mena levels eliminated cardiac hypertrophy in TTA/TgTetMena animals but did not preclude post-TAC cardiac functional deterioration. These findings indicate that hearts with increased levels of Mena fare worse when subjected to cardiac injury and suggest that Mena contributes to HF pathophysiology.

  20. Role of heterotrimeric G protein and calcium in cardiomyocyte hypertrophy induced by IGF-1.

    Science.gov (United States)

    Carrasco, Loreto; Cea, Paola; Rocco, Paola; Peña-Oyarzún, Daniel; Rivera-Mejias, Pablo; Sotomayor-Flores, Cristian; Quiroga, Clara; Criollo, Alfredo; Ibarra, Cristian; Chiong, Mario; Lavandero, Sergio

    2014-04-01

    In the heart, insulin-like growth factor-1 (IGF-1) is a peptide with pro-hypertrophic and anti-apoptotic actions. The pro-hypertrophic properties of IGF-1 have been attributed to the extracellular regulated kinase (ERK) pathway. Recently, we reported that IGF-1 also increases intracellular Ca(2+) levels through a pertussis toxin (PTX)-sensitive G protein. Here we investigate whether this Ca(2+) signal is involved in IGF-1-induced cardiomyocyte hypertrophy. Our results show that the IGF-1-induced increase in Ca(2+) level is abolished by the IGF-1 receptor tyrosine kinase inhibitor AG538, PTX and the peptide inhibitor of Gβγ signaling, βARKct. Increases in the activities of Ca(2+) -dependent enzymes calcineurin, calmodulin kinase II (CaMKII), and protein kinase Cα (PKCα) were observed at 5 min after IGF-1 exposure. AG538, PTX, βARKct, and the dominant negative PKCα prevented the IGF-1-dependent phosphorylation of ERK1/2. Participation of calcineurin and CaMKII in ERK phosphorylation was discounted. IGF-1-induced cardiomyocyte hypertrophy, determined by cell size and β-myosin heavy chain (β-MHC), was prevented by AG538, PTX, βARKct, dominant negative PKCα, and the MEK1/2 inhibitor PD98059. Inhibition of calcineurin with CAIN did not abolish IGF-1-induced cardiac hypertrophy. We conclude that IGF-1 induces hypertrophy in cultured cardiomyocytes by activation of the receptor tyrosine kinase activity/βγ-subunits of a PTX-sensitive G protein/Ca(2+) /PKCα/ERK pathway without the participation of calcineurin. © 2013 Wiley Periodicals, Inc.

  1. Protection of MICU1 against myocardial hypertrophy induced by angiotensin Ⅱ

    Directory of Open Access Journals (Sweden)

    Yi YANG

    2017-12-01

    Full Text Available Objective To investigate the role of mitochondrial calcium uptake 1 (MICU1 in myocardial hypertrophy of mice and underlying mechanism. Methods The model of myocardial hypertrophy was established via incubation of mouse cardiac myocytes (MCM with 300nmol/L angiotensin Ⅱ (Ang Ⅱ for 48 hours in vitro. After that, MICU1 specific small interfering RNA (siRNA was delivered to knockdown MICU1 levels in MCM. On the other hand, adenovirus-mediated over-expression of MICU1 was transfected into MCM. Accordingly, the expressions of ANP and BNP in myocardial cells were measured by qRT- PCR. Mitochondrial membrane potential and ATP contents were detected by JC-1 assay kit and ATP assay kit, respectively. Then, Western blotting and qRT-PCR were used to detect the levels of MICU1 in myocardial cells. The mitochondrial Ca2+ contents were measured via atomic absorption flame spectroscopy. The size of myocardial cells was determined by α-actinin staining. Results Mitochondrial membrane potential and ATP contents in hypertrophic cardiomyocytes induced by AngⅡ were both decreased. Meanwhile, myocardial hypertrophy significantly increased mitochondrial Ca2+ contents but decreased MICU1 levels. With the method of genetic intervention, we found that MICU1 deficiency exacerbated mitochondrial Ca2+ overload, increased cell surface and elevated the expression of BNP. Conversely, the overexpression of MICU1 obviously decreased mitochondrial Ca2+ overload, cell surface of MCM and expressions of ANP and BNP. Conclusion MICU1 alleviates AngⅡ-induced myocardial hypertrophy via inhibiting mitochondrial Ca2+ overload. DOI: 10.11855/j.issn.0577-7402.2017.12.05

  2. Leukocytic Toll-Like Receptor 2 Deficiency Preserves Cardiac Function And Reduces Fibrosis In Sustained Pressure Overload

    NARCIS (Netherlands)

    Wang, Jiong-Wei; Fontes, Magda S. C.; Wang, Xiaoyuan; Chong, Suet Yen; Kessler, Elise L.; Zhang, Ya-Nan; de Haan, Judith J.; Arslan, Fatih; de Jager, Saskia C. A.; Timmers, Leo; van Veen, Toon A. B.; Lam, Carolyn S. P.; de Kleijn, Dominique P. V.

    2017-01-01

    An involement of Toll-like receptor 2 (TLR2) has been established in cardiac dysfunction after acute myocardial infarction; however, its role in chronic pressure overload is unclear. We sought to evaluate the role of TLR2 in cardiac hypertrophy, fibrosis and dysfunction in sustained pressure

  3. Patients with FGF23-related hypophosphatemic rickets/osteomalacia do not present with left ventricular hypertrophy.

    Science.gov (United States)

    Takashi, Yuichi; Kinoshita, Yuka; Hori, Michiko; Ito, Nobuaki; Taguchi, Manabu; Fukumoto, Seiji

    2017-05-01

    Fibroblast growth factor 23 (FGF23) is a hormone regulating phosphate metabolism. Excessive actions of FGF23 cause several types of FGF23-related hypophosphatemic rickets/osteomalacia. Recently, it was reported that FGF23 levels were independently correlated with left ventricular hypertrophy (LVH) in patients with chronic kidney disease (CKD). In addition, FGF23 was also shown to cause cardiac hypertrophy directly acting on cardiomyocytes. However, there is no study indicating the correlation between FGF23 and LVH in adult patients with FGF23-related hypophosphatemic rickets/osteomalacia. Therefore, we examined the existence of LVH in these patients. We recruited consecutive 24 patients with FGF23-related hypophosphatemic diseases. Their serum intact FGF23 levels and the parameters associated with LVH, including left ventricular mass index (LVMI), relative wall thickness (RWT), Sokolow-Lyon voltage, and Cornell product, were measured. The correlations between FGF23 and these parameters were examined. The participants did not show LVH on the whole. In addition, no significant correlation was observed by these examinations. It seems unlikely that FGF23 levels are the apparent determinant of the cardiac mass in patients with FGF23-related hypophosphatemic rickets/osteomalacia.

  4. Serotonin-promoted elevation of ROS levels may lead to cardiac pathologies in diabetic rat

    Directory of Open Access Journals (Sweden)

    Ali Tahir

    2015-01-01

    Full Text Available Patients with diabetes mellitus (DM develop tendencies toward heart disease. Hyperglycemia induces the release of serotonin from enterochromaffin cells (EC. Serotonin was observed to elevate reactive oxygen species (ROS and downregulate antioxidant enzymes. As a result, elevated levels of serotonin could contribute to diabetic complications, including cardiac hypertrophy. In the present study, diabetes mellitus was induced in rats by alloxan administration; this was followed by the administration of serotonin to experimental animals. ROS, catalase (CAT, superoxide dismutase (SOD, B-type natriuretic peptide (BNP expression, and histopathological assessments were performed. Elevated ROS concentrations and decreased antioxidant enzyme activities were detected. Further, we observed an increase in cell surface area and elevated BNP expression which suggests that events associated with cardiac hypertrophy were increased in serotonin-administered diabetic rats. We conclude that serotonin secretion in diabetes could contribute to diabetic complications, including cardiac hypertrophy, through enhanced ROS production.

  5. Assessment of hypertrophic cardiomyopathy by ECG gated cardiac computed tomography

    International Nuclear Information System (INIS)

    Takeuchi, Kazuhide; Tanaka, Chujiro; Oku, Hisao

    1981-01-01

    The applicability of ECG gated cardiac computed tomography (CT) in 12 patients with hypertrophic cardiomyopathy was examined. Six of the 12 patients had hypertrophic obstructive cardiomyopathy, including one patient with mid-ventricular obstruction. Three of the 12 patients had hypertrophic non-obstructive cardiomyopathy, and three had apical hypertrophic cardiomyopathy. The diagnosis of hypertrophic cardiomyopathy was confirmed by the angiocardiogram in all patients. Cardiac CT was performed after intravenous administration of contrast media usually given as a bolus injection. The gantry was set with positive 20 0 tilt angle. In all patients with hypertrophic obstructive cardiomyopathy except for mid-ventricular obstruction, the hypertrophied interventricular septum in the basal and mid portions was observed, and the left ventricular cavity was narrowed in systole. In a patient with mid-ventricular obstruction, the marked hypertrophied interventricular septum and antero-lateral papillary muscle were observed. In diastole, the left ventricular cavity was narrow and divided into two parts. The apical cavity was completely disappeared in systole. In all patients with hypertrophic non-obstructive cardiomyopathy, the diffuse hypertrophied interventricular septum was observed in diastole. In systole, the apical portion of the left ventricular cavity was markedly narrow and antero-lateral papillary muscle was hypertrophic. In all patients with apical hypertrophic cardiomyopathy, the marked apical hypertrophy of the left ventricular wall was observed in diastole. It is concluded that ECG gated cardiac CT could estimate myocardial wall motion and thickness and differentiate the types of hypertrophic cardiomyopathy each other. (author)

  6. MURC, a muscle-restricted coiled-coil protein that modulates the Rho/ROCK pathway, induces cardiac dysfunction and conduction disturbance.

    Science.gov (United States)

    Ogata, Takehiro; Ueyama, Tomomi; Isodono, Koji; Tagawa, Masashi; Takehara, Naofumi; Kawashima, Tsuneaki; Harada, Koichiro; Takahashi, Tomosaburo; Shioi, Tetsuo; Matsubara, Hiroaki; Oh, Hidemasa

    2008-05-01

    We identified a novel muscle-restricted putative coiled-coil protein, MURC, which is evolutionarily conserved from frog to human. MURC was localized to the cytoplasm with accumulation in the Z-line of the sarcomere in the murine adult heart. MURC mRNA expression in the heart increased during the developmental process from the embryonic stage to adulthood. In response to pressure overload, MURC mRNA expression increased in the hypertrophied heart. Using the yeast two-hybrid system, we identified the serum deprivation response (SDPR) protein, a phosphatidylserine-binding protein, as a MURC-binding protein. MURC induced activation of the RhoA/ROCK pathway, which modulated serum response factor-mediated atrial natriuretic peptide (ANP) expression and myofibrillar organization. SDPR augmented MURC-induced transactivation of the ANP promoter in cardiomyocytes, and RNA interference of SDPR attenuated the action of MURC on the ANP promoter. Transgenic mice expressing cardiac-specific MURC (Tg-MURC) exhibited cardiac contractile dysfunction and atrioventricular (AV) conduction disturbances with atrial chamber enlargement, reduced thickness of the ventricular wall, and interstitial fibrosis. Spontaneous episodes of atrial fibrillation and AV block were observed in Tg-MURC mice. These findings indicate that MURC modulates RhoA signaling and that MURC plays an important role in the development of cardiac dysfunction and conduction disturbance with increased vulnerability to atrial arrhythmias.

  7. MURC, a Muscle-Restricted Coiled-Coil Protein That Modulates the Rho/ROCK Pathway, Induces Cardiac Dysfunction and Conduction Disturbance▿

    Science.gov (United States)

    Ogata, Takehiro; Ueyama, Tomomi; Isodono, Koji; Tagawa, Masashi; Takehara, Naofumi; Kawashima, Tsuneaki; Harada, Koichiro; Takahashi, Tomosaburo; Shioi, Tetsuo; Matsubara, Hiroaki; Oh, Hidemasa

    2008-01-01

    We identified a novel muscle-restricted putative coiled-coil protein, MURC, which is evolutionarily conserved from frog to human. MURC was localized to the cytoplasm with accumulation in the Z-line of the sarcomere in the murine adult heart. MURC mRNA expression in the heart increased during the developmental process from the embryonic stage to adulthood. In response to pressure overload, MURC mRNA expression increased in the hypertrophied heart. Using the yeast two-hybrid system, we identified the serum deprivation response (SDPR) protein, a phosphatidylserine-binding protein, as a MURC-binding protein. MURC induced activation of the RhoA/ROCK pathway, which modulated serum response factor-mediated atrial natriuretic peptide (ANP) expression and myofibrillar organization. SDPR augmented MURC-induced transactivation of the ANP promoter in cardiomyocytes, and RNA interference of SDPR attenuated the action of MURC on the ANP promoter. Transgenic mice expressing cardiac-specific MURC (Tg-MURC) exhibited cardiac contractile dysfunction and atrioventricular (AV) conduction disturbances with atrial chamber enlargement, reduced thickness of the ventricular wall, and interstitial fibrosis. Spontaneous episodes of atrial fibrillation and AV block were observed in Tg-MURC mice. These findings indicate that MURC modulates RhoA signaling and that MURC plays an important role in the development of cardiac dysfunction and conduction disturbance with increased vulnerability to atrial arrhythmias. PMID:18332105

  8. Apelin and APJ orchestrate complex tissue-specific control of cardiomyocyte hypertrophy and contractility in the hypertrophy-heart failure transition.

    Science.gov (United States)

    Parikh, Victoria Nicole; Liu, Jing; Shang, Ching; Woods, Christopher; Chang, Alex Chia Yu; Zhao, Mingming; Charo, David N; Grunwald, Zachary; Huang, Yong; Seo, Kinya; Tsao, Philip S; Bernstein, Daniel; Ruiz-Lozano, Pilar; Quertermous, Thomas; Ashley, Euan A

    2018-05-18

    The G protein coupled receptor APJ is a promising therapeutic target for heart failure. Constitutive deletion of APJ in the mouse is protective against the hypertrophy-heart failure transition via elimination of ligand-independent, β-arrestin dependent stretch transduction. However, the cellular origin of this stretch transduction and the details of its interaction with apelin signaling remain unknown. We generated mice with conditional elimination of APJ in the endothelium (APJ endo-/- ) and myocardium (APJ myo-/- ). No baseline difference was observed in LV function in APJ endo-/- , APJ myo-/- or controls (APJ endo+/+ , APJ myo+/+ ). After exposure to transaortic constriction (TAC), APJ endo-/- animals developed left ventricular failure while APJ myo-/- were protected. At the cellular level, carbon fiber stretch of freshly isolated single cardiomyocytes demonstrated decreased contractile response to stretch in APJ -/- cardiomyocytes compared to APJ +/+ cardiomyocytes. Calcium transient did not change with stretch in either APJ -/- or APJ +/+ cardiomyocytes. Application of apelin to APJ +/+ cardiomyocytes resulted in decreased calcium transient. Further, hearts of mice treated with apelin exhibited decreased phosphorylation at Troponin I (cTnI) N-terminal residues (Ser 22,23), consistent with increased calcium sensitivity. These data establish that APJ stretch transduction is mediated specifically by myocardial APJ, that APJ is necessary for stretch-induced increases in contractility, and that apelin opposes APJ's stretch-mediated hypertrophy signaling by lowering calcium transient while maintaining contractility through myofilament calcium sensitization. These findings underscore apelin's unique potential as a therapeutic agent that can simultaneously support cardiac function and protect against the hypertrophy-heart failure transition.

  9. In vivo cardiac role of migfilin during experimental pressure overload.

    Science.gov (United States)

    Haubner, Bernhard Johannes; Moik, Daniel; Schuetz, Thomas; Reiner, Martin F; Voelkl, Jakob G; Streil, Katrin; Bader, Kerstin; Zhao, Lei; Scheu, Claudia; Mair, Johannes; Pachinger, Otmar; Metzler, Bernhard

    2015-06-01

    Increased myocardial wall strain triggers the cardiac hypertrophic response by increasing cardiomyocyte size, reprogramming gene expression, and enhancing contractile protein synthesis. The LIM protein, migfilin, is a cytoskeleton-associated protein that was found to translocate in vitro into the nucleus in a Ca(2+)-dependent manner, where it co-activates the pivotal cardiac transcription factor Csx/Nkx2.5. However, the in vivo role of migfilin in cardiac function and stress response is unclear. To define the role of migfilin in cardiac hypertrophy, we induced hypertension by transverse aortic constriction (TAC) and compared cardiac morphology and function of migfilin knockout (KO) with wild-type (WT) hearts. Heart size and myocardial contractility were comparable in untreated migfilin KO and WT hearts, but migfilin-null hearts presented a reduced extent of hypertrophic remodelling in response to chronic hypertensile stress. Migfilin KO mice maintained their cardiac function for a longer time period compared with WT mice, which presented extensive fibrosis and death due to heart failure. Migfilin translocated into the nucleus of TAC-treated cardiomyocytes, and migfilin KO hearts showed reduced Akt activation during the early response to pressure overload. Our findings indicate an important role of migfilin in the regulation of cardiac hypertrophy upon experimental TAC. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  10. Role of cyclic AMP sensor Epac1 in masseter muscle hypertrophy and myosin heavy chain transition induced by β2-adrenoceptor stimulation.

    Science.gov (United States)

    Ohnuki, Yoshiki; Umeki, Daisuke; Mototani, Yasumasa; Jin, Huiling; Cai, Wenqian; Shiozawa, Kouichi; Suita, Kenji; Saeki, Yasutake; Fujita, Takayuki; Ishikawa, Yoshihiro; Okumura, Satoshi

    2014-12-15

    The predominant isoform of β-adrenoceptor (β-AR) in skeletal muscle is β2-AR and that in the cardiac muscle is β1-AR. We have reported that Epac1 (exchange protein directly activated by cAMP 1), a new protein kinase A-independent cAMP sensor, does not affect cardiac hypertrophy in response to pressure overload or chronic isoproterenol (isoprenaline) infusion. However, the role of Epac1 in skeletal muscle hypertrophy remains poorly understood. We thus examined the effect of disruption of Epac1, the major Epac isoform in skeletal muscle, on masseter muscle hypertrophy induced by chronic β2-AR stimulation with clenbuterol (CB) in Epac1-null mice (Epac1KO). The masseter muscle weight/tibial length ratio was similar in wild-type (WT) and Epac1KO at baseline and was significantly increased in WT after CB infusion, but this increase was suppressed in Epac1KO. CB treatment significantly increased the proportion of myosin heavy chain (MHC) IIb at the expense of that of MHC IId/x in both WT and Epac1KO, indicating that Epac1 did not mediate the CB-induced MHC isoform transition towards the faster isoform. The mechanism of suppression of CB-mediated hypertrophy in Epac1KO is considered to involve decreased activation of Akt signalling. In addition, CB-induced histone deacetylase 4 (HDAC4) phosphorylation on serine 246 mediated by calmodulin kinase II (CaMKII), which plays a role in skeletal muscle hypertrophy, was suppressed in Epac1KO. Our findings suggest that Epac1 plays a role in β2-AR-mediated masseter muscle hypertrophy, probably through activation of both Akt signalling and CaMKII/HDAC4 signalling. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  11. Hibiscus sabdariffa (Roselle) Polyphenol-rich Extract Averts Cardiac Functional and Structural Abnormalities in Type 1 Diabetic Rats.

    Science.gov (United States)

    Mohammed Yusof, Nur Liyana; Zainalabidin, Satirah; Mohd Fauzi, Norsyahida; Budin, Siti Balkis

    2018-05-04

    Diabetes mellitus is often associated with cardiac functional and structural alteration, an initial event leading to cardiovascular complications. Hibiscus sabdariffa or roselle has been widely proven as an antioxidant and recently has incited research interest for its potential in treating cardiovascular disease. Therefore, this study aimed to determine the cardioprotective effects of H. sabdariffa (roselle) polyphenol-rich extract (HPE) in type-1 induced diabetic rats. Twenty-four male Sprague-Dawley rats were randomized into four groups (n=6/group): non-diabetic (NDM), diabetic alone (DM), diabetic supplemented with HPE (DM+HPE) and metformin (DM+MET). Type-1 diabetes was induced with streptozotocin (55 mg/kg/i.p). Rats were forced-fed HPE (100 mg/kg) and metformin (150 mg/kg) daily for eight weeks. Results showed that HPE supplementation improved hyperglycemia and dyslipidemia significantly (p<0.05) in DM+HPE compared to DM group. HPE supplementation attenuated cardiac oxidative damage in DM group, indicated by low malondialdehyde and advanced oxidation protein product. As for the antioxidant status, HPE significantly (p<0.05) increased glutathione level, as well as catalase and superoxide dismutase 1 and 2 activities. These findings correlate with cardiac function, whereby HPE supplementation improved left ventricle developed pressure, coronary flow, cardiac contractility and relaxation rate significantly (p<0.05). Histological analysis showed a marked decrease in cardiomyocyte hypertrophy and fibrosis in DM+HPE compared to DM group. Ultrastructural changes and impairment of mitochondria induced by diabetes were minimized by HPE supplementation. Collectively, these findings suggest that HPE is a potential cardioprotective agent in a diabetic setting through its hypoglycemic, anti-hyperlipidemia and antioxidant properties.

  12. Antioxidant catalase rescues against high fat diet-induced cardiac dysfunction via an IKKβ-AMPK-dependent regulation of autophagy.

    Science.gov (United States)

    Liang, Lei; Shou, Xi-Ling; Zhao, Hai-Kang; Ren, Gu-Qun; Wang, Jian-Bang; Wang, Xi-Hui; Ai, Wen-Ting; Maris, Jackie R; Hueckstaedt, Lindsay K; Ma, Ai-Qun; Zhang, Yingmei

    2015-02-01

    Autophagy, a conservative degradation process for long-lived and damaged proteins, participates in a variety of biological processes including obesity. However, the precise mechanism of action behind obesity-induced changes in autophagy still remains elusive. This study was designed to examine the role of the antioxidant catalase in high fat diet-induced changes in cardiac geometry and function as well as the underlying mechanism of action involved with a focus on autophagy. Wild-type (WT) and transgenic mice with cardiac overexpression of catalase were fed low or high fat diet for 20 weeks prior to assessment of myocardial geometry and function. High fat diet intake triggered obesity, hyperinsulinemia, and hypertriglyceridemia, the effects of which were unaffected by catalase transgene. Myocardial geometry and function were compromised with fat diet intake as manifested by cardiac hypertrophy, enlarged left ventricular end systolic and diastolic diameters, fractional shortening, cardiomyocyte contractile capacity and intracellular Ca²⁺ mishandling, the effects of which were ameliorated by catalase. High fat diet intake promoted reactive oxygen species production and suppressed autophagy in the heart, the effects of which were attenuated by catalase. High fat diet intake dampened phosphorylation of inhibitor kappa B kinase β(IKKβ), AMP-activated protein kinase (AMPK) and tuberous sclerosis 2 (TSC2) while promoting phosphorylation of mTOR, the effects of which were ablated by catalase. In vitro study revealed that palmitic acid compromised cardiomyocyte autophagy and contractile function in a manner reminiscent of fat diet intake, the effect of which was significantly alleviated by inhibition of IKKβ, activation of AMPK and induction of autophagy. Taken together, our data revealed that the antioxidant catalase counteracts against high fat diet-induced cardiac geometric and functional anomalies possibly via an IKKβ-AMPK-dependent restoration of myocardial

  13. Chronic sustained inflammation links to left ventricular hypertrophy and aortic valve sclerosis: a new link between S100/RAGE and FGF23.

    Science.gov (United States)

    Yan, Ling; Bowman, Marion A Hofmann

    Cardiovascular disease including left ventricular hypertrophy, diastolic dysfunction and ectopic valvular calcification are common in patients with chronic kidney disease (CKD). Both S100A12 and fibroblast growth factor 23 (FGF23) have been identified as biomarkers of cardiovascular morbidity and mortality in patients with CKD. We tested the hypothesis that human S100/calgranulin would accelerate cardiovascular disease in mice subjected to CKD. This review paper focuses on S100 proteins and their receptor for advanced glycation end products (RAGE) and summarizes recent findings obtained in novel developed transgenic hBAC-S100 mice that express S100A12 and S100A8/9 proteins. A bacterial artificial chromosome of the human S100/calgranulin gene cluster containing the genes and regulatory elements for S100A8, S100A9 and S100A12 was expressed in C57BL/6J mice (hBAC-S100). CKD was induced by ureteral ligation, and hBAC-S100 mice and WT mice were studied after 10 weeks of chronic uremia. hBAC-S100 mice with CKD showed increased FGF23 in the heart, left ventricular hypertrophy (LVH), diastolic dysfunction, focal cartilaginous metaplasia and calcification of the mitral and aortic valve annulus together with aortic valve sclerosis. This phenotype was not observed in WT mice with CKD or in hBAC-S100 mice lacking RAGE with CKD, suggesting that the inflammatory milieu mediated by S100/RAGE promotes pathological cardiac hypertrophy in CKD. In vitro, inflammatory stimuli including IL-6, TNFα, LPS, or serum from hBAC-S100 mice up regulated FGF23 mRNA and protein in primary murine neonatal and adult cardiac fibroblasts. Taken together, our study shows that myeloid-derived human S100/calgranulin is associated with the development of cardiac hypertrophy and ectopic cardiac calcification in a RAGE dependent manner in a mouse model of CKD. We speculate that FGF23 produced by cardiac fibroblasts in response to cytokines may act in a paracrine manner to accelerate LVH and diastolic

  14. Effect of Berberine on PPARα/NO Activation in High Glucose- and Insulin-Induced Cardiomyocyte Hypertrophy

    Directory of Open Access Journals (Sweden)

    Mingfeng Wang

    2013-01-01

    Full Text Available Rhizoma coptidis, the root of Coptis chinensis Franch, has been used in China as a folk medicine in the treatment of diabetes for thousands of years. Berberine, one of the active ingredients of Rhizoma coptidis, has been reported to improve symptoms of diabetes and to treat experimental cardiac hypertrophy, respectively. The objective of this study was to evaluate the potential effect of berberine on cardiomyocyte hypertrophy in diabetes and its possible influence on peroxisome proliferator-activated receptor-α (PPARα/nitric oxide (NO signaling pathway. The cardiomyocyte hypertrophy induced by high glucose (25.5 mmol/L and insulin (0.1 μmol/L (HGI was characterized in rat primary cardiomyocyte by measuring the cell surface area, protein content, and atrial natriuretic factor mRNA expression level. Protein and mRNA expression were measured by western blot and real-time RT-PCR, respectively. The enzymatic activity of NO synthase (NOS was measured using a spectrophotometric assay, and NO concentration was measured using the Griess assay. HGI significantly induced cardiomyocyte hypertrophy and decreased the expression of PPARα and endothelial NOS at the mRNA and protein levels, which occurred in parallel with declining NOS activity and NO concentration. The effect of HGI was inhibited by berberine (0.1 to 100 μmol/L, fenofibrate (0.3 μmol/L, or L-arginine (100 μmol/L. MK886 (0.3 μmol/L, a selective PPARα antagonist, could abolish the effects of berberine and fenofibrate. NG-nitro-L-arginine-methyl ester (100 μmol/L, a NOS inhibitor, could block the effects of L-arginine, but only partially blocked the effects of berberine. These results suggest that berberine can blunt HGI-induced cardiomyocyte hypertrophy in vitro, through the activation of the PPARα/NO signaling pathway.

  15. Roles of PDE1 in Pathological Cardiac Remodeling and Dysfunction.

    Science.gov (United States)

    Chen, Si; Knight, Walter E; Yan, Chen

    2018-04-23

    Pathological cardiac hypertrophy and dysfunction is a response to various stress stimuli and can result in reduced cardiac output and heart failure. Cyclic nucleotide signaling regulates several cardiac functions including contractility, remodeling, and fibrosis. Cyclic nucleotide phosphodiesterases (PDEs), by catalyzing the hydrolysis of cyclic nucleotides, are critical in the homeostasis of intracellular cyclic nucleotide signaling and hold great therapeutic potential as drug targets. Recent studies have revealed that the inhibition of the PDE family member PDE1 plays a protective role in pathological cardiac remodeling and dysfunction by the modulation of distinct cyclic nucleotide signaling pathways. This review summarizes recent key findings regarding the roles of PDE1 in the cardiac system that can lead to a better understanding of its therapeutic potential.

  16. Tempol improves lipid profile and prevents left ventricular hypertrophy in LDL receptor gene knockout (LDLr-/-) mice on a high-fat diet.

    Science.gov (United States)

    Viana Gonçalves, Igor Cândido; Cerdeira, Cláudio Daniel; Poletti Camara, Eduardo; Dias Garcia, José Antônio; Ribeiro Pereira Lima Brigagão, Maísa; Bessa Veloso Silva, Roberta; Bitencourt Dos Santos, Gérsika

    2017-09-01

    Dyslipidemia is associated with increased risk of cardiovascular disease and atherosclerosis, and hence with high morbidity and mortality. This study investigated the effects of the nitroxide 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (Tempol) on lipid profile and cardiac morphology in low-density lipoprotein (LDL) receptor gene knockout (LDLr-/-) mice. Male LDLr-/- mice (three months old, approximately 22 g weight) were divided into the following groups: controls, including (1) standard chow (SC, n=8) and (2) high-fat diet (HFD, n=8); and treatment, including (3) standard chow + Tempol (SC+T, n=8) (30 mg/kg administered by gavage, once daily) and (4) high-fat diet + Tempol (HFD+T, n=8) (30 mg/kg). After 30 days of the diet/treatment, whole blood was collected for analysis of biochemical parameters (total cholesterol, triglycerides [TG], high-density lipoprotein [HDL], LDL, and very low-density lipoprotein [VLDL]). The heart was removed through thoracotomy and histological analysis of the left ventricle was performed. A significant increase in TG, LDL, and VLDL and marked left ventricular hypertrophy (LVH) were demonstrated in the HFD group relative to the SC group (p<0.05), while Tempol treatment (HFD+T group) significantly (p<0.05) prevented increases in the levels of these lipid profile markers and attenuated LVH compared with the HFD group. In this study, Tempol showed potential for the prevention of events related to serious diseases of the cardiovascular system. Copyright © 2017 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Regulation of cardiac microRNAs by serum response factor

    Directory of Open Access Journals (Sweden)

    Wei Jeanne Y

    2011-02-01

    Full Text Available Abstract Serum response factor (SRF regulates certain microRNAs that play a role in cardiac and skeletal muscle development. However, the role of SRF in the regulation of microRNA expression and microRNA biogenesis in cardiac hypertrophy has not been well established. In this report, we employed two distinct transgenic mouse models to study the impact of SRF on cardiac microRNA expression and microRNA biogenesis. Cardiac-specific overexpression of SRF (SRF-Tg led to altered expression of a number of microRNAs. Interestingly, downregulation of miR-1, miR-133a and upregulation of miR-21 occurred by 7 days of age in these mice, long before the onset of cardiac hypertrophy, suggesting that SRF overexpression impacted the expression of microRNAs which contribute to cardiac hypertrophy. Reducing cardiac SRF level using the antisense-SRF transgenic approach (Anti-SRF-Tg resulted in the expression of miR-1, miR-133a and miR-21 in the opposite direction. Furthermore, we observed that SRF regulates microRNA biogenesis, specifically the transcription of pri-microRNA, thereby affecting the mature microRNA level. The mir-21 promoter sequence is conserved among mouse, rat and human; one SRF binding site was found to be in the mir-21 proximal promoter region of all three species. The mir-21 gene is regulated by SRF and its cofactors, including myocardin and p49/Strap. Our study demonstrates that the downregulation of miR-1, miR-133a, and upregulation of miR-21 can be reversed by one single upstream regulator, SRF. These results may help to develop novel therapeutic interventions targeting microRNA biogenesis.

  18. Nocturnal Intermittent Hypoxia Is Associated With Left Ventricular Hypertrophy in Middle-Aged Men With Hypertension and Obstructive Sleep Apnea.

    Science.gov (United States)

    Yamaguchi, Tasuku; Takata, Yoshifumi; Usui, Yasuhiro; Asanuma, Ryoko; Nishihata, Yosuke; Kato, Kota; Shiina, Kazuki; Yamashina, Akira

    2016-03-01

    Obstructive sleep apnea (OSA) and left ventricular (LV) hypertrophy are considered to be closely associated. However, the relationship has not yet been fully demonstrated and is hence still controversial. The purpose of this study was to assess in hypertensive male patients the relationship between OSA and cardiac structure using a new index, namely, integrated area of desaturation (IAD), in addition to the apnea-hypopnea index (AHI) that is currently the most frequently used index of sleep-disordered breathing. In our cross-sectional study, 223 hypertensive men younger than 65 years with sleep apnea and normal cardiac function were enrolled. All subjects were evaluated by fully attended polysomnography. Cardiac structure and function were evaluated by echocardiography. LV mass index significantly correlated with IAD (r = 0.203, P intermittent hypoxia defined by IAD may be associated with LV hypertrophy in men with well-controlled hypertension and obstructive sleep apnea. © American Journal of Hypertension, Ltd 2015. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Urine albumin/creatinine ratio and echocardiographic left ventricular structure and function in hypertensive patients with electrocardiographic left ventricular hypertrophy: The LIFE Study

    DEFF Research Database (Denmark)

    Wachtell, K.; Palmieri, V.; Olsen, M.H.

    2002-01-01

    in a large hypertensive population. Methods The urine albumin/creatinine ratio (UACR) and echocardiographic measures of LV structure and function were obtained in 833 patients with stage I to III hypertension and LV hypertrophy determined by electrocardiogram (ECG) (Cornell voltage-duration or Sokolow...... geometry and high LV mass are associated with high UACR independent of age, systolic blood pressure, diabetes, and race, suggesting parallel cardiac and microvascular damage....

  20. [Molecular mechanisms of skeletal muscle hypertrophy].

    Science.gov (United States)

    Astratenkova, I V; Rogozkin, V A

    2014-06-01

    Enzymes Akt, AMPK, mTOR, S6K and PGC-1a coactivator take part in skeletal muscles in the regulation of synthesis of proteins. The expression of these proteins is regulated by growth factors, hormones, nutrients, mechanical loading and leads to an increase in muscle mass and skeletal muscle hypertrophy. The review presents the results of studies published in the past four years, which expand knowledge on the effects of various factors on protein synthesis in skeletal muscle. The attention is focused on the achievements that reveal and clarify the signaling pathways involved in the regulation of protein synthesis in skeletal muscle. The central place is taken by mTOR enzyme which controls and regulates the main stages of the cascade of reactions of muscle proteins providing synthesis in the conditions of human life. coactivator PGC-1a.

  1. Hypertrophied hearts: what of sevoflurane cardioprotection?

    DEFF Research Database (Denmark)

    Larsen, Jens Kjærgaard Rolighed; Smerup, Morten Holdgaard; Hasenkam, John Michael

    2009-01-01

    pigs (n=7-12/group) were subjected to 45 min distal coronary artery balloon occlusion, followed by 120 min of reperfusion. Controls were given pentobarbital, while sevoflurane cardioprotection was achieved by 3.2% inhalation throughout the experiment. Chronic banding of the ascending aorta resulted......-at-risk) was reduced from mean 55.0 (13.6%) (+/-SD) in controls to 17.5 (13.2%) by sevoflurane (P=0.001). Sevoflurane reduced the infarct size in hypertrophied hearts to 14.6 (10.4%) (P=0.001); however, in hypertrophic controls, infarcts were reduced to 34.2 (10.2%) (P=0.001). CONCLUSION: Sevoflurane abrogated...

  2. Characteristics of Left Atrial Deformation Parameters and Their Prognostic Impact in Patients with Pathological Left Ventricular Hypertrophy: Analysis by Speckle Tracking Echocardiography.

    Science.gov (United States)

    Iio, Chiharuko; Inoue, Katsuji; Nishimura, Kazuhisa; Fujii, Akira; Nagai, Takayuki; Suzuki, Jun; Okura, Takafumi; Higaki, Jitsuo; Ogimoto, Akiyoshi

    2015-12-01

    The pathological process of left ventricular (LV) hypertrophy is associated with left atrial (LA) remodeling. This study was aimed to evaluate the prognostic value of LA strain parameters in patients with pathological LV hypertrophy. This study included 95 patients with hypertensive heart disease (HHD: n = 24), hypertrophic cardiomyopathy (HCM: n = 56), cardiac amyloidosis (CA: n = 15), and control subjects (n = 20). We used two-dimensional speckle tracking echocardiography (STE) to analyze LA global strain. LA electromechanical conduction time (EMT) at the septal (EMT-septal) and lateral wall (EMT-lateral), and their time difference (EMT-diff) were calculated. The incidence of cardiac death and heart failure hospitalization was defined as major cardiac events and that of atrial fibrillation as secondary outcome. Left atrial volume index was increased and LA booster strain was decreased in the HCM and CA groups compared with the HHD group. EMT-lateral was increased in the diseased groups compared with the control. EMT-diff was prolonged in the CA group compared with the HCM group. During the follow-up period (mean 3.4 years), major cardiac events and atrial fibrillation occurred in 17 and 13 patients, respectively. The occurrence of atrial fibrillation was associated with CA etiology, E/e', LA volume index, LAa, and EMT-lateral. The incidence of major cardiac events was independently correlated with LA volume index and EMT-diff in multivariate analysis. This study suggested that the EMT-diff could discriminate patients with a high risk of cardiac events among patients with pathological LV hypertrophy. © 2015, Wiley Periodicals, Inc.

  3. The role of satellite cells in muscle hypertrophy.

    Science.gov (United States)

    Blaauw, Bert; Reggiani, Carlo

    2014-02-01

    The role of satellite cells in muscle hypertrophy has long been a debated issue. In the late 1980s it was shown that proteins remain close to the myonucleus responsible for its synthesis, giving rise to the idea of a nuclear domain. This, together with the observation that during various models of muscle hypertrophy there is an activation of the muscle stem cells, i.e. satellite cells, lead to the idea that satellite cell activation is required for muscle hypertrophy. Thus, satellite cells are not only responsible for muscle repair and regeneration, but also for hypertrophic growth. Further support for this line of thinking was obtained after studies showing that irradiation of skeletal muscle, and therefore elimination of all satellite cells, completely prevented overload-induced hypertrophy. Recently however, using different transgenic approaches, it has become clear that muscle hypertrophy can occur without a contribution of satellite cells, even though in most situations of muscle hypertrophy satellite cells are activated. In this review we will discuss the contribution of satellite cells, and other muscle-resident stem cells, to muscle hypertrophy both in mice as well as in humans.

  4. Diagnostic electrocardiographic dyad criteria of emphysema in left ventricular hypertrophy.

    Science.gov (United States)

    Lanjewar, Swapnil S; Chhabra, Lovely; Chaubey, Vinod K; Joshi, Saurabh; Kulkarni, Ganesh; Kothagundla, Chandrasekhar; Kaul, Sudesh; Spodick, David H

    2013-01-01

    The electrocardiographic diagnostic dyad of emphysema, namely a combination of the frontal vertical P-vector and a narrow QRS duration, can serve as a quasidiagnostic marker for emphysema, with specificity close to 100%. We postulated that the presence of left ventricular hypertrophy in emphysema may affect the sensitivity of this electrocardiographic criterion given that left ventricular hypertrophy generates prominent left ventricular forces and may increase the QRS duration. We reviewed the electrocardiograms and echocardiograms for 73 patients with emphysema. The patients were divided into two groups based on the presence or absence of echocardiographic evidence of left ventricular hypertrophy. The P-vector, QRS duration, and forced expiratory volume in one second (FEV1) were computed and compared between the two subgroups. There was no statistically significant difference in qualitative lung function (FEV1) between the subgroups. There was no statistically significant difference in mean P-vector between the subgroups. The mean QRS duration was significantly longer in patients with left ventricular hypertrophy as compared with those without left ventricular hypertrophy. The presence of left ventricular hypertrophy may not affect the sensitivity of the P-vector verticalization when used as a lone criterion for diagnosing emphysema. However, the presence of left ventricular hypertrophy may significantly reduce the sensitivity of the electrocardiographic diagnostic dyad in emphysema, as it causes a widening of the QRS duration.

  5. Altered carnitine transport in pressure-overload hypertrophied rat hearts

    International Nuclear Information System (INIS)

    O'Rourke, B.; Foster, K.; Reibel, D.K.

    1986-01-01

    The authors have previously observed reduced carnitine levels in hypertrophied hearts of rats subjected to aortic constriction. In an attempt to determine the mechanism for reduced myocardial carnitine content, carnitine transport was examined in isolated perfused hearts. Hearts were excised from sham-operated and aortic-constricted rats 3 weeks following surgery and perfused at 60 mm Hg aortic pressure with buffer containing various concentrations of L- 14 C-carnitine. Carnitine uptake by control and hypertrophied hearts was linear throughout 30 minutes of perfusion with 40 μM carnitine. Total carnitine uptake was significantly reduced by 25% in hypertrophied hearts at each time point examined. The reduction in uptake by hypertrophied hearts was also evident when hearts were perfused with 100 or 200 μM carnitine. When 0.05 mM mersalyl acid was included in the buffer to inhibit the carrier-mediated component of transport, no difference in carnitine uptake was observed indicating that the transport of carnitine by diffusion was unaltered in the hypertrophied myocardium. Carrier-mediated carnitine uptake (total uptake - uptake by diffusion) was significantly reduced by approximately 40% in hypertrophied hearts at all concentrations examined. Thus, the reduction in carnitine content in the pressure-overload hypertrophied rat heart appears to be due to a reduction in carrier-mediated carnitine uptake by the heart

  6. Painful unilateral temporalis muscle enlargement: reactive masticatory muscle hypertrophy.

    Science.gov (United States)

    Katsetos, Christos D; Bianchi, Michael A; Jaffery, Fizza; Koutzaki, Sirma; Zarella, Mark; Slater, Robert

    2014-06-01

    An instance of isolated unilateral temporalis muscle hypertrophy (reactive masticatory muscle hypertrophy with fiber type 1 predominance) confirmed by muscle biopsy with histochemical fiber typing and image analysis in a 62 year-old man is reported. The patient presented with bruxism and a painful swelling of the temple. Absence of asymmetry or other abnormalities of the craniofacial skeleton was confirmed by magnetic resonance imaging and cephalometric analyses. The patient achieved symptomatic improvement only after undergoing botulinum toxin injections. Muscle biopsy is key in the diagnosis of reactive masticatory muscle hypertrophy and its distinction from masticatory muscle myopathy (hypertrophic branchial myopathy) and other non-reactive causes of painful asymmetric temporalis muscle enlargement.

  7. Intradialytic Hypotension and Cardiac Remodeling: A Vicious Cycle

    Directory of Open Access Journals (Sweden)

    Chia-Ter Chao

    2015-01-01

    Full Text Available Hemodynamic instability during hemodialysis is a common but often underestimated issue in the nephrologist practice. Intradialytic hypotension, namely, a decrease of systolic or mean blood pressure to a certain level, prohibits the safe and smooth achievement of ultrafiltration and solute removal goal in chronic dialysis patients. Studies have elucidated the potential mechanisms involved in the development of Intradialytic hypotension, including excessive ultrafiltration and loss of compensatory mechanisms for blood pressure maintenance. Cardiac remodeling could also be one important piece of the puzzle. In this review, we intend to discuss the role of cardiac remodeling, including left ventricular hypertrophy, in the development of Intradialytic hypotension. In addition, we will also provide evidence that a bidirectional relationship might exist between Intradialytic hypotension and left ventricular hypertrophy in chronic dialysis patients. A more complete understanding of the complex interactions in between could assist the readers in formulating potential solutions for the reduction of both phenomena.

  8. Cardiac arrest

    Science.gov (United States)

    ... magnesium. These minerals help your heart's electrical system work. Abnormally high or low levels can cause cardiac arrest. Severe physical stress. Anything that causes a severe stress on your ...

  9. Cardiac Ochronosis

    Science.gov (United States)

    Erek, Ersin; Casselman, Filip P.A.; Vanermen, Hugo

    2004-01-01

    We report the case of 67-year-old woman who underwent aortic valve replacement and mitral valve repair due to ochronotic valvular disease (alkaptonuria), which was diagnosed incidentally during cardiac surgery. PMID:15745303

  10. Cardiac catheterization

    Science.gov (United States)

    ... tests. However, it is very safe when done by an experienced team. The risks include: Cardiac tamponade Heart attack Injury to a coronary artery Irregular heartbeat Low blood pressure Reaction to the contrast dye Stroke Possible complications ...

  11. Cardiac and renal damage in the elderly hypertensive

    Directory of Open Access Journals (Sweden)

    Jean Ribstein

    2002-03-01

    Full Text Available In the elderly patient with essential hypertension of long duration or de novo systolic hypertension, the prevalence of co-morbid conditions, be they apparent or not, the burden of associated diseases and the alteration in nutritional status and lifestyle, result in specific problems with regards to hypertension-related target organ damage. Accumulating data suggest that left ventricular (LV remodelling is a common finding in the nor-motensive elderly, and that LV hypertrophy (LVH will herald the development of heart failure in a fraction of patients with either systolic/diastolic or isolated systolic hypertension. Increased arterial stiffness, as well as impaired myocardial relaxation, reduced early diastolic filling and decreased ?-adrenergic responsiveness, contribute to the large prevalence of abnormalities in LV function in the elderly hypertensive. The response to exercise is clearly attenuated, and coronary heart disease, although highly prevalent, may be misdiagnosed because symptoms are altered. The elderly hypertensive is exquisitely sensitive to both volume depletion and excessive sodium intake, due to a marked sodium sensitivity of blood pressure (BP. A decline in renal blood flow and glomerular filtration rate (GFR is a common finding in the elderly. Although structural alterations attributed to age and hypertension may differ, hypertension is often looked upon as an accelerated form of ageing with regards to the heart and the kidney. Lifestyle modifications and initial monotherapy with a low-dose diuretic are warranted in the elderly hypertensive with no co-morbidity; a variety of specific approaches are considered when associated clinical conditions are present. Blockers of the renin-angiotensin system (RAS may be the preferred first-line agents in many patients with cardiac or renal damage.

  12. Quercetin prevents left ventricular hypertrophy in the Apo E knockout mouse

    Directory of Open Access Journals (Sweden)

    Elena Ulasova

    2013-01-01

    Full Text Available Hypercholesterolemia is a risk factor for the development of hypertrophic cardiomyopathy. Nevertheless, there are few studies aimed at determining the effects of dietary compounds on early or mild cardiac hypertrophy associated with dyslipidemia. Here we describe left ventricular (LV hypertrophy in 12 week-old Apo E−/− hypercholesterolemic mice. The LV end diastolic posterior wall thickness and overall LV mass were significantly increased in Apo E−/− mice compared with wild type (WT controls. Fractional shortening, LV end diastolic diameter, and hemodynamic parameters were unchanged from WT mice. Oral low dose quercetin (QCN; 0.1 µmol QCN/kg body weight for 6 weeks significantly reduced total cholesterol and very low density lipoprotein in the plasma of Apo E−/− mice. QCN treatment also significantly decreased LV posterior wall thickness and LV mass in Apo E−/− mice. Myocardial geometry and function were unaffected in WT mice by QCN treatment. These data suggest that dietary polyphenolic compounds such as QCN may be effective modulators of plasma cholesterol and could prevent maladaptive myocardial remodeling.

  13. Postural Tachycardia Syndrome and Vasovagal Syncope: A Hidden Case of Obstructive Cardiomyopathy without Severe Septal Hypertrophy.

    Science.gov (United States)

    Mayuga, Kenneth A; Ho, Natalie; Shields, Robert W; Cremer, Paul; Rodriguez, L Leonardo

    2018-01-01

    A 36-year-old female with symptoms of orthostatic intolerance and syncope was diagnosed with vasovagal syncope on a tilt table test and with postural tachycardia syndrome (POTS) after a repeat tilt table test. However, an echocardiogram at our institution revealed obstructive cardiomyopathy without severe septal hypertrophy, with a striking increase in left ventricular outflow tract gradient from 7 mmHg at rest to 75 mmHg during Valsalva, with a septal thickness of only 1.3 cm. Cardiac MRI showed an apically displaced multiheaded posteromedial papillary muscle with suggestion of aberrant chordal attachments to the anterior mitral leaflet contributing to systolic anterior motion of the mitral valve. She underwent surgery with reorientation of the posterior medial papillary muscle head, resection of the tethering secondary chordae to the A1 segment of the mitral valve, chordal shortening and tacking of the chordae to the A1 and A2 segments of the mitral valve, and gentle septal myectomy. After surgery, she had significant improvement in her prior symptoms. To our knowledge, this is the first reported case of obstructive cardiomyopathy without severe septal hypertrophy with abnormalities in papillary muscle and chordal attachment, in a patient diagnosed with vasovagal syncope and POTS.

  14. Postural Tachycardia Syndrome and Vasovagal Syncope: A Hidden Case of Obstructive Cardiomyopathy without Severe Septal Hypertrophy

    Directory of Open Access Journals (Sweden)

    Kenneth A. Mayuga

    2018-01-01

    Full Text Available A 36-year-old female with symptoms of orthostatic intolerance and syncope was diagnosed with vasovagal syncope on a tilt table test and with postural tachycardia syndrome (POTS after a repeat tilt table test. However, an echocardiogram at our institution revealed obstructive cardiomyopathy without severe septal hypertrophy, with a striking increase in left ventricular outflow tract gradient from 7 mmHg at rest to 75 mmHg during Valsalva, with a septal thickness of only 1.3 cm. Cardiac MRI showed an apically displaced multiheaded posteromedial papillary muscle with suggestion of aberrant chordal attachments to the anterior mitral leaflet contributing to systolic anterior motion of the mitral valve. She underwent surgery with reorientation of the posterior medial papillary muscle head, resection of the tethering secondary chordae to the A1 segment of the mitral valve, chordal shortening and tacking of the chordae to the A1 and A2 segments of the mitral valve, and gentle septal myectomy. After surgery, she had significant improvement in her prior symptoms. To our knowledge, this is the first reported case of obstructive cardiomyopathy without severe septal hypertrophy with abnormalities in papillary muscle and chordal attachment, in a patient diagnosed with vasovagal syncope and POTS.

  15. Role of IGF-I in follistatin-induced skeletal muscle hypertrophy.

    Science.gov (United States)

    Barbé, Caroline; Kalista, Stéphanie; Loumaye, Audrey; Ritvos, Olli; Lause, Pascale; Ferracin, Benjamin; Thissen, Jean-Paul

    2015-09-15

    Follistatin, a physiological inhibitor of myostatin, induces a dramatic increase in skeletal muscle mass, requiring the type 1 IGF-I receptor/Akt/mTOR pathway. The aim of the present study was to investigate the role of IGF-I and insulin, two ligands of the IGF-I receptor, in the follistatin hypertrophic action on skeletal muscle. In a first step, we showed that follistatin increases muscle mass while being associated with a downregulation of muscle IGF-I expression. In addition, follistatin retained its full hypertrophic effect toward muscle in hypophysectomized animals despite very low concentrations of circulating and muscle IGF-I. Furthermore, follistatin did not increase muscle sensitivity to IGF-I in stimulating phosphorylation of Akt but, surprisingly, decreased it once hypertrophy was present. Taken together, these observations indicate that increased muscle IGF-I production or sensitivity does not contribute to the muscle hypertrophy caused by follistatin. Unlike low IGF-I, low insulin, as obtained by streptozotocin injection, attenuated the hypertrophic action of follistatin on skeletal muscle. Moreover, the full anabolic response to follistatin was restored in this condition by insulin but also by IGF-I infusion. Therefore, follistatin-induced muscle hypertrophy requires the activation of the insulin/IGF-I pathway by either insulin or IGF-I. When insulin or IGF-I alone is missing, follistatin retains its full anabolic effect, but when both are deficient, as in streptozotocin-treated animals, follistatin fails to stimulate muscle growth. Copyright © 2015 the American Physiological Society.

  16. Nuclear cardiac

    International Nuclear Information System (INIS)

    Slutsky, R.; Ashburn, W.L.

    1982-01-01

    The relationship between nuclear medicine and cardiology has continued to produce a surfeit of interesting, illuminating, and important reports involving the analysis of cardiac function, perfusion, and metabolism. To simplify the presentation, this review is broken down into three major subheadings: analysis of myocardial perfusion; imaging of the recent myocardial infarction; and the evaluation of myocardial function. There appears to be an increasingly important relationship between cardiology, particularly cardiac physiology, and nuclear imaging techniques

  17. Arrhythmia as a cardiac manifestation in MELAS syndrome.

    Science.gov (United States)

    Thomas, Tamara; Craigen, William J; Moore, Ryan; Czosek, Richard; Jefferies, John L

    2015-09-01

    A 44-year-old female with a diagnosis of mitochondrial myopathy, encephalopathy and stroke-like episodes (MELAS) syndrome had progressive left ventricular hypertrophy (LVH) on echocardiogram. A Holter monitor demonstrated episodes of non-sustained atrial tachycardia, a finding not been previously described in this population. This unique case of MELAS syndrome demonstrates the known associated cardiac manifestation of LVH and the new finding of atrial tachycardia which may represent the potential for subclinical arrhythmia in this population.

  18. Left ventricular hypertrophy in normoalbuminuric type 2 diabetic patients not taking antihypertensive treatment

    DEFF Research Database (Denmark)

    Sato, A; Tarnow, L; Nielsen, F S

    2005-01-01

    BACKGROUND: Left ventricular hypertrophy (LVH) is an independent risk factor for myocardial ischaemia, cardiac arrhythmia, sudden death, and heart failure, all common findings in patients with type 2 diabetes. AIM: To determine the prevalence of, and risk factors for, LVH in normoalbuminuric type 2...... diabetic patients not taking antihypertensive treatment. DESIGN: Cross-sectional study. METHODS: From 1994 to 1998, M-mode echocardiography was performed by one experienced examiner in 262 consecutive, normoalbuminuric Caucasian type 2 diabetic patients, all with blood pressure ... of diabetes and blood pressure were not. Similar results were obtained for left ventricular mass index. DISCUSSION: LVH was frequent in our normoalbuminuric type 2 diabetic patients not taking antihypertensive treatment. Several potentially modifiable risk factors, such as raised BMI, poor glycaemic control...

  19. The impact of obesity in the cardiac lipidome and its consequences in the cardiac damage observed in obese rats.

    Science.gov (United States)

    Marín-Royo, Gema; Martínez-Martínez, Ernesto; Gutiérrez, Beatriz; Jurado-López, Raquel; Gallardo, Isabel; Montero, Olimpio; Bartolomé, Mª Visitación; Román, José Alberto San; Salaices, Mercedes; Nieto, María Luisa; Cachofeiro, Victoria

    To explore the impact of obesity on the cardiac lipid profile in rats with diet-induced obesity, as well as to evaluate whether or not the specific changes in lipid species are associated with cardiac fibrosis. Male Wistar rats were fed either a high-fat diet (HFD, 35% fat) or standard diet (3.5% fat) for 6 weeks. Cardiac lipids were analyzed using by liquid chromatography-tandem mass spectrometry. HFD rats showed cardiac fibrosis and enhanced levels of cardiac superoxide anion (O 2 ), HOMA index, adiposity, and plasma leptin, as well as a reduction in those of cardiac glucose transporter (GLUT 4), compared with control animals. Cardiac lipid profile analysis showed a significant increase in triglycerides, especially those enriched with palmitic, stearic, and arachidonic acid. An increase in levels of diacylglycerol (DAG) was also observed. No changes in cardiac levels of diacyl phosphatidylcholine, or even a reduction in total levels of diacyl phosphatidylethanolamine, diacyl phosphatidylinositol, and sphingomyelins (SM) was observed in HFD, as compared with control animals. After adjustment for other variables (oxidative stress, HOMA, cardiac hypertrophy), total levels of DAG were independent predictors of cardiac fibrosis while the levels of total SM were independent predictors of the cardiac levels of GLUT 4. These data suggest that obesity has a significant impact on cardiac lipid composition, although it does not modulate the different species in a similar manner. Nonetheless, these changes are likely to participate in the cardiac damage in the context of obesity, since total DAG levels can facilitate the development of cardiac fibrosis, and SM levels predict GLUT4 levels. Copyright © 2017 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Regulation of cardiac form and function: small RNAs and large hearts

    NARCIS (Netherlands)

    Wijnen, W.J.

    2015-01-01

    Heart failure, and the cardiac hypertrophy with which it is often associated, is putting an increasing burden on our healthcare system, and its prevalence is rising. Unfortunately the only available treatments are mainly targeting the symptoms, not the underlying cause of disease. Investigation of

  1. Time course of gene expression during mouse skeletal muscle hypertrophy.

    Science.gov (United States)

    Chaillou, Thomas; Lee, Jonah D; England, Jonathan H; Esser, Karyn A; McCarthy, John J

    2013-10-01

    The purpose of this study was to perform a comprehensive transcriptome analysis during skeletal muscle hypertrophy to identify signaling pathways that are operative throughout the hypertrophic response. Global gene expression patterns were determined from microarray results on days 1, 3, 5, 7, 10, and 14 during plantaris muscle hypertrophy induced by synergist ablation in adult mice. Principal component analysis and the number of differentially expressed genes (cutoffs ≥2-fold increase or ≥50% decrease compared with control muscle) revealed three gene expression patterns during overload-induced hypertrophy: early (1 day), intermediate (3, 5, and 7 days), and late (10 and 14 days) patterns. Based on the robust changes in total RNA content and in the number of differentially expressed genes, we focused our attention on the intermediate gene expression pattern. Ingenuity Pathway Analysis revealed a downregulation of genes encoding components of the branched-chain amino acid degradation pathway during hypertrophy. Among these genes, five were predicted by Ingenuity Pathway Analysis or previously shown to be regulated by the transcription factor Kruppel-like factor-15, which was also downregulated during hypertrophy. Moreover, the integrin-linked kinase signaling pathway was activated during hypertrophy, and the downregulation of muscle-specific micro-RNA-1 correlated with the upregulation of five predicted targets associated with the integrin-linked kinase pathway. In conclusion, we identified two novel pathways that may be involved in muscle hypertrophy, as well as two upstream regulators (Kruppel-like factor-15 and micro-RNA-1) that provide targets for future studies investigating the importance of these pathways in muscle hypertrophy.

  2. Diagnostic electrocardiographic dyad criteria of emphysema in left ventricular hypertrophy

    Directory of Open Access Journals (Sweden)

    Lanjewar SS

    2013-11-01

    Full Text Available Swapnil S Lanjewar,1 Lovely Chhabra,1 Vinod K Chaubey,1 Saurabh Joshi,1 Ganesh Kulkarni,1 Chandrasekhar Kothagundla,1 Sudesh Kaul,1 David H Spodick21Department of Internal Medicine, 2Department of Cardiovascular Medicine, Saint Vincent Hospital, University of Massachusetts Medical School, Worcester, MA, USABackground: The electrocardiographic diagnostic dyad of emphysema, namely a combination of the frontal vertical P-vector and a narrow QRS duration, can serve as a quasidiagnostic marker for emphysema, with specificity close to 100%. We postulated that the presence of left ventricular hypertrophy in emphysema may affect the sensitivity of this electrocardiographic criterion given that left ventricular hypertrophy generates prominent left ventricular forces and may increase the QRS duration.Methods: We reviewed the electrocardiograms and echocardiograms for 73 patients with emphysema. The patients were divided into two groups based on the presence or absence of echocardiographic evidence of left ventricular hypertrophy. The P-vector, QRS duration, and forced expiratory volume in one second (FEV1 were computed and compared between the two subgroups.Results: There was no statistically significant difference in qualitative lung function (FEV1 between the subgroups. There was no statistically significant difference in mean P-vector between the subgroups. The mean QRS duration was significantly longer in patients with left ventricular hypertrophy as compared with those without left ventricular hypertrophy.Conclusion: The presence of left ventricular hypertrophy may not affect the sensitivity of the P-vector verticalization when used as a lone criterion for diagnosing emphysema. However, the presence of left ventricular hypertrophy may significantly reduce the sensitivity of the electrocardiographic diagnostic dyad in emphysema, as it causes a widening of the QRS duration.Keywords: emphysema, electrocardiogram, left ventricular hypertrophy, chronic

  3. MELAS Syndrome with Cardiac Involvement: A Multimodality Imaging Approach

    Directory of Open Access Journals (Sweden)

    Sara Seitun

    2016-01-01

    Full Text Available A 49-year-old man presented with chest pain, dyspnea, and lactic acidosis. Left ventricular hypertrophy and myocardial fibrosis were detected. The sequencing of mitochondrial genome (mtDNA revealed the presence of A to G mtDNA point mutation at position 3243 (m.3243A>G in tRNALeu(UUR gene. Diagnosis of cardiac involvement in a patient with Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-like episodes syndrome (MELAS was made. Due to increased risk of sudden cardiac death, cardioverter defibrillator was implanted.

  4. Fatty acid utilization in pressure-overload hypertrophied rat hearts

    International Nuclear Information System (INIS)

    Reibel, D.K.; O'Rourke, B.

    1986-01-01

    The authors have previously shown that the levels of total tissue coenzyme A and carnitine are reduced in hypertrophied hearts of rats subjected to aortic constriction. It was therefore of interest to determine if these changes were associated with alterations in fatty acid oxidation by the hypertrophied myocardium. Hearts were excised from sham-operated and aortic-constricted rats and perfused at 10 cm H 2 O left atrial filling pressure with a ventricular afterload of 80 cm of H 2 O with buffer containing 1.2 mM 14 C-linoleate. Heart rate and peak systolic pressure were not different in control and hypertrophied hearts. 14 CO 2 production was linear in both groups of hearts between 10 and 30 minutes of perfusion. The rate of fatty acid oxidation determined by 14 CO 2 production during this time was 0.728 +/- 0.06 μmoles/min/g dry in control hearts and 0.710 +/- 0.02 μmoles/min/g dry in hypertrophied hearts. Comparable rates of fatty acid oxidation were associated with comparable rates of O 2 consumption in the two groups of hearts (39.06 +/- 3.50 and 36.78 +/- 2.39 μmoles/g dry/min for control and hypertrophied hearts, respectively). The data indicate that the ability of the hypertrophied heart to oxidize fatty acids under these perfusion conditions is not impaired in spite of significant reductions in tissue levels of coenzyme A and carnitine

  5. Mechanisms for altered carnitine content in hypertrophied rat hearts

    International Nuclear Information System (INIS)

    Reibel, D.K.; O'Rourke, B.; Foster, K.A.

    1987-01-01

    Carnitine levels are reduced in hypertrophied hearts of rats subjected to aortic constriction (banding) and evaluated in hypertrophied hearts of spontaneously hypertensive rats (SHR). In an attempt to determine the mechanisms for these alterations, L-[ 14 C]carnitine transport was examined in isolated perfused hearts. Total carnitine uptake was significantly reduced by ∼20% in hypertrophied hearts of banded rats at all perfusate carnitine concentrations employed. The reduction in total uptake was due to a 40% reduction in carrier-mediated carnitine uptake with no difference in uptake by diffusion. In contrast, carnitine uptake was not altered in isolated hypertrophied hearts of SHR. However, serum carnitine levels were elevated in SHR, which could result in increased myocardial carnitine uptake in vivo. The data suggest that altered carnitine content in hypertrophied hearts of aortic-banded rats is due to an alteration in the carrier-mediated carnitine transport system in the myocardium. However, altered carnitine content in hypertrophied hearts of SHR is not due to a change in the carnitine transport system per se but may rather be due to a change in serum carnitine levels

  6. Mitochondria-Targeted Antioxidant Prevents Cardiac Dysfunction Induced by Tafazzin Gene Knockdown in Cardiac Myocytes

    Directory of Open Access Journals (Sweden)

    Quan He

    2014-01-01

    Full Text Available Tafazzin, a mitochondrial acyltransferase, plays an important role in cardiolipin side chain remodeling. Previous studies have shown that dysfunction of tafazzin reduces cardiolipin content, impairs mitochondrial function, and causes dilated cardiomyopathy in Barth syndrome. Reactive oxygen species (ROS have been implicated in the development of cardiomyopathy and are also the obligated byproducts of mitochondria. We hypothesized that tafazzin knockdown increases ROS production from mitochondria, and a mitochondria-targeted antioxidant prevents tafazzin knockdown induced mitochondrial and cardiac dysfunction. We employed cardiac myocytes transduced with an adenovirus containing tafazzin shRNA as a model to investigate the effects of the mitochondrial antioxidant, mito-Tempo. Knocking down tafazzin decreased steady state levels of cardiolipin and increased mitochondrial ROS. Treatment of cardiac myocytes with mito-Tempo normalized tafazzin knockdown enhanced mitochondrial ROS production and cellular ATP decline. Mito-Tempo also significantly abrogated tafazzin knockdown induced cardiac hypertrophy, contractile dysfunction, and cell death. We conclude that mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes and suggest mito-Tempo as a potential therapeutic for Barth syndrome and other dilated cardiomyopathies resulting from mitochondrial oxidative stress.

  7. Cardiac CT

    International Nuclear Information System (INIS)

    Dewey, Marc

    2011-01-01

    Computed tomography of the heart has become a highly accurate diagnostic modality that is attracting increasing attention. This extensively illustrated book aims to assist the reader in integrating cardiac CT into daily clinical practice, while also reviewing its current technical status and applications. Clear guidance is provided on the performance and interpretation of imaging using the latest technology, which offers greater coverage, better spatial resolution, and faster imaging. The specific features of scanners from all four main vendors, including those that have only recently become available, are presented. Among the wide range of applications and issues to be discussed are coronary artery bypass grafts, stents, plaques, and anomalies, cardiac valves, congenital and acquired heart disease, and radiation exposure. Upcoming clinical uses of cardiac CT, such as plaque imaging and functional assessment, are also explored. (orig.)

  8. Cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Dewey, Marc [Charite - Universitaetsmedizin Berlin (Germany). Inst. fuer Radiologie

    2011-07-01

    Computed tomography of the heart has become a highly accurate diagnostic modality that is attracting increasing attention. This extensively illustrated book aims to assist the reader in integrating cardiac CT into daily clinical practice, while also reviewing its current technical status and applications. Clear guidance is provided on the performance and interpretation of imaging using the latest technology, which offers greater coverage, better spatial resolution, and faster imaging. The specific features of scanners from all four main vendors, including those that have only recently become available, are presented. Among the wide range of applications and issues to be discussed are coronary artery bypass grafts, stents, plaques, and anomalies, cardiac valves, congenital and acquired heart disease, and radiation exposure. Upcoming clinical uses of cardiac CT, such as plaque imaging and functional assessment, are also explored. (orig.)

  9. Cardiac echinococcosis

    Directory of Open Access Journals (Sweden)

    Ivanović-Krstić Branislava A.

    2002-01-01

    Full Text Available Cardiac hydatid disease is rare. We report on an uncommon hydatid cyst localized in the right ventricular wall, right atrial wall tricuspid valve left atrium and pericard. A 33-year-old woman was treated for cough, fever and chest pain. Cardiac echocardiograpic examination revealed a round tumor (5.8 x 4 cm in the right ventricular free wall and two smaller cysts behind that tumor. There were cysts in right atrial wall and tricuspidal valve as well. Serologic tests for hydatidosis were positive. Computed tomography finding was consistent with diagnosis of hydatid cyst in lungs and right hylar part. Surgical treatment was rejected due to great risk of cardiac perforation. Medical treatment with albendazole was unsuccessful and the patient died due to systemic hydatid involvement of the lungs, liver and central nervous system.

  10. Atorvastatin reduces cardiac and adipose tissue inflammation in rats with metabolic syndrome.

    Science.gov (United States)

    Yamada, Yuichiro; Takeuchi, Shino; Yoneda, Mamoru; Ito, Shogo; Sano, Yusuke; Nagasawa, Kai; Matsuura, Natsumi; Uchinaka, Ayako; Murohara, Toyoaki; Nagata, Kohzo

    2017-08-01

    Statins are strong inhibitors of cholesterol biosynthesis and help to prevent cardiovascular disease. They also exert additional pleiotropic effects that include an anti-inflammatory action and are independent of cholesterol, but the molecular mechanisms underlying these additional effects have remained unclear. We have now examined the effects of atorvastatin on cardiac and adipose tissue inflammation in DahlS.Z-Lepr fa /Lepr fa (DS/obese) rats, which we previously established as a model of metabolic syndrome (MetS). DS/obese rats were treated with atorvastatin (6 or 20mgkg -1 day -1 ) from 9 to 13weeks of age. Atorvastatin ameliorated cardiac fibrosis, diastolic dysfunction, oxidative stress, and inflammation as well as adipose tissue inflammation in these animals at both doses. The high dose of atorvastatin reduced adipocyte hypertrophy to a greater extent than did the low dose. Atorvastatin inhibited the up-regulation of peroxisome proliferator-activated receptor γ gene expression in adipose tissue as well as decreased the serum adiponectin concentration in DS/obese rats. It also activated AMP-activated protein kinase (AMPK) as well as inactivated nuclear factor-κB (NF-κB) in the heart of these animals. The down-regulation of AMPK and NF-κB activities in adipose tissue of DS/obese rats was attenuated and further enhanced, respectively, by atorvastatin treatment. The present results suggest that the anti-inflammatory effects of atorvastatin on the heart and adipose tissue are attributable at least partly to increased AMPK activity and decreased NF-κB activity in this rat model of MetS. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Mechanisms of action of sacubitril/valsartan on cardiac remodeling: a systems biology approach.

    Science.gov (United States)

    Iborra-Egea, Oriol; Gálvez-Montón, Carolina; Roura, Santiago; Perea-Gil, Isaac; Prat-Vidal, Cristina; Soler-Botija, Carolina; Bayes-Genis, Antoni

    2017-01-01

    Sacubitril/Valsartan, proved superiority over other conventional heart failure management treatments, but its mechanisms of action remains obscure. In this study, we sought to explore the mechanistic details for Sacubitril/Valsartan in heart failure and post-myocardial infarction remodeling, using an in silico, systems biology approach. Myocardial transcriptome obtained in response to myocardial infarction in swine was analyzed to address post-infarction ventricular remodeling. Swine transcriptome hits were mapped to their human equivalents using Reciprocal Best (blast) Hits, Gene Name Correspondence, and InParanoid database. Heart failure remodeling was studied using public data available in gene expression omnibus (accession GSE57345, subseries GSE57338), processed using the GEO2R tool. Using the Therapeutic Performance Mapping System technology, dedicated mathematical models trained to fit a set of molecular criteria, defining both pathologies and including all the information available on Sacubitril/Valsartan, were generated. All relationships incorporated into the biological network were drawn from public resources (including KEGG, REACTOME, INTACT, BIOGRID, and MINT). An artificial neural network analysis revealed that Sacubitril/Valsartan acts synergistically against cardiomyocyte cell death and left ventricular extracellular matrix remodeling via eight principal synergistic nodes. When studying each pathway independently, Valsartan was found to improve cardiac remodeling by inhibiting members of the guanine nucleotide-binding protein family, while Sacubitril attenuated cardiomyocyte cell death, hypertrophy, and impaired myocyte contractility by inhibiting PTEN. The complex molecular mechanisms of action of Sacubitril/Valsartan upon post-myocardial infarction and heart failure cardiac remodeling were delineated using a systems biology approach. Further, this dataset provides pathophysiological rationale for the use of Sacubitril/Valsartan to prevent post

  12. Mycophenolate mofetil attenuates pulmonary arterial hypertension in rats

    International Nuclear Information System (INIS)

    Suzuki, Chihiro; Takahashi, Masafumi; Morimoto, Hajime; Izawa, Atsushi; Ise, Hirohiko; Hongo, Minoru; Hoshikawa, Yasushi; Ito, Takayuki; Miyashita, Hiroshi; Kobayashi, Eiji; Shimada, Kazuyuki; Ikeda, Uichi

    2006-01-01

    Pulmonary arterial hypertension (PAH) is characterized by abnormal proliferation of smooth muscle cells (SMCs), leading to occlusion of pulmonary arterioles, right ventricular (RV) hypertrophy, and death. We investigated whether mycophenolate mofetil (MMF), a potent immunosuppresssant, prevents the development of monocrotaline (MCT)-induced PAH in rats. MMF effectively decreased RV systolic pressure and RV hypertrophy, and reduced the medial thickness of pulmonary arteries. MMF significantly inhibited the number of proliferating cell nuclear antigen (PCNA)-positive cells, infiltration of macrophages, and expression of P-selectin and interleukin-6 on the endothelium of pulmonary arteries. The infiltration of T cells and mast cells was not affected by MMF. In vitro experiments revealed that mycophenolic acid (MPA), an active metabolite of MMF, dose-dependently inhibited proliferation of human pulmonary arterial SMCs. MMF attenuated the development of PAH through its anti-inflammatory and anti-proliferative properties. These findings provide new insight into the potential role of immunosuppressants in the treatment of PAH

  13. Wolff-Parkinson-White Syndrome with Ventricular Hypertrophy in a Brazilian Family.

    Science.gov (United States)

    van der Steld, Lenises de Paula; Campuzano, Oscar; Pérez-Serra, Alexandra; Moura de Barros Zamorano, Mabel; Sousa Matos, Selma; Brugada, Ramon

    2017-07-10

    BACKGROUND PRKAG2 syndrome diagnosis is already well-defined as Wolff-Parkinson-White syndrome (WPW), ventricular hypertrophy (VH) due to glycogen accumulation, and conduction system disease (CSD). Because of its rarity, there is a lack of literature focused on the treatment. The present study aimed to describe appropriate strategies for the treatment of affected family members with PRKAG2 syndrome with a long follow-up period. CASE REPORT We studied 60 selected individuals from 84 family members (32 males, 53.3%) (mean age 27±16 years). Patients with WPW and/or VH were placed in a group of 18 individuals, in which 11 (61.1%) had VH and WPW, 6 (33.3%) had isolated WPW, and 1 (5.6%) had isolated VH. Palpitations occurred in 16 patients (88.9%), chest pain in 11 (61.1%), dizziness in 13 (72.2%), syncope in 15 (83.3%), and dyspnea in 13 (72%). Sudden cardiac death (SCD) occurred in 2 (11.1%), and 2 patients with cardiac arrest (CA) had asystole and pre-excited atrial flutter-fibrillation (AFL and AF) as the documented mechanism. Transient ischemic attack (TIA) and learning/language disabilities with delayed development were observed. Genetic analysis identified a new missense pathogenic variant (p.K290I) in the PRKAG2 gene. Cardiac histopathology demonstrated the predominance of vacuoles containing glycogen derivative and fibrosis. The treatment was based on hypertension and diabetes mellitus (DM) control, antiarrhythmic drugs (AD), anticoagulation, and radiofrequency catheter ablation (RCA). Six patients (33.3%) underwent pacemaker implantation (PM). CONCLUSIONS The present study describes the clinical treatment for a rare cardiac syndrome caused by a PRKAG2 mutation.

  14. Angiotensin II reduces cardiac AdipoR1 expression through AT1 receptor/ROS/ERK1/2/c-Myc pathway.

    Directory of Open Access Journals (Sweden)

    Li Li

    Full Text Available Adiponectin, an abundant adipose tissue-derived protein, exerts protective effect against cardiovascular disease. Adiponectin receptors (AdipoR1 and AdipoR2 mediate the beneficial effects of adiponectin on the cardiovascular system. However, the alteration of AdipoRs in cardiac remodeling is not fully elucidated. Here, we investigated the effect of angiotensin II (AngII on cardiac AdipoRs expression and explored the possible molecular mechanism. AngII infusion into rats induced cardiac hypertrophy, reduced AdipoR1 but not AdipoR2 expression, and attenuated the phosphorylations of adenosine monophosphate-activated protein kinase and acetyl coenzyme A carboxylase, and those effects were all reversed by losartan, an AngII type 1 (AT1 receptor blocker. AngII reduced expression of AdipoR1 mRNA and protein in cultured neonatal rat cardiomyocytes, which was abolished by losartan, but not by PD123319, an AT2 receptor antagonist. The antioxidants including reactive oxygen species (ROS scavenger NAC, NADPH oxidase inhibitor apocynin, Nox2 inhibitor peptide gp91 ds-tat, and mitochondrial electron transport chain complex I inhibitor rotenone attenuated AngII-induced production of ROS and phosphorylation of extracellular signal-regulated kinase (ERK 1/2. AngII-reduced AdipoR1 expression was reversed by pretreatment with NAC, apocynin, gp91 ds-tat, rotenone, and an ERK1/2 inhibitor PD98059. Chromatin immunoprecipitation assay demonstrated that AngII provoked the recruitment of c-Myc onto the promoter region of AdipoR1, which was attenuated by PD98059. Moreover, AngII-induced DNA binding activity of c-Myc was inhibited by losartan, NAC, apocynin, gp91 ds-tat, rotenone, and PD98059. c-Myc small interfering RNA abolished the inhibitory effect of AngII on AdipoR1 expression. Our results suggest that AngII inhibits cardiac AdipoR1 expression in vivo and in vitro and AT1 receptor/ROS/ERK1/2/c-Myc pathway is required for the downregulation of AdipoR1 induced by AngII.

  15. The Influence of Protein Supplementation on Muscle Hypertrophy

    Science.gov (United States)

    Fardi, A.; Welis, W.

    2018-04-01

    The problem of this study was the lack of knowledge about nutrition, so the use of protein supplements to support the occurrence of muscle hypertrophy is not optimal. The use of natural supplements is a substitute of the manufacturer's supplements. The purpose of this study was to determine the effect of natural protein supplementation to muscle hypertrophy.The method of the research was a quasi experiment. There are 26 subject and were divided two group. Instrument of this research is to use tape measure and skinfold to measure muscle rim and thickness of fat in arm and thigh muscle. Then to calculate the circumference of the arm and thigh muscles used the formula MTC - (3.14 x TSF). MTC is the arm muscle or thigh muscle and TSF is the thickness of the muscles of the arm or thigh muscles. Data analysis technique used was t test at 5% significant level. The result of the research showed that average score of arm muscle hypertrophy at pretest control group was 255.61 + 17.69 mm and posttest average score was 263.48.58 + 17.21 mm and average score of thigh muscle hypertrophy at pretest control group was 458.32 + 8.72 mm and posttest average score was 468.78 + 11.54 mm. Average score of arm muscle hypertrophy at pretest experiment group was 252.67 + 16.05 mm and posttest average score was 274.58 ± 16.89 mm and average score of thigh muscle hypertrophy at pretest experiment group was 459.49 ± 6.99 mm and posttest average score was 478.70 + 9.05 mm. It can be concluded that there was a significant effect of natural protein supplementation on muscle hypertrophy.

  16. Chronic low-level arsenite exposure through drinking water increases blood pressure and promotes concentric left ventricular hypertrophy in female mice.

    Science.gov (United States)

    Sanchez-Soria, Pablo; Broka, Derrick; Monks, Sarah L; Camenisch, Todd D

    2012-04-01

    Cardiovascular disease is the leading cause of death in the United States and worldwide. High incidence of cardiovascular diseases has been linked to populations with elevated arsenic content in their drinking water. Although this correlation has been established in many epidemiological studies, a lack of experimental models to study mechanisms of arsenic-related cardiovascular pathogenesis has limited our understanding of how arsenic exposure predisposes for development of hypertension and increased cardiovascular mortality. Our studies show that mice chronically exposed to drinking water containing 100 parts per billion (ppb) sodium arsenite for 22 weeks show an increase in both systolic and diastolic blood pressure. Echocardiographic analyses as well as histological assessment show concentric left ventricular hypertrophy, a primary cardiac manifestation of chronic hypertension. Live imaging by echocardiography shows a 43% increase in left ventricular mass in arsenic-treated animals. Relative wall thickness (RWT) was calculated showing that all the arsenic-exposed animals show an RWT greater than 0.45, indicating concentric hypertrophy. Importantly, left ventricular hypertrophy, although often associated with chronic hypertension, is an independent risk factor for cardiovascular-related mortalities. These results suggest that chronic low-level arsenite exposure promotes the development of hypertension and the comorbidity of concentric hypertrophy.

  17. [Cardiac cachexia].

    Science.gov (United States)

    Miján, Alberto; Martín, Elvira; de Mateo, Beatriz

    2006-05-01

    Chronic heart failure (CHF), especially affecting the right heart, frequently leads to malnutrition. If the latter is severe and is combined to other factors, it may lead to cardiac cachexia. This one is associated to increased mortality and lower survival of patients suffering from it. The causes of cardiac cachexia are diverse, generally associated to maintenance of a negative energy balance, with increasing evidence of its multifactorial origin. Neurohumoral, inflammatory, immunological, and metabolic factors, among others, are superimposed in the patient with CHF, leading to involvement and deterioration of several organs and systems, since this condition affects both lean (or active cellular) mass and adipose and bone tissue osteoporosis. Among all, the most pronounced deterioration may be seen at skeletal muscle tissue, at both structural and functional levels, the heart not being spared. As for treatment, it should be based on available scientific evidence. Assessment of nutritional status of any patient with CHF is a must, with the requirement of nutritional intervention in case of malnutrition. In this situation, especially if accompanied by cardiac cachexia, it is required to modify energy intake and oral diet quality, and to consider the indication of specific complementary or alternative artificial nutrition. Besides, the causal relationship of the beneficial role of moderate physical exertion is increasing, as well as modulation of metabolic and inflammatory impairments observed in cardiac cachexia with several drugs, leading to a favorable functional and structural response in CHF patients.

  18. Cardiac Pacemakers

    International Nuclear Information System (INIS)

    Fiandra, O.; Espasandin, W.; Fiandra, H.

    1984-01-01

    A complete survey of physiological biophysical,clinical and engineering aspects of cardiac facing,including the history and an assessment of possible future developments.Among the topics studied are: pacemakers, energy search, heart stimulating with pacemakers ,mathematical aspects of the electric cardio stimulation chronic, pacemaker implants,proceeding,treatment and control

  19. An elderly-onset limb girdle muscular dystrophy type 1B (LGMD1B) with pseudo-hypertrophy of paraspinal muscles.

    Science.gov (United States)

    Furuta, Mitsuru; Sumi-Akamaru, Hisae; Takahashi, Masanori P; Hayashi, Yukiko K; Nishino, Ichizo; Mochizuki, Hideki

    2016-09-01

    Mutations in LMNA, encoding A-type lamins, lead to diverse disorders, collectively called "laminopathies," which affect the striated muscle, cardiac muscle, adipose tissue, skin, peripheral nerve, and premature aging. We describe a patient with limb-girdle muscular dystrophy type 1B (LGMD1B) carrying a heterozygous p.Arg377His mutation in LMNA, in whom skeletal muscle symptom onset was at the age of 65 years. Her weakness started at the erector spinae muscles, which showed marked pseudo-hypertrophy even at the age of 72 years. Her first episode of syncope was at 44 years; however, aberrant cardiac conduction was not revealed until 60 years. The p.Arg377His mutation has been previously reported in several familial LMNA-associated myopathies, most of which showed muscle weakness before the 6th decade. This is the first report of pseudo-hypertrophy of paravertebral muscles in LMNA-associated myopathies. The pseudo-hypertrophy of paravertebral muscles and the elderly-onset of muscle weakness make this case unique and reportable. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. MiR-139-3p is related to left ventricular hypertrophy and cardiomyocyte apoptosis in two-kidney one-clip hypertensive rats

    Directory of Open Access Journals (Sweden)

    Yang Xiaomin

    2015-01-01

    Full Text Available MicroRNAs (miRNAs are important post-transcriptional regulators of gene expression in many physiological and pathological processes. Previous studies have reported the role of miR-139-3p in cancer. However, its specific roles and functions in the heart undergoing hypertrophy have yet to be fully elucidated. In the present study, a significant upregulation of miR-139-3p expression was demonstrated in the left ventricular myocardium of two-kidney one-clip (2K1C hypertensive rats using microarray and quantitative real-time PCR (qRT-PCR. Based on computational analysis, we observed that miR-139-3p can control the expression of mitogen-activated protein kinase 1 (MAPK1 as a target gene, which is essential for the induction of cardiac hypertrophy and cardiomyocyte apoptosis. This study provides first information that the highly expressed miR-139-3p might be closely involved in MAPK1-mediated cardiac hypertrophy and cardiomyocyte apoptotic processes in 2K1C rat.

  1. Phlorizin Prevents Glomerular Hyperfiltration but not Hypertrophy in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Slava Malatiali

    2008-01-01

    Full Text Available The relationships of renal and glomerular hypertrophies to development of hyperfiltration and proteinuria early in streptozotocin-induced diabetes were explored. Control, diabetic, phlorizin-treated controls, and diabetic male Fischer rats were used. Phlorizin (an Na+-glucose cotransport inhibitor was given at a dose sufficient to normalize blood glucose. Inulin clearance (Cinulin and protein excretion rate (PER were measured. For morphometry, kidney sections were stained with periodic acid Schiff. At one week, diabetes PER increased 2.8-folds (P<.001, Cinulin increased 80% (P<.01. Kidney wet and dry weights increased 10%–12% (P<.05, and glomerular tuft area increased 9.3% (P<.001. Phlorizin prevented proteinuria, hyperfiltration, and kidney hypertrophy, but not glomerular hypertrophy. Thus, hyperfiltration, proteinuria, and whole kidney hypertrophy were related to hyperglycemia but not to glomerular growth. Diabetic glomerular hypertrophy constitutes an early event in the progression of glomerular pathology which occurs in the absence of mesangial expansion and persists even after changes in protein excretion and GFR are reversed through glycemic control.

  2. Neurogenic muscle hypertrophy in a 12-year-old girl.

    Science.gov (United States)

    Zutelija Fattorini, Matija; Gagro, Alenka; Dapic, Tomislav; Krakar, Goran; Marjanovic, Josip

    2017-01-01

    Muscular hypertrophy secondary to denervation is very rare, but well-documented phenomena in adults. This is the first report of a child with neurogenic unilateral hypertrophy due to S1 radiculopathy. A 12-year-old girl presented with left calf hypertrophy and negative history of low back pain or trauma. The serum creatinine kinase level and inflammatory markers were normal. Magnetic resonance imaging showed muscle hypertrophy of the left gastrocnemius and revealed a protruded lumbar disc at the L5-S1 level. The protruded disc abuts the S1 root on the left side. Electromyography showed mild left S1 radiculopathy. Passive stretching and work load might clarify the origin of neurogenic hypertrophy but there is still a need for further evidence. Clinical, laboratory, magnetic resonance imaging and electromyography findings showed that S1 radiculopathy could be a cause of unilateral calf swelling in youth even in the absence of a history of back or leg pain. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  3. Effects of chronic Akt/mTOR inhibition by rapamycin on mechanical overload-induced hypertrophy and myosin heavy chain transition in masseter muscle.

    Science.gov (United States)

    Umeki, Daisuke; Ohnuki, Yoshiki; Mototani, Yasumasa; Shiozawa, Kouichi; Fujita, Takayuki; Nakamura, Yoshiki; Saeki, Yasutake; Okumura, Satoshi

    2013-01-01

    To examine the effects of the Akt/mammalian target of rapamycin (mTOR) pathway on masseter muscle hypertrophy and myosin heavy chain (MHC) transition in response to mechanical overload, we analyzed the effects of bite-opening (BO) on the hypertrophy and MHC composition of masseter muscle of BO-rats treated or not treated with rapamycin (RAPA), a selective mTOR inhibitor. The masseter muscle weight in BO-rats was significantly greater than that in controls, and this increase was attenuated by RAPA treatment. Expression of slow-twitch MHC isoforms was significantly increased in BO-rats with/without RAPA treatment, compared with controls, but the magnitude of the increase was much smaller in RAPA-treated BO-rats. Phosphorylation of p44/42 MAPK (ERK1/2), which preserves fast-twitch MHC isoforms in skeletal muscle, was significantly decreased in BO-rats, but the decrease was abrogated by RAPA treatment. Calcineurin signaling is known to be important for masseter muscle hypertrophy and fast-to-slow MHC isoform transition, but expression of known calcineurin activity modulators was unaffected by RAPA treatment. Taken together, these results indicate that the Akt/mTOR pathway is involved in both development of masseter muscle hypertrophy and fast-to