WorldWideScience

Sample records for attenuated vaccine development

  1. Research progress in live attenuated Brucella vaccine development.

    Science.gov (United States)

    Wang, Zhen; Wu, Qingmin

    2013-01-01

    Brucella spp. are facultative intracellular bacteria that cause brucellosis, which is a globally occurring zoonotic disease that is characterized by abortion in domestic animals and undulant fever, arthritis, endocarditis, and meningitis in humans. There are currently no licensed vaccines against brucellosis for human use, and only a few licensed live Brucella vaccines are available for use in animals. However, the available animal vaccines may cause abortion and are associated with lower protection rates in animals and higher virulence in humans. Much research has been performed recently to develop novel Brucella vaccines for the prevention and control of animal brucellosis. This article discusses the approaches and strategies for novel live attenuated vaccine development.

  2. Using recombinant DNA technology for the development of live-attenuated dengue vaccines.

    Science.gov (United States)

    Lee, Hsiang-Chi; Butler, Michael; Wu, Suh-Chin

    2012-07-15

    Dramatic increases in dengue (DEN) incidence and disease severity have been reported, in great part due to the geographic expansion of Aedes aegypti and Aedes albopictus mosquitoes. One result is the expanded co-circulation of all dengue 1-4 serotype viruses (DENV) in urban areas worldwide, especially in South and South-East Asia, and South America. DEN disease severity ranges from asymptomatic infections to febrile dengue fevers (DF) to life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). There is an urgent need for a safe and effective tetravalent DEN vaccine. Several live attenuated, tetravalent DEN vaccine candidates have been generated by recombinant DNA technology; these candidates are capable of providing immunity to all four DENV serotypes. In this paper we review (a) recombinant live-attenuated DEN vaccine candidates in terms of deletion, antigen chimerization, and the introduction of adaptive mutations; (b) strategies for improving tetravalent vaccine attenuation; and (c) live-attenuated DENV vaccine development.

  3. Development of a human live attenuated West Nile infectious DNA vaccine: conceptual design of the vaccine candidate.

    Science.gov (United States)

    Yamshchikov, Vladimir

    2015-10-01

    West Nile virus has become an important epidemiological problem attracting significant attention of health authorities, mass media, and the public. Although there are promising advancements toward addressing the vaccine need, the perspectives of the commercial availability of the vaccine remain uncertain. To a large extent this is due to lack of a sustained interest for further commercial development of the vaccines already undergoing the preclinical and clinical development, and a predicted insignificant cost effectiveness of mass vaccination. There is a need for a safe, efficacious and cost effective vaccine, which can improve the feasibility of a targeted vaccination program. In the present report, we summarize the background, the rationale, and the choice of the development pathway that we selected for the design of a live attenuated human West Nile vaccine in a novel infectious DNA format.

  4. Development of live attenuated sparfloxacin-resistant Streptococcus agalactiae polyvalent vaccines to protect Nile tilapia

    Science.gov (United States)

    To develop attenuated bacteria as potential live vaccines, sparfloxacin was used in this study to modify 40 isolates of Streptococcus agalactiae. Majority of S. agalactiae used in this study were able to develop at least 80-fold resistance to sparfloxacin. When the virulence of the sparfloxacin-resi...

  5. Development of live attenuated Streptococcus agalactiae as potential vaccines by selecting for resistance to sparfloxacin

    Science.gov (United States)

    To develop attenuated bacteria as potential live vaccines, sparfloxacin was used in this study to modify 40 isolates of Streptococcus agalactiae. Majority of S. agalactiae used in this study were able to develop at least 80-fold resistance to sparfloxacin. When the virulence of the sparfloxacin-resi...

  6. Development of a human live attenuated West Nile infectious DNA vaccine: Suitability of attenuating mutations found in SA14-14-2 for WN vaccine design.

    Science.gov (United States)

    Yamshchikov, Vladimir; Manuvakhova, Marina; Rodriguez, Efrain

    2016-01-01

    Direct attenuation of West Nile (WN) virus strain NY99 for the purpose of vaccine development is not feasible due to its high virulence and pathogenicity. Instead, we created highly attenuated chimeric virus W1806 with the serological identity of NY99. To further attenuate W1806, we investigated effects of mutations found in Japanese encephalitis virus vaccine SA14-14-2. WN viruses carrying all attenuating mutations lost infectivity in mammalian, but not in mosquito cells. No single reversion restored infectivity in mammalian cells, although increased infectivity in mosquito cells was observed. To identify a subset of mutations suitable for further attenuation of W1806, we analyzed effects of E138K and K279M changes on virulence, growth properties, and immunogenicity of derivatized W956, from which chimeric W1806 inherited its biological properties and attenuation profile. Despite strong dominant attenuating effect, introduction of only two mutations was not sufficient for attenuating W1806 to the safety level acceptable for human use.

  7. Development of live-attenuated arenavirus vaccines based on codon deoptimization of the viral glycoprotein.

    Science.gov (United States)

    Cheng, Benson Y H; Nogales, Aitor; de la Torre, Juan Carlos; Martínez-Sobrido, Luis

    2017-01-15

    Several arenaviruses, chiefly Lassa (LASV) in West Africa, cause hemorrhagic fever (HF) disease in humans and pose important public health problems in their endemic regions. To date, there are no FDA-approved arenavirus vaccines and current anti-arenaviral therapy is limited to the use of ribavirin that has very limited efficacy. In this work we document that a recombinant prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) with a codon deoptimized (CD) surface glycoprotein (GP), rLCMV/CD, exhibited wild type (WT)-like growth properties in cultured cells despite barely detectable GP expression levels in rLCMV/CD-infected cells. Importantly, rLCMV/CD was highly attenuated in vivo but able to induce complete protection against a subsequent lethal challenge with rLCMV/WT. Our findings support the feasibility of implementing an arenavirus GP CD-based approach for the development of safe and effective live-attenuated vaccines (LAVs) to combat diseases caused by human pathogenic arenaviruses.

  8. Live attenuated vaccines for invasive Salmonella infections.

    Science.gov (United States)

    Tennant, Sharon M; Levine, Myron M

    2015-06-19

    Salmonella enterica serovar Typhi produces significant morbidity and mortality worldwide despite the fact that there are licensed Salmonella Typhi vaccines available. This is primarily due to the fact that these vaccines are not used in the countries that most need them. There is growing recognition that an effective invasive Salmonella vaccine formulation must also prevent infection due to other Salmonella serovars. We anticipate that a multivalent vaccine that targets the following serovars will be needed to control invasive Salmonella infections worldwide: Salmonella Typhi, Salmonella Paratyphi A, Salmonella Paratyphi B (currently uncommon but may become dominant again), Salmonella Typhimurium, Salmonella Enteritidis and Salmonella Choleraesuis (as well as other Group C Salmonella). Live attenuated vaccines are an attractive vaccine formulation for use in developing as well as developed countries. Here, we describe the methods of attenuation that have been used to date to create live attenuated Salmonella vaccines and provide an update on the progress that has been made on these vaccines.

  9. Development of TV003/TV005, a single dose, highly immunogenic live attenuated dengue vaccine; what makes this vaccine different from the Sanofi-Pasteur CYD™ vaccine?

    Science.gov (United States)

    Whitehead, Stephen S

    2016-01-01

    Dengue is caused by four serotype-distinct dengue viruses (DENVs), and developing a multivalent vaccine against dengue has not been straightforward since partial immunity to DENV may predispose to more severe disease upon subsequent DENV infection. The vaccine that is furthest along in development is CYD™, a live attenuated tetravalent vaccine (LATV) produced by Sanofi Pasteur. Although the multi-dose vaccine demonstrated protection against severe dengue, its overall efficacy was limited by DENV serotype, serostatus at vaccination, region and age. The National Institute of Allergy and Infectious Diseases has developed the LATV dengue vaccines TV003/TV005. A single dose of either TV003 or TV005 induced seroconversion to four DENV serotypes in 74-92% (TV003) and 90% (TV005) of flavivirus seronegative adults and elicited near-sterilizing immunity to a second dose of vaccine administered 6-12 months later. The important differences in the structure, infectivity and immune responses to TV003/TV005 are compared with CYD™.

  10. Development of live attenuated Streptococcus agalactiae as potential vaccines by selecting for resistance to sparfloxacin.

    Science.gov (United States)

    Pridgeon, Julia W; Klesius, Phillip H

    2013-05-31

    To develop attenuated bacteria as potential live vaccines, sparfloxacin was used in this study to modify 40 isolates of Streptococcus agalactiae. Majority of S. agalactiae used in this study were able to develop at least 80-fold resistance to sparfloxacin. When the virulence of the sparfloxacin-resistant S. agalactiae isolates were tested in 10-12g Nile tilapia by intraperitoneal injection at dose of 2×10(7)CFU/fish, 31 were found to be avirulent to fish. Of the 31 avirulent sparfloxacin-resistant S. agalactiae isolates, 30 provided 75-100% protection to 10-12g Nile tilapia against challenges with a virulent S. agalactiae isolate Sag 50. When the virulence of the 30 sparfloxacin-resistant S. agalactiae isolates was tested in 3-5g Nile tilapia by intraperitoneal injection at dose of 2×10(7)CFU/fish, six were found to be avirulent to 3-5g Nile tilapia. Of the six avirulent sparfloxacin-resistant S. agalactiae isolates, four provided 3-5g Nile tilapia 100% protection against challenges with homologous isolates, including Sag 97-spar isolate that was non-hemolytic. However, Sag 97-spar failed to provide broad cross-protection against challenges with heterologous isolates. When Nile tilapia was vaccinated with a polyvalent vaccine consisting of 30 sparfloxacin-resistant S. agalactiae isolates at dose of 2×10(6)CFU/fish, the polyvalent vaccine provided significant (P<0.001) protection to both 3-5g and 15-20g Nile tilapia against challenges with 30 parent isolates of S. agalactiae. Taken together, our results suggest that a polyvalent vaccine consisting of various strains of S. agalactiae might be essential to provide broader protection to Nile tilapia against infections caused by S. agalactiae.

  11. Live attenuated influenza vaccine--a review.

    Science.gov (United States)

    Gasparini, R; Amicizia, D; Lai, P L; Panatto, D

    2011-09-01

    Owing to the variability of influenza viruses, vaccine composition needs to be up-dated annually. As many variables can influence their efficacy, vaccines are still considered "sub-optimal". Many studies have been carried out in recent years to improve vaccines. In particular, researchers and vaccine-producing corporations have focused on developing a live vaccine. Among the candidate vaccines, the strain developed by Maassab has recently been licensed in the USA and Europe, after extensive investigation. This vaccine is safe and well tolerated, and has shown very good genetic stability. Although vaccine recipients are able to spread the virus, transmission to close contacts is practically non-existent. Studies on cold-adapted attenuated influenza vaccines have demonstrated that such vaccines are effective, and sometimes more effective than inactivated influenza vaccines. Cold-adapted attenuated influenza vaccines therefore appear to be an important weapon against influenza. However, a more widespread use of these vaccines is to be recommended, especially in children, as the more acceptable way of administration can favour parental compliance.

  12. A pilot study comparing the development of EIAV Env-specific antibodies induced by DNA/recombinant vaccinia-vectored vaccines and an attenuated Chinese EIAV vaccine.

    Science.gov (United States)

    Meng, Qinglai; Lin, Yuezhi; Ma, Jian; Ma, Yan; Zhao, Liping; Li, Shenwei; Yang, Kai; Zhou, Jianhua; Shen, Rongxian; Zhang, Xiaoyan; Shao, Yiming

    2012-12-01

    Data from successful attenuated lentiviral vaccine studies indicate that fully mature Env-specific antibodies characterized by high titer, high avidity, and the predominant recognition of conformational epitopes are associated with protective efficacy. Although vaccination with a DNA prime/recombinant vaccinia-vectored vaccine boost strategy has been found to be effective in some trials with non-human primate/simian/human immunodeficiency virus (SHIV) models, it remains unclear whether this vaccination strategy could elicit mature equine infectious anemia virus (EIAV) Env-specific antibodies, thus protecting vaccinated horses against EIAV infection. Therefore, in this pilot study we vaccinated horses using a strategy based on DNA prime/recombinant Tiantan vaccinia (rTTV)-vectored vaccines encoding EIAV env and gag genes, and observed the development of Env-specific antibodies, neutralizing antibodies, and p26-specific antibodies. Vaccination with DNA induced low titer, low avidity, and the predominant recognition of linear epitopes by Env-specific antibodies, which was enhanced by boosting vaccinations with rTTV vaccines. However, the maturation levels of Env-specific antibodies induced by the DNA/rTTV vaccines were significantly lower than those induced by the attenuated vaccine EIAV(FDDV). Additionally, DNA/rTTV vaccines did not elicit broadly neutralizing antibodies. After challenge with a virulent EIAV strain, all of the vaccinees and control horses died from EIAV disease. These data indicate that the regimen of DNA prime/rTTV vaccine boost did not induce mature Env-specific antibodies, which might have contributed to immune protection failure.

  13. Development of live attenuated Streptococcus agalactiae vaccine for tilapia via continuous passage in vitro.

    Science.gov (United States)

    Li, L P; Wang, R; Liang, W W; Huang, T; Huang, Y; Luo, F G; Lei, A Y; Chen, M; Gan, X

    2015-08-01

    Fish Streptococcus agalactiae (S. agalactiae) seriously harms the world's aquaculture industry and causes huge economic losses. This study aimed to develop a potential live attenuated vaccine of S. agalactiae. Pre-screened vaccine candidate strain S. agalactiae HN016 was used as starting material to generate an attenuated strain S. agalactiae YM001 by continuous passage in vitro. The biological characteristics, virulence, and stability of YM001 were detected, and the protective efficacy of YM001 immunization in tilapia was also determined. Our results indicated that the growth, staining, characteristics of pulsed-field gel electrophoresis (PFGE) genotype, and virulence of YM001 were changed significantly as compared to the parental strain HN016. High doses of YM001 by intraperitoneal (IP) injection (1.0 × 10(9) CFU/fish) and oral gavage (1.0 × 10(10) CFU/fish) respectively did not cause any mortality and morbidity in tilapia. The relative percent survivals (RPSs) of fishes immunized with YM001 (1.0 × 10(8) CFU/fish, one time) via injection, immersion, and oral administration were 96.88, 67.22, and 71.81%, respectively, at 15 days, and 93.61, 60.56, and 53.16%, respectively, at 30 days. In all tests with 1-3 times of immunization in tilapia, the dosages at 1 × 10(8) and 1 × 10(9) CFU/fish displayed the similar best results, whereas the immunoprotection of the dosages at 1 × 10(6) and 1 × 10(7) CFU/fish declined significantly (P 0.05). The level of protective antibody elicited by oral immunization was significantly higher compared to that of the control group (P < 0.01), and the antibody reached their maximum levels 14-21 days after the immunization but decreased significantly after 28 days of vaccination. YM001 bacteria were isolated from the brain, liver, kidney, and spleen tissues of fish after oral immunization and the bacteria existed for the longest time in the spleen (up to 15 days). Taken together, this study obtained a safe, stable, and highly

  14. Generation of growth arrested Leishmania amastigotes: a tool to develop live attenuated vaccine candidates against visceral leishmaniasis.

    Science.gov (United States)

    Selvapandiyan, Angamuthu; Dey, Ranadhir; Gannavaram, Sreenivas; Solanki, Sumit; Salotra, Poonam; Nakhasi, Hira L

    2014-06-30

    Visceral leishmaniasis (VL) is fatal if not treated and is prevalent widely in the tropical and sub-tropical regions of world. VL is caused by the protozoan parasite Leishmania donovani or Leishmania infantum. Although several second generation vaccines have been licensed to protect dogs against VL, there are no effective vaccines against human VL [1]. Since people cured of leishmaniasis develop lifelong protection, development of live attenuated Leishmania parasites as vaccines, which can have controlled infection, may be a close surrogate to leishmanization. This can be achieved by deletion of genes involved in the regulation of growth and/or virulence of the parasite. Such mutant parasites generally do not revert to virulence in animal models even under conditions of induced immune suppression due to complete deletion of the essential gene(s). In the Leishmania life cycle, the intracellular amastigote form is the virulent form and causes disease in the mammalian hosts. We developed centrin gene deleted L. donovani parasites that displayed attenuated growth only in the amastigote stage and were found safe and efficacious against virulent challenge in the experimental animal models. Thus, targeting genes differentially expressed in the amastigote stage would potentially attenuate only the amastigote stage and hence controlled infectivity may be effective in developing immunity. This review lays out the strategies for attenuation of the growth of the amastigote form of Leishmania for use as live vaccine against leishmaniasis, with a focus on visceral leishmaniasis.

  15. [History of development of the live poliomyelitis vaccine from Sabin attenuated strains in 1959 and idea of poliomyelitis eradication].

    Science.gov (United States)

    Lashkevich, V A

    2013-01-01

    In 1958 Poliomyelitis Institute in Moscow and Institute of Experimental Medicine in St. Petersburg received from A. Sabin the attenuated strains of poliomyelitis virus. The characteristics of the strains were thoroughly studied by A. A. Smorodintsev and coworkers. They found that the virulence of the strains fluctuated slightly in 10 consecutive passages through the intestine of the non-immune children. A part of the Sabin material was used by A. A. Smorodintsev and M. P. Chumakov in the beginning of 1959 for immunizing approximately 40000 children in Estonia, Lithuania, and Latvia. Epidemic poliomyelitis rate in these republics decreased from approximately 1000 cases yearly before vaccination to less than 20 in the third quarter of 1959. This was a convincing proof of the efficacy and safety of the vaccine from the attenuated Sabin strains. In 1959, according to A. Sabin's recommendation, a technology of live vaccine production was developed at the Poliomyelitis Institute, and several experimental lots of vaccine were prepared. In the second part of 1959, 13.5 million children in USSR were immunized. The epidemic poliomyelitis rate decreased 3-5 times in different regions without paralytic cases, which could be attributed to the vaccination. These results were the final proof of high efficiency and safety of live poliomyelitis vaccine from the attenuated Sabin strains. Based on these results, A. Sabin and M. P. Chumakov suggested in 1960 the idea of poliomyelitis eradication using mass immunization of children with live vaccine. 72 million persons up to 20 years old were vaccinated in USSR in 1960 with a 5 times drop in the paralytic rate. 50-year-long use of live vaccine results in poliomyelitis eradication in almost all countries worldwide. More than 10 million children were rescued from the death and palsy. Poliomyelitis eradication in a few countries where it still exists depends not on medical services but is defined by the attitude of their leaders to fight

  16. Development and Characterization of recA Mutants of Campylobacter jejuni for Inclusion in Attenuated Vaccines

    Science.gov (United States)

    1994-02-01

    993. ol-o936 tinuet Nach .amkin, M. J. Blaser, and L. S. Tompkins (ed.), Campylobacier C~ampylobacterjejuni in the initiation of Guillain - Barre syndrome...colitis, reactive arthritis, and Guillain - An alternative approach to enteric vaccines is the develop- Barr6 syndrome (5. 36). An estimated 400 million

  17. Development of a live, oral, attenuated vaccine against El Tor cholera.

    Science.gov (United States)

    Taylor, D N; Killeen, K P; Hack, D C; Kenner, J R; Coster, T S; Beattie, D T; Ezzell, J; Hyman, T; Trofa, A; Sjogren, M H

    1994-12-01

    Vibrio cholerae El Tor strains from Peru, Bangladesh, and Bahrain were attenuated by deletion of a genetic element that encodes virulence factors and RS1. The B subunit of ctx (ctxB) was reintroduced into the recA gene of the deletion mutants, rendering them unable to recombine with exogenous genetic elements and generating Peru-3, Bang-3, and Bah-3. Fifteen volunteers received one dose of various vaccine strains at 4 x 10(6) to 1 x 10(8) cfu. All strains colonized the gut. A > or = 4-fold rise in vibriocidal titer was observed in 14 volunteers, with titers of > or = 1600 in 13. Peru-3 was the least reactogenic, but 2 of 6 volunteers had loose stools. Peru-14, a filamentous motility-deficient mutant of Peru-3, was well tolerated and colonized 18 of 21 volunteers at doses of 2 x 10(6) to 1 x 10(9) cfu. Also, when 8 Peru-3 or Peru-5 vaccinees, 5 Peru-14 vaccinees, and 8 controls were challenged with 2 x 10(6) cfu V. cholerae El Tor Inaba (N16961), 11 vaccinees were protected compared with no controls. Peru-14 shows promise as a safe, effective, single-dose oral vaccine against El Tor cholera.

  18. Live attenuated intranasal influenza vaccine.

    Science.gov (United States)

    Esposito, Susanna; Montinaro, Valentina; Groppali, Elena; Tenconi, Rossana; Semino, Margherita; Principi, Nicola

    2012-01-01

    Annual vaccination is the most effective means of preventing and controlling influenza epidemics, and the traditional trivalent inactivated vaccine (TIV) is by far the most widely used. Unfortunately, it has a number of limitations, the most important of which is its poor immunogenicity in younger children and the elderly, the populations at greatest risk of severe influenza. Live attenuated influenza vaccine (LAIV) has characteristics that can overcome some of these limitations. It does not have to be injected because it is administered intranasally. It is very effective in children and adolescents, among whom it prevents significantly more cases of influenza than the traditional TIV. However, its efficacy in adults has not been adequately documented, which is why it has not been licensed for use by adults by the European health authorities. LAIV is safe and well tolerated by children aged > 2 y and adults, but some concerns arisen regarding its safety in younger children and subjects with previous asthma or with recurrent wheezing. Further studies are needed to solve these problems and to evaluate the possible role of LAIV in the annual vaccination of the general population.

  19. Development of an acid-resistant Salmonella Typhi Ty21a attenuated vector for improved oral vaccine delivery

    Science.gov (United States)

    The licensed oral, live-attenuated bacterial vaccine for typhoid fever, Salmonella Typhi strain Ty21a, has also been utilized as a vaccine delivery platform for expression of diverse foreign antigens that stimulate protection against shigellosis, anthrax, plague, or human papilloma virus. However, T...

  20. Development of live attenuated Bordetella pertussis strains expressing the universal influenza vaccine candidate M2e.

    Science.gov (United States)

    Li, Rui; Lim, Annabelle; Ow, Stephanie T L; Phoon, Meng Chee; Locht, Camille; Chow, Vincent T; Alonso, Sylvie

    2011-07-26

    The attenuated Bordetella pertussis BPZE1 vaccine strain represents an attractive platform for the delivery of heterologous vaccine candidates via the nasal route. The filamentous hemagglutinin (FHA) has been used to secrete or expose the foreign antigens at the bacterial surface. In this study, one, two and three copies of the Cys-containing ectodomain of matrix protein 2 (M2e) from influenza A virus were genetically fused to full length FHA and expressed in BPZE1. The secretion efficacy of the FHA-(M2e)(1,2,3) chimera in the extracellular milieu and the ability of the recombinant bacteria to colonize the mouse lungs inversely correlated with the number of M2e copies fused to FHA. Nevertheless FHA-(M2e)(3)-producing bacteria (BPLR3) triggered the highest systemic anti-M2e antibody response upon nasal administration to BALB/c mice. Nasal immunization with BPLR3 bacteria resulted in a significant reduction in the viral loads upon challenge with H1N1/PR8 influenza A virus, but did not improve the survival rate compared to BPZE1-immunized mice. Furthermore, since previous work reported that disulfide bond formation in Cys-containing passenger antigens affects the secretion efficacy of the FHA chimera, the dsbA gene encoding a periplasmic disulfide isomerase was deleted in the FHA-(M2e)(3)-producing strain. Despite improving significantly the secretion efficacy of the FHA-(M2e)(3) chimera, the dsbA deletion did not result in higher anti-M2e antibody titers in mice, due to impaired bacterial fitness and colonization ability.

  1. Development of an oral DNA vaccine against MG7-Ag of gastric cancer using attenuated salmonella typhimurium as carrier

    Institute of Scientific and Technical Information of China (English)

    Chang-Cun Guo; Jie Ding; Bo-Rong Pan; Zhao-Cai Yu; Quan-Li Han; Fan-Ping Meng; Na Liu; Dai-Ming Fan

    2003-01-01

    AIM: To develop an oral DNA vaccine against gastric cancer and evaluate its efficacy in mice.METHODS: The genes of the MG7-Ag mimotope and a universal Th epitope (Pan-DR epitope, PADRE) were included in the PCR primers. By PCR, the fusion gene of the two epitopes was amplified. The fusion gene was confirmed by sequencing and was then cloned into pcDNA3.1(+) plasmid. The pcDNA3.1 (+)-MG7/PADRE was used to transfect an attenuated Salrmonella typhimuriurm.C57BL/6 mice were orally immunized with 1x108 cfu Salrmonella transfectants. Salmonella harboring the empty pcDNA3.1(+) plasmid and phosphate buffer saline (PBS)were used as negative controls. At the 6th week, serum titer of MG7-Ag specific antibody was detected by ELtSA.At the 8th week cellular immunity was detected by an unprimed proliferation test of the spleenocytes by using a [3H]-thymidine incorporation assay. Ehrlich ascites carcinoma cells expressing MG7-Ag were used as a model in tumor challenge assay to evaluate the protective effect of the vaccine.RESULTS: Serum titer of antibody against MG7-Ag was significantly higher in mice immunized with the vaccine than that in control groups (0.841 vs 0.347, P<0.01; 0.841 vs 0.298,P<0.01), while in vitro unprimed proliferation assay of the spleenocytes showed no statistical difference between those three groups. Two weeks after tumor challenge, 2 in 7 immunized mice were tumor free, while all the mice in the control groups showed tumor formation. CONCLUSION: Oral DNA vaccine against the MG7-Ag momitope of gastric cancer is immunogenic. It can induce significant humoral immunity against tumor in mice, and the vaccine has partially protective effects.

  2. Streptococcus iniae M-like protein contributes to virulence in fish and is a target for live attenuated vaccine development.

    Directory of Open Access Journals (Sweden)

    Jeffrey B Locke

    Full Text Available BACKGROUND: Streptococcus iniae is a significant pathogen in finfish aquaculture, though knowledge of virulence determinants is lacking. Through pyrosequencing of the S. iniae genome we have identified two gene homologues to classical surface-anchored streptococcal virulence factors: M-like protein (simA and C5a peptidase (scpI. METHODOLOGY/PRINCIPAL FINDINGS: S. iniae possesses a Mga-like locus containing simA and a divergently transcribed putative mga-like regulatory gene, mgx. In contrast to the Mga locus of group A Streptococcus (GAS, S. pyogenes, scpI is located distally in the chromosome. Comparative sequence analysis of the Mgx locus revealed only one significant variant, a strain with an insertion frameshift mutation in simA and a deletion mutation in a region downstream of mgx, generating an ORF which may encode a second putative mga-like gene, mgx2. Allelic exchange mutagenesis of simA and scpI was employed to investigate the potential role of these genes in S. iniae virulence. Our hybrid striped bass (HSB and zebrafish models of infection revealed that M-like protein contributes significantly to S. iniae pathogenesis whereas C5a peptidase-like protein does not. Further, in vitro cell-based analyses indicate that SiMA, like other M family proteins, contributes to cellular adherence and invasion and provides resistance to phagocytic killing. Attenuation in our virulence models was also observed in the S. iniae isolate possessing a natural simA mutation. Vaccination of HSB with the Delta simA mutant provided 100% protection against subsequent challenge with a lethal dose of wild-type (WT S. iniae after 1,400 degree days, and shows promise as a target for live attenuated vaccine development. CONCLUSIONS/SIGNIFICANCE: Analysis of M-like protein and C5a peptidase through allelic replacement revealed that M-like protein plays a significant role in S. iniae virulence, and the Mga-like locus, which may regulate expression of this gene, has an

  3. Dengue virus vaccine development.

    Science.gov (United States)

    Yauch, Lauren E; Shresta, Sujan

    2014-01-01

    Dengue virus (DENV) is a significant cause of morbidity and mortality in tropical and subtropical regions, causing hundreds of millions of infections each year. Infections range from asymptomatic to a self-limited febrile illness, dengue fever (DF), to the life-threatening dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). The expanding of the habitat of DENV-transmitting mosquitoes has resulted in dramatic increases in the number of cases over the past 50 years, and recent outbreaks have occurred in the United States. Developing a dengue vaccine is a global health priority. DENV vaccine development is challenging due to the existence of four serotypes of the virus (DENV1-4), which a vaccine must protect against. Additionally, the adaptive immune response to DENV may be both protective and pathogenic upon subsequent infection, and the precise features of protective versus pathogenic immune responses to DENV are unknown, complicating vaccine development. Numerous vaccine candidates, including live attenuated, inactivated, recombinant subunit, DNA, and viral vectored vaccines, are in various stages of clinical development, from preclinical to phase 3. This review will discuss the adaptive immune response to DENV, dengue vaccine challenges, animal models used to test dengue vaccine candidates, and historical and current dengue vaccine approaches.

  4. A novel live-attenuated vaccine candidate for mayaro Fever.

    Directory of Open Access Journals (Sweden)

    William J Weise

    2014-08-01

    Full Text Available Mayaro virus (MAYV is an emerging, mosquito-borne alphavirus that causes a dengue-like illness in many regions of South America, and which has the potential to urbanize. Because no specific treatment or vaccine is available for MAYV infection, we capitalized on an IRES-based approach to develop a live-attenuated MAYV vaccine candidate. Testing in infant, immunocompetent as well as interferon receptor-deficient mice demonstrated a high degree of attenuation, strong induction of neutralizing antibodies, and efficacy against lethal challenge. This vaccine strain was also unable to infect mosquito cells, a major safety feature for a live vaccine derived from a mosquito-borne virus. Further preclinical development of this vaccine candidate is warranted to protect against this important emerging disease.

  5. A novel live-attenuated vaccine candidate for mayaro Fever.

    Science.gov (United States)

    Weise, William J; Hermance, Meghan E; Forrester, Naomi; Adams, A Paige; Langsjoen, Rose; Gorchakov, Rodion; Wang, Eryu; Alcorn, Maria D H; Tsetsarkin, Konstantin; Weaver, Scott C

    2014-08-01

    Mayaro virus (MAYV) is an emerging, mosquito-borne alphavirus that causes a dengue-like illness in many regions of South America, and which has the potential to urbanize. Because no specific treatment or vaccine is available for MAYV infection, we capitalized on an IRES-based approach to develop a live-attenuated MAYV vaccine candidate. Testing in infant, immunocompetent as well as interferon receptor-deficient mice demonstrated a high degree of attenuation, strong induction of neutralizing antibodies, and efficacy against lethal challenge. This vaccine strain was also unable to infect mosquito cells, a major safety feature for a live vaccine derived from a mosquito-borne virus. Further preclinical development of this vaccine candidate is warranted to protect against this important emerging disease.

  6. Immunity to avian pneumovirus infection in turkeys following in ovo vaccination with an attenuated vaccine.

    Science.gov (United States)

    Worthington, Karen J; Sargent, Barbara A; Davelaar, F G; Jones, R C

    2003-03-28

    Fertile turkey eggs after 24 days of incubation were vaccinated in ovo with a commercial live attenuated subtype A avian pneumovirus (APV) vaccine. Hatchability was not adversely affected. When a high dose (10 times maximum commercial dose) of vaccine was tested in maternal antibody negative (MA-) eggs, mild clinical signs developed in a small proportion of the poults for 1-4 days only. Post-vaccination antibody titres at 3 weeks of age were significantly higher than those seen when the same dose was administered by eyedrop or spray at day-old. A low dose (end of shelf-life titre) of vaccine given to MA- eggs did not cause disease and vaccinated poults were 100% protected against virulent APV challenge at 3 or 5 weeks of age. Post-vaccination antibody titres reached significant levels at 3 weeks of age, whereas those from MA- poults vaccinated by spray at day-old with a similar low dose did not. In a 'worst-case' scenario, maternal antibody positive (MA+) poults vaccinated in ovo with the low dose were still 77% protected against clinical disease, despite lack of seroconversion. The recommended commercial dose of vaccine given to MA- eggs in ovo induced 100% protection against virulent APV challenge for up to 14 weeks of age, even though post-vaccination antibody titres had dropped to insignificant levels at this age. In ovo vaccination with a mixture of the recommended commercial doses of live APV and Newcastle disease (ND) vaccines had no detrimental affect on the efficacy of the APV vaccine. This is the first report of the successful use of an APV vaccine being given in ovo. The results indicate that for turkeys, in ovo vaccination with a live attenuated APV vaccine is safe and effective against virulent challenge and comparable with vaccination by conventional methods.

  7. Live attenuated varicella vaccine use in immunocompromised children and adults.

    Science.gov (United States)

    Gershon, A A; Steinberg, S P; Gelb, L

    1986-10-01

    Live attenuated varicella vaccine has been administered to 307 children with leukemia in remission and to 86 healthy adults. The vaccine was well tolerated and immunogenic. The major side effect in leukemic children receiving maintenance chemotherapy was development of a vaccine-associated rash. Vaccinees in whom a rash developed were potentially somewhat infectious to others about 1 month after immunization. Vaccination was not associated with an increase in the incidence of herpes zoster or in relapse of leukemia. Vaccination provided excellent protection against severe varicella. It was associated with a significant decrease in the attack rate of chickenpox following an intimate exposure to varicella-zoster virus, conferring about 80% protection in leukemic children. The cases of breakthrough varicella that occurred were mild. Thus, the vaccine may either prevent or modify varicella in high-risk individuals. It may also have use for prevention of nosocomial varicella.

  8. Blockade of CTLA-4 promotes the development of effector CD8+ T lymphocytes and the therapeutic effect of vaccination with an attenuated protozoan expressing NY-ESO-1.

    Science.gov (United States)

    Dos Santos, Luara Isabela; Galvão-Filho, Bruno; de Faria, Paula Cristina; Junqueira, Caroline; Dutra, Miriam Santos; Teixeira, Santuza Maria Ribeiro; Rodrigues, Maurício Martins; Ritter, Gerd; Bannard, Oliver; Fearon, Douglas Thomas; Antonelli, Lis Ribeiro; Gazzinelli, Ricardo Tostes

    2015-03-01

    The development of cancer immunotherapy has long been a challenge. Here, we report that prophylactic vaccination with a highly attenuated Trypanosoma cruzi strain expressing NY-ESO-1 (CL-14-NY-ESO-1) induces both effector memory and effector CD8(+) T lymphocytes that efficiently prevent tumor development. However, the therapeutic effect of such a vaccine is limited. We also demonstrate that blockade of Cytotoxic T Lymphocyte Antigen 4 (CTLA-4) during vaccination enhances the frequency of NY-ESO-1-specific effector CD8(+) T cells producing IFN-γ and promotes lymphocyte migration to the tumor infiltrate. As a result, therapy with CL-14-NY-ESO-1 together with anti-CTLA-4 is highly effective in controlling the development of an established melanoma.

  9. Development of an Acid-Resistant Salmonella Typhi Ty21a Attenuated Vector For Improved Oral Vaccine Delivery

    Science.gov (United States)

    Feuille, Catherine M.; Starke, Carly Elizabeth C.; Bhagwat, Arvind A.; Stibitz, Scott; Kopecko, Dennis J.

    2016-01-01

    The licensed oral, live-attenuated bacterial vaccine for typhoid fever, Salmonella enterica serovar Typhi strain Ty21a, has also been utilized as a vaccine delivery platform for expression of diverse foreign antigens that stimulate protection against shigellosis, anthrax, plague, or human papilloma virus. However, Ty21a is acid-labile and, for effective oral immunization, stomach acidity has to be either neutralized with buffer or by-passed with Ty21a in an enteric-coated capsule (ECC). Several studies have shown that efficacy is reduced when Ty21a is administered in an ECC versus as a buffered liquid formulation, the former limiting exposure to GI tract lymphoid tissues. However, the ECC was selected as a more practical delivery format for both packaging/shipping and vaccine administration ease. We have sought to increase Ty21a acid-resistance to allow for removal from the ECC and immune enhancement. To improve Ty21a acid-resistance, glutamate-dependent acid resistance genes (GAD; responsible for Shigella spp. survival at very low pH) were cloned on a multi-copy plasmid (pGad) under a controllable arabinose-inducible promoter. pGad enhanced acid survival of Ty21a by 5 logs after 3 hours at pH 2.5, when cells were pre-grown in arabinose and under conditions that promote an acid-tolerance response (ATR). For genetically 100% stable expression, we inserted the gad genes into the Ty21a chromosome, using a method that allowed for subsequent removal of a selectable antibiotic resistance marker. Further, both bacterial growth curves and survival assays in cultured human monocytes/macrophages suggest that neither the genetic methods employed nor the resulting acid-resistance conferred by expression of the Gad proteins in Ty21a had any effect on the existing attenuation of this vaccine strain. PMID:27673328

  10. Brunenders: a partially attenuated historic poliovirus type I vaccine strain.

    Science.gov (United States)

    Sanders, Barbara P; Liu, Ying; Brandjes, Alies; van Hoek, Vladimir; de Los Rios Oakes, Isabel; Lewis, John; Wimmer, Eckard; Custers, Jerome H H V; Schuitemaker, Hanneke; Cello, Jeronimo; Edo-Matas, Diana

    2015-09-01

    Brunenders, a type I poliovirus (PV) strain, was developed in 1952 by J. F. Enders and colleagues through serial in vitro passaging of the parental Brunhilde strain, and was reported to display partial neuroattenuation in monkeys. This phenotype of attenuation encouraged two vaccine manufacturers to adopt Brunenders as the type I component for their inactivated poliovirus vaccines (IPVs) in the 1950s, although today no licensed IPV vaccine contains Brunenders. Here we confirmed, in a transgenic mouse model, the report of Enders on the reduced neurovirulence of Brunenders. Although dramatically neuroattenuated relative to WT PV strains, Brunenders remains more virulent than the attenuated oral vaccine strain, Sabin 1. Importantly, the neuroattenuation of Brunenders does not affect in vitro growth kinetics and in vitro antigenicity, which were similar to those of Mahoney, the conventional type I IPV vaccine strain. We showed, by full nucleotide sequencing, that Brunhilde and Brunenders differ at 31 nucleotides, eight of which lead to amino acid changes, all located in the capsid. Upon exchanging the Brunenders capsid sequence with that of the Mahoney capsid, WT neurovirulence was regained in vivo, suggesting a role for the capsid mutations in Brunenders attenuation. To date, as polio eradication draws closer, the switch to using attenuated strains for IPV is actively being pursued. Brunenders preceded this novel strategy as a partially attenuated IPV strain, accompanied by decades of successful use in the field. Providing data on the attenuation of Brunenders may be of value in the further construction of attenuated PV strains to support the grand pursuit of the global eradication of poliomyelitis.

  11. Development of a dual-protective live attenuated vaccine against H5N1 and H9N2 avian influenza viruses by modifying the NS1 gene.

    Science.gov (United States)

    Choi, Eun-hye; Song, Min-Suk; Park, Su-Jin; Pascua, Philippe Noriel Q; Baek, Yun Hee; Kwon, Hyeok-il; Kim, Eun-Ha; Kim, Semi; Jang, Hyung-Kwan; Poo, Haryoung; Kim, Chul-Joong; Choi, Young Ki

    2015-07-01

    An increasing number of outbreaks of avian influenza H5N1 and H9N2 viruses in poultry have caused serious economic losses and raised concerns for human health due to the risk of zoonotic transmission. However, licensed H5N1 and H9N2 vaccines for animals and humans have not been developed. Thus, to develop a dual H5N1 and H9N2 live-attenuated influenza vaccine (LAIV), the HA and NA genes from a virulent mouse-adapted avian H5N2 (A/WB/Korea/ma81/06) virus and a recently isolated chicken H9N2 (A/CK/Korea/116/06) virus, respectively, were introduced into the A/Puerto Rico/8/34 backbone expressing truncated NS1 proteins (NS1-73, NS1-86, NS1-101, NS1-122) but still possessing a full-length NS gene. Two H5N2/NS1-LAIV viruses (H5N2/NS1-86 and H5N2/NS1-101) were highly attenuated compared with the full-length and remaining H5N2/NS-LAIV viruses in a mouse model. Furthermore, viruses containing NS1 modifications were found to induce more IFN-β activation than viruses with full-length NS1 proteins and were correspondingly attenuated in mice. Intranasal vaccination with a single dose (10(4.0) PFU/ml) of these viruses completely protected mice from a lethal challenge with the homologous A/WB/Korea/ma81/06 (H5N2), heterologous highly pathogenic A/EM/Korea/W149/06 (H5N1), and heterosubtypic highly virulent mouse-adapted H9N2 viruses. This study clearly demonstrates that the modified H5N2/NS1-LAIV viruses attenuated through the introduction of mutations in the NS1 coding region display characteristics that are desirable for live attenuated vaccines and hold potential as vaccine candidates for mammalian hosts.

  12. Rhodococcus equi (Prescottella equi) vaccines; the future of vaccine development.

    Science.gov (United States)

    Giles, C; Vanniasinkam, T; Ndi, S; Barton, M D

    2015-09-01

    For decades researchers have been targeting prevention of Rhodococcus equi (Rhodococcus hoagui/Prescottella equi) by vaccination and the horse breeding industry has supported the ongoing efforts by researchers to develop a safe and cost effective vaccine to prevent disease in foals. Traditional vaccines including live, killed and attenuated (physical and chemical) vaccines have proved to be ineffective and more modern molecular-based vaccines including the DNA plasmid, genetically attenuated and subunit vaccines have provided inadequate protection of foals. Newer, bacterial vector vaccines have recently shown promise for R. equi in the mouse model. This article describes the findings of key research in R. equi vaccine development and looks at alternative methods that may potentially be utilised.

  13. Development of prophylactic recombinant HPV58-attenuated Shigeila live vector vaccine and evaluation of its protective efficacy and immunogenicity in the guinea pig keratoconjunctivitis model

    Institute of Scientific and Technical Information of China (English)

    Wensheng Li; Hongli Liu; Xiaofeng Yang; Jin Zheng; Yili Wang; Lusheng Si

    2009-01-01

    To develop a prophylactic recombinant HPV58L1-attenuated Shigella live vector vaccine and evaluate its protective efficacy and immunogenicity in the guinea pig keratoconjunctivitis model, the HPV58L1 gene was cloned into vector pUCmt, and then subcloned into the suicide vector pCVD442. The recombinant plasmid pCVD442-HPV58L1 was introduced into attenuated Shigella (sf301:△virG) with the helper plasmid PRK2013 by filter mating. The positive colonies were harvested and confirmed by polymerase chain reaction. The expression of the HPV58L1 protein with a molecu-lar weight of 60 kDa was confirmed by western blot. The ability of the interested protein to self-assemble into virus-like particles was identified by transmission electron microscope, and murine erythrocyte hemagglu-tination assay. The guinea pig keratoconjunctivitis model was used to evaluate the protective efficacy and immunogenicity of the vaccine. Animal experiments showed that there was no keratoconjunctivitis occurred in the immunized group (HPV58-attenuated Shigella), and the serum levels of anti-HPV58L1-IgG and -IgA were obviously increased (P0.05). Enzyme-linked immunosorbent spot assay showed that HPV58L1-specific IgA-antibody-secreting cells (ASC) and IgG-ASC of spleen and lymph nodes were also obviously increased (P<0.01). In this study, a recombi-nant HPV58L1-attenuated Shigella live vector vaccine was successfully constructed, and it could induce strong humoral immune responses in the immunized animals, and induce protective antibody production.

  14. Inactivated polio vaccine development for technology transfer using attenuated Sabin poliovirus strains to shift from Salk-IPV to Sabin-IPV.

    Science.gov (United States)

    Bakker, Wilfried A M; Thomassen, Yvonne E; van't Oever, Aart G; Westdijk, Janny; van Oijen, Monique G C T; Sundermann, Lars C; van't Veld, Peter; Sleeman, Eelco; van Nimwegen, Fred W; Hamidi, Ahd; Kersten, Gideon F A; van den Heuvel, Nico; Hendriks, Jan T; van der Pol, Leo A

    2011-09-22

    Industrial-scale inactivated polio vaccine (IPV) production dates back to the 1960s when at the Rijks Instituut voor de Volksgezondheid (RIV) in Bilthoven a process was developed based on micro-carrier technology and primary monkey kidney cells. This technology was freely shared with several pharmaceutical companies and institutes worldwide. In this contribution, the history of one of the first cell-culture based large-scale biological production processes is summarized. Also, recent developments and the anticipated upcoming shift from regular IPV to Sabin-IPV are presented. Responding to a call by the World Health Organization (WHO) for new polio vaccines, the development of Sabin-IPV was continued, after demonstrating proof of principle in the 1990s, at the Netherlands Vaccine Institute (NVI). Development of Sabin-IPV plays an important role in the WHO polio eradication strategy as biocontainment will be critical in the post-OPV cessation period. The use of attenuated Sabin strains instead of wild-type Salk polio strains will provide additional safety during vaccine production. Initially, the Sabin-IPV production process will be based on the scale-down model of the current, and well-established, Salk-IPV process. In parallel to clinical trial material production, process development, optimization and formulation research is being carried out to further optimize the process and reduce cost per dose. Also, results will be shown from large-scale (to prepare for future technology transfer) generation of Master- and Working virus seedlots, and clinical trial material (for phase I studies) production. Finally, the planned technology transfer to vaccine manufacturers in low and middle-income countries is discussed.

  15. Clinical evaluation strategies for a live attenuated tetravalent dengue vaccine.

    Science.gov (United States)

    Precioso, Alexander Roberto; Palacios, Ricardo; Thomé, Beatriz; Mondini, Gabriella; Braga, Patrícia; Kalil, Jorge

    2015-12-10

    Butantan Institute is a public Brazilian biomedical research-manufacturer center affiliated to the São Paulo State Secretary of Health. Currently, Butantan is one of the main public producers of vaccines, antivenoms, and antitoxins in Latin America. The partnership between Butantan and the National Institutes of Health (NIH) of the United Sates has been one of the longest and most successful partnerships in the development and manufacturing of new vaccines. Recently, Butantan Institute has developed and manufactured a lyophilized tetravalent live attenuated dengue vaccine with the four dengue viruses attenuated and licensed from the Laboratory of Infectious Diseases at The National Institutes of Allergy and Infectious Diseases (LID/NIAID/NIH). The objective of this paper is to describe the clinical evaluation strategies of a live attenuated tetravalent dengue vaccine (Butantan-DV) developed and manufactured by Butantan Institute. These clinical strategies will be used to evaluate the Butantan-DV Phase III trial to support the Butantan-DV licensure for protection against any symptomatic dengue caused by any serotype in people aged 2 to 59 years.

  16. Issues Related to Recent Dengue Vaccine Development

    OpenAIRE

    Konishi, Eiji

    2011-01-01

    Dengue fever (DF) and dengue hemorrhagic fever (DHF) are mosquito-transmitted diseases of global importance. Despite significant research efforts, no approved vaccines or antiviral drugs against these diseases are currently available. This brief article reviews the status of dengue vaccine development, with particular emphasis on the vaccine strategies in more advanced stages of evaluation; these include traditional attenuation, chimerization and engineered attenuation. Several aspects of the...

  17. Induction of deletion mutation onompR gene ofSalmonella enterica serovar Typhi isolates from asymptomatic typhoid carriers to evolve attenuated strains for vaccine development

    Institute of Scientific and Technical Information of China (English)

    Senthilkumar B; Anbarasu K; Senbagam D; Rajasekarapandian M

    2014-01-01

    Objective:To develop attenuated strains ofSalmonella enterica serovar Typhi(S. typhi) for the candidate vaccine by osmolar stress.Methods:S. typhiSS3 andSS5 strains were isolated from asymptomatic typhoid carriers inNamakkal,TamilNadu,India.Both strains were grown inLB (LuriaBertani) medium supplemented with various concentration ofNaCl(0.1-0.7M) respectively. The effect of osmolar stress was determined at molecular level byPCR usingMGR06 andMGR 07 primers corresponding to ompR with chromosomalDNA of S. typhiSS3 andSS5 strains. Attenuation by osmolar stress results in deletion mutation of theS. typhi strains was determined by agglutination assays, precipitation method,SDSPAGE analysis and by animal models. Results:The799 bp amplifiedompRgene product from wild typeS. typhiSS3 andSS5 illustrate the presence of virulent gene.Interestingly, there was only a282 bp amplified product fromS. typhiSS3 andSS5 grown in the presence of0.5,0.6 and0.7MNaCl.This illustrates the occurrence of deletion mutation inompRgene at high concentration ofNaCl.Furthermore, both the wild-type and mutantS. typhi outer membraneSDS-PAGE profile reveals the differences in the expression ofompF,ompC andompA proteins.In mice, wild type and mutant strains lethal dose (LD50) were determined.The mice died within72 h when both the wild type strains were injected intraperitoneally with3 logCFU.mL-1.When the mice were injected with the mutants in same dosage, no clinical symptoms were observed; whereas the serum antibody titre was elicited within two weeks indicated that the mutants have the ability to induce protective humoral immune response.These results suggest thatS. typhiSS3 andSS5 may be used as good candidate strains for the development of live attenuated vaccine against salmonellosis.Conclusions:This study demonstrates that theS. typhistrains were attenuated and could be good vaccine candidates in future.

  18. The efficacy of an inhibin DNA vaccine delivered by attenuated Salmonella choleraesuis on follicular development and ovulation responses in crossbred buffaloes.

    Science.gov (United States)

    Liu, Qing; Han, Li; Rehman, Zia Ur; Dan, Xingang; Liu, Xiaoran; Bhattarai, Dinesh; Yang, Liguo

    2016-09-01

    The aim of this study was to evaluate the efficacy of an inhibin DNA vaccine delivered by attenuated Salmonella choleraesuis on follicular development and ovulation responses in crossbred buffaloes. A total of 158 crossbred buffaloes divided into four groups and were intramuscularly injected with 1×10(10) (T1, n=41), 1×10(9) (T2, n=37), 1×10(8) (T3, n=37) or 0 (C, n=43) CFU/ml bacteria delivered inhibin vaccine in 10ml PBS on day 0 and 14, respectively. All animals were administered with 1000 IU PMSG on day 28, 0.5mg PGF2α on day 30 and 200μg GnRH on day 32. The results showed buffaloes immunized with the bacteria delivered inhibin vaccine had significantly higher titers of anti-inhibin IgG antibody than control group (Pvaccine, coupled with the estrus synchronization protocol, could be used as an alternative approach to improve fertility in crossbred buffaloes.

  19. Attenuated and vectored vaccines protect nonhuman primates against Chikungunya virus

    Science.gov (United States)

    Ljungberg, Karl; Kümmerer, Beate M.; Gosse, Leslie; Dereuddre-Bosquet, Nathalie; Tchitchek, Nicolas; Hallengärd, David; García-Arriaza, Juan; Meinke, Andreas; Esteban, Mariano; Merits, Andres

    2017-01-01

    Chikungunya virus (CHIKV) is rapidly spreading across the globe, and millions are infected. Morbidity due to this virus is a serious threat to public health, but at present, there is no vaccine against this debilitating disease. We have recently developed a number of vaccine candidates, and here we have evaluated 3 of them in a nonhuman primate model. A single immunization with an attenuated strain of CHIKV (Δ5nsP3), a homologous prime-boost immunization with a DNA-launched RNA replicon encoding CHIKV envelope proteins (DREP-E), and a DREP-E prime followed by a recombinant modified vaccinia virus Ankara encoding CHIKV capsid and envelope (MVA-CE) boost all induced protection against WT CHIKV infection. The attenuated Δ5nsP3 virus proved to be safe and did not show any clinical signs typically associated with WT CHIKV infections such as fever, skin rash, lymphopenia, or joint swelling. These vaccines are based on an East/Central/South African strain of Indian Ocean lineage, but they also generated neutralizing antibodies against an isolate of the Asian genotype that now is rapidly spreading across the Americas. These results form the basis for clinical development of an efficacious CHIKV vaccine that generates both humoral and cellular immunity with long-term immunological memory. PMID:28352649

  20. Developing Vaccines to Combat Pandemic Influenza

    Directory of Open Access Journals (Sweden)

    Othmar G. Engelhardt

    2010-02-01

    Full Text Available Influenza vaccine manufacturers require antigenically relevant vaccine viruses that have good manufacturing properties and are safe to use. In developing pandemic vaccine viruses, reverse genetics has been employed as a rational approach that can also be used effectively to attenuate the highly virulent H5N1 virus and at the same time place the H5 HA and N1 NA on a background of PR8, a virus that has been used over many decades to provide high yielding vaccine viruses. Reverse genetics has also been used successfully alongside classical reassorting techniques in the development of (swine flu pandemic A(H1N1v vaccine viruses.

  1. Vaccine development using recombinant DNA technology

    Science.gov (United States)

    Vaccines induce an immune response in the host that subsequently recognizes infectious agents and helps fight off the disease; vaccines must do this without causing the disease. This paper reviews the development of recombinant DNA technologies as a means of providing new ways for attenuating diseas...

  2. Live attenuated vaccines: Historical successes and current challenges

    Energy Technology Data Exchange (ETDEWEB)

    Minor, Philip D., E-mail: Philip.Minor@nibsc.org

    2015-05-15

    Live attenuated vaccines against human viral diseases have been amongst the most successful cost effective interventions in medical history. Smallpox was declared eradicated in 1980; poliomyelitis is nearing global eradication and measles has been controlled in most parts of the world. Vaccines function well for acute diseases such as these but chronic infections such as HIV are more challenging for reasons of both likely safety and probable efficacy. The derivation of the vaccines used has in general not been purely rational except in the sense that it has involved careful clinical trials of candidates and subsequent careful follow up in clinical use; the identification of the candidates is reviewed. - Highlights: • Live vaccines against human diseases caused by viruses have been very successful. • They have been developed by empirical clinical studies and problems identified in later use. • It can be difficult to balance ability to cause disease and ability to immunise for a strain. • There is currently no reliable basis for predicting success from pure virological studies. • Vaccinia, which eradicated smallpox, is the paradigm for all successes and issues.

  3. Multiple vaccinations with UV- attenuated cercariae in pig enhance protective immunity against Schistosoma japonicum infection as compared to single vaccination

    Directory of Open Access Journals (Sweden)

    Zhang Donghui

    2011-06-01

    Full Text Available Abstract Background Schistosomiasis japonica is a major public health problem in the endemic areas of China, the Philippines, and Indonesia. To date, a vaccine has not been developed against this disease but immunization with UV-attenuated cercariae can induce a high level of protective immunity in Landrace/Yorkshire/Duroc crossbred pigs. To compare the efficacy of a single vaccination and multiple vaccinations with UV-attenuated Schistosoma japonicum cercariae, two groups of pigs received either one or three exposures to 10,000 cercariae attenuated with 400 μw UV. Results Pigs with a single immunization had a 59.33% reduction in adult worm burden, a 89.87% reduction in hepatic eggs and a 86.27% reduction in fecal eggs at eight weeks post-challenge (P P Conclusion The high levels of protection against S. japonicum infection can be achieved with a UV-attenuated vaccine in pigs, and that three vaccinations were possibly more effective than a single vaccination. Moreover, triple vaccinations evoked a more vigorous IFN-γ response and a stronger antibody-mediated response, especially an increase in the levels of IgG2 antibodies.

  4. Live attenuated varicella vaccine in children with leukemia in remission.

    Science.gov (United States)

    Gershon, A A; Steinberg, S; Galasso, G; Borkowsky, W; Larussa, P; Ferrara, A; Gelb, L

    1984-09-01

    One-hundred-ninety-one children with acute leukemia in remission for at least one year were immunized with 1 or more doses of live attenuated varicella vaccine. All were susceptible to varicella prior to vaccination. The only significant side effect was mild to moderate rash, seen especially in children with maintenance chemotherapy temporarily suspended for one week before and one week after vaccination. Children with rash were at some risk (10%) to transmit vaccine virus to varicella susceptibles with whom they had close contact.

  5. Development of an attenuated live vaccine against highly pathogenic porcine reproductive and respiratory syndrome%高致病性猪繁殖与呼吸综合征活疫苗的研制

    Institute of Scientific and Technical Information of China (English)

    冷雪; 李真光; 夏铭崎; 和彦良; 武华

    2011-01-01

    将高致病性猪繁殖与呼吸综合征病毒致弱株TJM株与耐热冻干保护剂混合制备弱毒活疫苗,并对该活疫苗进行安全性、免疫保护效果和保存期试验。结果显示,4~5周龄仔猪接种该疫苗后体温正常,无任何临床可见异常。该疫苗接种猪对强毒攻击的保护率达4/5以上;将其置于2~8℃保存24个月,病毒效价降低不超过100.5 TCID50/mL。表明该疫苗对猪安全,免疫保护效果良好,且便于保存。%An attenuated highly pathogenic porcine reproductive and respiratory syndrome virus(HP-PRRSV) vaccine was developed by blending the attenuated HP-PRRSV TJM strain with heat endurable protective agent.The safety and efficacy(immunogenicity) in host animals and the period of validity at 2 to 8℃ of the vaccine were tested. In order to test the safety of the vaccine,4 to 5 weeks-old pigs were inoculated with 2mL(106.7TCID50/mL) of the vaccine.In the efficacy study,4 to 5 weeks-old pigs were vaccinated with 1mL of 105.0TCID50 of the vaccine. The animals were challenged with virulent virus on day 28 post-vaccination. To determine the period of validity,the vaccine was sampled on month 3,6,9,12,18,21,and 24 post-vaccination at 2 to 8℃ to test the virus titer. Results revealed that the pigs did not show any clinical diseases post-vaccination.Immunogenicity study demonstrated that the vaccine provided at least four fifths protection to pigs against the HP-PRRSV infection and clinical diseases caused by the challenge.The virus titer decreased no more than 100.5TCID50/mL after 24 month at 2 to 8℃. The results indicated that the vaccine is safe,efficacy to host animals,and easy to be reserved.

  6. Current status of toxoplasmosis vaccine development.

    Science.gov (United States)

    Kur, Józef; Holec-Gasior, Lucyna; Hiszczyńska-Sawicka, Elzbieta

    2009-06-01

    Toxoplasmosis, caused by an intracellular protozoan parasite, Toxoplasma gondii, is widespread throughout the world. The disease is of major medical and veterinary importance, being a cause of congenital disease and abortion in humans and domestic animals. In addition, recently it has gained importance owing to toxoplasma encephalitis in AIDS patients. In the last few years, there has been considerable progress towards the development of a vaccine for toxoplasmosis, and a vaccine based on the live-attenuated S48 strain was developed for veterinary uses. However, this vaccine is expensive, causes side effects and has a short shelf life. Furthermore, this vaccine may revert to a pathogenic strain and, therefore, is not suitable for human use. Various experimental studies have shown that it may be possible to develop a vaccine against human toxoplasmosis. Recent progress in knowledge of the protective immune response generated by T. gondii and the current status of development of a vaccine for toxoplasmosis are highlighted.

  7. The Case for Live Attenuated Vaccines against the Neglected Zoonotic Diseases Brucellosis and Bovine Tuberculosis

    Science.gov (United States)

    Pandey, Aseem; Cabello, Ana; Akoolo, Lavoisier; Rice-Ficht, Allison; Arenas-Gamboa, Angela; McMurray, David; Ficht, Thomas A.; de Figueiredo, Paul

    2016-01-01

    Vaccination of humans and animals with live attenuated organisms has proven to be an effective means of combatting some important infectious diseases. In fact, the 20th century witnessed tremendous improvements in human and animal health worldwide as a consequence of large-scale vaccination programs with live attenuated vaccines (LAVs). Here, we use the neglected zoonotic diseases brucellosis and bovine tuberculosis (BTb) caused by Brucella spp. and Mycobacterium bovis (M. bovis), respectively, as comparative models to outline the merits of LAV platforms with emphasis on molecular strategies that have been pursued to generate LAVs with enhanced vaccine safety and efficacy profiles. Finally, we discuss the prospects of LAV platforms in the fight against brucellosis and BTb and outline new avenues for future research towards developing effective vaccines using LAV platforms. PMID:27537413

  8. Genetically attenuated Trypanosoma cruzi parasites as a potential vaccination tool

    OpenAIRE

    2012-01-01

    Chagas disease is the clinical manifestation of the infection produced by the parasite Trypanosoma cruzi. Currently there is no vaccine to prevent this disease and the protection attained with vaccines containing non-replicating parasites is limited. Genetically attenuated trypanosomatid parasites can be obtained by deletion of selected genes. Gene deletion takes advantage of the fact that this parasite can undergo homologous recombination between endogenous and foreign DNA sequences artifici...

  9. Mucosal vaccination with an attenuated maedi-visna virus clone.

    Science.gov (United States)

    Pétursson, Gudmundur; Matthíasdóttir, Sigrídur; Svansson, Vilhjálmur; Andrésdóttir, Valgerdur; Georgsson, Gudmundur; Martin, Agnes H; Agnarsdóttir, Gudrún; Gísladóttir, Eygló; Arnadóttir, Steinunn; Högnadóttir, Svava; Jónsson, Stefán Ragnar; Andrésson, Olafur S; Torsteinsdóttir, Sigurbjörg

    2005-05-02

    Four sheep were infected intratracheally with an attenuated molecular clone of maedi-visna virus (MVV). All four became infected. Ten months later these sheep were challenged intratracheally with a genetically similar but pathogenic clone of MVV. Four unvaccinated sheep were infected simultaneously. All sheep became infected by the challenge virus. The vaccinated sheep were not protected against superinfection with the challenge clone. However, virus was isolated more frequently from the blood of the unvaccinated controls than of the vaccinated animals and ten times more frequently from lungs of unvaccinated sheep than from lungs of vaccinated sheep at sacrifice, indicating partial protection.

  10. Single-dose attenuated Vesiculovax vaccines protect primates against Ebola Makona virus.

    Science.gov (United States)

    Mire, Chad E; Matassov, Demetrius; Geisbert, Joan B; Latham, Theresa E; Agans, Krystle N; Xu, Rong; Ota-Setlik, Ayuko; Egan, Michael A; Fenton, Karla A; Clarke, David K; Eldridge, John H; Geisbert, Thomas W

    2015-04-30

    The family Filoviridae contains three genera, Ebolavirus (EBOV), Marburg virus, and Cuevavirus. Some members of the EBOV genus, including Zaire ebolavirus (ZEBOV), can cause lethal haemorrhagic fever in humans. During 2014 an unprecedented ZEBOV outbreak occurred in West Africa and is still ongoing, resulting in over 10,000 deaths, and causing global concern of uncontrolled disease. To meet this challenge a rapid-acting vaccine is needed. Many vaccine approaches have shown promise in being able to protect nonhuman primates against ZEBOV. In response to the current ZEBOV outbreak several of these vaccines have been fast tracked for human use. However, it is not known whether any of these vaccines can provide protection against the new outbreak Makona strain of ZEBOV. One of these approaches is a first-generation recombinant vesicular stomatitis virus (rVSV)-based vaccine expressing the ZEBOV glycoprotein (GP) (rVSV/ZEBOV). To address safety concerns associated with this vector, we developed two candidate, further-attenuated rVSV/ZEBOV vaccines. Both attenuated vaccines produced an approximately tenfold lower vaccine-associated viraemia compared to the first-generation vaccine and both provided complete, single-dose protection of macaques from lethal challenge with the Makona outbreak strain of ZEBOV.

  11. Developing vaccines against pandemic influenza.

    OpenAIRE

    Wood, J M

    2001-01-01

    Pandemic influenza presents special problems for vaccine development. There must be a balance between rapid availability of vaccine and the safeguards to ensure safety, quality and efficacy of vaccine. Vaccine was developed for the pandemics of 1957, 1968, 1977 and for the pandemic alert of 1976. This experience is compared with that gained in developing vaccines for a possible H5N1 pandemic in 1997-1998. Our ability to mass produce influenza vaccines against a pandemic threat was well illust...

  12. BCG vaccines: their mechanisms of attenuation and impact on safety and protective efficacy.

    Science.gov (United States)

    Liu, Jun; Tran, Vanessa; Leung, Andrea S; Alexander, David C; Zhu, Baoli

    2009-02-01

    Mycobacterium bovis Bacille Calmette-Guérin (BCG) was developed as an attenuated live vaccine for tuberculosis control nearly a century ago. Despite being the most widely used vaccine in human history, the mechanisms of attenuation of BCG remain poorly understood. BCG is not a single organism, but comprises a number of substrains that differ in genotypes and phenotypes. The impacts of these differences on BCG vaccine properties are largely unknown. Nevertheless, in the past decade, the development of sophisticated genome analysis techniques, coupled with advances in knowledge of the virulence mechanisms of Mycobacterium tuberculosis, have provided greater insights into the attenuation and evolution of BCG. This review article discusses these new developments, focusing on molecular mechanisms that contribute to the attenuation of BCG substrains. It is evident that BCG strains comprise natural mutants of major virulence factors of M. tb, including ESX-1, PDIM/PGL and PhoP, and that BCG substrains differ markedly in virulence level. The impacts of these findings on vaccine properties including adverse reaction effect, tuberculin reactivity and protective efficacy are discussed. These new insights have extremely important implications for national immunization programs and the development of future vaccines.

  13. Low dose vaccination with attenuated Francisella tularensis strain SchuS4 mutants protects against tularemia independent of the route of vaccination.

    Science.gov (United States)

    Rockx-Brouwer, Dedeke; Chong, Audrey; Wehrly, Tara D; Child, Robert; Crane, Deborah D; Celli, Jean; Bosio, Catharine M

    2012-01-01

    Tularemia, caused by the gram-negative bacterium Francisella tularensis, is a severe, sometimes fatal disease. Interest in tularemia has increased over the last decade due to its history as a biological weapon. In particular, development of novel vaccines directed at protecting against pneumonic tularemia has been an important goal. Previous work has demonstrated that, when delivered at very high inoculums, administration of live, highly attenuated strains of virulent F. tularensis can protect against tularemia. However, lower vaccinating inoculums did not offer similar immunity. One concern of using live vaccines is that the host may develop mild tularemia in response to infection and use of high inoculums may contribute to this issue. Thus, generation of a live vaccine that can efficiently protect against tularemia when delivered in low numbers, e.g. tularemia when delivered at concentrations of approximately 50 or fewer bacteria. Attenuated strains for use as vaccines were selected by their inability to efficiently replicate in macrophages in vitro and impaired replication and dissemination in vivo. Although all strains were defective for replication in vitro within macrophages, protective efficacy of each attenuated mutant was correlated with their ability to modestly replicate and disseminate in the host. Finally, we demonstrate the parenteral vaccination with these strains offered superior protection against pneumonic tularemia than intranasal vaccination. Together our data provides proof of principle that low dose attenuated vaccines may be a viable goal in development of novel vaccines directed against tularemia.

  14. Clinical development of Ebola vaccines.

    Science.gov (United States)

    Sridhar, Saranya

    2015-09-01

    The ongoing outbreak of Ebola virus disease in West Africa highlighted the lack of a licensed drug or vaccine to combat the disease and has renewed the urgency to develop a pipeline of Ebola vaccines. A number of different vaccine platforms are being developed by assessing preclinical efficacy in animal models and expediting clinical development. Over 15 different vaccines are in preclinical development and 8 vaccines are now in different stages of clinical evaluation. These vaccines include DNA vaccines, virus-like particles and viral vectors such as live replicating vesicular stomatitis virus (rVSV), human and chimpanzee adenovirus, and vaccinia virus. Recently, in preliminary results reported from the first phase III trial of an Ebola vaccine, the rVSV-vectored vaccine showed promising efficacy. This review charts this rapidly advancing area of research focusing on vaccines in clinical development and discusses the future opportunities and challenges faced in the licensure and deployment of Ebola vaccines.

  15. Kissing-loop interaction between 5' and 3' ends of tick-borne Langat virus genome 'bridges the gap' between mosquito- and tick-borne flaviviruses in mechanisms of viral RNA cyclization: applications for virus attenuation and vaccine development.

    Science.gov (United States)

    Tsetsarkin, Konstantin A; Liu, Guangping; Shen, Kui; Pletnev, Alexander G

    2016-04-20

    Insertion of microRNA target sequences into the flavivirus genome results in selective tissue-specific attenuation and host-range restriction of live attenuated vaccine viruses. However, previous strategies for miRNA-targeting did not incorporate a mechanism to prevent target elimination under miRNA-mediated selective pressure, restricting their use in vaccine development. To overcome this limitation, we developed a new approach for miRNA-targeting of tick-borne flavivirus (Langat virus, LGTV) in the duplicated capsid gene region (DCGR). Genetic stability of viruses with DCGR was ensured by the presence of multiple cis-acting elements within the N-terminal capsid coding region, including the stem-loop structure (5'SL6) at the 3' end of the promoter. We found that the 5'SL6 functions as a structural scaffold for the conserved hexanucleotide motif at its tip and engages in a complementary interaction with the region present in the 3' NCR to enhance viral RNA replication. The resulting kissing-loop interaction, common in tick-borne flaviviruses, supports a single pair of cyclization elements (CYC) and functions as a homolog of the second pair of CYC that is present in the majority of mosquito-borne flaviviruses. Placing miRNA targets into the DCGR results in superior attenuation of LGTV in the CNS and does not interfere with development of protective immunity in immunized mice.

  16. Vaccines in Development against West Nile Virus

    Directory of Open Access Journals (Sweden)

    Frederic Tangy

    2013-09-01

    Full Text Available West Nile encephalitis emerged in 1999 in the United States, then rapidly spread through the North American continent causing severe disease in human and horses. Since then, outbreaks appeared in Europe, and in 2012, the United States experienced a new severe outbreak reporting a total of 5,387 cases of West Nile virus (WNV disease in humans, including 243 deaths. So far, no human vaccine is available to control new WNV outbreaks and to avoid worldwide spreading. In this review, we discuss the state-of-the-art of West Nile vaccine development and the potential of a novel safe and effective approach based on recombinant live attenuated measles virus (MV vaccine. MV vaccine is a live attenuated negative-stranded RNA virus proven as one of the safest, most stable and effective human vaccines. We previously described a vector derived from the Schwarz MV vaccine strain that stably expresses antigens from emerging arboviruses, such as dengue, West Nile or chikungunya viruses, and is strongly immunogenic in animal models, even in the presence of MV pre-existing immunity. A single administration of a recombinant MV vaccine expressing the secreted form of WNV envelope glycoprotein elicited protective immunity in mice and non-human primates as early as two weeks after immunization, indicating its potential as a human vaccine.

  17. Viral Inhibition of the IFN-Induced JAK/STAT Signalling Pathway: Development of Live Attenuated Vaccines by Mutation of Viral-Encoded IFN-Antagonists

    Directory of Open Access Journals (Sweden)

    Stephen B. Fleming

    2016-06-01

    Full Text Available The interferon (IFN induced anti-viral response is amongst the earliest and most potent of the innate responses to fight viral infection. The induction of the Janus kinase/signal transducer and activation of transcription (JAK/STAT signalling pathway by IFNs leads to the upregulation of hundreds of interferon stimulated genes (ISGs for which, many have the ability to rapidly kill viruses within infected cells. During the long course of evolution, viruses have evolved an extraordinary range of strategies to counteract the host immune responses in particular by targeting the JAK/STAT signalling pathway. Understanding how the IFN system is inhibited has provided critical insights into viral virulence and pathogenesis. Moreover, identification of factors encoded by viruses that modulate the JAK/STAT pathway has opened up opportunities to create new anti-viral drugs and rationally attenuated new generation vaccines, particularly for RNA viruses, by reverse genetics.

  18. A replication-deficient rabies virus vaccine expressing Ebola virus glycoprotein is highly attenuated for neurovirulence

    Energy Technology Data Exchange (ETDEWEB)

    Papaneri, Amy B. [Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, MD 21702 (United States); Wirblich, Christoph [Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Cann, Jennifer A.; Cooper, Kurt [Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick MD, 21702 (United States); Jahrling, Peter B. [Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, MD 21702 (United States); Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick MD, 21702 (United States); Schnell, Matthias J., E-mail: matthias.schnell@jefferson.edu [Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Jefferson Vaccine Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Blaney, Joseph E., E-mail: jblaney@niaid.nih.gov [Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, MD 21702 (United States)

    2012-12-05

    We are developing inactivated and live-attenuated rabies virus (RABV) vaccines expressing Ebola virus (EBOV) glycoprotein for use in humans and endangered wildlife, respectively. Here, we further characterize the pathogenesis of the live-attenuated RABV/EBOV vaccine candidates in mice in an effort to define their growth properties and potential for safety. RABV vaccines expressing GP (RV-GP) or a replication-deficient derivative with a deletion of the RABV G gene (RV{Delta}G-GP) are both avirulent after intracerebral inoculation of adult mice. Furthermore, RV{Delta}G-GP is completely avirulent upon intracerebral inoculation of suckling mice unlike parental RABV vaccine or RV-GP. Analysis of RV{Delta}G-GP in the brain by quantitative PCR, determination of virus titer, and immunohistochemistry indicated greatly restricted virus replication. In summary, our findings indicate that RV-GP retains the attenuation phenotype of the live-attenuated RABV vaccine, and RV{Delta}G-GP would appear to be an even safer alternative for use in wildlife or consideration for human use.

  19. 78 FR 43219 - Prospective Grant of Exclusive License: Live Attenuated Dengue Tetravalent Vaccine Containing a...

    Science.gov (United States)

    2013-07-19

    ... means for prevention of dengue infection and dengue hemorrhagic fever (DHF) by immunization with... Dengue Tetravalent Vaccine Containing a Common 30 Nucleotide Deletion in the 3'-UTR of Dengue Types 1, 2... et al., ``Development of Mutations Useful for Attenuating Dengue Viruses and Chimeric Dengue...

  20. Augmented particle trapping and attenuated inflammation in the liver by protective vaccination against Plasmodium chabaudi malaria

    Directory of Open Access Journals (Sweden)

    Dkhil Mohamed A

    2009-04-01

    Full Text Available Abstract Background To date all efforts to develop a malaria vaccine have failed, reflecting the still fragmentary knowledge about protective mechanisms against malaria. In order to evaluate if vaccination changes responses of the anti-malaria effectors spleen and liver to blood stage malaria, BALB/c mice succumbing to infection with Plasmodium chabaudi were compared to those surviving after vaccination. Methods Mice were vaccinated with host cell plasma membranes isolated from P. chabaudi-infected erythrocytes. Hepatic and splenic capacity to trap particulate material was determined after injection of fluorescent polystyrol beads. Hepatic gene expression was measured using real-time RT-PCR and Northern blotting. Results Survival of BALB/c mice was raised from 0% to 80% and peak parasitaemia was decreased by about 30% by vaccination. Vaccination boosted particle trapping capacity of the liver during crisis when splenic trapping is minimal due to spleen 'closing'. It also attenuated malaria-induced inflammation, thus diminishing severe damages and hence liver failure. Vaccination increased hepatic IFN-γ production but mitigated acute phase response. Vaccination has a complex influence on infection-induced changes in expression of hepatic nuclear receptors (CAR, FXR, RXR, and PXR and of the metabolic enzymes Sult2a and Cyp7a1. Although vaccination decreased CAR mRNA levels and prevented Cyp7a1 suppression by the CAR ligand 1,2-bis [2-(3,5-dichloropyridyloxy]benzene (TCPOBOP on day 8 p.i., Sult2a-induction by TCPOBOP was restored. Conclusion These data support the view that the liver is an essential effector site for a vaccine against blood stage malaria: vaccination attenuates malaria-induced inflammation thus improving hepatic metabolic activity and particle trapping activity of the liver.

  1. Schistosoma japonicum: An ultraviolet-attenuated cercarial vaccine applicable in the field for water buffaloes

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Y.E.; Jiang, C.F.; Han, J.J.; Li, Y.L.; Ruppel, A. (Tongii Medical Univ., Wuhan, Hubei Province (China))

    1990-07-01

    Water buffaloes were vaccinated three times with 10,000 Schistosoma japonicum cercariae irradiated with ultraviolet (uv) light at a dose of 400 microW x min/cm2. The irradiation was performed with cheap, simple, and portable equipment in a rural area of Hubei Province (People's Republic of China). A challenge infection of 1000 untreated cercariae was given to six vaccinated and six naive control buffaloes, while two vaccinated animals were not challenged. The experiment was terminated 6 weeks after the challenge. Control animals had lost body weight and harbored a mean of 110 worms and 37 eggs per gram of liver. The vaccinated animals gained weight after the challenge and developed 89% resistance to infection with S. japonicum. Since schistosomiasis japonica is nowadays transmitted in China predominantly by domestic livestock, a uv-attenuated cercarial vaccine for bovines may contribute to the control of this disease.

  2. Biomarkers of safety and immune protection for genetically modified live attenuated Leishmania vaccines against visceral leishmaniasis-Discovery and implications

    Directory of Open Access Journals (Sweden)

    Sreenivas eGannavaram

    2014-05-01

    Full Text Available Despite intense efforts there is no safe and efficacious vaccine against visceral leishmaniasis, which is fatal and endemic in many tropical countries. A major shortcoming in the vaccine development against blood borne parasitic agents such as Leishmania is the inadequate predictive power of the early immune responses mounted in the host against the experimental vaccines. Often immune correlates derived from in-bred animal models do not yield immune markers of protection that can be readily extrapolated to humans. The limited efficacy of vaccines based on DNA, sub-unit, heat killed parasites has led to the realization that acquisition of durable immunity against the protozoan parasites requires a controlled infection with a live attenuated organism. Recent success of irradiated malaria parasites as a vaccine candidate further strengthens this approach to vaccination. We developed several gene deletion mutants in L. donovani as potential live attenuated vaccines and reported extensively on the immunogenicity of LdCentrin1 deleted mutant in mice, hamsters and dogs. Additional limited studies using genetically modified live attenuated Leishmania parasites as vaccine candidates have been reported. However, for the live attenuated parasite vaccines, the primary barrier against widespread use remains the absence of clear biomarkers associated with protection and safety. Recent studies in evaluation of vaccines e.g., influenza and yellow fever vaccines, using systems biology tools demonstrated the power of such strategies in understanding the immunological mechanisms that underpin a protective phenotype. Applying similar tools in isolated human tissues such as PBMCs from healthy individuals infected with live attenuated parasites such as LdCen1-/- in vitro followed by human microarray hybridization experiments will enable us to understand how early vaccine-induced gene expression profiles and the associated immune responses are coordinately regulated

  3. Dengue vaccine development: strategies and challenges.

    Science.gov (United States)

    Ramakrishnan, Lakshmy; Pillai, Madhavan Radhakrishna; Nair, Radhakrishnan R

    2015-03-01

    Infection with dengue virus may result in dengue fever or a more severe outcome, such as dengue hemorrhagic syndrome/shock. Dengue virus infection poses a threat to endemic regions for four reasons: the presence of four serotypes, each with the ability to cause a similar disease outcome, including fatality; difficulties related to vector control; the lack of specific treatment; and the nonavailability of a suitable vaccine. Vaccine development is considered challenging due to the severity of the disease observed in individuals who have acquired dengue-specific immunity, either passively or actively. Therefore, the presence of vaccine-induced immunity against a particular serotype may prime an individual to severe disease on exposure to dengue virus. Vaccine development strategies include live attenuated vaccines, chimeric, DNA-based, subunit, and inactivated vaccines. Each of the candidates is in various stages of preclinical and clinical development. Issues pertaining to selection pressures, viral interaction, and safety still need to be evaluated in order to induce a complete protective immune response against all four serotypes. This review highlights the various strategies that have been employed in vaccine development, and identifies the obstacles to producing a safe and effective vaccine.

  4. Envelope exchange for the generation of live-attenuated arenavirus vaccines.

    Directory of Open Access Journals (Sweden)

    Andreas Bergthaler

    2006-06-01

    Full Text Available Arenaviruses such as Lassa fever virus cause significant mortality in endemic areas and represent potential bioterrorist weapons. The occurrence of arenaviral hemorrhagic fevers is largely confined to Third World countries with a limited medical infrastructure, and therefore live-attenuated vaccines have long been sought as a method of choice for prevention. Yet their rational design and engineering have been thwarted by technical limitations. In addition, viral genes had not been identified that are needed to cause disease but can be deleted or substituted to generate live-attenuated vaccine strains. Lymphocytic choriomeningitis virus, the prototype arenavirus, induces cell-mediated immunity against Lassa fever virus, but its safety for humans is unclear and untested. Using this virus model, we have developed the necessary methodology to efficiently modify arenavirus genomes and have exploited these techniques to identify an arenaviral Achilles' heel suitable for targeting in vaccine design. Reverse genetic exchange of the viral glycoprotein for foreign glycoproteins created attenuated vaccine strains that remained viable although unable to cause disease in infected mice. This phenotype remained stable even after extensive propagation in immunodeficient hosts. Nevertheless, the engineered viruses induced T cell-mediated immunity protecting against overwhelming systemic infection and severe liver disease upon wild-type virus challenge. Protection was established within 3 to 7 d after immunization and lasted for approximately 300 d. The identification of an arenaviral Achilles' heel demonstrates that the reverse genetic engineering of live-attenuated arenavirus vaccines is feasible. Moreover, our findings offer lymphocytic choriomeningitis virus or other arenaviruses expressing foreign glycoproteins as promising live-attenuated arenavirus vaccine candidates.

  5. Envelope Exchange for the Generation of Live-Attenuated Arenavirus Vaccines.

    Directory of Open Access Journals (Sweden)

    2006-06-01

    Full Text Available Arenaviruses such as Lassa fever virus cause significant mortality in endemic areas and represent potential bioterrorist weapons. The occurrence of arenaviral hemorrhagic fevers is largely confined to Third World countries with a limited medical infrastructure, and therefore live-attenuated vaccines have long been sought as a method of choice for prevention. Yet their rational design and engineering have been thwarted by technical limitations. In addition, viral genes had not been identified that are needed to cause disease but can be deleted or substituted to generate live-attenuated vaccine strains. Lymphocytic choriomeningitis virus, the prototype arenavirus, induces cell-mediated immunity against Lassa fever virus, but its safety for humans is unclear and untested. Using this virus model, we have developed the necessary methodology to efficiently modify arenavirus genomes and have exploited these techniques to identify an arenaviral Achilles' heel suitable for targeting in vaccine design. Reverse genetic exchange of the viral glycoprotein for foreign glycoproteins created attenuated vaccine strains that remained viable although unable to cause disease in infected mice. This phenotype remained stable even after extensive propagation in immunodeficient hosts. Nevertheless, the engineered viruses induced T cell-mediated immunity protecting against overwhelming systemic infection and severe liver disease upon wild-type virus challenge. Protection was established within 3 to 7 d after immunization and lasted for approximately 300 d. The identification of an arenaviral Achilles' heel demonstrates that the reverse genetic engineering of live-attenuated arenavirus vaccines is feasible. Moreover, our findings offer lymphocytic choriomeningitis virus or other arenaviruses expressing foreign glycoproteins as promising live-attenuated arenavirus vaccine candidates.

  6. Attenuated Bordetella pertussis BPZE1 as a live vehicle for heterologous vaccine antigens delivery through the nasal route.

    Science.gov (United States)

    Li, Rui; Lim, Annabelle; Alonso, Sylvie

    2011-01-01

    Whereas the great majority of the current vaccines are delivered through the parenteral route, mucosal administration has been increasingly considered for controlling infection and preventing disease. Mucosal vaccination can trigger both humoral and cell-mediated protection, not only at the targeted mucosal surface, but also systemically. In this regard, nasal vaccination has shown great potential. The live attenuated strain of Bordetella pertussis, BPZE1, is particularly attractive and promising as a nasal vaccine delivery vector of heterologous antigen vaccine candidates. BPZE1 was originally developed as a live nasal pertussis vaccine candidate, and is currently undergoing phase I clinical trial in human (http://www.child-innovac.org). Highly adapted to the human respiratory tract and offering several potential protein carriers for presentation of the heterologous antigen vaccine candidates, BPZE1 represents an appealing platform for the development of live recombinant vaccines delivered via the nasal route that would confer simultaneous protection against pertussis and the targeted infectious disease(s).

  7. Immunogenicity and protective efficacy of a live attenuated H5N1 vaccine in nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Shufang Fan

    2009-05-01

    Full Text Available The continued spread of highly pathogenic H5N1 influenza viruses among poultry and wild birds, together with the emergence of drug-resistant variants and the possibility of human-to-human transmission, has spurred attempts to develop an effective vaccine. Inactivated subvirion or whole-virion H5N1 vaccines have shown promising immunogenicity in clinical trials, but their ability to elicit protective immunity in unprimed human populations remains unknown. A cold-adapted, live attenuated vaccine with the hemagglutinin (HA and neuraminidase (NA genes of an H5N1 virus A/VN/1203/2004 (clade 1 was protective against the pulmonary replication of homologous and heterologous wild-type H5N1 viruses in mice and ferrets. In this study, we used reverse genetics to produce a cold-adapted, live attenuated H5N1 vaccine (AH/AAca that contains HA and NA genes from a recent H5N1 isolate, A/Anhui/2/05 virus (AH/05 (clade 2.3, and the backbone of the cold-adapted influenza H2N2 A/AnnArbor/6/60 virus (AAca. AH/AAca was attenuated in chickens, mice, and monkeys, and it induced robust neutralizing antibody responses as well as HA-specific CD4+ T cell immune responses in rhesus macaques immunized twice intranasally. Importantly, the vaccinated macaques were fully protected from challenge with either the homologous AH/05 virus or a heterologous H5N1 virus, A/bar-headed goose/Qinghai/3/05 (BHG/05; clade 2.2. These results demonstrate for the first time that a cold-adapted H5N1 vaccine can elicit protective immunity against highly pathogenic H5N1 virus infection in a nonhuman primate model and provide a compelling argument for further testing of double immunization with live attenuated H5N1 vaccines in human trials.

  8. Genetically attenuated Trypanosoma cruzi parasites as a potential vaccination tool.

    Science.gov (United States)

    Pérez Brandan, Cecilia; Basombrío, Miguel Ángel

    2012-01-01

    Chagas disease is the clinical manifestation of the infection produced by the parasite Trypanosoma cruzi. Currently there is no vaccine to prevent this disease and the protection attained with vaccines containing non-replicating parasites is limited. Genetically attenuated trypanosomatid parasites can be obtained by deletion of selected genes. Gene deletion takes advantage of the fact that this parasite can undergo homologous recombination between endogenous and foreign DNA sequences artificially introduced in the cells. This approach facilitated the discovery of several unknown gene functions, as well as allowing us to speculate about the potential for genetically attenuated live organisms as experimental immunogens. Vaccination with live attenuated parasites has been used effectively in mice to reduce parasitemia and histological damage, and in dogs, to prevent vector-delivered infection in the field. However, the use of live parasites as immunogens is controversial due to the risk of reversion to a virulent phenotype. Herein, we present our results from experiments on genetic manipulation of two T. cruzi strains to produce parasites with impaired replication and infectivity, and using the mutation of the dhfr-ts gene as a safety device against reversion to virulence.

  9. DENGUE VACCINE, CHALLENGES, DEVELOPMENT AND STRATEGIES

    Directory of Open Access Journals (Sweden)

    Dewi Marbawati

    2014-08-01

    Full Text Available ABSTRAKPenyakit demam Dengue endemik di lebih dari 100 negara di dunia. Obat anti virus Dengue efektif belum ditemukan danpengendalian vektor dinilai kurang efektif, sehingga diperlukan upaya pencegahan dengan vaksinasi. Vaksin Dengue yangideal adalah murah, mencakup 4 serotipe, efektif dalam memberikan kekebalan, cukup diberikan sekali seumur hidup, aman,memberi kekebalan jangka panjang, stabil dalam penyimpanan dan stabil secara genetis (tidak bermutasi. Beberapakandidat vaksin yang telah dan sedang dikembangkan oleh para peneliti di seluruh dunia adalah tetravalent live attenuatedvaccine, vaksin Chimera (ChimeriVax, vaksin subunit dan vaksin DNA. Vaksin Dengue dipandang sebagai pendekatan yangefektif dan berkesinambungan dalam mengendalikan penyakit Dengue. Tahun 2003 telah terbentuk Pediatric DengueVaccine Initiative (PDVI, yaitu sebuah konsorsium internasional yang bergerak dalam advokasi untuk meyakinkanmasyarakat internasional akan penting dan mendesaknya vaksin Dengue. Konsorsium vaksin Dengue Indonesia saat iniberupaya mengembangkan vaksin Dengue dengan menggunakan strain virus lokal.Kata kunci: Dengue, virus, vaksinABSTRACTDengue fever is endemic in more than 100 countries in the world. The effective dengue antiviral drug has not been found yet,and vector control is considered less effective. Prevention program by vaccination is needed. An ideal dengue vaccine shouldbe inexpensive, covering four serotypes (tetravalent, effective in providing immunity, given once a lifetime, safe, stable instorage and genetically. Several vaccine candidates have been and are being developed included attenuated tetravalentvaccine, ChimeriVax, sub- unit vaccines and DNA vaccines. Dengue vaccine is seen as an effective and sustainable approachto controll Dengue infection. In 2003, Pediatric Dengue Vaccine Initiative (PDVI has been formed as an internationalconsortium involved in advocacy to convince the international community about the essence and urgency

  10. Novel chikungunya vaccine candidate with an IRES-based attenuation and host range alteration mechanism.

    Directory of Open Access Journals (Sweden)

    Kenneth Plante

    2011-07-01

    Full Text Available Chikungunya virus (CHIKV is a reemerging mosquito-borne pathogen that has recently caused devastating urban epidemics of severe and sometimes chronic arthralgia. As with most other mosquito-borne viral diseases, control relies on reducing mosquito populations and their contact with people, which has been ineffective in most locations. Therefore, vaccines remain the best strategy to prevent most vector-borne diseases. Ideally, vaccines for diseases of resource-limited countries should combine low cost and single dose efficacy, yet induce rapid and long-lived immunity with negligible risk of serious adverse reactions. To develop such a vaccine to protect against chikungunya fever, we employed a rational attenuation mechanism that also prevents the infection of mosquito vectors. The internal ribosome entry site (IRES from encephalomyocarditis virus replaced the subgenomic promoter in a cDNA CHIKV clone, thus altering the levels and host-specific mechanism of structural protein gene expression. Testing in both normal outbred and interferon response-defective mice indicated that the new vaccine candidate is highly attenuated, immunogenic and efficacious after a single dose. Furthermore, it is incapable of replicating in mosquito cells or infecting mosquitoes in vivo. This IRES-based attenuation platform technology may be useful for the predictable attenuation of any alphavirus.

  11. CANINE DISTEMPER VIRUS ANTIBODY TITERS IN DOMESTIC CATS AFTER DELIVERY OF A LIVE ATTENUATED VIRUS VACCINE.

    Science.gov (United States)

    Ramsay, Edward; Sadler, Ryan; Rush, Robert; Seimon, Tracie; Tomaszewicz, Ania; Fleetwood, Ellen A; McAloose, Denise; Wilkes, Rebecca P

    2016-06-01

    Three methods for delivering a live attenuated canine distemper virus (CDV) vaccine to domestic cats ( Felis catus ) were investigated, as models for developing vaccination protocols for tigers (Panthera tigris). Twenty domestic cats were randomly divided into four treatment groups: saline injection (negative controls); and oral, intranasal, and subcutaneous vaccinates. Cats were injected with saline or a CDV vaccine (Nobivac DP, Merck) at wk 0 and 4. Blood and nasal swabs were collected at wk 0 (prior to the initial vaccination) and weekly thereafter for 9 wk. Urine samples were collected on wk 1 to 9 after initial vaccination. Forty-nine weeks following the initial vaccination series, three cats from the subcutaneous group and three cats from the intranasal group were revaccinated. Blood was collected immediately prior, and 7 and 21 days subsequent to revaccination. Nasal swabs and urine samples were collected from each cat prior to wk 49 revaccination and daily for 7 days thereafter. Nasal swabs and urine were analyzed by quantitative PCR for vaccine virus presence. Sera were tested for CDV antibodies by virus neutralization. All cats were sero-negative for CDV antibodies at the beginning of the study, and saline-injected cats remained sero-negative throughout the study. A dramatic anamnestic response was seen following wk 4 subcutaneous vaccinations, with titers peaking at wk 6 (geometric mean = 2,435.5). Following wk 49 revaccination, subcutaneous vaccinates again mounted impressive titers (wk 52 geometric mean = 2,048). Revaccination of the intranasal group cats at wk 49 produced a small increase in titers (wk 52 geometric mean = 203). CDV viral RNA was detected in six nasal swabs but no urine samples, demonstrating low viral shedding postvaccination. The strong antibody response to subcutaneous vaccination and the lack of adverse effects suggest this vaccine is safe and potentially protective against CDV infection in domestic cats.

  12. A pilot study on an attenuated Chinese EIAV vaccine inducing broadly neutralizing antibodies.

    Science.gov (United States)

    Meng, Qinglai; Lin, Yuezhi; Ma, Jian; Ma, Yan; Zhao, Liping; Li, Shenwei; Liang, Hua; Zhou, Jianhua; Shen, Rongxian; Zhang, Xiaoyan; Shao, Yiming

    2011-08-01

    The attenuated Chinese equine infectious anemia virus (EIAV) vaccine has successfully protected millions of equine animals from EIA disease in China. In this pilot study, to determine whether this attenuated vaccine can induce broadly neutralizing antibodies, we immunized four horses with the attenuated Chinese vaccine strain EIAVFDDV and then observed the evolution of neutralizing antibodies against different EIAV strains. During the vaccination phase, all vaccinees rapidly developed high levels of neutralizing antibodies against the homologous vaccine strain (pLGFD3V), and 3 out of 4 horses showed a gradual increase in serum neutralizing activity against two relatively heterologous virulent variants of the challenge strain (pLGFD3Mu12V and DLV34). After challenge, the three horses that had developed high levels of neutralizing antibodies against pLGFD3Mu12V and DLV34 did not show signs of infection, which was demonstrated by immune suppression, while the one horse producing serum that could only neutralize pLGFD3V developed a febrile episode during the 8-month observation period. To assess whether the broadly neutralizing activity is associated with immune protection, sera drawn on the day of challenge from these four vaccinees and an additional four EIAVFDDV-vaccinated horses were analyzed for neutralizing antibodies against pLGFD3V, pLGFD3Mu12V and DLV34. Although there was no significant correlation between protection from infection and serum neutralizing activity against any of these three viral strains, protection from infection was observed to correlate better with serum neutralizing activity against the two heterologous virulent strains than against the homologous vaccine strain. These data indicate that EIAVFDDV induced broadly neutralizing antibodies, which might confer enhanced protection of vaccinees from infection by the challenge virus.

  13. Nanotechnology and vaccine development

    Directory of Open Access Journals (Sweden)

    Mi-Gyeong Kim

    2014-10-01

    Full Text Available Despite the progress of conventional vaccines, improvements are clearly required due to concerns about the weak immunogenicity of these vaccines, intrinsic instability in vivo, toxicity, and the need for multiple administrations. To overcome such problems, nanotechnology platforms have recently been incorporated into vaccine development. Nanocarrier-based delivery systems offer an opportunity to enhance the humoral and cellular immune responses. This advantage is attributable to the nanoscale particle size, which facilitates uptake by phagocytic cells, the gut-associated lymphoid tissue, and the mucosa-associated lymphoid tissue, leading to efficient antigen recognition and presentation. Modifying the surfaces of nanocarriers with a variety of targeting moieties permits the delivery of antigens to specific cell surface receptors, thereby stimulating specific and selective immune responses. In this review, we introduce recent advances in nanocarrier-based vaccine delivery systems, with a focus on the types of carriers, including liposomes, emulsions, polymer-based particles, and carbon-based nanomaterials. We describe the remaining challenges and possible breakthroughs, including the development of needle-free nanotechnologies and a fundamental understanding of the in vivo behavior and stability of the nanocarriers in nanotechnology-based delivery systems.

  14. Persistent efficacy of live attenuated hepatitis A vaccine (H2-strain) after a mass vaccination program

    Institute of Scientific and Technical Information of China (English)

    ZHUANG Fang-cheng; QIAN Wen; MAO Zi-an; GONG Yue-ping; JIANG Qi; JIANG Li-min; CHEN Nian-liang; CHAI Shao-ai; MAO Jiang-sen

    2005-01-01

    Background Live attenuated hepatitis A vaccine (H2 strain) is widely applied in prevention of hepatitis A epidemic in China and other countries now. It is essential to observe and confirm the vaccine immune efficacy, population antibody level and its persistent efficacy after mass immunization.Methods A total of 220 children with negative anti-HAV antibody (aged 1-3 years) were taken for follow-up assay to observe seroconversion and geometric mean titre(GMT)level 2 months, 12 months, 6 years, and 10 years after inoculation. Another survey sampled from subjects of different age groups (3, 6, 9, 15, 18, 25 and 35 years) to compare anti-HA antibody positive rate before and after inoculation performed 10 years previously. Epidemiological observations were taken for 10 years to evaluate the relationship between vaccine coverage and hepatitis A morbidity. Serum antibody to HAV was detected by enzyme linked immunoassay (ELISA, calibrated by WHO international reference) and ABBOTT Axsym HAVAB microparticle enzyme immunoassay. Results Seroconversion in follow-up assay 2 months and 10 years after inoculation was 98.6% and 80.2% respectively. For children, the vaccination anti-HA antibody positive rates were significantly different before and after 10 years, 7.69% cf 70.45% (aged 3 years) and 52.58% cf 71.78% (aged 18 years). When vaccine coverage rose from 57% to 74%, there were no any HA epidemics. When vaccine coverage reached 85%, there were no any HA cases. With vaccine coverage between 85% and 91%, there were no any HA cases in cohorts from the age of 1 year to 15 years during the 10 years. Conclusions Live attenuated hepatitis A vaccine has an obvious long-term effectiveness in prevention and control of HA epidemics through mass vaccination.

  15. Low dose vaccination with attenuated Francisella tularensis strain SchuS4 mutants protects against tularemia independent of the route of vaccination.

    Directory of Open Access Journals (Sweden)

    Dedeke Rockx-Brouwer

    Full Text Available Tularemia, caused by the gram-negative bacterium Francisella tularensis, is a severe, sometimes fatal disease. Interest in tularemia has increased over the last decade due to its history as a biological weapon. In particular, development of novel vaccines directed at protecting against pneumonic tularemia has been an important goal. Previous work has demonstrated that, when delivered at very high inoculums, administration of live, highly attenuated strains of virulent F. tularensis can protect against tularemia. However, lower vaccinating inoculums did not offer similar immunity. One concern of using live vaccines is that the host may develop mild tularemia in response to infection and use of high inoculums may contribute to this issue. Thus, generation of a live vaccine that can efficiently protect against tularemia when delivered in low numbers, e.g. <100 organisms, may address this concern. Herein we describe the ability of three defined, attenuated mutants of F. tularensis SchuS4, deleted for FTT0369c, FTT1676, or FTT0369c and FTT1676, respectively, to engender protective immunity against tularemia when delivered at concentrations of approximately 50 or fewer bacteria. Attenuated strains for use as vaccines were selected by their inability to efficiently replicate in macrophages in vitro and impaired replication and dissemination in vivo. Although all strains were defective for replication in vitro within macrophages, protective efficacy of each attenuated mutant was correlated with their ability to modestly replicate and disseminate in the host. Finally, we demonstrate the parenteral vaccination with these strains offered superior protection against pneumonic tularemia than intranasal vaccination. Together our data provides proof of principle that low dose attenuated vaccines may be a viable goal in development of novel vaccines directed against tularemia.

  16. Clinical Impact of Vaccine Development.

    Science.gov (United States)

    Nambiar, Puja H; Daza, Alejandro Delgado; Livornese, Lawrence L

    2016-01-01

    The discovery and development of immunization has been a singular improvement in the health of mankind. This chapter reviews currently available vaccines, their historical development, and impact on public health. Specific mention is made in regard to the challenges and pursuit of a vaccine for the human immunodeficiency virus as well as the unfounded link between autism and measles vaccination.

  17. [Research and development strategies, examples among new vaccines].

    Science.gov (United States)

    Denis, F; Ploy, M-C

    2009-05-01

    Classical methods are still providing new vaccines, but molecular biology and genetic engineering have enabled new approaches to development. Changes in vaccinology have involved the isolation, presentation and administration of vaccinal antigens or attenuated vaccinal strains. New methods of vaccine delivery other than injection will be used (e.g. mucosal administration) and new vectors or adjuvants will be added to vaccines in order to stimulate specific responses. New vaccines can also be obtained by using viral-like particles (VLP of papillomavirus), conjugate polysaccharides (N. meningitidis, S. pneumoniae) or the reassortment of segmented genomes (rotavirus, influenza). Here, we analyze the different steps of a vaccine's life using concrete cases of two new vaccines against papillomavirus and rotavirus. Vaccination has a promising future.

  18. Review: New Vaccine Against Tuberculosis: Current Developments and Future Challenges

    Science.gov (United States)

    Liu, Jun

    2009-04-01

    Tuberculosis (TB) continues to be a global health threat. BCG was developed as an attenuated live vaccine for tuberculosis control nearly a century ago. Despite being the most widely used vaccine in human history, BCG is not an ideal vaccine and has two major limitations: its poor efficacy against adult pulmonary TB and its disconcerting safety in immunocompromised individuals. A safer and more effective TB vaccine is urgently needed. This review article discusses current strategies to develop the next generation of TB vaccines to replace BCG. While some progresses have been made in the past decade, significant challenges lie ahead.

  19. Live Attenuated Human Salmonella Vaccine Candidates: tracking the pathogen in natural infection and stimulation of host immunity

    Science.gov (United States)

    Galen, James E.; Buskirk, Amanda D.; Tennant, Sharon M.; Pasetti, Marcela F.

    2016-01-01

    Salmonellosis, caused by members of the genus Salmonella, is responsible for considerable global morbidity and mortality, in both animals and humans. In this review, we will discuss the pathogenesis of S. Typhi and S. Typhimurium, focusing on human Salmonella infections. We will trace the path of Salmonella through the body, including host entry sites, tissues and organs affected, and mechanisms involved in both pathogenesis and stimulation of host immunity. Careful consideration of the natural progression of disease provides an important context in which attenuated live oral vaccines can be rationally designed and developed. With this in mind, we will describe a series of attenuated live oral vaccines that have been successfully tested in clinical trials and demonstrated to be both safe and highly immunogenic. The attenuation strategies summarized in this review offer important insights into further development of attenuated vaccines against other Salmonella for which live oral candidates are currently unavailable. PMID:27809955

  20. Live Attenuated Human Salmonella Vaccine Candidates: Tracking the Pathogen in Natural Infection and Stimulation of Host Immunity.

    Science.gov (United States)

    Galen, James E; Buskirk, Amanda D; Tennant, Sharon M; Pasetti, Marcela F

    2016-11-01

    Salmonellosis, caused by members of the genus Salmonella, is responsible for considerable global morbidity and mortality in both animals and humans. In this review, we will discuss the pathogenesis of Salmonella enterica serovar Typhi and Salmonella enterica serovar Typhimurium, focusing on human Salmonella infections. We will trace the path of Salmonella through the body, including host entry sites, tissues and organs affected, and mechanisms involved in both pathogenesis and stimulation of host immunity. Careful consideration of the natural progression of disease provides an important context in which attenuated live oral vaccines can be rationally designed and developed. With this in mind, we will describe a series of attenuated live oral vaccines that have been successfully tested in clinical trials and demonstrated to be both safe and highly immunogenic. The attenuation strategies summarized in this review offer important insights into further development of attenuated vaccines against other Salmonella for which live oral candidates are currently unavailable.

  1. Live attenuated B. pertussis as a single-dose nasal vaccine against whooping cough.

    Directory of Open Access Journals (Sweden)

    Nathalie Mielcarek

    2006-07-01

    Full Text Available Pertussis is still among the principal causes of death worldwide, and its incidence is increasing even in countries with high vaccine coverage. Although all age groups are susceptible, it is most severe in infants too young to be protected by currently available vaccines. To induce strong protective immunity in neonates, we have developed BPZE1, a live attenuated Bordetella pertussis strain to be given as a single-dose nasal vaccine in early life. BPZE1 was developed by the genetic inactivation or removal of three major toxins. In mice, BPZE1 was highly attenuated, yet able to colonize the respiratory tract and to induce strong protective immunity after a single nasal administration. Protection against B. pertussis was comparable to that induced by two injections of acellular vaccine (aPV in adult mice, but was significantly better than two administrations of aPV in infant mice. Moreover, BPZE1 protected against Bordetella parapertussis infection, whereas aPV did not. BPZE1 is thus an attractive vaccine candidate to protect against whooping cough by nasal, needle-free administration early in life, possibly at birth.

  2. Evaluation of attenuated Salmonella choleraesuis-mediated inhibin recombinant DNA vaccine in rats.

    Science.gov (United States)

    Hui, F M; Meng, C L; Guo, N N; Yang, L G; Shi, F X; Mao, D G

    2014-08-07

    DNA vaccination has been studied intensively as a potential vaccine technology. We evaluated the effect of an attenuated Salmonella choleraesuis-mediated inhibin DNA vaccine in rats. First, 15 rats were treated with different doses of an inhibin vaccine to evaluate vaccine safety. Next, 30 rats were divided into 3 groups and injected intramuscularly with the inhibin vaccine two (T1) or three times (T2) or with control bacteria (Con) at 4-week intervals. The inhibin antibody levels increased [positive/negative well (P/N) value: T1 vs Con = 2.39 ± 0.01 vs 1.08 ± 0.1; T2 vs Con = 2.36 ± 0.1 vs 1.08 ± 0.1, P < 0.05] at week 2 and were maintained at a high level in T1 and T2 until week 8, although a small decrease in T2 was observed at week 10. Rats in the T1 group showed more corpora lutea compared with the Con group (10.50 ± 0.87 vs 7.4 ± 0.51, P < 0.05). Estradiol (0.439 ± 0.052 vs 0.719 ± 0.063 ng/mL, P < 0.05) and progesterone (1.315 ± 0.2 vs 0.737 ± 0.11 ng/mL, P < 0.05) levels differed significantly at metestrus after week 10 between rats in the T1 and Con groups. However, there were no significant differences in body, ovary, uterus weights, or pathological signs in the ovaries after immunization, indicating that this vaccine is safe. In conclusion, the attenuated S. choleraesuis-mediated inhibin vaccine may be an alternative to naked inhibin plasmids for stimulating ovarian follicular development to increase the ovulation rate in rats.

  3. Superior protection elicited by live-attenuated vaccines in the murine model of paratuberculosis.

    Science.gov (United States)

    Ghosh, Pallab; Shippy, Daniel C; Talaat, Adel M

    2015-12-16

    Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis) causes Johne's disease, a chronic enteric infection in ruminants with severe economic impact on the dairy industry in the USA and worldwide. Currently, available vaccines have limited protective efficacy against disease progression and does not prevent spread of the infection among animals. Because of their ability to elicit wide-spectrum immune responses, we adopted a live-attenuated vaccine approach based on a sigH knock-out strain of M. paratuberculosis (ΔsigH). Earlier analysis of the ΔsigH mutant in mice indicated their inadequate ability to colonize host tissues, unlike the isogenic wild-type strain, validating the role of this sigma factor in M. paratuberculosis virulence. In the present study, we evaluated the performance of the ΔsigH mutant compared to inactivated vaccine constructs in a vaccine/challenge model of murine paratuberculosis. The presented analysis indicated that ΔsigH mutant with or without QuilA adjuvant is capable of eliciting strong immune responses (such as interferon gamma-γ, IFN-γ) suggesting their immunogenicity and ability to potentially initiate effective vaccine-induced immunity. Following a challenge with virulent strains of M. paratuberculosis, ΔsigH conferred protective immunity as indicated by the reduced bacterial burden accompanied with reduced lesions in main body organs (liver, spleen and intestine) usually infected with M. paratuberculosis. More importantly, our data indicated better ability of the ΔsigH vaccine to confer protection compared to the inactivated vaccine constructs even with the presence of oil-adjuvant. Overall, our approach provides a rational basis for using live-attenuated mutant strains to develop improved vaccines that elicit robust immunity against this chronic infection.

  4. Vaccines against Toxoplasma gondii: new developments and perspectives.

    Science.gov (United States)

    Zhang, Nian-Zhang; Chen, Jia; Wang, Meng; Petersen, Eskild; Zhu, Xing-Quan

    2013-11-01

    Toxoplasmosis caused by the protozoan Toxoplasma gondii is a major public health problem, infecting one-third of the world human beings, and leads to abortion in domestic animals. A vaccine strategy would be an ideal tool for improving disease control. Many efforts have been made to develop vaccines against T. gondii to reduce oocyst shedding in cats and tissue cyst formation in mammals over the last 20 years, but only a live-attenuated vaccine based on the S48 strain has been licensed for veterinary use. Here, the authors review the recent development of T. gondii vaccines in cats, food-producing animals and mice, and present its future perspectives. However, a single or only a few antigen candidates revealed by various experimental studies are limited by only eliciting partial protective immunity against T. gondii. Future studies of T. gondii vaccines should include as many CTL epitopes as the live attenuated vaccines.

  5. Live attenuated S. Typhimurium vaccine with improved safety in immuno-compromised mice.

    Directory of Open Access Journals (Sweden)

    Balamurugan Periaswamy

    Full Text Available Live attenuated vaccines are of great value for preventing infectious diseases. They represent a delicate compromise between sufficient colonization-mediated adaptive immunity and minimizing the risk for infection by the vaccine strain itself. Immune defects can predispose to vaccine strain infections. It has remained unclear whether vaccine safety could be improved via mutations attenuating a vaccine in immune-deficient individuals without compromising the vaccine's performance in the normal host. We have addressed this hypothesis using a mouse model for Salmonella diarrhea and a live attenuated Salmonella Typhimurium strain (ssaV. Vaccination with this strain elicited protective immunity in wild type mice, but a fatal systemic infection in immune-deficient cybb(-/-nos2(-/- animals lacking NADPH oxidase and inducible NO synthase. In cybb(-/-nos2(-/- mice, we analyzed the attenuation of 35 ssaV strains carrying one additional mutation each. One strain, Z234 (ssaV SL1344_3093, was >1000-fold attenuated in cybb(-/-nos2(-/- mice and ≈100 fold attenuated in tnfr1(-/- animals. However, in wt mice, Z234 was as efficient as ssaV with respect to host colonization and the elicitation of a protective, O-antigen specific mucosal secretory IgA (sIgA response. These data suggest that it is possible to engineer live attenuated vaccines which are specifically attenuated in immuno-compromised hosts. This might help to improve vaccine safety.

  6. Recombinant vaccines and the development of new vaccine strategies

    Directory of Open Access Journals (Sweden)

    I.P. Nascimento

    2012-12-01

    Full Text Available Vaccines were initially developed on an empirical basis, relying mostly on attenuation or inactivation of pathogens. Advances in immunology, molecular biology, biochemistry, genomics, and proteomics have added new perspectives to the vaccinology field. The use of recombinant proteins allows the targeting of immune responses focused against few protective antigens. There are a variety of expression systems with different advantages, allowing the production of large quantities of proteins depending on the required characteristics. Live recombinant bacteria or viral vectors effectively stimulate the immune system as in natural infections and have intrinsic adjuvant properties. DNA vaccines, which consist of non-replicating plasmids, can induce strong long-term cellular immune responses. Prime-boost strategies combine different antigen delivery systems to broaden the immune response. In general, all of these strategies have shown advantages and disadvantages, and their use will depend on the knowledge of the mechanisms of infection of the target pathogen and of the immune response required for protection. In this review, we discuss some of the major breakthroughs that have been achieved using recombinant vaccine technologies, as well as new approaches and strategies for vaccine development, including potential shortcomings and risks.

  7. Recombinant vaccines and the development of new vaccine strategies.

    Science.gov (United States)

    Nascimento, I P; Leite, L C C

    2012-12-01

    Vaccines were initially developed on an empirical basis, relying mostly on attenuation or inactivation of pathogens. Advances in immunology, molecular biology, biochemistry, genomics, and proteomics have added new perspectives to the vaccinology field. The use of recombinant proteins allows the targeting of immune responses focused against few protective antigens. There are a variety of expression systems with different advantages, allowing the production of large quantities of proteins depending on the required characteristics. Live recombinant bacteria or viral vectors effectively stimulate the immune system as in natural infections and have intrinsic adjuvant properties. DNA vaccines, which consist of non-replicating plasmids, can induce strong long-term cellular immune responses. Prime-boost strategies combine different antigen delivery systems to broaden the immune response. In general, all of these strategies have shown advantages and disadvantages, and their use will depend on the knowledge of the mechanisms of infection of the target pathogen and of the immune response required for protection. In this review, we discuss some of the major breakthroughs that have been achieved using recombinant vaccine technologies, as well as new approaches and strategies for vaccine development, including potential shortcomings and risks.

  8. Recombinant vaccines and the development of new vaccine strategies

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, I.P.; Leite, L.C.C. [Centro de Biotecnologia, Instituto Butantan, São Paulo, SP (Brazil)

    2012-09-07

    Vaccines were initially developed on an empirical basis, relying mostly on attenuation or inactivation of pathogens. Advances in immunology, molecular biology, biochemistry, genomics, and proteomics have added new perspectives to the vaccinology field. The use of recombinant proteins allows the targeting of immune responses focused against few protective antigens. There are a variety of expression systems with different advantages, allowing the production of large quantities of proteins depending on the required characteristics. Live recombinant bacteria or viral vectors effectively stimulate the immune system as in natural infections and have intrinsic adjuvant properties. DNA vaccines, which consist of non-replicating plasmids, can induce strong long-term cellular immune responses. Prime-boost strategies combine different antigen delivery systems to broaden the immune response. In general, all of these strategies have shown advantages and disadvantages, and their use will depend on the knowledge of the mechanisms of infection of the target pathogen and of the immune response required for protection. In this review, we discuss some of the major breakthroughs that have been achieved using recombinant vaccine technologies, as well as new approaches and strategies for vaccine development, including potential shortcomings and risks.

  9. Military Infectious Diseases Update on Vaccine Development

    Science.gov (United States)

    2011-01-24

    development thrusts • Enterotoxigenic Escherichia coli (ETEC) vaccines • Shigella vaccines • Campylobacter jejuni vaccines 2011 MHS Conference Vaccines...Injectisome extending from Shigella Injectisome Injectisome graphic 2011 MHS Conference  Campylobacter jejuni – Transmission: Foodborne – Inoculum

  10. Next-generation dengue vaccines: novel strategies currently under development.

    Science.gov (United States)

    Durbin, Anna P; Whitehead, Stephen S

    2011-10-01

    Dengue has become the most important arboviral infection worldwide with more than 30 million cases of dengue fever estimated to occur each year. The need for a dengue vaccine is great and several live attenuated dengue candidate vaccines are proceeding through clinical evaluation. The need to induce a balanced immune response against all four DENV serotypes with a single vaccine has been a challenge for dengue vaccine developers. A live attenuated DENV chimeric vaccine produced by Sanofi Pasteur has recently entered Phase III evaluation in numerous dengue-endemic regions of the world. Viral interference between serotypes contained in live vaccines has required up to three doses of the vaccine be given over a 12-month period of time. For this reason, novel DENV candidate vaccines are being developed with the goal of achieving a protective immune response with an immunization schedule that can be given over the course of a few months. These next-generation candidates include DNA vaccines, recombinant adenovirus vectored vaccines, alphavirus replicons, and sub-unit protein vaccines. Several of these novel candidates will be discussed.

  11. A live attenuated vaccine prevents replication and transmission of H7N9 virus in mammals

    Science.gov (United States)

    Kong, Huihui; Zhang, Qianyi; Gu, Chunyang; Shi, Jianzhong; Deng, Guohua; Ma, Shujie; Liu, Jinxiong; Chen, Pucheng; Guan, Yuntao; Jiang, Yongping; Chen, Hualan

    2015-01-01

    The continued spread of the newly emerged H7N9 viruses among poultry in China, together with the emergence of drug-resistant variants and the possibility of human-to-human transmission, has spurred attempts to develop an effective vaccine. An MF59-adjuvant H7N9 inactivated vaccine is reported to be well-tolerated and immunogenic in humans; however a study in ferrets indicated that while a single dose of the inactivated H7N9 vaccine reduced disease severity, it did not prevent virus replication and transmission. In this study, we used reverse genetics to produce a cold-adapted, live attenuated H7N9 vaccine (H7N9/AAca) that contains wild-type HA and NA genes from AH/1, and the backbone of the cold-adapted influenza H2N2 A/Ann Arbor/6/60 virus (AAca). H7N9/AAca was attenuated in mice and ferrets, and induced robust neutralizing antibody responses in rhesus mice, ferrets, and guinea pigs immunized once or twice intranasally. The animals immunized twice were completely protected from H7N9 virus challenge. Importantly, the animals vaccinated once were fully protected from transmission when exposed to or in contact with the H7N9 virus-inoculated animals. These results demonstrate that a cold-adapted H7N9 vaccine can prevent H7N9 virus transmission; they provide a compelling argument for further testing of this vaccine in human trials. PMID:26058711

  12. Production and efficacy of an attenuated live vaccine against contagious ovine ecthyma

    Directory of Open Access Journals (Sweden)

    Attilio Pini

    2008-09-01

    Full Text Available Contagious ecthyma is caused by the orf virus, a member of the family Poxviridae, genus Parapoxvirus. Morbidity in affected sheep flocks is approximately 100%, while mortality varies between 1% and 10%. A live attenuated vaccine was produced by the Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’. Quality control was performed in accordance with the European Pharmacopoeia. A wild virus strain was attenuated through serial passages on primary chicken embryo fibroblast tissue cultures. The virus suspension was treated according to standard procedures and freeze dried. The immunising dose was 1 ml containing 104,5TCID50, administered intramuscularly. The safety of the vaccine was successfully tested by intramuscular inoculation of 20 susceptible sheep and 20 lambs with the routine dose, 10 times the immunising dose and two normal doses administered at seven-day intervals. The efficacy of the vaccine was tested using three groups of susceptible animals. The first group included 10 lambs and the second 10 adult sheep; the animals were immunised intramuscularly with 1 ml of the reconstituted vaccine. The third group, used as controls, included five sheep and five lambs. Serological reactivity was monitored by indirect enzyme-linked immunosorbent assay (ELISA. The animals were challenged 30 days later with a pathogenic strain administered intradermally along the labial area. Vaccinated animals did not show any clinical signs of disease, whereas all the controls developed typical signs of contagious ecthyma. To confirm the efficacy of the vaccine, a field trial was conducted in four flocks affected by the disease. The trial showed that the vaccine was able to block the normal course of the disease and induce rapid recovery.

  13. Live-attenuated measles virus vaccine targets dendritic cells and macrophages in muscle of nonhuman primates

    NARCIS (Netherlands)

    L.J. Rennick (Linda); R.D. de Vries (Rory); T.J. Carsillo (Thomas J.); K. Lemon (Ken); G. van Amerongen (Geert); M. Ludlow (Martin); D.T. Nguyen (Tien); S. Yüksel (Selma); R.J. Verbugh (Joyce); P. Haddock (Paula); S. McQuaid (Stephen); W.P. Duprex (Paul); R.L. de Swart (Rik)

    2015-01-01

    textabstractAlthough live-attenuated measles virus (MV) vaccines have been used successfully for over 50 years, the target cells that sustain virus replication in vivo are still unknown. We generated a reverse genetics system for the live-attenuated MV vaccine strain Edmonston- Zagreb (EZ), allowing

  14. Development of dengue DNA vaccines.

    Science.gov (United States)

    Danko, Janine R; Beckett, Charmagne G; Porter, Kevin R

    2011-09-23

    Vaccination with plasmid DNA against infectious pathogens including dengue is an active area of investigation. By design, DNA vaccines are able to elicit both antibody responses and cellular immune responses capable of mediating long-term protection. Great technical improvements have been made in dengue DNA vaccine constructs and trials are underway to study these in the clinic. The scope of this review is to highlight the rich history of this vaccine platform and the work in dengue DNA vaccines accomplished by scientists at the Naval Medical Research Center. This work resulted in the only dengue DNA vaccine tested in a clinical trial to date. Additional advancements paving the road ahead in dengue DNA vaccine development are also discussed.

  15. TB vaccines in clinical development

    OpenAIRE

    McShane, H; Ginsberg, AM; Ruhwald, M.; Mearns, H

    2016-01-01

    The 4th Global Forum on TB Vaccines, convened in Shanghai, China, from 21 – 24 April 2015, brought together a wide and diverse community involved in tuberculosis vaccine research and development to discuss the current status of, and future directions for this critical effort. This paper summarizes the sessions on TB Vaccines in Clinical Development, and Clinical Research: Data and Findings. Summaries of all sessions from the 4th Global Forum are compiled in a special supplement of Tuberculosi...

  16. A peptide vaccine targeting angiotensin II attenuates the cardiac dysfunction induced by myocardial infarction

    Science.gov (United States)

    Watanabe, Ryo; Suzuki, Jun-ichi; Wakayama, Kouji; Maejima, Yasuhiro; Shimamura, Munehisa; Koriyama, Hiroshi; Nakagami, Hironori; Kumagai, Hidetoshi; Ikeda, Yuichi; Akazawa, Hiroshi; Morishita, Ryuichi; Komuro, Issei; Isobe, Mitsuaki

    2017-01-01

    A peptide vaccine targeting angiotensin II (Ang II) was recently developed as a novel treatment for hypertension to resolve the problem of noncompliance with pharmacotherapy. Ang II plays a crucial role in the pathogenesis of cardiac remodeling after myocardial infarction (MI), which causes heart failure. In the present study, we examined whether the Ang II vaccine is effective in preventing heart failure. The injection of the Ang II vaccine in a rat model of MI attenuated cardiac dysfunction in association with an elevation in the serum anti-Ang II antibody titer. Furthermore, any detrimental effects of the Ang II vaccine were not observed in the rats that underwent sham operations. Treatment with immunized serum from Ang II vaccine-injected rats significantly suppressed post-MI cardiac dysfunction in MI rats and Ang II-induced remodeling-associated signaling in cardiac fibroblasts. Thus, our present study demonstrates that the Ang II vaccine may provide a promising novel therapeutic strategy for preventing heart failure. PMID:28266578

  17. Attenuation of CCl4-induced hepatic fibrosis in mice by vaccinating against TGF-β1.

    Directory of Open Access Journals (Sweden)

    Xiaobao Fan

    Full Text Available Transforming growth factor β1 (TGF-β1 is the pivotal pro-fibrogenic cytokine in hepatic fibrosis. Reducing the over-produced expression of TGF-β1 or blocking its signaling pathways is considered to be a promising therapeutic strategy for hepatic fibrosis. In this study, we evaluated the feasibility of attenuating hepatic fibrosis by vaccination against TGF-β1 with TGF-β1 kinoids. Two TGF-β1 kinoid vaccines were prepared by cross-linking TGF-β1-derived polypeptides (TGF-β1(25-[41-65] and TGF-β1(30-[83-112] to keyhole limpet hemocyanin (KLH. Immunization with the two TGF-β1 kinoids efficiently elicited the production of high-levels of TGF-β1-specific antibodies against in BALB/c mice as tested by enzyme-linked immunosorbent assay (ELISA and Western blotting. The antisera neutralized TGF-β1-induced growth-inhibition on mink lung epithelial cells (Mv1Lu and attenuated TGF-β1-induced Smad2/3 phosphorylation, α-SMA, collagen type 1 alpha 2 (COL1A2, plasminogen activator inhibitor-1 (PAI-1 and tissue inhibitor of metalloproteinase-1 (TIMP-1 expression in the rat hepatic stellate cell (HSC line, HSC-T6. Vaccination against TGF-β1 with the kinoids significantly suppressed CCl4-induced collagen deposition and the expression of α-SMA and desmin, attenuated hepatocyte apoptosis and accelerated hepatocyte proliferation in BALB/c mice. These results demonstrated that immunization with the TGF-β1 kinoids efficiently attenuated CCl4-induced hepatic fibrosis and liver injury. Our study suggests that vaccination against TGF-β1 might be developed into a feasible therapeutic approach for the treatment of chronic fibrotic liver diseases.

  18. Enhanced expression of HIV and SIV vaccine antigens in the structural gene region of live attenuated rubella viral vectors and their incorporation into virions.

    Science.gov (United States)

    Virnik, Konstantin; Ni, Yisheng; Berkower, Ira

    2013-04-19

    Despite the urgent need for an HIV vaccine, its development has been hindered by virus variability, weak immunogenicity of conserved epitopes, and limited durability of the immune response. For other viruses, difficulties with immunogenicity were overcome by developing live attenuated vaccine strains. However, there is no reliable method of attenuation for HIV, and an attenuated strain would risk reversion to wild type. We have developed rubella viral vectors, based on the live attenuated vaccine strain RA27/3, which are capable of expressing important HIV and SIV vaccine antigens. The rubella vaccine strain has demonstrated safety, immunogenicity, and long lasting protection in millions of children. Rubella vectors combine the growth and immunogenicity of live rubella vaccine with the antigenicity of HIV or SIV inserts. This is the first report showing that live attenuated rubella vectors can stably express HIV and SIV vaccine antigens at an insertion site located within the structural gene region. Unlike the Not I site described previously, the new site accommodates a broader range of vaccine antigens without interfering with essential viral functions. In addition, antigens expressed at the structural site were controlled by the strong subgenomic promoter, resulting in higher levels and longer duration of antigen expression. The inserts were expressed as part of the structural polyprotein, processed to free antigen, and incorporated into rubella virions. The rubella vaccine strain readily infects rhesus macaques, and these animals will be the model of choice for testing vector growth in vivo and immunogenicity.

  19. Safety and vaccine efficacy of an attenuated Vibrio vulnificus strain with deletions in major cytotoxin genes.

    Science.gov (United States)

    Kim, Young Ran; Lee, Shee Eun; Kim, Jong Ro; Rhee, Joon Haeng

    2015-12-01

    Vibrio vulnificus is a human pathogen causing a rapidly progressing fatal septicemia. We have previously reported that a V. vulnificus large toxin RtxA1 causes programmed necrotic cell death through calcium-mediated mitochondrial dysfunction. Here we developed a live attenuated vaccine strain (CMM781) having deletions in three genes encoding major virulence factors: RTX cytotoxin (rtxA1), hemolysin/cytolysin (vvhA) and metalloprotease (vvpE) of a clinical isolate strain CMCP6. The CMM781 strain showed significant attenuation in cytotoxicity and mouse lethality. The safety of CMM781 was also confirmed by measuring the transepithelial electric resistance of Caco-2 cell monolayers. Intragastric immunization of mice with the live attenuated V. vulnificus strain resulted in induction of systemic and mucosal antibodies specific to the pathogen. Moreover, the vaccinated mice were protected from challenges with high doses of the virulent strain through various injection routes. These results suggest that CMM781 appears to be a safe and effective vaccine candidate that would provide significant protection against V. vulnificus infection.

  20. Improving live attenuated bacterial carriers for vaccination and therapy.

    Science.gov (United States)

    Loessner, Holger; Endmann, Anne; Leschner, Sara; Bauer, Heike; Zelmer, Andrea; zur Lage, Susanne; Westphal, Kathrin; Weiss, Siegfried

    2008-01-01

    Live attenuated bacteria are well established as vaccines. Thus, their use as carriers for prophylactic and therapeutic macromolecules is a logical consequence. Here we describe several experimental applications of bacteria to carry heterologous macromolecules into the murine host. First, Listeria monocytogenes are described that are able to transfer eukaryotic expression plasmids into host cells for gene therapy. High multiplicities of infection are still required for efficient gene transfer and we point out some of the bottlenecks that counteract a more efficient transfer and application in vivo. Then, we describe Salmonella enterica serovar Typhimurium (S. typhimurium) as an expression plasmid transfer vehicle for oral DNA vaccination of mice. We demonstrate that the stabilization of the plasmid transformants results in an improved immune response. Stabilization was achieved by replacing the origin of replication of the original high-copy-number plasmid by a low-copy-number origin. Finally, we describe Salmonella carriers for the improved expression of heterologous proteins. We introduce a system in which the plasmid is carried as a single copy during cultivation but is amplified several fold upon infection of the host. Using the same in vivo inducible promoter for both protein expression and plasmid amplification, a substantial increase in antigen expression in vivo can be achieved. A modification of this approach is the introduction of inducible gene expression in vivo with a low-molecular-weight compound. Using P(BAD) promoter and L-arabinose as inducer we were able to deliberately activate genes in the bacterial carrier. No background activity could be observed with P(BAD) such that an inducible suicide gene could be introduced. This is adding an important safety feature to such live attenuated carrier bacteria.

  1. Nanovaccines: recent developments in vaccination

    Indian Academy of Sciences (India)

    Tarala D Nandedkar

    2009-12-01

    In the past 100 years, vaccination has contributed immensely to public health by preventing a number of infectious diseases. Attenuated, killed or part of the microorganism is employed to stimulate the immune system against it. Progress in biotechnology has provided protective immunity through DNA vaccines. In recent years, nanovaccine is a novel approach to the methodology of vaccination. Nanomaterials are delivered in the form of microspheres, nanobeads or micro-nanoprojections. Painless, effective and safe needle-free routes such as the intranasal or the oral route, or patches of microprojections to the skin are some of the approaches which are in the experimental stage at present but may have a great future ahead in nanovaccination.

  2. Development of Burkholderia mallei and pseudomallei vaccines.

    Science.gov (United States)

    Silva, Ediane B; Dow, Steven W

    2013-01-01

    Burkholderia mallei and Burkholderia pseudomallei are Gram-negative bacteria that cause glanders and melioidosis, respectively. Inhalational infection with either organism can result in severe and rapidly fatal pneumonia. Inoculation by the oral and cutaneous routes can also produce infection. Chronic infection may develop after recovery from acute infection with both agents, and control of infection with antibiotics requires prolonged treatment. Symptoms for both meliodosis and glanders are non-specific, making diagnosis difficult. B. pseudomallei can be located in the environment, but in the host, B. mallei and B. psedomallei are intracellular organisms, and infection results in similar immune responses to both agents. Effective early innate immune responses are critical to controlling the early phase of the infection. Innate immune signaling molecules such as TLR, NOD, MyD88, and pro-inflammatory cytokines such as IFN-γ and TNF-α play key roles in regulating control of infection. Neutrophils and monocytes are critical cells in the early infection for both microorganisms. Both monocytes and macrophages are necessary for limiting dissemination of B. pseudomallei. In contrast, the role of adaptive immune responses in controlling Burkholderia infection is less well understood. However, T cell responses are critical for vaccine protection from Burkholderia infection. At present, effective vaccines for prevention of glanders or meliodosis have not been developed, although recently development of Burkholderia vaccines has received renewed attention. This review will summarize current and past approaches to develop B. mallei and B. pseudomalllei vaccines, with emphasis on immune mechanisms of protection and the challenges facing the field. At present, immunization with live attenuated bacteria provides the most effective and durable immunity, and it is important therefore to understand the immune correlates of protection induced by live attenuated vaccines. Subunit

  3. Effect of attenuated viral vaccines on suckling mice infected with LCMV.

    Science.gov (United States)

    Csatáry, L K; Szeri, I; Bános, Z; Anderlik, P; Nász, I

    1986-01-01

    A single intraperitoneal treatment with live Newcastle Disease Virus (NDV) containing attenuated NDV vaccine, and with live infectious bursal disease virus (IBDV) containing attenuated IBDV vaccine, one day before intracerebral infection with lymphocytic choriomeningitis virus (LCMV) increased, whereas a similar treatment with inactivated NDV or IBDV vaccine did not influence the death rate of suckling mice from experimental lymphocytic choriomeningitis. Thus the attenuated live vaccine stimulated, whereas the inactivated ones failed to affect the cell-mediated immune response to LCMV. Control studies set up with the supernatant of plain tissue culture routinely used for the propagation of IBDV have shown that unlike the attenuated NDV vaccine, the immunostimulatory action is associated not so much with the virus itself, as with an as yet unidentified component of the tissue culture supernatant.

  4. Development of Burkholderia mallei and pseudomallei vaccines

    Directory of Open Access Journals (Sweden)

    Ediane Batista Silva

    2013-03-01

    Full Text Available B. mallei and B. pseudomallei are Gram-negative bacteria that cause glanders and melioidosis, respectively. Inhalational infection with either organism can result in severe and rapidly fatal pneumonia. Inoculation by the oral and cutaneous routes can also produce infection. chronic infection develops after recovery from acute infection with both agents, and control of infection with antibiotics requires prolonged treatment. Symptoms for both meliodosis and glanders are non-specific, making diagnosis difficult.B. pseudomallei can be located in the environment, but in the host, B. mallei and B. psedomallei are intracellular organisms. Thefection results in similar immune responses to both agents. Effective early innate immune responses are critical to controlling the early phase of the infection. Innate immune signaling molecules such as TLR, NOD, MyD88 and pro-inflammatory cytokines such as IFN- and TNF-α play key roles in regulating control of infection. Neutrophils and monocytes are critical cells in the early infection for these microorganisms. Both monocytes and macrophages are necessary for limiting dissemination of B. pseudomallei. In contrast, the role of adaptive immune responses in controlling Burkholderia infection is less well understood. However, T cell responses are critical for vaccine protection from Burkholderia infection. At present, effective vaccines for prevention of glanders or meliodosis have not been developed, although recently progress of Burkholderia vaccines has received renewed attention.This review will summarize current and past approaches to develop Burkholderia mallei and pseudomalllei vaccines, with emphasis on immune mechanisms of protection and the challenges facing the field. At present, immunization with live attenuated bacteria provides the most effective and durable immunity, and it is important therefore to understand the immune correlates of protection induced by live attenuated vaccines.

  5. Dengue vaccines: Challenges, development, current status and prospects

    Directory of Open Access Journals (Sweden)

    A Ghosh

    2015-01-01

    Full Text Available Infection with dengue virus (DENV is the most rapidly spreading mosquito-borne viral disease in the world. The clinical spectrum of dengue, caused by any of the four serotypes of DENV, ranges from mild self-limiting dengue fever to severe dengue, in the form dengue hemorrhagic fever (DHF and dengue shock syndrome (DSS. Increased rates of hospitalization due to severe dengue, during outbreaks, result in massive economic losses and strained health services. In the absence of specific antiviral therapy, control of transmission of DENV by vector management is the sole method available for decreasing dengue-associated morbidity. Since vector control strategies alone have not been able to satisfactorily achieve reduction in viral transmission, the implementation of a safe, efficacious and cost-effective dengue vaccine as a supplementary measure is a high public health priority. However, the unique and complex immunopathology of dengue has complicated vaccine development. Dengue vaccines have also been challenged by critical issues like lack of animal models for the disease and absence of suitable markers of protective immunity. Although no licensed dengue vaccine is yet available, several vaccine candidates are under phases of development, including live attenuated virus vaccines, live chimeric virus vaccines, inactivated virus vaccines, subunit vaccines, DNA vaccines and viral-vectored vaccines. Although some vaccine candidates have progressed from animal trials to phase II and III in humans, a number of issues regarding implementation of dengue vaccine in countries like India still need to be addressed. Despite the current limitations, collaborative effects of regulatory bodies like World Health Organization with vaccine manufacturers and policy makers, to facilitate vaccine development and standardize field trials can make a safe and efficacious dengue vaccine a reality in near future.

  6. Dengue vaccines: challenges, development, current status and prospects.

    Science.gov (United States)

    Ghosh, A; Dar, L

    2015-01-01

    Infection with dengue virus (DENV) is the most rapidly spreading mosquito-borne viral disease in the world. The clinical spectrum of dengue, caused by any of the four serotypes of DENV, ranges from mild self-limiting dengue fever to severe dengue, in the form dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Increased rates of hospitalization due to severe dengue, during outbreaks, result in massive economic losses and strained health services. In the absence of specific antiviral therapy, control of transmission of DENV by vector management is the sole method available for decreasing dengue-associated morbidity. Since vector control strategies alone have not been able to satisfactorily achieve reduction in viral transmission, the implementation of a safe, efficacious and cost-effective dengue vaccine as a supplementary measure is a high public health priority. However, the unique and complex immunopathology of dengue has complicated vaccine development. Dengue vaccines have also been challenged by critical issues like lack of animal models for the disease and absence of suitable markers of protective immunity. Although no licensed dengue vaccine is yet available, several vaccine candidates are under phases of development, including live attenuated virus vaccines, live chimeric virus vaccines, inactivated virus vaccines, subunit vaccines, DNA vaccines and viral-vectored vaccines. Although some vaccine candidates have progressed from animal trials to phase II and III in humans, a number of issues regarding implementation of dengue vaccine in countries like India still need to be addressed. Despite the current limitations, collaborative effects of regulatory bodies like World Health Organization with vaccine manufacturers and policy makers, to facilitate vaccine development and standardize field trials can make a safe and efficacious dengue vaccine a reality in near future.

  7. The yellow fever 17D virus as a platform for new live attenuated vaccines.

    Science.gov (United States)

    Bonaldo, Myrna C; Sequeira, Patrícia C; Galler, Ricardo

    2014-01-01

    The live-attenuated yellow fever 17D virus is one of the most outstanding human vaccines ever developed. It induces efficacious immune responses at a low production cost with a well-established manufacture process. These advantages make the YF17D virus attractive as a vector for the development of new vaccines. At the beginning of vector development studies, YF17D was genetically manipulated to express other flavivirus prM and E proteins, components of the viral envelope. While these 17D recombinants are based on the substitution of equivalent YF17D genes, other antigens from unrelated pathogens have also been successfully expressed and delivered by recombinant YF17D viruses employing alternative strategies for genetic manipulation of the YF17D genome. Herein, we discuss these strategies in terms of possibilities of single epitope or larger sequence expression and the main properties of these replication-competent viral platforms.

  8. Oral attenuated Salmonella typhimurium vaccine against MG7-Ag mimotope of gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Fan-Ping Meng; Jie Ding; Zhao-Cai Yu; Quan-Li Han; Chang-Cun Guo; Na Liu; Dai-Ming Fan

    2005-01-01

    AIM: To develop an oral attenuated Salmonella typhimurium vaccine against gastric cancer and to evaluate its efficacy in mice.METHODS: A complementary sequence of Nco I site and a sequence coding for MG7-Ag mimotope were designed at the 5' terminus of forward primer. Using p1.2 Ⅱ-HBCAg plasmid as template, PCR was performed to get a fusion gene of the mimotope and a HBcAg gene. The fusion gene was then subcloned into the plasmid pYA3341complementary to Salmonella typhimurium X4550, and the recombinant plasmid was then transformed into attenuated Salmonella typhimurium X4550. Balb/c mice were orally immunized with the recombinant Salmonella typhimurium X4550. The mice were immunized every 2 wk to reinforce the immunity. At the 6th wk, serum titer of antibody was detected by ELISA, and at the 8th wk,cellular immunity was detected by 51Cr release test. Ehrlich ascites carcinoma cells expressing MG7-Ag were used in tumor challenge assay as a model to evaluate the protective effect of the vaccine.RESULTS: Serum titer of antibody against MG7-Ag was significantly higher in mice immunized with the vaccine than in control groups (0.9538±0.043 vs0.6531±0.018,P<0.01; 0.9538±0.043 vs0.6915±0.012, P<0.01), while in vitro 51Cr release assay of the splenocytes showed no statistical difference in the three groups. Two weeks after tumor challenge, 1 in 5 immunized mice was tumor free, while all the mice in the control group presented tumor.CONCLUSION: Oral attenuated Salmonella typhimurium vaccine against the MG7-Ag mimotope of gastric cancer is immunogenic. It can induce significant humoral immunity against tumors in mice, and has some protective effects.

  9. Suppressing active replication of a live attenuated simian immunodeficiency virus vaccine does not abrogate protection from challenge

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, Benjamin; Fiebig, Uwe; Hohn, Oliver [Robert Koch-Institut, Berlin (Germany); Plesker, Roland; Coulibaly, Cheick; Cichutek, Klaus; Mühlebach, Michael D. [Paul-Ehrlich-Institut, Langen (Germany); Bannert, Norbert; Kurth, Reinhard [Robert Koch-Institut, Berlin (Germany); Norley, Stephen, E-mail: NorleyS@rki.de [Robert Koch-Institut, Berlin (Germany)

    2016-02-15

    Although safety concerns preclude the use of live attenuated HIV vaccines in humans, they provide a useful system for identifying the elusive correlates of protective immunity in the SIV/macaque animal model. However, a number of pieces of evidence suggest that protection may result from prior occupancy of susceptible target cells by the vaccine virus rather than the immune response. To address this, we developed a Nef-deletion variant of an RT-SHIV whose active replication could be shut off by treatment with RT-inhibitors. Groups of macaques were inoculated with the ∆Nef-RT-SHIV and immune responses allowed to develop before antiretroviral treatment and subsequent challenge with wild-type SIVmac239. Vaccinated animals either resisted infection fully or significantly controlled the subsequent viremia. However, there was no difference between animals undergoing replication of the vaccine virus and those without. This strongly suggests that competition for available target cells does not play a role in protection. - Highlights: • A Nef-deleted RT-SHIV was used as a live attenuated vaccine in macaques. • Vaccine virus replication was shut down to investigate its role in protection. • Ongoing vaccine virus replication did not appear to be necessary for protection. • An analysis of T- and B-cell responses failed to identify a correlate of protection.

  10. Early Transcriptional Signatures of the Immune Response to a Live Attenuated Tetravalent Dengue Vaccine Candidate in Non-human Primates.

    Directory of Open Access Journals (Sweden)

    Fiona R Strouts

    2016-05-01

    Full Text Available The development of a vaccine against dengue faces unique challenges, including the complexity of the immune responses to the four antigenically distinct serotypes. Genome-wide transcriptional profiling provides insight into the pathways and molecular features that underlie responses to immune system stimulation, and may facilitate predictions of immune protection.In this study, we measured early transcriptional responses in the peripheral blood of cynomolgus macaques following vaccination with a live, attenuated tetravalent dengue vaccine candidate, TDV, which is based on a DENV-2 backbone. Different doses and routes of vaccine administration were used, and viral load and neutralizing antibody titers were measured at different time-points following vaccination. All 30 vaccinated animals developed a neutralizing antibody response to each of the four dengue serotypes, and only 3 of these animals had detectable serum viral RNA after challenge with wild-type dengue virus (DENV, suggesting protection of vaccinated animals to DENV infection. The vaccine induced statistically significant changes in 595 gene transcripts on days 1, 3, 5 and 7 as compared with baseline and placebo-treated animals. Genes involved in the type I interferon (IFN response, including IFI44, DDX58, MX1 and OASL, exhibited the highest fold-change in transcript abundance, and this response was strongest following double dose and subcutaneous (versus intradermal vaccine administration. In addition, modules of genes involved in antigen presentation, dendritic cell activation, and T cell activation and signaling were enriched following vaccination. Increased abundance of gene transcripts related to T cell activation on day 5, and the type I IFN response on day 7, were significantly correlated with the development of high neutralizing antibody titers on day 30.These results suggest that early transcriptional responses may be predictive of development of adaptive immunity to TDV

  11. Early Transcriptional Signatures of the Immune Response to a Live Attenuated Tetravalent Dengue Vaccine Candidate in Non-human Primates

    Science.gov (United States)

    Strouts, Fiona R.; Popper, Stephen J.; Partidos, Charalambos D.; Stinchcomb, Dan T.; Osorio, Jorge E.; Relman, David A.

    2016-01-01

    Background The development of a vaccine against dengue faces unique challenges, including the complexity of the immune responses to the four antigenically distinct serotypes. Genome-wide transcriptional profiling provides insight into the pathways and molecular features that underlie responses to immune system stimulation, and may facilitate predictions of immune protection. Methodology/Principal Findings In this study, we measured early transcriptional responses in the peripheral blood of cynomolgus macaques following vaccination with a live, attenuated tetravalent dengue vaccine candidate, TDV, which is based on a DENV-2 backbone. Different doses and routes of vaccine administration were used, and viral load and neutralizing antibody titers were measured at different time-points following vaccination. All 30 vaccinated animals developed a neutralizing antibody response to each of the four dengue serotypes, and only 3 of these animals had detectable serum viral RNA after challenge with wild-type dengue virus (DENV), suggesting protection of vaccinated animals to DENV infection. The vaccine induced statistically significant changes in 595 gene transcripts on days 1, 3, 5 and 7 as compared with baseline and placebo-treated animals. Genes involved in the type I interferon (IFN) response, including IFI44, DDX58, MX1 and OASL, exhibited the highest fold-change in transcript abundance, and this response was strongest following double dose and subcutaneous (versus intradermal) vaccine administration. In addition, modules of genes involved in antigen presentation, dendritic cell activation, and T cell activation and signaling were enriched following vaccination. Increased abundance of gene transcripts related to T cell activation on day 5, and the type I IFN response on day 7, were significantly correlated with the development of high neutralizing antibody titers on day 30. Conclusions/Significance These results suggest that early transcriptional responses may be

  12. Evaluation of regulated delayed attenuation strategies for Salmonella enterica serovar Typhi vaccine vectors in neonatal and infant mice.

    Science.gov (United States)

    Shi, Huoying; Wang, Shifeng; Curtiss, Roy

    2013-06-01

    We developed regulated delayed attenuation strategies for Salmonella vaccine vectors. In this study, we evaluated the combination of these strategies in recombinant attenuated Salmonella enterica serovar Typhi and Salmonella enterica serovar Typhimurium vaccine vectors with similar genetic backgrounds in vitro and in vivo. Our goal is to develop a vaccine to prevent Streptococcus pneumoniae infection in newborns; thus, all strains delivered a pneumococcal antigen PspA and the impact of maternal antibodies was evaluated. The results showed that all strains with the regulated delayed attenuated phenotype (RDAP) displayed an invasive ability stronger than that of the S. Typhi vaccine strain, Ty21a, but weaker than that of their corresponding wild-type parental strains. The survival curves of different RDAP vaccine vectors in vitro and in vivo exhibited diverse regulated delayed attenuation kinetics, which was different from S. Typhi Ty21a and the wild-type parental strains. Under the influence of maternal antibody, the persistence of the S. Typhimurium RDAP strain displayed a regulated delayed attenuation trend in nasal lymphoid tissue (NALT), lung, and Peyer's patches, while the persistence of S. Typhi RDAP strains followed the curve only in NALT. The bacterial loads of S. Typhi RDAP strains were lower in NALT, lung, and Peyer's patches in mice born to immune mothers than in those born to naive mothers. In accordance with these results, RDAP vaccine strains induced high titers of IgG antibodies against PspA and against Salmonella lipopolysaccharides. Immunization of mothers with S. Typhi RDAP strains enhanced the level of vaginal mucosal IgA, gamma interferon (IFN-γ), and interleukin 4 (IL-4) and resulted in a higher level of protection against S. pneumoniae challenge.

  13. Construction of two Listeria ivanovii attenuated strains expressing Mycobacterium tuberculosis antigens for TB vaccine purposes.

    Science.gov (United States)

    Lin, Qingqing; Zhou, Mengying; Xu, Zongkai; Khanniche, Asma; Shen, Hao; Wang, Chuan

    2015-02-20

    Bacillus Calmette-Guerin (BCG) has failed in complete control of tuberculosis (TB), thus, novel tuberculosis vaccines are urgently needed. We have constructed several TB vaccine candidates, which are characterized by the use of Listeria ivanovii (LI) strain as an antigen delivery vector. Two L. ivanovii attenuated recombinant strains L. ivanovii△actAplcB-Rv0129c and L. ivanovii△actAplcB-Rv3875 were successfully screened. Results from genome PCR and sequencing showed that the Mycobacterium tuberculosis antigen gene cassette coding for Ag85C or ESAT-6 protein respectively had been integrated into LI genome downstream of mpl gene. Western blot confirmed the secretion of Ag85C or ESAT-6 protein from the recombinant LI strains. These two recombinant strains showed similar growth curves as wide type strain in vitro. In vivo, they transiently propagated in mice spleen and liver, and induced specific CD8(+) IFN-γ secretion. Therefore, in this paper, two novel LI attenuated strains expressing specific TB antigens were successfully constructed. The promising growth characteristics in mice immune system and the capability of induction of IFN-γ secretion make them of potential interest for development of TB vaccines.

  14. Vaccine prophylaxis: achievements, problems, perspectives of development

    Directory of Open Access Journals (Sweden)

    Mavrutenkov V.V.

    2016-09-01

    Full Text Available The article presents medical and social aspects of immune prophylaxis of infectious diseases; the history of vaccines and vaccination is presented, as well as perspectives of development of vaccine prophylaxis.

  15. Is HCMV vaccine an unmet need? The state of art of vaccine development.

    Science.gov (United States)

    Chiurchiu, S; Calo Carducci, F I; Rocchi, F; Simonetti, A; Bonatti, G; Salmaso, S; Melchiorri, D; Pani, L; Rossi, P

    2013-01-01

    Congenital HCMV infection is the most frequent congenital infection, with an incidence of 0.2- 2.5 percent among all live births. About 11 percent of infected newborns show symptoms at birth, including hepato-splenomegaly, thrombocytopenia, neurologic involvement, hearing impairment and visual deficit. Moreover, 5-25 percent of the asymptomatic congenital HCMV-infected neonates will develop sequelae over months or even years. The relevant social burden, the economic costs of pre-natal screening, post-natal diagnosis, follow-up and possible therapy, although still limited, are the major factors to be considered. Several types of vaccines have been explored in order to develop an effective and safe HCMV vaccine: live attenuated, subunit, vectored, peptide, DNA, and subviral ones, but none are available for use. This review illustrates the different vaccine types studied to date, focusing on the possible vaccination strategy to be implemented once the HCMV vaccine is available, in terms of target population.

  16. Immunization with a live attenuated H7N9 influenza vaccine protects mice against lethal challenge.

    Directory of Open Access Journals (Sweden)

    Xiaolan Yang

    Full Text Available The emergence of severe cases of human influenza A (H7N9 viral infection in China in the spring of 2003 resulted in a global effort to rapidly develop an effective candidate vaccine. In this study, a cold-adapted (ca, live attenuated monovalent reassortant influenza H7N9 virus (Ah01/AA ca was generated using reverse genetics that contained hemagglutinin (HA and neuraminidase (NA genes from a 2013 pandemic A H7N9 isolate, A/Anhui/01/2013 virus (Ah01/H7N9; the remaining six backbone genes derived from the cold-adapted influenza H2N2 A/Ann Arbor/6/60 virus (AA virus. Ah01/AA ca virus exhibited temperature sensitivity (ts, ca, and attenuation (att phenotypes. Intranasal immunization of female BALB/c mice with Ah01/AA ca twice at a 2-week interval induced robust humoral, mucosal, and cell-mediated immune responses in a dose-dependent manner. Furthermore, the candidate Ah01/AA ca virus was immunogenic and offered partial or complete protection of mice against a lethal challenge by the live 2013 influenza A H7N9 (A/Anhui/01/2013. Protection was demonstrated by the inhibition of viral replication and the attenuation of histopathological changes in the challenged mouse lung. Taken together, these data support the further evaluation of this Ah01/AA ca candidate vaccine in primates.

  17. [Factors of Salmonella typhi virulence in relation to the development of new vaccines].

    Science.gov (United States)

    García, J A; Paniagua, J; Pelayo, R; Isibasi, A; Kumate, J

    1992-01-01

    Although many vaccines against typhoid fever have been developed, none have been adapted for their further application on developing countries. In order to get better vaccines, the virulence factors of both S. typhi and S. typhimurium have been studied. Thus, some protection assays have been made using surface antigens involved on virulence or using live attenuated vaccines of bacteria mutated on virulence genes. Here we present a brief review about virulence factors studied so far for the development of new vaccines.

  18. Arenavirus reverse genetics for vaccine development.

    Science.gov (United States)

    Ortiz-Riaño, Emilio; Cheng, Benson Yee Hin; Carlos de la Torre, Juan; Martínez-Sobrido, Luis

    2013-06-01

    Arenaviruses are important human pathogens with no Food and Drug Administration (FDA)-licensed vaccines available and current antiviral therapy being limited to an off-label use of the nucleoside analogue ribavirin of limited prophylactic efficacy. The development of reverse genetics systems represented a major breakthrough in arenavirus research. However, rescue of recombinant arenaviruses using current reverse genetics systems has been restricted to rodent cells. In this study, we describe the rescue of recombinant arenaviruses from human 293T cells and Vero cells, an FDA-approved line for vaccine development. We also describe the generation of novel vectors that mediate synthesis of both negative-sense genome RNA and positive-sense mRNA species of lymphocytic choriomeningitis virus (LCMV) directed by the human RNA polymerases I and II, respectively, within the same plasmid. This approach reduces by half the number of vectors required for arenavirus rescue, which could facilitate virus rescue in cell lines approved for human vaccine production but that cannot be transfected at high efficiencies. We have shown the feasibility of this approach by rescuing both the Old World prototypic arenavirus LCMV and the live-attenuated vaccine Candid#1 strain of the New World arenavirus Junín. Moreover, we show the feasibility of using these novel strategies for efficient rescue of recombinant tri-segmented both LCMV and Candid#1.

  19. Live, attenuated influenza A H5N1 candidate vaccines provide broad cross-protection in mice and ferrets.

    Directory of Open Access Journals (Sweden)

    Amorsolo L Suguitan

    2006-09-01

    Full Text Available BACKGROUND: Recent outbreaks of highly pathogenic influenza A H5N1 viruses in humans and avian species that began in Asia and have spread to other continents underscore an urgent need to develop vaccines that would protect the human population in the event of a pandemic. METHODS AND FINDINGS: Live, attenuated candidate vaccines possessing genes encoding a modified H5 hemagglutinin (HA and a wild-type (wt N1 neuraminidase from influenza A H5N1 viruses isolated in Hong Kong and Vietnam in 1997, 2003, and 2004, and remaining gene segments derived from the cold-adapted (ca influenza A vaccine donor strain, influenza A/Ann Arbor/6/60 ca (H2N2, were generated by reverse genetics. The H5N1 ca vaccine viruses required trypsin for efficient growth in vitro, as predicted by the modification engineered in the gene encoding the HA, and possessed the temperature-sensitive and attenuation phenotypes specified by the internal protein genes of the ca vaccine donor strain. More importantly, the candidate vaccines were immunogenic in mice. Four weeks after receiving a single dose of 10(6 50% tissue culture infectious doses of intranasally administered vaccines, mice were fully protected from lethality following challenge with homologous and antigenically distinct heterologous wt H5N1 viruses from different genetic sublineages (clades 1, 2, and 3 that were isolated in Asia between 1997 and 2005. Four weeks after receiving two doses of the vaccines, mice and ferrets were fully protected against pulmonary replication of homologous and heterologous wt H5N1 viruses. CONCLUSIONS: The promising findings in these preclinical studies of safety, immunogenicity, and efficacy of the H5N1 ca vaccines against antigenically diverse H5N1 vaccines provide support for their careful evaluation in Phase 1 clinical trials in humans.

  20. Comparative genomics of the Mycobacterium signaling architecture and implications for a novel live attenuated Tuberculosis vaccine.

    Science.gov (United States)

    Zhou, Peifu; Xie, Jianping

    2014-01-01

    Tuberculosis (TB), caused by Mycobacterium tuberculosis (M.tb), remains a major threat to global public health. A new TB vaccine affording superior immune protection to M. bovis Bacillus Calmette-Guérin (BCG) is imperative. The advantage of a live attenuated vaccine is that it can mimic the bona fide pathogen, elicit immune responses similar to natural infection, and potentially provide more protection than other vaccines. BCG, the only vaccine and a live attenuated vaccine that is the result of cumulative mutations by serial passage of M. bovis, has provided clues for the construction of novel improved vaccines. A strategy is put forward for identifying a new live attenuated TB vaccine generated by cumulative mutation based on M.tb. Given the important role of the M.tb signaling network consisting of a two-component system, eukaryotic-like Ser/Thr protein kinase system and sigma factor system based on comparisons among M.tb H37Rv, M. bovis, and BCG, we have put a premium on this signaling circuit as the starting point for the generation of an attenuated TB vaccine.

  1. Typhoid fever & vaccine development: a partially answered question.

    Science.gov (United States)

    Marathe, Sandhya A; Lahiri, Amit; Negi, Vidya Devi; Chakravortty, Dipshikha

    2012-01-01

    Typhoid fever is a systemic disease caused by the human specific Gram-negative pathogen Salmonella enterica serovar Typhi (S. Typhi). The extra-intestinal infections caused by Salmonella are very fatal. The incidence of typhoid fever remains very high in impoverished areas and the emergence of multidrug resistance has made the situation worse. To combat and to reduce the morbidity and mortality caused by typhoid fever, many preventive measures and strategies have been employed, the most important being vaccination. In recent years, many Salmonella vaccines have been developed including live attenuated as well as DNA vaccines and their clinical trials have shown encouraging results. But with the increasing antibiotic resistance, the development of potent vaccine candidate for typhoid fever is a need of the hour. This review discusses the latest trends in the typhoid vaccine development and the clinical trials which are underway.

  2. Limited potential for mosquito transmission of genetically engineered, live-attenuated western equine encephalitis virus vaccine candidates.

    Science.gov (United States)

    Turell, Michael J; O'Guinn, Monica L; Parker, Michael D

    2003-02-01

    Specific mutations associated with attenuation of Venezuelan equine encephalitis (VEE) virus in rodent models were identified during efforts to develop an improved VEE vaccine. Analogous mutations were produced in full-length cDNA clones of the Cba 87 strain of western equine encephalitis (WEE) virus by site-directed mutagenesis in an attempt to develop an improved WEE vaccine. Isogenic viral strains with these mutations were recovered after transfection of baby hamster kidney cells with infectious RNA. We evaluated two of these strains (WE2102 and WE2130) for their ability to replicate in and be transmitted by Culex tarsalis, the principal natural vector of WEE virus in the United States. Each of the vaccine candidates contained a deletion of the PE2 furin cleavage site and a secondary mutation in the E1 or E2 glycoprotein. Both of these potential candidates replicated in mosquitoes significantly less efficiently than did either wild-type WEE (Cba 87) virus or the parental clone (WE2000). Likewise, after intrathoracic inoculation, mosquitoes transmitted the vaccine candidate strains significantly less efficiently than they transmitted either the wild-type or the parental clone. One-day-old chickens vaccinated with either of the two vaccine candidates did not become viremic when challenged with virulent WEE virus two weeks later. Mutations that result in less efficient replication in or transmission by mosquitoes should enhance vaccine safety and reduce the possibility of accidental introduction of the vaccine strain to unintentional hosts.

  3. Vaccines against enteric infections for the developing world.

    Science.gov (United States)

    Czerkinsky, Cecil; Holmgren, Jan

    2015-06-19

    Since the first licensure of the Sabin oral polio vaccine more than 50 years ago, only eight enteric vaccines have been licensed for four disease indications, and all are given orally. While mucosal vaccines offer programmatically attractive tools for facilitating vaccine deployment, their development remains hampered by several factors: -limited knowledge regarding the properties of the gut immune system during early life; -lack of mucosal adjuvants, limiting mucosal vaccine development to live-attenuated or killed whole virus and bacterial vaccines; -lack of correlates/surrogates of mucosal immune protection; and -limited knowledge of the factors contributing to oral vaccine underperformance in children from developing countries. There are now reasons to believe that the development of safe and effective mucosal adjuvants and of programmatically sound intervention strategies could enhance the efficacy of current and next-generation enteric vaccines, especially in lesser developed countries which are often co-endemic for enteric infections and malnutrition. These vaccines must be safe and affordable for the world's poorest, confer long-term protection and herd immunity, and must be able to contain epidemics.

  4. Safety, tolerability, and immunogenicity of a recombinant, genetically engineered, live-attenuated vaccine against canine blastomycosis.

    Science.gov (United States)

    Wüthrich, Marcel; Krajaejun, Theerapong; Shearn-Bochsler, Valerie; Bass, Chris; Filutowicz, Hanna I; Legendre, Alfred M; Klein, Bruce S

    2011-05-01

    Blastomycosis is a severe, commonly fatal infection caused by the dimorphic fungus Blastomyces dermatitidis in dogs that live in the United States, Canada, and parts of Africa. The cost of treating an infection can be expensive, and no vaccine against this infection is commercially available. A genetically engineered live-attenuated strain of B. dermatitidis lacking the major virulence factor BAD-1 successfully vaccinates against lethal experimental infection in mice. Here we studied the safety, toxicity, and immunogenicity of this strain as a vaccine in dogs, using 25 beagles at a teaching laboratory and 78 foxhounds in a field trial. In the beagles, escalating doses of live vaccine ranging from 2 × 10⁴ to 2 × 10⁷ yeast cells given subcutaneously were safe and did not disseminate to the lung or induce systemic illness, but a dose of vaccine dose of 10⁵ yeast cells was also well tolerated in vaccinated foxhounds who had never had blastomycosis; however, vaccinated dogs with prior infection had more local reactions at the vaccine site. The draining lymph node cells and peripheral blood lymphocytes from vaccinated dogs demonstrated gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), and granulocyte-macrophage colony-stimulating factor (GM-CSF) specifically in response to stimulation with Blastomyces antigens. Thus, the live-attenuated vaccine against blastomycosis studied here proved safe, well tolerated, and immunogenic in dogs and merits further studies of vaccine efficacy.

  5. Collaborative vaccine development: partnering pays.

    Science.gov (United States)

    Ramachandra, Rangappa

    2008-01-01

    Vaccine development, supported by infusions of public and private venture capital, is re-entering a golden age as one of the fastest growing sectors in the life-sciences industry. Demand is driven by great unmet need in underdeveloped countries, increased resistance to current treatments, bioterrorism, and for prevention indications in travelers, pediatric, and adult diseases. Production systems are becoming less reliant on processes such as egg-based manufacturing, while new processes can help to optimize vaccines. Expeditious development hinges on efficient study conduct, which is greatly enhanced through research partnerships with specialized contract research organizations (CROs) that are licensed and knowledgeable in the intricacies of immunology and with the technologic and scientific foundation to support changing timelines and strategies inherent to vaccine development. The CRO often brings a more objective assessment for probability of success and may offer alternative development pathways. Vaccine developers are afforded more flexibility and are free to focus on innovation and internal core competencies. Functions readily outsourced to a competent partner include animal model development, safety and efficacy studies, immunotoxicity and immunogenicity, dose response studies, and stability and potency testing. These functions capitalize on the CRO partner's regulatory and scientific talent and expertise, and reduce infrastructure expenses for the vaccine developer. Successful partnerships result in development efficiencies, elimination or reduced redundancies, and improved time to market. Keys to success include honest communications, transparency, and flexibility.

  6. Status of paratyphoid fever vaccine research and development.

    Science.gov (United States)

    Martin, Laura B; Simon, Raphael; MacLennan, Calman A; Tennant, Sharon M; Sahastrabuddhe, Sushant; Khan, M Imran

    2016-06-01

    Salmonella enterica serovars Typhi and Paratyphi (S. Paratyphi) A and B cause enteric fever in humans. Of the paratyphoid group, S. Paratyphi A is the most common serovar. In 2000, there were an estimated 5.4 million cases of S. Paratyphi A worldwide. More recently paratyphoid fever has accounted for an increasing fraction of all cases of enteric fever. Although vaccines for typhoid fever have been developed and in use for decades, vaccines for paratyphoid fever have not yet been licensed. Several S. Paratyphi A vaccines, however, are in development and based on either whole cell live-attenuated strains or repeating units of the lipopolysaccharide O-antigen (O:2) conjugated to different protein carriers. An O-specific polysaccharide (O:2) of S. Paratyphi A conjugated to tetanus toxoid (O:2-TT), for example, has been determined to be safe and immunogenic after one dose in Phase I and Phase II trials. Two other conjugated vaccine candidates linked to diphtheria toxin and a live-attenuated oral vaccine candidate are currently in preclinical development. As promising vaccine candidates are advanced along the development pipeline, an adequate supply of vaccines will need to be ensured to meet growing demand, particularly in the most affected countries.

  7. Long-term safety assessment of live attenuated tetravalent dengue vaccines: deliberations from a WHO technical consultation.

    Science.gov (United States)

    Bentsi-Enchill, Adwoa D; Schmitz, Julia; Edelman, Robert; Durbin, Anna; Roehrig, John T; Smith, Peter G; Hombach, Joachim; Farrar, Jeremy

    2013-05-28

    Dengue is a rapidly growing public health threat with approximately 2.5 billion people estimated to be at risk. Several vaccine candidates are at various stages of pre-clinical and clinical development. Thus far, live dengue vaccine candidates have been administered to several thousands of volunteers and were well-tolerated, with minimal short-term safety effects reported in Phase I and Phase II clinical trials. Based on the natural history of dengue, a theoretical possibility of an increased risk of severe dengue as a consequence of vaccination has been hypothesized but not yet observed. In October 2011, the World Health Organization (WHO) convened a consultation of experts in dengue, vaccine regulation and vaccine safety to review the current scientific evidence regarding safety concerns associated with live attenuated dengue vaccines and, in particular, to consider methodological approaches for their long-term evaluation. In this paper we summarize the scientific background and methodological considerations relevant to the safety assessment of these vaccines. Careful planning and a coordinated approach to safety assessment are recommended to ensure adequate long-term evaluation of dengue vaccines that will support their introduction and continued use.

  8. Chinese vaccine products go global: vaccine development and quality control.

    Science.gov (United States)

    Xu, Miao; Liang, Zhenglun; Xu, Yinghua; Wang, Junzhi

    2015-05-01

    Through the continuous efforts of several generations, China has become one of the few countries in the world that is capable of independently addressing all the requirements by the Expanded Program on Immunization. Regulatory science is applied to continuously improve the vaccine regulatory system. Passing the prequalification by WHO has allowed Chinese vaccine products to go global. Chinese vaccine products not only secure disease prevention and control domestically but also serve the needs for international public health. This article describes the history of Chinese vaccine development, the current situation of Chinese vaccine industry and its contribution to the prevention and control of infectious diseases. We also share our experience of national quality control and vaccine regulation during the past decades. China's experience in vaccine development and quality control can benefit other countries and regions worldwide, including the developing countries.

  9. In silico identification of genetically attenuated vaccine candidate genes for Plasmodium liver stage.

    Science.gov (United States)

    Kumar, Hirdesh; Frischknecht, Friedrich; Mair, Gunnar R; Gomes, James

    2015-12-01

    Genetically attenuated parasites (GAPs) that lack genes essential for the liver stage of the malaria parasite, and therefore cause developmental arrest, have been developed as live vaccines in rodent malaria models and recently been tested in humans. The genes targeted for deletion were often identified by trial and error. Here we present a systematic gene - protein and transcript - expression analyses of several Plasmodium species with the aim to identify candidate genes for the generation of novel GAPs. With a lack of liver stage expression data for human malaria parasites, we used data available for liver stage development of Plasmodium yoelii, a rodent malaria model, to identify proteins expressed in the liver stage but absent from blood stage parasites. An orthology-based search was then employed to identify orthologous proteins in the human malaria parasite Plasmodium falciparum resulting in a total of 310 genes expressed in the liver stage but lacking evidence of protein expression in blood stage parasites. Among these 310 possible GAP candidates, we further studied Plasmodium liver stage proteins by phyletic distribution and functional domain analyses and shortlisted twenty GAP-candidates; these are: fabB/F, fabI, arp, 3 genes encoding subunits of the PDH complex, dnaJ, urm1, rS5, ancp, mcp, arh, gk, lisp2, valS, palm, and four conserved Plasmodium proteins of unknown function. Parasites lacking one or several of these genes might yield new attenuated malaria parasites for experimental vaccination studies.

  10. Efficacy of a live attenuated vaccine in classical swine fever virus postnatally persistently infected pigs.

    Science.gov (United States)

    Muñoz-González, Sara; Perez-Simó, Marta; Muñoz, Marta; Bohorquez, José Alejandro; Rosell, Rosa; Summerfield, Artur; Domingo, Mariano; Ruggli, Nicolas; Ganges, Llilianne

    2015-07-09

    Classical swine fever (CSF) causes major losses in pig farming, with various degrees of disease severity. Efficient live attenuated vaccines against classical swine fever virus (CSFV) are used routinely in endemic countries. However, despite intensive vaccination programs in these areas for more than 20 years, CSF has not been eradicated. Molecular epidemiology studies in these regions suggests that the virus circulating in the field has evolved under the positive selection pressure exerted by the immune response to the vaccine, leading to new attenuated viral variants. Recent work by our group demonstrated that a high proportion of persistently infected piglets can be generated by early postnatal infection with low and moderately virulent CSFV strains. Here, we studied the immune response to a hog cholera lapinised virus vaccine (HCLV), C-strain, in six-week-old persistently infected pigs following post-natal infection. CSFV-negative pigs were vaccinated as controls. The humoral and interferon gamma responses as well as the CSFV RNA loads were monitored for 21 days post-vaccination. No vaccine viral RNA was detected in the serum samples and tonsils from CSFV postnatally persistently infected pigs for 21 days post-vaccination. Furthermore, no E2-specific antibody response or neutralising antibody titres were shown in CSFV persistently infected vaccinated animals. Likewise, no of IFN-gamma producing cell response against CSFV or PHA was observed. To our knowledge, this is the first report demonstrating the absence of a response to vaccination in CSFV persistently infected pigs.

  11. Reverse Genetics Approaches for the Development of Influenza Vaccines

    Directory of Open Access Journals (Sweden)

    Aitor Nogales

    2016-12-01

    Full Text Available Influenza viruses cause annual seasonal epidemics and occasional pandemics of human respiratory disease. Influenza virus infections represent a serious public health and economic problem, which are most effectively prevented through vaccination. However, influenza viruses undergo continual antigenic variation, which requires either the annual reformulation of seasonal influenza vaccines or the rapid generation of vaccines against potential pandemic virus strains. The segmented nature of influenza virus allows for the reassortment between two or more viruses within a co-infected cell, and this characteristic has also been harnessed in the laboratory to generate reassortant viruses for their use as either inactivated or live-attenuated influenza vaccines. With the implementation of plasmid-based reverse genetics techniques, it is now possible to engineer recombinant influenza viruses entirely from full-length complementary DNA copies of the viral genome by transfection of susceptible cells. These reverse genetics systems have provided investigators with novel and powerful approaches to answer important questions about the biology of influenza viruses, including the function of viral proteins, their interaction with cellular host factors and the mechanisms of influenza virus transmission and pathogenesis. In addition, reverse genetics techniques have allowed the generation of recombinant influenza viruses, providing a powerful technology to develop both inactivated and live-attenuated influenza vaccines. In this review, we will summarize the current knowledge of state-of-the-art, plasmid-based, influenza reverse genetics approaches and their implementation to provide rapid, convenient, safe and more effective influenza inactivated or live-attenuated vaccines.

  12. Live attenuated HIV vaccines: predicting the tradeoff between efficacy and safety.

    Science.gov (United States)

    Blower, S M; Koelle, K; Kirschner, D E; Mills, J

    2001-03-13

    The utility of live attenuated vaccines for controlling HIV epidemics is being debated. Live attenuated HIV vaccines (LAHVs) could be extremely effective in protecting against infection with wild-type strains, but may not be completely safe as the attenuated strain could cause AIDS in some vaccinated individuals. We present a theoretical framework for evaluating the consequences of the tradeoff between vaccine efficacy (in terms of preventing new infections with wild-type strains) and safety (in terms of vaccine-induced AIDS deaths). We use our framework to predict, for Zimbabwe and Thailand, the epidemiological impact of 1,000 different (specified by efficacy and safety characteristics) LAHVs. We predict that paradoxically: (i) in Zimbabwe (where transmission is high) LAHVs would significantly decrease the AIDS death rate, but (ii) in Thailand (where transmission is low) exactly the same vaccines (in terms of efficacy and safety characteristics) would increase the AIDS death rate. Our results imply that a threshold transmission rate exists that determines whether any given LAHV has a beneficial or a detrimental impact. We also determine the vaccine perversity point, which is defined in terms of the fraction of vaccinated individuals who progress to AIDS as a result of the vaccine strain. Vaccination with any LAHV that causes more than 5% of vaccinated individuals to progress to AIDS in 25 years would, even 50 years later, lead to perversity (i.e., increase the annual AIDS death rate) in Thailand; these same vaccines would lead to decreases in the annual AIDS death rate in Zimbabwe.

  13. Live bacterial delivery systems for development of mucosal vaccines

    NARCIS (Netherlands)

    Thole, J.E.R.; Dalen, P.J. van; Havenith, C.E.G.; Pouwels, P.H.; Seegers, J.F.M.L.; Tielen, F.D.; Zee, M.D. van der; Zegers, N.D.; Shaw, M.

    2000-01-01

    By expression of foreign antigens in attenuated strains derived from bacterial pathogens and in non-pathogenic commensal bacteria, recombinant vaccines are being developed that aim to stimulate mucosal immunity. Recent advances in the pathogenesis and molecular biology of these bacteria have allowed

  14. DENGUE VACCINES.

    Science.gov (United States)

    Thisyakorn, Usa; Thisyakorn, Chule

    2015-01-01

    The uniqueness of the dengue viruses (DENVs) and the spectrum of disease resulting from infection have made dengue vaccine development difficult. Several vaccine candidates are currently being evaluated in clinical studies. The candidate currently at the most advanced clinical development stage, a live-attenuated tetravalent vaccine based on the chimeric yellow fever-dengue virus (CYD-TDV), has progressed to Phase 3 efficacy studies. Several other live-attenuated vaccines, as well as subunit, DNA, and purified inactivated vaccine candidates are at earlier stages of clinical development. Additional technological approaches, such as virus-vectored and Virus-Like Particles (VLP)-based vaccines are under evaluation in preclinical studies.

  15. In vitro evaluation of live attenuated vaccines against Salmonella enteritidis: cell-mediated immune response

    Directory of Open Access Journals (Sweden)

    Sandra Torriani

    2010-01-01

    Full Text Available The use of Salmonella enteritidis (SE live attenuated vaccines is one of the major tool to reduce this infection in commercial poultry. In this work, techniques, evaluating the presence and the expression of some cytokines, were studied to improve the knowledge of the cellular-mediated immune response following SE vaccination. This study demonstrated that SE vaccination enhances the production of INF-γ, IL-8, iNOs, while downregulates IL-1β. Between these immunologic parameters, the evaluation of INF-γ seems to be the most significant and easy test to plan and optimize SE vaccination programs.

  16. Communicating vaccine safety during the development and introduction of vaccines.

    Science.gov (United States)

    Kochhar, Sonali

    2015-01-01

    Vaccines are the best defense available against infectious diseases. Vaccine safety is of major focus for regulatory bodies, vaccine manufacturers, public health authorities, health care providers and the public as vaccines are often given to healthy children and adults as well as to pregnant woman. Safety assessment is critical at all stages of vaccine development. Effective, clear and consistent communication of the risks and benefits of vaccines and advocacy during all stages of clinical research (including the preparation, approvals, conduct of clinical trials through the post marketing phase) is critically important. This needs to be done for all major stakeholders (e.g. community members, Study Team, Health Care Providers, Ministry of Health, Regulators, Ethics Committee members, Public Health Authorities and Policy Makers). Improved stakeholder alignment would help to address some of the concerns that may affect the clinical research, licensing of vaccines and their wide-spread use in immunization programs around the world.

  17. Replacement of the Ectodomains of the Hemagglutinin-Neuraminidase and Fusion Glycoproteins of Recombinant Parainfluenza Virus Type 3 (PIV3) with Their Counterparts from PIV2 Yields Attenuated PIV2 Vaccine Candidates

    OpenAIRE

    Tao, Tao; Skiadopoulos, Mario H.; Davoodi, Fatemeh; Riggs, Jeffrey M.; Collins, Peter L.; Murphy, Brian R

    2000-01-01

    We sought to develop a live attenuated parainfluenza virus type 2 (PIV2) vaccine strain for use in infants and young children, using reverse genetic techniques that previously were used to rapidly produce a live attenuated PIV1 vaccine candidate. The PIV1 vaccine candidate, designated rPIV3-1cp45, was generated by substituting the full-length HN and F proteins of PIV1 for those of PIV3 in the attenuated cp45 PIV3 vaccine candidate (T. Tao et al., J. Virol. 72:2955–2961, 1998; M. H. Skiadopoul...

  18. Yersinia pestis with regulated delayed attenuation as a vaccine candidate to induce protective immunity against plague.

    Science.gov (United States)

    Sun, Wei; Roland, Kenneth L; Kuang, Xiaoying; Branger, Christine G; Curtiss, Roy

    2010-03-01

    Two mutant strains of Yersinia pestis KIM5+, a Deltacrp mutant and a mutant with arabinose-dependent regulated delayed-shutoff crp expression (araC P(BAD) crp), were constructed, characterized in vitro, and evaluated for virulence, immunogenicity, and protective efficacy in mice. Both strains were highly attenuated by the subcutaneous (s.c.) route. The 50% lethal doses (LD(50)s) of the Deltacrp and araC P(BAD) crp mutants were approximately 1,000,000-fold and 10,000-fold higher than those of Y. pestis KIM5+, respectively, indicating that both strains were highly attenuated. Mice vaccinated s.c. with 3.8 x 10(7) CFU of the Deltacrp mutant developed high anti-Y. pestis and anti-LcrV serum IgG titers, both with a strong Th2 bias, and induced protective immunity against subcutaneous challenge with virulent Y. pestis (80% survival) but no protection against pulmonary challenge. Mice vaccinated with 3.0 x 10(4) CFU of the araC P(BAD) crp mutant also developed high anti-Y. pestis and anti-LcrV serum IgG titers but with a more balanced Th1/Th2 response. This strain induced complete protection against s.c. challenge and partial protection (70% survival) against pulmonary challenge. Our results demonstrate that arabinose-dependent regulated crp expression is an effective strategy to attenuate Y. pestis while retaining strong immunogenicity, leading to protection against the pneumonic and bubonic forms of plague.

  19. Anti-angiogenesis Effect on Glioma of Attenuated Salmonella Typhimurium Vaccine Strain with flk-1 Gene

    Institute of Scientific and Technical Information of China (English)

    冯珂珂; 赵洪洋; 陈剑; 姚东晓; 姜小兵; 周伟

    2004-01-01

    To investigate the anti-vasculature effects and the anti-glioma effects of attenuated Salmonella typhimurium vaccine strain expressing VEGFR2 (flk-1) gene, plasmid pcDNA3. 1-flk1 was constructed and electro-transfected into live attenuated Salmonella typhimurium strain SL7207. Mouse models of intracranial Gl261 glioblastoma were treated with an orally administered attenuated Salmonella typhimurium expressing flk-1 gene. The survival period was recorded and vessel density was observed by immunofluorescence. CTLs activity was measured by MTT assay.Our results showed that attenuated Salmonella typhimurium vaccine strain expressing flk-1 gene could significantly inhibit glioblastoma growth, reduce vessel density, prolong the survival period and improve the survival rate in these mice. The flk-1 specific CTLs activity was increased obviously after the vaccination. Our study showed that attenuated Salmonella typhimurium vaccine strain expressing flk-1 gene could break peripheral immune tolerance a in glioma gainst this self-antigen and kill endothelial cells by the orally administered vaccine and can be used for both prophylactic and therapeutic purposes.

  20. Generation and Characterization of Live Attenuated Influenza A(H7N9 Candidate Vaccine Virus Based on Russian Donor of Attenuation.

    Directory of Open Access Journals (Sweden)

    Svetlana Shcherbik

    Full Text Available Avian influenza A (H7N9 virus has emerged recently and continues to cause severe disease with a high mortality rate in humans prompting the development of candidate vaccine viruses. Live attenuated influenza vaccines (LAIV are 6:2 reassortant viruses containing the HA and NA gene segments from wild type influenza viruses to induce protective immune responses and the six internal genes from Master Donor Viruses (MDV to provide temperature sensitive, cold-adapted and attenuated phenotypes.LAIV candidate A/Anhui/1/2013(H7N9-CDC-LV7A (abbreviated as CDC-LV7A, based on the Russian MDV, A/Leningrad/134/17/57 (H2N2, was generated by classical reassortment in eggs and retained MDV temperature-sensitive and cold-adapted phenotypes. CDC-LV7A had two amino acid substitutions N123D and N149D (H7 numbering in HA and one substitution T10I in NA. To evaluate the role of these mutations on the replication capacity of the reassortants in eggs, the recombinant viruses A(H7N9RG-LV1 and A(H7N9RG-LV2 were generated by reverse genetics. These changes did not alter virus antigenicity as ferret antiserum to CDC-LV7A vaccine candidate inhibited hemagglutination by homologous A(H7N9 virus efficiently. Safety studies in ferrets confirmed that CDC-LV7A was attenuated compared to wild-type A/Anhui/1/2013. In addition, the genetic stability of this vaccine candidate was examined in eggs and ferrets by monitoring sequence changes acquired during virus replication in the two host models. No changes in the viral genome were detected after five passages in eggs. However, after ten passages additional mutations were detected in the HA gene. The vaccine candidate was shown to be stable in the ferret model; post-vaccination sequence data analysis showed no changes in viruses collected in nasal washes present at day 5 or day 7.Our data indicate that the A/Anhui/1/2013(H7N9-CDC-LV7A reassortant virus is a safe and genetically stable candidate vaccine virus that is now available for

  1. Generation and Characterization of Live Attenuated Influenza A(H7N9) Candidate Vaccine Virus Based on Russian Donor of Attenuation

    Science.gov (United States)

    Shcherbik, Svetlana; Pearce, Nicholas; Balish, Amanda; Jones, Joyce; Thor, Sharmi; Davis, Charles Todd; Pearce, Melissa; Tumpey, Terrence; Cureton, David; Chen, Li-Mei; Villanueva, Julie; Bousse, Tatiana L.

    2015-01-01

    Background Avian influenza A (H7N9) virus has emerged recently and continues to cause severe disease with a high mortality rate in humans prompting the development of candidate vaccine viruses. Live attenuated influenza vaccines (LAIV) are 6:2 reassortant viruses containing the HA and NA gene segments from wild type influenza viruses to induce protective immune responses and the six internal genes from Master Donor Viruses (MDV) to provide temperature sensitive, cold-adapted and attenuated phenotypes. Methodology/Principal Findings LAIV candidate A/Anhui/1/2013(H7N9)-CDC-LV7A (abbreviated as CDC-LV7A), based on the Russian MDV, A/Leningrad/134/17/57 (H2N2), was generated by classical reassortment in eggs and retained MDV temperature-sensitive and cold-adapted phenotypes. CDC-LV7A had two amino acid substitutions N123D and N149D (H7 numbering) in HA and one substitution T10I in NA. To evaluate the role of these mutations on the replication capacity of the reassortants in eggs, the recombinant viruses A(H7N9)RG-LV1 and A(H7N9)RG-LV2 were generated by reverse genetics. These changes did not alter virus antigenicity as ferret antiserum to CDC-LV7A vaccine candidate inhibited hemagglutination by homologous A(H7N9) virus efficiently. Safety studies in ferrets confirmed that CDC-LV7A was attenuated compared to wild-type A/Anhui/1/2013. In addition, the genetic stability of this vaccine candidate was examined in eggs and ferrets by monitoring sequence changes acquired during virus replication in the two host models. No changes in the viral genome were detected after five passages in eggs. However, after ten passages additional mutations were detected in the HA gene. The vaccine candidate was shown to be stable in the ferret model; post-vaccination sequence data analysis showed no changes in viruses collected in nasal washes present at day 5 or day 7. Conclusions/Significance Our data indicate that the A/Anhui/1/2013(H7N9)-CDC-LV7A reassortant virus is a safe and

  2. Recent update in HIV vaccine development

    OpenAIRE

    Shin, So Youn

    2016-01-01

    Despite the tremendous efforts to develop a successful human immunodeficiency virus (HIV) vaccine, the quest for a safe and effective HIV vaccine seems to be remarkably long and winding. Disappointing results from previous clinical trials of VaxGen's AIDSVAXgp120 vaccine and MRKAd5 HIV-1 Gag/Pol/Nef vaccine emphasize that understanding the correlates of immune protection in HIV infection is the key to solve the puzzle. The modest vaccine efficacy from RV144 trial and the successive results ob...

  3. Attenuated strains of Mycobacterium avium subspecies paratuberculosis as vaccine candidates against Johne's disease.

    Science.gov (United States)

    Settles, Erik W; Kink, John A; Talaat, Adel

    2014-04-11

    Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis) is the causative agent of Johne's disease in ruminants. Johne's disease has a severe economic impact on the dairy industry in the USA and worldwide. In an effort to combat this disease, we screened several transposon mutants that were attenuated in the murine model of paratuberculosis for the potential use as live attenuated vaccines. Using the murine model, two vaccine candidates (pgs1360, pgs3965 with mutations of fabG2_2 and umaA1, respectively) were at or below the limit of detection for tissue colonization suggesting their low level persistence and hence safety. Prior to challenge, both candidates induced a M. paratuberculosis-specific IFN-γ, an indication of eliciting cell-mediated immunity. Following challenge with a virulent strain of M. paratuberculosis, the two vaccine candidates significantly reduced bacterial colonization in organs with reduced histological scores compared to control animals. In addition, one of the vaccine candidates (pgs3965) also induced IL-17a, a cytokine associated with protective immunity in mycobacterial infection. Our analysis suggested that the pgs3965 vaccine candidate is a potential live-attenuated vaccine that could be tested further in ruminant models of paratuberculosis. The analysis also validated our screening strategy to identify effective vaccine candidates against intracellular pathogens.

  4. Increasing uptake of live attenuated influenza vaccine among children in the United States, 2008-2014.

    Science.gov (United States)

    Rodgers, Loren; Pabst, Laura J; Chaves, Sandra S

    2015-01-01

    The Advisory Committee on Immunization Practices (ACIP) recommends annual influenza vaccination for all persons in the United States aged ≥6 months. On June 25, 2014, ACIP preferentially recommended live attenuated influenza vaccine (LAIV) for healthy children aged 2-8 years. Little is known about national LAIV uptake. To determine uptake of LAIV relative to inactivated influenza vaccine, we analyzed vaccination records from six immunization information system sentinel sites (approximately 10% of US population). LAIV usage increased over time in all sites. Among children 2-8 years of age vaccinated for influenza, exclusive LAIV usage in the collective sentinel site area increased from 20.1% (2008-09 season) to 38.0% (2013-14). During 2013-14, at least half of vaccinated children received LAIV in Minnesota (50.0%) and North Dakota (55.5%). Increasing LAIV usage suggests formulation acceptability, and this preexisting trend offers a favorable context for implementation of ACIP's preferential recommendation.

  5. Research Regarding some Live Attenuated Vaccines Used in Immunoprophylaxis of the Avian Infectious Bursitis

    Directory of Open Access Journals (Sweden)

    Emil Tirziu

    2010-10-01

    Full Text Available In our research four live attenuated vaccines against avian infectious bursitis (two inland produced and two imported were tested: Biavac, Biaromvac-Pa, Gumboro Vaccine Nobilis 228e and Live Virus Vaccine Tablets Gumboro, M.B. Strain. The research was made in production conditions on 44,400 broiler chickens maintained in industrial system and raised on bedding and in batteries. The broilers were kept in four poultry houses, each of them representing an experimental group. We mention that vaccines were administered only one time. Vaccines efficiency was assessed by immunoenzymatic test. In that purpose, for each poultry house, 20 broilers were isolated and identified by a tibial ring, their immune response being followed between 5 and 42 days of age. Analyzing the results about individual antibodies titer during the experiment, the significant differences were observed both in poultries and phases. The best results were obtained using Live Virus Vaccine Tablets Gumboro, M.B. strain.

  6. A live attenuated strain of Yersinia pestis KIM as a vaccine against plague.

    Science.gov (United States)

    Sun, Wei; Six, David; Kuang, Xiaoying; Roland, Kenneth L; Raetz, Christian R H; Curtiss, Roy

    2011-04-01

    Yersinia pestis, the causative agent of plague, is a potential weapon of bioterrorism. Y. pestis evades the innate immune system by synthesizing tetra-acylated lipid A with poor Toll-like receptor 4 (TLR4)-stimulating activity at 37°C, whereas hexa-acylated lipid A, a potent TLR4 agonist, is made at lower temperatures. Synthesis of Escherichia coli LpxL, which transfers the secondary laurate chain to the 2'-position of lipid A, in Y. pestis results in production of hexa-acylated lipid A at 37°C, leading to significant attenuation of virulence. Previously, we described a Y. pestis vaccine strain in which crp expression is under the control of the arabinose-regulated araC P(BAD) promoter, resulting in a 4-5 log reduction in virulence. To reduce the virulence of the crp promoter mutant further, we introduced E. coli lpxL into the Y. pestis chromosome. The χ10030(pCD1Ap) (ΔlpxP32::P(lpxL)lpxL ΔP(crp21)::TT araC P(BAD)crp) construct likewise produced hexa-acylated lipid A at 37°C and was significantly more attenuated than strains harboring each individual mutation. The LD(50) of the mutant in mice, when administered subcutaneously or intranasally was >10(7)-times and >10(4)-times greater than wild type, respectively. Mice immunized subcutaneously with a single dose of the mutant were completely protected against a subcutaneous challenge of 3.6×10(7) wild-type Y. pestis and significantly protected (80% survival) against a pulmonary challenge of 1.2×10(4) live cells. Intranasal immunization also provided significant protection against challenges by both routes. This mutant is an immunogenic, highly attenuated live Y. pestis construct that merits further development as a vaccine candidate.

  7. Deliberate attenuation of chikungunya virus by adaptation to heparan sulfate-dependent infectivity: a model for rational arboviral vaccine design.

    Science.gov (United States)

    Gardner, Christina L; Hritz, Jozef; Sun, Chengqun; Vanlandingham, Dana L; Song, Timothy Y; Ghedin, Elodie; Higgs, Stephen; Klimstra, William B; Ryman, Kate D

    2014-02-01

    Mosquito-borne chikungunya virus (CHIKV) is a positive-sense, single-stranded RNA virus from the genus Alphavirus, family Togaviridae, which causes fever, rash and severe persistent polyarthralgia in humans. Since there are currently no FDA licensed vaccines or antiviral therapies for CHIKV, the development of vaccine candidates is of critical importance. Historically, live-attenuated vaccines (LAVs) for protection against arthropod-borne viruses have been created by blind cell culture passage leading to attenuation of disease, while maintaining immunogenicity. Attenuation may occur via multiple mechanisms. However, all examined arbovirus LAVs have in common the acquisition of positively charged amino acid substitutions in cell-surface attachment proteins that render virus infection partially dependent upon heparan sulfate (HS), a ubiquitously expressed sulfated polysaccharide, and appear to attenuate by retarding dissemination of virus particles in vivo. We previously reported that, like other wild-type Old World alphaviruses, CHIKV strain, La Réunion, (CHIKV-LR), does not depend upon HS for infectivity. To deliberately identify CHIKV attachment protein mutations that could be combined with other attenuating processes in a LAV candidate, we passaged CHIKV-LR on evolutionarily divergent cell-types. A panel of single amino acid substitutions was identified in the E2 glycoprotein of passaged virus populations that were predicted to increase electrostatic potential. Each of these substitutions was made in the CHIKV-LR cDNA clone and comparisons of the mutant viruses revealed surface exposure of the mutated residue on the spike and sensitivity to competition with the HS analog, heparin, to be primary correlates of attenuation in vivo. Furthermore, we have identified a mutation at E2 position 79 as a promising candidate for inclusion in a CHIKV LAV.

  8. Deliberate attenuation of chikungunya virus by adaptation to heparan sulfate-dependent infectivity: a model for rational arboviral vaccine design.

    Directory of Open Access Journals (Sweden)

    Christina L Gardner

    2014-02-01

    Full Text Available Mosquito-borne chikungunya virus (CHIKV is a positive-sense, single-stranded RNA virus from the genus Alphavirus, family Togaviridae, which causes fever, rash and severe persistent polyarthralgia in humans. Since there are currently no FDA licensed vaccines or antiviral therapies for CHIKV, the development of vaccine candidates is of critical importance. Historically, live-attenuated vaccines (LAVs for protection against arthropod-borne viruses have been created by blind cell culture passage leading to attenuation of disease, while maintaining immunogenicity. Attenuation may occur via multiple mechanisms. However, all examined arbovirus LAVs have in common the acquisition of positively charged amino acid substitutions in cell-surface attachment proteins that render virus infection partially dependent upon heparan sulfate (HS, a ubiquitously expressed sulfated polysaccharide, and appear to attenuate by retarding dissemination of virus particles in vivo. We previously reported that, like other wild-type Old World alphaviruses, CHIKV strain, La Réunion, (CHIKV-LR, does not depend upon HS for infectivity. To deliberately identify CHIKV attachment protein mutations that could be combined with other attenuating processes in a LAV candidate, we passaged CHIKV-LR on evolutionarily divergent cell-types. A panel of single amino acid substitutions was identified in the E2 glycoprotein of passaged virus populations that were predicted to increase electrostatic potential. Each of these substitutions was made in the CHIKV-LR cDNA clone and comparisons of the mutant viruses revealed surface exposure of the mutated residue on the spike and sensitivity to competition with the HS analog, heparin, to be primary correlates of attenuation in vivo. Furthermore, we have identified a mutation at E2 position 79 as a promising candidate for inclusion in a CHIKV LAV.

  9. No evidence of murine leukemia virus-related viruses in live attenuated human vaccines.

    Directory of Open Access Journals (Sweden)

    William M Switzer

    Full Text Available BACKGROUND: The association of xenotropic murine leukemia virus (MLV-related virus (XMRV in prostate cancer and chronic fatigue syndrome reported in previous studies remains controversial as these results have been questioned by recent data. Nonetheless, concerns have been raised regarding contamination of human vaccines as a possible source of introduction of XMRV and MLV into human populations. To address this possibility, we tested eight live attenuated human vaccines using generic PCR for XMRV and MLV sequences. Viral metagenomics using deep sequencing was also done to identify the possibility of other adventitious agents. RESULTS: All eight live attenuated vaccines, including Japanese encephalitis virus (JEV (SA-14-14-2, varicella (Varivax, measles, mumps, and rubella (MMR-II, measles (Attenuvax, rubella (Meruvax-II, rotavirus (Rotateq and Rotarix, and yellow fever virus were negative for XMRV and highly related MLV sequences. However, residual hamster DNA, but not RNA, containing novel endogenous gammaretrovirus sequences was detected in the JEV vaccine using PCR. Metagenomics analysis did not detect any adventitious viral sequences of public health concern. Intracisternal A particle sequences closest to those present in Syrian hamsters and not mice were also detected in the JEV SA-14-14-2 vaccine. Combined, these results are consistent with the production of the JEV vaccine in Syrian hamster cells. CONCLUSIONS: We found no evidence of XMRV and MLV in eight live attenuated human vaccines further supporting the safety of these vaccines. Our findings suggest that vaccines are an unlikely source of XMRV and MLV exposure in humans and are consistent with the mounting evidence on the absence of these viruses in humans.

  10. Novel adjuvants & delivery vehicles for vaccines development: a road ahead.

    Science.gov (United States)

    Mohan, Teena; Verma, Priyanka; Rao, D Nageswara

    2013-11-01

    The pure recombinant and synthetic antigens used in modern day vaccines are generally less immunogenic than older style live/attenuated and killed whole organism vaccines. One can improve the quality of vaccine production by incorporating immunomodulators or adjuvants with modified delivery vehicles viz. liposomes, immune stimulating complexes (ISCOMs), micro/nanospheres apart from alum, being used as gold standard. Adjuvants are used to augment the effect of a vaccine by stimulating the immune system to respond to the vaccine, more vigorously, and thus providing increased immunity to a particular disease. Adjuvants accomplish this task by mimicking specific sets of evolutionary conserved molecules which include lipopolysaccharides (LPS), components of bacterial cell wall, endocytosed nucleic acids such as dsRNA, ssDNA and unmethylated CpG dinucleotide containing DNA. This review provides information on various vaccine adjuvants and delivery vehicles being developed to date. From literature, it seems that the humoral immune responses have been observed for most adjuvants and delivery platforms while viral-vector, ISCOMs and Montanides have shown cytotoxic T-cell response in the clinical trials. MF59 and MPL® have elicited Th1 responses, and virus-like particles (VLPs), non-degradable nanoparticle and liposomes have also generated cellular immunity. Such vaccine components have also been evaluated for alternative routes of administration with clinical success reported for intranasal delivery of viral-vectors and proteosomes and oral delivery of VLP vaccines.

  11. Advances in the development of vaccines for dengue fever

    Directory of Open Access Journals (Sweden)

    Simmons M

    2012-05-01

    Full Text Available Monika Simmons1, Nimfa Teneza-Mora1, Robert Putnak21Viral and Rickettsial Diseases Department, Naval Medical Research Center, 2Division of Viral Diseases, Walter Reed Army Institute of Research, Silver Spring, MD, USAAbstract: Dengue fever is caused by the mosquito-borne dengue virus (DENV serotypes 1–4, and is the most common arboviral infection of humans in subtropical and tropical regions of the world. There are currently no prophylaxis or treatment options in the form of vaccines or antivirals, leaving vector control the only method of prevention. A particular challenge with DENV is that a successful vaccine has to be effective against all four serotypes without predisposing for antibody-mediated enhanced disease. In this review, we discuss the current lead vaccine candidates in clinical trials, as well as some second-generation vaccine candidates undergoing preclinical evaluation. In addition, we discuss DENV epidemiology, clinical disease and strategies used for Flavivirus antivirals in the past, the development of new DENV therapeutics, and their potential usefulness for prophylaxis and treatment.Keywords: tetravalent dengue vaccine, live attenuated vaccine, purified inactivated vaccine, DNA vaccine, antibody-dependent enhancement, antivirals

  12. Association of IDDM and attenuated response of 2',5'-oligoadenylate synthetase to yellow fever vaccine

    DEFF Research Database (Denmark)

    Bonnevie-Nielsen, V; Larsen, M L; Frifelt, J J

    1989-01-01

    Basal and yellow fever vaccination-induced 2',5'-oligoadenylate synthetase (2',5'A) activity was determined in blood mononuclear cells (peripheral blood lymphocytes [PBLs]) from insulin-dependent diabetes mellitus (IDDM) and matched control subjects. The live attenuated yellow fever vaccine...... represented a primary stimulus in all subjects. First, basal 2',5'A activity increased severalfold in response to yellow fever vaccination. In IDDM subjects, this increase was significantly lower (P = .025). Second, the 2',5'A activity increased proportionately to the higher basal 2',5'A activity in IDDM...

  13. Live attenuated measles and mumps viral strain-containing vaccines and hearing loss: Vaccine Adverse Event Reporting System (VAERS), United States, 1990--2003.

    Science.gov (United States)

    Asatryan, Armenak; Pool, Vitali; Chen, Robert T; Kohl, Katrin S; Davis, Robert L; Iskander, John K

    2008-02-26

    Hearing loss (HL) is a known complication of wild measles and mumps viral infections. As vaccines against measles and mumps contain live attenuated viral strains, it is biologically plausible that in some individuals HL could develop as a complication of vaccination against measles and/or mumps. Our objectives for this study were: to find and describe all cases of HL reported in the scientific literature and to the US Vaccine Adverse Events Reporting System (VAERS) for the period 1990--2003; and to determine reporting rate of HL after live attenuated measles and/or mumps viral strain-containing vaccines (MMCV) administration. We searched published reports for cases of HL identified after vaccination with MMCV. We also searched for reports of HL after MMCV administration submitted to VAERS from 1990 through 2003 and determined the dose-adjusted reporting rate of HL. Our main outcome measure was reported cases of HL after immunization with MMCV which were classified as idiopathic. We found 11 published case reports of HL following MMCV. The review of the VAERS reports identified 44 cases of likely idiopathic sensorineural HL after MMCV administration. The onset of HL in the majority of VAERS and published cases was consistent with the incubation periods of wild measles and mumps viruses. Based on the annual usage of measles-mumps-rubella (MMR) vaccine, we estimated the reporting rate of HL to be 1 case per 6-8 million doses. Thus, HL following MMCV has been reported in the literature and to the VAERS. Further studies are needed to better understand if there is a causal relationship between MMCV and HL.

  14. Multicenter Safety and Immunogenicity Trial of an Attenuated Measles Vaccine for NHP.

    Science.gov (United States)

    Yee, Joann L; McChesney, Michael B; Christe, Kari L

    2015-10-01

    Measles is a highly contagious viral disease in NHP. The infection can range from asymptomatic to rapidly fatal, resulting in significant morbidity and mortality in captive populations. In addition to appropriate quarantine practices, restricted access, the immunization of all personnel in contact with NHP, and the wearing of protective clothing including face masks, measles immunization further reduces the infection risk. Commercially available measles vaccines are effective for use in NHP, but interruptions in their availability have prevented the implementation of ongoing, consistent vaccination programs. This need for a readily available vaccine led us to perform a broad, multicenter safety and immunogenicity study of another candidate vaccine, MVac (Serum Institute of India), a monovalent measles vaccine derived from live Edmonston-Zagreb strain virus that had been attenuated after 22 passages on human diploid cells.

  15. Recent advances in the study of live attenuated cell-cultured smallpox vaccine LC16m8.

    Science.gov (United States)

    Eto, Akiko; Saito, Tomoya; Yokote, Hiroyuki; Kurane, Ichiro; Kanatani, Yasuhiro

    2015-11-01

    LC16m8 is a live, attenuated, cell-cultured smallpox vaccine that was developed and licensed in Japan in the 1970s, but was not used in the campaign to eradicate smallpox. In the early 2000s, the potential threat of bioterrorism led to reconsideration of the need for a smallpox vaccine. Subsequently, LC16m8 production was restarted in Japan in 2002, requiring re-evaluation of its safety and efficacy. Approximately 50,000 children in the 1970s and about 3500 healthy adults in the 2000s were vaccinated with LC16m8 in Japan, and 153 adults have been vaccinated with LC16m8 or Dryvax in phase I/II clinical trials in the USA. These studies confirmed the safety and efficacy of LC16m8, while several studies in animal models have shown that LC16m8 protects the host against viral challenge. The World Health Organization Strategic Advisory Group of Experts on Immunization recommended LC16m8, together with ACAM2000, as a stockpile vaccine in 2013. In addition, LC16m8 is expected to be a viable alternative to first-generation smallpox vaccines to prevent human monkeypox.

  16. PRODUCTION OF HOMOLOGOUS LIVE ATTENUATED CELL CULTURE VACCINE FOR THE CONTROL OF PESTE DES PETITS RUMINANTS IN SMALL RUMINANTS

    Directory of Open Access Journals (Sweden)

    M. ASIM, A. RASHID, A. H. CHAUDHARY AND M. S. NOOR

    2009-05-01

    Full Text Available Antibody response of a live-attenuated Peste des Petits Ruminants (PPR cell culture vaccine was studied at Veterinary Research Institute, Lahore, Pakistan. For this purpose, one group of five sheep and 5 goats each was vaccinated subcutaneously with 1 ml reconstituted PPR vaccine and second group of five sheep and 5 goats was inoculated with 1 ml saline solution. Blood samples were collected before and after vaccination, sera were obtained and analyzed for antibodies against PPR by competitive ELISA (cELISA. Findings suggested that antibody titres at day zero, 21 and 45 were 24.762 ± 2.69, 65.467 ± 2.29 and 83.012 ± 2.11 in sheep and 18.723 ± 2.27, 59.162 ± 1.53 and 72.176 ± 2.93 in goats, respectively. No untoward reactions were observed following vaccination. All vaccinated animals developed high titre of antibodies (PI>50.

  17. Evaluation of an attenuated strain of Ehrlichia canis as a vaccine for canine monocytic ehrlichiosis.

    Science.gov (United States)

    Rudoler, Nir; Baneth, Gad; Eyal, Osnat; van Straten, Michael; Harrus, Shimon

    2012-12-17

    Canine monocytic ehrlichiosis is an important tick-borne disease worldwide. No commercial vaccine for the disease is currently available and tick control is the main preventive measure against the disease. The aim of this study was to evaluate the potential of a multi-passaged attenuated strain of Ehrlichia canis to serve as a vaccine for canine monocytic ehrlichiosis, and to assess the use of azithromycin in the treatment of acute ehrlichiosis. Twelve beagle dogs were divided into 3 groups of 4 dogs. Groups 1 and 2 were inoculated (vaccinated) with an attenuated strain of E. canis (#611A) twice or once, respectively. The third group consisted of naïve dogs which served as controls. All 3 groups were challenged with a wild virulent strain of E. canis by administering infected dog-blood intravenously. Transient thrombocytopenia was the only hematological abnormality observed following inoculation of dogs with the attenuated strain. Challenge with the virulent strain resulted in severe disease in all 4 control dogs while only 3 of 8 vaccinated dogs presented mild transient fever. Furthermore, the mean blood rickettsial load was significantly higher in the control group (27-92-folds higher during days 14-19 post challenge with the wild the strain) as compared to the vaccinated dogs. The use of azithromycin was assessed as a therapeutic agent for the acute disease. Four days treatment resulted in further deterioration of the clinical condition of the dogs. Molecular comparison of 4 genes known to express immunoreactive proteins and virulence factors (p30, gp19, VirB4 and VirB9) between the attenuated strain and the challenge wild strain revealed no genetic differences between the strains. The results of this study indicate that the attenuated E. canis strain may serve as an effective and secure future vaccine for canine ehrlichiosis.

  18. Development of therapeutic HPV vaccines

    OpenAIRE

    Trimble, Cornelia L.; Frazer, Ian H

    2009-01-01

    At least 15% of human malignant diseases are attributable to the consequences of persistent viral or bacterial infection. Chronic infection with oncogenic human papillomavirus (HPV) types is a necessary, but insufficient, cause in the development of more cancers than any other virus. Currently available prophylactic vaccines have no therapeutic effect for established infection or for disease. Early disease is characterised by tissue sequestration. However, because a proportion of intraepithel...

  19. WHO working group on the quality, safety and efficacy of japanese encephalitis vaccines (live attenuated) for human use, Bangkok, Thailand, 21-23 February 2012.

    Science.gov (United States)

    Trent, Dennis W; Minor, Philip; Jivapaisarnpong, Teeranart; Shin, Jinho

    2013-11-01

    Japanese encephalitis (JE) is one of the most important viral encephalitides in Asia. Two live-attenuated vaccines have been developed and licensed for use in countries in the region. Given the advancement of immunization of humans with increasing use of live-attenuated vaccines to prevent JE, there is increased interest to define quality standards for their manufacture, testing, nonclinical studies, and clinical studies to assess their efficacy and safety in humans. To this end, WHO convened a meeting with a group of international experts in February 2012 to develop guidelines for evaluating the quality, safety and efficacy of live-attenuated JE virus vaccines for prevention of human disease. This report summarizes collective views of the participants on scientific and technical issues that need to be considered in the guidelines.

  20. Use of Prior Vaccinations for the Development of New Vaccines

    Science.gov (United States)

    Etlinger, H. M.; Gillessen, D.; Lahm, H.-W.; Matile, H.; Schonfeld, H.-J.; Trzeciak, A.

    1990-07-01

    There is currently a need for vaccine development to improve the immunogenicity of protective epitopes, which themselves are often poorly immunogenic. Although the immunogenicity of these epitopes can be enhanced by linking them to highly immunogenic carriers, such carriers derived from current vaccines have not proven to be generally effective. One reason may be related to epitope-specific suppression, in which prior vaccination with a protein can inhibit the antibody response to new epitopes linked to the protein. To circumvent such inhibition, a peptide from tetanus toxoid was identified that, when linked to a B cell epitope and injected into tetanus toxoid-primed recipients, retained sequences for carrier but not suppressor function. The antibody response to the B cell epitope was enhanced. This may be a general method for taking advantage of previous vaccinations in the development of new vaccines.

  1. Antibody Response in Seropositive Multiple Sclerosis Patients Vaccinated with Attenuated Live Varicella Zoster Virus

    Directory of Open Access Journals (Sweden)

    RT Ross

    1996-01-01

    Full Text Available OBJECTIVE: To determine the safety and effectiveness of live attenuated varicella zoster virus (VZV vaccine (OKA/Merck on 50 patients with chronic progressive multiple sclerosis (MS, based on the hypothesis that VZV might be the antigen or antigen mimic of MS plus the fact that repeated high antigen doses have produced ‘antigen paralysis’ in experimental allergic encephalomyelitis mice.

  2. Possibilities and challenges for developing a successful vaccine for leishmaniasis.

    Science.gov (United States)

    Srivastava, Saumya; Shankar, Prem; Mishra, Jyotsna; Singh, Sarman

    2016-05-12

    Leishmaniasis is a vector-borne disease caused by different species of protozoan parasites of the genus Leishmania. It is a major health problem yet neglected tropical diseases, with approximately 350 million people worldwide at risk and more than 1.5 million infections occurring each year. Leishmaniasis has different clinical manifestations, including visceral (VL or kala-azar), cutaneous (CL), mucocutaneous (MCL), diffuse cutaneous (DCL) and post kala-azar dermal leishmaniasis (PKDL). Currently, the only mean to treat and control leishmaniasis is by rational medications and vector control. However, the number of available drugs is limited and even these are either exorbitantly priced, have toxic side effects or prove ineffective due to the emergence of resistant strains. On the other hand, the vector control methods are not so efficient. Therefore, there is an urgent need for developing a safe, effective, and affordable vaccine for the prevention of leishmaniasis. Although in recent years a large body of researchers has concentrated their efforts on this issue, yet only three vaccine candidates have gone for clinical trial, until date. These are: (i) killed vaccine in Brazil for human immunotherapy; (ii) live attenuated vaccine for humans in Uzbekistan; and (iii) second-generation vaccine for dog prophylaxis in Brazil. Nevertheless, there are at least half a dozen vaccine candidates in the pipeline. One can expect that, in the near future, the understanding of the whole genome of Leishmania spp. will expand the vaccine discovery and strategies that may provide novel vaccines. The present review focuses on the development and the status of various vaccines and potential vaccine candidates against leishmaniasis.

  3. Status of vaccine research and development of vaccines for malaria.

    Science.gov (United States)

    Birkett, Ashley J

    2016-06-03

    Despite recent progress in reducing deaths attributable to malaria, it continues to claim approximately 500,000 lives per year and is associated with approximately 200 million infections. New tools, including safe and effective vaccines, are needed to ensure that the gains of the last 15 years are leveraged toward achieving the ultimate goal of malaria parasite eradication. In 2015, the European Medicines Agency announced the adoption of a positive opinion for the malaria vaccine candidate most advanced in development, RTS,S/AS01, which provides modest protection against clinical malaria; in early 2016, WHO recommended large-scale pilot implementations of RTS,S in settings of moderate-to-high malaria transmission. In alignment with these advancements, the community goals and preferred product characteristics for next-generation vaccines have been updated to inform the development of vaccines that are highly efficacious in preventing clinical malaria, and those needed to accelerate parasite elimination. Next-generation vaccines, targeting all stages of the parasite lifecycle, are in early-stage development with the most advanced in Phase 2 trials. Importantly, progress is being made in the definition of feasible regulatory pathways to accelerate timelines, including for vaccines designed to interrupt transmission of parasites from humans to mosquitoes. The continued absence of financially lucrative, high-income markets to drive investment in malaria vaccine development points to continued heavy reliance on public and philanthropic funding.

  4. Leptospirosis vaccines

    Directory of Open Access Journals (Sweden)

    Jin Li

    2007-12-01

    Full Text Available Abstract Leptospirosis is a serious infection disease caused by pathogenic strains of the Leptospira spirochetes, which affects not only humans but also animals. It has long been expected to find an effective vaccine to prevent leptospirosis through immunization of high risk humans or animals. Although some leptospirosis vaccines have been obtained, the vaccination is relatively unsuccessful in clinical application despite decades of research and millions of dollars spent. In this review, the recent advancements of recombinant outer membrane protein (OMP vaccines, lipopolysaccharide (LPS vaccines, inactivated vaccines, attenuated vaccines and DNA vaccines against leptospirosis are reviewed. A comparison of these vaccines may lead to development of new potential methods to combat leptospirosis and facilitate the leptospirosis vaccine research. Moreover, a vaccine ontology database was built for the scientists working on the leptospirosis vaccines as a starting tool.

  5. Risk in vaccine research and development quantified.

    Directory of Open Access Journals (Sweden)

    Esther S Pronker

    Full Text Available To date, vaccination is the most cost-effective strategy to combat infectious diseases. Recently, a productivity gap affects the pharmaceutical industry. The productivity gap describes the situation whereby the invested resources within an industry do not match the expected product turn-over. While risk profiles (combining research and development timelines and transition rates have been published for new chemical entities (NCE, little is documented on vaccine development. The objective is to calculate risk profiles for vaccines targeting human infectious diseases. A database was actively compiled to include all vaccine projects in development from 1998 to 2009 in the pre-clinical development phase, clinical trials phase I, II and III up to Market Registration. The average vaccine, taken from the preclinical phase, requires a development timeline of 10.71 years and has a market entry probability of 6%. Stratification by disease area reveals pandemic influenza vaccine targets as lucrative. Furthermore, vaccines targeting acute infectious diseases and prophylactic vaccines have shown to have a lower risk profile when compared to vaccines targeting chronic infections and therapeutic applications. In conclusion; these statistics apply to vaccines targeting human infectious diseases. Vaccines targeting cancer, allergy and autoimmune diseases require further analysis. Additionally, this paper does not address orphan vaccines targeting unmet medical needs, whether projects are in-licensed or self-originated and firm size and experience. Therefore, it remains to be investigated how these - and other - variables influence the vaccine risk profile. Although we find huge differences between the risk profiles for vaccine and NCE; vaccines outperform NCE when it comes to development timelines.

  6. Safety of a Live Attenuated Infectious Bovine Rhinotracheitis Vaccine IBRV LNM Strain

    Institute of Scientific and Technical Information of China (English)

    Guo; Li; Wang; Wei; Zhang; Shuqin; Cheng; Shipeng; Wu; Hua

    2014-01-01

    The paper was to evaluate the vaccine safety,and to prevent public health risk due to virus spread,the approach vaccination of was adopted in this research; and neck intramuscular injection of IBRV LNM attenuated vaccine strain was carried out. Blind passage for three generations in animal has tested the reversion risk to virulence. A total of 14 healthy and weaning cows at 6- 8 month old were divided into three groups. The 1st reversion of virulence trials used 105. 0TCID50/mL neck intramuscular injection of IBRV LNM attenuated vaccine strain. Then,the nose swab samples were collected for continuous 14 days. After passed through 0. 45 μm filter membrane,nasal swabs mixture was prepared as the virulence test inoculum for next generation. The body temperature was detected and clinical observation was carried out for continuous 14 days after inoculation. The inoculation dose was 1ml / cattle. Blood was collected on the 0 and 14 thdays of animal vaccination. After serum isolation,it was used for the antibody detection of serum. Research results showed that no virus was isolated from the nasal swabs from the F2 generation; vaccinated animals did not show any clinical signs of IBR; serological testing of IBRV antibody was negative,which indicated that the strain-inoculated animals did had reversion of virulence in all three generations.

  7. Construction, characterization and preclinical evaluation of MTBVAC, the first live-attenuated M. tuberculosis-based vaccine to enter clinical trials.

    Science.gov (United States)

    Arbues, Ainhoa; Aguilo, Juan I; Gonzalo-Asensio, Jesus; Marinova, Dessislava; Uranga, Santiago; Puentes, Eugenia; Fernandez, Conchita; Parra, Alberto; Cardona, Pere Joan; Vilaplana, Cristina; Ausina, Vicente; Williams, Ann; Clark, Simon; Malaga, Wladimir; Guilhot, Christophe; Gicquel, Brigitte; Martin, Carlos

    2013-10-01

    The development of a new tuberculosis vaccine is an urgent need due to the failure of the current vaccine, BCG, to protect against the respiratory form of the disease. MTBVAC is an attenuated Mycobacterium tuberculosis vaccine candidate genetically engineered to fulfil the Geneva consensus requirements to enter human clinical trials. We selected a M. tuberculosis clinical isolate to generate two independent deletions without antibiotic-resistance markers in the genes phoP, coding for a transcription factor key for the regulation of M. tuberculosis virulence, and fadD26, essential for the synthesis of the complex lipids phthiocerol dimycocerosates (DIM), one of the major mycobacterial virulence factors. The resultant strain MTBVAC exhibits safety and biodistribution profiles similar to BCG and confers superior protection in preclinical studies. These features have enabled MTBVAC to be the first live attenuated M. tuberculosis vaccine to enter clinical evaluation.

  8. Conjugate Meningococcal Vaccines Development: GSK Biologicals Experience

    Directory of Open Access Journals (Sweden)

    Jacqueline M. Miller

    2011-01-01

    Full Text Available Meningococcal diseases are serious threats to global health, and new vaccines specifically tailored to meet the age-related needs of various geographical areas are required. This paper focuses on the meningococcal conjugate vaccines developed by GSK Biologicals. Two combined conjugate vaccines were developed to help protect infants and young children in countries where the incidence of meningococcal serogroup C or serogroup C and Y disease is important: Hib-MenC-TT vaccine, which offers protection against Haemophilus influenzae type b and Neisseria meningitidis serogroup C diseases, is approved in several countries; and Hib-MenCY-TT vaccine, which adds N. meningitidis serogroup Y antigen, is currently in the final stages of development. Additionally, a tetravalent conjugate vaccine (MenACWY-TT designed to help protect against four meningococcal serogroups is presently being evaluated for global use in all age groups. All of these vaccines were shown to be highly immunogenic and to have clinically acceptable safety profiles.

  9. Rational Design of Human Metapneumovirus Live Attenuated Vaccine Candidates by Inhibiting Viral mRNA Cap Methyltransferase

    Science.gov (United States)

    Zhang, Yu; Wei, Yongwei; Zhang, Xiaodong; Cai, Hui; Niewiesk, Stefan

    2014-01-01

    is the most promising vaccine strategy for human paramyxoviruses. However, it remains a challenge to identify an attenuated virus strain that has an optimal balance between attenuation and immunogenicity. Using reverse genetics, we generated a panel of recombinant hMPVs that were specifically defective in ribose 2′-O methyltransferase (MTase) but not G-N-7 MTase. These MTase-defective hMPVs were genetically stable and sufficiently attenuated but retained high immunogenicity. This work highlights a critical role of 2′-O MTase in paramyxovirus replication and pathogenesis and a new avenue for the development of safe and efficacious live attenuated vaccines for hMPV and other human paramyxoviruses. PMID:25056882

  10. Comparative Pathogenesis and Systems Biology for Biodefense Virus Vaccine Development

    Directory of Open Access Journals (Sweden)

    Gavin C. Bowick

    2010-01-01

    Full Text Available Developing vaccines to biothreat agents presents a number of challenges for discovery, preclinical development, and licensure. The need for high containment to work with live agents limits the amount and types of research that can be done using complete pathogens, and small markets reduce potential returns for industry. However, a number of tools, from comparative pathogenesis of viral strains at the molecular level to novel computational approaches, are being used to understand the basis of viral attenuation and characterize protective immune responses. As the amount of basic molecular knowledge grows, we will be able to take advantage of these tools not only to rationally attenuate virus strains for candidate vaccines, but also to assess immunogenicity and safety in silico. This review discusses how a basic understanding of pathogenesis, allied with systems biology and machine learning methods, can impact biodefense vaccinology.

  11. Ebola hemorrhagic Fever and the current state of vaccine development.

    Science.gov (United States)

    Hong, Joo Eun; Hong, Kee-Jong; Choi, Woo Young; Lee, Won-Ja; Choi, Yeon Hwa; Jeong, Chung-Hyeon; Cho, Kwang-Il

    2014-12-01

    Current Ebola virus outbreak in West Africa already reached the total number of 1,323 including 729 deaths by July 31st. the fatality is around 55% in the southeastern area of Guinea, Sierra Leone, Liberia, and Nigeria. The number of patients with Ebola Hemorrhagic Fever (EHF) was continuously increasing even though the any effective therapeutics or vaccines has not been developed yet. The Ebola virus in Guinea showed 98% homology with Zaire Ebola Virus. Study of the pathogenesis of Ebola virus infection and assess of the various candidates of vaccine have been tried for a long time, especially in United States and some European countries. Even though the attenuated live vaccine and DNA vaccine containing Ebola viral genes were tested and showed efficacy in chimpanzees, those candidates still need clinical tests requiring much longer time than the preclinical development to be approved for the practical treatment. It can be expected to eradicate Ebola virus by a safe and efficient vaccine development similar to the case of smallpox virus which was extinguished from the world by the variola vaccine.

  12. Safety of attenuated smallpox vaccine LC16m8 in immunodeficient mice.

    Science.gov (United States)

    Yokote, Hiroyuki; Shinmura, Yasuhiko; Kanehara, Tomomi; Maruno, Shinichi; Kuranaga, Masahiko; Matsui, Hajime; Hashizume, So

    2014-09-01

    Freeze-dried live attenuated smallpox vaccine LC16m8 prepared in cell culture has been the sole smallpox vaccine licensed in Japan since 1975 and was recently recommended as a WHO stockpile vaccine. We evaluated the safety of recently remanufactured lots of LC16m8 using a series of immunodeficient mouse models. These models included suckling mice, severe combined immunodeficiency disease (SCID) mice, and wild-type mice treated with cyclosporine. LC16m8 showed extremely low virulence in each of the three mouse models compared with that of its parental strains, Lister and LC16mO. These results provide further evidence that LC16m8 is one of the safest replication-competent smallpox vaccines in the world and may be considered for use in immunodeficient patients.

  13. Post-marketing surveillance of live-attenuated Japanese encephalitis vaccine safety in China.

    Science.gov (United States)

    Wang, Yali; Dong, Duo; Cheng, Gang; Zuo, Shuyan; Liu, Dawei; Du, Xiaoxi

    2014-10-07

    Japanese encephalitis (JE) is the most severe form of viral encephalitis in Asia and no specific treatment is available. Vaccination provides an effective intervention to prevent JE. In this paper, surveillance data for adverse events following immunization (AEFI) related to SA-14-14-2 live-attenuated Japanese encephalitis vaccine (Chengdu Institute of Biological Products) was presented. This information has been routinely generated by the Chinese national surveillance system for the period 2009-2012. There were 6024 AEFI cases (estimated reported rate 96.55 per million doses). Most common symptoms of adverse events were fever, redness, induration and skin rash. There were 70 serious AEFI cases (1.12 per million doses), including 9 cases of meningoencephalitis and 4 cases of death. The post-marketing surveillance data add the evidence that the Chengdu institute live attenutated vaccine has a reasonable safety profile. The relationship between encephalitis and SA-14-14-2 vaccination should be further studied.

  14. Developing a Successful HIV Vaccine.

    Science.gov (United States)

    Gallo, Robert C

    2015-07-15

    Human immunodeficiency virus (HIV) genome integration indicates that persistent sterilizing immunity will be needed for a successful vaccine candidate. This suggests a need for broad antibodies targeting the Env protein. Immunogens targeting gp120 have been developed that block infection in monkeys and mimic the modest success of the RV144 clinical trial in that protection is short-lived following a decline in antibody-depending cell-mediated cytotoxicity-like antibodies. Attempts to induce antibody persistence have been complicated by a loss of efficacy, presumably by increasing the number of HIV-target cells. The key seems to be achieving an immune balance.

  15. Status of vaccine research and development of vaccines for tuberculosis.

    Science.gov (United States)

    Evans, Thomas G; Schrager, Lew; Thole, Jelle

    2016-06-03

    TB is now the single pathogen that causes the greatest mortality in the world, at over 1.6 million deaths each year. The widely used the 90 year old BCG vaccine appears to have minimal impact on the worldwide incidence despite some efficacy in infants. Novel vaccine development has accelerated in the past 15 years, with 15 candidates entering human trials; two vaccines are now in large-scale efficacy studies. Modeling by three groups has consistently shown that mass vaccination that includes activity in the latently infected population, especially adolescents and young adults, will likely have the largest impact on new disease transmission. At present the field requires better validated animal models, better understanding of a correlate of immunity, new cost-effective approaches to Proof of Concept trials, and increased appreciation by the public health and scientific community for the size of the problem and the need for a vaccine. Such a vaccine is likely to also play a role in the era of increasing antibiotic resistance. Ongoing efforts and studies are working to implement these needs over the next 5 years, which will lead to an understanding that will increase the likelihood of a successful TB vaccine.

  16. The live attenuated dengue vaccine TV003 elicits complete protection against dengue in a human challenge model.

    Science.gov (United States)

    Kirkpatrick, Beth D; Whitehead, Stephen S; Pierce, Kristen K; Tibery, Cecilia M; Grier, Palmtama L; Hynes, Noreen A; Larsson, Catherine J; Sabundayo, Beulah P; Talaat, Kawsar R; Janiak, Anna; Carmolli, Marya P; Luke, Catherine J; Diehl, Sean A; Durbin, Anna P

    2016-03-16

    A dengue human challenge model can be an important tool to identify candidate dengue vaccines that should be further evaluated in large efficacy trials in endemic areas. Dengue is responsible for about 390 million infections annually. Protective efficacy results for the most advanced dengue vaccine candidate (CYD) were disappointing despite its ability to induce neutralizing antibodies against all four dengue virus (DENV) serotypes. TV003 is a live attenuated tetravalent DENV vaccine currently in phase 2 evaluation. To better assess the protective efficacy of TV003, a randomized double-blind, placebo-controlled trial in which recipients of TV003 or placebo were challenged 6 months later with a DENV-2 strain, rDEN2Δ30, was conducted. The primary endpoint of the trial was protection against dengue infection, defined as rDEN2Δ30 viremia. Secondary endpoints were protection against rash and neutropenia. All 21 recipients of TV003 who were challenged with rDEN2Δ30 were protected from infection with rDEN2Δ30. None developed viremia, rash, or neutropenia after challenge. In contrast, 100% of the 20 placebo recipients who were challenged with rDEN2Δ30 developed viremia, 80% developed rash, and 20% developed neutropenia. TV003 induced complete protection against challenge with rDEN2Δ30 administered 6 months after vaccination. TV003 will be further evaluated in dengue-endemic areas. The controlled dengue human challenge model can accelerate vaccine development by evaluating the protection afforded by the vaccine, thereby eliminating poor candidates from further consideration before the initiation of large efficacy trials.

  17. Development of Mucosal Vaccines Based on Lactic Acid Bacteria

    Science.gov (United States)

    Bermúdez-Humarán, Luis G.; Innocentin, Silvia; Lefèvre, Francois; Chatel, Jean-Marc; Langella, Philippe

    Today, sufficient data are available to support the use of lactic acid bacteria (LAB), notably lactococci and lactobacilli, as delivery vehicles for the development of new mucosal vaccines. These non-pathogenic Gram-positive bacteria have been safely consumed by humans for centuries in fermented foods. They thus constitute an attractive alternative to the attenuated pathogens (most popular live vectors actually studied) which could recover their pathogenic potential and are thus not totally safe for use in humans. This chapter reviews the current research and advances in the use of LAB as live delivery vectors of proteins of interest for the development of new safe mucosal vaccines. The use of LAB as DNA vaccine vehicles to deliver DNA directly to antigen-presenting cells of the immune system is also discussed.

  18. Schistosoma mansoni polypeptides immunogenic in mice vaccinated with radiation-attenuated cercariae

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, J.P.; Strand, M.

    1987-10-01

    We compared the humoral immune response of mice protected against Schistosoma mansoni by vaccination with radiation-attenuated cercariae to that of patently infected mice, and we identified antigens that elicit a greater, or unique, immune response in the vaccinated mice. These comparisons were based upon radioimmunoprecipitations and immunodepletion of (/sup 35/S)methionine-labeled schistosomular and adult worm polypeptides, followed by one- and two-dimensional polyacrylamide gel analyses. The humoral responses of patently infected mice and of mice vaccinated once were remarkably similar and were directed against schistosome glycoproteins ranging in molecular size from greater than 300 to less than 10 kDa. Exposing mice to a second vaccination resulted in a marked change in the immune response, to one predominantly directed toward high molecular size glycoproteins. Sequential immunodepletion techniques identified five schistosomular and seven adult worm antigens that showed a greater or unique immunogenicity in vaccinated mice as compared with patently infected mice. These adult worm antigens were purified by preparative sequential immunoaffinity chromatography and used to prepare a polyclonal antiserum, anti-irradiated vaccine. This antiserum bound to the surface of live newly transformed and lung-stage schistosomula, as assessed by immunofluorescence assays, and was reactive with a number of /sup 125/I-labeled schistosomular surface polypeptides, including a doublet of 150 kDa that was also recognized by sera of vaccinated mice but not by sera of patently infected mice.

  19. Rotavirus vaccines: targeting the developing world.

    Science.gov (United States)

    Glass, Roger I; Bresee, Joseph S; Turcios, Reina; Fischer, Thea K; Parashar, Umesh D; Steele, A Duncan

    2005-09-01

    For the past 2 decades, rotavirus infection, the most common cause of severe diarrhea in children, has been a priority target for vaccine development. This decision to develop rotavirus vaccines is predicated on the great burden associated with fatal rotavirus disease (i.e., 440,000 deaths/year), the firm scientific basis for developing live oral vaccines, the belief that increased investment in development at this time could speed the introduction of vaccines in developing countries, and the appreciation that implementation of a vaccine program should result in a measurable decrease in the number of hospitalizations and deaths associated with rotavirus disease within 2-3 years. RotaShield (Wyeth-Ayerst), the first rotavirus vaccine licensed in the United States, was withdrawn after 9 months because of a rare association of the vaccine with the development of intussusception. In the developing world, this vaccine could still have had a measurable effect, because the benefits of preventing deaths due to rotavirus disease would have been substantially greater than the rare risk of intussusception. Two live oral vaccines being prepared by GlaxoSmithKline and Merck have completed large-scale clinical trials. The GlaxoSmithKline vaccine has been licensed in Mexico and the Dominican Republic, and the Merck vaccine could be licensed in the United States within 1 year; several other candidate vaccines are in earlier stages of testing. However, many challenges remain before any of these vaccines can be incorporated into childhood immunization programs in the developing world. First, vaccine efficacy, which has already been demonstrated in children in industrialized and middle-income countries, needs to be proven in poor developing countries in Africa and Asia. The safety of vaccines with regard to the associated risk of intussusception must be demonstrated as well. Novel financing strategies will be needed to ensure that new vaccines are affordable and available in the

  20. Vaccination with Bivalent DNA Vaccine of α1-Giardin and CWP2 Delivered by Attenuated Salmonella typhimurium Reduces Trophozoites and Cysts in the Feces of Mice Infected with Giardia lamblia.

    Directory of Open Access Journals (Sweden)

    Xian-Min Feng

    Full Text Available Giardia lamblia is one of the most common infectious protozoans in human that may cause diarrhea in travelers. Searching for antigens that induced effectively protective immunity has become a key point in the development of vaccine against giardiasis.Mice vaccinated with G. lamblia trophozozite-specific α1-giardin DNA vaccine delivered orally by attenuated Salmonella typhimurium SL7027 elicited 74.2% trophozoite reduction, but only 28% reduction in cyst shedding compared with PBS buffer control. Oral vaccination with Salmonella-delivered cyst-specific CWP2 DNA produced 89% reduction in cysts shedding in feces of vaccinated mice. Significantly, the mice vaccinated with Salmonella-delivered bivalent α1-giardin and CWP2 DNA vaccines produced significant reduction in both trophozoite (79% and cyst (93% in feces of vaccinated mice. This parasite reduction is associated with the strong local mucosal IgA secretion and the IgG2a-dominant systemic immune responses in vaccinated mice.The results demonstrate that bivalent vaccines targeting α1-giardin and CWP2 can protect mice against the colonization of Giardia trophozoite and block the transformation of cyst in host at the same time, and can be used to prevent Giardia infection and block the transmission of giardiasis.

  1. Gene Transcription Profile in Mice Vaccinated with Ultraviolet-attenuated Cercariae of Schistosoma japonicum Reveals Molecules Contributing to Elevated IFN-γLevels

    Institute of Scientific and Technical Information of China (English)

    Xiang ZHU; Feng LIU; Chuan SU; Guan-Ling WU; Zhao-Song ZHANG; Min-Jun JI; Hai-Wei WU; Yong WANG; Xiao-Ping CAI; Lei ZHANG; Shu-Ying HU; Lin-Lin FU

    2005-01-01

    Vaccination with ultraviolet-attenuated cercariae of Schistosoma japonicum induced protective immunity against challenge infection in experimental animal models. Our preliminary study on the transcription levels of IFN-γ and IL-4 in splenic CD4+ T cells revealed that attenuated cercariae elicited predominantly a Thl response in mice at the early stage, whereas normal cercariae stimulated primarily Th2dependent responses. Further analysis on the gene profile of the skin-draining lymph nodes demonstrated that the levels of IFN-γ were significantly higher in vaccinated mice than those in infected mice at day 4, 7 and 14 post-vaccination or post-infection. However, for IL-12 and IL-4, the potent inducers of Th l and Th2 responses, respectively, as well as IL-10, there were no differences over the course of the experiment between the infected and vaccinated mice. To explore the underlying factors that may potentially contribute to elevated IFN-γ in vaccinated mice, the mRNA profiles of the skin-draining lymph nodes at day 4 postexposure were compared using oligonucleotide microarrays. Within the 847 probe sets with increased signal values, we focused on chemokines, cytokines and relevant receptors, which were validated by semi-quantitative RT-PCR. A comprehensive understanding of the immune mechanisms of attenuated cercariae-induced protection may contribute to developing efficient vaccination strategies against S. japonicum, especially during the early stage of infection.

  2. Quantitative polymerase chain reaction: another tool to evaluate viable virus content in live attenuated orf vaccine

    Directory of Open Access Journals (Sweden)

    Durlav Prasad Bora

    2012-12-01

    Full Text Available A probe-based real-time polymerase chain reaction (PCR assay based on the highly conserved DNA polymerase gene of orf virus (ORFV for the quality control of attenuated orf vaccine is reported. Primary lamb testis (PLT cells were infected with orf vaccine virus and harvested at a critical time point to obtain maximum viable virus content as determined by real-time PCR. DNA extracted from these harvests was subjected to real-time PCR. A critical time point for the harvesting of PLT cells infected with various log10 dilutions of vaccine virus was found to be 42 h (highest slope of 3.335, which was obtained by comparing the slopes of standard curves of different time intervals. The assay was employed to evaluate viable virus content in different batches of orf vaccine. The titres estimated by real-time PCR and conventional TCID50 were comparable with a correlation of 0.8169. Thus, the real-time PCR assay could provide an alternative method or supplementary tool to estimate live ORFV particles in attenuated orf vaccine.

  3. Cross-protection against Salmonella Typhimurium infection conferred by a live attenuated Salmonella Enteritidis vaccine.

    Science.gov (United States)

    Nandre, Rahul M; Lee, Dajeong; Lee, John Hwa

    2015-01-01

    In this study, a genetically engineered live attenuated Salmonella Enteritidis (SE) vaccine was evaluated for its ability to protect against Salmonella Typhimurium (ST) infection in chickens. The birds were orally primed with the vaccine on the 1st day of life and given an oral booster at 5 wk of age. Control birds were orally inoculated with phosphate-buffered saline. Both groups of birds were orally challenged with a virulent ST strain at 9 wk of age. Compared with the control chickens, the vaccinated chickens had significantly higher levels of systemic IgG and mucosal IgA against specific ST antigens and a significantly greater lymphoproliferative response to ST antigens. The excretion of ST into the feces was significantly lower in the vaccinated group than in the control group on days 9 and 13 d after challenge. In addition, the vaccinated group had significantly fewer pronounced gross lesions in the liver and spleen and lower bacterial counts in the internal organs than the control group after challenge. These data indicate that genetically engineered live attenuated SE may induce humoral and cellular immune responses against ST antigens and may confer protection against virulent ST challenge.

  4. A rapid immunization strategy with a live attenuated tetravalent dengue vaccine elicits protective neutralizing antibody responses in non-human primates

    Directory of Open Access Journals (Sweden)

    Yuping eAmbuel

    2014-06-01

    Full Text Available Dengue viruses (DENVs cause approximately 390 million cases of DENV infections annually and over 3 billion people worldwide are at risk of infection. No dengue vaccine is currently available nor is there an antiviral therapy for DENV infections. We have developed a tetravalent live-attenuated DENV vaccine (TDV that consists of a molecularly characterized attenuated DENV-2 strain (TDV-2 and three chimeric viruses containing the pre-membrane and envelope genes of DENV-1, -3 and -4 expressed in the context of the TDV-2 genome. To impact dengue vaccine delivery in endemic areas and immunize travelers, a simple and rapid immunization strategy (RIS is preferred. We investigated RIS consisting of two full vaccine doses being administered subcutaneously or intradermally on the initial vaccination visit (day 0 at two different anatomical locations with a needle-free disposable syringe jet injection (DSJI delivery devices (PharmaJet in non-human primates (NHP. This vaccination strategy resulted in efficient priming and induction of neutralizing antibody responses to all four DENV serotypes comparable to those elicited by the traditional prime and boost (two months later vaccination schedule. In addition, the vaccine induced CD4+ and CD8+ T cells producing IFN-γ, IL-2, and TNF-α, and targeting the DENV-2 NS1, NS3 and NS5 proteins. Moreover, vaccine-specific T cells were cross-reactive with the non-structural NS3 and NS5 proteins of DENV-4. When animals were challenged with DENV-2 they were protected with no detectable viremia, and exhibited sterilizing immunity (no increase of neutralizing titers post- challenge. RIS could decrease vaccination visits and provide quick immune response to all four DENV serotypes. This strategy could increase vaccination compliance and would be especially advantageous for travelers into endemic areas.

  5. Status of vaccine research and development of vaccines for leishmaniasis.

    Science.gov (United States)

    Gillespie, Portia M; Beaumier, Coreen M; Strych, Ulrich; Hayward, Tara; Hotez, Peter J; Bottazzi, Maria Elena

    2016-06-03

    A number of leishmaniasis vaccine candidates are at various stages of pre-clinical and clinical development. Leishmaniasis is a vector-borne neglected tropical disease (NTD) caused by a protozoan parasite of the genus Leishmania and transmitted to humans by the bite of a sand fly. Visceral leishmaniasis (VL, kala-azar) is a high mortality NTD found mostly in South Asia and East Africa, while cutaneous leishmaniasis (CL) is a disfiguring NTD highly endemic in the Middle East, Central Asia, North Africa, and the Americas. Estimates attribute 50,000 annual deaths and 3.3 million disability-adjusted life years to leishmaniasis. There are only a few approved drug treatments, no prophylactic drug and no vaccine. Ideally, an effective vaccine against leishmaniasis will elicit long-lasting immunity and protect broadly against VL and CL. Vaccines such as Leish-F1, F2 and F3, developed at IDRI and designed based on selected Leishmania antigen epitopes, have been in clinical trials. Other groups, including the Sabin Vaccine Institute in collaboration with the National Institutes of Health are investigating recombinant Leishmania antigens in combination with selected sand fly salivary gland antigens in order to augment host immunity. To date, both VL and CL vaccines have been shown to be cost-effective in economic modeling studies.

  6. Systematic annotation and analysis of "virmugens"-virulence factors whose mutants can be used as live attenuated vaccines.

    Science.gov (United States)

    Racz, Rebecca; Chung, Monica; Xiang, Zuoshuang; He, Yongqun

    2013-01-21

    Live attenuated vaccines are usually generated by mutation of genes encoding virulence factors. "Virmugen" is coined here to represent a gene that encodes for a virulent factor of a pathogen and has been proven feasible in animal models to make a live attenuated vaccine by knocking out this gene. Not all virulence factors are virmugens. VirmugenDB is a web-based virmugen database (http://www.violinet.org/virmugendb). Currently, VirmugenDB includes 225 virmugens that have been verified to be valuable for vaccine development against 57 bacterial, viral, and protozoan pathogens. Bioinformatics analysis has revealed significant patterns in virmugens. For example, 10 Gram-negative and 1 Gram-positive bacterial aroA genes are virmugens. A sequence analysis has revealed at least 50% of identities in the protein sequences of the 10 Gram-negative bacterial aroA virmugens. As a pathogen case study, Brucella virmugens were analyzed. Out of 15 verified Brucella virmugens, 6 are related to carbohydrate or nucleotide transport and metabolism, and 2 involving cell membrane biogenesis. In addition, 54 virmugens from 24 viruses and 12 virmugens from 4 parasites are also stored in VirmugenDB. Virmugens tend to involve metabolism of nutrients (e.g., amino acids, carbohydrates, and nucleotides) and cell membrane formation. Host genes whose expressions were regulated by virmugen mutation vaccines or wild type virulent pathogens have also been annotated and systematically compared. The bioinformatics annotation and analysis of virmugens helps to elucidate enriched virmugen profiles and the mechanisms of protective immunity, and further supports rational vaccine design.

  7. Development of Mycoplasma hyopneumoniae Recombinant Vaccines.

    Science.gov (United States)

    Marchioro, Silvana Beutinger; Simionatto, Simone; Dellagostin, Odir

    2016-01-01

    Mycoplasma hyopneumoniae is the etiological agent of swine enzootic pneumonia (EP), a disease that affects swine production worldwide. Vaccination is the most cost-effective strategy for the control and prevention of the disease. Research using genome-based approach has the potential to elucidate the biology and pathogenesis of M. hyopneumoniae and contribute to the development of more effective vaccines. Here, we describe the protocol for developing M. hyopneumoniae recombinant vaccines using reverse vaccinology approaches.

  8. Oral Delivery of a Novel Attenuated Salmonella Vaccine Expressing Influenza A Virus Proteins Protects Mice against H5N1 and H1N1 Viral Infection.

    Directory of Open Access Journals (Sweden)

    Zenglin Pei

    Full Text Available Attenuated strains of invasive enteric bacteria, such as Salmonella, represent promising gene delivery agents for nucleic acid-based vaccines as they can be administrated orally. In this study, we constructed a novel attenuated strain of Salmonella for the delivery and expression of the hemagglutinin (HA and neuraminidase (NA of a highly pathogenic H5N1 influenza virus. We showed that the constructed Salmonella strain exhibited efficient gene transfer activity for HA and NA expression and little cytotoxicity and pathogenicity in mice. Using BALB/c mice as the model, we evaluated the immune responses and protection induced by the constructed Salmonella-based vaccine. Our study showed that the Salmonella-based vaccine induced significant production of anti-HA serum IgG and mucosal IgA, and of anti-HA interferon-γ producing T cells in orally vaccinated mice. Furthermore, mice orally vaccinated with the Salmonella vaccine expressing viral HA and NA proteins were completely protected from lethal challenge of highly pathogenic H5N1 as well as H1N1 influenza viruses while none of the animals treated with the Salmonella vaccine carrying the empty expression vector with no viral antigen expression was protected. These results suggest that the Salmonella-based vaccine elicits strong antigen-specific humoral and cellular immune responses and provides effective immune protection against multiple strains of influenza viruses. Furthermore, our study demonstrates the feasibility of developing novel attenuated Salmonella strains as new oral vaccine vectors against influenza viruses.

  9. Dengue human infection models to advance dengue vaccine development.

    Science.gov (United States)

    Larsen, Christian P; Whitehead, Stephen S; Durbin, Anna P

    2015-12-10

    Dengue viruses (DENV) currently infect approximately 400 million people each year causing millions to seek care and overwhelming the health care infrastructure in endemic areas. Vaccines to prevent dengue and therapeutics to treat dengue are not currently available. The efficacy of the most advanced candidate vaccine against symptomatic dengue in general and DENV-2 in particular was much lower than expected, despite the ability of the vaccine to induce neutralizing antibody against all four DENV serotypes. Because seroconversion to the DENV serotypes following vaccination was thought to be indicative of induced protection, these results have made it more difficult to assess which candidate vaccines should or should not be evaluated in large studies in endemic areas. A dengue human infection model (DHIM) could be extremely valuable to down-select candidate vaccines or therapeutics prior to engaging in efficacy trials in endemic areas. Two DHIM have been developed to assess the efficacy of live attenuated tetravalent (LATV) dengue vaccines. The first model, developed by the Laboratory of Infectious Diseases at the U. S. National Institutes of Health, utilizes a modified DENV-2 strain DEN2Δ30. This virus was derived from the DENV-2 Tonga/74 that caused only very mild clinical infection during the outbreak from which it was recovered. DEN2Δ30 induced viremia in 100%, rash in 80%, and neutropenia in 27% of the 30 subjects to whom it was given. The Walter Reed Army Institute of Research (WRAIR) is developing a DHIM the goal of which is to identify DENV that cause symptomatic dengue fever. WRAIR has evaluated seven viruses and has identified two that meet dengue fever criteria. Both of these models may be very useful in the evaluation and down-selection of candidate dengue vaccines and therapeutics.

  10. Vaccines: from empirical development to rational design.

    Directory of Open Access Journals (Sweden)

    Christine Rueckert

    Full Text Available Infectious diseases are responsible for an overwhelming number of deaths worldwide and their clinical management is often hampered by the emergence of multi-drug-resistant strains. Therefore, prevention through vaccination currently represents the best course of action to combat them. However, immune escape and evasion by pathogens often render vaccine development difficult. Furthermore, most currently available vaccines were empirically designed. In this review, we discuss why rational design of vaccines is not only desirable but also necessary. We introduce recent developments towards specifically tailored antigens, adjuvants, and delivery systems, and discuss the methodological gaps and lack of knowledge still hampering true rational vaccine design. Finally, we address the potential and limitations of different strategies and technologies for advancing vaccine development.

  11. WHO informal consultation on quality, safety and efficacy specifications for live attenuated rotavirus vaccines Mexico City, Mexico, 8-9 February 2005.

    Science.gov (United States)

    Wood, David

    2005-12-01

    Rotavirus vaccines are at an advanced stage of development but there are as yet no WHO recommendations on production and quality control to provide regulatory guidance. A meeting of experts was convened by WHO and PAHO/AMRO to review the scientific basis for production and quality control of rotavirus vaccines, and to discuss specific measures to assure the safety and efficacy of rotavirus vaccines. The meeting was attended by 25 experts from 14 countries, drawn from academia, public health, national regulatory authorities and vaccine producers. It was agreed that existing guidance for other live virus vaccines provides a very good basis for product characterization, especially for source materials and control of production. The basis for attenuation of current vaccines or vaccine candidates is not known but, at least for the vaccines based on the Jennerian approach of using animal (bovine) rotaviruses, is likely to be multigenic. The risk of intussusception in humans is influenced by genetic background and age. Recent analyzes of large vaccine safety trials found that certain strains of vaccine virus were not associated with intussusception, although in these trials the first dose of vaccine was not administered to children over 3 months of age. Since age is a risk factor for intussusception, this may suggest that early delivery of the first dose of vaccine is desirable. However, maternal antibodies may mitigate against early delivery of the first vaccine dose. Factors which could affect vaccine efficacy or safety include strain diversity, malnutrition, other enteric infections, parasitic infection or immune suppression. It was concluded that data from clinical trials conducted in one part of the world would not necessarily be predictive of vaccine efficacy in other places. It was agreed that in nonclinical evaluations there was a need to use oral dosing for toxicity studies and, because rotavirus is non-neurovirulent, that there was no need for an animal

  12. Attenuated Salmonella typhimurium SV4089 as a potential carrier of oral DNA vaccine in chickens.

    Science.gov (United States)

    Jazayeri, Seyed Davoud; Ideris, Aini; Zakaria, Zunita; Omar, Abdul Rahman

    2012-01-01

    Attenuated Salmonella has been used as a carrier for DNA vaccine. However, in vitro and in vivo studies on the bacteria following transfection of plasmid DNA were poorly studied. In this paper, eukaryotic expression plasmids encoding avian influenza virus (AIV) subtype H5N1 genes, pcDNA3.1/HA, NA, and NP, were transfected into an attenuated Salmonella enteric typhimurium SV4089. In vitro stability of the transfected plasmids into Salmonella were over 90% after 100 generations. The attenuated Salmonella were able to invade MCF-7 (1.2%) and MCF-10A (0.5%) human breast cancer cells. Newly hatched specific-pathogen-free (SPF) chicks were inoculated once by oral gavage with 10(9) colony-forming unit (CFU) of the attenuated Salmonella. No abnormal clinical signs or deaths were recorded after inoculation. Viable bacteria were detected 3 days after inoculation by plating from spleen, liver, and cecum. Fluorescent in situ hybridization (FISH) and polymerase chain reaction (PCR) were carried out for confirmation. Salmonella was not detected in blood cultures although serum antibody immune responses to Salmonella O antiserum group D1 factor 1, 9, and 12 antigens were observed in all the inoculated chickens after 7 days up to 35 days. Our results showed that live attenuated S. typhimurium SV4089 harboring pcDNA3.1/HA, NA, and NP may provide a unique alternative as a carrier for DNA oral vaccine in chickens.

  13. Protection by attenuated and polyvalent vaccines against highly virulent strains of Marek's disease virus.

    Science.gov (United States)

    Witter, R L

    1982-01-01

    Tests confirmed that turkey herpesvirus (HVT) vaccine protected chickens poorly against challenge with the highly virulent Md5 strain of Marek's disease (MD) virus, especially in chickens with homologous HVT antibodies. The naturally avirulent SB-1 vaccine virus was likewise poorly protective against challenge with the Md5 strain. Homologous antibodies reduced the protective efficacy of both vaccines, but SB-1 was not affected by HVT antibodies. In order to provide better protection against strains of MD virus poorly protected against by HVT, such as Md5, the Md11 strain of MD virus was attenuated by 75 cell culture passages and evaluated for protective efficacy. This vaccine virus, designated Mdl 1/75C, provided good protection against challenge with Md5 and most other highly virulent MD viruses tested, but was less efficacious against challenge with the JM/102W strain, a prototype MD virus protected against well by HVT and SB-1 vaccines. Furthermore, its efficacy was consistently lower in chicks with HVT antibody. Thus, although HVT, SB-1, and Md11/75C were all efficacious against certain MD viruses, none of these vaccines protected optimally against all MD challenge viruses in all chickens. A polyvalent vaccine composed of Md11/75C, HVT and SB-1 viruses protected chickens better against a battery of five highly virulent MD challenge viruses, including three strains poorly protected against by HVT, than any single vaccine and was not influenced by HVT antibody. These data suggest that vaccinal immunity may be partially viral strain specific.

  14. Comparative sequence analysis of the P-, M- and L-coding region of the measles virus CAM-70 live attenuated vaccine strain

    Directory of Open Access Journals (Sweden)

    P.R. Santos

    2003-11-01

    Full Text Available Measles virus is a highly contagious agent which causes a major health problem in developing countries. The viral genomic RNA is single-stranded, nonsegmented and of negative polarity. Many live attenuated vaccines for measles virus have been developed using either the prototype Edmonston strain or other locally isolated measles strains. Despite the diverse geographic origins of the vaccine viruses and the different attenuation methods used, there was remarkable sequence similarity of H, F and N genes among all vaccine strains. CAM-70 is a Japanese measles attenuated vaccine strain widely used in Brazilian children and produced by Bio-Manguinhos since 1982. Previous studies have characterized this vaccine biologically and genomically. Nevertheless, only the F, H and N genes have been sequenced. In the present study we have sequenced the remaining P, M and L genes (approximately 1.6, 1.4 and 6.5 kb, respectively to complete the genomic characterization of CAM-70 and to assess the extent of genetic relationship between CAM-70 and other current vaccines. These genes were amplified using long-range or standard RT-PCR techniques, and the cDNA was cloned and automatically sequenced using the dideoxy chain-termination method. The sequence analysis comparing previously sequenced genotype A strains with the CAM-70 Bio-Manguinhos strain showed a low divergence among them. However, the CAM-70 strains (CAM-70 Bio-Manguinhos and a recently sequenced CAM-70 submaster seed strain were assigned to a specific group by phylogenetic analysis using the neighbor-joining method. Information about our product at the genomic level is important for monitoring vaccination campaigns and for future studies of measles virus attenuation.

  15. Immunogenicity of viral vector, prime-boost SIV vaccine regimens in infant rhesus macaques: attenuated vesicular stomatitis virus (VSV) and modified vaccinia Ankara (MVA) recombinant SIV vaccines compared to live-attenuated SIV.

    Science.gov (United States)

    Van Rompay, Koen K A; Abel, Kristina; Earl, Patricia; Kozlowski, Pamela A; Easlick, Juliet; Moore, Joseph; Buonocore-Buzzelli, Linda; Schmidt, Kimberli A; Wilson, Robert L; Simon, Ian; Moss, Bernard; Rose, Nina; Rose, John; Marthas, Marta L

    2010-02-10

    In a previously developed infant macaque model mimicking HIV infection by breast-feeding, we demonstrated that intramuscular immunization with recombinant poxvirus vaccines expressing simian immunodeficiency virus (SIV) structural proteins provided partial protection against infection following oral inoculation with virulent SIV. In an attempt to further increase systemic but also local antiviral immune responses at the site of viral entry, we tested the immunogenicity of different orally administered, replicating vaccines. One group of newborn macaques received an oral prime immunization with a recombinant vesicular stomatitis virus expressing SIVmac239 gag, pol and env (VSV-SIVgpe), followed 2 weeks later by an intramuscular boost immunization with MVA-SIV. Another group received two immunizations with live-attenuated SIVmac1A11, administered each time both orally and intravenously. Control animals received mock immunizations or non-SIV VSV and MVA control vectors. Analysis of SIV-specific immune responses in blood and lymphoid tissues at 4 weeks of age demonstrated that both vaccine regimens induced systemic antibody responses and both systemic and local cell-mediated immune responses. The safety and immunogenicity of the VSV-SIVgpe+MVA-SIV immunization regimen described in this report provide the scientific incentive to explore the efficacy of this vaccine regimen against virulent SIV exposure in the infant macaque model.

  16. Development of a recombinant, chimeric tetravalent dengue vaccine candidate.

    Science.gov (United States)

    Osorio, Jorge E; Partidos, Charalambos D; Wallace, Derek; Stinchcomb, Dan T

    2015-12-10

    Dengue is a significant threat to public health worldwide. Currently, there are no licensed vaccines available for dengue. Takeda Vaccines Inc. is developing a live, attenuated tetravalent dengue vaccine candidate (TDV) that consists of an attenuated DENV-2 strain (TDV-2) and three chimeric viruses containing the prM and E protein genes of DENV-1, -3 and -4 expressed in the context of the attenuated TDV-2 genome backbone (TDV-1, TDV-3, and TDV-4, respectively). TDV has been shown to be immunogenic and efficacious in nonclinical animal models. In interferon-receptor deficient mice, the vaccine induces humoral neutralizing antibody responses and cellular immune responses that are sufficient to protect from lethal challenge with DENV-1, DENV-2 or DENV-4. In non-human primates, administration of TDV induces innate immune responses as well as long lasting antibody and cellular immunity. In Phase 1 clinical trials, the safety and immunogenicity of two different formulations were assessed after intradermal or subcutaneous administration to healthy, flavivirus-naïve adults. TDV administration was generally well-tolerated independent of dose and route. The vaccine induced neutralizing antibody responses to all four DENV serotypes: after a single administration of the higher formulation, 24-67%% of the subjects seroconverted to all four DENV and >80% seroconverted to three or more viruses. In addition, TDV induced CD8(+) T cell responses to the non-structural NS1, NS3 and NS5 proteins of DENV. TDV has been also shown to be generally well tolerated and immunogenic in a Phase 2 clinical trial in dengue endemic countries in adults and children as young as 18 months. Additional clinical studies are ongoing in preparation for a Phase 3 safety and efficacy study.

  17. Shigella vaccine development: prospective animal models and current status.

    Science.gov (United States)

    Kim, Yeon-Jeong; Yeo, Sang-Gu; Park, Jae-Hak; Ko, Hyun-Jeong

    2013-01-01

    Shigella was first discovered in 1897 and is a major causative agent of dysenteric diarrhea. The number of affected patients has decreased globally because of improved sanitary conditions; however, Shigella still causes serious problems in many subjects, including young children and the elderly, especially in developing countries. Although antibiotics may be effective, a vaccine would be the most powerful solution to combat shigellosis because of the emergence of drug-resistant strains. However, the development of a vaccine is hampered by several problems. First, there is no suitable animal model that can replace human-based studies for the investigation of the in vivo mechanisms of Shigella vaccines. Mouse, guinea pig, rat, rabbit, and nonhuman primates could be used as models for shigellosis, but they do not represent human shigellosis and each has its own weaknesses. However, a recent murine model based on peritoneal infection with virulent S. flexneri 2a is promising. Moreover, although the inflammatory responses and mechanisms such as pathogenassociated molecular patterns and danger-associated molecular patterns have been studied, the pathology and immunology of Shigella are still not clearly defined. Despite these obstacles, many vaccine candidates have been developed, including live attenuated, killed whole cells, conjugated, and subunit vaccines. The development of Shigella vaccines also demands considerations of the cost, routes of administration, ease of storage (stability), cross-reactivity, safety, and immunogenicity. The main aim of this review is to provide a detailed introduction to the many promising vaccine candidates and animal models currently available, including the newly developed mouse model.

  18. Development of a new vaccine for the prevention of Lassa fever.

    Directory of Open Access Journals (Sweden)

    2005-06-01

    Full Text Available BACKGROUND: Recent importation of Lassa fever into Germany, the Netherlands, the United Kingdom, and the United States by travelers on commercial airlines from Africa underscores the public health challenge of emerging viruses. Currently, there are no licensed vaccines for Lassa fever, and no experimental vaccine has completely protected nonhuman primates against a lethal challenge. METHODS AND FINDINGS: We developed a replication-competent vaccine against Lassa virus based on attenuated recombinant vesicular stomatitis virus vectors expressing the Lassa viral glycoprotein. A single intramuscular vaccination of the Lassa vaccine elicited a protective immune response in nonhuman primates against a lethal Lassa virus challenge. Vaccine shedding was not detected in the monkeys, and none of the animals developed fever or other symptoms of illness associated with vaccination. The Lassa vaccine induced strong humoral and cellular immune responses in the four vaccinated and challenged monkeys. Despite a transient Lassa viremia in vaccinated animals 7 d after challenge, the vaccinated animals showed no evidence of clinical disease. In contrast, the two control animals developed severe symptoms including rashes, facial edema, and elevated liver enzymes, and ultimately succumbed to the Lassa infection. CONCLUSION: Our data suggest that the Lassa vaccine candidate based on recombinant vesicular stomatitis virus is safe and highly efficacious in a relevant animal model that faithfully reproduces human disease.

  19. Development of Novel Vaccines against Enterovirus-71

    Directory of Open Access Journals (Sweden)

    Pinn Tsin Isabel Yee

    2015-12-01

    Full Text Available The hand, foot and mouth disease is caused by a group of Enteroviruses such as Enterovirus 71 (EV-A71 and Coxsackievirus CV-A5, CV-A8, and CV-A16. Mild symptoms of EV-A71 infection in children range from high fever, vomiting, rashes and ulcers in mouth but can produce more severe symptoms such as brainstem and cerebellar encephalitis, leading up to cardiopulmonary failure and death. The lack of vaccines and antiviral drugs against EV-A71 highlights the urgency of developing preventive and treatment agents against EV-A71 to prevent further fatalities. Research groups have developed experimental inactivated vaccines, recombinant Viral Protein 1 (VP1 vaccine and virus-like particles (VLPs. The inactivated EV-A71 vaccine is considered the safest viral vaccine, as there will be no reversion to the infectious wild type strain. The recombinant VP1 vaccine is a cost-effective immunogen, while VLPs contain an arrangement of epitopes that can elicit neutralizing antibodies against the virus. As each type of vaccine has its advantages and disadvantages, increased studies are required in the development of such vaccines, whereby high efficacy, long-lasting immunity, minimal risk to those vaccinated, safe and easy production, low cost, dispensing the need for refrigeration and convenient delivery are the major goals in their design.

  20. New strategies for the development of H5N1 subtype influenza vaccines: progress and challenges.

    Science.gov (United States)

    Steel, John

    2011-10-01

    The emergence and spread of highly pathogenic avian influenza (H5N1) viruses among poultry in Asia, the Middle East, and Africa have fueled concerns of a possible human pandemic, and spurred efforts towards developing vaccines against H5N1 influenza viruses, as well as improving vaccine production methods. In recent years, promising experimental reverse genetics-derived H5N1 live attenuated vaccines have been generated and characterized, including vaccines that are attenuated through temperature-sensitive mutation, modulation of the interferon antagonist protein, or disruption of the M2 protein. Live attenuated influenza virus vaccines based on each of these modalities have conferred protection against homologous and heterologous challenge in animal models of influenza virus infection. Alternative vaccine strategies that do not require the use of live virus, such as virus-like particle (VLP) and DNA-based vaccines, have also been vigorously pursued in recent years. Studies have demonstrated that influenza VLP vaccination can confer homologous and heterologous protection from lethal challenge in a mouse model of infection. There have also been improvements in the formulation and production of vaccines following concerns over the threat of H5N1 influenza viruses. The use of novel substrates for the growth of vaccine virus stocks has been intensively researched in recent years, and several candidate cell culture-based systems for vaccine amplification have emerged, including production systems based on Madin-Darby canine kidney, Vero, and PerC6 cell lines. Such systems promise increased scalability of product, and reduced reliance on embryonated chicken eggs as a growth substrate. Studies into the use of adjuvants have shown that oil-in-water-based adjuvants can improve the immunogenicity of inactivated influenza vaccines and conserve antigen in such formulations. Finally, efforts to develop more broadly cross-protective immunization strategies through the inclusion

  1. Burkholderia mallei CLH001 Attenuated Vaccine Strain Is Immunogenic and Protects against Acute Respiratory Glanders.

    Science.gov (United States)

    Hatcher, Christopher L; Mott, Tiffany M; Muruato, Laura A; Sbrana, Elena; Torres, Alfredo G

    2016-08-01

    Burkholderia mallei is the causative agent of glanders, an incapacitating disease with high mortality rates in respiratory cases. Its endemicity and ineffective treatment options emphasize its public health threat and highlight the need for a vaccine. Live attenuated vaccines are considered the most viable vaccine strategy for Burkholderia, but single-gene-deletion mutants have not provided complete protection. In this study, we constructed the select-agent-excluded B. mallei ΔtonB Δhcp1 (CLH001) vaccine strain and investigated its ability to protect against acute respiratory glanders. Here we show that CLH001 is attenuated, safe, and effective at protecting against lethal B. mallei challenge. Intranasal administration of CLH001 to BALB/c and NOD SCID gamma (NSG) mice resulted in complete survival without detectable colonization or abnormal organ histopathology. Additionally, BALB/c mice intranasally immunized with CLH001 in a prime/boost regimen were fully protected against lethal challenge with the B. mallei lux (CSM001) wild-type strain.

  2. Development of Experimental Vaccines Against Liver Flukes.

    Science.gov (United States)

    Yap, Huan Yong; Smooker, Peter M

    2016-01-01

    A multitude of experimental vaccines have been developed against liver flukes in the past. However, there has yet to be the development of a commercial livestock vaccine. Reasons for this may be multiple, and include the lack of identification of the best antigen(s), or the immune response induced by those antigens not being appropriate in either magnitude or polarity (and therefore not protective). Cathepsin proteases are the major component of the excretory/secretory (ES) material of liver flukes in all stages of their life cycle in the definitive host and are the primary antigens of interest for the vaccine development in many studies. Hence, this chapter presents the methodologies of using cathepsin proteases as targeted antigens in recombinant protein and DNA vaccine development to engender protective immune responses against fasciolosis.First, the experimental vaccines developed in the past and the criteria of an effective vaccine for fasciolosis are briefly reviewed. Then flowcharts for recombinant protein vaccine and DNA vaccine development are presented, followed by the detailed materials and methodologies.

  3. Recent progress in dengue vaccine development

    Institute of Scientific and Technical Information of China (English)

    Jianchun; Wei; Hui; Chen; Jing; An

    2014-01-01

    Dengue virus(DENV) has four distinct serotypes. DENV infection can result in classic dengue fever and life-threatening dengue hemorrhagic fever/dengue shock syndrome. In recent decades, DENV infection has become an important public health concern in epidemic-prone areas. Vaccination is the most effective measure to prevent and control viral infections. However, several challenges impede the development of effective DENV vaccines, such as the lack of suitable animal models and the antibody-dependent enhancement phenomenon. Although no licensed DENV vaccine is available, significant progress has been made. This review summarizes candidate DENV vaccines from recent investigations.

  4. Vaccination of rhesus macaques with the live-attenuated HSV-1 vaccine VC2 stimulates the proliferation of mucosal T cells and germinal center responses resulting in sustained production of highly neutralizing antibodies.

    Science.gov (United States)

    Stanfield, Brent A; Pahar, Bapi; Chouljenko, Vladimir N; Veazey, Ronald; Kousoulas, Konstantin G

    2017-01-23

    We have shown that the live-attenuated HSV-1 VC2 vaccine strain with mutations in glycoprotein K (gK) and the membrane protein UL20 is unable to establish latency in vaccinated animals and produces a robust immune response capable of completely protecting mice against lethal vaginal HSV-1 or HSV-2 infections. To better understand the immune response generated by vaccination with VC2, we tested its ability to elicit immune responses in rhesus macaques. Vaccinated animals showed no signs of disease and developed increasing HSV-1 and HSV-2 reactive IgG1 after two booster vaccinations, while IgG subtypes IgG2 and IgG3 remained at low to undetectable levels. All vaccinated animals produced high levels of cross protective neutralizing antibodies. Flow cytometry analysis of cells isolated from draining lymph nodes showed that VC2 vaccination stimulated significant increases in plasmablast (CD27(high)CD38(high)) and mature memory (CD21(-)IgM(-)) B cells. T cell analysis on cells isolated from draining lymph node biopsies demonstrated a statistically significant increase in proliferating (Ki67(+)) follicular T helper cells and regulatory CXCR5(+) CD8(+) cytotoxic T cells. Analysis of plasma isolated two weeks post vaccination showed significant increases in circulating CXCL13 indicating increased germinal center activity. Cells isolated from vaginal biopsy samples collected over the course of the study exhibited vaccination-dependent increases in proliferating (Ki67(+)) CD4(+) and CD8(+) T cell populations. These results suggest that intramuscular vaccination with the live-attenuated HSV-1 VC2 vaccine strain can stimulate robust IgG1 antibody responses that persist for >250days post vaccination. In addition, vaccination lead to the maturation of B cells into plasmablast and mature memory B cells, the expansion of follicular T helper cells, and affects in the mucosal immune responses. These data suggest that the HSV VC2 vaccine induces potent immune responses that could help

  5. Vaccines against biologic agents: uses and developments.

    Science.gov (United States)

    Ales, Noel C; Katial, Rohit K

    2004-03-01

    Although the Geneva protocol that prohibits the use of chemical and biologic weapons was ratified in 1925, many countries failed to accept this protocol: others stipulated retaliation, and some, like the United States, did not ratify the protocol for decades. This delay allowed the continued development of chemical and biologic agents. Members of the health care community are responsible for determining the best way to protect society from the potentially devastating effects of these biologic agents. Ideally,these diseases would be prevented from ever developing into systemic illnesses. In the past, vaccination has been a successful means of eradicating disease. Vaccines remain a hopeful therapy for the future, but time is short,and there are many obstacles.Information regarding bioterrorism agents and their treatments comes mainly from dated data or from in vitro or animal studies that may not apply to human treatment and disease. Additionally, the current threat of bioterrorism does not allow enough time for accurate, well-designed,controlled studies in humans before the release of investigational vaccines. Furthermore, some human studies would not be safe or ethical. Finally,many members of society suffer from illnesses that would put them at high risk to receive prophylactic vaccination. It is therefore naive to believe that vaccines would be the ultimate protection from these agents. In addition to vaccine development, there must be concurrent investigations into disease management and treatment. Even in instances in which vaccination is known to be an effective means of disease protection. biologic agents may be presented in a manner that renders vaccines ineffective. Virulent strains of organisms may be used, more than one organism may be used in tandem to increase virulence, and strains may be selected for antibiotic and vaccine resistance. Genetically engineered strains may use virulence factors other than those targeted in vaccines, and high

  6. Human CD4(+) T Cell Responses to an Attenuated Tetravalent Dengue Vaccine Parallel Those Induced by Natural Infection in Magnitude, HLA Restriction, and Antigen Specificity.

    Science.gov (United States)

    Angelo, Michael A; Grifoni, Alba; O'Rourke, Patrick H; Sidney, John; Paul, Sinu; Peters, Bjoern; de Silva, Aruna D; Phillips, Elizabeth; Mallal, Simon; Diehl, Sean A; Kirkpatrick, Beth D; Whitehead, Stephen S; Durbin, Anna P; Sette, Alessandro; Weiskopf, Daniela

    2017-03-01

    Dengue virus (DENV) is responsible for growing numbers of infections worldwide and has proven to be a significant challenge for vaccine development. We previously demonstrated that CD8(+) T cell responses elicited by a dengue live attenuated virus (DLAV) vaccine resemble those observed after natural infection. In this study, we screened peripheral blood mononuclear cells (PBMCs) from donors vaccinated with a tetravalent DLAV vaccine (TV005) with pools of dengue virus-derived predicted major histocompatibility complex (MHC) class II binding peptides. The definition of CD4(+) T cell responses after live vaccination is important because CD4(+) T cells are known contributors to host immunity, including cytokine production, help for CD8(+) T and B cells, and direct cytotoxicity against infected cells. While responses to all antigens were observed, DENV-specific CD4(+) T cells were focused predominantly on the capsid and nonstructural NS3 and NS5 antigens. Importantly, CD4(+) T cell responses in vaccinees were similar in magnitude and breadth to those after natural infection, recognized the same antigen hierarchy, and had similar profiles of HLA restriction. We conclude that TV005 vaccination has the capacity to elicit CD4(+) cell responses closely mirroring those observed in a population associated with natural immunity.IMPORTANCE The development of effective vaccination strategies against dengue virus infection is of high global public health interest. Here we study the CD4 T cell responses elicited by a tetravalent live attenuated dengue vaccine and show that they resemble responses seen in humans naturally exposed to dengue virus. This is an important issue, since it is likely that optimal immunity induced by a vaccine requires induction of CD4(+) responses against the same antigens as those recognized as dominant in natural infection. Detailed knowledge of the T cell response may further contribute to the identification of robust correlates of protection against

  7. Human capital gaps in vaccine development: an issue for global vaccine development and global health.

    Science.gov (United States)

    Cawein, Andrea; Emini, Emilio; Watson, Michael; Dailey, Joanna; Donnelly, John; Tresnan, Dina; Evans, Tom; Plotkin, Stanley; Gruber, William

    2017-02-23

    Despite the success of vaccines in reducing the morbidity and mortality associated with infectious diseases, many infectious diseases, both newly emerging and well known, lack vaccines. The global capability for beginning-to-end vaccine development has become limited, primarily owing to a scarcity of human capital necessary to guide the development of novel vaccines from the laboratory to the marketplace. Here, we identify and discuss the gaps in human capital necessary for robust vaccine development and make recommendations to begin to address these deficiencies.

  8. Membrane and envelope virus proteins co-expressed as lysosome associated membrane protein (LAMP) fused antigens: a potential tool to develop DNA vaccines against flaviviruses

    OpenAIRE

    Rafael Dhalia; Milton Maciel Jr.; Cruz,Fábia S.P.; Viana,Isabelle F.T.; Palma,Mariana L.; Thomas August; Ernesto T. A. Marques Jr.

    2009-01-01

    Vaccination is the most practical and cost-effective strategy to prevent the majority of the flavivirus infection to which there is an available vaccine. However, vaccines based on attenuated virus can potentially promote collateral side effects and even rare fatal reactions. Given this scenario, the developent of alternative vaccination strategies such as DNA-based vaccines encoding specific flavivirus sequences are being considered. Endogenous cytoplasmic antigens, characteristically plasmi...

  9. Early potent protection against heterologous SIVsmE660 challenge following live attenuated SIV vaccination in Mauritian cynomolgus macaques.

    Directory of Open Access Journals (Sweden)

    Neil Berry

    Full Text Available BACKGROUND: Live attenuated simian immunodeficiency virus (SIV vaccines represent the most effective means of vaccinating macaques against pathogenic SIV challenge. However, thus far, protection has been demonstrated to be more effective against homologous than heterologous strains. Immune correlates of vaccine-induced protection have also been difficult to identify, particularly those measurable in the peripheral circulation. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe potent protection in 6 out of 8 Mauritian-derived cynomolgus macaques (MCM against heterologous virus challenge with the pathogenic, uncloned SIVsmE660 viral stock following vaccination with live attenuated SIVmac251/C8. MCM provided a characterised host genetic background with limited Major Histocompatibility Complex (MHC and TRIM5α allelic diversity. Early protection, observed as soon as 3 weeks post-vaccination, was comparable to that of 20 weeks vaccination. Recrudescence of vaccine virus was most pronounced in breakthrough cases where simultaneous identification of vaccine and challenge viruses by virus-specific PCR was indicative of active co-infection. Persistence of the vaccine virus in a range of lymphoid tissues was typified by a consistent level of SIV RNA positive cells in protected vaccinates. However, no association between MHC class I/II haplotype or TRIM5α polymorphism and study outcome was identified. CONCLUSION/SIGNIFICANCE: This SIV vaccine study, conducted in MHC-characterised MCM, demonstrated potent protection against the pathogenic, heterologous SIVsmE660 challenge stock after only 3 weeks vaccination. This level of protection against this viral stock by intravenous challenge has not been hitherto observed. The mechanism(s of protection by vaccination with live attenuated SIV must account for the heterologous and early protection data described in this study, including those which relate to the innate immune system.

  10. Nonclinical Development of BCG Replacement Vaccine Candidates

    Directory of Open Access Journals (Sweden)

    Bernd Eisele

    2013-04-01

    Full Text Available The failure of current Mycobacterium bovis bacille Calmette–Guérin (BCG vaccines, given to neonates to protect against adult tuberculosis and the risk of using these live vaccines in HIV-infected infants, has emphasized the need for generating new, more efficacious and safer replacement vaccines. With the availability of genetic techniques for constructing recombinant BCG (rBCG strains containing well-defined gene deletions or insertions, new vaccine candidates are under evaluation at both the preclinical and clinical stages of development. Since most BCG vaccines in use today were evaluated in clinical trials decades ago and are produced by outdated processes, the development of new BCG vaccines offers a number of advantages that include a modern well-defined manufacturing process along with state-of-the-art evaluation of safety and efficacy in target populations. We provide a description of the preclinical development of two novel rBCGs, VPM1002 that was constructed by adding a modified hly gene coding for the protein listeriolysin O (LLO from Listeria monocytogenes and AERAS-422, which carries a modified pfoA gene coding for the protein perfringolysin O (PFO from Clostridium perfringens, and three genes from Mycobacterium tuberculosis. Novel approaches like these should be helpful in generating stable and effective rBCG vaccine candidates that can be better characterized than traditional BCG vaccines.

  11. Progress and controversies in developing cancer vaccines

    Directory of Open Access Journals (Sweden)

    Speiser Daniel E

    2005-04-01

    Full Text Available Abstract Immunotherapy has become a standard approach for cancer management, through the use of cytokines (eg: interleukin-2 and monoclonal antibodies. Cancer vaccines hold promise as another form of immunotherapy, and there has been substantial progress in identifying shared antigens recognized by T cells, in developing vaccine approaches that induce antigen-specific T cell responses in cancer patients, and in developing new technology for monitoring immune responses in various human tissue compartments. Dramatic clinical regressions of human solid tumors have occurred with some cancer vaccines, but the rate of those responses remains low. This article is part of a 2-part point:counterpoint series on peptide vaccines and adoptive therapy approaches for cancer. The current status of cancer vaccination, and associated challenges, are discussed. Emphasis is placed on the need to increase our knowledge of cancer immunobiology, as well as to improve monitoring of cellular immune function after vaccination. Progress in both areas will facilitate development of effective cancer vaccines, as well as of adoptive therapy. Effective cancer vaccines promise to be useful for treatment and prevention of cancer at low cost and with low morbidity.

  12. Construction of a recombinant attenuated Salmonella typhimurium DNA vaccine carrying Helicobacter pylori hpaA

    Institute of Scientific and Technical Information of China (English)

    Can Xu; Zhao-Shen Li; Yi-Qi Du; Zhen-Xing Tu; Yan-Fang Gong; Jing Jin; Hong-Yu Wu; Guo-Ming Xu

    2005-01-01

    AIM: To construct a recombinant attenuated Salmonella typhimurium DNA vaccine carrying Helicobacter pylori hpaA gene and to detect its immunogenicity.METHODS: Genomic DNA of the standard H pylori strain 17 874 was isolated as the template, hpaA gene fragment was amplified by polymerase chain reaction (PCR) and cloned into pUCmT vector. DNA sequence of the amplified hpaA gene was assayed, then cloned into the eukaryotic expression vector pIRES through enzyme digestion and ligation reactions. The recombinant plasmid was used to transform competent Escherichia coliDH5α, and the positive clones were screened by PCR and restriction enzyme digestion. Then, the recombinant pIRES-hpaA was used to transform LB5000 and the recombinant plasmid isolated from LB5000 was finally used to transform SL7207. After that, the recombinant strain was grown in vitrorepeatedly. In order to iclentify the immunogenicity of the vaccinein vitro, the recombinant pIRES-hpaA was transfected to COS-7 cells using LipofectamineTM2000, the immunogenicity of expressed HpaA protein was detected with SDS-PAGE and Western blot.RESULTS: The 750-base pair hpaA gene fragment was amplified from the genomic DNA and was consistent with the sequence of H pylori hpaA by sequence analysis. It was confirmed by PCR and restriction enzyme digestion that H pylori hpaA gene was inserted into the eukaryotic expression vector pIRES and a stable recombinant live attenuated Salmonella typhimurium DNA vaccine carrying H pylori hpaA gene was successfully constructed and the specific strip of HpaA expressed by pIRES-hpaA was detected through Western blot.CONCLUSION: The recombinant attenuated Salmonella typhimurium DNA vaccine strain expressing HpaA protein with immunogenicity can be constructed and it may be helpful for further investigating the immune action of DNA vaccine in vivo.

  13. Accelerated vaccine development against emerging infectious diseases.

    Science.gov (United States)

    Leblanc, Pierre R; Yuan, Jianping; Brauns, Tim; Gelfand, Jeffrey A; Poznansky, Mark C

    2012-07-01

    Emerging and re-emerging infectious diseases represent a major challenge to vaccine development since it involves two seemingly contradictory requirements. Rapid and flexible vaccine generation while using technologies and processes that can facilitate accelerated regulatory review. Development in the "-omics" in combination with advances in vaccinology offer novel opportunities to meet these requirements. Here we describe how a consortium of five different organizations from academia and industry is addressing these challenges. This novel approach has the potential to become the new standard in vaccine development allowing timely deployment to avert potential pandemics.

  14. From empiricism to rational design: a personal perspective of the evolution of vaccine development.

    Science.gov (United States)

    De Gregorio, Ennio; Rappuoli, Rino

    2014-07-01

    Vaccination, which is the most effective medical intervention that has ever been introduced, originated from the observation that individuals who survived a plague or smallpox would not get the disease twice. To mimic the protective effects of natural infection, Jenner - and later Pasteur - inoculated individuals with attenuated or killed disease-causing agents. This empirical approach inspired a century of vaccine development and the effective prophylaxis of many infectious diseases. From the 1980s, several waves of new technologies have enabled the development of novel vaccines that would not have been possible using the empirical approach. The technological revolution in the field of vaccination is now continuing, and it is delivering novel and safer vaccines. In this Timeline article, we provide our views on the transition from empiricism to rational vaccine design.

  15. Transcriptional profiles of multiple genes in the anterior kidney of channel catfish vaccinated with an attenuated Aeromonas hydrophila.

    Science.gov (United States)

    Mu, Xingjiang; Pridgeon, Julia W; Klesius, Phillip H

    2011-12-01

    A total of 22 uniquely expressed sequence tags (ESTs) were identified from channel catfish anterior kidney subtractive cDNA library at 12 h post vaccination with an attenuated Aeromonas hydrophila (AL09-71 N+R). Of the 22 ESTs, six were confirmed to be significantly (P < 0.05) induced by the vaccination. Of 88 channel catfish genes selected from literature, 14 were found to be significantly (P < 0.05) upregulated by the vaccination. The transcriptional levels of the total 20 genes induced by the vaccination were then compared to that induced by the virulent parent A. hydrophila (AL09-71) at different time points. At 3 h post vaccination (hpv) or infection (hpi), Na(+)/K(+) ATPase α subunit was upregulated the most. At 6 and 12 hpv or hpi, hepcidin and interleukin-1β were induced the highest. At 24 hpv or hpi, hepcidin was upregulated the most, followed by lysozyme c. At 48 hpi, lysozyme c and hepcidin were significantly induced. When vaccinated fish were challenged by AL09-71, relative percent of survival of vaccinated fish were 100% at 14 days post vaccination (dpv). Transcriptional levels of toll-like receptor 5 and hepcidin were significantly upregulated in vaccinated fish at 14 dpv. Taken together, our results suggest that vaccination with attenuated A. hydrophila mimics infection by live bacteria, inducing multiple immune genes in channel catfish.

  16. Vaccination of children with a live-attenuated, intranasal influenza vaccine – analysis and evaluation through a Health Technology Assessment

    Directory of Open Access Journals (Sweden)

    Andersohn, Frank

    2014-10-01

    Full Text Available [english] Background: Influenza is a worldwide prevalent infectious disease of the respiratory tract annually causing high morbidity and mortality in Germany. Influenza is preventable by vaccination and this vaccination is so far recommended by the (STIKO as a standard vaccination for people from the age of 60 onwards. Up to date a parenterally administered trivalent inactivated vaccine (TIV has been in use almost exclusively. Since 2011 however a live-attenuated vaccine (LAIV has been approved additionally. Consecutively, since 2013 the STIKO recommends LAIV (besides TIV for children from 2 to 17 years of age, within the scope of vaccination by specified indications. LAIV should be preferred administered in children from 2 to 6 of age. The objective of this Health Technology Assessment (HTA is to address various research issues regarding the vaccination of children with LAIV. The analysis was performed from a medical, epidemiological and health economic perspective, as well as from an ethical, social and legal point of view.Method: An extensive systematic database research was performed to obtain relevant information. In addition a supplementary research by hand was done. Identified literature was screened in two passes by two independent reviewers using predefined inclusion and exclusion criteria. Included literature was evaluated in full-text using acknowledged standards. Studies were graded with the highest level of evidence (1++, if they met the criteria of Results: For the medical section, the age of the study participants ranges from 6 months to 17 years. Regarding study efficacy, in children aged 6 months to ≤7 years, LAIV is superior to placebo as well as to a vac-cination with TIV (Relative Risk Reduction – RRR – of laboratory confirmed influenza infection approx. 80% and 50%, respectively. In children aged >7 to 17 years (= 18th year of their lives, LAIV is superior to a vaccination with TIV (RRR 32%. For this age group, no

  17. In Vitro intestinal mucosal epithelial responses to wild-typeSalmonella Typhi and attenuated typhoid vaccines

    Directory of Open Access Journals (Sweden)

    Maria eFiorentino

    2013-02-01

    Full Text Available Typhoid fever, caused by S. Typhi, is responsible for approximately 200,000 deaths per year worldwide. Little information is available regarding epithelium-bacterial interactions in S. Typhi infection. We have evaluated in vitro the effects of wild-type S. Typhi, the licensed Ty21a typhoid vaccine and the leading strains CVD 908-htrA and CVD 909 vaccine candidates on intestinal barrier function and immune response. Caco2 monolayers infected with wild-type S. Typhi exhibited alterations in the organization of tight junctions, increased paracellular permeability, and a rapid decrease in Trans-Epithelial Electrical Resistance as early as 4h post-exposure. S. Typhi triggered the secretion of interleukin (IL-8 and IL-6. Caco2 cells infected with the attenuated strains exhibited a milder pro-inflammatory response with minimal disruption of the barrier integrity. We conclude that wild-type S. Typhi causes marked transient alterations of the intestinal mucosa that are more pronounced than those observed with Ty21a or new generation attenuated typhoid vaccine candidates.

  18. Evaluation of live attenuated S79 mumps vaccine effectiveness in mumps outbreaks: a matched case-control study

    Institute of Scientific and Technical Information of China (English)

    FU Chuan-xi; NIE Jun; LIANG Jian-hua; WANG Ming

    2009-01-01

    Background Mumps virus infection is a potentially serious viral infection of childhood and early adulthood. In China, live attenuated S79 mumps vaccine has been licensed for pediatric use since 1990. The objective of this study was to determine the effectiveness of live attenuated S79 mumps vaccine against clinical mumps in outbreaks.Methods Cases were selected from mumps outbreaks in schools in Guangzhou between 2004 and 2005. Each case was matched by gender, age and classroom. Vaccination information was obtained from Children's EPI Administrative Computerized System. Vaccine effectiveness (VE) was calculated for 1 or 2 doses of S79 vaccine with 95% confidence intervals (CI).Results One hundred and ninety-four cases and 194 controls were enrolled into the study. VE of the S79 mumps vaccine for 1 dose versus 0 confer protection 80.4% (95% CI, 60.0%-90.4%) and Ves against mumps in outbreaks for 1 dose of mumps vaccine are similar among those children aged 4-9 years and aged over 10 years old.Conclusion The live attenuated S79 mumps vaccine can be effective in preventing clinical mumps outbreaks.

  19. Protein Crystallography in Vaccine Research and Development.

    Science.gov (United States)

    Malito, Enrico; Carfi, Andrea; Bottomley, Matthew J

    2015-06-09

    The use of protein X-ray crystallography for structure-based design of small-molecule drugs is well-documented and includes several notable success stories. However, it is less well-known that structural biology has emerged as a major tool for the design of novel vaccine antigens. Here, we review the important contributions that protein crystallography has made so far to vaccine research and development. We discuss several examples of the crystallographic characterization of vaccine antigen structures, alone or in complexes with ligands or receptors. We cover the critical role of high-resolution epitope mapping by reviewing structures of complexes between antigens and their cognate neutralizing, or protective, antibody fragments. Most importantly, we provide recent examples where structural insights obtained via protein crystallography have been used to design novel optimized vaccine antigens. This review aims to illustrate the value of protein crystallography in the emerging discipline of structural vaccinology and its impact on the rational design of vaccines.

  20. Immunogenicity of live attenuated B. pertussis BPZE1 producing the universal influenza vaccine candidate M2e.

    Directory of Open Access Journals (Sweden)

    Hana Kammoun

    Full Text Available BACKGROUND: Intranasal delivery of vaccines directed against respiratory pathogens is an attractive alternative to parenteral administration. However, using this delivery route for inactivated vaccines usually requires the use of potent mucosal adjuvants, and no such adjuvant has yet been approved for human use. METHODOLOGY/PRINCIPAL FINDINGS: We have developed a live attenuated Bordetella pertussis vaccine, called BPZE1, and show here that it can be used to present the universal influenza virus epitope M2e to the mouse respiratory tract to prime for protective immunity against viral challenge. Three copies of M2e were genetically fused to the N-terminal domain of filamentous hemagglutinin (FHA and produced in recombinant BPZE1 derivatives in the presence or absence of endogenous full-length FHA. Only in the absence of FHA intranasal administration of the recombinant BPZE1 derivative induced antibody responses to M2e and effectively primed BALB/c mice for protection against influenza virus-induced mortality and reduced the viral load after challenge. Strong M2e-specific antibody responses and protection were observed after a single nasal administration with the recombinant BPZE1 derivative, followed by a single administration of M2e linked to a virus-like particle without adjuvant, whereas priming alone with the vaccine strain did not protect. CONCLUSIONS/SIGNIFICANCE: Using recombinant FHA-3M2e-producing BPZE1 derivatives for priming and the universal influenza M2e peptide linked to virus-like particles for boosting may constitute a promising approach for needle-free and adjuvant-free nasal vaccination against influenza.

  1. Development of Vaccines for Chikungunya Fever.

    Science.gov (United States)

    Erasmus, Jesse H; Rossi, Shannan L; Weaver, Scott C

    2016-12-15

    Chikungunya fever, an acute and often chronic arthralgic disease caused by the mosquito-borne chikungunya virus (CHIKV), has reemerged since 2004 to cause millions of cases. Because CHIKV exhibits limited antigenic diversity and is not known to be capable of reinfection, a vaccine could serve to both prevent disease and diminish human amplification during epidemic circulation. Here, we review the many promising vaccine platforms and candidates developed for CHIKV since the 1970s, including several in late preclinical or clinical development. We discuss the advantages and limitations of each, as well as the commercial and regulatory challenges to bringing a vaccine to market.

  2. Construction of recombinant attenuated Salmonella typhimurium DNA vaccine expressing H pylori ureB and IL-2

    Institute of Scientific and Technical Information of China (English)

    Can Xu; Zhao-Shen Li; Yi-Qi Du; Yan-Fang Gong; Hua Yang; Bo Sun; Jing Jin

    2007-01-01

    ureB and IL-2 genes was successfully constructed and the specific strips of UreB and IL-2 expressed by recombinant plasmids were detected through Western blot. Study in vivo showed that the positive rate of rapid urease test of the immunized group including ureB and ureB-IL-2 was 37.5% and 12.5% respectively, and was significantly lower than that (100%) in the control group (P < 0.01).CONCLUSION: Recombinant attenuated Salmonella typhimurium DNA vaccine expressing UreB protein and IL-2 protein with immunogenicity can be constructed. It can protect mice against H pylori infection, which may help the development of a human-use H pylori DNA vaccine.

  3. Status of vaccine research and development of vaccines for GBS.

    Science.gov (United States)

    Heath, Paul T

    2016-06-03

    Streptococcus agalactiae (group B streptococcus (GBS)) is the leading cause of neonatal sepsis and meningitis in many countries. Intrapartum antibiotic strategies have reduced the incidence of early-onset neonatal GBS in a number of countries but have had no impact on late onset GBS infection (LOD). In low/middle income settings, the disease burden remains uncertain although in several countries of Southern Africa appears comparable to or higher than that of high-income countries. As disease may be rapidly fulminating cases can be missed before appropriate samples are obtained and this may lead to underestimation of the true burden. Given the rapid onset and progression within hours of birth as well as the deficiencies in IAP strategies and absence of a solution for preventing LOD, it is clear that administration of a suitable vaccine in pregnancy could provide a better solution in all settings; it should also be cost effective. The current leading vaccine candidates are CPS-protein conjugate vaccines but protein-based vaccines are also in development and one has recently commenced clinical trials.

  4. A Meningococcal Outer Membrane Vesicle Vaccine Incorporating Genetically Attenuated Endotoxin Dissociates Inflammation From Immunogenicity

    Directory of Open Access Journals (Sweden)

    David J. Dowling

    2016-12-01

    Full Text Available Background. Group B Neisseria meningitidis, an endotoxin-producing gram-negative bacterium, causes the highest incidence of group B meningococcus (MenB disease in the first year of life. The Bexsero vaccine is indicated in Europe from 8 weeks of age. Endotoxin components of outer membrane vesicles (OMVs or soluble lipopolysaccharide (LPS represent a potential source of inflammation and residual reactogenicity. The purpose of this study was to compare novel candidate MenB vaccine formulations with licensed vaccines, including Bexsero, using age-specific in vitro culture systems.Methods. OMVs from wild type and inactivated lpxL1 gene mutant N. meningitidis strains were characterized in human neonatal and adult in vitro whole blood assays and dendritic cell arrays. OMVs were benchmarked against licensed vaccines, including Bexsero and whole cell pertussis formulations, with respect to Th-polarizing cytokine and PGE2 production, as well as cell surface activation markers (HLA-DR, CD86, CCR7. OMV immunogenicity was assessed in mice.Results. ΔlpxLI native OMVs demonstrated significantly less cytokine induction in human blood and DCs than Bexsero and most of the other pediatric vaccines (e.g., PedvaxHib, EasyFive, Bacillus Calmette–Guérin (BCG tested. Despite a much lower inflammatory profile in vitro than Bexsero, ΔlpxLI native OMVs still had moderate DC maturing ability and induced robust anti-N. meningitidis antibody responses after murine immunization.Conclusions. A meningococcal vaccine comprised of attenuated LPS-based OMVs with a limited inflammatory profile in vitro induces robust antigen-specific immunogenicity in vivo.

  5. Vitamin A deficiency impairs adaptive B and T cell responses to a prototype monovalent attenuated human rotavirus vaccine and virulent human rotavirus challenge in a gnotobiotic piglet model.

    Directory of Open Access Journals (Sweden)

    Kuldeep S Chattha

    Full Text Available Rotaviruses (RV are a major cause of gastroenteritis in children. Widespread vitamin A deficiency is associated with reduced efficacy of vaccines and higher incidence of diarrheal infections in children in developing countries. We established a vitamin A deficient (VAD gnotobiotic piglet model that mimics subclinical vitamin A deficiency in children to study its effects on an oral human rotavirus (HRV vaccine and virulent HRV challenge. Piglets derived from VAD and vitamin A sufficient (VAS sows were orally vaccinated with attenuated HRV or mock, with/without supplemental vitamin A and challenged with virulent HRV. Unvaccinated VAD control piglets had significantly lower hepatic vitamin A, higher severity and duration of diarrhea and HRV fecal shedding post-challenge as compared to VAS control pigs. Reduced protection coincided with significantly higher innate (IFNα cytokine and CD8 T cell frequencies in the blood and intestinal tissues, higher pro-inflammatory (IL12 and 2-3 fold lower anti-inflammatory (IL10 cytokines, in VAD compared to VAS control pigs. Vaccinated VAD pigs had higher diarrhea severity scores compared to vaccinated VAS pigs, which coincided with lower serum IgA HRV antibody titers and significantly lower intestinal IgA antibody secreting cells post-challenge in the former groups suggesting lower anamnestic responses. A trend for higher serum HRV IgG antibodies was observed in VAD vs VAS vaccinated groups post-challenge. The vaccinated VAD (non-vitamin A supplemented pigs had significantly higher serum IL12 (PID2 and IFNγ (PID6 compared to vaccinated VAS groups suggesting higher Th1 responses in VAD conditions. Furthermore, regulatory T-cell responses were compromised in VAD pigs. Supplemental vitamin A in VAD pigs did not fully restore the dysregulated immune responses to AttHRV vaccine or moderate virulent HRV diarrhea. Our findings suggest that that VAD in children in developing countries may partially contribute to more

  6. Live attenuated varicella vaccine. Efficacy for children with leukemia in remission.

    Science.gov (United States)

    Gershon, A A; Steinberg, S P; Gelb, L; Galasso, G; Borkowsky, W; LaRussa, P; Farrara, A

    1984-07-20

    One hundred ninety-one varicella-susceptible children with leukemia in remission were immunized with live attenuated varicella vaccine. There was serological evidence of an immune response in approximately 80% after one dose and in more than 90% after two doses. The major side effect was mild to moderate rash, seen especially in children with maintenance chemotherapy suspended for one week before and one week after vaccination. Children with rash had higher antibody titers than those without rash, but those with rash were also at risk (10%) to transmit vaccine virus to others. Twenty-two vaccinees subsequently had household exposures to varicella or zoster. The attack rate of clinical varicella in these vaccinees was 18%, significantly lower than the attack rate of approximately 90% in varicella-susceptible persons with household exposures. All cases of clinical illness were extremely mild, with an average of about 50 vesicles. The mild character of the illness was clearly different than varicella in unimmunized children receiving chemotherapy for leukemia. Varicella vaccine was approximately 80% effective in preventing clinical varicella in children with leukemia and completely effective in preventing severe varicella in this high-risk group.

  7. A multicentre trial of live attenuated varicella vaccine in children with leukaemia in remission.

    Science.gov (United States)

    Gershon, A A; Steinberg, S; Gelb, L; Galasso, G; Borkowsky, W; LaRussa, P; Ferrara, A

    1985-01-01

    Two hundred forty children with acute leukaemia in remission for at least 1 year were immunized with live attenuated varicella vaccine. All were susceptible to varicella before immunization. There was a seroconversion to varicella-zoster virus in approximately 85% after 1 dose, and in 97% after 2 doses. The major side effect was mild to moderate rash, seen mainly in children with maintenance chemotherapy suspended for 1 week before and 1 week after vaccination. Vaccinees with rash were at some risk (10%) to transmit vaccine virus to varicella susceptibles with whom they had close contact. Twenty-nine vaccinees were subsequently exposed to varicella in their households. The attack rate of clinical varicella in these vaccinees was 21%, which is significantly lower than the 80%-90% attack rate occurring in varicella susceptibles after household exposure. All these breakthrough cases of varicella were mild, even in leukaemics receiving chemotherapy. Varicella vaccine was approximately 80% effective in preventing clinical varicella in children with leukaemia and completely effective in preventing severe varicella in this high-risk group.

  8. Specific anti-tumor effect induced by attenuated Salmonella typhimurium vaccine expressing extracellular region of vascular endothelial growth factor receptor 2

    Institute of Scientific and Technical Information of China (English)

    YANG Jun; DONG Jian; PU Ping; WANG ZhiQiang; HONG Min; CHEN MingQing

    2008-01-01

    The purposes of this research were to study the stable expression of exogenous gene encoding therapeutic protein in attenuated Salmonella typhimurium, observe the metabolism of oral gene vac-cine carried by attenuated Salmonella typhimurium in BALB/c mouse, and investigate the feasibility of prevention and treatment of tumors by the recombinant bacteria. Recombinant plasmid pcDNA3.1+ VEGFR2(n1-7) was transformed into competent attenuated Salmonella typhimurium SL3261 to develop oral DNA vaccine SL3261-pcDNA3.1+VEGFR2(n1-7). To observe whether the exogenous gene can be ex-pressed in the recombinant bacteria, PCR was performed to amplify the CMV promoter of the eu-karyotic expression vector as the proof of stable expression of exogenous protein; transmission elec-tron microscopy (TEM) was applied to observe the morphology of the recombinant bacteria to confirm that the exogenous gene has no impact on the growth of the bacteria, and then BALB/c mice were immunized with the gene vaccine. After inoculation of the gene vaccine, the recombinant bacteria SL3261 could be detected in the tissues such as small intestine, colon, liver and spleen. And then, mice in each group were challenged with tumor cells. The results of animal experiment showed that tumor growth of the mice in experimental group was inhibited and survival time of immunized mice was pro-longed compared with control groups. A higher lymphocyte infiltration in tumors from animals treated with DNA vaccine was observed. Immunohistochemical analysis of tumor samples revealed an en-hanced accumulation of CD8+ cytotoxic T lymphocytes, as well as an increase in CD4+ cells in the tu-mors of animals treated with the oral gene vaccine compared to tumors from control group mice. UI-trastructure of the tumor tissue showed that tumor cells in the samples of the immunized mice were well-differentiated. Our research confirmed that the exogenous gene can be stably expressed in the attenuated Salmonella typhimurium and has no

  9. Evaluation of eight live attenuated vaccine candidates for protection against challenge with virulent Mycobacterium avium subspecies paratuberculosis in mice.

    Science.gov (United States)

    Bannantine, John P; Everman, Jamie L; Rose, Sasha J; Babrak, Lmar; Katani, Robab; Barletta, Raúl G; Talaat, Adel M; Gröhn, Yrjö T; Chang, Yung-Fu; Kapur, Vivek; Bermudez, Luiz E

    2014-01-01

    Johne's disease is caused by Mycobacterium avium subsp. paratuberculosis (MAP), which results in serious economic losses worldwide in farmed livestock such as cattle, sheep, and goats. To control this disease, an effective vaccine with minimal adverse effects is needed. In order to identify a live vaccine for Johne's disease, we evaluated eight attenuated mutant strains of MAP using a C57BL/6 mouse model. The persistence of the vaccine candidates was measured at 6, 12, and 18 weeks post vaccination. Only strains 320, 321, and 329 colonized both the liver and spleens up until the 12-week time point. The remaining five mutants showed no survival in those tissues, indicating their complete attenuation in the mouse model. The candidate vaccine strains demonstrated different levels of protection based on colonization of the challenge strain in liver and spleen tissues at 12 and 18 weeks post vaccination. Based on total MAP burden in both tissues at both time points, strain 315 (MAP1566::Tn5370) was the most protective whereas strain 318 (intergenic Tn5367 insertion between MAP0282c and MAP0283c) had the most colonization. Mice vaccinated with an undiluted commercial vaccine preparation displayed the highest bacterial burden as well as enlarged spleens indicative of a strong infection. Selected vaccine strains that showed promise in the mouse model were moved forward into a goat challenge model. The results suggest that the mouse trial, as conducted, may have a relatively poor predictive value for protection in a ruminant host such as goats.

  10. The Development of an AIDS Mucosal Vaccine

    Directory of Open Access Journals (Sweden)

    Xian Tang

    2010-01-01

    Full Text Available It is well known that mucosal tissues contain the largest surface area of the human body and are the front line of natural host defense against various pathogens. In fact, more than 80% of infectious disease pathogens probably gain entry into the susceptible human hosts through open mucosal surfaces. Human immunodeficiency virus type one (HIV-1, a mainly sexually transmitted virus, also primarily targets the vaginal and gastrointestinal mucosa as entry sites for viral transmission, seeding, replication and amplification. Since HIV-1 establishes its early replication in vaginal or rectal mucosal tissues, the induction of sufficient mucosal immunity at the initial site of HIV-1 transmission becomes essential for a protective vaccine. However, despite the fact that current conventional vaccine strategies have remained unsuccessful in preventing HIV-1 infection, sufficient financial support and resources have yet to be given to develop a vaccine able to elicit protective mucosal immunity against sexual transmissions. Interestingly, Chinese ancestors invented variolation through intranasal administration about one thousand years ago, which led to the discovery of a successful smallpox vaccine and the final eradication of the disease. It is the hope for all mankind that the development of a mucosal AIDS vaccine will ultimately help control the AIDS pandemic. In order to discover an effective mucosal AIDS vaccine, it is necessary to have a deep understanding of mucosal immunology and to test various mucosal vaccination strategies.

  11. Tularemia vaccine development: paralysis or progress?

    Directory of Open Access Journals (Sweden)

    Sunagar R

    2016-05-01

    Full Text Available Raju Sunagar, Sudeep Kumar, Brian J Franz, Edmund J Gosselin Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA Abstract: Francisella tularensis (Ft is a gram-negative intercellular pathogen and category A biothreat agent. However, despite 15 years of strong government investment and intense research focused on the development of a US Food and Drug Administration-approved vaccine against Ft, the primary goal remains elusive. This article reviews research efforts focused on developing an Ft vaccine, as well as a number of important factors, some only recently recognized as such, which can significantly impact the development and evaluation of Ft vaccine efficacy. Finally, an assessment is provided as to whether a US Food and Drug Administration-approved Ft vaccine is likely to be forthcoming and the potential means by which this might be achieved. Keywords: Sex bias, media impact, differential protection, cellular immunity, humoral immunity

  12. Tularemia vaccine development: paralysis or progress?

    Science.gov (United States)

    Sunagar, Raju; Kumar, Sudeep; Franz, Brian J; Gosselin, Edmund J

    2016-01-01

    Francisella tularensis (Ft) is a gram-negative intercellular pathogen and category A biothreat agent. However, despite 15 years of strong government investment and intense research focused on the development of a US Food and Drug Administration-approved vaccine against Ft, the primary goal remains elusive. This article reviews research efforts focused on developing an Ft vaccine, as well as a number of important factors, some only recently recognized as such, which can significantly impact the development and evaluation of Ft vaccine efficacy. Finally, an assessment is provided as to whether a US Food and Drug Administration-approved Ft vaccine is likely to be forthcoming and the potential means by which this might be achieved. PMID:27200274

  13. Rapid strategy for screening by pyrosequencing of influenza virus reassortants--candidates for live attenuated vaccines.

    Directory of Open Access Journals (Sweden)

    Svetlana V Shcherbik

    Full Text Available BACKGROUND: Live attenuated influenza vaccine viruses (LAIVs can be generated by classical reassortment of gene segments between a cold adapted, temperature sensitive and attenuated Master Donor Virus (MDV and a seasonal wild-type (wt virus. The vaccine candidates contain hemagglutinin (HA and neuraminidase (NA genes derived from the circulating wt viruses and the remaining six genes derived from the MDV strains. Rapid, efficient selection of the viruses with 6∶2 genome compositions from the large number of genetically different viruses generated during reassortment is essential for the biannual production schedule of vaccine viruses. METHODOLOGY/PRINCIPAL FINDINGS: This manuscript describes a new approach for the genotypic analysis of LAIV reassortant virus clones based on pyrosequencing. LAIV candidate viruses were created by classical reassortment of seasonal influenza A (H3N2 (A/Victoria/361/2011, A/Ohio/02/2012, A/Texas/50/2012 or influenza A (H7N9 (A/Anhui/1/2013 wt viruses with the MDV A/Leningrad/134/17/57(H2N2. Using strain-specific pyrosequencing assays, mixed gene variations were detected in the allantoic progenies during the cloning procedure. The pyrosequencing analysis also allowed for estimation of the relative abundance of segment variants in mixed populations. This semi-quantitative approach was used for selecting specific clones for the subsequent cloning procedures. CONCLUSIONS/SIGNIFICANCE: The present study demonstrates that pyrosequencing analysis is a useful technique for rapid and reliable genotyping of reassortants and intermediate clones during the preparation of LAIV candidates, and can expedite the selection of vaccine virus candidates.

  14. B-cell responses after intranasal vaccination with the novel attenuated Bordetella pertussis vaccine strain BPZE1 in a randomized phase I clinical trial.

    Science.gov (United States)

    Jahnmatz, Maja; Amu, Sylvie; Ljungman, Margaretha; Wehlin, Lena; Chiodi, Francesca; Mielcarek, Nathalie; Locht, Camille; Thorstensson, Rigmor

    2014-06-05

    Despite high vaccination coverage, pertussis is still a global concern in infant morbidity and mortality, and improved pertussis vaccines are needed. A live attenuated Bordetella pertussis strain, named BPZE1, was designed as an intranasal vaccine candidate and has recently been tested in man in a phase I clinical trial. Here, we report the evaluation of the B-cell responses after vaccination with BPZE1. Forty-eight healthy males with no previous pertussis-vaccination were randomized into one of three dose-escalating groups or into a placebo group. Plasma blast- and memory B-cell responses were evaluated by ELISpot against three different pertussis antigens: pertussis toxin, filamentous haemagglutinin and pertactin. Seven out of the 36 subjects who had received the vaccine were colonized by BPZE1, and significant increases in the memory B-cell response were detected against all three tested antigens in the culture-positive subjects between days 0 and 28 post-vaccination. The culture-positive subjects also mounted a significant increase in the filamentous haemagglutinin-specific plasma blast response between days 7 and 14 post-vaccination. No response could be detected in the culture-negatives or in the placebo group post-vaccination. These data show that BPZE1 is immunogenic in humans and is therefore a promising candidate for a novel pertussis vaccine. This trial is registered at ClinicalTrials.gov (NCT01188512).

  15. An Overview of Live Attenuated Recombinant Pseudorabies Viruses for Use as Novel Vaccines

    Directory of Open Access Journals (Sweden)

    Bo Dong

    2014-01-01

    Full Text Available Pseudorabies virus (PRV is a double-stranded, DNA-based swine virus with a genome approximating 150 kb in size. PRV has many nonessential genes which can be replaced with genes encoding heterologous antigens but without deleterious effects on virus propagation. Recombinant PRVs expressing both native and foreign antigens are able to stimulate immune responses. In this paper, we review the current status of live attenuated recombinant PRVs and live PRV-based vector vaccines with potential for controlling viral infections in animals.

  16. Major histocompatibility complex-linked immune response of young chickens vaccinated with an attenuated live infectious bursal disease virus vaccine followed by an infection

    DEFF Research Database (Denmark)

    Juul-Madsen, Helle; Nielsen, O.L.; Krogh-Maibom, T.;

    2002-01-01

    further contains the BW1 haplotype isolated from a Red jungle Fowl. Line 131 further contains the B131 haplotype isolated from a meat-type chicken, Finally, Line 21 further contains the international B21 haplotype. The chickens were vaccinated with live attenuated commercial IBDV vaccine at 3 wk of age...... Jungle Fowl genes, was clearly differentiated from the other two investigated lines. These results suggest an MHC II restricted T-cell dependent secondary antibody response against IBDV....

  17. [Studies on virulence of HIV and development of non-virulent live AIDS vaccine using monkeys].

    Science.gov (United States)

    Hayami, Masanori; Horiuchi, Reii

    2004-06-01

    A great effort for developing AIDS vaccine has been carried out in the world, designed by various new ideas based on basic research information obtained in recent virology and immunology. Withall it, to obtain effective AIDS vaccine is considered skeptical. One of the reasons of its difficulty is a lack of experimental animals susceptible to HIV-1. In our laboratory, we have succeeded in developing chimeric SIV having 3' half of HIV-1 genome including env (SHIV), which is infectious to macaque monkeys. One of SHIVs has been proved nonpathogenic in monkeys from various aspects and it afforded protective immunity to monkeys against pathogenic SHIV challenge infection. Now, we are trying to develop anti-HIV live attenuated vaccines using the nonpathogenic SHIV as a starting material. In the history of virus vaccine, live attenuated vaccines have been proved most effective in measles and polio-myelitis. However, it is not clear whether nonpathogenic HIV exists or not. Futhermore, even if nonpathogenic HIV could be obtained, there is possibility that it will easily mutate to pathogenic one. Therefore, to develop live attenuated AIDS vaccine is considered dangerous. In this article, We will introduce our research on SHIV pathogenicity using monkeys and hypothesize possibility to obtain nonpathogenic HIV which is speculated from the origin and evolution of HIV/SIV. To clarify virulence and nonvirulence of HIV and to obtain nonpathogenic virus are not only applied research but also basic science to dissolve the fundemental question why HIV can induce the disease.

  18. Safety and immunogenicity of a rederived, live-attenuated dengue virus vaccine in healthy adults living in Thailand: a randomized trial.

    Science.gov (United States)

    Watanaveeradej, Veerachai; Gibbons, Robert V; Simasathien, Sriluck; Nisalak, Ananda; Jarman, Richard G; Kerdpanich, Angkool; Tournay, Elodie; De La Barrerra, Rafael; Dessy, Francis; Toussaint, Jean-François; Eckels, Kenneth H; Thomas, Stephen J; Innis, Bruce L

    2014-07-01

    Safety and immunogenicity of two formulations of a live-attenuated tetravalent dengue virus (TDEN) vaccine produced using rederived master seeds from a precursor vaccine were tested against a placebo control in a phase II, randomized, double blind trial (NCT00370682). Two doses were administered 6 months apart to 120 healthy, predominantly flavivirus-primed adults (87.5% and 97.5% in the two vaccine groups and 92.5% in the placebo group). Symptoms and signs reported after vaccination were mild to moderate and transient. There were no vaccine-related serious adverse events or dengue cases reported. Asymptomatic, low-level viremia (dengue virus type 2 [DENV-2], DENV-3, or DENV-4) was detected in 5 of 80 vaccine recipients. One placebo recipient developed a subclinical natural DENV-1 infection. All flavivirus-unprimed subjects and at least 97.1% of flavivirus-primed subjects were seropositive to antibodies against all four DENV types 1 and 3 months post-TDEN dose 2. The TDEN vaccine was immunogenic with an acceptable safety profile in flavivirus-primed adults.

  19. Next-Generation Bacillus anthracis Live Attenuated Spore Vaccine Based on the htrA(-) (High Temperature Requirement A) Sterne Strain.

    Science.gov (United States)

    Chitlaru, Theodor; Israeli, Ma'ayan; Bar-Haim, Erez; Elia, Uri; Rotem, Shahar; Ehrlich, Sharon; Cohen, Ofer; Shafferman, Avigdor

    2016-01-06

    Anthrax is a lethal disease caused by the gram-positive spore-producing bacterium Bacillus anthracis. Live attenuated vaccines, such as the nonencapsulated Sterne strain, do not meet the safety standards mandated for human use in the Western world and are approved for veterinary purposes only. Here we demonstrate that disrupting the htrA gene, encoding the chaperone/protease HtrA (High Temperature Requirement A), in the virulent Bacillus anthracis Vollum strain results in significant virulence attenuation in guinea pigs, rabbits and mice, underlying the universality of the attenuated phenotype associated with htrA knockout. Accordingly, htrA disruption was implemented for the development of a Sterne-derived safe live vaccine compatible with human use. The novel B. anthracis SterneΔhtrA strain secretes functional anthrax toxins but is 10-10(4)-fold less virulent than the Sterne vaccine strain depending on animal model (mice, guinea pigs, or rabbits). In spite of this attenuation, double or even single immunization with SterneΔhtrA spores elicits immune responses which target toxaemia and bacteremia resulting in protection from subcutaneous or respiratory lethal challenge with a virulent strain in guinea pigs and rabbits. The efficacy of the immune-protective response in guinea pigs was maintained for at least 50 weeks after a single immunization.

  20. Prospects for the development of fungal vaccines.

    Science.gov (United States)

    Deepe, G S

    1997-10-01

    In an era that emphasizes the term "cost-effective," vaccines are the ideal solution to preventing disease at a relatively low cost to society. Much of the previous emphasis has been on childhood scourges such as measles, mumps, rubella, poliomyelitis, and Haemophilus influenzae type b. The concept of vaccines for fungal diseases has had less impact because of the perceived limited problem. However, fungal diseases have become increasingly appreciated as serious medical problems that require recognition and aggressive management. The escalation in the incidence and prevalence of infection has prompted a renewed interest in vaccine development. Herein, I discuss the most recent developments in the search for vaccines to combat fungal infections. Investigators have discovered several inert substances from various fungi that can mediate protection in animal models. The next challenge will be to find the suitable mode of delivery for these immunogens.

  1. A new generation of modified live-attenuated avian influenza viruses using a two-strategy combination as potential vaccine candidates.

    Science.gov (United States)

    Song, Haichen; Nieto, Gloria Ramirez; Perez, Daniel R

    2007-09-01

    In light of the recurrent outbreaks of low pathogenic avian influenza (LPAI) and highly pathogenic avian influenza (HPAI), there is a pressing need for the development of vaccines that allow rapid mass vaccination. In this study, we introduced by reverse genetics temperature-sensitive mutations in the PB1 and PB2 genes of an avian influenza virus, A/Guinea Fowl/Hong Kong/WF10/99 (H9N2) (WF10). Further genetic modifications were introduced into the PB1 gene to enhance the attenuated (att) phenotype of the virus in vivo. Using the att WF10 as a backbone, we substituted neuraminidase (NA) for hemagglutinin (HA) for vaccine purposes. In chickens, a vaccination scheme consisting of a single dose of an att H7N2 vaccine virus at 2 weeks of age and subsequent challenge with the wild-type H7N2 LPAI virus resulted in complete protection. We further extended our vaccination strategy against the HPAI H5N1. In this case, we reconstituted an att H5N1 vaccine virus, whose HA and NA genes were derived from an Asian H5N1 virus. A single-dose immunization in ovo with the att H5N1 vaccine virus in 18-day-old chicken embryos resulted in more than 60% protection for 4-week-old chickens and 100% protection for 9- to 12-week-old chickens. Boosting at 2 weeks posthatching provided 100% protection against challenge with the HPAI H5N1 virus for chickens as young as 4 weeks old, with undetectable virus shedding postchallenge. Our results highlight the potential of live att avian influenza vaccines for mass vaccination in poultry.

  2. Vaccination Against Dengue: Challenges and Current Developments.

    Science.gov (United States)

    Guy, Bruno; Lang, Jean; Saville, Melanie; Jackson, Nicholas

    2016-01-01

    Dengue is a growing threat worldwide, and the development of a vaccine is a public health priority. The completion of the active phase of two pivotal efficacy studies conducted in Asia and Latin America by Sanofi Pasteur has constituted an important step. Several other approaches are under development, and whichever technology is used, vaccine developers face several challenges linked to the particular nature and etiology of dengue disease. We start our review by defining questions and potential issues linked to dengue pathology and presenting the main types of vaccine approaches that have explored these questions; some of these candidates are in a late stage of clinical development. In the second part of the review, we focus on the Sanofi Pasteur dengue vaccine candidate, describing the steps from research to phase III efficacy studies. Finally, we discuss what could be the next steps, before and after vaccine introduction, to ensure that the vaccine will provide the best benefit with an acceptable safety profile to the identified target populations.

  3. Cell-associated flagella enhance the protection conferred by mucosally-administered attenuated Salmonella Paratyphi A vaccines.

    Directory of Open Access Journals (Sweden)

    Orit Gat

    2011-11-01

    Full Text Available BACKGROUND: Antibiotic-resistant Salmonella enterica serovar Paratyphi A, the agent of paratyphoid A fever, poses an emerging public health dilemma in endemic areas of Asia and among travelers, as there is no licensed vaccine. Integral to our efforts to develop a S. Paratyphi A vaccine, we addressed the role of flagella as a potential protective antigen by comparing cell-associated flagella with exported flagellin subunits expressed by attenuated strains. METHODOLOGY: S. Paratyphi A strain ATCC 9150 was first deleted for the chromosomal guaBA locus, creating CVD 1901. Further chromosomal deletions in fliD (CVD 1901D or flgK (CVD 1901K were then engineered, resulting in the export of unpolymerized FliC, without impairing its overall expression. The virulence of the resulting isogenic strains was examined using a novel mouse LD(50 model to accommodate the human-host restricted S. Paratyphi A. The immunogenicity of the attenuated strains was then tested using a mouse intranasal model, followed by intraperitoneal challenge with wildtype ATCC 9150. RESULTS: Mucosal (intranasal immunization of mice with strain CVD 1901 expressing cell-associated flagella conferred superior protection (vaccine efficacy [VE], 90% against a lethal intraperitoneal challenge, compared with the flagellin monomer-exporting mutants CVD 1901K (30% VE or CVD 1901D (47% VE. The superior protection induced by CVD 1901 with its cell-attached flagella was associated with an increased IgG2a:IgG1 ratio of FliC-specific antibodies with enhanced opsonophagocytic capacity. CONCLUSIONS: Our results clearly suggest that enhanced anti-FliC antibody-mediated clearance of S. Paratyphi A by phagocytic cells, induced by vaccines expressing cell-associated rather than exported FliC, might be contributing to the vaccine-induced protection from S. Paratyphi A challenge in vivo. We speculate that an excess of IgG1 anti-FliC antibodies induced by the exported FliC may compete with the IgG2a subtype

  4. Recent Developments in Livestock and Wildlife Brucellosis Vaccination

    Science.gov (United States)

    Live attenuated brucellosis vaccines have been available for protecting domestic livestock against B. melitensis or B. abortus for more than 60 years. Current vaccines are effective in preventing abortion and transmission of brucellosis, but poor at preventing infection or seroconversion. In addit...

  5. Workshop report: Schistosomiasis vaccine clinical development and product characteristics.

    Science.gov (United States)

    Mo, Annie X; Colley, Daniel G

    2016-02-17

    A schistosomiasis vaccine meeting was organized to evaluate the utility of a vaccine in public health programs, to discuss clinical development paths, and to define basic product characteristics for desirable vaccines to be used in the context of schistosomiasis control and elimination programs. It was concluded that clinical evaluation of a schistosomiasis vaccine is feasible with appropriate trial design and tools. Some basic Preferred Product Characteristics (PPC) for a human schistosomiasis vaccine and for a veterinary vaccine for bovine use were also proposed.

  6. Bacterial otitis media: current vaccine development strategies.

    Science.gov (United States)

    Cripps, Allan W; Kyd, Jennelle

    2003-02-01

    Otitis media is the most common reason for children less than 5 years of age to visit a medical practitioner. Whilst the disease rarely results in death, there is significant associated morbidity. The most common complication is loss of hearing at a critical stage of the development of speech, language and cognitive abilities in children. The cause and pathogenesis of otitis media is multifactorial. Among the contributing factors, the single most important are viral and bacterial infections. Infection with respiratory syncytial virus, influenza viruses, para-influenza viruses, enteroviruses and adenovirus are most commonly associated with acute and chronic otitis media. Streptococcus pneumoniae, non-typeable Haemophilus influenzae and Moraxella catarrhalis are the most commonly isolated bacteria from the middle ears of children with otitis media. Treatment of otitis media has largely relied on the administration of antimicrobials and surgical intervention. However, attention has recently focused on the development of a vaccine. For a vaccine to be effective against bacterial otitis media, it must, at the very least, contain antigens that induce a protective immune response in the middle ear against the three most common infecting bacteria. Whilst over the past decade there has been significant progress in the development of vaccines against invasive S. pneumoniae disease, these vaccines are less efficacious for otitis media. The search for candidate vaccine antigens for non-typeable H. influenzae are well advanced whilst less progress has been made for M. catarrhalis. No human studies have been conducted for non-typeable H. influenzae or M. catarrhalis and the concept of a tribacterial vaccine remains to be tested in animal models. Only when vaccine antigens are determined and an understanding of the immune responses induced in the middle ear by infection and immunization is gained will the formulation of a tribacterial vaccine against otitis media be possible.

  7. Live attenuated Francisella novicida vaccine protects against Francisella tularensis pulmonary challenge in rats and non-human primates.

    Directory of Open Access Journals (Sweden)

    Ping Chu

    2014-10-01

    Full Text Available Francisella tularensis causes the disease tularemia. Human pulmonary exposure to the most virulent form, F. tularensis subsp. tularensis (Ftt, leads to high morbidity and mortality, resulting in this bacterium being classified as a potential biothreat agent. However, a closely-related species, F. novicida, is avirulent in healthy humans. No tularemia vaccine is currently approved for human use. We demonstrate that a single dose vaccine of a live attenuated F. novicida strain (Fn iglD protects against subsequent pulmonary challenge with Ftt using two different animal models, Fischer 344 rats and cynomolgus macaques (NHP. The Fn iglD vaccine showed protective efficacy in rats, as did a Ftt iglD vaccine, suggesting no disadvantage to utilizing the low human virulent Francisella species to induce protective immunity. Comparison of specific antibody profiles in vaccinated rat and NHP sera by proteome array identified a core set of immunodominant antigens in vaccinated animals. This is the first report of a defined live attenuated vaccine that demonstrates efficacy against pulmonary tularemia in a NHP, and indicates that the low human virulence F. novicida functions as an effective tularemia vaccine platform.

  8. Rational design of genetically stable, live-attenuated poliovirus vaccines of all three serotypes: relevance to poliomyelitis eradication.

    Science.gov (United States)

    Macadam, Andrew J; Ferguson, Geraldine; Stone, David M; Meredith, Janet; Knowlson, Sarah; Auda, Ghazi; Almond, Jeffrey W; Minor, Philip D

    2006-09-01

    The global eradication of poliomyelitis caused by wild-type virus is likely to be completed within the next few years, despite immense logistic and political difficulties, and may ultimately be followed by the cessation of vaccination. However, the existing live-attenuated vaccines have the potential to revert to virulence, causing occasional disease, and viruses can be shed by immunocompromised individuals for prolonged periods of time. Moreover, several outbreaks of poliomyelitis have been shown to be caused by viruses derived from the Sabin vaccine strains. The appearance of such strains depends on the prevailing circumstances but poses a severe obstacle to strategies for stopping vaccination. Vaccine strains that are incapable of reversion at a measurable rate would provide a possible solution. Here, we describe the constructions of strains of type 3 poliovirus that are stabilized by the introduction of four mutations in the 5' noncoding region compared to the present vaccine. The strains are genetically and phenotypically stable under conditions where the present vaccine loses the attenuating mutation in the 5' noncoding region completely. Type 1 and type 2 strains in which the entire 5' noncoding regions of Sabin 1 and Sabin 2 were replaced exactly with that of one of the type 3 strains were also constructed. The genetic stability of 5' noncoding regions of these viruses matched that of the type 3 strains, but significant phenotypic reversion occurred, illustrating the potential limitations of a rational approach to the genetic stabilization of live RNA virus vaccines.

  9. Oral Immunization of Mice With Vaccine of Attenuated Salmonella typhimurium Expressing Helicobacter pylori Urease B Subunit

    Institute of Scientific and Technical Information of China (English)

    XING-LONG YANG; WEN-CHAO LIU; WU-WEI YANG; DONG ZHONG; YU-HU LIU; JING-DONG ZHANG; JIAN-HUI JIANG; SHAN-SHAN LI

    2005-01-01

    Objective To prepare the live recombinant vaccine of attenuated Salmonella typhimurium SL3261 expressing Helicobacterpylori (H. pylori) B subunit (UreB) and to determine whether it could be used as an oral vaccine against H. pylori infection. Methods Using genomic DNA of H. pylori Sydney strain (SS1) as template, the H. pylori UreB gene fragment was amplified by PCR and subcloned into the expression vector pTC01. The recombinant plasmid pTC01-UreB was then transferred into LB5000 to obtain modified forms, and further conversed into the attenuated Salmonella typhimurium SL3261 to obtain recombinant SL3261/pCT01-UreB as an oral immunization reagent, which was then used to orally immunize Balb/c mice twice at a three-week interval. Twelve weeks later, anti-UreB IgA antibodies in intestinal fluid and IgG antibodies in sera were determined by ELISA. The relating data in control groups (including body weight, gastric inflammation, etc.) were also collected. Results The sequencing analysis showed that the UreB gene fragment amplified by PCR was consistent with the sequence of the H. pylori UreB gene. The restriction enzyme digestion revealed that the correct pTC01-UreB was obtained.SDS-PAGE and Western blot showed that a 61KD protein was expressed in SL3261/pTC01-UreB, which could be recognized by anti-H. pylori UreB antiserum and was absent in the control containing only Salmonella typhimurium SL3261 strain. The multiple oral immunization with SL3261/pTC01-UreB could significantly induce H. pylori specific mucosal IgA response as well as serum IgG responses. IFN-γ and IL-10 levels were significantly increased in SL3261/pTC01-UreB group, and no obvious side effect and change in gastric inflammation were observed. Conclusion The attenuated vaccine of Salmonella typhimurium expressing H. pylori UreB can be used as an oral vaccine against H. pylori infection.

  10. Peru-15, an improved live attenuated oral vaccine candidate for Vibrio cholerae O1.

    Science.gov (United States)

    Kenner, J R; Coster, T S; Taylor, D N; Trofa, A F; Barrera-Oro, M; Hyman, T; Adams, J M; Beattie, D T; Killeen, K P; Spriggs, D R

    1995-10-01

    Cholera vaccine candidate Peru-15 was derived from a Vibrio cholerae O1 El Tor Inaba strain by deleting the cholera toxin genetic element, introducing the gene encoding cholera toxin B subunit into recA, and screening for nonmotility. In a controlled study, Peru-15 (2 x 10(8) cfu) was administered to 11 volunteers. No vaccinee developed diarrhea, and 10 of 11 had > 4-fold rises in vibriocidal antibody titers. One month later, 5 vaccinees and 5 control volunteers were challenged with wild type V. cholerae O1. Four of 5 controls developed diarrhea (mean, 1.9 L). Two Peru-15 vaccinees developed diarrhea, 1 with volunteer had not developed a significant vibriocidal immune response to vaccination. Peru-15 shows promise as a single-dose, oral cholera vaccine that is safe, immunogenic, and protective.

  11. Development of stable influenza vaccine powder formulations: challenges and possibilities.

    Science.gov (United States)

    Amorij, J-P; Huckriede, A; Wilschut, J; Frijlink, H W; Hinrichs, W L J

    2008-06-01

    Influenza vaccination represents the cornerstone of influenza prevention. However, today all influenza vaccines are formulated as liquids that are unstable at ambient temperatures and have to be stored and distributed under refrigeration. In order to stabilize influenza vaccines, they can be brought into the dry state using suitable excipients, stabilizers and drying processes. The resulting stable influenza vaccine powder is independent of cold-chain facilities. This can be attractive for the integration of the vaccine logistics with general drug distribution in Western as well as developing countries. In addition, a stockpile of stable vaccine formulations of potential vaccines against pandemic viruses can provide an immediate availability and simple distribution of vaccine in a pandemic outbreak. Finally, in the development of new needle-free dosage forms, dry and stable influenza vaccine powder formulations can facilitate new or improved targeting strategies for the vaccine compound. This review represents the current status of dry stable inactivated influenza vaccine development. Attention is given to the different influenza vaccine types (i.e. whole inactivated virus, split, subunit or virosomal vaccine), the rationale and need for stabilized influenza vaccines, drying methods by which influenza vaccines can be stabilized (i.e. lyophilization, spray drying, spray-freeze drying, vacuum drying or supercritical fluid drying), the current status of dry influenza vaccine development and the challenges for ultimate market introduction of a stable and effective dry-powder influenza vaccine.

  12. Development of a murine mycobacterial growth inhibition assay for evaluating vaccines against Mycobacterium tuberculosis.

    Science.gov (United States)

    Parra, Marcela; Yang, Amy L; Lim, JaeHyun; Kolibab, Kristopher; Derrick, Steven; Cadieux, Nathalie; Perera, Liyanage P; Jacobs, William R; Brennan, Michael; Morris, Sheldon L

    2009-07-01

    The development and characterization of new tuberculosis (TB) vaccines has been impeded by the lack of reproducible and reliable in vitro assays for measuring vaccine activity. In this study, we developed a murine in vitro mycobacterial growth inhibition assay for evaluating TB vaccines that directly assesses the capacity of immune splenocytes to control the growth of Mycobacterium tuberculosis within infected macrophages. Using this in vitro assay, protective immune responses induced by immunization with five different types of TB vaccine preparations (Mycobacterium bovis BCG, an attenuated M. tuberculosis mutant strain, a DNA vaccine, a modified vaccinia virus strain Ankara [MVA] construct expressing four TB antigens, and a TB fusion protein formulated in adjuvant) can be detected. Importantly, the levels of vaccine-induced mycobacterial growth-inhibitory responses seen in vitro after 1 week of coculture correlated with the protective immune responses detected in vivo at 28 days postchallenge in a mouse model of pulmonary tuberculosis. In addition, similar patterns of cytokine expression were evoked at day 7 of the in vitro culture by immune splenocytes taken from animals immunized with the different TB vaccines. Among the consistently upregulated cytokines detected in the immune cocultures are gamma interferon, growth differentiation factor 15, interleukin-21 (IL-21), IL-27, and tumor necrosis factor alpha. Overall, we have developed an in vitro functional assay that may be useful for screening and comparing new TB vaccine preparations, investigating vaccine-induced protective mechanisms, and assessing manufacturing issues, including product potency and stability.

  13. Heterotypic Dengue Infection with Live Attenuated Monotypic Dengue Virus Vaccines: Implications for Vaccination of Populations in Areas Where Dengue Is Endemic

    OpenAIRE

    Anna P Durbin; Schmidt, Alexander; Elwood, Dan; Wanionek, Kimberli A.; Lovchik, Janece; Thumar, Bhavin; Murphy, Brian R.; Whitehead, Stephen S.

    2011-01-01

    Background. Because infection with any of the 4 Dengue virus serotypes may elicit both protective neutralizing antibodies and nonneutralizing antibodies capable of enhancing subsequent heterotypic Dengue virus infections, the greatest risk for severe dengue occurs during a second, heterotypic Dengue virus infection. It remains unclear whether the replication of live attenuated vaccine viruses will be similarly enhanced when administered to Dengue-immune individuals.

  14. Vaccine development for tuberculosis: current progress.

    Science.gov (United States)

    Orme, Ian M

    2013-07-01

    Very substantial efforts have been made over the past decade or more to develop vaccines against tuberculosis. Historically, this began with a view to replace the current vaccine, Bacillus Calmette Guérin (BCG), but more recently most candidates are either new forms of this bacillus, or are designed to boost immunity in children given BCG as infants. Good progress is being made, but very few have, as yet, progressed into clinical trials. The leading candidate has advanced to phase IIb efficacy testing, with disappointing results. This article discusses the various types of vaccines, including those designed to be used in a prophylactic setting, either alone or BCG-boosting, true therapeutic (post-exposure) vaccines, and therapeutic vaccines designed to augment chemotherapy. While there is no doubt that progress is still being made, we have a growing awareness of the limitations of our animal model screening processes, further amplified by the fact that we still do not have a clear picture of the immunological responses involved, and the precise type of long-lived immunity that effective new vaccines will need to induce.

  15. Vaccine development for tuberculosis: current progress

    Science.gov (United States)

    Orme, Ian M.

    2013-01-01

    Very substantial efforts have been made over the past decade or more to develop vaccines against tuberculosis. Historically, this began with a view to replace the current vaccine, BCG, but more recently most candidates are either new forms of this bacillus, or are designed to boost immunity in children given BCG as infants. Good progress is being made, but very few have as yet progressed into clinical trials. The leading candidate has advanced to Phase IIb efficacy testing, with disappointing results. This article discusses the various types of vaccines, including those designed to be used in a prophylactic setting, either alone or BCG-boosting, true therapeutic [post-exposure] vaccines, and therapeutic vaccines designed to augment chemotherapy. While there is no doubt that progress is still being made, we have a growing awareness of the limitations of our animal model screening processes, further amplified by the fact that we still do not have a clear picture of the immunological responses involved, and the precise type of long lived immunity we will need effective new vaccines to induce. PMID:23794129

  16. Protection of Cattle against Rinderpest by Vaccination with Wild-Type but Not Attenuated Strains of Peste des Petits Ruminants Virus

    Science.gov (United States)

    Holzer, Barbara; Hodgson, Sophia; Logan, Nicola; Willett, Brian

    2016-01-01

    ABSTRACT Although rinderpest virus (RPV) has been eradicated in the wild, efforts are still continuing to restrict the extent to which live virus is distributed in facilities around the world and to prepare for any reappearance of the disease, whether through deliberate or accidental release. In an effort to find an alternative vaccine which could be used in place of the traditional live attenuated RPV strains, we have determined whether cattle can be protected from rinderpest by inoculation with vaccine strains of the related morbillivirus, peste des petits ruminants virus (PPRV). Cattle were vaccinated with wild-type PPRV or either of two established PPRV vaccine strains, Nigeria/75/1 or Sungri/96. All animals developed antibody and T cell immune responses to the inoculated PPRV. However, only the animals given wild-type PPRV were protected from RPV challenge. Animals given PPRV/Sungri/96 were only partially protected, and animals given PPRV/Nigeria/75/1 showed no protection against RPV challenge. While sera from animals vaccinated with the vaccine strain of RPV showed cross-neutralizing ability against PPRV, none of the sera from animals vaccinated with any strain of PPRV was able to neutralize RPV although sera from animals inoculated with wild-type PPRV were able to neutralize RPV-pseudotyped vesicular stomatitis virus. IMPORTANCE Rinderpest virus has been eradicated, and it is only the second virus for which this is so. Significant efforts are still required to ensure preparedness for a possible escape of RPV from a laboratory or its deliberate release. Since RPV vaccine protects sheep and goats from PPRV, it is important to determine if the reverse is true as this would provide a non-RPV vaccine for dealing with suspected RPV outbreaks. This is probably the last in vivo study with live RPV that will be approved. PMID:26984722

  17. Live-Attenuated Bacterial Vectors: Tools for Vaccine and Therapeutic Agent Delivery

    Directory of Open Access Journals (Sweden)

    Ivan Y. C. Lin

    2015-11-01

    Full Text Available Genetically attenuated microorganisms, including pathogenic and commensal bacteria, can be engineered to carry and deliver heterologous antigens to elicit host immunity against both the vector as well as the pathogen from which the donor gene is derived. These live attenuated bacterial vectors have been given much attention due to their capacity to induce a broad range of immune responses including localized mucosal, as well as systemic humoral and/or cell-mediated immunity. In addition, the unique tumor-homing characteristics of these bacterial vectors has also been exploited for alternative anti-tumor vaccines and therapies. In such approach, tumor-associated antigen, immunostimulatory molecules, anti-tumor drugs, or nucleotides (DNA or RNA are delivered. Different potential vectors are appropriate for specific applications, depending on their pathogenic routes. In this review, we survey and summarize the main features of the different types of live bacterial vectors and discussed the clinical applications in the field of vaccinology. In addition, different approaches for using live attenuated bacterial vectors for anti-cancer therapy is discussed, and some promising pre-clinical and clinical studies in this field are outlined.

  18. Development of vaccines for Plasmodium vivax malaria.

    Science.gov (United States)

    Mueller, Ivo; Shakri, Ahmad Rushdi; Chitnis, Chetan E

    2015-12-22

    Plasmodium vivax continues to cause significant morbidity outside Africa with more than 50% of malaria cases in many parts of South and South-east Asia, Pacific islands, Central and South America being attributed to P. vivax infections. The unique biology of P. vivax, including its ability to form latent hypnozoites that emerge months to years later to cause blood stage infections, early appearance of gametocytes before clinical symptoms are apparent and a shorter development cycle in the vector makes elimination of P. vivax using standard control tools difficult. The availability of an effective vaccine that provides protection and prevents transmission would be a valuable tool in efforts to eliminate P. vivax. Here, we review the latest developments related to P. vivax malaria vaccines and discuss the challenges as well as directions toward the goal of developing highly efficacious vaccines against P. vivax malaria.

  19. The expanding vaccine development pipeline, 1995-2008.

    Science.gov (United States)

    Davis, Matthew M; Butchart, Amy T; Coleman, Margaret S; Singer, Dianne C; Wheeler, John R C; Pok, Angela; Freed, Gary L

    2010-02-03

    Successful launches of recently licensed vaccines contrast with pharmaceutical industry concerns about unfavorable market conditions, making the status and future of vaccine development uncertain. We assessed trends in private-sector vaccine research and development for the period 1995-2008, using a global pharmaceutical database to identify prophylactic vaccines in preclinical, Phase I, Phase II, or Phase III stages of development. We counted companies that research and/or manufacture vaccines ("vaccine originators") and their vaccine products in each year. The global number of vaccine originators doubled (to 136), as did the number of prophylactic vaccine products in development (to 354); the majority of this growth was in preclinical and early phase clinical research. Because rapid growth in earlier research phases has not yet led to growth in Phase III, it is not yet clear whether recent industry expansion will translate to an increase in the number of available vaccines in the near future.

  20. Attenuated Salmonella typhimurium delivering DNA vaccine encoding duck enteritis virus UL24 induced systemic and mucosal immune responses and conferred good protection against challenge

    Directory of Open Access Journals (Sweden)

    Yu Xia

    2012-07-01

    Full Text Available Abstract Orally delivered DNA vaccines against duck enteritis virus (DEV were developed using live attenuated Salmonella typhimurium (SL7207 as a carrier and Escherichia coli heat labile enterotoxin B subunit (LTB as a mucosal adjuvant. DNA vaccine plasmids pVAX-UL24 and pVAX-LTB-UL24 were constructed and transformed into attenuated Salmonella typhimurium SL7207 resulting SL7207 (pVAX-UL24 and SL7207 (pVAX-LTB-UL24 respectively. After ducklings were orally inoculated with SL7207 (pVAX-UL24 or SL7207 (pVAX-LTB-UL24, the anti-DEV mucosal and systemic immune responses were recorded. To identify the optimum dose that confers maximum protection, we used different doses of the candidate vaccine SL7207 (pVAX-LTB-UL24 during oral immunization. The strongest mucosal and systemic immune responses developed in the SL7207 (pVAX-LTB-UL24 (1011 CFU immunized group. Accordingly, oral immunization of ducklings with SL7207 (pVAX-LTB-UL24 showed superior efficacy of protection (60-80% against a lethal DEV challenge (1000 LD50, compared with the limited survival rate (40% of ducklings immunized with SL7207 (pVAX-UL24. Our study suggests that the SL7207 (pVAX-LTB-UL24 can be a candidate DEV vaccine.

  1. Protection of SA14-14-2 live attenuated Japanese encephalitis vaccine against the wild-type JE viruses

    Institute of Scientific and Technical Information of China (English)

    贾丽丽; 王志伟; 俞永新

    2003-01-01

    ObjectiveTo explore on the immunity of live attenuated Japanese Encephalitis (JE) vaccine(SA14-14-2) to different wild JE virus (JEV) strains. MethodsThe neutralizing effect of the vaccine against different wild JE virus strains was detected by plaque reduction neutralization test (PRNT), and the immunogenicity was studied on mice by vaccination -challenge protection test. In the PRNT , pooled sera from vaccinated human were tested against 10 strains of JEV , one isolated in Taiwan and 9 from other Asian countries.In the vaccination challenge test, mice received one dose of the live vaccine subcutaneously and were challenged intraperitoneally 14 days later against 22 JEV virus strains, 11 were isolated in China and the other 11 from Tailand, Vietnahailam, Indonesia, India, Philippines and Japan. ResultsThe protection rates to all the 22 challenge virus were 90%-100% when 340 PFU/0.1 ml vaccinate virus was administered. The neutralizing effect showed that all the JEV isolates many have neutralized by the sera. ConclusionSA14-14-2 live attenuated prepared with strain SA14-14-2 is broadly immunogenic and may have effective protection against in Asian JE affected countries.

  2. Safety and protective efficacy of a spiC and crp deletion mutant of Salmonella gallinarum as a live attenuated vaccine for fowl typhoid.

    Science.gov (United States)

    Cheng, Zhao; Yin, Junlei; Kang, Xilong; Geng, Shizhong; Hu, Maozhi; Pan, Zhiming; Jiao, Xinan

    2016-08-01

    With an aim to develop a safe, immunogenic fowl typhoid (FT) vaccine, the safety and efficacy of 1009ΔspiCΔcrp, a spiC and crp deletion mutant of Salmonella gallinarum, were evaluated in chickens. Three-day-old chickens were intramuscularly immunized with 1009ΔspiCΔcrp (1×10(7)CFU) and boosted 7days later (at 10-days old) with the same dose and via the same route (vaccinated group). The vaccinated group showed no clinical symptoms and no differences in body weight compared to the unvaccinated control group. 1009ΔspiCΔcrp bacteria colonized and persisted in the liver and spleen of vaccinated chickens for >14days, and significant specific humoral and cellular immune responses were induced. Vaccinated chickens were challenged with S. gallinarum strain SG9 at 21days post-immunization (24-day-old chickens), and efficient protection was observed based on the mortality and clinical symptoms, as compared to those in the control group. These results demonstrate that 1009ΔspiCΔcrp can be used as a live attenuated vaccine.

  3. [Effect of Low Dose of Chicken Infectious Anemia Virus in Attenuated Vaccine on SPF Chicken Body Weight and Vaccine Immune Antibody].

    Science.gov (United States)

    Fang, Lichun; Li, Xiaohan; Ren, Zhihao; Li, Yang; Wang, Yixin; Cui, Zhizhong; Chang, Shuang; Zhao, Peng

    2016-03-01

    In order to observe the effect of the immune and weight of chickens after use the attenuated vaccine with low dose of chicken infectious anemia virus (CIAV). In this study, the effects of low dose of CIAV on the weight of SPF chickens and NDV antibody production were observed by simulated experiments. The results showed that 10 EID50 and 5 EID50 CIAV per plume attenuated NDV vaccines were used to cause the weight loss of SPF chickens. Compared with the use of the non contaminated vaccine group, it has significant difference. And NDV antibody levels compared with the use of the non contaminated groups also decreased after use the vaccine with two doses of CIAV contaminated. It has significant difference. A certain proportion of CIAV antibody positive was detected at the beginning of the second week after use the NDV vaccine with two doses of CIAV contaminated. The detection of a high proportion of CIAV nucleic acid was detected in the first week after the use of a contaminated vaccine. The results of the study demonstrate the effects of CIAV pollution on the production and immune function of SPF chickens, and it is suggested that increasing the detection of viral nucleic acid can help save time and improve the detection rate in the detection of exogenous virus contamination by SPF chicken test method.

  4. An attenuated virus vaccine appears safe to the central nervous system of rainbow trout (Oncorhynchus mykiss) after intranasal delivery.

    Science.gov (United States)

    Larragoite, Erin T; Tacchi, Luca; LaPatra, Scott E; Salinas, Irene

    2016-02-01

    Nasal vaccines are very effective but the olfactory organ provides direct access of antigens to the brain. Infectious hematopoietic necrosis virus (IHNV) is known to cause high mortalities in salmonids. The purpose of this study is to evaluate the safety of a live attenuated IHNV nasal (I.N) vaccine in rainbow trout (Oncorhynchus mykiss). In the olfactory organ, the vaccine was detected 1 and 4 days after primary I.N vaccination but not in the intramuscular (i.m) or control groups. In the brain, IHNV was detected by RT-qPCR 4 and 21 days after i.m primary vaccination. One i.m and one I.N vaccinated trout were positive at days 4 and 28 days post-boost, respectively. Presence of IHNV in the brain of i.m vaccinated fish correlated with moderate increases in IL-1β and TNF-α expression in this tissue. These results demonstrate that IHNV vaccine lasts for 4 days in the local nasal environment and that nasal vaccination appears to be safe to the CNS of rainbow trout.

  5. African Green Monkeys Recapitulate the Clinical Experience with Replication of Live Attenuated Pandemic Influenza Virus Vaccine Candidates

    Science.gov (United States)

    Matsuoka, Yumiko; Suguitan, Amorsolo; Orandle, Marlene; Paskel, Myeisha; Boonnak, Kobporn; Gardner, Donald J.; Feldmann, Friederike; Feldmann, Heinz; Marino, Michael; Jin, Hong; Kemble, George

    2014-01-01

    ABSTRACT Live attenuated cold-adapted (ca) H5N1, H7N3, H6N1, and H9N2 influenza vaccine viruses replicated in the respiratory tract of mice and ferrets, and 2 doses of vaccines were immunogenic and protected these animals from challenge infection with homologous and heterologous wild-type (wt) viruses of the corresponding subtypes. However, when these vaccine candidates were evaluated in phase I clinical trials, there were inconsistencies between the observations in animal models and in humans. The vaccine viruses did not replicate well and immune responses were variable in humans, even though the study subjects were seronegative with respect to the vaccine viruses before vaccination. Therefore, we sought a model that would better reflect the findings in humans and evaluated African green monkeys (AGMs) as a nonhuman primate model. The distribution of sialic acid (SA) receptors in the respiratory tract of AGMs was similar to that in humans. We evaluated the replication of wt and ca viruses of avian influenza (AI) virus subtypes H5N1, H6N1, H7N3, and H9N2 in the respiratory tract of AGMs. All of the wt viruses replicated efficiently, while replication of the ca vaccine viruses was restricted to the upper respiratory tract. Interestingly, the patterns and sites of virus replication differed among the different subtypes. We also evaluated the immunogenicity and protective efficacy of H5N1, H6N1, H7N3, and H9N2 ca vaccines. Protection from wt virus challenge correlated well with the level of serum neutralizing antibodies. Immune responses were slightly better when vaccine was delivered by both intranasal and intratracheal delivery than when it was delivered intranasally by sprayer. We conclude that live attenuated pandemic influenza virus vaccines replicate similarly in AGMs and human subjects and that AGMs may be a useful model to evaluate the replication of ca vaccine candidates. IMPORTANCE Ferrets and mice are commonly used for preclinical evaluation of influenza

  6. Immunoinformatics of Placental Malaria Vaccine Development

    DEFF Research Database (Denmark)

    Jessen, Leon Eyrich

    for the pathogenesis of PM was identified as the P. falciparum Erythrocyte Membrane Protein 1 (Pf EMP1) variant VAR2CSA. VAR2CSA is the leading candidate for a vaccine against PM. The thesis is divided into 4 parts, where part I provide the reader with an introduction and background for the subjects covered......CSA-DBL5ε sequences each with associated phenotypes. Immunity towards PM is gradually acquired, therefore if a given sequence motif can be phenotype-correlated then the motif may be involved in VAR2CSA immunogenecity. Motifs defining VAR2CSA immunogenecity are naturally interesting in vaccine...... and development in the field of placental malaria vaccine development....

  7. Development of Vaccines against Visceral Leishmaniasis

    Directory of Open Access Journals (Sweden)

    Krystal J. Evans

    2012-01-01

    Full Text Available Leishmaniasis is a neglected disease resulting in a global morbidity of 2,090 thousand Disability-Adjusted Life Years and a mortality rate of approximately 60,000 per year. Among the three clinical forms of leishmaniasis (cutaneous, mucosal, and visceral, visceral leishmaniasis (VL accounts for the majority of mortality, as if left untreated VL is almost always fatal. Caused by infection with Leishmania donovani or L. infantum, VL represents a serious public health problem in endemic regions and is rapidly emerging as an opportunistic infection in HIV patients. To date, no vaccine exists for VL or any other form of leishmaniasis. In endemic areas, the majority of those infected do not develop clinical symptoms and past infection leads to robust immunity against reinfection. Thus the development of vaccine for Leishmania is a realistic public health goal, and this paper summarizes advances in vaccination strategies against VL.

  8. CD8+ T-cell Responses in Flavivirus-Naive Individuals Following Immunization with a Live-Attenuated Tetravalent Dengue Vaccine Candidate.

    Science.gov (United States)

    Chu, Haiyan; George, Sarah L; Stinchcomb, Dan T; Osorio, Jorge E; Partidos, Charalambos D

    2015-11-15

    We are developing a live-attenuated tetravalent dengue vaccine (TDV) candidate based on an attenuated dengue 2 virus (TDV-2) and 3 chimeric viruses containing the premembrane and envelope genes of dengue viruses (DENVs) -1, -3, and -4 expressed in the context of the attenuated TDV-2 genome (TDV-1, TDV-3, and TDV-4, respectively). In this study, we analyzed and characterized the CD8(+) T-cell response in flavivirus-naive human volunteers vaccinated with 2 doses of TDV 90 days apart via the subcutaneous or intradermal routes. Using peptide arrays and intracellular cytokine staining, we demonstrated that TDV elicits CD8(+) T cells targeting the nonstructural NS1, NS3, and NS5 proteins of TDV-2. The cells were characterized by the production of interferon-γ, tumor necrosis factor-α, and to a lesser extent interleukin-2. Responses were highest on day 90 after the first dose and were still detectable on 180 days after the second dose. In addition, CD8(+) T cells were multifunctional, producing ≥2 cytokines simultaneously, and cross-reactive to NS proteins of the other 3 DENV serotypes. Overall, these findings describe the capacity of our candidate dengue vaccine to elicit cellular immune responses and support the further evaluation of T-cell responses in samples from future TDV clinical trials.

  9. Development and characterization of candidate rotavirus vaccine strains derived from children with diarrhoea in Vietnam.

    Science.gov (United States)

    Luan, Le T; Trang, Nguyen V; Phuong, Nguyen M; Nguyen, Huong T; Ngo, Huong T; Nguyen, Huong T M; Tran, Hanh B; Dang, Ha N; Dang, Anh D; Gentsch, Jon R; Wang, Yuhuan; Esona, Mathew D; Glass, Roger I; Steele, A Duncan; Kilgore, Paul E; Nguyen, Man V; Jiang, Baoming; Nguyen, Hien D

    2009-11-20

    In Vietnam, rotavirus infection accounts for more than one-half of all hospitalizations for diarrhoea among children less than 5 years of age. While new vaccines to prevent rotavirus diarrhoea have been developed and introduced into some countries by multinational manufacturers, the ability for developing countries such as Vietnam to introduce several new and important vaccines into the routine infant immunization schedule may be challenging. In order to be partially self-sufficient in vaccine production, Vietnam has pursued the development of several rotavirus strains as candidate vaccines using isolates obtained from Vietnamese children with diarrhoea. This paper describes the origin, isolation and characterization of 3 human rotavirus strains being considered for further vaccine development in Vietnam. The goal is to prepare a monovalent G1P [8] rotavirus vaccine using one of these strains obtained in Vietnam and naturally attenuated by multiple passages in cell culture. While this is an ambitious project that will require several years' work, we are using the lessons learned to improve the overall quality of vaccine production including the use of Vero cell techniques for the manufacture of other vaccines in Vietnam.

  10. Impact of BRICS' investment in vaccine development on the global vaccine market.

    Science.gov (United States)

    Kaddar, Miloud; Milstien, Julie; Schmitt, Sarah

    2014-06-01

    Brazil, the Russian Federation, India, China and South Africa--the countries known as BRICS--have made considerable progress in vaccine production, regulation and development over the past 20 years. In 1993, all five countries were producing vaccines but the processes used were outdated and non-standardized, there was little relevant research and there was negligible international recognition of the products. By 2014, all five countries had strong initiatives for the development of vaccine technology and had greatly improved their national regulatory capacity. South Africa was then the only BRICS country that was not completely producing vaccines. South Africa is now in the process of re-establishing its own vaccine production and passing beyond the stage of simply importing, formulating and filling vaccine bulks. Changes in the public sector's price per dose of selected vaccines, the global market share represented by products from specific manufacturers, and the attractiveness, for multinational companies, of partnership and investment opportunities in BRICS companies have all been analysed. The results indicate that the BRICS countries have had a major impact on vaccine price and availability, with much of that impact attributable to the output of Indian vaccine manufacturers. China is expected to have a greater impact soon, given the anticipated development of Chinese vaccine manufacturers in the near future. BRICS' accomplishments in the field of vaccine development are expected to reshape the global vaccine market and accelerate access to vaccines in the developing world. The challenge is to turn these expectations into strategic actions and practical outcomes.

  11. Pre- and post-exposure safety and efficacy of attenuated rabies virus vaccines are enhanced by their expression of IFNγ

    Energy Technology Data Exchange (ETDEWEB)

    Barkhouse, Darryll A. [Department of Cancer Biology, 1020 Locust St., Jefferson Alumni Hall, Room 454, Philadelphia, PA 19107 (United States); Center for Neurovirology 1020 Locust St., Jefferson Alumni Hall, Room 454, Philadelphia, PA 19107 (United States); Faber, Milosz [Center for Neurovirology 1020 Locust St., Jefferson Alumni Hall, Room 454, Philadelphia, PA 19107 (United States); Department of Microbiology and Immunology 1020 Locust St., Jefferson Alumni Hall, Room 465, Philadelphia, PA 19107 (United States); Hooper, D. Craig, E-mail: douglas.hooper@jefferson.edu [Department of Cancer Biology, 1020 Locust St., Jefferson Alumni Hall, Room 454, Philadelphia, PA 19107 (United States); Department of Neurological Surgery, 1020 Locust St., Jefferson Alumni Hall, Room 454, Philadelphia, PA 19107 (United States); Center for Neurovirology 1020 Locust St., Jefferson Alumni Hall, Room 454, Philadelphia, PA 19107 (United States)

    2015-01-01

    Consistent with evidence of a strong correlation between interferon gamma (IFNγ) production and rabies virus (RABV) clearance from the CNS, we recently demonstrated that engineering a pathogenic RABV to express IFNγ highly attenuates the virus. Reasoning that IFNγ expression by RABV vaccines would enhance their safety and efficacy, we reverse-engineered two proven vaccine vectors, GAS and GASGAS, to express murine IFNγ. Mortality and morbidity were monitored during suckling mice infection, immunize/challenge experiments and mixed intracranial infections. We demonstrate that GASγ and GASγGAS are significantly attenuated in suckling mice compared to the GASGAS vaccine. GASγ better protects mice from lethal DRV4 RABV infection in both pre- and post-exposure experiments compared to GASGAS. Finally, GASγGAS reduces post-infection neurological sequelae, compared to control, during mixed intracranial infection with DRV4. These data show IFNγ expression by a vaccine vector can enhance its safety while increasing its efficacy as pre- and post-exposure treatment. - Highlights: • IFNγ expression improves attenuated rabies virus safety and immunogenicity. • IFNγ expression is safer and more immunogenic than doubling glycoprotein expression. • Co-infection with IFNγ-expressing RABV prevents wild-type rabies virus lethality. • Vaccine safety and efficacy is additive for IFNγ and double glycoprotein expression.

  12. Evaluation of Three Live Attenuated H2 Pandemic Influenza Vaccine Candidates in Mice and Ferrets

    Science.gov (United States)

    Chen, Grace L.; Lamirande, Elaine W.; Cheng, Xing; Torres-Velez, Fernando; Orandle, Marlene; Jin, Hong; Kemble, George

    2014-01-01

    ABSTRACT H2 influenza viruses have not circulated in humans since 1968, and therefore a significant portion of the population would be susceptible to infection should H2 influenza viruses reemerge. H2 influenza viruses continue to circulate in avian reservoirs worldwide, and these reservoirs are a potential source from which these viruses could emerge. Three reassortant cold-adapted (ca) H2 pandemic influenza vaccine candidates with hemagglutinin (HA) and neuraminidase (NA) genes derived from the wild-type A/Japan/305/1957 (H2N2) (Jap/57), A/mallard/6750/1978 (H2N2) (mal/78), or A/swine/MO/4296424/2006 (H2N3) (sw/06) viruses and the internal protein gene segments from the A/Ann Arbor/6/60 ca virus were generated by plasmid-based reverse genetics (Jap/57 ca, mal/78 ca, and sw/06 ca, respectively). The vaccine candidates exhibited the in vitro phenotypes of temperature sensitivity and cold adaptation and were restricted in replication in the respiratory tract of ferrets. In mice and ferrets, the vaccines elicited neutralizing antibodies and conferred protection against homologous wild-type virus challenge. Of the three candidates, the sw/06 ca vaccine elicited cross-reactive antibodies and provided significant protection against the greatest number of heterologous viruses. These observations suggest that the sw/06 ca vaccine should be further evaluated in a clinical trial as an H2 pandemic influenza vaccine candidate. IMPORTANCE Influenza pandemics arise when novel influenza viruses are introduced into a population with little prior immunity to the new virus and often result in higher rates of illness and death than annual seasonal influenza epidemics. An influenza H2 subtype virus caused a pandemic in 1957, and H2 viruses circulated in humans till 1968. H2 influenza viruses continue to circulate in birds, and the development of an H2 influenza vaccine candidate is therefore considered a priority in preparing for future pandemics. However, we cannot predict whether a

  13. Evaluating the effectiveness, impact and safety of live attenuated and seasonal inactivated influenza vaccination: protocol for the Seasonal Influenza Vaccination Effectiveness II (SIVE II) study

    Science.gov (United States)

    Lone, Nazir I; Kavanagh, Kimberley; Robertson, Chris; McMenamin, Jim; von Wissmann, Beatrix; Vasileiou, Eleftheria; Butler, Chris; Ritchie, Lewis D; Gunson, Rory; Schwarze, Jürgen; Sheikh, Aziz

    2017-01-01

    Introduction Seasonal (inactivated) influenza vaccination is recommended for all individuals aged 65+ and in individuals under 65 who are at an increased risk of complications of influenza infection, for example, people with asthma. Live attenuated influenza vaccine (LAIV) was recommended for children as they are thought to be responsible for much of the transmission of influenza to the populations at risk of serious complications from influenza. A phased roll-out of the LAIV pilot programme began in 2013/2014. There is limited evidence for vaccine effectiveness (VE) in the populations targeted for influenza vaccination. The aim of this study is to examine the safety and effectiveness of the live attenuated seasonal influenza vaccine programme in children and the inactivated seasonal influenza vaccination programme among different age and at-risk groups of people. Methods and analysis Test negative and cohort study designs will be used to estimate VE. A primary care database covering 1.25 million people in Scotland for the period 2000/2001 to 2015/2016 will be linked to the Scottish Immunisation Recall Service (SIRS), Health Protection Scotland virology database, admissions to Scottish hospitals and the Scottish death register. Vaccination status (including LAIV uptake) will be determined from the primary care and SIRS database. The primary outcome will be influenza-positive real-time PCR tests carried out in sentinel general practices and other healthcare settings. Secondary outcomes include influenza-like illness and asthma-related general practice consultations, hospitalisations and death. An instrumental variable analysis will be carried out to account for confounding. Self-controlled study designs will be used to estimate the risk of adverse events associated with influenza vaccination. Ethics and dissemination We obtained approval from the National Research Ethics Service Committee, West Midlands—Edgbaston. The study findings will be presented at

  14. Generation and characterization of a cold-adapted attenuated live H3N2 subtype influenza virus vaccine candidate

    Institute of Scientific and Technical Information of China (English)

    AN Wen-qi; LIU Xiu-fan; WANG Xi-liang; YANG Peng-hui; DUAN Yue-qiang; LUO De-yan; TANG Chong; JIA Wei-hong; XING Li; SHI Xin-fu; ZHANG Yu-jing

    2009-01-01

    Background H3N2 subtype influenza A viruses have been identified in humans worldwide, raising concerns about their pandemic potential and prompting the development of candidate vaccines to protect humans against this subtype of influenza A virus. The aim of this study was to establish a system for rescuing of a cold-adapted high-yielding H3N2 subtype human influenza virus by reverse genetics. Methods In order to generate better and safer vaccine candidate viruses, a cold-adapted high yielding reassortant H3N2 influenza A virus was genetically constructed by reverse genetics and was designated as rgAA-H3N2. The rgAA-H3N2 virus contained HA and NA genes from an epidemic strain A/Wisconsin/67/2005 (H3N2) in a background of internal genes derived from the master donor viruses (MDV), cold-adapted (ca), temperature sensitive (te), live attenuated influenza virus strain A/Ann Arbor/6/60 (MDV-A). Results In this presentation, the virus HA titer of rgAA-H3N2 in the allantoic fluid from infected embryonated eggs was as high as 1:1024. A fluorescent focus assay (FFU) was performed 24-36 hours post-infection using a specific antibody and bright staining was used for determining the virus titer. The allantoic fluid containing the recovered influenza virus was analyzed in a hemagglutination inhibition (HI) test and the specific inhibition was found. Conclusion The results mentioned above demonstrated that cold-adapted, attenuated reassortant H3N2 subtype influenza A virus was successfully generated, which laid a good foundation for the further related research.

  15. African horse sickness in The Gambia: circulation of a live-attenuated vaccine-derived strain.

    Science.gov (United States)

    Oura, C A L; Ivens, P A S; Bachanek-Bankowska, K; Bin-Tarif, A; Jallow, D B; Sailleau, C; Maan, S; Mertens, P C; Batten, C A

    2012-03-01

    African horse sickness virus serotype 9 (AHSV-9) has been known for some time to be circulating amongst equids in West Africa without causing any clinical disease in indigenous horse populations. Whether this is due to local breeds of horses being resistant to disease or whether the AHSV-9 strains circulating are avirulent is currently unknown. This study shows that the majority (96%) of horses and donkeys sampled across The Gambia were seropositive for AHS, despite most being unvaccinated and having no previous history of showing clinical signs of AHS. Most young horses (horses. Sequence analysis revealed the presence of an AHSV-9 strain showing 100% identity to Seg-2 of the AHSV-9 reference strain, indicating that the virus circulating in The Gambia was highly likely to have been derived from a live-attenuated AHSV-9 vaccine strain.

  16. Comparison of the trivalent live attenuated vs. inactivated influenza vaccines among U.S. military service members.

    Science.gov (United States)

    Eick, Angelia A; Wang, Zhong; Hughes, Hayley; Ford, Stephen M; Tobler, Steven K

    2009-06-02

    Limited effectiveness data are available comparing live attenuated influenza vaccine (LAIV) to inactivated influenza vaccine (TIV) among adults. To compare the incidence of influenza-like illness following immunization of adults with LAIV vs. TIV, we conducted a retrospective cohort analysis of active component U.S. military personnel for the 2005-2006 and 2006-2007 influenza seasons. Recruits experienced a much higher burden of disease compared to non-recruits, with crude incidence rates of influenza-like illness 2-16 times higher than non-recruits depending on the season and cohort. For both seasons, a slightly greater protection from influenza-like illness was found for non-recruits who received TIV compared to LAIV (adjusted incidence rate ratio, 1.17 (95% CI, 1.14-1.20) and 1.33 (95% CI, 1.30-1.36), 2005-2006 and 2006-2007 influenza seasons, respectively). However, for Army and Air Force recruits, LAIV was found to provide significantly greater protection from influenza-like illnesses compared to TIV, with adjusted incidence rates of influenza-like illness 22-51% and 18-47% lower among LAIV compared to TIV recipients for the 2005-2006 and 2006-2007 influenza seasons, respectively. Possible reasons for differences in recruit and non-recruit findings include differences in pre-existing influenza antibody levels, differing respiratory disease burden, and/or unmeasured confounding. Consideration of these findings should be made when developing influenza immunization policies.

  17. Attenuation and efficacy of human parainfluenza virus type 1 (HPIV1 vaccine candidates containing stabilized mutations in the P/C and L genes

    Directory of Open Access Journals (Sweden)

    Skiadopoulos Mario H

    2007-07-01

    Full Text Available Abstract Background Two recombinant, live attenuated human parainfluenza virus type 1 (rHPIV1 mutant viruses have been developed, using a reverse genetics system, for evaluation as potential intranasal vaccine candidates. These rHPIV1 vaccine candidates have two non-temperature sensitive (non-ts attenuating (att mutations primarily in the P/C gene, namely CR84GHNT553A (two point mutations used together as a set and CΔ170 (a short deletion mutation, and two ts att mutations in the L gene, namely LY942A (a point mutation, and LΔ1710–11 (a short deletion, the last of which has not been previously described. The latter three mutations were specifically designed for increased genetic and phenotypic stability. These mutations were evaluated on the HPIV1 backbone, both individually and in combination, for attenuation, immunogenicity, and protective efficacy in African green monkeys (AGMs. Results The rHPIV1 mutant bearing the novel LΔ1710–11 mutation was highly ts and attenuated in AGMs and was immunogenic and efficacious against HPIV1 wt challenge. The rHPIV1-CR84G/Δ170HNT553ALY942A and rHPIV1-CR84G/Δ170HNT553ALΔ1710–11 vaccine candidates were highly ts, with shut-off temperatures of 38°C and 35°C, respectively, and were highly attenuated in AGMs. Immunization with rHPIV1-CR84G/Δ170HNT553ALY942A protected against HPIV1 wt challenge in both the upper and lower respiratory tracts. In contrast, rHPIV1-CR84G/Δ170HNT553ALΔ1710–11 was not protective in AGMs due to over-attenuation, but it is expected to replicate more efficiently and be more immunogenic in the natural human host. Conclusion The rHPIV1-CR84G/Δ170HNT553ALY942A and rHPIV1-CR84G/Δ170HNT553ALΔ1710–11 vaccine candidates are clearly highly attenuated in AGMs and clinical trials are planned to address safety and immunogenicity in humans.

  18. Nontyphoidal salmonella disease: Current status of vaccine research and development.

    Science.gov (United States)

    Tennant, Sharon M; MacLennan, Calman A; Simon, Raphael; Martin, Laura B; Khan, M Imran

    2016-06-01

    Among more than 2500 nontyphoidal Salmonella enterica (NTS) serovars, S. enterica serovar Typhimurium and S. enterica serovar Enteritidis account for approximately fifty percent of all human isolates of NTS reported globally. The global incidence of NTS gastroenteritis in 2010 was estimated to be 93 million cases, approximately 80 million of which were contracted via food-borne transmission. It is estimated that 155,000 deaths resulted from NTS in 2010. NTS also causes severe, extra-intestinal, invasive bacteremia, referred to as invasive nontyphoidal Salmonella (iNTS) disease. iNTS disease usually presents as a febrile illness, frequently without gastrointestinal symptoms, in both adults and children. Symptoms of iNTS are similar to malaria, often including fever (>90%) and splenomegaly (>40%). The underlying reasons for the high rates of iNTS disease in Africa are still being elucidated. Evidence from animal and human studies supports the feasibility of developing a safe and effective vaccine against iNTS. Both antibodies and complement can kill Salmonella species in vitro. Proof-of-principle studies in animal models have demonstrated efficacy for live attenuated and subunit vaccines that target the O-antigens, flagellin proteins, and other outer membrane proteins of serovars Typhimurium and Enteritidis. More recently, a novel delivery strategy for NTS vaccines has been developed: the Generalized Modules for Membrane Antigens (GMMA) technology which presents surface polysaccharides and outer membrane proteins in their native conformation. GMMA technology is self-adjuvanting, as it delivers multiple pathogen-associated molecular pattern molecules. GMMA may be particularly relevant for low- and middle-income countries as it has the potential for high immunologic potency at a low cost and involves a relatively simple production process without the need for complex conjugation. Several vaccines for the predominant NTS serovars Typhimurium and Enteritidis, are

  19. Evaluation of eight live attenuated vaccine candidates for protection against challenge with virulent Mycobacterium avium subspecies paratuberculosis in mice

    Directory of Open Access Journals (Sweden)

    John P Bannantine

    2014-07-01

    Full Text Available Johne’s disease is caused by Mycobacterium avium subsp. paratuberculosis (MAP, which results in serious economic losses worldwide in farmed livestock such as cattle, sheep and goats. To control this disease, an effective vaccine with minimal adverse effects is needed. In order to identify a live vaccine for Johne’s disease, we evaluated eight attenuated mutant strains of MAP using a C57BL/6 mouse model. The persistence of the vaccine candidates was measured at 6, 12, and 18 weeks post vaccination. Only strains 320, 321 and 329 colonized both the liver and spleens up until the 12-week time point. The remaining five mutants showed no survival in those tissues, indicating their complete attenuation in the mouse model. The candidate vaccine strains demonstrated different levels of protection based on colonization of the challenge strain in liver and spleen tissues at 12 and 18 weeks post vaccination. Based on total MAP burden in both tissues at both time points, strain 315 (MAP1566::Tn5370 was the most protective whereas strain 318 (intergenic Tn5367 insertion between MAP0282c and MAP0283c had the most colonization. Mice vaccinated with an undiluted commercial vaccine preparation displayed the highest bacterial burden as well as enlarged spleens indicative of a strong infection. Selected vaccine strains that showed promise in the mouse model were moved forward into a goat challenge model. The results suggest that the mouse trial, as conducted, may have a relatively poor predictive value for protection in a ruminant host such as goats.

  20. Tuberculosis Vaccines – state of the art, and novel approaches to vaccine development

    Directory of Open Access Journals (Sweden)

    Christopher da Costa

    2015-03-01

    Full Text Available The quest for a vaccine that could have a major impact in reducing the current global burden of TB disease in humans continues to be extremely challenging. Significant gaps in our knowledge and understanding of the pathogenesis and immunology of tuberculosis continue to undermine efforts to break new ground, and traditional approaches to vaccine development have thus far met with limited success. Existing and novel candidate vaccines are being assessed in the context of their ability to impact the various stages that culminate in disease transmission and an increase in the global burden of disease. Innovative methods of vaccine administration and delivery have provided a fresh stimulus to the search for the elusive vaccine. Here we discuss the current status of preclinical vaccine development, providing insights into alternative approaches to vaccine delivery and promising candidate vaccines. The state of the art of clinical development also is reviewed.

  1. Status of vaccine research and development of vaccines for Chlamydia trachomatis infection.

    Science.gov (United States)

    Poston, Taylor B; Gottlieb, Sami L; Darville, Toni

    2017-01-19

    Genital infection with Chlamydia trachomatis, a gram-negative obligate intracellular bacterium, is the most common bacterial sexually transmitted infection globally. Ascension of chlamydial infection to the female upper genital tract can cause acute pelvic inflammatory disease, tubal factor infertility, ectopic pregnancy, and chronic pelvic pain. Shortcomings of current chlamydia control strategies, especially for low- and middle-income countries, highlight the need for an effective vaccine. Evidence from animal models, human epidemiological studies, and early trachoma vaccine trials suggest that a C. trachomatis vaccine is feasible. Vaccine development for genital chlamydial infection has been in the preclinical phase of testing for many years, but the first Phase I trials of chlamydial vaccine candidates are underway, and scientific advances hold promise for additional candidates to enter clinical evaluation in the coming years. We describe the clinical and public health need for a C. trachomatis vaccine, provide an overview of Chlamydia vaccine development efforts, and summarize current vaccine candidates in the development pipeline.

  2. Tuberculosis vaccines--state of the art, and novel approaches to vaccine development.

    Science.gov (United States)

    da Costa, Christopher; Walker, Barry; Bonavia, Aurelio

    2015-03-01

    The quest for a vaccine that could have a major impact in reducing the current global burden of TB disease in humans continues to be extremely challenging. Significant gaps in our knowledge and understanding of the pathogenesis and immunology of tuberculosis continue to undermine efforts to break new ground, and traditional approaches to vaccine development have thus far met with limited success. Existing and novel candidate vaccines are being assessed in the context of their ability to impact the various stages that culminate in disease transmission and an increase in the global burden of disease. Innovative methods of vaccine administration and delivery have provided a fresh stimulus to the search for the elusive vaccine. Here we discuss the current status of preclinical vaccine development, providing insights into alternative approaches to vaccine delivery and promising candidate vaccines. The state of the art of clinical development also is reviewed.

  3. Oral Vaccination with Attenuated Salmonella typhimurium-Delivered TsPmy DNA Vaccine Elicits Protective Immunity against Trichinella spiralis in BALB/c Mice

    Science.gov (United States)

    Wang, Lei; Wang, Xiaohuan; Bi, Kuo; Sun, Ximeng; Yang, Jing; Gu, Yuan; Huang, Jingjing; Zhan, Bin; Zhu, Xinping

    2016-01-01

    Background Our previous studies showed that Trichinella spiralis paramyosin (TsPmy) is an immunomodulatory protein that inhibits complement C1q and C8/C9 to evade host complement attack. Vaccination with recombinant TsPmy protein induced protective immunity against T. spiralis larval challenge. Due to the difficulty in producing TsPmy as a soluble recombinant protein, we prepared a DNA vaccine as an alternative approach in order to elicit a robust immunity against Trichinella infection. Methods and Findings The full-length TsPmy coding DNA was cloned into the eukaryotic expression plasmid pVAX1, and the recombinant pVAX1/TsPmy was transformed into attenuated Salmonella typhimurium strain SL7207. Oral vaccination of mice with this attenuated Salmonella-delivered TsPmy DNA vaccine elicited a significant mucosal sIgA response in the intestine and a systemic IgG antibody response with IgG2a as the predominant subclass. Cytokine analysis also showed a significant increase in the Th1 (IFN-γ, IL-2) and Th2 (IL-4, 5, 6, 10) responses in lymphocytes from the spleen and MLNs of immunized mice upon stimulation with TsPmy protein. The expression of the homing receptors CCR9/CCR10 on antibody secreting B cells may be related to the translocation of IgA-secreted B cells to local intestinal mucosa. The mice immunized with Salmonella-delivered TsPmy DNA vaccine produced a significant 44.8% reduction in adult worm and a 46.6% reduction in muscle larvae after challenge with T. spiralis larvae. Conclusion Our results demonstrated that oral vaccination with TsPmy DNA delivered by live attenuated S. typhimurium elicited a significant local IgA response and a mixed Th1/Th2 immune response that elicited a significant protection against T. spiralis infection in mice. PMID:27589591

  4. AIDS vaccine for Asia Network (AVAN: expanding the regional role in developing HIV vaccines.

    Directory of Open Access Journals (Sweden)

    Stephen J Kent

    2010-09-01

    Full Text Available The HIV/AIDS pandemic continues to spread and an AIDS vaccine is urgently needed. Regional alliances and international collaborations can foster the development and evaluation of the next generation of AIDS vaccine candidates. The importance of coordinating and harmonizing efforts across regional alliances has become abundantly clear. We recently formed the AIDS Vaccine for Asia Network (AVAN to help facilitate the development of a regional AIDS vaccine strategy that accelerates research and development of an AIDS vaccine through government advocacy, improved coordination, and harmonization of research; develops clinical trial and manufacturing capacity; supports ethical and regulatory frameworks; and ensures community participation.

  5. Periodontal vaccine

    Directory of Open Access Journals (Sweden)

    Ranjan Malhotra

    2011-01-01

    Full Text Available Vaccine is the name applied generally to a substance of the nature of dead or attenuated living infectious material introduced into the body with the object of increasing its power to resist or get rid of a disease. Vaccines are generally prophylactic, i.e. they ameliorate the effects of future infection. One such vaccine considered here is the "Periodontal vaccine". Till date, no preventive modality exists for periodontal disease and treatment rendered is palliative. Thus, availability of periodontal vaccine would not only prevent and modulate periodontal disease, but also enhance the quality of life of people for whom periodontal treatment cannot be easily obtained. The aim of the research should be development of a multispecies vaccine targeting the four prime periodontal pathogens, viz. Porphyromonas gingivalis, T. forsythus, T. denticola and A. comitans. Success is still elusive in case of periodontal vaccine due to the complex etiopathogenesis of the disease.

  6. OMOLOGICAL AND HETEROLOGICAL ANTIBODY AND T CELL IMMUNE RESPONSES TO LIVE ATTENUATED INFLUENZA VACCINE A (H5N2 AND A (H7N3

    Directory of Open Access Journals (Sweden)

    A. N. Naykhin

    2015-01-01

    Full Text Available From the beginning of 21th century outbreaks of H5, H7 and H9 avian flu are registered from time to time. These viruses are considered as one of the possible causes of the next pandemia. The development of avian influenza vaccines is one of the WHO priorities. The aim of this work was to study antibody and cellular immune responses to avian A (H5N2 and A (H7N3 live attenuated influenza vaccines (LAIVs. We examined serum antibodies (HAI assay, microneutralization assay, ELISA, local antibodies (ELISA and virus-specific CD4+ and CD8+ central memory and effector memory T cells. Two doses vaccination of healthy volunteers with A (H5N2 and A (H7N3 LAIVs induced homological antibody and cellular immune responses (i. e. serum and local antibody conversions, virus-specific memory T cell growth. These vaccines also stimulated heterological immunity (heterological serum and local antibodies and T cells. Heterological immune response intensity depended on antigenic structure of vaccine strain and heterological virus, particularly on HA type. 

  7. Broader HIV-1 neutralizing antibody responses induced by envelope glycoprotein mutants based on the EIAV attenuated vaccine

    Directory of Open Access Journals (Sweden)

    Liu Lianxing

    2010-09-01

    Full Text Available Abstract Background In order to induce a potent and cross-reactive neutralizing antibody (nAb, an effective envelope immunogen is crucial for many viral vaccines, including the vaccine for the human immunodeficiency virus (HIV. The Chinese equine infectious anemia virus (EIAV attenuated vaccine has controlled the epidemic of this virus after its vaccination in over 70 million equine animals during the last 3 decades in China. Data from our past studies demonstrate that the Env protein of this vaccine plays a pivotal role in protecting horses from both homologous and heterogeneous EIAV challenges. Therefore, the amino acid sequence information from the Chinese EIAV attenuated vaccine, in comparison with the parental wild-type EIAV strains, was applied to modify the corresponding region of the envelope glycoprotein of HIV-1 CN54. The direction of the mutations was made towards the amino acids conserved in the two EIAV vaccine strains, distinguishing them from the two wild-type strains. The purpose of the modification was to enhance the immunogenicity of the HIV Env. Results The induced nAb by the modified HIV Env neutralized HIV-1 B and B'/C viruses at the highest titer of 1:270. Further studies showed that a single amino acid change in the C1 region accounts for the substantial enhancement in induction of anti-HIV-1 neutralizing antibodies. Conclusions This study shows that an HIV envelope modified by the information of another lentivirus vaccine induces effective broadly neutralizing antibodies. A single amino acid mutation was found to increase the immunogenicity of the HIV Env.

  8. Development of an improved vaccine evaluation protocol to compare the efficacy of Newcastle disease vaccines.

    Science.gov (United States)

    Cardenas-Garcia, Stivalis; Diel, Diego G; Susta, Leonardo; Lucio-Decanini, Eduardo; Yu, Qingzhong; Brown, Corrie C; Miller, Patti J; Afonso, Claudio L

    2015-03-01

    While there is typically 100% survivability in birds challenged with vNDV under experimental conditions, either with vaccines formulated with a strain homologous or heterologous (different genotype) to the challenge virus, vaccine deficiencies are often noted in the field. We have developed an improved and more stringent protocol to experimentally evaluate live NDV vaccines, and showed for the first time under experimental conditions that a statistically significant reduction in mortality can be detected with genotype matched vaccines. Using both vaccine evaluation protocols (traditional and improved), birds were challenged with a vNDV of genotype XIII and the efficacy of live heterologous (genotype II) and homologous (genotype XIII) NDV vaccines was compared. Under traditional vaccination conditions there were no differences in survival upon challenge, but the homologous vaccine induced significantly higher levels of antibodies specific to the challenge virus. With the more stringent challenge system (multiple vaccine doses and early challenge with high titers of vNDV), the birds administered the homologous vaccine had superior humoral responses, reduced clinical signs, and reduced mortality levels than those vaccinated with the heterologous vaccine. These results provide basis for the implementation of more sensitive methods to evaluate vaccine efficacy.

  9. Temperature-sensitive mutations for live-attenuated Rift Valley fever vaccines: Implications from other RNA viruses

    Directory of Open Access Journals (Sweden)

    Shoko eNishiyama

    2015-08-01

    Full Text Available Rift Valley fever (RVF is a mosquito-borne zoonotic disease endemic to the African continent. RVF is characterized by high rate of abortions in ruminants and hemorrhagic fever, encephalitis or blindness in humans. RVF is caused by the Rift Valley fever virus (RVFV: genus Phlebovirus, family Bunyaviridae. Vaccination is the only known effective strategy to prevent the disease, but there are no licensed RVF vaccines available for humans. A live-attenuated vaccine candidate derived from the wild-type pathogenic Egyptian ZH548 strain, MP-12, has been conditionally licensed for veterinary use in the United States. MP-12 displays a temperature-sensitive (ts phenotype and does not replicate at 41oC. The ts mutation limits viral replication at a specific body temperature and may lead to an attenuation of the virus. Here we will review well-characterized ts mutations for RNA viruses, and further discuss the potential in designing novel live-attenuated vaccines for RVF.

  10. Revaccination with Live Attenuated Vaccines Confer Additional Beneficial Nonspecific Effects on Overall Survival: A Review

    Directory of Open Access Journals (Sweden)

    Christine S. Benn

    2016-08-01

    Interpretation: Revaccination with live vaccines led to substantial reductions in overall mortality. These findings challenge current understanding of vaccines and may explain the beneficial effects of campaigns with live vaccines.

  11. Vaccinomics Approach to Tick Vaccine Development.

    Science.gov (United States)

    Contreras, Marinela; Villar, Margarita; Alberdi, Pilar; de la Fuente, José

    2016-01-01

    Ticks are blood-feeding arthropod ectoparasites that transmit disease-causing pathogens to humans and animals worldwide. Vaccines using tick antigens have proven to be cost-effective and environmental friendly for the control of vector infestations and pathogen infection and transmission. However, new strategies are needed to identify tick protective antigens for development of improved vaccines. These strategies will be greatly enhanced by vaccinomics approaches starting from the study of tick-host-pathogen molecular interactions and ending in the characterization and validation of vaccine formulations. The discovery of tick antigens that affect both tick infestations and pathogen infection/transmission could be used for vaccines targeting human and animal populations at risk and reservoir species to reduce host exposure to ticks while reducing the number of infected ticks and their vector capacity for pathogens that affect human and animal health. In this chapter, we describe methods of the vaccinomics platform using transcriptomics and proteomics for the identification of candidate protective antigens in Ixodes scapularis, the vector for human and animal granulocytic anaplasmosis, tick-borne encephalitis, and Lyme disease.

  12. Rapid detection and differentiation of wild-type and three attenuated lapinized vaccine strains of classical swine fever virus by reverse transcription polymerase chain reaction.

    Science.gov (United States)

    Pan, Chu-Hsiang; Jong, Ming-Hwa; Huang, Yu-Liang; Huang, Tien-Shine; Chao, Parn-Hwa; Lai, Shiow-Suey

    2008-07-01

    A simple one-step reverse transcription polymerase chain reaction (RT-PCR) method was developed based on T-rich insertions in the viral genome for simultaneous detection and differentiation of wild type and vaccine strains of Classical swine fever virus (CSFV). The CSFV-specific primers were designed to contain the sequences of the T-rich insertion sites that exist uniquely in the 3' nontranslated regions (3' NTR) of the genome of lapinized CSFV vaccine strains. By using a one-step RT-PCR or a nested PCR followed by an agarose gel electrophoresis or a multicapillary electrophoresis, the wild-type and lapinized vaccine strains of CSFV in clinical samples could be detected and accurately distinguished. These assays can be applied to at least 3 attenuated lapinized vaccine strains, lapinized Philippines Coronel (LPC), hog cholera lapinized virus (HCLV), and Chinese strain (C strain). The detection limit of the wild-type virus was 6.3 TCID(50) (50% tissue culture infective dose)/ml for RT-PCR and 0.63 TCID(50)/ml for nested PCR. In previous studies, notable T-rich insertions of 12-13 nucleotides (nt) were found in the 3' NTR of the genome of lapinized vaccine strains of CSFV. However, this study discovered that 2 T-rich insertions, 42 and 36 nt in length, are present in the viral genome of lapinized vaccine strains LPC/PRK (primary rabbit kidney) and LPC/TS (Tam-Sui), respectively. These T-rich insertions of 12, 36, and 42 nt length increases the size of PCR fragments, which are favorable genetic markers for rapid detection of and differentiation between wild-type and different lapinized vaccine strains of CSFV.

  13. The yellow fever 17D vaccine virus as a vector for the expression of foreign proteins: development of new live flavivirus vaccines

    Directory of Open Access Journals (Sweden)

    Myrna C Bonaldo

    2000-01-01

    Full Text Available The Flaviviridae is a family of about 70 mostly arthropod-borne viruses many of which are major public health problems with members being present in most continents. Among the most important are yellow fever (YF, dengue with its four serotypes and Japanese encephalitis virus. A live attenuated virus is used as a cost effective, safe and efficacious vaccine against YF but no other live flavivirus vaccines have been licensed. The rise of recombinant DNA technology and its application to study flavivirus genome structure and expression has opened new possibilities for flavivirus vaccine development. One new approach is the use of cDNAs encopassing the whole viral genome to generate infectious RNA after in vitro transcription. This methodology allows the genetic mapping of specific viral functions and the design of viral mutants with considerable potential as new live attenuated viruses. The use of infectious cDNA as a carrier for heterologous antigens is gaining importance as chimeric viruses are shown to be viable, immunogenic and less virulent as compared to the parental viruses. The use of DNA to overcome mutation rates intrinsic of RNA virus populations in conjunction with vaccine production in cell culture should improve the reliability and lower the cost for production of live attenuated vaccines. The YF virus despite a long period ignored by researchers probably due to the effectiveness of the vaccine has made a come back, both in nature as human populations grow and reach endemic areas as well as in the laboratory being a suitable model to understand the biology of flaviviruses in general and providing new alternatives for vaccine development through the use of the 17D vaccine strain.

  14. Policy making for vaccine use as a driver of vaccine innovation and development in the developed world.

    Science.gov (United States)

    Seib, Katherine; Pollard, Andrew J; de Wals, Philippe; Andrews, Ross M; Zhou, Fangjun; Hatchett, Richard J; Pickering, Larry K; Orenstein, Walter A

    2017-03-07

    In the past 200years, vaccines have had unmistakable impacts on public health including declines in morbidity and mortality, most markedly in economically-developed countries. Highly engineered vaccines including vaccines for conditions other than infectious diseases are expected to dominate future vaccine development. We examine immunization vaccine policy as a driver of vaccine innovation and development. The pathways to recommendation for use of licensed vaccines in the US, UK, Canada and Australia have been similar, including: expert review of disease epidemiology, disease burden and severity; vaccine immunogenicity, efficacy and safety; programmatic feasibility; public demand; and increasingly cost-effectiveness. Other attributes particularly important in development of future vaccines are likely to include: duration of immunity for improved vaccines such as pertussis; a greater emphasis on optimizing community protection rather than direct protection only; programmatic implementation, feasibility, improvements (as in the case of development of a universal influenza vaccine); public concerns/confidence/fears related to outbreak pathogens like Ebola and Zika virus; and major societal burden for combating hard to treat diseases like HIV and antimicrobial resistant pathogens. Driving innovation and production of future vaccines faces enormous economic hurdles as available approaches, technologies and regulatory pathways become more complex. As such, cost-mitigating strategies and focused, aligned efforts (by governments, private organizations, and private-public partnerships) will likely be needed to continue to spur major advances in vaccine technologies and development.

  15. Cross-Protection against Marburg Virus Strains by Using a Live, Attenuated Recombinant Vaccine

    Science.gov (United States)

    2006-10-01

    Guttieri, B. R. Mothe, T. Larsen, L. E. Hensley, P. B. Jahrling, and H. Feldmann. 2005. Development of a new vaccine for the prevention of Lassa fever ...Manitoba, Canada Received 10 May 2006/Accepted 12 July 2006 Marburg virus (MARV) has been associated with sporadic episodes of hemorrhagic fever ...lineages within the Lake Victoria marburgvirus species of MARV. The original MARV isolates from the 1967 episodes in Marburg, Germany (Popp and Ratayczak

  16. New developments in the era of viral hepatitis vaccines

    OpenAIRE

    POYRAZ, Merve; Özdoğan, Osman Cavit

    2016-01-01

    Chronic hepatitis B and hepatitis C infections are major healthproblems in the world. Therefore, prevention of the transmission ofthe viral infections gets higher priority. Development of hepatitisB vaccines by recombinant technology provide higher preventionrates. However, this success could not be achieved with hepatitisC vaccine. The present review discusses recent developments forhepatitis B and C vaccines.Keywords: New vaccines, Hepatitis B, Hepatitis C

  17. Immune correlates for dengue vaccine development.

    Science.gov (United States)

    Srikiatkhachorn, Anon; Yoon, In-Kyu

    2016-01-01

    Dengue virus is the leading cause of vector-borne viral disease with four serotypes in circulation. Vaccine development has been complicated by the potential for both protection and disease enhancement during heterologous infection. Secondary infection triggers cross-reactive immune memory responses that have varying functional and epitope specificities that determine protection or risk. Strongly neutralizing antibodies to quaternary epitopes may be especially important for virus neutralization. Cell-mediated immunity dominated by Th1 functions may also play an important role. Determining an immune correlate of protection or risk would be highly beneficial for vaccine development but is hampered by mechanistic uncertainties and assay limitations. Clinical efficacy trials and human infection models along with a systems approach may provide future opportunities to elucidate such correlates.

  18. Early biodistribution and persistence of a protective live attenuated SIV vaccine elicits localised innate responses in multiple lymphoid tissues.

    Directory of Open Access Journals (Sweden)

    Deborah Ferguson

    Full Text Available Vaccination of Mauritian cynomolgus macaques with the attenuated nef-truncated C8 variant of SIVmac251/32H (SIVmacC8 induces early, potent protection against pathogenic, heterologous challenge before the maturation of cognate immunity. To identify processes that contribute to early protection in this model the pathogenesis, anatomical distribution and viral vaccine kinetics were determined in relation to localised innate responses triggered by vaccination. The early biodistribution of SIVmacC8 was defined by rapid, widespread dissemination amongst multiple lymphoid tissues, detectable after 3 days. Cell-associated viral RNA dynamics identified mesenteric lymph nodes (MLN and spleen, as well as the gut mucosae, as early major contributors of systemic virus burden. Rapid, localised infection was populated by discrete foci of persisting virus-infected cells. Localised productive infection triggered a broad innate response, with type-1 interferon sensitive IRF-7, STAT-1, TRIM5α and ApoBEC3G genes all upregulated during the acute phase but induction did not prevent viral persistence. Profound changes in vaccine-induced cell-surface markers of immune activation were detected on macrophages, B-cells and dendritic cells (DC-SIGN, S-100, CD40, CD11c, CD123 and CD86. Notably, high DC-SIGN and S100 staining for follicular and interdigitating DCs respectively, in MLN and spleen were detected by 3 days, persisting 20 weeks post-vaccination. Although not formally evaluated, the early biodistribution of SIVmacC8 simultaneously targets multiple lymphoid tissues to induce strong innate immune responses coincident at the same sites critical for early protection from wild-type viruses. HIV vaccines which stimulate appropriate innate, as well as adaptive responses, akin to those generated by live attenuated SIV vaccines, may prove the most efficacious.

  19. Gene disruption of Plasmodium falciparum p52 results in attenuation of malaria liver stage development in cultured primary human hepatocytes.

    Directory of Open Access Journals (Sweden)

    Ben C L van Schaijk

    Full Text Available Difficulties with inducing sterile and long lasting protective immunity against malaria with subunit vaccines has renewed interest in vaccinations with attenuated Plasmodium parasites. Immunizations with sporozoites that are attenuated by radiation (RAS can induce strong protective immunity both in humans and rodent models of malaria. Recently, in rodent parasites it has been shown that through the deletion of a single gene, sporozoites can also become attenuated in liver stage development and, importantly, immunization with these sporozoites results in immune responses identical to RAS. The promise of vaccination using these genetically attenuated sporozoites (GAS depends on translating the results in rodent malaria models to human malaria. In this study, we perform the first essential step in this transition by disrupting, p52, in P. falciparum an ortholog of the rodent parasite gene, p36p, which we had previously shown can confer long lasting protective immunity in mice. These P. falciparum P52 deficient sporozoites demonstrate gliding motility, cell traversal and an invasion rate into primary human hepatocytes in vitro that is comparable to wild type sporozoites. However, inside the host hepatocyte development is arrested very soon after invasion. This study reveals, for the first time, that disrupting the equivalent gene in both P. falciparum and rodent malaria Plasmodium species generates parasites that become similarly arrested during liver stage development and these results pave the way for further development of GAS for human use.

  20. Varicella zoster vaccines and their implications for development of HSV vaccines

    Energy Technology Data Exchange (ETDEWEB)

    Gershon, Anne A., E-mail: aag1@columbia.edu [Department of Pediatrics, Columbia University College of Physicians and Surgeons, 620W. 168th Street, NY, NY 10032 (United States)

    2013-01-05

    Live attenuated vaccines to prevent varicella and zoster have been available in the US for the past 17 years, with a resultant dramatic decrease in varicella incidence and a predicted future decrease in the incidence of zoster. The pathogenesis and immune responses to varicella zoster virus (VZV) as well as the safety and effectiveness of VZV vaccines are reviewed. The lack of sterilizing immunity provided by VZV vaccines has not prevented them from being safe and effective. Virological and pathological information concerning parallels and differences between VZV and herpes simplex virus (HSV) are highlighted. Although VZV and HSV are distinct pathogens, they appear to have similarities in target organs and immunity that provide an expectation of a high likelihood for the success of vaccination against HSV, and predicted to be similar to that of VZV.

  1. Cold-Adapted Viral Attenuation (CAVA): Highly Temperature Sensitive Polioviruses as Novel Vaccine Strains for a Next Generation Inactivated Poliovirus Vaccine.

    Science.gov (United States)

    Sanders, Barbara P; de Los Rios Oakes, Isabel; van Hoek, Vladimir; Bockstal, Viki; Kamphuis, Tobias; Uil, Taco G; Song, Yutong; Cooper, Gillian; Crawt, Laura E; Martín, Javier; Zahn, Roland; Lewis, John; Wimmer, Eckard; Custers, Jerome H H V; Schuitemaker, Hanneke; Cello, Jeronimo; Edo-Matas, Diana

    2016-03-01

    The poliovirus vaccine field is moving towards novel vaccination strategies. Withdrawal of the Oral Poliovirus Vaccine and implementation of the conventional Inactivated Poliovirus Vaccine (cIPV) is imminent. Moreover, replacement of the virulent poliovirus strains currently used for cIPV with attenuated strains is preferred. We generated Cold-Adapted Viral Attenuation (CAVA) poliovirus strains by serial passage at low temperature and subsequent genetic engineering, which contain the capsid sequences of cIPV strains combined with a set of mutations identified during cold-adaptation. These viruses displayed a highly temperature sensitive phenotype with no signs of productive infection at 37°C as visualized by electron microscopy. Furthermore, decreases in infectious titers, viral RNA, and protein levels were measured during infection at 37°C, suggesting a block in the viral replication cycle at RNA replication, protein translation, or earlier. However, at 30°C, they could be propagated to high titers (9.4-9.9 Log10TCID50/ml) on the PER.C6 cell culture platform. We identified 14 mutations in the IRES and non-structural regions, which in combination induced the temperature sensitive phenotype, also when transferred to the genomes of other wild-type and attenuated polioviruses. The temperature sensitivity translated to complete absence of neurovirulence in CD155 transgenic mice. Attenuation was also confirmed after extended in vitro passage at small scale using conditions (MOI, cell density, temperature) anticipated for vaccine production. The inability of CAVA strains to replicate at 37°C makes reversion to a neurovirulent phenotype in vivo highly unlikely, therefore, these strains can be considered safe for the manufacture of IPV. The CAVA strains were immunogenic in the Wistar rat potency model for cIPV, inducing high neutralizing antibody titers in a dose-dependent manner in response to D-antigen doses used for cIPV. In combination with the highly productive

  2. Vaccination of pigs against Aujeszky's disease by the intradermal route using live attenuated and inactivated virus vaccines.

    Science.gov (United States)

    Vannier, P; Cariolet, R

    1989-09-01

    A study was undertaken of the protection induced by inactivated and live Aujeszky's disease virus vaccines. The vaccines were administered using a special device which, without the use of a needle, delivered the preparation intradermally. The trials were performed on 88 pigs which were vaccinated at the beginning of the fattening period both in experimental conditions and in pig herds. All the pigs were challenged at the end of the fattening period in isolation units. The results obtained were compared with those obtained using the same vaccines injected intramuscularly. It was shown that vaccination via the intradermal route induced good protection in the vaccinated animals and was similar to that conferred by live virus vaccine injected intramuscularly. The results, with the inactivated virus vaccine, were not so good when it was injected via the intradermal route. Studies with intradermal vaccination showed no local lesion or very small nodules strictly localized to the dermis. The results also confirmed that the effects of challenge exposure depended on the health status of animals prior to infection and show the necessity to use a synthetic value (delta G) to interpret the data and mainly to compare the results objectively. In fattening pigs this vaccination procedure is attractive because (i) less animal constraint is needed than would be for intramuscular injections, (ii) injection can be checked by the presence of a visible papula at the site of inoculation and, (iii) pigs can be vaccinated in the ham while they are feeding. Injection without a needle also contributes to avoiding bacterial contamination under practical farm conditions of vaccination.

  3. Global Efforts in the Development of Vaccines for Tuberculosis: Requirements for Improved Vaccines Against Mycobacterium tuberculosis.

    Science.gov (United States)

    Méndez-Samperio, P

    2016-10-01

    Currently, more than 9.0 million people develop acute pulmonary tuberculosis (TB) each year and about 1.5 million people worldwide die from this infection. Thus, developing vaccines to prevent active TB disease remains a priority. This article discusses recent progress in the development of new vaccines against TB and focusses on the main requirements for development of improved vaccines against Mycobacterium tuberculosis (M. tb). Over the last two decades, significant progress has been made in TB vaccine development, and some TB vaccine candidates have currently completed a phase III clinical trial. The potential public health benefits of these vaccines are possible, but it will need much more effort, including new global governance investment on this research. This investment would certainly be less than the annual global financial toll of TB treatment.

  4. Progress toward the development of universal influenza vaccines.

    Science.gov (United States)

    Hoft, Daniel F; Belshe, Robert B

    2014-01-01

    Influenza remains a major problem causing significant morbidity and mortality annually and periodic pandemics with the potential for 10-100 fold increased mortality. Conventional vaccines can be highly effective if generated each year to match currently circulating viruses. Ongoing research focuses on producing cross-protective vaccines that induce T cell and/ or antibody responses specific for highly conserved viral epitopes. The Saint Louis University Center for Vaccine Development (SLUCVD) is highly engaged in multiple efforts to generate universally relevant influenza vaccines.

  5. Therapeutic Prostate Cancer Vaccines: A Review of the Latest Developments

    OpenAIRE

    Mohebtash, Mahsa; Madan, Ravi A.; Gulley, James L.; Arlen, Philip M.

    2008-01-01

    Therapeutic cancer vaccines are well-tolerated immunotherapy modalities designed to activate the immune system to kill cancer cells without a significant effect on normal cells. Better understanding of tumor immunology has led to improved strategies in vaccine development, which have resulted in improved outcomes. This review discusses different types of cancer vaccines, focusing predominantly on prostate cancer vaccines because of the high prevalence of prostate cancer and the wide variety o...

  6. Antigen-Specific lgA B Memory Cell Responses to Shigella Antigens Elicited in Volunteers Immunized with Live Attenuated Shigella flexneri 2a Oral Vaccine Candidates

    Science.gov (United States)

    2011-01-01

    cell responses to Shigella antigens elicited in volunteers immunized with live attenuated Shigella flexneri 2a oral vaccine candidates J.K. Simona,b... Shigella ;. B cell memory; Immunoglobulin lgA; Mucosal immunity Abstract We studied the induction of antigen-specific lgA memory B cells (BM) in...volunteers who received live attenuated Shigella flexneri 2a vaccines. Subjects ingested a single oral dose of 107 , 108 or 109 CFU of S. flexneri 2a with

  7. Global Vaccine and Immunization Research Forum: Opportunities and challenges in vaccine discovery, development, and delivery.

    Science.gov (United States)

    Ford, Andrew Q; Touchette, Nancy; Hall, B Fenton; Hwang, Angela; Hombach, Joachim

    2016-03-18

    The World Health Organization, the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health, and the Bill & Melinda Gates Foundation convened the first Global Vaccine and Immunization Research Forum (GVIRF) in March 2014. This first GVIRF aimed to track recent progress of the Global Vaccine Action Plan research and development agenda, identify opportunities and challenges, promote partnerships in vaccine research, and facilitate the inclusion of all stakeholders in vaccine research and development. Leading scientists, vaccine developers, and public health officials from around the world discussed scientific and technical challenges in vaccine development, research to improve the impact of immunization, and regulatory issues. This report summarizes the discussions and conclusions from the forum participants.

  8. Status of vaccine research and development of vaccines for herpes simplex virus.

    Science.gov (United States)

    Johnston, Christine; Gottlieb, Sami L; Wald, Anna

    2016-06-03

    Herpes simplex virus type-1 (HSV-1) and -2 (HSV-2) are highly prevalent global pathogens which commonly cause recurrent oral and genital ulcerations. Less common but more serious complications include meningitis, encephalitis, neonatal infection, and keratitis. HSV-2 infection is a significant driver of the HIV epidemic, increasing the risk of HIV acquisition 3 fold. As current control strategies for genital HSV-2 infection, including antiviral therapy and condom use, are only partially effective, vaccines will be required to reduce infection. Both preventive and therapeutic vaccines for HSV-2 are being pursued and are in various stages of development. We will provide an overview of efforts to develop HSV-2 vaccines, including a discussion of the clinical need for an HSV vaccine, and status of research and development with an emphasis on recent insights from trials of vaccine candidates in clinical testing. In addition, we will touch upon aspects of HSV vaccine development relevant to low and middle income countries.

  9. Vaxjo: A Web-Based Vaccine Adjuvant Database and Its Application for Analysis of Vaccine Adjuvants and Their Uses in Vaccine Development

    Directory of Open Access Journals (Sweden)

    Samantha Sayers

    2012-01-01

    Full Text Available Vaccine adjuvants are compounds that enhance host immune responses to co-administered antigens in vaccines. Vaxjo is a web-based central database and analysis system that curates, stores, and analyzes vaccine adjuvants and their usages in vaccine development. Basic information of a vaccine adjuvant stored in Vaxjo includes adjuvant name, components, structure, appearance, storage, preparation, function, safety, and vaccines that use this adjuvant. Reliable references are curated and cited. Bioinformatics scripts are developed and used to link vaccine adjuvants to different adjuvanted vaccines stored in the general VIOLIN vaccine database. Presently, 103 vaccine adjuvants have been curated in Vaxjo. Among these adjuvants, 98 have been used in 384 vaccines stored in VIOLIN against over 81 pathogens, cancers, or allergies. All these vaccine adjuvants are categorized and analyzed based on adjuvant types, pathogens used, and vaccine types. As a use case study of vaccine adjuvants in infectious disease vaccines, the adjuvants used in Brucella vaccines are specifically analyzed. A user-friendly web query and visualization interface is developed for interactive vaccine adjuvant search. To support data exchange, the information of vaccine adjuvants is stored in the Vaccine Ontology (VO in the Web Ontology Language (OWL format.

  10. Isolation and characterization of monoclonal antibodies against an attenuated vaccine strain of equine herpesvirus type 1 (EHV-1).

    Science.gov (United States)

    Meyer, H; Hübert, P H

    1988-09-01

    The production and differentiation of monoclonal antibodies (mabs) against the Rac-H strain of EHV-1 used as an attenuated live vaccine to prevent rhinopneumonitis and abortion is described. Seven different antigenic sites were detected by the 15 mabs produced. EHV-1 specific mabs as well as EHV-1 and -4 common mabs could be established, allowing easy typing of EHV isolates. One mab recognized the vaccine strain only. This reaction was used to investigate a possible involvement of the vaccine strain in cases of abortion. Common antigenic determinants with EHV-1,-3,-4 and BHV-1 could also be detected, indicating the presence of highly-conserved epitopes of alpha-herpesviruses.

  11. Challenges facing the development of cancer vaccines.

    Science.gov (United States)

    Fishman, Mayer

    2014-01-01

    Just like any other effective immunization in medicine, cancer vaccines need to have antigens with particular specificity and immunostimulatory features, the immune responses to be elicited in the body, and therapeutic effect-regression or prevention of the cancer-must be meaningful and clinically observable. There are many choices for cancer antigens, such as tissue-specific proteins, cancer-specific proteins, class I- or class II-restricted peptides derived from those, or in situ and whole-cell-derived products are some examples. Another translational issue is that cancer patients are heterogeneous with respect to the extent to which the immune system is already activated with potential to impact the tumor growth or, conversely, the extent to which the immune system has been impaired through a prior and ongoing interaction with the tumor. Conventional or immunologic tests have potential to define a subset of patients with better chance or response, so that particular vaccines can be tested. Treatment of cancer patients is expensive, and trials are slow. To meet these challenges in practical terms will require not only careful scientific technical work for product development, coordination with clinicians to define patient subsets with diseases that can show responses, but also a comprehensive, practical implementation so that we can unlock the full potential of anticancer vaccines.

  12. Newcastle Disease Virus as a Vaccine Vector for Development of Human and Veterinary Vaccines.

    Science.gov (United States)

    Kim, Shin-Hee; Samal, Siba K

    2016-07-04

    Viral vaccine vectors have shown to be effective in inducing a robust immune response against the vaccine antigen. Newcastle disease virus (NDV), an avian paramyxovirus, is a promising vaccine vector against human and veterinary pathogens. Avirulent NDV strains LaSota and B1 have long track records of safety and efficacy. Therefore, use of these strains as vaccine vectors is highly safe in avian and non-avian species. NDV replicates efficiently in the respiratory track of the host and induces strong local and systemic immune responses against the foreign antigen. As a vaccine vector, NDV can accommodate foreign sequences with a good degree of stability and as a RNA virus, there is limited possibility for recombination with host cell DNA. Using NDV as a vaccine vector in humans offers several advantages over other viral vaccine vectors. NDV is safe in humans due to host range restriction and there is no pre-existing antibody to NDV in the human population. NDV is antigenically distinct from common human pathogens. NDV replicates to high titer in a cell line acceptable for human vaccine development. Therefore, NDV is an attractive vaccine vector for human pathogens for which vaccines are currently not available. NDV is also an attractive vaccine vector for animal pathogens.

  13. Risks associated with the use of live-attenuated vaccine poliovirus strains and the strategies for control and eradication of paralytic poliomyelitis.

    Science.gov (United States)

    Pliaka, Vaia; Kyriakopoulou, Zaharoula; Markoulatos, Panayotis

    2012-05-01

    The Global Polio Eradication Initiative was launched in 1988 with the aim to eliminate paralytic poliomyelitis. Two effective vaccines are available: inactivated polio vaccine (IPV) and oral polio vaccine (OPV). Since 1964, OPV has been used instead of IPV in most countries due to several economic and biological advantages. However, in rare cases, the live-attenuated Sabin strains of OPV revert to neurovirulence and cause vaccine-associated paralytic poliomyelitis in vaccinees or lead to emergence of vaccine-derived poliovirus strains. Attenuating mutations and recombination events have been associated with the reversion of vaccine strains to neurovirulence. The substitution of OPV with an improved new-generation IPV and the availability of new specific drugs against polioviruses are considered as future strategies for outbreak control and the eradication of paralytic poliomyelitis worldwide.

  14. Immunogenicity and protective efficacy of an elastase-dependent live attenuated swine influenza virus vaccine administered intranasally in pigs.

    Science.gov (United States)

    Masic, Aleksandar; Lu, Xinya; Li, Junwei; Mutwiri, George K; Babiuk, Lorne A; Brown, Earl G; Zhou, Yan

    2010-10-01

    Influenza A virus is an important respiratory pathogen of swine that causes significant morbidity and economic impact on the swine industry. Vaccination is the first choice for prevention and control of influenza infections. Live attenuated influenza vaccines (LAIV) are approved for use in humans and horses and their application provides broad protective immunity, however no LAIV against swine influenza virus (SIV) exists in the market. Previously we reported that an elastase-dependent mutant SIV A/Sw/Sk-R345V (R345V) derived from A/Sw/Saskatchewan/18789/02 (H1N1) (SIV/Sk02) is highly attenuated in pigs. Two intratracheal administrations of R345V induced strong cell-mediated and humoral immune responses and provided a high degree of protection to antigenically different SIV infection in pigs. Here we evaluated the immunogenicity and the protective efficacy of R345V against SIV infection by intranasal administration, the more practical route for vaccination of pigs in the field. Our data showed that intranasally administered R345V live vaccine is capable of inducing strong antigen-specific IFN-γ response from local tracheo-bronchial lymphocytes and antibody responses in serum and respiratory mucosa after two applications. Intranasal vaccination of R345V provided pigs with complete protection not only from parental wild type virus infection, but also from homologous antigenic variant A/Sw/Indiana/1726/88 (H1N1) infection. Moreover, intranasal administration of R345V conferred partial protection from heterologous subtypic H3N2 SIV infection in pigs. Thus, R345V elastase-dependent mutant SIV can serve as a live vaccine against antigenically different swine influenza viruses in pigs.

  15. Role of Metallic Nanoparticles in Vaccinology: Implications for Infectious Disease Vaccine Development

    Science.gov (United States)

    Marques Neto, Lázaro Moreira; Kipnis, André; Junqueira-Kipnis, Ana Paula

    2017-01-01

    Subunit vaccines are safer but less immunogenic than live-attenuated vaccines or whole cell inactivated vaccines. Adjuvants are used to enhance and modulate antigen (Ag) immunogenicity, aiming to induce a protective and long-lasting immune response. Several molecules and formulations have been studied for their adjuvanticity, but only seven have been approved to formulate human vaccines. Metallic nanoparticles (MeNPs), particularly those containing gold and iron oxides, are widely used in medicine for diagnosis and therapy and have been used as carriers for drugs and vaccines. However, little is known about the immune response elicited by MeNPs or about their importance in the development of new vaccines. There is evidence that these particles display adjuvant characteristics, promoting cell recruitment, antigen-presenting cell activation, cytokine production, and inducing a humoral immune response. This review focuses on the characteristics of MeNPs that could facilitate the induction of a cellular immune response, particularly T-helper 1 and T-helper 17, and their potential functions as adjuvants for subunit vaccines. PMID:28337198

  16. Innate and adaptive cellular immunity in flavivirus-naïve human recipients of a live-attenuated dengue serotype 3 vaccine produced in Vero cells (VDV3).

    Science.gov (United States)

    Sanchez, Violette; Gimenez, Sophie; Tomlinson, Brian; Chan, Paul K S; Thomas, G Neil; Forrat, Remi; Chambonneau, Laurent; Deauvieau, Florence; Lang, Jean; Guy, Bruno

    2006-06-05

    VDV3, a clonal derivative of the Mahidol live-attenuated dengue 3 vaccine was prepared in Vero cells. Despite satisfactory preclinical evaluation, VDV3 was reactogenic in humans. We explored whether immunological mechanisms contributed to this outcome by monitoring innate and adaptive cellular immune responses for 28 days after vaccination. While no variations were seen in serum IL12 or TNFalpha levels, a high IFNgamma secretion was detected from Day 8, concomitant to IFNalpha, followed by IL10. Specific Th1 and CD8 responses were detected on Day 28, with high IFNgamma/TNFalpha ratios. Vaccinees exhibited very homogeneous class I HLA profiles, and a new HLA B60-restricted CD8 epitope was identified in NS3. We propose that, among other factors, adaptive immunity may have contributed to reactogenicity, even after this primary vaccination. In addition, the unexpected discordance observed between preclinical results and clinical outcome in humans led us to reconsider some of our preclinical acceptance criteria. Lessons learned from these results will help us to pursue the development of safe and immunogenic vaccines.

  17. Study of the safety, immunogenicity and efficacy of attenuated and killed Leishmania (Leishmania major vaccines in a rhesus monkey (Macaca mulatta model of the human disease

    Directory of Open Access Journals (Sweden)

    VF Amaral

    2002-10-01

    Full Text Available We have compared the efficacy of two Leishmania (Leishmania major vaccines, one genetically attenuated (DHFR-TS deficient organisms, the other inactivated [autoclaved promastigotes (ALM with bacillus Calmete-Guérin (BCG], in protecting rhesus macaques (Macaca mulatta against infection with virulent L. (L. major. Positive antigen-specific recall proliferative response was observed in vaccinees (79% in attenuated parasite-vaccinated monkeys, versus 75% in ALM-plus-BCG-vaccinated animals, although none of these animals exhibited either augmented in vitro gamma interferon (IFN-g production or positive delayed-type hypersensitivity (DTH response to the leishmanin skin test prior to the challenge. Following challenge, there were significant differences in blastogenic responses (p < 0.05 between attenuated-vaccinated monkeys and naïve controls. In both vaccinated groups very low levels of antibody were found before challenge, which increased after infective challenge. Protective immunity did not follow vaccination, in that monkeys exhibited skin lesion at the site of challenge in all the groups. The most striking result was the lack of pathogenicity of the attenuated parasite, which persisted in infected animals for up to three months, but were incapable of causing disease under the conditions employed. We concluded that both vaccine protocols used in this study are safe in primates, but require further improvement for vaccine application.

  18. Vaxjo: A Web-Based Vaccine Adjuvant Database and Its Application for Analysis of Vaccine Adjuvants and Their Uses in Vaccine Development

    OpenAIRE

    Samantha Sayers; Guerlain Ulysse; Zuoshuang Xiang; Yongqun He

    2012-01-01

    Vaccine adjuvants are compounds that enhance host immune responses to co-administered antigens in vaccines. Vaxjo is a web-based central database and analysis system that curates, stores, and analyzes vaccine adjuvants and their usages in vaccine development. Basic information of a vaccine adjuvant stored in Vaxjo includes adjuvant name, components, structure, appearance, storage, preparation, function, safety, and vaccines that use this adjuvant. Reliable references are curated and cited. Bi...

  19. Oral vaccination of channel catfish against enteric septicemia of catfish (ESC) using a live attenuated Edwardsiella ictaluri isolate

    Science.gov (United States)

    Enteric septicemia of catfish (ESC), caused by Edwardsiella ictaluri, is the most problematic bacterial disease affecting catfish aquaculture in the southeastern United States. Efforts to develop an effective ESC vaccine have had limited industrial success. In commercial settings, ESC vaccines are t...

  20. Oral vaccination of channel catfish against enteric septicemia of catfish using a live attenuated Edwardsiella ictaluri isolate

    Science.gov (United States)

    Enteric septicemia of catfish (ESC), caused by Edwardsiella ictaluri, is the most problematic bacterial disease affecting catfish aquaculture in the southeastern United States. Efforts to develop an effective ESC vaccine have had limited industrial success. In commercial settings, ESC vaccines are...

  1. Measuring vaccine hesitancy: The development of a survey tool.

    Science.gov (United States)

    Larson, Heidi J; Jarrett, Caitlin; Schulz, William S; Chaudhuri, Mohuya; Zhou, Yuqing; Dube, Eve; Schuster, Melanie; MacDonald, Noni E; Wilson, Rose

    2015-08-14

    In March 2012, the SAGE Working Group on Vaccine Hesitancy was convened to define the term "vaccine hesitancy", as well as to map the determinants of vaccine hesitancy and develop tools to measure and address the nature and scale of hesitancy in settings where it is becoming more evident. The definition of vaccine hesitancy and a matrix of determinants guided the development of a survey tool to assess the nature and scale of hesitancy issues. Additionally, vaccine hesitancy questions were piloted in the annual WHO-UNICEF joint reporting form, completed by National Immunization Managers globally. The objective of characterizing the nature and scale of vaccine hesitancy issues is to better inform the development of appropriate strategies and policies to address the concerns expressed, and to sustain confidence in vaccination. The Working Group developed a matrix of the determinants of vaccine hesitancy informed by a systematic review of peer reviewed and grey literature, and by the expertise of the working group. The matrix mapped the key factors influencing the decision to accept, delay or reject some or all vaccines under three categories: contextual, individual and group, and vaccine-specific. These categories framed the menu of survey questions presented in this paper to help diagnose and address vaccine hesitancy.

  2. The immunizing effect and reactogenicity of two live attenuated mumps virus vaccines in Swedish schoolchildren.

    Science.gov (United States)

    Christenson, B; Heller, L; Böttiger, M

    1983-10-01

    An evaluation of the seroconversion and booster effects after vaccination with two different mumps vaccines, the Urabe Am 9 strain and the Jeryl Lynn strain, was carried out in schoolchildren. Four hundred and fifty-four schoolchildren aged 11 to 12 years with no previous history of mumps or mumps vaccination were enrolled for the study. The antibody responses were measured by serum neutralization (SN) and haemolysis-in-gel (HIG) tests. Of the 454 subjects, 130 were found to be initially seronegative. Two lots of different strengths of each vaccine were used to evaluate the relationships. The Urabe Am 9 vaccine lots had infectivity titres of 100 000 and 19 000 TCID50 per dose and the Jeryl Lynn vaccine titres of 59 000 and 28 000 TCID50 per dose. Only slight differences in seroconversion rates were seen between the lots. The overall seroconversion rate, measured by SN, was 94% for the Urabe Am 9 vaccine and 91% for the Jeryl Lynn vaccine, whereas the geometric mean titre for virus-neutralizing antibody in seroconverting children was 7.4 with the Urabe Am 9 vaccine and 10.7 with the Jeryl Lynn vaccine. In children who were seropositive prior to vaccination, a marked rise in antibody titre was found 8 weeks after vaccine injection indicating a booster effect. The miscellaneous post-vaccination side-effects were mild and inconsequential.

  3. Construction of Prophylactic Human Papillomavirus Type 16 L1 Capsid Protein Vaccine Delivered by Live Attenuated Shigella flexneri Strain sh42

    Institute of Scientific and Technical Information of China (English)

    Xiao-Feng YANG; Xin-Zhong QU; Kai WANG; Jin ZHENG; Lü-Sheng SI; Xiao-Ping DONG; Yi-Li WANG

    2005-01-01

    To express human papillomavirus (HPV) L1 capsid protein in the recombinant strain of Shigella and study the potential of a live attenuated Shigella-based HPV prophylactic vaccine in preventing HPV infection, the icsA/virG fragment of Shigella-based prokaryotic expression plasmid pHS3199 was constructed.HPV type 16 L 1 (HPV 16L 1) gene was inserted into plasmid pHS 3199 to form the pHS3199-HPV 16L1construct, and pHS3199-HPV16L1 was electroporated into a live attenuated Shigella strain sh42. Western blotting analysis showed that HPV 16L1 could be expressed stably in the recombinant strain sh42-HPV 16L1.Sereny test results were negative, which showed that the sh42-HPV16L1 lost virulence. However, the attenuated recombinant strain partially maintained the invasive property as indicated by the HeLa cell infection assay. Specific IgG, IgA antibody against HPV16L1 virus-like particles (VLPs) were detected in the sera,intestinal lavage and vaginal lavage from animals immunized by sh42-HPV 16L 1. The number of antibodysecreting cells in the spleen and draining lymph nodes were increased significantly compared with the control group. Sera from immunized animals inhibited murine hemagglutination induced by HPV16L1 VLPs, which indicated that the candidate vaccine could stimulate an efficient immune response in guinea pig's mucosal sites. This may be an effective strategy for the development of an HPV prophylactic oral vaccine.

  4. Guiding dengue vaccine development using knowledge gained from the success of the yellow fever vaccine.

    Science.gov (United States)

    Liang, Huabin; Lee, Min; Jin, Xia

    2016-01-01

    Flaviviruses comprise approximately 70 closely related RNA viruses. These include several mosquito-borne pathogens, such as yellow fever virus (YFV), dengue virus (DENV), and Japanese encephalitis virus (JEV), which can cause significant human diseases and thus are of great medical importance. Vaccines against both YFV and JEV have been used successfully in humans for decades; however, the development of a DENV vaccine has encountered considerable obstacles. Here, we review the protective immune responses elicited by the vaccine against YFV to provide some insights into the development of a protective DENV vaccine.

  5. Anti-Lyme Subunit Vaccines: Design and Development of Peptide-Based Vaccine Candidates.

    Science.gov (United States)

    Small, Christina M; Mwangi, Waithaka; Esteve-Gassent, Maria D

    2016-01-01

    Vaccinology today has been presented with several avenues to improve protection against infectious disease. The recent employment of the reverse vaccinology technique has changed the face of vaccine development against many pathogens, including Borrelia burgdorferi, the causative agent of Lyme disease. Using this technique, genomics and in silico analyses come together to identify potentially antigenic epitopes in a high-throughput fashion. The forward methodology of vaccine development was used previously to generate the only licensed human vaccine for Lyme disease, which is no longer on the market. Using reverse vaccinology to identify new antigens and isolate specific epitopes to protect against B. burgdorferi, subunit vaccines will be generated that lack reactogenic and nonspecific epitopes, yielding more effective vaccine candidates. Additionally, novel epitopes are being utilized and are presently in the commercialization pipeline both for B. burgdorferi and other spirochaetal pathogens. The versatility and methodology of the subunit protein vaccine are described as it pertains to Lyme disease from conception to performance evaluation.

  6. The blueprint for vaccine research & development: walking the path for better TB vaccines.

    Science.gov (United States)

    Lienhardt, Christian; Fruth, Uli; Greco, Michel

    2012-03-01

    Much progress has been made in TB vaccine research over the past ten years, and a series of new live genetically altered mycobacterial vaccines, viral-vectored vaccines and sub-unit vaccines composed of recombinant antigens are presently in clinical development phases. A series of challenges remain, however, to be addressed in order to develop new and better candidate TB vaccines, especially an expansion of our knowledge of what constitutes protective immunity in TB, the identification of the most suitable vaccination strategies, the capacity and infrastructure to conduct large-scale trials in endemic countries, the investment in vaccine manufacturing capacity, and the development of effective regulatory pathways that shorten review timelines. In this brief paper, we review how the Vaccine Blueprint places itself in the continuation and expansion of two groundbreaking initiatives taking place over the last two years, that is, an invigorated Global Plan to Stop TB 2011-2015 that gives a clear emphasis on Research and Development, and the International Roadmap for TB Research, that identifies key priorities for research on TB vaccines, spanning from the most fundamental research aspects to the more field-based epidemiological aspects.

  7. CD8 Knockout Mice Are Protected from Challenge by Vaccination with WR201, a Live Attenuated Mutant of Brucella melitensis

    Directory of Open Access Journals (Sweden)

    Samuel L. Yingst

    2013-01-01

    Full Text Available CD8+ T cells have been reported to play an important role in defense against B. abortus infection in mouse models. In the present report, we use CD8 knockout mice to further elucidate the role of these cells in protection from B. melitensis infection. Mice were immunized orally by administration of B. melitensis WR201, a purine auxotrophic attenuated vaccine strain, then challenged intranasally with B. melitensis 16M. In some experiments, persistence of WR201 in the spleens of CD8 knockout mice was slightly longer than that in the spleens of normal mice. However, development of anti-LPS serum antibody, antigen-induced production of γ-interferon (IFN-γ by immune splenic lymphocytes, protection against intranasal challenge, and recovery of nonimmunized animals from intranasal challenge were similar between normal and knockout animals. Further, primary Brucella infection was not exacerbated in perforin knockout and Fas-deficient mice and these animals’ anti-Brucella immune responses were indistinguishable from those of normal mice. These results indicate that CD8+ T cells do not play an essential role as either cytotoxic cells or IFN-γ producers, yet they do participate in a specific immune response to immunization and challenge in this murine model of B. melitensis infection.

  8. Rational design of a live attenuated dengue vaccine: 2'-o-methyltransferase mutants are highly attenuated and immunogenic in mice and macaques.

    Directory of Open Access Journals (Sweden)

    Roland Züst

    Full Text Available Dengue virus is transmitted by Aedes mosquitoes and infects at least 100 million people every year. Progressive urbanization in Asia and South-Central America and the geographic expansion of Aedes mosquito habitats have accelerated the global spread of dengue, resulting in a continuously increasing number of cases. A cost-effective, safe vaccine conferring protection with ideally a single injection could stop dengue transmission. Current vaccine candidates require several booster injections or do not provide protection against all four serotypes. Here we demonstrate that dengue virus mutants lacking 2'-O-methyltransferase activity are highly sensitive to type I IFN inhibition. The mutant viruses are attenuated in mice and rhesus monkeys and elicit a strong adaptive immune response. Monkeys immunized with a single dose of 2'-O-methyltransferase mutant virus showed 100% sero-conversion even when a dose as low as 1,000 plaque forming units was administrated. Animals were fully protected against a homologous challenge. Furthermore, mosquitoes feeding on blood containing the mutant virus were not infected, whereas those feeding on blood containing wild-type virus were infected and thus able to transmit it. These results show the potential of 2'-O-methyltransferase mutant virus as a safe, rationally designed dengue vaccine that restrains itself due to the increased susceptibility to the host's innate immune response.

  9. Porcine circovirus type 2 (PCV2 infection decreases the efficacy of an attenuated classical swine fever virus (CSFV vaccine

    Directory of Open Access Journals (Sweden)

    Huang Yu-Liang

    2011-12-01

    Full Text Available Abstract The Lapinized Philippines Coronel (LPC vaccine, an attenuated strain of classical swine fever virus (CSFV, is an important tool for the prevention and control of CSFV infection and is widely and routinely used in most CSF endemic areas, including Taiwan. The aim of this study was to investigate whether PCV2 infection affects the efficacy of the LPC vaccine. Eighteen 6-week-old, cesarean-derived and colostrum-deprived (CDCD, crossbred pigs were randomly assigned to four groups. A total of 105.3 TCID50 of PCV2 was experimentally inoculated into pigs through both intranasal and intramuscular routes at 0 days post-inoculation (dpi followed by LPC vaccination 12 days later. All the animals were challenged with wild-type CSFV (ALD stain at 27 dpi and euthanized at 45 dpi. Following CSFV challenge, the LPC-vaccinated pigs pre-inoculated with PCV2 showed transient fever, viremia, and viral shedding in the saliva and feces. The number of IgM+, CD4+CD8-CD25+, CD4+CD8+CD25+, and CD4-CD8+CD25+ lymphocyte subsets and the level of neutralizing antibodies against CSFV were significantly higher in the animals with LPC vaccination alone than in the pigs with PCV2 inoculation/LPC vaccination. In addition, PCV2-derived inhibition of the CSFV-specific cell proliferative response of peripheral blood mononuclear cells (PBMCs was demonstrated in an ex vivo experiment. These findings indicate that PCV2 infection decreases the efficacy of the LPC vaccine. This PCV2-derived interference may not only allow the invasion of wild-type CSFV in pig farms but also increases the difficulty of CSF prevention and control in CSF endemic areas.

  10. Comparison of the immunogenicity and safety of measles vaccine administered alone or with live, attenuated Japanese encephalitis SA 14-14-2 vaccine in Philippine infants.

    Science.gov (United States)

    Gatchalian, Salvacion; Yao, Yafu; Zhou, Benli; Zhang, Lei; Yoksan, Sutee; Kelly, Kim; Neuzil, Kathleen M; Yaïch, Mansour; Jacobson, Julie

    2008-04-24

    Japanese encephalitis (JE) virus is a major cause of disease, disability, and death in Asia. An effective, live, attenuated JE vaccine (LJEV) is available; however, its use in routine immunization schedules is hampered by lack of data on concomitant administration with measles vaccine (MV). This study evaluated the immunogenicity and reactogenicity of LJEV and MV when administered at the same or separate study visits in infants younger than 1 year of age. Three groups of healthy infants were randomized to receive LJEV at age of 8 months and MV at 9 months (Group 1; n=100); MV and LJEV together at 9 months (Group 2; n=236); or MV and LJEV at 9 and 10 months, respectively (Group 3; n=235). Blood was obtained 4 weeks after each vaccine administration to determine antibody levels for measles and JE. Reactogenicity was assessed by parental diaries and clinic visits. Four weeks after immunization, measles seroprotection rates (defined as > or =340 mIU/ml) were high and comparable in all three groups and specifically, rates in the combined MV-LJEV (Group 2) were not statistically inferior to those in Group 3 receiving MV separately (96% versus 100%, respectively). Likewise, the LJEV seroprotection rates were high and similar between the three groups. The reactogenicity profiles of the three vaccine schedules were also analogous. LJEV and MV administered together are well tolerated and immunogenic in infants younger than 1 year. These results should facilitate incorporation of LJEV into routine immunization schedules with MV.

  11. Large animal models for vaccine development and testing.

    Science.gov (United States)

    Gerdts, Volker; Wilson, Heather L; Meurens, Francois; van Drunen Littel-van den Hurk, Sylvia; Wilson, Don; Walker, Stewart; Wheler, Colette; Townsend, Hugh; Potter, Andrew A

    2015-01-01

    The development of human vaccines continues to rely on the use of animals for research. Regulatory authorities require novel vaccine candidates to undergo preclinical assessment in animal models before being permitted to enter the clinical phase in human subjects. Substantial progress has been made in recent years in reducing and replacing the number of animals used for preclinical vaccine research through the use of bioinformatics and computational biology to design new vaccine candidates. However, the ultimate goal of a new vaccine is to instruct the immune system to elicit an effective immune response against the pathogen of interest, and no alternatives to live animal use currently exist for evaluation of this response. Studies identifying the mechanisms of immune protection; determining the optimal route and formulation of vaccines; establishing the duration and onset of immunity, as well as the safety and efficacy of new vaccines, must be performed in a living system. Importantly, no single animal model provides all the information required for advancing a new vaccine through the preclinical stage, and research over the last two decades has highlighted that large animals more accurately predict vaccine outcome in humans than do other models. Here we review the advantages and disadvantages of large animal models for human vaccine development and demonstrate that much of the success in bringing a new vaccine to market depends on choosing the most appropriate animal model for preclinical testing.

  12. Selection and characterization of vaccine strain for Enterovirus 71 vaccine development.

    Science.gov (United States)

    Chang, Jui-Yuan; Chang, Cheng-Peng; Tsai, Hutchinson Hau-Pong; Lee, Chen-Dou; Lian, Wei-Cheng; Ih-Jen-Su; Sai, I-Hsi; Liu, Chia-Chyi; Chou, Ai-Hsiang; Lu, Ya-Jung; Chen, Ching-Yao; Lee, Pi-Hsiu; Chiang, Jen-Ron; Chong, Pele Choi-Sing

    2012-01-17

    Enterovirus 71 (EV71) has recently emerged as an important neurotropic virus in Asia because effective medications and prophylactic vaccine against EV71 infection are not available. Based on the success of inactivated poliovirus vaccine, the Vero cell-based chemically inactivated EV71 vaccine candidate could be developed. Identification of EV71 vaccine strain which can grow to high titer in Vero cell and induce cross-genotype virus neutralizing antibody responses represents the first step in vaccine development. In this report we describe the characterization and validation of a clinical isolate E59 belonging to B4 sub-genotype based on VP1 genetic analysis. Before selected as the vaccine strain, the genetic stability of E59 in passage had been analyzed based on the nucleotide sequences obtained from the Master Virus Seed, Working Seed banks and the virus harvested from the production lots, and found to be identical to those found in the original isolate. These results indicate that E59 vaccine strain has strong genetic stability in passage. Using this vaccine strain the prototype EV71 vaccine candidate was produced from 20L of Vero cell grown in serum-containing medium. The production processes were investigated, characterized and quantified to establish the potential vaccine manufacturing process including the time for virus harvest, the membrane for diafiltration and concentration, the gel-filtration chromatography for the down-stream virus purification, and the methods for viral inactivation. Finally, the inactivated virion vaccine candidate containing sub-microgram of viral proteins formulated with alum adjuvant was found to induce strong virus neutralizing antibody responses in mice and rabbits. Therefore, these results provide valuable information for cell-based EV71 vaccine development.

  13. HIV-1 Polymorphism: a Challenge for Vaccine Development - A Review

    Directory of Open Access Journals (Sweden)

    Morgado MG

    2002-01-01

    Full Text Available The perspective for the development of anti-HIV/AIDS vaccines became a target sought by several research groups and pharmaceutical companies. However, the complex virus biology in addition to a striking genetic variability and the limited understanding of the immunological correlates of protection have made this an enormous scientific challenge not overcome so far. In this review we presented an updating of HIV-1 subtypes and recombinant viruses circulating in South American countries, focusing mainly on Brazil, as one of the challenges for HIV vaccine development. Moreover, we discussed the importance of stimulating developing countries to participate in the process of vaccine evaluation, not only testing vaccines according to already defined protocols, but also working together with them, in order to take into consideration their local information on virus diversity and host genetic background relevant for the vaccine development and testing, as well as including local virus based reagents to evaluate the immunogenicity of the candidate vaccines.

  14. Developing Countries Vaccine Manufacturers Network: doing good by making high-quality vaccines affordable for all.

    Science.gov (United States)

    Pagliusi, Sonia; Leite, Luciana C C; Datla, Mahima; Makhoana, Morena; Gao, Yongzhong; Suhardono, Mahendra; Jadhav, Suresh; Harshavardhan, Gutla V J A; Homma, Akira

    2013-04-18

    The Developing Countries Vaccine Manufacturers Network (DCVMN) is a unique model of a public and private international alliance. It assembles governmental and private organizations to work toward a common goal of manufacturing and supplying high-quality vaccines at affordable prices to protect people around the world from known and emerging infectious diseases. Together, this group of manufacturers has decades of experience in manufacturing vaccines, with technologies, know-how, and capacity to produce more than 40 vaccines types. These manufacturers have already contributed more than 30 vaccines in various presentations that have been prequalified by the World Health Organization for use by global immunization programmes. Furthermore, more than 45 vaccines are in the pipeline. Recent areas of focus include vaccines to protect against rotavirus, human papillomavirus (HPV), Japanese encephalitis, meningitis, hepatitis E, poliovirus, influenza, and pertussis, as well as combined pentavalent vaccines for children. The network has a growing number of manufacturers that produce a growing number of products to supply the growing demand for vaccines in developing countries.

  15. Vaccine development and deployment: opportunities and challenges in India.

    Science.gov (United States)

    Gupta, Sanjukta Sen; Nair, G Balakrish; Arora, Narendra Kumar; Ganguly, Nirmal Kumar

    2013-04-18

    The Indian economy is among the fastest growing economies in the world. The country forayed into manufacturing vaccines starting with a few public-sector manufacturers in the late 1960s but has emerged as the major supplier of basic Expanded Programme on Immunization vaccines to the United Nations Children's Fund (UNICEF) because of substantial private-sector investment in the area. The Indian vaccine industry is now able to produce new and more complex vaccines such as the meningitis, Haemophilus influenzae type b, and pneumococcal conjugate vaccines, rotavirus vaccine and influenza A (H1N1) vaccines. This has been possible because of an attractive investment environment, effective and innovative governmental support, international partnerships and the growing in-country technical work force. A large number of vaccines, including those mentioned, is available and administered in the private sector within the country, but India has been slow in introducing new vaccines in its publically funded programs. Growth in the economy and technological accomplishments are not reflected in a reduction in health inequalities, and India continues to contribute significantly to global child mortality figures. This paper reviews the development of the Indian vaccine industry, policy support for it and its current status. It also highlights opportunities and challenges for the introduction of new and underutilized vaccines at home.

  16. A History of the Development of Brucella Vaccines

    Directory of Open Access Journals (Sweden)

    Eric Daniel Avila-Calderón

    2013-01-01

    Full Text Available Brucellosis is a worldwide zoonosis affecting animal and human health. In the last several decades, much research has been performed to develop safer Brucella vaccines to control the disease mainly in animals. Till now, no effective human vaccine is available. The aim of this paper is to review and discuss the importance of methodologies used to develop Brucella vaccines in pursuing this challenge.

  17. Design of nanomaterial based systems for novel vaccine development.

    Science.gov (United States)

    Yang, Liu; Li, Wen; Kirberger, Michael; Liao, Wenzhen; Ren, Jiaoyan

    2016-05-26

    With lower cell toxicity and higher specificity, novel vaccines have been greatly developed and applied to emerging infectious and chronic diseases. However, due to problems associated with low immunogenicity and complicated processing steps, the development of novel vaccines has been limited. With the rapid development of bio-technologies and material sciences, nanomaterials are playing essential roles in novel vaccine design. Incorporation of nanomaterials is expected to improve delivery efficiency, to increase immunogenicity, and to reduce the administration dosage. The purpose of this review is to discuss the employment of nanomaterials, including polymeric nanoparticles, liposomes, virus-like particles, peptide amphiphiles micelles, peptide nanofibers and microneedle arrays, in vaccine design. Compared to traditional methods, vaccines made from nanomaterials display many appealing benefits, including precise stimulation of immune responses, effective targeting to certain tissue or cells, and desirable biocompatibility. Current research suggests that nanomaterials may improve our approach to the design and delivery of novel vaccines.

  18. 麻腮风联合减毒活疫苗中新霉素残留量微生物学检测方法的建立%Development of a microbiological method for detection of residual neomycin content in live attenuated measles, mumps and rubella combined vaccine

    Institute of Scientific and Technical Information of China (English)

    常艳; 杨美琴; 李景云; 胡昌勤

    2013-01-01

    目的 建立麻腮风联合减毒活疫苗(Measles,mumps and rubella vaccine,MMR)中新霉素残留量的微生物学检测方法,并进行验证.方法 采用管碟法测定新霉素含量,并以新霉素浓度的对数和抑菌圈半径的平方值绘制标准直线.对建立的方法进行同质性、最低检出限、加样回收率及精密度验证.结果 建立的方法在新霉素浓度为0.24~4.18U/ml的范围内线性关系良好,R2=0.997 8;新霉素标准品与供试品的剂量反应直线的回归方程的斜率差异无统计学意义(P>0.05),即标准品与供试品间可满足同质性的要求;该方法的最低检出限为0.05 U/ml;该方法检测新霉素浓度约为0.5和1.0 U/ml的混合溶液,回收率分别为99.22%和99.86%;日内RSD为1.09%,日间RSD为1.42%.结论 建立了一种适用于定量测定MMR中新霉素残留量的微生物学检测方法,该方法操作简便,结果可靠,可用于MMR的常规质量控制.%Objective To develop and verify a microbiological method for detection of residual neomycin content in live attenuated measles, mumps and rubella combined vaccine (MMR). Methods The neomycin content was determined by cylinder plate method, based on which a standard curve was plotted with the log of neomycin concentration against the square of radius of bacteriostatic ring. The developed method was verified for homogeneity, limit of detection (LOD), recovery rate and precision. Results The developed method showed good linearity within a neomycin concentration range of 0. 24 ~ 4. 18 U/ ml (R2 - 0. 997 8). No significant difference was observed between the slopes of dose-response curves of standard neomycin and test samples (P> 0. 05), which met the requirements for homogeneity. The LOD of the developed method was 0. 05 U / ml. By the developed method, the recovery rates of mixed samples at neomycin concentrations of 0. 5 and 1. 0 U/ml were 99. 22% and 99. 86%, while the intra- and inter-RSDs were 1. 09

  19. A DNA vaccine against yellow fever virus: development and evaluation.

    Directory of Open Access Journals (Sweden)

    Milton Maciel

    2015-04-01

    Full Text Available Attenuated yellow fever (YF virus 17D/17DD vaccines are the only available protection from YF infection, which remains a significant source of morbidity and mortality in the tropical areas of the world. The attenuated YF virus vaccine, which is used worldwide, generates both long-lasting neutralizing antibodies and strong T-cell responses. However, on rare occasions, this vaccine has toxic side effects that can be fatal. This study presents the design of two non-viral DNA-based antigen formulations and the characterization of their expression and immunological properties. The two antigen formulations consist of DNA encoding the full-length envelope protein (p/YFE or the full-length envelope protein fused to the lysosomal-associated membrane protein signal, LAMP-1 (pL/YFE, aimed at diverting antigen processing/presentation through the major histocompatibility complex II precursor compartments. The immune responses triggered by these formulations were evaluated in H2b and H2d backgrounds, corresponding to the C57Bl/6 and BALB/c mice strains, respectively. Both DNA constructs were able to induce very strong T-cell responses of similar magnitude against almost all epitopes that are also generated by the YF 17DD vaccine. The pL/YFE formulation performed best overall. In addition to the T-cell response, it was also able to stimulate high titers of anti-YF neutralizing antibodies comparable to the levels elicited by the 17DD vaccine. More importantly, the pL/YFE vaccine conferred 100% protection against the YF virus in intracerebrally challenged mice. These results indicate that pL/YFE DNA is an excellent vaccine candidate and should be considered for further developmental studies.

  20. A DNA vaccine against yellow fever virus: development and evaluation.

    Science.gov (United States)

    Maciel, Milton; Cruz, Fábia da Silva Pereira; Cordeiro, Marli Tenório; da Motta, Márcia Archer; Cassemiro, Klécia Marília Soares de Melo; Maia, Rita de Cássia Carvalho; de Figueiredo, Regina Célia Bressan Queiroz; Galler, Ricardo; Freire, Marcos da Silva; August, Joseph Thomas; Marques, Ernesto T A; Dhalia, Rafael

    2015-04-01

    Attenuated yellow fever (YF) virus 17D/17DD vaccines are the only available protection from YF infection, which remains a significant source of morbidity and mortality in the tropical areas of the world. The attenuated YF virus vaccine, which is used worldwide, generates both long-lasting neutralizing antibodies and strong T-cell responses. However, on rare occasions, this vaccine has toxic side effects that can be fatal. This study presents the design of two non-viral DNA-based antigen formulations and the characterization of their expression and immunological properties. The two antigen formulations consist of DNA encoding the full-length envelope protein (p/YFE) or the full-length envelope protein fused to the lysosomal-associated membrane protein signal, LAMP-1 (pL/YFE), aimed at diverting antigen processing/presentation through the major histocompatibility complex II precursor compartments. The immune responses triggered by these formulations were evaluated in H2b and H2d backgrounds, corresponding to the C57Bl/6 and BALB/c mice strains, respectively. Both DNA constructs were able to induce very strong T-cell responses of similar magnitude against almost all epitopes that are also generated by the YF 17DD vaccine. The pL/YFE formulation performed best overall. In addition to the T-cell response, it was also able to stimulate high titers of anti-YF neutralizing antibodies comparable to the levels elicited by the 17DD vaccine. More importantly, the pL/YFE vaccine conferred 100% protection against the YF virus in intracerebrally challenged mice. These results indicate that pL/YFE DNA is an excellent vaccine candidate and should be considered for further developmental studies.

  1. Dengue type 4 live-attenuated vaccine viruses passaged in vero cells affect genetic stability and dengue-induced hemorrhaging in mice.

    Directory of Open Access Journals (Sweden)

    Hsiang-Chi Lee

    Full Text Available Most live-attenuated tetravalent dengue virus vaccines in current clinical trials are produced from Vero cells. In a previous study we demonstrated that an infectious cDNA clone-derived dengue type 4 (DEN-4 virus retains higher genetic stability in MRC-5 cells than in Vero cells. For this study we investigated two DEN-4 viruses: the infectious cDNA clone-derived DEN-4 2A and its derived 3' NCR 30-nucleotide deletion mutant DEN-4 2AΔ30, a vaccine candidate. Mutations in the C-prM-E, NS2B-NS3, and NS4B-NS5 regions of the DEN genome were sequenced and compared following cell passages in Vero and MRC-5 cells. Our results indicate stronger genetic stability in both viruses following MRC-5 cell passages, leading to significantly lower RNA polymerase error rates when the DEN-4 virus is used for genome replication. Although no significant increases in virus titers were observed following cell passages, DEN-4 2A and DEN-4 2AΔ30 virus titers following Vero cell passages were 17-fold to 25-fold higher than titers following MRC-5 cell passages. Neurovirulence for DEN-4 2A and DEN-4 2AΔ30 viruses increased significantly following passages in Vero cells compared to passages in MRC-5 cells. In addition, more severe DEN-induced hemorrhaging in mice was noted following DEN-4 2A and DEN-4 2AΔ30 passages in Vero cells compared to passages in MRC-5 cells. Target mutagenesis performed on the DEN-4 2A infectious clone indicated that single point mutation of E-Q(438H, E-V(463L, NS2B-Q(78H, and NS2B-A(113T imperatively increased mouse hemorrhaging severity. The relationship between amino acid mutations acquired during Vero cell passage and enhanced DEN-induced hemorrhages in mice may be important for understanding DHF pathogenesis, as well as for the development of live-attenuated dengue vaccines. Taken together, the genetic stability, virus yield, and DEN-induced hemorrhaging all require further investigation in the context of live-attenuated DEN vaccine

  2. DEVELOPEMENT OF A LIGHT ATTENUATOR BASED ON GLASSY REFLECTIONS

    Directory of Open Access Journals (Sweden)

    K. Ferria

    2015-07-01

    Full Text Available The light intensity control of a luminous source is a very important operation in many optical applications. Several types of light attenuator exploiting different optical phenomena like diffraction, absorption, and reflection exist and they differ principally in the maximum attenuation rate, the control range, the sensitivity and the spectral band. In the presented work, we have developed and designed a light attenuator based on the progressive decrease of the transmitted light intensity, when it undergoes multiple vitreous reflections across eight plates glasses arranged in a roof shape. Several tests were carried out using a laser light as a source. We have shown that the attenuation rate can be controlled by the choice of the incidence angle on the glasses slides, in addition we have confirmed, for the case of perpendicular polarization of the laser light, that the attenuation obeys to a linear function. The obtained results are very close to those predicted theoretically.

  3. A Bioinformatics Method for the Design of Live Attenuated Virus Vaccine Utilizing Host MicroRNA Response Elements.

    Science.gov (United States)

    Wichadakul, Duangdao

    2016-01-01

    The host microRNA machinery has been employed to control viral replication. To improve safety for live attenuated virus vaccines, the binding sites of the host microRNAs, so-called microRNA response elements (MREs), were incorporated into the virus sequences. These MREs were typically designed for a specific host microRNA and virus sequence with the effectiveness evaluated by experimental trials. Here, we describe a computational flow that can be used to simultaneously design and prioritize the effective MREs in large-scale.

  4. Use of RapidChek® SELECT™ Salmonella to detect shedding of live attenuated Salmonella enterica serovar Typhi vaccine strains.

    Science.gov (United States)

    Brenneman, Karen E; McDonald, Caitlin; Kelly-Aehle, Sandra M; Roland, Kenneth L; Curtiss, Roy

    2012-05-01

    Identification of individuals shedding Salmonella enterica serovar Typhi in stool is imperative during clinical trial safety evaluations. Recovery of live attenuated S. Typhi vaccine strains can be difficult because the mutations necessary for safety in humans often compromise survival in stringent selective enrichment media. RapidChek® SELECT™ Salmonella is a highly sensitive detection method for S. enterica species which utilizes a bacteriophage cocktail designed to reduce the growth of competitor microbes in mildly selective enrichment medium. Detection of Salmonella is enhanced by means of a Salmonella-specific antibody strip targeted to lipopolysaccharide. The RapidChek® SELECT™ Salmonella method was compared to conventional enrichment and plating methods to determine the most sensitive method for detecting attenuated S. Typhi strains in human stool samples. Although traditional enrichment strategies were more sensitive to the presence of wild-type S. Typhi, RapidChek® SELECT™ Salmonella was superior at detecting attenuated strains of S. Typhi. Strains containing a wide variety of attenuating mutations were detected with equal sensitivity as the wild type by RapidChek® SELECT™ Salmonella. The presence of Vi capsule or mutations which affected O-antigen synthesis (Δpmi, ΔgalE) did not decrease the sensitivity of the RapidChek® SELECT™ Salmonella assay.

  5. Beyond empiricism: informing vaccine development through innate immunity research.

    Science.gov (United States)

    Levitz, Stuart M; Golenbock, Douglas T

    2012-03-16

    Although a great public heath success, vaccines provide suboptimal protection in some patient populations and are not available to protect against many infectious diseases. Insights from innate immunity research have led to a better understanding of how existing vaccines work and have informed vaccine development. New adjuvants and delivery systems are being designed based upon their capacity to stimulate innate immune sensors and target antigens to dendritic cells, the cells responsible for initiating adaptive immune responses. Incorporating these adjuvants and delivery systems in vaccines can beneficially alter the quantitative and qualitative nature of the adaptive immune response, resulting in enhanced protection.

  6. United States of America Department of Health and Human Services support for advancing influenza vaccine manufacturing in the developing world.

    Science.gov (United States)

    Perdue, Michael L; Bright, Rick A

    2011-07-01

    five years of age. In addition to achievements described in this issue of Vaccine, the programme has been successful from the US perspective because the working relationships established between the US Department of Health and Human Services' (HHS) Assistant Secretary for Preparedness and Response Biomedical Advanced Research and Development Authority (BARDA) and its partners have assisted in advancing influenza vaccine development at many different levels. A few examples of BARDA's support include: establishment of egg-based influenza vaccine production from "scratch", enhancement of live attenuated influenza vaccine (LAIV) production techniques and infrastructure, completion of fill/finish operations for imported bulk vaccine, and training in advanced bio-manufacturing techniques. These HHS-supported programmes have been well-received internationally, and we and our partners hope the successes will stimulate even more interest within the international community in maximizing global production levels for influenza vaccines.

  7. Immunogenicity of recombinant attenuated Salmonella enterica serovar Typhimurium vaccine strains carrying a gene that encodes Eimeria tenella antigen SO7.

    Science.gov (United States)

    Konjufca, Vjollca; Jenkins, Mark; Wang, Shifeng; Juarez-Rodriguez, Maria Dolores; Curtiss, Roy

    2008-12-01

    Recombinant attenuated Salmonella vaccines against avian coccidiosis were developed to deliver Eimeria species antigens to the lymphoid tissues of chickens via the type 3 secretion system (T3SS) and the type 2 secretion system (T2SS) of Salmonella. For antigen delivery via the T3SS, the Eimeria tenella gene encoding sporozoite antigen SO7 was cloned downstream of the translocation domain of the Salmonella enterica serovar Typhimurium sopE gene in the parental pYA3868 and pYA3870 vectors to generate pYA4156 and pYA4157. Newly constructed T3SS vectors were introduced into host strain chi8879 (Delta phoP233 Delta sptP1033::xylE Delta asdA16), an attenuated derivative of the highly virulent UK-1 strain. The SopE-SO7 fusion protein was secreted by the T3SS of Salmonella. The vector pYA4184 was constructed for delivery of the SO7 antigen via the T2SS. The SO7 protein was toxic to Salmonella when larger amounts were synthesized; thus, the synthesis of this protein was placed under the control of the lacI repressor gene, whose expression in turn was dependent on the amount of available arabinose in the medium. The pYA4184 vector was introduced into host strain chi9242 (Delta phoP233 Delta asdA16 Delta araBAD23 Delta relA198::araC P(BAD) lacI TT [TT is the T4ipIII transcription terminator]). In addition to SO7, for immunization and challenge studies we used the EAMZ250 antigen of Eimeria acervulina, which was previously shown to confer partial protection against E. acervulina challenge when it was delivered via the T3SS. Immunization of chickens with a combination of the SO7 and EAMZ250 antigens delivered via the T3SS induced superior protection against challenge by E. acervulina. In contrast, chickens immunized with SO7 that was delivered via the T2SS of Salmonella were better protected from challenge by E. tenella.

  8. Cellular Immune Responses to Live Attenuated Japanese Encephalitis (JE) Vaccine SA14-14-2 in Adults in a JE/Dengue Co-Endemic Area

    Science.gov (United States)

    Tatullo, Filippo; Bali, Tanushka; Ravi, Vasanthapuram; Soni, Mohammed; Chan, Sajesh; Chib, Savita; Venkataswamy, Manjunatha M.; Fadnis, Prachi; Yaïch, Mansour; Fernandez, Stefan; Klenerman, Paul; Satchidanandam, Vijaya; Solomon, Tom

    2017-01-01

    Background Japanese encephalitis (JE) virus (JEV) causes severe epidemic encephalitis across Asia, for which the live attenuated vaccine SA14-14-2 is being used increasingly. JEV is a flavivirus, and is closely related to dengue virus (DENV), which is co-endemic in many parts of Asia, with clinically relevant interactions. There is no information on the human T cell response to SA14-14-2, or whether responses to SA14-14-2 cross-react with DENV. We used live attenuated JE vaccine SA14-14-2 as a model for studying T cell responses to JEV infection in adults, and to determine whether these T cell responses are cross-reactive with DENV, and other flaviviruses. Methods We conducted a single arm, open label clinical trial (registration: clinicaltrials.gov NCT01656200) to study T cell responses to SA14-14-2 in adults in South India, an area endemic for JE and dengue. Results Ten out of 16 (62.5%) participants seroconverted to JEV SA14-14-2, and geometric mean neutralising antibody (NAb) titre was 18.5. Proliferation responses were commonly present before vaccination in the absence of NAb, indicating a likely high degree of previous flavivirus exposure. Thirteen of 15 (87%) participants made T cell interferon-gamma (IFNγ) responses against JEV proteins. In four subjects tested, at least some T cell epitopes mapped cross-reacted with DENV and other flaviviruses. Conclusions JEV SA14-14-2 was more immunogenic for T cell IFNγ than for NAb in adults in this JE/DENV co-endemic area. The proliferation positive, NAb negative combination may represent a new marker of long term immunity/exposure to JE. T cell responses can cross-react between JE vaccine and DENV in a co-endemic area, illustrating a need for greater knowledge on such responses to inform the development of next-generation vaccines effective against both diseases. Trial Registration clinicaltrials.gov (NCT01656200) PMID:28135273

  9. The introduction of new vaccines into developing countries II. Vaccine financing.

    Science.gov (United States)

    Mahoney, R T; Ramachandran, S; Xu, Z

    2000-06-01

    The development of new vaccines for important childhood diseases presents an unparalleled opportunity for disease control but also a significant problem for developing countries: how to pay for them. To help address this problem, the William H. Gates Foundation has established a Global Fund for Children's Vaccine. In this paper, we discuss the allocation of this and other similar funds, which we call Global Funds. We propose that allocation of the Global Funds to individual countries be guided in part by a Vaccine Procurement Baseline (VPB). The VPB would set a minimum of 0.01% of gross national product (GNP) as an amount each developing country would devote to its own vaccine procurement. When this amount is not sufficient to procure the vaccines needed by a developing country, the Global Funds would meet the shortfall. The amount required of donors to maintain the Global Funds would be about $403 million per year for both existing EPI vaccines as well as for a hypothetical group of five new vaccines costing $0.50 per dose and requiring three doses per child. Including program costs, poor developing countries currently spend about 0.13% of GNP on EPI immunizations. In contrast, the United States, as one example donor country, spends about 0.035% of GNP for childhood immunization including several new vaccines. This paper analyzes the Global Funds requirements for hepatitis B and Haemophilus influenzae type b (Hib) vaccines. After a ramp-up period, needier countries would eventually require about $62 million for hepatitis B and $282 million for Hib at current prices. Various additional criteria could be used to qualify countries for participation in the Global Funds.

  10. Construction and evaluation of V. cholerae O139 mutant, VCUSM21P, as a safe live attenuated cholera vaccine.

    Science.gov (United States)

    Murugaiah, Chandrika; Nik Mohd Noor, Nik Zuraina; Mustafa, Shyamoli; Manickam, Ravichandran; Pattabhiraman, Lalitha

    2014-01-01

    Cholera is a major infectious disease, affecting millions of lives annually. In endemic areas, implementation of vaccination strategy against cholera is vital. As the use of safer live vaccine that can induce protective immunity against Vibrio cholerae O139 infection is a promising approach for immunization, we have designed VCUSM21P, an oral cholera vaccine candidate, which has ctxA that encodes A subunit of ctx and mutated rtxA/C, ace and zot mutations. VCUSM21P was found not to disassemble the actin of HEp2 cells. It colonized the mice intestine approximately 1 log lower than that of the Wild Type (WT) strain obtained from Hospital Universiti Sains Malaysia. In the ileal loop assay, unlike WT challenge, 1×10⁶ and 1×10⁸ colony forming unit (CFU) of VCUSM21P was not reactogenic in non-immunized rabbits. Whereas, the reactogenicity caused by the WT in rabbits immunized with 1×10¹⁰ CFU of VCUSM21P was found to be reduced as evidenced by absence of fluid in loops administered with 1×10²-1×10⁷ CFU of WT. Oral immunization using 1×10¹⁰ CFU of VCUSM21P induced both IgA and IgG against Cholera Toxin (CT) and O139 lipopolysaccharides (LPS). The serum vibriocidal antibody titer had a peak rise of 2560 fold on week 4. Following Removable Intestinal Tie Adult Rabbit Diarrhoea (RITARD) experiment, the non-immunized rabbits were found not to be protected against lethal challenge with 1×10⁹ CFU WT, but 100% of immunized rabbits survived the challenge. In the past eleven years, V. cholerae O139 induced cholera has not been observed. However, attenuated VCUSM21P vaccine could be used for vaccination program against potentially fatal endemic or emerging cholera caused by V. cholerae O139.

  11. Severe acute respiratory syndrome vaccine development: experiences of vaccination against avian infectious bronchitis coronavirus.

    Science.gov (United States)

    Cavanagh, Dave

    2003-12-01

    Vaccines against infectious bronchitis of chickens (Gallus gallus domesticus) have arguably been the most successful, and certainly the most widely used, of vaccines for diseases caused by coronaviruses, the others being against bovine, canine, feline and porcine coronaviruses. Infectious bronchitis virus (IBV), together with the genetically related coronaviruses of turkey (Meleagris gallopovo) and ring-necked pheasant (Phasianus colchicus), is a group 3 coronavirus, severe acute respiratory syndrome (SARS) coronavirus being tentatively in group 4, the other known mammalian coronaviruses being in groups 1 and 2. IBV replicates not only in respiratory tissues (including the nose, trachea, lungs and airsacs, causing respiratory disease), but also in the kidney (associated with minor or major nephritis), oviduct, and in many parts of the alimentary tract--the oesophagus, proventriculus, duodenum, jejunum, bursa of Fabricius, caecal tonsils (near the distal end of the tract), rectum and cloaca (the common opening for release of eggs and faeces), usually without clinical effects. The virus can persist, being re-excreted at the onset of egg laying (4 to 5 months of age), believed to be a consequence of the stress of coming into lay. Genetic lines of chickens differ in the extent to which IBV causes mortality in chicks, and in respect of clearance of the virus after the acute phase. Live attenuated (by passage in chicken embryonated eggs) IBV strains were introduced as vaccines in the 1950s, followed a couple of decades later by inactivated vaccines for boosting protection in egg-laying birds. Live vaccines are usually applied to meat-type chickens at 1 day of age. In experimental situations this can result in sterile immunity when challenged by virulent homologous virus. Although 100% of chickens may be protected (against clinical signs and loss of ciliary activity in trachea), sometimes 10% of vaccinated chicks do not respond with a protective immune response

  12. Prospects for development of African swine fever virus vaccines.

    Science.gov (United States)

    Dixon, L K; Abrams, C C; Chapman, D D G; Goatley, L C; Netherton, C L; Taylor, G; Takamatsu, H H

    2013-01-01

    African swine fever virus is a large DNA virus which can cause an acute haemorrhagic fever in pigs resulting in high mortality. No vaccine is available, limiting options for control. The virus encodes up to 165 genes and virus particles are multi-layered and contain more than 50 proteins. Pigs immunised with natural low virulence isolates or attenuated viruses produced by passage in tissue culture and by targeted gene deletions can be protected against challenge with virulent viruses. CD8+ cells are required for protection induced by attenuated strain OURT88/3. Passive transfer of antibodies from immune to naïve pigs can also induce protection. Knowledge of the genome sequences of attenuated and virulent strains and targeted gene deletions from virulent strains have identified a number of virus genes involved in virulence and immune evasion. This information can be used to produce rationally attenuated vaccine strains. Virus antigens that are targets for neutralising antibodies have been identified and immunisation with these recombinant proteins has been shown to induce partial protection. However knowledge of antigens which encode the dominant protective epitopes recognised by CD8+ T cells is lacking.

  13. Novel approaches to foot-and-mouth disease vaccine development

    Science.gov (United States)

    The need for better Foot-and-mouth disease (FMD) vaccines is not new, a report from the Research Commission on FMD, authored by F. Loeffler and P. Frosch in 1897, highlighted the need for developing a vaccine against FMD and qualified this as a devastating disease causing “severe economic damage to ...

  14. The Development of Vaccination and the Discoveries of Louis Pasteur.

    Science.gov (United States)

    Williams, James

    1992-01-01

    Describes the development of vaccination and provides a brief biographical sketch of the life and work of Pasteur. Describes historical practices related to vaccination before Pasteur did his work, including variolation as practiced by the ancient Chinese and Jenner's use of smallpox. (PR)

  15. Screening and application of gelatin-free stabilizer for live attenuated varicella vaccine%水痘减毒活疫苗无明胶稳定剂的筛选和应用

    Institute of Scientific and Technical Information of China (English)

    马相虎; 沈谊清; 杨月莲; 陈哲文; 程鹏飞; 王亮

    2014-01-01

    Objective To develope new gelatin-free stabilizers in order to improve the safety of live attenuated varicella vaccine,Methods Based on the current stabilizer formula of live attenuated varicella vaccine,four new stabilizers (B,C,D,E formulas) were formulated by removing gelatin.Vaccines without gelatin (B,C,D,E vaccines) were prepared with the formulated gelatin-free stabilizers and compared with the current live attenuated varicella vaccine with gelatin (A vaccine as control).The optimized stabilizer formula was determined.Results After 7 days at 37 ℃,the relevant qualities of all vaccines conformed with the requirement of Registration Criteria of Live Attenuated Vaccine Varicella,and the virus titers of A,B,C,D,E vaccines were 3.6,3.5,3.3,3.3 and 3.3 lgPFU/0.5 ml,respectively,but the virus titers of C,D,E vaccines have dropped to critical value.After 24 months at 2-8 ℃,the virus titers of A,B,C,D,E vaccines were 3.4,3.4,3.2,3.0 and 2.8 lgPFU/0.5 ml,respectively.Among the four vaccines without gelatin,the virus titers of C,D,E vaccines have been below the requirement (3.3 lgPFU/0.5 ml),only B vaccine met the requirement and was the same as A vaccine.Conclusion The B formula stabilizer without gelatin has better protection for varicella virus.%目的 研制不含明胶的新型稳定剂,以提高水痘减毒活疫苗的安全性.方法 以现行水痘减毒活疫苗稳定剂配方为基础,去除明胶,配制4种不同的新型稳定剂(B、C、D、E配方).用无明胶稳定剂制备水痘减毒活疫苗,并将制备的无明胶稳定剂疫苗(B、C、D、E疫苗)与现行的含明胶稳定剂疫苗(作为对照的A疫苗)进行比较,确定最佳稳定剂配方.结果 疫苗成品于37℃放置7d后,A、B、C、D、E疫苗的相关质量指标均符合《水痘减毒活疫苗注册标准》的要求,病毒滴度分别为3.6、3.5、3.3、3.3、3.3 lgPFU/0.5 ml,但C、D、E疫苗的病毒滴度已降至临界值.疫苗成品于2~8℃放置24个月后,A、B

  16. Developments of Subunit and VLP Vaccines Against Influenza A Virus

    Institute of Scientific and Technical Information of China (English)

    Ma-ping Deng; Zhi-hong Hu; Hua-lin Wang; Fei Deng

    2012-01-01

    Influenza virus is a continuous and severe global threat to mankind.The continuously re-emerging disease gives rise to thousands of deaths and enormous economic losses each year,which emphasizes the urgency and necessity to develop high-quality influenza vaccines in a safer,more efficient and economic way.The influenza subunit and VLP vaccines,taking the advantage of recombinant DNA technologies and expression system platforms,can be produced in such an ideal way.This review summarized the recent advancements in the research and development of influenza subunit and VLP vaccines based on the recombinant expression of hemagglutinin antigen (HA),neuraminidase antigen (NA),Matrix 2 protein (M2) and nucleocapsid protein (NP).It would help to get insight into the current stage of influenza vaccines,and suggest the future design and development of novel influenza vaccines.

  17. From research to phase III: preclinical, industrial and clinical development of the Sanofi Pasteur tetravalent dengue vaccine.

    Science.gov (United States)

    Guy, Bruno; Barrere, Beatrice; Malinowski, Claire; Saville, Melanie; Teyssou, Remy; Lang, Jean

    2011-09-23

    Dengue vaccine development has reached a major milestone with the initiation, in 2010, of the first phase III clinical trial to investigate the Sanofi Pasteur CYD tetravalent dengue vaccine (TDV). The CYD TDV candidate is composed of four recombinant, live, attenuated vaccines (CYD-1-4) based on a yellow fever vaccine 17D (YFV 17D) backbone, each expressing the pre-membrane and envelope genes of one of the four dengue virus serotypes. The vaccine is genetically and phenotypically stable, non-hepatotropic, less neurovirulent than YFV 17D, and does not infect mosquitoes by the oral route. In vitro and in vivo preclinical studies showed that CYD TDV induces controlled stimulation of human dendritic cells, and significant immune responses in monkeys. Scale up and industrialization are being conducted in parallel with preclinical and clinical development to fulfill the needs of phase II/III trials, and to anticipate and facilitate supply and access to vaccine in the countries where the dengue disease burden makes it an urgent public health priority. The vaccine has now been administered to more than 6000 children and adults from dengue endemic and non-endemic areas and no safety concerns have arisen in any of the completed or ongoing trials. A three-dose vaccination regimen induces an immune response against all four serotypes in the large majority of vaccinees. Preexisting flavivirus immunity favors quicker and higher immune responses to CYD TDV, without adversely effecting clinical safety or increasing vaccine viremia. The observed level and nature of the cellular immune responses in humans are consistent with the good safety and immunogenicity profile of the vaccine. Preliminary results of an ongoing, proof-of-concept efficacy and large scale safety study in Thai children are expected by the end of 2012. Here we discuss the different steps and challenges of developing CYD TDV, from research to industrialization, and summarize some of the challenges to the successful

  18. Vaccine development for Tuberculosis: Past, Present and Future Challenges

    Directory of Open Access Journals (Sweden)

    Dileep Tiwari

    2011-06-01

    Full Text Available About one third of the world's population is infected with Mycobacterium tuberculosis (M. tb, and new infections occur at a rate of about one per second. Additionally, more people in the developed world contact tuberculosis (TB because their immune systems are more likely to be compromised due to higher exposure to immunosuppressive drugs, substance abuse, or AIDS. The distribution of tuberculosis is not uniform across the globe, still the treatment is difficult and requires long courses of multiple antibiotics. However, antibiotic resistance is a growing problem in multidrugresistant (MDR tuberculosis. But mostly the prevention relies on screening programs and vaccination, usually with Bacillus Calmette- Guérin (BCG vaccine. BCG is the most commonly used vaccine worldwide, but not as a powerful vaccine. BCG also provides some protection against severe forms of pediatric TB, but has been shown to be unreliable against adult pulmonary TB which accounts for most of the disease burden worldwide. Currently, there is an urgent need for novel, more effective vaccine that can prevent all forms of TB including drug resistant strains for all age groups and among people with HIV. The first recombinant tuberculosis vaccine rBCG30, entered clinical trials in year 2004, but, still no effective vaccine is available in a market. Study showed that DNA TB vaccine given with conventional chemotherapy can accelerate the disappearance of bacteria as well as protect against re-infection in mice and it is quite effective against TB. A very promising TB vaccine, MVA85A, is currently in phase II trials and is based on a genetically modified vaccinia virus. Many other strategies are also being used to develop novel vaccines, including both subunit vaccines such as Hybrid-1, HyVac4 or M72, and recombinant adenoviruses such as Ad35. Some of these vaccines can be effectively administered without needles making them preferable for areas where HIV is very common and few of

  19. Accelerating the development of a safe and effective HIV vaccine: HIV vaccine case study for the Decade of Vaccines.

    Science.gov (United States)

    Koff, Wayne C; Russell, Nina D; Walport, Mark; Feinberg, Mark B; Shiver, John W; Karim, Salim Abdool; Walker, Bruce D; McGlynn, Margaret G; Nweneka, Chidi Victor; Nabel, Gary J

    2013-04-18

    Human immunodeficiency virus (HIV), the etiologic agent that causes AIDS, is the fourth largest killer in the world today. Despite the remarkable achievements in development of anti-retroviral therapies against HIV, and the recent advances in new prevention technologies, the rate of new HIV infections continue to outpace efforts on HIV prevention and control. Thus, the development of a safe and effective vaccine for prevention and control of AIDS remains a global public health priority and the greatest opportunity to eventually end the AIDS pandemic. Currently, there is a renaissance in HIV vaccine development, due in large part to the first demonstration of vaccine induced protection, albeit modest, in human efficacy trials, a generation of improved vaccine candidates advancing in the clinical pipeline, and newly defined targets on HIV for broadly neutralizing antibodies. The main barriers to HIV vaccine development include the global variability of HIV, lack of a validated animal model, lack of correlates of protective immunity, lack of natural protective immune responses against HIV, and the reservoir of infected cells conferred by integration of HIV's genome into the host. Some of these barriers are not unique to HIV, but generic to other variable viral pathogens such as hepatitis C and pandemic influenza. Recommendations to overcome these barriers are presented in this document, including but not limited to expansion of efforts to design immunogens capable of eliciting broadly neutralizing antibodies against HIV, expansion of clinical research capabilities to assess multiple immunogens concurrently with comprehensive immune monitoring, increased support for translational vaccine research, and engaging industry as full partners in vaccine discovery and development.

  20. Avian necrotic enteritis: Experimental models, climate change, and vaccine development

    Science.gov (United States)

    This review summarizes recent developments in disease models, pathogenesis, host immunity, risk factors, and vaccine development for Clostridium perfringens infection of poultry and necrotic enteritis (NE). The increasing trends of legislative restrictions and voluntary removal of antibiotic growth...

  1. What should vaccine developers ask? Simulation of the effectiveness of malaria vaccines.

    Directory of Open Access Journals (Sweden)

    Melissa A Penny

    Full Text Available BACKGROUND: A number of different malaria vaccine candidates are currently in pre-clinical or clinical development. Even though they vary greatly in their characteristics, it is unlikely that any of them will provide long-lasting sterilizing immunity against the malaria parasite. There is great uncertainty about what the minimal vaccine profile should be before registration is worthwhile; how to allocate resources between different candidates with different profiles; which candidates to consider combining; and what deployment strategies to consider. METHODS AND FINDINGS: We use previously published stochastic simulation models, calibrated against extensive epidemiological data, to make quantitative predictions of the population effects of malaria vaccines on malaria transmission, morbidity and mortality. The models are fitted and simulations obtained via volunteer computing. We consider a range of endemic malaria settings with deployment of vaccines via the Expanded program on immunization (EPI, with and without additional booster doses, and also via 5-yearly mass campaigns for a range of coverages. The simulation scenarios account for the dynamic effects of natural and vaccine induced immunity, for treatment of clinical episodes, and for births, ageing and deaths in the cohort. Simulated pre-erythrocytic vaccines have greatest benefits in low endemic settings (EIR of 84 PEV may lead to increased incidence of severe disease in the long term, if efficacy is moderate to low (20% malaria vaccines (either PEV or BSV when deployed through mass campaigns targeting all age-groups as well as EPI, and especially if combined with highly efficacious transmission-blocking components. CONCLUSIONS: We present for the first time a stochastic simulation approach to compare likely effects on morbidity, mortality and transmission of a range of malaria vaccines and vaccine combinations in realistic epidemiological and health systems settings. The results raise

  2. The path of malaria vaccine development: challenges and perspectives.

    Science.gov (United States)

    Arama, C; Troye-Blomberg, M

    2014-05-01

    Malaria is a life-threatening disease caused by parasites of the Plasmodium genus. In many parts of the world, the parasites have developed resistance to a number of antimalarial agents. Key interventions to control malaria include prompt and effective treatment with artemisinin-based combination therapies, use of insecticidal nets by individuals at risk and active research into malaria vaccines. Protection against malaria through vaccination was demonstrated more than 30 years ago when individuals were vaccinated via repeated bites by Plasmodium falciparum-infected and irradiated but still metabolically active mosquitoes. However, vaccination with high doses of irradiated sporozoites injected into humans has long been considered impractical. Yet, following recent success using whole-organism vaccines, the approach has received renewed interest; it was recently reported that repeated injections of irradiated sporozoites increased protection in 80 vaccinated individuals. Other approaches include subunit malaria vaccines, such as the current leading candidate RTS,S (consisting of fusion between a portion of the P. falciparum-derived circumsporozoite protein and the hepatitis B surface antigen), which has been demonstrated to induce reasonably good protection. Although results have been encouraging, the level of protection is generally considered to be too low to achieve eradication of malaria. There is great interest in developing new and better formulations and stable delivery systems to improve immunogenicity. In this review, we will discuss recent strategies to develop efficient malaria vaccines.

  3. Status of vaccine research and development of vaccines for Nipah virus.

    Science.gov (United States)

    Satterfield, Benjamin A; Dawes, Brian E; Milligan, Gregg N

    2016-06-03

    Nipah virus (NiV) is a highly pathogenic, recently emerged paramyxovirus that has been responsible for sporadic outbreaks of respiratory and encephalitic disease in Southeast Asia. High case fatality rates have also been associated with recent outbreaks in Malaysia and Bangladesh. Although over two billion people currently live in regions in which NiV is endemic or in which the Pteropus fruit bat reservoir is commonly found, there is no approved vaccine to protect against NiV disease. This report examines the feasibility and current efforts to develop a NiV vaccine including potential hurdles for technical and regulatory assessment of candidate vaccines and the likelihood for financing.

  4. Safety and immunogenicity of escalating dosages of a single oral administration of peru-15 pCTB, a candidate live, attenuated vaccine against enterotoxigenic Escherichia coli and Vibrio cholerae.

    Science.gov (United States)

    Chen, Wilbur H; Garza, Jose; Choquette, Monique; Hawkins, Jennifer; Hoeper, Amy; Bernstein, David I; Cohen, Mitchell B

    2015-01-01

    Enterotoxigenic Escherichia coli (ETEC) organisms are a leading cause of infectious diarrhea in developing countries. A live, attenuated cholera strain that expresses high levels of the nontoxic B subunit of cholera toxin, which might also serve as an ETEC protective antigen, was evaluated for safety, excretion, and immunogenicity in healthy volunteers. We enrolled four inpatient dose-escalation cohorts of 15 to 16 eligible subjects to randomly (3:1) receive a single oral dose of vaccine or placebo (buffer alone), evaluating 1 ×10(7), 1 ×10(8), 1 ×10(9), and 1 ×10(10) CFU of the vaccine. The vaccine was well tolerated, although some subjects experienced moderate diarrhea. The serum Inaba vibriocidal antibody response appeared to display a dose-response relationship with increasing dosages of vaccine, plateauing at the 10(9)-CFU dosage. The serum antitoxin (cholera toxin and heat-labile enterotoxin) antibody seroconversion rate (4-fold increase over baseline) also appeared to display a dose-response relationship. The vaccine strain was excreted in stool cultures, displaying a dose-response relationship. A single oral dose of Peru-15 pCTB at dosages up to 1 ×10(10) CFU was safe and immunogenic in this first-in-human trial. These encouraging data support the ongoing clinical development of this candidate combined cholera and ETEC vaccine. (This study has been registered at ClinicalTrials.gov under registration no. NCT00654108.).

  5. Animal Models and the Development of Vaccines to Treat Substance Use Disorders.

    Science.gov (United States)

    Ohia-Nwoko, O; Kosten, T A; Haile, C N

    2016-01-01

    The development of pharmacotherapies for substance use disorders (SUDs) is a high priority in addiction research. At present, there are no approved pharmacotherapies for cocaine and methamphetamine use disorders, while treatments for nicotine and opioid use are moderately effective. Indeed, many of these treatments can cause adverse drug side effects and have poor medication compliance, which often results in increased drug relapse rates. An alternative to these traditional pharmacological interventions is immunotherapy or vaccines that can target substances associated with SUDs. In this chapter, we discuss the current knowledge on the efficacy of preclinical vaccines, particularly immunogens that target methamphetamine, cocaine, nicotine, or opioids to attenuate drug-induced behaviors in animal models of SUDs. We also review vaccines (and antibodies) against cocaine, nicotine, and methamphetamine that have been assessed in human clinical trials. While preclinical studies indicate that several vaccines show promise, these findings have not necessarily translated to the clinical population. Thus, continued effort to design more effective vaccine immunogens using SUD animal models is necessary in order to support the use of immunotherapy as a viable option for individuals with SUDs.

  6. Vaccination with recombinant Mycobacterium tuberculosis PknD attenuates bacterial dissemination to the brain in guinea pigs.

    Directory of Open Access Journals (Sweden)

    Ciaran Skerry

    Full Text Available BACKGROUND: We have previously identified Mycobacterium tuberculosis PknD to be an important virulence factor required for the pathogenesis of central nervous system (CNS tuberculosis (TB. Specifically, PknD mediates bacillary invasion of the blood-brain barrier, which can be neutralized by specific antisera, suggesting its potential role as a therapeutic target against TB meningitis. METHODOLOGY/PRINCIPAL FINDINGS: We utilized an aerosol challenge guinea pig model of CNS TB and compared the protective efficacy of recombinant M. tuberculosis PknD subunit protein with that of M. bovis BCG against bacillary dissemination to the brain. BCG vaccination limited the pulmonary bacillary burden after aerosol challenge with virulent M. tuberculosis in guinea pigs and also reduced bacillary dissemination to the brain (P = 0.01. PknD vaccination also offered significant protection against bacterial dissemination to the brain, which was no different from BCG (P>0.24, even though PknD vaccinated animals had almost 100-fold higher pulmonary bacterial burdens. Higher levels of PknD-specific IgG were noted in animals immunized with PknD, but not in BCG-vaccinated or control animals. Furthermore, pre-incubation of M. tuberculosis with sera from PknD-vaccinated animals, but not with sera from BCG-vaccinated or control animals, significantly reduced bacterial invasion in a human blood-brain barrier model (P<0.01. CONCLUSION: Current recommendations for administering BCG at birth are based on protection gained against severe disease, such as TB meningitis, during infancy. We demonstrate that vaccination with recombinant M. tuberculosis PknD subunit offers a novel strategy to protect against TB meningitis, which is equivalent to BCG in a guinea pig model. Moreover, since BCG lacks the PknD sensor, BCG could also be boosted to develop a more effective vaccine against TB meningitis, a devastating disease that disproportionately affects young children.

  7. Refined live attenuated Salmonella enterica serovar Typhimurium and Enteritidis vaccines mediate homologous and heterologous serogroup protection in mice.

    Science.gov (United States)

    Tennant, Sharon M; Schmidlein, Patrick; Simon, Raphael; Pasetti, Marcela F; Galen, James E; Levine, Myron M

    2015-12-01

    Invasive nontyphoidal Salmonella (NTS) infections constitute a major health problem among infants and toddlers in sub-Saharan Africa; these infections also occur in infants and the elderly in developed countries. We genetically engineered a Salmonella enterica serovar Typhimurium strain of multilocus sequence type 313, the predominant genotype circulating in sub-Saharan Africa. We evaluated the capacities of S. Typhimurium and Salmonella enterica serovar Enteritidis ΔguaBA ΔclpX live oral vaccines to protect mice against a highly lethal challenge dose of the homologous serovar and determined protection against other group B and D serovars circulating in sub-Saharan Africa. The vaccines S. Typhimurium CVD 1931 and S. Enteritidis CVD 1944 were immunogenic and protected BALB/c mice against 10,000 50% lethal doses (LD50) of S. Typhimurium or S. Enteritidis, respectively. S. Typhimurium CVD 1931 protected mice against the group B serovar Salmonella enterica serovar Stanleyville (91% vaccine efficacy), and S. Enteritidis CVD 1944 protected mice against the group D serovar Salmonella enterica serovar Dublin (85% vaccine efficacy). High rates of survival were observed when mice were infected 12 weeks postimmunization, indicating that the vaccines elicited long-lived protective immunity. Whereas CVD 1931 did not protect against S. Enteritidis R11, CVD 1944 did mediate protection against S. Typhimurium D65 (81% efficacy). These findings suggest that a bivalent (S. Typhimurium and S. Enteritidis) vaccine would provide broad protection against the majority of invasive NTS infections in sub-Saharan Africa.

  8. Vaccinations

    Science.gov (United States)

    ... vaccinated? For many years, a set of annual vaccinations was considered normal and necessary for dogs and ... to protect for a full year. Consequently, one vaccination schedule will not work well for all pets. ...

  9. Influenza Vaccine, Live Intranasal

    Science.gov (United States)

    ... the recombinant influenza vaccine (RIV). The nasal spray flu vaccine (live attenuated influenza vaccine or LAIV) should NOT ... to your doctor or pharmacist about the best flu vaccine option for you or your family.

  10. Preclinical and clinical development of DNA vaccines for prostate cancer.

    Science.gov (United States)

    Colluru, V T; Johnson, Laura E; Olson, Brian M; McNeel, Douglas G

    2016-04-01

    Prostate cancer is the most commonly diagnosed cancer in the United States. It is also the second leading cause of cancer-related death in men, making it one of the largest public health concerns today. Prostate cancer is an ideal disease for immunotherapies because of the generally slow progression, the dispensability of the target organ in the patient population, and the availability of several tissue-specific antigens. As such, several therapeutic vaccines have entered clinical trials, with one autologous cellular vaccine (sipuleucel-T) recently gaining Food and Drug Administration approval after demonstrating overall survival benefit in randomized phase III clinical trials. DNA-based vaccines are safe, economical, alternative "off-the-shelf" approaches that have undergone extensive evaluation in preclinical models. In fact, the first vaccine approved in the United States for the treatment of cancer was a DNA vaccine for canine melanoma. Several prostate cancer-specific DNA vaccines have been developed in the last decade and have shown promising results in early phase clinical trials. This review summarizes anticancer human DNA vaccine trials, with a focus on those conducted for prostate cancer. We conclude with an outline of special considerations important for the development and successful translation of DNA vaccines from the laboratory to the clinic.

  11. Immunization of aged pigs with attenuated pseudorabies virus vaccine combined with CpG oligodeoxynucleotide restores defective Th1 immune responses.

    Directory of Open Access Journals (Sweden)

    Feiping Ming

    Full Text Available BACKGROUND AND AIMS: Attempts to immunize aged subjects often result in the failure to elicit a protective immune response. Murine model studies have shown that oligonucleotides containing CpG motifs (CpG ODN can stimulate immune system in aged mice as effectively as in young mice. Since many physiological and pathophysiological data of pigs can be transferred to humans, research in pigs is important to confirm murine data. Here we investigated whether immunization of aged pig model with attenuated pseudorabies virus vaccine (PRV vaccine formulated with CpG ODN could promote a successful development of immune responses that were comparable to those induced in young pigs in a similar manner. METHODOLOGY: Young and aged pigs were immunized IM with PRV vaccine alone, or in combination with CpG ODN respectively. At days 3, 7, 14 post immunization sera were assayed by ELISA for IgG titres, at day 7 for IgG1 and IgG2 subtypes titres. All blood samples collected in evacuated test tubes with K-EDTA at day 7 were analyzed for flow cytometer assay. Blood samples at day 7 collected in evacuated test tubes with heparin were analysed for antigen-specific cytokines production and peripheral blood mononuclear cells (PBMCs proliferative responses. RESULTS: CpG ODN could enhance Th1 responses (PRV-specific IgG2/IgG1 ratio, proliferative responses, Th1 cytokines production when used as an adjuvant for the vaccination of aged pigs, which were correlated with enhanced CD4+ T cells percentage, decreased CD4+CD8+CD45RO+ T cells percentage and improved PRV-specific CD4+ T cells activation. CONCLUSIONS: Our results demonstrate a utility for CpG ODN, as a safe vaccine adjuvant for promoting effective systemic immune responses in aged pig model. This agent could have important clinical uses in overcoming some of age-associated depressions in immune function that occur in response to vaccination.

  12. Prospects for the development of fungal vaccines.

    OpenAIRE

    Deepe, G S

    1997-01-01

    In an era that emphasizes the term "cost-effective," vaccines are the ideal solution to preventing disease at a relatively low cost to society. Much of the previous emphasis has been on childhood scourges such as measles, mumps, rubella, poliomyelitis, and Haemophilus influenzae type b. The concept of vaccines for fungal diseases has had less impact because of the perceived limited problem. However, fungal diseases have become increasingly appreciated as serious medical problems that require ...

  13. Expression of the Surface Glycoproteins of Human Parainfluenza Virus Type 3 by Bovine Parainfluenza Virus Type 3, a Novel Attenuated Virus Vaccine Vector

    OpenAIRE

    Haller, Aurelia A.; Miller, Tessa; Mitiku, Misrach; Coelingh, Kathleen

    2000-01-01

    Bovine parainfluenza virus type 3 (bPIV3) is being evaluated as an intranasal vaccine for protection against human PIV3 (hPIV3). In young infants, the bPIV3 vaccine appears to be infectious, attenuated, immunogenic, and genetically stable, which are desirable characteristics for an RNA virus vector. To test the potential of the bPIV3 vaccine strain as a vector, an infectious DNA clone of bPIV3 was assembled and recombinant bPIV3 (r-bPIV3) was rescued. r-bPIV3 displayed a temperature-sensitive...

  14. EVOLUTION OF MYCOBACTERIUM TUBERCULOSIS AND IMPLICATIONS FOR VACCINE DEVELOPMENT.

    Science.gov (United States)

    Gagneux, Sebastien

    2016-04-01

    Tuberculosis (TB) is a growing public health threat, particularly in the face of the global epidemics of multidrug resistance. Given the limited efficacy of the current TB vaccine and the recent clinical failure of the most advanced new TB vaccine candidate, novel concepts for vaccine design should be explored. Most T cell antigens in the human-adapted Mycobacterium tuberculosis complex (MTBC) are evolutionarily conserved and under strong purifying selection, indicating that host immune responses targeting these antigens might not be protective. By contrast, a few highly variable T cell epitopes have recently been discovered, which could serve as alternative vaccine antigens. Moreover, there is increasing evidence that the human-adapted MTBC has been co-evolving with the human host for a long time. Hence, studying the interaction between bacterial and human genetic diversity might help identify additional targets that could be exploited for TB vaccine development.

  15. Challenges in the research and development of new human vaccines.

    Science.gov (United States)

    Barbosa, T; Barral-Netto, M

    2013-02-01

    The field of vaccinology was born from the observations by the fathers of vaccination, Edward Jenner and Louis Pasteur, that a permanent, positive change in the way our bodies respond to life-threatening infectious diseases can be obtained by specific challenge with the inactivated infectious agent performed in a controlled manner, avoiding the development of clinical disease upon exposure to the virulent pathogen. Many of the vaccines still in use today were developed on an empirical basis, essentially following the paradigm established by Pasteur, "isolate, inactivate, and inject" the disease-causing microorganism, and are capable of eliciting uniform, long-term immune memory responses that constitute the key to their proven efficacy. However, vaccines for pathogens considered as priority targets of public health concern are still lacking. The literature tends to focus more often on vaccine research problems associated with specific pathogens, but it is increasingly clear that there are common bottlenecks in vaccine research, which need to be solved in order to advance the development of the field as a whole. As part of a group of articles, the objective of the present report is to pinpoint these bottlenecks, exploring the literature for common problems and solutions in vaccine research applied to different situations. Our goal is to stimulate brainstorming among specialists of different fields related to vaccine research and development. Here, we briefly summarize the topics we intend to deal with in this discussion.

  16. Challenges in the research and development of new human vaccines

    Directory of Open Access Journals (Sweden)

    T. Barbosa

    2013-02-01

    Full Text Available The field of vaccinology was born from the observations by the fathers of vaccination, Edward Jenner and Louis Pasteur, that a permanent, positive change in the way our bodies respond to life-threatening infectious diseases can be obtained by specific challenge with the inactivated infectious agent performed in a controlled manner, avoiding the development of clinical disease upon exposure to the virulent pathogen. Many of the vaccines still in use today were developed on an empirical basis, essentially following the paradigm established by Pasteur, “isolate, inactivate, and inject” the disease-causing microorganism, and are capable of eliciting uniform, long-term immune memory responses that constitute the key to their proven efficacy. However, vaccines for pathogens considered as priority targets of public health concern are still lacking. The literature tends to focus more often on vaccine research problems associated with specific pathogens, but it is increasingly clear that there are common bottlenecks in vaccine research, which need to be solved in order to advance the development of the field as a whole. As part of a group of articles, the objective of the present report is to pinpoint these bottlenecks, exploring the literature for common problems and solutions in vaccine research applied to different situations. Our goal is to stimulate brainstorming among specialists of different fields related to vaccine research and development. Here, we briefly summarize the topics we intend to deal with in this discussion.

  17. Cross-stage immunity for malaria vaccine development.

    Science.gov (United States)

    Nahrendorf, Wiebke; Scholzen, Anja; Sauerwein, Robert W; Langhorne, Jean

    2015-12-22

    A vaccine against malaria is urgently needed for control and eventual eradication. Different approaches are pursued to induce either sterile immunity directed against pre-erythrocytic parasites or to mimic naturally acquired immunity by controlling blood-stage parasite densities and disease severity. Pre-erythrocytic and blood-stage malaria vaccines are often seen as opposing tactics, but it is likely that they have to be combined into a multi-stage malaria vaccine to be optimally safe and effective. Since many antigenic targets are shared between liver- and blood-stage parasites, malaria vaccines have the potential to elicit cross-stage protection with immune mechanisms against both stages complementing and enhancing each other. Here we discuss evidence from pre-erythrocytic and blood-stage subunit and whole parasite vaccination approaches that show that protection against malaria is not necessarily stage-specific. Parasites arresting at late liver-stages especially, can induce powerful blood-stage immunity, and similarly exposure to blood-stage parasites can afford pre-erythrocytic immunity. The incorporation of a blood-stage component into a multi-stage malaria vaccine would hence not only combat breakthrough infections in the blood should the pre-erythrocytic component fail to induce sterile protection, but would also actively enhance the pre-erythrocytic potency of this vaccine. We therefore advocate that future studies should concentrate on the identification of cross-stage protective malaria antigens, which can empower multi-stage malaria vaccine development.

  18. Revaccination with Live Attenuated Vaccines Confer Additional Beneficial Nonspecific Effects on Overall Survival

    DEFF Research Database (Denmark)

    Benn, Christine S; Fisker, Ane B; Whittle, Hilton C

    2016-01-01

    BACKGROUND: Live vaccines against measles (MV), tuberculosis (BCG), polio (OPV) and smallpox reduce mortality more than explained by target-disease prevention. The beneficial nonspecific effects (NSEs) of MV are strongest when MV is given in presence of maternal antibodies. We therefore hypothesi......BACKGROUND: Live vaccines against measles (MV), tuberculosis (BCG), polio (OPV) and smallpox reduce mortality more than explained by target-disease prevention. The beneficial nonspecific effects (NSEs) of MV are strongest when MV is given in presence of maternal antibodies. We therefore....... In a quasi-experimental study two doses before and after 9months compared with one dose of MV after 9months of age reduced mortality by 59% (25-81%). BCG-revaccination significantly enhanced BCG's effect against overall child mortality in two RCTs. In a natural experiment study of OPV campaigns over a 13......-year-period in Guinea-Bissau, each additional dose of OPV was associated with a 13% (4-21%) reduction in mortality rate. The beneficial NSEs of smallpox vaccination for survival increased significantly with the number of smallpox vaccination scars. INTERPRETATION: Revaccination with live vaccines led...

  19. Development and evaluation of the TD97 measles virus vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K.; Morita, M.; Katoh, M.; Kidokoro, M.; Saika, S.; Yoshizawa, S.; Hashizume, S.; Horiuchi, K.; Okabe, N.; Shinozaki, T. (Chiba Serum Institute (Japan))

    1990-11-01

    The TD97 strain vaccine virus was prepared from the Tanabe strain measles virus by low-temperature passages in primary cell cultures and ultraviolet (UV) mutagenesis. The TD97 strain exhibited the following characteristics: highly temperature sensitive, neither multiplying nor forming any plaques at 40 degrees C in Vero cells; genetically stable, maintaining high temperature sensitivity after ten successive passages in CE cells at 30 degrees C or 35 degrees C; and M proteins of this virus about 1 KD slower in mobility in SDS-PAGE than that of the Tanabe strain. The TD97 strain was further confirmed to be attenuated by an inoculation test into primate brain. In field trials, 752 healthy children were inoculated with a live virus vaccine prepared with this strain, and the following results were obtained: the seroconversion rate was 97% (517/533), and the average HI antibody titer was 2(5.2). An antibody-increasing effect was also observed in children who were initially seropositive. In children who seroconverted, the rates of fever were 15.7% (55/351) for 37.5 degrees C or higher and 4.0% (14/351) for 39 degrees C or higher. The rash rate was 7.7% (27/351), and the incidence of local reaction was 5.4% (19/351). The TD97 strain is thus considered to be suitable in use for an attenuated measles vaccine.

  20. Infectivity of attenuated poxvirus vaccine vectors and immunogenicity of a raccoonpox vectored rabies vaccine in the Brazilian Free-tailed bat (Tadarida brasiliensis)

    Science.gov (United States)

    Stading, Benjamin; Osorio, Jorge E.; Velasco-Villa, Andres; Smotherman, Michael; Kingstad-Bakke, Brock; Rocke, Tonie E.

    2016-01-01

    Bats (Order Chiroptera) are an abundant group of mammals with tremendous ecological value as insectivores and plant dispersers, but their role as reservoirs of zoonotic diseases has received more attention in the last decade. With the goal of managing disease in free-ranging bats, we tested modified vaccinia Ankara (MVA) and raccoon poxvirus (RCN) as potential vaccine vectors in the Brazilian Free-tailed bat (Tadarida brasiliensis), using biophotonic in vivo imaging and immunogenicity studies. Animals were administered recombinant poxviral vectors expressing the luciferase gene (MVA-luc, RCN-luc) through oronasal (ON) or intramuscular (IM) routes and subsequently monitored for bioluminescent signal indicative of viral infection. No clinical illness was noted after exposure to any of the vectors, and limited luciferase expression was observed. Higher and longer levels of expression were observed with the RCN-luc construct. When given IM, luciferase expression was limited to the site of injection, while ON exposure led to initial expression in the oral cavity, often followed by secondary replication at another location, likely the gastric mucosa or gastric associated lymphatic tissue. Viral DNA was detected in oral swabs up to 7 and 9 days post infection (dpi) for MVA and RCN, respectively. While no live virus was detected in oral swabs from MVA-infected bats, titers up to 3.88 x 104 PFU/ml were recovered from oral swabs of RCN-infected bats. Viral DNA was also detected in fecal samples from two bats inoculated IM with RCN, but no live virus was recovered. Finally, we examined the immunogenicity of a RCN based rabies vaccine (RCN-G) following ON administration. Significant rabies neutralizing antibody titers were detected in the serum of immunized bats using the rapid fluorescence focus inhibition test (RFFIT). These studies highlight the safety and immunogenicity of attenuated poxviruses and their potential use as vaccine vectors in bats.

  1. Options for improving effectiveness of rotavirus vaccines in developing countries.

    Science.gov (United States)

    Tissera, Marion S; Cowley, Daniel; Bogdanovic-Sakran, Nada; Hutton, Melanie L; Lyras, Dena; Kirkwood, Carl D; Buttery, Jim P

    2016-11-11

    Rotavirus gastroenteritis is a leading global cause of mortality and morbidity in young children due to diarrhea and dehydration. Over 85% of deaths occur in developing countries. In industrialised countries, 2 live oral rotavirus vaccines licensed in 2006 quickly demonstrated high effectiveness, dramatically reducing severe rotavirus gastroenteritis admissions in many settings by more than 90%. In contrast, the same vaccines reduced severe rotavirus gastroenteritis by only 30-60% in developing countries, but have been proven life-saving. Bridging this "efficacy gap" offers the possibility to save many more lives of children under the age of 5. The reduced efficacy of rotavirus vaccines in developing settings may be related to differences in transmission dynamics, as well as host luminal, mucosal and immune factors. This review will examine strategies currently under study to target the issue of reduced efficacy and effectiveness of oral rotavirus vaccines in developing settings.

  2. Streptococcus pneumoniae proteomics: determinants of pathogenesis and vaccine development.

    Science.gov (United States)

    Bittaye, Mustapha; Cash, Phil

    2015-01-01

    Streptococcus pneumoniae is a major pathogen that is responsible for a variety of invasive diseases. The bacteria gain entry initially by establishing a carriage state in the nasopharynx from where they migrate to other sites in the body. The worldwide distribution of the bacteria and the severity of the diseases have led to a significant level of interest in the development of vaccines against the bacteria. Current vaccines, based on the bacterial polysaccharide, have a number of limitations including poor immunogenicity and limited effectiveness against all pneumococcal serotypes. There are many challenges in developing vaccines that will be effective against the diverse range of isolates and serotypes for this highly variable bacterial pathogen. This review considers how proteomic technologies have extended our understanding of the pathogenic mechanisms of nasopharyngeal colonization and disease development as well as the critical areas in developing protein-based vaccines.

  3. Ensuring the optimal safety of licensed vaccines: a perspective of the vaccine research, development, and manufacturing companies.

    Science.gov (United States)

    Kanesa-thasan, Niranjan; Shaw, Alan; Stoddard, Jeffrey J; Vernon, Thomas M

    2011-05-01

    Vaccine safety is increasingly a focus for the general public, health care providers, and vaccine manufacturers, because the efficacy of licensed vaccines is accepted as a given. Commitment to ensuring safety of all vaccines, including childhood vaccines, is addressed by the federal government, academia, and industry. Safety activities conducted by the vaccine research, development, and manufacturing companies occur at all stages of product development, from selection and formulation of candidate vaccines through postlicensure studies and surveillance of adverse-event reports. The contributions of multiple interacting functional groups are required to execute these tasks through the life cycle of a product. We describe here the safeguards used by vaccine manufacturers, including specific examples drawn from recent experience, and highlight some of the current challenges. Vaccine-risk communication becomes a critical area for partnership of vaccine companies with government, professional associations, and nonprofit advocacy groups to provide information on both benefits and risks of vaccines. The crucial role of the vaccine companies in ensuring the optimal vaccine-safety profile, often overlooked, will continue to grow with this dynamic arena.

  4. Promoting HIV vaccine research and development in China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Anational strategy for the HIV vaccine research and development (R&D) should be formulated as soon as possible so as to ensure a sound progress in this field, urges a report by the Academic Divisions of the Chinese Academy of Sciences (CASAD), the top national advisory body in science and technology. Entitled "A Proposal on China's Strategy of the HIV Vaccine Research and Development,"the report has recently been submitted to the State Council, the country's cabinet.

  5. The development of an AIDS vaccine: progress and promise.

    OpenAIRE

    Fauci, A S; Fischinger, P J

    1988-01-01

    The development of a safe and effective vaccine against infection by the human immunodeficiency virus (HIV) is of paramount importance to the prevention of AIDS worldwide. Although a great deal has been learned about HIV in a few short years, the development of an AIDS vaccine has proved to be extremely difficult. The lack of an appropriate animal model for AIDS, the absence of a defined protective immune response in persons infected with HIV, the long latent period between initial infection ...

  6. The Research Progress of the Orally Attenuated Recombinant Salmonella Typhimurium Vector Vaccine%减毒沙门氏菌作为口服活疫苗载体的研究进展

    Institute of Scientific and Technical Information of China (English)

    马全英; 安芳兰; 刘萍; 祝秀梅; 吕志慧; 王凡; 刘学荣; 黄银君; 牟克斌

    2012-01-01

    文章就沙门氏菌相关基因的特点、减毒沙门氏菌载体激发的免疫应答、进入机体免疫系统的机制、减毒沙门氏菌的应用、载体疫苗的优越性及潜在危险性几方面综述了减毒沙门氏菌作为口服疫苗载体的研究进展,为新型菌苗的研制提供一种新的思路。%This article related genes from Salmonella characteristics of the related gene, attenuation salmonella carrier stimulate the immune re- sponse, into the mechanism of the immune system, the application of attenuated salmonella typhimurium, the superiority of vaccine vectors potentially dangerous areas and review of the attenuated salmonella as oral progress in a new type vaccine vectors for the development of novel vaccine provides a new way of thinking.

  7. Live-attenuated, tetravalent dengue vaccine in children, adolescents and adults in a dengue endemic country: randomized controlled phase I trial in the Philippines.

    Science.gov (United States)

    Capeding, Rosario Z; Luna, Imelda A; Bomasang, Emily; Lupisan, Socorro; Lang, Jean; Forrat, Remi; Wartel, Anh; Crevat, Denis

    2011-05-17

    A recombinant live attenuated tetravalent dengue vaccine (TDV) is safe and immunogenic in adults and children in dengue-naïve populations. Data are needed in dengue endemic populations. In a phase I, randomized, controlled, blind-observer study in the Philippines, groups of participants aged 2-5, 6-11, 12-17, and 18-45 years received either three TDV vaccinations at months 0, 3.5, and 12 (TDV-TDV-TDV group) or licensed typhoid vaccination at month 0 and TDV at months 3.5 and 12 (TyVi-TDV-TDV group) and were followed for safety (including biological safety and vaccine virus viremia) and immunogenicity. No serious adverse vaccine related events and no significant trends in biological safety parameters were reported. Injection site pain, headache, malaise, myalgia, fever, and asthenia were reported most frequently, as mild to moderate in most cases and transient. Reactogenicity did not increase with successive vaccinations and was no higher in children than in adults and adolescents. Low levels of vaccinal viremia were detected in both groups after each TDV vaccination. After three TDV vaccinations, the seropositivity rates against serotypes 1-4 were: 91%, 100%, 96%, 100%, respectively, in 2-5 year-olds; 88%, 96% 96%, 92% in 6-11 year-olds; 88%, 83%, 92%, 96% in adolescents; and 100% for all serotypes in adults. A similar response was observed after two doses for the TyVi-TDV-TDV group. The safety profile of TDV in a flavivirus endemic population was consistent with previous reports from flavivirus naïve populations. A vaccine regimen of either three TDV vaccinations administered over a year or two TDV vaccinations given more than 8 months apart resulted in a balanced antibody response to all four dengue serotypes in this flavivirus-exposed population, including children.

  8. Neutralizing Antibody Responses to Antigenically Drifted Influenza A(H3N2) Viruses among Children and Adolescents following 2014-2015 Inactivated and Live Attenuated Influenza Vaccination

    Science.gov (United States)

    Martin, Judith M.; Gross, F. Liaini; Jefferson, Stacie; Cole, Kelly Stefano; Archibald, Crystal Ann; Nowalk, Mary Patricia; Susick, Michael; Moehling, Krissy; Spencer, Sarah; Chung, Jessie R.; Flannery, Brendan; Zimmerman, Richard K.

    2016-01-01

    Human influenza A(H3N2) viruses that predominated during the moderately severe 2014-2015 influenza season differed antigenically from the vaccine component, resulting in reduced vaccine effectiveness (VE). To examine antibody responses to 2014-2015 inactivated influenza vaccine (IIV) and live-attenuated influenza vaccine (LAIV) among children and adolescents, we collected sera before and after vaccination from 150 children aged 3 to 17 years enrolled at health care facilities. Hemagglutination inhibition (HI) assays were used to assess the antibody responses to vaccine strains. We evaluated cross-reactive antibody responses against two representative A(H3N2) viruses that had antigenically drifted from the A(H3N2) vaccine component using microneutralization (MN) assays. Postvaccination antibody titers to drifted A(H3N2) viruses were higher following receipt of IIV (MN geometric mean titers [GMTs], 63 to 68; 38 to 45% achieved seroconversion) versus LAIV (MN GMT, 22; only 3 to 5% achieved seroconversion). In 9- to 17-year-olds, the highest MN titers were observed among IIV-vaccinated individuals who had received LAIV in the previous season. Among all IIV recipients aged 3 to 17 years, the strongest predictor of antibody responses to the drifted viruses was the prevaccination titers to the vaccine strain. The results of our study suggest that in an antigenically drifted influenza season, vaccination still induced cross-reactive antibody responses to drifted circulating A(H3N2) viruses, although higher antibody titers may be required for protection. Antibody responses to drifted A(H3N2) viruses following vaccination were influenced by multiple factors, including vaccine type and preexisting immunity from prior exposure. PMID:27558294

  9. Effects of the live attenuated measles-mumps-rubella booster vaccination on disease activity in patients with juvenile idiopathic arthritis : a randomized trial

    NARCIS (Netherlands)

    Heijstek, Marloes W; Kamphuis, Sylvia; Armbrust, Wineke; Swart, Joost; Gorter, Simone; de Vries, Lara D; Smits, Gaby P; van Gageldonk, Pieter G; Berbers, Guy A M; Wulffraat, Nico M

    2013-01-01

    IMPORTANCE: The immunogenicity and the effects of live attenuated measles-mumps-rubella (MMR) vaccination on disease activity in patients with juvenile idiopathic arthritis (JIA) are matters of concern, especially in patients treated with immunocompromising therapies. OBJECTIVES: To assess whether M

  10. Vaccine Development to Treat Alzheimer’s Disease Neuropathology in APP/PS1 Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Iván Carrera

    2012-01-01

    Full Text Available A novel vaccine addressing the major hallmarks of Alzheimer’s disease (AD, senile plaque-like deposits of amyloid beta-protein (Aβ, neurofibrillary tangle-like structures, and glial proinflammatory cytokines, has been developed. The present vaccine takes a new approach to circumvent failures of previous ones tested in mice and humans, including the Elan-Wyeth vaccine (AN1792, which caused massive T-cell activation, resulting in a meningoencephalitis-like reaction. The EB101 vaccine consists of A1-42 delivered in a novel immunogen-adjuvant composed of liposomes-containing sphingosine-1-phosphate (S1P. EB101 was administered to APPswe/PS1dE9 transgenic mice before and after AD-like pathological symptoms were detectable. Treatment with EB101 results in a marked reduction of Aβ plaque burden, decrease of neurofibrillary tangle-like structure density, and attenuation of astrocytosis. In this transgenic mouse model, EB101 reduces the basal immunological interaction between the T cells and immune activation markers in the affected hippocampal/cortical areas, consistent with decreased amyloidosis-induced inflammation. Therefore, immunization with EB101 prevents and reverses AD-like neuropathology in a significant manner by halting disease progression without developing behavioral spatial deficits in transgenic mice.

  11. Vaccine-induced inflammation attenuates the vascular responses to mental stress

    NARCIS (Netherlands)

    N.J. Paine; C. Ring; J.A. Bosch; M.T. Drayson; S. Aldred; J.J.C.S. Veldhuijzen van Zanten

    2014-01-01

    Inflammation is associated with poorer vascular function, with evidence to suggest that inflammation can also impair the vascular responses to mental stress. This study examined the effects of vaccine-induced inflammation on vascular responses to mental stress in healthy participants. Eighteen male

  12. Implications of plant glycans in the development of innovative vaccines.

    Science.gov (United States)

    Rosales-Mendoza, Sergio; Salazar-González, Jorge A; Decker, Eva L; Reski, Ralf

    2016-07-01

    Plant glycans play a central role in vaccinology: they can serve as adjuvants and/or delivery vehicles or backbones for the synthesis of conjugated vaccines. In addition, genetic engineering is leading to the development of platforms for the production of novel polysaccharides in plant cells, an approach with relevant implications for the design of new types of vaccines. This review contains an updated outlook on this topic and provides key perspectives including a discussion on how the molecular pharming field can be linked to the production of innovative glycan-based and conjugate vaccines.

  13. The yellow fever 17D vaccine virus: molecular basis of viral attenuation and its use as an expression vector

    Directory of Open Access Journals (Sweden)

    Galler R.

    1997-01-01

    Full Text Available The yellow fever (YF virus is the prototype flavivirus. The use of molecular techniques has unraveled the basic mechanisms of viral genome structure and expression. Recent trends in flavivirus research include the use of infectious clone technology with which it is possible to recover virus from cloned cDNA. Using this technique, mutations can be introduced at any point of the viral genome and their resulting effect on virus phenotype can be assessed. This approach has opened new possibilities to study several biological viral features with special emphasis on the issue of virulence/attenuation of the YF virus. The feasibility of using YF virus 17D vaccine strain, for which infectious cDNA is available, as a vector for the expression of heterologous antigens is reviewed

  14. Risk in vaccine research and development quantified

    NARCIS (Netherlands)

    Pronker, E.S.; Weenen, van H.; Commandeur, H.R.; Claassen, H.J.H.M.; Osterhaus, A.D.

    2013-01-01

    To date, vaccination is the most cost-effective strategy to combat infectious diseases. Recently, a productivity gap affects the pharmaceutical industry. The productivity gap describes the situation whereby the invested resources within an industry do not match the expected product turn-over. While

  15. Risk in Vaccine Research and Development Quantified

    NARCIS (Netherlands)

    E.S. Pronker (Esther); T.C. Weenen (Tamar); H.R. Commandeur (Harry); H.J.H.M. Claassen (Eric); A.D.M.E. Osterhaus (Albert)

    2013-01-01

    textabstractTo date, vaccination is the most cost-effective strategy to combat infectious diseases. Recently, a productivity gap affects the pharmaceutical industry. The productivity gap describes the situation whereby the invested resources within an industry do not match the expected product turn-

  16. Development of a minimal saponin vaccine adjuvant based on QS-21

    Science.gov (United States)

    Fernández-Tejada, Alberto; Chea, Eric K.; George, Constantine; Pillarsetty, Nagavarakishore; Gardner, Jeffrey R.; Livingston, Philip O.; Ragupathi, Govind; Lewis, Jason S.; Tan, Derek S.; Gin, David Y.

    2014-07-01

    Adjuvants are materials added to vaccines to enhance the immunological response to an antigen. QS-21 is a natural product adjuvant under investigation in numerous vaccine clinical trials, but its use is constrained by scarcity, toxicity, instability and an enigmatic molecular mechanism of action. Herein we describe the development of a minimal QS-21 analogue that decouples adjuvant activity from toxicity and provides a powerful platform for mechanistic investigations. We found that the entire branched trisaccharide domain of QS-21 is dispensable for adjuvant activity and that the C4-aldehyde substituent, previously proposed to bind covalently to an unknown cellular target, is also not required. Biodistribution studies revealed that active adjuvants were retained preferentially at the injection site and the nearest draining lymph nodes compared with the attenuated variants. Overall, these studies have yielded critical insights into saponin structure-function relationships, provided practical synthetic access to non-toxic adjuvants, and established a platform for detailed mechanistic studies.

  17. Clinical development of placental malaria vaccines and immunoassays harmonization

    DEFF Research Database (Denmark)

    Chêne, Arnaud; Houard, Sophie; Nielsen, Morten A

    2016-01-01

    Placental malaria caused by Plasmodium falciparum infection constitutes a major health problem manifesting as severe disease and anaemia in the mother, impaired fetal development, low birth weight or spontaneous abortion. Prevention of placental malaria currently relies on two key strategies...... that are losing efficacy due to spread of resistance: long-lasting insecticide-treated nets and intermittent preventive treatment during pregnancy. A placental malaria vaccine would be an attractive, cost-effective complement to the existing control tools. Two placental malaria vaccine candidates are currently...... in Phase Ia/b clinical trials. During two workshops hosted by the European Vaccine Initiative, one in Paris in April 2014 and the other in Brussels in November 2014, the main actors in placental malaria vaccine research discussed the harmonization of clinical development plans and of the immunoassays...

  18. Access to vaccine technologies in developing countries: Brazil and India.

    Science.gov (United States)

    Milstien, Julie B; Gaulé, Patrick; Kaddar, Miloud

    2007-11-01

    This study, conducted by visits, interviews, and literature search, analyzes how vaccine manufacturers in Brazil and India access technologies for innovative vaccines: through collaborations with academia and research institutions, technology transfer agreements with multinational corporations, public sector, or developing country organizations, or by importation and finishing of bulk products. Each has advantages and disadvantages in terms of speed, market, and ability to independently produce the product. Most manufacturers visited are very concerned about avoiding patent infringement, which might result in undeveloped or delayed products because of a lack of mastery of the patent landscape. Disregarding the patent picture could also threaten the market of a potential product. Although it is too soon to assess the effects of TRIPS on vaccine technology access in Brazil and India, a good understanding of intellectual property management will be useful. A case study on development of a new combination vaccine illustrates these findings.

  19. Recent advances in the development of breast cancer vaccines

    Directory of Open Access Journals (Sweden)

    Milani A

    2014-10-01

    Full Text Available Andrea Milani,1 Dario Sangiolo,1 Massimo Aglietta,1,2 Giorgio Valabrega1,2 1Department of Oncology, University of Torino, Torino, Italy; 2FPO, Candiolo Cancer Institute, IRCCS, Torino, Italy Abstract: The manipulation of the immune system through the administration of a vaccine to direct an effective and long-lasting immune response against breast cancer (BC cells is an attractive strategy. Vaccines would have several theoretical advantages over standard therapies, including low toxicities, high specificity, and long-lasting efficacy due to the establishment of immunological memory. However, BC vaccines have failed to demonstrate meaningful results in clinical trials so far. This reflects the intrinsic difficulty in breaking the complex immune-escaping mechanisms developed by cancer cells. New vaccines should be able to elicit complex immunologic response involving multiple immune effectors such as cytotoxic and antibody-secreting B cells, innate immunity effectors, and memory cells. Moreover, especially in patients with large tumor burdens and metastatic disease, combining vaccines with other strategies, such as systemic BC therapies, passive immunotherapy, or immunomodulatory agents, could increase the effectiveness of each approach. Here, we review recent advances in BC vaccines, focusing on suitable targets and innovative strategies. We report results of most recent trials investigating active immunotherapy in BC and provide possible future perspectives in this field of research. Keywords: breast cancer, cancer vaccines, cancer immunology, HER2, MUC-1, hTERT

  20. Challenges and future in vaccines, drug development, and immunomodulatory therapy.

    Science.gov (United States)

    Kling, Heather M; Nau, Gerard J; Ross, Ted M; Evans, Thomas G; Chakraborty, Krishnendu; Empey, Kerry M; Flynn, JoAnne L

    2014-08-01

    Pulmonary diseases and infections are among the top contributors to human morbidity and mortality worldwide, and despite the successful history of vaccines and antimicrobial therapeutics, infectious disease still presents a significant threat to human health. Effective vaccines are frequently unavailable in developing countries, and successful vaccines have yet to be developed for major global maladies, such as tuberculosis. Furthermore, antibiotic resistance poses a growing threat to human health. The "Challenges and Future in Vaccines, Drug Development, and Immunomodulatory Therapy" session of the 2013 Pittsburgh International Lung Conference highlighted several recent and current studies related to treatment and prevention of antibiotic-resistant bacterial infections, highly pathogenic influenza, respiratory syncytial virus, and tuberculosis. Research presented here focused on novel antimicrobial therapies, new vaccines that are either in development or currently in clinical trials, and the potential for immunomodulatory therapies. These studies are making important contributions to the areas of microbiology, virology, and immunology related to pulmonary diseases and infections and are paving the way for improvements in the efficacy of vaccines and antimicrobials.

  1. [Advances in the development of vaccines for bovine neosporosis].

    Science.gov (United States)

    Hecker, Yanina P; Venturini, María C; Campero, Carlos M; Odeón, Anselmo C; Moore, Dadín P

    2012-01-01

    Neosporosis, a disease caused by the obligate intracellular protozoan Neospora caninum, produces abortions in cattle. The severe economic losses in cattle industry justify the need to develop control measures for preventing bovine abortion. Apicomplexan parasitic resistance is associated with T helper 1 immune response mediated by CD4 cytotoxic T lymphocytes, the production of interferon-gamma, interleukin-12, tumor necrosis factor and immunoglobulin G2. The reduction of vertical transmission in subsequent pregnancies and the low levels of abortion repetition suggests the existence of protective immune mechanisms. Inoculation with live tachyzoites before mating protects against infection and abortion. Antecedents of the development of live vaccines against other protozoa stimulate research to develop a live vaccine against N. caninum. On the other hand, an inactivated vaccine with low efficacy against neosporosis is useful in the prevention of abortion in farms with epizootic disease. A neosporosis vaccine should avoid abortion, transplacental transmission and infection persistence. In the present work, advances in vaccine development including lysate of tachyzoites, live parasites, recombinant antigens and vaccine vectors are reviewed.

  2. Platform for Plasmodium vivax vaccine discovery and development.

    Science.gov (United States)

    Valencia, Sócrates Herrera; Rodríguez, Diana Carolina; Acero, Diana Lucía; Ocampo, Vanessa; Arévalo-Herrera, Myriam

    2011-08-01

    Plasmodium vivax is the most prevalent malaria parasite on the American continent. It generates a global burden of 80-100 million cases annually and represents a tremendous public health problem, particularly in the American and Asian continents. A malaria vaccine would be considered the most cost-effective measure against this vector-borne disease and it would contribute to a reduction in malaria cases and to eventual eradication. Although significant progress has been achieved in the search for Plasmodium falciparum antigens that could be used in a vaccine, limited progress has been made in the search for P. vivax components that might be eligible for vaccine development. This is primarily due to the lack of in vitro cultures to serve as an antigen source and to inadequate funding. While the most advanced P. falciparum vaccine candidate is currently being tested in Phase III trials in Africa, the most advanced P. vivax candidates have only advanced to Phase I trials. Herein, we describe the overall strategy and progress in P. vivax vaccine research, from antigen discovery to preclinical and clinical development and we discuss the regional potential of Latin America to develop a comprehensive platform for vaccine development.

  3. The key role of rubella virus glycoproteins in the formation of immune response, and perspectives on their use in the development of new recombinant vaccines.

    Science.gov (United States)

    Petrova, Ekaterina K; Dmitrieva, Anastasia A; Trifonova, Ekaterina A; Nikitin, Nikolai A; Karpova, Olga V

    2016-02-17

    Rubella is a highly contagious viral disease which is mostly threatens to women of reproductive age. Existent live attenuated vaccines are effective enough, but have some drawbacks and are unusable for a certain group of people, including pregnant women and people with AIDS and other immunodeficiency. Thereby the development of alternative non-replicating, recombinant vaccines undoubtedly is needed. This review discusses the protein E1 and E2 role in formation of immune response and perspectives in development of new generation recombinant vaccines using them.

  4. Evaluation of live-attenuated Salmonella vaccines expressing Campylobacter antigens for control of C. jejuni in poultry.

    Science.gov (United States)

    Buckley, Anthony M; Wang, Jinhong; Hudson, Debra L; Grant, Andrew J; Jones, Michael A; Maskell, Duncan J; Stevens, Mark P

    2010-01-22

    Campylobacter jejuni is a zoonotic bacterial pathogen of worldwide importance. It is estimated that 460,000 human infections occur in the United Kingdom per annum and these involve acute enteritis and may be complicated by severe systemic sequelae. Such infections are frequently associated with the consumption of contaminated poultry meat and strategies to control C. jejuni in poultry are expected to limit pathogen entry into the food chain and the incidence of human disease. Toward this aim, a total of 840 Light Sussex chickens were used to evaluate a Salmonella enterica serovar Typhimurium DeltaaroA vaccine expressing the C. jejuni amino acid binding protein CjaA as a plasmid-borne fusion to the C-terminus of fragment C of tetanus toxin. Chickens were given the vaccine at 1-day-old and two weeks later by oral gavage, then challenged after a further two weeks with C. jejuni. Across six biological replicates, statistically significant reductions in caecal C. jejuni of c. 1.4log(10) colony-forming units/g were observed at three and four weeks post-challenge relative to age-matched unvaccinated birds. Protection was associated with the induction of CjaA-specific serum IgY and biliary IgA. Protection was not observed using a vaccine strain containing the empty plasmid. Vaccination with recombinant CjaA subcutaneously at the same intervals significantly reduced the caecal load of C. jejuni at three and four weeks post-challenge. Taken together these data imply that responses directed against CjaA, rather than competitive or cross-protective effects mediated by the carrier, confer protection. The impact of varying parameters on the efficacy of the S. Typhimurium DeltaaroA vaccine expressing TetC-CjaA was also tested. Delaying the age at primary vaccination had little impact on protection or humoral responses to CjaA. The use of the parent strain as carrier or changing the attenuating mutation of the carrier to DeltaspaS or DeltassaU enhanced the protective effect

  5. Comparative genomic analysis of Brucella abortus vaccine strain 104M reveals a set of candidate genes associated with its virulence attenuation.

    Science.gov (United States)

    Yu, Dong; Hui, Yiming; Zai, Xiaodong; Xu, Junjie; Liang, Long; Wang, Bingxiang; Yue, Junjie; Li, Shanhu

    2015-01-01

    The Brucella abortus strain 104M, a spontaneously attenuated strain, has been used as a vaccine strain in humans against brucellosis for 6 decades in China. Despite many studies, the molecular mechanisms that cause the attenuation are still unclear. Here, we determined the whole-genome sequence of 104M and conducted a comprehensive comparative analysis against the whole genome sequences of the virulent strain, A13334, and other reference strains. This analysis revealed a highly similar genome structure between 104M and A13334. The further comparative genomic analysis between 104M and A13334 revealed a set of genes missing in 104M. Some of these genes were identified to be directly or indirectly associated with virulence. Similarly, a set of mutations in the virulence-related genes was also identified, which may be related to virulence alteration. This study provides a set of candidate genes associated with virulence attenuation in B.abortus vaccine strain 104M.

  6. New approaches in oral rotavirus vaccines.

    Science.gov (United States)

    Kuate Defo, Zenas; Lee, Byong

    2016-05-01

    Rotavirus is the leading cause of severe dehydrating diarrhea worldwide, and affects primarily developing nations, in large part because of the inaccessibility of vaccines and high rates of mortality present therein. At present, there exist two oral rotaviral vaccines, Rotarix™ and RotaTeq™. These vaccines are generally effective in their actions: however, associated costs often stymie their effectiveness, and they continue to be associated with a slight risk of intussusception. While different programs are being implemented worldwide to enhance vaccine distribution and monitor vaccine administration for possible intussusception in light of recent WHO recommendation, another major problem persists: that of the reduced efficacy of the existing rotaviral vaccines in developing countries over time. The development of new oral rotavirus vaccine classes - live-attenuated vaccines, virus-like particles, lactic acid bacteria-containing vaccines, combination therapy with immunoglobulins, and biodegradable polymer-encapsulated vaccines - could potentially circumvent these problems.

  7. Development of Contagious Caprine Pleuropneumonia Inactivated Vaccine( M1601 Strain)

    Institute of Scientific and Technical Information of China (English)

    Zhao; Ping; He; Ying; Chu; Yuefeng; Gao; Pengcheng; Zhang; Xuan; Lu; Zhongxin

    2014-01-01

    Three batches of contagious caprine pleuropneumonia inactivated vaccine( M1601 strain) developed by the laboratory were studied from the aspects of safety,minimum immune dose,immunity duration and storage life. The results showed that the vaccine was safe to goats under different physiological conditions.Regardless of lambs or adult goats,the minimum immune dose was 3 m L,and the immunity duration and the storage life were 6 and 12 months,respectively.

  8. The Capricious Nature of Bacterial Pathogens: Phasevarions and Vaccine Development

    OpenAIRE

    Aimee Tan; Atack, John M.; Jennings, Michael P; Seib, Kate L.

    2016-01-01

    Infectious diseases are a leading cause of morbidity and mortality worldwide, and vaccines are one of the most successful and cost-effective tools for disease prevention. One of the key considerations for rational vaccine development is the selection of appropriate antigens. Antigens must induce a protective immune response, and this response should be directed to stably expressed antigens so the target microbe can always be recognized by the immune system. Antigens with variable expression, ...

  9. Development and clinical application of new polyvalent combined paediatric vaccines.

    Science.gov (United States)

    André, F E

    1999-03-26

    The availability of combined vaccines containing protective antigens against the majority of (ideally all) diseases for which universal immunization is recommended in infancy would simplify the implementation, increase the acceptance, reduce the global cost of immunization programmes and improve disease control, while offering the possibility of disease elimination or even pathogen eradication. The desirability of combined vaccines is further enhanced, and made more urgent, because of the increasing number of diseases that can be prevented by vaccination. The complicated logistics of administering different vaccines that each require several inoculations is a significant barrier to successful immunization of a population. Furthermore, interest in immunization is continuously gaining momentum since it is now generally recognised that vaccines are among the safest and most cost-effective medical interventions for infectious diseases that continue, in spite of the widespread use of efficacious antimicrobial drugs, to be an important cause of morbidity and mortality. This burden is likely to increase due to the development of antimicrobial resistance. Basic research on new vaccines or improvement of existing ones such as the use of new technologies may be carried out in academic or other non-industrial laboratories but development work, including the necessary extensive clinical testing, that lead to products that can be approved for routine use is usually co-ordinated and financed by commercial companies. The decision to develop any particular combined vaccine will therefore be influenced not only by its medical desirability and technical feasibility but also the potential financial returns that the required investments in time and resources may bring to the company. All major vaccine manufacturers are currently working, either alone or through strategic alliances, towards developing more polyvalent vaccines by adding antigens such as inactivated polio virus

  10. Role of vaccine manufacturers in developing countries towards global healthcare by providing quality vaccines at affordable prices.

    Science.gov (United States)

    Jadhav, S; Gautam, M; Gairola, S

    2014-05-01

    Vaccines represent one of the greatest achievements of science and medicine in the fight against infectious diseases. Vaccination is one of the most cost-effective public health tools to prevent infectious diseases. Significant progress has been made in expanding the coverage of vaccines globally, resulting in the prevention of more than two million deaths annually. In 2010, nearly 200 countries endorsed a shared vision to extend the benefits of vaccines to every person by 2020, known as the Decade of Vaccine Initiative (DoV). Vaccine manufacturers in developing countries, as represented by the Developing Countries Vaccine Manufacturers Network (DCVMN), make a significant contribution to DoV by supplying quality vaccines at affordable prices to the people who need them most. About 70% of the global Expanded Program on Immunization (EPI) vaccine supplies are met by DCVMN. Besides EPI vaccine supplies, DCVMN is also targeting vaccines against rotavirus, Japanese encephalitis, pneumonia, human papillomavirus, meningitis and neglected tropical diseases. This article reviews the roles and contributions of DCVMN in making the vaccines accessible and affordable to all.

  11. Constitutive Expression of the Vi Polysaccharide Capsular Antigen in Attenuated Salmonella enterica Serovar Typhi Oral Vaccine Strain CVD 909

    Science.gov (United States)

    Wang, Jin Yuan; Noriega, Fernando R.; Galen, James E.; Barry, Eileen; Levine, Myron M.

    2000-01-01

    Live oral Ty21a and parenteral Vi polysaccharide vaccines provide significant protection against typhoid fever, albeit by distinct immune mechanisms. Vi stimulates serum immunoglobulin G Vi antibodies, whereas Ty21a, which does not express Vi, elicits humoral and cell-mediated immune responses other than Vi antibodies. Protection may be enhanced if serum Vi antibody as well as cell-mediated and humoral responses can be stimulated. Disappointingly, several new attenuated Salmonella enterica serovar Typhi oral vaccines (e.g., CVD 908-htrA and Ty800) that elicit serum O and H antibody and cell-mediated responses following a single dose do not stimulate serum Vi antibody. Vi expression is regulated in response to environmental signals such as osmolarity by controlling the transcription of tviA in the viaB locus. To investigate if Vi antibodies can be stimulated if Vi expression is rendered constitutive, we replaced PtviA in serovar Typhi vaccine CVD 908-htrA with the constitutive promoter Ptac, resulting in CVD 909. CVD 909 expresses Vi even under high-osmolarity conditions and is less invasive for Henle 407 cells. In mice immunized with a single intranasal dose, CVD 909 was more immunogenic than CVD 908-htrA in eliciting serum Vi antibodies (geometric mean titer of 160 versus 49, P = 0.0007), whereas O antibody responses were virtually identical (geometric mean titer of 87 versus 80). In mice challenged intraperitoneally with wild-type serovar Typhi 4 weeks after a single intranasal immunization, the mortality of those immunized with CVD 909 (3 of 8) was significantly lower than that of control mice (10 of 10, P = 0.043) or mice given CVD 908-htrA (9 of 10, P = 0.0065). PMID:10899868

  12. Identification of Brucella melitensis Rev.1 vaccine-strain genetic markers: Towards understanding the molecular mechanism behind virulence attenuation.

    Science.gov (United States)

    Issa, Mohammad Nouh; Ashhab, Yaqoub

    2016-09-22

    Brucella melitensis Rev.1 is an avirulent strain that is widely used as a live vaccine to control brucellosis in small ruminants. Although an assembled draft version of Rev.1 genome has been available since 2009, this genome has not been investigated to characterize this important vaccine. In the present work, we used the draft genome of Rev.1 to perform a thorough genomic comparison and sequence analysis to identify and characterize the panel of its unique genetic markers. The draft genome of Rev.1 was compared with genome sequences of 36 different Brucella melitensis strains from the Brucella project of the Broad Institute of MIT and Harvard. The comparative analyses revealed 32 genetic alterations (30 SNPs, 1 single-bp insertion and 1 single-bp deletion) that are exclusively present in the Rev.1 genome. In silico analyses showed that 9 out of the 17 non-synonymous mutations are deleterious. Three ABC transporters are among the disrupted genes that can be linked to virulence attenuation. Out of the 32 mutations, 11 Rev.1 specific markers were selected to test their potential to discriminate Rev.1 using a bi-directional allele-specific PCR assay. Six markers were able to distinguish between Rev.1 and a set of control strains. We succeeded in identifying a panel of 32 genome-specific markers of the B. melitensis Rev.1 vaccine strain. Extensive in silico analysis showed that a considerable number of these mutations could severely affect the function of the associated genes. In addition, some of the discovered markers were able to discriminate Rev.1 strain from a group of control strains using practical PCR tests that can be applied in resource-limited settings.

  13. Novel vaccine development strategies for inducing mucosal immunity.

    Science.gov (United States)

    Fujkuyama, Yoshiko; Tokuhara, Daisuke; Kataoka, Kosuke; Gilbert, Rebekah S; McGhee, Jerry R; Yuki, Yoshikazu; Kiyono, Hiroshi; Fujihashi, Kohtaro

    2012-03-01

    To develop protective immune responses against mucosal pathogens, the delivery route and adjuvants for vaccination are important. The host, however, strives to maintain mucosal homeostasis by responding to mucosal antigens with tolerance, instead of immune activation. Thus, induction of mucosal immunity through vaccination is a rather difficult task, and potent mucosal adjuvants, vectors or other special delivery systems are often used, especially in the elderly. By taking advantage of the common mucosal immune system, the targeting of mucosal dendritic cells and microfold epithelial cells may facilitate the induction of effective mucosal immunity. Thus, novel routes of immunization and antigen delivery systems also show great potential for the development of effective and safe mucosal vaccines against various pathogens. The purpose of this review is to introduce several recent approaches to induce mucosal immunity to vaccines, with an emphasis on mucosal tissue targeting, new immunization routes and delivery systems. Defining the mechanisms of mucosal vaccines is as important as their efficacy and safety, and in this article, examples of recent approaches, which will likely accelerate progress in mucosal vaccine development, are discussed.

  14. POTENTIAL OF Salmonella typhi ATTENUATED WITH ULTRAVIOLET RAYS AS VACCINE ALTERNATIVE

    Directory of Open Access Journals (Sweden)

    Andreas Putro Ragil Santoso

    2016-03-01

    Full Text Available Salmonella typhi is a Gram-negative intracellular bacterium and causes typhoid fever in humans. The success rate of Berma Vivotif Ty21a vaccine in Indonesia is only 33-66%, while in other countries have been reached up to 100%. The research was conducted in order to determine the potency of local isolate bacteria to stimulate the immune response and the impact of different exposure frequencies on the immune response and the different immune response time when administered by UV-inactivated vaccine.. The results showed that the antibody titer of local isolates irradiated by UV light 10x was 88.76 ± 33.06 IU/mL at week 4 with the lowest antibody titer values about 11.15 ± 9.18 IU/mL was found in the negative control

  15. Lessons learned during the development and transfer of technology related to a new Hib conjugate vaccine to emerging vaccine manufacturers.

    Science.gov (United States)

    Hamidi, A; Boog, C; Jadhav, S; Kreeftenberg, H

    2014-07-16

    The incidence of Haemophilus Influenzae type b (Hib) disease in developed countries has decreased since the introduction of Hib conjugate vaccines in their National Immunization Programs (NIP). In countries where Hib vaccination is not applied routinely, due to limited availability and high cost of the vaccines, invasive Hib disease is still a cause of mortality. Through the development of a production process for a Hib conjugate vaccine and related quality control tests and the transfer of this technology to emerging vaccine manufacturers in developing countries, a substantial contribution was made to the availability and affordability of Hib conjugate vaccines in these countries. Technology transfer is considered to be one of the fastest ways to get access to the technology needed for the production of vaccines. The first Hib conjugate vaccine based on the transferred technology was licensed in 2007, since then more Hib vaccines based on this technology were licensed. This paper describes the successful development and transfer of Hib conjugate vaccine technology to vaccine manufacturers in India, China and Indonesia. By describing the lessons learned in this process, it is hoped that other technology transfer projects can benefit from the knowledge and experience gained.

  16. Status of vaccine research and development of vaccines for Staphylococcus aureus.

    Science.gov (United States)

    Giersing, Birgitte K; Dastgheyb, Sana S; Modjarrad, Kayvon; Moorthy, Vasee

    2016-06-03

    Staphylococcus aureus is a highly versatile gram positive bacterium that is resident as an asymptomatic colonizer on the skin and in the nasopharynx of approximately 30% of individuals. Nasopharyngeal colonization is a risk for acquiring S. aureus infections, which can cause a range of clinical symptoms that are commonly associated with skin and soft-tissue infections. The emergence of S. aureus strains that are highly resistant to antimicrobials has recently become a major public health concern. In low-income countries the incidence of S. aureus disease is highest in neonates and children up to one year of age and mortality rates are estimated to be up to 50%. In the United States, S. aureus infection accounts for approximately 300,000 hospitalizations per year. A vaccine against multi-drug resistant S. aureus, therefore, is urgently needed. Two vaccine candidates have previously been evaluated in late-stage clinical trials but have not demonstrated efficacy. At present, one vaccine candidate and two monoclonal antibody are undergoing clinical evaluation in target groups at high risk for S. aureus infection. This review provides an overview of current vaccine development efforts and presents the major technical and regulatory challenges to developing a licensed S. aureus vaccine.

  17. Evaluation of Three Live Attenuated H2 Pandemic Influenza Vaccine Candidates in Mice and Ferrets

    OpenAIRE

    2014-01-01

    H2 influenza viruses have not circulated in humans since 1968, and therefore a significant portion of the population would be susceptible to infection should H2 influenza viruses reemerge. H2 influenza viruses continue to circulate in avian reservoirs worldwide, and these reservoirs are a potential source from which these viruses could emerge. Three reassortant cold-adapted (ca) H2 pandemic influenza vaccine candidates with hemagglutinin (HA) and neuraminidase (NA) genes derived from the wild...

  18. Design of clinical trials for therapeutic cancer vaccines development.

    Science.gov (United States)

    Mackiewicz, Jacek; Mackiewicz, Andrzej

    2009-12-25

    Advances in molecular and cellular biology as well as biotechnology led to definition of a group of drugs referred to as medicinal products of advanced technologies. It includes gene therapy products, somatic cell therapeutics and tissue engineering. Therapeutic cancer vaccines including whole cell tumor cells vaccines or gene modified whole cells belong to somatic therapeutics and/or gene therapy products category. The drug development is a multistep complex process. It comprises of two phases: preclinical and clinical. Guidelines on preclinical testing of cell based immunotherapy medicinal products have been defined by regulatory agencies and are available. However, clinical testing of therapeutic cancer vaccines is still under debate. It presents a serious problem since recently clinical efficacy of the number of cancer vaccines has been demonstrated that focused a lot of public attention. In general clinical testing in the current form is very expensive, time consuming and poorly designed what may lead to overlooking of products clinically beneficial for patients. Accordingly regulatory authorities and researches including Cancer Vaccine Clinical Trial Working Group proposed three regulatory solutions to facilitate clinical development of cancer vaccines: cost-recovery program, conditional marketing authorization, and a new development paradigm. Paradigm includes a model in which cancer vaccines are investigated in two types of clinical trials: proof-of-principle and efficacy. The proof-of-principle trial objectives are: safety; dose selection and schedule of vaccination; and demonstration of proof-of-principle. Efficacy trials are randomized clinical trials with objectives of demonstrating clinical benefit either directly or through a surrogate. The clinical end points are still under debate.

  19. Comparison of a live attenuated Salmonella Enteritidis vaccine candidate secreting Escherichia coli heat-labile enterotoxin B subunit with a commercial vaccine for efficacy of protection against internal egg contamination by Salmonella in hens.

    Science.gov (United States)

    Nandre, Rahul M; Eo, Seong Kug; Park, Sang Youel; Lee, John Hwa

    2015-07-01

    This study compared a new live attenuated Salmonella Enteritidis vaccine candidate secreting Escherichia coli heat-labile enterotoxin B subunit (SE-LTB) with a commercial Salmonella Enteritidis (SE) vaccine for efficacy of protection against SE infection in laying hens. Chickens were divided into 3 groups of 20 each. Group A chickens were inoculated orally with phosphate-buffered saline and served as controls, group B chickens were inoculated orally with the vaccine candidate, and group C chickens were inoculated intramuscularly with a commercial vaccine, the primary inoculation in groups B and C being at 10 wk of age and the booster at 16 wk. Groups B and C showed significantly higher titers of plasma immunoglobulin G, intestinal secretory immunoglobulin A, and egg yolk immunoglobulin Y antibodies compared with the control group, and both vaccinated groups showed a significantly elevated cellular immune response. After virulent challenge, group B had significantly lower production of thin-shelled and/or malformed eggs and a significantly lower rate of SE contamination of eggs compared with the control group. Furthermore, the challenge strain was detected significantly less in all of the examined organs of group B compared with the control group. Group C had lower gross lesion scores only in the spleen and had lower bacterial counts only in the spleen, ceca, and ovary. These findings indicate that vaccination with the SE-LTB vaccine candidate can efficiently reduce internal egg and internal organ contamination by Salmonella and has advantages over the commercial vaccine.

  20. Moving candidate vaccines into development from research: lessons from HIV.

    Science.gov (United States)

    Sullivan, Mark

    2009-07-01

    There is a logarithmic increase in the cost and complexity of the research and development process when transitioning a promising candidate vaccine from the laboratory into the clinic. Managing complex development programs involving people from diverse technical, cultural and geographical backgrounds is a specialised skill. It is essential that the group is clear on their objectives and how their activities affect others, that communication is open, inclusive and effective, and that the most rigorous, scientific approach based on statistical principles in compliance with regulatory requirements is used. Applying these standards to all vaccine development programs will filter out inappropriate candidates more readily and enhance the efficiency of vaccine development. The challenges of developing a new vaccine are illustrated in human immunodeficiency virus (HIV) vaccinology. Selecting vaccine candidates for HIV requires the ability to evaluate the large number of potential antigens in imperfect and non-standardised animal models. Further, using these models to evaluate questions such as dose scaling to humans, optimal route of administration, the use of adjuvants and potential formulation improvements adds variable to variable, making the interpretation of results particularly challenging. This may lead to the promotion of a poor candidate or the elimination of a good one. The absence of precise immunological correlates of protection and the prohibitive cost of confirmatory clinical trials are further significant barriers. However, there are practical steps that can be taken to standardise early vaccine evaluation, which would result in more efficient development of new vaccines for HIV and other disease areas with similarly challenging development issues (such as hepatitis C virus, influenza, Mycobacterium tuberculosis and malaria).

  1. Delta-pgm, a new live-attenuated vaccine against Brucella suis.

    Science.gov (United States)

    Czibener, Cecilia; Del Giudice, Mariela Giselda; Spera, Juan Manuel; Fulgenzi, Fabiana Rosa; Ugalde, Juan Esteban

    2016-03-18

    Brucellosis is one of the most widespread zoonosis in the world affecting many domestic and wild animals including bovines, goats, pigs and dogs. Each species of the Brucella genus has a particular tropism toward different mammals being the most relevant for human health Brucella abortus, Brucella melitensis and Brucella suis that infect bovines, goats/camelids and swine respectively. Although for B. abortus and B. melitensis there are vaccines available, there is no efficient vaccine to protect swine from B. suis infection so far. We describe here the construction of a novel vaccine strain that confers excellent protection against B. suis in a mouse model of infection. This strain is a clean deletion of the phosphoglucomutase (pgm) gene that codes for a protein that catalyzes the conversion of glucose-6-P to glucose-1-P, which is used as a precursor for the biosynthesis of many polysaccharides. The Delta-pgm strain lacks a complete lipopolysaccharide, is unable to synthesize cyclic beta glucans and is sensitive to several detergents and Polymyxin B. We show that this strain replicates in cultured cells, is completely avirulent in the mouse model of infection but protects against a challenge of the virulent strain inducing the production of pro-inflammatory cytokines. This novel strain could be an excellent candidate for the control of swine brucellosis, a disease of emerging concern in many parts of the world.

  2. The search for animal models for Lassa fever vaccine development.

    Science.gov (United States)

    Lukashevich, Igor S

    2013-01-01

    Lassa virus (LASV) is the most prevalent arenavirus in West Africa and is responsible for several hundred thousand infections and thousands of deaths annually. The sizeable disease burden, numerous imported cases of Lassa fever (LF) and the possibility that LASV can be used as an agent of biological warfare make a strong case for vaccine development. Currently there is no licensed LF vaccine and research and devlopment is hampered by the high cost of nonhuman primate animal models and by biocontainment requirements (BSL-4). In addition, a successful LF vaccine has to induce a strong cell-mediated cross-protective immunity against different LASV lineages. All of these challenges will be addressed in this review in the context of available and novel animal models recently described for evaluation of LF vaccine candidates.

  3. Malaria Vaccine Development and How External Forces Shape It: An Overview

    OpenAIRE

    Veronique Lorenz; Gabriele Karanis; Panagiotis Karanis

    2014-01-01

    The aim of this paper is to analyse the current status and scientific value of malaria vaccine approaches and to provide a realistic prognosis for future developments. We systematically review previous approaches to malaria vaccination, address how vaccine efforts have developed, how this issue may be fixed, and how external forces shape vaccine development. Our analysis provides significant information on the various aspects and on the external factors that shape malaria vaccine development...

  4. Browning attenuates murine white adipose tissue expansion during postnatal development.

    Science.gov (United States)

    Lasar, D; Julius, A; Fromme, T; Klingenspor, M

    2013-05-01

    During postnatal development of mice distinct white adipose tissue depots display a transient appearance of brown-like adipocytes. These brite (brown in white) adipocytes share characteristics with classical brown adipocytes including a multilocular appearance and the expression of the thermogenic protein uncoupling protein 1. In this study, we compared two inbred mouse strains 129S6sv/ev and C57BL6/N known for their different propensity to diet-induced obesity. We observed transient browning in retroperitoneal and inguinal adipose tissue depots of these two strains. From postnatal day 10 to 20 the increase in the abundance of multilocular adipocytes and uncoupling protein 1 expression was higher in 129S6sv/ev than in C57BL6/N pups. The parallel increase in the mass of the two fat depots was attenuated during this browning period. Conversely, epididymal white and interscapular brown adipose tissue displayed a steady increase in mass during the first 30 days of life. In this period, 129S6sv/ev mice developed a significantly higher total body fat mass than C57BL6/N. Thus, while on a local depot level a high number of brite cells is associated with the attenuation of adipose tissue expansion the strain comparison reveals no support for a systemic impact on energy balance. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.

  5. Self-replicating alphavirus RNA vaccines.

    Science.gov (United States)

    Ljungberg, Karl; Liljeström, Peter

    2015-02-01

    Recombinant nucleic acids are considered as promising next-generation vaccines. These vaccines express the native antigen upon delivery into tissue, thus mimicking live attenuated vaccines without having the risk of reversion to pathogenicity. They also stimulate the innate immune system, thus potentiating responses. Nucleic acid vaccines are easy to produce at reasonable cost and are stable. During the past years, focus has been on the use of plasmid DNA for vaccination. Now mRNA and replicon vaccines have come into focus as promising technology platforms for vaccine development. This review discusses self-replicating RNA vaccines developed from alphavirus expression vectors. These replicon vaccines can be delivered as RNA, DNA or as recombinant virus particles. All three platforms have been pre-clinically evaluated as vaccines against a number of infectious diseases and cancer. Results have been very encouraging and propelled the first human clinical trials, the results of which have been promising.

  6. Safety Overview of a Recombinant Live-Attenuated Tetravalent Dengue Vaccine: Pooled Analysis of Data from 18 Clinical Trials.

    Directory of Open Access Journals (Sweden)

    Sophia Gailhardou

    2016-07-01

    Full Text Available A recombinant live attenuated tetravalent dengue vaccine (CYD-TDV has been shown to be efficacious in preventing virologically-confirmed dengue disease, severe dengue disease and dengue hospitalization in children aged 2-16 years in Asia and Latin America. We analyzed pooled safety data from 18 phase I, II and III clinical trials in which the dengue vaccine was administered to participants aged 2-60 years, including long-term safety follow-up in three efficacy trials. The participants were analyzed according to their age at enrollment. The percentage of participants aged 2-60 years reporting ≥1 solicited injection-site or systemic reactions was slightly higher in the CYD-TDV group than in the placebo group. The most common solicited injection-site reactions were pain. Headache and malaise were the most common solicited systemic reactions. In both groups 0.3% of participants discontinued for safety reasons. The most common unsolicited adverse events were injection-site reactions, gastrointestinal disorders, and infections. Reactogenicity did not increase with successive doses of CYD-TDV. The frequency and nature of SAEs occurring within 28 days of any dose were similar in the CYD-TDV and placebo groups and were common medical conditions that could be expected as a function of age. Baseline dengue virus serostatus did not appear to influence the safety profile. No vaccine-related anaphylactic reactions, neurotropic events or viscerotropic events were reported. In year 3 after dose 1, an imbalance for dengue hospitalization, including for severe dengue, observed in participants aged <9 years in the CYD-TDV group compared with the placebo group was not observed for participants aged ≥9 years. In Year 4, this imbalance in participants aged <9 years was less marked, giving an overall lower risk of dengue hospitalization or severe dengue from dose 1 to Year 4 in the CYD-TDV group. These results have contributed to the definition of the target

  7. Safety Overview of a Recombinant Live-Attenuated Tetravalent Dengue Vaccine: Pooled Analysis of Data from 18 Clinical Trials

    Science.gov (United States)

    Gailhardou, Sophia; Skipetrova, Anna; Dayan, Gustavo H.; Jezorwski, John; Saville, Melanie; Van der Vliet, Diane; Wartel, T. Anh

    2016-01-01

    A recombinant live attenuated tetravalent dengue vaccine (CYD-TDV) has been shown to be efficacious in preventing virologically-confirmed dengue disease, severe dengue disease and dengue hospitalization in children aged 2–16 years in Asia and Latin America. We analyzed pooled safety data from 18 phase I, II and III clinical trials in which the dengue vaccine was administered to participants aged 2–60 years, including long-term safety follow-up in three efficacy trials. The participants were analyzed according to their age at enrollment. The percentage of participants aged 2–60 years reporting ≥1 solicited injection-site or systemic reactions was slightly higher in the CYD-TDV group than in the placebo group. The most common solicited injection-site reactions were pain. Headache and malaise were the most common solicited systemic reactions. In both groups 0.3% of participants discontinued for safety reasons. The most common unsolicited adverse events were injection-site reactions, gastrointestinal disorders, and infections. Reactogenicity did not increase with successive doses of CYD-TDV. The frequency and nature of SAEs occurring within 28 days of any dose were similar in the CYD-TDV and placebo groups and were common medical conditions that could be expected as a function of age. Baseline dengue virus serostatus did not appear to influence the safety profile. No vaccine-related anaphylactic reactions, neurotropic events or viscerotropic events were reported. In year 3 after dose 1, an imbalance for dengue hospitalization, including for severe dengue, observed in participants aged dengue hospitalization or severe dengue from dose 1 to Year 4 in the CYD-TDV group. These results have contributed to the definition of the target population for vaccination (≥9 years old) for which CYD-TDV has a satisfactory safety profile. Long-term safety will continue to be monitored in the ongoing follow-up of efficacy trials. Safety and effectiveness in real-life settings

  8. Comparison of intramuscular and subcutaneous administration of a herpes zoster live-attenuated vaccine in adults aged ≥50 years: a randomised non-inferiority clinical trial.

    Science.gov (United States)

    Diez-Domingo, Javier; Weinke, Thomas; Garcia de Lomas, Juan; Meyer, Claudius U; Bertrand, Isabelle; Eymin, Cécile; Thomas, Stéphane; Sadorge, Christine

    2015-02-04

    Zostavax(®) is a live, attenuated varicella zoster virus (VZV) vaccine developed specifically for the prevention of HZ and PHN in individuals aged ≥50 years. During the clinical development of Zostavax, which was mainly in the US, the vaccine was administrated by the subcutaneous (SC) route. In Europe, many healthcare professionals prefer administering vaccines by the intramuscular (IM) route. This was an open-label, randomised trial conducted in 354 subjects aged ≥50 years. The primary objectives were to demonstrate that IM administration is both non-inferior to SC administration in terms of 4-week post-vaccination geometric mean titres (GMTs), and elicits an acceptable geometric mean fold-rise (GMFR) of antibody titres measured by glycoprotein enzyme-linked immunosorbent assay. Pre-specified non-inferiority was set as the lower bound of the 95% confidence interval (CI) of the GMT ratio (IM/SC) being >0.67. An acceptable GMFR for the IM route was pre-specified as the lower bound of its 95% CI being >1.4. Description of the VZV immune response using the interferon-gamma enzyme-linked immunospot (IFN-γ ELISPOT) assay and of the safety were secondary objectives. Participants were randomised to IM or SC administration (1:1). The baseline demographics were comparable between groups; mean age: 62.6 years (range: 50.0-90.5). The primary immunogenicity objectives were met (per protocol analysis): GMT ratio (IM/SC): 1.05 (95% CI: 0.93-1.18); GMFR: 2.7 (2.4-3.0). VZV immune response using IFN-γ ELISPOT were comparable between groups. Frequencies of systemic adverse events were comparable between groups. Injection-site reactions were less frequent with IM than SC route: erythema (15.9% versus 52.5%), pain (25.6% versus 39.5%) and swelling (13.6% versus 37.3%), respectively. In adults aged ≥50 years, IM administration of Zostavax elicited similar immune responses to SC administration and was well tolerated, with fewer injection-site reactions than with SC

  9. Field Trial of Attenuated Salmonella Typhi Live Oral Vaccine TY21A in Liquid and Enteric-Coated Formulations and Epidemiological Survey for Incidence of Diarrhea due to Shigella Species

    Science.gov (United States)

    1989-03-01

    AD-A248 309 till AD FIELD TRIAL OF ATTENUATED SALMONELLA TYPHI LIVE ORAL VACCINE TY21A IN LIQUID AND ENTERIC-COATED FORMULATIONS AND EPIDEMIOLOGICAL...024 11- TITLE WL-* .S-wrYCIAo40 (U) Field Trial of Attenuated Salmonella typhi Live Oral Vaccine Ty2la in Liquid and Enteric-Coated Formulations and...Clements ML, Lanata C, Rooney J, Germanier R, Chilean Typhoid Cormmittee. The efficacy of attenuated Salmonella typhi oral vaccine strain Ty2la evaluated in

  10. Lock in, the state and vaccine development: lessons from the history of the polio vaccines

    NARCIS (Netherlands)

    Blume, S.S.

    2005-01-01

    Over the past two decades pharmaceutical industry interest in the development of vaccines against infectious diseases has grown. At the same time various partnerships and mechanisms have been established in order to reconcile the interests of private industry with the needs of public health systems

  11. The Capricious Nature of Bacterial Pathogens: Phasevarions and Vaccine Development

    Directory of Open Access Journals (Sweden)

    Aimee Tan

    2016-12-01

    Full Text Available Infectious diseases are a leading cause of morbidity and mortality worldwide, and vaccines are one of the most successful and cost-effective tools for disease prevention. One of the key considerations for rational vaccine development is the selection of appropriate antigens. Antigens must induce a protective immune response, and this response should be directed to stably expressed antigens so the target microbe can always be recognized by the immune system. Antigens with variable expression, due to environmental signals or phase variation (i.e., high frequency, random switching of expression, are not ideal vaccine candidates because variable expression could lead to immune evasion. Phase variation is often mediated by the presence of highly mutagenic simple tandem DNA repeats, and genes containing such sequences can be easily identified, and their use discounted as vaccine antigens reconsidered. Recent research has identified phase variably expressed DNA methyltransferases that act as global epigenetic regulators. These phase variable regulons, known as phasevarions, are associated with altered virulence phenotypes and/or expression of vaccine candidates. As such, genes encoding candidate vaccine antigens that have no obvious mechanism of phase variation may be subject to indirect, epigenetic control as part of a phasevarion. Bioinformatic and experimental studies are required to elucidate the distribution and mechanism of action of these DNA methyltransferases, and most importantly, whether they mediate epigenetic regulation of potential and current vaccine candidates. This process is essential to define the stably expressed antigen target profile of bacterial pathogens and thereby facilitate efficient, rational selection of vaccine antigens.

  12. Development of a competitive ELISA for NS3 antibodies as DIVA test accompanying the novel Disabled Infectious Single Animal (DISA) vaccine for Bluetongue.

    Science.gov (United States)

    Tacken, Mirriam G J; Daus, Franz J; Feenstra, Femke; van Gennip, René G P; van Rijn, Piet A

    2015-10-13

    Recently, we have developed a novel vaccine for Bluetongue named BT Disabled Infectious Single Animal (DISA) vaccine. Due to the lack of non-essential NS3/NS3a protein, BT DISA vaccine is a replicating vaccine, but without the inherent risks of live-attenuated vaccines, such as residual virulence or reversion to virulence by mutations, reassortment with field virus, horizontal spread by vectors and vertical transmission. The immune response induced by BT DISA vaccines is rapidly induced, highly protective and serotype specific which is dependent on the immunodominant and serotype determining VP2 protein. The BT DISA vaccine platform provides the replacement of exclusively VP2 from different serotypes in order to safely formulate multivalent cocktail vaccines. The lack of NS3/NS3a directed antibodies by BT DISA vaccination enables differentiation of infected from vaccinated animals (DIVA principle). A highly conserved immunogenic site corresponding to the late domain was mapped in the N-terminal region of NS3. We here established an NS3-specific competitive ELISA (NS3 cELISA) as serological DIVA test accompanying BT DISA vaccines. To this end, NS3 protein missing putative transmembrane regions was produced in large amounts in bacteria and used as antigen in the NS3 cELISA which was investigated with a variety of sera. The NS3 cELISA displayed a high sensitivity and specificity similar to the commercially available VP7-specific cELISA. Results of previously performed vaccination-challenge trials with BT DISA vaccines clearly demonstrate the DIVA system based on the NS3 cELISA and BT vaccine free of NS3 protein.

  13. Development of improved vaccine cell lines against rotavirus

    Science.gov (United States)

    Wu, Weilin; Orr-Burks, Nichole; Karpilow, Jon; Tripp, Ralph A.

    2017-01-01

    Rotavirus is a major cause of severe gastroenteritis among very young children. In developing countries, rotavirus is the major cause of mortality in children under five years old, causing up to 20% of all childhood deaths in countries with high diarrheal disease burden, with more than 90% of these deaths occurring in Africa and Asia. Rotavirus vaccination mimics the first infection without causing illness, thus inducing strong and broad heterotypic immunity against prospective rotavirus infections. Two live vaccines are available, Rotarix and RotaTeq, but vaccination efforts are hampered by high production costs. Here, we present a dataset containing a genome-wide RNA interference (RNAi) screen that identified silencing events that enhanced rotavirus replication. Evaluated against several rotavirus vaccine strains, hits were validated in a Vero vaccine cell line as well as CRISPR/Cas9 generated cells permanently and stably lacking the genes that affect RV replication. Knockout cells were dramatically more permissive to RV replication and permitted an increase in rotavirus replication. These data show a means to improve manufacturing of rotavirus vaccine. PMID:28248921

  14. Accelerating Vaccine Formulation Development Using Design of Experiment Stability Studies.

    Science.gov (United States)

    Ahl, Patrick L; Mensch, Christopher; Hu, Binghua; Pixley, Heidi; Zhang, Lan; Dieter, Lance; Russell, Ryann; Smith, William J; Przysiecki, Craig; Kosinski, Mike; Blue, Jeffrey T

    2016-10-01

    Vaccine drug product thermal stability often depends on formulation input factors and how they interact. Scientific understanding and professional experience typically allows vaccine formulators to accurately predict the thermal stability output based on formulation input factors such as pH, ionic strength, and excipients. Thermal stability predictions, however, are not enough for regulators. Stability claims must be supported by experimental data. The Quality by Design approach of Design of Experiment (DoE) is well suited to describe formulation outputs such as thermal stability in terms of formulation input factors. A DoE approach particularly at elevated temperatures that induce accelerated degradation can provide empirical understanding of how vaccine formulation input factors and interactions affect vaccine stability output performance. This is possible even when clear scientific understanding of particular formulation stability mechanisms are lacking. A DoE approach was used in an accelerated 37(°)C stability study of an aluminum adjuvant Neisseria meningitidis serogroup B vaccine. Formulation stability differences were identified after only 15 days into the study. We believe this study demonstrates the power of combining DoE methodology with accelerated stress stability studies to accelerate and improve vaccine formulation development programs particularly during the preformulation stage.

  15. Development of high-yield influenza B virus vaccine viruses.

    Science.gov (United States)

    Ping, Jihui; Lopes, Tiago J S; Neumann, Gabriele; Kawaoka, Yoshihiro

    2016-12-20

    The burden of human infections with influenza A and B viruses is substantial, and the impact of influenza B virus infections can exceed that of influenza A virus infections in some seasons. Over the past few decades, viruses of two influenza B virus lineages (Victoria and Yamagata) have circulated in humans, and both lineages are now represented in influenza vaccines, as recommended by the World Health Organization. Influenza B virus vaccines for humans have been available for more than half a century, yet no systematic efforts have been undertaken to develop high-yield candidates. Therefore, we screened virus libraries possessing random mutations in the six "internal" influenza B viral RNA segments [i.e., those not encoding the major viral antigens, hemagglutinin (HA) and neuraminidase NA)] for mutants that confer efficient replication. Candidate viruses that supported high yield in cell culture were tested with the HA and NA genes of eight different viruses of the Victoria and Yamagata lineages. We identified combinations of mutations that increased the titers of candidate vaccine viruses in mammalian cells used for human influenza vaccine virus propagation and in embryonated chicken eggs, the most common propagation system for influenza viruses. These influenza B virus vaccine backbones can be used for improved vaccine virus production.

  16. Generation and preclinical evaluation of a DENV-1/2 prM+E chimeric live attenuated vaccine candidate with enhanced prM cleavage.

    Science.gov (United States)

    Keelapang, Poonsook; Nitatpattana, Narong; Suphatrakul, Amporn; Punyahathaikul, Surat; Sriburi, Rungtawan; Pulmanausahakul, Rojjanaporn; Pichyangkul, Sathit; Malasit, Prida; Yoksan, Sutee; Sittisombut, Nopporn

    2013-10-17

    In the absence of a vaccine or sustainable vector control measures, illnesses caused by dengue virus infection remain an important public health problem in many tropical countries. During the export of dengue virus particles, furin-mediated cleavage of the prM envelope protein is usually incomplete, thus generating a mixture of immature, partially mature and mature extracellular particles. Variations in the arrangement and conformation of the envelope proteins among these particles may be associated with their different roles in shaping the antibody response. In an attempt to improve upon live, attenuated dengue vaccine approaches, a mutant chimeric virus, with enhanced prM cleavage, was generated by introducing a cleavage-enhancing substitution into a chimeric DENV-1/2 virus genome, encoding the prM+E sequence of a recent DENV-1 isolate under an attenuated DENV-2 genetic background. A modest increase in virus specific infectivity observed in the mutant chimeric virus affected neither the attenuation phenotype, when assessed in the suckling mouse neurovirulence model, nor multiplication in mosquitoes. The two chimeric viruses induced similar levels of anti-DENV-1 neutralizing antibody response in mice and rhesus macaques, but more efficient control of viremia during viral challenge was observed in macaques immunized with the mutant chimeric virus. These results indicate that the DENV-1/2 chimeric virus, with enhanced prM cleavage, could be useful as an alternative live, attenuated vaccine candidate for further tests in humans.

  17. Introduction of silent mutations into the NP gene of influenza A viruses as a possible strategy for the creation of a live attenuated vaccine.

    Science.gov (United States)

    Anhlan, Darisuren; Hrincius, Eike-Roman; Scholtissek, Christoph; Ludwig, Stephan

    2012-06-22

    The nucleoprotein (NP) of influenza A virus (IAV) is associated with many different functions including host range restriction. Multiple sequence alignment analyses of 748 NP gene sequences from GenBank revealed a highly conserved region of 60 nucleotides within the ORF at the 3'-ends of the cRNA, in some codons even silent mutations were not found. This suggests that the RNA structure integrity within this region is crucial for IAV replication. To explore the impact of these conserved nucleotides for viral replication we created mutant viruses with one or more silent mutations in the respective region of the NP gene of the IAV strain A/WSN/33 (H1N1) (WSN). Assessment of viral replication of these WSN mutant viruses showed significant growth disadvantages when compared to the corresponding parental strain. On the basis of these findings we tested whether the attenuation of IAV by introduction of silent mutations into the NP gene may serve as a strategy to create a live attenuated vaccine. Mice vaccinated with the attenuated WSN mutant survived a lethal challenge dose of wild type WSN virus or the mouse adapted pandemic H1N1v strain A/Hamburg/4/2009. Thus, introduction of silent mutations in the NP of IAV is a feasible approach for a novel vaccination strategy allowing attenuation of the master strain but leaves the antigenicity of the gene product unaltered. This principle is potentially applicable for all viruses with segmented genomes.

  18. Developing active noise control systems for noise attenuation in ducts

    Science.gov (United States)

    Campos, Rosely V.; Ivo, Rodrigo C.; Medeiros, Eduardo B.

    2002-11-01

    The present work describes some of the research effort on Active Noise Control (ANC) being jointly developed by the Catholic University of Minas Gerais (PUC-MINAS) and the Federal University of Minas Gerais (UFMG). Considerations about the implementation of Digital Signal Processing for noise control in ducts has been presented. The objective is to establish a study on Active Noise Control in ducts combining geometry and acoustic parameters modification together with adaptive digital filtering implementation. Both algorithm and digital signal processing details are also discussed. The main results for a typical application where real attenuation has been obtained are presented and considered according to their use in developing real applications. The authors also believe that the present text should provide an interesting overview for both designers and students concerned about Active Noise Control in ducts. (To be presented in Portuguese.)

  19. Development of a Vaccine against Escherichia coli Urinary Tract Infections

    Science.gov (United States)

    Mobley, Harry L. T.; Alteri, Christopher J.

    2015-01-01

    Urinary tract infection (UTI) is the second most common infection in humans after those involving the respiratory tract. This results not only in huge annual economic costs, but in decreased workforce productivity and high patient morbidity. Most infections are caused by uropathogenic Escherichia coli (UPEC). Antibiotic treatment is generally effective for eradication of the infecting strain; however, documentation of increasing antibiotic resistance, allergic reaction to certain pharmaceuticals, alteration of normal gut flora, and failure to prevent recurrent infections represent significant barriers to treatment. As a result, approaches to prevent UTI such as vaccination represent a gap that must be addressed. Our laboratory has made progress toward development of a preventive vaccine against UPEC. The long-term research goal is to prevent UTIs in women with recurrent UTIs. Our objective has been to identify the optimal combination of protective antigens for inclusion in an effective UTI vaccine, optimal adjuvant, optimal dose, and optimal route of delivery. We hypothesized that a multi-subunit vaccine elicits antibody that protects against experimental challenge with UPEC strains. We have systematically identified four antigens that can individually protect experimentally infected mice from colonization of the bladder and/or kidneys by UPEC when administered intranasally with cholera toxin (CT) as an adjuvant. To advance the vaccine for utility in humans, we will group the individual antigens, all associated with iron acquisition (IreA, Hma, IutA, FyuA), into an effective combination to establish a multi-subunit vaccine. We demonstrated for all four vaccine antigens that antigen-specific serum IgG represents a strong correlate of protection in vaccinated mice. High antibody titers correlate with low colony forming units (CFUs) of UPEC following transurethral challenge of vaccinated mice. However, the contribution of cell-mediated immunity cannot be ruled out and

  20. Development of a Vaccine against Escherichia coli Urinary Tract Infections.

    Science.gov (United States)

    Mobley, Harry L T; Alteri, Christopher J

    2015-12-31

    Urinary tract infection (UTI) is the second most common infection in humans after those involving the respiratory tract. This results not only in huge annual economic costs, but in decreased workforce productivity and high patient morbidity. Most infections are caused by uropathogenic Escherichia coli (UPEC). Antibiotic treatment is generally effective for eradication of the infecting strain; however, documentation of increasing antibiotic resistance, allergic reaction to certain pharmaceuticals, alteration of normal gut flora, and failure to prevent recurrent infections represent significant barriers to treatment. As a result, approaches to prevent UTI such as vaccination represent a gap that must be addressed. Our laboratory has made progress toward development of a preventive vaccine against UPEC. The long-term research goal is to prevent UTIs in women with recurrent UTIs. Our objective has been to identify the optimal combination of protective antigens for inclusion in an effective UTI vaccine, optimal adjuvant, optimal dose, and optimal route of delivery. We hypothesized that a multi-subunit vaccine elicits antibody that protects against experimental challenge with UPEC strains. We have systematically identified four antigens that can individually protect experimentally infected mice from colonization of the bladder and/or kidneys by UPEC when administered intranasally with cholera toxin (CT) as an adjuvant. To advance the vaccine for utility in humans, we will group the individual antigens, all associated with iron acquisition (IreA, Hma, IutA, FyuA), into an effective combination to establish a multi-subunit vaccine. We demonstrated for all four vaccine antigens that antigen-specific serum IgG represents a strong correlate of protection in vaccinated mice. High antibody titers correlate with low colony forming units (CFUs) of UPEC following transurethral challenge of vaccinated mice. However, the contribution of cell-mediated immunity cannot be ruled out and

  1. Development of a Vaccine against Escherichia coli Urinary Tract Infections

    Directory of Open Access Journals (Sweden)

    Harry L. T. Mobley

    2015-12-01

    Full Text Available Urinary tract infection (UTI is the second most common infection in humans after those involving the respiratory tract. This results not only in huge annual economic costs, but in decreased workforce productivity and high patient morbidity. Most infections are caused by uropathogenic Escherichia coli (UPEC. Antibiotic treatment is generally effective for eradication of the infecting strain; however, documentation of increasing antibiotic resistance, allergic reaction to certain pharmaceuticals, alteration of normal gut flora, and failure to prevent recurrent infections represent significant barriers to treatment. As a result, approaches to prevent UTI such as vaccination represent a gap that must be addressed. Our laboratory has made progress toward development of a preventive vaccine against UPEC. The long-term research goal is to prevent UTIs in women with recurrent UTIs. Our objective has been to identify the optimal combination of protective antigens for inclusion in an effective UTI vaccine, optimal adjuvant, optimal dose, and optimal route of delivery. We hypothesized that a multi-subunit vaccine elicits antibody that protects against experimental challenge with UPEC strains. We have systematically identified four antigens that can individually protect experimentally infected mice from colonization of the bladder and/or kidneys by UPEC when administered intranasally with cholera toxin (CT as an adjuvant. To advance the vaccine for utility in humans, we will group the individual antigens, all associated with iron acquisition (IreA, Hma, IutA, FyuA, into an effective combination to establish a multi-subunit vaccine. We demonstrated for all four vaccine antigens that antigen-specific serum IgG represents a strong correlate of protection in vaccinated mice. High antibody titers correlate with low colony forming units (CFUs of UPEC following transurethral challenge of vaccinated mice. However, the contribution of cell-mediated immunity cannot

  2. Delivering the promise of the Decade of Vaccines: opportunities and challenges in the development of high quality new vaccines.

    Science.gov (United States)

    Keith, Jacqueline A; Agostini Bigger, Laetitia; Arthur, Phyllis A; Maes, Edith; Daems, Rutger

    2013-04-18

    The Decade of Vaccines (DoV) initiative, launched in 2010, has as its mission "to extend, by 2020 and beyond, the full benefits of immunization to all people, regardless of where they are born, who they are, or where they live". Through their life-saving vaccines, the research-based vaccine companies represented by the International Federation of Pharmaceutical Manufacturers & Associations (IFPMA) and the Biotechnology Industry Organization (BIO) make a major contribution toward this vision. In this article, we begin by summarizing progress made over the past three decades in research and development (R&D) of new and future vaccines, and identify the opportunities and challenges faced by the research-based vaccine industry. We then review the Global Vaccine Action Plan (GVAP) and provide IFPMA and BIO consensus perspectives on its six strategic objectives. Finally, we identify policy measures to support R&D of, and access to, high-quality, innovative vaccines.

  3. Prevention and control of influenza and dengue through vaccine development.

    Science.gov (United States)

    Greenberg, David P; Robertson, Corwin A; Gordon, Daniel M

    2013-08-01

    Influenza and dengue are viral illnesses of global public health importance, especially among children. Accordingly, these diseases have been the focus of efforts to improve their prevention and control. Influenza vaccination offers the best protection against clinical disease caused by strains contained within the specific year's formulation. It is not uncommon for there to be a mismatch between vaccine strains and circulating strains, particularly with regards to the B lineages. For more than a decade, two distinct lineages of influenza B (Yamagata and Victoria) have co-circulated in the US with varying frequencies, but trivalent influenza vaccines contain only one B-lineage strain and do not offer adequate protection against the alternate B-lineage. Quadrivalent influenza vaccines (QIVs), containing two A strains (H1N1 and H3N2) and two B strains (one from each lineage) have been developed to help protect against the four strains predicted to be the most likely to be circulating. The QIV section of this article discusses epidemiology of pediatric influenza, importance of influenza B in children, potential benefits of QIV, and new quadrivalent vaccines. In contrast to influenza, a vaccine against dengue is not yet available in spite of many decades of research and development. A global increase in reports of dengue fever (DF) and its more severe presentations, dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS), suggest that US physicians will increasingly encounter patients with this disease. Similarities of the early signs and symptoms of influenza and dengue and the differences in disease management necessitates a better understanding of the epidemiology, clinical presentation, management, and prevention of DF by US physicians, including pediatricians. The article also provides a brief overview of dengue and discusses dengue vaccine development.

  4. Dengue:epidemiology, prevention and pressing need for vaccine development

    Institute of Scientific and Technical Information of China (English)

    Kuldeep Kumar; Pankaj Kumar Singh; Juhi Tomar; Swati Baijal

    2010-01-01

    Dengue fever is a mosquito born viral infection, and the complicated form of dengue is dengue hemorrhagic fever (DHF). In the recent decades incidence and distribution of dengue has increased dramatically. Dengue viruses belong to family flaviviridae with four serotypes and are transmitted mainly by mosquito Aedes aegypti. Today almost two-fifth of world's population (2.5 million) is at risk of dengue and no specific antiviral drug or vaccine is available against it. Uncontrolled population growth in Africa and South East Asia has increased number of susceptible hosts in urban and semi urban areas. About 40% of world population resides in the high risk area for dengue transmission. According to latest estimates by WHO, yearly 50 to 100 million infections occur globally, this includes around 500 000 DHF and 22 000 deaths, mostly among children. Only symptomatic treatment in the form of analgesic, antipyretics and body fluid management is provided to the patient. Prevention strategies mainly focus on two approaches, firstly on activities to control vector and secondly on activities to protect human from mosquito bite but there is always concerns regarding their sustainably and effectiveness. Theoretically development of an effective dengue vaccine is feasible and production of an effective and affordable vaccine could be a viable option to save humans from this dreadful disease. Conceptually vaccine production is possible, but it has to be tetravalent, providing immunity against all serotypes. Few candidate vaccines are in advance stage of their development; however international cooperation is needed to make these vaccines available on cheaper rates to the poor and vulnerable countries. Objective of this review is to discuss various aspects related to dengue, its epidemiology, available preventive methods, need for vaccine and challenges in its development.

  5. Vaccine Development for Biothreat Alpha Viruses

    Science.gov (United States)

    2011-09-25

    virus (IV) BeAr35645 Cassabou virus (V) Rio Negro virus (VI) EEEV EEEV NA Lineage I FL93-939 EEEV SA Lineage II-IV BeAr436087 WEEV WEEV CBA87 WEEV ON41...Bioterr Biodef ISSN:2157-2526 JBTBD an open access journal 17. Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (2005) Virus Taxonomy:Eighth...vaccinated with chimeric SIN/VEE viruses. J Virol 80: 2784-2796. 33. Atasheva S, Wang E, Adams AP, Plante KS, Ni S, et al. (2009) Chimeric alphavirus

  6. Progress and Challenges toward the Development of Vaccines against Avian Infectious Bronchitis

    Directory of Open Access Journals (Sweden)

    Faruku Bande

    2015-01-01

    Full Text Available Avian infectious bronchitis (IB is a widely distributed poultry disease that has huge economic impact on poultry industry. The continuous emergence of new IBV genotypes and lack of cross protection among different IBV genotypes have been an important challenge. Although live attenuated IB vaccines remarkably induce potent immune response, the potential risk of reversion to virulence, neutralization by the maternal antibodies, and recombination and mutation events are important concern on their usage. On the other hand, inactivated vaccines induce a weaker immune response and may require multiple dosing and/or the use of adjuvants that probably have potential safety risks and increased economic burdens. Consequently, alternative IB vaccines are widely sought. Recent advances in recombinant DNA technology have resulted in experimental IB vaccines that show promise in antibody and T-cells responses, comparable to live attenuated vaccines. Recombinant DNA vaccines have also been enhanced to target multiple serotypes and their efficacy has been improved using delivery vectors, nanoadjuvants, and in ovo vaccination approaches. Although most recombinant IB DNA vaccines are yet to be licensed, it is expected that these types of vaccines may hold sway as future vaccines for inducing a cross protection against multiple IBV serotypes.

  7. An integrated, multistudy analysis of the safety of Ann Arbor strain live attenuated influenza vaccine in children aged 2–17 years

    OpenAIRE

    Ambrose, Christopher S.; Yi, Tingting; Falloon, Judith

    2011-01-01

    Background Trivalent, Ann Arbor strain, live attenuated influenza vaccine (LAIV) is approved in several countries for use in eligible children aged ≥2 years. Objective To describe the safety of Ann Arbor strain LAIV in children aged 2–17 years. Methods An integrated analysis of randomized, controlled trials of LAIV. Results A total of 4245 and 10 693 children received ≥1 dose of LAIV in year 1 of 6 trivalent inactivated influenza vaccine (TIV)-controlled and 14 placebo-controlled studies, res...

  8. Evaluation of vaccines against enteric infections: a clinical and public health research agenda for developing countries.

    Science.gov (United States)

    Clemens, John

    2011-10-12

    Enteric infections are a major cause of morbidity and mortality in developing countries. To date, vaccines have played a limited role in public health efforts to control enteric infections. Licensed vaccines exist for cholera and typhoid, but these vaccines are used primarily for travellers; and there are two internationally licensed vaccines for rotavirus, but they are mainly used in affluent countries. The reasons that enteric vaccines are little used in developing countries are multiple, and certainly include financial and political constraints. Also important is the need for more cogent evidence on the performance of enteric vaccines in developing country populations. A partial inventory of research questions would include: (i) does the vaccine perform well in the most relevant settings? (ii) does the vaccine perform well in all epidemiologically relevant age groups? (iii) is there adequate evidence of vaccine safety once the vaccines have been deployed in developing countries? (iv) how effective is the vaccine when given in conjunction with non-vaccine cointerventions? (v) what is the level of vaccine protection against all relevant outcomes? and (vi) what is the expected population level of vaccine protection, including both direct and herd vaccine protective effects? Provision of evidence addressing these questions will help expand the use of enteric vaccines in developing countries.

  9. Replacement of glycoprotein B in alcelaphine herpesvirus 1 by its ovine herpesvirus 2 homolog: implications in vaccine development for sheep associated-malignant catarrhal fever

    Science.gov (United States)

    Vaccine development is a top priority in malignant catarrhal fever (MCF) research. In the case of sheep-associated MCF (SA-MCF), caused by ovine herpesvirus 2 (OvHV-2), progress towards this objective has been hindered by the absence of methods to attenuate or modify the virus, since it cannot be pr...

  10. Hepatitis B vaccine in developing countries: problems and prospects.

    Science.gov (United States)

    Ayoola, E A

    1984-01-01

    Hepatitis B vaccines are highly immunogenic. To determine the efficacy of low doses and of the intradermal route of vaccination, 197 Nigerian children were given 3 monthly doses of Hevac B. Of these, 96 had 2 micrograms subcutaneously and 101 had 2 micrograms intradermally. One month after completing the schedule, 82.3% and 74.3% of the respective groups had become anti-HBs positive without adverse side-effects. In the second part of the study, 50 chronic HBsAg carriers were vaccinated. Compared to placebo-treated carriers, no effect was demonstrated with regard to HBsAg clearance or anti-HBs production. Immune complexes were not attributable to Hevac B. No untoward effects were noted. Booster vaccination of 50 initial non-responders resulted in the development of significant levels of anti-HBs in 20 (40%) of the recipients. None of the 'non-responders' developed clinical or virological evidence of HBV infection. It is concluded that low-dose vaccination is effective and that the intradermal route may be useful in developing countries.

  11. Experimental animal modelling for TB vaccine development

    Directory of Open Access Journals (Sweden)

    Pere-Joan Cardona

    2017-03-01

    Full Text Available Research for a novel vaccine to prevent tuberculosis is an urgent medical need. The current vaccine, BCG, has demonstrated a non-homogenous efficacy in humans, but still is the gold standard to be improved upon. In general, the main indicator for testing the potency of new candidates in animal models is the reduction of the bacillary load in the lungs at the acute phase of the infection. Usually, this reduction is similar to that induced by BCG, although in some cases a weak but significant improvement can be detected, but none of candidates are able to prevent establishment of infection. The main characteristics of several laboratory animals are reviewed, reflecting that none are able to simulate the whole characteristics of human tuberculosis. As, so far, no surrogate of protection has been found, it is important to test new candidates in several models in order to generate convincing evidence of efficacy that might be better than that of BCG in humans. It is also important to investigate the use of “in silico” and “ex vivo” models to better understand experimental data and also to try to replace, or at least reduce and refine experimental models in animals.

  12. Gene deleted live attenuated Leishmania vaccine candidates against visceral leishmaniasis elicit pro-inflammatory cytokines response in human PBMCs

    Science.gov (United States)

    Avishek, Kumar; Kaushal, Himanshu; Gannavaram, Sreenivas; Dey, Ranadhir; Selvapandiyan, Angamuthu; Ramesh, V.; Negi, Narender Singh; Dubey, Uma S.; Nakhasi, Hira L.; Salotra, Poonam

    2016-01-01

    Currently no effective vaccine is available for human visceral leishmaniasis(VL) caused by Leishmania donovani. Previously, we showed that centrin1 and p27gene deleted live attenuated Leishmania parasites (LdCen1−/− and Ldp27−/−) are safe, immunogenic and protective in animal models. Here, to assess the correlates of protection, we evaluated immune responses induced by LdCen1−/− and Ldp27−/− in human blood samples obtained from healthy, healed VL (HVL), post kala-azar dermal leishmaniasis(PKDL) and VL subjects. Both parasites infected human macrophages, as effectively as the wild type parasites. Further, LdCen1−/− and Ldp27−/− strongly stimulated production of pro-inflammatory cytokines including, IL-12, IFN-γ, TNF-α, IL-2, IL-6 and IL-17 in the PBMCs obtained from individuals with a prior exposure to Leishmania (HVL and PKDL). There was no significant stimulation of anti-inflammatory cytokines (IL-4 and IL-10). Induction of Th1 biased immune responses was supported by a remarkable increase in IFN-γ secreting CD4+ and CD8+ T cells and IL-17 secreting CD4+ cells in PBMCs from HVL cases with no increase in IL-10 secreting T cells. Hence, LdCen1−/− and Ldp27−/− are promising as live vaccine candidates against VL since they elicit strong protective immune response in human PBMCs from HVL, similar to the wild type parasite infection, mimicking a naturally acquired protection following cure. PMID:27624408

  13. Conventional housing conditions attenuate the development of experimental autoimmune encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Andreas Arndt

    Full Text Available BACKGROUND: The etiology of multiple sclerosis (MS has remained unclear, but a causative contribution of factors outside the central nervous system (CNS is conceivable. It was recently suggested that gut bacteria trigger the activation of CNS-reactive T cells and the development of demyelinative disease. METHODS: C57BL/6 (B6 mice were kept either under specific pathogen free or conventional housing conditions, immunized with the myelin basic protein (MBP-proteolipid protein (PLP fusion protein MP4 and the development of EAE was clinically monitored. The germinal center size of the Peyer's patches was determined by immunohistochemistry in addition to the level of total IgG secretion which was assessed by ELISPOT. ELISPOT assays were also used to measure MP4-specific T cell and B cell responses in the Peyer's patches and the spleen. Ear swelling assays were performed to determine the extent of delayed-type hypersensitivity reactions in specific pathogen free and conventionally housed mice. RESULTS: In B6 mice that were actively immunized with MP4 and kept under conventional housing conditions clinical disease was significantly attenuated compared to specific pathogen free mice. Conventionally housed mice displayed increased levels of IgG secretion in the Peyer's patches, while the germinal center formation in the gut and the MP4-specific TH17 response in the spleen were diminished after immunization. Accordingly, these mice displayed an attenuated delayed type hypersensitivity (DTH reaction in ear swelling assays. CONCLUSIONS: The data corroborate the notion that housing conditions play a substantial role in the induction of murine EAE and suggest that the presence of gut bacteria might be associated with a decreased immune response to antigens of lower affinity. This concept could be of importance for MS and calls for caution when considering the therapeutic approach to treat patients with antibiotics.

  14. Vaccines for the prevention of dengue: development update.

    Science.gov (United States)

    Thomas, Stephen J; Endy, Timothy P

    2011-06-01

    The dengue viruses (DENV) are mosquito-borne flaviviruses which cause a spectrum of clinical disease known as "dengue," and have emerged and re-emerged as a significant global health problem. It is estimated more than 120 countries currently have endemic DENV transmission, 55% of the world's population is at risk of infection, and there are between 70-500 million infections of which 2.1 million are clinically severe resulting in 21,000 deaths annually. By all estimates the global dengue problem will continue to worsen due to the increasing mobility of the population, ecological changes, and the inability to effectively sustain vector control. There are no licensed antivirals or vaccines to treat or prevent dengue. The development and widespread use of a safe and efficacious dengue vaccine is required to significantly reduce the global dengue burden. In this review the authors discuss dengue vaccines currently in the pre-clinical and clinical development pipeline.

  15. Brucellosis vaccines for livestock.

    Science.gov (United States)

    Goodwin, Zakia I; Pascual, David W

    2016-11-15

    Brucellosis is a livestock disease responsible for fetal loss due to abortions. Worldwide, this disease has profound economic and social impact by reducing the ability of livestock producers to provide an adequate supply of disease-free meat and dairy products. In addition to its presence in domesticated animals, brucellosis is harbored in a number of wildlife species creating new disease reservoirs, which adds to the difficulty of eradicating this disease. Broad and consistent use of the available vaccines would contribute in reducing the incidence of brucellosis. Unfortunately, this practice is not common. In addition, the current brucellosis vaccines cannot provide sterilizing immunity, and in certain circumstances, vaccinated livestock are not protected against co-mingling Brucella-infected wildlife. Given that these vaccines are inadequate for conferring complete protection for some vaccinated livestock, alternatives are being sought, and these include genetic modifications of current vaccines or their reformulations. Alternatively, many groups have sought to develop new vaccines. Subunit vaccines, delivered as a combination of soluble vaccine plus adjuvant or the heterologous expression of Brucella epitopes by different vaccine vectors are currently being tested. New live attenuated Brucella vaccines are also being developed and tested in their natural hosts. Yet, what is rarely considered is the route of vaccination which could improve vaccine efficacy. Since Brucella infections are mostly transmitted mucosally, mucosal delivery of a vaccine has the potential of eliciting a more robust protective immune response for improved efficacy. Hence, this review will examine these questions and provide the status of new vaccines for livestock brucellosis.

  16. Nasal spray flu vaccine (image)

    Science.gov (United States)