WorldWideScience

Sample records for attention-related cortical functional

  1. Functional rehabilitation of partial cortical blindness?

    Science.gov (United States)

    Stoerig, Petra

    2008-01-01

    The current doctrine regards fields of partial cortical blindness as permanent once a temporally restricted window for spontaneous recovery has passed. Accordingly, neuropsychological rehabilitation mainly applies compensatory procedures that train patients to make better use of their sighted field. The more ambitious goal of functional recovery depends on the survival of pathways that continue to transmit retinal information from the blind field. Although wide-spread antero- and retrograde degeneration follows lesions that destroy or denervate the primary visual cortex and cause partial cortical blindness, several retinofugal pathways survive in cats, monkeys, and humans. In all three species, they subserve a variety of visual functions which develop and improve with practice. Post lesion plasticity is greater when the lesion occurs early in life, but changes in behavioural performance and brain responses have also been demonstrated in late lesion subjects. Although the extent of functional improvement is variable, and the most effective approaches still need to be established across cohorts, the evidence for perceptual learning in fields of cortical blindness indicates that the visual processes mediated by the surviving parts of the visual system can be harnessed to improve functional outcome.

  2. Motor cortical function and the precision grip.

    Science.gov (United States)

    Geevasinga, Nimeshan; Menon, Parvathi; Kiernan, Matthew C; Vucic, Steve

    2014-12-01

    While task-dependent changes in motor cortical outputs have been previously reported, the issue of whether such changes are specific for complex hand tasks remains unresolved. The aim of the present study was to determine whether cortical inhibitory tone and cortical output were greater during precision grip and power grip. Motor cortex excitability was undertaken by using the transcranial magnetic stimulation threshold tracking technique in 15 healthy subjects. The motor-evoked potential (MEP) responses were recorded over the abductor pollicis brevis (APB), with the hand in the following positions: (1) rest, (2) precision grip and (3) power grip. The MEP amplitude (MEP amplitude REST 23.6 ± 3.3%; MEP amplitude PRECISION GRIP 35.2 ± 5.6%; MEP amplitude POWER GRIP 19.6 ± 3.4%, F = 2.4, P < 0.001) and stimulus-response gradient (SLOPEREST 0.06 ± 0.01; SLOPEPRCISION GRIP 0.15 ± 0.04; SLOPE POWER GRIP 0.07 ± 0.01, P < 0.05) were significantly increased during precision grip. Short interval intracortical inhibition (SICI) was significantly reduced during the precision grip (SICI REST 15.0 ± 2.3%; SICI PRECISION GRIP 9.7 ± 1.5%, SICI POWER GRIP 15.9 ± 2.7%, F = 2.6, P < 0.05). The present study suggests that changes in motor cortex excitability are specific for precision grip, with functional coupling of descending corticospinal pathways controlling thumb and finger movements potentially forming the basis of these cortical changes.

  3. Cable energy function of cortical axons.

    Science.gov (United States)

    Ju, Huiwen; Hines, Michael L; Yu, Yuguo

    2016-01-01

    Accurate estimation of action potential (AP)-related metabolic cost is essential for understanding energetic constraints on brain connections and signaling processes. Most previous energy estimates of the AP were obtained using the Na(+)-counting method, which seriously limits accurate assessment of metabolic cost of ionic currents that underlie AP conduction along the axon. Here, we first derive a full cable energy function for cortical axons based on classic Hodgkin-Huxley (HH) neuronal equations and then apply the cable energy function to precisely estimate the energy consumption of AP conduction along axons with different geometric shapes. Our analytical approach predicts an inhomogeneous distribution of metabolic cost along an axon with either uniformly or nonuniformly distributed ion channels. The results show that the Na(+)-counting method severely underestimates energy cost in the cable model by 20-70%. AP propagation along axons that differ in length may require over 15% more energy per unit of axon area than that required by a point model. However, actual energy cost can vary greatly depending on axonal branching complexity, ion channel density distributions, and AP conduction states. We also infer that the metabolic rate (i.e. energy consumption rate) of cortical axonal branches as a function of spatial volume exhibits a 3/4 power law relationship.

  4. Basic visual function and cortical thickness patterns in posterior cortical atrophy.

    Science.gov (United States)

    Lehmann, Manja; Barnes, Josephine; Ridgway, Gerard R; Wattam-Bell, John; Warrington, Elizabeth K; Fox, Nick C; Crutch, Sebastian J

    2011-09-01

    Posterior cortical atrophy (PCA) is characterized by a progressive decline in higher-visual object and space processing, but the extent to which these deficits are underpinned by basic visual impairments is unknown. This study aimed to assess basic and higher-order visual deficits in 21 PCA patients. Basic visual skills including form detection and discrimination, color discrimination, motion coherence, and point localization were measured, and associations and dissociations between specific basic visual functions and measures of higher-order object and space perception were identified. All participants showed impairment in at least one aspect of basic visual processing. However, a number of dissociations between basic visual skills indicated a heterogeneous pattern of visual impairment among the PCA patients. Furthermore, basic visual impairments were associated with particular higher-order object and space perception deficits, but not with nonvisual parietal tasks, suggesting the specific involvement of visual networks in PCA. Cortical thickness analysis revealed trends toward lower cortical thickness in occipitotemporal (ventral) and occipitoparietal (dorsal) regions in patients with visuoperceptual and visuospatial deficits, respectively. However, there was also a lot of overlap in their patterns of cortical thinning. These findings suggest that different presentations of PCA represent points in a continuum of phenotypical variation.

  5. Cortical Reorganization of Language Functioning Following Perinatal Left MCA Stroke

    Science.gov (United States)

    Tillema, Jan-Mendelt; Byars, Anna W.; Jacola, Lisa M.; Schapiro, Mark B.; Schmithorst, Vince J.; Szaflarski, Jerzy P.; Holland, Scott K.

    2008-01-01

    Objective: Functional MRI was used to determine differences in patterns of cortical activation between children who suffered perinatal left middle cerebral artery (MCA) stroke and healthy children performing a silent verb generation task. Methods: Ten children with prior perinatal left MCA stroke (age 6-16 years) and ten healthy age matched…

  6. [Functional magnetic resonance imaging for cortical mapping in epilepsy].

    Science.gov (United States)

    Lajos, Rudolf Kozák; Tóth, Vivien; Barsi, Péter; Rudas, Gábor

    2011-09-30

    It is not only the total curative resection of pathological tissue or the minimization of symptoms to be considered in epilepsy surgery or other neurosurgical procedures, it is equally desirable to maintain the best possible quality of life. Cortical mapping methods can help achieve this goal by delineating eloquent areas, i.e. brain regions that are vital for providing an acceptable quality of life, albeit not prone to compensatory reorganization. These areas include among others the Broca and Wernicke regions for speech, the primary motor, sensory and visual cortices. Functional MRI gained importance in the last decade as a non-invasive clinical cortical mapping technique. This method is capable of localizing cortical areas selectively activated by a given task condition. Thus, selecting appropriate tasks can help mapping eloquent brain regions. Using functional MRI provides information that is complementary to other mapping methods. Moreover, it can replace invasive methods such as the Wada test. Here, we explain the background of functional MRI, compare it to other clinical mapping methods, explain the intricacies of paradigm selection, and show the limitations of the technique while also pointing out alternative uses.

  7. Functional Doppler optical coherence tomography for cortical blood flow imaging

    Science.gov (United States)

    Yu, Lingfeng; Liu, Gangjun; Nguyen, Elaine; Choi, Bernard; Chen, Zhongping

    2010-02-01

    Optical methods have been widely used in basic neuroscience research to study the cerebral blood flow dynamics in order to overcome the low spatial resolution associated with magnetic resonance imaging and positron emission tomography. Although laser Doppler imaging and laser speckle imaging can map out en face cortical hemodynamics and columns, depth resolution is not available. Two-photon microscopy has been used for mapping cortical activity. However, flow measurement requires fluorescent dye injection, which can be problematic. The noninvasive and high resolution tomographic capabilities of optical coherence tomography make it a promising technique for mapping depth resolved cortical blood flow. Here, we present a functional Doppler optical coherence tomography (OCT) imaging modality for quantitative evaluation of cortical blood flow in a mouse model. Fast, repeated, Doppler OCT scans across a vessel of interest were performed to record flow dynamic information with a high temporal resolution of the cardiac cycles. Spectral Doppler analysis of continuous Doppler images demonstrates how the velocity components and longitudinally projected flow-volume-rate change over time, thereby providing complementary temporal flow information to the spatially distributed flow information of Doppler OCT. The proposed functional Doppler OCT imaging modality can be used to diagnose vessel stenosis/blockage or monitor blood flow changes due to pharmacological agents/neuronal activities. Non-invasive in-vivo mice experiments were performed to verify the capabilities of function Doppler OCT.

  8. Functional and anatomical properties of human visual cortical fields.

    Science.gov (United States)

    Zhang, Shouyu; Cate, Anthony D; Herron, Timothy J; Kang, Xiaojian; Yund, E William; Bao, Shanglian; Woods, David L

    2015-04-01

    Human visual cortical fields (VCFs) vary in size and anatomical location across individual subjects. Here, we used functional magnetic resonance imaging (fMRI) with retinotopic stimulation to identify VCFs on the cortical surface. We found that aligning and averaging VCF activations across the two hemispheres provided clear delineation of multiple retinotopic fields in visual cortex. The results show that VCFs have consistent locations and extents in different subjects that provide stable and accurate landmarks for functional and anatomical mapping. Interhemispheric comparisons revealed minor differences in polar angle and eccentricity tuning in comparable VCFs in the left and right hemisphere, and somewhat greater intersubject variability in the right than left hemisphere. We then used the functional boundaries to characterize the anatomical properties of VCFs, including fractional anisotropy (FA), magnetization transfer ratio (MTR) and the ratio of T1W and T2W images and found significant anatomical differences between VCFs and between hemispheres.

  9. Research on relation between cortical functional section and acupuncture point

    Science.gov (United States)

    Chen, Shuwang; Li, Chunhua; Liang, Guozhuang; Wang, Shuhai

    2008-02-01

    The application of the infrared imaging using in the brain cognition and the acupuncture is introduced. Acupuncturing a certain point of the healthy experimental cats, observing the responds of the cerebral cortical temperature by using of infrared imaging, and researching the corresponding relation between the acupuncture points with the active sections of the cerebral cortex, so the effect of the acupuncture is obtained. The theory of the refreshment and induce resuscitation pinprick is approved. The method of the "refreshment and induce resuscitation pinprick" can promote the metabolize renovation, improve the living function and increase the healing rate. However, the relations between the points and the cortical functional sections have not the last word still. After removing the skulls on the head, full of the cerebral cortex of a cat are exposed. Observing the infrared imaging and measuring the temperatures of the visual cerebral cortex during the process of acupuncturing the points to judge the activation position. During the process of acupuncture, the trend of the rising temperature on cerebral cortex is primary in terms of the phenomena in the infrared pictures. The cortical hemogram variety is measured in terms of the infrared pictures and the temperature values, so the characteristic curve of the temperature for a corresponding position on the cerebral cortex and the acupuncture point can be obtained. When the acupuncture point is changed, the position where temperature varied on cerebral cortex is different correspondingly. The variety in the cortical functional sections is corresponding to the result of the acupuncture point in terms of the imaging and the temperatures. The experimental results accord with the theoretic model, so they validate the correctness of the "refreshment and induce resuscitation pinprick". According to the experimental results, we know that the variety of a cortical functional section is corresponding to a special acupuncture

  10. The enemy within: propagation of aberrant corticostriatal learning to cortical function in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Jeff A Beeler

    2013-09-01

    Full Text Available Motor dysfunction in Parkinson’s disease is believed to arise primarily from pathophysiology in the dorsal striatum and its related corticostriatal and thalamostriatal circuits during progressive dopamine denervation. One function of these circuits is to provide a filter that selectively facilitates or inhibits cortical activity to optimize cortical processing, making motor responses rapid and efficient. Corticostriatal synaptic plasticity mediates the learning that underlies this performance-optimizing filter. Under dopamine denervation, corticostriatal plasticity is altered, resulting in aberrant learning that induces inappropriate basal ganglia filtering that impedes rather than optimizes cortical processing. Human imaging suggests that increased cortical activity may compensate for striatal dysfunction in PD patients. In this Perspective article, we consider how aberrant learning at corticostriatal synapses may impair cortical processing and learning and undermine potential cortical compensatory mechanisms. Blocking or remediating aberrant corticostriatal plasticity may protect cortical function and support cortical compensatory mechanisms mitigating the functional decline associated with progressive dopamine denervation.

  11. [Preoperative direct cortical and sub-cortical electric stimulation during cerebral surgery in functional areas].

    Science.gov (United States)

    Duffau, H; Capelle, L; Sichez, J P; Bitar, A; Faillot, T; Arthuis, F; Van Effenterre, R; Fohanno, D

    1999-09-01

    Indications of surgical treatment for lesions in functional cerebral areas depend on the ratio between the definitive neurological deficit and the beneficial effect of resection. Detection of eloquent cortex is difficult because of important individual variability. Peroperative direct cortical and subcortical electrical stimulations (DCS) provide the most precise and reliable method currently available allowing identification and preservation of neurons essential for motricity, sensitivity++ and language. We report our preliminary experience with DCS in surgery of intracerebral infiltrative tumors with a consecutive series of 15 patients operated from November 96 through September 97 in our institution. Presenting symptoms in the 15 patients (8 males, 7 females, mean age 43 years) were seizures in 11 cases (73%) and neurological deficit in 4 cases (27%). Clinical examination was normal in 11 patients and revealed hemiparesia in 4. Magnetic resonance imaging (MRI) with three-dimensional reconstruction showed a precentral tumor in 10 cases, central lesion in one patient, postcentral lesion in two cases, right insular tumor (non-dominant hemisphere) in one case. All patients underwent surgical resection using DCS with detection in 13 cases of motor cortex and subcortical pathways under genera anesthesia, in one case of somatosensory area under local anesthesia, and in one case of language areas also under local anesthesia. The tumor was recurrent in two patients had been operated earlier but without DCS. Resection, verified by postoperative MRI, was total in 12 cases (80%) and estimated at 80% in 3 patients. Histological examination revealed an infiltrative glioma in 12 cases (8 low grade astrocytomas, 3 low grade oligodendrogliomas, and one anaplastic oligodendroglioma), and metastases in 3 cases. Eight patients had no postoperative deficit, while the other 7 patients were impaired, with, in all cases except one, complete recovery in 15 days to 2 months. Direct

  12. Functional Cortical Network in Alpha Band Correlates with Social Bargaining

    Science.gov (United States)

    Billeke, Pablo; Zamorano, Francisco; Chavez, Mario; Cosmelli, Diego; Aboitiz, Francisco

    2014-01-01

    Solving demanding tasks requires fast and flexible coordination among different brain areas. Everyday examples of this are the social dilemmas in which goals tend to clash, requiring one to weigh alternative courses of action in limited time. In spite of this fact, there are few studies that directly address the dynamics of flexible brain network integration during social interaction. To study the preceding, we carried out EEG recordings while subjects played a repeated version of the Ultimatum Game in both human (social) and computer (non-social) conditions. We found phase synchrony (inter-site-phase-clustering) modulation in alpha band that was specific to the human condition and independent of power modulation. The strength and patterns of the inter-site-phase-clustering of the cortical networks were also modulated, and these modulations were mainly in frontal and parietal regions. Moreover, changes in the individuals’ alpha network structure correlated with the risk of the offers made only in social conditions. This correlation was independent of changes in power and inter-site-phase-clustering strength. Our results indicate that, when subjects believe they are participating in a social interaction, a specific modulation of functional cortical networks in alpha band takes place, suggesting that phase synchrony of alpha oscillations could serve as a mechanism by which different brain areas flexibly interact in order to adapt ongoing behavior in socially demanding contexts. PMID:25286240

  13. Inverted-U Function Relating Cortical Plasticity and Task Difficulty

    Science.gov (United States)

    Engineer, Navzer D.; Engineer, Crystal T.; Reed, Amanda C.; Pandya, Pritesh K.; Jakkamsetti, Vikram; Moucha, Raluca; Kilgard, Michael P.

    2012-01-01

    Many psychological and physiological studies with simple stimuli have suggested that perceptual learning specifically enhances the response of primary sensory cortex to task-relevant stimuli. The aim of this study was to determine whether auditory discrimination training on complex tasks enhances primary auditory cortex responses to a target sequence relative to non-target and novel sequences. We collected responses from more than 2,000 sites in 31 rats trained on one of six discrimination tasks that differed primarily in the similarity of the target and distractor sequences. Unlike training with simple stimuli, long-term training with complex stimuli did not generate target specific enhancement in any of the groups. Instead, cortical receptive field size decreased, latency decreased, and paired pulse depression decreased in rats trained on the tasks of intermediate difficulty while tasks that were too easy or too difficult either did not alter or degraded cortical responses. These results suggest an inverted-U function relating neural plasticity and task difficulty. PMID:22249158

  14. An anatomical and functional topography of human auditory cortical areas.

    Science.gov (United States)

    Moerel, Michelle; De Martino, Federico; Formisano, Elia

    2014-01-01

    While advances in magnetic resonance imaging (MRI) throughout the last decades have enabled the detailed anatomical and functional inspection of the human brain non-invasively, to date there is no consensus regarding the precise subdivision and topography of the areas forming the human auditory cortex. Here, we propose a topography of the human auditory areas based on insights on the anatomical and functional properties of human auditory areas as revealed by studies of cyto- and myelo-architecture and fMRI investigations at ultra-high magnetic field (7 Tesla). Importantly, we illustrate that-whereas a group-based approach to analyze functional (tonotopic) maps is appropriate to highlight the main tonotopic axis-the examination of tonotopic maps at single subject level is required to detail the topography of primary and non-primary areas that may be more variable across subjects. Furthermore, we show that considering multiple maps indicative of anatomical (i.e., myelination) as well as of functional properties (e.g., broadness of frequency tuning) is helpful in identifying auditory cortical areas in individual human brains. We propose and discuss a topography of areas that is consistent with old and recent anatomical post-mortem characterizations of the human auditory cortex and that may serve as a working model for neuroscience studies of auditory functions.

  15. An anatomical and functional topography of human auditory cortical areas

    Directory of Open Access Journals (Sweden)

    Michelle eMoerel

    2014-07-01

    Full Text Available While advances in magnetic resonance imaging (MRI throughout the last decades have enabled the detailed anatomical and functional inspection of the human brain non-invasively, to date there is no consensus regarding the precise subdivision and topography of the areas forming the human auditory cortex. Here, we propose a topography of the human auditory areas based on insights on the anatomical and functional properties of human auditory areas as revealed by studies of cyto- and myelo-architecture and fMRI investigations at ultra-high magnetic field (7 Tesla. Importantly, we illustrate that - whereas a group-based approach to analyze functional (tonotopic maps is appropriate to highlight the main tonotopic axis - the examination of tonotopic maps at single subject level is required to detail the topography of primary and non-primary areas that may be more variable across subjects. Furthermore, we show that considering multiple maps indicative of anatomical (i.e. myelination as well as of functional properties (e.g. broadness of frequency tuning is helpful in identifying auditory cortical areas in individual human brains. We propose and discuss a topography of areas that is consistent with old and recent anatomical post mortem characterizations of the human auditory cortex and that may serve as a working model for neuroscience studies of auditory functions.

  16. Perceptual learning modifies the functional specializations of visual cortical areas.

    Science.gov (United States)

    Chen, Nihong; Cai, Peng; Zhou, Tiangang; Thompson, Benjamin; Fang, Fang

    2016-05-17

    Training can improve performance of perceptual tasks. This phenomenon, known as perceptual learning, is strongest for the trained task and stimulus, leading to a widely accepted assumption that the associated neuronal plasticity is restricted to brain circuits that mediate performance of the trained task. Nevertheless, learning does transfer to other tasks and stimuli, implying the presence of more widespread plasticity. Here, we trained human subjects to discriminate the direction of coherent motion stimuli. The behavioral learning effect substantially transferred to noisy motion stimuli. We used transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) to investigate the neural mechanisms underlying the transfer of learning. The TMS experiment revealed dissociable, causal contributions of V3A (one of the visual areas in the extrastriate visual cortex) and MT+ (middle temporal/medial superior temporal cortex) to coherent and noisy motion processing. Surprisingly, the contribution of MT+ to noisy motion processing was replaced by V3A after perceptual training. The fMRI experiment complemented and corroborated the TMS finding. Multivariate pattern analysis showed that, before training, among visual cortical areas, coherent and noisy motion was decoded most accurately in V3A and MT+, respectively. After training, both kinds of motion were decoded most accurately in V3A. Our findings demonstrate that the effects of perceptual learning extend far beyond the retuning of specific neural populations for the trained stimuli. Learning could dramatically modify the inherent functional specializations of visual cortical areas and dynamically reweight their contributions to perceptual decisions based on their representational qualities. These neural changes might serve as the neural substrate for the transfer of perceptual learning.

  17. Inter-subject alignment of human cortical anatomy using functional connectivity

    OpenAIRE

    Conroy, Bryan R.; Singer, Benjamin D.; Guntupalli, J. Swaroop; Ramadge, Peter J.; Haxby, James V.

    2013-01-01

    Inter-subject alignment of functional MRI (fMRI) data is necessary for group analyses. The standard approach to this problem matches anatomical features of the brain, such as major anatomical landmarks or cortical curvature. Precise alignment of functional cortical topographies, however, cannot be derived using only anatomical features.

  18. GABA through the Ages: Regulation of Cortical Function and Plasticity by Inhibitory Interneurons

    Directory of Open Access Journals (Sweden)

    Konrad Lehmann

    2012-01-01

    Full Text Available Inhibitory interneurons comprise only about 20% of cortical neurons and thus constitute a clear minority compared to the vast number of excitatory projection neurons. They are, however, an influential minority with important roles in cortical maturation, function, and plasticity. In this paper, we will highlight the functional importance of cortical inhibition throughout brain development, starting with the embryonal formation of the cortex, proceeding by the regulation of sensory cortical plasticity in adulthood, and finishing with the GABA involvement in sensory information processing in old age.

  19. Control of Somatosensory Cortical Processing by Thalamic Posterior Medial Nucleus: A New Role of Thalamus in Cortical Function.

    Directory of Open Access Journals (Sweden)

    Carlos Castejon

    Full Text Available Current knowledge of thalamocortical interaction comes mainly from studying lemniscal thalamic systems. Less is known about paralemniscal thalamic nuclei function. In the vibrissae system, the posterior medial nucleus (POm is the corresponding paralemniscal nucleus. POm neurons project to L1 and L5A of the primary somatosensory cortex (S1 in the rat brain. It is known that L1 modifies sensory-evoked responses through control of intracortical excitability suggesting that L1 exerts an influence on whisker responses. Therefore, thalamocortical pathways targeting L1 could modulate cortical firing. Here, using a combination of electrophysiology and pharmacology in vivo, we have sought to determine how POm influences cortical processing. In our experiments, single unit recordings performed in urethane-anesthetized rats showed that POm imposes precise control on the magnitude and duration of supra- and infragranular barrel cortex whisker responses. Our findings demonstrated that L1 inputs from POm imposed a time and intensity dependent regulation on cortical sensory processing. Moreover, we found that blocking L1 GABAergic inhibition or blocking P/Q-type Ca2+ channels in L1 prevents POm adjustment of whisker responses in the barrel cortex. Additionally, we found that POm was also controlling the sensory processing in S2 and this regulation was modulated by corticofugal activity from L5 in S1. Taken together, our data demonstrate the determinant role exerted by the POm in the adjustment of somatosensory cortical processing and in the regulation of cortical processing between S1 and S2. We propose that this adjustment could be a thalamocortical gain regulation mechanism also present in the processing of information between cortical areas.

  20. Control of Somatosensory Cortical Processing by Thalamic Posterior Medial Nucleus: A New Role of Thalamus in Cortical Function

    Science.gov (United States)

    Castejon, Carlos; Barros-Zulaica, Natali; Nuñez, Angel

    2016-01-01

    Current knowledge of thalamocortical interaction comes mainly from studying lemniscal thalamic systems. Less is known about paralemniscal thalamic nuclei function. In the vibrissae system, the posterior medial nucleus (POm) is the corresponding paralemniscal nucleus. POm neurons project to L1 and L5A of the primary somatosensory cortex (S1) in the rat brain. It is known that L1 modifies sensory-evoked responses through control of intracortical excitability suggesting that L1 exerts an influence on whisker responses. Therefore, thalamocortical pathways targeting L1 could modulate cortical firing. Here, using a combination of electrophysiology and pharmacology in vivo, we have sought to determine how POm influences cortical processing. In our experiments, single unit recordings performed in urethane-anesthetized rats showed that POm imposes precise control on the magnitude and duration of supra- and infragranular barrel cortex whisker responses. Our findings demonstrated that L1 inputs from POm imposed a time and intensity dependent regulation on cortical sensory processing. Moreover, we found that blocking L1 GABAergic inhibition or blocking P/Q-type Ca2+ channels in L1 prevents POm adjustment of whisker responses in the barrel cortex. Additionally, we found that POm was also controlling the sensory processing in S2 and this regulation was modulated by corticofugal activity from L5 in S1. Taken together, our data demonstrate the determinant role exerted by the POm in the adjustment of somatosensory cortical processing and in the regulation of cortical processing between S1 and S2. We propose that this adjustment could be a thalamocortical gain regulation mechanism also present in the processing of information between cortical areas. PMID:26820514

  1. Population spikes in cortical networks during different functional states.

    Directory of Open Access Journals (Sweden)

    Shirley eMark

    2012-07-01

    Full Text Available Brain computational challenges vary between behavioral states. Engaged animals react according to incoming sensory information, while in relaxed and sleeping states consolidation of the learned information is believed to take place. Different states are characterized by different forms of cortical activity. We study a possible neuronal mechanism for generating these diverse dynamics and suggest their possible functional significance. Previous studies demonstrated that brief synchronized increase in a neural firing (Population Spikes can be generated in homogenous recurrent neural networks with short-term synaptic depression. Here we consider more realistic networks with clustered architecture. We show that the level of synchronization in neural activity can be controlled smoothly by network parameters. The network shifts from asynchronous activity to a regime in which clusters synchronized separately, then, the synchronization between the clusters increases gradually to fully synchronized state. We examine the effects of different synchrony levels on the transmission of information by the network. We find that the regime of intermediate synchronization is preferential for the flow of information between sparsely connected areas. Based on these results, we suggest that the regime of intermediate synchronization corresponds to engaged behavioral state of the animal, while global synchronization is exhibited during relaxed and sleeping states.

  2. Refractory hypoglycemia in a patient with functional adrenal cortical carcinoma

    Directory of Open Access Journals (Sweden)

    Katia Regina Marchetti

    2016-11-01

    Full Text Available Adrenacarcinomas are rare, and hypoglycemic syndrome resulting from the secretion of insulin-like growth factor II (IGF-II by these tumors have been described infrequently. This study describes the case of a young woman with severe persistent hypoglycemia and a large adrenal tumor and discusses the physiopathological mechanisms involved in hypoglycemia. The case is described as a 21-year-old woman who presented with 8 months of general symptoms and, in the preceding 3 months, with episodes of mental confusion and visual blurring secondary to hypoglycemia. A functional assessment of the adrenal cortex revealed ACTH-independent hypercortisolism and hyperandrogenism. Hypoglycemia, hypoinsulinemia, low C-peptide and no ketones were also detected. An evaluation of the GH–IGF axis revealed GH blockade (0.03; reference: up to 4.4 ng/mL, greatly reduced IGF-I levels (9.0 ng/mL; reference: 180–780 ng/mL, slightly reduced IGF-II levels (197 ng/mL; reference: 267–616 ng/mL and an elevated IGF-II/IGF-I ratio (21.9; reference: ~3. CT scan revealed a large expansive mass in the right adrenal gland and pulmonary and liver metastases. During hospitalization, the patient experienced frequent difficult-to-control hypoglycemia and hypokalemia episodes. Octreotide was ineffective in controlling hypoglycemia. Due to unresectability, chemotherapy was tried, but after 3 months, the patient’s condition worsened and progressed to death. In conclusion, our patient presented with a functional adrenal cortical carcinoma, with hyperandrogenism associated with hypoinsulinemic hypoglycemia and blockage of the GH–IGF-I axis. Patient’s data suggested a diagnosis of hypoglycemia induced by an IGF-II or a large IGF-II-producing tumor (low levels of GH, greatly decreased IGF-I, slightly decreased IGF-II and an elevated IGF-II/IGF-I ratio.

  3. Multidrug Resistance-Related Protein 1 (MRP1) Function and Localization Depend on Cortical Actin

    NARCIS (Netherlands)

    Hummel, Ina; Klappe, Karin; Ercan, Cigdem; Kok, Jan Willem

    2011-01-01

    MRP1 (ABCC1) is known to be localized in lipid rafts. Here we show in two different cell lines that localization of Mrp1/MRP1 (Abcc1/ABCC1) in lipid rafts and its function as an efflux pump are dependent on cortical actin. Latrunculin B disrupts both cortical actin and actin stress fibers. This resu

  4. Predictors of coupling between structural and functional cortical networks in normal aging.

    Science.gov (United States)

    Romero-Garcia, Rafael; Atienza, Mercedes; Cantero, Jose L

    2014-06-01

    Understanding how the mammalian neocortex creates cognition largely depends on knowledge about large-scale cortical organization. Accumulated evidence has illuminated cortical substrates of cognition across the lifespan, but how topological properties of cortical networks support structure-function relationships in normal aging remains an open question. Here we investigate the role of connections (i.e., short/long and direct/indirect) and node properties (i.e., centrality and modularity) in predicting functional-structural connectivity coupling in healthy elderly subjects. Connectivity networks were derived from correlations of cortical thickness and cortical glucose consumption in resting state. Local-direct connections (i.e., nodes separated by less than 30 mm) and node modularity (i.e., a set of nodes highly interconnected within a topological community and sparsely interconnected with nodes from other modules) in the functional network were identified as the main determinants of coupling between cortical networks, suggesting that the structural network in aging is mainly constrained by functional topological properties involved in the segregation of information, likely due to aging-related deficits in functional integration. This hypothesis is supported by an enhanced connectivity between cortical regions of different resting-state networks involved in sensorimotor and memory functions in detrimental to associations between fronto-parietal regions supporting executive processes. Taken collectively, these findings open new avenues to identify aging-related failures in the anatomo-functional organization of the neocortical mantle, and might contribute to early detection of prevalent neurodegenerative conditions occurring in the late life.

  5. Orbitofrontal cortical dysfunction in akinetic catatonia: a functional magnetic resonance imaging study during negative emotional stimulation.

    Science.gov (United States)

    Northoff, Georg; Kötter, Rolf; Baumgart, Frank; Danos, Peter; Boeker, Heinz; Kaulisch, Thomas; Schlagenhauf, Florian; Walter, Henrik; Heinzel, Alexander; Witzel, Thomas; Bogerts, Bernhard

    2004-01-01

    Catatonia is a psychomotor syndrome characterized by concurrent emotional, behavioral, and motor anomalies. Pathophysiological mechanisms of psychomotor disturbances may be related to abnormal emotional-motor processing in prefrontal cortical networks. We therefore investigated prefrontal cortical activation and connectivity patterns during emotional-motor stimulation using functional magnetic resonance imaging (FMRI). We investigated 10 akinetic catatonic patients in a postacute state and compared them with 10 noncatatonic postacute psychiatric controls (age-, sex-, diagnosis-, and medication-matched) and 10 healthy controls. Positive and negative pictures from the International Affective Picture System were used for emotional stimulation. FMRI measurements covered the whole frontal lobe, activation signals in various frontal cortical regions were obtained, and functional connectivity between the different prefrontal cortical regions was investigated using structural equation modeling. Catatonic patients showed alterations in the orbitofrontal cortical activation pattern and in functional connectivity to the premotor cortex in negative and positive emotions compared to psychiatric and healthy controls. Catatonic behavioral and affective symptoms correlated significantly with orbitofrontal activity, whereas catatonic motor symptoms were rather related to medial prefrontal activity. It is concluded that catatonic symptoms may be closely related to dysfunction in the orbitofrontal cortex and consequent alteration in the prefrontal cortical network during emotional processing. Because we investigated postacute patients, orbitofrontal cortical alterations may be interpreted as a trait marker predisposing for development of catatonic syndrome in schizophrenic or affective psychosis.

  6. HIV Infection Is Associated with Impaired Striatal Function during Inhibition with Normal Cortical Functioning on Functional MRI

    NARCIS (Netherlands)

    du Plessis, Stéfan; Vink, Matthijs; Joska, John A; Koutsilieri, Eleni; Bagadia, Asif; Stein, Dan J; Emsley, Robin

    2015-01-01

    The aim of the present study was to investigate the effect of HIV infection on cortical and subcortical regions of the frontal-striatal system involved in the inhibition of voluntary movement. Functional MRI (fMRI) studies suggest that human immunodeficiency virus (HIV) infection is associated with

  7. In vivo functional neurochemistry of human cortical cholinergic function during visuospatial attention

    Science.gov (United States)

    Lindner, Michael; Bell, Tiffany; Iqbal, Somya; Mullins, Paul Gerald

    2017-01-01

    Cortical acetylcholine is involved in key cognitive processes such as visuospatial attention. Dysfunction in the cholinergic system has been described in a number of neuropsychiatric disorders. Levels of brain acetylcholine can be pharmacologically manipulated, but it is not possible to directly measure it in vivo in humans. However, key parts of its biochemical cascade in neural tissue, such as choline, can be measured using magnetic resonance spectroscopy (MRS). There is evidence that levels of choline may be an indirect but proportional measure of acetylcholine availability in brain tissue. In this study, we measured relative choline levels in the parietal cortex using functional (event-related) MRS (fMRS) during performance of a visuospatial attention task, with a modelling approach verified using simulated data. We describe a task-driven interaction effect on choline concentration, specifically driven by contralateral attention shifts. Our results suggest that choline MRS has the potential to serve as a proxy of brain acetylcholine function in humans. PMID:28192451

  8. The Reliability of the CVI Range: A Functional Vision Assessment for Children with Cortical Visual Impairment

    Science.gov (United States)

    Newcomb, Sandra

    2010-01-01

    Children who are identified as visually impaired frequently have a functional vision assessment as one way to determine how their visual impairment affects their educational performance. The CVI Range is a functional vision assessment for children with cortical visual impairment. The purpose of the study presented here was to examine the…

  9. Distribution of neurons in functional areas of the mouse cerebral cortex reveals quantitatively different cortical zones.

    Science.gov (United States)

    Herculano-Houzel, Suzana; Watson, Charles; Paxinos, George

    2013-01-01

    How are neurons distributed along the cortical surface and across functional areas? Here we use the isotropic fractionator (Herculano-Houzel and Lent, 2005) to analyze the distribution of neurons across the entire isocortex of the mouse, divided into 18 functional areas defined anatomically. We find that the number of neurons underneath a surface area (the N/A ratio) varies 4.5-fold across functional areas and neuronal density varies 3.2-fold. The face area of S1 contains the most neurons, followed by motor cortex and the primary visual cortex. Remarkably, while the distribution of neurons across functional areas does not accompany the distribution of surface area, it mirrors closely the distribution of cortical volumes-with the exception of the visual areas, which hold more neurons than expected for their volume. Across the non-visual cortex, the volume of individual functional areas is a shared linear function of their number of neurons, while in the visual areas, neuronal densities are much higher than in all other areas. In contrast, the 18 functional areas cluster into three different zones according to the relationship between the N/A ratio and cortical thickness and neuronal density: these three clusters can be called visual, sensory, and, possibly, associative. These findings are remarkably similar to those in the human cerebral cortex (Ribeiro et al., 2013) and suggest that, like the human cerebral cortex, the mouse cerebral cortex comprises two zones that differ in how neurons form the cortical volume, and three zones that differ in how neurons are distributed underneath the cortical surface, possibly in relation to local differences in connectivity through the white matter. Our results suggest that beyond the developmental divide into visual and non-visual cortex, functional areas initially share a common distribution of neurons along the parenchyma that become delimited into functional areas according to the pattern of connectivity established later.

  10. Functional Cortical and Cerebellar Reorganization in a Case of Moyamoya Disease

    Science.gov (United States)

    Calabrò, Rocco S.; Bramanti, Placido; Baglieri, Annalisa; Corallo, Francesco; De Luca, Rosaria; De Salvo, Simona

    2015-01-01

    Background: Functional studies have been previous reported in stroke patients, but no studies of functional magnetic resonance imaging have been performed in Moyamoya disease. Objective: To assess the cortical and cerebellar reorganization in a moyamoya patient. Methods: We reported a case of a patient suffering from moyamoya disease, undergoing a neuropsychological assessment, a neurocognitive rehabilitative treatment, an electroencephalogram evaluation, and a functional magnetic resonance imaging examination. Results: The subject showed a cognitive impairment, a slow electroencephalogram activity, and the ipsi- and controlateral motor cortex and cerebellar functional magnetic resonance imaging activation. Conclusions: This is the first functional magnetic resonance imaging case study reported in moyamoya disease. We showed a cortical reorganization, which could play an important role in clinical evaluation and motor recovery. The cerebellar activation, showed after cognitive and motor rehabilitation, could support the idea that the cerebellum contains several cognitive-related subregions involved in different functional networks in moyamoya disease. PMID:25852976

  11. Cortical Plasticity and Olfactory Function in Early Blindness

    Science.gov (United States)

    Araneda, Rodrigo; Renier, Laurent A.; Rombaux, Philippe; Cuevas, Isabel; De Volder, Anne G.

    2016-01-01

    Over the last decade, functional brain imaging has provided insight to the maturation processes and has helped elucidate the pathophysiological mechanisms involved in brain plasticity in the absence of vision. In case of congenital blindness, drastic changes occur within the deafferented “visual” cortex that starts receiving and processing non visual inputs, including olfactory stimuli. This functional reorganization of the occipital cortex gives rise to compensatory perceptual and cognitive mechanisms that help blind persons achieve perceptual tasks, leading to superior olfactory abilities in these subjects. This view receives support from psychophysical testing, volumetric measurements and functional brain imaging studies in humans, which are presented here. PMID:27625596

  12. Cortical Plasticity and Olfactory Function in Early Blindness.

    OpenAIRE

    Rodrigo Araneda; Laurent A Renier; Philippe Rombaux; Isabel Cuevas; De Volder, Anne G.

    2016-01-01

    Over the last decade, functional brain imaging has provided insight in the maturation processes and has helped elucidate the pathophysiological mechanisms involved in brain plasticity in the absence of vision. In case of congenital blindness, drastic changes occur within the deafferented visual cortex that starts receiving and processing nonvisual inputs, including olfactory stimuli. This functional reorganization of the occipital cortex gives rise to compensatory perceptual and cognitive me...

  13. Mind the blind brain to understand the sighted one! Is there a supramodal cortical functional architecture?

    Science.gov (United States)

    Ricciardi, Emiliano; Bonino, Daniela; Pellegrini, Silvia; Pietrini, Pietro

    2014-04-01

    While most of the research in blind individuals classically has focused on the compensatory plastic rearrangements that follow loss of sight, novel behavioral, anatomical and functional brain studies in individuals born deprived of sight represent a powerful tool to understand to what extent the brain functional architecture is programmed to develop independently from any visual experience. Here we review work from our lab and others, conducted in sighted and congenitally blind individuals, whose results indicate that vision is not a mandatory prerequisite for the brain cortical organization to develop and function. Similar cortical networks subtend visual and/or non-visual perception of form, space and movement, as well as action recognition, both in sighted and in congenitally blind individuals. These findings support the hypothesis of a modality independent, supramodal cortical organization. Visual experience, however, does play a role in shaping specific cortical sub-regions, as loss of sight is accompanied also by cross-modal plastic phenomena. Altogether, studying the blind brain is opening our eyes on how the brain develops and works.

  14. Differential representation of arm movement direction in relation to cortical anatomy and function

    Science.gov (United States)

    Ball, Tonio; Schulze-Bonhage, Andreas; Aertsen, Ad; Mehring, Carsten

    2009-02-01

    Information about arm movement direction in neuronal activity of the cerebral cortex can be used for movement control mediated by a brain-machine interface (BMI). Here we provide a topographic analysis of the information related to arm movement direction that can be extracted from single trials of electrocorticographic (ECoG) signals recorded from the human frontal and parietal cortex based on a precise assignment of ECoG recording channels to the subjects' individual cortical anatomy and function. To this aim, each electrode contact was identified on structural MRI scans acquired while the electrodes were implanted and was thus related to the brain anatomy of each patient. Cortical function was assessed by direct cortical electrical stimulation. We show that activity from the primary motor cortex, in particular from the region showing hand and arm motor responses upon electrical stimulation, carries most directional information. The premotor, posterior parietal and lateral prefrontal cortex contributed gradually less, but still significant information. This gradient was observed for decoding from movement-related potentials, and from spectral amplitude modulations in low frequencies and in the high gamma band. Our findings thus demonstrate a close topographic correlation between cortical functional anatomy and direction-related information in humans that might be used for brain-machine interfacing.

  15. Personality functioning and the cortical midline structures--an exploratory FMRI study.

    Directory of Open Access Journals (Sweden)

    Stephan Doering

    Full Text Available OBJECTIVE: Recent neuroscience studies explored the neuronal mechanisms underlying our sense of self. Thereby the cortical midline structures and their anterior and posterior regions have been shown to be central. What remains unclear though is how both, self and cortical midline structures, are related to the identity of the self which is of central importance in especially personality disorders. METHODS: Conducting an exploratory study with a dimensional approach, we here compared subjects with high and low level of personality functioning and identity integration as measured in a standardized way in fMRI during both, emotion- and reward-related tasks. RESULTS: Low levels of personality functioning and identity integration were predicted by significantly decreased degrees of deactivation in the anterior and posterior cortical midline structures. CONCLUSIONS: Though exploratory our results show for the first time direct relationship between cortical midline structures and personality functioning in terms of identity integration. This does not only contribute to our understanding of the neuronal mechanism underlying self and identity but carries also major implications for the treatment of patients with personality disorders.

  16. Cortical language activation in aphasia:a functional MRI study

    Institute of Scientific and Technical Information of China (English)

    徐晓俊; 张敏鸣; 商德胜; 汪启东; 罗本燕; 翁旭初

    2004-01-01

    Background Functional neuroimaging has been used in neurolinguistic research on normal subjects and on patients with brain damage. This study was designed to investigate the differences of the neural basis underlying language processing between normal subjects and aphasics.Methods Functional magnetic resonance imaging (fMRI) was used to map the language network in 6 normal subjects and 3 patients with aphasia who were in the stage of recovery from acute stroke. The participants performed a word generation task during multi-slice functional scanning for the measurement of signal change associated with regional neural activity induced by the task. Results In normal subjects, a distributed language network was activated. Activations were present in the frontal, temporal, parietal and occipital regions. In the patient group, however, no activation was detected in the left inferior frontal gyrus whether the patient had a lesion in the left frontal lobe or not. Two patients showed activations in some right hemisphere regions where no activation appeared in normal subjects. Conclusions fMRI with word generation task is feasible for evaluating language function in aphasic patients. Remote effect of focal lesion and functional redistribution or reorganisation can be found in aphasic patients.

  17. [Cortical blindness].

    Science.gov (United States)

    Chokron, S

    2014-02-01

    Cortical blindness refers to a visual loss induced by a bilateral occipital lesion. The very strong cooperation between psychophysics, cognitive psychology, neurophysiology and neuropsychology these latter twenty years as well as recent progress in cerebral imagery have led to a better understanding of neurovisual deficits, such as cortical blindness. It thus becomes possible now to propose an earlier diagnosis of cortical blindness as well as new perspectives for rehabilitation in children as well as in adults. On the other hand, studying complex neurovisual deficits, such as cortical blindness is a way to infer normal functioning of the visual system.

  18. Altered resting-state functional connectivity in cortical networks in psychopathy.

    Science.gov (United States)

    Philippi, Carissa L; Pujara, Maia S; Motzkin, Julian C; Newman, Joseph; Kiehl, Kent A; Koenigs, Michael

    2015-04-15

    Psychopathy is a personality disorder characterized by callous antisocial behavior and criminal recidivism. Here we examine whether psychopathy is associated with alterations in functional connectivity in three large-scale cortical networks. Using fMRI in 142 adult male prison inmates, we computed resting-state functional connectivity using seeds from the default mode network, frontoparietal network, and cingulo-opercular network. To determine the specificity of our findings to these cortical networks, we also calculated functional connectivity using seeds from two comparison primary sensory networks: visual and auditory networks. Regression analyses related network connectivity to overall psychopathy scores and to subscores for the "factors" and "facets" of psychopathy: Factor 1, interpersonal/affective traits; Factor 2, lifestyle/antisocial traits; Facet 1, interpersonal; Facet 2, affective; Facet 3, lifestyle; Facet 4, antisocial. Overall psychopathy severity was associated with reduced functional connectivity between lateral parietal cortex and dorsal anterior cingulate cortex. The two factor scores exhibited contrasting relationships with functional connectivity: Factor 1 scores were associated with reduced functional connectivity in the three cortical networks, whereas Factor 2 scores were associated with heightened connectivity in the same networks. This dissociation was evident particularly in the functional connectivity between anterior insula and dorsal anterior cingulate cortex. The facet scores also demonstrated distinct patterns of connectivity. We found no associations between psychopathy scores and functional connectivity within visual or auditory networks. These findings provide novel evidence on the neural correlates of psychopathy and suggest that connectivity between cortical association hubs, such as the dorsal anterior cingulate cortex, may be a neurobiological marker of the disorder.

  19. Development of Human Somatosensory Cortical Functions - What have We Learned from Magnetoencephalography: A Review.

    Science.gov (United States)

    Nevalainen, Päivi; Lauronen, Leena; Pihko, Elina

    2014-01-01

    The mysteries of early development of cortical processing in humans have started to unravel with the help of new non-invasive brain research tools like multichannel magnetoencephalography (MEG). In this review, we evaluate, within a wider neuroscientific and clinical context, the value of MEG in studying normal and disturbed functional development of the human somatosensory system. The combination of excellent temporal resolution and good localization accuracy provided by MEG has, in the case of somatosensory studies, enabled the differentiation of activation patterns from the newborn's primary (SI) and secondary somatosensory (SII) areas. Furthermore, MEG has shown that the functioning of both SI and SII in newborns has particular immature features in comparison with adults. In extremely preterm infants, the neonatal MEG response from SII also seems to potentially predict developmental outcome: those lacking SII responses at term show worse motor performance at age 2 years than those with normal SII responses at term. In older children with unilateral early brain lesions, bilateral alterations in somatosensory cortical activation detected in MEG imply that the impact of a localized insult may have an unexpectedly wide effect on cortical somatosensory networks. The achievements over the last decade show that MEG provides a unique approach for studying the development of the somatosensory system and its disturbances in childhood. MEG well complements other neuroimaging methods in studies of cortical processes in the developing brain.

  20. Research on acupuncture points and cortical functional activation position in cats by infrared imaging detection

    Science.gov (United States)

    Chen, Shuwang; Sha, Zhanyou; Wang, Shuhai; Wen, Huanming

    2007-12-01

    The research of the brain cognition is mainly to find out the activation position in brain according to the stimulation at present in the world. The research regards the animals as the experimental objects and explores the stimulation response on the cerebral cortex of acupuncture. It provides a new method, which can detect the activation position on the creatural cerebral cortex directly by middle-far infrared imaging. According to the theory of local temperature situation, the difference of cortical temperature maybe associate with the excitement of cortical nerve cells, the metabolism of local tissue and the local hemal circulation. Direct naked detection of temperature variety on cerebral cortex is applied by middle and far infrared imaging technology. So the activation position is ascertained. The effect of stimulation response is superior to other indirect methods. After removing the skulls on the head, full of cerebral cortex of a cat are exposed. By observing the infrared images and measuring the temperatures of the visual cerebral cortex during the process of acupuncturing, the points are used to judge the activation position. The variety in the cortical functional sections is corresponding to the result of the acupuncture points in terms of infrared images and temperatures. According to experimental results, we know that the variety of a cortical functional section is corresponding to a special acupuncture point exactly.

  1. Three Types of Cortical Layer 5 Neurons That Differ in Brain-wide Connectivity and Function.

    Science.gov (United States)

    Kim, Euiseok J; Juavinett, Ashley L; Kyubwa, Espoir M; Jacobs, Matthew W; Callaway, Edward M

    2015-12-16

    Cortical layer 5 (L5) pyramidal neurons integrate inputs from many sources and distribute outputs to cortical and subcortical structures. Previous studies demonstrate two L5 pyramid types: cortico-cortical (CC) and cortico-subcortical (CS). We characterize connectivity and function of these cell types in mouse primary visual cortex and reveal a new subtype. Unlike previously described L5 CC and CS neurons, this new subtype does not project to striatum [cortico-cortical, non-striatal (CC-NS)] and has distinct morphology, physiology, and visual responses. Monosynaptic rabies tracing reveals that CC neurons preferentially receive input from higher visual areas, while CS neurons receive more input from structures implicated in top-down modulation of brain states. CS neurons are also more direction-selective and prefer faster stimuli than CC neurons. These differences suggest distinct roles as specialized output channels, with CS neurons integrating information and generating responses more relevant to movement control and CC neurons being more important in visual perception.

  2. Detection of cortical activities on eye movement using functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Masaki; Kawai, Kazushige; Kitahara, Kenji [Jikei Univ., Tokyo (Japan). School of Medicine; Soulie, D.; Cordoliani, Y.S.; Iba-Zizen, M.T.; Cabanis, E.A.

    1997-11-01

    Cortical activity during eye movement was examined with functional magnetic resonance imaging. Horizontal saccadic eye movements and smooth pursuit eye movements were elicited in normal subjects. Activity in the frontal eye field was found during both saccadic and smooth pursuit eye movements at the posterior margin of the middle frontal gyrus and in parts of the precentral sulcus and precentral gyrus bordering the middle frontal gyrus (Brodmann`s areas 8, 6, and 9). In addition, activity in the parietal eye field was found in the deep, upper margin of the angular gyrus and of the supramarginal gyrus (Brodmann`s areas 39 and 40) during saccadic eye movement. Activity of V5 was found at the intersection of the ascending limb of the inferior temporal sulcus and the lateral occipital sulcus during smooth pursuit eye movement. Our results suggest that functional magnetic resonance imaging is useful for detecting cortical activity during eye movement. (author)

  3. Disordered cortical connectivity underlies the executive function deficits in children with autism spectrum disorders.

    Science.gov (United States)

    Han, Yvonne M Y; Chan, Agnes S

    2017-02-01

    The present study examined the executive function and cortical connectivity of children with autism spectrum disorders (ASD) and investigated whether the executive function deficits exhibited by these children were differentially affected and associated with the cortical connectivity. The present study compared high-functioning (HFA) and low-functioning (LFA) children with typically developing children (TDC) on their executive functions as measured by the Hong Kong List Learning Test, D2 Test of Concentration, Five Point Test, Children's Color Trail Test, Tower of California Test, and Go/No-Go task and neural connectivity as measured by theta coherence in the distributed fronto-parietal network. Thirty-eight children with ASD (19 HFA and 19 LFA) and 28 TDC children, aged 8-17 years, participated voluntarily in the study. The results on executive function showed that the LFA group demonstrated the poorest performance as exhibited by their Executive Composite and individual executive function scores, while the TDC group exhibited the highest. These results have extended the findings of previous studies in demonstrating that HFA and LFA children have significant differences in their degree of executive function deficits. The results on neural connectivity also showed that children with ASD demonstrated a different pattern of electroencephalography (EEG) coherence from TDC children, as demonstrated by the significantly elevated theta coherence in the fronto-parietal network, and that the severity of executive dysfunction between high- and low-functioning children with ASD was found to be associated with the disordered neural connectivity in these children.

  4. Asymmetric function of theta and gamma activity in syllable processing: an intra-cortical study

    Directory of Open Access Journals (Sweden)

    Benjamin eMorillon

    2012-07-01

    Full Text Available Low-gamma (25-45 Hz and theta (4-8 Hz oscillations are proposed to underpin the integration of phonemic and syllabic information, respectively. How these two scales of analysis split functions across hemispheres is unclear. We analyzed cortical responses from an epileptic patient with a rare bilateral electrode implantation (stereotactic EEG in primary (A1/BA41 and A2/BA42 and association auditory cortices (BA22. Using time-frequency analyses, we confirmed the dominance of a 5-6 Hz theta activity in right and of a low-gamma (25-45 Hz activity in left primary auditory cortices (A1/A2, during both resting state and syllable processing. We further detected high-theta (7-8 Hz resting activity in left primary, but also associative auditory regions. In left BA22, its phase correlated with high-gamma induced power. Such a hierarchical relationship across theta and gamma frequency bands (theta/gamma phase-amplitude coupling could index the process by which the neural code shifts from stimulus feature- to phonological- encoding, and is associated with the transition from evoked to induced power responses. These data suggest that theta and gamma activity in right and left auditory cortices bear different functions. They support a scheme where slow parsing of the acoustic information dominates in right-hemisphere at a syllabic (5-6 Hz rate, and left auditory cortex exhibits a more complex cascade of oscillations, reflecting the possible extraction of transient acoustic cues at a fast (~25-45 Hz rate, subsequently integrated at a slower, e.g. syllabic one. Slow oscillations could functionally participate to speech processing by structuring gamma activity in left BA22, where abstract percepts emerge.

  5. Functionally aberrant electrophysiological cortical connectivities in first episode medication-naive schizophrenics from three psychiatry centers

    Directory of Open Access Journals (Sweden)

    Dietrich eLehmann‡

    2014-08-01

    Full Text Available Functional dissociation between brain processes is widely hypothesized to account for aberrations of thought and emotions in schizophrenic patients. The typically small groups of analyzed schizophrenic patients yielded different neurophysiological findings, probably because small patient groups are likely to comprise different schizophrenia subtypes. We analyzed multichannel eyes-closed resting EEG from three small groups of acutely ill, first episode productive schizophrenic patients before start of medication (from three centers: Bern N=9; Osaka N=9; Berlin N=12 and their controls. Low resolution brain electromagnetic tomography (LORETA was used to compute intracortical source model-based lagged functional connectivity not biased by volume conduction effects between 19 cortical regions of interest (ROIs. The connectivities were compared between controls and patients of each group. Conjunction analysis determined six aberrant cortical functional connectivities that were the same in the three patient groups. Four of these six concerned the facilitating EEG alpha 1 frequency activity; they were decreased in the patients. Another two of these six connectivities concerned the inhibiting EEG delta frequency activity; they were increased in the patients. The principal orientation of the six aberrant cortical functional connectivities was sagittal; five of them involved both hemispheres. In sum, activity in the posterior brain areas of preprocessing functions and the anterior brain areas of evaluation and behavior control functions were compromised by either decreased coupled activation or increased coupled inhibition, common across schizophrenia subtypes in the three patient groups. These results of the analyzed three independent groups of schizophrenics support the concept of functional dissociation.

  6. Modulating epigenetic mechanisms: the diverse functions of Ski during cortical development.

    Science.gov (United States)

    Baranek, Constanze; Atanasoski, Suzana

    2012-07-01

    In the developing forebrain, neural stem and progenitor cells generate a large variety of neurons with specific functions in the mature cortex. A central issue is to understand the roles of transcriptional networks and regulatory pathways that control these complex developmental processes. The proto-oncogene Ski is a transcriptional regulator linked to the human 1p36 deletion syndrome, which involves a set of phenotypes including nervous system defects. Ski shows a dynamic expression pattern during cortical development and, accordingly, the phenotype of Ski-deficient cortices is complex, involving altered cell cycle characteristics of neural progenitors, disturbed timing of neurogenesis and mis-specification of projection neurons. Ski is likely to play a role in various pathways by virtue of its ability to interact with a range of signaling molecules, thereby modulating transcriptional activity of corresponding target genes. Ski regulates proliferation and differentiation of various cell types, and more recent data from my laboratory demonstrates that Ski is also involved in the specification of cortical projection neurons. This Point-of-View elucidates the role of Ski as an essential linker between sequence-specific transcription factors and non-DNA binding cofactors with chromatin modifying activities. In particular, it puts forward the hypothesis that the diverse functions of Ski as a co-repressor might be related to its association with distinct HDAC-complexes.

  7. Conservation of sequence and function in fertilization of the cortical granule serine protease in echinoderms.

    Science.gov (United States)

    Oulhen, Nathalie; Xu, Dongdong; Wessel, Gary M

    2014-08-01

    Conservation of the cortical granule serine protease during fertilization in echinoderms was tested both functionally in sea stars, and computationally throughout the echinoderm phylum. We find that the inhibitor of serine protease (soybean trypsin inhibitor) effectively blocks proper transition of the sea star fertilization envelope into a protective sperm repellent, whereas inhibitors of the other main types of proteases had no effect. Scanning the transcriptomes of 15 different echinoderm ovaries revealed sequences of high conservation to the originally identified sea urchin cortical serine protease, CGSP1. These conserved sequences contained the catalytic triad necessary for enzymatic activity, and the tandemly repeated LDLr-like repeats. We conclude that the protease involved in the slow block to polyspermy is an essential and conserved element of fertilization in echinoderms, and may provide an important reagent for identification and testing of the cell surface proteins in eggs necessary for sperm binding.

  8. Visual function and cortical organization in carriers of blue cone monochromacy.

    Science.gov (United States)

    Rossi, Ethan A; Achtman, Rebecca L; Guidon, Arnaud; Williams, David R; Roorda, Austin; Bavelier, Daphne; Carroll, Joseph

    2013-01-01

    Carriers of blue cone monochromacy have fewer cone photoreceptors than normal. Here we examine how this disruption at the level of the retina affects visual function and cortical organization in these individuals. Visual resolution and contrast sensitivity was measured at the preferred retinal locus of fixation and visual resolution was tested at two eccentric locations (2.5° and 8°) with spectacle correction only. Adaptive optics corrected resolution acuity and cone spacing were simultaneously measured at several locations within the central fovea with adaptive optics scanning laser ophthalmoscopy (AOSLO). Fixation stability was assessed by extracting eye motion data from AOSLO videos. Retinotopic mapping using fMRI was carried out to estimate the area of early cortical regions, including that of the foveal confluence. Without adaptive optics correction, BCM carriers appeared to have normal visual function, with normal contrast sensitivity and visual resolution, but with AO-correction, visual resolution was significantly worse than normal. This resolution deficit is not explained by cone loss alone and is suggestive of an associated loss of retinal ganglion cells. However, despite evidence suggesting a reduction in the number of retinal ganglion cells, retinotopic mapping showed no reduction in the cortical area of the foveal confluence. These results suggest that ganglion cell density may not govern the foveal overrepresentation in the cortex. We propose that it is not the number of afferents, but rather the content of the information relayed to the cortex from the retina across the visual field that governs cortical magnification, as under normal viewing conditions this information is similar in both BCM carriers and normal controls.

  9. Visual function and cortical organization in carriers of blue cone monochromacy.

    Directory of Open Access Journals (Sweden)

    Ethan A Rossi

    Full Text Available Carriers of blue cone monochromacy have fewer cone photoreceptors than normal. Here we examine how this disruption at the level of the retina affects visual function and cortical organization in these individuals. Visual resolution and contrast sensitivity was measured at the preferred retinal locus of fixation and visual resolution was tested at two eccentric locations (2.5° and 8° with spectacle correction only. Adaptive optics corrected resolution acuity and cone spacing were simultaneously measured at several locations within the central fovea with adaptive optics scanning laser ophthalmoscopy (AOSLO. Fixation stability was assessed by extracting eye motion data from AOSLO videos. Retinotopic mapping using fMRI was carried out to estimate the area of early cortical regions, including that of the foveal confluence. Without adaptive optics correction, BCM carriers appeared to have normal visual function, with normal contrast sensitivity and visual resolution, but with AO-correction, visual resolution was significantly worse than normal. This resolution deficit is not explained by cone loss alone and is suggestive of an associated loss of retinal ganglion cells. However, despite evidence suggesting a reduction in the number of retinal ganglion cells, retinotopic mapping showed no reduction in the cortical area of the foveal confluence. These results suggest that ganglion cell density may not govern the foveal overrepresentation in the cortex. We propose that it is not the number of afferents, but rather the content of the information relayed to the cortex from the retina across the visual field that governs cortical magnification, as under normal viewing conditions this information is similar in both BCM carriers and normal controls.

  10. Comparative study on direction selectivity and functional organization of the primary visual cortical cells in monkeys and cats

    Institute of Scientific and Technical Information of China (English)

    寿天德; 周逸峰; 俞洪波

    2000-01-01

    Although the directionally selective cells in many visual cortical areas are organized in columnar manner, the functional organization of direction selectivity of area VI in the monkey still remains unclear. We quantitatively studied the proportion of directionally selective cells, direction selectivity and the functional organization of the striate cortical cells in the monkey and compared those with the cat. The results show that the direction selectivity and directional organization of striate cortical cells in the monkey are significantly weaker than those in the cat, suggesting that the species difference between the two kinds of animal is related to their different anatomic pathways.

  11. Comparative study on direction selectivity and functional organization of the primary visual cortical cells in monkeys and cats

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Although the directionally selective cells in many visual cortical areas are organized in columnar manner, the functional organization of direction selectivity of area Vl in the monkey still remains unclear. We quantitatively studied the proportion of directionally selective cells, direction selectivity and the functional organization of the striate cortical cells in the monkey and compared those with the cat. The results show that the direction selectivity and directional organization of striate cortical cells in the monkey are significantly weaker than those in the cat, suggesting that the species difference between the two kinds of animal is related to their different anatomic pathways.

  12. Cortical reorganization during PASAT task in MS patients with preserved working memory functions.

    Science.gov (United States)

    Forn, C; Barros-Loscertales, A; Escudero, J; Belloch, V; Campos, S; Parcet, M A; Avila, C

    2006-06-01

    Cortical reorganization in multiple sclerosis (MS) is defined as a compensatory mechanism which requires MS patients to overactivate specific brain areas in order to perform the task as controls. To investigate this process with the Paced Auditory Serial Addition Test (PASAT) task, we selected 15 MS patients who performed the PASAT task within-normal limits and 10 healthy controls. Once selected, we used functional magnetic resonance imaging (fMRI) to investigate brain areas involved in PASAT performance in both groups. Results showed that the task activated the left frontal (BA6 and 9) and parietal cortex (BA7 and 40) in both groups, but MS patients showed a stronger activation in the left prefrontal cortex (BA9, 44 and 45) when compared with controls. These results confirmed those obtained post hoc by Audoin et al. [Audoin, B., Ibarrola, D., Ranjeva, J.P., Confort-Gouny, S., Malikova, I., Ali-Chérif, A.M., Pelletier, J., Cozzone, P., et al., 2003. Compensatory cortical activation observed by fMRI during cognitive task at the earliest stage of MS. Hum. Brain Mapp. 20, 51-58], and we interpreted this as showing true cortical reorganization.

  13. Functional localization of the cortical motor area in the brain Electrocorticogram analysis

    Institute of Scientific and Technical Information of China (English)

    Tao Jiang; Xiaoming Wu; Binggang Ye; Sijuan Huang

    2010-01-01

    The method for rapidly,precisely and non-invasively localizing functional regions of the brain is a problem in neuromedicine research.Cortical electrostimulation is the optimal localization method during brain surgery,with a degree of accuracy of approximately 5 mm.However,electrostimulation can damage the cerebral cortex,trigger epilepsy,and extend the operation time.Studies are required to determine whether cortical motor regions can be localized by wavelet analysis from electrocorticograms.In this study,based on wavelet analysis of electrocorticograms,a selection of algorithms for classification of the mu rhythm in the motor regions utilizing experimental data was verified.Results demonstrated that a characteristic quantity of energy ratio in the reconstructed signal was filtered in the d6(7.81-15.62 Hz)band prior to and following motion events.A characteristic threshold was considered to be 40%.The accuracy of localization detection was 93%.The degree of accuracy was less than 5 mm.The present study avoided the problems of cerebral cortex injury and epilepsy onset,with an operation time of 60 seconds.Therefore,wavelet analysis on electrocorticogram is feasible for localizing cortical motor regions.Furthermore,this localization technique is accurate,safe and rapid.

  14. Regional cortical thinning and cerebrospinal biomarkers predict worsening daily functioning across the Alzheimer disease spectrum

    Science.gov (United States)

    Marshall, Gad A.; Lorius, Natacha; Locascio, Joseph J.; Hyman, Bradley T.; Rentz, Dorene M.; Johnson, Keith A.; Sperling, Reisa A.

    2014-01-01

    Background Impairment in instrumental activities of daily living (IADL) heralds the transition from mild cognitive impairment (MCI) to dementia and is a major source of burden for both the patient and caregiver. Objective To investigate the relationship between IADL and regional cortical thinning and cerebrospinal fluid (CSF) Alzheimer disease (AD) biomarkers cross-sectionally and longitudinally in clinically normal (CN) elderly, MCI, and mild AD dementia subjects. Methods Two hundred and twenty nine CN, 395 MCI, and 188 AD dementia subjects participating in the Alzheimer's Disease Neuroimaging Initiative underwent baseline magnetic resonance imaging, baseline lumbar puncture, and clinical assessments, including the Functional Activities Questionnaire used to measure IADL, every 6 to 12 months up to 3 years. General linear regression and mixed effects models were employed. Results IADL impairment was associated with the interactions between lower inferior temporal cortical thickness and diagnosis (p<0.0001), greater lateral occipital cortical thickness and diagnosis (p<0.0001), and greater amyloid-beta 1-42 (Aβ1-42) and diagnosis (p=0.0002) at baseline (driven by AD dementia). Lower baseline supramarginal (p=0.02) and inferior temporal (p=0.05) cortical thickness, lower Aβ1-42 (p<0.0001), and greater total tau (t-tau) (p=0.02) were associated with greater rate of IADL impairment over time. Conclusions Temporal atrophy is associated with IADL impairment in mild AD dementia at baseline, while baseline parietal and temporal atrophy, lower CSF Aβ1-42, and greater t-tau predict worsening IADL impairment over time across the AD spectrum. These results emphasize the importance of assessing IADL at the stage of MCI and even at the transition from CN to MCI. PMID:24685624

  15. Two functional inhibitory circuits are comprised of a heterogeneous population of fast-spiking cortical interneurons.

    Science.gov (United States)

    Li, P; Huntsman, M M

    2014-04-18

    Cortical fast spiking (FS) interneurons possess autaptic, synaptic, and electrical synapses that serve to mediate a fast, coordinated response to their postsynaptic targets. While FS interneurons are known to participate in numerous and diverse actions, functional subgroupings within this multi-functional interneuron class remain to be identified. In the present study, we examined parvalbumin-positive FS interneurons in layer 4 of the primary somatosensory (barrel) cortex - a brain region well-known for specialized inhibitory function. Here we show that FS interneurons fall into two broad categories identified by the onset of the first action potential in a depolarizing train as: "delayed firing FS interneurons (FSD) and early onset firing FS interneurons (FSE). Subtle variations in action potential firing reveal six subtypes within these two categories: delayed non-accommodating (FSD-NAC), delayed stuttering (FSD-STUT), early onset stuttering (FSE-STUT), early onset-late spiking (FSE-LS), early onset early-spiking (FSE-ES), and early onset accommodating (FSE-AC). Using biophysical criteria previously employed to distinguish neuronal cell types, the FSD and FSE categories exhibit several shared biophysical and synaptic properties that coincide with the notion of specificity of inhibitory function within the cortical FS interneuron class.

  16. Differences in human cortical gene expression match the temporal properties of large-scale functional networks.

    Directory of Open Access Journals (Sweden)

    Claudia Cioli

    Full Text Available We explore the relationships between the cortex functional organization and genetic expression (as provided by the Allen Human Brain Atlas. Previous work suggests that functional cortical networks (resting state and task based are organized as two large networks (differentiated by their preferred information processing mode shaped like two rings. The first ring--Visual-Sensorimotor-Auditory (VSA--comprises visual, auditory, somatosensory, and motor cortices that process real time world interactions. The second ring--Parieto-Temporo-Frontal (PTF--comprises parietal, temporal, and frontal regions with networks dedicated to cognitive functions, emotions, biological needs, and internally driven rhythms. We found--with correspondence analysis--that the patterns of expression of the 938 genes most differentially expressed across the cortex organized the cortex into two sets of regions that match the two rings. We confirmed this result using discriminant correspondence analysis by showing that the genetic profiles of cortical regions can reliably predict to what ring these regions belong. We found that several of the proteins--coded by genes that most differentiate the rings--were involved in neuronal information processing such as ionic channels and neurotransmitter release. The systematic study of families of genes revealed specific proteins within families preferentially expressed in each ring. The results showed strong congruence between the preferential expression of subsets of genes, temporal properties of the proteins they code, and the preferred processing modes of the rings. Ionic channels and release-related proteins more expressed in the VSA ring favor temporal precision of fast evoked neural transmission (Sodium channels SCNA1, SCNB1 potassium channel KCNA1, calcium channel CACNA2D2, Synaptotagmin SYT2, Complexin CPLX1, Synaptobrevin VAMP1. Conversely, genes expressed in the PTF ring favor slower, sustained, or rhythmic activation (Sodium

  17. Abnormal dynamics of cortical resting state functional connectivity in chronic headache patients.

    Science.gov (United States)

    Wang, Zewei; Yang, Qing; Chen, Li Min

    2017-02-01

    The goals of this study are to characterize the temporal dynamics of inter-regional connectivity of the brain in chronic headache (CH) patients versus their age/gender matched controls (CONCH, n=28 pairs), and to determine whether dynamic measures reveal additional features to static functional connectivity and correlate with psychometric scores. Cortical thickness and inter-regional resting state fMRI connectivity were quantified and compared between CH and CONCH groups. Six cortical regions of interest (ROI) pairs that exhibited correlated cortical thickness and static functional connectivity abnormalities were selected for temporal dynamic analysis. Two methods were used: temporal sliding-window (SW) and wavelet transformation coherence (WTC). SW analyses using three temporal windows of 30, 60, 120s revealed that all six ROI pairs of CH exhibited higher percentage of strong connectivity (high r values), and smaller fast Fourier transform (FFT) amplitudes at a very low frequency range (i.e., 0.002-0.01Hz), compared to those of CONCH. These features were particularly prevalent in the 120s window analysis. Less variable dynamic fluctuation (i.e., smaller standard deviation of r values) was identified in two out of six ROI pairs in CH. WTC analysis revealed that time-averaged coherence was generally greater in CH than CONCH between wavelet decomposition scales 20 to 55 (0.018-0.05Hz), and was statistically significant in three out of six ROI pairs. Together, the most robust and significant differences in temporal dynamics between CH and CONCH were detected in two ROI pairs: left medial-orbitofrontal-left posterior-cingulate and left medial-orbitofrontal-left inferior-temporal. The high degrees of sleep disturbance (high PSQI score), depression (high HRSD score) and fatigue (low SF-36 score) were associated with high degree of inter-regional temporal coherence in CH. In summary, these dynamic functional connectivity (dFC) measures uncovered a temporal "lock

  18. Functions of gamma-band synchronization in cognition: from single circuits to functional diversity across cortical and subcortical systems.

    Science.gov (United States)

    Bosman, Conrado A; Lansink, Carien S; Pennartz, Cyriel M A

    2014-06-01

    Gamma-band activity (30-90 Hz) and the synchronization of neural activity in the gamma-frequency range have been observed in different cortical and subcortical structures and have been associated with different cognitive functions. However, it is still unknown whether gamma-band synchronization subserves a single universal function or a diversity of functions across the full spectrum of cognitive processes. Here, we address this question reviewing the mechanisms of gamma-band oscillation generation and the functions associated with gamma-band activity across several cortical and subcortical structures. Additionally, we raise a plausible explanation of why gamma rhythms are found so ubiquitously across brain structures. Gamma band activity originates from the interplay between inhibition and excitation. We stress that gamma oscillations, associated with this interplay, originate from basic functional motifs that conferred advantages for low-level system processing and multiple cognitive functions throughout evolution. We illustrate the multifunctionality of gamma-band activity by considering its role in neural systems for perception, selective attention, memory, motivation and behavioral control. We conclude that gamma-band oscillations support multiple cognitive processes, rather than a single one, which, however, can be traced back to a limited set of circuit motifs which are found universally across species and brain structures.

  19. Cortical areas related to performance of WAIS Digit Symbol Test: a functional imaging study.

    Science.gov (United States)

    Usui, Nobuo; Haji, Tomoki; Maruyama, Masakazu; Katsuyama, Narumi; Uchida, Shinya; Hozawa, Atsushi; Omori, Kahoru; Tsuji, Ichiro; Kawashima, Ryuta; Taira, Masato

    2009-09-29

    Many neuropsychological studies have shown that the Digit Symbol Test (DST) of the Wechsler Adult Intelligence Scale (WAIS) is useful for screening for dysfunctions of the brain. However, it remains unclear which brain areas are actually involved in the performance of DST and what brain functions are used for executing this test. In this study, we examined the cortical areas related to cognitive aspects of DST using functional magnetic resonance imaging (fMRI) and determined executive brain functions involved in this test on the basis of fMRI results. Eleven healthy young adults (mean=21.6 years) performed a modified DST (mDST) task and its control task, which required a simple graphomotor response during fMRI data acquisition. The direct comparison of brain activations between the mDST task and the control task revealed greater activations in a fronto-parietal cortical network, including the bilateral inferior frontal sulci, left middle frontal gyrus (close to the frontal eye field) and left posterior parietal cortex. These activations are interpreted as reflecting the visual search process and/or the updating process of working memory during the mDST task execution. Furthermore, we found a positive correlation between the number of correct responses and activations in the bilateral inferior frontal regions, suggesting that these prefrontal areas have a crucial role in the performance of DST in a healthy young adult population.

  20. Comparison of DMSA Scan 99 m and EC Scan 99 m in Diagnosis of Cortical Defect and Differential Renal Function

    OpenAIRE

    Mohammadi-Fallah, M.; Alizadeh, M.; Lavin, T. Ahmadi

    2014-01-01

    Introduction: Diagnosis of renal cortical lesions by radioisotopes in nuclear medicine is one of the most common techniques and procedures can be performed by different radiotracer. However, all these materials are accurate in determining kidney function, but there are differences between them in the field. The purpose of this study was to evaluate the effectiveness of EC scans compared with DMSA scan in the detection of cortical lesions and DRF. Methods: 65 cases, which have been referred fo...

  1. Estimation of the cortical functional connectivity with the multimodal integration of high-resolution EEG and fMRI data by directed transfer function.

    Science.gov (United States)

    Babiloni, F; Cincotti, F; Babiloni, C; Carducci, F; Mattia, D; Astolfi, L; Basilisco, A; Rossini, P M; Ding, L; Ni, Y; Cheng, J; Christine, K; Sweeney, J; He, B

    2005-01-01

    Nowadays, several types of brain imaging device are available to provide images of the functional activity of the cerebral cortex based on hemodynamic, metabolic, or electromagnetic measurements. However, static images of brain regions activated during particular tasks do not convey the information of how these regions communicate with each other. In this study, advanced methods for the estimation of cortical connectivity from combined high-resolution electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data are presented. These methods include a subject's multicompartment head model (scalp, skull, dura mater, cortex) constructed from individual magnetic resonance images, multidipole source model, and regularized linear inverse source estimates of cortical current density. Determination of the priors in the resolution of the linear inverse problem was performed with the use of information from the hemodynamic responses of the cortical areas as revealed by block-designed (strength of activated voxels) fMRI. We estimate functional cortical connectivity by computing the directed transfer function (DTF) on the estimated cortical current density waveforms in regions of interest (ROIs) on the modeled cortical mantle. The proposed method was able to unveil the direction of the information flow between the cortical regions of interest, as it is directional in nature. Furthermore, this method allows to detect changes in the time course of information flow between cortical regions in different frequency bands. The reliability of these techniques was further demonstrated by elaboration of high-resolution EEG and fMRI signals collected during visually triggered finger movements in four healthy subjects. Connectivity patterns estimated for this task reveal an involvement of right parietal and bilateral premotor and prefrontal cortical areas. This cortical region involvement resembles that revealed in previous studies where visually triggered finger

  2. Adhesion functions in cell sorting by mechanically coupling the cortices of adhering cells.

    Science.gov (United States)

    Maître, Jean-Léon; Berthoumieux, Hélène; Krens, Simon Frederik Gabriel; Salbreux, Guillaume; Jülicher, Frank; Paluch, Ewa; Heisenberg, Carl-Philipp

    2012-10-12

    Differential cell adhesion and cortex tension are thought to drive cell sorting by controlling cell-cell contact formation. Here, we show that cell adhesion and cortex tension have different mechanical functions in controlling progenitor cell-cell contact formation and sorting during zebrafish gastrulation. Cortex tension controls cell-cell contact expansion by modulating interfacial tension at the contact. By contrast, adhesion has little direct function in contact expansion, but instead is needed to mechanically couple the cortices of adhering cells at their contacts, allowing cortex tension to control contact expansion. The coupling function of adhesion is mediated by E-cadherin and limited by the mechanical anchoring of E-cadherin to the cortex. Thus, cell adhesion provides the mechanical scaffold for cell cortex tension to drive cell sorting during gastrulation.

  3. Functional topography of single cortical cells: an intracellular approach combined with optical imaging.

    Science.gov (United States)

    Buzás, P; Eysel, U T; Kisvárday, Z F

    1998-11-01

    Pyramidal cells mediating long-range corticocortical connections have been assumed to play an important role in visual perceptual mechanisms [C.D. Gilbert, Horizontal integration and cortical dynamics, Neuron 9 (1992) 1-13]. However, no information is available as yet on the specificity of individual pyramidal cells with respect to functional maps, e.g., orientation map. Here, we show a combination of techniques with which the functional topography of single pyramidal neurons can be explored in utmost detail. To this end, we used optical imaging of intrinsic signals followed by intracellular recording and staining with biocytin in vivo. The axonal and dendritic trees of the labelled neurons were reconstructed in three dimensions and aligned with corresponding functional orientation maps. The results indicate that, contrary to the sharp orientation tuning of neurons shown by the recorded spike activity, the efferent connections (axon terminal distribution) of the same pyramidal cells were found to terminate at a much broader range of orientations.

  4. Human Amniotic Fluid Cells Form Functional Gap Junctions with Cortical Cells

    Directory of Open Access Journals (Sweden)

    Anna Jezierski

    2012-01-01

    Full Text Available The usage of stem cells is a promising strategy for the repair of damaged tissue in the injured brain. Recently, amniotic fluid (AF cells have received a lot of attention as an alternative source of stem cells for cell-based therapies. However, the success of this approach relies significantly on proper interactions between graft and host tissue. In particular, the reestablishment of functional brain networks requires formation of gap junctions, as a key step to provide sufficient intercellular communication. In this study, we show that AF cells express high levels of CX43 (GJA1 and are able to establish functional gap junctions with cortical cultures. Furthermore, we report an induction of Cx43 expression in astrocytes following injury to the mouse motor cortex and demonstrate for the first time CX43 expression at the interface between implanted AF cells and host brain cells. These findings suggest that CX43-mediated intercellular communication between AF cells and cortical astrocytes may contribute to the reconstruction of damaged tissue by mediating modulatory, homeostatic, and protective factors in the injured brain and hence warrants further investigation.

  5. Complexity of motor sequences and cortical reorganization in Parkinson's disease: a functional MRI study.

    Directory of Open Access Journals (Sweden)

    Stefano Caproni

    Full Text Available Motor impairment is the most relevant clinical feature in Parkinson's disease (PD. Functional imaging studies on motor impairment in PD have revealed changes in the cortical motor circuits, with particular involvement of the fronto-striatal network. The aim of this study was to assess brain activations during the performance of three different motor exercises, characterized by progressive complexity, using a functional fMRI multiple block paradigm, in PD patients and matched control subjects. Unlike from single-task comparisons, multi-task comparisons between similar exercises allowed to analyse brain areas involved in motor complexity planning and execution. Our results showed that in the single-task comparisons the involvement of primary and secondary motor areas was observed, consistent with previous findings based on similar paradigms. Most notably, in the multi-task comparisons a greater activation of supplementary motor area and posterior parietal cortex in PD patients, compared with controls, was observed. Furthermore, PD patients, compared with controls, had a lower activation of the basal ganglia and limbic structures, presumably leading to the impairment in the higher levels of motor control, including complexity planning and execution. The findings suggest that in PD patients occur both compensatory mechanisms and loss of efficiency and provide further insight into the pathophysiological role of distinct cortical and subcortical areas in motor dysfunction.

  6. Complexity of motor sequences and cortical reorganization in Parkinson's disease: a functional MRI study.

    Science.gov (United States)

    Caproni, Stefano; Muti, Marco; Principi, Massimo; Ottaviano, Pierfausto; Frondizi, Domenico; Capocchi, Giuseppe; Floridi, Piero; Rossi, Aroldo; Calabresi, Paolo; Tambasco, Nicola

    2013-01-01

    Motor impairment is the most relevant clinical feature in Parkinson's disease (PD). Functional imaging studies on motor impairment in PD have revealed changes in the cortical motor circuits, with particular involvement of the fronto-striatal network. The aim of this study was to assess brain activations during the performance of three different motor exercises, characterized by progressive complexity, using a functional fMRI multiple block paradigm, in PD patients and matched control subjects. Unlike from single-task comparisons, multi-task comparisons between similar exercises allowed to analyse brain areas involved in motor complexity planning and execution. Our results showed that in the single-task comparisons the involvement of primary and secondary motor areas was observed, consistent with previous findings based on similar paradigms. Most notably, in the multi-task comparisons a greater activation of supplementary motor area and posterior parietal cortex in PD patients, compared with controls, was observed. Furthermore, PD patients, compared with controls, had a lower activation of the basal ganglia and limbic structures, presumably leading to the impairment in the higher levels of motor control, including complexity planning and execution. The findings suggest that in PD patients occur both compensatory mechanisms and loss of efficiency and provide further insight into the pathophysiological role of distinct cortical and subcortical areas in motor dysfunction.

  7. The effects of caffeine ingestion on cortical areas: functional imaging study.

    Science.gov (United States)

    Park, Chan-A; Kang, Chang-Ki; Son, Young-Don; Choi, Eun-Jung; Kim, Sang-Hoon; Oh, Seung-Taek; Kim, Young-Bo; Park, Chan-Woong; Cho, Zang-Hee

    2014-05-01

    The effect of caffeine as a cognitive enhancer is well known; however, caffeine-induced changes in the cortical regions are still not very clear. Therefore, in this study, we conducted an investigation of the activation and deactivation with blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) and of metabolic activity change with positron emission tomography (PET) in the human brain. Fourteen healthy subjects performed a visuomotor task inducing attention with 3T MRI, and PET imaging was also carried out in seven subjects to determine the cerebral glucose metabolic changes of caffeine at rest. The result by fMRI showed increased BOLD activation in the left cerebellum, putamen, insula, thalamus and the right primary motor cortex, and decreased BOLD deactivation in the posterior medial and the left posterior lateral cortex. Also, the resting state PET data showed reduced metabolic activity in the putamen, caudate nucleus, insula, pallidum and posterior medial cortex. The common cortical regions between fMRI and PET, such as putamen, insula and posterior medial cortex, where significant changes occurred after caffeine ingestion, are well known to play an important role in cognitive function like attention. This result suggests that the effect of caffeine as a cognitive enhancer is derived by modulating the attentional areas.

  8. Preoperative 3T high field blood oxygen level dependent functional magnetic resonance imaging for glioma involving sensory cortical areas

    Institute of Scientific and Technical Information of China (English)

    LI Shao-wu; WANG Jiang-fei; JIANG Tao; LI Shou-wei; ZHANG Wen-bo; LI Zi-xiao; ZHANG Zhong; DAI Jian-ping; WANG Zhong-cheng

    2010-01-01

    Background Localization of sensory cortical areas during the operation is essential to preserve the sensory function.Intraoperative direct electrostimulation under awake anesthesia is the golden standard but time-consuming. We applied 3T high field blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to identify the relationship between glioma and cortical sensory areas preoperatively and to guide intraoperative direct electrostimulation for quick and precise localization.Methods Five glioma patients with sensory cortex involvement by or next to the lesion had preoperative BOLD fMRI to determine the spatial relationship of cortical sensory areas to the tumours. Bilateral hand opposite movement was performed by these patients for fMRI. Precentral and postcentral gyri were identified by electrical stimulation during the operation. Karnofsky Performance Status scores of the patients' pre- and postoperative and the role of BOLD fMRI were evaluated.Results The cortical sensory areas were all activated in five glioma patients involving postcentral gyrus areas by BOLDf MRI with bilateral hand opposite movement. The detected activation areas corresponded with the results from cortical electrical stimulation.Conclusions The relationship between cortical sensory areas and tumour can be accurately shown by BOLD fMRI before operation. And the information used to make the tumour resection could obtain good clinical results.

  9. Perilesional reorganization of somatosensory function following traumatic cortical contusion A case report

    Institute of Scientific and Technical Information of China (English)

    Mi Young Lee; Sung Ho Jang

    2011-01-01

    The present study reports on a 23-year-old male patient with somatosensory dysfunction of the left hand following cortical contusion. His somatosensory dysfunction recovered to a nearly normal state at 6 months after injury. Functional MRI results demonstrated that the contralateral primary sensorimotor cortex centered on the primary somatosensroy cortex was activated during touch stimulation of the patient's right hand and either hand of control subjects. By contrast, the anterior area of the lesion centered on the precentral knob in the right hemisphere was activated during touch stimulation of the left hand. These findings show that the somatosensory function of the affected hand appears to have been recovered by the somatosensory cortex reorganizing into the anterior area of the contused primary somatosensory cortex.

  10. fNIRS: An emergent method to document functional cortical activity during infant movements

    Directory of Open Access Journals (Sweden)

    Ryota eNishiyori

    2016-04-01

    Full Text Available The neural basis underlying the emergence of goal-directed actions in infants has been severely understudied, with minimal empirical evidence for hypotheses proposed. This was largely due to the technological constraints of traditional neuroimaging techniques. Recently, functional near-infrared spectroscopy (fNIRS technology has emerged as a tool developmental scientists are finding useful to examine cortical activity, particularly in young children and infants due to its greater tolerance to movements than other neuroimaging techniques. fNIRS provides an opportunity to finally begin to examine the neural underpinnings as infants develop goal-directed actions.In this methodological paper, I will outline the utility, challenges, and outcomes of using fNIRS to measure the changes in cortical activity as infants reach for an object. I will describe the advantages and limitations of the technology, the setup I used to study primary motor cortex activity during infant reaching, and example steps in the analyses processes. I will present exemplar data to illustrate the feasibility of this technique to quantify changes in hemodynamic activity as infants move. The viability of this research method opens the door to expanding studies of the development of neural activity related to goal-directed actions in infants. I encourage others to share details of techniques used, as well, including analyticals, to help this neuroimaging technology grow as others, such as EEG and fMRI have.

  11. Rapid functional reorganization of the forelimb cortical representation after thoracic spinal cord injury in adult rats.

    Science.gov (United States)

    Sydekum, Esther; Ghosh, Arko; Gullo, Miriam; Baltes, Christof; Schwab, Martin; Rudin, Markus

    2014-02-15

    Thoracic spinal cord injured rats rely largely on forelimbs to walk, as their hindlimbs are dysfunctional. This increased limb use is accompanied by expansion of the cortical forelimb sensory representation. It is unclear how quickly the representational changes occur and whether they are at all related to the behavioral adaptation. Using blood oxygenation level dependent functional mangetic resonance imaging (BOLD-fMRI) we show that major plastic changes of the somato-sensory map can occur as early as one day after injury. The extent of map increase was variable between animals, and some animals showed a reduction in map size. However, at three or seven days after injury a significant enhancement of the forelimb representation was evident in all the animals. In a behavioral test for precise limb control, crossing of a horizontal ladder, the injured rats relied almost entirely on their forelimbs; they initially made more mistakes than at 7 days post injury. Remarkably, in the individual animals the behavioral performance seen at seven days was proportional to the physiological change present at one day after injury. The rapid increase in cortical representation of the injury-spared body part may provide the additional neural substrate necessary for high level behavioral adaptation.

  12. Maternal pre-pregnancy obesity and child ADHD symptoms, executive function and cortical thickness

    Directory of Open Access Journals (Sweden)

    Claudia Buss

    2012-09-01

    Full Text Available Rationale/statement of the problem : Increasing evidence suggests exposure to adverse conditions in intrauterine life may increase the risk of developing attention-deficit/hyperactivity disorder (ADHD in childhood. High maternal pre-pregnancy body mass index (BMI has been shown to predict child ADHD symptoms; however, the neurocognitive processes underlying this relationship are not known. The aim of the present study was to test the hypothesis that this association is mediated by alterations in child executive function and cortical development. Methods : A population-based cohort of 174 children (mean age = 7.3±0.9 (SD years, 55% girls was evaluated for ADHD symptoms, using the Child Behavior Checklist, and for neurocognitive function, using the Go/No-go Task. This cohort had been followed prospectively from early gestation and birth through infancy and childhood with serial measures of maternal and child prenatal and postnatal factors. In 108 children, a structural MRI scan was acquired and the association between maternal obesity and child cortical thickness was investigated using Freesurfer software. Results : Maternal pre-pregnancy BMI was a significant predictor of child ADHD symptoms (F (1,158=4.80, p = 0.03 and of child performance on the Go/No-go Task (F (1,157=8.37, p=0.004 after controlling for key potential confounding variables. A test of the mediation model revealed that the association between higher maternal pre-pregnancy BMI and child ADHD symptoms was mediated by impaired executive function (inefficient/less attentive processing; Sobel test: t=2.39 (±0.002, SEM; p=0.02. Interestingly, after controlling for key potential confounding variables pre-pregnancy obesity was furthermore associated with region-specific thinner cortices, including regions previously reported to be thinner in children with ADHD, like the prefrontal cortex. Conclusion : To the best of our knowledge, this is the first study to report the

  13. The theta-syllable: a unit of speech information defined by cortical function

    Directory of Open Access Journals (Sweden)

    Oded eGhitza

    2013-03-01

    Full Text Available A recent commentary (Oscillators and syllables: a cautionary note. Cummins, 2012 questions the validity of a class of speech perception models inspired by the possible role of neuronal oscillations in decoding speech (e.g., Ghitza 2011, Giraud & Poeppel 2012. In arguing against the approach, Cummins raises a cautionary flag from a phonetician’s point of view. Here we respond to his arguments from an auditory processing viewpoint, referring to a phenomenological model of Ghitza (2011 taken as a representative of the criticized approach. We shall conclude by proposing the theta-syllable as an information unit defined by cortical function – an alternative to the conventional, ambiguously defined syllable. In the large context, the resulting discussion debate should be viewed as a subtext of acoustic and auditory phonetics vs. articulatory and motor theories of speech reception.

  14. Functional plasticity in the interposito-thalamo-cortical pathway during conditioning. Role of the interstimulus interval.

    Science.gov (United States)

    Pananceau, M; Rispal-Padel, L

    2000-06-01

    In classic conditioning, the interstimulus interval (ISI) between the conditioned (CS) and unconditioned (US) stimulus is a critical parameter. The aim of the present experiment was to assess whether, during conditioning, modification of the CS-US interval could reliably produce changes in the functional properties of the interposito-thalamo-cortical pathways (INTCps). Five cats were prepared for chronic stimulation and recording from several brain regions along this pathway in awake animals. The CS was a weak electric shock applied on the interposed nucleus of the cerebellum in sites that initially elicited forelimb flexion (i.e., alpha motor responses) in three cats, and equal proportions of flexor and extensor responses in two cats. The US was an electric shock applied on the skin that elicited forelimb flexions. The motor and neurobiological effects of synchronous CS-US were compared with pairings in which the CS was applied 100 ms before US. Simultaneous and sequential application of CS and US produced different behavioral outcomes and resulted in different neural processes in the interposito-thalamo-cortical pathways (INTCps). The simultaneous presentation of stimuli only produced a small increase in excitability spreading to all the body representational zones of the primary motor cortex and a weak increase in the amplitude of the alpha motor response. In contrast, the sequential application led to a profound modification of the interposed output to neurons in the forelimb representation of the motor cortex. These robust neuronal correlates of conditioning were accompanied by a large facilitation of the alpha motor response (alpha-MR). There were also changes in the direction of misdirected alpha responses and an emergence of functionally appropriate, long-latency withdrawal forelimb flexion. These data revealed that, during conditioning, plastic changes within the thalamocortical connections are selectively induced by sequential information from central and

  15. Femoral Aperture Fixation Improves Anterior Cruciate Ligament Graft Function When Added to Cortical Suspensory Fixation

    Science.gov (United States)

    Porter, Mark D.; Shadbolt, Bruce

    2016-01-01

    Background: Recommendations for bone tunnel placement during anterior cruciate ligament (ACL) reconstruction have become more precise. However, these recommendations differ neither with the choice of graft nor with the method of fixation used. The influence of the method of femoral fixation used on the biomechanical function of a soft tissue ACL graft remains unknown. Hypothesis: Our null hypothesis was that adding femoral aperture fixation to femoral cortical fixation, using the same bone tunnels, will not alter the control of anterior translation (AT) and internal rotation (IR) during ACL reconstruction using a hamstring graft. Study Design: Controlled laboratory study. Methods: A total of 22 patients with an acute isolated ACL rupture underwent reconstruction using a single-bundle autologous hamstring graft. Computer navigation was used intraoperatively to plot the AT and IR during the pivot-shift test before reconstruction, after ACL reconstruction using cortical suspensory fixation, and after the addition of femoral aperture fixation. Statistical analysis (analysis of variance) was used to compare the AT and IR during the pivot shift at each stage in the procedure. Results: Before ACL reconstruction, the mean (±SD) AT was 14.2 ± 7.3 mm and mean IR was 17.2° ± 5.5°. After reconstruction using femoral cortical suspension, these figures were significantly reduced to 6.2 ± 3.5 mm and 12.5° ± 3.20°, respectively (P < .001). The addition of the aperture fixation was associated with a further significant reduction to 4.6 ± 3.2 mm and 10.4° ± 2.7°, respectively (P < .001). Conclusion: The addition of femoral aperture fixation to suspensory fixation results in a significant reduction in both the AT and IR that occurs during the pivot-shift assessment immediately after ACL reconstruction using autologous hamstring graft. Clinical Relevance: The most precise positioning of bone tunnels during soft tissue ACL reconstruction needs to take into consideration

  16. Estimation of the effective and functional human cortical connectivity with structural equation modeling and directed transfer function applied to high-resolution EEG.

    Science.gov (United States)

    Astolfi, Laura; Cincotti, Febo; Mattia, Donatella; Salinari, Serenella; Babiloni, Claudio; Basilisco, Alessandra; Rossini, Paolo Maria; Ding, Lei; Ni, Ying; He, Bin; Marciani, Maria Grazia; Babiloni, Fabio

    2004-12-01

    Different brain imaging devices are presently available to provide images of the human functional cortical activity, based on hemodynamic, metabolic or electromagnetic measurements. However, static images of brain regions activated during particular tasks do not convey the information of how these regions are interconnected. The concept of brain connectivity plays a central role in the neuroscience, and different definitions of connectivity, functional and effective, have been adopted in literature. While the functional connectivity is defined as the temporal coherence among the activities of different brain areas, the effective connectivity is defined as the simplest brain circuit that would produce the same temporal relationship as observed experimentally among cortical sites. The structural equation modeling (SEM) is the most used method to estimate effective connectivity in neuroscience, and its typical application is on data related to brain hemodynamic behavior tested by functional magnetic resonance imaging (fMRI), whereas the directed transfer function (DTF) method is a frequency-domain approach based on both a multivariate autoregressive (MVAR) modeling of time series and on the concept of Granger causality. This study presents advanced methods for the estimation of cortical connectivity by applying SEM and DTF on the cortical signals estimated from high-resolution electroencephalography (EEG) recordings, since these signals exhibit a higher spatial resolution than conventional cerebral electromagnetic measures. To estimate correctly the cortical signals, we used a subject's multicompartment head model (scalp, skull, dura mater, cortex) constructed from individual MRI, a distributed source model and a regularized linear inverse source estimates of cortical current density. Before the application of SEM and DTF methodology to the cortical waveforms estimated from high-resolution EEG data, we performed a simulation study, in which different main factors

  17. The slow oscillation in cortical and thalamic networks: mechanisms and functions

    Directory of Open Access Journals (Sweden)

    Garrett T. Neske

    2016-01-01

    Full Text Available During even the most quiescent behavioral periods, the cortex and thalamus express rich spontaneous activity in the form of slow (<1 Hz, synchronous network state transitions. Throughout this so-called slow oscillation, cortical and thalamic neurons fluctuate between periods of intense synaptic activity (Up states and almost complete silence (Down states. The two decades since the original characterization of the slow oscillation in the cortex and thalamus have seen considerable advances in deciphering the cellular and network mechanisms associated with this pervasive phenomenon. There are, nevertheless, many questions regarding the slow oscillation that await more thorough illumination, particularly the mechanisms by which Up states initiate and terminate, the functional role of the rhythmic activity cycles in unconscious or minimally conscious states, and the precise relation between Up states and the activated states associated with waking behavior. Given the substantial advances in multineuronal recording and imaging methods in both in vivo and in vitro preparations, the time is ripe to take stock of our current understanding of the slow oscillation and pave the way for future investigations of its mechanisms and functions. My aim in this Review is to provide a comprehensive account of the mechanisms and functions of the slow oscillation, and to suggest avenues for further exploration.

  18. A Preliminary Transcranial Magnetic Stimulation Study of Cortical Inhibition and Excitability in High-Functioning Autism and Asperger Disorder

    Science.gov (United States)

    Enticott, Peter G.; Rinehart, Nicole J.; Tonge, Bruce J.; Bradshaw, John L.; Fitzgerald, Paul B.

    2010-01-01

    Aim: Controversy surrounds the distinction between high-functioning autism (HFA) and Asperger disorder, but motor abnormalities are associated features of both conditions. This study examined motor cortical inhibition and excitability in HFA and Asperger disorder using transcranial magnetic stimulation (TMS). Method: Participants were diagnosed by…

  19. Cortical network dynamics with time delays reveals functional connectivity in the resting brain.

    NARCIS (Netherlands)

    Ghosh, A.; Rho, Y.; McIntosh, A.R.; Kotter, R.; Jirsa, V.K.

    2008-01-01

    In absence of all goal-directed behavior, a characteristic network of cortical regions involving prefrontal and cingulate cortices consistently shows temporally coherent fluctuations. The origin of these fluctuations is unknown, but has been hypothesized to be of stochastic nature. In the present pa

  20. Cortical gene expression in spinal cord injury and repair: insight into the functional complexity of the neural regeneration program

    Directory of Open Access Journals (Sweden)

    Fabian eKruse

    2011-09-01

    Full Text Available Traumatic spinal cord injury (SCI results in the formation of a fibrous scar acting as a growth barrier for regenerating axons at the lesion site. We have previously shown (Klapka et al., 2005 that transient suppression of the inhibitory lesion scar in rat spinal cord leads to long distance axon regeneration, retrograde rescue of axotomized cortical motoneurons and improvement of locomotor function. Here we applied a systemic approach to investigate for the first time specific and dynamic alterations in the cortical gene expression profile following both thoracic SCI and regeneration-promoting anti-scarring treatment (AST. In order to monitor cortical gene expression we carried out microarray analyses using total RNA isolated from layer V/VI of rat sensorimotor cortex at 1-60 days post-operation (dpo. We demonstrate that cortical neurons respond to injury by massive changes in gene expression, starting as early as 1 dpo. AST, in turn, results in profound modifications of the lesion-induced expression profile. The treatment attenuates SCI-triggered transcriptional changes of genes related to inhibition of axon growth and impairment of cell survival, while upregulating the expression of genes associated with axon outgrowth, cell protection and neural development. Thus, AST not only modifies the local environment impeding spinal cord regeneration by reduction of fibrous scarring in the injured spinal cord, but, in addition, strikingly changes the intrinsic capacity of cortical pyramidal neurons towards enhanced cell maintenance and axonal regeneration.

  1. Renal cortical volume measured using automatic contouring software for computed tomography and its relationship with BMI, age and renal function

    Energy Technology Data Exchange (ETDEWEB)

    Muto, Natalia Sayuri, E-mail: nataliamuto@gmail.com [Department of Radiology, Hokkaido University Hospital, N15 W7, kita-ku, Sapporo City, 0608638 (Japan); Kamishima, Tamotsu, E-mail: ktamotamo2@yahoo.co.jp [Department of Radiology, Hokkaido University Hospital, N15 W7, kita-ku, Sapporo City, 0608638 (Japan); Harris, Ardene A., E-mail: ardene_b@yahoo.com [Department of Radiology, Hokkaido University Hospital, N15 W7, kita-ku, Sapporo City, 0608638 (Japan); Kato, Fumi, E-mail: fumikato@med.hokudai.ac.jp [Department of Radiology, Hokkaido University Hospital, N15 W7, kita-ku, Sapporo City, 0608638 (Japan); Onodera, Yuya, E-mail: yuyaonodera@med.hokudai.ac.jp [Department of Radiology, Hokkaido University Hospital, N15 W7, kita-ku, Sapporo City, 0608638 (Japan); Terae, Satoshi, E-mail: saterae@yahoo.co.jp [Department of Radiology, Hokkaido University Hospital, N15 W7, kita-ku, Sapporo City, 0608638 (Japan); Shirato, Hiroki, E-mail: shirato@med.hokudai.ac.jp [Department of Radiology, Hokkaido University Hospital, N15 W7, kita-ku, Sapporo City, 0608638 (Japan)

    2011-04-15

    Purpose: To evaluate the relationship between renal cortical volume, measured by an automatic contouring software, with body mass index (BMI), age and renal function. Materials and methods: The study was performed in accordance to the institutional guidelines at our hospital. Sixty-four patients (34 men, 30 women), aged 19 to 79 years had their CT scans for diagnosis or follow-up of hepatocellular carcinoma retrospectively examined by a computer workstation using a software that automatically contours the renal cortex and the renal parenchyma. Body mass index and estimated glomerular filtration rate (eGFR) were calculated based on data collected. Statistical analysis was done using the Student t-test, multiple regression analysis, and intraclass correlation coefficient (ICC). Results: The ICC for total renal and renal cortical volumes were 0.98 and 0.99, respectively. Renal volume measurements yielded a mean cortical volume of 105.8 cm{sup 3} {+-} 28.4 SD, mean total volume of 153 cm{sup 3} {+-} 39 SD and mean medullary volume of 47.8 cm{sup 3} {+-} 19.5 SD. The correlation between body weight/height/BMI and both total renal and cortical volumes presented r = 0.6, 0.6 and 0.4, respectively, p < 0.05, while the correlation between renal cortex and age was r = -0.3, p < 0.05. eGFR showed correlation with renal cortical volume r = 0.6, p < 0.05. Conclusion: This study demonstrated that renal cortical volume had a moderate positive relationship with BMI, moderate negative relationship with age, and a strong positive relationship with the renal function, and provided a new method to routinely produce volumetric assessment of the kidney.

  2. Multichannel linear descriptors analysis for sustained attention-related electroencephalography.

    Science.gov (United States)

    Liu, Tian; Yan, Nan; Chen, Yanni; Wang, Jue

    2013-08-07

    This study investigated the differences in brain functional state between sustained attention and ignoring task conditions using the electroencephalography in association with sustained attention to response task (SART) performance. Multichannel electroencephalography data were obtained from 10 male healthy volunteers while performing the SART. Three multichannel linear descriptors, that is spatial complexity (Ω), field strength (Σ), and frequency of field changes (Φ), were applied to analyze three frequency bands (θ, α, and β) for sustained attention and ignoring task conditions. The experimental results showed that participants had a significantly lower Ω value in the θ and α band in the SART state. The Σ value was significantly higher in each frequency band of interest in almost all region of interest areas during SART performance. In addition, the Φ value was significantly lower in the θ band and significantly higher in the β band during the sustained attention condition. The results indicated that multichannel linear descriptors could show the differences in brain functions between sustained attention and ignoring task conditions, and might be used to evaluate disorders with an attentional dysfunction.

  3. Cortical mapping by functional magnetic resonance imaging in patients with brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Majos, Agata; Stefanczyk, Ludomir; Goraj, Bozena [Medical University of Lodz, Department of Radiology, Lodz (Poland); Tybor, Krzysztof [Medical University of Lodz, Department of Neurosurgery, Lodz (Poland)

    2005-06-01

    The aim of our study was to establish the effectiveness of the functional MRI (fMRI) technique in comparison with intraoperative cortical stimulation (ICS) in planning cortex-saving neurosurgical interventions. The combination of sensory and motor stimulation during fMRI experiments was used to improve the exactness of central sulcus localization. The study subjects were 30 volunteers and 33 patients with brain tumors in the rolandic area. Detailed topographical relations of activated areas in fMRI and intraoperative techniques were compared. The agreement in the location defined by the two methods for motor centers was found to be 84%; for sensory centers it was 83%. When both kinds of activation are taken into account this agreement increases to 98%. A significant relation was found between fMRI and ICS for the agreement of the distance both for motor and sensory centers (p=0.0021-0.0024). Also a strong dependence was found between the agreement of the location and the agreement of the distance for both kinds of stimulation. The spatial correlation between fMRI and ICS methods for the sensorimotor cortex is very high. fMRI combining functional and structural information is very helpful for preoperative neurosurgical planning. The sensitivity of the fMRI technique in brain mapping increases when using both motor and sensory paradigms in the same patient. (orig.)

  4. Functional states of rat cortical circuits during the unpredictable availability of a reward-related cue.

    Science.gov (United States)

    Fernández-Lamo, Iván; Sánchez-Campusano, Raudel; Gruart, Agnès; Delgado-García, José M

    2016-11-21

    Proper performance of acquired abilities can be disturbed by the unexpected occurrence of external changes. Rats trained with an operant conditioning task (to press a lever in order to obtain a food pellet) using a fixed-ratio (1:1) schedule were subsequently placed in a Skinner box in which the lever could be removed randomly. Field postsynaptic potentials (fPSPs) were chronically evoked in perforant pathway-hippocampal CA1 (PP-CA1), CA1-subiculum (CA1-SUB), CA1-medial prefrontal cortex (CA1-mPFC), mPFC-nucleus accumbens (mPFC-NAc), and mPFC-basolateral amygdala (mPFC-BLA) synapses during lever IN and lever OUT situations. While lever presses were accompanied by a significant increase in fPSP slopes at the five synapses, the unpredictable absence of the lever were accompanied by decreased fPSP slopes in all, except PP-CA1 synapses. Spectral analysis of local field potentials (LFPs) recorded when the animal approached the corresponding area in the lever OUT situation presented lower spectral powers than during lever IN occasions for all recording sites, apart from CA1. Thus, the unpredictable availability of a reward-related cue modified the activity of cortical and subcortical areas related with the acquisition of operant learning tasks, suggesting an immediate functional reorganization of these neural circuits to address the changed situation and to modify ongoing behaviors accordingly.

  5. Administration of MPTP to the common marmoset does not alter cortical cholinergic function

    Energy Technology Data Exchange (ETDEWEB)

    Garvey, J.; Petersen, M.; Waters, C.M.; Rose, S.P.; Hunt, S.; Briggs, R.; Jenner, P.; Marsden, C.D.

    1986-01-01

    The administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to common marmosets induced persistent motor deficits and decreased concentrations of dopamine, homovanillic acid, and 3,4-dihydroxy-phenylacetic acid (DOPAC) and (TH)dopamine uptake in the caudate-putamen. There was an 80% reduction in tyrosine hydroxylase immunoreactive cells in substantia nigra. At 10 days following the start of MPTP administration, the activity of choline acetyltransferase in the thalamus and frontal cortex was unchanged compared with control animals. Similarly, specific (TH)QNB binding was unaltered. At 4-6 weeks following the start of MPTP treatment, choline acetyltransferase activity and (TH)QNB binding in the frontal cortex and thalamus remained unaffected. There was no evidence for cell loss in the nucleus basalis of Meynert or alteration in the intensity of staining for acetylcholinesterase. MPTP treatment of the common marmoset produces a nigrostriatal lesion. In contrast, MPTP did not alter cortical cholinergic function and was not neurotoxic to the cholinergic cells in the nucleus basalis of Meynert.

  6. Contrasting activity profile of two distributed cortical networks as a function of attentional demands.

    Science.gov (United States)

    Popa, Daniela; Popescu, Andrei T; Paré, Denis

    2009-01-28

    Recent human functional MRI (fMRI) studies have revealed that two widely distributed groups of cortical areas display inverse changes in activity when attentional demands increase, with one group showing higher (task-on) and the second lower (task-off) blood oxygen level-dependent (BOLD) signals. Moreover, task-on and task-off regions also exhibit slow (cat homologues of task-on and task-off regions. In all states of vigilance, LFP power was lower in task-off than task-on regions with no difference in firing rates. Both sets of regions displayed slow (0.5-0.15 Hz) cyclical modulations in LFP power in all frequency bands but with large and variable phase differences such that task-on and task-off regions were often anticorrelated. Inversely correlated LFP power fluctuations were state-dependent in that they were much more frequent in waking and paradoxical sleep than in slow-wave sleep. Moreover, consistent with fMRI findings, when attentional demands increased, LFP power in task-on and task-off regions changed in opposite directions, further augmenting and decreasing, respectively. At odds with previous fMRI studies, however, the decreased LFP power in task-off regions was associated with increased firing rates, suggesting that the engagement of task-off regions might not be reduced but in fact enhanced during attention.

  7. An in silico agent-based model demonstrates Reelin function in directing lamination of neurons during cortical development.

    Directory of Open Access Journals (Sweden)

    James R Caffrey

    Full Text Available The characteristic six-layered appearance of the neocortex arises from the correct positioning of pyramidal neurons during development and alterations in this process can cause intellectual disabilities and developmental delay. Malformations in cortical development arise when neurons either fail to migrate properly from the germinal zones or fail to cease migration in the correct laminar position within the cortical plate. The Reelin signalling pathway is vital for correct neuronal positioning as loss of Reelin leads to a partially inverted cortex. The precise biological function of Reelin remains controversial and debate surrounds its role as a chemoattractant or stop signal for migrating neurons. To investigate this further we developed an in silico agent-based model of cortical layer formation. Using this model we tested four biologically plausible hypotheses for neuron motility and four biologically plausible hypotheses for the loss of neuron motility (conversion from migration. A matrix of 16 combinations of motility and conversion rules was applied against the known structure of mouse cortical layers in the wild-type cortex, the Reelin-null mutant, the Dab1-null mutant and a conditional Dab1 mutant. Using this approach, many combinations of motility and conversion mechanisms can be rejected. For example, the model does not support Reelin acting as a repelling or as a stopping signal. In contrast, the study lends very strong support to the notion that the glycoprotein Reelin acts as a chemoattractant for neurons. Furthermore, the most viable proposition for the conversion mechanism is one in which conversion is affected by a motile neuron sensing in the near vicinity neurons that have already converted. Therefore, this model helps elucidate the function of Reelin during neuronal migration and cortical development.

  8. Restoring cortical control of functional movement in a human with quadriplegia.

    Science.gov (United States)

    Bouton, Chad E; Shaikhouni, Ammar; Annetta, Nicholas V; Bockbrader, Marcia A; Friedenberg, David A; Nielson, Dylan M; Sharma, Gaurav; Sederberg, Per B; Glenn, Bradley C; Mysiw, W Jerry; Morgan, Austin G; Deogaonkar, Milind; Rezai, Ali R

    2016-05-12

    Millions of people worldwide suffer from diseases that lead to paralysis through disruption of signal pathways between the brain and the muscles. Neuroprosthetic devices are designed to restore lost function and could be used to form an electronic 'neural bypass' to circumvent disconnected pathways in the nervous system. It has previously been shown that intracortically recorded signals can be decoded to extract information related to motion, allowing non-human primates and paralysed humans to control computers and robotic arms through imagined movements. In non-human primates, these types of signal have also been used to drive activation of chemically paralysed arm muscles. Here we show that intracortically recorded signals can be linked in real-time to muscle activation to restore movement in a paralysed human. We used a chronically implanted intracortical microelectrode array to record multiunit activity from the motor cortex in a study participant with quadriplegia from cervical spinal cord injury. We applied machine-learning algorithms to decode the neuronal activity and control activation of the participant's forearm muscles through a custom-built high-resolution neuromuscular electrical stimulation system. The system provided isolated finger movements and the participant achieved continuous cortical control of six different wrist and hand motions. Furthermore, he was able to use the system to complete functional tasks relevant to daily living. Clinical assessment showed that, when using the system, his motor impairment improved from the fifth to the sixth cervical (C5-C6) to the seventh cervical to first thoracic (C7-T1) level unilaterally, conferring on him the critical abilities to grasp, manipulate, and release objects. This is the first demonstration to our knowledge of successful control of muscle activation using intracortically recorded signals in a paralysed human. These results have significant implications in advancing neuroprosthetic technology

  9. Combined structural and functional imaging reveals cortical deactivations in grapheme-colour synaesthesia

    Directory of Open Access Journals (Sweden)

    Erik eO'Hanlon

    2013-10-01

    Full Text Available Synaesthesia is a heritable condition in which particular stimuli generate specific and consistent sensory percepts or associations in another modality or processing stream. Functional neuroimaging studies have identified potential correlates of these experiences, including, in some but not all cases, the hyperactivation of visuotemporal areas and of parietal areas thought to be involved in perceptual binding. Structural studies have identified a similarly variable spectrum of differences between synaesthetes and controls. However, it remains unclear the extent to which these neural correlates reflect the synaesthetic experience itself or additional phenotypes associated with the condition. Here, we acquired both structural and functional neuroimaging data comparing thirteen grapheme-colour synaesthetes with eleven non-synaesthetes. Using voxel-based morphometry and diffusion tensor imaging, we identify a number of clusters of increased volume of grey matter, of white matter or of increased fractional anisotropy in synaesthetes versus controls. To assess the possible involvement of these areas in the synaesthetic experience, we used nine areas of increased grey matter volume as regions of interest in an fMRI experiment that characterised the contrast in response to stimuli which induced synaesthesia (i.e. letters versus those which did not (non-meaningful symbols. Two of these areas, in left lateral occipital cortex and in postcentral gyrus, showed sensitivity to this contrast in synaesthetes but not controls. Unexpectedly, in both regions, the letter stimuli produced a strong negative BOLD signal in synaesthetes. An additional whole-brain fMRI analysis identified fourteen areas, three of which were driven mainly by a negative BOLD response to letters in synaesthetes. Our findings suggest that cortical deactivations may be involved in the conscious experience of internally generated synaesthetic percepts

  10. Maintaining Gait Performance by Cortical Activation during Dual-Task Interference: A Functional Near-Infrared Spectroscopy Study.

    Directory of Open Access Journals (Sweden)

    Chia-Feng Lu

    Full Text Available In daily life, mobility requires walking while performing a cognitive or upper-extremity motor task. Although previous studies have evaluated the effects of dual tasks on gait performance, few studies have evaluated cortical activation and its association with gait disturbance during dual tasks. In this study, we simultaneously assessed gait performance and cerebral oxygenation in the bilateral prefrontal cortices (PFC, premotor cortices (PMC, and supplemental motor areas (SMA, using functional near-infrared spectroscopy, in 17 young adults performing dual tasks. Each participant was evaluated while performing normal-pace walking (NW, walking while performing a cognitive task (WCT, and walking while performing a motor task (WMT. Our results indicated that the left PFC exhibited the strongest and most sustained activation during WCT, and that NW and WMT were associated with minor increases in oxygenation levels during their initial phases. We observed increased activation in channels in the SMA and PMC during WCT and WMT. Gait data indicated that WCT and WMT both caused reductions in walking speed, but these reductions resulted from differing alterations in gait properties. WCT was associated with significant changes in cadence, stride time, and stride length, whereas WMT was associated with reductions in stride length only. During dual-task activities, increased activation of the PMC and SMA correlated with declines in gait performance, indicating a control mechanism for maintaining gait performance during dual tasks. Thus, the regulatory effects of cortical activation on gait behavior enable a second task to be performed while walking.

  11. Maintaining Gait Performance by Cortical Activation during Dual-Task Interference: A Functional Near-Infrared Spectroscopy Study.

    Science.gov (United States)

    Lu, Chia-Feng; Liu, Yan-Ci; Yang, Yea-Ru; Wu, Yu-Te; Wang, Ray-Yau

    2015-01-01

    In daily life, mobility requires walking while performing a cognitive or upper-extremity motor task. Although previous studies have evaluated the effects of dual tasks on gait performance, few studies have evaluated cortical activation and its association with gait disturbance during dual tasks. In this study, we simultaneously assessed gait performance and cerebral oxygenation in the bilateral prefrontal cortices (PFC), premotor cortices (PMC), and supplemental motor areas (SMA), using functional near-infrared spectroscopy, in 17 young adults performing dual tasks. Each participant was evaluated while performing normal-pace walking (NW), walking while performing a cognitive task (WCT), and walking while performing a motor task (WMT). Our results indicated that the left PFC exhibited the strongest and most sustained activation during WCT, and that NW and WMT were associated with minor increases in oxygenation levels during their initial phases. We observed increased activation in channels in the SMA and PMC during WCT and WMT. Gait data indicated that WCT and WMT both caused reductions in walking speed, but these reductions resulted from differing alterations in gait properties. WCT was associated with significant changes in cadence, stride time, and stride length, whereas WMT was associated with reductions in stride length only. During dual-task activities, increased activation of the PMC and SMA correlated with declines in gait performance, indicating a control mechanism for maintaining gait performance during dual tasks. Thus, the regulatory effects of cortical activation on gait behavior enable a second task to be performed while walking.

  12. Flow velocity change in the cortical vein during motor activation and its effect on functional brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Kazuhiro [Kyoto Prefectural Univ. of Medicine (Japan)

    1998-06-01

    On the brain functional magnetic resonance imaging (fMRI) using the gradient-recalled echo technique with clinical MR scanner, the activated areas nearly correspond with the cortical veins. This suggests that the fMRI signal mainly originates from the cortical veins. In this study, we analyzed the flow velocity in the cortical vein quantitatively during brain activation and resting status using 2 dimensional time-of-flight cine MR venography (2D-TOF-cine-MRV) and 2 dimensional phase contrast MRV (2D-PC-MRV) techniques, and demonstrated that the flow velocity increased in the cortical vein corresponding to the activated area during activation status. The increase of flow velocity was calculated to be about 20%. The reason for the increased flow velocity is probably due to the increased regional cerebral blood flow and volume in the activated area. We should be careful to analyze the data of the fMRI because the flow velocity affects the fMRI signal such as the inflow effect and the oblique flow effect. When using the gradient echo method, the effect of the flow velocity is one of the important factors of the fMRI signal. (author)

  13. Functional magnetic resonance imaging suggests automatization of the cortical response to inspiratory threshold loading in humans.

    Science.gov (United States)

    Raux, Mathieu; Tyvaert, Louise; Ferreira, Michael; Kindler, Félix; Bardinet, Eric; Karachi, Carine; Morelot-Panzini, Capucine; Gotman, Jean; Pike, G Bruce; Koski, Lisa; Similowski, Thomas

    2013-12-01

    Inspiratory threshold loading (ITL) induces cortical activation. It is sustained over time and is resistant to distraction, suggesting automaticity. We hypothesized that ITL-induced changes in cerebral activation may differ between single-breath ITL and continuous ITL, with differences resembling those observed after cortical automatization of motor tasks. We analyzed the brain blood oxygen level dependent (BOLD) signal of 11 naive healthy volunteers during 5 min of random, single-breath ITL and 5 min of continuous ITL. Single-breath ITL increased BOLD in many areas (premotor cortices, bilateral insula, cerebellum, reticular formation of the lateral mesencephalon) and decreased BOLD in regions co-localizing with the default mode network. Continuous ITL induced signal changes in a limited number of areas (supplementary motor area). These differences are comparable to those observed before and after overlearning of motor tasks. We conclude that the respiratory-related cortical activation observed in response to ITL is likely due to automated, attention-independent mechanisms. Also, ITL activates cortical circuits right from the first breath.

  14. Neonatal sensory deprivation and the development of cortical function: unilateral and bilateral sensory deprivation result in different functional outcomes.

    Science.gov (United States)

    Popescu, Maria V; Ebner, Ford F

    2010-07-01

    The normal development of sensory perception in mammals depends on appropriate sensory experience between birth and maturity. Numerous reports have shown that trimming some or all of the large mystacial vibrissa (whiskers) on one side of the face after birth has a detrimental effect on the maturation of cortical function. The objective of the present study was to understand the differences that occur after unilateral whisker trimming compared with those that occur after bilateral deprivation. Physiological deficits produced by bilateral trimming (BD) of all whiskers for 2 mo after birth were compared with the deficits produced by unilateral trimming (UD) for the same period of time using extracellular recording under urethan anesthesia from single cells in rat barrel cortex. Fast spiking (FSUs) and regular spiking (RSUs) units were separated and their properties compared in four subregions identified by histological reconstructions of the electrode penetrations, namely: layer IV barrel and septum, and layers II/III above a barrel and above a septum. UD upregulated responses in layer IV septa and in layers II/III above septa and perturbed the timing of responses to whisker stimuli. After BD, nearly all responses were decreased, and poststimulus latencies were increased. Circuit changes are proposed as an argument for how inputs arising from the spared whiskers project to the undeprived cortex and, via commissural fibers, could upregulate septal responses after UD. Following BD, more global neural deficits create a signature difference in the outcome of UD and BD in rat barrel cortex.

  15. The Role of Cortical Plasticity in Recovery of Function Following Allogeneic Hand Transplantation

    Science.gov (United States)

    2014-10-01

    testing and collected data on several hand transplant and hand replant recipients as well as matched controls at multiple time points. Our...However, they continue to exhibit strong evidence for persistent, amputation -related, cortical reorganization. These persistent changes appear to diminish...opportunity to investigate whether the central reorganizational changes that follow amputation are reversed when afferent and efferent signals between

  16. Difference in cortical activation during use of volar and dorsal hand splints:a functional magnetic resonance imaging study

    Institute of Scientific and Technical Information of China (English)

    Sung Ho Jang; Woo Hyuk Jang

    2016-01-01

    There have been no studies reported on the difference in cortical activation during use of volar and dorsal hand splints. We attempted to investigate the difference in cortical activation in the somatosensory cortical area during use of volar and dorsal hand splints by functional magnetic resonance imaging (fMRI). We recruited eight healthy volunteers. fMRI was performed while subjects who were iftted with volar or dorsal hand splints performed grasp-release movements. Regions of interest were placed on the primary motor cortex (M1), primary somatosensory cortex (S1), posterior parietal cortex (PPC), and secondary somato-sensory cortex (S2). Results of group analysis of fMRI data showed that the total numbers of activated voxels in all ROIs were significantly higher during use of volar hand splint (3,376) compared with that (1,416) during use of dorsal hand splint. In each ROI, use of volar hand splint induced greater activation in all ROIs (M1:1,748, S1:1,455, PPC:23, and S2:150) compared with use of dorsal hand splint (M1:783, S1:625, PPC:0, and S2:8). The peak activated value was also higher during use of volar hand splint (t-value:17.29) compared with that during use of dorsal hand splint (t-value:13.11). Taken together, use of volar hand splint induced greater cortical activation relevant to somatosensory function than use of dorsal hand splint. This result would be important for the physiatrist and therapist to apply appropriate somatosensory input in patients with brain injury.

  17. The natural hallucinogen 5-MeO-DMT, component of Ayahuasca, disrupts cortical function in rats: reversal by antipsychotic drugs.

    Science.gov (United States)

    Riga, Maurizio S; Soria, Guadalupe; Tudela, Raúl; Artigas, Francesc; Celada, Pau

    2014-08-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a natural hallucinogen component of Ayahuasca, an Amazonian beverage traditionally used for ritual, religious and healing purposes that is being increasingly used for recreational purposes in US and Europe. 5MeO-DMT is of potential interest for schizophrenia research owing to its hallucinogenic properties. Two other psychotomimetic agents, phencyclidine and 2,5-dimethoxy-4-iodo-phenylisopropylamine (DOI), markedly disrupt neuronal activity and reduce the power of low frequency cortical oscillations (<4 Hz, LFCO) in rodent medial prefrontal cortex (mPFC). Here we examined the effect of 5-MeO-DMT on cortical function and its potential reversal by antipsychotic drugs. Moreover, regional brain activity was assessed by blood-oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI). 5-MeO-DMT disrupted mPFC activity, increasing and decreasing the discharge of 51 and 35% of the recorded pyramidal neurons, and reducing (-31%) the power of LFCO. The latter effect depended on 5-HT1A and 5-HT2A receptor activation and was reversed by haloperidol, clozapine, risperidone, and the mGlu2/3 agonist LY379268. Likewise, 5-MeO-DMT decreased BOLD responses in visual cortex (V1) and mPFC. The disruption of cortical activity induced by 5-MeO-DMT resembles that produced by phencyclidine and DOI. This, together with the reversal by antipsychotic drugs, suggests that the observed cortical alterations are related to the psychotomimetic action of 5-MeO-DMT. Overall, the present model may help to understand the neurobiological basis of hallucinations and to identify new targets in antipsychotic drug development.

  18. Genetic variation in AKT1 is linked to dopamine-associated prefrontal cortical structure and function in humans

    Science.gov (United States)

    Tan, Hao-Yang; Nicodemus, Kristin K.; Chen, Qiang; Li, Zhen; Brooke, Jennifer K.; Honea, Robyn; Kolachana, Bhaskar S.; Straub, Richard E.; Meyer-Lindenberg, Andreas; Sei, Yoshitasu; Mattay, Venkata S.; Callicott, Joseph H.; Weinberger, Daniel R.

    2008-01-01

    AKT1-dependent molecular pathways control diverse aspects of cellular development and adaptation, including interactions with neuronal dopaminergic signaling. If AKT1 has an impact on dopaminergic signaling, then genetic variation in AKT1 would be associated with brain phenotypes related to cortical dopaminergic function. Here, we provide evidence that a coding variation in AKT1 that affects protein expression in human B lymphoblasts influenced several brain measures related to dopaminergic function. Cognitive performance linked to frontostriatal circuitry, prefrontal physiology during executive function, and frontostriatal gray-matter volume on MRI were altered in subjects with the AKT1 variation. Moreover, on neuroimaging measures with a main effect of the AKT1 genotype, there was significant epistasis with a functional polymorphism (Val158Met) in catechol-O-methyltransferase [COMT], a gene that indexes cortical synaptic dopamine. This genetic interaction was consistent with the putative role of AKT1 in dopaminergic signaling. Supportive of an earlier tentative association of AKT1 with schizophrenia, we also found that this AKT1 variant was associated with risk for schizophrenia. These data implicate AKT1 in modulating human prefrontal-striatal structure and function and suggest that the mechanism of this effect may be coupled to dopaminergic signaling and relevant to the expression of psychosis. PMID:18497887

  19. Neuropeptide Y protects cerebral cortical neurons by regulating microglial immune function

    Institute of Scientific and Technical Information of China (English)

    Qijun Li; Changzheng Dong; Wenling Li; Wei Bu; Jiang Wu; Wenqing Zhao

    2014-01-01

    Neuropeptide Y has been shown to inhibit the immunological activity of reactive microglia in the rat cerebral cortex, to reduce N-methyl-D-aspartate current (INMDA) in cortical neurons, and protect neurons. In this study, after primary cultured microglia from the cerebral cortex of rats were treated with lipopolysaccharide, interleukin-1β and tumor necrosis factor-α levels in the cell culture medium increased, and mRNA expression of these cytokines also increased. After primary cultured cortical neurons were incubated with the lipopolysaccharide-treated microg-lial conditioned medium, peak INMDA in neurons increased. These effects of lipopolysaccharide were suppressed by neuropeptide Y. After addition of the neuropeptide Y Y1 receptor antago-nist BIBP3226, the effects of neuropeptide Y completely disappeared. These results suggest that neuropeptide Y prevents excessive production of interleukin-1β and tumor necrosis factor-α by inhibiting microglial reactivity. This reduces INMDA in rat cortical neurons, preventing excitotoxic-ity, thereby protecting neurons.

  20. Effects of deuterium oxide and galvanic vestibular stimulation on visual cortical cell function.

    Science.gov (United States)

    Reinis, S; Landolt, J P; Weiss, D S; Money, K E

    1984-03-01

    /he spontaneous and evoked unit activities of complex visual cortical cells were recorded from Brodmann's area 18 in immobilized, unanesthetized cats before, during, and after stimulation of the vestibular system. The vestibular system was stimulated by intravenous injection of deuterium oxide (D2O)--a noted nystagmogenic agent (14)--or by direct galvanic stimulation of the labyrinth. Measures of the receptive-field areas, poststimulus time histograms, directional preferences, and the optimal speed of the light bar stimulating the cell were obtained before and after the application of D2O. Directional preferences were determined in a novel manner, using a method derived from a hierarchical clustering technique (19). Data were collected and analyzed from a) visual cortical cells in cats with intact labyrinths, b) visual cortical cells in cats following bilateral labrinthectomies, and c) nonvisual cortical cells in cats with intact labyrinths. In cats with intact labyrinths, D2O changed the optimal length of the light bar that was able to stimulate the cortical cell as well as the path on which it evoked the response of the cell. Both values, which constitute the receptive field of the cell, changed approximately proportionately. This effect usually lasts for less than 4.5 h. The other cellular characteristics were also altered by the D2O. Galvanic stimulation of the labyrinth resembles, in its effects, the injection of D2O. In labyrinth-intact cats, the time course of area 18 spontaneous activity dramatically increased 30 min or more after D2O was administered. It peaked 2-3 h later and still had not returned to preinjection levels even 7 h after the D2O administration. In bilaterally labyrinthectomized cats, the spontaneous activity of the visual cells (and the other cellular characteristics studied) did not change following D2O administration. In nonvisual cells from labyrinth-intact cats, the spontaneous activity demonstrated a slight but significant decrease

  1. The functional roles of alpha-band phase synchronization in local and large-scale cortical networks

    Directory of Open Access Journals (Sweden)

    Satu ePalva

    2011-09-01

    Full Text Available Alpha-frequency band (8-14 Hz oscillations are among the most salient phenomena in human electroencephalography (EEG recordings and yet their functional roles have remained unclear. Much of research on alpha oscillations in human EEG has focused on peri-stimulus amplitude dynamics, which phenomenologically support an idea of alpha oscillations being negatively correlated with local cortical excitability and having a role in the suppression of task-irrelevant neuronal processing. This kind of an inhibitory role for alpha oscillations is also supported by several functional magnetic resonance imaging (fMRI and trans-cranial magnetic stimulation (TMS studies. Nevertheless, investigations of local and inter-areal alpha phase dynamics suggest that the alpha-frequency band rhythmicity may play a role also in active task-relevant neuronal processing. These data imply that inter-areal alpha phase synchronization could support attentional, executive, and contextual functions. In this review, we outline evidence supporting different views on the roles of alpha oscillations in cortical networks and unresolved issues that should be addressed to resolve or reconcile these apparently contrasting hypotheses.

  2. Drosophila sosie functions with βH-Spectrin and actin organizers in cell migration, epithelial morphogenesis and cortical stability

    Directory of Open Access Journals (Sweden)

    Olivier Urwyler

    2012-08-01

    Morphogenesis in multicellular organisms requires the careful coordination of cytoskeletal elements, dynamic regulation of cell adhesion and extensive cell migration. sosie (sie is a novel gene required in various morphogenesis processes in Drosophila oogenesis. Lack of sie interferes with normal egg chamber packaging, maintenance of epithelial integrity and control of follicle cell migration, indicating that sie is involved in controlling epithelial integrity and cell migration. For these functions sie is required both in the germ line and in the soma. Consistent with this, Sosie localizes to plasma membranes in the germ line and in the somatic follicle cells and is predicted to present an EGF-like domain on the extracellular side. Two positively charged residues, C-terminal to the predicted transmembrane domain (on the cytoplasmic side, are required for normal plasma membrane localization of Sosie. Because sie also contributes to normal cortical localization of βH-Spectrin, it appears that cortical βH-Spectrin mediates some of the functions of sosie. sie also interacts with the genes coding for the actin organizers Filamin and Profilin and, in the absence of sie function, F-actin is less well organized and nurse cells frequently fuse.

  3. Functional deficits in glutamate transporters and astrocyte biophysical properties in a rodent model of focal cortical dysplasia

    Directory of Open Access Journals (Sweden)

    Susan L Campbell

    2014-12-01

    Full Text Available Cortical dysplasia is associated with intractable epilepsy and developmental delay in young children. Recent work with the rat freeze-induced focal cortical dysplasia (FCD model has demonstrated that hyperexcitability in the dysplastic cortex is due in part to higher levels of extracellular glutamate. Astrocyte glutamate transporters play a pivotal role in cortical maintaining extracellular glutamate concentrations. Here we examined the function of astrocytic glutamate transporters in a FCD model in rats. Neocortical freeze lesions were made in postnatal day (PN 1 rat pups and whole cell electrophysiological recordings and biochemical studies were performed at PN 21-28. Synaptically evoked glutamate transporter currents in astrocytes showed a near 10-fold reduction in amplitude compared to sham operated controls. Astrocyte glutamate transporter currents from lesioned animals were also significantly reduced when challenged exogenously applied glutamate. Reduced astrocytic glutamate transport clearance contributed to increased NMDA receptor-mediated current decay kinetics in lesioned animals. The electrophysiological profile of astrocytes in the lesion group was also markedly changed compared to sham operated animals. Control astrocytes demonstrate large-amplitude linear leak currents in response to voltage-steps whereas astrocytes in lesioned animals demonstrated significantly smaller voltage-activated inward and outward currents. Significant decreases in astrocyte resting membrane potential and increases in input resistance were observed in lesioned animals. However, Western blotting, immunohistochemistry and quantitative PCR demonstrated no differences in the expression of the astrocytic glutamate transporter GLT-1 in lesioned animals relative to controls. These data suggest that, in the absence of changes in protein or mRNA expression levels, functional changes in astrocytic glutamate transporters contribute to neuronal hyperexcitability in

  4. Optimized gamma synchronization enhances functional binding of fronto-parietal cortices in mathematically gifted adolescents during deductive reasoning

    Directory of Open Access Journals (Sweden)

    Li eZhang

    2014-06-01

    Full Text Available As enhanced fronto-parietal network has been suggested to support reasoning ability of math-gifted adolescents, the main goal of this EEG source analysis is to investigate the temporal binding of the gamma-band (30-60Hz synchronization between frontal and parietal cortices in adolescents with exceptional mathematical ability, including the functional connectivity of gamma neurocognitive network, the temporal dynamics of fronto-parietal network (phase-locking durations and network lability in time domain, and the self-organized criticality of synchronizing oscillation. Compared with the average-ability subjects, the math-gifted adolescents show a highly integrated fronto-parietal network due to distant gamma phase-locking oscillations, which is indicated by lower modularity of the global network topology, more connector bridges between the frontal and parietal cortices and less connector hubs in the sensorimotor cortex. The time-domain analysis finds that, while maintaining more stable phase dynamics of the fronto-parietal coupling, the math-gifted adolescents are characterized by more extensive fronto-parietal connection reconfiguration. The results from sample fitting in the power-law model further find that the phase-locking durations in the math-gifted brain abides by a wider interval of the power-law distribution. This phase-lock distribution mechanism could represent a relatively optimized pattern for the functional binding of frontal-parietal network, which underlies stable fronto-parietal connectivity and increases flexibility of timely network reconfiguration.

  5. Discontinuous Galerkin finite element method for solving population density functions of cortical pyramidal and thalamic neuronal populations.

    Science.gov (United States)

    Huang, Chih-Hsu; Lin, Chou-Ching K; Ju, Ming-Shaung

    2015-02-01

    Compared with the Monte Carlo method, the population density method is efficient for modeling collective dynamics of neuronal populations in human brain. In this method, a population density function describes the probabilistic distribution of states of all neurons in the population and it is governed by a hyperbolic partial differential equation. In the past, the problem was mainly solved by using the finite difference method. In a previous study, a continuous Galerkin finite element method was found better than the finite difference method for solving the hyperbolic partial differential equation; however, the population density function often has discontinuity and both methods suffer from a numerical stability problem. The goal of this study is to improve the numerical stability of the solution using discontinuous Galerkin finite element method. To test the performance of the new approach, interaction of a population of cortical pyramidal neurons and a population of thalamic neurons was simulated. The numerical results showed good agreement between results of discontinuous Galerkin finite element and Monte Carlo methods. The convergence and accuracy of the solutions are excellent. The numerical stability problem could be resolved using the discontinuous Galerkin finite element method which has total-variation-diminishing property. The efficient approach will be employed to simulate the electroencephalogram or dynamics of thalamocortical network which involves three populations, namely, thalamic reticular neurons, thalamocortical neurons and cortical pyramidal neurons.

  6. The infralimbic and prelimbic medial prefrontal cortices have differential functions in the expression of anxiety-like behaviors in mice.

    Science.gov (United States)

    Suzuki, Satoshi; Saitoh, Akiyoshi; Ohashi, Masanori; Yamada, Misa; Oka, Jun-Ichiro; Yamada, Mitsuhiko

    2016-05-01

    The medial prefrontal cortex is a heterogeneous cortical structure composed of several nuclei, including the prelimbic (PL) and infralimbic (IL) cortices. We previously demonstrated in mice that PL activation with the sodium channel activator veratrine induces anxiety-like behaviors. However, the role of IL in the regulation of anxiety-like behaviors remained unclear. Therefore, in the present study, we investigated the role of the IL in the regulation of anxiety-like behaviors using pharmacological activation model with veratrine, and compared it with the role of the PL. Extracellular glutamate levels were measured by in vivo microdialysis-HPLC with an electrochemical detector, and behaviors were assessed using the open field test. In this study, extracellular glutamate levels rose significantly after perfusion of veratrine in the IL and PL. Interestingly, the PL activation produced anxiety-like behaviors, whereas the activation of the IL produced no anxiety-like behavior in mice. Although the IL is adjacent to the PL, these two regions of the brain have differential functions in the expression of anxiety-like behaviors.

  7. Experimental strategies for investigating psychostimulant drug actions and prefrontal cortical function in ADHD and related attention disorders.

    Science.gov (United States)

    Agster, Kara L; Clark, Brian D; Gao, Wen-Jun; Shumsky, Jed S; Wang, Huaixing X; Berridge, Craig W; Waterhouse, Barry D

    2011-10-01

    Amphetamine-like psychostimulant drugs have been used for decades to treat a variety of clinical conditions. Methylphenidate (MPH)-Ritalin(R) , a compound that blocks reuptake of synaptically released norepinephrine (NE) and dopamine (DA) in the brain, has been used for more than 30 years in low dose, long-term regimens to treat attention deficit-hyperactive disorder (ADHD) in juveniles, adolescents, and adults. Now, these agents are also becoming increasingly popular among healthy individuals from all walks of life (e.g., military, students) and age groups (teenagers thru senior citizens) to promote wakefulness and improve attention. Although there is agreement regarding the primary biochemical action of MPH, the physiological basis for its efficacy in normal individuals and ADHD patients is lacking. Study of the behavioral and physiological actions of clinically and behaviorally relevant doses of MPH in normal animals provides an opportunity to explore the role of catecholamine transmitters in prefrontal cortical function and attentional processes as they relate to normal operation of brain circuits and ADHD pathology. The goal of ongoing studies has been to: (1) assess the effects of low dose MPH on rodent performance in a well characterized sensory-guided sustained attention task, (2) examine the effects of the same low-dose chronic MPH administration on task-related discharge of prefrontal cortical (PFC) neurons, and (3) investigate the effects of NE and DA on membrane response properties and synaptic transmission in identified subsets of PFC neurons. Combinations of these approaches can be used in adolescent, adult, and aged animals to identify the parameters of cell and neural circuit function that are regulated by MPH and to establish an overarching explanation of how MPH impacts PFC operations from cellular through behavioral functional domains.

  8. Visual Evoked Potentials as a Readout of Cortical Function in Infants With Tuberous Sclerosis Complex.

    Science.gov (United States)

    Varcin, Kandice J; Nelson, Charles A; Ko, Jordan; Sahin, Mustafa; Wu, Joyce Y; Jeste, Shafali Spurling

    2016-02-01

    Tuberous sclerosis complex is an autosomal dominant genetic disorder that confers a high risk for neurodevelopmental disorders, such as autism spectrum disorder and intellectual disability. Studies have demonstrated specific delays in visual reception skills that may predict the development of autism spectrum disorder and intellectual disability. Based on evidence for alterations in the retinogeniculate pathway in animal models of tuberous sclerosis complex, we asked whether children with tuberous sclerosis complex demonstrate alterations in early visual processing that may undermine the development of higher-level visual behaviors. Pattern-reversal visual evoked potentials were recorded in infants with tuberous sclerosis complex (n = 16) and typically developing infants (n = 18) at 12 months of age. Infants with tuberous sclerosis complex demonstrated remarkably intact visual evoked potentials even within the context of intellectual disability and epilepsy. Infants with tuberous sclerosis complex show intact visual cortical processing, suggesting that delays in visually mediated behaviors in tuberous sclerosis complex may not be rooted in early visual processing deficits.

  9. Functional roles of 10 Hz alpha-band power modulating engagement and disengagement of cortical networks in a complex visual motion task.

    Directory of Open Access Journals (Sweden)

    Kunjan D Rana

    Full Text Available Alpha band power, particularly at the 10 Hz frequency, is significantly involved in sensory inhibition, attention modulation, and working memory. However, the interactions between cortical areas and their relationship to the different functional roles of the alpha band oscillations are still poorly understood. Here we examined alpha band power and the cortico-cortical interregional phase synchrony in a psychophysical task involving the detection of an object moving in depth by an observer in forward self-motion. Wavelet filtering at the 10 Hz frequency revealed differences in the profile of cortical activation in the visual processing regions (occipital and parietal lobes and in the frontoparietal regions. The alpha rhythm driving the visual processing areas was found to be asynchronous with the frontoparietal regions. These findings suggest a decoupling of the 10 Hz frequency into separate functional roles: sensory inhibition in the visual processing regions and spatial attention in the frontoparietal regions.

  10. Functional roles of 10 Hz alpha-band power modulating engagement and disengagement of cortical networks in a complex visual motion task.

    Science.gov (United States)

    Rana, Kunjan D; Vaina, Lucia M

    2014-01-01

    Alpha band power, particularly at the 10 Hz frequency, is significantly involved in sensory inhibition, attention modulation, and working memory. However, the interactions between cortical areas and their relationship to the different functional roles of the alpha band oscillations are still poorly understood. Here we examined alpha band power and the cortico-cortical interregional phase synchrony in a psychophysical task involving the detection of an object moving in depth by an observer in forward self-motion. Wavelet filtering at the 10 Hz frequency revealed differences in the profile of cortical activation in the visual processing regions (occipital and parietal lobes) and in the frontoparietal regions. The alpha rhythm driving the visual processing areas was found to be asynchronous with the frontoparietal regions. These findings suggest a decoupling of the 10 Hz frequency into separate functional roles: sensory inhibition in the visual processing regions and spatial attention in the frontoparietal regions.

  11. Evolution of cortical neurogenesis.

    Science.gov (United States)

    Abdel-Mannan, Omar; Cheung, Amanda F P; Molnár, Zoltán

    2008-03-18

    The neurons of the mammalian neocortex are organised into six layers. By contrast, the reptilian and avian dorsal cortices only have three layers which are thought to be equivalent to layers I, V and VI of mammals. Increased repertoire of mammalian higher cognitive functions is likely a result of an expanded cortical surface area. The majority of cortical cell proliferation in mammals occurs in the ventricular zone (VZ) and subventricular zone (SVZ), with a small number of scattered divisions outside the germinal zone. Comparative developmental studies suggest that the appearance of SVZ coincides with the laminar expansion of the cortex to six layers, as well as the tangential expansion of the cortical sheet seen within mammals. In spite of great variation and further compartmentalisation in the mitotic compartments, the number of neurons in an arbitrary cortical column appears to be remarkably constant within mammals. The current challenge is to understand how the emergence and elaboration of the SVZ has contributed to increased cortical cell diversity, tangential expansion and gyrus formation of the mammalian neocortex. This review discusses neurogenic processes that are believed to underlie these major changes in cortical dimensions in vertebrates.

  12. Cortical morphology as a shared neurobiological substrate of attention-deficit/hyperactivity symptoms and executive functioning: a population-based pediatric neuroimaging study

    Science.gov (United States)

    Mous, Sabine E.; White, Tonya; Muetzel, Ryan L.; El Marroun, Hanan; Rijlaarsdam, Jolien; Polderman, Tinca J.C.; Jaddoe, Vincent W.; Verhulst, Frank C.; Posthuma, Danielle; Tiemeier, Henning

    2017-01-01

    Background Attention-deficit/hyperactivity symptoms have repeatedly been associated with poor cognitive functioning. Genetic studies have demonstrated a shared etiology of attention-deficit/hyperactivity disorder (ADHD) and cognitive ability, suggesting a common underlying neurobiology of ADHD and cognition. Further, neuroimaging studies suggest that altered cortical development is related to ADHD. In a large population-based sample we investigated whether cortical morphology, as a potential neurobiological substrate, underlies the association between attention-deficit/hyperactivity symptoms and cognitive problems. Methods The sample consisted of school-aged children with data on attention-deficit/hyperactivity symptoms, cognitive functioning and structural imaging. First, we investigated the association between attention-deficit/hyperactivity symptoms and different domains of cognition. Next, we identified cortical correlates of attention-deficit/hyperactivity symptoms and related cognitive domains. Finally, we studied the role of cortical thickness and gyrification in the behaviour–cognition associations. Results We included 776 children in our analyses. We found that attention-deficit/hyperactivity symptoms were associated specifically with problems in attention and executive functioning (EF; b = −0.041, 95% confidence interval [CI] −0.07 to −0.01, p = 0.004). Cortical thickness and gyrification were associated with both attention-deficit/hyperactivity symptoms and EF in brain regions that have been previously implicated in ADHD. This partly explained the association between attention-deficit/hyperactivity symptoms and EF (bindirect = −0.008, bias-corrected 95% CI −0.018 to −0.001). Limitations The nature of our study did not allow us to draw inferences regarding temporal associations; longitudinal studies are needed for clarification. Conclusion In a large, population-based sample of children, we identified a shared cortical morphology underlying

  13. No difference in frontal cortical activity during an executive functioning task after acute doses of aripiprazole and haloperidol

    Directory of Open Access Journals (Sweden)

    Ingeborg eBolstad

    2015-05-01

    Full Text Available Background: Aripiprazole is an atypical antipsychotic drug that is characterized by partial dopamine D2 receptor agonism. Its pharmacodynamic profile is proposed to be beneficial in the treatment of cognitive impairment, which is prevalent in psychotic disorders. This study compared brain activation characteristics produced by aripiprazole with that of haloperidol, a typical D2 receptor antagonist, during a task targeting executive functioning.Methods: Healthy participants received an acute oral dose of haloperidol, aripiprazole or placebo before performing an executive functioning task while blood-oxygen-level-dependent (BOLD functional magnetic resonance imaging (fMRI was carried out. Results: There was a tendency towards reduced performance in the aripiprazole group compared to the two other groups. The image analysis yielded a strong task-related BOLD-fMRI response within each group. An uncorrected between-group analysis showed that aripiprazole challenge resulted in stronger activation in the frontal and temporal gyri and the putamen compared with haloperidol challenge, but after correcting for multiple testing there was no significant group difference. Conclusion: No significant group differences between aripiprazole and haloperidol in frontal cortical activation were obtained when corrected for multiple comparisons.This study is registered in ClinicalTrials.gov (identifier: 2009-016222-14; https://clinicaltrials.gov/.

  14. Atypicalities in cortical structure, handedness, and functional lateralization for language in autism spectrum disorders.

    Science.gov (United States)

    Lindell, Annukka K; Hudry, Kristelle

    2013-09-01

    Language is typically a highly lateralized function, with atypically reduced or reversed lateralization linked to language impairments. Given the diagnostic and prognostic role of impaired language for autism spectrum disorders (ASDs), this paper reviews the growing body of literature that examines patterns of lateralization in individuals with ASDs. Including research from structural and functional imaging paradigms, and behavioral evidence from investigations of handedness, the review confirms that atypical lateralization is common in people with ASDs. The evidence indicates reduced structural asymmetry in fronto-temporal language regions, attenuated functional activation in response to language and pre-linguistic stimuli, and more ambiguous (mixed) hand preferences, in individuals with ASDs. Critically, the evidence emphasizes an intimate relationship between atypical lateralization and language impairment, with more atypical asymmetries linked to more substantive language impairment. Such evidence highlights opportunities for the identification of structural and functional biomarkers of ASDs, affording the potential for earlier diagnosis and intervention implementation.

  15. The effect of different intensities of treadmill exercise on cognitive function deficit following a severe controlled cortical impact in rats.

    Science.gov (United States)

    Shen, Xiafeng; Li, Aiping; Zhang, Yuling; Dong, Xiaomin; Shan, Tian; Wu, Yi; Jia, Jie; Hu, Yongshan

    2013-10-31

    Exercise has been proposed for the treatment of traumatic brain injury (TBI). However, the proper intensity of exercise in the early phase following a severe TBI is largely unknown. To compare two different treadmill exercise intensities on the cognitive function following a severe TBI in its early phase, rats experienced a controlled cortical impact (CCI) and were forced to treadmill exercise for 14 days. The results revealed that the rats in the low intensity exercise group had a shorter latency to locate a platform and a significantly better improvement in spatial memory in the Morris water maze (MWM) compared to the control group (p exercise group showed a longer latency and a mild improvement in spatial memory compared to the control group rats in the MWM; however, this difference was not statistically significant (p > 0.05). The brain-derived neurotrophic factor (BDNF) and p-CREB protein levels in the contralateral hippocampus were increased significantly in the low intensity exercise group. Our results suggest that 2 weeks of low intensity of treadmill exercise is beneficial for improving cognitive function and increasing hippocampal BDNF expression after a severe TBI in its early phase.

  16. The Effect of Different Intensities of Treadmill Exercise on Cognitive Function Deficit Following a Severe Controlled Cortical Impact in Rats

    Directory of Open Access Journals (Sweden)

    Xiafeng Shen

    2013-10-01

    Full Text Available Exercise has been proposed for the treatment of traumatic brain injury (TBI. However, the proper intensity of exercise in the early phase following a severe TBI is largely unknown. To compare two different treadmill exercise intensities on the cognitive function following a severe TBI in its early phase, rats experienced a controlled cortical impact (CCI and were forced to treadmill exercise for 14 days. The results revealed that the rats in the low intensity exercise group had a shorter latency to locate a platform and a significantly better improvement in spatial memory in the Morris water maze (MWM compared to the control group (p 0.05. The brain-derived neurotrophic factor (BDNF and p-CREB protein levels in the contralateral hippocampus were increased significantly in the low intensity exercise group. Our results suggest that 2 weeks of low intensity of treadmill exercise is beneficial for improving cognitive function and increasing hippocampal BDNF expression after a severe TBI in its early phase.

  17. Anatomical coupling among distributed cortical regions in youth varies as a function of individual differences in vocabulary abilities.

    Science.gov (United States)

    Lee, Nancy Raitano; Raznahan, Armin; Wallace, Gregory L; Alexander-Bloch, Aaron; Clasen, Liv S; Lerch, Jason P; Giedd, Jay N

    2014-05-01

    Patient lesion and functional magnetic resonance imaging (fMRI) studies have provided convincing evidence that a distributed brain network subserves word knowledge. However, little is known about the structural correlates of this network within the context of typical development and whether anatomical coupling in linguistically relevant regions of cortex varies as a function of vocabulary skill. Here we investigate the association between vocabulary and anatomical coupling in 235 typically developing youth (ages 6-19 years) using structural MRI. The study's primary aim was to evaluate whether higher vocabulary performance was associated with greater vertex-level cortical thickness covariation in distributed regions of cortex known to be associated with word knowledge. Results indicate that better vocabulary skills are associated with greater anatomical coupling in several linguistically relevant regions of cortex, including the left inferior parietal (temporal-parietal junction), inferior temporal, middle frontal, and superior frontal gyri and the right inferior frontal and precentral gyri. Furthermore, in high vocabulary scorers, stronger coupling is found among these regions. Thus, complementing patient and fMRI studies, this is the first investigation to highlight the relevance of anatomical covariance within the cortex to vocabulary skills in typically developing youth, further elucidating the distributed nature of neural systems subserving word knowledge.

  18. Glutamate concentration in the medial prefrontal cortex predicts resting-state cortical-subcortical functional connectivity in humans.

    Directory of Open Access Journals (Sweden)

    Niall W Duncan

    Full Text Available Communication between cortical and subcortical regions is integral to a wide range of psychological processes and has been implicated in a number of psychiatric conditions. Studies in animals have provided insight into the biochemical and connectivity processes underlying such communication. However, to date no experiments that link these factors in humans in vivo have been carried out. To investigate the role of glutamate in individual differences in communication between the cortex--specifically the medial prefrontal cortex (mPFC--and subcortical regions in humans, a combination of resting-state fMRI, DTI and MRS was performed. The subcortical target regions were the nucleus accumbens (NAc, dorsomedial thalamus (DMT, and periaqueductal grey (PAG. It was found that functional connectivity between the mPFC and each of the NAc and DMT was positively correlated with mPFC glutamate concentrations, whilst functional connectivity between the mPFC and PAG was negatively correlated with glutamate concentration. The correlations involving mPFC glutamate and FC between the mPFC and each of the DMT and PAG were mirrored by correlations with structural connectivity, providing evidence that the glutamatergic relationship may, in part, be due to direct connectivity. These results are in agreement with existing results from animal studies and may have relevance for MDD and schizophrenia.

  19. Algorithmic complexity as an index of cortical function in awake and pentobarbital-anesthetized rats.

    Science.gov (United States)

    Shaw, F Z; Chen, R F; Tsao, H W; Yen, C T

    1999-11-15

    This study introduces algorithmic complexity to measure characteristics of brain functions. The EEG of the rat was recorded with implanted electrodes. The normalized complexity value was relatively independent of data length, and it showed a simpler and easier calculation characteristic than other non-linear indexes. The complexity index revealed significant differences among awake, asleep, and anesthetized states. It may be useful in tracking short-term and long-term changes in brain functions, such as anesthetized depth, drug effects, or sleep-wakefulness.

  20. The Role of Cortical Plasticity in Recovery of Function Following Allogeneic Hand Transplantation

    Science.gov (United States)

    2015-10-01

    networks involved in visually-guided grasping of objects, and these patterns appear related to recovery of functional hand use. 4) Transplant and replant...School of Medicine in St. Louis as of July 1, 2015. In an effort to complete data collection for the current project prior to the move, we scheduled...transplant recipients. He exhibits very significant bilateral activation when moving either the affected or the unaffected hands. Neural Control of

  1. The functional significance of cortical reorganization and the parallel development of CI therapy

    Directory of Open Access Journals (Sweden)

    Edward eTaub

    2014-06-01

    Full Text Available For the 19th and the better part of the 20th centuries two correlative beliefs were strongly held by almost all neuroscientists and practitioners in the field of neurorehabilitation. The first was that after maturity the adult CNS was hardwired and fixed, and second that in the chronic phase after CNS injury no substantial recovery of function could take place no matter what intervention was employed. However, in the last part of the 20th century evidence began to accumulate that neither belief was correct. First, in the 1960s and 1970s, in research with primates given a surgical abolition of somatic sensation from a single forelimb, which rendered the extremity useless, it was found that behavioral techniques could convert the limb into an extremity that could be used extensively. Beginning in the late 1980s, the techniques employed with deafferented monkeys were translated into a rehabilitation treatment, termed Constraint Induced Movement therapy or CI therapy, for substantially improving the motor deficit of the upper and lower extremities in the chronic phase after stroke. CI therapy has been applied successfully to other types of damage to the CNS such as traumatic brain injury, cerebral palsy, multiple sclerosis, and spinal cord injury, and it has also been used to improve function in focal hand dystonia and for aphasia after stroke. As this work was proceeding, it was being shown during the 1980s and 1990s that sustained modulation of afferent input could alter the structure of the CNS and that this topographic reorganization could have relevance to the function of the individual. The alteration in these once fundamental beliefs has given rise to important recent developments in neuroscience and neurorehabilitation and holds promise for further increasing our understanding of CNS function and extending the boundaries of what is possible in neurorehabilitation.

  2. Cortical activation during finger tapping in thyroid dysfunction: A functional magnetic resonance imaging study

    Indian Academy of Sciences (India)

    S Khushu; S Senthil Kumaran; T Sekhri; R P Tripathi; P C Jain; V Jain

    2006-12-01

    Thyroid dysfunction is associated with attention deficit and impairment of the motor system (muscle weakness and fatigue). This paper investigates possible motor function deficit in thyroid patients, compared to the controls. Functional MRI studies (fMRI) were carried out in five hypo and five hyperthyroid patients and six healthy volunteers. Whole brain imaging was performed using echo planar imaging (EPI) technique, on a 1.5T whole body MR system (Siemens Magnetom Vision). The task paradigm consisted of 8 cycles of active and reference phases of 6 measurements each, with right index finger tapping at a rate of 120 taps/min. Post-processing was performed using statistical parametric mapping on a voxel-by-voxel basis using SPM99. Clusters of activation were found in the contralateral hemisphere in primary somatomotor area (M1), supplementary motor area (SMA), somatosensory, auditory receptive and integration areas, inferior temporal lobe, thalamus and cerebellum. Increased clusters of activation were observed in M1 in thyroid subjects as compared to controls and with bilateral activation of the primary motor cortex in two hyperthyroid patients. The results are explained in terms of increased functional demands in thyroid patients compared to volunteers for the execution of the same task.

  3. Altered cortical activation during action observation in amyotrophic lateral sclerosis patients: a parametric functional MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haiqing; Li, Yuxin; Yin, Bo; Tang, Weijun; Yu, Xiangrong; Geng, Daoying [Huashan Hospital, Department of Radiology, Fudan University, Shanghai (China); Chen, Yan [Fudan University, Department of Neurology, Huashan Hospital, Shanghai (China); Huang, Weiyuan [People' s Hospital of Hainan Province, Department of Radiology, Haikou, Hainan Province (China); Zhang, Biyun [Nanjing University of Traditional Chinese Medicine, Department of radiotherapy, Affiliated Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing (China)

    2015-09-15

    To investigate functional cerebral abnormalities in patients with amyotrophic lateral sclerosis (ALS) using functional magnetic resonance imaging (fMRI) during action observation. Thirty patients with ALS and 30 matched healthy controls underwent fMRI with an experimental paradigm while observing a video of repetitive flexion-extension of the fingers at three frequency levels or three complexity levels, alternated with periods of a static hand. A parametric analysis was applied to determine the effects of each of the two factors. Action observation activated similar neural networks as the research on execution of action in the ALS patients and healthy subjects in several brain regions related to the mirror-neuron system (MNS). In the ALS patients, in particular, the dorsal lateral premotor cortex (dPMC), inferior parietal gyrus (IPG), and SMA, were more activated compared with the activation in the controls. Increased activation within the primary motor cortex (M1), dPMC, inferior frontal gyrus (IFG), and superior parietal gyrus (SPG) mainly correlated with hand movement frequency/complexity in the videos in the patients compared with controls. The findings indicated an ongoing compensatory process occurring within the higher order motor-processing system of ALS patients, likely to overcome the loss of function. (orig.)

  4. A chronometric functional sub-network in the thalamo-cortical system regulates the flow of neural information necessary for conscious cognitive processes.

    Science.gov (United States)

    León-Domínguez, Umberto; Vela-Bueno, Antonio; Froufé-Torres, Manuel; León-Carrión, Jose

    2013-06-01

    The thalamo-cortical system has been defined as a neural network associated with consciousness. While there seems to be wide agreement that the thalamo-cortical system directly intervenes in vigilance and arousal, a divergence of opinion persists regarding its intervention in the control of other cognitive processes necessary for consciousness. In the present manuscript, we provide a review of recent scientific findings on the thalamo-cortical system and its role in the control and regulation of the flow of neural information necessary for conscious cognitive processes. We suggest that the axis formed by the medial prefrontal cortex and different thalamic nuclei (reticular nucleus, intralaminar nucleus, and midline nucleus), represents a core component for consciousness. This axis regulates different cerebral structures which allow basic cognitive processes like attention, arousal and memory to emerge. In order to produce a synchronized coherent response, neural communication between cerebral structures must have exact timing (chronometry). Thus, a chronometric functional sub-network within the thalamo-cortical system keeps us in an optimal and continuous functional state, allowing high-order cognitive processes, essential to awareness and qualia, to take place.

  5. [Study of cortico-cortical functional connectivity with vector autoregressive model of multichannel EEG].

    Science.gov (United States)

    Kurganskiĭ, A V

    2010-01-01

    This review focuses on some practical issues of using vector autoregressive model (VAR) for multichannel EEG analysis. Those issues include: EEG preprocessing, checking if the necessary conditions of VAR model applicability are met, optimal order selection, and assessment of the validity of fitted VAR model. Both non-directed (ordinary coherence and imaginary part of the complex-valued coherency) and directed (directed coherence, directed transfer function and partial directed coherence) measures of the strength of inter-channel coupling are discussed. These measures are analyzed with respect to their properties (scale invariance) and known problems in using them (spurious interactions, volume conduction).

  6. The effect of disruption of prefrontal cortical function with transcranial magnetic stimulation on visual working memory

    Directory of Open Access Journals (Sweden)

    Elizabeth S Lorenc

    2015-12-01

    Full Text Available It is proposed that feedback signals from the prefrontal cortex (PFC to extrastriate cortex are essential for goal-directed processing, maintenance, and selection of information in visual working memory (VWM. In a previous study, we found that disruption of PFC function with transcranial magnetic stimulation (TMS in healthy individuals impaired behavioral performance on a face/scene matching task and decreased category-specific tuning in extrastriate cortex as measured with functional magnetic resonance imaging (fMRI. In this study, we investigated the effect of disruption of left inferior frontal gyrus (IFG function on the fidelity of neural representations of two distinct information codes: (1 the stimulus category and (2 the goal-relevance of viewed stimuli. During fMRI scanning, subjects were presented face and scene images in pseudo-random order and instructed to remember either faces or scenes. Within both anatomical and functional regions of interest, a multi-voxel pattern classifier was used to quantitatively assess the fidelity of activity patterns representing stimulus category: whether a face or a scene was presented on each trial, and goal relevance, whether the presented image was task relevant (i.e. a face is relevant in a Remember Faces block, but irrelevant in a Remember Scenes block. We found a reduction in the fidelity of the stimulus category code in visual cortex after left IFG disruption, providing causal evidence that lateral PFC modulates object category codes in visual cortex during VWM. In addition, we found that IFG disruption caused a reduction in the fidelity of the goal relevance code in a distributed set of brain regions. These results suggest that the IFG is involved in determining the task-relevance of visual input and communicating that information to a network of regions involved in further processing during VWM. Finally, we found that participants who exhibited greater fidelity of the goal relevance code in the

  7. Cobtorin target analysis reveals that pectin functions in the deposition of cellulose microfibrils in parallel with cortical microtubules.

    Science.gov (United States)

    Yoneda, Arata; Ito, Takuya; Higaki, Takumi; Kutsuna, Natsumaro; Saito, Tamio; Ishimizu, Takeshi; Osada, Hiroyuki; Hasezawa, Seiichiro; Matsui, Minami; Demura, Taku

    2010-11-01

    Cellulose and pectin are major components of primary cell walls in plants, and it is believed that their mechanical properties are important for cell morphogenesis. It has been hypothesized that cortical microtubules guide the movement of cellulose microfibril synthase in a direction parallel with the microtubules, but the mechanism by which this alignment occurs remains unclear. We have previously identified cobtorin as an inhibitor that perturbs the parallel relationship between cortical microtubules and nascent cellulose microfibrils. In this study, we searched for the protein target of cobtorin, and we found that overexpression of pectin methylesterase and polygalacturonase suppressed the cobtorin-induced cell-swelling phenotype. Furthermore, treatment with polygalacturonase restored the deposition of cellulose microfibrils in the direction parallel with cortical microtubules, and cobtorin perturbed the distribution of methylated pectin. These results suggest that control over the properties of pectin is important for the deposition of cellulose microfibrils and/or the maintenance of their orientation parallel with the cortical microtubules.

  8. Hemispheric Asymmetry of Visual Cortical Response by Means of Functional Transcranial Doppler

    Directory of Open Access Journals (Sweden)

    Marina Roje-Bedekovic

    2012-01-01

    Full Text Available We assessed the visual evoked response and investigated side-to-side differences in mean blood flow velocities (MBFVs by means of functional transcranial Doppler (fTCD in 49 right-handed patients with severe internal carotid artery (ICA stenosis and 30 healthy volunteers, simultaneously in both posterior cerebral arteries (PCAs using 2 MHz probes, successively in the dark and during the white light stimulation. Statistically significant correlation (P=0.001 was shown in healthy and in patients (P0.05. The correlation between ipsilateral left PCA was significantly higher than the one with contralateral right PCA (P<0.05. There is a clear trend towards the lateralisation of the visual evoked response in the right PCA.

  9. Spongionella Secondary Metabolites Protect Mitochondrial Function in Cortical Neurons against Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Marta Leirós

    2014-01-01

    Full Text Available The marine habitat provides a large number of structurally-diverse bioactive compounds for drug development. Marine sponges have been studied over many years and are found to be a rich source of these bioactive chemicals. This study is focused on the evaluation of the activity of six diterpene derivatives isolated from Spongionella sp. on mitochondrial function using an oxidative in vitro stress model. The test compounds include the Gracilins (A, H, K, J and L and tetrahydroaplysulphurin-1. Compounds were co-incubated with hydrogen peroxide for 12 hours to determine their protective capacities and their effect on markers of apoptosis and Nrf2/ARE pathways was evaluated. Results conclude that Gracilins preserve neurons against oxidative damage, and that in particular, tetrahydroaplysulphurin-1 shows a complete neuroprotective activity. Oxidative stress is linked to mitochondrial dysfunction and consequently to neurodegenerative disorders like Parkinson and Alzheimer diseases, Friedreich ataxia or Amyotrophic lateral sclerosis. This neuroprotection against oxidation conditions suggest that these metabolites could be interesting lead candidates in drug development for neurodegenerative diseases.

  10. Abnormal cortical functional connections in Alzheimer's disease: analysis of inter- and intra-hemispheric EEG coherence

    Institute of Scientific and Technical Information of China (English)

    JIANG Zheng-yan

    2005-01-01

    To investigate inter- and intra-hemispheric electroencephalography (EEG) coherence at rest and during photic stimulation of patients with Alzheimer's disease (AD). Thirty-five patients (12 males, 23 females; 52~64 y) and 33 sex- and age-matched controls (12 males, 21 females; 56~65 y) were recruited in the present study. EEG signals from C3-C4, P3-P4, T5-T6and O1-O2 electrode pairs resulted from the inter-hemispheric action, and EEG signals from C3-P3, C4-P4, P3-O1, P4-O2, C3-O1,C4-O2, T5-O 1 and T6-O2 electrode pairs resulted from the intra-hemispheric action. The influence of inter- and intra-hemispheric coherence on EEG activity with eyes closed was examined, using fast Fourier transformation from the 16 sampled channels. The frequencies of photic stimulation were fixed at 5, 10 and 15 Hz, respectively. The general decrease of AD patients in inter- and intra-hemispheric EEG coherence was more significant than that of the normal controls at the resting EEG, with most striking decrease observed in the alpha-1 (8.0-9.0 Hz) and alpha-2 (9.5-12.5 Hz) bands. During photic stimulation, inter- and intra-hemispheric EEG coherences of the AD patients having lower values in the alpha (9.5-10.5 Hz) band than those of the control group. It suggests that under stimulated and non-stimulated conditions, AD patients had impaired inter- and intra-hemispheric functional connections, indicating failure of brain activation in alpha-related frequency.

  11. Maturation of neuronal form and function in a mouse thalamo-cortical circuit.

    Science.gov (United States)

    Warren, R A; Jones, E G

    1997-01-01

    Postnatal development of physiological properties underlying slow intrathalamic oscillations was studied by whole-cell recording from synaptically coupled neurons of the reticular nucleus (RTN) and ventral posterior nucleus (VPN) of mouse brain slices in vitro and compared with the morphological development of dye-injected cells. Between postnatal days 3 and 11 (P3-P11), progressive changes in RTN and VPN neurons included shortening of the membrane time constant, decreasing input resistance, and lowering of the resting membrane potential (RMP). Low-threshold Ca2+ spikes (LTS) were present from P3, but their capacity to sustain multispike bursts was limited before P11. Synaptic responses were evoked in RTN and VPN neurons by electrical stimulation of the internal capsule from P3. Younger RTN neurons responded with a single spike, but their capacity to fire bursts gradually improved as the RMP reached levels below the LTS activation potential. Concomitantly, as the reversal potential of the inhibitory postsynaptic potential in VPN neurons became more negative, its capacity to deinactivate the LTS increased, and rebound bursts that could maintain oscillations were produced; sustained oscillations became the typical response to internal capsule stimulation at P12. The functional maturation of the intrathalamic circuitry, particularly between P10 and P14, occurs in parallel with the morphological maturation (size, dendritic growth, and dendritic field structure) of individual RTN and VPN neurons, as studied by confocal microscopy. Maturation of RTN cells led that of VPN cells by 2-3 d. The appearance of intrathalamic oscillations is probably correlated with the appearance of slow-wave sleep in postnatal animals.

  12. Simultaneous calcium fluorescence imaging and MR of ex vivo organotypic cortical cultures: a new test bed for functional MRI.

    Science.gov (United States)

    Bai, Ruiliang; Klaus, Andreas; Bellay, Tim; Stewart, Craig; Pajevic, Sinisa; Nevo, Uri; Merkle, Hellmut; Plenz, Dietmar; Basser, Peter J

    2015-12-01

    Recently, several new functional (f)MRI contrast mechanisms including diffusion, phase imaging, proton density, etc. have been proposed to measure neuronal activity more directly and accurately than blood-oxygen-level dependent (BOLD) fMRI. However, these approaches have proved difficult to reproduce, mainly because of the dearth of reliable and robust test systems to vet and validate them. Here we describe the development and testing of such a test bed for non-BOLD fMRI. Organotypic cortical cultures were used as a stable and reproducible biological model of neuronal activity that shows spontaneous activity similar to that of in vivo brain cortex without any hemodynamic confounds. An open-access, single-sided magnetic resonance (MR) "profiler" consisting of four permanent magnets with magnetic field of 0.32 T was used in this study to perform MR acquisition. A fluorescence microscope with long working distance objective was mounted on the top of a custom-designed chamber that keeps the organotypic culture vital, and the MR system was mounted on the bottom of the chamber to achieve real-time simultaneous calcium fluorescence optical imaging and MR acquisition on the same specimen. In this study, the reliability and performance of the proposed test bed were demonstrated by a conventional CPMG MR sequence acquired simultaneously with calcium imaging, which is a well-characterized measurement of neuronal activity. This experimental design will make it possible to correlate directly the other candidate functional MR signals to the optical indicia of neuronal activity in the future.

  13. PRE-AND POST-OPERATIVE CORTICAL FUNCTION OF THE KIDNEY WITH STAGHORN CALCULI ASSESSED BY 99mTc-DMSA RENAL SCINTIGRAPHY

    OpenAIRE

    川村, 寿一

    1982-01-01

    99mTc-DMSA renal scintigraphy consisting of the cortical image and DMSA renal uptake was used to assess the pre- and post-operative renal function in 39 patients with staghorn calculi or complicated calculi occupying more than 2 major calices. Extended pyelolithotomy was performed on 14 patients, nephrolithotomy on 14 patients, pyelolithotomy combined with nephrotomy on 7 patients, and partial nephrectomy on 4 patients. Nine out of 14 patients who underwent pyelolithotomy and 4 out of 14 pati...

  14. Quantitative Live Imaging of Human Embryonic Stem Cell Derived Neural Rosettes Reveals Structure-Function Dynamics Coupled to Cortical Development.

    Directory of Open Access Journals (Sweden)

    Omer Ziv

    2015-10-01

    Full Text Available Neural stem cells (NSCs are progenitor cells for brain development, where cellular spatial composition (cytoarchitecture and dynamics are hypothesized to be linked to critical NSC capabilities. However, understanding cytoarchitectural dynamics of this process has been limited by the difficulty to quantitatively image brain development in vivo. Here, we study NSC dynamics within Neural Rosettes--highly organized multicellular structures derived from human pluripotent stem cells. Neural rosettes contain NSCs with strong epithelial polarity and are expected to perform apical-basal interkinetic nuclear migration (INM--a hallmark of cortical radial glial cell development. We developed a quantitative live imaging framework to characterize INM dynamics within rosettes. We first show that the tendency of cells to follow the INM orientation--a phenomenon we referred to as radial organization, is associated with rosette size, presumably via mechanical constraints of the confining structure. Second, early forming rosettes, which are abundant with founder NSCs and correspond to the early proliferative developing cortex, show fast motions and enhanced radial organization. In contrast, later derived rosettes, which are characterized by reduced NSC capacity and elevated numbers of differentiated neurons, and thus correspond to neurogenesis mode in the developing cortex, exhibit slower motions and decreased radial organization. Third, later derived rosettes are characterized by temporal instability in INM measures, in agreement with progressive loss in rosette integrity at later developmental stages. Finally, molecular perturbations of INM by inhibition of actin or non-muscle myosin-II (NMII reduced INM measures. Our framework enables quantification of cytoarchitecture NSC dynamics and may have implications in functional molecular studies, drug screening, and iPS cell-based platforms for disease modeling.

  15. Prenatal exposure to cannabinoids evokes long-lasting functional alterations by targeting CB1 receptors on developing cortical neurons.

    Science.gov (United States)

    de Salas-Quiroga, Adán; Díaz-Alonso, Javier; García-Rincón, Daniel; Remmers, Floortje; Vega, David; Gómez-Cañas, María; Lutz, Beat; Guzmán, Manuel; Galve-Roperh, Ismael

    2015-11-03

    The CB1 cannabinoid receptor, the main target of Δ(9)-tetrahydrocannabinol (THC), the most prominent psychoactive compound of marijuana, plays a crucial regulatory role in brain development as evidenced by the neurodevelopmental consequences of its manipulation in animal models. Likewise, recreational cannabis use during pregnancy affects brain structure and function of the progeny. However, the precise neurobiological substrates underlying the consequences of prenatal THC exposure remain unknown. As CB1 signaling is known to modulate long-range corticofugal connectivity, we analyzed the impact of THC exposure on cortical projection neuron development. THC administration to pregnant mice in a restricted time window interfered with subcerebral projection neuron generation, thereby altering corticospinal connectivity, and produced long-lasting alterations in the fine motor performance of the adult offspring. Consequences of THC exposure were reminiscent of those elicited by CB1 receptor genetic ablation, and CB1-null mice were resistant to THC-induced alterations. The identity of embryonic THC neuronal targets was determined by a Cre-mediated, lineage-specific, CB1 expression-rescue strategy in a CB1-null background. Early and selective CB1 reexpression in dorsal telencephalic glutamatergic neurons but not forebrain GABAergic neurons rescued the deficits in corticospinal motor neuron development of CB1-null mice and restored susceptibility to THC-induced motor alterations. In addition, THC administration induced an increase in seizure susceptibility that was mediated by its interference with CB1-dependent regulation of both glutamatergic and GABAergic neuron development. These findings demonstrate that prenatal exposure to THC has long-lasting deleterious consequences in the adult offspring solely mediated by its ability to disrupt the neurodevelopmental role of CB1 signaling.

  16. Quantitative Live Imaging of Human Embryonic Stem Cell Derived Neural Rosettes Reveals Structure-Function Dynamics Coupled to Cortical Development.

    Science.gov (United States)

    Ziv, Omer; Zaritsky, Assaf; Yaffe, Yakey; Mutukula, Naresh; Edri, Reuven; Elkabetz, Yechiel

    2015-10-01

    Neural stem cells (NSCs) are progenitor cells for brain development, where cellular spatial composition (cytoarchitecture) and dynamics are hypothesized to be linked to critical NSC capabilities. However, understanding cytoarchitectural dynamics of this process has been limited by the difficulty to quantitatively image brain development in vivo. Here, we study NSC dynamics within Neural Rosettes--highly organized multicellular structures derived from human pluripotent stem cells. Neural rosettes contain NSCs with strong epithelial polarity and are expected to perform apical-basal interkinetic nuclear migration (INM)--a hallmark of cortical radial glial cell development. We developed a quantitative live imaging framework to characterize INM dynamics within rosettes. We first show that the tendency of cells to follow the INM orientation--a phenomenon we referred to as radial organization, is associated with rosette size, presumably via mechanical constraints of the confining structure. Second, early forming rosettes, which are abundant with founder NSCs and correspond to the early proliferative developing cortex, show fast motions and enhanced radial organization. In contrast, later derived rosettes, which are characterized by reduced NSC capacity and elevated numbers of differentiated neurons, and thus correspond to neurogenesis mode in the developing cortex, exhibit slower motions and decreased radial organization. Third, later derived rosettes are characterized by temporal instability in INM measures, in agreement with progressive loss in rosette integrity at later developmental stages. Finally, molecular perturbations of INM by inhibition of actin or non-muscle myosin-II (NMII) reduced INM measures. Our framework enables quantification of cytoarchitecture NSC dynamics and may have implications in functional molecular studies, drug screening, and iPS cell-based platforms for disease modeling.

  17. Theory of cortical function.

    Science.gov (United States)

    Heeger, David J

    2017-02-21

    Most models of sensory processing in the brain have a feedforward architecture in which each stage comprises simple linear filtering operations and nonlinearities. Models of this form have been used to explain a wide range of neurophysiological and psychophysical data, and many recent successes in artificial intelligence (with deep convolutional neural nets) are based on this architecture. However, neocortex is not a feedforward architecture. This paper proposes a first step toward an alternative computational framework in which neural activity in each brain area depends on a combination of feedforward drive (bottom-up from the previous processing stage), feedback drive (top-down context from the next stage), and prior drive (expectation). The relative contributions of feedforward drive, feedback drive, and prior drive are controlled by a handful of state parameters, which I hypothesize correspond to neuromodulators and oscillatory activity. In some states, neural responses are dominated by the feedforward drive and the theory is identical to a conventional feedforward model, thereby preserving all of the desirable features of those models. In other states, the theory is a generative model that constructs a sensory representation from an abstract representation, like memory recall. In still other states, the theory combines prior expectation with sensory input, explores different possible perceptual interpretations of ambiguous sensory inputs, and predicts forward in time. The theory, therefore, offers an empirically testable framework for understanding how the cortex accomplishes inference, exploration, and prediction.

  18. The cortical acto-myosin network: from diffusion barrier to functional gateway in the transport of neurosecretory vesicles to the plasma membrane

    Directory of Open Access Journals (Sweden)

    Andreas ePapadopulos

    2013-10-01

    Full Text Available Dysregulation of regulated exocytosis is linked to an array of pathological conditions, including neurodegenerative disorders, asthma and diabetes. Understanding the molecular mechanisms underpinning neuroexocytosis including the processes that allow neurosecretory vesicles to access and fuse with the plasma membrane and to recycle post-fusion, is therefore critical to the design of future therapeutic drugs that will efficiently tackle these diseases. Despite considerable efforts to determine the principles of vesicular fusion, the mechanisms controlling the approach of vesicles to the plasma membrane in order to undergo tethering, docking, priming, and fusion remain poorly understood. All these steps involve the cortical actin network, a dense mesh of actin filaments localized beneath the plasma membrane. Recent work overturned the long-held belief that the cortical actin network only plays a passive constraining role in neuroexocytosis functioning as a physical barrier that partly breaks down upon entry of Ca2+ to allow secretory vesicles to reach the plasma membrane. A multitude of new roles for the cortical actin network in regulated exocytosis have now emerged and point to highly dynamic novel functions of key myosin molecular motors. Myosins are not only believed to help bring about dynamic changes in the actin cytoskeleton, tethering and guiding vesicles to their fusion sites, but they also regulate the size and duration of the fusion pore, thereby directly contributing to the release of neurotransmitters and hormones.Here we discuss the functions of the cortical actin network, myosins and their effectors in controlling the processes that lead to tethering, directed transport, docking, and fusion of exocytotic vesicles in regulated exocytosis.

  19. Cortical and white matter mapping in the visual system- more than meets theeye: on the importance of functional imaging to understand visual systempathologies

    Directory of Open Access Journals (Sweden)

    Noa eRaz

    2014-08-01

    Full Text Available Information transmission within the visual system is highly organized with the ultimate goal of accomplishing higher-order, complex visuo-spatial and object identity processing. Perception is dependent on the intactness of the entire system and damage at each stage – in the eye itself, the visual pathways, or within cortical processing - might result in perception disturbance.Herein we will review several examples of lesions along the visual system, from the retina, via the optic nerve and chiasm and through the occipital cortex. We will address their clinical manifestation and their cortical substrate. The latter will be studied via functional magnetic resonance imaging (fMRI and Diffusion Tensor Imaging (DTI, enabling cortical and white matter mapping of the human brain. In contrast to traditional signal recording, these procedures enable simultaneous evaluation of the entire brain network engaged when subjects undertake a particular task or evaluate the entirety of associated white matter pathways.These examples provided will highlight the importance of using advanced imaging methods to better understand visual pathologies. We will argue that clinical manifestation cannot always be explained solely by structural damage and a functional view is required to understand the clinical symptom. In such cases we recommend using advanced imaging methods to better understand the neurological basis of visual phenomena.

  20. Cortical and white matter mapping in the visual system-more than meets the eye: on the importance of functional imaging to understand visual system pathologies.

    Science.gov (United States)

    Raz, Noa; Levin, Netta

    2014-01-01

    Information transmission within the visual system is highly organized with the ultimate goal of accomplishing higher-order, complex visuo-spatial and object identity processing. Perception is dependent on the intactness of the entire system and damage at each stage-in the eye itself, the visual pathways, or within cortical processing-might result in perception disturbance. Herein we will review several examples of lesions along the visual system, from the retina, via the optic nerve and chiasm and through the occipital cortex. We will address their clinical manifestation and their cortical substrate. The latter will be studied via functional magnetic resonance imaging (fMRI) and Diffusion Tensor Imaging (DTI), enabling cortical, and white matter mapping of the human brain. In contrast to traditional signal recording, these procedures enable simultaneous evaluation of the entire brain network engaged when subjects undertake a particular task or evaluate the entirety of associated white matter pathways. These examples provided will highlight the importance of using advanced imaging methods to better understand visual pathologies. We will argue that clinical manifestation cannot always be explained solely by structural damage and a functional view is required to understand the clinical symptom. In such cases we recommend using advanced imaging methods to better understand the neurological basis of visual phenomena.

  1. Value of renal cortical thickness as a predictor of renal function impairment in chronic renal disease patients

    Directory of Open Access Journals (Sweden)

    Samia Rafael Yamashita

    2015-02-01

    Full Text Available Objective: To determine the presence of linear relationship between renal cortical thickness, bipolar length, and parenchymal thickness in chronic kidney disease patients presenting with different estimated glomerular filtration rates (GFRs and to assess the reproducibility of these measurements using ultrasonography. Materials and Methods: Ultrasonography was performed in 54 chronic renal failure patients. The scans were performed by two independent and blinded radiologists. The estimated GFR was calculated using the Cockcroft-Gault equation. Interobserver agreement was calculated and a linear correlation coefficient (r was determined in order to establish the relationship between the different renal measurements and estimated GFR. Results: The correlation between GFR and measurements of renal cortical thickness, bipolar length, and parenchymal thickness was, respectively, moderate (r = 0.478; p < 0.001, poor (r = 0.380; p = 0.004, and poor (r = 0.277; p = 0.116. The interobserver agreement was considered excellent (0.754 for measurements of cortical thickness and bipolar length (0.833, and satisfactory for parenchymal thickness (0.523. Conclusion: The interobserver reproducibility for renal measurements obtained was good. A moderate correlation was observed between estimated GFR and cortical thickness, but bipolar length and parenchymal thickness were poorly correlated.

  2. Effect of chronic accumulation of aluminum on renal function, cortical renal oxidative stress and cortical renal organic anion transport in rats.

    Science.gov (United States)

    Mahieu, Stella T; Gionotti, Marisa; Millen, Néstor; Elías, María Mónica

    2003-11-01

    The aim of the present work was to study the nephrotoxicity of aluminum lactate administered for 3 months (0.57 mg/100 g bodyweight aluminum, i.p., three times per week) to male Wistar rats. Renal function was studied after 6 weeks of treatment (urine was obtained from rats in metabolic cages) and at the end of the treatment using clearance techniques. Another group of rats was used as kidneys donors at the end of treatment. The renal cortex was separated and homogenized to determine glutathione (GSH) level, glutathione S-transferase (GST) activity and lipid peroxidation (LPO) level. Renal cortex slices were also used to study the p-aminohippuric acid (PAH) accumulation during steady-state conditions and the kinetics of uptake process. Clearance results, at the end of the treatment, indicated that renal functions in treated-rats were not different from those measured in control rats, although the renal concentration parameters differ when they were measured in treated rats after 24 h of food and water deprivation. Balances of water and sodium were also modified at both 1.5 and 3 months of treatment. The activity of alkaline phosphatase (AP) relative to inulin excreted in urine was significantly impaired: controls 2.2+/-0.6 IUI/mg, Al-treated 5.1+/-0.5 IU/mg, Prats. Renal accumulation of PAH, estimated as slice-to-medium ratio, decreased significantly in the Al-treated rats: control rats 3.06+/-0.02 ( n=12), Al-treated rats 2.26+/-0.04 ( n=12), Prats, while the apparent affinity remained unchanged. All these results indicate that aluminum accumulation in renal tissue affects cellular metabolism, promotes oxidative stress and induces alterations in renal tubular PAH transport, together with an impairment in sodium and water balance only detected under conditions of water deprivation, without other evident changes in glomerular filtration rate or other global functions measured by clearance techniques at least at this time of chronic toxicity.

  3. Os efeitos da estimulação elétrica funcional na assimetria cortical inter-hemisférica The effects of functional electrical stimulation on cortical interhemispheric asymmetry

    Directory of Open Access Journals (Sweden)

    Letícia Ecard

    2007-09-01

    Full Text Available O objetivo do presente estudo foi avaliar os efeitos da estimulação elétrica funcional na assimetria cortical inter-hemisférica. Para tal, simultaneamente ao registro da atividade eletroencefalográfica, realizou-se eletroestimulação no antebraço direito para estimulação da extensão do indicador. A amostra consistiu de 45 sujeitos randomizados em 3 grupos de 15 sujeitos cada: grupo controle (submetido a 24 blocos de estimulação com intensidade de corrente zero, grupo 1 (24 blocos e grupo 2 (36 blocos. A assimetria entre os pares de eletrodos F3-F4, C3-C4 e P3-P4 foi analisada ao longo dos grupos através de uma Anova. Os resultados apontaram para uma interação grupo x eletrodo e uma tendência de diminuição da assimetria inter-hemisférica após a eletroestimulação.The aim of the present study was to assess the effects of functional electrical stimulation (FES on cortical interhemispheric asymmetry. Electrostimulation was performed on the right forearm to stimulate the extension of the index finger. EEG activity was recorded simultaneously. The sample included 45 subjects randomly divided into 3 groups of 15 subjects each: control group (submitted to 24 blocks of stimulation at a null intensity current, group 1 (24 blocks and group 2 (36 blocks. Interhemispheric asymmetry between F3-F4, C3-C4 and P3-P4 was analyzed through an Anova. Results pointed out to a group x electrode interaction and a general tendency of asymmetry decrease after stimulation.

  4. Long-tailed distribution of synaptic strength reveals origin and functional roles of ongoing fluctuation in cortical circuit

    Science.gov (United States)

    Teramae, Jun-nosuke

    2016-06-01

    Neurons in the cortical circuit continuous to generate irregular spike firing with extremely low firing rate (about 1-2 Hz) even when animals neither receive any external stimuli nor they do not show any significant motor movement. The ongoing activity is often called neuronal noise because measured spike trains are often highly irregular and also spike timings are highly asynchronous among neurons. Many experiments imply that neural networks themselves must generate the noisy activity as an intrinsic property of cortical circuit. However, how a network of neurons sustains the irregular spike firings with low firing rate remains unclear. Recently, by focusing on long-tailed distribution of amplitude of synaptic connections or EPSP (Excitatory Post-Synaptic Potential), we successfully revealed that due to coexistence of a few extremely strong synaptic connections and majority of weak synapses, nonlinear dynamics of population of spiking neurons can have a nontrivial stable state that corresponding to the intrinsic ongoing fluctuation of the cortical circuit. We also found that due to the fluctuation fidelity of spike transmission between neurons are optimized. Here, we report our recent findings of the ongoing fluctuation from viewpoints of mathematical and computational side.

  5. Spatial Embedding and Wiring Cost Constrain the Functional Layout of the Cortical Network of Rodents and Primates.

    Science.gov (United States)

    Horvát, Szabolcs; Gămănuț, Răzvan; Ercsey-Ravasz, Mária; Magrou, Loïc; Gămănuț, Bianca; Van Essen, David C; Burkhalter, Andreas; Knoblauch, Kenneth; Toroczkai, Zoltán; Kennedy, Henry

    2016-07-01

    Mammals show a wide range of brain sizes, reflecting adaptation to diverse habitats. Comparing interareal cortical networks across brains of different sizes and mammalian orders provides robust information on evolutionarily preserved features and species-specific processing modalities. However, these networks are spatially embedded, directed, and weighted, making comparisons challenging. Using tract tracing data from macaque and mouse, we show the existence of a general organizational principle based on an exponential distance rule (EDR) and cortical geometry, enabling network comparisons within the same model framework. These comparisons reveal the existence of network invariants between mouse and macaque, exemplified in graph motif profiles and connection similarity indices, but also significant differences, such as fractionally smaller and much weaker long-distance connections in the macaque than in mouse. The latter lends credence to the prediction that long-distance cortico-cortical connections could be very weak in the much-expanded human cortex, implying an increased susceptibility to disconnection syndromes such as Alzheimer disease and schizophrenia. Finally, our data from tracer experiments involving only gray matter connections in the primary visual areas of both species show that an EDR holds at local scales as well (within 1.5 mm), supporting the hypothesis that it is a universally valid property across all scales and, possibly, across the mammalian class.

  6. Evaluation of the performance of information theory-based methods and cross-correlation to estimate the functional connectivity in cortical networks.

    Directory of Open Access Journals (Sweden)

    Matteo Garofalo

    Full Text Available Functional connectivity of in vitro neuronal networks was estimated by applying different statistical algorithms on data collected by Micro-Electrode Arrays (MEAs. First we tested these "connectivity methods" on neuronal network models at an increasing level of complexity and evaluated the performance in terms of ROC (Receiver Operating Characteristic and PPC (Positive Precision Curve, a new defined complementary method specifically developed for functional links identification. Then, the algorithms better estimated the actual connectivity of the network models, were used to extract functional connectivity from cultured cortical networks coupled to MEAs. Among the proposed approaches, Transfer Entropy and Joint-Entropy showed the best results suggesting those methods as good candidates to extract functional links in actual neuronal networks from multi-site recordings.

  7. Evaluation of the Performance of Information Theory-Based Methods and Cross-Correlation to Estimate the Functional Connectivity in Cortical Networks

    Science.gov (United States)

    Garofalo, Matteo; Nieus, Thierry; Massobrio, Paolo; Martinoia, Sergio

    2009-01-01

    Functional connectivity of in vitro neuronal networks was estimated by applying different statistical algorithms on data collected by Micro-Electrode Arrays (MEAs). First we tested these “connectivity methods” on neuronal network models at an increasing level of complexity and evaluated the performance in terms of ROC (Receiver Operating Characteristic) and PPC (Positive Precision Curve), a new defined complementary method specifically developed for functional links identification. Then, the algorithms better estimated the actual connectivity of the network models, were used to extract functional connectivity from cultured cortical networks coupled to MEAs. Among the proposed approaches, Transfer Entropy and Joint-Entropy showed the best results suggesting those methods as good candidates to extract functional links in actual neuronal networks from multi-site recordings. PMID:19652720

  8. Classification of cirrhotic patients with or without minimal hepatic encephalopathy and healthy subjects using resting-state attention-related network analysis.

    Directory of Open Access Journals (Sweden)

    Hua-Jun Chen

    Full Text Available BACKGROUND: Attention deficit is an early and key characteristic of minimal hepatic encephalopathy (MHE and has been used as indicator for MHE detection. The aim of this study is to classify the cirrhotic patients with or without MHE (NMHE and healthy controls (HC using the resting-state attention-related brain network analysis. METHODS AND FINDINGS: Resting-state fMRI was administrated to 20 MHE patients, 21 NMHE patients, and 17 HCs. Three attention-related networks, including dorsal attention network (DAN, ventral attention network (VAN, and default mode network (DMN, were obtained by independent component analysis. One-way analysis of covariance was performed to determine the regions of interest (ROIs showing significant functional connectivity (FC change. With FC strength of ROIs as indicators, Linear Discriminant Analysis (LDA was conducted to differentiate MHE from HC or NMHE. Across three groups, significant FC differences were found within DAN (left superior/inferior parietal lobule and right inferior parietal lobule, VAN (right superior parietal lobule, and DMN (bilateral posterior cingulate gyrus and precuneus, and left inferior parietal lobule. With FC strength of ROIs from three networks as indicators, LDA yielded 94.6% classification accuracy between MHE and HC (100% sensitivity and 88.2% specificity and 85.4% classification accuracy between MHE and NMHE (90.0% sensitivity and 81.0% specificity. CONCLUSIONS: Our results suggest that the resting-state attention-related brain network analysis can be useful in classification of subjects with MHE, NMHE, and HC and may provide a new insight into MHE detection.

  9. Dysfunction and dysconnection in cortical-striatal networks during sustained attention: Genetic risk for schizophrenia or bipolar disorder and its impact on brain network function

    Directory of Open Access Journals (Sweden)

    Vaibhav A. Diwadkar

    2014-05-01

    Full Text Available Abnormalities in the brain’s attention network may represent early identifiable neurobiological impairments in individuals at increased risk for schizophrenia or bipolar disorder. Here we provide evidence of dysfunctional regional and network function in adolescents at higher genetic risk for schizophrenia or bipolar disorder (henceforth HGR. During fMRI, participants engaged in a sustained attention task with variable demands. The task alternated between attention (120 s, visual control (passive viewing; 120 s and rest (20 s epochs. Low and high demand attention conditions were created using the rapid presentation of 2- or 3-digit numbers. Subjects were required to detect repeated presentation of numbers. We demonstrate that the recruitment of cortical and striatal regions are disordered in HGR: Relative to typical controls (TC, HGR showed lower recruitment of the dorsal prefrontal cortex, but higher recruitment of the superior parietal cortex. This imbalance was more dramatic in the basal ganglia. There, a group by task demand interaction was observed, such that increased attention demand led to increased engagement in TC, but disengagement in HGR. These activation studies were complemented by network analyses using Dynamic Causal Modeling. Competing model architectures were assessed across a network of cortical-striatal regions, distinguished at a second level using random effects Bayesian model selection. In the winning architecture, HGR were characterized by significant reductions in coupling across both frontal-striatal and frontal-parietal pathways. The effective connectivity analyses indicate emergent network dysconnection, consistent with findings in patients with schizophrenia. Emergent patterns of regional dysfunction and disconnection in cortical-striatal pathways may provide functional biological signatures in the adolescent risk state for psychiatric illness.

  10. Cortical Visual Impairment

    Science.gov (United States)

    ... Frequently Asked Questions Español Condiciones Chinese Conditions Cortical Visual Impairment En Español Read in Chinese What is cortical visual impairment? Cortical visual impairment (CVI) is a decreased ...

  11. Neonatal pain-related stress, functional cortical activity and visual-perceptual abilities in school-age children born at extremely low gestational age.

    Science.gov (United States)

    Doesburg, Sam M; Chau, Cecil M; Cheung, Teresa P L; Moiseev, Alexander; Ribary, Urs; Herdman, Anthony T; Miller, Steven P; Cepeda, Ivan L; Synnes, Anne; Grunau, Ruth E

    2013-10-01

    Children born very prematurely (neonatal experience and neurodevelopment, remain poorly understood. Repeated procedural pain-related stress during neonatal intensive care has been proposed to contribute to altered neurocognitive development in these children. Due to critical periods in the development of thalamocortical systems, the immature brain of infants born at extremely low gestational age (ELGA; neonatal pain. In a cohort of school-age children followed since birth we assessed relations between functional brain activity measured using magnetoencephalogragy (MEG), visual-perceptual abilities and cumulative neonatal pain. We demonstrated alterations in the spectral structure of spontaneous cortical oscillatory activity in ELGA children at school-age. Cumulative neonatal pain-related stress was associated with changes in background cortical rhythmicity in these children, and these alterations in spontaneous brain oscillations were negatively correlated with visual-perceptual abilities at school-age, and were not driven by potentially confounding neonatal variables. These findings provide the first evidence linking neonatal pain-related stress, the development of functional brain activity, and school-age cognitive outcome in these vulnerable children.

  12. Predictive timing functions of cortical beta oscillations are impaired in Parkinson's disease and influenced by L-DOPA and deep brain stimulation of the subthalamic nucleus

    Directory of Open Access Journals (Sweden)

    A. Gulberti

    2015-01-01

    Full Text Available Cortex-basal ganglia circuits participate in motor timing and temporal perception, and are important for the dynamic configuration of sensorimotor networks in response to exogenous demands. In Parkinson's disease (PD patients, rhythmic auditory stimulation (RAS induces motor performance benefits. Hitherto, little is known concerning contributions of the basal ganglia to sensory facilitation and cortical responses to RAS in PD. Therefore, we conducted an EEG study in 12 PD patients before and after surgery for subthalamic nucleus deep brain stimulation (STN-DBS and in 12 age-matched controls. Here we investigated the effects of levodopa and STN-DBS on resting-state EEG and on the cortical-response profile to slow and fast RAS in a passive-listening paradigm focusing on beta-band oscillations, which are important for auditory–motor coupling. The beta-modulation profile to RAS in healthy participants was characterized by local peaks preceding and following auditory stimuli. In PD patients RAS failed to induce pre-stimulus beta increases. The absence of pre-stimulus beta-band modulation may contribute to impaired rhythm perception in PD. Moreover, post-stimulus beta-band responses were highly abnormal during fast RAS in PD patients. Treatment with levodopa and STN-DBS reinstated a post-stimulus beta-modulation profile similar to controls, while STN-DBS reduced beta-band power in the resting-state. The treatment-sensitivity of beta oscillations suggests that STN-DBS may specifically improve timekeeping functions of cortical beta oscillations during fast auditory pacing.

  13. Enhancing motor performance improvement by personalizing non-invasive cortical stimulation with concurrent functional near-infrared spectroscopy and multi-modal motor measurements

    Science.gov (United States)

    Khan, Bilal; Hodics, Timea; Hervey, Nathan; Kondraske, George; Stowe, Ann; Alexandrakis, George

    2015-03-01

    Transcranial direct current stimulation (tDCS) is a non-invasive cortical stimulation technique that can facilitate task specific plasticity that can improve motor performance. Current tDCS interventions uniformly apply a chosen electrode montage to a subject population without personalizing electrode placement for optimal motor gains. We propose a novel perturbation tDCS (ptDCS) paradigm for determining a personalized electrode montage in which tDCS intervention yields maximal motor performance improvements during stimulation. PtDCS was applied to ten healthy adults and five stroke patients with upper hemiparesis as they performed an isometric wrist flexion task with their non-dominant arm. Simultaneous recordings of torque applied to a stationary handle, muscle activity by electromyography (EMG), and cortical activity by functional near-infrared spectroscopy (fNIRS) during ptDCS helped interpret how cortical activity perturbations by any given electrode montage related to changes in muscle activity and task performance quantified by a Reaction Time (RT) X Error product. PtDCS enabled quantifying the effect on task performance of 20 different electrode pair montages placed over the sensorimotor cortex. Interestingly, the electrode montage maximizing performance in all healthy adults did not match any of the ones being explored in current literature as a means of improving the motor performance of stroke patients. Furthermore, the optimal montage was found to be different in each stroke patient and the resulting motor gains were very significant during stimulation. This study supports the notion that task-specific ptDCS optimization can lend itself to personalizing the rehabilitation of patients with brain injury.

  14. Probing the corticospinal link between the motor cortex and motoneurones: some neglected aspects of human motor cortical function

    DEFF Research Database (Denmark)

    Petersen, Nicolas Caesar; Butler, Jane E.; Taylor, Janet L.;

    2010-01-01

    cells themselves have divergent intraspinal branches which innervate more than one motoneuronal pool but the synergistic couplings involving the many hand muscles are likely to be more diverse than can be accommodated simply by fixed patterns of corticospinal divergence. Many studies using transcranial...... magnetic stimulation of the human motor cortex have highlighted the capacity of the cortex to modify its apparent excitability in response to altered afferent inputs, training and various pathologies. Studies using cortical stimulation at 'very low' intensities which elicit only short-latency suppression...... and the output from the motoneurone pool. For example, recent studies have revealed that the efficacy of the human corticospinal connection with motoneurones undergoes activity-dependent changes which influence the size of voluntary contractions. Hence, corticospinal drives must be sculpted continuously...

  15. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.

    Science.gov (United States)

    Hill, N Jeremy; Gupta, Disha; Brunner, Peter; Gunduz, Aysegul; Adamo, Matthew A; Ritaccio, Anthony; Schalk, Gerwin

    2012-06-26

    Neuroimaging studies of human cognitive, sensory, and motor processes are usually based on noninvasive techniques such as electroencephalography (EEG), magnetoencephalography or functional magnetic-resonance imaging. These techniques have either inherently low temporal or low spatial resolution, and suffer from low signal-to-noise ratio and/or poor high-frequency sensitivity. Thus, they are suboptimal for exploring the short-lived spatio-temporal dynamics of many of the underlying brain processes. In contrast, the invasive technique of electrocorticography (ECoG) provides brain signals that have an exceptionally high signal-to-noise ratio, less susceptibility to artifacts than EEG, and a high spatial and temporal resolution (i.e., intentions to enhance or improve communication and control. Nevertheless, human ECoG data are often hard to obtain because of the risks and limitations of the invasive procedures involved, and the need to record within the constraints of clinical settings. Still, clinical monitoring to localize epileptic foci offers a unique and valuable opportunity to collect human ECoG data. We describe our methods for collecting recording ECoG, and demonstrate how to use these signals for important real-time applications such as clinical mapping and brain-computer interfacing. Our example uses the BCI2000 software platform and the SIGFRIED method, an application for real-time mapping of brain functions. This procedure yields information that clinicians can subsequently use to guide the complex and laborious process of functional mapping by electrical stimulation. PREREQUISITES AND PLANNING: Patients with drug-resistant partial epilepsy may be candidates for resective surgery of an epileptic focus to minimize the frequency of seizures. Prior to resection, the patients undergo monitoring using subdural electrodes for two purposes: first, to localize the epileptic focus, and second, to identify nearby critical brain areas (i.e., eloquent cortex) where

  16. Task-dependent modulation of functional connectivity between hand motor cortices and neuronal networks underlying language and music: a transcranial magnetic stimulation study in humans.

    Science.gov (United States)

    Sparing, R; Meister, I G; Wienemann, M; Buelte, D; Staedtgen, M; Boroojerdi, B

    2007-01-01

    Although language functions are, in general, attributed to the left hemisphere, it is still a matter of debate to what extent the cognitive functions underlying the processing of music are lateralized in the human brain. To investigate hemispheric specialization we evaluated the effect of different overt musical and linguistic tasks on the excitability of both left and right hand motor cortices using transcranial magnetic stimulation (TMS). Task-dependent changes of the size of the TMS-elicited motor evoked potentials were recorded in 12 right-handed, musically naive subjects during and after overt speech, singing and humming, i.e. the production of melody without word articulation. The articulation of meaningless syllables served as control condition. We found reciprocal lateralized effects of overt speech and musical tasks on motor cortex excitability. During overt speech, the corticospinal projection of the left (i.e. dominant) hemisphere to the right hand was facilitated. In contrast, excitability of the right motor cortex increased during both overt singing and humming, whereas no effect was observed on the left hemisphere. Although the traditional concept of hemispheric lateralization of music has been challenged by recent neuroimaging studies, our findings demonstrate that right-hemisphere preponderance of music is nevertheless present. We discuss our results in terms of the recent concepts on evolution of language and gesture, which hypothesize that cerebral networks mediating hand movement and those subserving language processing are functionally linked. TMS may constitute a useful tool to further investigate the relationship between cortical representations of motor functions, music and language using comparative approaches.

  17. Functional brain network organisation of children between 2 and 5 years derived from reconstructed activity of cortical sources of high-density EEG recordings.

    Science.gov (United States)

    Bathelt, Joe; O'Reilly, Helen; Clayden, Jonathan D; Cross, J Helen; de Haan, Michelle

    2013-11-15

    There is increasing interest in applying connectivity analysis to brain measures (Rubinov and Sporns, 2010), but most studies have relied on fMRI, which substantially limits the participant groups and numbers that can be studied. High-density EEG recordings offer a comparatively inexpensive easy-to-use alternative, but require channel-level connectivity analysis which currently lacks a common analytic framework and is very limited in spatial resolution. To address this problem, we have developed a new technique for studies of network development that overcomes the spatial constraint and obtains functional networks of cortical areas by using EEG source reconstruction with age-matched average MRI templates (He et al., 1999). In contrast to previously reported channel-level analysis, this approach provides information about the cortical areas most likely to be involved in the network as well as their functional relationship (Babiloni et al., 2005; De Vico Fallani et al., 2007). In this study, we applied source reconstruction with age-matched templates to task-free high-density EEG recordings in typically-developing children between 2 and 6 years of age (O'Reilly, 2012). Graph theory was then applied to the association strengths of 68 cortical regions of interest based on the Desikan-Killiany atlas. We found linear increases of mean node degree, mean clustering coefficient and maximum betweenness centrality between 2 years and 6 years of age. Characteristic path length was negatively correlated with age. The correlation of the network measures with age indicates network development towards more closely integrated networks similar to reports from other imaging modalities (Fair et al., 2008; Power et al., 2010). We also applied eigenvalue decomposition to obtain functional modules (Clayden et al., 2013). Connection strength within these modules did not change with age, and the modules resembled hub networks previously described for MRI (Hagmann et al., 2010; Power et al

  18. Human Auditory and Adjacent Nonauditory Cerebral Cortices Are Hypermetabolic in Tinnitus as Measured by Functional Near-Infrared Spectroscopy (fNIRS).

    Science.gov (United States)

    Issa, Mohamad; Bisconti, Silvia; Kovelman, Ioulia; Kileny, Paul; Basura, Gregory J

    2016-01-01

    Tinnitus is the phantom perception of sound in the absence of an acoustic stimulus. To date, the purported neural correlates of tinnitus from animal models have not been adequately characterized with translational technology in the human brain. The aim of the present study was to measure changes in oxy-hemoglobin concentration from regions of interest (ROI; auditory cortex) and non-ROI (adjacent nonauditory cortices) during auditory stimulation and silence in participants with subjective tinnitus appreciated equally in both ears and in nontinnitus controls using functional near-infrared spectroscopy (fNIRS). Control and tinnitus participants with normal/near-normal hearing were tested during a passive auditory task. Hemodynamic activity was monitored over ROI and non-ROI under episodic periods of auditory stimulation with 750 or 8000 Hz tones, broadband noise, and silence. During periods of silence, tinnitus participants maintained increased hemodynamic responses in ROI, while a significant deactivation was seen in controls. Interestingly, non-ROI activity was also increased in the tinnitus group as compared to controls during silence. The present results demonstrate that both auditory and select nonauditory cortices have elevated hemodynamic activity in participants with tinnitus in the absence of an external auditory stimulus, a finding that may reflect basic science neural correlates of tinnitus that ultimately contribute to phantom sound perception.

  19. Human Auditory and Adjacent Nonauditory Cerebral Cortices Are Hypermetabolic in Tinnitus as Measured by Functional Near-Infrared Spectroscopy (fNIRS

    Directory of Open Access Journals (Sweden)

    Mohamad Issa

    2016-01-01

    Full Text Available Tinnitus is the phantom perception of sound in the absence of an acoustic stimulus. To date, the purported neural correlates of tinnitus from animal models have not been adequately characterized with translational technology in the human brain. The aim of the present study was to measure changes in oxy-hemoglobin concentration from regions of interest (ROI; auditory cortex and non-ROI (adjacent nonauditory cortices during auditory stimulation and silence in participants with subjective tinnitus appreciated equally in both ears and in nontinnitus controls using functional near-infrared spectroscopy (fNIRS. Control and tinnitus participants with normal/near-normal hearing were tested during a passive auditory task. Hemodynamic activity was monitored over ROI and non-ROI under episodic periods of auditory stimulation with 750 or 8000 Hz tones, broadband noise, and silence. During periods of silence, tinnitus participants maintained increased hemodynamic responses in ROI, while a significant deactivation was seen in controls. Interestingly, non-ROI activity was also increased in the tinnitus group as compared to controls during silence. The present results demonstrate that both auditory and select nonauditory cortices have elevated hemodynamic activity in participants with tinnitus in the absence of an external auditory stimulus, a finding that may reflect basic science neural correlates of tinnitus that ultimately contribute to phantom sound perception.

  20. Sustained Attention at Age 5 Predicts Attention-Related Problems at Age 9

    Science.gov (United States)

    Martin, Anne; Razza, Rachel A.; Brooks-Gunn, Jeanne

    2012-01-01

    This study tested whether two aspects of sustained attention (focused attention and lack of impulsivity) measured at child age 5 predicted attention problems reported by mothers and teachers at age 9. Because lack of impulsivity reflects the executive control network, and ADHD is commonly characterized as a deficit in executive function, it was…

  1. Alterações na coerência cortical inter-hemisférica produzidas pela estimulação elétrica funcional (FES Changes in cortical interhemispheric coherence produced by functional electrical stimulation (FES

    Directory of Open Access Journals (Sweden)

    Letícia Ecard

    2007-06-01

    Full Text Available O presente estudo teve como objetivo observar alterações corticais produzidas pela estimulação elétrica funcional (FES, através da eletrencefalografia quantitativa (EEGq. Simultaneamente à captação do sinal eletrencefalográfico, realizou-se uma eletroestimulação no antebraço direito para estimulaç��o da extensão do indicador. A amostra consistiu de 45 sujeitos randomizados em 3 grupos de 15. O grupo controle foi submetido a 24 blocos de estimulação com intensidade de corrente zero. O grupo 1 foi submetido a 24 blocos e o grupo 2 a 36 blocos. A coerência entre os pares de eletrodos F3-F4, C3-C4 e P3-P4 foi analisada ao longo dos grupos através de avaliação estatística. Os resultados apontaram para um aumento da coerência inter-hemisférica após a eletroestimulação.The aim of the present study was to observe cortical alterations produced by functional electrical stimulation (FES, through quantitative electroencephalography (qEEG. Electrostimulation was performed on the right forearm to stimulate the extension of the index finger. EEG activity was recorded simultaneously. The sample consisted of 45 subjects randomly divided into 3 groups of 15 subjects each. The control group was submitted to 24 blocks of stimulation at a current intensity of zero. Group 1 was submitted to 24 blocks and group 2 to 36 blocks. Interhemispheric coherence between F3-F4, C3-C4 and P3-P4 was assessed through a statistical analysis. Results pointed out to increased coherence values after stimulation.

  2. Prediction of the main cortical areas and connections involved in the tactile function of the visual cortex by network analysis.

    Science.gov (United States)

    Négyessy, László; Nepusz, Tamás; Kocsis, László; Bazsó, Fülöp

    2006-04-01

    We explored the cortical pathways from the primary somatosensory cortex to the primary visual cortex (V1) by analysing connectional data in the macaque monkey using graph-theoretical tools. Cluster analysis revealed the close relationship of the dorsal visual stream and the sensorimotor cortex. It was shown that prefrontal area 46 and parietal areas VIP and 7a occupy a central position between the different clusters in the visuo-tactile network. Among these structures all the shortest paths from primary somatosensory cortex (3a, 1 and 2) to V1 pass through VIP and then reach V1 via MT, V3 and PO. Comparison of the input and output fields suggested a larger specificity for the 3a/1-VIP-MT/V3-V1 pathways among the alternative routes. A reinforcement learning algorithm was used to evaluate the importance of the aforementioned pathways. The results suggest a higher role for V3 in relaying more direct sensorimotor information to V1. Analysing cliques, which identify areas with the strongest coupling in the network, supported the role of VIP, MT and V3 in visuo-tactile integration. These findings indicate that areas 3a, 1, VIP, MT and V3 play a major role in shaping the tactile information reaching V1 in both sighted and blind subjects. Our observations greatly support the findings of the experimental studies and provide a deeper insight into the network architecture underlying visuo-tactile integration in the primate cerebral cortex.

  3. Contextual control of audiovisual integration in low-level sensory cortices

    NARCIS (Netherlands)

    Van Atteveldt, N.; Peterson, Bradley S; Schroeder, Charles E

    2014-01-01

    Potential sources of multisensory influences on low-level sensory cortices include direct projections from sensory cortices of different modalities, as well as more indirect feedback inputs from higher order multisensory cortical regions. These multiple architectures may be functionally complementar

  4. Functional adaptation to mechanical loading in both cortical and cancellous bone is controlled locally and is confined to the loaded bones.

    Science.gov (United States)

    Sugiyama, Toshihiro; Price, Joanna S; Lanyon, Lance E

    2010-02-01

    In order to validate whether bones' functional adaptation to mechanical loading is a local phenomenon, we randomly assigned 21 female C57BL/6 mice at 19 weeks of age to one of three equal numbered groups. All groups were treated with isoflurane anesthesia three times a week for 2 weeks (approximately 7 min/day). During each anaesthetic period, the right tibiae/fibulae in the DYNAMIC+STATIC group were subjected to a peak dynamic load of 11.5 N (40 cycles with 10-s intervals between cycles) superimposed upon a static "pre-load" of 2.0 N. This total load of 13.5 N engendered peak longitudinal strains of approximately 1400 microstrain on the medial surface of the tibia at a middle/proximal site. The right tibiae/fibulae in the STATIC group received the static "pre-load" alone while the NOLOAD group received no artificial loading. After 2 weeks, the animals were sacrificed and both tibiae, fibulae, femora, ulnae and radii analyzed by three-dimensional high-resolution (5 mum) micro-computed tomography (microCT). In the DYNAMIC+STATIC group, the proximal trabecular percent bone volume and cortical bone volume at the proximal and middle levels of the right tibiae as well as the cortical bone volume at the middle level of the right fibulae were markedly greater than the left. In contrast, the left bones in the DYNAMIC+STATIC group showed no differences compared to the left or right bones in the NOLOAD or STATIC group. These microCT data were confirmed by two-dimensional examination of fluorochrome labels in bone sections which showed the predominantly woven nature of the new bone formed in the loaded bones. We conclude that the adaptive response in both cortical and trabecular regions of bones subjected to short periods of dynamic loading, even when this response is sufficiently vigorous to stimulate woven bone formation, is confined to the loaded bones and does not involve changes in other bones that are adjacent, contra-lateral or remote to them.

  5. Sex Differences in Gamma Band Functional Connectivity Between the Frontal Lobe and Cortical Areas During an Auditory Oddball Task, as Revealed by Imaginary Coherence Assessment

    Science.gov (United States)

    Fujimoto, Toshiro; Okumura, Eiichi; Kodabashi, Atsushi; Takeuchi, Kouzou; Otsubo, Toshiaki; Nakamura, Katsumi; Yatsushiro, Kazutaka; Sekine, Masaki; Kamiya, Shinichiro; Shimooki, Susumu; Tamura, Toshiyo

    2016-01-01

    We studied sex-related differences in gamma oscillation during an auditory oddball task, using magnetoencephalography and electroencephalography assessment of imaginary coherence (IC). We obtained a statistical source map of event-related desynchronization (ERD) / event-related synchronization (ERS), and compared females and males regarding ERD / ERS. Based on the results, we chose respectively seed regions for IC determinations in low (30-50 Hz), mid (50-100 Hz) and high gamma (100-150 Hz) bands. In males, ERD was increased in the left posterior cingulate cortex (CGp) at 500 ms in the low gamma band, and in the right caudal anterior cingulate cortex (cACC) at 125 ms in the mid-gamma band. ERS was increased in the left rostral anterior cingulate cortex (rACC) at 375 ms in the high gamma band. We chose the CGp, cACC and rACC as seeds, and examined IC between the seed and certain target regions using the IC map. IC changes depended on the height of the gamma frequency and the time window in the gamma band. Although IC in the mid and high gamma bands did not show sex-specific differences, IC at 30-50 Hz in males was increased between the left rACC and the frontal, orbitofrontal, inferior temporal and fusiform target regions. Increased IC in males suggested that males may acomplish the task constructively, analysingly, emotionally, and by perfoming analysis, and that information processing was more complicated in the cortico-cortical circuit. On the other hand, females showed few differences in IC. Females planned the task with general attention and economical well-balanced processing, which was explained by the higher overall functional cortical connectivity. CGp, cACC and rACC were involved in sex differences in information processing and were likely related to differences in neuroanatomy, hormones and neurotransmitter systems. PMID:27708745

  6. Pre- and post-operative cortical function of the kidney with staghorn calculi assessed by sup(99m)Tc-DMSA renal scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Juichi (Kyoto Univ. (Japan). Faculty of Medicine)

    1982-08-01

    sup(99m)Tc-DMSA renal scintigraphy consisting of the cortical image and DMSA renal uptake was used to assess the pre- and post-operative renal function in 39 patients with staghorn calculi or complicated calculi occupying more than 2 major calices. Extended pyelolithotomy was performed on 14 patients, nephrolithotomy on 14 patients, pyelolithotomy combined with nephrotomy on 7 patients, and partial nephrectomy on 4 patients. Nine out of 14 patients who underwent pyelolithotomy and 4 out of 14 patients who underwent nephrolithotomy showed an increase or no change in the postoperative DMSA renal uptake in the diseased kidney. However, there was no increase in the postoperative DMSA renal uptake in the patients who underwent pyelolithotomy combined with nephrotomy or partial nephrectomy. Eight percent of the preoperative DMSA renal uptake in the diseased kidney seems to be the absolute level for predicting a postoperative recovery of the kidney function. The contralateral kidney function can affect the postoperative recovery of the function in the operative side. It seems to be hard to expect an increment in the DMSA renal uptake postoperatively when the ratio of DMSA renal uptake in the operative side to the total DMSA renal uptake is less than 20%. At least 6 months of the follow-up period is necessary for the evaluation of the kidney function in the operative side. DMSA renal scintigraphy is a useful modality to assess pre- and post-operative kidney function in nephrolithiasis from the point of both morphological and functional changes in the renal cortex.

  7. Cortical Correlates of Fitts’ Law

    Directory of Open Access Journals (Sweden)

    Peter eIfft

    2011-12-01

    Full Text Available Fitts' law describes the fundamental trade-off between movement accuracy and speed: It states that the duration of reaching movements is a function of target size and distance. While Fitts' law has been extensively studied in ergonomics and has guided the design of human-computer interfaces, there have been few studies on its neuronal correlates. To elucidate sensorimotor cortical activity underlying Fitts’ law, we implanted two monkeys with multielectrode arrays in the primary motor (M1 and primary somatosensory (S1 cortices. The monkeys performed reaches with a joystick-controlled cursor towards targets of different size. The reaction time, movement time and movement velocity changed with target size, and M1 and S1 activity reflected these changes. Moreover, modifications of cortical activity could not be explained by changes of movement parameters alone, but required target size as an additional parameter. Neuronal representation of target size was especially prominent during the early reaction time period where it influenced the slope of the firing rate rise preceding movement initiation. During the movement period, cortical activity was mostly correlated with movement velocity. Neural decoders were applied to simultaneously decode target size and motor parameters from cortical modulations. We suggest using such classifiers to improve neuroprosthetic control.

  8. Evidence of cortical reorganization of language networks after stroke with subacute Broca's aphasia: a blood oxygenation level dependent-functional magnetic resonance imaging study

    Science.gov (United States)

    Qiu, Wei-hong; Wu, Hui-xiang; Yang, Qing-lu; Kang, Zhuang; Chen, Zhao-cong; Li, Kui; Qiu, Guo-rong; Xie, Chun-qing; Wan, Gui-fang; Chen, Shao-qiong

    2017-01-01

    Aphasia is an acquired language disorder that is a common consequence of stroke. The pathogenesis of the disease is not fully understood, and as a result, current treatment options are not satisfactory. Here, we used blood oxygenation level-dependent functional magnetic resonance imaging to evaluate the activation of bilateral cortices in patients with Broca's aphasia 1 to 3 months after stroke. Our results showed that language expression was associated with multiple brain regions in which the right hemisphere participated in the generation of language. The activation areas in the left hemisphere of aphasia patients were significantly smaller compared with those in healthy adults. The activation frequency, volumes, and intensity in the regions related to language, such as the left inferior frontal gyrus (Broca's area), the left superior temporal gyrus, and the right inferior frontal gyrus (the mirror region of Broca's area), were lower in patients compared with healthy adults. In contrast, activation in the right superior temporal gyrus, the bilateral superior parietal lobule, and the left inferior temporal gyrus was stronger in patients compared with healthy controls. These results suggest that the right inferior frontal gyrus plays a role in the recovery of language function in the subacute stage of stroke-related aphasia by increasing the engagement of related brain areas. PMID:28250756

  9. Ornithine and Homocitrulline Impair Mitochondrial Function, Decrease Antioxidant Defenses and Induce Cell Death in Menadione-Stressed Rat Cortical Astrocytes: Potential Mechanisms of Neurological Dysfunction in HHH Syndrome.

    Science.gov (United States)

    Zanatta, Ângela; Rodrigues, Marília Danyelle Nunes; Amaral, Alexandre Umpierrez; Souza, Débora Guerini; Quincozes-Santos, André; Wajner, Moacir

    2016-09-01

    Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is caused by deficiency of ornithine translocase leading to predominant tissue accumulation and high urinary excretion of ornithine (Orn), homocitrulline (Hcit) and ammonia. Although affected patients commonly present neurological dysfunction manifested by cognitive deficit, spastic paraplegia, pyramidal and extrapyramidal signs, stroke-like episodes, hypotonia and ataxia, its pathogenesis is still poorly known. Although astrocytes are necessary for neuronal protection. Therefore, in the present study we investigated the effects of Orn and Hcit on cell viability (propidium iodide incorporation), mitochondrial function (thiazolyl blue tetrazolium bromide-MTT-reduction and mitochondrial membrane potential-ΔΨm), antioxidant defenses (GSH) and pro-inflammatory response (NFkB, IL-1β, IL-6 and TNF-α) in unstimulated and menadione-stressed cortical astrocytes that were previously shown to be susceptible to damage by neurotoxins. We first observed that Orn decreased MTT reduction, whereas both amino acids decreased GSH levels, without altering cell viability and the pro-inflammatory factors in unstimulated astrocytes. Furthermore, Orn and Hcit decreased cell viability and ΔΨm in menadione-treated astrocytes. The present data indicate that the major compounds accumulating in HHH syndrome impair mitochondrial function and reduce cell viability and the antioxidant defenses in cultured astrocytes especially when stressed by menadione. It is presumed that these mechanisms may be involved in the neuropathology of this disease.

  10. Modeling cortical circuits.

    Energy Technology Data Exchange (ETDEWEB)

    Rohrer, Brandon Robinson; Rothganger, Fredrick H.; Verzi, Stephen J.; Xavier, Patrick Gordon

    2010-09-01

    The neocortex is perhaps the highest region of the human brain, where audio and visual perception takes place along with many important cognitive functions. An important research goal is to describe the mechanisms implemented by the neocortex. There is an apparent regularity in the structure of the neocortex [Brodmann 1909, Mountcastle 1957] which may help simplify this task. The work reported here addresses the problem of how to describe the putative repeated units ('cortical circuits') in a manner that is easily understood and manipulated, with the long-term goal of developing a mathematical and algorithmic description of their function. The approach is to reduce each algorithm to an enhanced perceptron-like structure and describe its computation using difference equations. We organize this algorithmic processing into larger structures based on physiological observations, and implement key modeling concepts in software which runs on parallel computing hardware.

  11. Cortical excitability changes following grasping exercise augmented with electrical stimulation

    DEFF Research Database (Denmark)

    Barsi, Gergely Istvan; Popovic, Dejan B.; Tarkka, Ina M.

    2008-01-01

    Rehabilitation with augmented electrical stimulation can enhance functional recovery after stroke, and cortical plasticity may play a role in this process. The purpose of this study was to compare the effects of three training paradigms on cortical excitability in healthy subjects. Cortical excit...

  12. Genetic targeting of NRXN2 in mice unveils role in excitatory cortical synapse function and social behaviors

    Directory of Open Access Journals (Sweden)

    Gesche eBorn

    2015-02-01

    Full Text Available Human genetics has identified rare copy number variations and deleterious mutations for all neurexin genes (NRXN1-3 in patients with neurodevelopmental diseases, and electrophysiological recordings in animal brains have shown that Nrxns are important for synaptic transmission. While several mouse models for Nrxn1α inactivation have previously been studied for behavioral changes, very little information is available for other variants. Here, we validate that mice lacking Nrxn2α exhibit behavioral abnormalities, characterized by social interaction deficits and increased anxiety-like behavior, which partially overlap, partially differ from Nrxn1α mutant behaviors. Using patch-clamp recordings in Nrxn2α knockout brains, we observe reduced spontaneous transmitter release at excitatory synapses in the neocortex. We also analyse at this cellular level a novel NRXN2 mouse model that carries a combined deletion of Nrxn2α and Nrxn2β. Electrophysiological analysis of this Nrxn2-mutant mouse shows surprisingly similar defects of excitatory release to Nrxn2α, indicating that the β-variant of Nrxn2 has no strong function in basic transmission at these synapses. Inhibitory transmission as well as synapse densities and ultrastructure remain unchanged in the neocortex of both models. Furthermore, at Nrxn2α and Nrxn2-mutant excitatory synapses we find an altered facilitation and N-methyl-D-aspartate receptor (NMDAR function because NMDAR-dependent decay time and NMDAR-mediated responses are reduced. As Nrxn can indirectly be linked to NMDAR via neuroligin and PSD-95, the trans-synaptic nature of this complex may help to explain occurrence of presynaptic and postsynaptic effects. Since excitatory/inhibitory imbalances and impairment of NMDAR function are alledged to have a role in autism and schizophrenia, our results support the idea of a related pathomechanism in these disorders.

  13. Large-scale, high-resolution multielectrode-array recording depicts functional network differences of cortical and hippocampal cultures.

    Directory of Open Access Journals (Sweden)

    Shinya Ito

    Full Text Available Understanding the detailed circuitry of functioning neuronal networks is one of the major goals of neuroscience. Recent improvements in neuronal recording techniques have made it possible to record the spiking activity from hundreds of neurons simultaneously with sub-millisecond temporal resolution. Here we used a 512-channel multielectrode array system to record the activity from hundreds of neurons in organotypic cultures of cortico-hippocampal brain slices from mice. To probe the network structure, we employed a wavelet transform of the cross-correlogram to categorize the functional connectivity in different frequency ranges. With this method we directly compare, for the first time, in any preparation, the neuronal network structures of cortex and hippocampus, on the scale of hundreds of neurons, with sub-millisecond time resolution. Among the three frequency ranges that we investigated, the lower two frequency ranges (gamma (30-80 Hz and beta (12-30 Hz range showed similar network structure between cortex and hippocampus, but there were many significant differences between these structures in the high frequency range (100-1000 Hz. The high frequency networks in cortex showed short tailed degree-distributions, shorter decay length of connectivity density, smaller clustering coefficients, and positive assortativity. Our results suggest that our method can characterize frequency dependent differences of network architecture from different brain regions. Crucially, because these differences between brain regions require millisecond temporal scales to be observed and characterized, these results underscore the importance of high temporal resolution recordings for the understanding of functional networks in neuronal systems.

  14. Cerebrolysin reduces amyloid-β deposits, apoptosis and autophagy in the thalamus and improves functional recovery after cortical infarction.

    Science.gov (United States)

    Xing, Shihui; Zhang, Jian; Dang, Chao; Liu, Gang; Zhang, Yusheng; Li, Jingjing; Fan, Yuhua; Pei, Zhong; Zeng, Jinsheng

    2014-02-15

    Focal cerebral infarction causes amyloid-β (Aβ) deposits and secondary thalamic neuronal degeneration. The present study aimed to determine the protective effects of Cerebrolysin on Aβ deposits and secondary neuronal damage in thalamus after cerebral infarction. At 24h after distal middle cerebral artery occlusion (MCAO), Cerebrolysin (5 ml/kg) or saline as control was once daily administered for consecutive 13 days by intraperitoneal injection. Sensory function and secondary thalamic damage were assessed with adhesive-removal test, Nissl staining and immunofluorescence at 14 days after MCAO. Aβ deposits, activity of β-site amyloid precursor protein-cleaving enzyme 1 (BACE1), apoptosis and autophagy were determined by TUNEL staining, immunofluorescence and immunoblot. The results showed that Cerebrolysin significantly improved sensory deficit compared to controls (pCerebrolysin, which was accompanied by decreases in neuronal loss and astroglial activation compared to controls (all p Cerebrolysin markedly inhibited cleaved caspase-3, conversion of LC3-II, downregulation of Bcl-2 and upregulation of Bax in the ipsilateral thalamus compared to controls (all pCerebrolysin reduces Aβ deposits, apoptosis and autophagy in the ipsilateral thalamus, which may be associated with amelioration of secondary thalamic damage and functional recovery after cerebral infarction.

  15. Implications of cortical balanced excitation and inhibition, functional heterogeneity, and sparseness of neuronal activity in fMRI

    Science.gov (United States)

    Xu, Jiansong

    2015-01-01

    Blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) studies often report inconsistent findings, probably due to brain properties such as balanced excitation and inhibition and functional heterogeneity. These properties indicate that different neurons in the same voxels may show variable activities including concurrent activation and deactivation, that the relationships between BOLD signal and neural activity (i.e., neurovascular coupling) are complex, and that increased BOLD signal may reflect reduced deactivation, increased activation, or both. The traditional general-linear-model-based-analysis (GLM-BA) is a univariate approach, cannot separate different components of BOLD signal mixtures from the same voxels, and may contribute to inconsistent findings of fMRI. Spatial independent component analysis (sICA) is a multivariate approach, can separate the BOLD signal mixture from each voxel into different source signals and measure each separately, and thus may reconcile previous conflicting findings generated by GLM-BA. We propose that methods capable of separating mixed signals such as sICA should be regularly used for more accurately and completely extracting information embedded in fMRI datasets. PMID:26341939

  16. Superresolution improves MRI cortical segmentation with FACE

    DEFF Research Database (Denmark)

    Eskildsen, Simon Fristed; Manjón, José V.; Coupé, Pierrick

    Brain cortical surface extraction from MRI has applications for measurement of gray matter (GM) atrophy, functional mapping, source localization and preoperative neurosurgical planning. Accurate cortex segmentation requires high resolution morphological images and several methods for extracting...

  17. Auditory cortical responses evoked by pure tones in healthy and sensorineural hearing loss subjects: functional MRI and magnetoencephalography

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yun-ting; GENG Zuo-jun; ZHANG Quan; LI Wei; ZHANG Jing

    2006-01-01

    Background Blood oxygen level dependent functional magnetic resonance imaging (fMRI) and magnetoencephalography are new techniques of brain functional imaging which can provide the information of excitation of neurons by measure the changes of hemodynamics and electrophysiological data of local brain tissue. The purpose of this study was to study functional brain areas evoked by pure tones in healthy and sensorineural hearing loss subjects with these techniques and to compare the differences between the two groups.Methods Thirty healthy and 30 sensorineural hearing loss subjects were included in this study. In fMRI,block-design paradigm was used. During the active epoch the participants listened to 1000 Hz, sound pressure level 140 dB pure tones at duration 500 ms, interstimulus interval 1000 ms, which presented continuously via a magnetic resonance-compatible audio system. None stimulus was executed in control epoch. In magnetoencephalography study, every subject received stimuli of 1000 Hz tone bursts delivered to the bilateral ear at duration 8 ms, interstimulus intervals 1000 ms. Sound pressure level in healthy subjects was 30 dB; in sensorineural hearing loss subjects was 20 dB above everyone' s hearing threshold respectively. All subjects were examined with 306-channel whole-scalp neuromagnetometer.Results In fMRI, all subjects showed significant activations in bilateral Heschl's gyri, anterior pole of planum temporale, planum temporale, precentral gyri, postcentral gyri, supramarginal gyri, superior temporal gyri,inferior frontal gyri, occipital lobes and cerebellums. The healthy subjects had more intensive activation in bilateral Heschl's gyri, anterior pole of planum temporale, inferior frontal gyri, left superior temporal gyri and fight planum temporale than the hearing loss subjects. But in precentral gyri, postcentral gyri and occipital lobes,the activation is more intensive in the hearing loss subjects. In magnetoencephalography study, both in the

  18. Acute aerobic exercise increases cortical activity during working memory: a functional MRI study in female college students.

    Science.gov (United States)

    Li, Lin; Men, Wei-Wei; Chang, Yu-Kai; Fan, Ming-Xia; Ji, Liu; Wei, Gao-Xia

    2014-01-01

    There is increasing evidence that acute aerobic exercise is associated with improved cognitive function. However, neural correlates of its cognitive plasticity remain largely unknown. The present study examined the effect of a session of acute aerobic exercise on working memory task-evoked brain activity as well as task performance. A within-subjects design with a counterbalanced order was employed. Fifteen young female participants (M = 19.56, SD = 0.81) were scanned using functional magnetic resonance imaging while performing a working memory task, the N-back task, both following an acute exercise session with 20 minutes of moderate intensity and a control rest session. Although an acute session of exercise did not improve behavioral performance, we observed that it had a significant impact on brain activity during the 2-back condition of the N-back task. Specifically, acute exercise induced increased brain activation in the right middle prefrontal gyrus, the right lingual gyrus, and the left fusiform gyrus as well as deactivations in the anterior cingulate cortexes, the left inferior frontal gyrus, and the right paracentral lobule. Despite the lack of an effect on behavioral measures, significant changes after acute exercise with activation of the prefrontal and occipital cortexes and deactivation of the anterior cingulate cortexes and left frontal hemisphere reflect the improvement of executive control processes, indicating that acute exercise could benefit working memory at a macro-neural level. In addition to its effects on reversing recent obesity and disease trends, our results provide substantial evidence highlighting the importance of promoting physical activity across the lifespan to prevent or reverse cognitive and neural decline.

  19. Acute aerobic exercise increases cortical activity during working memory: a functional MRI study in female college students.

    Directory of Open Access Journals (Sweden)

    Lin Li

    Full Text Available There is increasing evidence that acute aerobic exercise is associated with improved cognitive function. However, neural correlates of its cognitive plasticity remain largely unknown. The present study examined the effect of a session of acute aerobic exercise on working memory task-evoked brain activity as well as task performance. A within-subjects design with a counterbalanced order was employed. Fifteen young female participants (M = 19.56, SD = 0.81 were scanned using functional magnetic resonance imaging while performing a working memory task, the N-back task, both following an acute exercise session with 20 minutes of moderate intensity and a control rest session. Although an acute session of exercise did not improve behavioral performance, we observed that it had a significant impact on brain activity during the 2-back condition of the N-back task. Specifically, acute exercise induced increased brain activation in the right middle prefrontal gyrus, the right lingual gyrus, and the left fusiform gyrus as well as deactivations in the anterior cingulate cortexes, the left inferior frontal gyrus, and the right paracentral lobule. Despite the lack of an effect on behavioral measures, significant changes after acute exercise with activation of the prefrontal and occipital cortexes and deactivation of the anterior cingulate cortexes and left frontal hemisphere reflect the improvement of executive control processes, indicating that acute exercise could benefit working memory at a macro-neural level. In addition to its effects on reversing recent obesity and disease trends, our results provide substantial evidence highlighting the importance of promoting physical activity across the lifespan to prevent or reverse cognitive and neural decline.

  20. Cortical motor hand area. Validation of functional magnetic resonance imaging by intraoperative cortical stimulation mapping; Das motorische Handareal. Nichtinvasiver Nachweis mittels fMRT und operative Validierung mit kortikaler Stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Yousry, T. [Inst. fuer Radiologische Diagnostik, Klinikum Grosshadern, Univ. Muenchen (Germany); Schmid, U.D. [Neurochirurgische Klinik, Klinikum Grosshadern, Univ. Muenchen (Germany); Schmidt, D. [Inst. fuer Radiologische Diagnostik, Klinikum Grosshadern, Univ. Muenchen (Germany); Heiss, D. [Inst. fuer Radiologische Diagnostik, Klinikum Innenstadt, Univ. Muenchen (Germany); Jassoy, A. [Inst. fuer Radiologische Diagnostik, Klinikum Innenstadt, Univ. Muenchen (Germany); Eisner, W. [Neurochirurgische Klinik, Klinikum Grosshadern, Univ. Muenchen (Germany); Reulen, H.J. [Neurochirurgische Klinik, Klinikum Grosshadern, Univ. Muenchen (Germany); Reiser, M. [Inst. fuer Radiologische Diagnostik, Klinikum Grosshadern, Univ. Muenchen (Germany)

    1995-04-01

    In this study, activation of cortical sites by specific motor tasks (opening and closing of the hand) was examined by fMRI utilizing the blood-oxygen-level-dependent (BOLD) technique. fMRI was employed in five volunteers and in six patients with tumors in the vicinity of the central region. In the patients, the fMRI data and intraoperative cortical mapping were compared. Our results indicate good correlation of these two methods and that there are no significant differences in the localization of the motor hand area. (orig.) [Deutsch] Die funktionelle Magnetresonanztomographie (fMRT) ermoeglicht die nichtinvasive Lokalisation bestimmter Hirnfunktionen mit hoher raeumlicher Aufloesung. Um zu ueberpruefen, ob die mittels fMRT dargestellten Signalintensitaetsaenderungen wirklich dem Repraesentationsareal einer definierten Funktion entspricht, verglichen wir bei einem Patientenkollektiv die Resultate der fMRT mit den Ergebnissen der intraoperativen motorischen Kortexstimulation. Es zeigte sich, dass Lokalisation und Ausdehnung des von uns untersuchten motorischen Handareals bei beiden Methoden uebereinstimmte. Unsere Ergebnisse zeigen, dass die kortikale Repraesentation des motorischen Handareals durch fMRT mit hoher raeumlicher Aufloesung und nichtinvasiv lokalisiert werden kann. (orig.)

  1. Cortical plasticity and rehabilitation.

    Science.gov (United States)

    Moucha, Raluca; Kilgard, Michael P

    2006-01-01

    The brain is constantly adapting to environmental and endogenous changes (including injury) that occur at every stage of life. The mechanisms that regulate neural plasticity have been refined over millions of years. Motivation and sensory experience directly shape the rewiring that makes learning and neurological recovery possible. Guiding neural reorganization in a manner that facilitates recovery of function is a primary goal of neurological rehabilitation. As the rules that govern neural plasticity become better understood, it will be possible to manipulate the sensory and motor experience of patients to induce specific forms of plasticity. This review summarizes our current knowledge regarding factors that regulate cortical plasticity, illustrates specific forms of reorganization induced by control of each factor, and suggests how to exploit these factors for clinical benefit.

  2. Cortical Recruitment Patterns in Children Born Prematurely Compared with Control Subjects During a Passive Listening Functional Magnetic Resonance Imaging Task

    Science.gov (United States)

    Ment, Laura R.; Peterson, Bradley S.; Vohr, Betty; Allan, Walter; Schneider, Karen C.; Lacadie, Cheryl; Katz, Karol H.; Maller-Kesselman, Jill; Pugh, Kenneth; Duncan, Charles C.; Makuch, Robert W.; Constable, R. Todd

    2008-01-01

    Objectives To use functional magnetic resonance imaging (fMRI) to test the hypothesis that subjects who were born prematurely develop alternative systems for processing language. Study design Subjects who were born prematurely (n = 14; 600-1250 g birthweight) without neonatal brain injury and 10 matched term control subjects were examined with a fMRI passive listening task of language, the Clinical Evaluation of Language Fundamentals (CELF) and portions of the Comprehensive Test of Phonological Processing (CTOPP). The fMRI task was evaluated for both phonologic and semantic processing. Results Although there were differences in CELF scores between the subjects born prematurely and control subjects, there were no significant differences in the CTOPP measures in the 2 groups. fMRI studies demonstrated that the groups differentially engaged neural systems known to process language. Children born at term were significantly more likely to activate systems for the semantic processing of language, whereas subjects born prematurely preferentially engaged regions that subserve phonology. Conclusions At 12 years of age, children born prematurely and children born at term activate neural systems for the auditory processing of language differently. Subjects born prematurely engage different networks for phonologic processing; this strategy is associated with phonologic language scores that are similar to those of control subjects. These biologically based developmental strategies may provide the substrate for the improving language skills noted in children who are born prematurely. PMID:17011320

  3. Long-term sensory stimulation therapy improves hand function and restores cortical responsiveness in patients with chronic cerebral lesions. Three single case studies.

    Directory of Open Access Journals (Sweden)

    Jan-Christoph eKattenstroth

    2012-08-01

    Full Text Available Rehabilitation of sensorimotor impairment resulting from cerebral lesion (CL utilizes task specific training and massed practice to drive reorganization and sensorimotor improvement due to induction of neuroplasticity mechanisms. Loss of sensory abilities often complicates recovery, and thus the individual’s ability to use the affected body part for functional tasks. Therefore, the development of additional and alternative approaches that supplement, enhance, or even replace conventional training procedures would be advantageous. Repetitive sensory stimulation protocols (rSS have been shown to evoke sensorimotor improvements of the affected limb in patients with chronic stroke. However, the possible impact of long-term rSS on sensorimotor performance of patients with CL, where the incident dated back many years remains unclear. The particular advantage of rSS is its passive nature, which does not require active participation of the subjects. Therefore, rSS can be applied parallel to other occupations, making the intervention easier to implement and more acceptable to the individual. Here we report the effects of applying rSS for 8, 36 and 76 weeks on the paretic hand of 3 long-term patients with different types of CL. Different behavioral tests were used to assess sensory and/or sensorimotor performance of the upper extremities prior, after, and during the intervention. In one patient, the impact of long-term rSS on restoration of cortical activation was investigated by recording somatosensory evoked potentials. After long-term rSS all three patients showed considerable improvements of their sensory and motor abilities. In addition, almost normal evoked potentials could be recorded after rSS in one patient. Our data show that long-term rSS applied to patients with chronic CL can improve tactile and sensorimotor functions, which, however, developed in some cases only after many weeks of stimulation, and continued to further improve on a time

  4. The Diversity of Cortical Inhibitory Synapses

    Directory of Open Access Journals (Sweden)

    Yoshiyuki eKubota

    2016-04-01

    Full Text Available The most typical and well known inhibitory action in the cortical microcircuit is a strong inhibition on the target neuron by axo-somatic synapses. However, it has become clear that synaptic inhibition in the cortex is much more diverse and complicated. Firstly, at least ten or more inhibitory non-pyramidal cell subtypes engage in diverse inhibitory functions to produce the elaborate activity characteristic of the different cortical states. Each distinct non-pyramidal cell subtype has its own independent inhibitory function. Secondly, the inhibitory synapses innervate different neuronal domains, such as axons, spines, dendrites and soma, and their IPSP size is not uniform. Thus cortical inhibition is highly complex, with a wide variety of anatomical and physiological modes. Moreover, the functional significance of the various inhibitory synapse innervation styles and their unique structural dynamic behaviors differ from those of excitatory synapses. In this review, we summarize our current understanding of the inhibitory mechanisms of the cortical microcircuit.

  5. Cortical Neural Computation by Discrete Results Hypothesis

    Science.gov (United States)

    Castejon, Carlos; Nuñez, Angel

    2016-01-01

    One of the most challenging problems we face in neuroscience is to understand how the cortex performs computations. There is increasing evidence that the power of the cortical processing is produced by populations of neurons forming dynamic neuronal ensembles. Theoretical proposals and multineuronal experimental studies have revealed that ensembles of neurons can form emergent functional units. However, how these ensembles are implicated in cortical computations is still a mystery. Although cell ensembles have been associated with brain rhythms, the functional interaction remains largely unclear. It is still unknown how spatially distributed neuronal activity can be temporally integrated to contribute to cortical computations. A theoretical explanation integrating spatial and temporal aspects of cortical processing is still lacking. In this Hypothesis and Theory article, we propose a new functional theoretical framework to explain the computational roles of these ensembles in cortical processing. We suggest that complex neural computations underlying cortical processing could be temporally discrete and that sensory information would need to be quantized to be computed by the cerebral cortex. Accordingly, we propose that cortical processing is produced by the computation of discrete spatio-temporal functional units that we have called “Discrete Results” (Discrete Results Hypothesis). This hypothesis represents a novel functional mechanism by which information processing is computed in the cortex. Furthermore, we propose that precise dynamic sequences of “Discrete Results” is the mechanism used by the cortex to extract, code, memorize and transmit neural information. The novel “Discrete Results” concept has the ability to match the spatial and temporal aspects of cortical processing. We discuss the possible neural underpinnings of these functional computational units and describe the empirical evidence supporting our hypothesis. We propose that fast

  6. Organisation of Xenopus oocyte and egg cortices.

    Science.gov (United States)

    Chang, P; Pérez-Mongiovi, D; Houliston, E

    1999-03-15

    The division of the Xenopus oocyte cortex into structurally and functionally distinct "animal" and "vegetal" regions during oogenesis provides the basis of the organisation of the early embryo. The vegetal region of the cortex accumulates specific maternal mRNAs that specify the development of the endoderm and mesoderm, as well as functionally-defined "determinants" of dorso-anterior development, and recognisable "germ plasm" determinants that segregate into primary germ cells. These localised elements on the vegetal cortex underlie both the primary animal-vegetal polarity of the egg and the organisation of the developing embryo. The animal cortex meanwhile becomes specialised for the events associated with fertilisation: sperm entry, calcium release into the cytoplasm, cortical granule exocytosis, and polarised cortical contraction. Cortical and subcortical reorganisations associated with meiotic maturation, fertilisation, cortical rotation, and the first mitotic cleavage divisions redistribute the vegetal cortical determinants, contributing to the specification of dorso-anterior axis and segregation of the germ line. In this article we consider what is known about the changing organisation of the oocyte and egg cortex in relation to the mechanisms of determinant localisation, anchorage, and redistribution, and show novel ultrastructural views of cortices isolated at different stages and processed by the rapid-freeze deep-etch method. Cortical organisation involves interactions between the different cytoskeletal filament systems and internal membranes. Associated proteins and cytoplasmic signals probably modulate these interactions in stage-specific ways, leaving much to be understood.

  7. Selective Attention Enhances Beta-Band Cortical Oscillation to Speech under "Cocktail-Party" Listening Conditions.

    Science.gov (United States)

    Gao, Yayue; Wang, Qian; Ding, Yu; Wang, Changming; Li, Haifeng; Wu, Xihong; Qu, Tianshu; Li, Liang

    2017-01-01

    Human listeners are able to selectively attend to target speech in a noisy environment with multiple-people talking. Using recordings of scalp electroencephalogram (EEG), this study investigated how selective attention facilitates the cortical representation of target speech under a simulated "cocktail-party" listening condition with speech-on-speech masking. The result shows that the cortical representation of target-speech signals under the multiple-people talking condition was specifically improved by selective attention relative to the non-selective-attention listening condition, and the beta-band activity was most strongly modulated by selective attention. Moreover, measured with the Granger Causality value, selective attention to the single target speech in the mixed-speech complex enhanced the following four causal connectivities for the beta-band oscillation: the ones (1) from site FT7 to the right motor area, (2) from the left frontal area to the right motor area, (3) from the central frontal area to the right motor area, and (4) from the central frontal area to the right frontal area. However, the selective-attention-induced change in beta-band causal connectivity from the central frontal area to the right motor area, but not other beta-band causal connectivities, was significantly correlated with the selective-attention-induced change in the cortical beta-band representation of target speech. These findings suggest that under the "cocktail-party" listening condition, the beta-band oscillation in EEGs to target speech is specifically facilitated by selective attention to the target speech that is embedded in the mixed-speech complex. The selective attention-induced unmasking of target speech may be associated with the improved beta-band functional connectivity from the central frontal area to the right motor area, suggesting a top-down attentional modulation of the speech-motor process.

  8. Synaptic function is modulated by LRRK2 and glutamate release is increased in cortical neurons of G2019S LRRK2 knock-in mice

    Directory of Open Access Journals (Sweden)

    Dayne A Beccano-Kelly

    2014-09-01

    Full Text Available Mutations in Leucine-Rich Repeat Kinase-2 (LRRK2 result in familial Parkinson’s disease and the G2019S mutation alone accounts for up to 30% in some ethnicities. Despite this, the function of LRRK2 is largely undetermined although evidence suggests roles in phosphorylation, protein interactions, autophagy and endocytosis. Emerging reports link loss of LRRK2 to altered synaptic transmission, but the effects of the G2019S mutation upon synaptic release in mammalian neurons are unknown. To assess wild type and mutant LRRK2 in established neuronal networks, we conducted immunocytochemical, electrophysiological and biochemical characterisation of >3 week old cortical cultures of LRRK2 knock-out, wild-type overexpressing and G2019S knock-in mice. Synaptic release and synapse numbers were grossly normal in LRRK2 knock-out cells, but discretely reduced glutamatergic activity and reduced synaptic protein levels were observed. Conversely, synapse density was modestly but significantly increased in wild-type LRRK2 overexpressing cultures although event frequency was not. In knock-in cultures, glutamate release was markedly elevated, in the absence of any change to synapse density; indicating that physiological levels of G2019S LRRK2 elevate probability of release. Several presynaptic regulatory proteins shown by others to interact with LRRK2 were expressed at normal levels in knock-in cultures; however, synapsin 1 phosphorylation was significantly reduced. Thus, perturbations to the presynaptic release machinery and elevated synaptic transmission are early neuronal effects of LRRK2 G2019S. Furthermore, the comparison of knock-in and overexpressing cultures suggests that one copy of the G2019S mutation has a more pronounced effect than an ~3-fold increase in LRRK2 protein. Mutant-induced increases in transmission may convey additional stressors to neuronal physiology that may eventually contribute to the pathogenesis of Parkinson’s disease.

  9. Functional signature of recovering cortex: dissociation of local field potentials and spiking activity in somatosensory cortices of spinal cord injured monkeys.

    Science.gov (United States)

    Wang, Zheng; Qi, Hui-Xin; Kaas, Jon H; Roe, Anna W; Chen, Li Min

    2013-11-01

    After disruption of dorsal column afferents at high cervical spinal levels in adult monkeys, somatosensory cortical neurons recover responsiveness to tactile stimulation of the hand; this reactivation correlates with a recovery of hand use. However, it is not known if all neuronal response properties recover, and whether different cortical areas recover in a similar manner. To address this, we recorded neuronal activity in cortical area 3b and S2 in adult squirrel monkeys weeks after unilateral lesion of the dorsal columns. We found that in response to vibrotactile stimulation, local field potentials remained robust at all frequency ranges. However, neuronal spiking activity failed to follow at high frequencies (≥15 Hz). We suggest that the failure to generate spiking activity at high stimulus frequency reflects a changed balance of inhibition and excitation in both area 3b and S2, and that this mismatch in spiking and local field potential is a signature of an early phase of recovering cortex (

  10. Longitudial observation of dynamic changes in cortical function and white matter fibrous structure of patients with visual pathway lesions by blood oxygenation level dependent-functional magnetic resonance imaging combined with diffusion tensor imaging

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: Functional magnetic resonance imaging (fMRI) is initially used for visual cortex location.However, the application of fMRI in investigating the development of visual pathway lesions needs to be further observed.OBJECTIVE: This study is to longitudially observe the dynamic changes in cortical function and white matter fibrous structure of patients with visual pathway lesions by blood oxygenation level dependent-functional magnetic resonance imaging (BOLD-fMRI) combined with diffusion tensor imaging (DTI), and to analyze the characteristics of brain function and structural recombination at convalescent period of lesions.DESIGN: Randomized controlled observation.SETTING: Department of Radiology, the General Hospital of Nanjing Military Area Command of Chinese PLA.PARTICIPANTS: Eight patients with unilateral or bilateral visual disorder caused by visual pathway lesions,who admitted to Department of Radiology, the General Hospital of Nanjing Military Area Command of Chinese PLA from January to September 2006 were involved, and served as experimental subjects. The patients, 6 males and 2 females, were aged 16 - 67 years. They had visual disorder confirmed by clinical examination, i.e. visual pathway lesion, which was further diagnosed by MR or CT. Another 12 subjects generally matching to those patients of experimental group in gender, age and sight, who received health examination in synchronization were involved and served as controls. The subjects had no history of eye diseases. Their binocular visual acuity (or corrected visual acuity) was over 1.0. Both routine examination of ophthalmology and examination of fundus were normal. Informed consents of detected items were obtained from all the subjects.METHODS: Signa Excite HD 1.5T magnetic resonance imaging system with 16 passages (GE Company,USA) and coil with 8 passages were used; brain functional stimulus apparatus (SAV-8800. Meide Company) was used for showing experimental mission. At the early stage

  11. Exercise training reinstates cortico-cortical sensorimotor functional connectivity following striatal lesioning: Development and application of a subregional-level analytic toolbox for perfusion autoradiographs of the rat brain

    Science.gov (United States)

    Peng, Yu-Hao; Heintz, Ryan; Wang, Zhuo; Guo, Yumei; Myers, Kalisa; Scremin, Oscar; Maarek, Jean-Michel; Holschneider, Daniel

    2014-12-01

    Current rodent connectome projects are revealing brain structural connectivity with unprecedented resolution and completeness. How subregional structural connectivity relates to subregional functional interactions is an emerging research topic. We describe a method for standardized, mesoscopic-level data sampling from autoradiographic coronal sections of the rat brain, and for correlation-based analysis and intuitive display of cortico-cortical functional connectivity (FC) on a flattened cortical map. A graphic user interface “Cx-2D” allows for the display of significant correlations of individual regions-of-interest, as well as graph theoretical metrics across the cortex. Cx-2D was tested on an autoradiographic data set of cerebral blood flow (CBF) of rats that had undergone bilateral striatal lesions, followed by 4 weeks of aerobic exercise training or no exercise. Effects of lesioning and exercise on cortico-cortical FC were examined during a locomotor challenge in this rat model of Parkinsonism. Subregional FC analysis revealed a rich functional reorganization of the brain in response to lesioning and exercise that was not apparent in a standard analysis focused on CBF of isolated brain regions. Lesioned rats showed diminished degree centrality of lateral primary motor cortex, as well as neighboring somatosensory cortex--changes that were substantially reversed in lesioned rats following exercise training. Seed analysis revealed that exercise increased positive correlations in motor and somatosensory cortex, with little effect in non-sensorimotor regions such as visual, auditory, and piriform cortex. The current analysis revealed that exercise partially reinstated sensorimotor FC lost following dopaminergic deafferentation. Cx-2D allows for standardized data sampling from images of brain slices, as well as analysis and display of cortico-cortical FC in the rat cerebral cortex with potential applications in a variety of autoradiographic and histologic

  12. Exercise training reinstates cortico-cortical sensorimotor functional connectivity following striatal lesioning: Development and application of a subregional-level analytic toolbox for perfusion autoradiographs of the rat brain

    Directory of Open Access Journals (Sweden)

    Yu-Hao ePeng

    2014-12-01

    Full Text Available Current rodent connectome projects are revealing brain structural connectivity with unprecedented resolution and completeness. How subregional structural connectivity relates to subregional functional interactions is an emerging research topic. We describe a method for standardized, mesoscopic-level data sampling from autoradiographic coronal sections of the rat brain, and for correlation-based analysis and intuitive display of cortico-cortical functional connectivity (FC on a flattened cortical map. A graphic user interface Cx-2D allows for the display of significant correlations of individual regions-of-interest, as well as graph theoretical metrics across the cortex. Cx-2D was tested on an autoradiographic data set of cerebral blood flow (CBF of rats that had undergone bilateral striatal lesions, followed by 4 weeks of aerobic exercise training or no exercise. Effects of lesioning and exercise on cortico-cortical FC were examined during a locomotor challenge in this rat model of Parkinsonism. Subregional FC analysis revealed a rich functional reorganization of the brain in response to lesioning and exercise that was not apparent in a standard analysis focused on CBF of isolated brain regions. Lesioned rats showed diminished degree centrality of lateral primary motor cortex, as well as neighboring somatosensory cortex–-changes that were substantially reversed in lesioned rats following exercise training. Seed analysis revealed that exercise increased positive correlations in motor and somatosensory cortex, with little effect in non-sensorimotor regions such as visual, auditory, and piriform cortex. The current analysis revealed that exercise partially reinstated sensorimotor FC lost following dopaminergic deafferentation. Cx-2D allows for standardized data sampling from images of brain slices, as well as analysis and display of cortico-cortical FC in the rat cerebral cortex with potential applications in a variety of autoradiographic and

  13. [Parietal Cortices and Body Information].

    Science.gov (United States)

    Naito, Eiichi; Amemiya, Kaoru; Morita, Tomoyo

    2016-11-01

    Proprioceptive signals originating from skeletal muscles and joints contribute to the formation of both the human body schema and the body image. In this chapter, we introduce various types of bodily illusions that are elicited by proprioceptive inputs, and we discuss distinct functions implemented by different parietal cortices. First, we illustrate the primary importance of the motor network in the processing of proprioceptive (kinesthetic) signals originating from muscle spindles. Next, we argue that the right inferior parietal cortex, in concert with the inferior frontal cortex (both regions connected by the inferior branch of the superior longitudinal fasciculus-SLF III), may be involved in the conscious experience of body image. Further, we hypothesize other functions of distinct parietal regions: the association between internal hand motor representation with external object representation in the left inferior parietal cortex, visuo-kinesthetic processing in the bilateral posterior parietal cortices, and the integration of somatic signals from different body parts in the higher-order somatosensory parietal cortices. Our results indicate that a distinct parietal region, in concert with its anatomically and functionally connected frontal regions, probably plays specialized roles in the processing of body-related information.

  14. Cortical Source Localization of Infant Cognition

    OpenAIRE

    Reynolds, GD; Richards, JE

    2009-01-01

    Neuroimaging techniques such as positron emission topography (PET) and functional magnetic resonance imaging (fMRI) have been utilized with older children and adults to identify cortical sources of perceptual and cognitive processes. However, due to practical and ethical concerns, these techniques cannot be routinely applied to infant participants. An alternative to such neuroimaging techniques appropriate for use with infant participants is high-density EEG recording and cortical source loca...

  15. Functional interaction between right parietal and bilateral frontal cortices during visual search tasks revealed using functional magnetic imaging and transcranial direct current stimulation.

    Directory of Open Access Journals (Sweden)

    Amanda Ellison

    Full Text Available The existence of a network of brain regions which are activated when one undertakes a difficult visual search task is well established. Two primary nodes on this network are right posterior parietal cortex (rPPC and right frontal eye fields. Both have been shown to be involved in the orientation of attention, but the contingency that the activity of one of these areas has on the other is less clear. We sought to investigate this question by using transcranial direct current stimulation (tDCS to selectively decrease activity in rPPC and then asking participants to perform a visual search task whilst undergoing functional magnetic resonance imaging. Comparison with a condition in which sham tDCS was applied revealed that cathodal tDCS over rPPC causes a selective bilateral decrease in frontal activity when performing a visual search task. This result demonstrates for the first time that premotor regions within the frontal lobe and rPPC are not only necessary to carry out a visual search task, but that they work together to bring about normal function.

  16. MRI and diffusion tensor imaging in assessing correlation of activation of cortical motor function and manifestations of corticospinal tract with muscle strength in patients with ischemic stroke

    Institute of Scientific and Technical Information of China (English)

    Ziqian Chen; Hui Xiao; Biyun Zhang; Gennian Qian; Ping Ni; Xizhang Yang

    2006-01-01

    BACKGROUND: Ischemic stroke is often followed by the abnormalities of neurons and corticospinal tract,which can lead to corresponding clinical symptoms and signs. Recently, with the continuous perfection of high-field MRI instrument, it becomes possible to assess and investigate the cortical function and structural reconstruction following stroke by using MRI and diffusion tensor imaging (DTI).OBJECTIVE: To observe the cortical motor function and changes of corticospinal tracts by using MRI and DTI in the patients with ischemic stroke at acute period, compare with the normal subjects, and assess the damage of corticospinal tract and muscle strength.DESIGN: A case-control observation.SETTING: Department of Medical Imaging, Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA.PARTICIPANTS: Nine inpatients (5 males and 4 females) with injury of motor function induced by acute ischemic stroke were selected from Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA between August and December in 2005, they aged 16-87 years with an average of 51 years old, and those with obvious conscious disturbances and severe cognitive disorders were excluded. At the same time, nine healthy right-handed physical examinees matched by age and gender with the patients were also selected, and they all had no nervous disease, epilepsy, mental diseases, cerebrovascular abnormalities and injury history, etc. All the subjects were informed with the detected items and agreed to participate in.METHODS:All the 9 patients with ischemic stroke at acute period and 9 healthy subjects were examined with MRI and DTI. ① A block-based design was used in the MRI, the passive finger-to-finger exercise was used as the stimulative task, and the static condition was taken as the baseline task. The GE 1.5T MRI system was used, all the data were processed after off-line, and analyzed with the SPM2 software, the association between the activated area and local anatomy of

  17. Cortical Lewy Body Dementia

    Directory of Open Access Journals (Sweden)

    W. R. G. Gibb

    1990-01-01

    Full Text Available In cortical Lewy body dementia the distribution of Lewy bodies in the nervous system follows that of Parkinson's disease, except for their greater profusion in the cerebral cortex. The cortical tangles and plaques of Alzheimer pathology are often present, the likely explanation being that Alzheimer pathology provokes dementia in many patients. Pure cortical Lewy body dementia without Alzheimer pathology is uncommon. The age of onset reflects that of Parkinson's disease, and clinical features, though not diagnostic, include aphasias, apraxias, agnosias, paranoid delusions and visual hallucinations. Parkinsonism may present before or after the dementia, and survival duration is approximately half that seen in Parkinson's disease without dementia.

  18. Postpartum cortical blindness.

    Science.gov (United States)

    Faiz, Shakeel Ahmed

    2008-09-01

    A 30-years-old third gravida with previous normal pregnancies and an unremarkable prenatal course had an emergency lower segment caesarean section at a periphery hospital for failure of labour to progress. She developed bilateral cortical blindness immediately after recovery from anesthesia due to cerebral angiopathy shown by CT and MR scan as cortical infarct cerebral angiopathy, which is a rare complication of a normal pregnancy.

  19. Changes in Motor-related Cortical Activity Following Deep Brain Stimulation for Parkinson's Disease Detected by Functional Near Infrared Spectroscopy: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Takashi Morishita

    2016-12-01

    Full Text Available It remains unclear how deep brain stimulation (DBS modulates the global neuronal network involving cortical activity. We aimed to evaluate changes in cortical activity in six (two men; four women patients with Parkinson's disease (PD who underwent unilateral globus pallidus interna DBS surgery using a multi-channel near infrared spectroscopy (NIRS system. As five of the patients were right-handed, DBS was performed on the left in these five cases. The mean age was 66.8 ± 4.0 years. The unified Parkinson's disease rating scale (UPDRS motor scores were evaluated at baseline and 1- and 6-month follow-up. Task-related NIRS experiments applying the block design were performed at baseline and one-month follow-up. The mean of the total UPDRS motor score was 48.5 ± 11.1 in the off-medication state preoperatively. Postoperatively, total UPDRS motor scores improved to 26.8 ± 16.6 (p < 0.05 and 22.2 ± 8.6 (p < 0.05 at 1- and 6-month follow-up, respectively. A task-related NIRS experiment showed a postoperative increase in the cortical activity of the prefrontal cortex comparable to the preoperative state. To our knowledge, this is the first study to use a multi-channel NIRS system for PD patients treated with DBS. In this pilot study, we showed changes in motor-associated cortical activities following DBS surgery. Therapeutic DBS was concluded to have promoted the underlying neuronal network remodeling.

  20. Conjugated Linoleic Acid Administration Induces Amnesia in Male Sprague Dawley Rats and Exacerbates Recovery from Functional Deficits Induced by a Controlled Cortical Impact Injury

    Science.gov (United States)

    Geddes, Rastafa I.; Hayashi, Kentaro; Bongers, Quinn; Wehber, Marlyse; Anderson, Icelle M.; Jansen, Alex D.; Nier, Chase; Fares, Emily; Farquhar, Gabrielle; Kapoor, Amita; Ziegler, Toni E.; VadakkadathMeethal, Sivan; Bird, Ian M.

    2017-01-01

    Long-chain polyunsaturated fatty acids like conjugated linoleic acids (CLA) are required for normal neural development and cognitive function and have been ascribed various beneficial functions. Recently, oral CLA also has been shown to increase testosterone (T) biosynthesis, which is known to diminish traumatic brain injury (TBI)-induced neuropathology and reduce deficits induced by stroke in adult rats. To test the impact of CLA on cognitive recovery following a TBI, 5–6 month old male Sprague Dawley rats received a focal injury (craniectomy + controlled cortical impact (CCI; n = 17)) or Sham injury (craniectomy alone; n = 12) and were injected with 25 mg/kg body weight of Clarinol® G-80 (80% CLA in safflower oil; n = 16) or saline (n = 13) every 48 h for 4 weeks. Sham surgery decreased baseline plasma progesterone (P4) by 64.2% (from 9.5 ± 3.4 ng/mL to 3.4 ± 0.5 ng/mL; p = 0.068), T by 74.6% (from 5.9 ± 1.2 ng/mL to 1.5 ± 0.3 ng/mL; p CLA treatment did not reverse hypogonadism in Sham (P4: 2.5 ± 1.0 ng/mL; T: 0.9 ± 0.2 ng/mL) or CCI-injured (P4: 2.2 ± 0.9 ng/mL; T: 1.0 ± 0.2 ng/mL, p > 0.05) animals by post-injury day 29, but rapidly reversed by post-injury day 1 the hypoadrenalism in Sham (11-DOC: 372.6 ± 36.6 ng/mL; corticosterone: 202.6 ± 15.6 ng/mL) and CCI-injured (11-DOC: 384.2 ± 101.3 ng/mL; corticosterone: 234.6 ± 43.8 ng/mL) animals. In Sham surgery animals, CLA did not alter body weight, but did markedly increase latency to find the hidden Morris Water Maze platform (40.3 ± 13.0 s) compared to saline treated Sham animals (8.8 ± 1.7 s). In CCI injured animals, CLA did not alter CCI-induced body weight loss, CCI-induced cystic infarct size, or deficits in rotarod performance. However, like Sham animals, CLA injections exacerbated the latency of CCI-injured rats to find the hidden MWM platform (66.8 ± 10.6 s) compared to CCI-injured rats treated with saline (30.7 ± 5.5 s, p CLA at a dose of 25 mg/kg body weight in adult male rats over 1

  1. Neurodynamics of somatosensory cortices studied by magnetoencephelography.

    Science.gov (United States)

    Kishida, Kuniharu

    2013-09-01

    From the viewpoint of statistical inverse problems, identification of transfer functions in feedback models is applied for neurodynamics of somatosensory cortices, and brain communication among active regions can be expressed in terms of transfer functions. However, brain activities have been investigated mainly by averaged waveforms in the conventional magnetoencephalography analysis, and thus brain communication among active regions has not yet been identified. It is shown that brain communication among two more than three brain regions is determined, when fluctuations related to concatenate averaged waveforms can be obtained by using a suitable blind source separation method. In blind identification of feedback model, some transfer functions or their impulse responses between output variables of current dipoles corresponding to active regions are identified from reconstructed time series data of fluctuations by the method of inverse problem. Neurodynamics of somatosensory cortices in 5 Hz median nerve stimuli can be shown by cerebral communication among active regions of somatosensory cortices in terms of impulse responses of feedback model.

  2. Functional mapping of thalamic nuclei and their integration into cortico-striatal-thalamo-cortical loops via ultra-high resolution imaging- From animal anatomy to in vivo imaging in humans

    Directory of Open Access Journals (Sweden)

    Coraline D. Metzger

    2013-05-01

    Full Text Available The thalamus, a crucial node in the well-described cortico-striatal-thalamo-cortical circuits, has been the focus of functional and structural imaging studies investigating human emotion, cognition and memory. Invasive work in animals and post-mortem investigations have revealed the rich cytoarchitectonics and functional specificity of the thalamus. Given current restrictions in the spatial resolution of non-invasive imaging modalities, there is, however, a translational gap between functional and structural information on these circuits in humans and animals as well as between histological and cellular evidence and their relationship to psychological functioning.With the advance of higher field strengths for MR approaches, better spatial resolution is now available promising to overcome this conceptual problem.We here review these two levels, which exist for both neuroscientific and clinical investigations, and then focus on current attempts to overcome conceptual boundaries of these observations with the help of high-resolution imaging.

  3. Functional mapping of thalamic nuclei and their integration into cortico-striatal-thalamo-cortical loops via ultra-high resolution imaging—from animal anatomy to in vivo imaging in humans

    Science.gov (United States)

    Metzger, Coraline D.; van der Werf, Ysbrand D.; Walter, Martin

    2013-01-01

    The thalamus, a crucial node in the well-described cortico-striatal-thalamo-cortical circuits, has been the focus of functional and structural imaging studies investigating human emotion, cognition and memory. Invasive work in animals and post-mortem investigations have revealed the rich cytoarchitectonics and functional specificity of the thalamus. Given current restrictions in the spatial resolution of non-invasive imaging modalities, there is, however, a translational gap between functional and structural information on these circuits in humans and animals as well as between histological and cellular evidence and their relationship to psychological functioning. With the advance of higher field strengths for MR approaches, better spatial resolution is now available promising to overcome this conceptual problem. We here review these two levels, which exist for both neuroscientific and clinical investigations, and then focus on current attempts to overcome conceptual boundaries of these observations with the help of ultra-high resolution imaging. PMID:23658535

  4. The ontogeny of the cortical language network.

    Science.gov (United States)

    Skeide, Michael A; Friederici, Angela D

    2016-05-01

    Language-processing functions follow heterogeneous developmental trajectories. The human embryo can already distinguish vowels in utero, but grammatical complexity is usually not fully mastered until at least 7 years of age. Examining the current literature, we propose that the ontogeny of the cortical language network can be roughly subdivided into two main developmental stages. In the first stage extending over the first 3 years of life, the infant rapidly acquires bottom-up processing capacities, which are primarily implemented bilaterally in the temporal cortices. In the second stage continuing into adolescence, top-down processes emerge gradually with the increasing functional selectivity and structural connectivity of the left inferior frontal cortex.

  5. Cortical thickness abnormalities in late adolescence with online gaming addiction.

    Directory of Open Access Journals (Sweden)

    Kai Yuan

    Full Text Available Online gaming addiction, as the most popular subtype of Internet addiction, had gained more and more attention from the whole world. However, the structural differences in cortical thickness of the brain between adolescents with online gaming addiction and healthy controls are not well unknown; neither was its association with the impaired cognitive control ability. High-resolution magnetic resonance imaging scans from late adolescence with online gaming addiction (n = 18 and age-, education- and gender-matched controls (n = 18 were acquired. The cortical thickness measurement method was employed to investigate alterations of cortical thickness in individuals with online gaming addiction. The color-word Stroop task was employed to investigate the functional implications of the cortical thickness abnormalities. Imaging data revealed increased cortical thickness in the left precentral cortex, precuneus, middle frontal cortex, inferior temporal and middle temporal cortices in late adolescence with online gaming addiction; meanwhile, the cortical thicknesses of the left lateral orbitofrontal cortex (OFC, insula, lingual gyrus, the right postcentral gyrus, entorhinal cortex and inferior parietal cortex were decreased. Correlation analysis demonstrated that the cortical thicknesses of the left precentral cortex, precuneus and lingual gyrus correlated with duration of online gaming addiction and the cortical thickness of the OFC correlated with the impaired task performance during the color-word Stroop task in adolescents with online gaming addiction. The findings in the current study suggested that the cortical thickness abnormalities of these regions may be implicated in the underlying pathophysiology of online gaming addiction.

  6. Cortical thickness abnormalities in late adolescence with online gaming addiction.

    Science.gov (United States)

    Yuan, Kai; Cheng, Ping; Dong, Tao; Bi, Yanzhi; Xing, Lihong; Yu, Dahua; Zhao, Limei; Dong, Minghao; von Deneen, Karen M; Liu, Yijun; Qin, Wei; Tian, Jie

    2013-01-01

    Online gaming addiction, as the most popular subtype of Internet addiction, had gained more and more attention from the whole world. However, the structural differences in cortical thickness of the brain between adolescents with online gaming addiction and healthy controls are not well unknown; neither was its association with the impaired cognitive control ability. High-resolution magnetic resonance imaging scans from late adolescence with online gaming addiction (n = 18) and age-, education- and gender-matched controls (n = 18) were acquired. The cortical thickness measurement method was employed to investigate alterations of cortical thickness in individuals with online gaming addiction. The color-word Stroop task was employed to investigate the functional implications of the cortical thickness abnormalities. Imaging data revealed increased cortical thickness in the left precentral cortex, precuneus, middle frontal cortex, inferior temporal and middle temporal cortices in late adolescence with online gaming addiction; meanwhile, the cortical thicknesses of the left lateral orbitofrontal cortex (OFC), insula, lingual gyrus, the right postcentral gyrus, entorhinal cortex and inferior parietal cortex were decreased. Correlation analysis demonstrated that the cortical thicknesses of the left precentral cortex, precuneus and lingual gyrus correlated with duration of online gaming addiction and the cortical thickness of the OFC correlated with the impaired task performance during the color-word Stroop task in adolescents with online gaming addiction. The findings in the current study suggested that the cortical thickness abnormalities of these regions may be implicated in the underlying pathophysiology of online gaming addiction.

  7. Selective Attention Enhances Beta-Band Cortical Oscillation to Speech under “Cocktail-Party” Listening Conditions

    Science.gov (United States)

    Gao, Yayue; Wang, Qian; Ding, Yu; Wang, Changming; Li, Haifeng; Wu, Xihong; Qu, Tianshu; Li, Liang

    2017-01-01

    Human listeners are able to selectively attend to target speech in a noisy environment with multiple-people talking. Using recordings of scalp electroencephalogram (EEG), this study investigated how selective attention facilitates the cortical representation of target speech under a simulated “cocktail-party” listening condition with speech-on-speech masking. The result shows that the cortical representation of target-speech signals under the multiple-people talking condition was specifically improved by selective attention relative to the non-selective-attention listening condition, and the beta-band activity was most strongly modulated by selective attention. Moreover, measured with the Granger Causality value, selective attention to the single target speech in the mixed-speech complex enhanced the following four causal connectivities for the beta-band oscillation: the ones (1) from site FT7 to the right motor area, (2) from the left frontal area to the right motor area, (3) from the central frontal area to the right motor area, and (4) from the central frontal area to the right frontal area. However, the selective-attention-induced change in beta-band causal connectivity from the central frontal area to the right motor area, but not other beta-band causal connectivities, was significantly correlated with the selective-attention-induced change in the cortical beta-band representation of target speech. These findings suggest that under the “cocktail-party” listening condition, the beta-band oscillation in EEGs to target speech is specifically facilitated by selective attention to the target speech that is embedded in the mixed-speech complex. The selective attention-induced unmasking of target speech may be associated with the improved beta-band functional connectivity from the central frontal area to the right motor area, suggesting a top-down attentional modulation of the speech-motor process. PMID:28239344

  8. SLEEP AND OLFACTORY CORTICAL PLASTICITY

    Directory of Open Access Journals (Sweden)

    Dylan eBarnes

    2014-04-01

    Full Text Available In many systems, sleep plays a vital role in memory consolidation and synaptic homeostasis. These processes together help store information of biological significance and reset synaptic circuits to facilitate acquisition of information in the future. In this review, we describe recent evidence of sleep-dependent changes in olfactory system structure and function which contribute to odor memory and perception. During slow-wave sleep, the piriform cortex becomes hypo-responsive to odor stimulation and instead displays sharp-wave activity similar to that observed within the hippocampal formation. Furthermore, the functional connectivity between the piriform cortex and other cortical and limbic regions is enhanced during slow-wave sleep compared to waking. This combination of conditions may allow odor memory consolidation to occur during a state of reduced external interference and facilitate association of odor memories with stored hedonic and contextual cues. Evidence consistent with sleep-dependent odor replay within olfactory cortical circuits is presented. These data suggest that both the strength and precision of odor memories is sleep-dependent. The work further emphasizes the critical role of synaptic plasticity and memory in not only odor memory but also basic odor perception. The work also suggests a possible link between sleep disturbances that are frequently co-morbid with a wide range of pathologies including Alzheimer’s disease, schizophrenia and depression and the known olfactory impairments associated with those disorders.

  9. Cortical myoclonus and cerebellar pathology

    NARCIS (Netherlands)

    Tijssen, MAJ; Thom, M; Ellison, DW; Wilkins, P; Barnes, D; Thompson, PD; Brown, P

    2000-01-01

    Objective To study the electrophysiologic and pathologic findings in three patients with cortical myoclonus. In two patients the myoclonic ataxic syndrome was associated with proven celiac disease. Background: The pathologic findings in conditions associated with cortical myoclonus commonly involve

  10. Cortical Abnormalities in ADHD

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2003-12-01

    Full Text Available Grey-matter abnormalities at the cortical surface and regional brain size were mapped by high-resolution MRI and surface-based, computational image analytical techniques in a group of 27 children and adolescents with attention deficit hyperactivity disorder (ADHD and 46 controls, matched by age and sex, at the University of California at Los Angeles.

  11. Cortical correlates of acquired deafness to dissonance.

    Science.gov (United States)

    Brattico, Elvira; Tervaniemi, Mari; Valimaki, Vesa; Van Zuijen, Titia; Peretz, Isabelle

    2003-11-01

    Patient I.R., who had bilateral lesions in the auditory cortex but intact hearing, did not distinguish dissonant from consonant musical excerpts in behavioral testing. We additionally found that the electrical brain responses did not differentiate musical intervals in terms of their dissonance/consonance, consistent with the idea that this phenomenon depends on the integrity of cortical functions.

  12. Cortical activation elicited by unrecognized stimuli

    Directory of Open Access Journals (Sweden)

    Badgaiyan Rajendra D

    2006-05-01

    Full Text Available Abstract Background It is unclear whether a stimulus that cannot be recognized consciously, could elicit a well-processed cognitive response. Methods We used functional imaging to examine the pattern of cortical activation elicited by unrecognized stimuli during memory processing. Subjects were given a recognition task using recognizable and non-recognizable subliminal stimuli. Results Unrecognized stimuli activated the cortical areas that are associated with retrieval attempt (left prefrontal, and novelty detection (left hippocampus. This indicates that the stimuli that were not consciously recognized, activated neural network associated with aspects of explicit memory processing. Conclusion Results suggest that conscious recognition of stimuli is not necessary for activation of cognitive processing.

  13. Análise da distribuição de potência cortical em função do aprendizado de datilografia Analisis da distribuición de potencia cortical en función del aprendizado de dactilografia Analysis of cortical power distribution as a function of the typewriting skill

    Directory of Open Access Journals (Sweden)

    Victor Hugo Bastos

    2004-12-01

    Full Text Available O objetivo do presente estudo foi investigar alterações nos padrões eletroencefalográficos de sujeitos normais e destros durante o aprendizado motor de uma tarefa manual. Estudos recentes têm demonstrado que o córtex cerebral é suscetível a modificações em vários aspectos durante a aprendizagem e que tais alterações nos padrões eletrocorticais são resultado da aquisição de habilidades motoras e consolidação de memória. Para tal, a atividade elétrica cortical dos sujeitos foi analisada antes e depois da prática motora. Os dados foram captados pelo Braintech 3000 e analisados pelo programa Neurometrics. Para a análise estatística, variáveis comportamentais tais como tempo e erro foram observadas através de uma ANOVA one-way, blocos como efeito principal. Na variável neurofisiológica, potência absoluta, foi utilizado um teste t pareado a fim de detectar alterações entre os momentos pré e pós-aprendizagem, e diferentes eletrodos, CZ-C3/CZ-C4 em teta e alfa, e O1-P3/T3-F7 em beta. Os resultados principais demonstraram mudança na performance através das variáveis tempo e número de erros. Concomitantemente, foi verificado aumento de potência na banda alfa sobre áreas centrais (CZ-C3/CZ-C4 e diminuição em beta localizada na área temporoparietal esquerda (O1-P3/T3-F7. Alterações na banda teta, como demonstradas em outros experimentos, não ocorreram neste estudo. Tais resultados sugerem uma adaptação do córtex sensório-motor em que a alteração da atividade elétrica cortical é condizente com uma transição ao automatismo motor.El objetivo del presente estudio fue el de investigar alteraciones en los padrones electroencefalográficos de sujetos normales y diestros durante el aprendizaje motor de una tarea manual Estudios recientes tienen demostrado que en el cortex cervical es susceptible a varias modificaciones en varios aspectos durante el aprendizaje, y que tales alteraciones en los padrones

  14. Gyrification from constrained cortical expansion

    CERN Document Server

    Tallinen, Tuomas; Biggins, John S; Mahadevan, L

    2015-01-01

    The exterior of the mammalian brain - the cerebral cortex - has a conserved layered structure whose thickness varies little across species. However, selection pressures over evolutionary time scales have led to cortices that have a large surface area to volume ratio in some organisms, with the result that the brain is strongly convoluted into sulci and gyri. Here we show that the gyrification can arise as a nonlinear consequence of a simple mechanical instability driven by tangential expansion of the gray matter constrained by the white matter. A physical mimic of the process using a layered swelling gel captures the essence of the mechanism, and numerical simulations of the brain treated as a soft solid lead to the formation of cusped sulci and smooth gyri similar to those in the brain. The resulting gyrification patterns are a function of relative cortical expansion and relative thickness (compared with brain size), and are consistent with observations of a wide range of brains, ranging from smooth to highl...

  15. Purely Cortical Anaplastic Ependymoma

    Directory of Open Access Journals (Sweden)

    Flávio Ramalho Romero

    2012-01-01

    Full Text Available Ependymomas are glial tumors derived from ependymal cells lining the ventricles and the central canal of the spinal cord. It may occur outside the ventricular structures, representing the extraventicular form, or without any relationship of ventricular system, called ectopic ependymona. Less than fifteen cases of ectopic ependymomas were reported and less than five were anaplastic. We report a rare case of pure cortical ectopic anaplastic ependymoma.

  16. Neural correlates of cognitive impairment in posterior cortical atrophy.

    Science.gov (United States)

    Kas, Aurélie; de Souza, Leonardo Cruz; Samri, Dalila; Bartolomeo, Paolo; Lacomblez, Lucette; Kalafat, Michel; Migliaccio, Raffaella; Thiebaut de Schotten, Michel; Cohen, Laurent; Dubois, Bruno; Habert, Marie-Odile; Sarazin, Marie

    2011-05-01

    With the prospect of disease-modifying drugs that will target the physiopathological process of Alzheimer's disease, it is now crucial to increase the understanding of the atypical focal presentations of Alzheimer's disease, such as posterior cortical atrophy. This study aimed to (i) characterize the brain perfusion profile in posterior cortical atrophy using regions of interest and a voxel-based approach; (ii) study the influence of the disease duration on the clinical and imaging profiles; and (iii) explore the correlations between brain perfusion and cognitive deficits. Thirty-nine patients with posterior cortical atrophy underwent a specific battery of neuropsychological tests, mainly targeting visuospatial functions, and a brain perfusion scintigraphy with 99mTc-ethyl cysteinate dimer. The imaging analysis included a comparison with a group of 24 patients with Alzheimer's disease, matched for age, disease duration and Mini-Mental State Examination, and 24 healthy controls. The single-photon emission computed tomography profile in patients with posterior cortical atrophy was characterized by extensive and severe hypoperfusion in the occipital, parietal, posterior temporal cortices and in a smaller cortical area corresponding to the frontal eye fields (Brodmann areas 6/8). Compared with patients with Alzheimer's disease, the group with posterior cortical atrophy showed more severe occipitoparietal hypoperfusion and higher perfusion in the frontal, anterior cingulate and mesiotemporal regions. When considering the disease duration, the functional changes began and remained centred on the posterior lobes, even in the late stage. Correlation analyses of brain perfusion and neuropsychological scores in posterior cortical atrophy highlighted the prominent role of left inferior parietal damage in acalculia, Gerstmann's syndrome, left-right indistinction and limb apraxia, whereas damage to the bilateral dorsal occipitoparietal regions appeared to be involved in B

  17. Malformations of cortical development and neocortical focus.

    Science.gov (United States)

    Luhmann, Heiko J; Kilb, Werner; Clusmann, Hans

    2014-01-01

    Developmental neocortical malformations resulting from abnormal neurogenesis, disturbances in programmed cell death, or neuronal migration disorders may cause a long-term hyperexcitability. Early generated Cajal-Retzius and subplate neurons play important roles in transient cortical circuits, and structural/functional disorders in early cortical development may induce persistent network disturbances and epileptic disorders. In particular, depolarizing GABAergic responses are important for the regulation of neurodevelopmental events, like neurogenesis or migration, while pathophysiological alterations in chloride homeostasis may cause epileptic activity. Although modern imaging techniques may provide an estimate of the structural lesion, the site and extent of the cortical malformation may not correlate with the epileptogenic zone. The neocortical focus may be surrounded by widespread molecular, structural, and functional disturbances, which are difficult to recognize with imaging technologies. However, modern imaging and electrophysiological techniques enable focused hypotheses of the neocortical epileptogenic zone, thus allowing more specific epilepsy surgery. Focal cortical malformation can be successfully removed with minimal rim, close to or even within eloquent cortex with a promising risk-benefit ratio.

  18. Reconstructing cortical current density by exploring sparseness in the transform domain.

    Science.gov (United States)

    Ding, Lei

    2009-05-07

    In the present study, we have developed a novel electromagnetic source imaging approach to reconstruct extended cortical sources by means of cortical current density (CCD) modeling and a novel EEG imaging algorithm which explores sparseness in cortical source representations through the use of L1-norm in objective functions. The new sparse cortical current density (SCCD) imaging algorithm is unique since it reconstructs cortical sources by attaining sparseness in a transform domain (the variation map of cortical source distributions). While large variations are expected to occur along boundaries (sparseness) between active and inactive cortical regions, cortical sources can be reconstructed and their spatial extents can be estimated by locating these boundaries. We studied the SCCD algorithm using numerous simulations to investigate its capability in reconstructing cortical sources with different extents and in reconstructing multiple cortical sources with different extent contrasts. The SCCD algorithm was compared with two L2-norm solutions, i.e. weighted minimum norm estimate (wMNE) and cortical LORETA. Our simulation data from the comparison study show that the proposed sparse source imaging algorithm is able to accurately and efficiently recover extended cortical sources and is promising to provide high-accuracy estimation of cortical source extents.

  19. Modulation of Cortical Oscillations by Low-Frequency Direct Cortical Stimulation Is State-Dependent.

    Directory of Open Access Journals (Sweden)

    Sankaraleengam Alagapan

    2016-03-01

    Full Text Available Cortical oscillations play a fundamental role in organizing large-scale functional brain networks. Noninvasive brain stimulation with temporally patterned waveforms such as repetitive transcranial magnetic stimulation (rTMS and transcranial alternating current stimulation (tACS have been proposed to modulate these oscillations. Thus, these stimulation modalities represent promising new approaches for the treatment of psychiatric illnesses in which these oscillations are impaired. However, the mechanism by which periodic brain stimulation alters endogenous oscillation dynamics is debated and appears to depend on brain state. Here, we demonstrate with a static model and a neural oscillator model that recurrent excitation in the thalamo-cortical circuit, together with recruitment of cortico-cortical connections, can explain the enhancement of oscillations by brain stimulation as a function of brain state. We then performed concurrent invasive recording and stimulation of the human cortical surface to elucidate the response of cortical oscillations to periodic stimulation and support the findings from the computational models. We found that (1 stimulation enhanced the targeted oscillation power, (2 this enhancement outlasted stimulation, and (3 the effect of stimulation depended on behavioral state. Together, our results show successful target engagement of oscillations by periodic brain stimulation and highlight the role of nonlinear interaction between endogenous network oscillations and stimulation. These mechanistic insights will contribute to the design of adaptive, more targeted stimulation paradigms.

  20. Lhx2 regulates the timing of β-catenin-dependent cortical neurogenesis.

    Science.gov (United States)

    Hsu, Lea Chia-Ling; Nam, Sean; Cui, Yi; Chang, Ching-Pu; Wang, Chia-Fang; Kuo, Hung-Chih; Touboul, Jonathan D; Chou, Shen-Ju

    2015-09-29

    The timing of cortical neurogenesis has a major effect on the size and organization of the mature cortex. The deletion of the LIM-homeodomain transcription factor Lhx2 in cortical progenitors by Nestin-cre leads to a dramatically smaller cortex. Here we report that Lhx2 regulates the cortex size by maintaining the cortical progenitor proliferation and delaying the initiation of neurogenesis. The loss of Lhx2 in cortical progenitors results in precocious radial glia differentiation and a temporal shift of cortical neurogenesis. We further investigated the underlying mechanisms at play and demonstrated that in the absence of Lhx2, the Wnt/β-catenin pathway failed to maintain progenitor proliferation. We developed and applied a mathematical model that reveals how precocious neurogenesis affected cortical surface and thickness. Thus, we concluded that Lhx2 is required for β-catenin function in maintaining cortical progenitor proliferation and controls the timing of cortical neurogenesis.

  1. Cerebellar cortical infarct cavities and vertebral artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Cocker, Laurens J.L. de [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Kliniek Sint-Jan Radiologie, Brussels (Belgium); Compter, A.; Kappelle, L.J.; Worp, H.B. van der [University Medical Center Utrecht, Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, Utrecht (Netherlands); Luijten, P.R.; Hendrikse, J. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands)

    2016-09-15

    Cerebellar cortical infarct cavities are a newly recognised entity associated with atherothromboembolic cerebrovascular disease and worse physical functioning. We aimed to investigate the relationship of cerebellar cortical infarct cavities with symptomatic vertebrobasilar ischaemia and with vascular risk factors. We evaluated the MR images of 46 patients with a recent vertebrobasilar TIA or stroke and a symptomatic vertebral artery stenosis ≥50 % from the Vertebral Artery Stenting Trial (VAST) for the presence of cerebellar cortical infarct cavities ≤1.5 cm. At inclusion in VAST, data were obtained on age, sex, history of vertebrobasilar TIA or stroke, and vascular risk factors. Adjusted risk ratios were calculated with Poisson regression analyses for the relation between cerebellar cortical infarct cavities and vascular risk factors. Sixteen out of 46 (35 %) patients showed cerebellar cortical infarct cavities on the initial MRI, and only one of these 16 patients was known with a previous vertebrobasilar TIA or stroke. In patients with symptomatic vertebrobasilar ischaemia, risk factor profiles of patients with cerebellar cortical infarct cavities were not different from patients without these cavities. Cerebellar cortical infarct cavities are seen on MRI in as much as one third of patients with recently symptomatic vertebral artery stenosis. Since patients usually have no prior history of vertebrobasilar TIA or stroke, cerebellar cortical infarct cavities should be added to the spectrum of common incidental brain infarcts visible on routine MRI. (orig.)

  2. The roles of cortical oscillations in sustained attention.

    Science.gov (United States)

    Clayton, Michael S; Yeung, Nick; Cohen Kadosh, Roi

    2015-04-01

    We rely on sustained attention to protect task performance against fatigue and distraction. Time-related variations in attention correlate with amplitude changes of specific cortical oscillations. However, the ways in which these oscillations might support sustained attention, how these oscillations are controlled, and the extent to which they influence one another remain unclear. We address this issue by proposing an oscillatory model of sustained attention. Within this framework, sustained attention relies on frontomedial theta oscillations, inter-areal communication via low-frequency phase synchronisation, and selective excitation and inhibition of cognitive processing through gamma and alpha oscillations, respectively. Sustained attention also relies on interactions between these oscillations across attention-related brain networks.

  3. Cortical source localization of infant cognition.

    Science.gov (United States)

    Reynolds, Greg D; Richards, John E

    2009-01-01

    Neuroimaging techniques such as positron emission topography (PET) and functional magnetic resonance imaging (fMRI) have been utilized with older children and adults to identify cortical sources of perceptual and cognitive processes. However, due to practical and ethical concerns, these techniques cannot be routinely applied to infant participants. An alternative to such neuroimaging techniques appropriate for use with infant participants is high-density electroencephalogram (EEG) recording and cortical source localization techniques. The current article provides an overview of a method developed for such analyses. The method consists of four steps: (1) recording high-density (e.g., 128-channel) EEG. (2) Analysis of individual participant raw segmented data with independent component analysis (ICA). (3) Estimation of equivalent current dipoles (ECDs) that represent cortical sources for the observed ICA component clusters. (4) Calculation of component activations in relation to experimental factors. We discuss an example of research applying this technique to investigate the development of visual attention and recognition memory. We also describe the application of "realistic head modeling" to address some of the current limitations of infant cortical source localization.

  4. The changing roles of neurons in the cortical subplate

    Directory of Open Access Journals (Sweden)

    Michael J Friedlander

    2009-08-01

    Full Text Available Neurons may serve different functions over the course of an organism’s life. Recent evidence suggests that cortical subplate neurons including those that reside in the white matter may perform longitudinal multi-tasking at different stages of development. These cells play a key role in early cortical development in coordinating thalamocortical reciprocal innervation. At later stages of development, they become integrated within the cortical microcircuitry. This type of longitudinal multi-tasking can enhance the capacity for information processing by populations of cells serving different functions over the lifespan. Subplate cells are initially derived when cells from the ventricular zone underlying the cortex migrate to the cortical preplate that is subsequently split by the differentiating neurons of the cortical plate with some neurons locating in the marginal zone and others settling below in the subplate (SP. While the cortical plate neurons form most of the cortical layers (layers 2-6, the marginal zone neurons form layer 1 and the SP neurons become interstitial cells of the white matter as well as forming a compact sublayer along the bottom of layer 6. After serving as transient innervation targets for thalamocortical axons, most of these cells die and layer 4 neurons become innervated by thalamic axons. However, 10-20% survives, remaining into adulthood along the bottom of layer 6 and as a scattered population of interstitial neurons in the white matter. Surviving subplate cells’ axons project throughout the overlying laminae, reaching layer 1 and issuing axon collaterals within white matter and in lower layer 6. This suggests that they participate in local synaptic networks, as well. Moreover, they receive excitatory and inhibitory synaptic inputs, potentially monitoring outputs from axon collaterals of cortical efferents, from cortical afferents and/or from each other. We explore our understanding of the functional connectivity of

  5. Early development of synchrony in cortical activations in the human.

    Science.gov (United States)

    Koolen, N; Dereymaeker, A; Räsänen, O; Jansen, K; Vervisch, J; Matic, V; Naulaers, G; De Vos, M; Van Huffel, S; Vanhatalo, S

    2016-05-13

    Early intermittent cortical activity is thought to play a crucial role in the growth of neuronal network development, and large scale brain networks are known to provide the basis for higher brain functions. Yet, the early development of the large scale synchrony in cortical activations is unknown. Here, we tested the hypothesis that the early intermittent cortical activations seen in the human scalp EEG show a clear developmental course during the last trimester of pregnancy, the period of intensive growth of cortico-cortical connections. We recorded scalp EEG from altogether 22 premature infants at post-menstrual age between 30 and 44 weeks, and the early cortical synchrony was quantified using recently introduced activation synchrony index (ASI). The developmental correlations of ASI were computed for individual EEG signals as well as anatomically and mathematically defined spatial subgroups. We report two main findings. First, we observed a robust and statistically significant increase in ASI in all cortical areas. Second, there were significant spatial gradients in the synchrony in fronto-occipital and left-to-right directions. These findings provide evidence that early cortical activity is increasingly synchronized across the neocortex. The ASI-based metrics introduced in our work allow direct translational comparison to in vivo animal models, as well as hold promise for implementation as a functional developmental biomarker in future research on human neonates.

  6. Cortical network reorganization guided by sensory input features.

    Science.gov (United States)

    Kilgard, Michael P; Pandya, Pritesh K; Engineer, Navzer D; Moucha, Raluca

    2002-12-01

    Sensory experience alters the functional organization of cortical networks. Previous studies using behavioral training motivated by aversive or rewarding stimuli have demonstrated that cortical plasticity is specific to salient inputs in the sensory environment. Sensory experience associated with electrical activation of the basal forebrain (BasF) generates similar input specific plasticity. By directly engaging plasticity mechanisms and avoiding extensive behavioral training, BasF stimulation makes it possible to efficiently explore how specific sensory features contribute to cortical plasticity. This review summarizes our observations that cortical networks employ a variety of strategies to improve the representation of the sensory environment. Different combinations of receptive-field, temporal, and spectrotemporal plasticity were generated in primary auditory cortex neurons depending on the pitch, modulation rate, and order of sounds paired with BasF stimulation. Simple tones led to map expansion, while modulated tones altered the maximum cortical following rate. Exposure to complex acoustic sequences led to the development of combination-sensitive responses. This remodeling of cortical response characteristics may reflect changes in intrinsic cellular mechanisms, synaptic efficacy, and local neuronal connectivity. The intricate relationship between the pattern of sensory activation and cortical plasticity suggests that network-level rules alter the functional organization of the cortex to generate the most behaviorally useful representation of the sensory environment.

  7. Early development of synchrony in cortical activations in the human

    Science.gov (United States)

    Koolen, N.; Dereymaeker, A.; Räsänen, O.; Jansen, K.; Vervisch, J.; Matic, V.; Naulaers, G.; De Vos, M.; Van Huffel, S.; Vanhatalo, S.

    2016-01-01

    Early intermittent cortical activity is thought to play a crucial role in the growth of neuronal network development, and large scale brain networks are known to provide the basis for higher brain functions. Yet, the early development of the large scale synchrony in cortical activations is unknown. Here, we tested the hypothesis that the early intermittent cortical activations seen in the human scalp EEG show a clear developmental course during the last trimester of pregnancy, the period of intensive growth of cortico-cortical connections. We recorded scalp EEG from altogether 22 premature infants at post-menstrual age between 30 and 44 weeks, and the early cortical synchrony was quantified using recently introduced activation synchrony index (ASI). The developmental correlations of ASI were computed for individual EEG signals as well as anatomically and mathematically defined spatial subgroups. We report two main findings. First, we observed a robust and statistically significant increase in ASI in all cortical areas. Second, there were significant spatial gradients in the synchrony in fronto-occipital and left-to-right directions. These findings provide evidence that early cortical activity is increasingly synchronized across the neocortex. The ASI-based metrics introduced in our work allow direct translational comparison to in vivo animal models, as well as hold promise for implementation as a functional developmental biomarker in future research on human neonates. PMID:26876605

  8. Perceptual incongruence influences bistability and cortical activation.

    Directory of Open Access Journals (Sweden)

    Gijs Joost Brouwer

    Full Text Available We employed a parametric psychophysical design in combination with functional imaging to examine the influence of metric changes in perceptual incongruence on perceptual alternation rates and cortical responses. Subjects viewed a bistable stimulus defined by incongruent depth cues; bistability resulted from incongruence between binocular disparity and monocular perspective cues that specify different slants (slant rivalry. Psychophysical results revealed that perceptual alternation rates were positively correlated with the degree of perceived incongruence. Functional imaging revealed systematic increases in activity that paralleled the psychophysical results within anterior intraparietal sulcus, prior to the onset of perceptual alternations. We suggest that this cortical activity predicts the frequency of subsequent alternations, implying a putative causal role for these areas in initiating bistable perception. In contrast, areas implicated in form and depth processing (LOC and V3A were sensitive to the degree of slant, but failed to show increases in activity when these cues were in conflict.

  9. Abnormalities of fixation, saccade and pursuit in posterior cortical atrophy.

    Science.gov (United States)

    Shakespeare, Timothy J; Kaski, Diego; Yong, Keir X X; Paterson, Ross W; Slattery, Catherine F; Ryan, Natalie S; Schott, Jonathan M; Crutch, Sebastian J

    2015-07-01

    The clinico-neuroradiological syndrome posterior cortical atrophy is the cardinal 'visual dementia' and most common atypical Alzheimer's disease phenotype, offering insights into mechanisms underlying clinical heterogeneity, pathological propagation and basic visual phenomena (e.g. visual crowding). Given the extensive attention paid to patients' (higher order) perceptual function, it is surprising that there have been no systematic analyses of basic oculomotor function in this population. Here 20 patients with posterior cortical atrophy, 17 patients with typical Alzheimer's disease and 22 healthy controls completed tests of fixation, saccade (including fixation/target gap and overlap conditions) and smooth pursuit eye movements using an infrared pupil-tracking system. Participants underwent detailed neuropsychological and neurological examinations, with a proportion also undertaking brain imaging and analysis of molecular pathology. In contrast to informal clinical evaluations of oculomotor dysfunction frequency (previous studies: 38%, current clinical examination: 33%), detailed eyetracking investigations revealed eye movement abnormalities in 80% of patients with posterior cortical atrophy (compared to 17% typical Alzheimer's disease, 5% controls). The greatest differences between posterior cortical atrophy and typical Alzheimer's disease were seen in saccadic performance. Patients with posterior cortical atrophy made significantly shorter saccades especially for distant targets. They also exhibited a significant exacerbation of the normal gap/overlap effect, consistent with 'sticky fixation'. Time to reach saccadic targets was significantly associated with parietal and occipital cortical thickness measures. On fixation stability tasks, patients with typical Alzheimer's disease showed more square wave jerks whose frequency was associated with lower cerebellar grey matter volume, while patients with posterior cortical atrophy showed large saccadic intrusions

  10. Cortical inactivation by cooling in small animals

    Directory of Open Access Journals (Sweden)

    Ben eCoomber

    2011-06-01

    Full Text Available Reversible inactivation of the cortex by surface cooling is a powerful method for studying the function of a particular area. Implanted cooling cryoloops have been used to study the role of individual cortical areas in auditory processing of awake-behaving cats. Cryoloops have also been used in rodents for reversible inactivation of the cortex, but recently there has been a concern that the cryoloop may also cool non-cortical structures either directly or via the perfusion of blood, cooled as it passed close to the cooling loop. In this study we have confirmed that the loop can inactivate most of the auditory cortex without causing a significant reduction in temperature of the auditory thalamus or other sub-cortical structures. We placed a cryoloop on the surface of the guinea pig cortex, cooled it to 2°C and measured thermal gradients across the neocortical surface. We found that the temperature dropped to 20-24°C among cells within a radius of about 2.5mm away from the loop. This temperature drop was sufficient to reduce activity of most cortical cells and led to the inactivation of almost the entire auditory region. When the temperature of thalamus, midbrain, and middle ear were measured directly during cortical cooling, there was a small drop in temperature (about 4°C but this was not sufficient to directly reduce neural activity. In an effort to visualise the extent of neural inactivation we measured the uptake of thallium ions following an intravenous injection. This confirmed that there was a large reduction of activity across much of the ipsilateral cortex and only a small reduction in subcortical structures.

  11. Cortico-cortical communication dynamics

    Directory of Open Access Journals (Sweden)

    Per E Roland

    2014-05-01

    Full Text Available IIn principle, cortico-cortical communication dynamics is simple: neurons in one cortical area communicate by sending action potentials that release glutamate and excite their target neurons in other cortical areas. In practice, knowledge about cortico-cortical communication dynamics is minute. One reason is that no current technique can capture the fast spatio-temporal cortico-cortical evolution of action potential transmission and membrane conductances with sufficient spatial resolution. A combination of optogenetics and monosynaptic tracing with virus can reveal the spatio-temporal cortico-cortical dynamics of specific neurons and their targets, but does not reveal how the dynamics evolves under natural conditions. Spontaneous ongoing action potentials also spread across cortical areas and are difficult to separate from structured evoked and intrinsic brain activity such as thinking. At a certain state of evolution, the dynamics may engage larger populations of neurons to drive the brain to decisions, percepts and behaviors. For example, successfully evolving dynamics to sensory transients can appear at the mesoscopic scale revealing how the transient is perceived. As a consequence of these methodological and conceptual difficulties, studies in this field comprise a wide range of computational models, large-scale measurements (e.g., by MEG, EEG, and a combination of invasive measurements in animal experiments. Further obstacles and challenges of studying cortico-cortical communication dynamics are outlined in this critical review.

  12. Self-Referential Thinking, Suicide, and Function of the Cortical Midline Structures and Striatum in Mood Disorders: Possible Implications for Treatment Studies of Mindfulness-Based Interventions for Bipolar Depression

    Directory of Open Access Journals (Sweden)

    William R. Marchand

    2012-01-01

    Full Text Available Bipolar depression is often refractory to treatment and is frequently associated with anxiety symptoms and elevated suicide risk. There is a great need for adjunctive psychotherapeutic interventions. Treatments with effectiveness for depressive and anxiety symptoms as well as suicide-related thoughts and behaviors would be particularly beneficial. Mindfulness-based interventions hold promise, and studies of these approaches for bipolar disorder are warranted. The aim of this paper is to provide a conceptual background for such studies by reviewing key findings from diverse lines of investigation. Results of that review indicate that cortical midline structures (CMS appear to link abnormal self-referential thinking to emotional dysregulation in mood disorders. Furthermore, CMS and striatal dysfunction may play a role in the neuropathology underlying suicide-related thoughts and behaviors. Thus, combining studies of mindfulness interventions targeting abnormal self-referential thinking with functional imaging of CMS and striatal function may help delineate the neurobiological mechanisms of action of these treatments.

  13. Serotonin modulation of cortical neurons and networks

    Directory of Open Access Journals (Sweden)

    Pau eCelada

    2013-04-01

    Full Text Available The serotonergic pathways originating in the dorsal and median raphe nuclei (DR and MnR, respectively are critically involved in cortical function. Serotonin (5-HT, acting on postsynaptic and presynaptic receptors, is involved in cognition, mood, impulse control and motor functions by 1 modulating the activity of different neuronal types, and 2 varying the release of other neurotransmitters, such as glutamate, GABA, acetylcholine and dopamine. Also, 5-HT seems to play an important role in cortical development. Of all cortical regions, the frontal lobe is the area most enriched in serotonergic axons and 5-HT receptors. 5-HT and selective receptor agonists modulate the excitability of cortical neurons and their discharge rate through the activation of several receptor subtypes, of which the 5-HT1A, 5-HT1B, 5-HT2A and 5-HT3 subtypes play a major role. Little is known, however, on the role of other excitatory receptors moderately expressed in cortical areas, such as 5-HT2C, 5-HT4, 5-HT6 and 5-HT7. In vitro and in vivo studies suggest that 5-HT1A and 5-HT2A receptors are key players and exert opposite effects on the activity of pyramidal neurons in the medial prefrontal cortex (mPFC. The activation of 5-HT1A receptors in mPFC hyperpolarizes pyramidal neurons whereas that of 5-HT2A receptors results in neuronal depolarization, reduction of the afterhyperpolarization and increase of excitatory postsynaptic currents (EPSCs and of discharge rate. 5-HT can also stimulate excitatory (5-HT2A and 5-HT3 and inhibitory (5-HT1A receptors in GABA interneurons to modulate synaptic GABA inputs onto pyramidal neurons. Likewise, the pharmacological manipulation of various 5-HT receptors alters oscillatory activity in PFC, suggesting that 5-HT is also involved in the control of cortical network activity. A better understanding of the actions of 5-HT in PFC may help to develop treatments for mood and cognitive disorders associated with an abnormal function of the

  14. Hiperostosis cortical infantil

    OpenAIRE

    Salvador Javier Santos Medina; Orelvis Pérez Duerto

    2015-01-01

    La enfermedad de Caffey, o hiperostosis cortical infantil, es una rara enfermedad ósea autolimitada, que aparece de preferencia en lactantes con signos inespecíficos sistémicos; el más relevante es la reacción subperióstica e hiperostosis en varios huesos del cuerpo, con predilección en el 75-80 % de los casos por la mandíbula. Su pronóstico es bueno, la mayoría no deja secuelas. El propósito del presente trabajo es describir las características clínicas, presentes en un lactante de cinco mes...

  15. Time-Constrained Functional Connectivity Analysis of Cortical Networks Underlying Phonological Decoding in Typically Developing School-Aged Children: A Magnetoencephalography Study

    Science.gov (United States)

    Simos, Panagiotis G.; Rezaie, Roozbeh; Fletcher, Jack M.; Papanicolaou, Andrew C.

    2013-01-01

    The study investigated functional associations between left hemisphere occipitotemporal, temporoparietal, and inferior frontal regions during oral pseudoword reading in 58 school-aged children with typical reading skills (aged 10.4 [plus or minus] 1.6, range 7.5-12.5 years). Event-related neuromagnetic data were used to compute source-current…

  16. Somatostatin-expressing inhibitory interneurons in cortical circuits

    Directory of Open Access Journals (Sweden)

    Iryna Yavorska

    2016-09-01

    Full Text Available Cortical inhibitory neurons exhibit remarkable diversity in their morphology, connectivity, and synaptic properties. Here, we review the function of somatostatin-expressing (SOM inhibitory interneurons, focusing largely on sensory cortex. SOM neurons also comprise a number of subpopulations that can be distinguished by their morphology, input and output connectivity, laminar location, firing properties, and expression of molecular markers. Several of these classes of SOM neurons show unique dynamics and characteristics, such as facilitating synapses, specific axonal projections, intralaminar input, and top-down modulation, which suggest possible computational roles. SOM cells can be differentially modulated by behavioral state depending on their class, sensory system, and behavioral paradigm. The functional effects of such modulation have been studied with optogenetic manipulation of SOM cells, which produces effects on learning and memory, task performance, and the integration of cortical activity. Different classes of SOM cells participate in distinct disinhibitory circuits with different inhibitory partners and in different cortical layers. Through these disinhibitory circuits, SOM cells help encode the behavioral relevance of sensory stimuli by regulating the activity of cortical neurons based on subcortical and intracortical modulatory input. Associative learning leads to long-term changes in the strength of connectivity of SOM cells with other neurons, often influencing the strength of inhibitory input they receive. Thus despite their heterogeneity and variability across cortical areas, current evidence shows that SOM neurons perform unique neural computations, forming not only distinct molecular but also functional subclasses of cortical inhibitory interneurons.

  17. Cegueira cortical: relato de dois casos clínicos Cortical blindness: report of two cases

    Directory of Open Access Journals (Sweden)

    Raquel de Lima e Silva

    2001-06-01

    Full Text Available O objetivo deste trabalho é relatar dois casos de cegueira cortical atendidos no serviço de urgência da Clínica de Olhos da Santa Casa de Belo Horizonte. A cegueira cortical é uma condição clínica rara e bilateral, de causa isquêmica, caracterizada por lesão no córtex cerebral. Nos presentes casos, o diagnóstico foi feito pela sintomatologia clínica, pelos achados oftalmológicos e pelas alterações obtidas por imagem. Em ambos houve evolução rápida da doença, com perda visual súbita importante. O acompanhamento oftalmológico não revelou melhora significativa da acuidade visual final. A baixa acuidade visual é um sinal importante em oftalmologia e deve ser avaliada com cautela e atenção, visto que pode ser causada pela cegueira cortical, condição rara, grave e ainda pouco estudada no nosso meio.The aim of this work is to report two cases of cortical blindness, evaluated at an ophthalmologic service (Clínica de Olhos da Santa Casa de Belo Horizonte. Cortical blindness is a rare, usually ischemic, bilateral retrogeniculate lesion. The two diagnoses were based on patient complaints, ophthalmologic data and image signs. Both patients suddenly lost their visual function. None presented a significant improvement in their final vision acuity during the evolution. Subnormal visual acuity is an important ophthalmologic sign that must be seen with concern and attention since it may be caused by cortical blindness, a rare and serious condition not yet well studied in our Country.

  18. Neuregulin 3 Mediates Cortical Plate Invasion and Laminar Allocation of GABAergic Interneurons

    Directory of Open Access Journals (Sweden)

    Giorgia Bartolini

    2017-01-01

    Full Text Available Neural circuits in the cerebral cortex consist of excitatory pyramidal cells and inhibitory interneurons. These two main classes of cortical neurons follow largely different genetic programs, yet they assemble into highly specialized circuits during development following a very precise choreography. Previous studies have shown that signals produced by pyramidal cells influence the migration of cortical interneurons, but the molecular nature of these factors has remained elusive. Here, we identified Neuregulin 3 (Nrg3 as a chemoattractive factor expressed by developing pyramidal cells that guides the allocation of cortical interneurons in the developing cortical plate. Gain- and loss-of-function approaches reveal that Nrg3 modulates the migration of interneurons into the cortical plate in a process that is dependent on the tyrosine kinase receptor ErbB4. Perturbation of Nrg3 signaling in conditional mutants leads to abnormal lamination of cortical interneurons. Nrg3 is therefore a critical mediator in the assembly of cortical inhibitory circuits.

  19. Restricted cortical and amygdaloid removal of vesicular glutamate transporter 2 in preadolescent mice impacts dopaminergic activity and neuronal circuitry of higher brain function.

    Science.gov (United States)

    Wallén-Mackenzie, Asa; Nordenankar, Karin; Fejgin, Kim; Lagerström, Malin C; Emilsson, Lina; Fredriksson, Robert; Wass, Caroline; Andersson, Daniel; Egecioglu, Emil; Andersson, My; Strandberg, Joakim; Lindhe, Orjan; Schiöth, Helgi B; Chergui, Karima; Hanse, Eric; Långström, Bengt; Fredriksson, Anders; Svensson, Lennart; Roman, Erika; Kullander, Klas

    2009-02-18

    A major challenge in neuroscience is to resolve the connection between gene functionality, neuronal circuits, and behavior. Most, if not all, neuronal circuits of the adult brain contain a glutamatergic component, the nature of which has been difficult to assess because of the vast cellular abundance of glutamate. In this study, we wanted to determine the role of a restricted subpopulation of glutamatergic neurons within the forebrain, the Vglut2-expressing neurons, in neuronal circuitry of higher brain function. Vglut2 expression was selectively deleted in the cortex, hippocampus, and amygdala of preadolescent mice, which resulted in increased locomotor activity, altered social dominance and risk assessment, decreased sensorimotor gating, and impaired long-term spatial memory. Presynaptic VGLUT2-positive terminals were lost in the cortex, striatum, nucleus accumbens, and hippocampus, and a downstream effect on dopamine binding site availability in the striatum was evident. A connection between the induced late-onset, chronic reduction of glutamatergic neurotransmission and dopamine signaling within the circuitry was further substantiated by a partial attenuation of the deficits in sensorimotor gating by the dopamine-stabilizing antipsychotic drug aripiprazole and an increased sensitivity to amphetamine. Somewhat surprisingly, given the restricted expression of Vglut2 in regions responsible for higher brain function, our analyses show that VGLUT2-mediated neurotransmission is required for certain aspects of cognitive, emotional, and social behavior. The present study provides support for the existence of a neurocircuitry that connects changes in VGLUT2-mediated neurotransmission to alterations in the dopaminergic system with schizophrenia-like behavioral deficits as a major outcome.

  20. Evaluation of cortical plasticity in children with cerebral palsy undergoing constraint-induced movement therapy based on functional near-infrared spectroscopy

    Science.gov (United States)

    Cao, Jianwei; Khan, Bilal; Hervey, Nathan; Tian, Fenghua; Delgado, Mauricio R.; Clegg, Nancy J.; Smith, Linsley; Roberts, Heather; Tulchin-Francis, Kirsten; Shierk, Angela; Shagman, Laura; MacFarlane, Duncan; Liu, Hanli; Alexandrakis, George

    2015-04-01

    Sensorimotor cortex plasticity induced by constraint-induced movement therapy (CIMT) in six children (10.2±2.1 years old) with hemiplegic cerebral palsy was assessed by functional near-infrared spectroscopy (fNIRS). The activation laterality index and time-to-peak/duration during a finger-tapping task and the resting-state functional connectivity were quantified before, immediately after, and 6 months after CIMT. These fNIRS-based metrics were used to help explain changes in clinical scores of manual performance obtained concurrently with imaging time points. Five age-matched healthy children (9.8±1.3 years old) were also imaged to provide comparative activation metrics for normal controls. Interestingly, the activation time-to-peak/duration for all sensorimotor centers displayed significant normalization immediately after CIMT that persisted 6 months later. In contrast to this improved localized activation response, the laterality index and resting-state connectivity metrics that depended on communication between sensorimotor centers improved immediately after CIMT, but relapsed 6 months later. In addition, for the subjects measured in this work, there was either a trade-off between improving unimanual versus bimanual performance when sensorimotor activation patterns normalized after CIMT, or an improvement occurred in both unimanual and bimanual performance but at the cost of very abnormal plastic changes in sensorimotor activity.

  1. Distinct recurrent versus afferent dynamics in cortical visual processing.

    Science.gov (United States)

    Reinhold, Kimberly; Lien, Anthony D; Scanziani, Massimo

    2015-12-01

    How intracortical recurrent circuits in mammalian sensory cortex influence dynamics of sensory representation is not understood. Previous methods could not distinguish the relative contributions of recurrent circuits and thalamic afferents to cortical dynamics. We accomplish this by optogenetically manipulating thalamus and cortex. Over the initial 40 ms of visual stimulation, excitation from recurrent circuits in visual cortex progressively increased to exceed direct thalamocortical excitation. Even when recurrent excitation exceeded thalamic excitation, upon silencing thalamus, sensory-evoked activity in cortex decayed rapidly, with a time constant of 10 ms, which is similar to a neuron's integration time window. In awake mice, this cortical decay function predicted the time-locking of cortical activity to thalamic input at frequencies thalamocortical synapses disrupted the fidelity of sensory transmission. Thus, we determine dynamics intrinsic to cortical recurrent circuits that transform afferent input in time.

  2. Methylphenidate improves prefrontal cortical cognitive function through α2 adrenoceptor and dopamine D1 receptor actions: Relevance to therapeutic effects in Attention Deficit Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Dudley Anne G

    2005-04-01

    Full Text Available Abstract Background Methylphenidate (MPH is the classic treatment for Attention Deficit Hyperactivity Disorder (ADHD, yet the mechanisms underlying its therapeutic actions remain unclear. Recent studies have identified an oral, MPH dose regimen which when given to rats produces drug plasma levels similar to those measured in humans. The current study examined the effects of these low, orally-administered doses of MPH in rats performing a delayed alternation task dependent on prefrontal cortex (PFC, a brain region that is dysfunctional in ADHD, and is highly sensitive to levels of catecholamines. The receptor mechanisms underlying the enhancing effects of MPH were explored by challenging the MPH response with the noradrenergic α2 adrenoceptor antagonist, idazoxan, and the dopamine D1 antagonist, SCH23390. Results MPH produced an inverted U dose response whereby moderate doses (1.0–2.0 mg/kg, p.o. significantly improved delayed alternation performance, while higher doses (2.0–3.0 mg/kg, p.o. produced perseverative errors in many animals. The enhancing effects of MPH were blocked by co-administration of either the α2 adrenoceptor antagonist, idazoxan, or the dopamine D1 antagonist, SCH23390, in doses that had no effect on their own. Conclusion The administration of low, oral doses of MPH to rats has effects on PFC cognitive function similar to those seen in humans and patients with ADHD. The rat can thus be used as a model for examination of neural mechanisms underlying the therapeutic effects of MPH on executive functions in humans. The efficacy of idazoxan and SCH23390 in reversing the beneficial effects of MPH indicate that both noradrenergic α2 adrenoceptor and dopamine D1 receptor stimulation contribute to cognitive-enhancing effects of MPH.

  3. Relating Cortical Wave Dynamics to Learning and Remembering

    Directory of Open Access Journals (Sweden)

    Eduardo Mercado III

    2014-12-01

    Full Text Available Electrical waves propagate across sensory and motor cortices in stereotypical patterns. These waves have been described as potentially facilitating sensory processing when they travel through sensory cortex, as guiding movement preparation and performance when they travel across motor cortex, and as possibly promoting synaptic plasticity and the consolidation of memory traces, especially during sleep. Here, an alternative theoretical framework is suggested that integrates Pavlovian hypotheses about learning and cortical function with concepts from contemporary proceduralist theories of memory. The proposed framework postulates that sensory-evoked cortical waves are gradually modified across repeated experiences such that the waves more effectively differentiate sensory events, and so that the waves are more likely to reverberate. It is argued that the qualities of cortical waves—their origins, form, intensity, speed, periodicity, extent, and trajectories —are a function of both the structural organization of neural circuits and ongoing reverberations resulting from previously experienced events. It is hypothesized that experience-dependent cortical plasticity, both in the short- and long-term, modulates the qualities of cortical waves, thereby enabling individuals to make progressively more precise distinctions between complex sensory events, and to reconstruct components of previously experienced events. Unlike most current neurobiological theories of learning and memory mechanisms, this hypothesis does not assume that synaptic plasticity, or any other form of neural plasticity, serves to store physical records of previously experienced events for later reactivation. Rather, the reorganization of cortical circuits may alter the potential for certain wave patterns to arise and persist. Understanding what factors determine the spatiotemporal dynamics of cortical waves, how structural changes affect their qualities, and how wave dynamics

  4. Neuronal correlates to consciousness. The "Hall of Mirrors" metaphor describing consciousness as an epiphenomenon of multiple dynamic mosaics of cortical functional modules.

    Science.gov (United States)

    Agnati, Luigi Francesco; Guidolin, Diego; Cortelli, Pietro; Genedani, Susanna; Cela-Conde, Camilo; Fuxe, Kjell

    2012-10-01

    Humans share the common intuition of a self that has access to an inner 'theater of mind' (Baars, 2003). The problem is how this internal theater is formed. Moving from Cook's view (Cook, 2008), we propose that the 'sentience' present in single excitable cells is integrated into units of neurons and glial cells transiently assembled into "functional modules" (FMs) organized as systems of encased networks (from cell networks to molecular networks). In line with Hebb's proposal of 'cell assemblies', FMs can be linked to form higher-order mosaics by means of reverberating circuits. Brain-level subjective awareness results from the binding phenomenon that coordinates several FM mosaics. Thus, consciousness may be thought as the global result of integrative processes taking place at different levels of miniaturization in plastic mosaics. On the basis of these neurobiological data and speculations and of the evidence of 'mirror neurons' the 'Hall of Mirrors' is proposed as a significant metaphor of consciousness. This article is part of a Special Issue entitled: Brain Integration.

  5. Analysis of Cortical Flow Models In Vivo

    Science.gov (United States)

    Benink, Hélène A.; Mandato, Craig A.; Bement, William M.

    2000-01-01

    Cortical flow, the directed movement of cortical F-actin and cortical organelles, is a basic cellular motility process. Microtubules are thought to somehow direct cortical flow, but whether they do so by stimulating or inhibiting contraction of the cortical actin cytoskeleton is the subject of debate. Treatment of Xenopus oocytes with phorbol 12-myristate 13-acetate (PMA) triggers cortical flow toward the animal pole of the oocyte; this flow is suppressed by microtubules. To determine how this suppression occurs and whether it can control the direction of cortical flow, oocytes were subjected to localized manipulation of either the contractile stimulus (PMA) or microtubules. Localized PMA application resulted in redirection of cortical flow toward the site of application, as judged by movement of cortical pigment granules, cortical F-actin, and cortical myosin-2A. Such redirected flow was accelerated by microtubule depolymerization, showing that the suppression of cortical flow by microtubules is independent of the direction of flow. Direct observation of cortical F-actin by time-lapse confocal analysis in combination with photobleaching showed that cortical flow is driven by contraction of the cortical F-actin network and that microtubules suppress this contraction. The oocyte germinal vesicle serves as a microtubule organizing center in Xenopus oocytes; experimental displacement of the germinal vesicle toward the animal pole resulted in localized flow away from the animal pole. The results show that 1) cortical flow is directed toward areas of localized contraction of the cortical F-actin cytoskeleton; 2) microtubules suppress cortical flow by inhibiting contraction of the cortical F-actin cytoskeleton; and 3) localized, microtubule-dependent suppression of actomyosin-based contraction can control the direction of cortical flow. We discuss these findings in light of current models of cortical flow. PMID:10930453

  6. A light and electron microscopic analysis of the convergent insular cortical and amygdaloid projections to the posterior lateral hypothalamus in the rat, with special reference to cardiovascular function.

    Science.gov (United States)

    Tsumori, Toshiko; Yokota, Shigefumi; Qin, Yi; Oka, Tatsuro; Yasui, Yukihiko

    2006-11-01

    The synaptic organization between and among the insular cortex (IC) axons, central amygdaloid nucleus (ACe) axons and posterolateral hypothalamus (PLH) neurons was investigated in the rat using double anterograde tracing and anterograde tracing combined with postembedding immunogold analysis. After ipsilateral injections of biotinylated dextran amine (BDA) into the IC and Phaseolus vulgaris-leucoagglutinin (PHA-L) into the ACe, the conspicuous overlapping distribution of BDA-labeled axon terminals and PHA-L-labeled axon terminals was found in the PLH region just medial to the subthalamic nucleus ipsilateral to the injection sites. At the electron microscopic level, approximately two-thirds of the IC terminals made synapses with small-sized dendrites and the rest did with dendritic spines of the PLH neurons, whereas about 79%, 16% and 5% of the ACe terminals established synapses with small- to medium-sized dendrites, somata, and dendritic spines, respectively, of the PLH neurons. In addition, the IC axon terminals contained densely packed round clear vesicles and their synapses were of asymmetrical type. On the other hand, most of the ACe terminals contained not only pleomorphic clear vesicles but also dense-cored vesicles and their synapses were of symmetrical type although some ACe terminals contained densely packed round clear vesicles and formed asymmetrical synapses. Most of the postsynaptic elements received synaptic inputs from the IC or ACe terminals, and some of single postsynaptic elements received convergent synaptic inputs from both sets of terminals. Furthermore, almost all the ACe terminals were revealed to be immunoreactive for gamma-aminobutyric acid (GABA), by using the anterograde BDA tracing technique combined with immunohistochemistry for GABA. The present data suggest that single PLH neurons are under the excitatory influence of the IC and/or inhibitory influence of the ACe in the circuitry involved in the regulation of cardiovascular functions.

  7. Correlation of prefrontal cortical activation with changing vehicle speeds in actual driving: a vector-based functional near-infrared spectroscopy study

    Directory of Open Access Journals (Sweden)

    Kayoko eYoshino

    2013-12-01

    Full Text Available Traffic accidents occur more frequently during deceleration than during acceleration. However, little is known about the relationship between brain activation and vehicle acceleration because it has been difficult to measure the brain activation of drivers while they drive. In this study, we measured brain activation during actual driving using vector-based functional near-infrared spectroscopy. Subjects decelerated from 100 to 50 km/h (speed reduction task and accelerated from 50 to 100 km/h (speed increase task while driving on an expressway, in the daytime and at night. We examined correlations between average vehicle acceleration in each task and five hemodynamic indices: changes in oxygenated hemoglobin (ΔoxyHb, deoxygenated hemoglobin (ΔdeoxyHb, cerebral blood volume (ΔCBV, and cerebral oxygen exchange (ΔCOE; and the phase angle k (degrees derived from the other hemoglobin (Hb indices. ΔoxyHb and ΔCBV reflect changes in cerebral blood flow, whereas ΔdeoxyHb, ΔCOE, and k are related to variations in cerebral oxygen metabolism. Most of the resulting correlations with specific brain sites, for all the indices, appeared during deceleration rather than during acceleration. Faster deceleration resulted in greater increases in ΔdeoxyHb, ΔCOE, and k in the prefrontal cortex (r 0.4, p < 0.01, suggesting oxygen metabolism associated with transient ischemic changes. Our results suggest that vehicle deceleration requires more brain activation, focused in the prefrontal cortex, than does acceleration. From the standpoint of the indices used, we found that simultaneous analysis of multiple hemodynamic indices was able to detect not only the blood flow components of hemodynamic responses, but also more localized frontal lobe activation involving oxygen metabolism.

  8. Hiperostosis cortical infantil

    Directory of Open Access Journals (Sweden)

    Salvador Javier Santos Medina

    2015-04-01

    Full Text Available La enfermedad de Caffey, o hiperostosis cortical infantil, es una rara enfermedad ósea autolimitada, que aparece de preferencia en lactantes con signos inespecíficos sistémicos; el más relevante es la reacción subperióstica e hiperostosis en varios huesos del cuerpo, con predilección en el 75-80 % de los casos por la mandíbula. Su pronóstico es bueno, la mayoría no deja secuelas. El propósito del presente trabajo es describir las características clínicas, presentes en un lactante de cinco meses de edad, atendido en el Hospital Pediátrico Provincial “Mártires de Las Tunas” con este diagnóstico, quien ingresó en el servicio de miscelánea B por una celulitis facial. Presentaba aumento de volumen en la región geniana izquierda, febrícola e inapetencia. Se impuso tratamiento con cefazolina y se egresó a los siete días. Acudió nuevamente con tumefacción blanda y difusa de ambas hemicaras, irritabilidad y fiebre. Se interconsultó con cirugía maxilofacial, se indicaron estudios sanguíneos y radiológicos. Se diagnosticó como enfermedad de Caffey, basado en la edad del niño, tumefacción facial sin signos inflamatorios agudos e hiperostosis en ambas corticales mandibulares a la radiografía AP mandíbula; unido a anemia ligera, leucocitosis y eritrosedimentación acelerada. El paciente se trató sintomáticamente y con antinflamatorios no esteroideos. Esta rara entidad se debe tener presente en casos de niños y lactantes con irritabilidad y fiebre inespecífica

  9. Cortical sensory loss in a patient with posterior cortical atrophy: a case report.

    Science.gov (United States)

    Hsu, Jung-Lung; Chen, Wei-Hung; Chiu, Hou-Chang

    2004-02-01

    Patients with posterior cortical atrophy (PCA) who present with initial symptoms of higher visual function deficits eventually develop alexia, aphasia, and components of Balint's syndrome or Gerstmann's syndrome. Recently, pathological findings were reported for these patients that are generally suggestive of Alzheimer's disease even though Creutzfeldt-Jakob disease (CJD) was presumed as an alternative cause of some autopsy-diagnosed PCA cases. Here, we report a case with a four-year progression of cognitive and higher visual function deterioration, and with features not described in previously reported PCA cases (i.e., a distinct sensory complaint and early frontal lobe involvement). To summarize, this case belongs to perceptual-motor syndrome of asymmetric cortical degeneration and the underlying neuropathology is more suggestive of Alzheimer's disease than of Creutzfeldt-Jakob disease.

  10. Assessing cortical network properties using TMS-EEG.

    Science.gov (United States)

    Rogasch, Nigel C; Fitzgerald, Paul B

    2013-07-01

    The past decade has seen significant developments in the concurrent use of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to directly assess cortical network properties such as excitability and connectivity in humans. New hardware solutions, improved EEG amplifier technology, and advanced data processing techniques have allowed substantial reduction of the TMS-induced artifact, which had previously rendered concurrent TMS-EEG impossible. Various physiological artifacts resulting from TMS have also been identified, and methods are being developed to either minimize or remove these sources of artifact. With these developments, TMS-EEG has unlocked regions of the cortex to researchers that were previously inaccessible to TMS. By recording the TMS-evoked response directly from the cortex, TMS-EEG provides information on the excitability, effective connectivity, and oscillatory tuning of a given cortical area, removing the need to infer such measurements from indirect measures. In the following review, we investigate the different online and offline methods for reducing artifacts in TMS-EEG recordings and the physiological information contained within the TMS-evoked cortical response. We then address the use of TMS-EEG to assess different cortical mechanisms such as cortical inhibition and neural plasticity, before briefly reviewing studies that have utilized TMS-EEG to explore cortical network properties at rest and during different functional brain states.

  11. Cortical excitability differences between flexor pollicis longus and APB.

    Science.gov (United States)

    Bae, Jong Seok; Menon, Parvathi; Mioshi, Eneida; Kiernan, Matthew C; Vucic, Steve

    2013-04-29

    Although abductor pollicis brevis (APB) and flexor pollicis longus (FPL) share a common peripheral nerve supply, these muscles subserve different functions and may be differently affected in neurodegenerative disease such as amyotrophic lateral sclerosis (ALS). As a consequence, differences in cortical excitability may potentially develop in relation to these functional differences. Cortical excitability was assessed using the threshold tracking transcranial magnetic stimulation (TMS) technique in 15 healthy controls with motor responses recorded over the APB and FPL using surface electrode recordings. Short-interval intracortical inhibition (SICI) was significantly reduced from the FPL compared to APB (SICIFPL 6.9±1.8%; SICIAPB 10.7±1.4%, P<0.01). In addition, the FPL motor evoked potential amplitude (MEPFPL 14.7±2.3%; MEPAPB 21.7±3.9%; P<0.01) and cortical silent period duration (CSPFPL 174.7±6.7ms; CSPAPB 205.4±3.9ms, P<0.01) were significantly smaller. The findings in the present study indicate that cortical inhibition and corticomotoneuronal output is reduced when recording over the FPL. The differences in cortical excitability may develop as a consequence of varied function and could potentially explain the dissociated muscle atrophy evident in ALS.

  12. Prolonged exposure of cortical neurons to oligomeric amyloid-β impairs NMDA receptor function via NADPH oxidase-mediated ROS production: protective effect of green tea (–-epigallocatechin-3-gallate

    Directory of Open Access Journals (Sweden)

    Grace Y Sun

    2011-02-01

    Full Text Available Excessive production of Aβ (amyloid β-peptide has been shown to play an important role in the pathogenesis of AD (Alzheimer's disease. Although not yet well understood, aggregation of Aβ is known to cause toxicity to neurons. Our recent study demonstrated the ability for oligomeric Aβ to stimulate the production of ROS (reactive oxygen species in neurons through an NMDA (N-methyl-d-aspartate-dependent pathway. However, whether prolonged exposure of neurons to aggregated Aβ is associated with impairment of NMDA receptor function has not been extensively investigated. In the present study, we show that prolonged exposure of primary cortical neurons to Aβ oligomers caused mitochondrial dysfunction, an attenuation of NMDA receptor-mediated Ca2+ influx and inhibition of NMDA-induced AA (arachidonic acid release. Mitochondrial dysfunction and the decrease in NMDA receptor activity due to oligomeric Aβ are associated with an increase in ROS production. Gp91ds-tat, a specific peptide inhibitor of NADPH oxidase, and Mn(III-tetrakis(4-benzoic acid-porphyrin chloride, an ROS scavenger, effectively abrogated Aβ-induced ROS production. Furthermore, Aβ-induced mitochondrial dysfunction, impairment of NMDA Ca2+ influx and ROS production were prevented by pre-treatment of neurons with EGCG [(−-epigallocatechin-3-gallate], a major polyphenolic component of green tea. Taken together, these results support a role for NADPH oxidase-mediated ROS production in the cytotoxic effects of Aβ, and demonstrate the therapeutic potential of EGCG and other dietary polyphenols in delaying onset or retarding the progression of AD.

  13. Cortical visual impairment: Characteristics and treatment

    OpenAIRE

    Vučinić, Vesna; Anđelković, Marija; Jablan, Branka; Žigić, Vesna

    2014-01-01

    According to the latest studies, Cortical visual impairment – CVI is one of the most common causes of problems and difficulties in visual functioning. It results from the impairment of the central part of visual system, i.e. visual cortex, posterior visual pathway, or both. The diagnosis is usually made in the first three years of life. The aim of this paper is to present the characteristics of children with CVI, and the strategies used for treatment. CVI has a negative impact on almost all d...

  14. Macrostructural brain changes in patients with longstanding type 1 diabetes mellitus - a cortical thickness analysis study

    DEFF Research Database (Denmark)

    Frøkjær, J B; Brock, C; Søfteland, E;

    2013-01-01

    with longstanding (average 24.6 years) type 1 DM and 20 healthy controls were studied in a 3T magnetic resonance scanner. Using an automated surface based cortical segmentation method, cortical thickness was assessed in anatomical regions including total and lobe-wise grey and white matter volumes. Also...... peripheral neuropathy (P=0.02).Patients with longstanding type 1 diabetes showed cortical thinning involving sensory related areas, even though no overall macrostructural brain alterations were detected. This could possibly have underlying functional significance since cortical thinning was associated...

  15. Recombinant human erythropoietin increases cerebral cortical width index and neurogenesis following ischemic stroke

    Institute of Scientific and Technical Information of China (English)

    Zhongmin Wen; Peiji Wang

    2012-01-01

    The cerebral cortical expansion index refers to the ratio between left and right cortex width and is recognized as an indicator for cortical hyperplasia. Cerebral ischemia was established in CB-17 mice in the present study, and the mice were subsequently treated with recombinant human erythropoietin via subcutaneous injection. Results demonstrated that cerebral cortical width index significantly increased. Immunofluorescence detection showed that the number of nuclear antigen antibody/5-bromodeoxyuridine-positive cells at the infarction edge significantly increased. Correlation analysis revealed a negative correlation between neurological scores and cortical width indices in rats following ischemic stroke. These experimental findings suggested that recombinant human erythropoietin promoted cerebral cortical hyperplasia, increased cortical neurogenesis, and enhanced functional recovery following ischemic stroke.

  16. Electron microscopic study of the cortical reaction in eggs of the starfish (Patria miniata).

    Science.gov (United States)

    Holland, N D

    1980-01-01

    The egg coats of a starfish (Patiria miniata) are examined before, during, and after the cortical reaction by scanning and transmission electron microscopy. The unfertilized egg is closely invested by a vitelline coat about 300 micron thick, and cortical granules are scattered in the peripheral cytoplasm. After insemination, as the cortical granules undergo exocytosis, the cortical reaction sweeps over the egg surface. Much of the material ejected from the cortical granules adheres to the inner surface of the vitelline coat as a dense layer about 40 micron thick and as scattered spheres and hemispheres, each about 1 micron in diameter. Together, the vitelline coat and the adherent cortical granule material form the fertilization envelope, which becomes separated from the plasma membrane of the egg by a perivitelline space. The perivitelline space contains some flocculent material, which is too diffuse and discontinuous to be considered a hyaline layer. Possible functions of the starfish egg coats are discussed.

  17. Multiple markers of cortical morphology reveal evidence of supragranular thinning in schizophrenia

    Science.gov (United States)

    Wagstyl, K; Ronan, L; Whitaker, K J; Goodyer, I M; Roberts, N; Crow, T J; Fletcher, P C

    2016-01-01

    In vivo structural neuroimaging can reliably identify changes to cortical morphology and its regional variation but cannot yet relate these changes to specific cortical layers. We propose, however, that by synthesizing principles of cortical organization, including relative contributions of different layers to sulcal and gyral thickness, regional patterns of variation in thickness of different layers across the cortical sheet and profiles of layer variation across functional hierarchies, it is possible to develop indirect morphological measures as markers of more specific cytoarchitectural changes. We developed four indirect measures sensitive to changes specifically occurring in supragranular cortical layers, and applied these to test the hypothesis that supragranular layers are disproportionately affected in schizophrenia. Our findings from the four different measures converge to indicate a predominance of supragranular thinning in schizophrenia, independent of medication and illness duration. We propose that these indirect measures offer novel ways of identifying layer-specific cortical changes, offering complementary in vivo observations to existing post-mortem studies. PMID:27070408

  18. Object recognition by artificial cortical maps.

    Science.gov (United States)

    Plebe, Alessio; Domenella, Rosaria Grazia

    2007-09-01

    Object recognition is one of the most important functions of the human visual system, yet one of the least understood, this despite the fact that vision is certainly the most studied function of the brain. We understand relatively well how several processes in the cortical visual areas that support recognition capabilities take place, such as orientation discrimination and color constancy. This paper proposes a model of the development of object recognition capability, based on two main theoretical principles. The first is that recognition does not imply any sort of geometrical reconstruction, it is instead fully driven by the two dimensional view captured by the retina. The second assumption is that all the processing functions involved in recognition are not genetically determined or hardwired in neural circuits, but are the result of interactions between epigenetic influences and basic neural plasticity mechanisms. The model is organized in modules roughly related to the main visual biological areas, and is implemented mainly using the LISSOM architecture, a recent neural self-organizing map model that simulates the effects of intercortical lateral connections. This paper shows how recognition capabilities, similar to those found in brain ventral visual areas, can develop spontaneously by exposure to natural images in an artificial cortical model.

  19. Cortical current source connectivity by means of partial coherence fields

    CERN Document Server

    Pascual-Marqui, Roberto D; Valdes-Sosa, Pedro A; Bosch-Bayard, Jorge; Riera-Diaz, Jorge J

    2011-01-01

    An important field of research in functional neuroimaging is the discovery of integrated, distributed brain systems and networks, whose different regions need to work in unison for normal functioning. The EEG is a non-invasive technique that can provide information for massive connectivity analyses. Cortical signals of time varying electric neuronal activity can be estimated from the EEG. Although such techniques have very high time resolution, two cortical signals even at distant locations will appear to be highly similar due to the low spatial resolution nature of the EEG. In this study a method for eliminating the effect of common sources due to low spatial resolution is presented. It is based on an efficient estimation of the whole-cortex partial coherence matrix. Using as a starting point any linear EEG tomography that satisfies the EEG forward equation, it is shown that the generalized partial coherences for the cortical grey matter current density time series are invariant to the selected tomography. I...

  20. Impact of prenatal environmental stress on cortical development

    Directory of Open Access Journals (Sweden)

    Seiji eIshii

    2015-05-01

    Full Text Available Prenatal exposure of the developing brain to various types of environmental stress increases susceptibility to neuropsychiatric disorders such as autism, attention deficit hyperactivity disorder and schizophrenia. Given that even subtle perturbations by prenatal environmental stress in the cerebral cortex impair the cognitive and memory functions, this review focuses on underlying molecular mechanisms of pathological cortical development. We especially highlight recent works that utilized animal exposure models, human specimens or/and induced Pluripotent Stem (iPS cells to demonstrate: 1. molecular mechanisms shared by various types of environmental stressors, 2. the mechanisms by which the affected extracortical tissues indirectly impact the cortical development and function, and 3. interaction between prenatal environmental stress and the genetic predisposition of neuropsychiatric disorders. Finally, we discuss current challenges for achieving a comprehensive understanding of the role of environmentally disturbed molecular expressions in cortical maldevelopment, knowledge of which may eventually facilitate discovery of interventions for prenatal environment-linked neuropsychiatric disorders.

  1. Amygdala activation for eye contact despite complete cortical blindness.

    Science.gov (United States)

    Burra, Nicolas; Hervais-Adelman, Alexis; Kerzel, Dirk; Tamietto, Marco; de Gelder, Beatrice; Pegna, Alan J

    2013-06-19

    Cortical blindness refers to the loss of vision that occurs after destruction of the primary visual cortex. Although there is no sensory cortex and hence no conscious vision, some cortically blind patients show amygdala activation in response to facial or bodily expressions of emotion. Here we investigated whether direction of gaze could also be processed in the absence of any functional visual cortex. A well-known patient with bilateral destruction of his visual cortex and subsequent cortical blindness was investigated in an fMRI paradigm during which blocks of faces were presented either with their gaze directed toward or away from the viewer. Increased right amygdala activation was found in response to directed compared with averted gaze. Activity in this region was further found to be functionally connected to a larger network associated with face and gaze processing. The present study demonstrates that, in human subjects, the amygdala response to eye contact does not require an intact primary visual cortex.

  2. Glycine Receptor α2 Subunit Activation Promotes Cortical Interneuron Migration

    Directory of Open Access Journals (Sweden)

    Ariel Avila

    2013-08-01

    Full Text Available Glycine receptors (GlyRs are detected in the developing CNS before synaptogenesis, but their function remains elusive. This study demonstrates that functional GlyRs are expressed by embryonic cortical interneurons in vivo. Furthermore, genetic disruption of these receptors leads to interneuron migration defects. We discovered that extrasynaptic activation of GlyRs containing the α2 subunit in cortical interneurons by endogenous glycine activates voltage-gated calcium channels and promotes calcium influx, which further modulates actomyosin contractility to fine-tune nuclear translocation during migration. Taken together, our data highlight the molecular events triggered by GlyR α2 activation that control cortical tangential migration during embryogenesis.

  3. Cortical myoclonus in Huntington's disease.

    Science.gov (United States)

    Thompson, P D; Bhatia, K P; Brown, P; Davis, M B; Pires, M; Quinn, N P; Luthert, P; Honovar, M; O'Brien, M D; Marsden, C D

    1994-11-01

    We describe three patients with Huntington's disease, from two families, in whom myoclonus was the predominant clinical feature. The diagnosis was confirmed at autopsy in two cases and by DNA analysis in all three. These patients all presented before the age of 30 years and were the offspring of affected fathers. Neurophysiological studies documented generalised and multifocal action myoclonus of cortical origin that was strikingly stimulus sensitive, without enlargement of the cortical somatosensory evoked potential. The myoclonus improved with piracetam therapy in one patient and a combination of sodium valproate and clonazepam in the other two. Cortical reflex myoclonus is a rare but disabling component of the complex movement disorder of Huntington's disease, which may lead to substantial diagnostic difficulties.

  4. A mechanism for the cortical computation of hierarchical linguistic structure.

    Science.gov (United States)

    Martin, Andrea E; Doumas, Leonidas A A

    2017-03-01

    Biological systems often detect species-specific signals in the environment. In humans, speech and language are species-specific signals of fundamental biological importance. To detect the linguistic signal, human brains must form hierarchical representations from a sequence of perceptual inputs distributed in time. What mechanism underlies this ability? One hypothesis is that the brain repurposed an available neurobiological mechanism when hierarchical linguistic representation became an efficient solution to a computational problem posed to the organism. Under such an account, a single mechanism must have the capacity to perform multiple, functionally related computations, e.g., detect the linguistic signal and perform other cognitive functions, while, ideally, oscillating like the human brain. We show that a computational model of analogy, built for an entirely different purpose-learning relational reasoning-processes sentences, represents their meaning, and, crucially, exhibits oscillatory activation patterns resembling cortical signals elicited by the same stimuli. Such redundancy in the cortical and machine signals is indicative of formal and mechanistic alignment between representational structure building and "cortical" oscillations. By inductive inference, this synergy suggests that the cortical signal reflects structure generation, just as the machine signal does. A single mechanism-using time to encode information across a layered network-generates the kind of (de)compositional representational hierarchy that is crucial for human language and offers a mechanistic linking hypothesis between linguistic representation and cortical computation.

  5. Muscle synergy patterns as physiological markers of motor cortical damage.

    Science.gov (United States)

    Cheung, Vincent C K; Turolla, Andrea; Agostini, Michela; Silvoni, Stefano; Bennis, Caoimhe; Kasi, Patrick; Paganoni, Sabrina; Bonato, Paolo; Bizzi, Emilio

    2012-09-04

    The experimental findings herein reported are aimed at gaining a perspective on the complex neural events that follow lesions of the motor cortical areas. Cortical damage, whether by trauma or stroke, interferes with the flow of descending signals to the modular interneuronal structures of the spinal cord. These spinal modules subserve normal motor behaviors by activating groups of muscles as individual units (muscle synergies). Damage to the motor cortical areas disrupts the orchestration of the modules, resulting in abnormal movements. To gain insights into this complex process, we recorded myoelectric signals from multiple upper-limb muscles in subjects with cortical lesions. We used a factorization algorithm to identify the muscle synergies. Our factorization analysis revealed, in a quantitative way, three distinct patterns of muscle coordination-including preservation, merging, and fractionation of muscle synergies-that reflect the multiple neural responses that occur after cortical damage. These patterns varied as a function of both the severity of functional impairment and the temporal distance from stroke onset. We think these muscle-synergy patterns can be used as physiological markers of the status of any patient with stroke or trauma, thereby guiding the development of different rehabilitation approaches, as well as future physiological experiments for a further understanding of postinjury mechanisms of motor control and recovery.

  6. Decoding of covert vowel articulation using electroencephalography cortical currents

    Directory of Open Access Journals (Sweden)

    Natsue eYoshimura

    2016-05-01

    Full Text Available With the goal of providing assistive technology for the communication impaired, we proposed electroencephalography (EEG cortical currents as a new approach for EEG-based brain-computer interface spellers. EEG cortical currents were estimated with a variational Bayesian method that uses functional magnetic resonance imaging (fMRI data as a hierarchical prior. EEG and fMRI data were recorded from ten healthy participants during covert articulation of Japanese vowels /a/ and /i/, as well as during a no-imagery control task. Applying a sparse logistic regression (SLR method to classify the three tasks, mean classification accuracy using EEG cortical currents was significantly higher than that using EEG sensor signals and was also comparable to accuracies in previous studies using electrocorticography. SLR weight analysis revealed vertices of EEG cortical currents that were highly contributive to classification for each participant, and the vertices showed discriminative time series signals according to the three tasks. Furthermore, functional connectivity analysis focusing on the highly contributive vertices revealed positive and negative correlations among areas related to speech processing. As the same findings were not observed using EEG sensor signals, our results demonstrate the potential utility of EEG cortical currents not only for engineering purposes such as brain-computer interfaces but also for neuroscientific purposes such as the identification of neural signaling related to language processing.

  7. Horizontal integration and cortical dynamics.

    Science.gov (United States)

    Gilbert, C D

    1992-07-01

    We have discussed several results that lead to a view that cells in the visual system are endowed with dynamic properties, influenced by context, expectation, and long-term modifications of the cortical network. These observations will be important for understanding how neuronal ensembles produce a system that perceives, remembers, and adapts to injury. The advantage to being able to observe changes at early stages in a sensory pathway is that one may be able to understand the way in which neuronal ensembles encode and represent images at the level of their receptive field properties, of cortical topographies, and of the patterns of connections between cells participating in a network.

  8. Grid cells and cortical representation.

    Science.gov (United States)

    Moser, Edvard I; Roudi, Yasser; Witter, Menno P; Kentros, Clifford; Bonhoeffer, Tobias; Moser, May-Britt

    2014-07-01

    One of the grand challenges in neuroscience is to comprehend neural computation in the association cortices, the parts of the cortex that have shown the largest expansion and differentiation during mammalian evolution and that are thought to contribute profoundly to the emergence of advanced cognition in humans. In this Review, we use grid cells in the medial entorhinal cortex as a gateway to understand network computation at a stage of cortical processing in which firing patterns are shaped not primarily by incoming sensory signals but to a large extent by the intrinsic properties of the local circuit.

  9. Paroxysmal kinesigenic dyskinesia : Cortical or non-cortical origin

    NARCIS (Netherlands)

    van Strien, Teun W.; van Rootselaar, Anne-Fleur; Hilgevoord, Anthony A. J.; Linssen, Wim H. J. P.; Groffen, Alexander J. A.; Tijssen, Marina A. J.

    2012-01-01

    Paroxysmal kinesigenic dyskinesia (PKD) is characterized by involuntary dystonia and/or chorea triggered by a sudden movement. Cases are usually familial with an autosomal dominant inheritance. Hypotheses regarding the pathogenesis of PKD focus on the controversy whether PKD has a cortical or non-co

  10. The effects of subthreshold 1 Hz repetitive TMS on cortico-cortical and interhemispheric coherence

    NARCIS (Netherlands)

    Strens, L.H.; Oliviero, A.; Bloem, B.R.; Gerschlager, W.; Rothwell, J.C.; Brown, P.

    2002-01-01

    OBJECTIVES: Repetitive transcranial magnetic stimulation (rTMS) shows promise as a treatment for various movement and psychiatric disorders. Just how rTMS may have persistent effects on cortical function remains unclear. We hypothesised that it may act by modulating cortico-cortical and interhemisph

  11. Cortical morphometry and IQ in VLBW children without cerebral palsy born in 2003–2007

    Directory of Open Access Journals (Sweden)

    Anne Elisabeth Sølsnes

    2015-01-01

    We conclude that cortical deviations are evident in childhood even in VLBW children born in 2003–2007 who have received state of the art medical treatment in the perinatal period and who did not present with focal brain injuries on neonatal ultrasonography. The cortical deviations were associated with reduced cognitive functioning.

  12. Slow cortical rhythms: from single-neuron electrophysiology to whole-brain imaging in vivo

    NARCIS (Netherlands)

    U. Olcese; U. Faraguna

    2015-01-01

    The slow cortical oscillation is the major brain rhythm occurring during sleep, and has been the object of thorough investigation for over thirty years. Despite all these efforts, the function and the neuronal mechanisms behind slow cortical rhythms remain only partially understood. In this review w

  13. Visual change detection recruits auditory cortices in early deafness.

    Science.gov (United States)

    Bottari, Davide; Heimler, Benedetta; Caclin, Anne; Dalmolin, Anna; Giard, Marie-Hélène; Pavani, Francesco

    2014-07-01

    Although cross-modal recruitment of early sensory areas in deafness and blindness is well established, the constraints and limits of these plastic changes remain to be understood. In the case of human deafness, for instance, it is known that visual, tactile or visuo-tactile stimuli can elicit a response within the auditory cortices. Nonetheless, both the timing of these evoked responses and the functional contribution of cross-modally recruited areas remain to be ascertained. In the present study, we examined to what extent auditory cortices of deaf humans participate in high-order visual processes, such as visual change detection. By measuring visual ERPs, in particular the visual MisMatch Negativity (vMMN), and performing source localization, we show that individuals with early deafness (N=12) recruit the auditory cortices when a change in motion direction during shape deformation occurs in a continuous visual motion stream. Remarkably this "auditory" response for visual events emerged with the same timing as the visual MMN in hearing controls (N=12), between 150 and 300 ms after the visual change. Furthermore, the recruitment of auditory cortices for visual change detection in early deaf was paired with a reduction of response within the visual system, indicating a shift from visual to auditory cortices of part of the computational process. The present study suggests that the deafened auditory cortices participate at extracting and storing the visual information and at comparing on-line the upcoming visual events, thus indicating that cross-modally recruited auditory cortices can reach this level of computation.

  14. Face activated neurodynamic cortical networks.

    Science.gov (United States)

    Susac, Ana; Ilmoniemi, Risto J; Ranken, Doug; Supek, Selma

    2011-05-01

    Previous neuroimaging studies have shown that complex visual stimuli, such as faces, activate multiple brain regions, yet little is known on the dynamics and complexity of the activated cortical networks during the entire measurable evoked response. In this study, we used simulated and face-evoked empirical MEG data from an oddball study to investigate the feasibility of accurate, efficient, and reliable spatio-temporal tracking of cortical pathways over prolonged time intervals. We applied a data-driven, semiautomated approach to spatio-temporal source localization with no prior assumptions on active cortical regions to explore non-invasively face-processing dynamics and their modulation by task. Simulations demonstrated that the use of multi-start downhill simplex and data-driven selections of time intervals submitted to the Calibrated Start Spatio-Temporal (CSST) algorithm resulted in improved accuracy of the source localization and the estimation of the onset of their activity. Locations and dynamics of the identified sources indicated a distributed cortical network involved in face processing whose complexity was task dependent. This MEG study provided the first non-invasive demonstration, agreeing with intracranial recordings, of an early onset of the activity in the fusiform face gyrus (FFG), and that frontal activation preceded parietal for responses elicited by target faces.

  15. Gamma event-related synchronization analysis: a new method for cortical function mapping%通过Gamma频段能量分析进行大脑皮层功能区定位

    Institute of Scientific and Technical Information of China (English)

    潘鑫; 钱天翼; 韩宏彦; 周文静; 孙朝晖; 王东明; 左焕琮

    2012-01-01

    目的 通过分析颅内脑电中Gamma频段能量变化来实现大脑皮层感觉运动区定位.方法 利用Gamma频段能量分析法、诱发电位(SEP)和皮层电刺激(CES)等电生理检查对8例因难治性癫痫而行颅内电极植入术的患者进行大脑皮层感觉运动区定位,以减少术后功能缺失等并发症.将Gamma频段能量分析方法的定位结果与SEP与CES进行比较.结果 通过统计对比,Gamma频段能量分析所得上肢感觉运动区电极编号与CES和SEP所得感觉运动区电极编号完全重合的占80.7%,完全重合或者紧邻的达92.3%.结论 Gamma频段能量分析方法是一种敏感性高、结果准确的大脑皮层功能区定位的新方法.%Objective To localize the sensory motor cortex of human brain by analyzing the power change in Gamma band ( > 60 Hz ) of electrocorticography (ECoG) data.Methods Eight patients with intractable epilepsy underwent temporary placement of subdural electrodes. After surgery,scnsory cvokcd potential (SEP),electrocortical stimulation (CES) and event-related synchronization analysis of Gamma band ( Gamma ERS analysis) were performed to reduce the risk of complications.The results of Gamma ERS analysis were compared with those of SEP and CES.Results The results of Gamma ERS analysis had 80.7% electrodes fitting perfectly those of CES and SEP.And the percentage reached 92.3% if electrodes were superimposed or added adjacently.Conclusion The Gamma ERS analysis is a new sensitive and precise method for cortical function mapping.

  16. Quantitative Architectural Analysis: A New Approach to Cortical Mapping

    Science.gov (United States)

    Schleicher, Axel; Morosan, Patricia; Amunts, Katrin; Zilles, Karl

    2009-01-01

    Results from functional imaging studies are often still interpreted using the classical architectonic brain maps of Brodmann and his successors. One obvious weakness in traditional, architectural mapping is the subjective nature of localizing borders between cortical areas by means of a purely visual, microscopical examination of histological…

  17. Role of ortho-retronasal olfaction in mammalian cortical evolution.

    Science.gov (United States)

    Rowe, Timothy B; Shepherd, Gordon M

    2016-02-15

    Fossils of mammals and their extinct relatives among cynodonts give evidence of correlated transformations affecting olfaction as well as mastication, head movement, and ventilation, and suggest evolutionary coupling of these seemingly separate anatomical regions into a larger integrated system of ortho-retronasal olfaction. Evidence from paleontology and physiology suggests that ortho-retronasal olfaction played a critical role at three stages of mammalian cortical evolution: early mammalian brain development was driven in part by ortho-retronasal olfaction; the bauplan for neocortex had higher-level association functions derived from olfactory cortex; and human cortical evolution was enhanced by ortho-retronasal smell.

  18. Lateral thinking, from the Hopfield model to cortical dynamics.

    Science.gov (United States)

    Akrami, Athena; Russo, Eleonora; Treves, Alessandro

    2012-01-24

    Self-organizing attractor networks may comprise the building blocks for cortical dynamics, providing the basic operations of categorization, including analog-to-digital conversion, association and auto-association, which are then expressed as components of distinct cognitive functions depending on the contents of the neural codes in each region. To assess the viability of this scenario, we first review how a local cortical patch may be modeled as an attractor network, in which memory representations are not artificially stored as prescribed binary patterns of activity as in the Hopfield model, but self-organize as continuously graded patterns induced by afferent input. Recordings in macaques indicate that such cortical attractor networks may express retrieval dynamics over cognitively plausible rapid time scales, shorter than those dominated by neuronal fatigue. A cortical network encompassing many local attractor networks, and incorporating a realistic description of adaptation dynamics, may be captured by a Potts model. This network model has the capacity to engage long-range associations into sustained iterative attractor dynamics at a cortical scale, in what may be regarded as a mathematical model of spontaneous lateral thought. This article is part of a Special Issue entitled: Neural Coding.

  19. Tactile thermal oral stimulation increases the cortical representation of swallowing

    Directory of Open Access Journals (Sweden)

    Suntrup Sonja

    2009-06-01

    Full Text Available Abstract Background Dysphagia is a leading complication in stroke patients causing aspiration pneumonia, malnutrition and increased mortality. Current strategies of swallowing therapy involve on the one hand modification of eating behaviour or swallowing technique and on the other hand facilitation of swallowing with the use of pharyngeal sensory stimulation. Thermal tactile oral stimulation (TTOS is an established method to treat patients with neurogenic dysphagia especially if caused by sensory deficits. Little is known about the possible mechanisms by which this interventional therapy may work. We employed whole-head MEG to study changes in cortical activation during self-paced volitional swallowing in fifteen healthy subjects with and without TTOS. Data were analyzed by means of synthetic aperture magnetometry (SAM and the group analysis of individual SAM data was performed using a permutation test. Results Compared to the normal swallowing task a significantly increased bilateral cortical activation was seen after oropharyngeal stimulation. Analysis of the chronological changes during swallowing suggests facilitation of both the oral and the pharyngeal phase of deglutition. Conclusion In the present study functional cortical changes elicited by oral sensory stimulation could be demonstrated. We suggest that these results reflect short-term cortical plasticity of sensory swallowing areas. These findings facilitate our understanding of the role of cortical reorganization in dysphagia treatment and recovery.

  20. Buccal cortical bone thickness on CBCT for mini-implant

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Jong Gook; Lim, Sung Hoon; Lee, Byoung Jin; Kim, Jae Duk [School of Dentistry, Chosun University, Gwangju (Korea, Republic of)

    2010-12-15

    Cortical bone thickness is one of the important factor in mini-implant stability. This study was performed to investigate the buccal cortical bone thickness at every interdental area as an aid in planning mini-implant placement. Two-dimensional slices at every interdental area were selected from the cone-beam computed tomography scans of 20 patients in third decade. Buccal cortical bone thickness was measured at 2, 4, and 6 mm levels from the alveolar crest in the interdental bones of posterior regions of both jaws using the plot profile function of Ez3D2009TM (Vatech, Yongin, Korea). The results were analyzed using by Mann-Whitney test. Buccal cortical bone was thicker in the mandible than in the maxilla. The thickness increased with further distance from the alveolar crest in the maxilla and with coming from the posterior to anterior region in the mandible (p?0.01). The maximum CT value showed an increasing tendency with further distance from the alveolar crest and with coming from posterior to anterior region in both jaws. Interdental buccal cortical bone thickness varied in both jaws, however our study showed a distinct tendency. We expect that these results could be helpful for the selection and preparation of mini-implant sites.

  1. Otx2-PNN Interaction to Regulate Cortical Plasticity

    Directory of Open Access Journals (Sweden)

    Clémence Bernard

    2016-01-01

    Full Text Available The ability of the environment to shape cortical function is at its highest during critical periods of postnatal development. In the visual cortex, critical period onset is triggered by the maturation of parvalbumin inhibitory interneurons, which gradually become surrounded by a specialized glycosaminoglycan-rich extracellular matrix: the perineuronal nets. Among the identified factors regulating cortical plasticity in the visual cortex, extracortical homeoprotein Otx2 is transferred specifically into parvalbumin interneurons and this transfer regulates both the onset and the closure of the critical period of plasticity for binocular vision. Here, we review the interaction between the complex sugars of the perineuronal nets and homeoprotein Otx2 and how this interaction regulates cortical plasticity during critical period and in adulthood.

  2. Magnetoencephalography from signals to dynamic cortical networks

    CERN Document Server

    Aine, Cheryl

    2014-01-01

    "Magnetoencephalography (MEG) provides a time-accurate view into human brain function. The concerted action of neurons generates minute magnetic fields that can be detected---totally noninvasively---by sensitive multichannel magnetometers. The obtained millisecond accuracycomplements information obtained by other modern brain-imaging tools. Accurate timing is quintessential in normal brain function, often distorted in brain disorders. The noninvasiveness and time-sensitivityof MEG are great assets to developmental studies, as well. This multiauthored book covers an ambitiously wide range of MEG research from introductory to advanced level, from sensors to signals, and from focal sources to the dynamics of cortical networks. Written by active practioners of this multidisciplinary field, the book contains tutorials for newcomers and chapters of new challenging methods and emerging technologies to advanced MEG users. The reader will obtain a firm grasp of the possibilities of MEG in the study of audition, vision...

  3. The cortical motor system of the marmoset monkey (Callithrix jacchus).

    Science.gov (United States)

    Bakola, Sophia; Burman, Kathleen J; Rosa, Marcello G P

    2015-04-01

    Precise descriptions of the anatomical pathways that link different areas of the cerebral cortex are essential to the understanding of the sensorimotor and association processes that underlie human actions, and their impairment in pathological situations. Many years of research in macaque monkeys have critically shaped how we currently think about cortical motor function in humans. However, it is important to obtain additional understanding about the homologies between cortical areas in human and various non-human primates, and in particular how evolutionary changes in connectivity within specific neural circuits impact on the capacity for different behaviors. Current research has converged on the New World marmoset monkey as an important animal model for cortical function and dysfunction, emphasizing advantages unique to this species. However, the motor repertoire of the marmoset differs from that of the macaque in many ways, including the capacity for skilled use of the hands. Here, we review current knowledge about the cortical frontal areas in marmosets, which are key to the generation and control of motor behaviors, with focus on comparative analyses. We note significant parallels with the macaque monkey, as well as a few potentially important differences, which suggest future directions for work involving architectonic and functional analyses.

  4. Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments.

    NARCIS (Netherlands)

    Gutierrez, R.; Lindeboom, J.J.; Paredez, A.R.; Emons, A.M.C.; Ehrhardt, D.W.

    2009-01-01

    Plant cell morphogenesis relies on the organization and function of two polymer arrays separated by the plasma membrane: the cortical microtubule cytoskeleton and cellulose microfibrils in the cell wall. Studies using in vivo markers confirmed that one function of the cortical microtubule array is t

  5. Visual cortical functional mediating stereopsis in children anisometropic amblyopia: evidence from fMRI%儿童屈光参差性弱视立体视觉中枢区激活的fMRI研究

    Institute of Scientific and Technical Information of China (English)

    杨磊; 燕振国; 马强华; 叶建军

    2012-01-01

    ,the differences range of activated area in each group were compared by before and after amblyopia treatment matched t-test.During the study,the patients were asked to view stimuli through red-blue filtered stereo glasses.The visual stimuli were computer-generated random-dot stereograms (R.D.S),click feedback key immediately after the R.D.S were recognized.Results The functional area that was left occipital lobe (BA18),middle occipital gyrus (BA19),limbic lobe (BA19),lingualis gyrus of the right occipital lobe (BA17) and the bilateral parietal lobe (BA7) expanded in different levels after 4 weeks (compared the fourth weeks with without treatment,mean t value was 1.636,1.902,1.727,1.350 and 1.777 respectively,P<0.01).However,those data showed activation on the small area,and with the R.D.S on the recovery is not parallel.Conclusion In children anisometropic amblyopia,the visual cortical functional mediating stereopsis is damaged seriously and not easy to treat in the short time.

  6. Mapping the motor and sensory cortices: a historical look and a current case study in sensorimotor localization and direct cortical motor stimulation.

    Science.gov (United States)

    Silverstein, Justin

    2012-03-01

    The utilization of cortical mapping during craniotomies for epilepsy and brain tumor resection is extremely important. Cortical mapping can guide the surgical team intraoperatively with regards to the layout of important anatomical structures and their function to prevent post-operative deficits. Electroneurophysiological methods employed include sensorimotor localization recorded directly from the surface of the brain when stimulated from a peripheral nerve and direct cortical stimulation (DCS) of the motor cortex to elicit a distal muscle response. This paper presents a case, in which a paradigm of neurophysiological modalities is utilized to assist the surgeon in creating a topographic map of the motor cortex and with localizing the sensory and motor cortices, in addition to a historical review of functional localization.

  7. Regional Cortical Grey Matter Loss in Parkinson's Disease Without Dementia is Independent from Visual Hallucinations

    NARCIS (Netherlands)

    Meppelink, Anne Marthe; de Jong, Bauke M.; Teune, Laura K.; van Laar, Teus

    2011-01-01

    In our previous functional magnetic resonance imaging study, Parkinson's disease (PD) patients with visual hallucinations (VH) showed reduced activations in ventral/ lateral visual association cortices preceding image recognition, compared with both PD patients without VH and healthy controls. The p

  8. Models of cortical malformation--Chemical and physical.

    Science.gov (United States)

    Luhmann, Heiko J

    2016-02-15

    Pharmaco-resistant epilepsies, and also some neuropsychiatric disorders, are often associated with malformations in hippocampal and neocortical structures. The mechanisms leading to these cortical malformations causing an imbalance between the excitatory and inhibitory system are largely unknown. Animal models using chemical or physical manipulations reproduce different human pathologies by interfering with cell generation and neuronal migration. The model of in utero injection of methylazoxymethanol (MAM) acetate mimics periventricular nodular heterotopia. The freeze lesion model reproduces (poly)microgyria, focal heterotopia and schizencephaly. The in utero irradiation model causes microgyria and heterotopia. Intraperitoneal injections of carmustine 1-3-bis-chloroethyl-nitrosurea (BCNU) to pregnant rats produces laminar disorganization, heterotopias and cytomegalic neurons. The ibotenic acid model induces focal cortical malformations, which resemble human microgyria and ulegyria. Cortical dysplasia can be also observed following prenatal exposure to ethanol, cocaine or antiepileptic drugs. All these models of cortical malformations are characterized by a pronounced hyperexcitability, few of them also produce spontaneous epileptic seizures. This dysfunction results from an impairment in GABAergic inhibition and/or an increase in glutamatergic synaptic transmission. The cortical region initiating or contributing to this hyperexcitability may not necessarily correspond to the site of the focal malformation. In some models wide-spread molecular and functional changes can be observed in remote regions of the brain, where they cause pathophysiological activities. This paper gives an overview on different animal models of cortical malformations, which are mostly used in rodents and which mimic the pathology and to some extent the pathophysiology of neuronal migration disorders associated with epilepsy in humans.

  9. The Unique Brain Anatomy of Meditation Practitioners: Alterations in Cortical Gyrification

    Directory of Open Access Journals (Sweden)

    Eileen eLuders

    2012-02-01

    Full Text Available Several cortical regions are reported to vary in meditation practitioners. However, since prior analyses were focused on examining gray matter or cortical thickness, additional effects with respect to other cortical features might have remained undetected. Gyrification (the pattern and degree of cortical folding is an important cerebral characteristic related to the geometry of the brain’s surface. Cortical folding occurs early in development and might be linked to behavioral traits. Thus, exploring cortical gyrification in long-term meditators may provide additional clues with respect to the underlying anatomical correlates of meditation. This study examined cortical gyrification in a large sample (n=100 of meditators and controls, carefully matched for sex and age. Cortical gyrification was established via calculating mean curvature across thousands of vertices on individual cortical surface models. Pronounced group differences indicating larger gyrification in meditators were evident within the left precentral gyrus, right fusiform gyrus, right cuneus, as well as left and right anterior dorsal insula (the latter representing the global significance maximum. Although the exact functional implications of larger cortical gyrification remain to be established, these findings suggest the insula to be a key structure involved in aspects of meditation. For example, variations in insular complexity could affect the regulation of well-known distractions in the process of meditation, such as daydreaming, mind-wandering, and projections into past or future. Moreover, given that meditators are masters in introspection, awareness, and emotional control, increased insular gyrification may reflect an ideal integration of autonomic, affective, and cognitive processes. Due to the cross-sectional nature of this study, further research is necessary determine the relative contribution of nature and nurture to links between cortical gyrification and meditation.

  10. Cortical excitability changes following grasping exercise augmented with electrical stimulation.

    Science.gov (United States)

    Barsi, Gergely I; Popovic, Dejan B; Tarkka, Ina M; Sinkjaer, Thomas; Grey, Michael J

    2008-10-01

    Rehabilitation with augmented electrical stimulation can enhance functional recovery after stroke, and cortical plasticity may play a role in this process. The purpose of this study was to compare the effects of three training paradigms on cortical excitability in healthy subjects. Cortical excitability was evaluated by analysing the input-output relationship between transcranial magnetic stimulation intensity and motor evoked potentials (MEPs) from the flexor muscles of the fingers. The study was performed with 25 healthy volunteers who underwent 20-min simulated therapy sessions of: (1) functional electrical stimulation (FES) of the finger flexors and extensors, (2) voluntary movement (VOL) with sensory stimulation, and (3) therapeutic FES (TFES) where the electrical stimulation augmented voluntary activation. TFES training produced a significant increase in MEP magnitude throughout the stimulation range, suggesting an increase in cortical excitability. In contrast, neither the FES nor voluntary movement alone had such an effect. These results suggest that the combination of voluntary effort and FES has greater potential to induce plasticity in the motor cortex and that TFES might be a more effective approach in rehabilitation after stroke than FES or repetitive voluntary training alone.

  11. Environmental enrichment modulates cortico-cortical interactions in the mouse.

    Directory of Open Access Journals (Sweden)

    Angelo Di Garbo

    Full Text Available Environmental enrichment (EE is an experimental protocol based on a complex sensorimotor stimulation that dramatically affects brain development. While it is widely believed that the effects of EE result from the unique combination of different sensory and motor stimuli, it is not known whether and how cortico-cortical interactions are shaped by EE. Since the primary visual cortex (V1 is one of the best characterized targets of EE, we looked for direct cortico-cortical projections impinging on V1, and we identified a direct monosynaptic connection between motor cortex and V1 in the mouse brain. To measure the interactions between these areas under standard and EE rearing conditions, we used simultaneous recordings of local field potentials (LFPs in awake, freely moving animals. LFP signals were analyzed by using different methods of linear and nonlinear analysis of time series (cross-correlation, mutual information, phase synchronization. We found that EE decreases the level of coupling between the electrical activities of the two cortical regions with respect to the control group. From a functional point of view, our results indicate, for the first time, that an enhanced sensorimotor experience impacts on the brain by affecting the functional crosstalk between different cortical areas.

  12. A mechanism for the cortical computation of hierarchical linguistic structure

    Science.gov (United States)

    Doumas, Leonidas A. A.

    2017-01-01

    Biological systems often detect species-specific signals in the environment. In humans, speech and language are species-specific signals of fundamental biological importance. To detect the linguistic signal, human brains must form hierarchical representations from a sequence of perceptual inputs distributed in time. What mechanism underlies this ability? One hypothesis is that the brain repurposed an available neurobiological mechanism when hierarchical linguistic representation became an efficient solution to a computational problem posed to the organism. Under such an account, a single mechanism must have the capacity to perform multiple, functionally related computations, e.g., detect the linguistic signal and perform other cognitive functions, while, ideally, oscillating like the human brain. We show that a computational model of analogy, built for an entirely different purpose—learning relational reasoning—processes sentences, represents their meaning, and, crucially, exhibits oscillatory activation patterns resembling cortical signals elicited by the same stimuli. Such redundancy in the cortical and machine signals is indicative of formal and mechanistic alignment between representational structure building and “cortical” oscillations. By inductive inference, this synergy suggests that the cortical signal reflects structure generation, just as the machine signal does. A single mechanism—using time to encode information across a layered network—generates the kind of (de)compositional representational hierarchy that is crucial for human language and offers a mechanistic linking hypothesis between linguistic representation and cortical computation. PMID:28253256

  13. Relationship between higher cortical dysfunction and the findings of magnetic resonance imaging in systemic lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Maeshima, Etsuko; Maeshima, Shinichiro; Yamada, Yoichi; Yukawa, Susumu [Wakayama Medical Coll. (Japan)

    1996-04-01

    The relationship between systemic lupus erythematosus (SLE) and organic lesions was investigated by magnetic resonance imaging (MRI) to clarify the etiology of higher cortical dysfunction in SLE. The subjects were 10 patients with SLE, and higher cortical dysfunction was observed in 8 (80%) of the 10 patients. Five (82.5%) of the 8 patients showed abnormal MRI findings. The findings of higher cortical dysfunction were consistent with the MRI findings in 1 of the 5 patients, but not in the remaining four. MRI revealed no lesion despite the presence of higher cortical dysfunction in three patients. These results suggest that the association of organic changes and functional changes in cerebral nerve cells is important for etiology of higher cortical dysfunction in SLE. (author).

  14. Maximizing Sensory Dynamic Range by Tuning the Cortical State to Criticality.

    Directory of Open Access Journals (Sweden)

    Shree Hari Gautam

    2015-12-01

    Full Text Available Modulation of interactions among neurons can manifest as dramatic changes in the state of population dynamics in cerebral cortex. How such transitions in cortical state impact the information processing performed by cortical circuits is not clear. Here we performed experiments and computational modeling to determine how somatosensory dynamic range depends on cortical state. We used microelectrode arrays to record ongoing and whisker stimulus-evoked population spiking activity in somatosensory cortex of urethane anesthetized rats. We observed a continuum of different cortical states; at one extreme population activity exhibited small scale variability and was weakly correlated, the other extreme had large scale fluctuations and strong correlations. In experiments, shifts along the continuum often occurred naturally, without direct manipulation. In addition, in both the experiment and the model we directly tuned the cortical state by manipulating inhibitory synaptic interactions. Our principal finding was that somatosensory dynamic range was maximized in a specific cortical state, called criticality, near the tipping point midway between the ends of the continuum. The optimal cortical state was uniquely characterized by scale-free ongoing population dynamics and moderate correlations, in line with theoretical predictions about criticality. However, to reproduce our experimental findings, we found that existing theory required modifications which account for activity-dependent depression. In conclusion, our experiments indicate that in vivo sensory dynamic range is maximized near criticality and our model revealed an unanticipated role for activity-dependent depression in this basic principle of cortical function.

  15. Maximizing Sensory Dynamic Range by Tuning the Cortical State to Criticality

    Science.gov (United States)

    Gautam, Shree Hari; Hoang, Thanh T.; McClanahan, Kylie; Grady, Stephen K.; Shew, Woodrow L.

    2015-01-01

    Modulation of interactions among neurons can manifest as dramatic changes in the state of population dynamics in cerebral cortex. How such transitions in cortical state impact the information processing performed by cortical circuits is not clear. Here we performed experiments and computational modeling to determine how somatosensory dynamic range depends on cortical state. We used microelectrode arrays to record ongoing and whisker stimulus-evoked population spiking activity in somatosensory cortex of urethane anesthetized rats. We observed a continuum of different cortical states; at one extreme population activity exhibited small scale variability and was weakly correlated, the other extreme had large scale fluctuations and strong correlations. In experiments, shifts along the continuum often occurred naturally, without direct manipulation. In addition, in both the experiment and the model we directly tuned the cortical state by manipulating inhibitory synaptic interactions. Our principal finding was that somatosensory dynamic range was maximized in a specific cortical state, called criticality, near the tipping point midway between the ends of the continuum. The optimal cortical state was uniquely characterized by scale-free ongoing population dynamics and moderate correlations, in line with theoretical predictions about criticality. However, to reproduce our experimental findings, we found that existing theory required modifications which account for activity-dependent depression. In conclusion, our experiments indicate that in vivo sensory dynamic range is maximized near criticality and our model revealed an unanticipated role for activity-dependent depression in this basic principle of cortical function. PMID:26623645

  16. Development and maturation of embryonic cortical neurons grafted into the damaged adult motor cortex

    Directory of Open Access Journals (Sweden)

    Nissrine Ballout

    2016-08-01

    Full Text Available Injury to the human central nervous system can lead to devastating consequences due to its poor ability to self-repair. Neural transplantation aimed at replacing lost neurons and restore functional circuitry has proven to be a promising therapeutical avenue. We previously reported in adult rodent animal models with cortical lesions that grafted fetal cortical neurons could effectively re-establish specific patterns of projections and synapses. The current study was designed to provide a detailed characterization of the spatio-temporal in vivo development of fetal cortical transplanted cells within the lesioned adult motor cortex and their corresponding axonal projections. We show here that as early as two weeks after grafting, cortical neuroblasts transplanted into damaged adult motor cortex developed appropriate projections to cortical and subcortical targets. Grafted cells initially exhibited characteristics of immature neurons, which then differentiated into mature neurons with appropriate cortical phenotypes where most were glutamatergic and few were GABAergic. All cortical subtypes identified with the specific markers CTIP2, Cux1, FOXP2 and Tbr1 were generated after grafting as evidenced with BrdU co-labeling.The set of data provided here is of interest as it sets biological standards for future studies aimed at replacing fetal cells with embryonic stem cells as a source of cortical neurons.

  17. Regional quantitative analysis of cortical surface maps of FDG PET images

    CERN Document Server

    Protas, H D; Hayashi, K M; Chin Lung, Yu; Bergsneider, M; Sung Cheng, Huang

    2006-01-01

    Cortical surface maps are advantageous for visualizing the 3D profile of cortical gray matter development and atrophy, and for integrating structural and functional images. In addition, cortical surface maps for PET data, when analyzed in conjunction with structural MRI data allow us to investigate, and correct for, partial volume effects. Here we compared quantitative regional PET values based on a 3D cortical surface modeling approach with values obtained directly from the 3D FDG PET images in various atlas-defined regions of interest (ROIs; temporal, parietal, frontal, and occipital lobes). FDG PET and 3D MR (SPGR) images were obtained and aligned to ICBM space for 15 normal subjects. Each image was further elastically warped in 2D parameter space of the cortical surface, to align major cortical sulci. For each point within a 15 mm distance of the cortex, the value of the PET intensity was averaged to give a cortical surface map of FDG uptake. The average PET values on the cortical surface map were calcula...

  18. Acute hepatic encephalopathy with diffuse cortical lesions

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, S.M.; Spreer, J.; Schumacher, M. [Section of Neuroradiology, Univ. of Freiburg (Germany); Els, T. [Dept. of Neurology, University of Freiburg (Germany)

    2001-07-01

    Acute hepatic encephalopathy is a poorly defined syndrome of heterogeneous aetiology. We report a 49-year-old woman with alcoholic cirrhosis and hereditary haemorrhagic telangiectasia who developed acute hepatic coma induced by severe gastrointestinal bleeding. Laboratory analysis revealed excessively elevated blood ammonia. MRI showed lesions compatible with chronic hepatic encephalopathy and widespread cortical signal change sparing the perirolandic and occipital cortex. The cortical lesions resembled those of hypoxic brain damage and were interpreted as acute toxic cortical laminar necrosis. (orig.)

  19. A Rare Hydrocephalus Complication: Cortical Blindness.

    Science.gov (United States)

    Ünal, Emre; Göçmen, Rahşan; Işıkay, Ayşe İlksen; Tekşam, Özlem

    2015-01-01

    Cortical blindness related to bilateral occipital lobe infarction is an extremely rare complication of hydrocephalus. Compression of the posterior cerebral artery, secondary to tentorial herniation, is the cause of occipital infarction. Particularly in children and mentally ill patients, cortical blindness may be missed. Therefore, early diagnosis and treatment of hydrocephalus is important. We present herein a child of ventricular shunt malfunction complicated by cortical blindness.

  20. Early detection of AD using cortical thickness measurements

    Science.gov (United States)

    Spjuth, M.; Gravesen, F.; Eskildsen, S. F.; Østergaard, L. R.

    2007-03-01

    Alzheimer's disease (AD) is a neurodegenerative disorder that causes cortical atrophy and impaired cognitive functions. The diagnosis is difficult to make and is often made over a longer period of time using a combination of neuropsychological tests, and structural and functional imaging. Due to the impact of early intervention the challenge of distinguishing early AD from normal ageing has received increasing attention. This study uses cortical thickness measurements to characterize the atrophy in nine mild AD patients (mean MMSE-score 23.3 (std: 2.6)) compared to five healthy middle-aged subjects. A fully automated method based on deformable models is used for delineation of the inner and outer boundaries of the cerebral cortex from Magnetic Resonance Images. This allows observer independent high-resolution quantification of the cortical thickness. The cortex analysis facilitates detection of alterations throughout the entire cortical mantle. To perform inter-subject thickness comparison in which the spatial information is retained, a feature-based registration algorithm is developed which uses local cortical curvature, normal vector, and a distance measure. A comparison of the two study groups reveals that the lateral side of the hemispheres shows diffuse thinner areas in the mild AD group but especially the medial side shows a pronounced thinner area which can be explained by early limbic changes in AD. For classification principal component analysis is applied to reduce the high number of thickness measurements (>200,000) into fewer features. All mild AD and healthy middle-aged subjects are classified correctly (sensitivity and specificity 100%).

  1. Calmodulin immunolocalization to cortical microtubules is calcium independent

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.D.; Cyr, R.J.

    1992-01-01

    Calcium affects the stability of cortical microtubules (MTs) in lysed protoplasts. This calmodulin (CaM)-mediated interaction may provide a mechanism that serves to integrate cellular behavior with MT function. To test the hypothesis that CaM associates with these MTs, monoclonal antibodies were produced against CaM, and one (designated mAb1D10), was selected for its suitability as an immunocytochemical reagent. It is shown that CaM associates with the cortical Mats of cultured carrot (Daucus carota L.) and tobacco (Nicotiana tobacum L.) cells. Inasmuch as CaM interacts with calcium and affects the behavior of these Mats, we hypothesized that calcium would alter this association. To test this, protoplasts containing taxol-stabilized Mats were lysed in the presence of various concentrations of calcium and examined for the association of Cam with cortical Mats. At 1 [mu]M calcium, many protoplasts did not have CaM in association with the cortical Mats, while at 3.6 [mu]M calcium, this association was completely abolished. The results are discussed in terms of a model in which CaM associates with Mats via two types of interactions; one calcium dependent and one independent.

  2. Calmodulin immunolocalization to cortical microtubules is calcium independent

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.D.; Cyr, R.J.

    1992-12-31

    Calcium affects the stability of cortical microtubules (MTs) in lysed protoplasts. This calmodulin (CaM)-mediated interaction may provide a mechanism that serves to integrate cellular behavior with MT function. To test the hypothesis that CaM associates with these MTs, monoclonal antibodies were produced against CaM, and one (designated mAb1D10), was selected for its suitability as an immunocytochemical reagent. It is shown that CaM associates with the cortical Mats of cultured carrot (Daucus carota L.) and tobacco (Nicotiana tobacum L.) cells. Inasmuch as CaM interacts with calcium and affects the behavior of these Mats, we hypothesized that calcium would alter this association. To test this, protoplasts containing taxol-stabilized Mats were lysed in the presence of various concentrations of calcium and examined for the association of Cam with cortical Mats. At 1 {mu}M calcium, many protoplasts did not have CaM in association with the cortical Mats, while at 3.6 {mu}M calcium, this association was completely abolished. The results are discussed in terms of a model in which CaM associates with Mats via two types of interactions; one calcium dependent and one independent.

  3. Homeostatic responses by surviving cortical pyramidal cells in neurodegenerative tauopathy.

    Science.gov (United States)

    Crimins, Johanna L; Rocher, Anne B; Peters, Alan; Shultz, Penny; Lewis, Jada; Luebke, Jennifer I

    2011-11-01

    Cortical neuron death is prevalent by 9 months in rTg(tau(P301L))4510 tau mutant mice (TG) and surviving pyramidal cells exhibit dendritic regression and spine loss. We used whole-cell patch-clamp recordings to investigate the impact of these marked structural changes on spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) of layer 3 pyramidal cells in frontal cortical slices from behaviorally characterized TG and non-transgenic (NT) mice at this age. Frontal lobe function of TG mice was intact following a short delay interval but impaired following a long delay interval in an object recognition test, and cortical atrophy and cell loss were pronounced. Surviving TG cells had significantly reduced dendritic diameters, total spine density, and mushroom spines, yet sEPSCs were increased and sIPSCs were unchanged in frequency. Thus, despite significant regressive structural changes, synaptic responses were not reduced in TG cells, indicating that homeostatic compensatory mechanisms occur during progressive tauopathy. Consistent with this idea, surviving TG cells were more intrinsically excitable than NT cells, and exhibited sprouting of filopodia and axonal boutons. Moreover, the neuropil in TG mice showed an increased density of asymmetric synapses, although their mean size was reduced. Taken together, these data indicate that during progressive tauopathy, cortical pyramidal cells compensate for loss of afferent input by increased excitability and establishment of new synapses. These compensatory homeostatic mechanisms may play an important role in slowing the progression of neuronal network dysfunction during neurodegenerative tauopathies.

  4. An improved quantitative analysis method for plant cortical microtubules.

    Science.gov (United States)

    Lu, Yi; Huang, Chenyang; Wang, Jia; Shang, Peng

    2014-01-01

    The arrangement of plant cortical microtubules can reflect the physiological state of cells. However, little attention has been paid to the image quantitative analysis of plant cortical microtubules so far. In this paper, Bidimensional Empirical Mode Decomposition (BEMD) algorithm was applied in the image preprocessing of the original microtubule image. And then Intrinsic Mode Function 1 (IMF1) image obtained by decomposition was selected to do the texture analysis based on Grey-Level Cooccurrence Matrix (GLCM) algorithm. Meanwhile, in order to further verify its reliability, the proposed texture analysis method was utilized to distinguish different images of Arabidopsis microtubules. The results showed that the effect of BEMD algorithm on edge preserving accompanied with noise reduction was positive, and the geometrical characteristic of the texture was obvious. Four texture parameters extracted by GLCM perfectly reflected the different arrangements between the two images of cortical microtubules. In summary, the results indicate that this method is feasible and effective for the image quantitative analysis of plant cortical microtubules. It not only provides a new quantitative approach for the comprehensive study of the role played by microtubules in cell life activities but also supplies references for other similar studies.

  5. An Improved Quantitative Analysis Method for Plant Cortical Microtubules

    Directory of Open Access Journals (Sweden)

    Yi Lu

    2014-01-01

    Full Text Available The arrangement of plant cortical microtubules can reflect the physiological state of cells. However, little attention has been paid to the image quantitative analysis of plant cortical microtubules so far. In this paper, Bidimensional Empirical Mode Decomposition (BEMD algorithm was applied in the image preprocessing of the original microtubule image. And then Intrinsic Mode Function 1 (IMF1 image obtained by decomposition was selected to do the texture analysis based on Grey-Level Cooccurrence Matrix (GLCM algorithm. Meanwhile, in order to further verify its reliability, the proposed texture analysis method was utilized to distinguish different images of Arabidopsis microtubules. The results showed that the effect of BEMD algorithm on edge preserving accompanied with noise reduction was positive, and the geometrical characteristic of the texture was obvious. Four texture parameters extracted by GLCM perfectly reflected the different arrangements between the two images of cortical microtubules. In summary, the results indicate that this method is feasible and effective for the image quantitative analysis of plant cortical microtubules. It not only provides a new quantitative approach for the comprehensive study of the role played by microtubules in cell life activities but also supplies references for other similar studies.

  6. Cortico-Cortical Receptive Field Estimates in Human Visual Cortex

    Directory of Open Access Journals (Sweden)

    Koen V Haak

    2012-05-01

    Full Text Available Human visual cortex comprises many visual areas that contain a map of the visual field (Wandell et al 2007, Neuron 56, 366–383. These visual field maps can be identified readily in individual subjects with functional magnetic resonance imaging (fMRI during experimental sessions that last less than an hour (Wandell and Winawer 2011, Vis Res 718–737. Hence, visual field mapping with fMRI has been, and still is, a heavily used technique to examine the organisation of both normal and abnormal human visual cortex (Haak et al 2011, ACNR, 11(3, 20–21. However, visual field mapping cannot reveal every aspect of human visual cortex organisation. For example, the information processed within a visual field map arrives from somewhere and is sent to somewhere, and visual field mapping does not derive these input/output relationships. Here, we describe a new, model-based analysis for estimating the dependence between signals in distinct cortical regions using functional magnetic resonance imaging (fMRI data. Just as a stimulus-referred receptive field predicts the neural response as a function of the stimulus contrast, the neural-referred receptive field predicts the neural response as a function of responses elsewhere in the nervous system. When applied to two cortical regions, this function can be called the cortico-cortical receptive field (CCRF. We model the CCRF as a Gaussian-weighted region on the cortical surface and apply the model to data from both stimulus-driven and resting-state experimental conditions in visual cortex.

  7. Convergence and divergence are mostly reciprocated properties of the connections in the network of cortical areas.

    Science.gov (United States)

    Négyessy, László; Nepusz, Tamás; Zalányi, László; Bazsó, Fülöp

    2008-10-22

    Cognition is based on the integrated functioning of hierarchically organized cortical processing streams in a manner yet to be clarified. Because integration fundamentally depends on convergence and the complementary notion of divergence of the neuronal connections, we analysed integration by measuring the degree of convergence/divergence through the connections in the network of cortical areas. By introducing a new index, we explored the complementary convergent and divergent nature of connectional reciprocity and delineated the backward and forward cortical sub-networks for the first time. Integrative properties of the areas defined by the degree of convergence/divergence through their afferents and efferents exhibited distinctive characteristics at different levels of the cortical hierarchy. Areas previously identified as hubs exhibit information bottleneck properties. Cortical networks largely deviate from random graphs where convergence and divergence are balanced at low reciprocity level. In the cortex, which is dominated by reciprocal connections, balance appears only by further increasing the number of reciprocal connections. The results point to the decisive role of the optimal number and placement of reciprocal connections in large-scale cortical integration. Our findings also facilitate understanding of the functional interactions between the cortical areas and the information flow or its equivalents in highly recurrent natural and artificial networks.

  8. Lateral entorhinal modulation of piriform cortical activity and fine odor discrimination.

    Science.gov (United States)

    Chapuis, Julie; Cohen, Yaniv; He, Xiaobin; Zhang, Zhijan; Jin, Sen; Xu, Fuqiang; Wilson, Donald A

    2013-08-14

    The lateral entorhinal cortex (LEC) receives direct input from olfactory bulb mitral cells and piriform cortical pyramidal cells and is the gateway for olfactory input to the hippocampus. However, the LEC also projects back to the piriform cortex and olfactory bulb. Activity in the LEC is shaped by input from the perirhinal cortices, hippocampus, and amygdala, and thus could provide a rich contextual modulation of cortical odor processing. The present study further explored LEC feedback to anterior piriform cortex by examining how LEC top-down input modulates anterior piriform cortex odor evoked activity in rats. Retrograde viral tracing confirmed rich LEC projections to both the olfactory bulb and piriform cortices. In anesthetized rats, reversible lesions of the ipsilateral LEC increased anterior piriform cortical single-unit spontaneous activity. In awake animals performing an odor discrimination task, unilateral LEC reversible lesions enhanced ipsilateral piriform cortical local field potential oscillations during odor sampling, with minimal impact on contralateral activity. Bilateral LEC reversible lesions impaired discrimination performance on a well learned, difficult odor discrimination task, but had no impact on a well learned simple odor discrimination task. The simple discrimination task was impaired by bilateral reversible lesions of the anterior piriform cortex. Given the known function of LEC in working memory and multisensory integration, these results suggest it may serve as a powerful top-down modulator of olfactory cortical function and odor perception. Furthermore, the results provide potential insight into how neuropathology in the entorhinal cortex could contribute to early olfactory deficits seen in Alzheimer's disease.

  9. Associations between cortical thickness and verbal fluency in childhood, adolescence, and young adulthood.

    Science.gov (United States)

    Porter, James N; Collins, Paul F; Muetzel, Ryan L; Lim, Kelvin O; Luciana, Monica

    2011-04-15

    Neuroimaging studies of normative human brain development indicate that the brain matures at differing rates across time and brain regions, with some areas maturing into young adulthood. In particular, changes in cortical thickness may index maturational progressions from an overabundance of neuropil toward efficiently pruned neural networks. Developmental changes in structural MRI measures have rarely been examined in relation to discrete neuropsychological functions. In this study, healthy right-handed adolescents completed MRI scanning and the Controlled Oral Word Association Test (COWAT). Associations of task performance and cortical thickness were assessed with cortical-surface-based analyses. Significant correlations between increasing COWAT performances and decreasing cortical thickness were found in left hemisphere language regions, including perisylvian regions surrounding Wernicke's and Broca's areas. Task performance was also correlated with regions associated with effortful verbal processing, working memory, and performance monitoring. Structure-function associations were not significantly different between older and younger subjects. Decreases in cortical thicknesses in regions that comprise the language network likely reflect maturation toward adult-like cortical organization and processing efficiency. The changes in cortical thicknesses that support verbal fluency are apparent by middle childhood, but with regionally separate developmental trajectories for males and females, consistent with other studies of adolescent development.

  10. Motor-cortical interaction in Gilles de la Tourette syndrome.

    Directory of Open Access Journals (Sweden)

    Stephanie Franzkowiak

    Full Text Available BACKGROUND: In Gilles de la Tourette syndrome (GTS increased activation of the primary motor cortex (M1 before and during movement execution followed by increased inhibition after movement termination was reported. The present study aimed at investigating, whether this activation pattern is due to altered functional interaction between motor cortical areas. METHODOLOGY/PRINCIPAL FINDINGS: 10 GTS-patients and 10 control subjects performed a self-paced finger movement task while neuromagnetic brain activity was recorded using Magnetoencephalography (MEG. Cerebro-cerebral coherence as a measure of functional interaction was calculated. During movement preparation and execution coherence between contralateral M1 and supplementary motor area (SMA was significantly increased at beta-frequency in GTS-patients. After movement termination no significant differences between groups were evident. CONCLUSIONS/SIGNIFICANCE: The present data suggest that increased M1 activation in GTS-patients might be due to increased functional interaction between SMA and M1 most likely reflecting a pathophysiological marker of GTS. The data extend previous findings of motor-cortical alterations in GTS by showing that local activation changes are associated with alterations of functional networks between premotor and primary motor areas. Interestingly enough, alterations were evident during preparation and execution of voluntary movements, which implies a general theme of increased motor-cortical interaction in GTS.

  11. Cortical control of facial expression.

    Science.gov (United States)

    Müri, René M

    2016-06-01

    The present Review deals with the motor control of facial expressions in humans. Facial expressions are a central part of human communication. Emotional face expressions have a crucial role in human nonverbal behavior, allowing a rapid transfer of information between individuals. Facial expressions can be either voluntarily or emotionally controlled. Recent studies in nonhuman primates and humans have revealed that the motor control of facial expressions has a distributed neural representation. At least five cortical regions on the medial and lateral aspects of each hemisphere are involved: the primary motor cortex, the ventral lateral premotor cortex, the supplementary motor area on the medial wall, and the rostral and caudal cingulate cortex. The results of studies in humans and nonhuman primates suggest that the innervation of the face is bilaterally controlled for the upper part and mainly contralaterally controlled for the lower part. Furthermore, the primary motor cortex, the ventral lateral premotor cortex, and the supplementary motor area are essential for the voluntary control of facial expressions. In contrast, the cingulate cortical areas are important for emotional expression, because they receive input from different structures of the limbic system.

  12. Cerebello-thalamo-cortical projections to the posterior parietal cortex in the macaque monkey.

    Science.gov (United States)

    Amino, Y; Kyuhou, S; Matsuzaki, R; Gemba, H

    2001-08-17

    The cerebello-thalamo-posterior parietal cortical projections were investigated electrophysiologically and morphologically in macaque monkeys. In anesthetized monkeys, electrical stimulation of every cerebellar nucleus evoked marked surface-positive, depth-negative (s-P, d-N) cortical field potentials in the superior parietal lobule and the cortical bank of the intraparietal sulcus, but no responses in the inferior parietal lobule. Tract-tracing experiments combining the anterograde method with the retrograde one indicated that the interposed and lateral cerebellar nuclei projected to the posterior parietal cortex mainly through the nucleus ventral lateralis caudalis of the thalamus. The significance of the projections is discussed in connection with cognitive functions.

  13. Cortical neuroplasticity in patients recovering from acute optic neuritis

    DEFF Research Database (Denmark)

    Korsholm, Kirsten; Madsen, Kristoffer Hougaard; Frederiksen, Jette L.

    2008-01-01

    Patients with optic neuritis (ON) undergo cortical and subcortical neuroplasticity as revealed by functional magnetic resonance imaging (fMRI). However, the effect of the heterogeneity of scotomas his not been adequately addressed previously. We introduce a new method of modelling scotomas in f......MRI, to reveal a clearer pattern of neuroplasticity, across a mixed patient population. A longitudinal fMRI-study of visual function in 19 ON patients examined at four timepoints between presentation and 6 months was performed. Four different models were compared. The first model included the four different...... Cortical neuroplasticity during recovery. Moreover, inferences from the fourth model can be extended to the general Population of patients recovering from ON. In Conclusion, we present a method of accommodating subject-specific differences between patients with acute ON by inclusion of an HMD...

  14. Emerging roles of Axin in cerebral cortical development

    Directory of Open Access Journals (Sweden)

    Tao eYe

    2015-06-01

    Full Text Available Proper functioning of the cerebral cortex depends on the appropriate production and positioning of neurons, establishment of axon–dendrite polarity, and formation of proper neuronal connectivity. Deficits in any of these processes greatly impair neural functions and are associated with various human neurodevelopmental disorders including microcephaly, cortical heterotopias, and autism. The application of in vivo manipulation techniques such as in utero electroporation has resulted in significant advances in our understanding of the cellular and molecular mechanisms that underlie neural development in vivo. Axin is a scaffold protein that regulates neuronal differentiation and morphogenesis in vitro. Recent studies provide novel insights into the emerging roles of Axin in gene expression and cytoskeletal regulation during neurogenesis, neuronal polarization, and axon formation. This review summarizes current knowledge on Axin as a key molecular controller of cerebral cortical development.

  15. Properties of persistent postnatal cortical subplate neurons.

    Science.gov (United States)

    Torres-Reveron, Juan; Friedlander, Michael J

    2007-09-12

    Subplate (SP) neurons are important for the proper development of thalamocortical innervation. They are necessary for formation of ocular dominance and orientation columns in visual cortex. During the perinatal period, many SP neurons die. The surviving cohort forms interstitial cells in the white matter (WM) and a band of horizontally oriented cells below layer VI (layer VIb, layer VII, or subplate cells). Although the function of embryonic SP neurons has been well established, the functional roles of WM and postnatal SP cells are not known. We used a combination of anatomical, immunohistochemical, and electrophysiological techniques to explore the dendritic morphology, neurotransmitter phenotype, intrinsic electrophysiological, and synaptic input properties of these surviving cells in the rat visual cortex. The density of SP and WM cells significantly decreases during the first month of life. Both populations express neuronal markers and have extensive dendritic arborizations within the SP, WM, and to the overlying visual cortex. Some intrinsic electrophysiological properties of SP and WM cells are similar: each generates high-frequency slowly adapting trains of action potentials in response to a sustained depolarization. However, SP cells exhibit greater frequency-dependent action potential broadening than WM neurons. Both cell types receive predominantly AMPA/kainate receptor-mediated excitatory synaptic input that undergoes paired-pulse facilitation as well as NMDA receptor and GABAergic input. Synaptic inputs to these cells can also undergo long-term synaptic plasticity. Thus, surviving SP and WM cells are functional electrogenic neurons integrated within the postnatal visual cortical circuit.

  16. High-expanding cortical regions in human development and evolution are related to higher intellectual abilities.

    Science.gov (United States)

    Fjell, Anders M; Westlye, Lars T; Amlien, Inge; Tamnes, Christian K; Grydeland, Håkon; Engvig, Andreas; Espeseth, Thomas; Reinvang, Ivar; Lundervold, Astri J; Lundervold, Arvid; Walhovd, Kristine B

    2015-01-01

    Cortical surface area has tremendously expanded during human evolution, and similar patterns of cortical expansion have been observed during childhood development. An intriguing hypothesis is that the high-expanding cortical regions also show the strongest correlations with intellectual function in humans. However, we do not know how the regional distribution of correlations between intellectual function and cortical area maps onto expansion in development and evolution. Here, in a sample of 1048 participants, we show that regions in which cortical area correlates with visuospatial reasoning abilities are generally high expanding in both development and evolution. Several regions in the frontal cortex, especially the anterior cingulate, showed high expansion in both development and evolution. The area of these regions was related to intellectual functions in humans. Low-expanding areas were not related to cognitive scores. These findings suggest that cortical regions involved in higher intellectual functions have expanded the most during development and evolution. The radial unit hypothesis provides a common framework for interpretation of the findings in the context of evolution and prenatal development, while additional cellular mechanisms, such as synaptogenesis, gliogenesis, dendritic arborization, and intracortical myelination, likely impact area expansion in later childhood.

  17. Primary visual cortical remapping in patients with inherited peripheral retinal degeneration.

    Science.gov (United States)

    Ferreira, Sónia; Pereira, Andreia Carvalho; Quendera, Bruno; Reis, Aldina; Silva, Eduardo Duarte; Castelo-Branco, Miguel

    2017-01-01

    Human studies addressing the long-term effects of peripheral retinal degeneration on visual cortical function and structure are scarce. Here we investigated this question in patients with Retinitis Pigmentosa (RP), a genetic condition leading to peripheral visual degeneration. We acquired functional and anatomical magnetic resonance data from thirteen patients with different levels of visual loss and twenty-two healthy participants to study primary (V1) visual cortical retinotopic remapping and cortical thickness. We identified systematic visual field remapping in the absence of structural changes in the primary visual cortex of RP patients. Remapping consisted in a retinotopic eccentricity shift of central retinal inputs to more peripheral locations in V1. Importantly, this was associated with changes in visual experience, as assessed by the extent of the visual loss, with more constricted visual fields resulting in larger remapping. This pattern of remapping is consistent with expansion or shifting of neuronal receptive fields into the cortical regions with reduced retinal input. These data provide evidence for functional changes in V1 that are dependent on the magnitude of peripheral visual loss in RP, which may be explained by rapid cortical adaptation mechanisms or long-term cortical reorganization. This study highlights the importance of analyzing the retinal determinants of brain functional and structural alterations for future visual restoration approaches.

  18. Transient neuropsychological abnormalities (including Gerstmann's syndrome) during cortical stimulation.

    Science.gov (United States)

    Morris, H H; Lüders, H; Lesser, R P; Dinner, D S; Hahn, J

    1984-07-01

    A patient with intractable partial seizures was intensively studied before surgical removal of the epileptogenic focus. A subdural electrode array was surgically placed over the left temporoparietal cortex to better localize the epileptogenic focus and localize cortical function. In addition to speech and sensory findings, acalculia, agraphia, right-left confusion, and finger agnosia were transiently produced by electrical stimulation in the perisylvian area. These findings and their relationship to the controversy surrounding Gerstmann's syndrome are discussed.

  19. Autaptic self-inhibition of cortical GABAergic neurons: synaptic narcissism or useful introspection?

    Science.gov (United States)

    Deleuze, Charlotte; Pazienti, Antonio; Bacci, Alberto

    2014-06-01

    Fast synaptic inhibition sculpts all forms of cortical activity by means of a specialized connectivity pattern between highly heterogeneous inhibitory interneurons and principal excitatory cells. Importantly, inhibitory neurons connect also to each other extensively, following a detailed blueprint, and, indeed, specific forms of disinhibition affect important behavioral functions. Here we discuss a peculiar form of cortical disinhibition: the massive autaptic self-inhibition of parvalbumin-(PV) positive basket cells. Despite being described long ago, autaptic inhibition onto PV basket cells is rarely included in cortical circuit diagrams, perhaps because of its still elusive function. We propose here a potential dual role of autaptic feedback inhibition in temporally coordinating PV basket cells during cortical network activity.

  20. Revisiting the enigmatic cortical calretinin-expressing interneurons

    Directory of Open Access Journals (Sweden)

    Bruno eCauli

    2014-06-01

    Full Text Available Cortical calretinin (CR-expressing interneurons represent a heterogeneous subpopulation of about 10-30% of GABAergic interneurons, which altogether total ca. 12-20% of all cortical neurons. In the rodent neocortex, CR cells display different somatodendritic morphologies ranging from bipolar to multipolar but the bipolar cells and their variations dominate. They are also diverse at the molecular level as they were shown to express numerous neuropeptides in different combinations including vasoactive intestinal polypeptide (VIP, cholecystokinin (CCK, neurokinin B (NKB corticotrophin releasing factor (CRF, enkephalin (Enk but also neuropeptide Y (NPY and somatostatin (SOM to a lesser extent. CR-expressing interneurons exhibit different firing behaviors such as adapting, bursting or irregular. They mainly originate from the caudal ganglionic eminence (CGE but a subpopulation also derives from the dorsal part of the medial ganglionic eminence (MGE. Cortical GABAergic CR-expressing interneurons can be divided in two main populations: VIP-bipolar interneurons deriving from the CGE and SOM-Martinotti-like interneurons originating in the dorsal MGE. Although bipolar cells account for the majority of CR-expressing interneurons, the roles they play in cortical neuronal circuits and in the more general metabolic physiology of the brain remain elusive and enigmatic. The aim of this review is, firstly, to provide a comprehensive view of the morphological, molecular and electrophysiological features defining this cell type. We will, secondly, also summarize what is known about their place in the cortical circuit, their modulation by subcortical afferents and the functional roles they might play in neuronal processing and energy metabolism.

  1. Bicycling and walking are associated with different cortical oscillatory dynamics

    Directory of Open Access Journals (Sweden)

    Lena eStorzer

    2016-02-01

    Full Text Available Although bicycling and walking involve similar complex coordinated movements, surprisingly Parkinson’s patients with freezing of gait typically remain able to bicycle despite severe difficulties walking. This observation suggests functional differences in the motor networks subserving bicycling and walking. However, a direct comparison of brain activity related to bicycling and walking has never been performed, neither in healthy participants nor in patients. Such a comparison could potentially help elucidating the cortical involvement in motor control and the mechanisms through which bicycling ability may be preserved in patients with freezing of gait. The aim of this study was to contrast the cortical oscillatory dynamics involved in bicycling and walking in healthy participants.To this end, EEG and EMG data of 14 healthy participants were analyzed, who cycled on a stationary bicycle at a slow cadence of 40 revolutions per minute (rpm and walked at 40 strides per minute (spm, respectively.Relative to walking, bicycling was associated with a stronger power decrease in the high beta band (23-35 Hz during movement initiation and execution, followed by a stronger beta power increase after movement termination. Walking, on the other hand, was characterized by a stronger and persisting alpha power (8-12 Hz decrease. Both bicycling and walking exhibited movement cycle-dependent power modulation in the 24-40 Hz range that was correlated with EMG activity. This modulation was significantly stronger in walking.The present findings reveal differential cortical oscillatory dynamics in motor control for two types of complex coordinated motor behavior, i.e., bicycling and walking. Bicycling was associated with a stronger sustained cortical activation as indicated by the stronger high beta power decrease during movement execution and less cortical motor control within the movement cycle. We speculate this to be due to the more continuous nature of

  2. Cortical hypermetabolism in MCI subjects: a compensatory mechanism?

    Energy Technology Data Exchange (ETDEWEB)

    Ashraf, A.; Fan, Z.; Brooks, D.J.; Edison, P. [Imperial College London, Neurology Imaging Unit, Division of Brain Sciences, London (United Kingdom)

    2014-09-30

    Alzheimer's disease (AD) is associated with amyloid accumulation that takes place decades before symptoms appear. Cognitive impairment in AD is associated with reduced glucose metabolism. However, neuronal plasticity/compensatory mechanisms might come into play before the onset of dementia. The aim of this study was to determine whether there is evidence of cortical hypermetabolism as a compensatory mechanism before amyloid deposition takes place in subjects with amnestic mild cognitive impairment (aMCI). Nine AD subjects and ten aMCI subjects had both [{sup 11}C]PIB and [{sup 18}F]FDG PET scans with arterial input in order to quantify the amyloid deposition and glucose metabolism in vivo in comparison with healthy control subjects who underwent either [{sup 11}C]PIB or [{sup 18}F]FDG PET scans. The [{sup 11}C]PIB PET scans were quantified using [{sup 11}C]PIB target region to cerebellum uptake ratio images created by integrating the activity collected from 60 to 90 min, and regional cerebral glucose metabolism was quantified using spectral analysis. In MCI subjects, cortical hypermetabolism was observed in four amyloid-negative subjects and one amyloid-positive subject, while hypometabolism was seen in five other MCI subjects with high amyloid load. Subjects with hypermetabolism and low amyloid did not convert to AD during clinical follow-up for 18 months in contrast to four amyloid-positive hypometabolic subjects who did convert to AD. This preliminary study suggests that compensatory hypermetabolism can occur in aMCI subjects, particularly in those who are amyloid-negative. The increase in metabolic rate in different cortical regions with predominance in the occipital cortex may be a compensatory response to the neuronal damage occurring early in the disease process. It may also reflect recruitment of relatively minimally affected cortical regions to compensate for reduced function in the temporoparietal cortical association areas. (orig.)

  3. Magnetic Resonance Perfusion Imaging in Malformations of Cortical Development

    Energy Technology Data Exchange (ETDEWEB)

    Widjaja, ED.; Wilkinson, I.D.; Griffiths, P.D. [Academic Section of Radiolog y, Univ. of Sheffield, Sheffield (United Kingdom)

    2007-10-15

    Background: Malformations of cortical development vary in neuronal maturity and level of functioning. Purpose: To characterize regional relative cerebral blood volume (rCBV) and difference in first moment transit time (TTfm) in polymicrogyria and cortical tubers using magnetic resonance (MR) perfusion imaging. Material and Methods: MR imaging and dynamic T2*-weighted MR perfusion imaging were performed in 13 patients with tuberous sclerosis complex, 10 with polymicrogyria, and 18 controls with developmental delay but no macroscopic brain abnormality. Regions of interest were placed in cortical tubers or polymicrogyric cortex and in the contralateral normal-appearing side in patients with malformations. In 'control' subjects, regions of interest were placed in the frontal and parietal lobes in both hemispheres. The rCBV and TTfm of the tuber/contralateral side (rCBVRTSC and TTFMTSC) as well as those of the polymicrogyria/contralateral side (rCBVRPMG and TTFMPMG) were assessed. The right-to-left asymmetry of rCBV and TTfm in the control group was also assessed (rCBVRControls and TTFMControls). Results: There was no significant asymmetry between right and left rCBV or TTfm (P>0.05) in controls. There was significant reduction in rCBVRTSC compared to rCBVRControls (P<0.05), but no significant difference in TTFMTSC compared to TTFMControls (P>0.05). There were no significant differences between rCBVRPMG and rCBVRControls (P>0.05) or TTFMPMG and TTFMControls (P>0.05). Conclusion: Our findings imply that cerebral blood volume of polymicrogyria is similar to normal cortex, but there is reduced cerebral blood volume in cortical tubers. The lower rCBV ratio of cortical tubers may be related to known differences in pathogenetic timing of the underlying abnormalities during brain development or the presence of gliosis.

  4. Temporal lobe cortical thickness correlations differentiate the migraine brain from the healthy brain.

    Directory of Open Access Journals (Sweden)

    Todd J Schwedt

    Full Text Available Interregional cortical thickness correlations reflect underlying brain structural connectivity and functional connectivity. A few prior studies have shown that migraine is associated with atypical cortical brain structure and atypical functional connectivity amongst cortical regions that participate in sensory processing. However, the specific brain regions that most accurately differentiate the migraine brain from the healthy brain have yet to be determined. The aim of this study was to identify the brain regions that comprised interregional cortical thickness correlations that most differed between migraineurs and healthy controls.This was a cross-sectional brain magnetic resonance imaging (MRI investigation of 64 adults with migraine and 39 healthy control subjects recruited from tertiary-care medical centers and their surrounding communities. All subjects underwent structural brain MRI imaging on a 3T scanner. Cortical thickness was determined for 70 brain regions that cover the cerebral cortex and cortical thickness correlations amongst these regions were calculated. Cortical thickness correlations that best differentiated groups of six migraineurs from controls and vice versa were identified.A model containing 15 interregional cortical thickness correlations differentiated groups of migraineurs from healthy controls with high accuracy. The right temporal pole was involved in 13 of the 15 interregional correlations while the right middle temporal cortex was involved in the other two.A model consisting of 15 interregional cortical thickness correlations accurately differentiates the brains of small groups of migraineurs from those of healthy controls. Correlations with the right temporal pole were highly represented in this classifier, suggesting that this region plays an important role in migraine pathophysiology.

  5. Age-Dependent Cortical Thinning of Peripheral Visual Field Representations in Primary Visual Cortex.

    Science.gov (United States)

    Griffis, Joseph C; Burge, Wesley K; Visscher, Kristina M

    2016-01-01

    The cerebral cortex changes throughout the lifespan, and the cortical gray matter in many brain regions becomes thinner with advancing age. Effects of aging on cortical thickness (CT) have been observed in many brain regions, including areas involved in basic perceptual functions such as processing visual inputs. An important property of early visual cortices is their topographic organization-the cortical structure of early visual areas forms a topographic map of retinal inputs. Primary visual cortex (V1) is considered to be the most basic cortical area in the visual processing hierarchy, and is topographically organized from posterior (central visual representation) to anterior (peripheral visual representation) along the calcarine sulcus. Some studies have reported strong age-dependent cortical thinning in portions of V1 that likely correspond to peripheral visual representations, while there is less evidence of substantial cortical thinning in central V1. However, the effect of aging on CT in V1 as a function of its topography has not been directly investigated. To address this gap in the literature, we estimated the CT of different eccentricity sectors in V1 using T1-weighted MRI scans acquired from groups of healthy younger and older adults, and then assessed whether between-group differences in V1 CT depended on cortical eccentricity. These analyses revealed age-dependent cortical thinning specific to peripheral visual field representations in anterior portions of V1, but did not provide evidence for age-dependent cortical thinning in other portions of V1. Additional analyses found similar effects when analyses were restricted to the gyral crown, sulcul depth and sulcul wall, indicating that these effects are not likely due to differences in gyral/sulcul contributions to our regions of interest (ROI). Importantly, this finding indicates that age-dependent changes in cortical structure may differ among functionally distinct zones within larger canonical

  6. Application of cortical electrode, image fusion and intraoperative MRI navigation in surgical resection of epileptic lesions in functional area%皮层电极监测、图像融合和术中磁共振精确镜下导航技术在切除功能区癫痫灶的应用

    Institute of Scientific and Technical Information of China (English)

    潘隆盛; 凌至培; 徐强; 孙国臣; 陈晓雷; 许百男

    2012-01-01

    Objective To study the application of cortical electrode, image fusion and intra- operative MRI navigation in surgical resection of epileptic lesions in the functional area. Methods Application of cortical electrode, image fusion and intra-operative MRI navigation in surgical resection of epileptic lesions in 25 patients with refractory epilepsy was retrospectively analyzed. Intracranial cortical electrodes were implanted into epileptic lesions of the patients according to their VEEG during the first operation. Their cortical electrical activity was monitored, cerebral motor area was located by cortical electrical stimulation, a figure of correlation between epileptic lesion and functional area was plotted after operation, images of CT, MRI, MEG or PET were fused, and the epilepsy lesions were precisely removed under microscopic MRI navigation. Results Cortical electrical stimulation was successful in 25 epilepsy patients during the first operation and the cortical motor area around the epileptic lesion was accurately located. The images of MRI, MEG or PET for the patients were fused. Of the 25 patients, 20 underwent total resection of epileptic lesion and 5 underwent partial resection of the lesion under microscopic MRI navigation due to the overlapped lesion and functional area. The residual cortex was eradicated by thermal burn. Transient opposite extremity dysfunction was observed in 1 patient after operation. No permanent neurological deficit occurred in all patients after operation. Conclusion Accurate location of intracranial cortical electrodes is of great importance for monitoring epileptic lesions. Fusion of MRI, MEG or PET images and microscopic MRI navigation during operation can provide technical support for the precise resection of epileptic lesions and protection of the functional area.%目的 探讨颅内皮层电极监测、图像融合和术中磁共振精确导航技术在切除功能区癫痫灶的应用价值.方法 回顾分析25 例应用皮

  7. Abnormal dopaminergic modulation of striato-cortical networks underlies levodopa-induced dyskinesias in humans

    DEFF Research Database (Denmark)

    Herz, Damian M.; Haagensen, Brian N.; Christensen, Mark S.

    2015-01-01

    Dopaminergic signalling in the striatum contributes to reinforcement of actions and motivational enhancement of motor vigour. Parkinson's disease leads to progressive dopaminergic denervation of the striatum, impairing the function of cortico-basal ganglia networks. While levodopa therapy......-cortical connectivity as a neural signature of levodopa-induced dyskinesias in humans. We argue that excessive striato-cortical connectivity in response to levodopa produces an aberrant reinforcement signal producing an abnormal motor drive that ultimately triggers involuntary movements....

  8. Exogenous Reelin modifies the migratory behavior of neurons depending on cortical location.

    Science.gov (United States)

    Britto, Joanne M; Tait, Karen J; Lee, Ean Phing; Gamble, Robin S; Hattori, Mitsuharu; Tan, Seong-Seng

    2014-11-01

    Malformations of cortical development can arise when projection neurons generated in the germinal zones fail to migrate properly into the cortical plate. This process is critically dependent on the Reelin glycoprotein, which when absent leads to an inversion of cortical layers and blurring of borders. Reelin has other functions including supporting neuron migration and maintaining their trajectories; however, the precise role on glial fiber-dependent or -independent migration of neurons remains controversial. In this study, we wish to test the hypothesis that migrating cortical neurons at different levels of the cortical wall have differential responses to Reelin. We exposed neurons migrating across the cortical wall to exogenous Reelin and monitored their migratory behavior using time-lapse imaging. Our results show that, in the germinal zones, exogenous Reelin retarded neuron migration and altered their trajectories. This behavior is in contrast to the response of neurons located in the intermediate zone (IZ), possibly because Reelin receptors are not expressed in this zone. In the reeler cortex, Reelin receptors are expressed in the IZ and exposure to exogenous Reelin was able to rescue the migratory defect. These studies demonstrate that migrating neurons have nonequivalent responses to Reelin depending on their location within the cortical wall.

  9. Cortical damage in the posterior visual pathway in patients with sialidosis type 1.

    Science.gov (United States)

    Lu, Chin-Song; Ng, Shu-Hang; Lai, Szu-Chia; Kao, Ling-Yuh; Liu, Laura; Lin, Wey-Yil; Wu, Yi-Ming; Chen, Yao-Liang; Wang, Jiun-Jie

    2016-02-03

    In order to identify the cortical changes in patients with Sialidosis type 1, diffusion tensor imaging and resting state fMRI were acquired from 11 patients and 11 sex/age matched normal controls after clinical evaluations. The neuroimages from each participant were normalized and parcellated according to the Automatic Anatomical Labeling. Both the mean diffusivity and the corresponding functional connectivity were calculated from each cortical region. The white matter tract integrity was examined. The difference between patients and controls was examined using Student's t-test and between patients with either homozygous or heterozygous mutations by Mann-Whitney U test, both at a threshold of 0.05. Increased mean diffusivity throughout the brain can be noticed in the patients, together with a compromised white matter tracts integrity. The most severely affected cortical regions are in the occipital lobe. Decreased functional connectivity was from the temporal and occipital lobes to the hippocampus and parahippocampus. In contrast, connectivity from thalamus was enhanced. Diffused cortical atrophy with posterior focal lesions was noticed. We concluded that MRI observed functional changes in the posterior cortical pathways in the patients with Sialidosis. The observation might be related to the cortical blindness due to an altered neural network and a compromised visual pathway in the patients.

  10. Cortical activity during rotational and linear transformations.

    Science.gov (United States)

    Barnes, J; Howard, R J; Senior, C; Brammer, M; Bullmore, E T; Simmons, A; Woodruff, P; David, A S

    2000-01-01

    Neuroimaging studies of cortical activation during image transformation tasks have shown that mental rotation may rely on similar brain regions as those underlying visual perceptual mechanisms. The V5 complex, which is specialised for visual motion, is one region that has been implicated. We used functional magnetic resonance imaging (fMRI) to investigate rotational and linear transformation of stimuli. Areas of significant brain activation were identified for each of the primary mental transformation tasks in contrast to its own perceptual reference task which was cognitively matched in all respects except for the variable of interest. Analysis of group data for perception of rotational and linear motion showed activation in areas corresponding to V5 as defined in earlier studies. Both rotational and linear mental transformations activated Brodman Area (BA) 19 but did not activate V5. An area within the inferior temporal gyrus, representing an inferior satellite area of V5, was activated by both the rotational perception and rotational transformation tasks, but showed no activation in response to linear motion perception or transformation. The findings demonstrate the extent to which neural substrates for image transformation and perception overlap and are distinct as well as revealing functional specialisation within perception and transformation processing systems.

  11. Stability-dependent behavioural and electro-cortical reorganizations during intentional switching between bimanual tapping modes.

    Science.gov (United States)

    Tallet, Jessica; Barral, Jérôme; James, Clara; Hauert, Claude-Alain

    2010-10-11

    This study investigated behavioural and electro-cortical reorganizations accompanying intentional switching between two distinct bimanual coordination tapping modes (In-phase and Anti-phase) that differ in stability when produced at the same movement rate. We expected that switching to a less stable tapping mode (In-to-Anti switching) would lead to larger behavioural perturbations and require supplementary neural resources than switching to a more stable tapping mode (Anti-to-In switching). Behavioural results confirmed that the In-to-Anti switching lasted longer than the Anti-to-In switching. A general increase in attention-related neural activity was found at the moment of switching for both conditions. Additionally, two condition-dependent EEG reorganizations were observed. First, a specific increase in cortico-cortical coherence appeared exclusively during the In-to-Anti switching. This result may reflect a strengthening in inter-regional communication in order to engage in the subsequent, less stable, tapping mode. Second, a decrease in motor-related neural activity (increased beta spectral power) was found for the Anti-to-In switching only. The latter effect may reflect the interruption of the previous, less stable, tapping mode. Given that previous results on spontaneous Anti-to-In switching revealing an inverse pattern of EEG reorganization (decreased beta spectral power), present findings give new insight on the stability-dependent neural correlates of intentional motor switching.

  12. Characterizing Thalamo-Cortical Disturbances in Schizophrenia and Bipolar Illness

    Science.gov (United States)

    Anticevic, Alan; Cole, Michael W.; Repovs, Grega; Murray, John D.; Brumbaugh, Margaret S.; Winkler, Anderson M.; Savic, Aleksandar; Krystal, John H.; Pearlson, Godfrey D.; Glahn, David C.

    2014-01-01

    Schizophrenia is a devastating neuropsychiatric syndrome associated with distributed brain dysconnectivity that may involve large-scale thalamo-cortical systems. Incomplete characterization of thalamic connectivity in schizophrenia limits our understanding of its relationship to symptoms and to diagnoses with shared clinical presentation, such as bipolar illness, which may exist on a spectrum. Using resting-state functional magnetic resonance imaging, we characterized thalamic connectivity in 90 schizophrenia patients versus 90 matched controls via: (1) Subject-specific anatomically defined thalamic seeds; (2) anatomical and data-driven clustering to assay within-thalamus dysconnectivity; and (3) machine learning to classify diagnostic membership via thalamic connectivity for schizophrenia and for 47 bipolar patients and 47 matched controls. Schizophrenia analyses revealed functionally related disturbances: Thalamic over-connectivity with bilateral sensory–motor cortices, which predicted symptoms, but thalamic under-connectivity with prefrontal–striatal–cerebellar regions relative to controls, possibly reflective of sensory gating and top-down control disturbances. Clustering revealed that this dysconnectivity was prominent for thalamic nuclei densely connected with the prefrontal cortex. Classification and cross-diagnostic results suggest that thalamic dysconnectivity may be a neural marker for disturbances across diagnoses. Present findings, using one of the largest schizophrenia and bipolar neuroimaging samples to date, inform basic understanding of large-scale thalamo-cortical systems and provide vital clues about the complex nature of its disturbances in severe mental illness. PMID:23825317

  13. Reversible cortical blindness in a case of hepatic encephalopathy

    Directory of Open Access Journals (Sweden)

    Amlan Kanti Biswas

    2016-01-01

    Full Text Available Hepatic encephalopathy is a frequent and often fatal manifestation of chronic liver disease. The pathogenesis of hepatic encephalopathy is believed to be multifactorial including impaired blood-brain barrier function, imbalance between the excitatory and inhibitory neurotransmitters in cortex, accumulation of various toxic and false neurotransmitters, and lack of nutrients like oxygen and glucose. Signs and symptoms of hepatic encephalopathy varies and commonly ranges from personality changes, disturbed consciousness, sleep pattern alternation, intellectual deterioration, speech disturbances, asterixis to frank coma and even death. Reversible or transient cortical blindness is rare manifestation of hepatic encephalopathy. It may even precede the phase of altered consciousness in such patients. Very few similar cases have been reported worldwide. Hence, we would like to report a case of transient cortical blindness in a patient of hepatic encephalopathy.

  14. Acute cortical blindness due to posterior reversible encephalopathy.

    Science.gov (United States)

    Nguyen-Lam, Jenny; Kiernan, Matthew C

    2008-10-01

    An acutely hypertensive 55 year-old male experienced seizures and cortical blindness post-operatively. CT scans demonstrated hypointensities in the occipital lobes bilaterally. MRI revealed symmetrical bilateral hyperintense signals in the same region, involving both grey and white matter. Thromboembolic screening investigations including vertebral artery doppler studies were normal and echocardiography demonstrated borderline left ventricular hypertrophy. A diagnosis of posterior reversible encephalopathy syndrome (PRES) was reached and there was complete resolution of blindness with antihypertensive therapy. This case supports the vasogenic theory of PRES which suggests that sustained high grade fluctuations in blood pressure lead to a reduction in cerebral vascular autoregulatory function. The resultant failure of compensatory vasoconstriction to prevent hyperperfusion causes fluid to extravasate into the occipital lobes, which in the present case resulted in cortical blindness.

  15. Alterações na distribuição de potência cortical em função da consolidação da memória no aprendizado de datilografia Changes in cortical power distribution produced by memory consolidation as a function of a typewriting skill

    Directory of Open Access Journals (Sweden)

    Marlo Cunha

    2004-09-01

    Full Text Available O objetivo do presente estudo foi investigar alterações nos padrões eletroencefalográficos de sujeitos normais e destros durante o aprendizado de uma tarefa motora (datilografia. Estudos têm demonstrado que o córtex cerebral é susceptível a modificações durante a aprendizagem e que alterações nos padrões elétricos corticais ocorrem em função da aquisição de uma habilidade motora e da consolidação da memória. Assim, a atividade elétrica cortical dos sujeitos foi analisada antes e depois da prática motora. Os dados foram captados pelo "Braintech" 3000 e analisados pelo programa "Neurometrics". Para a análise estatística, variáveis comportamentais tais como tempo e erro, foram analisadas através do teste ANOVA "one-way" (diferenças entre blocos. Em seguida, foi utilizado um Teste-t pareado para os pares de eletrodos CZ-C3/CZ-C4, nas bandas de freqüência teta e alfa. Os resultados principais demonstraram mudança na performance através das variáveis comportamentais "tempo" e "número de erros". Concomitantemente, não foram observadas alterações na variável neurofisiológica "Potência Absoluta" na banda teta. Em contrapartida, houve um aumento significativo na banda alfa em áreas centrais (CZ-C3/CZ-C4. Tais resultados sugerem uma adaptação do córtex sensório-motor em função do treinamento de datilografia.The present study aimed to investigate alterations in EEG patterns in normal, right-handed individuals, during the process of learning a specific motor skill (typewriting. Recent studies have shown that the cerebral cortex is susceptible to several changes during a learning process and that alterations in the brain's electrical patterns take place as a result of the acquisition of a motor skill and memory consolidation. In this context, subjects' brain electrical activity was analyzed before and after the motor task. EEG data were collected by a Braintech 3000 and analyzed by Neurometrics. For the

  16. Tibial cortical lesions: A multimodality pictorial review

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, P.A., E-mail: philippa.tyler@rnoh.nhs.uk [Department of Radiology, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore HA7 4LP (United Kingdom); Mohaghegh, P., E-mail: pegah1000@gmail.com [Department of Radiology, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore HA7 4LP (United Kingdom); Foley, J., E-mail: jfoley1@nhs.net [Department of Radiology, Glasgow Royal Infirmary, 16 Alexandra Parade, Glasgow G31 2ES (United Kingdom); Isaac, A., E-mail: amandaisaac@doctors.org.uk [Department of Radiology, King' s College Hospital, Denmark Hill, London SE5 9RS (United Kingdom); Zavareh, A., E-mail: ali.zavareh@gmail.com [Department of Radiology, North Bristol NHS Trust, Frenchay, Bristol BS16 1LE (United Kingdom); Thorning, C., E-mail: cthorning@doctors.org.uk [Department of Radiology, East Surrey Hospital, Canada Avenue, Redhill, Surrey RH1 5RH (United Kingdom); Kirwadi, A., E-mail: anandkirwadi@gmail.com [Department of Radiology, Manchester Royal Infirmary, Oxford Road, Manchester M13 9WL (United Kingdom); Pressney, I., E-mail: ipressney@hotmail.com [Department of Radiology, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore HA7 4LP (United Kingdom); Amary, F., E-mail: fernanda.amary@rnoh.nhs.uk [Department of Histopathology, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore HA7 4LP (United Kingdom); Rajeswaran, G., E-mail: grajeswaran@gmail.com [Department of Radiology, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH (United Kingdom)

    2015-01-15

    Highlights: • Multimodality imaging plays an important role in the investigation and diagnosis of shin pain. • We review the multimodality imaging findings of common cortically based tibial lesions. • We also describe the rarer pathologies of tibial cortical lesions. - Abstract: Shin pain is a common complaint, particularly in young and active patients, with a wide range of potential diagnoses and resulting implications. We review the natural history and multimodality imaging findings of the more common causes of cortically-based tibial lesions, as well as the rarer pathologies less frequently encountered in a general radiology department.

  17. Contrast-induced transient cortical blindness.

    Science.gov (United States)

    Shah, Parth R; Yohendran, Jayshan; Parker, Geoffrey D; McCluskey, Peter J

    2013-05-01

    We present a case of transient cortical blindness secondary to contrast medium toxicity. A 58-year-old man had successful endovascular coiling of a right posterior inferior cerebellar artery aneurysm but became confused and unable to see after the procedure. His visual acuity was no light perception bilaterally. Clinically, there was no new intra-ocular pathology. An urgent non-contrast computed tomography scan of the brain showed cortical hyperdensity in both parieto-occipital cortices, consistent with contrast medium leakage through the blood-brain barrier from the coiling procedure. The man remained completely blind for 72 hours, after which his visual acuity improved gradually back to his baseline level.

  18. Reversible cortical blindness: posterior reversible encephalopathy syndrome.

    Science.gov (United States)

    Bandyopadhyay, Sabyasachi; Mondal, Kanchan Kumar; Das, Somnath; Gupta, Anindya; Biswas, Jaya; Bhattacharyya, Subir Kumar; Biswas, Gautam

    2010-11-01

    Cortical blindness is defined as visual failure with preserved pupillary reflexes in structurally intact eyes due to bilateral lesions affecting occipital cortex. Bilateral oedema and infarction of the posterior and middle cerebral arterial territory, trauma, glioma and meningioma of the occipital cortex are the main causes of cortical blindness. Posterior reversible encephalopathy syndrome (PRES) refers to the reversible subtype of cortical blindness and is usually associated with hypertension, diabetes, immunosuppression, puerperium with or without eclampsia. Here, 3 cases of PRES with complete or partial visual recovery following treatment in 6-month follow-up are reported.

  19. 皮层电刺激联合康复锻炼对大鼠局灶性脑缺血模型前肢运动功能及运动区突触可塑性相关蛋白表达的影响%Cortical electrical Stimulation Combined with Rehabilitative Training Enhance Forelimb Motor Function and Synaptic Plasticity Following Focal Cortical Ischemia in Rats

    Institute of Scientific and Technical Information of China (English)

    郑建; 杨力军; 谢瑞禄; 赵兰峰; 薛晓伟; 王硕; 赵继宗; 曹勇

    2011-01-01

    Objective To assess the behavioral and synaptic plasticity effects of combining epidural cortical electrical stimulation with motor skills training following unilateral sensorimotor cortex (SMC)lesions in adult male rats.Methods Prior to lesion/electrode implantation surgeries, rats were pre-trained on the 'single pellet retrieval task' to a minimum criterion of 30% success rate for two consecutive days. Then these rats received partial unilateral SMC lesions and implantation of electrodes over the remaining SMC. Fourteen days later, rats received daily reach training concurrent with anodal or cathodal 100 Hz or no stimulation for 14 days. Performance was measured as the percent of successes out of the total number of reach attempts [(total successes/total reach attempts)*100]. Conventional avidin biotinylated enzyme complex (ABC) immunohistochemical method was used quantify the expression and distribution of microtubule-associated protein 2 (MAP-2) and growth associated protein 43 (GAP-43) in motor cortical area underlying the electrode.Results There was no statistical significance between the two groups on the 14th day of preoperative training (P=0.546). The stimulation group had significantly greater rates of improvement with the impaired forelimb in comparison to control group (49.12% vs 21.67%, P=0.004). The expression and distribution of MAP-2 and GAP-43 in the stimulating group were better than those in control group (GAP-43 : 0.3338 vs 0.3056. P=0.008; MAP-2: 0.4825 vs 0.4327. P=0.027).Conclusion These data indicate that cortical stimulation greatly improves the efficacy of rehabilitative reach training following SMC damage and raise the possibility that CS-induced functional improvements may be mediated by promoting the expression of MAP-2 and GAP-43 in perilesion cortex. and thus improve synaptic plasticity in cerebral ischemic rats.%目的 探讨皮层电刺激联合康复锻炼对大鼠局灶性脑缺血模型前肢运动功能恢复和运动区

  20. Dynamic Development of Regional Cortical Thickness and Surface Area in Early Childhood.

    Science.gov (United States)

    Lyall, Amanda E; Shi, Feng; Geng, Xiujuan; Woolson, Sandra; Li, Gang; Wang, Li; Hamer, Robert M; Shen, Dinggang; Gilmore, John H

    2015-08-01

    Cortical thickness (CT) and surface area (SA) are altered in many neuropsychiatric disorders and are correlated with cognitive functioning. Little is known about how these components of cortical gray matter develop in the first years of life. We studied the longitudinal development of regional CT and SA expansion in healthy infants from birth to 2 years. CT and SA have distinct and heterogeneous patterns of development that are exceptionally dynamic; overall CT increases by an average of 36.1%, while cortical SA increases 114.6%. By age 2, CT is on average 97% of adult values, compared with SA, which is 69%. This suggests that early identification, prevention, and intervention strategies for neuropsychiatric illness need to be targeted to this period of rapid postnatal brain development, and that SA expansion is the principal driving factor in cortical volume after 2 years of age.

  1. Thalamo-cortical projections to the posterior parietal cortex in the monkey.

    Science.gov (United States)

    Matsuzaki, Ryuichi; Kyuhou, Shin-ichi; Matsuura-Nakao, Kazuko; Gemba, Hisae

    2004-01-23

    Thalamo-cortical projections to the posterior parietal cortex (PPC) were investigated electrophysiologically in the monkey. Cortical field potentials evoked by the thalamic stimulation were recorded with electrodes chronically implanted on the cortical surface and at a 2.0-3.0 mm cortical depth in the PPC. The stimulation of the nucleus lateralis posterior (LP), nucleus ventralis posterior lateralis pars caudalis (VPLc), and nucleus pulvinaris lateralis (Pul.l) and medialis (Pul.m) induced surface-negative, depth-positive potentials in the PPC. The LP and VPLc projected mainly to the superior parietal lobule (SPL) and the anterior bank of the intraparietal sulcus (IPS), and the Pul.m mainly to the inferior parietal lobule (IPL) and the posterior bank of the IPS. The Pul.l had projections to all of the SPL, the IPL and both the banks. The significance of the projections is discussed in connection with motor functions.

  2. Cortical gyrification in autistic and Asperger disorders: a preliminary magnetic resonance imaging study.

    Science.gov (United States)

    Jou, Roger J; Minshew, Nancy J; Keshavan, Matcheri S; Hardan, Antonio Y

    2010-12-01

    The validity of Asperger disorder as a distinct syndrome from autism is unclear partly because of the paucity of differentiating neurobiological evidence. Frontal lobe cortical folding between these disorders was compared using the gyrification index. Twenty-three boys underwent structural magnetic resonance imaging: 6 with high-functioning autism, 9 with Asperger disorder, and 8 controls. Using the first coronal slice anterior to the corpus callosum, total and outer cortical contours were traced to calculate the gyrification index. This index was also calculated for superior and inferior regions to examine dorsolateral prefrontal and orbitofrontal cortices, respectively. Analysis of variance revealed differences in the left inferior gyrification index, which was higher in the autism group compared with Asperger and control groups. There were no differences in age, intelligence quotient, and brain volume. These preliminary findings suggest that cortical folding may be abnormally high in the frontal lobe in autism but not Asperger disorder, suggesting distinct frontal lobe neuropathology.

  3. Oxytocin mediates early experience-dependent cross-modal plasticity in the sensory cortices.

    Science.gov (United States)

    Zheng, Jing-Jing; Li, Shu-Jing; Zhang, Xiao-Di; Miao, Wan-Ying; Zhang, Dinghong; Yao, Haishan; Yu, Xiang

    2014-03-01

    Sensory experience is critical to development and plasticity of neural circuits. Here we report a new form of plasticity in neonatal mice, where early sensory experience cross-modally regulates development of all sensory cortices via oxytocin signaling. Unimodal sensory deprivation from birth through whisker deprivation or dark rearing reduced excitatory synaptic transmission in the correspondent sensory cortex and cross-modally in other sensory cortices. Sensory experience regulated synthesis and secretion of the neuropeptide oxytocin as well as its level in the cortex. Both in vivo oxytocin injection and increased sensory experience elevated excitatory synaptic transmission in multiple sensory cortices and significantly rescued the effects of sensory deprivation. Together, these results identify a new function for oxytocin in promoting cross-modal, experience-dependent cortical development. This link between sensory experience and oxytocin is particularly relevant to autism, where hypersensitivity or hyposensitivity to sensory inputs is prevalent and oxytocin is a hotly debated potential therapy.

  4. Trends and properties of human cerebral cortex: correlations with cortical myelin content.

    Science.gov (United States)

    Glasser, Matthew F; Goyal, Manu S; Preuss, Todd M; Raichle, Marcus E; Van Essen, David C

    2014-06-01

    "In vivo Brodmann mapping" or non-invasive cortical parcellation using MRI, especially by measuring cortical myelination, has recently become a popular research topic, though myeloarchitectonic cortical parcellation in humans previously languished in favor of cytoarchitecture. We review recent in vivo myelin mapping studies and discuss some of the different methods for estimating myelin content. We discuss some ways in which myelin maps may improve surface registration and be useful for cross-modal and cross-species comparisons, including some preliminary cross-species results. Next, we consider neurobiological aspects of why some parts of cortex are more myelinated than others. Myelin content is inversely correlated with intracortical circuit complexity - in general, more myelin content means simpler and perhaps less dynamic intracortical circuits. Using existing PET data and functional network parcellations, we examine metabolic differences in the differently myelinated cortical functional networks. Lightly myelinated cognitive association networks tend to have higher aerobic glycolysis than heavily myelinated early sensory-motor ones, perhaps reflecting greater ongoing dynamic anabolic cortical processes. This finding is consistent with the hypothesis that intracortical myelination may stabilize intracortical circuits and inhibit synaptic plasticity. Finally, we discuss the future of the in vivo myeloarchitectural field and cortical parcellation--"in vivo Brodmann mapping"--in general.

  5. Childhood cognitive ability accounts for associations between cognitive ability and brain cortical thickness in old age.

    Science.gov (United States)

    Karama, S; Bastin, M E; Murray, C; Royle, N A; Penke, L; Muñoz Maniega, S; Gow, A J; Corley, J; Valdés Hernández, M del C; Lewis, J D; Rousseau, M-É; Lepage, C; Fonov, V; Collins, D L; Booth, T; Rioux, P; Sherif, T; Adalat, R; Starr, J M; Evans, A C; Wardlaw, J M; Deary, I J

    2014-05-01

    Associations between brain cortical tissue volume and cognitive function in old age are frequently interpreted as suggesting that preservation of cortical tissue is the foundation of successful cognitive aging. However, this association could also, in part, reflect a lifelong association between cognitive ability and cortical tissue. We analyzed data on 588 subjects from the Lothian Birth Cohort 1936 who had intelligence quotient (IQ) scores from the same cognitive test available at both 11 and 70 years of age as well as high-resolution brain magnetic resonance imaging data obtained at approximately 73 years of age. Cortical thickness was estimated at 81 924 sampling points across the cortex for each subject using an automated pipeline. Multiple regression was used to assess associations between cortical thickness and the IQ measures at 11 and 70 years. Childhood IQ accounted for more than two-third of the association between IQ at 70 years and cortical thickness measured at age 73 years. This warns against ascribing a causal interpretation to the association between cognitive ability and cortical tissue in old age based on assumptions about, and exclusive reference to, the aging process and any associated disease. Without early-life measures of cognitive ability, it would have been tempting to conclude that preservation of cortical thickness in old age is a foundation for successful cognitive aging when, instead, it is a lifelong association. This being said, results should not be construed as meaning that all studies on aging require direct measures of childhood IQ, but as suggesting that proxy measures of prior cognitive function can be useful to take into consideration.

  6. Possible Quantum Absorber Effects in Cortical Synchronization

    Science.gov (United States)

    Kämpf, Uwe

    The Wheeler-Feynman transactional "absorber" approach was proposed originally to account for anomalous resonance coupling between spatio-temporally distant measurement partners in entangled quantum states of so-called Einstein-Podolsky-Rosen paradoxes, e.g. of spatio-temporal non-locality, quantum teleportation, etc. Applied to quantum brain dynamics, however, this view provides an anticipative resonance coupling model for aspects of cortical synchronization and recurrent visual action control. It is proposed to consider the registered activation patterns of neuronal loops in so-called synfire chains not as a result of retarded brain communication processes, but rather as surface effects of a system of standing waves generated in the depth of visual processing. According to this view, they arise from a counterbalance between the actual input's delayed bottom-up data streams and top-down recurrent information-processing of advanced anticipative signals in a Wheeler-Feynman-type absorber mode. In the framework of a "time-loop" model, findings about mirror neurons in the brain cortex are suggested to be at least partially associated with temporal rather than spatial mirror functions of visual processing, similar to phase conjugate adaptive resonance-coupling in nonlinear optics.

  7. Canonical Coordinates for Retino-Cortical Magnification

    Directory of Open Access Journals (Sweden)

    Luc Florack

    2014-02-01

    Full Text Available A geometric model for a biologically-inspired visual front-end is proposed, based on an isotropic, scale-invariant two-form field. The model incorporates a foveal property typical of biological visual systems, with an approximately linear decrease of resolution as a function of eccentricity, and by a physical size constant that measures the radius of the geometric foveola, the central region characterized by maximal resolving power. It admits a description in singularity-free canonical coordinates generalizing the familiar log-polar coordinates and reducing to these in the asymptotic case of negligibly-sized geometric foveola or, equivalently, at peripheral locations in the visual field. It has predictive power to the extent that quantitative geometric relationships pertaining to retino-cortical magnification along the primary visual pathway, such as receptive field size distribution and spatial arrangement in retina and striate cortex, can be deduced in a principled manner. The biological plausibility of the model is demonstrated by comparison with known facts of human vision.

  8. Transient cortical blindness after coronary angiography.

    Science.gov (United States)

    Alp, B N; Bozbuğa, N; Tuncer, M A; Yakut, C

    2009-01-01

    Transient cortical blindness is rarely encountered after angiography of native coronary arteries or bypass grafts. This paper reports a case of transient cortical blindness that occurred 72 h after coronary angiography in a 56-year old patient. This was the patient's fourth exposure to contrast medium. Neurological examination demonstrated cortical blindness and the absence of any focal neurological deficit. A non-contrast-enhanced computed tomographic scan of the brain revealed bilateral contrast enhancement in the occipital lobes and no evidence of cerebral haemorrhage, and magnetic resonance imaging of the brain showed no pathology. Sight returned spontaneously within 4 days and his vision gradually improved. A search of the current literature for reported cases of transient cortical blindness suggested that this is a rarely encountered complication of coronary angiography.

  9. Reversible cortical blindness after lung transplantation.

    Science.gov (United States)

    Knower, Mark T; Pethke, Scott D; Valentine, Vincent G

    2003-06-01

    Cyclosporine (CYA) is a calcineurin inhibitor widely used in immunosuppressive regimens after organ transplantation. Several neurologic side effects are frequently associated with CYA use; however, reversible cortical blindness is a rare manifestation of CYA toxicity traditionally seen after liver and bone marrow transplantation. This report presents a case of reversible cortical blindness after lung transplantation, then details the risk factors and clinical course of 28 previously well-documented cases of CYA-induced cortical blindness after transplantation. Identification of known risk factors, clinical clues, and typical radiographic findings may aid in the diagnosis of CYA-induced cortical blindness, since reduction in CYA dose or cessation of CYA therapy usually permits resolution of the neurologic effects.

  10. Cortical depth dependence of the diffusion anisotropy in the human cortical gray matter in vivo.

    Directory of Open Access Journals (Sweden)

    Trong-Kha Truong

    Full Text Available Diffusion tensor imaging (DTI is typically used to study white matter fiber pathways, but may also be valuable to assess the microstructure of cortical gray matter. Although cortical diffusion anisotropy has previously been observed in vivo, its cortical depth dependence has mostly been examined in high-resolution ex vivo studies. This study thus aims to investigate the cortical depth dependence of the diffusion anisotropy in the human cortex in vivo on a clinical 3 T scanner. Specifically, a novel multishot constant-density spiral DTI technique with inherent correction of motion-induced phase errors was used to achieve a high spatial resolution (0.625 × 0.625 × 3 mm and high spatial fidelity with no scan time penalty. The results show: (i a diffusion anisotropy in the cortical gray matter, with a primarily radial diffusion orientation, as observed in previous ex vivo and in vivo studies, and (ii a cortical depth dependence of the fractional anisotropy, with consistently higher values in the middle cortical lamina than in the deep and superficial cortical laminae, as observed in previous ex vivo studies. These results, which are consistent across subjects, demonstrate the feasibility of this technique for investigating the cortical depth dependence of the diffusion anisotropy in the human cortex in vivo.

  11. Cortical depth dependence of the diffusion anisotropy in the human cortical gray matter in vivo.

    Science.gov (United States)

    Truong, Trong-Kha; Guidon, Arnaud; Song, Allen W

    2014-01-01

    Diffusion tensor imaging (DTI) is typically used to study white matter fiber pathways, but may also be valuable to assess the microstructure of cortical gray matter. Although cortical diffusion anisotropy has previously been observed in vivo, its cortical depth dependence has mostly been examined in high-resolution ex vivo studies. This study thus aims to investigate the cortical depth dependence of the diffusion anisotropy in the human cortex in vivo on a clinical 3 T scanner. Specifically, a novel multishot constant-density spiral DTI technique with inherent correction of motion-induced phase errors was used to achieve a high spatial resolution (0.625 × 0.625 × 3 mm) and high spatial fidelity with no scan time penalty. The results show: (i) a diffusion anisotropy in the cortical gray matter, with a primarily radial diffusion orientation, as observed in previous ex vivo and in vivo studies, and (ii) a cortical depth dependence of the fractional anisotropy, with consistently higher values in the middle cortical lamina than in the deep and superficial cortical laminae, as observed in previous ex vivo studies. These results, which are consistent across subjects, demonstrate the feasibility of this technique for investigating the cortical depth dependence of the diffusion anisotropy in the human cortex in vivo.

  12. CLADA: cortical longitudinal atrophy detection algorithm.

    Science.gov (United States)

    Nakamura, Kunio; Fox, Robert; Fisher, Elizabeth

    2011-01-01

    Measurement of changes in brain cortical thickness is useful for the assessment of regional gray matter atrophy in neurodegenerative conditions. A new longitudinal method, called CLADA (cortical longitudinal atrophy detection algorithm), has been developed for the measurement of changes in cortical thickness in magnetic resonance images (MRI) acquired over time. CLADA creates a subject-specific cortical model which is longitudinally deformed to match images from individual time points. The algorithm was designed to work reliably for lower resolution images, such as the MRIs with 1×1×5 mm(3) voxels previously acquired for many clinical trials in multiple sclerosis (MS). CLADA was evaluated to determine reproducibility, accuracy, and sensitivity. Scan-rescan variability was 0.45% for images with 1mm(3) isotropic voxels and 0.77% for images with 1×1×5 mm(3) voxels. The mean absolute accuracy error was 0.43 mm, as determined by comparison of CLADA measurements to cortical thickness measured directly in post-mortem tissue. CLADA's sensitivity for correctly detecting at least 0.1mm change was 86% in a simulation study. A comparison to FreeSurfer showed good agreement (Pearson correlation=0.73 for global mean thickness). CLADA was also applied to MRIs acquired over 18 months in secondary progressive MS patients who were imaged at two different resolutions. Cortical thinning was detected in this group in both the lower and higher resolution images. CLADA detected a higher rate of cortical thinning in MS patients compared to healthy controls over 2 years. These results show that CLADA can be used for reliable measurement of cortical atrophy in longitudinal studies, even in lower resolution images.

  13. Cortical influences on brainstem circuitry responsible for conditioned pain modulation in humans.

    Science.gov (United States)

    Youssef, Andrew M; Macefield, Vaughan G; Henderson, Luke A

    2016-07-01

    Conditioned pain modulation (CPM) is a powerful endogenous analgesic mechanism which can completely inhibit incoming nociceptor signals at the primary synapse. The circuitry responsible for CPM lies within the brainstem and involves the subnucleus reticularis dorsalis (SRD). While the brainstem is critical for CPM, the cortex can significantly modulate its expression, likely via the brainstem circuitry critical for CPM. Since higher cortical regions such as the anterior, mid-cingulate, and dorsolateral prefrontal cortices are activated by noxious stimuli and show reduced activations during other analgesic responses, we hypothesized that these regions would display reduced responses during CPM analgesia. Furthermore, we hypothesized that functional connectivity strength between these cortical regions and the SRD would be stronger in those that express CPM analgesia compared with those that do not. We used functional magnetic resonance imaging to determine sites recruited during CPM expression and their influence on the SRD. A lack of CPM analgesia was associated with greater signal intensity increases during each test stimulus in the presence of the conditioning stimulus compared to test stimuli alone in the mid-cingulate and dorsolateral prefrontal cortices and increased functional connectivity with the SRD. In contrast, those subjects exhibiting CPM analgesia showed no change in the magnitude of signal intensity increases in these cortical regions or strength of functional connectivity with the SRD. These data suggest that during multiple or widespread painful stimuli, engagement of the prefrontal and cingulate cortices prevents the generation of CPM analgesia, raising the possibility altered responsiveness in these cortical regions underlie the reduced CPM observed in individuals with chronic pain. Hum Brain Mapp 37:2630-2644, 2016. © 2016 Wiley Periodicals, Inc.

  14. Cortical swallowing processing in early subacute stroke

    Directory of Open Access Journals (Sweden)

    Fischer Maren

    2011-03-01

    Full Text Available Abstract Background Dysphagia is a major complication in hemispheric as well as brainstem stroke patients causing aspiration pneumonia and increased mortality. Little is known about the recovery from dysphagia after stroke. The aim of the present study was to determine the different patterns of cortical swallowing processing in patients with hemispheric and brainstem stroke with and without dysphagia in the early subacute phase. Methods We measured brain activity by mean of whole-head MEG in 37 patients with different stroke localisation 8.2 +/- 4.8 days after stroke to study changes in cortical activation during self-paced swallowing. An age matched group of healthy subjects served as controls. Data were analyzed by means of synthetic aperture magnetometry and group analyses were performed using a permutation test. Results Our results demonstrate strong bilateral reduction of cortical swallowing activation in dysphagic patients with hemispheric stroke. In hemispheric stroke without dysphagia, bilateral activation was found. In the small group of patients with brainstem stroke we observed a reduction of cortical activation and a right hemispheric lateralization. Conclusion Bulbar central pattern generators coordinate the pharyngeal swallowing phase. The observed right hemispheric lateralization in brainstem stroke can therefore be interpreted as acute cortical compensation of subcortically caused dysphagia. The reduction of activation in brainstem stroke patients and dysphagic patients with cortical stroke could be explained in terms of diaschisis.

  15. The characteristics of cortical glucose metabolism in amblyopia

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Ji Young [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of); Lee, Dong Soo; Chung, June Key; Shin, Seung Ai; Lee, Myung Chul [College of Medicine, Ewha Womans Univ., Seoul (Korea, Republic of)

    2000-07-01

    Cortical metabolism of amblyopia patients was investigated with F-18-FDG PET and Statistical Parametric Mapping (SPM) and quantificiation based on volume of interest (VOI) by statistical probabilistic anatomical map (SPAM). In 9 amblyopic patients (12{+-}7 years ) and 20 normal subjects (23{+-}2 years), F-18-FDG PET scans were peformed in amblyopic patients after amblyopic eye or sound eye was patch-closed during PET studies. SPM was done with SPM96. By multiplying SPAM to FDG images, counts of 98 VOI's were calculated and compared with 3 S. D. range of those of normal subjects. On SPM, cortical metabolism decreased (p<0.05) in occipital lobe (Ba 17, 18, 19), superior partietal lobe (Ba 7), and inferior temporal lobe (BA 37, 20). FDG uptake of gyri of occuipital lobe was decreased in 2 and increased in 2, and was normal in the other 5. FDG uptake of gyri of parietal, frontal, and temporal lobes were decreased in FDG uptake on these VOIs. We conclude that cortical metabolism in occipital lobe and extraoccipital lobes was variable but was consistent regardless of visual input during PET studies in amblyopic patients. SPM and quantification of functional images using SPAM could reveal subtle differences or changes according to visual input. The significance of metabolic changes of extraoccipital lobes should be studies further.

  16. Towards a mathematical theory of cortical micro-circuits.

    Directory of Open Access Journals (Sweden)

    Dileep George

    2009-10-01

    Full Text Available The theoretical setting of hierarchical Bayesian inference is gaining acceptance as a framework for understanding cortical computation. In this paper, we describe how Bayesian belief propagation in a spatio-temporal hierarchical model, called Hierarchical Temporal Memory (HTM, can lead to a mathematical model for cortical circuits. An HTM node is abstracted using a coincidence detector and a mixture of Markov chains. Bayesian belief propagation equations for such an HTM node define a set of functional constraints for a neuronal implementation. Anatomical data provide a contrasting set of organizational constraints. The combination of these two constraints suggests a theoretically derived interpretation for many anatomical and physiological features and predicts several others. We describe the pattern recognition capabilities of HTM networks and demonstrate the application of the derived circuits for modeling the subjective contour effect. We also discuss how the theory and the circuit can be extended to explain cortical features that are not explained by the current model and describe testable predictions that can be derived from the model.

  17. Cortical microtubules are responsible for gravity resistance in plants.

    Science.gov (United States)

    Hoson, Takayuki; Matsumoto, Shouhei; Soga, Kouichi; Wakabayashi, Kazuyuki

    2010-06-01

    Mechanical resistance to the gravitational force is a principal gravity response in plants distinct from gravitropism. In the final step of gravity resistance, plants increase the rigidity of their cell walls. Here we discuss the role of cortical microtubules, which sustain the function of the cell wall, in gravity resistance. Hypocotyls of Arabidopsis tubulin mutants were shorter and thicker than the wild-type, and showed either left-handed or right-handed helical growth at 1 g. The degree of twisting phenotype was intensified under hypergravity conditions. Hypergravity also induces reorientation of cortical microtubules from transverse to longitudinal directions in epidermal cells. In tubulin mutants, the percentage of cells with longitudinal microtubules was high even at 1 g, and it was further increased by hypergravity. The left-handed helical growth mutants had right-handed microtubule arrays, whereas the right-handed mutant had left-handed arrays. Moreover, blockers of mechanoreceptors suppressed both the twisting phenotype and reorientation of microtubules in tubulin mutants. These results support the hypothesis that cortical microtubules play an essential role in maintenance of normal growth phenotype against the gravitational force, and suggest that mechanoreceptors are involved in signal perception in gravity resistance. Space experiments will confirm whether this view is applicable to plant resistance to 1 g gravity, as to the resistance to hypergravity.

  18. Cortical processing of human somatic and visceral sensation.

    Science.gov (United States)

    Aziz, Q; Thompson, D G; Ng, V W; Hamdy, S; Sarkar, S; Brammer, M J; Bullmore, E T; Hobson, A; Tracey, I; Gregory, L; Simmons, A; Williams, S C

    2000-04-01

    Somatic sensation can be localized precisely, whereas localization of visceral sensation is vague, possibly reflecting differences in the pattern of somatic and visceral input to the cerebral cortex. We used functional magnetic resonance imaging to study the cortical processing of sensation arising from the proximal (somatic) and distal (visceral) esophagus in six healthy male subjects. Esophageal stimulation was performed by phasic distension of a 2 cm balloon at 0.5 Hz. For each esophageal region, five separate 30 sec periods of nonpainful distension were alternated with five periods of similar duration without distension. Gradient echoplanar images depicting bold contrast were acquired using a 1.5 T GE scanner. Distension of the proximal esophagus was localized precisely to the upper chest and was represented in the trunk region of the left primary somatosensory cortex. In contrast, distension of the distal esophagus was perceived diffusely over the lower chest and was represented bilaterally at the junction of the primary and secondary somatosensory cortices. Different activation patterns were also observed in the anterior cingulate gyrus with the proximal esophagus being represented in the right midanterior cingulate cortex (BA 24) and the distal esophagus in the perigenual area (BA32). Differences in the activation of the dorsolateral prefrontal cortex and cerebellum were also observed for the two esophageal regions. These findings suggest that cortical specialization in the sensory-discriminative, affective, and cognitive areas of the cortex accounts for the perceptual differences observed between the two sensory modalities.

  19. Towards a mathematical theory of cortical micro-circuits.

    Science.gov (United States)

    George, Dileep; Hawkins, Jeff

    2009-10-01

    The theoretical setting of hierarchical Bayesian inference is gaining acceptance as a framework for understanding cortical computation. In this paper, we describe how Bayesian belief propagation in a spatio-temporal hierarchical model, called Hierarchical Temporal Memory (HTM), can lead to a mathematical model for cortical circuits. An HTM node is abstracted using a coincidence detector and a mixture of Markov chains. Bayesian belief propagation equations for such an HTM node define a set of functional constraints for a neuronal implementation. Anatomical data provide a contrasting set of organizational constraints. The combination of these two constraints suggests a theoretically derived interpretation for many anatomical and physiological features and predicts several others. We describe the pattern recognition capabilities of HTM networks and demonstrate the application of the derived circuits for modeling the subjective contour effect. We also discuss how the theory and the circuit can be extended to explain cortical features that are not explained by the current model and describe testable predictions that can be derived from the model.

  20. Representational gain in cortical area underlies increase of memory strength.

    Science.gov (United States)

    Bieszczad, Kasia M; Weinberger, Norman M

    2010-02-23

    Neuronal plasticity that develops in the cortex during learning is assumed to represent memory content, but the functions of such plasticity are actually unknown. The shift in spectral tuning in primary auditory cortex (A1) to the frequency of a tone signal is a compelling candidate for a substrate of memory because it has all of the cardinal attributes of associative memory: associativity, specificity, rapid induction, consolidation, and long-term retention. Tuning shifts increase the representational area of the signal in A1, as an increasing function of performance level, suggesting that area encodes the magnitude of acquired stimulus significance. The present study addresses the question of the specific function of learning-induced associative representational plasticity. We tested the hypothesis that specific increases in A1 representational area for an auditory signal serve the mnemonic function of enhancing memory strength for that signal. Rats were trained to bar-press for reward contingent on the presence of a signal tone (5.0 kHz), and assessed for memory strength during extinction. The amount of representational area gain for the signal frequency band was significantly positively correlated with resistance to extinction to the signal frequency in two studies that spanned the range of task difficulty. These findings indicate that specific gain in cortical representational area underlies the strength of the behaviorally-relevant contents of memory. Thus, mnemonic functions of cortical plasticity are determinable.

  1. Depression of cortical activity in humans by mild hypercapnia.

    Science.gov (United States)

    Thesen, Thomas; Leontiev, Oleg; Song, Tao; Dehghani, Nima; Hagler, Donald J; Huang, Mingxiong; Buxton, Richard; Halgren, Eric

    2012-03-01

    The effects of neural activity on cerebral hemodynamics underlie human brain imaging with functional magnetic resonance imaging and positron emission tomography. However, the threshold and characteristics of the converse effects, wherein the cerebral hemodynamic and metabolic milieu influence neural activity, remain unclear. We tested whether mild hypercapnia (5% CO2 ) decreases the magnetoencephalogram response to auditory pattern recognition and visual semantic tasks. Hypercapnia induced statistically significant decreases in event-related fields without affecting behavioral performance. Decreases were observed in early sensory components in both auditory and visual modalities as well as later cognitive components related to memory and language. Effects were distributed across cortical regions. Decreases were comparable in evoked versus spontaneous spectral power. Hypercapnia is commonly used with hemodynamic models to calibrate the blood oxygenation level-dependent response. Modifying model assumptions to incorporate the current findings produce a modest but measurable decrease in the estimated cerebral metabolic rate for oxygen change with activation. Because under normal conditions, low cerebral pH would arise when bloodflow is unable to keep pace with neuronal activity, the cortical depression observed here may reflect a homeostatic mechanism by which neuronal activity is adjusted to a level that can be sustained by available bloodflow. Animal studies suggest that these effects may be mediated by pH-modulating presynaptic adenosine receptors. Although the data is not clear, comparable changes in cortical pH to those induced here may occur during sleep apnea, sleep, and exercise. If so, these results suggest that such activities may in turn have generalized depressive effects on cortical activity.

  2. MEMORIA OPERATIVA Y CIRCUITOS CORTICALES Working memory and cortical pathways

    Directory of Open Access Journals (Sweden)

    Gabriel Arteaga Díaz

    2006-10-01

    Full Text Available En el presente artículo se expone una revisión del concepto “memoria operativa”, teniendo en cuenta dos aproximaciones principales. Por una parte la psicología cognitiva, particularmente en el campo de la memoria y el aprendizaje; mientras que por otra parte, se presentan algunos aspectos del aporte de las neurociencias, tanto en lo relacionado con fenómenos clínicos como experimentales. Se hace referencia al síndrome prefrontal desde una perspectiva histórica, se consideran igualmente algunos estudios electrofi­siológicos, de imagen funcional, así como los relacionados con ablaciones corticales. Se presenta al final, un modelo de “circuitería” asociada con el proceso de la memoria operativa, en el cual se consideran cinco circuitos básicos: tanto los que se establecen entre regiones corticales, como entre estas y estructuras subcorticales.This paper presents a review on the concept of “Working memory” from two main approaches. On the one hand the cognitive psychology, particularly in the learning and memory fields, while on the other hand it is presented the perspective from neuroscience data: clinical and experimental. It is referenced the prefrontal syndrome from a historical point of view, additionally some electrophysiological, functional imaging, and cortical ablations works are summarized. At the end of the document it is also introduced, a model of the cortical circuitry concerned with working memory processing; five circuits are considered: cortico-cortical as well as cortico-sub cortical loops are depicted.

  3. Cortical modulation of short-latency TMS-evoked potentials

    Directory of Open Access Journals (Sweden)

    Domenica eVeniero

    2013-01-01

    Full Text Available Transcranial magnetic stimulation - electroencephalogram (TMS-EEG co-registration offers the opportunity to test reactivity of brain areas across distinct conditions through TMS-evoked potentials (TEPs. Several TEPs have been described, their functional meaning being largely unknown. In particular, short-latency potentials peaking at 5 (P5 and 8 (N8 ms after the TMS pulse have been recently described, but because of their huge amplitude, the problem of whether their origin is cortical or not has been opened. To gain information about these components, we employed a protocol that modulates primary motor cortex excitability (MI through an exclusively cortical phenomena: low frequency stimulation of premotor area (PMC. TMS was applied simultaneously with EEG recording from 70 electrodes. Amplitude of TEPs evoked by 200 single-pulses TMS delivered over MI at 110% of resting motor threshold was measured before and after applying 900 TMS conditioning stimuli to left premotor cortex with 1 Hz repetition rate. Single subject analyses showed reduction in TEPs amplitude after PMC conditioning in a sample of participants and increase in TEPs amplitude in two subjects. No effects were found on corticospinal excitability as recorded by motor evoked potentials (MEPs. Furthermore, correlation analysis showed an inverse relation between the effects of the conditioning protocol on P5-N8 complex amplitude and MEPs amplitude. Because the effects of the used protocol have been ascribed to a cortical interaction between premotor area and MI, we suggest that despite the sign of P5-N8 amplitude modulation is not consistent across participant, this modulation could indicate, at least in part, their cortical origin. We conclude that with an accurate experimental procedure early-latency components can be used to evaluate the reactivity of the stimulated cortex.

  4. MR volumetric study of piriform-cortical amygdala and orbitofrontal cortices: the aging effect.

    Directory of Open Access Journals (Sweden)

    Jing Shen

    Full Text Available INTRODUCTION: The piriform cortex and cortical amygdala (PCA and the orbitofrontal cortex (OFC are considered olfactory-related brain regions. This study aims to elucidate the normal volumes of PCA and OFC of each age groups (20.0-70.0 year old, and whether the volumes of PCA and OFC decline with increasing age and diminishing olfactory function. METHODS: One hundred and eleven healthy right-handed participants (54 males, 57 females, age 20.0 to 70.0 years were recruited to join this study after excluding all the major causes of olfactory dysfunction. Volumetric measurements of PCA and OFC were performed using consecutive 1-mm thick coronal slices of high-resolution 3-D MRIs. A validated olfactory function test (Sniffin' Sticks assessed olfactory function, which measured odor threshold (THD, odor discrimination (DIS, and odor identification (ID as well as their sum score (TDI. RESULTS: The volume of OFC decreased with age and significantly correlated with age-related declines in olfactory function. The volume of OFC showed significant age-group differences, particularly after 40 years old (p < 0.001, while olfactory function decreased significantly after 60 years old (p < 0.001. Similar age-related volumetric changes were not found for PCA (p = 0.772. Additionally, there was significant correlation between OFC and DIS on the Right Side (p = 0.028 and between OFC and TDI on both sides (p < 0.05. There was no similar correlation for PCA. CONCLUSIONS: Aging can have a great impact on the volume of OFC and olfactory function while it has much smaller effect on the volume of PCA. The result could be useful to establish normal volumes of PCA and OFC of each age group to assess neurological disorders that affect olfactory function.

  5. High-Degree Neurons Feed Cortical Computations.

    Directory of Open Access Journals (Sweden)

    Nicholas M Timme

    2016-05-01

    Full Text Available Recent work has shown that functional connectivity among cortical neurons is highly varied, with a small percentage of neurons having many more connections than others. Also, recent theoretical developments now make it possible to quantify how neurons modify information from the connections they receive. Therefore, it is now possible to investigate how information modification, or computation, depends on the number of connections a neuron receives (in-degree or sends out (out-degree. To do this, we recorded the simultaneous spiking activity of hundreds of neurons in cortico-hippocampal slice cultures using a high-density 512-electrode array. This preparation and recording method combination produced large numbers of neurons recorded at temporal and spatial resolutions that are not currently available in any in vivo recording system. We utilized transfer entropy (a well-established method for detecting linear and nonlinear interactions in time series and the partial information decomposition (a powerful, recently developed tool for dissecting multivariate information processing into distinct parts to quantify computation between neurons where information flows converged. We found that computations did not occur equally in all neurons throughout the networks. Surprisingly, neurons that computed large amounts of information tended to receive connections from high out-degree neurons. However, the in-degree of a neuron was not related to the amount of information it computed. To gain insight into these findings, we developed a simple feedforward network model. We found that a degree-modified Hebbian wiring rule best reproduced the pattern of computation and degree correlation results seen in the real data. Interestingly, this rule also maximized signal propagation in the presence of network-wide correlations, suggesting a mechanism by which cortex could deal with common random background input. These are the first results to show that the extent to

  6. Human cortical control of hand movements: parietofrontal networks for reaching, grasping, and pointing.

    Science.gov (United States)

    Filimon, Flavia

    2010-08-01

    In primates, control of the limb depends on many cortical areas. Whereas specialized parietofrontal circuits have been proposed for different movements in macaques, functional neuroimaging in humans has revealed widespread, overlapping activations for hand and eye movements and for movements such as reaching and grasping. This review examines the involvement of frontal and parietal areas in hand and arm movements in humans as revealed with functional neuroimaging. The degree of functional specialization, possible homologies with macaque cortical regions, and differences between frontal and posterior parietal areas are discussed, as well as a possible organization of hand movements with respect to different spatial reference frames. The available evidence supports a cortical organization along gradients of sensory (visual to somatosensory) and effector (eye to hand) preferences.

  7. Nerve transfer helps repair brachial plexus injury by increasing cerebral cortical plasticity

    Institute of Scientific and Technical Information of China (English)

    Guixin Sun; Zuopei Wu; Xinhong Wang; Xiaoxiao Tan; Yudong Gu

    2014-01-01

    In the treatment of brachial plexus injury, nerves that are functionally less important are trans-ferred onto the distal ends of damaged crucial nerves to help recover neuromuscular function in the target region. For example, intercostal nerves are transferred onto axillary nerves, and accessory nerves are transferred onto suprascapular nerves, the phrenic nerve is transferred onto the musculocutaneous nerves, and the contralateral C7 nerve is transferred onto the median or radial nerves. Nerve transfer has become a major method for reconstructing the brachial plexus after avulsion injury. Many experiments have shown that nerve transfers for treatment of brachi-al plexus injury can help reconstruct cerebral cortical function and increase cortical plasticity. In this review article, we summarize the recent progress in the use of diverse nerve transfer methods for the repair of brachial plexus injury, and we discuss the impact of nerve transfer on cerebral cortical plasticity after brachial plexus injury.

  8. Electrophysiological Data and the Biophysical Modelling of Local Cortical Circuits

    Directory of Open Access Journals (Sweden)

    Dimitris Pinotsis

    2014-03-01

    Full Text Available This paper shows how recordings of gamma oscillations – under different experimental conditions or from different subjects – can be combined with a class of population models called neural fields and dynamic causal modeling (DCM to distinguish among alternative hypotheses regarding cortical structure and function. This approach exploits inter-subject variability and trial-specific effects associated with modulations in the peak frequency of gamma oscillations. It draws on the computational power of Bayesian model inversion, when applied to neural field models of cortical dynamics. Bayesian model comparison allows one to adjudicate among different mechanistic hypotheses about cortical excitability, synaptic kinetics and the cardinal topographic features of local cortical circuits. It also provides optimal parameter estimates that quantify neuromodulation and the spatial dispersion of axonal connections or summation of receptive fields in the visual cortex. This paper provides an overview of a family of neural field models that have been recently implemented using the DCM toolbox of the academic freeware Statistical Parametric Mapping (SPM. The SPM software is a popular platform for analyzing neuroimaging data, used by several neuroscience communities worldwide. DCM allows for a formal (Bayesian statistical analysis of cortical network connectivity, based upon realistic biophysical models of brain responses. It is this particular feature of DCM – the unique combination of generative models with optimization techniques based upon (variational Bayesian principles – that furnishes a novel way to characterize functional brain architectures. In particular, it provides answers to questions about how the brain is wired and how it responds to different experimental manipulations. For a review of the general role of neural fields in SPM the reader can consult e.g. see [1]. Neural fields have a long and illustrious history in mathematical

  9. Altered brain structural networks in attention deficit/hyperactivity disorder children revealed by cortical thickness.

    Science.gov (United States)

    Liu, Tian; Chen, Yanni; Li, Chenxi; Li, Youjun; Wang, Jue

    2017-01-18

    This study investigated the cortical thickness and topological features of human brain anatomical networks related to attention deficit/hyperactivity disorder. Data were collected from 40 attention deficit/hyperactivity disorder children and 40 normal control children. Interregional correlation matrices were established by calculating the correlations of cortical thickness between all pairs of cortical regions (68 regions) of the whole brain. Further thresholds were applied to create binary matrices to construct a series of undirected and unweighted graphs, and global, local, and nodal efficiencies were computed as a function of the network cost. These experimental results revealed abnormal cortical thickness and correlations in attention deficit/hyperactivity disorder, and showed that the brain structural networks of attention deficit/hyperactivity disorder subjects had inefficient small-world topological features. Furthermore, their topological properties were altered abnormally. In particular, decreased global efficiency combined with increased local efficiency in attention deficit/hyperactivity disorder children led to a disorder-related shift of the network topological structure toward regular networks. In addition, nodal efficiency, cortical thickness, and correlation analyses revealed that several brain regions were altered in attention deficit/hyperactivity disorder patients. These findings are in accordance with a hypothesis of dysfunctional integration and segregation of the brain in patients with attention deficit/hyperactivity disorder and provide further evidence of brain dysfunction in attention deficit/hyperactivity disorder patients by observing cortical thickness on magnetic resonance imaging.

  10. Transcranial Magnetic Stimulation for the treatment of tinnitus: Effects on cortical excitability

    Directory of Open Access Journals (Sweden)

    Hajak Göran

    2007-07-01

    Full Text Available Abstract Background Low frequency repetitive transcranial magnetic stimulation (rTMS has been proposed as an innovative treatment for chronic tinnitus. The aim of the present study was to elucidate the underlying mechanism and to evaluate the relationship between clinical outcome and changes in cortical excitability. We investigated ten patients with chronic tinnitus who participated in a sham-controlled crossover treatment trial. Magnetic-resonance-imaging and positron-emission-tomography guided 1 Hz rTMS were performed over the auditory cortex on 5 consecutive days. Active and sham treatments were separated by one week. Parameters of cortical excitability (motor thresholds, intracortical inhibition, intracortical facilitation, cortical silent period were measured serially before and after rTMS treatment by using single- and paired-pulse transcranial magnetic stimulation. Clinical improvement was assessed with a standardized tinnitus-questionnaire. Results We noted a significant interaction between treatment response and changes in motor cortex excitability during active rTMS. Specifically, clinical improvement was associated with an increase in intracortical inhibition, intracortical facilitation and a prolongation of the cortical silent period. These results indicate that intraindividual changes in cortical excitability may serve as a correlate of response to rTMS treatment. Conclusion The observed alterations of cortical excitability suggest that low frequency rTMS may evoke long-term-depression like effects resulting in an improvement of subcortical inhibitory function.

  11. Spatiotemporal analysis of the cortical sources of the steady-state visual evoked potential.

    Science.gov (United States)

    Di Russo, Francesco; Pitzalis, Sabrina; Aprile, Teresa; Spitoni, Grazia; Patria, Fabiana; Stella, Alessandra; Spinelli, Donatella; Hillyard, Steven A

    2007-04-01

    This study aimed to characterize the neural generators of the steady-state visual evoked potential (SSVEP) to repetitive, 6 Hz pattern-reversal stimulation. Multichannel scalp recordings of SSVEPs and dipole modeling techniques were combined with functional magnetic resonance imaging (fMRI) and retinotopic mapping in order to estimate the locations of the cortical sources giving rise to the SSVEP elicited by pattern reversal. The time-varying SSVEP scalp topography indicated contributions from two major cortical sources, which were localized in the medial occipital and mid-temporal regions of the contralateral hemisphere. Colocalization of dipole locations with fMRI activation sites indicated that these two major sources of the SSVEP were located in primary visual cortex (V1) and in the motion sensitive (MT/V5) areas, respectively. Minor contributions from mid-occipital (V3A) and ventral occipital (V4/V8) areas were also considered. Comparison of SSVEP phase information with timing information collected in a previous transient VEP study (Di Russo et al. [2005] Neuroimage 24:874-886) suggested that the sequence of cortical activation is similar for steady-state and transient stimulation. These results provide a detailed spatiotemporal profile of the cortical origins of the SSVEP, which should enhance its use as an efficient clinical tool for evaluating visual-cortical dysfunction as well as an investigative probe of the cortical mechanisms of visual-perceptual processing.

  12. C3G regulates cortical neuron migration, preplate splitting and radial glial cell attachment.

    Science.gov (United States)

    Voss, Anne K; Britto, Joanne M; Dixon, Mathew P; Sheikh, Bilal N; Collin, Caitlin; Tan, Seong-Seng; Thomas, Tim

    2008-06-01

    Neuronal migration is integral to the development of the cerebral cortex and higher brain function. Cortical neuron migration defects lead to mental disorders such as lissencephaly and epilepsy. Interaction of neurons with their extracellular environment regulates cortical neuron migration through cell surface receptors. However, it is unclear how the signals from extracellular matrix proteins are transduced intracellularly. We report here that mouse embryos lacking the Ras family guanine nucleotide exchange factor, C3G (Rapgef1, Grf2), exhibit a cortical neuron migration defect resulting in a failure to split the preplate into marginal zone and subplate and a failure to form a cortical plate. C3G-deficient cortical neurons fail to migrate. Instead, they arrest in a multipolar state and accumulate below the preplate. The basement membrane is disrupted and radial glial processes are disorganised and lack attachment in C3G-deficient brains. C3G is activated in response to reelin in cortical neurons, which, in turn, leads to activation of the small GTPase Rap1. In C3G-deficient cells, Rap1 GTP loading in response to reelin stimulation is reduced. In conclusion, the Ras family regulator C3G is essential for two aspects of cortex development, namely radial glial attachment and neuronal migration.

  13. Influence of wiring cost on the large-scale architecture of human cortical connectivity.

    Science.gov (United States)

    Samu, David; Seth, Anil K; Nowotny, Thomas

    2014-04-01

    In the past two decades some fundamental properties of cortical connectivity have been discovered: small-world structure, pronounced hierarchical and modular organisation, and strong core and rich-club structures. A common assumption when interpreting results of this kind is that the observed structural properties are present to enable the brain's function. However, the brain is also embedded into the limited space of the skull and its wiring has associated developmental and metabolic costs. These basic physical and economic aspects place separate, often conflicting, constraints on the brain's connectivity, which must be characterized in order to understand the true relationship between brain structure and function. To address this challenge, here we ask which, and to what extent, aspects of the structural organisation of the brain are conserved if we preserve specific spatial and topological properties of the brain but otherwise randomise its connectivity. We perform a comparative analysis of a connectivity map of the cortical connectome both on high- and low-resolutions utilising three different types of surrogate networks: spatially unconstrained ('random'), connection length preserving ('spatial'), and connection length optimised ('reduced') surrogates. We find that unconstrained randomisation markedly diminishes all investigated architectural properties of cortical connectivity. By contrast, spatial and reduced surrogates largely preserve most properties and, interestingly, often more so in the reduced surrogates. Specifically, our results suggest that the cortical network is less tightly integrated than its spatial constraints would allow, but more strongly segregated than its spatial constraints would necessitate. We additionally find that hierarchical organisation and rich-club structure of the cortical connectivity are largely preserved in spatial and reduced surrogates and hence may be partially attributable to cortical wiring constraints. In contrast

  14. Influence of wiring cost on the large-scale architecture of human cortical connectivity.

    Directory of Open Access Journals (Sweden)

    David Samu

    2014-04-01

    Full Text Available In the past two decades some fundamental properties of cortical connectivity have been discovered: small-world structure, pronounced hierarchical and modular organisation, and strong core and rich-club structures. A common assumption when interpreting results of this kind is that the observed structural properties are present to enable the brain's function. However, the brain is also embedded into the limited space of the skull and its wiring has associated developmental and metabolic costs. These basic physical and economic aspects place separate, often conflicting, constraints on the brain's connectivity, which must be characterized in order to understand the true relationship between brain structure and function. To address this challenge, here we ask which, and to what extent, aspects of the structural organisation of the brain are conserved if we preserve specific spatial and topological properties of the brain but otherwise randomise its connectivity. We perform a comparative analysis of a connectivity map of the cortical connectome both on high- and low-resolutions utilising three different types of surrogate networks: spatially unconstrained ('random', connection length preserving ('spatial', and connection length optimised ('reduced' surrogates. We find that unconstrained randomisation markedly diminishes all investigated architectural properties of cortical connectivity. By contrast, spatial and reduced surrogates largely preserve most properties and, interestingly, often more so in the reduced surrogates. Specifically, our results suggest that the cortical network is less tightly integrated than its spatial constraints would allow, but more strongly segregated than its spatial constraints would necessitate. We additionally find that hierarchical organisation and rich-club structure of the cortical connectivity are largely preserved in spatial and reduced surrogates and hence may be partially attributable to cortical wiring constraints

  15. Cortical thickness changes correlate with cognition changes after cognitive training: Evidence from a Chinese community study

    Directory of Open Access Journals (Sweden)

    Lijuan eJiang

    2016-05-01

    Full Text Available The aim of this study was to investigate whether changes in cortical thickness correlated with cognitive function changes in healthy older adults after receiving cognitive training interventions. Moreover, it also aimed to examine the differential impacts of a multi-domain and a single-domain cognitive training interventions. Longitudinal magnetic resonance imaging (MRI scanning was performed on participants 65 to 75 years of age using the Siemens 3.0 T Trio Tim with the MPRAGE sequence. The cortical thickness was determined using FreeSurfer software. Cognitive functioning was evaluated using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS. There were significant group × time interaction effects on the left supramarginal, the left frontal pole cortical regions; and a marginal significant group × time interaction effects on visuospatial/constructional and delayed memory scores. In a multi-domain cognitive training group, a number of cortical region changes were significantly positively correlated with changes in attention, delayed memory, and the total score, but significantly negatively correlated with changes in immediate memory and language scores. In the single-domain cognitive training group, some cortical region changes were significantly positively associated with changes in immediate memory, delayed memory, and the total score, while they were significantly negatively associated with changes in visuospatial/constructional, language, and attention scores. Overall, multi-domain cognitive training offered more advantages in visuospatial/constructional, attention, and delayed memory abilities, while single-domain cognitive training benefited immediate memory ability more effectively. These findings suggest that healthy older adults benefit more from the multi-domain cognitive training than single-domain cognitive training. Cognitive training has impacted on cortical thickness changes in healthy elderly

  16. Columnar architecture improves noise robustness in a model cortical network.

    Directory of Open Access Journals (Sweden)

    Paul C Bush

    Full Text Available Cortical columnar architecture was discovered decades ago yet there is no agreed upon explanation for its function. Indeed, some have suggested that it has no function, it is simply an epiphenomenon of developmental processes. To investigate this problem we have constructed a computer model of one square millimeter of layer 2/3 of the primary visual cortex (V1 of the cat. Model cells are connected according to data from recent paired cell studies, in particular the connection probability between pyramidal cells is inversely proportional both to the distance separating the cells and to the distance between the preferred parameters (features of the cells. We find that these constraints, together with a columnar architecture, produce more tightly clustered populations of cells when compared to the random architecture seen in, for example, rodents. This causes the columnar network to converge more quickly and accurately on the pattern representing a particular stimulus in the presence of noise, suggesting that columnar connectivity functions to improve pattern recognition in cortical circuits. The model also suggests that synaptic failure, a phenomenon exhibited by weak synapses, may conserve metabolic resources by reducing transmitter release at these connections that do not contribute to network function.

  17. Detection and quantification of regional cortical gray matter damage in multiple sclerosis utilizing gradient echo MRI

    Directory of Open Access Journals (Sweden)

    Jie Wen

    2015-01-01

    Full Text Available Cortical gray matter (GM damage is now widely recognized in multiple sclerosis (MS. The standard MRI does not reliably detect cortical GM lesions, although cortical volume loss can be measured. In this study, we demonstrate that the gradient echo MRI can reliably and quantitatively assess cortical GM damage in MS patients using standard clinical scanners. High resolution multi-gradient echo MRI was used for regional mapping of tissue-specific MRI signal transverse relaxation rate values (R2* in 10 each relapsing–remitting, primary-progressive and secondary-progressive MS subjects. A voxel spread function method was used to correct artifacts induced by background field gradients. R2* values from healthy controls (HCs of varying ages were obtained to establish baseline data and calculate ΔR2* values – age-adjusted differences between MS patients and HC. Thickness of cortical regions was also measured in all subjects. In cortical regions, ΔR2* values of MS patients were also adjusted for changes in cortical thickness. Symbol digit modalities (SDMT and paced auditory serial addition (PASAT neurocognitive tests, as well as Expanded Disability Status Score, 25-foot timed walk and nine-hole peg test results were also obtained on all MS subjects. We found that ΔR2* values were lower in multiple cortical GM and normal appearing white matter (NAWM regions in MS compared with HC. ΔR2* values of global cortical GM and several specific cortical regions showed significant (p < 0.05 correlations with SDMT and PASAT scores, and showed better correlations than volumetric measures of the same regions. Neurological tests not focused on cognition (Expanded Disability Status Score, 25-foot timed walk and nine-hole peg tests showed no correlation with cortical GM ΔR2* values. The technique presented here is robust and reproducible. It requires less than 10 min and can be implemented on any MRI scanner. Our results show that quantitative tissue-specific R2

  18. β2 and γ3 laminins are critical cortical basement membrane components: ablation of Lamb2 and Lamc3 genes disrupts cortical lamination and produces dysplasia.

    Science.gov (United States)

    Radner, Stephanie; Banos, Charles; Bachay, Galina; Li, Yong N; Hunter, Dale D; Brunken, William J; Yee, Kathleen T

    2013-03-01

    Cortical development is dependent on the timely production and migration of neurons from neurogenic sites to their mature positions. Mutations in several receptors for extracellular matrix (ECM) molecules and their downstream signaling cascades produce dysplasia in brain. Although mutation of a critical binding site in the gene that encodes the ECM molecule laminin γ1 (Lamc1) disrupts cortical lamination, the ECM ligand(s) for many ECM receptors have not been demonstrated directly in the cortex. Several isoforms of the heterotrimeric laminins, all containing the β2 and γ3 chain, have been isolated from the brain, suggesting they are important for CNS function. Here, we report that mice homozygous null for the laminin β2 and γ3 chains exhibit cortical laminar disorganization. Mice lacking both of these laminin chains exhibit hallmarks of human cobblestone lissencephaly (type II, nonclassical): they demonstrate severe laminar disruption; midline fusion; perturbation of Cajal-Retzius cell distribution; altered radial glial cell morphology; and ectopic germinal zones. Surprisingly, heterozygous mice also exhibit laminar disruption of cortical neurons, albeit with lesser severity. In compound null mice, the pial basement membrane is fractured, and the distribution of a key laminin receptor, dystroglycan, is altered. These data suggest that β2 and γ3-containing laminins play an important dose-dependent role in development of the cortical pial basement membrane, which serves as an attachment site for Cajal-Retzius and radial glial cells, thereby guiding neural development.

  19. 皮质体感诱发电位与经颅刺激运动诱发电位技术应用于评价脊柱手术患者脊髓功能的价值比较%Comparative Analysis on the Clinical Value of Cortical Somatosensory Evoked Potential and Tran-scranial Electrical Stimulation Motor Evoked Potential in the Evaluation of Spinal Function of Pa-tients after Spinal Column Surgery

    Institute of Scientific and Technical Information of China (English)

    张成亮

    2014-01-01

    Objctive To analyze the clinical value of cortical somatosensory evoked potential and tran-scranial electrical stimulation motor evoked potential in the mornitoring of spinal function in spinal column surgery.Methods 236 patients who received spinal column surgery in Shuyang People′s Hospital from March 2009 to February 2013 were selected for this study.The patients were conducted cortical somatosenso-ry evoked potential and transcranial electrical stimulation motor evoked potential mornitor in the same time , then the sensitivity,specificity of injury of spine were observed.Results The sensitivity,specificity were 86.20% and 97.97% respectively in transcranial electrical stimulation motor evoked potential mornitor;The sensitivity,specificity were 42.00% and 95.48% respectively in cortical somatosensory evoked potential mornitor,which were higher than cortical somatosensory evoked potential mornitor .Conclusion Transcrani-al electrical stimulation motor evoked potential can mornitor the spinal function more effectively than cortical somatosensory evoked potential.%分析比较皮质体感诱发电位与经颅刺激运动诱发电位在评价脊柱手术患者脊髓功能的临床价值。方法选取2009年3月至2013年2月在江苏省沭阳县人民医院进行脊柱手术的患者236例,同时进行皮质体感诱发电位与经颅刺激运动诱发电位,分别对其检测脊髓神经功能损伤的敏感性和特异性进行观察。结果经颅刺激运动诱发电位的灵敏度为86.20%,特异度为97.97%;皮质体感诱发电位的灵敏度为42.00%,特异度为95.48%,经颅刺激运动诱发电位的灵敏度、特异度均高于皮质体感诱发电位。结论经颅电刺激诱发电位较皮质体感诱发电位能够更为理想地监测脊柱手术中患者的脊髓功能。

  20. A new wavelet transform to sparsely represent cortical current densities for EEG/MEG inverse problems.

    Science.gov (United States)

    Liao, Ke; Zhu, Min; Ding, Lei

    2013-08-01

    The present study investigated the use of transform sparseness of cortical current density on human brain surface to improve electroencephalography/magnetoencephalography (EEG/MEG) inverse solutions. Transform sparseness was assessed by evaluating compressibility of cortical current densities in transform domains. To do that, a structure compression method from computer graphics was first adopted to compress cortical surface structure, either regular or irregular, into hierarchical multi-resolution meshes. Then, a new face-based wavelet method based on generated multi-resolution meshes was proposed to compress current density functions defined on cortical surfaces. Twelve cortical surface models were built by three EEG/MEG softwares and their structural compressibility was evaluated and compared by the proposed method. Monte Carlo simulations were implemented to evaluate the performance of the proposed wavelet method in compressing various cortical current density distributions as compared to other two available vertex-based wavelet methods. The present results indicate that the face-based wavelet method can achieve higher transform sparseness than vertex-based wavelet methods. Furthermore, basis functions from the face-based wavelet method have lower coherence against typical EEG and MEG measurement systems than vertex-based wavelet methods. Both high transform sparseness and low coherent measurements suggest that the proposed face-based wavelet method can improve the performance of L1-norm regularized EEG/MEG inverse solutions, which was further demonstrated in simulations and experimental setups using MEG data. Thus, this new transform on complicated cortical structure is promising to significantly advance EEG/MEG inverse source imaging technologies.

  1. Visual neglect in posterior cortical atrophy

    Directory of Open Access Journals (Sweden)

    Andrade Katia

    2010-08-01

    Full Text Available Abstract Background In posterior cortical atrophy (PCA, there is a progressive impairment of high-level visual functions and parietal damage, which might predict the occurrence of visual neglect. However, neglect may pass undetected if not assessed with specific tests, and might therefore be underestimated in PCA. In this prospective study, we aimed at establishing the side, the frequency and the severity of visual neglect, visual extinction, and primary visual field defects in an unselected sample of PCA patients. Methods Twenty-four right-handed PCA patients underwent a standardized battery of neglect tests. Visual fields were examined clinically by the confrontation method. Results Sixteen of the 24 patients (66% had signs of visual neglect on at least one test, and fourteen (58% also had visual extinction or hemianopia. Five patients (21% had neither neglect nor visual field defects. As expected, left-sided neglect was more severe than right-sided neglect. However, right-sided neglect resulted more frequently in this population (29% than in previous studies on focal brain lesions. Conclusion When assessed with specific visuospatial tests, visual neglect is frequent in patients with PCA. Diagnosis of neglect is important because of its negative impact on daily activities. Clinicians should consider the routine use of neglect tests to screen patients with high-level visual deficits. The relatively high frequency of right-sided neglect in neurodegenerative patients supports the hypothesis that bilateral brain damage is necessary for right-sided neglect signs to occur, perhaps because of the presence in the right hemisphere of crucial structures whose damage contributes to neglect.

  2. RGMa regulates cortical interneuron migration and differentiation.

    Directory of Open Access Journals (Sweden)

    Conor O'Leary

    Full Text Available The etiology of neuropsychiatric disorders, including schizophrenia and autism, has been linked to a failure to establish the intricate neural network comprising excitatory pyramidal and inhibitory interneurons during neocortex development. A large proportion of cortical inhibitory interneurons originate in the medial ganglionic eminence (MGE of the ventral telencephalon and then migrate through the ventral subventricular zone, across the corticostriatal junction, into the embryonic cortex. Successful navigation of newborn interneurons through the complex environment of the ventral telencephalon is governed by spatiotemporally restricted deployment of both chemorepulsive and chemoattractive guidance cues which work in concert to create a migratory corridor. Despite the expanding list of interneuron guidance cues, cues responsible for preventing interneurons from re-entering the ventricular zone of the ganglionic eminences have not been well characterized. Here we provide evidence that the chemorepulsive axon guidance cue, RGMa (Repulsive Guidance Molecule a, may fulfill this function. The ventricular zone restricted expression of RGMa in the ganglionic eminences and the presence of its receptor, Neogenin, in the ventricular zone and on newborn and maturing MGE-derived interneurons implicates RGMa-Neogenin interactions in interneuron differentiation and migration. Using an in vitro approach, we show that RGMa promotes interneuron differentiation by potentiating neurite outgrowth. In addition, using in vitro explant and migration assays, we provide evidence that RGMa is a repulsive guidance cue for newborn interneurons migrating out of the ganglionic eminence ventricular zone. Intriguingly, the alternative Neogenin ligand, Netrin-1, had no effect on migration. However, we observed complete abrogation of RGMa-induced chemorepulsion when newborn interneurons were simultaneously exposed to RGMa and Netrin-1 gradients, suggesting a novel mechanism for

  3. Coordinated scaling of cortical and cerebellar numbers of neurons

    Directory of Open Access Journals (Sweden)

    Suzana Herculano-Houzel

    2010-03-01

    Full Text Available While larger brains possess concertedly larger cerebral cortices and cerebella, the relative size of the cerebral cortex increases with brain size, but relative cerebellar size does not. In the absence of data on numbers of neurons in these structures, this discrepancy has been used to dispute the hypothesis that the cerebral cortex and cerebellum function and have evolved in concert and to support a trend towards neocorticalization in evolution. However, the rationale for interpreting changes in absolute and relative size of the cerebral cortex and cerebellum relies on the assumption that they reflect absolute and relative numbers of neurons in these structures across all species – an assumption that our recent studies have shown to be flawed. Here I show for the first time that the numbers of neurons in the cerebral cortex and cerebellum are directly correlated across 19 mammalian species of 4 different orders, including humans, and increase concertedly in a similar fashion both within and across the orders Eulipotyphla (Insectivora, Rodentia, Scandentia and Primata, such that on average a ratio of 3.6 neurons in the cerebellum to every neuron in the cerebral cortex is maintained across species. This coordinated scaling of cortical and cerebellar numbers of neurons provides direct evidence in favor of concerted function, scaling and evolution of these brain structures, and suggests that the common notion that equates cognitive advancement with neocortical expansion should be revisited to consider in its stead the coordinated scaling of neocortex and cerebellum as a functional ensemble.

  4. Targeted enhancement of cortical-hippocampal brain networks and associative memory.

    Science.gov (United States)

    Wang, Jane X; Rogers, Lynn M; Gross, Evan Z; Ryals, Anthony J; Dokucu, Mehmet E; Brandstatt, Kelly L; Hermiller, Molly S; Voss, Joel L

    2014-08-29

    The influential notion that the hippocampus supports associative memory by interacting with functionally distinct and distributed brain regions has not been directly tested in humans. We therefore used targeted noninvasive electromagnetic stimulation to modulate human cortical-hippocampal networks and tested effects of this manipulation on memory. Multiple-session stimulation increased functional connectivity among distributed cortical-hippocampal network regions and concomitantly improved associative memory performance. These alterations involved localized long-term plasticity because increases were highly selective to the targeted brain regions, and enhancements of connectivity and associative memory persisted for ~24 hours after stimulation. Targeted cortical-hippocampal networks can thus be enhanced noninvasively, demonstrating their role in associative memory.

  5. A synergy-based hand control is encoded in human motor cortical areas.

    Science.gov (United States)

    Leo, Andrea; Handjaras, Giacomo; Bianchi, Matteo; Marino, Hamal; Gabiccini, Marco; Guidi, Andrea; Scilingo, Enzo Pasquale; Pietrini, Pietro; Bicchi, Antonio; Santello, Marco; Ricciardi, Emiliano

    2016-02-15

    How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional modules that may simplify the control of hand postures by simultaneously recruiting sets of muscles and joints. However, whether and to what extent synergic hand postures are encoded as such at a cortical level remains unknown. Here, we combined kinematic, electromyography, and brain activity measures obtained by functional magnetic resonance imaging while subjects performed a variety of movements towards virtual objects. Hand postural information, encoded through kinematic synergies, were represented in cortical areas devoted to hand motor control and successfully discriminated individual grasping movements, significantly outperforming alternative somatotopic or muscle-based models. Importantly, hand postural synergies were predicted by neural activation patterns within primary motor cortex. These findings support a novel cortical organization for hand movement control and open potential applications for brain-computer interfaces and neuroprostheses.

  6. Longitudinal development of cortical and subcortical gray matter from birth to 2 years.

    Science.gov (United States)

    Gilmore, John H; Shi, Feng; Woolson, Sandra L; Knickmeyer, Rebecca C; Short, Sarah J; Lin, Weili; Zhu, Hongtu; Hamer, Robert M; Styner, Martin; Shen, Dinggang

    2012-11-01

    Very little is known about cortical development in the first years of life, a time of rapid cognitive development and risk for neurodevelopmental disorders. We studied regional cortical and subcortical gray matter volume growth in a group of 72 children who underwent magnetic resonance scanning after birth and at ages 1 and 2 years using a novel longitudinal registration/parcellation approach. Overall, cortical gray matter volumes increased substantially (106%) in the first year of life and less so in the second year (18%). We found marked regional differences in developmental rates, with primary motor and sensory cortices growing slower in the first year of life with association cortices growing more rapidly. In the second year of life, primary sensory regions continued to grow more slowly, while frontal and parietal regions developed relatively more quickly. The hippocampus grew less than other subcortical structures such as the amygdala and thalamus in the first year of life. It is likely that these patterns of regional gray matter growth reflect maturation and development of underlying function, as they are consistent with cognitive and functional development in the first years of life.

  7. Investigating relationships between cortical thickness and cognitive performance in patients with schizophrenia and healthy adults.

    Science.gov (United States)

    Hartberg, Cecilie Bhandari; Lawyer, Glenn; Nyman, Håkan; Jönsson, Erik G; Haukvik, Unn K; Saetre, Peter; Bjerkan, Petr S; Andreassen, Ole A; Hall, Håkan; Agartz, Ingrid

    2010-05-30

    Relationships between prefrontal and temporal lobe grey matter volumes as assessed by magnetic resonance imaging and neurocognitive test results have been reported in schizophrenia. This investigation aimed to localize brain regions where cortical thickness and neurocognitive performance were related, and investigate if such relationships might differ in schizophrenia patients and healthy controls. Sixty-seven patients with schizophrenia and 69 healthy controls were characterized by neurocognitive testing and by brain cortical thickness maps. Putative cortical thickness/cognitive score relationships were investigated with contrast analyses of general linear models for the combined sample. Regions in which relationships were present were further investigated for diagnostic interaction. In the combined sample, significant positive relationships were found between frontal, temporal and occipital regions and tests for verbal IQ, verbal learning and executive functions. Diagnostic interaction was found for the relationships between verbal IQ and the right temporo-occipital junction and the left middle occipital gyrus. In conclusion, the significant relationships between cortical thickness and neurocognitive performances were localized in brain areas known to be involved in cognition. The relationships were similar in patients and controls, except for the right temporo-occipital and left occipital cortical areas, indicating a disrupted structure-function relationship in patients with schizophrenia compared to healthy control subjects.

  8. Elemental mercury poisoning probably causes cortical myoclonus.

    Science.gov (United States)

    Ragothaman, Mona; Kulkarni, Girish; Ashraf, Valappil V; Pal, Pramod K; Chickabasavaiah, Yasha; Shankar, Susarla K; Govindappa, Srikanth S; Satishchandra, Parthasarthy; Muthane, Uday B

    2007-10-15

    Mercury toxicity causes postural tremors, commonly referred to as "mercurial tremors," and cerebellar dysfunction. A 23-year woman, 2 years after injecting herself with elemental mercury developed disabling generalized myoclonus and ataxia. Electrophysiological studies confirmed the myoclonus was probably of cortical origin. Her deficits progressed over 2 years and improved after subcutaneous mercury deposits at the injection site were surgically cleared. Myoclonus of cortical origin has never been described in mercury poisoning. It is important to ask patients presenting with jerks about exposure to elemental mercury even if they have a progressive illness, as it is a potentially reversible condition as in our patient.

  9. Posterior cortical atrophy: a brief review.

    Science.gov (United States)

    Kirshner, Howard S; Lavin, Patrick J M

    2006-11-01

    Posterior cortical atrophy is a striking clinical syndrome in which a dementing illness begins with visual symptoms. Initially, the problem may seem to be loss of elementary vision, but over time the patient develops features of visual agnosia, topographical difficulty, optic ataxia, simultanagnosia, ocular apraxia (Balint's syndrome), alexia, acalculia, right-left confusion, and agraphia (Gerstmann's syndrome), and later a more generalized dementia. Occasional patients have visual hallucinations and signs of Parkinson's disease or Lewy body dementia. A number of different neuropathologic disorders are associated with posterior cortical atrophy.

  10. Independent measurement of femoral cortical thickness and cortical bone density using clinical CT.

    Science.gov (United States)

    Treece, G M; Gee, A H

    2015-02-01

    The local structure of the proximal femoral cortex is of interest since both fracture risk, and the effects of various interventions aimed at reducing that risk, are associated with cortical properties focused in particular regions rather than dispersed over the whole bone. Much of the femoral cortex is less than 3mm thick, appearing so blurred in clinical CT that its actual density is not apparent in the data, and neither thresholding nor full-width half-maximum techniques are capable of determining its width. Our previous work on cortical bone mapping showed how to produce more accurate estimates of cortical thickness by assuming a fixed value of the cortical density for each hip. However, although cortical density varies much less over the proximal femur than thickness, what little variation there is leads to errors in thickness measurement. In this paper, we develop the cortical bone mapping technique by exploiting local estimates of imaging blur to correct the global density estimate, thus providing a local density estimate as well as more accurate estimates of thickness. We also consider measurement of cortical mass surface density and the density of trabecular bone immediately adjacent to the cortex. Performance is assessed with ex vivo clinical QCT scans of proximal femurs, with true values derived from high resolution HRpQCT scans of the same bones. We demonstrate superior estimation of thickness than is possible with alternative techniques (accuracy 0.12 ± 0.39 mm for cortices in the range 1-3mm), and that local cortical density estimation is feasible for densities >800 mg/cm(3).

  11. Focal cortical lesions induce bidirectional changes in the excitability of fast spiking and non fast spiking cortical interneurons.

    Science.gov (United States)

    Imbrosci, Barbara; Neitz, Angela; Mittmann, Thomas

    2014-01-01

    A physiological brain function requires neuronal networks to operate within a well-defined range of activity. Indeed, alterations in neuronal excitability have been associated with several pathological conditions, ranging from epilepsy to neuropsychiatric disorders. Changes in inhibitory transmission are known to play a key role in the development of hyperexcitability. However it is largely unknown whether specific interneuronal subpopulations contribute differentially to such pathological condition. In the present study we investigated functional alterations of inhibitory interneurons embedded in a hyperexcitable cortical circuit at the border of chronically induced focal lesions in mouse visual cortex. Interestingly, we found opposite alterations in the excitability of non fast-spiking (Non Fs) and fast-spiking (Fs) interneurons in acute cortical slices from injured animals. Non Fs interneurons displayed a depolarized membrane potential and a higher frequency of spontaneous excitatory postsynaptic currents (sEPSCs). In contrast, Fs interneurons showed a reduced sEPSCs amplitude. The observed downscaling of excitatory synapses targeting Fs interneurons may prevent the recruitment of this specific population of interneurons to the hyperexcitable network. This mechanism is likely to seriously affect neuronal network function and to exacerbate hyperexcitability but it may be important to protect this particular vulnerable population of GABAegic neurons from excitotoxicity.

  12. Unimodal primary sensory cortices are directly connected by long-range horizontal projections in the rat sensory cortex

    Directory of Open Access Journals (Sweden)

    Jimmy eStehberg

    2014-09-01

    Full Text Available Research based on functional imaging and neuronal recordings in the barrel cortex subdivision of primary somatosensory cortex (SI of the adult rat has revealed novel aspects of structure-function relationships in this cortex. Specifically, it has demonstrated that single whisker stimulation evokes subthreshold neuronal activity that spreads symmetrically within gray matter from the appropriate barrel area, crosses cytoarchitectural borders of SI and reaches deeply into other unimodal primary cortices such as primary auditory (AI and primary visual (VI. It was further demonstrated that this spread is supported by a spatially matching underlying diffuse network of border-crossing, long-range projections that could also reach deeply into AI and VI. Here we seek to determine whether such a network of border-crossing, long-range projections is unique to barrel cortex or characterizes also other primary, unimodal sensory cortices and therefore could directly connect them. Using anterograde (BDA and retrograde (CTb tract-tracing techniques, we demonstrate that such diffuse horizontal networks directly and mutually connect VI, AI and SI. These findings suggest that diffuse, border-crossing axonal projections connecting directly primary cortices are an important organizational motif common to all major primary sensory cortices in the rat. Potential implications of these findings for topics including cortical structure-function relationships, multisensory integration, functional imaging and cortical parcellation are discussed.

  13. Brain cortical thickness and surface area correlates of neurocognitive performance in patients with schizophrenia, bipolar disorder, and healthy adults.

    Science.gov (United States)

    Hartberg, C B; Sundet, K; Rimol, L M; Haukvik, U K; Lange, E H; Nesvåg, R; Dale, A M; Melle, I; Andreassen, O A; Agartz, I

    2011-11-01

    Relationships between cortical brain structure and neurocognitive functioning have been reported in schizophrenia, but findings are inconclusive, and only a few studies in bipolar disorder have addressed this issue. This is the first study to directly compare relationships between cortical thickness and surface area with neurocognitive functioning in patients with schizophrenia (n = 117) and bipolar disorder (n = 121) and healthy controls (n = 192). MRI scans were obtained, and regional cortical thickness and surface area measurements were analyzed for relationships with test scores from 6 neurocognitive domains. In the combined sample, cortical thickness in the right rostral anterior cingulate was inversely related to working memory, and cortical surface area in four frontal and temporal regions were positively related to neurocognitive functioning. A positive relationship between left transverse temporal thickness and processing speed was specific to schizophrenia. A negative relationship between right temporal pole thickness and working memory was specific to bipolar disorder. In conclusion, significant cortical structure/function relationships were found in a large sample of healthy controls and patients with schizophrenia or bipolar disorder. The differences that were found between schizophrenia and bipolar may indicate differential relationship patterns in the two disorders, which may be of relevance for understanding the underlying pathophysiology.

  14. Gene-Based Analysis of Regionally Enriched Cortical Genes in GWAS Data Sets of Cognitive Traits and Psychiatric Disorders

    DEFF Research Database (Denmark)

    Ersland, Kari M; Christoforou, Andrea; Stansberg, Christine;

    2012-01-01

    the regionally enriched cortical genes to mine a genome-wide association study (GWAS) of the Norwegian Cognitive NeuroGenetics (NCNG) sample of healthy adults for association to nine psychometric tests measures. In addition, we explored GWAS data sets for the serious psychiatric disorders schizophrenia (SCZ) (n......Despite its estimated high heritability, the genetic architecture leading to differences in cognitive performance remains poorly understood. Different cortical regions play important roles in normal cognitive functioning and impairment. Recently, we reported on sets of regionally enriched genes...... in three different cortical areas (frontomedial, temporal and occipital cortices) of the adult rat brain. It has been suggested that genes preferentially, or specifically, expressed in one region or organ reflect functional specialisation. Employing a gene-based approach to the analysis, we used...

  15. Study of the relationship between the acupoints of Zhongzhu(TE 3),Yanglingquan (GB 34) and their corresponding cortical areas with the functional MRI%中渚、阳陵泉穴与脑功能区的关系:功能性磁共振成像研究

    Institute of Scientific and Technical Information of China (English)

    田丽芳; 周诚; 陈敏; 邹明珠; 杨正汉

    2009-01-01

    Objective Using the functional magnetic resonance imaging (fMRI) to observe the distributed characteristic of excited cerebral cortical areas that induced by acupuncture-stimulating the Zhongzhu (TE 3) of the meridian of Hand-Shaoyang and Yanglingquan (GB 34) of the meridian of Foot-Shaoyang, and investigate the central neural mechanism on the effect of meridians and acupoints. Methods Forty-two right-handed healthy volunteers were randomly divided into Zhongzhu (TE 3) group and Yanglingquan (GB 34) group. The functional cortical changes during acupuncture-stimulating the Zhongzhu (TE 3) and Yanglingquan (GB 34) were successively scanned with fMRI, and the effected areas were determined through analysing the obtained data with SPM2 software. Results The main excited areas were bilateral frontal lobes, temporal lobes, cerebellum and occipital lobes successively in Zhongzhu (TE 3) group, and bilateral occipital lobes, cerebellum, frontal lobes and temporal lobes in Yanglingquan (GB 34) group in contrast. Conclusion Acupuncture-stimulating both Zhongzhu (TE 3) and Yanglingquan (GB 34) can excite bilateral acoustic, visual and somatomotor cortices, which might be the central neural basis for clinical treatment on related diseases.%目的:运用功能性磁共振成像技术(fMRI)观察针刺手少阳经中渚穴和足少阳经阳陵泉穴时大脑皮层兴奋区的分布特点,初步探讨经络、穴位作用的中枢机制.方法:将42例健康受试者(右利手),随机分为针刺中渚穴和阳陵泉穴两组.采用fMRI技术实时动态扫描针刺中渚穴和阳陵泉穴时脑功能区的变化,最终所获得的数据采用SPM2软件包分析其作用部位.结果:中渚穴引起的脑内主要兴奋区依次为双侧的额叶、颞叶、小脑和枕叶,阳陵泉穴引起的主要兴奋区依次为双侧的枕叶、小脑、额叶和颞叶.结论:针刺中渚穴和阳陵泉穴时均可以引起双侧听觉、视觉相关大脑皮质和

  16. Projection of fMRI data onto the cortical surface using anatomically-informed convolution kernels.

    Science.gov (United States)

    Operto, G; Bulot, R; Anton, J-L; Coulon, O

    2008-01-01

    As surface-based data analysis offer an attractive approach for intersubject matching and comparison, the projection of voxel-based 3D volumes onto the cortical surface is an essential problem. We present here a method that aims at producing representations of functional brain data on the cortical surface from functional MRI volumes. Such representations are for instance required for subsequent cortical-based functional analysis. We propose a projection technique based on the definition, around each node of the gray/white matter interface mesh, of convolution kernels whose shape and distribution rely on the geometry of the local anatomy. For one anatomy, a set of convolution kernels is computed that can be used to project any functional data registered with this anatomy. Therefore resulting in anatomically-informed projections of data onto the cortical surface, this kernel-based approach offers better sensitivity, specificity than other classical methods and robustness to misregistration errors. Influences of mesh and volumes spatial resolutions were also estimated for various projection techniques, using simulated functional maps.

  17. Simulation of Robustness against Lesions of Cortical Networks

    CERN Document Server

    Kaiser, Marcus; Andras, Peter; Young, Malcolm P

    2008-01-01

    Structure entails function and thus a structural description of the brain will help to understand its function and may provide insights into many properties of brain systems, from their robustness and recovery from damage, to their dynamics and even their evolution. Advances in the analysis of complex networks provide useful new approaches to understanding structural and functional properties of brain networks. Structural properties of networks recently described allow their characterization as small-world, random (exponential) and scale-free. They complement the set of other properties that have been explored in the context of brain connectivity, such as topology, hodology, clustering, and hierarchical organization. Here we apply new network analysis methods to cortical inter-areal connectivity networks for the cat and macaque brains. We compare these corticocortical fibre networks to benchmark rewired, small-world, scale-free and random networks, using two analysis strategies, in which we measure the effect...

  18. Anomia produced by direct cortical stimulation of the pre-supplementary motor area in a patient undergoing preoperative language mapping.

    Science.gov (United States)

    Rozanski, Verena Eveline; Peraud, Aurelia; Noachtar, Soheyl

    2015-06-01

    There is sparse data on the analysis of supplementary motor area in language function using direct cortical stimulation of the supplementary motor area. Here, we report a patient who experienced isolated anomia during stimulation of the anterior supplementary motor area and discuss the role of the supplementary motor area in speech production. The role of the pre-supplementary motor· area in word selection, observed in fMRI studies, can be confirmed by direct cortical stimulation.

  19. Development of memory for spatial context: hippocampal and cortical contributions.

    Science.gov (United States)

    DeMaster, Dana; Pathman, Thanujeni; Ghetti, Simona

    2013-10-01

    The goal of the present study was to examine age-related differences in hippocampal and cortical contribution to episodic retrieval of spatial context in 3 age groups. Children ages 8-9 and 10-11 years old, and adults ages 18-25 (N=48) encoded black and white line drawings appearing either on the right side or the left side of a screen. Functional magnetic resonance imaging (fMRI) data were acquired while participants attempted to recall where each studied drawing had originally appeared. Correct recall of spatial source indicated successful episodic retrieval of spatial context. Activity in head and body of the hippocampus was associated with episodic retrieval in adults, but not in children. In children, individual differences in hippocampal activation for recognition predicted rates of correct spatial recall. Developmental differences were also found in regions in posterior parietal cortex, anterior prefrontal cortex, and insula. Overall, these results support the view that the development of episodic memory is supported by functional changes in the hippocampus as well as cortical regions.

  20. Central cortical cleanup and zonular deficiency

    Science.gov (United States)

    Mansour, Ahmad M; Antonios, Rafic S; Ahmed, Iqbal Ike K

    2016-01-01

    Background Complete removal of the cortex has been advocated to prevent posterior capsular opacification but carries the risk of zonular dehiscence, hence there is a need for a safe maximal cortical cleanup technique in eyes with severe diffuse zonulopathy in subjects above age 90. Methods We used bimanual central cortical cleaning by elevating central fibers and aspirating them toward the periphery. Peripheral cortical fibers were removed passively only when they became loose due to copious irrigation. A one-piece foldable implant was inserted without a capsular tension ring. Postoperative corticosteroid drops were used. Results This technique was safely performed in a dozen eyes with severe pseudo-exfoliation or brunescent cataract with weak zonules. Posterior capsular rupture, iritis, vitreous loss, and lens subluxation were not observed. Moderate capsular phimosis occurred but with maintained central vision. Conclusion The dogma of “complete cortical cleanup” in severe zonulopathy needs to be revisited in favor of a clear visual axis with maximal preservation of the damaged zonules. This technique is ideal in patients above age 90 where posterior capsular opacification and late dislocation of intraocular lens–capsule bag complex are unlikely to occur until several years postoperatively. PMID:27784979

  1. Central cortical cleanup and zonular deficiency

    Directory of Open Access Journals (Sweden)

    Mansour AM

    2016-10-01

    Full Text Available Ahmad M Mansour,1,2 Rafic S Antonios,1 Iqbal Ike K Ahmed3 1Department of Ophthalmology, American University of Beirut, Beirut, Lebanon; 2Department of Ophthalmology, Rafic Hariri University Hospital, Beirut, Lebanon; 3Department of Ophthalmology, University of Toronto, Toronto, ON, Canada Background: Complete removal of the cortex has been advocated to prevent posterior capsular opacification but carries the risk of zonular dehiscence, hence there is a need for a safe maximal cortical cleanup technique in eyes with severe diffuse zonulopathy in subjects above age 90. Methods: We used bimanual central cortical cleaning by elevating central fibers and aspirating them toward the periphery. Peripheral cortical fibers were removed passively only when they became loose due to copious irrigation. A one-piece foldable implant was inserted without a capsular tension ring. Postoperative corticosteroid drops were used. Results: This technique was safely performed in a dozen eyes with severe pseudo-exfoliation or brunescent cataract with weak zonules. Posterior capsular rupture, iritis, vitreous loss, and lens subluxation were not observed. Moderate capsular phimosis occurred but with maintained central vision. Conclusion: The dogma of “complete cortical cleanup” in severe zonulopathy needs to be revisited in favor of a clear visual axis with maximal preservation of the damaged zonules. This technique is ideal in patients above age 90 where posterior capsular opacification and late dislocation of intraocular lens–capsule bag complex are unlikely to occur until several years postoperatively. Keywords: brunescent cataract, cortex aspiration, phacoemulsification, pseudo-exfoliation, weak zonules

  2. A case of cortical deafness and anarthria.

    Science.gov (United States)

    Kaga, Kimitaka; Nakamura, Masako; Takayama, Yoshihiro; Momose, Hiromitsu

    2004-03-01

    Generally, cortical deafness is not complicated by anarthria and cortical anarthria does not affect auditory perception. We report a case of simultaneous progressive cortical deafness and anarthria. At the age of 70 years, the patient, a woman, noticed hearing problems when using the telephone, which worsened rapidly over the next 2 years. She was then referred to our hospital for further examinations of her hearing problems. Auditory tests revealed threshold elevation in the low and middle frequencies on pure-tone audiometry, a maximum speech discrimination of 25% and normal otoacoustic emissions and auditory brainstem, middle- and long-latency responses. An articulation test revealed abnormal pronunciation. Because of these problems only written and not verbal communication was possible; her ability to read and write was unimpaired. She showed no other neurological problems. Brain MRI demonstrated atrophic changes of the auditory cortex and Wernicke's language center and PET suggested low uptake of (18F) 2-fluoro-2-deoxy-d-glucose around the Sylvian fissures in both hemispheres. Neurologically, the patient was suspected of having progressive aphasia or frontotemporal dementia. Her cortical deafness and anarthria are believed to be early signs of this entity.

  3. Prenatal Alcohol Exposure and Cortical Angiogenesis

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2013-02-01

    Full Text Available Researchers at Normandy University, and Rouen and Brest Universities, France studied the effects of prenatal alcohol exposure on the cortical microvascular and the action of alcohol, glutamate, and vascular endothelial growth factor A (VEGF on activity, plasticity, and survival of microvessels in mice.

  4. Osteocyte lacunar properties in rat cortical bone

    DEFF Research Database (Denmark)

    Bach-Gansmo, Fiona Linnea; Weaver, James C.; Jensen, Mads Hartmann;

    2015-01-01

    -species but also inter-site variation in lacunar properties. Here, osteocyte lacunae in rat cortical bone have been studied using synchrotron radiation micro computed tomography (SR μCT) and backscattered electron (BE) microscopy. Quantitative lacunar geometric characteristics are reported based on the synchrotron...

  5. A revised view of sensory cortical parcellation

    Science.gov (United States)

    Wallace, Mark T.; Ramachandran, Ramnarayan; Stein, Barry E.

    2004-01-01

    Traditional cortical parcellation schemes have emphasized the presence of sharply defined visual, auditory, and somatosensory domains populated exclusively by modality-specific neurons (i.e., neurons responsive to sensory stimuli from a single sensory modality). However, the modality-exclusivity of this scheme has recently been challenged. Observations in a variety of species suggest that each of these domains is subject to influences from other senses. Using the cerebral cortex of the rat as a model, the present study systematically examined the capability of individual neurons in visual, auditory, and somatosensory cortex to be activated by stimuli from other senses. Within the major modality-specific domains, the incidence of inappropriate (i.e., nonmatching) and/or multisensory neurons was very low. However, at the borders between each of these domains a concentration of multisensory neurons was found whose modality profile matched the representations in neighboring cortices and that were able to integrate their cross-modal inputs to give rise to enhanced and/or depressed responses. The results of these studies are consistent with some features of both the traditional and challenging views of cortical organization, and they suggest a parcellation scheme in which modality-specific cortical domains are separated from one another by transitional multisensory zones. PMID:14766982

  6. Role of perinatal long-chain omega-3 fatty acids in cortical circuit maturation: Mechanisms and implications for psychopathology.

    Science.gov (United States)

    McNamara, Robert K; Vannest, Jennifer J; Valentine, Christina J

    2015-03-22

    Accumulating translational evidence suggests that the long-chain omega-3 fatty acid docosahexaenoic acid (DHA) plays a role in the maturation and stability of cortical circuits that are impaired in different recurrent psychiatric disorders. Specifically, rodent and cell culture studies find that DHA preferentially accumulates in synaptic and growth cone membranes and promotes neurite outgrowth, dendritic spine stability, and synaptogenesis. Additional evidence suggests that DHA may play a role in microglia-mediated synaptic pruning, as well as myelin development and resilience. In non-human primates n-3 fatty acid insufficiency during perinatal development leads to widespread deficits in functional connectivity in adult frontal cortical networks compared to primates raised on DHA-fortified diet. Preterm delivery in non-human primates and humans is associated with early deficits in cortical DHA accrual. Human preterm birth is associated with long-standing deficits in myelin integrity and cortical circuit connectivity and increased risk for attention deficit/hyperactivity disorder (ADHD), mood, and psychotic disorders. In general, ADHD and mood and psychotic disorders initially emerge during rapid periods of cortical circuit maturation and are characterized by DHA deficits, myelin pathology, and impaired cortical circuit connectivity. Together these associations suggest that early and uncorrected deficits in fetal brain DHA accrual may represent a modifiable risk factor for cortical circuit maturation deficits in psychiatric disorders, and could therefore have significant implications for informing early intervention and prevention strategies.

  7. Frontal cortical mitochondrial dysfunction and mitochondria-related β-amyloid accumulation by chronic sleep restriction in mice.

    Science.gov (United States)

    Zhao, Hongyi; Wu, Huijuan; He, Jialin; Zhuang, Jianhua; Liu, Zhenyu; Yang, Yang; Huang, Liuqing; Zhao, Zhongxin

    2016-08-17

    Mitochondrial dysfunction induced by mitochondria-related β-amyloid (Aβ) accumulation is increasingly being considered a novel risk factor for sporadic Alzheimer's disease pathophysiology. The close relationship between chronic sleep restriction (CSR) and cortical Aβ elevation was confirmed recently. By assessing frontal cortical mitochondrial function (electron microscopy manifestation, cytochrome C oxidase concentration, ATP level, and mitochondrial membrane potential) and the levels of mitochondria-related Aβ in 9-month-old adult male C57BL/6J mice subjected to CSR and as an environmental control (CO) group, we aimed to evaluate the association of CSR with mitochondrial dysfunction and mitochondria-related Aβ accumulation. In this study, frontal cortical mitochondrial dysfunction was significantly more severe in CSR mice compared with CO animals. Furthermore, CSR mice showed higher mitochondria-associated Aβ, total Aβ, and mitochondria-related β-amyloid protein precursor (AβPP) levels compared with CO mice. In the CSR model, mouse frontal cortical mitochondrial dysfunction was correlated with mitochondria-associated Aβ and mitochondria-related AβPP levels. However, frontal cortical mitochondria-associated Aβ levels showed no significant association with cortical total Aβ and mitochondrial AβPP concentrations. These findings indicated that CSR-induced frontal cortical mitochondrial dysfunction and mitochondria-related Aβ accumulation, which was closely related to mitochondrial dysfunction under CSR.

  8. Assessment of cortical maturation with prenatal MRI. Part I: normal cortical maturation

    Energy Technology Data Exchange (ETDEWEB)

    Fogliarini, Celine [Faculte Timone, Centre de Resonance Magnetique Biologique et Medicale, Marseille (France); Chaumoitre, Katia [Hopital Nord, Department of Radiology, Marseille (France); Chapon, Frederique; Levrier, Olivier; Girard, Nadine [Hopital Timone, Department of Neuroradiology, Marseille Cedex 5 (France); Fernandez, Carla; Figarella-Branger, Dominique [Hopital Timone, Department of Pathology, Marseille (France)

    2005-08-01

    Cortical maturation, especially gyral formation, follows a temporospatial schedule and is a good marker of fetal maturation. Although ultrasonography is still the imaging method of choice to evaluate fetal anatomy, MRI has an increasingly important role in the detection of brain abnormalities, especially of cortical development. Knowledge of MRI techniques in utero with the advantages and disadvantages of some sequences is necessary, in order to try to optimize the different magnetic resonance sequences to be able to make an early diagnosis. The different steps of cortical maturation known from histology represent the background necessary for the understanding of maturation in order to be then able to evaluate brain maturation through neuroimaging. Illustrations of the normal cortical maturation are given for each step accessible to MRI for both the cerebral hemispheres and the posterior fossa. (orig.)

  9. Reduced cortical thickness of brain areas involved in pain processing in patients with chronic pancreatitis.

    NARCIS (Netherlands)

    Frokjaer, J.B.; Bouwense, S.A.W.; Olesen, S.S.; Lundager, F.H.; Eskildsen, S.F.; Goor, H. van; Wilder-Smith, O.H.G.; Drewes, A.M.

    2012-01-01

    BACKGROUND & AIMS: Patients with painful chronic pancreatitis (CP) might have abnormal brain function. We assessed cortical thickness in brain areas involved in visceral pain processing. METHODS: We analyzed brain morphologies of 19 patients with painful CP and compared them with 15 healthy individu

  10. Longitudinal MRI study of cortical thickness, perfusion, and metabolite levels in major depressive disorder

    DEFF Research Database (Denmark)

    Järnum, Hanna; Eskildsen, Simon Fristed; Steffensen, Elena G;

    2011-01-01

    disorder (MDD) display morphologic, functional, and metabolic brain abnormalities in limbic-cortical regions at a baseline magnetic resonance (MR) scan and whether these changes are normalized in MDD patients in remission at a follow-up scan. Method:  A longitudinal 3.0-Tesla (T) magnetic resonance imaging...

  11. Automatic Detection of Cortical Bones Haversian Osteonal Boundaries

    Directory of Open Access Journals (Sweden)

    Ilige Hage

    2015-10-01

    Full Text Available This work aims to automatically detect cement lines in decalcified cortical bone sections stained with H&E. Employed is a methodology developed previously by the authors and proven to successfully count and disambiguate the micro-architectural features (namely Haversian canals, canaliculi, and osteocyte lacunae present in the secondary osteons/Haversian system (osteon of cortical bone. This methodology combines methods typically considered separately, namely pulse coupled neural networks (PCNN, particle swarm optimization (PSO, and adaptive threshold (AT. In lieu of human bone, slides (at 20× magnification from bovid cortical bone are used in this study as proxy of human bone. Having been characterized, features with same orientation are used to detect the cement line viewed as the next coaxial layer adjacent to the outermost lamella of the osteon. Employed for this purpose are three attributes for each and every micro-sized feature identified in the osteon lamellar system: (1 orientation, (2 size (ellipse perimeter and (3 Euler number (a topological measure. From a training image, automated parameters for the PCNN network are obtained by forming fitness functions extracted from these attributes. It is found that a 3-way combination of these features attributes yields good representations of the overall osteon boundary (cement line. Near-unity values of classical metrics of quality (precision, sensitivity, specificity, accuracy, and dice suggest that the segments obtained automatically by the optimized artificial intelligent methodology are of high fidelity as compared with manual tracing. For bench marking, cement lines segmented by k-means did not fare as well. An analysis based on the modified Hausdorff distance (MHD of the segmented cement lines also testified to the quality of the detected cement lines vis-a-vis the k-means method.

  12. Surround suppression and sparse coding in visual and barrel cortices

    Directory of Open Access Journals (Sweden)

    Robert N S Sachdev

    2012-07-01

    Full Text Available During natural vision the entire retina is stimulated. Likewise, during natural tactile behaviors, spatially extensive regions of the somatosensory surface are co-activated. The large spatial extent of naturalistic stimulation means that surround suppression, a phenomenon whose neural mechanisms remain a matter of debate, must arise during natural behavior. To identify common neural motifs that might instantiate surround suppression across modalities, we review models of surround suppression and compare the evidence supporting the competing ideas that surround suppression has either cortical or sub-cortical origins in visual and barrel cortex. In the visual system there is general agreement lateral inhibitory mechanisms contribute to surround suppression, but little direct experimental evidence that intracortical inhibition plays a major role. Two intracellular recording studies of V1, one using naturalistic stimuli (Haider et al., 2010, the other sinusoidal gratings (Ozeki et al., 2009, sought to identify the causes of reduced activity in V1 with increasing stimulus size, a hallmark of surround suppression. The former attributed this effect to increased inhibition, the latter to largely balanced withdrawal of excitation and inhibition. In rodent primary somatosensory barrel cortex, multi-whisker responses are generally weaker than single whisker responses, suggesting multi-whisker stimulation engages similar surround suppressive mechanisms. The origins of suppression in S1 remain elusive: studies have implicated brainstem lateral/internuclear interactions and both thalamic and cortical inhibition. Although the anatomical organization and instantiation of surround suppression in the visual and somatosensory systems differ, we consider the idea that one common function of surround suppression, in both modalities, is to remove the statistical redundancies associated with natural stimuli by increasing the sparseness or selectivity of sensory

  13. Positive association of video game playing with left frontal cortical thickness in adolescents.

    Directory of Open Access Journals (Sweden)

    Simone Kühn

    Full Text Available Playing video games is a common recreational activity of adolescents. Recent research associated frequent video game playing with improvements in cognitive functions. Improvements in cognition have been related to grey matter changes in prefrontal cortex. However, a fine-grained analysis of human brain structure in relation to video gaming is lacking. In magnetic resonance imaging scans of 152 14-year old adolescents, FreeSurfer was used to estimate cortical thickness. Cortical thickness across the whole cortical surface was correlated with self-reported duration of video gaming (hours per week. A robust positive association between cortical thickness and video gaming duration was observed in left dorsolateral prefrontal cortex (DLPFC and left frontal eye fields (FEFs. No regions showed cortical thinning in association with video gaming frequency. DLPFC is the core correlate of executive control and strategic planning which in turn are essential cognitive domains for successful video gaming. The FEFs are a key region involved in visuo-motor integration important for programming and execution of eye movements and allocation of visuo-spatial attention, processes engaged extensively in video games. The results may represent the biological basis of previously reported cognitive improvements due to video game play. Whether or not these results represent a-priori characteristics or consequences of video gaming should be studied in future longitudinal investigations.

  14. Rab, Arf, and Arl-Regulated Membrane Traffic in Cortical Neuron Migration.

    Science.gov (United States)

    Tang, Bor Luen

    2016-07-01

    The migration of projection neurons from its birthplace in the subventricular zone to their final destination in the cortical plate is a complex process that requires a series of highly coordinated cellular events. Amongst the key factors involved in the processes are modulators of cytoskeletal dynamics, as well as cellular membrane traffic. Members of the small GTPases family responsible for the latter process, the Rabs and Arfs, have been recently implicated in cortical neuron migration. Rab5 and Rab11, which are key modulators of endocytosis and endocytic recycling respectively, ensure proper surface expression and distribution of N-cadherin, a key adhesion protein that tethers migrating neurons to the radial glia fiber tracts during pia-directed migration. Rab7, which is associated with lysosomal biogenesis and function, is important for the final step of terminal translocation when N-cadherin is downregulated by lysosomal degradation. Arf6 activity, which is known to be important in neuronal processes outgrowth, may negatively impact the multipolar-bipolar transition of cortical neurons undergoing radial migration, but the downstream effector of Arf6 in this regard is not yet known. In addition to the above, members of the Arl family which have been recently shown to be important in radial glia scaffold formation, would also be important for cortical neuron migration. In this short review, we discuss recent advances in our understanding of the importance of membrane traffic regulated by the Rab, Arf, and Arl family members in cortical neuron migration.

  15. Cortical modulations increase in early sessions with brain-machine interface.

    Directory of Open Access Journals (Sweden)

    Miriam Zacksenhouse

    Full Text Available BACKGROUND: During planning and execution of reaching movements, the activity of cortical motor neurons is modulated by a diversity of motor, sensory, and cognitive signals. Brain-machine interfaces (BMIs extract part of these modulations to directly control artificial actuators. However, cortical modulations that emerge in the novel context of operating the BMI are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: Here we analyzed the changes in neuronal modulations that occurred in different cortical motor areas as monkeys learned to use a BMI to control reaching movements. Using spike-train analysis methods we demonstrate that the modulations of the firing-rates of cortical neurons increased abruptly after the monkeys started operating the BMI. Regression analysis revealed that these enhanced modulations were not correlated with the kinematics of the movement. The initial enhancement in firing rate modulations declined gradually with subsequent training in parallel with the improvement in behavioral performance. CONCLUSIONS/SIGNIFICANCE: We conclude that the enhanced modulations are related to computational tasks that are significant especially in novel motor contexts. Although the function and neuronal mechanism of the enhanced cortical modulations are open for further inquiries, we discuss their potential role in processing execution errors and representing corrective or explorative activity. These representations are expected to contribute to the formation of internal models of the external actuator and their decoding may facilitate BMI improvement.

  16. A Computational Growth Model for Measuring Dynamic Cortical Development in the First Year of Life

    Science.gov (United States)

    Nie, Jingxin; Li, Gang; Wang, Li; Gilmore, John H.; Lin, Weili

    2012-01-01

    Human cerebral cortex develops extremely fast in the first year of life. Quantitative measurement of cortical development during this early stage plays an important role in revealing the relationship between cortical structural and high-level functional development. This paper presents a computational growth model to simulate the dynamic development of the cerebral cortex from birth to 1 year old by modeling the cerebral cortex as a deformable elastoplasticity surface driven via a growth model. To achieve a high accuracy, a guidance model is also incorporated to estimate the growth parameters and cortical shapes at later developmental stages. The proposed growth model has been applied to 10 healthy subjects with longitudinal brain MR images acquired at every 3 months from birth to 1 year old. The experimental results show that our proposed method can capture the dynamic developmental process of the cortex, with the average surface distance error smaller than 0.6 mm compared with the ground truth surfaces, and the results also show that 1) the curvedness and sharpness decrease from 2 weeks to 12 months and 2) the frontal lobe shows rapidly increasing cortical folding during this period, with relatively slower increase of the cortical folding in the occipital and parietal lobes. PMID:22047969

  17. Electron tomographic structure and protein composition of isolated rat cerebellar, hippocampal and cortical postsynaptic densities.

    Science.gov (United States)

    Farley, M M; Swulius, M T; Waxham, M N

    2015-09-24

    Electron tomography and immunogold labeling were used to analyze similarities and differences in the morphology and protein composition of postsynaptic densities (PSDs) isolated from adult rat cerebella, hippocampi, and cortices. There were similarities in physical dimensions and gross morphology between cortical, hippocampal and most cerebellar PSDs, although the morphology among cerebellar PSDs could be categorized into three distinct groups. The majority of cerebellar PSDs were composed of dense regions of protein, similar to cortical and hippocampal PSDs, while others were either composed of granular or lattice-like protein regions. Significant differences were found in protein composition and organization across PSDs from the different brain regions. The signaling protein, βCaMKII, was found to be a major component of each PSD type and was more abundant than αCaMKII in both hippocampal and cerebellar PSDs. The scaffold molecule PSD-95, a major component of cortical PSDs, was found absent in a fraction of cerebellar PSDs and when present was clustered in its distribution. In contrast, immunogold labeling for the proteasome was significantly more abundant in cerebellar and hippocampal PSDs than cortical PSDs. Together, these results indicate that PSDs exhibit remarkable diversity in their composition and morphology, presumably as a reflection of the unique functional demands placed on different synapses.

  18. Measurement of renal cortical thickness using spiral CT in early diabetic nephropathy

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Bong Sig; Chung, Won Jung; Park, Byeong Ho; Choi, Jong Cheol; Nam, Kyung Jin; Lee, Yung Il; Chung, Duk Hwan [Donga Univ. College of Medicine, Pusan (Korea, Republic of)

    1997-03-01

    To compare the ratio of renal cortical thickness to renal parenchymal thickness in early diabetic nephropathy and in normal control group. We performed spiral CT in 17 patients suffering from diabetic nephropathy without renal failure or renal atrophy. The normal control group consisted of 19 persons who were normal on renal function test and did not show any abnormality of the kidney. Renal cortical and parenchymal thicknesses were measured at renal hilum level perpendicular to the renal surface by electronic caliper on contrast-enhanced transverse scan demonstrating the cortical nephrogram phase. Using student's test, the difference in renal parenchymal and cortical thickness between the two groups was tested for statistical significance. There was no significant difference in renal parenchymal thickness between the two groups (p>0.05);the patient group had a thicker renal cortex than the normal control group however (p<0.05). The ratio of renal cortical thickness to parenchymal thickness in early diabetic nephropathy patients (Rt.:0.041{+-}0.051, Lt.:0.382{+-}0.053) was significantly higher than in the normal control group (Rt.:0.331{+-}0.067, Lt.:0.323{+-}0.064). The kidney of early diabetic nephropathy patients had a thicker renal cortex than normal kidney.

  19. Positive Association of Video Game Playing with Left Frontal Cortical Thickness in Adolescents

    Science.gov (United States)

    Kühn, Simone; Lorenz, Robert; Banaschewski, Tobias; Barker, Gareth J.; Büchel, Christian; Conrod, Patricia J.; Flor, Herta; Garavan, Hugh; Ittermann, Bernd; Loth, Eva; Mann, Karl; Nees, Frauke; Artiges, Eric; Paus, Tomas; Rietschel, Marcella; Smolka, Michael N.; Ströhle, Andreas; Walaszek, Bernadetta; Schumann, Gunter; Heinz, Andreas; Gallinat, Jürgen

    2014-01-01

    Playing video games is a common recreational activity of adolescents. Recent research associated frequent video game playing with improvements in cognitive functions. Improvements in cognition have been related to grey matter changes in prefrontal cortex. However, a fine-grained analysis of human brain structure in relation to video gaming is lacking. In magnetic resonance imaging scans of 152 14-year old adolescents, FreeSurfer was used to estimate cortical thickness. Cortical thickness across the whole cortical surface was correlated with self-reported duration of video gaming (hours per week). A robust positive association between cortical thickness and video gaming duration was observed in left dorsolateral prefrontal cortex (DLPFC) and left frontal eye fields (FEFs). No regions showed cortical thinning in association with video gaming frequency. DLPFC is the core correlate of executive control and strategic planning which in turn are essential cognitive domains for successful video gaming. The FEFs are a key region involved in visuo-motor integration important for programming and execution of eye movements and allocation of visuo-spatial attention, processes engaged extensively in video games. The results may represent the biological basis of previously reported cognitive improvements due to video game play. Whether or not these results represent a-priori characteristics or consequences of video gaming should be studied in future longitudinal investigations. PMID:24633348

  20. MEC-17 deficiency leads to reduced α-tubulin acetylation and impaired migration of cortical neurons.

    Science.gov (United States)

    Li, Lei; Wei, Dan; Wang, Qiong; Pan, Jing; Liu, Rong; Zhang, Xu; Bao, Lan

    2012-09-12

    Neuronal migration is a fundamental process during the development of the cerebral cortex and is regulated by cytoskeletal components. Microtubule dynamics can be modulated by posttranslational modifications to tubulin subunits. Acetylation of α-tubulin at lysine 40 is important in regulating microtubule properties, and this process is controlled by acetyltransferase and deacetylase. MEC-17 is a newly discovered α-tubulin acetyltransferase that has been found to play a major role in the acetylation of α-tubulin in different species in vivo. However, the physiological function of MEC-17 during neural development is largely unknown. Here, we report that MEC-17 is critical for the migration of cortical neurons in the rat. MEC-17 was strongly expressed in the cerebral cortex during development. MEC-17 deficiency caused migratory defects in the cortical projection neurons and interneurons, and perturbed the transition of projection neurons from the multipolar stage to the unipolar/bipolar stage in the intermediate zone of the cortex. Furthermore, knockdown of α-tubulin deacetylase HDAC6 or overexpression of tubulin(K40Q) to mimic acetylated α-tubulin could reduce the migratory and morphological defects caused by MEC-17 deficiency in cortical projection neurons. Thus, MEC-17, which regulates the acetylation of α-tubulin, appears to control the migration and morphological transition of cortical neurons. This finding reveals the importance of MEC-17 and α-tubulin acetylation in cortical development.

  1. Integrated mechanisms of anticipation and rate-of-change computations in cortical circuits.

    Science.gov (United States)

    Puccini, Gabriel D; Sanchez-Vives, Maria V; Compte, Albert

    2007-05-01

    Local neocortical circuits are characterized by stereotypical physiological and structural features that subserve generic computational operations. These basic computations of the cortical microcircuit emerge through the interplay of neuronal connectivity, cellular intrinsic properties, and synaptic plasticity dynamics. How these interacting mechanisms generate specific computational operations in the cortical circuit remains largely unknown. Here, we identify the neurophysiological basis of both the rate of change and anticipation computations on synaptic inputs in a cortical circuit. Through biophysically realistic computer simulations and neuronal recordings, we show that the rate-of-change computation is operated robustly in cortical networks through the combination of two ubiquitous brain mechanisms: short-term synaptic depression and spike-frequency adaptation. We then show how this rate-of-change circuit can be embedded in a convergently connected network to anticipate temporally incoming synaptic inputs, in quantitative agreement with experimental findings on anticipatory responses to moving stimuli in the primary visual cortex. Given the robustness of the mechanism and the widespread nature of the physiological machinery involved, we suggest that rate-of-change computation and temporal anticipation are principal, hard-wired functions of neural information processing in the cortical microcircuit.

  2. Integrated mechanisms of anticipation and rate-of-change computations in cortical circuits.

    Directory of Open Access Journals (Sweden)

    Gabriel D Puccini

    2007-05-01

    Full Text Available Local neocortical circuits are characterized by stereotypical physiological and structural features that subserve generic computational operations. These basic computations of the cortical microcircuit emerge through the interplay of neuronal connectivity, cellular intrinsic properties, and synaptic plasticity dynamics. How these interacting mechanisms generate specific computational operations in the cortical circuit remains largely unknown. Here, we identify the neurophysiological basis of both the rate of change and anticipation computations on synaptic inputs in a cortical circuit. Through biophysically realistic computer simulations and neuronal recordings, we show that the rate-of-change computation is operated robustly in cortical networks through the combination of two ubiquitous brain mechanisms: short-term synaptic depression and spike-frequency adaptation. We then show how this rate-of-change circuit can be embedded in a convergently connected network to anticipate temporally incoming synaptic inputs, in quantitative agreement with experimental findings on anticipatory responses to moving stimuli in the primary visual cortex. Given the robustness of the mechanism and the widespread nature of the physiological machinery involved, we suggest that rate-of-change computation and temporal anticipation are principal, hard-wired functions of neural information processing in the cortical microcircuit.

  3. Cortical gene transcription response patterns to water maze training in aged mice

    Directory of Open Access Journals (Sweden)

    Martin Bronwen

    2011-06-01

    Full Text Available Abstract Background The hippocampus mediates the acquisition of spatial memory, but the memory trace is eventually transferred to the cortex. We have investigated transcriptional activation of pathways related to cognitive function in the cortex of the aged mouse by analyzing gene expression following water maze training. Results We identified genes that were differentially responsive in aged mice with accurate spatial performance during probe trials or repeated swimming sessions, relative to home cage conditions. Effective learners exhibited significantly greater activation of several pathways, such as the mitogen-activated protein kinase and insulin receptor signaling pathways, relative to swimmers. The genes encoding activity-related cytoskeletal protein (Arc and brain-derived neurotrophic factor (BDNF were upregulated in proficient learners, relative to swimmers and home cage controls, while the gene encoding Rho GTPase activating protein 32 (GRIT was downregulated. We explored the regulation of Arc, BDNF, and GRIT expression in greater morphological detail using in situ hybridization. Recall during probe trials enhanced Arc expression across multiple cortical regions involved in the cognitive component of water maze learning, while BDNF expression was more homogeneously upregulated across cortical regions involved in the associational and sensorimotor aspects of water maze training. In contrast, levels of GRIT expression were uniformly reduced across all cortical regions examined. Conclusions These results suggest that cortical gene transcription is responsive to learning in aged mice that exhibit behavioral proficiency, and support a distributed hypothesis of memory storage across multiple cortical compartments.

  4. The Impact of Structural Heterogeneity on Excitation-Inhibition Balance in Cortical Networks.

    Science.gov (United States)

    Landau, Itamar D; Egger, Robert; Dercksen, Vincent J; Oberlaender, Marcel; Sompolinsky, Haim

    2016-12-07

    Models of cortical dynamics often assume a homogeneous connectivity structure. However, we show that heterogeneous input connectivity can prevent the dynamic balance between excitation and inhibition, a hallmark of cortical dynamics, and yield unrealistically sparse and temporally regular firing. Anatomically based estimates of the connectivity of layer 4 (L4) rat barrel cortex and numerical simulations of this circuit indicate that the local network possesses substantial heterogeneity in input connectivity, sufficient to disrupt excitation-inhibition balance. We show that homeostatic plasticity in inhibitory synapses can align the functional connectivity to compensate for structural heterogeneity. Alternatively, spike-frequency adaptation can give rise to a novel state in which local firing rates adjust dynamically so that adaptation currents and synaptic inputs are balanced. This theory is supported by simulations of L4 barrel cortex during spontaneous and stimulus-evoked conditions. Our study shows how synaptic and cellular mechanisms yield fluctuation-driven dynamics despite structural heterogeneity in cortical circuits.

  5. CoRPORATE: cortical reconstruction by pruning outliers with Reeb analysis and topology-preserving evolution.

    Science.gov (United States)

    Shi, Yonggang; Lai, Rongjie; Toga, Arthur W

    2011-01-01

    In this paper we propose a novel system for the accurate reconstruction of cortical surfaces from magnetic resonance images. At the core of our system is a novel framework for outlier detection and pruning by integrating intrinsic Reeb analysis of Laplace-Beltrami eigen-functions with topology-preserving evolution for localized filtering of outliers, which avoids unnecessary smoothing and shrinkage of cortical regions with high curvature. In our experiments, we compare our method with FreeSurfer and illustrate that our results can better capture cortical geometry in deep sulcal regions. To demonstrate the robustness of our method, we apply it to over 1300 scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI). We show that cross-sectional group differences and longitudinal changes can be detected successfully with our method.

  6. Foreign gene expression in an organotypic culture of cortical anlage after in vivo electroporation.

    Science.gov (United States)

    Miyasaka, N; Arimatsu, Y; Takiguchihayashi, K

    1999-08-01

    A high level of foreign gene expression in organotypic cultures of the cerebral cortical anlage was achieved by electroporation-mediated gene transfer in vivo. A mammalian expression plasmid for green fluorescent protein (GFP) gene was injected into the lateral ventricle of rat embryos. Immediately after the plasmid DNA injection, the head of the embryo was electroporated between a pair of tweezer-type electrodes. The cortical anlage was isolated and maintained organotypically up to 21 days in vitro (DIV). The GFP-transgene was expressed intensely in neural progenitor cells at 1 DIV. GFP-expressing cells were still detectable and were demonstrated to differentiate into neurons and glia at 21 DIV. This system is expected to be useful for molecular analysis of cerebral cortical development and function.

  7. Cortical Thickness Changes Correlate with Cognition Changes after Cognitive Training: Evidence from a Chinese Community Study.

    Science.gov (United States)

    Jiang, Lijuan; Cao, Xinyi; Li, Ting; Tang, Yingying; Li, Wei; Wang, Jijun; Chan, Raymond C; Li, Chunbo

    2016-01-01

    The aim of this study was to investigate whether changes in cortical thickness correlated with cognitive function changes in healthy older adults after receiving cognitive training interventions. Moreover, it also aimed to examine the differential impacts of a multi-domain and a single-domain cognitive training interventions. Longitudinal magnetic resonance imaging (MRI) scanning was performed on participants 65-75 years of age using the Siemens 3.0 T Trio Tim with the Magnetization Prepared Rapid Gradient Echo (MPRAGE) sequence. The cortical thickness was determined using FreeSurfer Software. Cognitive functioning was evaluated using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). There were significant group × time interaction effects on the left supramarginal, the left frontal pole cortical regions; and a marginal significant group × time interaction effects on visuospatial/constructional and delayed memory scores. In a multi-domain cognitive training group, a number of cortical region changes were significantly positively correlated with changes in attention, delayed memory, and the total score, but significantly negatively correlated with changes in immediate memory and language scores. In the single-domain cognitive training group, some cortical region changes were significantly positively associated with changes in immediate memory, delayed memory, and the total score, while they were significantly negatively associated with changes in visuospatial/constructional, language, and attention scores. Overall, multi-domain cognitive training offered more advantages in visuospatial/constructional, attention, and delayed memory abilities, while single-domain cognitive training benefited immediate memory ability more effectively. These findings suggest that healthy older adults benefit more from the multi-domain cognitive training than single-domain cognitive training. Cognitive training has impacted on cortical thickness changes in

  8. [Cortical plasticity in blind individual].

    Science.gov (United States)

    Wang, Shu-zhen; Zhu, Si-quan

    2008-10-01

    The cognitive mechanisms and functional brain imaging research on blind individuals provide special information for exploring the plasticity of the developing human brain. This paper focuses on five aspects of recent progress in this field: (1) the behavior compensation of the blind; (2) the influence of early visual deprivation and later visual deprivation on cross-modal reorganization; (3) the relationship between the complexity of task requirement and cross-modal reorganization; (4) the relationship between the sensitive periods of the visual system and the time course of cross-modal reorganization; (5) the neural mechanisms of cross-modal reorganization. These findings contribute greatly to the theoretical basis of the rehabilitation of individuals with perceptual deficits.

  9. Modelling Human Cortical Network in Real Brain Space

    Institute of Scientific and Technical Information of China (English)

    ZHAO Qing-Bai; FENG Hong-Bo; TANG Yi-Yuan

    2007-01-01

    Highly specific structural organization is of great significance in the topology of cortical networks.We introduce a human cortical network model.taking the specific cortical structure into account,in which nodes are brain sites placed in the actual positions of cerebral cortex and the establishment of edges depends on the spatial path length rather than the linear distance.The resulting network exhibits the essential features of cortical connectivity,properties of small-world networks and multiple clusters structure.Additionally.assortative mixing is also found in this roodel.All of these findings may be attributed to the spedtic cortical architecture.

  10. Progression to deep sleep is characterized by changes to BOLD dynamics in sensory cortices.

    Science.gov (United States)

    Davis, Ben; Tagliazucchi, Enzo; Jovicich, Jorge; Laufs, Helmut; Hasson, Uri

    2016-04-15

    Sleep has been shown to subtly disrupt the spatial organization of functional connectivity networks in the brain, but in a way that largely preserves the connectivity within sensory cortices. Here we evaluated the hypothesis that sleep does impact sensory cortices, but through alteration of activity dynamics. We therefore examined the impact of sleep on hemodynamics using a method for quantifying non-random, high frequency signatures of the blood-oxygen-level dependent (BOLD) signal (amplitude variance asymmetry; AVA). We found that sleep was associated with the elimination of these dynamics in a manner that is restricted to auditory, motor and visual cortices. This elimination was concurrent with increased variance of activity in these regions. Functional connectivity between regions showing AVA during wakefulness maintained a relatively consistent hierarchical structure during wakefulness and N1 and N2 sleep, despite a gradual reduction of connectivity strength as sleep progressed. Thus, sleep is related to elimination of high frequency non-random activity signatures in sensory cortices that are robust during wakefulness. The elimination of these AVA signatures conjointly with preservation of the structure of functional connectivity patterns may be linked to the need to suppress sensory inputs during sleep while still maintaining the capacity to react quickly to complex multimodal inputs.

  11. State transitions of actin cortices in vitro and in vivo

    Science.gov (United States)

    Tan, Tzer Han; Keren, Kinneret; Mackintosh, Fred; Schmidt, Christoph; Fakhri, Nikta

    Most animal cells are enveloped by a thin layer of actin cortex which governs the cell mechanics. A functional cortex must be rigid to provide mechanical support while being flexible to allow for rapid restructuring events such as cell division. To satisfy these requirements, the actin cortex is highly dynamic with fast actin turnover and myosin-driven contractility. The regulatory mechanism responsible for the transition between a mechanically stable state and a restructuring state is not well understood. Here, we develop a technique to map the dynamics of reconstituted actin cortices in emulsion droplets using IR fluorescent single-walled carbon nanotubes (SWNTs). By increasing crosslinker concentration, we find that a homogeneous cortex transitions to an intermediate state with broken rotational symmetry and a globally contractile state which further breaks translational symmetry. We apply this new dynamic mapping technique to cortices of live starfish oocytes in various developmental stages. To identify the regulatory mechanism for steady state transitions, we subject the oocytes to actin and myosin disrupting drugs.

  12. Sexual orientation related differences in cortical thickness in male individuals.

    Science.gov (United States)

    Abé, Christoph; Johansson, Emilia; Allzén, Elin; Savic, Ivanka

    2014-01-01

    Previous neuroimaging studies demonstrated sex and also sexual orientation related structural and functional differences in the human brain. Genetic information and effects of sex hormones are assumed to contribute to the male/female differentiation of the brain, and similar effects could play a role in processes influencing human's sexual orientation. However, questions about the origin and development of a person's sexual orientation remain unanswered, and research on sexual orientation related neurobiological characteristics is still very limited. To contribute to a better understanding of the neurobiology of sexual orientation, we used magnetic resonance imaging (MRI) in order to compare regional cortical thickness (Cth) and subcortical volumes of homosexual men (hoM), heterosexual men (heM) and heterosexual women (heW). hoM (and heW) had thinner cortices primarily in visual areas and smaller thalamus volumes than heM, in which hoM and heW did not differ. Our results support previous studies, which suggest cerebral differences between hoM and heM in regions, where sex differences have been reported, which are frequently proposed to underlie biological mechanisms. Thus, our results contribute to a better understanding of the neurobiology of sexual orientation.

  13. Brain segmentation and the generation of cortical surfaces

    Science.gov (United States)

    Joshi, M.; Cui, J.; Doolittle, K.; Joshi, S.; Van Essen, D.; Wang, L.; Miller, M. I.

    1999-01-01

    This paper describes methods for white matter segmentation in brain images and the generation of cortical surfaces from the segmentations. We have developed a system that allows a user to start with a brain volume, obtained by modalities such as MRI or cryosection, and constructs a complete digital representation of the cortical surface. The methodology consists of three basic components: local parametric modeling and Bayesian segmentation; surface generation and local quadratic coordinate fitting; and surface editing. Segmentations are computed by parametrically fitting known density functions to the histogram of the image using the expectation maximization algorithm [DLR77]. The parametric fits are obtained locally rather than globally over the whole volume to overcome local variations in gray levels. To represent the boundary of the gray and white matter we use triangulated meshes generated using isosurface generation algorithms [GH95]. A complete system of local parametric quadratic charts [JWM+95] is superimposed on the triangulated graph to facilitate smoothing and geodesic curve tracking. Algorithms for surface editing include extraction of the largest closed surface. Results for several macaque brains are presented comparing automated and hand surface generation. Copyright 1999 Academic Press.

  14. Response of Quiescent Cerebral Cortical Astrocytes to Nanofibrillar Scaffold Properties

    Science.gov (United States)

    Ayres, Virginia; Mujdat Tiryaki, Volkan; Xie, Kan; Ahmed, Ijaz; Shreiber, David I.

    2013-03-01

    We present results of an investigation to examine the hypothesis that the extracellular environment can trigger specific signaling cascades with morphological consequences. Differences in the morphological responses of quiescent cerebral cortical astrocytes cultured on the nanofibrillar matrices versus poly-L-lysine functionalized glass and Aclar, and unfunctionalized Aclar surfaces were demonstrated using atomic force microscopy (AFM) and phalloidin staining of F-actin. The differences and similarities of the morphological responses were consistent with differences and similarities of the surface polarity and surface roughness of the four surfaces investigated in this work, characterized using contact angle and AFM measurements. The three-dimensional capability of AFM was also used to identify differences in cell spreading. An initial quantitative immunolabeling study further identified significant differences in the activation of the Rho GTPases: Cdc42, Rac1, and RhoA, which are upstream regulators of the observed morphological responses: filopodia, lamellipodia, and stress fiber formation. The results support the hypothesis that the extracellular environment can trigger preferential activation of members of the Rho GTPase family with demonstrable morphological consequences for cerebral cortical astrocytes. The support of NSF PHY-095776 is acknowledged.

  15. Scaling of motor cortical excitability during unimanual force generation.

    Science.gov (United States)

    Perez, Monica A; Cohen, Leonardo G

    2009-10-01

    During performance of a unimanual force generation task primary motor cortices (M1s) experience clear functional changes. Here, we evaluated the way in which M1s interact during parametric increases in right wrist flexion force in healthy volunteers. We measured the amplitude and the slope of motor evoked potentials (MEP) recruitment curves to transcranial magnetic stimulation (TMS) in the left and right flexor carpi radialis (FCR) muscles at rest and during 10%, 30% and 70% of maximal wrist flexion force. At rest, no differences were observed in the amplitude and slope of MEP recruitment curves in the left and right FCR muscles. With increasing right wrist flexion force, MEP amplitudes increased in both FCR muscles, with larger amplitudes in the right FCR. We found a significant correlation between the left and right MEP amplitudes across conditions. The slope of right and left FCR MEP recruitment curve was significantly steeper at 70% of force compared to rest and 10% of force. A significant correlation between the slope of left and right FCR MEP amplitudes was found at 70% of force only. Our results indicate a differential scaling of excitability in the corticospinal system controlling right and left FCR muscles at increasing levels of unimanual force generation. Specifically, these data highlights that at strong levels of unimanual force the increases in motor cortical excitability with increasing TMS stimulus intensities follow a similar pattern in both M1s, while at low levels of force they do not.

  16. Stochastic Amplification of Fluctuations in Cortical Up-States

    Science.gov (United States)

    Hidalgo, Jorge; Seoane, Luís F.; Cortés, Jesús M.; Muñoz, Miguel A.

    2012-01-01

    Cortical neurons are bistable; as a consequence their local field potentials can fluctuate between quiescent and active states, generating slow Hz oscillations which are widely known as transitions between Up and Down States. Despite a large number of studies on Up-Down transitions, deciphering its nature, mechanisms and function are still today challenging tasks. In this paper we focus on recent experimental evidence, showing that a class of spontaneous oscillations can emerge within the Up states. In particular, a non-trivial peak around Hz appears in their associated power-spectra, what produces an enhancement of the activity power for higher frequencies (in the Hz band). Moreover, this rhythm within Ups seems to be an emergent or collective phenomenon given that individual neurons do not lock to it as they remain mostly unsynchronized. Remarkably, similar oscillations (and the concomitant peak in the spectrum) do not appear in the Down states. Here we shed light on these findings by using different computational models for the dynamics of cortical networks in presence of different levels of physiological complexity. Our conclusion, supported by both theory and simulations, is that the collective phenomenon of “stochastic amplification of fluctuations” – previously described in other contexts such as Ecology and Epidemiology – explains in an elegant and parsimonious manner, beyond model-dependent details, this extra-rhythm emerging only in the Up states but not in the Downs. PMID:22879879

  17. Effects of Morphology Constraint on Electrophysiological Properties of Cortical Neurons

    Science.gov (United States)

    Zhu, Geng; Du, Liping; Jin, Lei; Offenhäusser, Andreas

    2016-04-01

    There is growing interest in engineering nerve cells in vitro to control architecture and connectivity of cultured neuronal networks or to build neuronal networks with predictable computational function. Pattern technologies, such as micro-contact printing, have been developed to design ordered neuronal networks. However, electrophysiological characteristics of the single patterned neuron haven’t been reported. Here, micro-contact printing, using polyolefine polymer (POP) stamps with high resolution, was employed to grow cortical neurons in a designed structure. The results demonstrated that the morphology of patterned neurons was well constrained, and the number of dendrites was decreased to be about 2. Our electrophysiological results showed that alterations of dendritic morphology affected firing patterns of neurons and neural excitability. When stimulated by current, though both patterned and un-patterned neurons presented regular spiking, the dynamics and strength of the response were different. The un-patterned neurons exhibited a monotonically increasing firing frequency in response to injected current, while the patterned neurons first exhibited frequency increase and then a slow decrease. Our findings indicate that the decrease in dendritic complexity of cortical neurons will influence their electrophysiological characteristics and alter their information processing activity, which could be considered when designing neuronal circuitries.

  18. Stochastic amplification of fluctuations in cortical up-states.

    Directory of Open Access Journals (Sweden)

    Jorge Hidalgo

    Full Text Available Cortical neurons are bistable; as a consequence their local field potentials can fluctuate between quiescent and active states, generating slow 0.5 2 Hz oscillations which are widely known as transitions between Up and Down States. Despite a large number of studies on Up-Down transitions, deciphering its nature, mechanisms and function are still today challenging tasks. In this paper we focus on recent experimental evidence, showing that a class of spontaneous oscillations can emerge within the Up states. In particular, a non-trivial peak around 20 Hz appears in their associated power-spectra, what produces an enhancement of the activity power for higher frequencies (in the 30-90 Hz band. Moreover, this rhythm within Ups seems to be an emergent or collective phenomenon given that individual neurons do not lock to it as they remain mostly unsynchronized. Remarkably, similar oscillations (and the concomitant peak in the spectrum do not appear in the Down states. Here we shed light on these findings by using different computational models for the dynamics of cortical networks in presence of different levels of physiological complexity. Our conclusion, supported by both theory and simulations, is that the collective phenomenon of "stochastic amplification of fluctuations"--previously described in other contexts such as Ecology and Epidemiology--explains in an elegant and parsimonious manner, beyond model-dependent details, this extra-rhythm emerging only in the Up states but not in the Downs.

  19. Cortical Motor Circuits after Piano Training in Adulthood: Neurophysiologic Evidence.

    Science.gov (United States)

    Houdayer, Elise; Cursi, Marco; Nuara, Arturo; Zanini, Sonia; Gatti, Roberto; Comi, Giancarlo; Leocani, Letizia

    2016-01-01

    The neuronal mechanisms involved in brain plasticity after skilled motor learning are not completely understood. We aimed to study the short-term effects of keyboard training in music-naive subjects on the motor/premotor cortex activity and interhemispheric interactions, using electroencephalography and transcranial magnetic stimulation (TMS). Twelve subjects (experimental group) underwent, before and after a two week-piano training: (1) hand-motor function tests: Jamar, grip and nine-hole peg tests; (2) electroencephalography, evaluating the mu rhythm task-related desynchronization (TRD) during keyboard performance; and (3) TMS, targeting bilateral abductor pollicis brevis (APB) and abductor digiti minimi (ADM), to obtain duration and area of ipsilateral silent period (ISP) during simultaneous tonic contraction of APB and ADM. Data were compared with 13 controls who underwent twice these measurements, in a two-week interval, without undergoing piano training. Every subject in the experimental group improved keyboard performance and left-hand nine-hole peg test scores. Pre-training, ISP durations were asymmetrical, left being longer than right. Post-training, right ISPAPB increased, leading to symmetrical ISPAPB. Mu TRD during motor performance became more focal and had a lesser amplitude than in pre-training, due to decreased activity over ventral premotor cortices. No such changes were evidenced in controls. We demonstrated that a 10-day piano-training was associated with balanced interhemispheric interactions both at rest and during motor activation. Piano training, in a short timeframe, may reshape local and inter-hemispheric motor cortical circuits.

  20. The coupling of vision with locomotion in cortical blindness.

    Science.gov (United States)

    Pelah, Adar; Barbur, John; Thurrell, Adrian; Hock, Howard S

    2015-05-01

    Maintaining or modifying the speed and direction of locomotion requires the coupling of the locomotion with the retinal optic flow that it generates. It is shown that this essential behavioral capability, which requires on-line neural control, is preserved in the cortically blind hemifield of a hemianope. In experiments, optic flow stimuli were presented to either the normal or blind hemifield while the patient was walking on a treadmill. Little difference was found between the hemifields with respect to the coupling (i.e. co-dependency) of optic flow detection with locomotion. Even in the cortically blind hemifield, faster walking resulted in the perceptual slowing of detected optic flow, and self-selected locomotion speeds demonstrated behavioral discrimination between different optic flow speeds. The results indicate that the processing of optic flow, and thereby on-line visuo-locomotor coupling, can take place along neural pathways that function without processing in Area V1, and thus in the absence of conscious intervention. These and earlier findings suggest that optic flow and object motion are processed in parallel along with correlated non-visual locomotion signals. Extrastriate interactions may be responsible for discounting the optical effects of locomotion on the perceived direction of object motion, and maintaining visually guided self-motion.

  1. Beyond blindsight: properties of visual relearning in cortically blind fields.

    Science.gov (United States)

    Das, Anasuya; Tadin, Duje; Huxlin, Krystel R

    2014-08-27

    Damage to the primary visual cortex (V1) or its immediate afferents results in a dense scotoma, termed cortical blindness (CB). CB subjects have residual visual abilities, or blindsight, which allow them to detect and sometimes discriminate stimuli with high temporal and low spatial frequency content. Recent work showed that with training, discriminations in the blind field can become more reliable, and even reach consciousness. However, the narrow spatiotemporal bandwidth of blindsight limits its functional usefulness in everyday vision. Here, we asked whether visual training can induce recovery outside the spatiotemporal bandwidth of blindsight. Specifically, could human CB subjects learn to discriminate static, nonflickering stimuli? Can such learning transfer to untrained stimuli and tasks, and does double training with moving and static stimuli provide additional advantages relative to static training alone? We found CB subjects capable of relearning static orientation discriminations following single as well as double training. However, double training with complex, moving stimuli in a separate location was necessary to recover complex motion thresholds at locations trained with static stimuli. Subjects trained on static stimuli alone could only discriminate simple motion. Finally, both groups had approximately equivalent, incomplete recovery of fine orientation and direction discrimination thresholds, as well as contrast sensitivity. These results support two conclusions: (1) from a practical perspective, complex moving stimuli and double training may be superior training tools for inducing visual recovery in CB, and (2) the cortically blind visual system can relearn to perform a wider range of visual discriminations than predicted by blindsight alone.

  2. Sexual orientation related differences in cortical thickness in male individuals.

    Directory of Open Access Journals (Sweden)

    Christoph Abé

    Full Text Available Previous neuroimaging studies demonstrated sex and also sexual orientation related structural and functional differences in the human brain. Genetic information and effects of sex hormones are assumed to contribute to the male/female differentiation of the brain, and similar effects could play a role in processes influencing human's sexual orientation. However, questions about the origin and development of a person's sexual orientation remain unanswered, and research on sexual orientation related neurobiological characteristics is still very limited. To contribute to a better understanding of the neurobiology of sexual orientation, we used magnetic resonance imaging (MRI in order to compare regional cortical thickness (Cth and subcortical volumes of homosexual men (hoM, heterosexual men (heM and heterosexual women (heW. hoM (and heW had thinner cortices primarily in visual areas and smaller thalamus volumes than heM, in which hoM and heW did not differ. Our results support previous studies, which suggest cerebral differences between hoM and heM in regions, where sex differences have been reported, which are frequently proposed to underlie biological mechanisms. Thus, our results contribute to a better understanding of the neurobiology of sexual orientation.

  3. Optogenetic stimulation of a meso-scale human cortical model

    Science.gov (United States)

    Selvaraj, Prashanth; Szeri, Andrew; Sleigh, Jamie; Kirsch, Heidi

    2015-03-01

    Neurological phenomena like sleep and seizures depend not only on the activity of individual neurons, but on the dynamics of neuron populations as well. Meso-scale models of cortical activity provide a means to study neural dynamics at the level of neuron populations. Additionally, they offer a safe and economical way to test the effects and efficacy of stimulation techniques on the dynamics of the cortex. Here, we use a physiologically relevant meso-scale model of the cortex to study the hypersynchronous activity of neuron populations during epileptic seizures. The model consists of a set of stochastic, highly non-linear partial differential equations. Next, we use optogenetic stimulation to control seizures in a hyperexcited cortex, and to induce seizures in a normally functioning cortex. The high spatial and temporal resolution this method offers makes a strong case for the use of optogenetics in treating meso scale cortical disorders such as epileptic seizures. We use bifurcation analysis to investigate the effect of optogenetic stimulation in the meso scale model, and its efficacy in suppressing the non-linear dynamics of seizures.

  4. Eclamptogenic Gerstmann's syndrome in combination with cortical agnosia and cortical diplopia.

    Science.gov (United States)

    Käsmann, B; Ruprecht, K W

    1995-07-01

    Cortical blindness is defined as a loss of vision due to bilateral retrogeniculate lesions (geniculocalcarine blindness). Gerstmann's syndrome is a combination of disorientation for left and right, finger agnosia, and profound agraphia, alexia, and acalculia. It is due to a lesion in the left angular gyrus, situated at the confluence of the temporal, parietal, and occipital lobes. We report on a patient who suffered from severe underdiagnosed eclampsia and who developed bilateral extensive medial temporal, parietal, and calcarine ischemic infarctions during an eclamptic fit. In addition, ischemia destroyed the left angular gyrus. The combination of these lesions led to Gerstmann's syndrome with additional cortical agnosia and cortical diplopia. For the first few months following the ischemic insult, the patient had been cortically blind. Thereafter, the patient slowly regained a visual acuity of 0.1 in both eyes. She then experienced monocular and binocular diplopia. Her ocular motility was normal; there was no phoria or tropia. Monocular and binocular diplopia slowly became less severe over the following year. Now, 2 years after the incident, the patient has a visual acuity of 0.2 in both eyes and no double vision. However, the handicapping symptoms of Gerstmann's syndrome, which make leading a normal life impossible, have persisted--the patient still cannot cope alone, mainly due to the severe disorientation for left and right. The picture of cortical agnosia, cortical diplopia, and Gerstmann's syndrome is a very rare combination. Visual recovery and rehabilitation in cortical blindness are severely affected and made difficult by the symptoms of Gerstmann's syndrome. In our case the reason for such a dramatic clinical picture was eclampsia, whose prodomes had not been diagnosed in time.

  5. Cortical neurodynamics of inhibitory control.

    Science.gov (United States)

    Hwang, Kai; Ghuman, Avniel S; Manoach, Dara S; Jones, Stephanie R; Luna, Beatriz

    2014-07-16

    The ability to inhibit prepotent responses is critical for successful goal-directed behaviors. To investigate the neural basis of inhibitory control, we conducted a magnetoencephalography study where human participants performed the antisaccade task. Results indicated that neural oscillations in the prefrontal cortex (PFC) showed significant task modulations in preparation to suppress saccades. Before successfully inhibiting a saccade, beta-band power (18-38 Hz) in the lateral PFC and alpha-band power (10-18 Hz) in the frontal eye field (FEF) increased. Trial-by-trial prestimulus FEF alpha-band power predicted successful saccadic inhibition. Further, inhibitory control enhanced cross-frequency amplitude coupling between PFC beta-band (18-38 Hz) activity and FEF alpha-band activity, and the coupling appeared to be initiated by the PFC. Our results suggest a generalized mechanism for top-down inhibitory control: prefrontal beta-band activity initiates alpha-band activity for functional inhibition of the effector and/or sensory system.

  6. Cortical control for prosthetic devices

    Science.gov (United States)

    Schwartz, Andrew B.; Kipke, D. W.; Perepelkin, P. D.

    1996-05-01

    The work presented in this session is part of a project to develop an arm-control system based on neuronal activity recorded from the cerebral cortex. This will make it possible for amputees or paralyzed individuals to move a prosthetic arm or, using functional neural stimulation, their own limbs as effortlessly and with as much skill as intact individuals. We are developing and testing this system in monkeys and hope to have a prototype working in the next couple of years. This project has been made more feasible because we have been able, in the last 15 years to extract, from the brain, a signal that represents arm trajectory accurately. In this paper, we describe how this technique was developed and how we use this as the basis for our control signal. An alternative approach using a self-organizing feature map, an algorithm to deduce arm configuration given an endpoint trajectory and the development of a telemetry system to transmit the neuronal data is described in subsequent papers.

  7. Control and amplification of cortical neurodynamics

    Science.gov (United States)

    Liljenstroem, Hans; Aronsson, P.

    1999-03-01

    We investigate different mechanisms for the control and amplification of cortical neurodynamics, using a neural network model of a three layered cortical structure. We show that different dynamical states can be obtained by changing a control parameter of the input-output relation, or by changing the noise level. Point attractor, limit cycle, and strange attractor dynamics occur at different values of the control parameter. For certain, optimal noise levels, system performance is maximized, analogous to stochastic resonance phenomena. Noise can also be used to induce different dynamical states. A few noisy network units distributed in a network layer can result in global synchronous oscillations, or waves of activity moving across the network. We further demonstrate that fast synchronization of network activity can be obtained by implementing electromagnetic interactions between network units.

  8. Reduced cortical thickness in gambling disorder

    DEFF Research Database (Denmark)

    Grant, Jon E; Odlaug, Brian Lawrence; Chamberlain, Samuel R

    2015-01-01

    Gambling disorder has recently been recognized as a prototype 'behavioral addiction' by virtue of its inclusion in the DSM-5 category of 'Substance-Related and Addictive Disorders.' Despite its newly acquired status and prevalence rate of 1-3 % globally, relatively little is known regarding...... the neurobiology of this disorder. The aim of this study was to explore cortical morphometry in untreated gambling disorder, for the first time. Subjects with gambling disorder (N = 16) free from current psychotropic medication or psychiatric comorbidities, and healthy controls (N = 17), were entered...... into the study and undertook magnetic resonance imaging (3T MRI). Cortical thickness was quantified using automated segmentation techniques (FreeSurfer), and group differences were identified using permutation cluster analysis, with stringent correction for multiple comparisons. Gambling disorder was associated...

  9. Permanent Cortical Blindness After Bronchial Artery Embolization

    Energy Technology Data Exchange (ETDEWEB)

    Doorn, Colette S. van, E-mail: cvandoorn@gmail.com; De Boo, Diederick W., E-mail: d.w.deboo@amc.uva.nl [Academic Medical Centre, Department of Radiology (Netherlands); Weersink, Els J. M., E-mail: e.j.m.weersink@amc.uva.nl [Academic Medical Centre, Department of Pulmonology (Netherlands); Delden, Otto M. van, E-mail: o.m.vandelden@amc.uva.nl; Reekers, Jim A., E-mail: j.a.reekers@amc.uva.nl; Lienden, Krijn P. van, E-mail: k.p.vanlienden@amc.uva.nl [Academic Medical Centre, Department of Radiology (Netherlands)

    2013-12-15

    A 35-year-old female with a known medical history of cystic fibrosis was admitted to our institution for massive hemoptysis. CTA depicted a hypertrophied bronchial artery to the right upper lobe and showed signs of recent bleeding at that location. Bronchial artery embolization (BAE) was performed with gelfoam slurry, because pronounced shunting to the pulmonary artery was present. Immediately after BAE, the patient developed bilateral cortical blindness. Control angiography showed an initially not opacified anastomosis between the embolized bronchial artery and the right subclavian artery, near to the origin of the right vertebral artery. Cessation of outflow in the bronchial circulation reversed the flow through the anastomosis and allowed for spill of embolization material into the posterior circulation. Unfortunately the cortical blindness presented was permanent.

  10. Extensive cortical involvement in leptomeningeal carcinomatosis.

    Science.gov (United States)

    Ayzenberg, I; Börnke, C; Tönnes, C; Ziebarth, W; Lavrov, A; Lukas, C

    2012-12-01

    We present a 77-year-old previously well patient with facial asymmetry and progressive weakness of the lower extremities. An initial MRI revealed slight contrast enhancement of the meninges. Three consecutive cerebrospinal fluid examinations demonstrated low glucose concentration, marked elevation of total protein and moderate pleocytosis. No tumor cells, fungi, acid-fast bacilli or mycobacterial DNA were found. The patient's level of consciousness deteriorated dramatically, and follow-up MRI showed widespread extensive cortical hyperintensities. The lesions showed restricted diffusion on diffusion-weighted images as well as low values on the corresponding apparent diffusion coefficient maps, the changes consistent with diffuse cytotoxic edema. Neuropathological examination findings were of leptomeningeal carcinomatosis (LMC) with diffuse continuous infiltration of the cerebral cortex, cerebellum and spinal cord. The autopsy revealed a subcentimetre adenocarcinoma of the lung. To our knowledge, this is the first report demonstrating extensive cortical involvement in adenocarcinomatous LMC.

  11. Localization of cortical areas activated by thinking

    DEFF Research Database (Denmark)

    Roland, P E; Friberg, L

    1985-01-01

    These experiments were undertaken to demonstrate that pure mental activity, thinking, increases the cerebral blood flow and that different types of thinking increase the regional cerebral blood flow (rCBF) in different cortical areas. As a first approach, thinking was defined as brain work...... that they started at their front door and then walked alternatively to the left or the right each time they reached a corner. The rCBF increased only in homotypical cortical areas during thinking. The areas in the superior prefrontal cortex increased their rCBF equivalently during the three types of thinking...... midtemporal cortex exclusively during jingle thinking. The intermediate and remote visual association areas, the superior occipital, posterior inferior temporal, and posterior superior parietal cortex, increased their rCBF exclusively during route-finding thinking. We observed no decreases in rCBF. All r...

  12. Massive cortical reorganization in sighted Braille readers.

    Science.gov (United States)

    Siuda-Krzywicka, Katarzyna; Bola, Łukasz; Paplińska, Małgorzata; Sumera, Ewa; Jednoróg, Katarzyna; Marchewka, Artur; Śliwińska, Magdalena W; Amedi, Amir; Szwed, Marcin

    2016-03-15

    The brain is capable of large-scale reorganization in blindness or after massive injury. Such reorganization crosses the division into separate sensory cortices (visual, somatosensory...). As its result, the visual cortex of the blind becomes active during tactile Braille reading. Although the possibility of such reorganization in the normal, adult brain has been raised, definitive evidence has been lacking. Here, we demonstrate such extensive reorganization in normal, sighted adults who learned Braille while their brain activity was investigated with fMRI and transcranial magnetic stimulation (TMS). Subjects showed enhanced activity for tactile reading in the visual cortex, including the visual word form area (VWFA) that was modulated by their Braille reading speed and strengthened resting-state connectivity between visual and somatosensory cortices. Moreover, TMS disruption of VWFA activity decreased their tactile reading accuracy. Our results indicate that large-scale reorganization is a viable mechanism recruited when learning complex skills.

  13. Relearning to See in Cortical Blindness.

    Science.gov (United States)

    Melnick, Michael D; Tadin, Duje; Huxlin, Krystel R

    2016-04-01

    The incidence of cortically induced blindness is increasing as our population ages. The major cause of cortically induced blindness is stroke affecting the primary visual cortex. While the impact of this form of vision loss is devastating to quality of life, the development of principled, effective rehabilitation strategies for this condition lags far behind those used to treat motor stroke victims. Here we summarize recent developments in the still emerging field of visual restitution therapy, and compare the relative effectiveness of different approaches. We also draw insights into the properties of recovered vision, its limitations and likely neural substrates. We hope that these insights will guide future research and bring us closer to the goal of providing much-needed rehabilitation solutions for this patient population.

  14. Permanent cortical blindness after bronchial artery embolization.

    Science.gov (United States)

    van Doorn, Colette S; De Boo, Diederick W; Weersink, Els J M; van Delden, Otto M; Reekers, Jim A; van Lienden, Krijn P

    2013-12-01

    A 35-year-old female with a known medical history of cystic fibrosis was admitted to our institution for massive hemoptysis. CTA depicted a hypertrophied bronchial artery to the right upper lobe and showed signs of recent bleeding at that location. Bronchial artery embolization (BAE) was performed with gelfoam slurry, because pronounced shunting to the pulmonary artery was present. Immediately after BAE, the patient developed bilateral cortical blindness. Control angiography showed an initially not opacified anastomosis between the embolized bronchial artery and the right subclavian artery, near to the origin of the right vertebral artery. Cessation of outflow in the bronchial circulation reversed the flow through the anastomosis and allowed for spill of embolization material into the posterior circulation. Unfortunately the cortical blindness presented was permanent.

  15. Disrupted cortical connectivity theory as an explanatory model for autism spectrum disorders

    Science.gov (United States)

    Kana, Rajesh K.; Libero, Lauren E.; Moore, Marie S.

    2011-12-01

    Recent findings of neurological functioning in autism spectrum disorder (ASD) point to altered brain connectivity as a key feature of its pathophysiology. The cortical underconnectivity theory of ASD (Just et al., 2004) provides an integrated framework for addressing these new findings. This theory suggests that weaker functional connections among brain areas in those with ASD hamper their ability to accomplish complex cognitive and social tasks successfully. We will discuss this theory, but will modify the term underconnectivity to ‘disrupted cortical connectivity’ to capture patterns of both under- and over-connectivity in the brain. In this paper, we will review the existing literature on ASD to marshal supporting evidence for hypotheses formulated on the disrupted cortical connectivity theory. These hypotheses are: 1) underconnectivity in ASD is manifested mainly in long-distance cortical as well as subcortical connections rather than in short-distance cortical connections; 2) underconnectivity in ASD is manifested only in complex cognitive and social functions and not in low-level sensory and perceptual tasks; 3) functional underconnectivity in ASD may be the result of underlying anatomical abnormalities, such as problems in the integrity of white matter; 4) the ASD brain adapts to underconnectivity through compensatory strategies such as overconnectivity mainly in frontal and in posterior brain areas. This may be manifested as deficits in tasks that require frontal-parietal integration. While overconnectivity can be tested by examining the cortical minicolumn organization, long-distance underconnectivity can be tested by cognitively demanding tasks; and 5) functional underconnectivity in brain areas in ASD will be seen not only during complex tasks but also during task-free resting states. We will also discuss some empirical predictions that can be tested in future studies, such as: 1) how disrupted connectivity relates to cognitive impairments in skills

  16. Disrupted cortical connectivity theory as an explanatory model for autism spectrum disorders.

    Science.gov (United States)

    Kana, Rajesh K; Libero, Lauren E; Moore, Marie S

    2011-12-01

    Recent findings of neurological functioning in autism spectrum disorder (ASD) point to altered brain connectivity as a key feature of its pathophysiology. The cortical underconnectivity theory of ASD (Just et al., 2004) provides an integrated framework for addressing these new findings. This theory suggests that weaker functional connections among brain areas in those with ASD hamper their ability to accomplish complex cognitive and social tasks successfully. We will discuss this theory, but will modify the term underconnectivity to 'disrupted cortical connectivity' to capture patterns of both under- and over-connectivity in the brain. In this paper, we will review the existing literature on ASD to marshal supporting evidence for hypotheses formulated on the disrupted cortical connectivity theory. These hypotheses are: 1) underconnectivity in ASD is manifested mainly in long-distance cortical as well as subcortical connections rather than in short-distance cortical connections; 2) underconnectivity in ASD is manifested only in complex cognitive and social functions and not in low-level sensory and perceptual tasks; 3) functional underconnectivity in ASD may be the result of underlying anatomical abnormalities, such as problems in the integrity of white matter; 4) the ASD brain adapts to underconnectivity through compensatory strategies such as overconnectivity mainly in frontal and in posterior brain areas. This may be manifested as deficits in tasks that require frontal-parietal integration. While overconnectivity can be tested by examining the cortical minicolumn organization, long-distance underconnectivity can be tested by cognitively demanding tasks; and 5) functional underconnectivity in brain areas in ASD will be seen not only during complex tasks but also during task-free resting states. We will also discuss some empirical predictions that can be tested in future studies, such as: 1) how disrupted connectivity relates to cognitive impairments in skills such

  17. Motor cortical plasticity in Parkinson's disease.

    Science.gov (United States)

    Udupa, Kaviraja; Chen, Robert

    2013-09-04

    In Parkinson's disease (PD), there are alterations of the basal ganglia (BG) thalamocortical networks, primarily due to degeneration of nigrostriatal dopaminergic neurons. These changes in subcortical networks lead to plastic changes in primary motor cortex (M1), which mediates cortical motor output and is a potential target for treatment of PD. Studies investigating the motor cortical plasticity using non-invasive transcranial magnetic stimulation (TMS) have found altered plasticity in PD, but there are inconsistencies among these studies. This is likely because plasticity depends on many factors such as the extent of dopaminergic loss and disease severity, response to dopaminergic replacement therapies, development of l-DOPA-induced dyskinesias (LID), the plasticity protocol used, medication, and stimulation status in patients treated with deep brain stimulation (DBS). The influences of LID and DBS on BG and M1 plasticity have been explored in animal models and in PD patients. In addition, many other factors such age, genetic factors (e.g., brain derived neurotropic factor and other neurotransmitters or receptors polymorphism), emotional state, time of the day, physical fitness have been documented to play role in the extent of plasticity induced by TMS in human studies. In this review, we summarize the studies that investigated M1 plasticity in PD and demonstrate how these afore-mentioned factors affect motor cortical plasticity in PD. We conclude that it is important to consider the clinical, demographic, and technical factors that influence various plasticity protocols while developing these protocols as diagnostic or prognostic tools in PD. We also discuss how the modulation of cortical excitability and the plasticity with these non-invasive brain stimulation techniques facilitate the understanding of the pathophysiology of PD and help design potential therapeutic possibilities in this disorder.

  18. Guidance cue for cortical radial migration discovered

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ The regulatory mechanism for neuronal migration in the developing cortex is a major unsolved problem in developmental neurobiology. It is generally accepted that the migration of newborn pyramidal neurons from the ventricular zone toward upper cortical layers is guided by radial glial fibers in the developing cortex, and that the laminar structure of the cortex is formed through regulated attachment and detachment of migrating neurons with radial glial fibers.

  19. Transient cortical blindness after coronary artery angiography.

    Science.gov (United States)

    Terlecki, Michał; Wojciechowska, Wiktoria; Rajzer, Marek; Jurczyszyn, Artur; Bazan-Socha, Stanisława; Bryniarski, Leszek; Czarnecka, Danuta

    2013-01-01

    Coronary angiography is the current gold standard for the diagnosis of ischemic heart disease and therefore the prevalence of percutaneous coronary procedures such as angiography and angioplasty is high. The occurrence of cerebral complications after coronary angiography and coronary angioplasty is low and it mainly includes transient ischemic attack and stroke. The prevalence of transient cortical blindness after X-ray contrast media is low and it is usually seen after cerebral angiography. Until now only a few cases of transient cortical blindness have been described after coronary artery angiography. Regarding the spread of coronary angiography worldwide and in Poland this complication is uniquely rare. A 32-year-old man with multiple extrasystolic ventricular arrhythmia suggesting Brugada syndrome diagnosis according to morphology of the left bundle branch block and with decreased left ventricular ejection fraction was admitted to the First Department of Cardiology and Hypertension, Medical College of the Jagiellonian University in Krakow. Coronary angiography was performed in order to exclude ischemic etiology of the observed abnormalities. No arteriosclerotic lesions were found in coronary arteries. Transient cortical blindness was observed directly after angiography which may have been caused by the neurotoxic effect of the used X-ray contrast medium. In ophthalmologic and neurologic examination as well as in the cerebral computed tomography scan no pathologies were found. Visual impairment disappeared totally within several hours.

  20. Locus coeruleus stimulation recruits a broad cortical neuronal network and increases cortical perfusion.

    Science.gov (United States)

    Toussay, Xavier; Basu, Kaustuv; Lacoste, Baptiste; Hamel, Edith

    2013-02-20

    The locus coeruleus (LC), the main source of brain noradrenalin (NA), modulates cortical activity, cerebral blood flow (CBF), glucose metabolism, and blood-brain barrier permeability. However, the role of the LC-NA system in the regulation of cortical CBF has remained elusive. This rat study shows that similar proportions (∼20%) of cortical pyramidal cells and GABA interneurons are contacted by LC-NA afferents on their cell soma or proximal dendrites. LC stimulation induced ipsilateral activation (c-Fos upregulation) of pyramidal cells and of a larger proportion (>36%) of interneurons that colocalize parvalbumin, somatostatin, or nitric oxide synthase compared with pyramidal cells expressing cyclooxygenase-2 (22%, p interneurons (16%, p BK, -52%, p < 0.05), and inward-rectifier (Kir, -40%