WorldWideScience

Sample records for attapulgite

  1. [Adsorption characteristics and mechanism of uranium on attapulgite].

    Science.gov (United States)

    Liu, Juan; Chen, Di-yun; Zhang, Jing; Song, Gang; Luo, Ding-gui

    2012-08-01

    The adsorption characteristics of uranium on attapulgite were investigated by conducting a series of batch adsorption experiments in this study. The influence of solution pH, initial uranium concentration and contact time was investigated. Scanning electron microscope (SEM) and X-ray diffraction (XRD) were used to characterize the surface structure of the attapulgite, Fourier transform infrared spectrometer (FTIR) were used to characterize the surface properties of the attapulgite before and after uranium adsorption, and to analyze the adsorption mechanism and adsorption kinetics of uranium on attapulgite. The experimental results showed that sorption of uranium on attapulgite was strongly dependent on pH, and the highest adsorption reached at pH = 5. The adsorption quantity increased with time, adsorption could achieve balance in 2 h. The adsorption isotherm equation conformed to the Langmuir isothermal adsorption model and adsorption process could be described by the two-order kinetics model. According to FTIR spectral, the absorbance of attapulgite decreased, which may result from R--OUO2+ or (R--O)2UO2 formed by the bond between uranium and R-OH of attapulgite in the high frequency area 3700-3000 cm(-1), and which uranium ion and magnesium ions may produce ion exchanges in the intermediate frequency area 1700-800 cm(-1). Adsorption mechanism of uranium on attapulgite was mainly ion exchange and complexation.

  2. Removal of fluoride ions from aqueous solution using modified attapulgite as adsorbent.

    Science.gov (United States)

    Zhang, Jing; Xie, Shaodong; Ho, Yuh-Shan

    2009-06-15

    Adsorption of fluoride ions from water using modified attapulgite with magnesium and aluminum salts was conducted by batch experiments. The effects of temperatures and mass ratios of attapulgite, magnesium and aluminum salts were investigated. Linear and non-linear methods were applied for fitting the adsorption data with Langmuir, Freundlich, and Redlich-Peterson isotherms. Modified attapulgite with a mass ratio attapulgite:Mg Cl(2)x6H(2)O:AlCl(3)x2H(2)O=2:1:2 had higher fluoride adsorption capacity. In addition, the fluoride adsorption using the modified attapulgite included an anion exchange process.

  3. 21 CFR 520.1204 - Kanamycin, bismuth subcarbonate, activated attapulgite.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Kanamycin, bismuth subcarbonate, activated... § 520.1204 Kanamycin, bismuth subcarbonate, activated attapulgite. (a) Specifications—(1) Each 5 milliliters (mL) of suspension contains 100 milligrams (mg) kanamycin (as the sulfate), 250 mg bismuth...

  4. Effects of oregano essential oil and attapulgite on growth ...

    African Journals Online (AJOL)

    Two experiments were conducted to study the effects of a blend of oregano essential oil (OEO) (as a source of natural antibacterial growth-promoting substances) and attapulgite (as a source of toxin-binder and as an antidiarrhoeal agent) on growth performance, intestinal microbiota, and intestinal morphometry in broiler ...

  5. Effects of oregano essential oil and attapulgite on growth ...

    African Journals Online (AJOL)

    Martina

    2016-03-21

    Mar 21, 2016 ... Dietary supplementation of OEO and attapulgite increased ileal villus height and lactic acid bacteria significantly ... pelleting temperature of 58 ºC was applied. Natural zeolites ...... substances on morphological and histochemical characteristics of the stomach and jejunum walls in chicken. J. Anim. Physiol.

  6. Mechanical properties of attapulgite clay reinforced polyurethane shape-memory nanocomposites

    NARCIS (Netherlands)

    Xu, Bin; Huang, W.M.; Pei, Y.T.; Chen, Zhenguo; Kraft, A.; Reuben, R.; Hosson, J.Th.M. De; Fu, Y.Q.

    Nanocomposites based on attapulgite clay and shape-memory polyurethane were fabricated by mechanical mixing. The mechanical properties of samples were evaluated using a micro-indentation tester. The untreated commercial attapulgite clay resulted in a significant decrease in glass transition

  7. Increased maize yield using slow-release attapulgite-coated fertilizers

    OpenAIRE

    Guan, Yu; Song, Chao; Gan, Yantai; Li, Feng-Min

    2014-01-01

    International audience; Slow-release fertilizers could improve the productivity of field crops and reduce environmental pollution. So far, no slow-release fertilizers are suited for maize cultivation in semiarid areas of China. Therefore, we tested attapulgite-coated fertilizers. Attapulgite-coated fertilizers were prepared by dividing chemical fertilizers into three parts according to the nutrient demand of maize in its three main growth stages and coating each part with a layer of attapulgi...

  8. Effective NH{sub 2}-grafting on attapulgite surfaces for adsorption of reactive dyes

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Ailian [College of Chemistry and Chemical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, Jiangsu Province (China); School of Chemistry and Chemical Engineering, Huaiyin Normal University, Key Lab for Chemistry of Low-Dimensional Materials of Jiangsu Province, No. 111 Changjiang West Road, Huaian 223300, Jiangsu Province (China); Zhou, Shouyong; Zhao, Yijiang [School of Chemistry and Chemical Engineering, Huaiyin Normal University, Key Lab for Chemistry of Low-Dimensional Materials of Jiangsu Province, No. 111 Changjiang West Road, Huaian 223300, Jiangsu Province (China); Lu, Xiaoping, E-mail: xplu@njut.edu.cn [College of Chemistry and Chemical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, Jiangsu Province (China); Han, Pingfang [College of Chemistry and Chemical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, Jiangsu Province (China)

    2011-10-30

    Highlights: {yields} We prepared a new amine functionalized adsorbent derived from clay-based material. {yields} Attapulgite surface was modified with 3-aminopropyltriethoxysilane. {yields} Some modification parameters affecting the adsorption potential were investigated. {yields} Enhance the attapulgite adsorptive capacity for reactive dyes from aqueous solutions. - Abstract: The amine moiety has an important function in many applications, including, adsorption, catalysis, electrochemistry, chromatography, and nanocomposite materials. We developed an effective adsorbent for aqueous reactive dye removal by modifying attapulgite with an amino-terminated organosilicon (3-aminopropyltriethoxysilane, APTES). Surface properties of the APTES-modified attapulgite were characterized by the Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption. We evaluated the impact of solvent, APTES concentration, water volume, reaction time, and temperature on the surface modification. NH{sub 2}-attapulgite was used to remove reactive dyes in aqueous solution and showed very high adsorption rates of 99.32%, 99.67%, and 96.42% for Reactive Red 3BS, Reactive Blue KE-R and Reactive Black GR, respectively. These powerful dye removal effects were attributed to strong electrostatic interactions between reactive dyes and the grafted NH{sub 2} groups.

  9. Ultra-low thermal conductivities of hot-pressed attapulgite and its potential as thermal insulation material

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuan; Ren, Zhifeng, E-mail: bohr123@163.com, E-mail: zren@uh.edu [Department of Physics and TcSUH, University of Houston, Houston, Texas 77204 (United States); Wang, Xiuzhang [Department of Physics and TcSUH, University of Houston, Houston, Texas 77204 (United States); Hubei Key Laboratory of Pollutant Analysis and Reuse Technology and School of Physics and Electronic Science, Hubei Normal University, Huangshi, Hubei 435002 (China); Wang, Yumei [Department of Physics and TcSUH, University of Houston, Houston, Texas 77204 (United States); Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Tang, Zhongjia; Makarenko, Tatyana; Guloy, Arnold [Department of Chemistry, University of Houston, Houston, Texas 77204 (United States); Zhang, Qinyong, E-mail: bohr123@163.com, E-mail: zren@uh.edu [Center for Advanced Materials and Energy, Xihua University, Chengdu, Sichuan 610039 (China)

    2016-03-07

    In the past, there have been very few reports on thermal properties of attapulgite which is a widely used clay mineral. In this work, we report on extremely low thermal conductivities in attapulgite samples synthesized by hot-pressing. Attapulgite powder was hot-pressed at different temperatures into bulk samples, and a systematic study was conducted on the microstructures and thermal properties. Differential scanning calorimetry analysis shows that hot-pressing induces a rapid dehydration of the attapulgite powders. X-ray diffraction data and scanning/transmission electron microscopy reveal that the hot-pressed attapulgite features high porosity and complex microstructures, including an amorphous phase. As a result, the hot-pressed attapulgite exhibits thermal conductivity less than 2.5 W m{sup −1} K{sup −1} up to 600 °C. For one sample with porosity of 45.7%, the thermal conductivity is as low as 0.34 W m{sup −1} K{sup −1} at 50 °C. This suggests the potential of hot-pressed attapulgite as a candidate for thermal barrier materials.

  10. Effect of pH, ionic strength and humic acid on the sorption of uranium(VI) to attapulgite

    Energy Technology Data Exchange (ETDEWEB)

    Niu Zhiwei [Radiochemistry Laboratory, Lanzhou University, Lanzhou 730000, Gansu (China); Fan Qiaohui [Radiochemistry Laboratory, Lanzhou University, Lanzhou 730000, Gansu (China)], E-mail: fanqiaohui@gmail.com; Wang Wenhua; Xu Junzheng [Radiochemistry Laboratory, Lanzhou University, Lanzhou 730000, Gansu (China); Chen Lei [School of Chemical Engineering, Shandong University of Technology, 255049 Zibo, Shandong (China); Wu Wangsuo [Radiochemistry Laboratory, Lanzhou University, Lanzhou 730000, Gansu (China)], E-mail: wuws@lzu.edu.cn

    2009-09-15

    Attapulgite was investigated to remove UO{sub 2}{sup 2+} from aqueous solutions because of its strong sorption capacity. Herein, the attapulgite sample was characterized by Fourier transform infrared spectra (FTIR), X-ray diffraction (XRD) and acid-base titration in detail. Sorption of UO{sub 2}{sup 2+} on attapulgite was strongly dependent on pH values and ionic strength. The presence of humic acid enhanced the sorption of UO{sub 2}{sup 2+} on attapulgite obviously because of the strong complexation of humic acid (HA) with UO{sub 2}{sup 2+} on attapulgite surface. Sorption of UO{sub 2}{sup 2+} on attapulgite was mainly dominated by ion-exchange or outer-sphere complexation at low pH values, and by inner-sphere complexation at high pH values. The results indicated that attapulgite was a suitable material for the preconcentration and solidification of UO{sub 2}{sup 2+} from large volume of solutions because of its negative surface charge and large surface areas.

  11. Synthesis of attapulgite/N-isopropylacrylamide and its use in drug release

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaomo [Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300 (China); Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin (China); Zhong, Hui, E-mail: huizhong@hytc.edu.cn [Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300 (China); Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin (China); Li, Xiaorong, E-mail: lxr206206@163.com [Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300 (China); Jia, Feifei [Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300 (China); Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin (China); Cheng, Zhipeng; Zhang, Lili; Yin, Jingzhou; An, Litao [Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300 (China); Guo, Liping, E-mail: guolp078@nenu.edu.cn [Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin (China)

    2014-12-01

    Environmentally sensitive hydrogels as one of the most potential drug delivery systems have gained considerable interest in recent years. In the present study, we synthesized a newly temperature-responsive composite hydrogel based on attapulgite (ATP) and poly (N-isopropylacrylamide) (PNIPAM) as the localized drug carriers for drug delivery. The as-prepared ATP/PNIPAM hydrogel has large aperture which significantly improved the quantity of adsorption of drugs, exhibiting the excellent properties of drug release. The scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and X-ray diffraction (XRD) were used to characterize the ATP/PNIPAM. The swelling/deswelling behaviors and the release of ciprofloxacin lactate were studied. When the temperature was below the low critical solution temperature (LCST), the swelling property of hydrogels was excellent and the swelling rate was large. And, the drug release rate increased with the increase of the content of attapulgite in the composite hydrogel when it was put in the buffer solution (pH 7.38) at 37.0 °C. Therefore, the composite hydrogels might be very useful for its application in biomedical fields. - Highlights: • Attapulgite/N-isopropylacrylamide hydrogels were synthesized and characterized. • The swelling property of hydrogels was excellent when temperature was below 34.0 °C. • The composite hydrogels were used for the release of ciprofloxacin lactate. • The drug release rate increased with the increase of the content of attapulgite.

  12. Determination of attapulgite and nifuroxazide in pharmaceutical formulations by sequential digital derivative spectrophotometry.

    Science.gov (United States)

    Toral, M Inés; Paine, Maximiliano; Leyton, Patricio; Richter, Pablo

    2004-01-01

    A new method for the sequential determination of attapulgite and nifuroxazide in pharmaceutical formulations by first- and second-derivative spectrophotometry, respectively, has been developed. In order to obtain the optimal conditions for nifuroxazide stability, studies of solvent, light, and temperature effects were performed. The results show that a previous hydrolysis of 2 h in 1.0 x 10(-1)M NaOH solution is necessary in order to obtain stable compounds for analytical purposes. Subsequently, the first- and second-derivative spectra were evaluated directly in the same samples. The sequential determination of the drugs can be performed using the zero-crossing method; the attapulgite determination was carried out using the first derivative at 278.0 nm and the nifuroxazide determination, using the second derivative at 282.0 nm. The determination ranges were 5.7 x 10(-6)-1.0 x 10(-4) and 3.7 x 10(-8) -1.2 x 10(-4)M for attapulgite and nifuroxazide, respectively. Repeatability (relative standard deviation) values of 1.2 and 3.0% were observed for attapulgite and nifuroxazide, respectively. The ingredients commonly found in commercial pharmaceutical formulations do not interfere. The proposed method was applied to the determination of these drugs in tablets. Further, infrared spectroscopy and cyclic voltammetry studies were carried out in order to obtain knowledge of the decomposition products of nifuroxazide.

  13. Additive role of attapulgite nanoclay on carbonyl iron-based magnetorheological suspension

    CSIR Research Space (South Africa)

    Chae, HS

    2014-09-01

    Full Text Available Attapulgite (ATP), a fibrous nanoclay mineral, was adopted as an additive in this study to improve the sedimentation problem of soft magnetic carbonyl iron (CI)-based magnetorheological (MR) fluids caused by the density mismatch between the CI...

  14. One-pot preparation of superparamagnetic attapulgite/Fe3O4/polydopamine nanocomposites for adsorption of methylene blue

    Science.gov (United States)

    Mu, Bin; Kang, Yuru; Zheng, Maosong; Wang, Aiqin

    2016-05-01

    Superparamagnetic attapulgite/Fe3O4/polydopamine nanocomposites have been facilely prepared by a one-pot process without the nitrogen protection, in which Fe(III) was served as both of the oxidant for dopamine and the precursor of Fe3O4 in the presence of attapulgite. The introduction of attapulgite can effectively induce the uniform encapsulation of polydopamine and Fe3O4 nanoparticles on the surface of attapulgite, preventing from the formation of the free aggregates of Fe3O4 nanoparticles. The as-prepared APT/Fe3O4/PANI nanocomposites can be used as an adsorbent for the removal of methylene blue, and the adsorption ratio toward 100 ppm of methylene blue could reach 95.8%.

  15. Effective removal of hydrogen sulfide using 4A molecular sieve zeolite synthesized from attapulgite

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xinpeng; Wang, Rui, E-mail: ree_wong@hotmail.com

    2017-03-15

    Graphical abstract: 4A molecular sieve zeolite was synthesized from attapulgite and used for H{sub 2}S removal. The H{sub 2}S removal rate is nearly 100%. - Highlights: • 4A zeolite synthesized from attapulgite shows high H{sub 2}S removal performance. • The synthesis conditions of 4A zeolite are optimized on the basis of H{sub 2}S removal. • The H{sub 2}S removal rate is nearly 100%. • The impurities existed in sorbent have a great impact on H{sub 2}S removal performance. - Abstract: In this work, 4A molecular sieve zeolite was synthesized from attapulgite (ATP) in different conditions and was applied initially for H{sub 2}S removal. The sorbent was characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectra and N{sub 2} adsorption/desorption. The effects of the synthesis condition and adsorption temperature were studied by dynamic adsorption experiment. The optimal adsorption temperature is 50 °C. The H{sub 2}S adsorption results have showed that the optimal synthesis conditions are as follows: the ratio of silicon to aluminum and ratio of sodium to silicon are both 1.5, the ratio of water to sodium is 30, crystallization temperature and crystallization time is 90 °C, 4 h, respectively. The breakthrough and saturation sulfur sorption capacities of zeolite synthesized under optimum conditions are up to nearly 10 and 15 mg/g-sorbent, respectively, and the H{sub 2}S removal rate is nearly 100%. The adsorption kinetics nonlinear fitting results show that the adsorption system follows Bingham model. These results indicate that 4A molecular sieve zeolite synthesized from attapulgite can be used for H{sub 2}S removal promisingly.

  16. Self-healing polyurethane/attapulgite nanocomposites based on disulfide bonds and shape memory effect

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yurun; Chen, Dajun, E-mail: cdj@dhu.edu.cn

    2017-07-01

    Nanocomposites with remarkable enhanced mechanical properties have attracted great research efforts recently. In this work, a series of self-healing polyurethane/attapulgite nanocomposites were prepared by solution blending. Introducing self-healing ability and attapulgite (AT) reinforcement simultaneously led to prolonged material lifetime and enhanced mechanical properties. Scanning electron microscope (SEM) observation indicated that AT could achieve a uniform dispersion in polyurethane matrix when AT content was relatively low. The influences on mechanical properties were evaluated by tensile test. Results showed that incorporating an appropriate content of AT would lead to an enhanced tensile properties. The interactions between AT and polyurethane matrix were studied by effective cross-linking density calculation and Fourier transform infrared (FTIR) analysis. Results indicated that rich hydrogen bonds were formed between AT and polyurethane matrix. Displacement data was utilized to evaluate the influence on shape memory effect. With the incorporation of AT, deformation of the sample under external force was restrained. Meanwhile, closure of the scratches still can be accomplished during healing process. Results of healing test suggested that incorporating 1% of AT would also promote self-healing property. - Highlights: • Composites with both self-healing and enhanced mechanical property are prepared. • Healing mechanism relies on disulfide exchange reaction and shape memory effect. • Mechanical enhancement is caused by rich hydrogen bonds introduced by attapulgite.

  17. Attapulgite based LiCl composite adsorbents for cooling and air conditioning applications

    Energy Technology Data Exchange (ETDEWEB)

    Chen Haijun [College of Chemistry and Chemical Engineering, Nanjing University of Technology, No. 5 Xin Mofan Road, Gulou District, Nanjing 210009 (China); Cui Qun [College of Chemistry and Chemical Engineering, Nanjing University of Technology, No. 5 Xin Mofan Road, Gulou District, Nanjing 210009 (China)], E-mail: cuiqun@njut.edu.cn; Tang Ying; Chen Xiujun; Yao Huqing [College of Chemistry and Chemical Engineering, Nanjing University of Technology, No. 5 Xin Mofan Road, Gulou District, Nanjing 210009 (China)

    2008-12-15

    A series of attapulgite-based LiCl composites were prepared with mixing method, incorporating hygroscopic LiCl into porous surface of attapulgite clay. Sorption properties of these composites were performed with high vacuum gravimetric method, desorption performance by TG-DTA analysis, and characterization by X-ray diffraction. The results show that both attapulgite structure and chloride content play prime roles in water adsorption on the AT-LiCl adsorbents, especially during lower water pressure, while at higher pressure, adsorption performances strongly depend on chloride content. At 1500 Pa, water loading on AT-LiCl (30%) can be as high as 0.44 kg/kg, while at 750 Pa, the loading is 0.31 kg/kg, which is higher than commonly used zeolite 13X and silica gel. Based on sorption equilibrium curves, isosteric heat is calculated. This study shows that intension of water sorption on composite adsorbent is intermediate between that on zeolite 13X and silica gel. The composites can be effectively regenerated during 170-190 deg. C. AT-LiCl (30%) seems to be an efficient candidate for cooling or air conditioning applications, specially when utilization of heat sources at temperatures lower than 170 deg. C.

  18. Characterization of nanocomposites PHBV/attapulgite organophilic; Caracterizacao de nanocompositos PHBV/atapulgita organofilica

    Energy Technology Data Exchange (ETDEWEB)

    Silva, L.C.A.; Barreto, L.S., E-mail: lilianealcantara@msn.co [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Programa de Pos-graduacao em Ciencia e Engenharia de Materiais; Thire, R.M.S.M. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEMM/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Metalurgica e de Materiais

    2010-07-01

    Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) - PHBV is a biodegradable polyester which have been studied as an option for the production of disposable goods. This thermoplastic has some disadvantages that limit its use in industrial scale applications: the relative difficulty of processing, high degree of crystallinity and high cost of production relative to conventional polymers. An alternative to improve the properties of PHBV is the incorporation of small amounts of clay to the polymer. The aim of this work was to produce and characterize PHBV nanocomposites reinforced with organophilic attapulgite in different compositions. Natural attapulgite was modified with hexadecylmethylammonium chloride. The nanocomposites were characterized by XRD, SEM and Thermal analysis. It was observed reduction of the degree of crystallinity, melting and glass transition temperatures and the thermal stability of polymer in function on the addition of clay to the matrix of the PHBV. The best results were obtained for PHBV films containing 3% and 5% attapulgite. These films presented a slight increasing in processing window and decreasing in crystalline temperature and in degree of crystallinity as compared to pure PHBV. (author)

  19. Removal of cadmium (II) from aqueous solution: A comparative study of raw attapulgite clay and a reusable waste–struvite/attapulgite obtained from nutrient-rich wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Wang, Xuejiang, E-mail: wangxj@tongji.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Ma, Jinxing, E-mail: jinxing.ma@unsw.edu.au [School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Xia, Peng; Zhao, Jianfu [State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2017-05-05

    Highlights: • Both nutrient recovery and Cd(II) removal were achieved by MAP/APT. • The nutrient recovery process was used as a novel method of modification. • Compared with raw APT, MAP/APT enhanced Cd(II) adsorption capacity. • Cd(II) adsorption mechanisms from aqueous solution were extensively investigated. - Abstract: In this study, raw attapulgite (APT) and a novel adsorbent, struvite/attapulgite (MAP/APT) obtained from nutrient-rich wastewater treated by MgO modified APT, were applied as the absorbent for Cd(II) ion removal from aqueous solution. The two adsorbents were characterized by BET, SEM-EDS, XRD, FT-IR. Raw APT and MAP/APT separately presented the maximum Cd(II) adsorption capacities of 10.38 mg/g and 121.14 mg/g at pH of 5.45. The Cd(II) adsorption on raw APT and MAP/APT could be well fitted by Freundlich isotherm and Langmuir isotherm, respectively. Pseudo-second order equation was able to properly describe the kinetics of Cd(II) adsorption by raw APT and MAP/APT. The calculated thermodynamic parameters indicated that Cd(II) adsorption onto raw APT and MAP/APT were spontaneous and endothermic. An economic evaluation revealed that the treatment costs of the adsorption process by raw APT and MPA/APT were 0.013 $ per 1000 mg Cd and 0.004 $ per 1000 mg Cd, respectively.

  20. Effective removal of hydrogen sulfide using 4A molecular sieve zeolite synthesized from attapulgite.

    Science.gov (United States)

    Liu, Xinpeng; Wang, Rui

    2017-03-15

    In this work, 4A molecular sieve zeolite was synthesized from attapulgite (ATP) in different conditions and was applied initially for H2S removal. The sorbent was characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectra and N2 adsorption/desorption. The effects of the synthesis condition and adsorption temperature were studied by dynamic adsorption experiment. The optimal adsorption temperature is 50°C. The H2S adsorption results have showed that the optimal synthesis conditions are as follows: the ratio of silicon to aluminum and ratio of sodium to silicon are both 1.5, the ratio of water to sodium is 30, crystallization temperature and crystallization time is 90°C, 4h, respectively. The breakthrough and saturation sulfur sorption capacities of zeolite synthesized under optimum conditions are up to nearly 10 and 15mg/g-sorbent, respectively, and the H2S removal rate is nearly 100%. The adsorption kinetics nonlinear fitting results show that the adsorption system follows Bingham model. These results indicate that 4A molecular sieve zeolite synthesized from attapulgite can be used for H2S removal promisingly. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Tribological Properties of Attapulgite/Oil-soluble Nano-Cu Composite Lubricating Additive

    Directory of Open Access Journals (Sweden)

    XU Yi

    2016-10-01

    Full Text Available The tribological properties of attapulgite/oil-soluble nano-Cu composite lubricating additive were investigated by a SRV-Ⅳfriction wear tester. The worn surfaces were characterized by SEM and XPS. The results show that the two single additives can both improve the tribological properties of the base oil for a steel-steel friction pair,whereas the composite lubricating additive possesses more excellent friction-reduction and anti-wear properties than the single additives. The higher the load is, the better tribological properties the composite lubricating additive will show. In the effect of composite additive, a compact and smooth protective tribofilm composed by FeS2,Fe2O3,SiO2,Cu,FeOOH and organic compounds was formed on the worn surface.

  2. Attapulgite Nanofiber-Cellulose Nanocomposite with Core-Shell Structure for Dye Adsorption

    Directory of Open Access Journals (Sweden)

    Xiaoyu Chen

    2016-01-01

    Full Text Available Nanocomposite particle used for adsorption has attracted continuous attention because of large specific surface area and adjustable properties from nanocomponent. Herein nanocomposite particle with cellulose core and attapulgite nanofibers shell was prepared. The size of cellulose core was about 2 mm and the thickness of nanofibers shell is about 300 μm. Adsorption capacity of nanocomposite particle to methylene blue can reach up to 11.07 mg L−1 and the best adsorption effect occurs at pH = 8; pseudo-first-order equation and the Langmuir equation best describe the adsorption kinetic and isotherm, respectively; repeated adsorption-desorption experimental results show that 94.64% of the original adsorption capacity can be retained after being reused three times.

  3. Mineralogical characterization of Brazilians attapulgite to magnetic nano composites uses; Caracterizacao mineralogica de atapulgitas brasileiras para utilizacao em nanocompositos magneticos

    Energy Technology Data Exchange (ETDEWEB)

    Middea, Antonieta; Neumann, Reiner, E-mail: amiddea@cetem.gov.br [Centro de Tecnologia Mineral - CETEM, Rio de Janeiro, RJ (Brazil); Spinelli, Luciana S.; Lucas, Elizabete F. [Universidade Federal do Rio de Janeiro, Instituto de Macromoleculas, Laboratorio de Macromoleculas e Coloides na Industria de Petroleo, Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Magnetic polymeric nano composites represent a potential alternative in the treatment of contaminated water. This work aims to investigate the potential of uses of a Brazilian clay (an attapulgite), abundant in the northeast, in the preparation of polymeric nano composites for application in the removal of organic material present in aquifers, using magnetic field. The techniques used for mineralogical characterization were X-ray diffraction (XRD) and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). The results showed the presence of palyigorskite in all samples as well as other mineral phases (quartz, kaolinite, smectite and anatase). The microscopic analysis permitted to identify the fibrous appearance of palyigorskite. The presence of palyigorskite is a strong indication of the possible use of attapulgite in obtaining magnetic nano composites by the adsorption of iron ion to the surface. (author)

  4. Synthesis of Cu/TiO{sub 2}/organo-attapulgite fiber nanocomposite and its photocatalytic activity for degradation of acetone in air

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Gaoke, E-mail: gkzhang@whut.edu.cn; Wang, He; Guo, Sheng; Wang, Junting; Liu, Jin

    2016-01-30

    Graphical abstract: - Highlights: • A novel Cu/TiO{sub 2}/organo-attapulgite fiber nanocomposite was synthesized successfully. • Micro-mesopore nanocomposite structure was in favor of the degradation of acetone. • CTAB modification improved the adsorption capability of the catalyst. • The photocatalytic degradation mechanism of the acetone by the catalyst was studied. - Abstract: The Cu/TiO{sub 2}/organo-attapulgite fiber (CTOA) nanocomposite was synthesized by a facile method and was used for photocatalytic degradation of acetone in air under UV light irradiation. The as-prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscope (SEM), transmission electron microscopy (TEM), UV–vis diffuse reflectance spectrum (UV–vis DRS), inductively coupled plasma (ICP) spectrometry and N{sub 2} adsorption–desorption measurement. The results showed that the structure of organo-attapulgite (OAT) had no obvious change as compared to unmodified attapulgite (AT) and the attapulgite fibers in the OAT were well-dispersed. Both micropores and mesopores exist in the CTOA catalyst. The CTOA catalysts prepared at the Cu/TiO{sub 2} molar ratio of 0.003 shows an excellent photocatalytic activity for the degradation of acetone in air. The synergistic effect of Cu species and cetyltrimethylammonium bromide modification can be responsible for the enhanced photocatalytic activity of the CTOA catalyst. The mechanism of the photocatalytic degradation of acetone by the CTOA catalyst was discussed.

  5. Efficient visible and near-infrared photoluminescent attapulgite-based lanthanide one-dimensional nanomaterials assembled by ion-pairing interactions.

    Science.gov (United States)

    Xu, Jun; Zhang, Ye; Chen, Hao; Liu, Weisheng; Tang, Yu

    2014-06-07

    Attapulgite, a one-dimensional fibrillar nanomaterial present in nature, with its extreme stability, is a promising material to act as a new carrier of luminescent lanthanide complexes for further applications. Herein, a series of lanthanide complexes Na[Ln(TTA)4] have been attached to attapulgite (Atta) via ion-pairing interactions, generating the first example of attapulgite-based visible and near-infrared (NIR) luminescent lanthanide one-dimensional nanomaterials, where TTA is 2-thenoyltrifluoroacetonate and Ln is Eu, Sm, Nd, Er or Yb. The hybrid materials were characterized by CHN elemental analysis, inductively coupled plasma-atomic emission spectroscopy (ICP), powder X-ray diffraction (PXRD), thermogravimetry (TG), transmission electron microscopy (TEM), and UV-vis absorption spectra. In order to investigate the photophysical behaviours of these materials, the visible and NIR luminescent spectra and the energy transfer process have been systematically investigated. Moreover, efforts have been made to produce Eu- and Sm-based plastic attapulgite materials by utilizing poly(methyl methacrylate) (PMMA) matrices, and the dispersibility of the lanthanide-doped hybrids in PMMA provides them with a high mechanical strength. The lanthanide-doped attapulgite appears to be an interesting material for photophysical applications. The results of this work would have potential significance for the design and assembly of luminescent lanthanide materials for light-emitting diodes (LED), sunlight-conversion films, optical amplifiers, solar concentrators, and lasers.

  6. Effect of humic acid, fulvic acid, pH and temperature on the sorption-desorption of Th(IV) on attapulgite

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Q.H. [Lanzhou Univ., Gansu (China). Radiochemistry Lab.; Chinese Academy of Sciences, Hefei (China). Inst. of Plasma Physics; Wu, W.S.; Xu, J.Z.; Niu, Z.W. [Lanzhou Univ., Gansu (China). Radiochemistry Lab.; Song, X.P. [Anhui Medical College, Hefei (China); Hu, J. [Chinese Academy of Sciences, Hefei (China). Inst. of Plasma Physics

    2008-07-01

    Sorption of Th(IV) on attapulgite as a function of pH and temperature in the presence and absence of humic acid and fulvic acid was studied under ambient conditions using batch technique. The results indicated that sorption of Th(IV) on attapulgite was strongly affected by pH values. The presence of humic acid and fulvic acid enhanced the sorption of Th(IV) at low pH values and no significant influence was observed at high pH values. Sorption of Th(IV) was mainly dominated by surface complexation. Sorption of Th(IV) increased with increasing temperature of the system. Enthalpy ({delta}H{sup 0}), entropy ({delta}S{sup 0}) and Gibbs free energy ({delta}G{sup 0}) were calculated from the temperature dependent sorption data, and the results indicated that the sorption of Th(IV) on attapulgite was a spontaneous process. The results of sorption and desorption of Th(IV) on HS bound attapulgite indicated that the sorption of Th(IV) on HS-attapulgite hybrids was reversible. (orig.).

  7. Graphene quantum dots /LaCoO3/attapulgite heterojunction photocatalysts with improved photocatalytic activity

    Science.gov (United States)

    Zhu, Wei; Li, Xiazhang

    2017-04-01

    A new nanocomposite of graphene quantum dots/LaCoO3/attapulgite (GQDs/LaCoO3/ATP) was prepared by a facile impregnation method and was applied to degradation of the organic pollutants as photocatalyst under visible light irradiation. Multiple techniques were used to characterize the structures, morphologies and photocatalytic activities of samples. The photocatalytic activity of the GQDs/LaCoO3/ATP nanocomposites was effectively evaluated using Methylene blue (MB), antibiotic agent chlortetracycline (CHL) and tetracycline hydrochloride (TC). The as-synthesized GQDs/LaCoO3/ATP nanocomposites exhibited higher photocatalytic activities than LaCoO3/ATP, which showed a broad spectrum of photocatalytic degradation activity. The results of ESR and free radicals trapping experiments indicated that • OH and h+ were the main species for the photocatalytic degradation. GQDs played a significant role in the photocatalytic activity improvement of LaCoO3/ATP, increasing the visible light absorption, slowing the recombination and improving the charge transfer.

  8. Attapulgite-CeO2/MoS2 ternary nanocomposite for photocatalytic oxidative desulfurization

    Science.gov (United States)

    Li, Xiazhang; Zhang, Zuosong; Yao, Chao; Lu, Xiaowang; Zhao, Xiaobing; Ni, Chaoying

    2016-02-01

    Novel attapulgite(ATP)-CeO2/MoS2 ternary nanocomposites were synthesized by microwave assisted assembly method. The structures of the nanocomposites were characterized by XRD, FT-IR, UV-vis, XPS and in situ TEM. The photocatalytic activities of ATP-CeO2/MoS2 composites were investigated by degradating dibenzothiophene (DBT) in gasoline under visible light irradiation. The effect of the mass ratio of CeO2 to MoS2 on photocatalytic activity was investigated. The results indicate that the three-dimensional network structure is firmly constructed by ATP skeleton, CeO2 particles and MoS2 nanosheet which effectively increase the surface area of the composites and promote the separation of electrons and holes by resulting electronic transmission channels of multi-channel in space. The degradation rate of DBT can reach 95% under 3 h irradiation when the mass ratio of CeO2/MoS2 is 4/10. A plausible mechanism for the photocatalytic oxidative desulfurization of this nanocomposite is put forward.

  9. Graphene quantum dots /LaCoO{sub 3}/attapulgite heterojunction photocatalysts with improved photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wei; Li, Xiazhang [Changzhou University, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou (China); Chinese Academy of Science, R and D Center of Xuyi Attapulgite Applied Technology, Xuyi (China)

    2017-04-15

    A new nanocomposite of graphene quantum dots/LaCoO{sub 3}/attapulgite (GQDs/LaCoO{sub 3}/ATP) was prepared by a facile impregnation method and was applied to degradation of the organic pollutants as photocatalyst under visible light irradiation. Multiple techniques were used to characterize the structures, morphologies and photocatalytic activities of samples. The photocatalytic activity of the GQDs/LaCoO{sub 3}/ATP nanocomposites was effectively evaluated using Methylene blue (MB), antibiotic agent chlortetracycline (CHL) and tetracycline hydrochloride (TC). The as-synthesized GQDs/LaCoO{sub 3}/ATP nanocomposites exhibited higher photocatalytic activities than LaCoO{sub 3}/ATP, which showed a broad spectrum of photocatalytic degradation activity. The results of ESR and free radicals trapping experiments indicated that {sup circle} OH and h {sup +} were the main species for the photocatalytic degradation. GQDs played a significant role in the photocatalytic activity improvement of LaCoO{sub 3}/ATP, increasing the visible light absorption, slowing the recombination and improving the charge transfer. (orig.)

  10. Enhanced Hydrothermal Stability and Catalytic Performance of HKUST-1 by Incorporating Carboxyl-Functionalized Attapulgite.

    Science.gov (United States)

    Yuan, Bo; Yin, Xiao-Qian; Liu, Xiao-Qin; Li, Xing-Yang; Sun, Lin-Bing

    2016-06-29

    Much attention has been paid to metal-organic frameworks (MOFs) due to their large surface areas, tunable functionality, and diverse structure. Nevertheless, most reported MOFs show poor hydrothermal stability, which seriously hinders their applications. Here a strategy is adopted to tailor the properties of MOFs by means of incorporating carboxyl-functionalized natural clay attapulgite (ATP) into HKUST-1, a well-known MOF. A new type of hybrid material was thus fabricated from the hybridization of HKUST-1 and ATP. Our results indicated that the hydrothermal stability of the MOFs as well as the catalytic performance was apparently improved. The frameworks of HKUST-1 were severely destroyed after hydrothermal treatment (hot water vapor, 60 °C), while that of the hybrid materials was maintained. For the hybrid materials containing 8.4 wt % of ATP, the surface area reached 1302 m(2)·g(-1) and was even higher than that of pristine HKUST-1 (1245 m(2)·g(-1)). In the ring-opening of styrene oxide, the conversion reached 98.9% at only 20 min under catalysis from the hybrid material, which was obviously higher than that over pristine HKUST-1 (80.9%). Moreover, the hybrid materials showed excellent reusability and the catalytic activity was recoverable without loss after six cycles. Our materials provide promising candidates for heterogeneous catalysis owing to the good catalytic activity and reusability.

  11. Heat regeneration of hydroxyapatite/attapulgite composite beads for defluoridation of drinking water.

    Science.gov (United States)

    Feng, Li; Xu, Weihua; Liu, Tengfei; Liu, Jason

    2012-06-30

    Regeneration is one of the key factors in evaluating an adsorbent. A novel heat regeneration method for hydroxyapatite/attapulgite (HAP/ATT) composite beads was studied. The investigation included heat regeneration temperature, regeneration time, and regeneration effects. A possible mechanism for the heat regeneration is described that explains the results of XPS, and SEM with EDAX. Exhausted HAP/ATT composite beads can be regenerated for more than 10 cycles using boiling water or steam. The total capacity increases by 10 times compared to a single defluoridation cycle. The regeneration process involves F(-) ions adsorbed on the surface of the beads to move quickly into the bulk of the HAP through the effect of heating this composite material. The surface active sites are thus re-exposed and the beads recover their fluoride sequestration properties. HAP/ATT composite beads were successfully used for the removal of fluoride from field water taken from a nearby village where fluoride contamination is endemic. Defluoridation and regeneration cycles performed in the same container provide a high efficient and simple operation. No chemical agents are used and no waste products are produced during the heat regeneration process, so this is a nearly zero emission process. This method can easily be up-scaled to a large throughput application. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Enhanced debromination of decabrominated diphenyl ether in aqueous solution by attapulgite supported Fe/Ni bimetallic nanoparticles: kinetics and pathways

    Science.gov (United States)

    Liu, Zongtang; Gu, Chenggang; Bian, Yongrong; Jiang, Xin; Sun, Yufeng; Fei, Zhenghao; Dai, Jingtao

    2017-08-01

    In this study, Fe/Ni bimetallic nanoparticles were supported on the attapulgite (A-Fe/Ni) to enhance the degradation reactivity of decabrominated diphenyl ether (BDE209) in aqueous solution. The Fe/Ni nanoparticles were well distributed on the attapulgite surface with an average diameter of 20-40 nm. The removal percentage of BDE209 by A-Fe/Ni was 1.59 times higher than Fe/Ni nanoparticles alone because attapulgite could act as supporting material to disperse Fe/Ni nanoparticles and prevent Fe/Ni nanoparticles from aggregation. The degradation kinetics for BDE209 debromination by A-Fe/Ni could be well described by a pseudo-first-order model, and the debromination rate constant of BDE209 increased with increasing the dosage of A-Fe/Ni, water/THF ratio, and decreasing the initial BDE209 concentration and solution pH. The degradation products were identified using a third-order polynomial regression equation between the experimental and reference gas chromatography relative retention times. Stepwise debromination from n-bromo-DE to (n  -  1)-bromo-DE was a possible pathway with bromines being substituted sequentially by hydrogen. The preferred elimination of bromines of BDE209 by A-Fe/Ni followed the debromination preference of para-Br  >  meta-Br  >  ortho-Br. The results provide evidences for understanding the debromination mechanism of polybrominated diphenyl ether by clay-supported Fe/Ni nanoparticles.

  13. Enhanced nitrate-nitrogen removal by modified attapulgite-supported nanoscale zero-valent iron treating simulated groundwater.

    Science.gov (United States)

    Dong, Lei; Lin, Li; Li, Qingyun; Huang, Zhuo; Tang, Xianqiang; Wu, Min; Li, Chao; Cao, Xiaohuan; Scholz, Miklas

    2018-02-26

    Attapulgite (or palygorskite) is a magnesium aluminium phyllosilicate. Modified attapulgite-supported nanoscale zero-valent iron (NZVI) was created by a liquid-phase reduction method and then applied for nitrate-nitrogen (NO 3 -N) removal (transformation) in simulated groundwater. Nanoscale zero-valent iron was sufficiently dispersed on the surface of thermally modified attapulgite. The NO 3 -N removal efficiency reached up to approximately 83.8% with an initial pH values of 7.0. The corresponding thermally modified attapulgite-supported nanoscale zero-valent iron (TATP-NZVI) and NO 3 -N concentrations were 2.0 g/L and 20 mg/L respectively. Moreover, 72.1% of the water column NO 3 -N was converted to ammonium-nitrogen (NH 4 -N) within 6 h. The influence of environmental boundary conditions including dissolved oxygen (DO) concentration, light illumination and water temperature on NO 3 -N removal was also investigated with batch experiments. The results indicated that the DO concentration greatly impacted on NO 3 -N removal in the TATP-NZVI-contained solution, and the NO 3 -N removal efficiencies were 58.5% and 83.3% with the corresponding DO concentrations of 9.0 and 0.3 mg/L after 6 h of treatment, respectively. Compared to DO concentrations, no significant (p > 0.05) effect of light illumination on NO 3 -N removal and NH 4 -N generation was detected. The water temperature also has great importance concerning NO 3 -N reduction, and the removal efficiency of NO 3 -N at 25 °C was 1.25 times than that at 15 °C. For groundwater, therefore, environmental factors such as water temperature, anaerobic conditions and darkness could influence the NO 3 -N removal efficiency when TATP-NZVI is present. This study also demonstrated that TATP-NZVI has the potential to be developed as a suitable material for direct remediation of NO 3 -N-contaminated groundwater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Photo degradation of methyl orange by attapulgite-SnO2-TiO2 nanocomposites.

    Science.gov (United States)

    Zhang, Lili; Lv, Fujian; Zhang, Weiguang; Li, Rongqing; Zhong, Hui; Zhao, Yijiang; Zhang, Yu; Wang, Xin

    2009-11-15

    Photocatalytic removal of methyl orange under ultraviolet radiation has been studied using attapulgite (ATT) composites, which were synthesized by depositing SnO(2)-TiO(2) hybrid oxides on the surface of ATT to form a composite photocatalyst (denoted ATT-SnO(2)-TiO(2)) using an in situ sol-gel technique. Results showed that SnO(2)-TiO(2) nanocomposite particles with average size of about 10nm were loaded successfully on to the surface of ATT fibers and were widely dispersed. Correspondingly, the photocatalytic activity of ATT was improved significantly by loading SnO(2)-TiO(2). The photoactivity of the composite photocatalyst decreased in the sequence ATT-SnO(2)-TiO(2)>ATT-SnO(2)>ATT-TiO(2)>ATT. In order to achieve the best photocatalyst, the molar ratio of SnO(2) and TiO(2) in the ATT-SnO(2)-TiO(2) composites was adjusted to give a series with proportions r=n(Ti)/(n(Ti)+n(Sn))=0.0, 0.25, 0.33, 0.50, 0.67, 0.75, 0.80, 0.82, 0.86, 1.0. Results indicated that the proportion of SnO(2) and TiO(2) had a critical effect on the photocatalytic activity, which increased as the content of TiO(2) increased to r0.82. The highest degradation rate of methyl orange was 99% within 30 min obtained by using ATT-SnO(2)-TiO(2) with r=0.82. The repeated use of the composite photocatalyst was also confirmed.

  15. Carbon/Attapulgite Composites as Recycled Palm Oil-Decoloring and Dye Adsorbents

    Directory of Open Access Journals (Sweden)

    Guangyan Tian

    2018-01-01

    Full Text Available Activated clay minerals have been widely used in the edible oil refining industry for decolorization of crude oil by adsorption, and so far many methods have been used to improve their decolorization efficiency. Herein, we successfully prepared a series of carbon/attapulgite (C/APT composite adsorbents by a one-step in-situ carbonization process with natural starch (St as the carbon source. It has been revealed that the adsorbent had better decolorization efficiency for crude palm oil than acid-activated APT. However, more than a million tons of decolorized waste is produced every year in the oil-refining industry, which was often treated as solid waste and has not yet been reutilized effectively. In order to explore a viable method to recycle and reuse the decolorant, the waste decolorant was further prepared into new C/APT adsorbents for the removal of dyes from wastewater, and then the dyes adsorbed on the adsorbent were used as the carbon sources to produce new C/APT adsorbents by a cyclic carbonization process. The results showed that the adsorbents prepared from the decolorized waste could remove more than 99.5% of the methylene blue (MB, methyl violet (MV, and malachite green (MG dyes from the simulated wastewater with the dye concentration of 200 mg/L, and the C/APT–Re adsorbent consecutively regenerated five times using the adsorbed dyes as a carbon source still exhibit good adsorption efficiency for dyes. As a whole, this process opens a new avenue to develop efficient decolorants of palm oil and achieves recyclable utilization of decolored waste.

  16. Rod like attapulgite/poly(ethylene terephthalate nanocomposites with chemical bonding between the polymer chain and the filler

    Directory of Open Access Journals (Sweden)

    Q. Fu

    2012-08-01

    Full Text Available Poly(ethylene terephthalate (PET nanocomposites containing rod-like silicate attapulgite (AT were prepared via in situ polymerization. It is presented that PET chains identical to the matrix have been successfully grafted onto simple organically pre-modified AT nanorods (MAT surface during the in situ polymerization process. The covalent bonding at the interface was confirmed by Fourier transform infrared spectroscopy (FTIR and thermogravimetric analysis (TGA. The content of grafted PET polymer on the surface of MAT was about 26 wt%. This high grafting density greatly improved the dispersion of fillers, interfacial adhesion as well as the significant confinement of the segmental motion of PET, as compared to the nanocomposites of PET/pristine AT (PET/AT. Owing to the unique interfacial structure in PET/MAT composites, their thermal and mechanical properties have been greatly improved. Compared with neat PET, the elastic modulus and the yield strength of PET/MAT were significantly improved by about 39.5 and 36.8%, respectively, by incorporating only 2 wt % MAT. Our work provides a novel route to fabricate advanced PET nanocomposites using rod-like attapulgite as fillers, which has great potential for industrial applications.

  17. Highly sensitive nonenzymatic glucose sensor based on nickel nanoparticle-attapulgite-reduced graphene oxide-modified glassy carbon electrode.

    Science.gov (United States)

    Shen, Zongxu; Gao, Wenyu; Li, Pei; Wang, Xiaofang; Zheng, Qing; Wu, Hao; Ma, Yuehui; Guan, Weijun; Wu, Songmei; Yu, Yu; Ding, Kejian

    2016-10-01

    In this article, a fast and sensitive nonenzymatic glucose sensor is reported utilizing a glassy carbon electrode modified by synthesizing nanocomposites of nickel nanoparticle-attapulgite-reduced graphene oxide (Ni NPs/ATP/RGO). A facile one-step electrochemical co-deposition approach is adopted to synthesize Ni NPs-ATP-RGO nanocomposites via electrochemical reduction of mixed precursor solution containing graphene oxide (GO), attapulgite (ATP) and nickel cations (Ni(2+)) at the cathode potentials. This strategy results in simultaneous depositions of ATP, cathodic reduction of Ni(2+) into nickel nanoparticles under acidic conditions, and in situ reduction of GO. The as-prepared NiNPs/ATP/RGO-based glucose sensor exhibits outstanding performance for enzymeless glucose sensing with sensitivity (1414.4 μAmM(-1)cm(-2)), linear range (1-710μM) and detection limit (0.37μM). What is more, the sensor has excellent stability and selectivity against common interferences in real sample. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Effect of Attapulgite Nanorods and Calcium Sulfate Microwhiskers on the Reaction-Induced Phase Separation of Epoxy/PES Blends

    Directory of Open Access Journals (Sweden)

    Xiaolin Tang

    2013-01-01

    Full Text Available The influence of two kinds of mesoscale inorganic rod fillers, nanoscale attapulgite and micron-sized CaSO4 whisker, on the reaction-induced phase separation of epoxy/aromatic amine/poly- (ether sulfone (PES blends has been investigated by optical microscopy (OM, scanning electron microscopy (SEM, and time resolved light scattering (TRLS. By varying the PES concentration and curing temperature, we found that the incorporation of attapulgite and CaSO4 had dramatic impact on the phase separation process and the final phase morphology of blends. In blends at higher content than critical concentration, the process of phase separation was retarded by the incorporation of nanoscale fillers but accelerated by that of the micron-sized fillers, mainly due to the enhanced viscoelastic effect and the preferential wettable effect, respectively. Meanwhile both mesoscale fillers could change the cocontinuous phase structure of blends with lower PES content than critical concentration into PES-rich dispersed structure due to the surface affinity of fillers to epoxy matrix.

  19. Attapulgite-CeO{sub 2}/MoS{sub 2} ternary nanocomposite for photocatalytic oxidative desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiazhang, E-mail: lixiazhang509@163.com [Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory for Environment Functional Materials, Suzhou University of Science and Technology, Suzhou 215009 (China); W.M.Keck Center for Advanced Microscopy and Microanalysis, University of Delaware, Newark, DE 19716 (United States); Zhang, Zuosong [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Yao, Chao [Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Lu, Xiaowang [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Zhao, Xiaobing [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory for Environment Functional Materials, Suzhou University of Science and Technology, Suzhou 215009 (China); Ni, Chaoying [W.M.Keck Center for Advanced Microscopy and Microanalysis, University of Delaware, Newark, DE 19716 (United States)

    2016-02-28

    Graphical abstract: - Highlights: • Novel attapulgite(ATP)-CeO{sub 2}/MoS{sub 2} ternary nanocomposites were fabricated. • ATP possessed outstanding adsorption property and enhanced the stability of the network structure. • CeO{sub 2}/MoS{sub 2} couples facilitated the separation of photo-induced electrons and holes. • Mass ratio of CeO{sub 2}/MoS{sub 2} influenced the photocatalytic oxidation desulfurization. - Abstract: Novel attapulgite(ATP)-CeO{sub 2}/MoS{sub 2} ternary nanocomposites were synthesized by microwave assisted assembly method. The structures of the nanocomposites were characterized by XRD, FT-IR, UV–vis, XPS and in situ TEM. The photocatalytic activities of ATP-CeO{sub 2}/MoS{sub 2} composites were investigated by degradating dibenzothiophene (DBT) in gasoline under visible light irradiation. The effect of the mass ratio of CeO{sub 2} to MoS{sub 2} on photocatalytic activity was investigated. The results indicate that the three-dimensional network structure is firmly constructed by ATP skeleton, CeO{sub 2} particles and MoS{sub 2} nanosheet which effectively increase the surface area of the composites and promote the separation of electrons and holes by resulting electronic transmission channels of multi-channel in space. The degradation rate of DBT can reach 95% under 3 h irradiation when the mass ratio of CeO{sub 2}/MoS{sub 2} is 4/10. A plausible mechanism for the photocatalytic oxidative desulfurization of this nanocomposite is put forward.

  20. Pyrolysis of attapulgite clay blended with yak dung enhances pasture growth and soil health: Characterization and initial field trials.

    Science.gov (United States)

    Rafiq, Muhammad Khalid; Joseph, Stephen D; Li, Fei; Bai, Yanfu; Shang, Zhanhuan; Rawal, Aditya; Hook, James M; Munroe, Paul R; Donne, Scott; Taherymoosavi, Sara; Mitchell, David R G; Pace, Ben; Mohammed, Mohanad; Horvat, Joseph; Marjo, Christopher E; Wagner, Avital; Wang, Yanlong; Ye, Jun; Long, Rui-Jun

    2017-12-31

    Recent studies have shown that the pyrolysis of biomass combined with clay can result in both lower cost and increase in plant yields. One of the major sources of nutrients for pasture growth, as well as fuel and building materials in Tibet is yak dung. This paper reports on the initial field testing in a pasture setting in Tibet using yak dung, biochar, and attapulgite clay/yak dung biochars produced at ratios of 10/90 and 50/50 clay to dung. We found that the treatment with attapulgite clay/yak dung (50/50) biochar resulted in the highest pasture yields and grass nutrition quality. We also measured the properties and yields of mixtures of clay/yak dung biochar used in the field trials produced at 400°C and 500°C to help determine a possible optimum final pyrolysis temperature and dung/clay ratio. It was observed that increasing clay content increased carbon stability, overall biochar yield, pore size, carboxyl and ketone/aldehyde functional groups, hematite and ferrous/ferric sulphate/thiosulphate concentration, surface area and magnetic moment. Decreasing clay content resulted in higher pH, CEC, N content and an enhanced ability to accept and donate electrons. The resulting properties were a complex function of both processing temperature and the percentage of clay for the biochars processed at both 400°C and 500°C. It is possible that the increase in yield and nutrient uptake in the field trial is related to the higher concentration of C/O functional groups, higher surface area and pore volume and higher content of Fe/O/S nanoparticles of multiple oxidation state in the 50/50 clay/dung. These properties have been found to significantly increase the abundance of beneficial microorganisms and hence improve the nutrient cycling and availability in soil. Further field trials are required to determine the optimum pyrolysis production conditions and application rate on the abundance of beneficial microorganisms, yields and nutrient quality. Copyright © 2017

  1. Sorption of Eu(III) and Am(III) on attapulgite. Effect of pH, ionic strength and fulvic acid

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Q.H.; Wu, W.S. [Radiochemistry Lab., School of Nuclear Science and Tech., Lanzhou Univ., GS (China); State Key Lab. of Applied Organic Chemistry, Lanzhou Univ., GS (China); Zhang, M.L.; Zhang, Y.Y.; Ding, K.F.; Yang, Z.Q. [Radiochemistry Lab., School of Nuclear Science and Tech., Lanzhou Univ., GS (China)

    2010-07-01

    Sorption of Eu(III) and Am(III) on attapulgite were studied as a function of pH, ionic strength, the liquid-to-solid ratio (V/m), and Eu(III) and Am(III) concentrations under ambient conditions using batch technique. The sorption of Eu(III) and Am(III) was quickly and {proportional_to} 4 hours were enough to achieve the sorption equilibrium. The K' values were 6.57 x 10{sup 6} g mg{sup -1} h{sup -1} for Eu(III) and 6.67 x 106 g mg{sup -1} h{sup -1} for Am(III), respectively; and q{sub e} values were 4.46 x 10{sup -7} mg/g for Eu(III) and 1.0 x 10{sup -6} mg/g for Am(III), respectively. Sorption of Eu(III) and Am(III) on attapulgite were strongly affected by pH values, and weakly dependent on ionic strength. Sorption of Eu(III) and Am(III) were mainly dominated by surface complexation. although ion exchange also contributed to Eu(III) and Am(III) sorption. In the presence of fulvic acid (FA), the sorption edge of Eu(III) and Am(III) was obviously shifted to lower pH. The results showed that the sorption of Eu(III) and Am(III) to attapulgite was enhanced significantly in the range of pH 0.5 to 6. (orig.)

  2. Optically active helical polyurethane@attapulgite composites: Effect of optical purity of S-1,1‧-binaphthyl-2,2‧-diol on infrared emissivity

    Science.gov (United States)

    Wang, Zhiqiang; Zhou, Yuming; Sun, Yanqing; Mei, Zhenyu; Miao, Yuee

    2009-05-01

    Helical polyurethane@attapulgite (HPU@ATT) composites were prepared after the surface modification of the rod-like attapulgite (ATT). HPU@ATT composites based on S-1,1'-binaphthyl-2,2'-diol (S-BINOL) with different optical purity (O.P.) were characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The results indicate that the helical polyurethane has been successfully grafted onto the surfaces of the modified ATT without destroying the original crystalline structure of ATT. The rod-like nanoparticles were confirmed by transmission electron microscopy (TEM). Infrared emissivity values of HPU@ATT composites have been investigated, and the results indicate that the optical purity of monomer plays a very important role in the infrared emissivity for HPU@ATT owing to the effect of helical conformation and interchain hydrogen bonds. Along with the increased optical purity of S-BINOL, the infrared emissivity of HPU@ATT is reduced evidently. Infrared emissivity value of HPU@ATT based on S-BINOL with 100% optical purity is the lowest one (0.431).

  3. Optically active helical polyurethane-attapulgite composites: Effect of optical purity of S-1,1'-binaphthyl-2,2'-diol on infrared emissivity

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhiqiang [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Zhou Yuming, E-mail: ymzhou@seu.edu.cn [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Sun Yanqing; Mei Zhenyu; Miao Yuee [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China)

    2009-05-15

    Helical polyurethane-attapulgite (HPU-ATT) composites were prepared after the surface modification of the rod-like attapulgite (ATT). HPU-ATT composites based on S-1,1'-binaphthyl-2,2'-diol (S-BINOL) with different optical purity (O.P.) were characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The results indicate that the helical polyurethane has been successfully grafted onto the surfaces of the modified ATT without destroying the original crystalline structure of ATT. The rod-like nanoparticles were confirmed by transmission electron microscopy (TEM). Infrared emissivity values of HPU-ATT composites have been investigated, and the results indicate that the optical purity of monomer plays a very important role in the infrared emissivity for HPU-ATT owing to the effect of helical conformation and interchain hydrogen bonds. Along with the increased optical purity of S-BINOL, the infrared emissivity of HPU-ATT is reduced evidently. Infrared emissivity value of HPU-ATT based on S-BINOL with 100% optical purity is the lowest one (0.431).

  4. Characterization of two clays - attapulgite and sepiolite - before and after acid activation; Caracterizacao de duas argilas - atapulgita e sepiolita - antes e apos ativacao acida com HCl

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, R.N.; Soares, G.A., E-mail: renataoliveira@poli.ufrj.b [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Centro de Tecnologia; Barreto, L.S. [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil)

    2009-07-01

    Among the special clays, two of them are distinguished by their large surface area: attapulgite and sepiolite. Although, being natural clays, when they are removed from the formation sites, their structural channels may be filled of impurities. The process done to clean these channels is called acid activation. The present work aim to treated samples from both clays by using 3M and 5M HCl solution under ultrasonic waves for 1 hour. The characterization of the clays before and after activation was carried out by SEM/EDS, XRD and surface area measure by method BET. The acid treatments employed were too aggressive, in special that with 5M HCl solution, which results in partial lixiviation of these clays. (author)

  5. Efficient biosynthesis of γ-decalactone in ionic liquids by immobilized whole cells of Yarrowia lipolytica G3-3.21 on attapulgite.

    Science.gov (United States)

    Zhao, Yuping; Xu, Yan; Jiang, Changxing

    2015-10-01

    In this study, the biosynthesis of γ-decalactone (GDL) was successfully conducted in an ionic liquid (IL)-containing cosolvent system using immobilized cells of Yarrowia lipolytica G3-3.21 on attapulgite (ATG). We found the immobilized Y. lipolytica G3-3.21 cells in N-butyl-pyridinium tetrafluoroborate ([BPy]BF4) solution gave the highest activity of C16-Acyl-CoA oxidase and the maximum yield of GDL. The optimum immobilization conditions for the highest yield of GDL were 20 g/L of ATG, 1.5 % of CaCl2 and 2 % of sodium alginate (NaAlg). The optimal [BPy]BF4 content, buffer pH, reaction temperature, shaking speed, castor oil and glucose contents were 7.5 %, 26 °C, 150 rpm, 100 g/L and 10 %, respectively. Under the optimized conditions, the GDL yield was up to 8.05 g/L. After ten times of reuse, the GDL yield was 7.51 g/L, corresponding to 93.3 % of that obtained in the first batch, suggesting a good reusability and potential for industrial applications.

  6. Sorption of Am(III) on attapulgite/iron oxide magnetic composites. Effect of pH, ionic strength and humic acid

    Energy Technology Data Exchange (ETDEWEB)

    Yu, T. [Lanzhou Univ., Gansu (China). Radiochemistry Lab.; East China Institute of Technology, Fuzhou, Jiangxi (China). College of Chemistry, Biology and Materials Science; Fan, Q.H.; Wu, W.S. [Lanzhou Univ., Gansu (China). Radiochemistry Lab.; Lanzhou Univ., Gansu (China). State Key Laboratory of Applied Chemistry; Liu, S.P.; Pan, D.Q.; Zhang, Y.Y.; Li, P. [Lanzhou Univ., Gansu (China). Radiochemistry Lab.

    2012-07-01

    Attapulgite/iron oxide magnetic (ATP/IOM) composites was prepared, and the sorption behavior of Am(III) on that composites was studied as a function of pH, ionic strength, the solid-to-liquid ratio (m/V), contact time, and the concentration of Am(III) under ambient conditions using batch technique. The time to achieve the sorption equilibrium was less than 5 h. The sorption of Am(III) on ATP/IOM composites was strongly affected by pH and ionic strength. Though ion exchange reaction contributed to Am(III) sorption over low pH range and low ionic strength, the sorption was mainly dominated by surface complexion (i.e., outer- and/or inner-sphere complexes) in the whole observed pH range. In the presence of humic acid (HA), the sorption edge of Am(III) on ATP/IOM composites obviously shifted to lower pH; but Am(III) sorption gradually became weak after pH exceeded 4, which may be mainly in terms of the soluble complexes of HA-Am(III). (orig.)

  7. Facile fabrication of Ag3VO4/attapulgite composites for highly efficient visible light-driven photodegradation towards organic dyes and tetracycline hydrochloride

    Science.gov (United States)

    Luo, Yuting; Luo, Jie; Duan, Guorong; Liu, Xiaoheng

    2017-12-01

    An efficient one-dimensional attapulgite (ATP)-based photocatalyst, Ag3VO4/ATP nanocomposite, was fabricated by a facile deposition precipitation method with well-dispersed Ag3VO4 nanoparticles anchored on the surface of natural ATP fibers. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and UV-visible diffused reflectance spectroscopy (UV-vis DRS) were employed to investigate the morphologies, structure, and optical property of the prepared photocatalysts. The photocatalytic experiments indicated that the Ag3VO4/ATP nanocomposites exhibited enhanced visible light-driven photocatalytic activity towards the degradation of rhodamine B (RhB), methyl orange (MO), and tetracycline hydrochloride (TCH), of which the 20 wt% Ag3VO4/ATP sample showed superb photocatalytic performance. As demonstrated by N2 adsorption-desorption, photocurrent measurements, electrochemical impedance spectroscopy (EIS), and photoluminescence (PL) spectra analyses, the improved photocatalytic activity arose from the enlarged surface area, the facilitated charge transfer, and the suppressed recombination of photogenerated charge carriers in Ag3VO4/ATP system. Furthermore, radical scavengers trapping experiments and recycling tests were also conducted. This work gives a new insight into fabrication of highly efficient, stable, and cost-effective visible light-driven photocatalyst for practical application in wastewater treatment and environmental remediation.

  8. Evaluation of thermally-modified calcium-rich attapulgite as a low-cost substrate for rapid phosphorus removal in constructed wetlands.

    Science.gov (United States)

    Yin, Hongbin; Yan, Xiaowei; Gu, Xiaohong

    2017-05-15

    The cost-effective and geographically available substrates are vital for the design of constructed wetlands (CWs), especially the saturated subsurface flow CWs, which are deemed as an efficient way to remove the inlet-lake phosphorus concentrations. In this study, phosphorus removal of thermally-treated calcium-rich attapulgite (TCAP) with varied particle sizes (0.2-0.5 mm, 0.5-1 mm and 1-2 mm) was assessed using batch and long-term column experiments to evaluate its feasibility as a CWs substrate. The phosphorus-bound mechanism in TCAP was identified in various initial phosphorus concentrations. Batch studies indicated that more than 95% of P can be rapidly (hydraulic retention time (HRT) exerts great influence on P removal performance and longer HRTs favor the dissolution of CaO in TCAP, consequently increasing the P removal rate. In a 150-day P removal experiment, TCAP removed an average of 93.1%-95.4% of the influent P with a HRT of eight hours. Both the batch and chemical extraction of the P fraction of TCAP showed that the P removed by TCAP was mainly through formation of Ca phosphate precipitation. However, the species of Ca-P precipitation formed might be varied in different phosphorus concentrations. All results indicated that TCAP can be a suitable substrate when used in CWs, and field experiments should be carried out to test its real P removal performance in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Facile synthesis of multifunctional attapulgite/Fe{sub 3}O{sub 4}/polyaniline nanocomposites for magnetic dispersive solid phase extraction of benzoylurea insecticides in environmental water samples

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoling; Qiao, Kexin; Ye, Yiren; Yang, Miyi; Li, Jing; Gao, Haixiang; Zhang, Sanbing; Zhou, Wenfeng; Lu, Runhua, E-mail: rhlu@cau.edu.cn

    2016-08-31

    In this study, the superparamagnetic attapulgite/Fe{sub 3}O{sub 4}/polyaniline (ATP/Fe{sub 3}O{sub 4}/PANI) nanocomposites were successfully synthesized by a one-pot method. Fe (III) was applied as both the oxidant for the oxidative polymerization of aniline and the single iron source of Fe{sub 3}O{sub 4} formed by the redox reaction between aniline and Fe (III). The ATP/Fe{sub 3}O{sub 4}/PANI was used as sorbent for magnetic dispersive solid phase extraction (MDSPE) of benzoylurea insecticides (BUs) in environmental water samples. The as-prepared nanocomposite sorbents were characterized by Fourier transform infrared spectra (FT-IR), X Ray diffraction (XRD), scanning electron microscopy(SEM), transmission electron microscopy (TEM), and vibrating sample magnetometry. Various experimental parameters affecting the ATP/Fe{sub 3}O{sub 4}/PANI-based MDSPE procedure, including the composition of the nanocomposite sorbents, amount of ATP/Fe{sub 3}O{sub 4}/PANI nanocomposites, vortex time, pH, and desorption conditions were investigated. Under the optimal conditions, a good linearity was observed for all target analytes, with correlation coefficients (r{sup 2}) ranging from 0.9985 to 0.9997; the limits of detection (LOD) were in the range of 0.02–0.43 μg L{sup −1}, and the recoveries of analytes using the proposed method ranged between 77.37% and 103.69%. The sorbents exhibited an excellent reproducibility in the range of 1.52–5.27% in extracting the five target analytes. In addition, the intra-day and inter-day precision values were found to be in the range of 0.78–6.86% and 1.66–8.41%, respectively. Finally, the proposed ATP/Fe{sub 3}O{sub 4}/PANI-based MDSPE method was successfully applied to analyze river water samples by rapid preconcentration of BUs. - Highlights: • A novel superparamagnetic ATP/Fe{sub 3}O{sub 4}/PANI nanocomposite was first introduced in MDSPE. • ATP/Fe{sub 3}O{sub 4}/PANI nanocomposites exhibited fast adsorption and desorption

  10. Final report on the safety assessment of aluminum silicate, calcium silicate, magnesium aluminum silicate, magnesium silicate, magnesium trisilicate, sodium magnesium silicate, zirconium silicate, attapulgite, bentonite, Fuller's earth, hectorite, kaolin, lithium magnesium silicate, lithium magnesium sodium silicate, montmorillonite, pyrophyllite, and zeolite.

    Science.gov (United States)

    Elmore, Amy R

    2003-01-01

    This report reviews the safety of Aluminum, Calcium, Lithium Magnesium, Lithium Magnesium Sodium, Magnesium Aluminum, Magnesium, Sodium Magnesium, and Zirconium Silicates, Magnesium Trisilicate, Attapulgite, Bentonite, Fuller's Earth, Hectorite, Kaolin, Montmorillonite, Pyrophyllite, and Zeolite as used in cosmetic formulations. The common aspect of all these claylike ingredients is that they contain silicon, oxygen, and one or more metals. Many silicates occur naturally and are mined; yet others are produced synthetically. Typical cosmetic uses of silicates include abrasive, opacifying agent, viscosity-increasing agent, anticaking agent, emulsion stabilizer, binder, and suspending agent. Clay silicates (silicates containing water in their structure) primarily function as adsorbents, opacifiers, and viscosity-increasing agents. Pyrophyllite is also used as a colorant. The International Agency for Research on Cancer has ruled Attapulgite fibers >5 microm as possibly carcinogenic to humans, but fibers Cosmetic Ingredient Review (CIR. The Cosmetic Ingredient Review (CIR) Expert Panel concluded that the extensive pulmonary damage in humans was the result of direct occupational inhalation of the dusts and noted that lesions seen in animals were affected by particle size, fiber length, and concentration. The Panel considers that most of the formulations are not respirable and of the preparations that are respirable, the concentration of the ingredient is very low. Even so, the Panel considered that any spray containing these solids should be formulated to minimize their inhalation. With this admonition to the cosmetics industry, the CIR Expert Panel concluded that these ingredients are safe as currently used in cosmetic formulations. The Panel did note that the cosmetic ingredient, Talc, is a hydrated magnesium silicate. Because it has a unique crystalline structure that differs from ingredients addressed in this safety assessment, Talc is not included in this report.

  11. Effects of oregano essential oil and attapulgite on growth ...

    African Journals Online (AJOL)

    Martina

    2016-03-21

    Mar 21, 2016 ... alternative feed additives to promote growth, strengthen the immune system and sustain the health of broiler chickens because of .... Metabolizable energy, MJ/kg. 12.98. 13.31 .... dietary supplements of specific blends of organic acids and essential oils on broiler performance, Bozkurt et al. (2012) found ...

  12. Influence of The Activated Qatari Attapulgite Clay Admixture on The Mechanical Properties and Hydration Kinetics of Ordinary Portland Cement

    OpenAIRE

    Al-Noaimi, Kawkab Kh. [كوكب النعيمي

    2001-01-01

    Blended cements are types of cements containing additives other than those used m Portland cement, which have considerable technological interest, because such addition increases the chemical resistance to sulfate and chloride attack. The present investigation represents a laboratory study, which provides a unique opportunity to introduce an effective practical attempt to deal with the problem of concrete deterioration m Qatar and the Arabian Gulf region, and to provide a solution to the prob...

  13. RETRACTED: Sodium alginate films modified by raw and functionalized attapulgite for use of thorium(IV) adsorption: A thermodynamic approach

    Science.gov (United States)

    Guerra, Denis L.; Viana, Rúbia R.; da Costa, Luiz P.; Airoldi, Claudio

    2009-11-01

    This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editors of the Journal of Physics and Chemistry of Solids as fraudulent results have been found in this article and other publications in Elsevier journals by the same authors, namely: J. Colloid Interface Sci., 337 (2009) 122-130, doi:10.1016/j.jcis.2009.05.013. Inorg. Chem. Commun., 12 (2009) 1145-1149, doi:10.1016/j.inoche.2009.08.029. J. Environ. Radioact., 101 (2010) 122-133, doi:10.1016/j.jenvrad.2009.09.005. Process Safety Environ. Prot., 88 (2010) 53-61, doi:10.1016/j.psep.2009.10.002. J. Phys. Chem. Solids, 70 (2009) 1413-1421, doi:10.1016/j.jpcs.2009.08.012. Appl. Surf. Sci., 256 (2009) 702-709, doi:10.1016/j.apsusc.2009.08.045. Inorg. Chem. Commun., 11 (2008) 20-23, doi:10.1016/j.inoche.2007.09.029. Inorg. Chem. Commun., 12 (2009) 1107-1111, doi:10.1016/j.inoche.2009.08.033. J. Hazard. Mat., 172 (2009) 507-514, doi:10.1016/j.jhazmat.2009.07.016. J. Hazard. Mat., 171 (2009) 514-523, doi:10.1016/j.jhazmat.2009.06.032. J. Colloid Interface Sci., 338 (2009) 30-39, doi:10.1016/j.jcis.2009.06.004. Publication of an article in a peer-reviewed journal is an important building-block in the development of science. Elsevier has defined policies and ethical guidelines and takes its duties of guardianship over the scholarly record extremely seriously. The Editors of the Elsevier journals involved found that the allegations of fraud are conclusive and they have decided that these papers should be retracted from the journals.

  14. Vortex-assisted magnetic β-cyclodextrin/attapulgite-linked ionic liquid dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography for the fast determination of four fungicides in water samples.

    Science.gov (United States)

    Yang, Miyi; Xi, Xuefei; Wu, Xiaoling; Lu, Runhua; Zhou, Wenfeng; Zhang, Sanbing; Gao, Haixiang

    2015-02-13

    A novel microextraction technique combining magnetic solid-phase microextraction (MSPME) with ionic liquid dispersive liquid-liquid microextraction (IL-DLLME) to determine four fungicides is presented in this work for the first time. The main factors affecting the extraction efficiency were optimized by the one-factor-at-a-time approach and the impacts of these factors were studied by an orthogonal design. Without tedious clean-up procedure, analytes were extracted from the sample to the adsorbent and organic solvent and then desorbed in acetonitrile prior to chromatographic analysis. Under the optimum conditions, good linearity and high enrichment factors were obtained for all analytes, with correlation coefficients ranging from 0.9998 to 1.0000 and enrichment factors ranging 135 and 159 folds. The recoveries for proposed approach were between 98% and 115%, the limits of detection were between 0.02 and 0.04 μg L(-1) and the RSDs changed from 2.96 to 4.16. The method was successfully applied in the analysis of four fungicides (azoxystrobin, chlorothalonil, cyprodinil and trifloxystrobin) in environmental water samples. The recoveries for the real water samples ranged between 81% and 109%. The procedure proved to be a time-saving, environmentally friendly, and efficient analytical technique. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. PVA/atapulgite hydrogels; Hidrogeis de PVA/atapulgita

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, R.N.; Soares, G.A., E-mail: nunes@metalmat.ufrj.b [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Paranhos, C.M. [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil); Barreto, L.S. [Universidade Federal de Sergipe (UFS), Aracaju, SE (Brazil)

    2010-07-01

    PVA hydrogels can be used as wound-healing as a consequence of their biocompatibility, flexibility, etc. In order to improve mechanical resistance of wound-healing, polymeric hydrogels reinforced with clay have been studied. Among national clays, attapulgite stands out. Once it is a natural material, acid treatment can be required in order to remove impurities. In the present work, PVA hydrogels reinforced with attapulgite were produced and they were characterized by swelling behavior, XRD, DSC and traction test. Among all properties studied, hydrogels reinforced with activated attapulgite showed better mechanical resistance and Young module than the other samples. (author)

  16. Preparation and characterization of adsorbents for treatment of water associated with oil production

    KAUST Repository

    Sueyoshi, Mark

    2012-09-01

    Two sets of adsorbents were prepared from locally available raw materials, characterized and tested. The first set consists of crushed natural attapulgite and crushed attapulgite mixed with petroleum tank-bottom sludge and carbonized at 650 °C. Another set was prepared using trunk of date palm tree (Phoenix dactylifera) activated at 700 and 800°C. Both sets were characterized using BET surface area and pore distributions, FTIR, XRD, SEM and TEM. Natural attapulgite and attapulgite/sludge composite exhibited different characteristics and adsorptive capacities for oil removal from oily water. Adsorptive capacities were calculated from the breakthrough curves of a column test. An oily water solution of about 500 mg-oil/L was passed through both the attapulgite and attapulgite/sludge columns until the column effluent concentration exceeded a reference limit of 10 mg-oil/L. Uptake was calculated at this limit at 155 and 405 mg-oil/g-adsorbent, respectively. This was lower than the performance of a commercial activated carbon sample (uptake calculated at 730 mg-oil/g-adsorbent). Relatively, the date palm, carbonaceous-based adsorbent samples showed less significant differences in both bulk and surface properties. Uptake significantly improved to 1330-1425 mg-oil/g-adsorbent. Attempt was made to associate this performance with the difference in the surface areas between the two sets. However, other factors are found to be important as the second set has a range of surface area less than that of the commercial sample. As evidenced by FTIR, XRD and TEM, the activated carbonaceous materials developed porous structures which form defective graphitic sheet ensembles that serve as additional adsorption sites in the sample. © 2012 Elsevier B.V.

  17. Backfill composition for secondary barriers in nuclear waste repositories

    Science.gov (United States)

    Beall, G.W.; Allard, B.M.

    1980-05-30

    A backfill composition for sorbing and retaining hazardous elements of nuclear wastes comprises 50 to 70% by weight of quartz, 10 to 30% by weight of montmorillonite, 1 to 10% by weight of phosphate mineral, 1 to 10% by weight of ferrous mineral, 1 to 10% by weight of sulfate mineral and 1 to 10% by weight of attapulgite.

  18. The effect of adsorbant and anti-inflammatory drugs on secretion in ligated segments of pig intestine infected with Escherichia coli.

    Science.gov (United States)

    Gyles, C L; Zigler, M

    1978-07-01

    Four adsorbant drug preparations, Kaopectate, colloidal Attapulgite, noncolloidal Attapulgite and Pepto-bismol were investigated for their effects on fluid accumulation in ligated segments of pig intestine inoculated with enteropathogenic Escherichia coli. Two anti-inflammatory drugs. aspirin and methylprednisolone, and two antibiotics, lincomycin and polymyxin B, were also tested. All the drugs except the two anti-inflammatory products were given by injection into the lumen of the intestine. Aspirin was given orally and methylprednisolone was given intramuscularly. The antibiotics were tested at levels at which they had no significant antibacterial effect in in vitro tests. The adsorbant drugs colloidal Attapulgite and Pepto-bismol were shown to be effective in reducing fluid accumulation in ligated segments of pig intestine infected with enteropathogenic E. coli. In the case of Peptobismol this effect was associated with an antibacterial effect as well as an antitoxic effect, probably due to its adsorbant properties. It is possible that an aspirin-like effect in the gut due to the active ingredient bismuth subsalicylate may have contributed to the effectiveness of Pepto-bismol. Colloidal Attapulgite was demonstrated to have an antitoxic effect but did not have an antibacterial effect. In high doses, the anti-inflammatory drugs acetylsalicylic acid and methylprednisolone were marginally effective in reduction of fluid accumulation in the same test system. Lincomycin was shown to reduce intestinal fluid secretion, whereas polymyxin B had no effect.

  19. Author Details

    African Journals Online (AJOL)

    Tzora, A. Vol 46, No 1 (2016) - Articles Effects of oregano essential oil and attapulgite on growth performance, intestinal microbiota and morphometry in broilers. Abstract PDF. ISSN: 2221-4062. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL ...

  20. Role of nanoclay shape and surface characteristics on the morphology and thermal properties of polystyrene nanocomposites synthesized via emulsion polymerization

    CSIR Research Space (South Africa)

    Greesh, N

    2013-10-01

    Full Text Available This work evaluates the role of the surface properties and shape of clay type on the morphology, thermal, and thermo-mechanical properties of the polystyrene (PS)/clay nanocomposites prepared via free-radical emulsion polymerization. Attapulgite...

  1. ADSORPTION CHARACTERISTIC OF IRON ONTO POLY[EUGENOL-CO-(DIVINYL BENZENE] FROM AQUEOUS SOLUTION

    Directory of Open Access Journals (Sweden)

    Fitrilia Silvianti

    2017-09-01

    • Zou, X.; Pan, J.; Ou, H.; Wang, X.;Guan, W.; Li, C.; Yan, Y.; Duan, Y. Adsorptive removal of Cr(III and Fe(III from aqueous solution by chitosan/attapulgite composites: Equilibrium, thermodynamics and kinetics. Chem. Eng. J. 2011, 167: 112-121, DOI: 10.1016/j.cej.2010.12.009

  2. Clay-based geothermal drilling fluids

    Energy Technology Data Exchange (ETDEWEB)

    Guven, N.; Carney, L.L.; Lee, L.J.; Bernhard, R.P.

    1982-11-01

    The rheological properties of fluids based on fibrous clays such as sepiolite and attapulgite have been systematically examined under conditions similar to those of geothermal wells, i.e. at elevated temperatures and pressures in environments with concentrated brines. Attapulgite- and sepiolite-based fluids have been autoclaved at temperatures in the range from 70 to 800/sup 0/F with the addition of chlorides and hydroxides of Na, K, Ca, and Mg. The rheological properties (apparent and plastic viscosity, fluid loss, gel strength, yield point, and cake thickness) of the autoclaved fluids have been studied and correlated with the chemical and physical changes that occur in the clay minerals during the autoclaving process.

  3. Fire retardant formulations

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to compositions where a substrate is liable to catch fire such as bituminous products, paints, carpets or the like. The invention relates to a composition comprising 40-95 weight % of a substrate to be rendered fire resistant such as bituminous material or paint......, carpets which substrate is mixed with 5-60 weight % of a fire retardant component. The invention relates to a fire retardant component comprising or being constituted of attapulgite, and a salt being a source of a blowing or expanding agent, where the attapulgite and the salt are electrostatically...... connected by mixing and subjecting the mixture of the two components to agitation. Also, the invention relates to compositions comprising 40-95 weight % of a substrate to be rendered fire resistant mixed with 5-60 weight % of a fire retardant according to claim 1 or 2, which fire retardant component...

  4. Special clays: what they are, characterization and properties

    OpenAIRE

    Coelho, Antonio C. Vieira; Santos, Pérsio de Souza; Santos, Helena de Souza

    2007-01-01

    Special clays are a group of clays different from the large volume of clay mineral products named "Industrial Clays": kaolins, ball clays, refractory clays, bentonites, fuller's earths, common clays. Two groups of special clays exist: rare, as in the case of hectorite and sepiolite and restricted areas, as in the case of white bentonite, halloysite and palygorskite (attapulgite). A review is given of the most important producers of the special clays and their properties in the Western World, ...

  5. Argilas especiais: o que são, caracterização e propriedades

    OpenAIRE

    Coelho,Antonio C. Vieira; Santos,Pérsio de Souza; Santos,Helena de Souza

    2007-01-01

    Special clays are a group of clays different from the large volume of clay mineral products named "Industrial Clays": kaolins, ball clays, refractory clays, bentonites, fuller's earths, common clays. Two groups of special clays exist: rare, as in the case of hectorite and sepiolite and restricted areas, as in the case of white bentonite, halloysite and palygorskite (attapulgite). A review is given of the most important producers of the special clays and their properties in the Western World, ...

  6. Utilização de argilas para purificação de biodiesel

    OpenAIRE

    Paula,Andréia Juliana Almeida de; Krügel, Marlus; Miranda, João Paulo; Rossi, Luciano Fernando dos Santos; Costa Neto,Pedro Ramos da

    2011-01-01

    This work describes the results of the purification of methyl biodiesel, obtained by oxidized soybean oil, using different methods. After the ester separation from the glycerin by decanting, the ester was purified each time with distillation, washing with water and adsorption with bauxite, bentonite and attapulgite. The removal of total contamination, unsaponifiable material, concentrations of free glycerin and soap were analyzed in the purified ester phase. The best result of purification wa...

  7. Toxic Chemicals in the Soil Environment. Volume 2. Interactions of Some Toxic Chemicals/Chemical Warfare Agents and Soils

    Science.gov (United States)

    1985-06-01

    release is not extremely rapid. A report by Gerstl and Yaron (1981) on the reactions of attapulgite with the pesticide parathion ahowe that the zeolitic ...through the phosphate enter bond, There is an indication that small molecules penetrate into the zeolitic -like channels of the dehydrated clay and are...in soil. The soil used in the study was a Piano Silt loam from the university experiment station farm at Madison, INisconsin. The soil was 4.8 percent

  8. Preparation of novel nano-adsorbent based on organic-inorganic hybrid and their adsorption for heavy metals and organic pollutants presented in water environment.

    Science.gov (United States)

    Jin, Xinliang; Yu, Cui; Li, Yanfeng; Qi, Yongxin; Yang, Liuqing; Zhao, Guanghui; Hu, Huaiyuan

    2011-02-28

    The nanocomposites based on organic-inorganic hybrid have been attracting much attention due to their potential applications used as new type of functional materials, such as colloidal stabilizers, electro-optical devices, and nanocomposites materials. The organic-inorganic hybrid of poly(acrylic acid-acrylonitrile)/attapulgite, P(A-N)/AT nanocomposites, were prepared by using in situ polymerization and composition of acrylic acid (AA) and acrylonitrile (AN) onto modified attapulgite (AT) nanoparticles. The resulting P(A-N)/AT nanocomposites were transformed into novel nano-adsorbent of poly(acrylic acid-acryloamidoxime)/attapulgite by further functionalization, i.e. P(A-O)/AT nano-adsorbent. The adsorption properties of P(A-O)/AT toward metal ions were determined, and the results indicated that the adsorbents with nanocomposite structure held a good of selectivity to Pb(2+) among numerous metal ions. The maximum removal capacity of Pb(2+) was up to 109.9 mg/g and it is notable to see that the adsorption removal of P(A-O)/AT nano-adsorbent for Pb(2+) could achieve more than 96.6% when the initial concentration of Pb(2+) was 120.0 mg/l. The kinetics, isotherm models, and conductivity were introduced to study the adsorption mechanism of P(A-O)/AT for Pb(2+) and it was concluded that it could be chemisorptions process and the best coordination form took place when AO:AA:Pb(2+) = 1:1:1. In addition, after simply treated with CTAB, P(A-O)/AT nano-adsorbent showed better adsorption properties for phenol than the same kinds of materials. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Photocatalytic activity of attapulgite–BiOCl–TiO{sub 2} toward degradation of methyl orange under UV and visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lili, E-mail: zll@hytc.edu.cn; Zhang, Jiahui; Zhang, Weiguang; Liu, Jianquan; Zhong, Hui; Zhao, Yijiang

    2015-06-15

    Highlights: • Excellent photocatalyst was obtained by introducing BiOCl–TiO{sub 2} onto attapulgite. • 100 mg L{sup −1} methyl orange (MO) was totally decomposed under UV light within 70 min. • 92.6% of 10 mg L{sup −1} MO was decomposed within 120 min under visible light. • ATT–BiOCl–TiO{sub 2} show better activity than P{sub 25} especially under visible light. • Mechanism of photocatalytic activity enhancement was identified. - Abstract: An environmental friendly composite photocatalyst with efficient UV and visible light activity has been synthesized by introducing BiOCl–TiO{sub 2} hybrid oxide onto the surface of attapulgite (ATT) (denoted as ATT–BiOCl–TiO{sub 2}), using a simple in situ depositing technique. The obtained products were characterized by XRD, TEM, BET and UV–vis diffuse reflectance spectra measurements. Results showed that BiOCl–TiO{sub 2} composite particles were successfully loaded onto attapulgite fibers' surface without obvious aggregation. The photocatalytic activity of ATT–BiOCl–TiO{sub 2} was investigated by degradation of methyl orange under UV and visible light irradiation. It was found that 100 mg L{sup −1} methyl orange was totally decomposed under UV light within 70 min and 92.57% of 10 mg L{sup −1} methyl orange was decomposed under visible light within 120 min using ATT–BiOCl–TiO{sub 2} as photocatalyst. These results were quite better than that of P{sub 25}, especially under visible light irradiation. Possible mechanism for the enhancement was proposed.

  10. Mechanical responses of filled thermoplastic elastomers

    Science.gov (United States)

    Wang, M.; Shan, D. C.; Liao, Y.

    2017-12-01

    In this paper, several mechanical responses of thermoplastic polyurethane (TPU) filled with nano-scale attapulgite (AT) particles, including cyclic loading-unloading behavior, dynamic mechanical behavior and stress relaxation have been investigated. With the addition of AT, it is noticed that the strength, modulus and stress relaxation time of TPU increased significantly compared to that of unfilled materials. It is also observed that, whether filled or unfilled TPU, pronounced inelastic mechanical features such as Mullins effect, residual strain and hysteresis, occurred mainly during the first load loop, but became more notable with AT increase.

  11. Utilização de argilas para purificação de biodiesel

    Directory of Open Access Journals (Sweden)

    Andréia Juliana Almeida de Paula

    2011-01-01

    Full Text Available This work describes the results of the purification of methyl biodiesel, obtained by oxidized soybean oil, using different methods. After the ester separation from the glycerin by decanting, the ester was purified each time with distillation, washing with water and adsorption with bauxite, bentonite and attapulgite. The removal of total contamination, unsaponifiable material, concentrations of free glycerin and soap were analyzed in the purified ester phase. The best result of purification was observed with the use of bentonite and bauxite, in the removal of soap and free glycerin respectively.

  12. Use of clays for purification of biodiesel; Utilizacao de argilas para purificacao de biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Paula, Andreia Juliana Almeida de; Kruegel, Marlus; Miranda, Joao Paulo; Rossi, Luciano Fernando dos Santos; Costa Neto, Pedro Ramos da, E-mail: pedroneto@utfpr.edu.b [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Depts. de Quimica, Biologia e Mecanica

    2011-07-01

    This work describes the results of the purification of methyl biodiesel, obtained by oxidized soybean oil, using different methods. After the ester separation from the glycerin by decanting, the ester was purified each time with distillation, washing with water and adsorption with bauxite, bentonite and attapulgite. The removal of total contamination, unsaponifiable material, concentrations of free glycerin and soap were analyzed in the purified ester phase. The best result of purification was observed with the use of bentonite and bauxite, in the removal of soap and free glycerin respectively. (author)

  13. Etude physico-chimique et minéralogique comparative des ...

    African Journals Online (AJOL)

    La diffraction aux rayons X a montré une présence de palygorskite, quartz et carbonates dans les échantillons étudiés. L'étude des isothermes d'adsorption a montré une surface spécifique nettement plus élevée pour l'attapulgite purifiée, 138,96 m2.g-1 contre 98,72 m2.g-1 pour l'Actapulgite®. Ces résultats ont montré que ...

  14. Immobilizing Arsenic and Copper Ions in Manure Using a Nanocomposite.

    Science.gov (United States)

    Wang, Dongfang; Zhang, Guilong; Zhou, Linglin; Cai, Dongqing; Wu, Zhengyan

    2017-10-18

    Livestock manure (Man) commonly contains a certain quantity of heavy metal ions, such as arsenic (As) and copper (Cu) ions, resulting in a high risk on soil contamination. To solve this problem, heavy metal of manure was immobilized into sodium carbonate/biosilica/attapulgite composite (Na 2 CO 3 /BioSi/Attp), which was developed using a nanocomposite consisting of anhydrous sodium carbonate (Na 2 CO 3 ), straw ash-based biochar and biosilica (BioSi), and attapulgite (Attp). When Na 2 CO 3 /BioSi/Attp was mixed with Man/AsCu, the obtained nanocomposite (Na 2 CO 3 /BioSi/Attp/Man/AsCu) with a porous nano-network structure could effectively control the release of As and Cu ions from manure through adsorption and chemical reaction. Meanwhile, a pot experiment indicated that Na 2 CO 3 /BioSi/Attp/Man/AsCu could increase the pH value of acid soil, promote the growth of rice, and significantly decrease the uptake of As and Cu ions by rice. Therefore, this work provides a promising approach to immobilize heavy metal ions in manure and, thus, lower the contamination risk to the environment. Na 2 CO 3 , BioSi, and Attp powders were mixed evenly with a weight ratio of W Na 2 CO 3 /W BioSi /W Attp = 3:1:2.

  15. Ion exchange on mixed ionic forms of montmorillonite at high ionic strengths

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, W. J.; Shiao, S. Y.; Meyer, R. E.; Westmoreland, C. G.; Lietzke, M. H.

    1979-01-01

    This paper summarizes studies of the distribution of sodium and calcium ions between a common clay, montmorillonite, as well as several other clays, and a series of solutions of constant total ionic strength (I) with varying ionic strength fraction of sodium. Distribution coefficients D for Na(I) and Ca(II) were determined by batch equilibrations using isotope dilutions with radioactive tracers. Equilibrium quotients (K/GAMMA) for the exchange of sodium and calcium were then calculated and the effects of solution composition, of solution phase activity coefficients, of ionic strength, of degree of purification, and of source of clay were investigated. Equilibrium quotients with adjustment for solution-phase activity coefficients did not vary greatly with I, except at low loading of sodium on the calcium form of montmorillonite, where D/sub Na/ became anomalously high. Values of K/GAMMA for illite and attapulgite were within an order of magnitude of those for montmorillonite.

  16. Antimotility agents for chronic diarrhoea in people with HIV/AIDS.

    Science.gov (United States)

    Nwachukwu, Chukwuemeka E; Okebe, Joseph U

    2008-10-08

    AIDS-related diarrhoea is a common cause of morbidity and mortality in HIV positive individuals, especially in the sub-Saharan Africa where 70% of deaths from HIV occur. It often compromises quality of life both in those receiving antiretroviral therapy (ART) and the ART naive. Empirical antidiarrhoeal treatment may be required in about 50% of cases which are non-pathogenic or idiopathic and in cases resulting from antiretroviral therapy. Antimotility agents (Loperamide, Diphenoxylate, Codeine) and adsorbents (Bismuth Subsalicylate, Kaolin/Pectin, Attapulgite) are readily available, and have been found to be useful in this condition and so, are often used. Antimotilitics are opioids, decreasing stool output by reducing bowel activity thereby increasing fecal transit time in the gut, promoting fluid and electrolyte retention while adsorbents act by binding to fluids, toxins and other substances to improve stool consistency and eliminate the toxins. Due to its potential impact on the management of chronic diarrhoea in persons with HIV/AIDS, we reviewed the effectiveness of antimotility agents in controlling chronic diarrhoea in immunocompromised states caused by HIV/AIDS. To assess the effectiveness of antimotility agents in controlling chronic diarrhoea in people with HIV/AIDS. We searched Medline, EMBASE, the Cochrane Controlled Trials Register, the Cochrane HIV/AIDS Register and AIDSearch databases in November 2006. We also contacted WHO, CDC, pharmaceutical companies and experts in the field for information on previous or on-going trials and checked reference list from retrieved studies, irrespective of language and publication status. Randomised controlled trials comparing an antimotility agent or an adsorbent with another antimotility agent, placebo, an adsorbent or no treatment in children and adults diagnosed with HIV and presenting with diarrhoea of three or more weeks duration. Two authors independently undertook study selection and examined full articles

  17. Environmentally friendly slow-release nitrogen fertilizer.

    Science.gov (United States)

    Ni, Boli; Liu, Mingzhu; Lü, Shaoyu; Xie, Lihua; Wang, Yanfang

    2011-09-28

    To sustain the further world population, more fertilizers are required, which may become an environmental hazard, unless adequate technical and socioeconomic impacts are addressed. In the current study, slow-release formulations of nitrogen fertilizer were developed on the basis of natural attapulgite (APT) clay, ethylcellulose (EC) film, and sodium carboxymethylcellulose/hydroxyethylcellulose (CMC/HEC) hydrogel. The structural and chemical characteristics of the product were examined. The release profiles of urea, ammonium sulfate, and ammonium chloride as nitrogen fertilizer substrates were determined in soil. To further compare the release profiles of nitrogen from different fertilizer substrates, a mathematical model for nutrient release from the coated fertilizer was applied to calculate the diffusion coefficient D. The influence of the product on water-holding and water-retention capacities of soil was determined. The experimental data indicated that the product can effectively reduce nutrient loss, improve use efficiency of water, and prolong irrigation cycles in drought-prone environments.

  18. Controlling the Hydrolysis and Loss of Nitrogen Fertilizer (Urea) by using a Nanocomposite Favors Plant Growth.

    Science.gov (United States)

    Zhou, Linglin; Zhao, Pan; Chi, Yu; Wang, Dongfang; Wang, Pan; Liu, Ning; Cai, Dongqing; Wu, Zhengyan; Zhong, Naiqin

    2017-05-09

    Urea tends to be hydrolyzed by urease and then migrate into the environment, which results in a low utilization efficiency and severe environmental contamination. To solve this problem, a network-structured nanocomposite (sodium humate-attapulgite-polyacrylamide) was fabricated and used as an excellent fertilizer synergist (FS) that could effectively inhibit the hydrolysis, reduce the loss, and enhance the utilization efficiency of nitrogen. Additionally, the FS exerted significant positive effects on the expression of several nitrogen-uptake-related genes, ion flux in maize roots, the growth of crops, and the organic matter in soil. The FS could modify the microbial community in the soil and increase the number of bacteria involved in nitrogen metabolism, organic matter degradation, the iron cycle, and photosynthesis. Importantly, this technology displayed a high biosafety and has a great potential to reduce nonpoint agricultural pollution. Therefore, this work provides a promising approach to manage nitrogen and to promote the sustainable development of agriculture and the environment. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Preparation and application of conducting polymer/Ag/clay composite nanoparticles formed by in situ UV-induced dispersion polymerization.

    Science.gov (United States)

    Zang, Limin; Qiu, Jianhui; Yang, Chao; Sakai, Eiichi

    2016-02-03

    In this work, composite nanoparticles containing polypyrrole, silver and attapulgite (PPy/Ag/ATP) were prepared via UV-induced dispersion polymerization of pyrrole using ATP clay as a templet and silver nitrate as photoinitiator. The effects of ATP concentration on morphology, structure and electrical conductivity were studied. The obtained composite nanoparticles with an interesting beads-on-a-string morphology can be obtained in a short time (10 min), which indicates the preparation method is facile and feasible. To explore the potential applications of the prepared PPy/Ag/ATP composite nanoparticles, they were served as multifunctional filler and blended with poly(butylene succinate) (PBS) matrix to prepare biodegradable composite material. The distribution of fillers in polymer matrix and the interfacial interaction between fillers and PBS were confirmed by scanning electron microscope, elemental mapping and dynamic mechanical analysis. The well dispersed fillers in PBS matrix impart outstanding antibacterial property to the biodegradable composite material as well as enhanced storage modulus due to Ag nanoparticles and ATP clay. The biodegradable composite material also possesses modest surface resistivity (10(6)~ 10(9) Ω/◻).

  20. Effect of nano packaging on preservation quality of Nanjing 9108 rice variety at high temperature and humidity.

    Science.gov (United States)

    Wang, Fan; Hu, Qiuhui; Mugambi Mariga, Alfred; Cao, Chongjiang; Yang, Wenjian

    2018-01-15

    A nano packaging material containing nano Ag, nano TiO2, nano attapulgite and SiO2 was prepared, and its impact on quality of Nanjing 9108 rice at 37°C and 85% relative humidity was studied. Effects of the packaging on ambient gases and chromatic aberration of rice were determined. Moreover, oxidation level, molds growth and flavor of rice were also analyzed. Results showed that nano packaging material had antimicrobial effects and maintained low O2 and high CO2 content in the packages. The packages thereby inhibited the growth of molds and the production of fatty acids, restrained the increase of lipase activity, and reduced the oxidation of fats and proteins. As a result, the production of yellow and white-belly rice were inhibited. Furthermore, the color and flavor of rice were maintained. Therefore, the nano-packing material could be applied for preservation of rice to improve preservation quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Stimulation of the ionic transport system in Brassica napus by a plant growth-promoting rhizobacterium (Achromobacter sp.).

    Science.gov (United States)

    Bertrand, H; Plassard, C; Pinochet, X; Touraine, B; Normand, P; Cleyet-Marel, J C

    2000-03-01

    A plant growth-promoting rhizobacterium belonging to the genus Achromobacter was isolated from the oil-seed-rape (Brassica napus) root. Growth promotion bioassays were performed with oilseed rape seedlings in a growth chamber in test tubes containing attapulgite and mineral nutrient solution, containing NO3- as N source. The presence of this Achromobacter strain increased shoot and root dry weight by 22-33% and 6-21%, respectively. Inoculation of young seedlings with the Achromobacter bacteria induced a 100% improvement in NO3- uptake by the whole root system. Observations on the seminal root of seedlings 20 h after inoculation showed that there was an enhancement of both the number and the length of root hairs, compared to non-inoculated seedlings. Electrophysiological measurements of NO3- net flux with ion-selective microelectrodes showed that inoculation resulted in a specific increase of net nitrate flux in a root zone morphologically similar in inoculated and non-inoculated plants. The root area increased due to root hair stimulation by the Achromobacter bacteria, which might have contributed to the improvement of NO3- uptake by the whole root system, together with the enhancement of specific NO3- uptake rate. Moreover, inoculated plants showed increased potassium net influx and proton net efflux. Overall, the data presented suggest that the inoculation of oilseed-rape with the bacteria Achromobacter affects the mineral uptake.

  2. Hybrid systems based on "drug - in cyclodextrin - in nanoclays" for improving oxaprozin dissolution properties.

    Science.gov (United States)

    Mura, Paola; Maestrelli, Francesca; Aguzzi, Carola; Viseras, César

    2016-07-25

    A combined approach based on drug complexation with cyclodextrins, and complex entrapment in nanoclays has been investigated, to join in a single delivery system the benefits of these carriers and potentiate their ability to improve the dissolution properties of oxaprozin (OXA), a poorly water-soluble anti-inflammatory drug. Based on previous studies, randomly methylated ß-cyclodextrin (RAMEB) was chosen as the most effective cyclodextrin for OXA complexation. Adsorption equilibrium studies performed on three different clays (sepiolite, attapulgite, bentonite) allowed selection of sepiolite (SV) for its greater adsorption power towards OXA. DSC and XRPD studies indicated drug amorphization in both binary OXA-RAMEB coground and OXA-SV cofused products, due to its complexation or very fine dispersion in the clay structure, respectively. The drug amorphous state was maintained also in the ternary OXA-RAMEB-SV cofused system. Dissolution studies evidenced a clear synergistic effect of RAMEB complexation and clay nanoencapsulation in improving the OXA dissolution properties, with an almost 100% increase in percent dissolved and dissolution efficiency compared to the OXA-RAMEB coground system. Therefore, the proposed combined approach represents an interesting tool for improving the therapeutic effectiveness of poorly soluble drugs, and reducing the CD amount necessary for obtaining the desired drug solubility and dissolution rate increase. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Metals attenuation in minerally-enhanced slurry walls

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J.C.; Prince, M.J. [Bucknell Univ., Lewisburg, PA (United States); Adams, T.L. [Woodward-Clyde Consultants, Blue Bell, PA (United States)

    1997-12-31

    In current practice, a soil-bentonite slurry trench cutoff wall is a mixture of water, soil, and bentonite that is designed to serve as a passive barrier to ground water and contaminant transport. This study evaluated the transformation of a passive slurry trench cutoff wall barrier to an active barrier system. Conventional soil-bentonite vertical barriers presently serve as passive barriers to contaminated ground water. An active barrier will not only fulfill the functions of the present passive barrier system, but also retard contaminant transport by adsorptive processes. Attapulgite, Na-chabazite, and Ca-chabazite were added to {open_quotes}activate{close_quotes} the conventional soil-bentonite backfill. Batch extraction tests were performed to determine the partitioning coefficients of cadmium and zinc between the liquid and solid phase when in contact with the backfill mixes. Batch extraction and mathematical modeling results demonstrate the ability of an active barrier to retard the transport of cadmium and zinc. The reactivity of the soil-bentonite vertical barrier depends heavily on the inorganic being adsorbed. The reactivity of the barrier also depends on the adsorptive capabilities of the clay minerals added to the conventional soil-bentonite vertical barrier. The results of laboratory studies suggest that passive barrier systems can be transformed to active systems. Further, the data suggests that although conventional soil-bentonite vertical barriers are presently designed as passive barriers, they already have adsorptive capacity associated with active barriers.

  4. Age and compositional data of zircon from sepiolite drilling mud to identify contamination of ocean drilling samples

    Science.gov (United States)

    Andrews, Graham D. M.; Schmitt, Axel K.; Busby, Cathy J.; Brown, Sarah R.; Blum, Peter; Harvey, Janet. C.

    2016-08-01

    Zircon extracted from drilled oceanic rocks is increasingly used to answer geologic questions related to igneous and sedimentary sequences. Recent zircon studies using samples obtained from marine drill cores revealed that drilling muds used in the coring process may contaminate the samples. The JOIDES Resolution Science Operator of the International Ocean Discovery Program has been using two types of clays, sepiolite and attapulgite, which both have salt water viscosifier properties able to create a gel-like slurry that carries drill cuttings out of the holes several hundred meters deep. The dominantly used drilling mud is sepiolite originating from southwestern Nevada, USA. This sepiolite contains abundant zircon crystals with U-Pb ages ranging from 1.89 to 2889 Ma and continental trace element, δ18O, and ɛHf isotopic compositions. A dominant population of 11-16 Ma zircons in sepiolite drilling mud makes identification of contamination in drilled Neogene successions particularly challenging. Interpretation of zircon analyses related to ocean drilling should be cautious of zircon ages in violation of independently constrained age models and that have age populations overlapping those in the sepiolite. Because individual geochronologic and geochemical characteristics lack absolute discriminatory power, it is recommended to comprehensively analyze all dated zircon crystals from cores exposed to drill mud for trace element, δ18O, and ɛHf isotopic compositions. Zircon analyzed in situ (i.e., in petrographic sections) are assumed to be trustworthy.

  5. A novel molecularly imprinted polymer for simultaneous extraction and determination of sudan dyes by on-line solid phase extraction and high performance liquid chromatography.

    Science.gov (United States)

    Zhao, Chuande; Zhao, Ting; Liu, Xiaoyan; Zhang, Haixia

    2010-11-05

    A novel molecularly imprinted polymer was synthesized with attapulgite employed as matrix, which is simple and time-saving. In this method, sudan I was chosen as template molecule, 2-vinylpyridine as functional monomer and ethylene glycol dimethacrylate as cross-linking agent, respectively. The imprinted polymer was characterized by the infrared spectroscopy and transmission electron microscopy. Then the selectivity experiments were performed on sudan dyes and the recognition coefficients for sudan I, sudan II, sudan III and sudan IV were 2.9, 1.9, 1.9 and 2.3, respectively. As the packing material of solid-phase extraction, the imprinted polymer has been applied to on-line concentration of the four sudan dyes in samples from Yellow River water, tomato sauce and sausage. The corresponding analytical methods to determine these sudan dyes have been developed. The limits of detection for these sudan dyes were in the range of 0.01-0.05 ng mL(-1) for Yellow River water, 1.0-3.0 ng g(-1) for tomato sauce and 0.8-3.0 ng g(-1) for sausage. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  6. Sorption of 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (DDT) by clays and organoclays.

    Science.gov (United States)

    Dai, Rong-Ling; Zhang, Gang-Ya; Gu, Xiao-Zhi; Wang, Ming Kuang

    2008-10-01

    This study focused on the sorption isotherms of 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (p,p'-DDT) and 1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene (p,p'-DDE) on different original clays (i.e., zeolite, montmorillonite and attapulgite) and organoclay complexes. Sorption of organic pollutants was determined using gas chromatographic (GC) techniques to investigate the sorption behavior, and characterize the effect of, different organic cations. The original clays only sorbed low amounts of p,p'-DDT and p,p'-DDE, and the sorptive curves can be classified as L-shaped. Organoclays exhibited higher amounts of p,p'-DDT and p,p'-DDE sorption. The p,p'-DDT and p,p'-DDE sorption increased with increasing total organic carbon (OC) content of the organoclays. For hexadecyltrimethylammonium (HDTMA)-modified organoclays, the dominant adsorptive medium showed the partitioning sorption of hydrophobic-hydrophobic interaction, indicating no competitive sorption. The sorptive curves can be classified as C-shaped of constant partition (CP). However, benzyltrimethylammonium (BTMA)-modified organoclays exhibited competitive sorption. The sorption isotherm curves can be classified as S-shaped. The sorptive capacity of the HDTMA-modified organoclays for p,p'-DDT were higher than those for p,p'-DDE, but the BTMA-modified organoclays showed a reverse trend. This can be attributed to the different structures and shapes of organic cations, giving different sorptive mechanisms. The p,p'-DDT and p,p'-DDE sorption onto HDTMA-modified organoclays were caused by chemical interaction, with the BTMA modified organoclays occuring due to physical sorption.

  7. Evaluation of the endotoxin binding efficiency of clay minerals using the Limulus Amebocyte lysate test: an in vitro study.

    Science.gov (United States)

    Schaumberger, Simone; Ladinig, Andrea; Reisinger, Nicole; Ritzmann, Mathias; Schatzmayr, Gerd

    2014-01-02

    Endotoxins are part of the cell wall of Gram-negative bacteria. They are potent immune stimulators and can lead to death if present in high concentrations. Feed additives, which bind endotoxins in the gastrointestinal tract of animals, could help to prevent their negative impact. The objective of our study was to determine the potential of a bentonite (Bentonite 1), a sodium bentonite (Bentonite 2), a chemically treated smectite (Organoclay 1) and a modified attapulgite (Organoclay 2) to bind endotoxins in vitro. Polymyxin B served as positive control. The kinetic chromogenic Limulus Amebocyte lysate test was adapted to measure endotoxin activity. Firstly, a single sorption experiment (10 endotoxin units/mL (EU/mL)) was performed. Polymyxin B and organoclays showed 100% binding efficiency. Secondly, the adsorption efficiency of sorbents in aqueous solution with increasing endotoxin concentrations (2,450 - 51,700 EU/mL) was investigated. Organoclay 1 (0.1%) showed a good binding efficiency in aqueous solution (average 81%), whereas Bentonite 1 (0.1%) obtained a lower binding efficiency (21-54%). The following absorbent capacities were calculated in highest endotoxin concentration: 5.59 mg/g (Organoclay 1) > 3.97 mg/g (Polymyxin B) > 2.58mg/g (Organoclay 2) > 1.55 mg/g (Bentonite 1) > 1.23 mg/g (Bentonite 2). Thirdly, a sorption experiment in artificial intestinal fluid was conducted. Especially for organoclays, which are known to be unspecific adsorbents, the endotoxin binding capacity was significantly reduced. In contrast, Bentonite 1 showed comparable results in artificial intestinal fluid and aqueous solution. Based on the results of this in vitro study, the effect of promising clay minerals will be investigated in in vivo trials.

  8. Stabilization of inorganic mixed waste to pass the TCLP and STLC tests using clay and pH-insensitive additives

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, J.S.; Anson, J.R.; Painter, S.M. [Lawrence Livermore National Lab., CA (United States)] [and others

    1995-12-31

    Stabilization is a best demonstrated available technology, or BDAT. This technology traps toxic contaminants in a matrix so that they do not leach into the environment. The stabilization process routinely uses pozzolanic materials. Portland cement, fly ash-lime mixes, gypsum cements, and clays are some of the most common materials. In many instances, materials that can pass the Toxicity Characteristic Leaching Procedure (TCLP the federal leach test) or the Soluble Threshold Leachate Concentration (STLC the California leach test) must have high concentrations of lime or other caustic material because of the low pH of the leaching media. Both leaching media, California`s and EPA`s, have a pH of 5.0. California uses citric acid and sodium citrate while EPA uses acetic acid and sodium acetate. The concentration in the leachate is approximately ten times higher for the STLC procedure than the TCLP. These media can form ligands that provide excellent metal leaching. Because of the aggressive nature of the leaching medium, stabilized wastes in many cases will not pass the leaching tests. At the Lawrence Livermore National Laboratory (LLNL), additives such as dithiocarbamates and thiocarbonates, which are pH-insensitive and provide resistance to ligand formation, are used in the waste stabilization process. Attapulgite, montmorillonite, and sepiolite clays are used because they are forgiving (recipe can be adjusted before the matrix hardens) when formulating a stabilization matrix, and they have a neutral pH. By using these clays and additives, LLNL`s highly concentrated wastewater treatment sludges have passed the TCLP and STLC tests. The most frequently used stabilization process consists of a customized recipe involving waste sludge, clay and dithiocarbamate salt, mixed with a double planetary mixer into a pasty consistency. TCLP and STLC data on this waste matrix have shown that the process matrix meets land disposal requirements.

  9. Synthesis of novel inorganic-organic hybrid materials for simultaneous adsorption of metal ions and organic molecules in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xinliang [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology, Lanzhou University, Lanzhou 730000 (China); Li, Yanfeng, E-mail: liyf@lzu.edu.cn [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology, Lanzhou University, Lanzhou 730000 (China); Yu, Cui; Ma, Yingxia; Yang, Liuqing; Hu, Huaiyuan [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology, Lanzhou University, Lanzhou 730000 (China)

    2011-12-30

    Highlights: Black-Right-Pointing-Pointer Novel hybrid materials were synthesized and employed in the absorption of heavy metal and organic pollutants. Black-Right-Pointing-Pointer A novel method for amphiphilic adsorbent material synthesis was first reported in this paper. Black-Right-Pointing-Pointer The adsorbent material showed excellent adsorption capacity to Pb(II) and phenol. - Abstract: In this paper, atom transfer radical polymerization (ATRP) and radical grafting polymerization were combined to synthesize a novel amphiphilic hybrid material, meanwhile, the amphiphilic hybrid material was employed in the absorption of heavy metal and organic pollutants. After the formation of attapulgite (ATP) ATRP initiator, ATRP block copolymers of styrene (St) and divinylbenzene (DVB) were grafted from it as ATP-P(S-b-DVB). Then radical polymerization of acrylonitrile (AN) was carried out with pendent double bonds in the DVD units successfully, finally we got the inorganic-organic hybrid materials ATP-P(S-b-DVB-g-AN). A novel amphiphilic hybrid material ATP-P(S-b-DVB-g-AO) (ASDO) was obtained after transforming acrylonitrile (AN) units into acrylamide oxime (AO) as hydrophilic segment. The adsorption capacity of ASDO for Pb(II) could achieve 131.6 mg/g, and the maximum removal capacity of ASDO towards phenol was found to be 18.18 mg/g in the case of monolayer adsorption at 30 Degree-Sign C. The optimum pH was 5 for both lead and phenol adsorption. The adsorption kinetic suited pseudo-second-order equation and the equilibrium fitted the Freundlich model very well under optimal conditions. At the same time FT-IR, TEM and TGA were also used to study its structure and property.

  10. On the mineral characteristics and geochemistry of the Florida phosphate of Four Corners and Hardee County mines

    Science.gov (United States)

    Baghdady, Ashraf R.; Howari, Fares M.; Al-Wakeel, Mohamed I.

    2016-08-01

    The Florida phosphate deposits in Four Corners and Hardee County mines are composed mainly of phosphate minerals and quartz in addition to subordinate proportions of feldspars, dolomite, calcite, gypsum, kaolinite, attapulgite and montmorillonite. These phosphorites contain three structurally different types of mudclasts: massive mudclasts, mudclasts with concentric structure and mudclasts consisting of agglomerates of apatite microparticles. The latter are represented by particles resembling phosphatized fossil bacteria associated with microbial filaments, and hollow apatite particles having surfacial coatings and connected to microbial filaments. The Florida phosphate particles are reworked and vary in mineral composition, color and shape. They are composed of a mixture of well-crystalline species including carbonate fluorapatite (francolite), carbonate apatite and fluorapatite. The color variation of the phosphate particles is related to difference in mineral composition, extent of diagenetic effects and reworking. The light-colored mudclasts are characterized by the presence of carbonate apatite and aluminum hydroxide phosphate minerals, whereas the dark mudclasts are rich in iron aluminum hydroxide phosphate minerals. The Florida phosphorites are suggested to be formed partially by authigenetic precipitation, replacement of the sea floor carbonate and diatomite, and microbial processes. With respect to elemental geochemistry, the analyzed particles contain small percentages of sulfur and iron which are related to the occurrence of pyrite. Traces of silica and alumina are recorded which may be attributed to the diagenetic. Some of the tested particles are relatively rich in phosphorous, fluorine, calcium, and magnesium, while poor in silicon, potassium and sulfur. Whereas, the bioclasts (especially teeth) are relatively rich in calcium, phosphorous and fluorine while poor in silicon, aluminum, magnesium and potassium. Hence, the microchemical analyses revealed

  11. Multifunctional cationic polymer decorated and drug intercalated layered silicate (NLS) for early gastric cancer prevention.

    Science.gov (United States)

    Jin, Xue; Hu, Xiurong; Wang, Qiwen; Wang, Kai; Yao, Qi; Tang, Guping; Chu, Paul K

    2014-03-01

    A multifunctional compound that can prevent early gastric cancer is produced by intercalating 3.20% and 1.64% of 5-FU into the interlayer of montmorillonite (MMT) and attapulgite (At), respectively. A low molecular weight cationic polymer, polyethylenimine (PEI1200), is incorporated into the surface of the 5-FU-MMT and 5-FU-At to form the multifunctional layered silicate (NLS). The chemical structure and surface morphology of the NLS are characterized and the model drug of 5-FU is intercalated into the MMT and At. The cell viability determined by the MTT assay on the BGC-823 cell lines show that over 80% of the cells are live under the experimental conditions. The PEI-5-FU-MMT and PEI-5-FU-At can carry the report gene to the BGC-823 and COS-7 cell lines efficiently. Western blotting assay shows that the pTrail protein of the BGC-823 cell lines treated with PEI-5-FU-MMT/pTrail and PEI-5-FU-At/pTrail is up-regulated, whereas the cFLIP protein is down-regulated at 48 h compared to free 5-FU, PEI1200, MMT, and At, providing evidence that the NLS can increase the sensitivity of pTrail gene and improve the effects of pTrail gene therapy. Moreover, the Helicobacter pylori (HP) bacteria are adsorbed and immobilized efficiently on the surface of the NLS according to the LIVE/DEAD(®) BacLight™ Bacterial Viability Kit in the confocal fluorescence analysis. The histochemical analyses provide evidence that NLS/pTrail can prevent early gastric mucosa effectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Nanomodification of Cementitious Materials: Fresh State and Early Age

    Science.gov (United States)

    Kawashima, Shiho

    Concrete is heterogeneous at all length scales and its microstructure evolves continuously over decades. Through the use of nanoparticles, it is possible to alter the microstructure of cementitious materials from within the first microsecond to control its rheological and eventual mechanical properties. The continued development of this technology hinges on adopting a materials science approach to achieve proper processing and measurement techniques, both of which are investigated in this study. Novel rheological methods are implemented to evaluate the fresh-state properties of cement pastes modified with nano-sized attapulgite clays. Previous studies have demonstrated that clays can reduce the lateral pressure exerted on formwork by self-consolidating concrete (SCC). It is hypothesized that this is tied to the influence of clays on two rheological properties of SCC: material cohesion and structural rebuilding. Therefore the effect of clays on adhesive properties is measured by the tack test and rate of rebuilding is evaluated by measuring relaxation time during creep. In addition, due to the complexity of cement rheology, i.e. simultaneous thixotropic rebuilding and hydration, the results are supplemented with a measure of the viscoelastic properties obtained through oscillatory shear rheometry. It is found that clays significantly increase cohesion and accelerate structural recovery of cement pastes. The results also indicate that the tack test is a suitable method for measuring the adhesive properties and structural evolution of cementitious materials in the fresh state. The potential of calcium carbonate (CaCO3) nanoparticles in improving the early-age properties of fly ash-cement pastes is investigated. The focus is on dispersing the CaCO3 nanoparticles to enhance their effect and limit the addition level necessary. The selected approach involves sonication in an aqueous medium and use of surfactant. Degree of dispersion and stability are quantitatively

  13. Detection of soluble and fixed NH 4+ in clay minerals by DTA and IR reflectance spectroscopy: a potential tool for planetary surface exploration

    Science.gov (United States)

    Bishop, J. L.; Banin, A.; Mancinelli, R. L.; Klovstad, M. R.

    2002-01-01

    Nitrogen is an essential element for life. It is the only element among the six major biogenic elements, C, N, S, O, P, H, whose presence in the Martian soil has not been positively and directly established. We describe here a study assessing the ability to detect NH 4+ in soils using two methods: differential thermal analysis (DTA) and infrared (IR) reflectance spectroscopy. Four standard clay minerals (kaolinite, montmorillonite, illite and attapulgite) and an altered tephra sample from Mauna Kea were treated with NH 4+ in this study, then leached in order to remove the non-chemically bound ammonium species. Aliquots of these NH 4+-treated and then leached samples were analyzed by DTA and IR reflectance spectroscopy to quantify the detectability of soluble and sorbed/fixed NH 4+. An exotherm at 270-280°C was clearly detected in the DTA curves of NH 4+-treated (non-leached) samples. This feature is assigned to the thermal decomposition reaction of NH 4+. Spectral bands observed at 1.56, 2.05, 2.12, 3.06, 3.25, 3.55, 4.2, 5.7 and 7.0 μm in the reflectance spectra of NH 4+-treated and leached samples are assigned to the sorbed/fixed ammonium in the clays. The montmorillonite spectra have shown the most intense absorption features due to fixed ammonium among the leached samples in this study, as a result of its high cation sorption capacity. It is concluded that the presence of fixed NH 4+ in clays may be detected by IR reflectance or emission spectroscopy. Distinction between soluble and fixed NH 4+ may be achieved through the presence or absence of several spectral features assigned to the fixed NH 4+ moiety and, specifically, by use of the 4.2 μm feature assigned to solution NH 4+. Thermal analyses furnish supporting evidence of ammonium in the clays/soil through detection of N released at temperatures of 270-330°C. Based on the results of this study, it is estimated that IR spectra measured from a rover should be able to detect ammonium if present above a few

  14. Total allowable concentrations of monomeric inorganic aluminum and hydrated aluminum silicates in drinking water.

    Science.gov (United States)

    Willhite, Calvin C; Ball, Gwendolyn L; McLellan, Clifton J

    2012-05-01

    Maximum contaminant levels are used to control potential health hazards posed by chemicals in drinking water, but no primary national or international limits for aluminum (Al) have been adopted. Given the differences in toxicological profiles, the present evaluation derives total allowable concentrations for certain water-soluble inorganic Al compounds (including chloride, hydroxide, oxide, phosphate and sulfate) and for the hydrated Al silicates (including attapulgite, bentonite/montmorillonite, illite, kaolinite) in drinking water. The chemistry, toxicology and clinical experience with Al materials are extensive and depend upon the particular physical and chemical form. In general, the water solubility of the monomeric Al materials depends on pH and their water solubility and gastrointestinal bioavailability are much greater than that of the hydrated Al silicates. Other than Al-containing antacids and buffered aspirin, food is the primary source of Al exposure for most healthy people. Systemic uptake of Al after ingestion of the monomeric salts is somewhat greater from drinking water (0.28%) than from food (0.1%). Once absorbed, Al accumulates in bone, brain, liver and kidney, with bone as the major site for Al deposition in humans. Oral Al hydroxide is used routinely to bind phosphate salts in the gut to control hyperphosphatemia in people with compromised renal function. Signs of chronic Al toxicity in the musculoskeletal system include a vitamin D-resistant osteomalacia (deranged membranous bone formation characterized by accumulation of the osteoid matrix and reduced mineralization, reduced numbers of osteoblasts and osteoclasts, decreased lamellar and osteoid bands with elevated Al concentrations) presenting as bone pain and proximal myopathy. Aluminum-induced bone disease can progress to stress fractures of the ribs, femur, vertebrae, humerus and metatarsals. Serum Al ≥100 µg/L has a 75-88% positive predictive value for Al bone disease. Chronic Al

  15. Les formations marines et continentales intervolcaniques des îles Canaries orientales (Grande Canarie. Fuerteventura et Lanzarote: Stratigraphie et signiflcation paleoclimatique.

    Directory of Open Access Journals (Sweden)

    Meco, J.

    1985-08-01

    especies de Patella, y de carácter fresco (Meco, 1977 se habían relacionado con episodios volcánicos datados por K/Ar (Meco y Stearns, 1981 y se relacionan ahora, por primera vez, con algunos trazos rápidos de la pedogénesis, consecuencia de la evaporación y neoformación arcillosa en materiales volcánicos constantemente renovados. A medida que las series volcánicas fosilizan alteraciones se eliminan algunos efectos acumulativos del tiempo en los paleosuelos. La presencia de cuarzo sahariano, mineral ausente en los productos volcánicos, y la coexistencia de los extremos más alejados de la evolución pedológica, como las costras yesíferas o con attapulgita desérticas y las bauxitas niquelíferas con talco de regiones tropicales húmedas (pomel, 1985 permiten, en todo caso, obtener conclusiones coherentes.
    Faune et sols fossilisés par des volcans actifs depuis plus de 20 M. A. à l'époque actuel le attestent une alternance d'influences guinéennes chaudes et humides et de flux sahariens secs liés à l'apport d'eaux lusitaniques fraîches. Les preuves paléontologiques sont fondées sur la présence du Strombus coronatus au Pliocene inférieur et du Strombus bubonius au Pleistocéne supérieur et de Patella au Pleistocene moyen et supérieur el: au Holocene (Meco, 1977. Les preuves pédologiques reposent sur la présence de quartz saharien, minéral absent dans les produits volcaniques et sur la coexistence des póles les plus extremes de l'évolution pédologique : croûtes gypseuses ou à attapulgite désertiques et bauxites nickeliféres a talc des régions tropicales humides (Pomel, 1984.