WorldWideScience

Sample records for ats-6 engineering performance

  1. Hypersonic research engine project. Phase 2: Preliminary report on the performance of the HRE/AIM at Mach 6

    Science.gov (United States)

    Sun, Y. H.; Sainio, W. C.

    1975-01-01

    Test results of the Aerothermodynamic Integration Model are presented. A program was initiated to develop a hydrogen-fueled research-oriented scramjet for operation between Mach 3 and 8. The primary objectives were to investigate the internal aerothermodynamic characteristics of the engine, to provide realistic design parameters for future hypersonic engine development as well as to evaluate the ground test facility and testing techniques. The engine was tested at the NASA hypersonic tunnel facility with synthetic air at Mach 5, 6, and 7. The hydrogen fuel was heated up to 1500 R prior to injection to simulate a regeneratively cooled system. The engine and component performance at Mach 6 is reported. Inlet performance compared very well both with theory and with subscale model tests. Combustor efficiencies up to 95 percent were attained at an equivalence ratio of unity. Nozzle performance was lower than expected. The overall engine performance was computed using two different methods. The performance was also compared with test data from other sources.

  2. Performance Evaluation of the T6 Ion Engine

    Science.gov (United States)

    Snyder, John Steven; Goebel, Dan M.; Hofer, Richard R.; Polk, James E.; Wallace, Neil C.; Simpson, Huw

    2010-01-01

    The T6 ion engine is a 22-cm diameter, 4.5-kW Kaufman-type ion thruster produced by QinetiQ, Ltd., and is baselined for the European Space Agency BepiColombo mission to Mercury and is being qualified under ESA sponsorship for the extended range AlphaBus communications satellite platform. The heritage of the T6 includes the T5 ion thruster now successfully operating on the ESA GOCE spacecraft. As a part of the T6 development program, an engineering model thruster was subjected to a suite of performance tests and plume diagnostics at the Jet Propulsion Laboratory. The engine was mounted on a thrust stand and operated over its nominal throttle range of 2.5 to 4.5 kW. In addition to the typical electrical and flow measurements, an E x B mass analyzer, scanning Faraday probe, thrust vector probe, and several near-field probes were utilized. Thrust, beam divergence, double ion content, and thrust vector movement were all measured at four separate throttle points. The engine performance agreed well with published data on this thruster. At full power the T6 produced 143 mN of thrust at a specific impulse of 4120 seconds and an efficiency of 64%; optimization of the neutralizer for lower flow rates increased the specific impulse to 4300 seconds and the efficiency to nearly 66%. Measured beam divergence was less than, and double ion content was greater than, the ring-cusp-design NSTAR thruster that has flown on NASA missions. The measured thrust vector offset depended slightly on throttle level and was found to increase with time as the thruster approached thermal equilibrium.

  3. ATS-6 engineering performance report. Volume 2: Orbit and attitude controls

    Science.gov (United States)

    Wales, R. O. (Editor)

    1981-01-01

    Attitude control is reviewed, encompassing the attitude control subsystem, spacecraft attitude precision pointing and slewing adaptive control experiment, and RF interferometer experiment. The spacecraft propulsion system (SPS) is discussed, including subsystem, SPS design description and validation, orbital operations and performance, in-orbit anomalies and contingency operations, and the cesium bombardment ion engine experiment. Thruster failure due to plugging of the propellant feed passages, a major cause for mission termination, are considered among the critical generic failures on the satellite.

  4. Mercury Marine's New High Performance 6-Cylinder Engine Family: Next Generation of Marine Technology

    Energy Technology Data Exchange (ETDEWEB)

    Reid, T.; Poirier, R.; Stueven, J.; Beilfuss, B.; Bruestle, C.

    2004-07-01

    With a completely new developed inline 6-cylinder supercharged engine family, it was possible to meet numerous and challenging requirements of a 4-stroke engine concept for the marine outboard engine market. Superior engine performance, best in class power-to-engine weight ratio and smooth NVH were achieved to establish the next customer expectation level for a marine engine. Power steering, in conjunction with electronic throttle and shift, as well as new engine management features for safe operation set a new standard for a marine propulsion system.

  5. CF6 jet engine performance improvement program. Task 1: Feasibility analysis

    Science.gov (United States)

    Fasching, W. A.

    1979-01-01

    Technical and economic engine improvement concepts selected for subsequent development include: (1) fan improvement; (2) short core exhaust; (3) HP turbine aerodynamic improvement; (4) HP turbine roundness control; (5) HP turbine active clearance control; and (6) cabin air recirculation. The fuel savings for the selected engine modification concepts for the CF6 fleet are estimated.

  6. Effect Of Compression Ratio On The Performance Of Diesel Engine At Different Loads.

    OpenAIRE

    Abhishek Reddy G; Nirmal Pratap Singh

    2015-01-01

    Variable compression ratio (VCR) technology has long been recognized as a method for improving the automobile engine performance, efficiency, fuel economy with reduced emission. The main feature of the VCR engine is to operate at different compression ratio, by changing the combustion chamber volume, depending on the vehicle performance needs .The need to improve the performance characteristics of the IC Engine has necessitated the present research. Increasing the compression rati...

  7. Lean mixture engine testing and evaluation program. [for automobile engine pollution and fuel performances

    Science.gov (United States)

    Dowdy, M. W.; Hoehn, F. W.; Griffin, D. C.

    1975-01-01

    Experimental results for fuel consumption and emissions are presented for a 350 CID (5.7 liter) Chevrolet V-8 engine modified for lean operation with gasoline. The lean burn engine achieved peak thermal efficiency at an equivalence ratio of 0.75 and a spark advance of 60 deg BTDC. At this condition the lean burn engine demonstrated a 10% reduction in brake specific fuel consumption compared with the stock engine; however, NOx and hydrocarbon emissions were higher. With the use of spark retard and/or slightly lower equivalence ratios, the NOx emissions performance of the stock engine was matched while showing a 6% reduction in brake specific fuel consumption. Hydrocarbon emissions exceeded the stock values in all cases. Diagnostic data indicate that lean performance in the engine configuration tested is limited by ignition delay, cycle-to-cycle pressure variations, and cylinder-to-cylinder distribution.

  8. Comparative engine performance and emission analysis of CNG and gasoline in a retrofitted car engine

    International Nuclear Information System (INIS)

    Jahirul, M.I.; Masjuki, H.H.; Saidur, R.; Kalam, M.A.; Jayed, M.H.; Wazed, M.A.

    2010-01-01

    A comparative analysis is being performed of the engine performance and exhaust emission on a gasoline and compressed natural gas (CNG) fueled retrofitted spark ignition car engine. A new 1.6 L, 4-cylinder petrol engine was converted to the computer incorporated bi-fuel system which operated with either gasoline or CNG using an electronically controlled solenoid actuated valve mechanism. The engine brake power, brake specific fuel consumption, brake thermal efficiency, exhaust gas temperature and exhaust emissions (unburnt hydrocarbon, carbon mono-oxide, oxygen and carbon dioxides) were measured over a range of speed variations at 50% and 80% throttle positions through a computer based data acquisition and control system. Comparative analysis of the experimental results showed 19.25% and 10.86% reduction in brake power and 15.96% and 14.68% reduction in brake specific fuel consumption (BSFC) at 50% and 80% throttle positions respectively while the engine was fueled with CNG compared to that with the gasoline. Whereas, the retrofitted engine produced 1.6% higher brake thermal efficiency and 24.21% higher exhaust gas temperature at 80% throttle had produced an average of 40.84% higher NO x emission over the speed range of 1500-5500 rpm at 80% throttle. Other emission contents (unburnt HC, CO, O 2 and CO 2 ) were significantly lower than those of the gasoline emissions.

  9. Experimental study of dual fuel engine performance using variable LPG composition and engine parameters

    International Nuclear Information System (INIS)

    Elnajjar, Emad; Selim, Mohamed Y.E.; Hamdan, Mohammad O.

    2013-01-01

    Highlights: • The effect of using variable LPG is studied. • Five fuels with propane to butane % volume ratio are: 100-70-55-25-0. • 100% Propane composition shows the highest noise levels with similar performance. • At 45° BTDC injection timing 55% Propane LPG the only fuel experience knocking. • LPG fuels gave similar engine performance, with differences in levels of noise. - Abstract: The present work investigates experimentally the effect of LPG fuel with different composition and engine parameters on the performance of a dual compression engine. Five different blends of LPG fuels are used with Propane to Butane volume ratio of 100:0, 70:30, 55:45, 25:75, and 0:100. A single cylinder, naturally aspirated, four strokes, indirectly injected, water cooled modified Ricardo E6 engine, is used in this study. The study is carried out by measuring the cylinder pressure, engine load, engine speed, crank angle, and the fuel’s flow rate. The engine performance under variable LPG fuel composition, engine load, pilot fuel injection timing, compression ratio, pilot fuel mass and engine speed, are estimated by comparing the following engine parameters: the cylinder maximum pressure, the indicated mean effective pressure, the maximum rate of pressure rise, and the thermal efficiency. The experimental data indicates that the engine parameters are playing a major role on the engine’s performance. Different LPG fuel composition did not show a major effect on the engine efficiency but directly impacted the levels of generated combustion noise

  10. Thermodynamic analysis on optimum performance of scramjet engine at high Mach numbers

    International Nuclear Information System (INIS)

    Zhang, Duo; Yang, Shengbo; Zhang, Silong; Qin, Jiang; Bao, Wen

    2015-01-01

    In order to predict the maximum performance of scramjet engine at flight conditions with high freestream Mach numbers, a thermodynamic model of Brayton cycle was utilized to analyze the effects of inlet pressure ratio, fuel equivalence ratio and the upper limit of gas temperature to the specific thrust and the fuel impulse of the scramjet considering the characteristics of non-isentropic compression in the inlet. The results show that both the inlet efficiency and the temperature limit in the combustor have remarkable effects on the overall engine performances. Different with the ideal Brayton cycles assuming isentropic compression without upper limit of gas temperature, both the maximum specific thrust and the maximum fuel impulse of a scramjet present non-monotonic trends against the fuel equivalence ratio in this study. Considering the empirical design efficiencies of inlet, there is a wide range of fuel equivalence ratios in which the fuel impulses remain at high values. Moreover, the maximum specific thrust can also be achieved with a fuel equivalence ratio near this range. Therefore, it is possible to achieve an overall high performance in a scramjet at high Mach numbers. - Highlights: • Thermodynamic analysis with Brayton cycle on overall performances of scramjet. • The compression loss in the inlet was considered in predicting scram-mode operation. • Non-monotonic trends of engine performances against fuel equivalence ratio.

  11. Performance of a hydrogen-enriched ethanol engine at unthrottled and lean conditions

    International Nuclear Information System (INIS)

    Zhang, Bo; Ji, Changwei; Wang, Shuofeng

    2016-01-01

    Highlights: • H_2 addition eased cyclic variation of ethanol engine at unthrottled condition. • H_2-blended ethanol engine gains better efficiency at lean conditions. • Bmep of H_2-blended ethanol engine could be controlled by lean burning. • H_2 addition results in reduced exhaust loss and HC emissions. - Abstract: Concerning the throttling loss under part load conditions, it is feasible to further improve the engine thermal efficiency through operating the engine under the unthrottled condition and controlling its load by changing the excess air ratio. However, the narrow flammability of ethanol may lead the ethanol engine to encounter high cyclic variations under unthrottled and lean conditions. The addition of hydrogen is potentially helpful for solving this problem. In this test, the engine was run under an speed of 1400 rpm and unthrottled conditions. The hydrogen volume fractions in the intake were respectively kept at 0% and 3%. For a given hydrogen blending level, the ethanol flow rate was reduced to enable the engine to run under lean conditions. The results showed that the engine efficiency was improved with the blending of hydrogen. The highest thermal efficiency was improved by 6.07% after blending 3% hydrogen to the intake air. The addition of hydrogen could increase the engine torque output at lean conditions. Both cooling and exhaust losses were decreased after the hydrogen enrichment while adopting the lean combustion strategy. The hydrogen addition contributed to the extended lean burn limit and decreased cyclic variation under lean conditions. HC and CO emissions were decreased whereas NOx emissions were increased after the blending of hydrogen.

  12. Comparative performance analysis of combined-cycle pulse detonation turbofan engines (PDTEs

    Directory of Open Access Journals (Sweden)

    Sudip Bhattrai

    2013-09-01

    Full Text Available Combined-cycle pulse detonation engines are promising contenders for hypersonic propulsion systems. In the present study, design and propulsive performance analysis of combined-cycle pulse detonation turbofan engines (PDTEs is presented. Analysis is done with respect to Mach number at two consecutive modes of operation: (1 Combined-cycle PDTE using a pulse detonation afterburner mode (PDA-mode and (2 combined-cycle PDTE in pulse detonation ramjet engine mode (PDRE-mode. The performance of combined-cycle PDTEs is compared with baseline afterburning turbofan and ramjet engines. The comparison of afterburning modes is done for Mach numbers from 0 to 3 at 15.24 km altitude conditions, while that of pulse detonation ramjet engine (PDRE is done for Mach 1.5 to Mach 6 at 18.3 km altitude conditions. The analysis shows that the propulsive performance of a turbine engine can be greatly improved by replacing the conventional afterburner with a pulse detonation afterburner (PDA. The PDRE also outperforms its ramjet counterpart at all flight conditions considered herein. The gains obtained are outstanding for both the combined-cycle PDTE modes compared to baseline turbofan and ramjet engines.

  13. IMPROVEMENT OF PERFORMANCE OF DUAL FUEL ENGINE OPERATED AT PART LOAD

    Directory of Open Access Journals (Sweden)

    N. Kapilan

    2010-12-01

    Full Text Available Rising petroleum prices, an increasing threat to the environment from exhaust emissions, global warming and the threat of supply instabilities has led to the choice of inedible Mahua oil (MO as one of the main alternative fuels to diesel oil in India. In the present work, MO was converted into biodiesel by transesterification using methanol and sodium hydroxide. The cost of Mahua oil biodiesel (MOB is higher than diesel. Hence liquefied petroleum gas (LPG, which is one of the cheapest gaseous fuels available in India, was fumigated along with the air to reduce the operating cost and to reduce emissions. The dual fuel engine resulted in lower efficiency and higher emissions at part load. Hence in the present work, the injection time was varied and the performance of the dual fuel engine was studied. From the engine tests, it is observed that an advanced injection time results in higher efficiency and lower emissions. Hence, advancing the injection timing is one of the ways of increasing the efficiency of LPG+MOB dual fuel engine operated at part load.

  14. Effect of biodiesel blends on engine performance and exhaust emission for diesel dual fuel engine

    International Nuclear Information System (INIS)

    Mohsin, R.; Majid, Z.A.; Shihnan, A.H.; Nasri, N.S.; Sharer, Z.

    2014-01-01

    Highlights: • Engine and emission characteristics of biodiesel DDF engine system were measured. • Biodiesel DDF fuelled system produced high engine performance. • Lower hydrocarbons and carbon dioxide was emitted by biodiesel DDF system. • Biodiesel DDF produced slightly higher carbon monoxide and nitric oxides emission. - Abstract: Biodiesel derived from biomass is a renewable source of fuel. It is renovated to be the possible fuel to replace fossil derived diesel due to its properties and combustion characteristics. The integration of compressed natural gas (CNG) in diesel engine known as diesel dual fuel (DDF) system offered better exhaust emission thus become an attractive option for reducing the pollutants emitted from transportation fleets. In the present study, the engine performance and exhaust emission of HINO H07C DDF engine; fuelled by diesel, biodiesel, diesel–CNG, and biodiesel–CNG, were experimentally studied. Biodiesel and diesel fuelled engine system respectively generated 455 N m and 287 N m of torque. The horse power of biodiesel was found to be 10–20% higher compared to diesel. Biodiesel–CNG at 20% (B20-DDF) produced the highest engine torque compared to other fuel blends Biodiesel significantly increase the carbon monoxide (15–32%) and nitric oxides (6.67–7.03%) but in contrast reduce the unburned hydrocarbons (5.76–6.25%) and carbon dioxide (0.47–0.58%) emissions level. These results indicated that biodiesel could be used without any engine modifications as an alternative and environmentally friendly fuel especially the heavy transportation fleets

  15. Effect of temperature change at inlet of engine on the corrected performance of turbofan engine

    Energy Technology Data Exchange (ETDEWEB)

    Kozu, Masao; Yajima, Satoshi [Defence Agency, Tokyo, JapanIshikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1989-06-10

    Theoretical consideration on the effect of inlet temperature change of engine on the engine performance was conducted, and soundness of the result was appreciated by applying it to the experimental result of turbofan engine. As the theoretical consideration, premises of Buckingham's fundamental theorem was corrected by Reynolds Number and by the consideration on the effect of inlet temperature on gas constant and specific heat ratio. By using the result, correction factors were calculated from the experimental result of an actual turbo-fan engine. The correction factors were applied to the other engine test result and confirmed satisfactory soundness. 4 refs., 11 figs.

  16. Fuel Maps for the GEP 6.5LT Engine When Operating on at J/JP-8 Fuel Blends at Ambient and Elevated Temperatures

    Science.gov (United States)

    2015-04-01

    system. The new calibrated fuel injection pump and injectors were installed, and the fuel injection timing of the new fuel injection system was set to...Product 6.5L Turbocharged diesel engine at two inlet temperature conditions. The GEP 6.5LT engine represents legacy diesel engine design with...derived cetane number DF-2 Diesel Fuel number 2 ft Foot HEFA Hydro-treated Esters and Fatty Acid(s) HP or hp Horsepower hr Hour in Inch in³ cubic

  17. Perturbing engine performance measurements to determine optimal engine control settings

    Science.gov (United States)

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2014-12-30

    Methods and systems for optimizing a performance of a vehicle engine are provided. The method includes determining an initial value for a first engine control parameter based on one or more detected operating conditions of the vehicle engine, determining a value of an engine performance variable, and artificially perturbing the determined value of the engine performance variable. The initial value for the first engine control parameter is then adjusted based on the perturbed engine performance variable causing the engine performance variable to approach a target engine performance variable. Operation of the vehicle engine is controlled based on the adjusted initial value for the first engine control parameter. These acts are repeated until the engine performance variable approaches the target engine performance variable.

  18. Performance and exhaust emissions of a biodiesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Canakci, Mustafa [Kocaeli University, Technical Education Faculty, 41380 Kocaeli (Turkey); Erdil, Ahmet [Kocaeli University, Engineering Faculty, 41040 Kocaeli (Turkey); Arcaklioglu, Erol [Kirikkale University, Engineering Faculty, 71450 Kirikkale (Turkey)

    2006-06-15

    In this study, the applicabilities of Artificial Neural Networks (ANNs) have been investigated for the performance and exhaust-emission values of a diesel engine fueled with biodiesels from different feedstocks and petroleum diesel fuels. The engine performance and emissions characteristics of two different petroleum diesel-fuels (No. 1 and No. 2), biodiesels (from soybean oil and yellow grease), and their 20% blends with No. 2 diesel fuel were used as experimental results. The fuels were tested at full load (100%) at 1400-rpm engine speed, where the engine torque was 257.6Nm. To train the network, the average molecular weight, net heat of combustion, specific gravity, kinematic viscosity, C/H ratio and cetane number of each fuel are used as the input layer, while outputs are the brake specific fuel-consumption, exhaust temperature, and exhaust emissions. The back-propagation learning algorithm with three different variants, single layer, and logistic sigmoid transfer function were used in the network. By using weights in the network, formulations have been given for each output. The network has yielded R{sup 2} values of 0.99 and the mean % errors are smaller than 4.2 for the training data, while the R{sup 2} values are about 0.99 and the mean % errors are smaller than 5.5 for the test data. The performance and exhaust emissions from a diesel engine, using biodiesel blends with No. 2 diesel fuel up to 20%, have been predicted using the ANN model. sing the ANN model. (author)

  19. Evaluating the effect of methanol-unleaded gasoline blends on SI engine performance

    Directory of Open Access Journals (Sweden)

    B Sabahi

    2015-09-01

    99.9% was used in the blends. All experiments were performed at 50% open throttle. Engine performance characteristics for fuel blends were compared with unleaded gasoline. Results and Discussion: The experimental results showed that adding methanol to unleaded gasoline increased brake torque and brake power in the M10 and decreased in the M30 compared to merely usingpure gasoline. Engine behavior when using M20 blend was similar to that of using pure gasoline (M0. The brake power and torque at engine speeds 2500, 3000, 3500 and 4000 rpm for M10 were increased by 5.42%, 7.76%, 14.89% and 16.78% compared to when these parameter relate to pure gasoline (M0, respectively, whereas the brake power and brake torque for M30 blend at engine speeds 2000, 2500, 3000, 3500, 4000 and 4500 rpm compared to when using pure gasoline was decreased by 6.91%, 8.1%, 6.23%, 5.29%, 4.59% and 14.27%, respectively. The experimental results showed that brake specific fuel consumption for M30 blend was increased at all engine speeds. The increase in specific fuel consumption values for this blend from 2000 - 4500 rpm were 17.78%, 16.38%, 13.06%, 10.99%, 14% and 19.11%, respectively. Also, the specific fuel consumption for the M20 was similar to the specific fuel consumption of pure gasoline. Comparing the brake specific fuel consumption of M10 to M0 fuel at 2500, 3000, 3500, 4000 and 4500 rpm this parameter was decreased by 1.9%, 6.03%, 8.91%, 13.85% and 5.55%, respectively. As the methanol content in the fuel blends increases, brake thermal efficiency also increases at all engine speeds and in all used fuels blends. The thermal efficiency at 2000, 2500, 3000, 3500, 4000 and 4500 rpm using M10 was increased by 3.73%, 8.12%, 12.43%, 15.57%, 22.34% and 12.01%, respectively in comparison to pure gasoline. These values for M20 were 4.14%, 7.82%, 10.12%, 13.37%, 18.94% and 13%, and for M30 were 2.69%, 3.89%, 6.35%, 8.01%, 5.12% and 0.78%. Conclusions: From the results of the study, the following

  20. Enhanced Massive Visualization of Engines Performance

    International Nuclear Information System (INIS)

    Rostand, N D; Eglantine, H; Jerôme, L

    2012-01-01

    Today, we are witnessing an increasing complexity of transport in order to deal with requirements of safety, security, reliability and efficiency. Such transport is generally equipped with drive systems; it is nevertheless for engine manufacturers to overcome the performance requirements of energy efficiency throughout their operations. To this end, this article proposes a performance monitoring solution for a large fleet of engines in operation. It uses a pre-calibrated physical model developed by the engine manufacturer regarding the performance objectives as reference. The physical model is firstly decomposed into critical performance modules, and is secondly updated on current observations extracted at specific predefined operating conditions in order to derive residual errors status of each engine tested. Through a process of standardization of those contextual differences remaining, the solution offers a synthesis mapping to visualize the evolution of performance of each engine throughout its operations. This article describes the theoretical methodology of implementation mainly based on universal mathematical foundations, and vindicates the interests of its industrialization in the light of the proactive findings.

  1. Influence of anti-corrosion additive on the performance, emission and engine component wear characteristics of an IDI diesel engine fueled with palm biodiesel

    International Nuclear Information System (INIS)

    Ashraful, A.M.; Masjuki, H.H.; Kalam, M.A.; Rashedul, H.K.; Sajjad, H.; Abedin, M.J.

    2014-01-01

    Highlights: • Maximum engine performance was obtained at 2000 rpm for all fuel blends. • IRGALUBE 349 additive is enhances diesel engine performance. • Reduction of CO and NOx considerably using anti-corrosion additive except HC. • Engine wear decreases with using blended fuels with anti-corrosion additive. - Abstract: This study evaluates the effect of anti-corrosion additives such as 8% and 16% (vol.%) palm olein oil (PO) with ordinary diesel (OD) fuel on engine operation, emission behavior, engine part wear, and lubrication characteristics. This experiment was conducted on 4-cylinder and 4-stroke IDI diesel engine at different engine speed ranging from 1200 to 2800 RPM with 30% throttle setting under full load condition. The properties of the palm olein oil blends meet the ASTM D6751 and EN 14214 standards. At 2000 rpm, the experimental results revealed that the POD8A (0.2% Additive + 8% PO + 92% OD) and POD16A (0.2% Additive + 16% PO + 84% OD) blended fuels produced 0.5% and 0.51% higher brake power as well as 1.45% and 1.25% higher torque than same blends without additive, respectively. In comparison with ODF, the brake specific fuel consumption (BSFC) was found 1.8% and 3.1% higher for POD8A and POD16A blends, respectively. Anti-corrosion additive is found more effectual in enhancing the engine performance as such additive helps in timely ignition for complete burn in the combustion chamber. The results from engine emission indicated that POD8A and POD16A blended fuel reduced CO emissions by 11% and 6.6% and NOx emission by 2.5% and 1.09%, respectively in compared with OD fuel. Although HC emissions for all blended fuel and OD fuel increased at higher engine speed, the average HC emissions of all blended fuel were not higher than OD fuel. The application of anti-corrosion additives in POD blends reduced ferrous (Fe) wear debris concentration (WBC) by 17.3%. The reductions in WBC were about 16.1%, 10.8%, and 19.3%, 17.6% for copper (Cu) and aluminum

  2. Performance of engineered barriers

    International Nuclear Information System (INIS)

    Rajaram, V.; Dean, P.V.; McLellan, S.A.

    1997-01-01

    Engineered barriers, both vertical and horizontal, have been used to isolate hazardous wastes from contact, precipitation, surface water and groundwater. The primary objective of this study was to determine the performance of subsurface barriers installed throughout the U.S. over the past 20 years to contain hazardous wastes. Evaluation of Resource Conservation and Recovery Act (RCRA) Subtitle C or equivalent caps was a secondary objective. A nationwide search was launched to select hazardous waste sites at which vertical barrier walls and/or caps had been used as the containment method. None of the sites selected had an engineered floor. From an initial list of 130 sites, 34 sites were selected on the basis of availability of monitoring data for detailed analysis of actual field performance. This paper will briefly discuss preliminary findings regarding the design, construction quality assurance/construction quality control (CQA/CQC), and monitoring at the 34 sites. In addition, the short-term performance of these sites (less than 5 years) is presented since very little long-term performance data was available

  3. Engineering performance metrics

    Science.gov (United States)

    Delozier, R.; Snyder, N.

    1993-03-01

    Implementation of a Total Quality Management (TQM) approach to engineering work required the development of a system of metrics which would serve as a meaningful management tool for evaluating effectiveness in accomplishing project objectives and in achieving improved customer satisfaction. A team effort was chartered with the goal of developing a system of engineering performance metrics which would measure customer satisfaction, quality, cost effectiveness, and timeliness. The approach to developing this system involved normal systems design phases including, conceptual design, detailed design, implementation, and integration. The lessons teamed from this effort will be explored in this paper. These lessons learned may provide a starting point for other large engineering organizations seeking to institute a performance measurement system accomplishing project objectives and in achieving improved customer satisfaction. To facilitate this effort, a team was chartered to assist in the development of the metrics system. This team, consisting of customers and Engineering staff members, was utilized to ensure that the needs and views of the customers were considered in the development of performance measurements. The development of a system of metrics is no different than the development of any type of system. It includes the steps of defining performance measurement requirements, measurement process conceptual design, performance measurement and reporting system detailed design, and system implementation and integration.

  4. Improving engineering performance by utilizing process indicators

    International Nuclear Information System (INIS)

    Roberts, T.E.

    1992-01-01

    The purpose of the work discussed in this paper was to develop engineering performance indicators used to facilitate improvement to the technical quality, cost-effectiveness, and delivery of engineering products and service. This work was specifically tailored for engineering support products and service associated with operating Florida Power and Light Company (FP and L) nuclear plants. The engineering process for the development of plant change packages was reviewed to identify critical in-process activities. Because each engineering project usually deals with a specific component or plant system, the different tasks are usually technically unique and of varying magnitudes. Although each engineering product may employ different analytical techniques or industry code requirements, several activities in documenting the engineering design process are generic. The quality of performance in these activities can be monitored analogously to the steps in a manufacturing process. This concept builds quality concepts into the package in lieu of inspecting package quality at the end of the process. The work has resulted in a valuable self-assessment tool that serves as a basis for engineering process improvements. The indicators are published in a semi-yearly performance report for FP and L contractors as well as FP and L in-house engineering work. Contracts have been set up to base fees on meeting targets established for the performance report. The ability to meet performance targets continues to improve

  5. Performance and emission characteristics of diesel engine with COME-Triacetin additive blends as fuel

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswara Rao, P. [Dept. of Mechanical Engineering, K I T S, Warangal- 506015, A. P. (India); Appa Rao, B.V. [Dept. of Marine Engineering, Andhra University, Visakhapatnam-530003, A. P. (India)

    2012-07-01

    The Triacetin [C9H14O6] additive is used an anti-knocking agent along with the bio-diesel in DI- diesel engine. In the usage of diesel fuel and neat bio-diesel knocking can be detected to some extent. The T- additive usage in the engine suppressed knocking, improved the performance and reduced tail pipe emissions. Comparative study is conducted using petro-diesel, bio-diesel, and with various additive blends of bio-diesel on DI- diesel engine. Coconut oil methyl ester (COME) is used with additive Triacetin (T) at various percentages by volume for all loads (No load, 25%, 50%, 75% and full load). The performance of engine is compared with neat diesel in respect of engine efficiency, exhaust emissions and combustion knock. Of the five Triacetin- biodiesel blends tried, 10% Triacetin combination with biodiesel proved encouraging in all respects of performance of the engine.

  6. Enhanced Engine Performance During Emergency Operation Using a Model-Based Engine Control Architecture

    Science.gov (United States)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2016-01-01

    This paper discusses the design and application of model-based engine control (MBEC) for use during emergency operation of the aircraft. The MBEC methodology is applied to the Commercial Modular Aero-Propulsion System Simulation 40k (CMAPSS40k) and features an optimal tuner Kalman Filter (OTKF) to estimate unmeasured engine parameters, which can then be used for control. During an emergency scenario, normally-conservative engine operating limits may be relaxed to increase the performance of the engine and overall survivability of the aircraft; this comes at the cost of additional risk of an engine failure. The MBEC architecture offers the advantage of estimating key engine parameters that are not directly measureable. Estimating the unknown parameters allows for tighter control over these parameters, and on the level of risk the engine will operate at. This will allow the engine to achieve better performance than possible when operating to more conservative limits on a related, measurable parameter.

  7. Performance comparison of a novel configuration of beta-type Stirling engines with rhombic drive engine

    International Nuclear Information System (INIS)

    Solmaz, Hamit; Karabulut, Halit

    2014-01-01

    Highlights: • The paper describes a novel arrangement of a beta-type Stirling engine. • Its performance was compared with rhombic drive engine. • The power output of the engine was found to be greater than rhombic drive. • Efficiency was found to be higher than rhombic drive at the same working fluid mass. • Efficiency was found to be lower than rhombic drive at the same charge pressure. - Abstract: This study presents a beta type Stirling engine mechanism and its performance analysis. The displacer motion of the engine is performed by a lever mechanism. The performance of the engine was investigated via comparing with a rhombic-drive engine possessing an equal sided rhombic. Comparison was made for kinematic behaviors, power and thermal efficiency. For comparison; the piston swept volume, the inner heat transfer area, the hot and cold end temperatures, the inner heat transfer coefficient, charge pressure and dead volumes were kept equal for both engines. As working fluid the helium was used. Thermodynamic treatments of engines were performed via the nodal analysis. The power of the lever driven engine was found to be greater than the power of the rhombic drive engine. Under the equal charge pressure, the thermal efficiency of the lever driven engine was found to be lower than the efficiency of the rhombic drive engine however, under the equal working fluid mass the thermal efficiency of the lever driven engine was found to be greater than that of the rhombic drive engine. The external volume and mass of the lever driven engine is lower than the rhombic drive engine

  8. Performance and driveline analyses of engine capacity in range extender engine hybrid vehicle

    Science.gov (United States)

    Praptijanto, Achmad; Santoso, Widodo Budi; Nur, Arifin; Wahono, Bambang; Putrasari, Yanuandri

    2017-01-01

    In this study, range extender engine designed should be able to meet the power needs of a power generator of hybrid electrical vehicle that has a minimum of 18 kW. Using this baseline model, the following range extenders will be compared between conventional SI piston engine (Baseline, BsL), engine capacity 1998 cm3, and efficiency-oriented SI piston with engine capacity 999 cm3 and 499 cm3 with 86 mm bore and stroke square gasoline engine in the performance, emission prediction of range extender engine, standard of charge by using engine and vehicle simulation software tools. In AVL Boost simulation software, range extender engine simulated from 1000 to 6000 rpm engine loads. The highest peak engine power brake reached up to 38 kW at 4500 rpm. On the other hand the highest torque achieved in 100 Nm at 3500 rpm. After that using AVL cruise simulation software, the model of range extended electric vehicle in series configuration with main components such as internal combustion engine, generator, electric motor, battery and the arthemis model rural road cycle was used to simulate the vehicle model. The simulation results show that engine with engine capacity 999 cm3 reported the economical performances of the engine and the emission and the control of engine cycle parameters.

  9. Influence of hydrox on spark ignition engine performance

    International Nuclear Information System (INIS)

    Naude, A.F.

    2003-01-01

    An experimental investigation was performed on the influence of the addition of small quantities of Hydrox (hydrogen and oxygen) as generated through electrolysis of water on the performance of a spark ignition engine. A Mazda 1600 cc fuel injected engine connected to a Superflow SF901 dynamometer system was used in this project. The engine was also equipped with a Unichip engine management system in order to enable changes in the spark timing and the amount of fuel injected. Hydrox was generated by an electrolysis process that could either be powered by the engine's alternator or from a separate power source. This hydrox gas produced from the electrolyzer was introduced into the engine's intake manifold and the influence of this was measured on the engine's performance, emissions and fuel consumption. For these tests a typical load condition as experienced for a light passenger car vehicle driven at 100 km/h on the open road was simulated. Typical results for the change in emissions with the hydrox introduction showed a significant reduction in hydrocarbons at lean air-fuel ratio operation of the engine. Additionally with the electrolysis process being driven by the engine a small improvement in fuel consumption was experienced. (author)

  10. Engine performance and emission of compression ignition engine fuelled with emulsified biodiesel-water

    Science.gov (United States)

    Maawa, W. N.; Mamat, R.; Najafi, G.; Majeed Ali, O.; Aziz, A.

    2015-12-01

    The depletion of fossil fuel and environmental pollution has become world crucial issues in current era. Biodiesel-water emulsion is one of many possible approaches to reduce emissions. In this study, emulsified biodiesel with 4%, 6% and 8% of water contents were prepared to be used as fuel in a direct injection compression ignition engine. The performance indicator such as brake power, brake specific fuel consumption (BSFC) and brake thermal efficiency (BTE) and emissions such as NOx and particulate matter (PM) were investigated. The engine was set at constant speed of 2500 rpm and load from 20% to 60%. All the results were compared to B5 (blend of 95% petroleum diesel and 5% palm oil biodiesel) biodiesel. At low load, the BSFC decrease by 12.75% at 4% water ratio and decreased by 1.5% at 6% water ratio. However, the BSFC increases by 17.19% with increasing water ratio to 8% compared to B5. Furthermore, there was no significant decrease in brake power and BTE at 60% load. For 20% and 40% load there was some variance regarding to brake power and BTE. Significant reduction in NOx and PM emissions by 73.87% and 20.00% respectively were achieved with increasing water ratio to 8%. Overall, it is observed that the emulsified of biodiesel-water is an appropriate alternative fuel method to reduce emissions.

  11. Effect of intake swirl on the performance of single cylinder direct injection diesel engine

    Science.gov (United States)

    Sharma, Vinod Kumar; Mohan, Man; Mouli, Chandra

    2017-11-01

    In the present work, the effect of inlet manifold geometry and swirl intensity on the direct injection (DI) diesel engine performance was investigated experimentally. Modifications in inlet manifold geometry have been suggested to achieve optimized swirl for the better mixing of fuel with air. The intake swirl intensities of modified cylinder head were measured in swirl test rig at different valve lifts. Later, the overall performance of 435 CC DI diesel engine was measured using modified cylinder head. In addition, the performance of engine was compared for both modified and old cylinder head. For same operating conditions, the brake power and brake specific fuel consumption was improved by 6% and 7% respectively with modified cylinder head compared to old cylinder head. The maximum brake power of 9 HP was achieved for modified cylinder head. The results revealed that the intake swirl has great influence on engine performance.

  12. Design and Performance Analysis of a Biodiesel Engine Driven Refrigeration System for Vaccine Storage

    Directory of Open Access Journals (Sweden)

    K Kamsuk

    2013-06-01

    Full Text Available A compact, stand-alone, refrigeration module powered by a small biodiesel engine for vaccine storage in rural use was proposed. The engine was of single cylinder, four-stroke, directinjection with displacement of 0.296 cm3 and compression ratio of 20:1. The refrigeration system was modified from an automotive vapor compression system. The system performance was analytically investigated. From the simulation, it was found to have acceptable operation over a range of speeds and loads. Performance of the system in terms of fuel consumption and torque tended to decrease with an increase in engine speed. The modular system was able to operate at cooling loads above 4.6 kW, with proper speed ratio between the engine and the compressor. Overall, primary energy ratio of the refrigeration was found to be maximum at 0.54.

  13. Development of engine sound quality for passenger car with 6 cylinder engine; 6 kito engine joyosha no onshoku kazari

    Energy Technology Data Exchange (ETDEWEB)

    Iwasaki, Y; Miyamoto, K; Yamamoto, K [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    In recent years, the interior noise has been required not only to reduce the sound pressure level, but also to improve the sound quality, especially during acceleration. This paper describes the development of engine sound quality for the new model `ARISTO (GS300)` with in-line 6 gasoline engine. We used the sound simulator in order to evaluate the engine sound quality during acceleration, and decided the target sound. To attain that sound, the light-weighed Piston and connecting rod, and the improvement of intake system are adopted. 7 refs., 13 figs.

  14. Performance assessment for continuing and future operations at Solid Waste Storage Area 6

    International Nuclear Information System (INIS)

    1994-02-01

    This radiological performance assessment for the continued disposal operations at Solid Waste Storage Area 6 (SWSA 6) on the Oak Ridge Reservation (ORR) has been prepared to demonstrate compliance with the requirements of the US DOE. The analysis of SWSA 6 required the use of assumptions to supplement the available site data when the available data were incomplete for the purpose of analysis. Results indicate that SWSA 6 does not presently meet the performance objectives of DOE Order 5820.2A. Changes in operations and continued work on the performance assessment are expected to demonstrate compliance with the performance objectives for continuing operations at the Interim Waste Management Facility (IWMF). All other disposal operations in SWSA 6 are to be discontinued as of January 1, 1994. The disposal units at which disposal operations are discontinued will be subject to CERCLA remediation, which will result in acceptable protection of the public health and safety

  15. Performance assessment for continuing and future operations at Solid Waste Storage Area 6

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This radiological performance assessment for the continued disposal operations at Solid Waste Storage Area 6 (SWSA 6) on the Oak Ridge Reservation (ORR) has been prepared to demonstrate compliance with the requirements of the US DOE. The analysis of SWSA 6 required the use of assumptions to supplement the available site data when the available data were incomplete for the purpose of analysis. Results indicate that SWSA 6 does not presently meet the performance objectives of DOE Order 5820.2A. Changes in operations and continued work on the performance assessment are expected to demonstrate compliance with the performance objectives for continuing operations at the Interim Waste Management Facility (IWMF). All other disposal operations in SWSA 6 are to be discontinued as of January 1, 1994. The disposal units at which disposal operations are discontinued will be subject to CERCLA remediation, which will result in acceptable protection of the public health and safety.

  16. Performance and emissions of a modified small engine operated on producer gas

    International Nuclear Information System (INIS)

    Homdoung, N.; Tippayawong, N.; Dussadee, N.

    2015-01-01

    Highlights: • A small agricultural diesel engine was converted into a spark ignited engine. • The modified engine operated solely on producer gas at various loads and speeds. • It run successfully at high compression ratio, without knocking. • Improvement in efficiency and specific energy consumption at higher CR was evident. - Abstract: Existing agricultural biomass may be upgraded converted to a gaseous fuel via a downdraft gasifier for spark ignition engines. In this work, a 0.6 L, naturally aspirated single cylinder compression ignition engine was converted into a spark ignition engine and coupled to a 5 kW dynamometer. The conventional swirl combustion chamber was replaced by a cavity chamber. The effect of variable compression ratios between 9.7 and 17:1, and engine speeds between 1000 and 2000 rpm and loads between 20% and 100% of engine performance were investigated in terms of engine torque, power output, thermal efficiency, specific fuel consumption and emissions. It was found that the modified engine was able to operate well with producer gas at higher compression ratios than with gasoline. The brake thermal efficiency was lower than the original diesel engine at 11.3%. Maximum brake power was observed to be 3.17 kW, and the best BSFC of 0.74 kg/kWh was achieved. Maximum brake thermal efficiency of 23.9% was obtained. The smoke density of the engine was lower than the diesel engine, however, CO emission was higher with similar HC emission

  17. Kaner biodiesel production through hybrid reactor and its performance testing on a CI engine at different compression ratios

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Yadav

    2017-06-01

    Full Text Available The present study deals with development of a hybrid reactor for biodiesel production based on the combined hydrodynamic cavitation and mechanical stirring processes. Biodiesel were produced using Kaner Seed Oil (KSO. The experimental results show that hybrid reactor produces 95% biodiesel yield within 45 min for 0.75% of catalyst and 6:1 M ratio which is significantly higher as compared to mechanical stirring or hydrodynamic cavitation alone. Thus biodiesel production process in hybrid reactor is cheap (high yield, efficient (time saving and environmentally friendly (lower% of catalyst. Performance study on engine shows that an increase in compression ratios (from 16 to 18 improves the engine performance using biodiesel blends as compared to petroleum diesel.

  18. The new 1.6 l turbo spark-ignition engine by GM Powertrain Europe; Der neue 1,6-l-Turbo-Ottomotor von GM Powertrain Europe

    Energy Technology Data Exchange (ETDEWEB)

    Frensch, M.; Heusler, H.; Mohr, J.; Loehnert, T.; Steffens, K. [GM Powertrain Germany GmbH, Ruesselsheim (Germany)

    2006-03-15

    With this new turbo charged 1.6 l engine, GM Powertrain Europe presents another application from the mid-size gasoline engine family, internally called the Family 1 engine, which was first introduced in 2003. This third variant of the Family 1 Generation 3 architecture will be offered for the first time in the spring of 2006. It is combined with the M32 6-speed transmission in an Opel Meriva OPC as its top-of-the-line engine offering. Using an integrated exhaust manifold turbocharger, the engine reaches a maximum performance of 132 kW and a torque of 230 Nm. (orig.)

  19. Performance and emission characteristics of LPG powered four stroke SI engine under variable stroke length and compression ratio

    International Nuclear Information System (INIS)

    Ozcan, Hakan; Yamin, Jehad A.A.

    2008-01-01

    A computer simulation of a variable stroke length, LPG fuelled, four stroke, single cylinder, water cooled spark ignition engine was done. The engine capacity was varied by varying the stroke length of the engine, which also changed its compression ratio. The simulation model developed was verified with experimental results from the literature for both constant and variable stroke engines. The performance of the engine was simulated at each stroke length/compression ratio combination. The simulation results clearly indicate the advantages and utility of variable stroke engines in fuel economy and power issues. Using the variable stroke technique has significantly improved the engine's performance and emission characteristics within the range studied. The brake torque and power have registered an increase of about 7-54% at low speed and 7-57% at high speed relative to the original engine design and for all stroke lengths and engine speeds studied. The brake specific fuel consumption has registered variations from a reduction of about 6% to an increase of about 3% at low speed and from a reduction of about 6% to an increase of about 8% at high speed relative to the original engine design and for all stroke lengths and engine speeds studied. On the other hand, an increase of pollutants of about 0.65-2% occurred at low speed. Larger stroke lengths resulted in a reduction of the pollutants level of about 1.5% at higher speeds. At lower stroke lengths, on the other hand, an increase of about 2% occurred. Larger stroke lengths resulted in increased exhaust temperature and, hence, make the exhaust valve work under high temperature

  20. Experimental investigations of LPG use at the automotive diesel engine

    Directory of Open Access Journals (Sweden)

    Nutu Cristian

    2017-01-01

    Full Text Available The liquefied petroleum gas has a great potential to improve energetically and pollution performance of compression ignition engines due to its good combustion properties. This paper presents results of the researches carried on a car compression ignition engine with a 1.5 dm3 displacement, fuelled with diesel fuel and liquefied petroleum gas by diesel-gas method at the operating regimens of 70% and 55% engine load, engine speed of 2000 rpm and for substitute ratios between (6–19%. A specific objective of this paper is to establish a correlation between the optimum adjustments and the substitute ratio of the diesel fuel with liquefied petroleum gas for the investigated regimens to limit the maximum pressure and smoke level, knock and rough engine functioning and having regard to decrease the fuel consumption and the level of the pollutant emissions.

  1. Performance Evaluation of an Experimental Turbojet Engine

    Science.gov (United States)

    Ekici, Selcuk; Sohret, Yasin; Coban, Kahraman; Altuntas, Onder; Karakoc, T. Hikmet

    2017-11-01

    An exergy analysis is presented including design parameters and performance assessment, by identifying the losses and efficiency of a gas turbine engine. The aim of this paper is to determine the performance of a small turbojet engine with an exergetic analysis based on test data. Experimental data from testing was collected at full-load of small turbojet engine. The turbojet engine exhaust data contains CO2, CO, CH4, H2, H2O, NO, NO2, N2 and O2 with a relative humidity of 35 % for the ambient air of the performed experiments. The evaluated main components of the turbojet engine are the air compressor, the combustion chamber and the gas turbine. As a result of the thermodynamic analysis, exergy efficiencies (based on product/fuel) of the air compressor, the combustion chamber and the gas turbine are 81.57 %, 50.13 % and 97.81 %, respectively. A major proportion of the total exergy destruction was found for the combustion chamber at 167.33 kW. The exergy destruction rates are 8.20 %, 90.70 % and 1.08 % in the compressor, the combustion chamber and the gas turbine, respectively. The rates of exergy destruction within the system components are compared on the basis of the exergy rate of the fuel provided to the engine. Eventually, the exergy rate of the fuel is calculated to be 4.50 % of unusable due to exergy destruction within the compressor, 49.76 % unusable due to exergy destruction within the combustion chamber and 0.59 % unusable due to exergy destruction within the gas turbine. It can be stated that approximately 55 % of the exergy rate of the fuel provided to the engine can not be used by the engine.

  2. Performance Characteristics of Automotive Engines in the United States : Second Series - Report No. 6 - 1976 Nissan Diesel 198 CID (3.2 Liters), F.I.

    Science.gov (United States)

    1978-05-01

    Experimental data were obtained in dynamometer tests of a 1976 Nissan diesel engine, Model SD-33 CN6-33, to determine fuel consumption and emissions (hydrocarbon, carbon monoxide, oxides of nitrogen) at steady-state engine-operating modes. The object...

  3. A Study of Performance Output of a Multivane Air Engine Applying Optimal Injection and Vane Angles

    Directory of Open Access Journals (Sweden)

    Bharat Raj Singh

    2012-01-01

    Full Text Available This paper presents a new concept of the air engine using compressed air as the potential power source for motorbikes, in place of an internal combustion engine. The motorbike is proposed to be equipped with an air engine, which transforms the energy of the compressed air into mechanical motion energy. A mathematical model is presented here, and performance evaluation is carried out on an air-powered novel air turbine engine. The maximum power output is obtained as 3.977 kW (5.50 HP at the different rotor to casing diameter ratios, optimal injection angle 60°, vane angle 45° for linear expansion (i.e., at minimum air consumption when the casing diameter is kept 100 mm, at injection pressure 6 bar (90 psi and speed of rotation 2500 rpm. A prototype air engine is built and tested in the laboratory. The experimental results are also seen much closer to the analytical values, and the performance efficiencies are recorded around 70% to 95% at the speed of rotation 2500–3000 rpm.

  4. Pratt & Whitney aircraft nuclear J-8 turbojet engine performance variation with radiator diameter

    International Nuclear Information System (INIS)

    Larson, John W.

    1960-01-01

    The variation of engine performance with liquid metal radiator diameter and flight altitude has been estimated for both the 1600F NaK and 1800F NaK radiators at Mach 0.6 and hot day atmospheric conditions. The net thrust, air flow and reactor power is presented in 3 figures for the Pratt & Whitney Aircraft J-58 engine with the 1600F NaK radiator. The net thrust, air flow and reactor power for the 1800F NaK radiator are also presented in figures.

  5. Effects of synergetic and antagonistic additive elements on the thermal performance of engine oils at various bulk temperatures

    International Nuclear Information System (INIS)

    Abou-Ziyan, H.; Mahmoud, M.; Al-Ajmi, R.; Shedid, M.

    2015-01-01

    This paper reports effects of additive elements on thermal performance of engine oils during cooling of different engine parts at bulk temperatures from 40 to 150 °C and average wall superheat of 100 °C. The analysis is performed using a back propagation neural network that was trained on experimentally obtained sub-cooled boiling data of engine oils. The results demonstrate that sodium, boron, molybdenum, magnesium and barium additive elements are thermally synergetic while phosphorous, zinc, calcium and silicon elements are thermally antagonistic. Experimental thermal performance of oils could potentially be improved by increasing the concentration of synergetic additive elements or decreasing antagonistic additive elements concentration. - Highlights: • Oil additives enhance lubrication properties but may hinder oil thermal performance. • Sodium, boron, molybdenum, magnesium and barium additives enhance heat transfer. • Additives containing phosphorous, zinc, calcium and silicon hinder the heat transfer. • Oil thermal performance is improved by changing some oil additives concentrations. • Some additives are highly sensitive to interaction with other additives in the oil.

  6. Performance of jatropha oil blends in a diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Forson, F.K.; Oduro, E.K.; Hammond-Donkoh, E. [Kwame Nkrumah University of Science and Technology, Kumasi (Ghana). Dept. of Mechanical Engineering

    2004-06-01

    Results are presented on tests on a single-cylinder direct-injection engine operating on diesel fuel, jatropha oil, and blends of diesel and jatropha oil in proportions of 97.4%/2.6%; 80%120%; and 50%150% by volume. The results covered a range of operating loads on the engine. Values are given for the chemical and physical properties of the fuels, brake specific fuel consumption, brake power, brake thermal efficiency, engine torque, and the concentrations of carbon monoxide, carbon dioxide and oxygen in the exhaust gases. Carbon dioxide emissions were similar for all fuels, the 97.4% diesel/2.6% jatropha fuel blend was observed to be the lower net contributor to the atmospheric level. The trend of carbon monoxide emissions was similar for the fuels but diesel fuel showed slightly lower emissions to the atmosphere. The test showed that jatropha oil could be conveniently used as a diesel substitute in a diesel engine. The test further showed increases in brake thermal efficiency, brake power and reduction of specific fuel consumption for jatropha oil and its blends with diesel generally, but the most significant conclusion from the study is that the 97.4% diesel/2.6% jatropha fuel blend produced maximum values of the brake power and brake thermal efficiency as well as minimum values of the specific fuel consumption. The 97.4%12.6% fuel blend yielded the highest cetane number and even better engine performance than the diesel fuel suggesting that jatropha oil can be used as an ignition- accelerator additive for diesel fuel. (author)

  7. Engine performance and emissions using Jatropha curcas, Ceiba pentandra and Calophyllum inophyllum biodiesel in a CI diesel engine

    International Nuclear Information System (INIS)

    Ong, Hwai Chyuan; Masjuki, H.H.; Mahlia, T.M.I.; Silitonga, A.S.; Chong, W.T.; Yusaf, Talal

    2014-01-01

    Biodiesel is a recognized replacement for diesel fuel in compressed ignition engines due to its significant environmental benefits. The purpose of this study is to investigate the engine performance and emissions produced from Jatropha curcas, Ceiba pentandra and Calophyllum inophyllum biodiesel in compressed ignition engine. The biodiesel production process and properties are discussed and a comparison of the three biodiesels as well as diesel fuel is undertaken. After that, engine performance and emissions testing was conducted using biodiesel blends 10%, 20%, 30% and 50% in a diesel engine at full throttle load. The engine performance shows that those biodiesel blends are suitable for use in diesel engines. A 10% biodiesel blend shows the best engine performance in terms of engine torque, engine power, fuel consumption and brake thermal efficiency among the all blending ratios for the three biodiesel blends. Biodiesel blends have also shown a significant reduction in CO 2 , CO and smoke opacity with a slight increase in NO x emissions. - Highlights: • The properties of JCME, CPME and CIME fulfill ASTM standard. • Engine performance and emission was conducted for JCME, CPME and CIME. • The B10 is the best engine performance and reduce in exhaust emission

  8. Effect of pilot fuel quantity on the performance of a dual fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Abd Alla, G.H.; Soliman, H.A.; Badr, O.A.; Abd Rabbo, M.F. [Zagazig University, Cairo (Egypt). Shoubra Faculty of Engineering

    2000-04-01

    It is well known that the operation of dual fuel engines at lower loads suffers from lower thermal efficiency and higher unburned percentages of fuel. To rectify this problem, tests have been conducted on a special single cylinder compression ignition research engine (Ricardo E6) to investigate the effect of pilot fuel quantity on the performance of an indirect injection diesel engine fuelled with gaseous fuel. Diesel fuel was used as the pilot fuel and methane or propane was used as the main fuel which was inducted into the intake manifold to mix with the intake air. Through experimental investigations, it is shown that, the low efficiency and excess emissions at light loads can be improved significantly by increasing the amount of pilot fuel, while increasing the amount of pilot fuel at high loads led to early knocking. (author)

  9. Engineering of complex systems: The impact of systems engineering at NASA

    Science.gov (United States)

    Kludze, Ave-Klutse Kodzo Paaku

    The "true" impact or value of systems engineering to an organization unfortunately appears not to have been well-studied and understood. The principles of systems engineering are highly encouraged by NASA at all levels, and most practitioners, both internal and external to NASA, intuitively "believe" it adds some value to the development of complex systems by producing them faster, better and cheaper. This research, in trying to fill a gap that exists in the systems engineering literature, analyzes data collected within NASA and other sources external to NASA (INCOSE) for comparisons. Analyses involving a number of case studies performed on selected NASA projects are presented to draw attention to the impact systems engineering had or could have had on these projects. This research clearly shows that systems engineering does add value to projects within and outside NASA. The research results further demonstrate that systems engineering has been beneficial not only to NASA but also to organizations within which INCOSE members work. It was determined, however, that systems engineering does not operate in a vacuum and may not always guarantee success through mere application. During this research, it was discovered that the lack of or inadequate application of systems engineering in the development of complex systems may result in cost overruns, poor technical performance, project delays, and in some cases unmitigated risk with disastrous consequences including the loss of life and property. How much is saved (in terms of cost, schedule) or improved (in terms of technical performance) as a result of its implementation may never be known precisely, but by indirectly measuring its value or impact on a project, percentages of project budget spent on systems engineering activities and any schedule reductions or performance enhancements realized could be determined. According to this research, systems engineering is not a waste of time and resources; in most cases, it is

  10. Rotary engine performance limits predicted by a zero-dimensional model

    Science.gov (United States)

    Bartrand, Timothy A.; Willis, Edward A.

    1992-01-01

    A parametric study was performed to determine the performance limits of a rotary combustion engine. This study shows how well increasing the combustion rate, insulating, and turbocharging increase brake power and decrease fuel consumption. Several generalizations can be made from the findings. First, it was shown that the fastest combustion rate is not necessarily the best combustion rate. Second, several engine insulation schemes were employed for a turbocharged engine. Performance improved only for a highly insulated engine. Finally, the variability of turbocompounding and the influence of exhaust port shape were calculated. Rotary engines performance was predicted by an improved zero-dimensional computer model based on a model developed at the Massachusetts Institute of Technology in the 1980's. Independent variables in the study include turbocharging, manifold pressures, wall thermal properties, leakage area, and exhaust port geometry. Additions to the computer programs since its results were last published include turbocharging, manifold modeling, and improved friction power loss calculation. The baseline engine for this study is a single rotor 650 cc direct-injection stratified-charge engine with aluminum housings and a stainless steel rotor. Engine maps are provided for the baseline and turbocharged versions of the engine.

  11. Prechamber Compression-Ignition Engine Performance

    Science.gov (United States)

    Moore, Charles S; Collins, John H , Jr

    1938-01-01

    Single-cylinder compression-ignition engine tests were made to investigate the performance characteristics of prechamber type of cylinder head. Certain fundamental variables influencing engine performance -- clearance distribution, size, shape, and direction of the passage connecting the cylinder and prechamber, shape of prechamber, cylinder clearance, compression ratio, and boosting -- were independently tested. Results of motoring and of power tests, including several typical indicator cards, are presented.

  12. Hydrogen engine performance analysis. First annual report

    Energy Technology Data Exchange (ETDEWEB)

    Adt, Jr., R. R.; Swain, M. R.; Pappas, J. M.

    1978-08-01

    Many problems associated with the design and development of hydrogen-air breathing internal combustion engines for automotive applications have been identified by various domestic and foreign researchers. This project addresses the problems identified in the literature, seeks to evaluate potential solutions to these problems, and will obtain and document a design data-base convering the performance, operational and emissions characteristics essential for making rational decisions regarding the selection and design of prototype hydrogen-fueled, airbreathing engines suitable for manufacture for general automotive use. Information is included on the operation, safety, emission, and cost characteristics of hydrogen engines, the selection of a test engine and testing facilities, and experimental results. Baseline data for throttled and unthrottled, carburetted, hydrogen engine configurations with and without exhaust gas recirculation and water injection are presented. In addition to basic data gathering concerning performance and emissions, the test program conducted was formulated to address in detail the two major problems that must be overcome if hydrogen-fueled engines are to become viable: flashback and comparatively high NO/sub x/ emissions at high loads. In addition, the results of other hydrogen engine investigators were adjusted, using accepted methods, in order to make comparisons with the results of the present study. The comparisons revealed no major conflicts. In fact, with a few exceptions, there was found to be very good agreement between the results of the various studies.

  13. The new Mercedes-Benz 3.0 l - V6 DI gasoline engine with twin turbo; Der neue 3,0 l - V6 Ottomotor mit Direkteinspritzung und Bi-Turboaufladung von Mercedes-Benz

    Energy Technology Data Exchange (ETDEWEB)

    Doll, Gerhard; Schuetz, Markus; Waltner, Anton; Kemmler, Roland; Herwig, Helmut [Daimler AG, Stuttgart (Germany)

    2013-08-01

    With the launch of the M276 DELA 30 in the new Mercedes-Benz E 400, a new member has been added to the tried-and-tested M276 V6 gasoline engine series, which effortlessly embodies the highest of comfort requirements, superior driving performance and efficiency. In comparison to the naturally-aspirated M276 3.5-liter engine, output has increased by 9 percent and torque by an entire 30 percent. At the same time, fuel consumption continues to set a benchmark for competitors. A re-engineered combustion process and technology package secure the future compatibility of the engine and compliance with global emissions regulations. The EU6 emissions standard, for example, will be fulfilled by the new E400 when it is launched. (orig.)

  14. 6th world congress of chemical engineering. Proceedings

    International Nuclear Information System (INIS)

    2002-01-01

    The 6th World Congress of Chemical Engineering, held in Melbourne, was structured around 6 Vision Lectures which lead to 800 oral presentations and 600 poster presentations, spanning the entire range of chemical engineering. The main topics of the Congress were: environment, health and safety; energy; industrial applications; process simulation and control; management and education and the future. Items in INIS scope have been separately indexed

  15. Performance analyses of a spark-ignition engine firing with gasoline–butanol blends at partial load operation

    International Nuclear Information System (INIS)

    Galloni, E.; Fontana, G.; Staccone, S.; Scala, F.

    2016-01-01

    Highlights: • The potential of butanol has been investigated at partial load operation. • Torque and thermal efficiency slightly decrease when the alcohol content increases. • At part load, spark advance does not require changes when alcohol content increases. - Abstract: Biofuels seem to represent one of the most promising means for the limitation of the greenhouse gas emissions coming from traditional energy systems. In this paper, the performance of a “downsized” spark-ignition engine, fueled by gasoline and bio-butanol blends (20% and 40% butanol mass percentage), has been analyzed. In the first phase of this activity, the experimental tests have been carried out at operating points ranging from low to medium engine speed and load. The first investigations were aimed to assess the main differences among the different fuels in terms of output torque, thermal efficiency, combustion duration and optimal spark timing. In order to study the engine behavior in a wide range of fuel mixtures, these parameters have been evaluated for equivalence ratio values ranging from 1.25 to 0.83. The results obtained in this step show that both the engine torque and thermal efficiency slightly decrease (meanly about 4%) when the blend alcohol content increases. However, butanol increases the burning rate of lean mixtures and an interesting result is that the spark advance does not require adjustments when fueling changes from neat gasoline to bio-butanol/gasoline blends. Later, the pollutant emissions and the CO_2 emissions, for both rich and lean mixtures of pure gasoline and gasoline bio-butanol blends, have been measured. In general, firing with alcohol blends, NO_x and CO emissions remain quite the same, HC emissions slightly decrease while the CO_2 emissions slightly increase. At the end, in order to reproduce the real world urban driving cycle, stoichiometric mixtures have been analyzed. In these conditions, the engine thermal efficiency, at given speed and torque

  16. Biogas engine performance estimation using ANN

    Directory of Open Access Journals (Sweden)

    Yusuf Kurtgoz

    2017-12-01

    Full Text Available Artificial neural network (ANN method was used to estimate the thermal efficiency (TE, brake specific fuel consumption (BSFC and volumetric efficiency (VE values of a biogas engine with spark ignition at different methane (CH4 ratios and engine load values. For this purpose, the biogas used in the biogas engine was produced by the anaerobic fermentation method from bovine manure and different CH4 contents (51%, 57%, 87% were obtained by purification of CO2 and H2S. The data used in the ANN models were obtained experimentally from a 4-stroke four-cylinder, spark ignition engine, at constant speed for different load and CH4 ratios. Using some of the obtained experimental data, ANN models were developed, and the rest was used to test the developed models. In the ANN models, the CH4 ratio of the fuel, engine load, inlet air temperature (Tin, air fuel ratio and the maximum cylinder pressure are chosen as the input parameters. TE, BSFC and VE are used as the output parameters. Root mean square error (RMSE, mean absolute percentage error (MAPE and correlation coefficient (R performance indicators are used to compare measured and predicted values. It has been shown that ANN models give good results in spark ignition biogas engines with high correlation and low error rates for TE, BSFC and VE values.

  17. Performance of Naturally Aspirating IC Engines Operating at High ...

    African Journals Online (AJOL)

    The loss of power and the increase of fuel consumption of naturally aspirating IC engines operating with low atmospheric pressure at high altitude as well as changes in the mixture quality with non adapting mixture formation systems are principally known. Other effects like the additional advance of ignition timing in petrol ...

  18. Radiation effect on rocket engine performance

    Science.gov (United States)

    Chiu, Huei-Huang; Kross, K. W.; Krebsbach, A. N.

    1990-01-01

    Critical problem areas involving the effect of radiation on the combustion of bipropellants are addressed by formulating a universal scaling law in combination with a radiation-enhanced vaporization combustion model. Numerical algorithms are developed and data pertaining to the Variable Thrust Engine (VTE) and the Space Shuttle Main Engine (SSME) are used to conduct parametric sensitivity studies to predict the principal intercoupling effects of radiation. The analysis reveals that low-enthalpy engines, such as the VTE, are vulnerable to a substantial performance setback due to radiative loss, whereas the performance of high-enthalpy engines such as the SSME are hardly affected over a broad range of engine operation. Combustion enhancement by radiative heating of the propellant has a significant impact on propellants with high absorptivity.

  19. Knock-Limited Performance of Triptane and 28-R Fuel Blends as Affected by Changes in Compression Ratio and in Engine Operating Variables

    Science.gov (United States)

    Brun, Rinaldo J.; Feder, Melvin S.; Fisher, William F.

    1947-01-01

    A knock-limited performance investigation was conducted on blends of triptane and 28-P fuel with a 12-cylinder, V-type, liquid-cooled aircraft engine of 1710-cubic-inch displacement at three compression ratios: 6.65, 7.93, and 9.68. At each compression ratio, the effect of changes in temperature of the inlet air to the auxiliary-stage supercharger and in fuel-air ratio were investigated at engine speeds of 2280 and. 3000 rpm. The results show that knock-limited engine performance, as improved by the use of triptane, allowed operation at both take-off and cruising power at a compression ratio of 9.68. At an inlet-air temperature of 60 deg F, an engine speed of 3000 rpm ; and a fuel-air ratio of 0,095 (approximately take-off conditions), a knock-limited engine output of 1500 brake horsepower was possible with 100-percent 28-R fuel at a compression ratio of 6.65; 20-percent triptane was required for the same power output at a compression ratio of 7.93, and 75 percent at a compression ratio of 9.68 allowed an output of 1480 brake horsepower. Knock-limited power output was more sensitive to changes in fuel-air ratio as the engine speed was increased from 2280 to 3000 rpm, as the compression ratio is raised from 6.65 to 9.68, or as the inlet-air temperature is raised from 0 deg to 120 deg F.

  20. Windmilling of turbofan engine; calculation of performance characteristics of a turbofan engine under windmilling

    OpenAIRE

    Ramanathan, A.

    2014-01-01

    The turbofan is a type of air breathing jet engine that finds wide use in aircraft propulsion. During the normal operation of a turbofan engine installed in aircraft, the combustor is supplied with fuel, flow to the combustor is cut off and the engine runs under so called Windmilling conditions being driven only by the ram pressure ratio by producing drag. In-depth analysis is done to study the performance characteristics at this state.

  1. Fuel Combustion and Engine Performance | Transportation Research | NREL

    Science.gov (United States)

    Fuel Combustion and Engine Performance Fuel Combustion and Engine Performance Photo of a gasoline emissions in advanced engine technologies. Photo by Dennis Schroeder, NREL NREL's combustion research and combustion and engine research activities include: Developing experimental and simulation research platforms

  2. THE EFFECTS OF INCREASE THE COMPRESSION RATIO ON PERFORMANCE OF A DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    Adnan PARLAK

    2003-02-01

    Full Text Available An optimisation of the Diesel cycle has been performed for power output and thermal efficiency with respect to compression ratio for various extreme temperature ratio. The relation between compression ratio and extreme temperature ratio, which gives optimum performance is derived. As the compression ratio of the diesel engine is increased in comparison to the optimum value of the engine, it is shown that the performance of the engine is decreased. The experimental study agrees with these results. In this study, compression ratio of a single cylinder pre-combustion chamber variable compression ratio Ricardo E6 type engine with the optimum compression ratio of 18.20 was increased to 19.60. As a results of this increase, specific fuel consumption was increased about 8 % and brake thermal efficiency was decreased about 7.5 %.

  3. Experimental investigation of the effects of direct water injection parameters on engine performance in a six-stroke engine

    International Nuclear Information System (INIS)

    Arabaci, Emre; İçingür, Yakup; Solmaz, Hamit; Uyumaz, Ahmet; Yilmaz, Emre

    2015-01-01

    Highlights: • Exhaust gas temperature and specific fuel consumption decreased with six stroke engine. • Thermal efficiency increased with water injection. • NO emissions decreased with water injection as the temperature decreased at the end of cycle. • Injection timing should be advanced with the increase of engine speed. • HC and CO emissions decrease until 3000 rpm engine speed. - Abstract: In this study, the effects of water injection quantity and injection timing were investigated on engine performance and exhaust emissions in a six-stroke engine. For this purpose, a single cylinder, four-stroke gasoline engine was converted to six-stroke engine modifying a new cam mechanism and adapting the water injection system. The experiments were conducted at stoichometric air/fuel ratio (λ = 1) between 2250 and 3500 rpm engine speed at full load with liquid petroleum gas. Water injection was performed at three different stages as before top dead center, top dead center and after top dead center at constant injection duration and four different injection pressure 25, 50, 75 and 100 bar. The test results showed that exhaust gas temperature and specific fuel consumption decreased by about 7% and 9% respectively. In contrast, fuel consumption and power output increased 2% and 10% respectively with water injection. Thermal efficiency increased by about 8.72% with water injection. CO and HC emissions decreased 21.97% and 18.23% until 3000 rpm respectively. NO emissions decreased with water injection as the temperature decreased at the end of cycle. As a result, it was seen that engine performance improved when suitable injection timing and injected water quantity were selected due to effect of exhaust heat recovery with water injection

  4. Performance of a hybrid hydrogen–gasoline engine under various operating conditions

    International Nuclear Information System (INIS)

    Ji, Changwei; Wang, Shuofeng; Zhang, Bo

    2012-01-01

    Highlights: ► We develop a combustion strategy for the hybrid hydrogen–gasoline engine (HHGE). ► The HHGE produced much lower HC and CO emissions at cold start. ► The H 2 -gasoline blends were effective for improving engine performance at idle and part loads. ► The HHGE could run smoothly at lean conditions. -- Abstract: This paper proposed a new combustion strategy for the spark-ignited (SI) engines. A gasoline engine was converted into a hybrid hydrogen–gasoline engine (HHGE) by adding a hydrogen injection system and a hybrid electronic control unit. Different from the conventional gasoline and hydrogen–enriched gasoline engines, the HHGE is fueled with the pure hydrogen at cold start to produce almost zero emissions, with the hydrogen–gasoline blends at idle and part loads to further improve thermal efficiency and reduce emissions, and with the pure gasoline to ensure the engine power output at high loads. Because the HHGE is fueled with the pure gasoline at high loads and speeds, experiments are only conducted at clod start, idle and part load conditions. Since lean combustion avails the further improvement of the engine performance, the HHGE was fueled with the lean mixtures in all tests. The experimental results showed that the hybrid hydrogen–gasoline engine was started successfully with the pure hydrogen, which produced 94.7% and 99.5% reductions in HC and CO emissions within 100 s from the onset of the cold start, compared with the original gasoline engine. At an excess air ratio of 1.37 and idle conditions, indicated thermal efficiency of the 3% hydrogen–blended gasoline engine was 46.3% higher than that of the original engine. Moreover, the engine cyclic variation was eased, combustion duration was shortened and HC, CO and NOx emissions were effectively reduced for the hybrid hydrogen–gasoline engines.

  5. Engine performance and emissions characteristics of a diesel engine fueled with diesel-biodiesel-bioethanol emulsions

    International Nuclear Information System (INIS)

    Tan, Yie Hua; Abdullah, Mohammad Omar; Nolasco-Hipolito, Cirilo; Zauzi, Nur Syuhada Ahmad; Abdullah, Georgie Wong

    2017-01-01

    Highlights: • Different composition of diesel fuel, biodiesel and bioethanol emulsions were examined. • The fuels were tested in a direct injection diesel engine and parameters were evaluated. • Engine power, torque, exhaust gas temperature & fuel consumptions were compared. • Emulsions fuels emitted lower CO and CO_2 than fossil diesel. • Lower NOx emission was observed at medium engine speeds and loads for emulsion fuels. - Abstract: In this research work, the experimental investigation of the effect of diesel-biodiesel-bioethanol emulsion fuels on combustion, performance and emission of a direct injection (DI) diesel engine are reported. Four kind of emulsion fuels were employed: B (diesel-80%, biodiesel-20% by volume), C (diesel-80%, biodiesel-15%, bioethanol-5%), D (diesel-80%, biodiesel-10%, bioethanol-10%) and E (diesel-80%, biodiesel-5%, bioethanol-15%) to compare its’ performance with the conventional diesel, A. These emulsion fuels were prepared by mechanical homogenizer machine with the help of Tween 80 (1% v/v) and Span 80 (0.5% v/v) as surfactants. The emulsion characteristics were determined by optical electron microscope, emulsification stability test, FTIR, and the physiochemical properties of the emulsion fuels which were all done by following ASTM test methods. The prepared emulsion fuels were then tested in diesel engine test bed to obtain engine performance and exhaust emissions. All the engine experiments were conducted with engine speeds varying from 1600 to 2400 rpm. The results showed the heating value and density of the emulsion fuels decrease as the bioethanol content in the blend increases. The total heating value of the diesel-biodiesel-bioethanol fuels were averagely 21% higher than the total heating value of the pure biodiesel and slightly lower (2%) than diesel fuel. The engine power, torque and exhaust gas temperature were reduced when using emulsion fuels. The brake specific fuel consumption (BSFC) for the emulsion fuels

  6. Performance analysis of exhaust heat recovery using organic Rankine cycle in a passenger car with a compression ignition engine

    Science.gov (United States)

    Ghilvacs, M.; Prisecaru, T.; Pop, H.; Apostol, V.; Prisecaru, M.; Pop, E.; Popescu, Gh; Ciobanu, C.; Mohanad, A.; Alexandru, A.

    2016-08-01

    Compression ignition engines transform approximately 40% of the fuel energy into power available at the crankshaft, while the rest part of the fuel energy is lost as coolant, exhaust gases and other waste heat. An organic Rankine cycle (ORC) can be used to recover this waste heat. In this paper, the characteristics of a system combining a compression ignition engine with an ORC which recover the waste heat from the exhaust gases are analyzed. The performance map of the diesel engine is measured on an engine test bench and the heat quantities wasted by the exhaust gases are calculated over the engine's entire operating region. Based on this data, the working parameters of ORC are defined, and the performance of a combined engine-ORC system is evaluated across this entire region. The results show that the net power of ORC is 6.304kW at rated power point and a maximum of 10% reduction in brake specific fuel consumption can be achieved.

  7. Performances Study of a Hybrid Rocket Engine

    Directory of Open Access Journals (Sweden)

    Adrian-Nicolae BUTURACHE

    2018-06-01

    Full Text Available This paper presents a study which analyses the functioning and performances optimization of a hybrid rocket engine based on gaseous oxygen and polybutadiene polymer (HTPB. Calculations were performed with NASA CEA software in order to obtain the parameters resulted following the combustion process. Using these parameters, the main parameters of the hybrid rocket engine were optimized. Using the calculus previously stated, an experimental rocket engine producing 100 N of thrust was pre-dimensioned, followed by an optimization of the rocket engine as a function of several parameters. Having the geometry and the main parameters of the hybrid rocket engine combustion process, numerical simulations were performed in the CFX – ANSYS commercial software, which allowed visualizing the flow field and the jet expansion. Finally, the analytical calculus was validated through numerical simulations.

  8. Performance and emission of generator Diesel engine using methyl esters of palm oil and diesel blends at different compression ratio

    Science.gov (United States)

    Aldhaidhawi, M.; Chiriac, R.; Bădescu, V.; Pop, H.; Apostol, V.; Dobrovicescu, A.; Prisecaru, M.; Alfaryjat, A. A.; Ghilvacs, M.; Alexandru, A.

    2016-08-01

    This study proposes engine model to predicate the performance and exhaust gas emissions of a single cylinder four stroke direct injection engine which was fuelled with diesel and palm oil methyl ester of B7 (blends 7% palm oil methyl ester with 93% diesel by volume) and B10. The experiment was conducted at constant engine speed of 3000 rpm and different engine loads operations with compression ratios of 18:1, 20:1 and 22:1. The influence of the compression ratio and fuel typeson specific fuel consumption and brake thermal efficiency has been investigated and presented. The optimum compression ratio which yields better performance has been identified. The result from the present work confirms that biodiesel resulting from palm oil methyl ester could represent a superior alternative to diesel fuel when the engine operates with variable compression ratios. The blends, when used as fuel, result in a reduction of the brake specific fuel consumption and brake thermal efficiency, while NOx emissions was increased when the engine is operated with biodiesel blends.

  9. Investigating the effects of LPG on spark ignition engine combustion and performance

    International Nuclear Information System (INIS)

    Bayraktar, Hakan; Durgun, Orhan

    2005-01-01

    A quasi-dimensional spark ignition (SI) engine cycle model is used to predict the cycle, performance and exhaust emissions of an automotive engine for the cases of using gasoline and LPG. Governing equations of the mathematical model mainly consist of first order ordinary differential equations derived for cylinder pressure and temperature. Combustion is simulated as a turbulent flame propagation process and during this process, two different thermodynamic regions consisting of unburned gases and burned gases that are separated by the flame front are considered. A computer code for the cycle model has been prepared to perform numerical calculations over a range of engine speeds and fuel-air equivalence ratios. In the computations performed at different engine speeds, the same fuel-air equivalence ratios are selected for each fuel to make realistic comparisons from the fuel economy and fuel consumption points of view. Comparisons show that if LPG fueled SI engines are operated at the same conditions with those of gasoline fueled SI engines, significant improvements in exhaust emissions can be achieved. However, variations in various engine performance parameters and the effects on the engine structural elements are not promising

  10. A high performance thermoacoustic Stirling-engine

    Energy Technology Data Exchange (ETDEWEB)

    Tijani, M.E.H.; Spoelstra, S. [Energy research Centre of the Netherlands (ECN), PO Box 1, 1755 ZG Petten (Netherlands)

    2011-11-10

    In thermoacoustic systems heat is converted into acoustic energy and vice versa. These systems use inert gases as working medium and have no moving parts which makes the thermoacoustic technology a serious alternative to produce mechanical or electrical power, cooling power, and heating in a sustainable and environmentally friendly way. A thermoacoustic Stirling heat engine is designed and built which achieves a record performance of 49% of the Carnot efficiency. The design and performance of the engine is presented. The engine has no moving parts and is made up of few simple components.

  11. Concurrently adjusting interrelated control parameters to achieve optimal engine performance

    Science.gov (United States)

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2015-12-01

    Methods and systems for real-time engine control optimization are provided. A value of an engine performance variable is determined, a value of a first operating condition and a value of a second operating condition of a vehicle engine are detected, and initial values for a first engine control parameter and a second engine control parameter are determined based on the detected first operating condition and the detected second operating condition. The initial values for the first engine control parameter and the second engine control parameter are adjusted based on the determined value of the engine performance variable to cause the engine performance variable to approach a target engine performance variable. In order to cause the engine performance variable to approach the target engine performance variable, adjusting the initial value for the first engine control parameter necessitates a corresponding adjustment of the initial value for the second engine control parameter.

  12. Final Report: Performance Engineering Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Mellor-Crummey, John [Rice Univ., Houston, TX (United States)

    2014-10-27

    This document is a final report about the work performed for cooperative agreement DE-FC02-06ER25764, the Rice University effort of Performance Engineering Research Institute (PERI). PERI was an Enabling Technologies Institute of the Scientific Discovery through Advanced Computing (SciDAC-2) program supported by the Department of Energy's Office of Science Advanced Scientific Computing Research (ASCR) program. The PERI effort at Rice University focused on (1) research and development of tools for measurement and analysis of application program performance, and (2) engagement with SciDAC-2 application teams.

  13. The new 'Earth Dreams Technology i-DTEC' 1.6 l diesel engine from Honda

    Energy Technology Data Exchange (ETDEWEB)

    Yamano, J.; Ikoma, K.; Matsui, R.; Ikegami, N.; Mori, S.; Yano, T. [Honda R and D Co., Ltd., Tochigi (Japan)

    2013-08-01

    Honda has developed a 3rd-generation diesel engine, seeking to balance further CO{sub 2} reductions with dynamic performance. This development focused on downsizing the engine and succeeded in developing a compact, lightweight and high-efficiency 1.6 L in-line 4-cylinder turbocharged i-DTEC diesel engine. Optimization of engine rigidity in the newly developed 1.6 L diesel engine has made it possible to use an aluminum cylinder block with an open-deck structure. Furthermore, weight could be reduced by means of an efficient structure and engine layout. In addition, mechanical friction has been minimized via reducing weight of the reciprocating components and downsizing auxiliary equipment. These innovations made it possible for the engine to achieve the same level of friction as a Honda petrol engine of the same displacement. Thermal management has also been optimized by enhancement of the engine cooling system. In addition, low-pressure loop exhaust gas recirculation (LP-EGR) was applied to achieve increased thermal efficiency. These measures have helped the engine to realize a high level of boost and high EGR, increasing fuel efficiency and reducing emissions across a wide range of operating conditions. Like the 2.2 L model, the Civic fitted with this 1.6 L diesel engine uses idle-stop and deceleration energy regeneration control. With all these measures, the Civic achieved CO{sub 2} emissions of 94 g/km (3.6 L/100km) in NEDC, a reduction of 14.5% in CO{sub 2} emissions against the 110 g/km recorded by the 2.2 L model. (orig.)

  14. Research of biofuels on performance, emission and noise of diesel engine under high-altitude area

    Science.gov (United States)

    Xu, Kai; Huang, Hua

    2018-05-01

    At high altitudes and with no any adjustment for diesel engine, comparative experiments on a diesel engine about the engine's performance, emission and exhaust noise, are carried out by combusting different biofuels (pure diesel (D100), biodiesel (B100), and ethanol-biodiesel (E20)). The test results show that: compared with D100, the power performance of combusting B100 and E20 decreases, and the average drop of the torque at full-load are 4.5% and 5.7%. The equivalent fuel consumption is lower than that of diesel fuel, The decline of oil consumption rate 3˜10g/ (kW • h); At low load the emission of NOx decreases, Hat high loads, equal and higher than D100; the soot emissions decreases heavier, among them, E20 carbon dioxide emissions improved considerably; An full-load exhaust noise of B100 decreases average 3.6dB(A), E20 decreases average 4.8dB(A); In road simulation experiments exhaust noise max decreases 8.5dB(A).

  15. Performance of Diesel Engine Using Blended Crude Jatropha Oil

    Science.gov (United States)

    Kamarudin, Kamarul Azhar; Mohd Sazali, Nor Shahida Akma; Mohd Ali, Mas Fauzi; Alimin, Ahmad Jais; Khir, Saffiah Abdullah

    2010-06-01

    Vegetable oil presents a very promising alternative to diesel oil since it is renewable and has similar properties to the diesel. In view of this, crude jatropha oil is selected and its viscosity is reduced by blending it with diesel. Since jatropha oil has properties which are similar to mineral diesel, it can be used in compression ignition engines without any engine modification. This paper presents the results of investigation carried out on a four-cylinder, four strokes and indirect-injection diesel engine. The engine, operated using composition blends of crude jatropha oil and diesel, were compared with mineral diesel. An experimental investigation has been carried out to analyze the performance characteristics of a compression ignition engine from the blended fuel (5%, 10%, 20% and 30%). A naturally aspirated four-stroke indirect injection diesel engine was tested at full load conditions, speeds between 1000 and 3500 rpm with intervals of 500 rpm. Results obtained from the measures of torque, power, specific fuel consumptions, thermal efficiency and brake mean effective pressure are nearly the same between blended and diesel fuel. An overall graph shows that the performance of relevant parameters from blended fuel is most likely similar to the performance produced from diesel. The experimental results proved that the use of crude jatropha oil in compression ignition engines is a viable alternative to diesel.

  16. Die design and process optimization of die cast V6 engine blocks

    Directory of Open Access Journals (Sweden)

    Henry Hu

    2005-02-01

    Full Text Available The use of aluminum, particularly for engine blocks, has grown considerably in the past ten years, and continues to rise in the automotive industry. In order to enhance the quality and engineering functionality of die cast engine blocks, die design and processes have to be optimized. In this study, a computer simulation software, MAGMAsoft, as an advanced tool for optimizing die design and casting process, was emplooyed to virtually visualize cavity filling and patterns of a V6 engine block. The original die design and process was simulated first to establish a baseline. A reality check was used to verify the predicted results. Then, the die modification with a different unner system was made by using a CAD software, Unigraphics (UG. The simulation on combinations of the modified die design and revised process was performed to examine the effect of die modification and process change on flow filling of V6 engine blocks. The simulated prediction indicateds that the enhancement of cavity filling due to the die and process modification minimizeds the occurrence of defects during casting, and consequently improves the quality of blocks. The results of mechanical testing show a significant increase in fatigue strengths, and a moderately improvement on tensile properties for the blocks die cast with the new die design and prpocess in comparison with those produced by the original ones.

  17. 76 FR 68634 - Airworthiness Directives; General Electric Company (GE) CF6 Turbofan Engines

    Science.gov (United States)

    2011-11-07

    ... Airworthiness Directives; General Electric Company (GE) CF6 Turbofan Engines AGENCY: Federal Aviation... ``(c) This AD applies to * * * and CF6-80A3 turbofan engines with left-hand links * * *.'' to ``(c) This AD applies to * * * and CF6-80A3 turbofan engines, including engines marked on the engine data...

  18. GEP 6.5LT Engine Cetane Window Evaluation for ATJ/JP-8 Fuel Blends

    Science.gov (United States)

    2015-09-01

    matching pre- calibrated amplifier • BEI Shaft Encoder (0.2 CAD) • Wolff Instrumented Injector for needle lift The high speed data was recorded and post...14. ABSTRACT The European Stationary Cycle 13 Mode test and a power curve was performed on a 6.5L turbocharged V-8 diesel engine for three ATJ...15. SUBJECT TERMS ATJ, Alcohol to Jet, Cetane Number, Synthetic Fuel, JP-8, diesel engine, combustion 16. SECURITY CLASSIFICATION OF: 17

  19. THE EFFECT OF COMPRESSION RATIO VARIATIONS ON THE ENGINE PERFORMANCE PARAMETRES IN SPARK IGNITION ENGINES

    Directory of Open Access Journals (Sweden)

    Yakup SEKMEN

    2005-01-01

    Full Text Available Performance of the spark ignition engines may be increased by changing the geometrical compression ratio according to the amount of charging in cylinders. The designed geometrical compression ratio can be realized as an effective compression ratio under the full load and full open throttle conditions since the effective compression ratio changes with the amount of charging into the cylinder in spark ignition engines. So, this condition of the spark ignition engines forces designers to change their geometrical compression ratio according to the amount of charging into the cylinder for improvement of performance and fuel economy. In order to improve the combustion efficiency, fuel economy, power output, exhaust emissions at partial loads, compression ratio must be increased; but, under high load and low speed conditions to prevent probable knock and hard running the compression ratio must be decreased gradually. In this paper, relation of the performance parameters to compression ratio such as power, torque, specific fuel consumption, cylindir pressure, exhaust gas temperature, combustion chamber surface area/volume ratio, thermal efficiency, spark timing etc. in spark ignition engines have been investigated and using of engines with variable compression ratio is suggested to fuel economy and more clear environment.

  20. Effect of engine load and biogas flow rate to the performance of a compression ignition engine run in dual-fuel (dieselbiogas) mode

    Science.gov (United States)

    Ambarita, H.

    2018-02-01

    The Government of Indonesia (GoI) has released a target on reduction Green Houses Gases emissions (GHG) by 26% from level business-as-usual by 2020, and the target can be up to 41% by international supports. In the energy sector, this target can be reached effectively by promoting fossil fuel replacement or blending with biofuel. One of the potential solutions is operating compression ignition (CI) engine in dual-fuel (diesel-biogas) mode. In this study effects of engine load and biogas flow rate on the performance and exhaust gas emissions of a compression ignition engine run in dual-fuel mode are investigated. In the present study, the used biogas is refined with methane content 70% of volume. The objectives are to explore the optimum operating condition of the CI engine run in dual-fuel mode. The experiments are performed on a four-strokes CI engine with rated output power of 4.41 kW. The engine is tested at constant speed 1500 rpm. The engine load varied from 600W to 1500W and biogas flow rate varied from 0 L/min to 6 L/min. The results show brake thermal efficiency of the engine run in dual-fuel mode is better than pure diesel mode if the biogas flow rates are 2 L/min and 4 L/min. It is recommended to operate the present engine in a dual-fuel mode with biogas flow rate of 4 L/min. The consumption of diesel fuel can be replaced up to 50%.

  1. Enabling performance skills: Assessment in engineering education

    Science.gov (United States)

    Ferrone, Jenny Kristina

    Current reform in engineering education is part of a national trend emphasizing student learning as well as accountability in instruction. Assessing student performance to demonstrate accountability has become a necessity in academia. In newly adopted criterion proposed by the Accreditation Board for Engineering and Technology (ABET), undergraduates are expected to demonstrate proficiency in outcomes considered essential for graduating engineers. The case study was designed as a formative evaluation of freshman engineering students to assess the perceived effectiveness of performance skills in a design laboratory environment. The mixed methodology used both quantitative and qualitative approaches to assess students' performance skills and congruency among the respondents, based on individual, team, and faculty perceptions of team effectiveness in three ABET areas: Communications Skills. Design Skills, and Teamwork. The findings of the research were used to address future use of the assessment tool and process. The results of the study found statistically significant differences in perceptions of Teamwork Skills (p performance skills, such as teamwork, among freshman engineering students; (2) incorporate feedback into the learning process; (3) strengthen the assessment process with a follow-up plan that specifically targets performance skill deficiencies, and (4) integrate the assessment instrument and practice with ongoing curriculum development. The findings generated by this study provides engineering departments engaged in assessment activity, opportunity to reflect, refine, and develop their programs as it continues. It also extends research on ABET competencies of engineering students in an under-investigated topic of factors correlated with team processes, behavior, and student learning.

  2. Fire-safety engineering and performance-based codes

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt

    project administrators, etc. The book deals with the following topics: • Historical presentation on the subject of fire • Legislation and building project administration • European fire standardization • Passive and active fire protection • Performance-based Codes • Fire-safety Engineering • Fundamental......Fire-safety Engineering is written as a textbook for Engineering students at universities and other institutions of higher education that teach in the area of fire. The book can also be used as a work of reference for consulting engineers, Building product manufacturers, contractors, building...... thermodynamics • Heat exchange during the fire process • Skin burns • Burning rate, energy release rate and design fires • Proposal to Risk-based design fires • Proposal to a Fire scale • Material ignition and flame spread • Fire dynamics in buildings • Combustion products and toxic gases • Smoke inhalation...

  3. Hydrogen engine performance analysis project. Second annual report

    Energy Technology Data Exchange (ETDEWEB)

    Adt, Jr., R. R.; Swain, M. R.; Pappas, J. M.

    1980-01-01

    Progress in a 3 year research program to evaluate the performance and emission characteristics of hydrogen-fueled internal combustion engines is reported. Fifteen hydrogen engine configurations will be subjected to performance and emissions characterization tests. During the first two years, baseline data for throttled and unthrottled, carburetted and timed hydrogen induction, Pre IVC hydrogen-fueled engine configurations, with and without exhaust gas recirculation (EGR) and water injection, were obtained. These data, along with descriptions of the test engine and its components, the test apparatus, experimental techniques, experiments performed and the results obtained, are given. Analyses of other hydrogen-engine project data are also presented and compared with the results of the present effort. The unthrottled engine vis-a-vis the throttled engine is found, in general, to exhibit higher brake thermal efficiency. The unthrottled engine also yields lower NO/sub x/ emissions, which were found to be a strong function of fuel-air equivalence ratio. (LCL)

  4. 6th World Congress on Engineering Asset Management

    CERN Document Server

    Ni, Jun; Sarangapani, Jagnathan; Mathew, Joseph

    2014-01-01

    This text represents state-of-the-art trends and developments in the emerging field of engineering asset management as presented at the Sixth World Congress on Engineering Asset Management (WCEAM) held in Cincinnati, OH, USA from October 3-5, 2011 The Proceedings of the WCEAM 2011 is an excellent reference for practitioners, researchers and students in the multidisciplinary field of asset management, covering topics such as: • Asset condition monitoring and intelligent maintenance • Asset data warehousing, data mining and fusion • Asset performance and level-of-service models • Design and lifecycle integrity of physical assets • Deterioration and preservation models for assets • Education and training in asset management • Engineering standards in asset management • Fault diagnosis and prognostics • Financial analysis methods for physical assets • Human dimensions in integrated asset management • Information quality management • Information systems and knowledge management • Intellig...

  5. Structural analysis during the development of the Ford Lion V6 engine; Strukturanalysen bei der Entwicklung des neuen Ford-Lion-V6-Dieselmotors

    Energy Technology Data Exchange (ETDEWEB)

    Parker, M.J.; Moore, D.S. [Perkins Engines Co., Peterborough (United Kingdom); Gill, S. [Ford Motor Co., Dearborn, MI (United States); Rowley, J. [Ford Motor Co. Ltd., Basildon (United Kingdom)

    2006-04-15

    Ford and PSA Peugeot Citroen have recently launched their new 2.7 litre Lion V6-HSDI engine for installation into the Jaguar 'S' type platform. The engine was developed to provide market leading noise, vibration and harshness whilst simultaneously providing high power density and meeting the Euro 4 emissions requirements. This paper describes the advanced computer based predictive analysis that was used to support and validate the design of core engine components at each of the individual Ford Product Development System (FPDS) phases for the Lion V6 engine. (orig.)

  6. Highly efficient 6-stroke engine cycle with water injection

    Science.gov (United States)

    Szybist, James P; Conklin, James C

    2012-10-23

    A six-stroke engine cycle having improved efficiency. Heat is recovered from the engine combustion gases by using a 6-stroke engine cycle in which combustion gases are partially vented proximate the bottom-dead-center position of the fourth stroke cycle, and water is injected proximate the top-dead-center position of the fourth stroke cycle.

  7. Optimization of Biodiesel-Diesel Blended Fuel Properties and Engine Performance with Ether Additive Using Statistical Analysis and Response Surface Methods

    Directory of Open Access Journals (Sweden)

    Obed M. Ali

    2015-12-01

    Full Text Available In this study, the fuel properties and engine performance of blended palm biodiesel-diesel using diethyl ether as additive have been investigated. The properties of B30 blended palm biodiesel-diesel fuel were measured and analyzed statistically with the addition of 2%, 4%, 6% and 8% (by volume diethyl ether additive. The engine tests were conducted at increasing engine speeds from 1500 rpm to 3500 rpm and under constant load. Optimization of independent variables was performed using the desirability approach of the response surface methodology (RSM with the goal of minimizing emissions and maximizing performance parameters. The experiments were designed using a statistical tool known as design of experiments (DoE based on RSM.

  8. Performance of a RBCC Engine in Rocket-Operation

    Science.gov (United States)

    Tomioka, Sadatake; Kubo, Takahiro; Noboru Sakuranaka; Tani, Koichiro

    Combination of a scramjet (supersonic combustion ramjet) flow-pass with embedded rocket engines (the combined system termed as Rocket-based Combined Cycle engine) are expected to be the most effective propulsion system for space launch vehicles. Either SSTO (Single Stage To Orbit) system or TSTO (Two Stage To Orbit) system with separation at high altitude needs final stage acceleration in space, so that the RBCC (Rocket Based Combined Cycle) engine should be operated as rocket engines. Performance of the scramjet combustor as the extension to the rocket nozzle, was experimentally evaluated by injecting inert gas at various pressure through the embedded rocket chamber while the whole sub-scaled model was placed in a low pressure chamber connected to an air-driven ejector system. The results showed that the thrust coefficient was about 1.2, the low value being found to mainly due to the friction force on the scramjet combustor wall, while blocking the scramjet flow pass’s opening to increase nozzle extension thrust surface, was found to have little effects on the thrust performance. The combustor was shortened to reduce the friction loss, however, degree of reduction was limited as friction decreased rapidly with distance from the onset of the scramjet combustor.

  9. Self-Control and Academic Performance in Engineering

    Science.gov (United States)

    Honken, Nora; Ralston, Patricia A.; Tretter, Thomas R.

    2016-01-01

    Self-control has been related to positive student outcomes including academic performance of college students. Because of the critical nature of the first semester academic performance for engineering students in terms of retention and persistence in pursuing an engineering degree, this study investigated the relationship between freshmen…

  10. A new generation of high performance engines for spacecraft propulsion

    Science.gov (United States)

    Rosenberg, Sanders D.; Schoenman, Leonard

    1991-01-01

    Experimental data validating advanced engine designs at three thrust levels (5, 15, and 100 lbF) is presented. All of the three engine designs considered employ a Moog bipropellant torque motor valve, platelet injector design, and iridium-lined rhenium combustion chamber. Attention is focused on the performance, robustness, duration, and flexibility characteristics of the engines. It is noted that the 5- and 15-lbF thrust engines can deliver a steady state specific impulse in excess of 310 lbF-sec/lbm at an area ratio of 150:1, while the 150-lbF thrust engines deliver a steady state specific impulse of 320 lbF-sec/lbm at an area ratio of 250:1. The hot-fire test results reveal specific impulse improvements of 15 to 25 sec over conventional fuel film cooled columbium chamber designs while operating at maximum chamber temperatures.

  11. FACTORS AFFECTING PERFORMANCE OF ENGINEERED BARRIERS

    International Nuclear Information System (INIS)

    J.A. BLINK, R.W. ANDREWS, J.N. BAILEY, T.W. DOERING J.H. LEE, J.K. MCCOY, D.G. MCKENZIE, D. SEVOUGIAN AND V. VALLIKAT

    1998-01-01

    For the Yucca Mountain Viability Assessment (VA), a reference design was tentatively selected in September 1997, and a series of model abstractions are being prepared for the performance assessment (PA) of that design. To determine the sensitivity of peak dose rate at the accessible environment to engineered components, several design options were subjected to the PA models available late in FY97

  12. Experimental investigations of the hydrogen addition effects on diesel engine performance

    Science.gov (United States)

    Mirica, I.; Pana, C.; Negurescu, N.; Cernat, A.; Nutu, C.

    2016-08-01

    In the global content regarding the impact on the environmental of the gases emissions resulted from the fossil fuels combustion, an interest aspect discussed on the 21st Session of the Conference of the Parties from the 2015 Paris Climate Conference and the gradual diminution of the worldwide oil reserves contribute to the necessity of searching of alternative energy from durable and renewable resources. At the use of hydrogen as addition in air to diesel engine, the level of CO, HC and smoke from the exhaust gases will decrease due to the improvement of the combustion process. At low and medium partial loads and low hydrogen energetic ratios used the NOX emission level can decrease comparative to classic diesel engine. The hydrogen use as fuel for diesel engine leads to the improving of the energetic and emissions performance of the engine due to combustion improvement and reduction of carbon content. The paper presents, in a comparative way, results of the experimental researches carried on a truck compression ignition engine fuelled with diesel fuel and with hydrogen diesel fuel and hydrogen as addition in air at different engine operation regimes. The results obtained during experimental investigations show better energetic and pollution performance of the engine fuelled with hydrogen as addition in air comparative to classic engine. The influences of hydrogen addition on engine operation are shown.

  13. Engineering Self-Efficacy Contributing to the Academic Performance of AMAIUB Engineering Students: A Qualitative Investigation

    Science.gov (United States)

    Aleta, Beda T.

    2016-01-01

    This research study aims to determine the factors of engineering skills self- efficacy sources contributing on the academic performance of AMAIUB engineering students. Thus, a better measure of engineering self-efficacy is needed to adequately assess engineering students' beliefs in their capabilities to perform tasks in their engineering…

  14. The first of a new generation of diesel engines from General Motors - the efficient and powerful 1.6 liter Euro6 midsize diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Boretto, Gianmarco; Golisano, Roberto; Scotti, Michele; Antonioli, Pierpaolo; Frank, Richard M.; Rovatti, Giovanni [General Motors Powertrain Europe s.r.l., Turin (Italy); Wesslau, Markus [Adam Opel AG, Ruesselsheim (Germany)

    2013-08-01

    The major challenge the automotive industry will face in the next decade is undoubtedly the reduction of CO{sub 2} emissions. Conventional powertrains with internal combustion engines will still play a predominant role: in particular, the diesel engine will be a major contributor to the solution thanks to its intrinsic high thermodynamic efficiency and low-end torque which is a key enabler for downsizing engine displacement and downspeeding. In this context, General Motors has developed an entirely new 1.6 liter four-cylinder Midsize Diesel Engine (MDE), the first of a new generation of efficient and powerful diesel engines. Its development has been focused on the achievement of high power and torque density, superior fuel efficiency and state-of-the-art noise and vibration, while meeting the Euro6 emission standard in a wide range of B-, C- and D-segment vehicles, utilizing different exhaust aftertreatment solutions. The key technical features of the base engine, combustion system and emission reduction technologies, together with the innovative engine control unit, are described in this paper. (orig.)

  15. Comparison of the performance of a spark-ignited gasoline engine blended with hydrogen and hydrogen-oxygen mixtures

    International Nuclear Information System (INIS)

    Wang, Shuofeng; Ji, Changwei; Zhang, Jian; Zhang, Bo

    2011-01-01

    This paper compared the effects of hydrogen and hydrogen-oxygen blends (hydroxygen) additions on the performance of a gasoline engine at 1400 rpm and a manifolds absolute pressure of 61.5 kPa. The tests were carried out on a 1.6 L gasoline engine equipped with a hydrogen and oxygen injection system. A hybrid electronic control unit was applied to adjust the hydrogen and hydroxygen volume fractions in the intake increasing from 0% to about 3% and keep the hydrogen-to-oxygen mole ratio at 2:1 in hydroxygen tests. For each testing condition, the gasoline flow rate was adjusted to maintain the mixture global excess air ratio at 1.00. The test results confirmed that engine fuel energy flow rate was decreased after hydrogen addition but increased with hydroxygen blending. When hydrogen or hydroxygen volume fraction in the intake was lower than 2%, the hydroxygen-blended gasoline engine produced a higher thermal efficiency than the hydrogen-blended gasoline engine. Both the additions of hydrogen and hydroxygen help reduce flame development and propagation periods of the gasoline engine. HC emissions were reduced whereas NOx emissions were raised with the increase of hydrogen and hydroxygen addition levels. CO was slightly increased after hydrogen blending, but reduced with hydroxygen addition. -- Highlights: → We compared the effects of hydrogen and hydroxygen additions on the gasoline engine performance. → The hydroxygen should be added into the engine only at low blending levels. → CO is decreased with hydroxygen addition whereas increased with hydrogen blending.

  16. An experimental assessment on the influence of high octane fuels on biofuel based dual fuel engine performance, emission, and combustion

    Directory of Open Access Journals (Sweden)

    Masimalai Senthilkumar

    2017-01-01

    Full Text Available This paper presents an experimental study on the effect of different high octane fuels (such as eucalyptus oil, ethanol, and methanol on engine’s performance behaviour of a biofuel based dual fuel engine. A single cylinder Diesel engine was modified and tested under dual fuel mode of operation. Initially the engine was run using neat diesel, neat mahua oil as fuels. In the second phase, the engine was operated in dual fuel mode by using a specially designed variable jet carburettor to supply the high octane fuels. Engine trials were made at 100% and 40% loads (power outputs with varying amounts of high octane fuels up-to the maximum possible limit. The performance and emission characteristics of the engine were obtained and analysed. Results indicated significant improvement in brake thermal efficiency simultaneous reduction in smoke and NO emissions in dual fuel operation with all the inducted fuels. At 100% load the brake thermal efficiency increased from 25.6% to a maximum of 32.3, 30.5, and 28.4%, respectively, with eucalyptus oil, ethanol, and methanol as primary fuels. Smoke was reduced drastically from 78% with neat mahua oil a minimum of 41, 48, and 53%, respectively, with eucalyptus oil, ethanol, and methanol at the maximum efficiency point. The optimal energy share for the best engine behaviour was found to be 44.6, 27.3, and 23.2%, respectively, for eucalyptus oil, ethanol, and methanol at 100% load. Among the primary fuels tested, eucalyptus oil showed the maximum brake thermal efficiency, minimum smoke and NO emissions and maximum energy replacement for the optimal operation of the engine.

  17. Engine Tune-up Service. Unit 6: Emission Control Systems. Posttests. Automotive Mechanics Curriculum.

    Science.gov (United States)

    Morse, David T.; May, Theodore R.

    This book of posttests is designed to accompany the Engine Tune-Up Service Student Guide for Unit 6, Emission Control Systems, available separately as CE 031 220. Focus of the posttests is inspecting, testing, and servicing emission control systems. One multiple choice posttest is provided that covers the seven performance objectives contained in…

  18. Performance and heat release analysis of a pilot-ignited natural gas engine

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, S.R.; Biruduganti, M.; Mo, Y.; Bell, S.R.; Midkiff, K.C. [Alabama Univ., Dept. of Mechanical Engineering, Tuscaloosa, AL (United States)

    2002-09-01

    The influence of engine operating variables on the performance, emissions and heat release in a compression ignition engine operating in normal diesel and dual-fuel modes (with natural gas fuelling) was investigated. Substantial reductions in NO{sub x} emissions were obtained with dual-fuel engine operation. There was a corresponding increase in unburned hydrocarbon emissions as the substitution of natural gas was increased. Brake specific energy consumption decreased with natural gas substitution at high loads but increased at low loads. Experimental results at fixed pilot injection timing have also established the importance of intake manifold pressure and temperature in improving dual-fuel performance and emissions at part load. (Author)

  19. Adaptation Method for Overall and Local Performances of Gas Turbine Engine Model

    Science.gov (United States)

    Kim, Sangjo; Kim, Kuisoon; Son, Changmin

    2018-04-01

    An adaptation method was proposed to improve the modeling accuracy of overall and local performances of gas turbine engine. The adaptation method was divided into two steps. First, the overall performance parameters such as engine thrust, thermal efficiency, and pressure ratio were adapted by calibrating compressor maps, and second, the local performance parameters such as temperature of component intersection and shaft speed were adjusted by additional adaptation factors. An optimization technique was used to find the correlation equation of adaptation factors for compressor performance maps. The multi-island genetic algorithm (MIGA) was employed in the present optimization. The correlations of local adaptation factors were generated based on the difference between the first adapted engine model and performance test data. The proposed adaptation method applied to a low-bypass ratio turbofan engine of 12,000 lb thrust. The gas turbine engine model was generated and validated based on the performance test data in the sea-level static condition. In flight condition at 20,000 ft and 0.9 Mach number, the result of adapted engine model showed improved prediction in engine thrust (overall performance parameter) by reducing the difference from 14.5 to 3.3%. Moreover, there was further improvement in the comparison of low-pressure turbine exit temperature (local performance parameter) as the difference is reduced from 3.2 to 0.4%.

  20. Covariance of engineering management characteristics with engineering employee performance

    Science.gov (United States)

    Hesketh, Andrew Arthur

    1998-12-01

    As business in the 1990's grapples with the impact of continuous improvement and quality to meet market demands, there is an increased need to improve the leadership capabilities of our managers. Engineers have indicated desire for certain managerial characteristics in their leadership but there have been no studies completed that approached the problem of determining what managerial characteristics were best at improving employee performance. This study addressed the idea of identifying certain managerial characteristics that enhance employee performance. In the early 1990's, McDonnell Douglas Aerospace in St. Louis used a forced distribution system and allocated 35% of its employees into a "exceeds expectations" category and 60% into a "meets expectations" category. A twenty-question 5 point Likert scale survey on managerial capabilities was administered to a sample engineering population that also obtained their "expectations" category. A single factor ANOVA on the survey results determined a statistical difference between the "exceeds" and "meets" employees with four of the managerial capability questions. The "exceeds expectations" employee indicated that supervision did a better job of supporting subordinate development, clearly communicating performance expectations, and providing timely performance feedback when compared to the "meets expectations" employee. The "meets expectations" employee felt that their opinions, when different from their supervisor's, were more often ignored when compared to the "exceeds expectations" employee. These four questions relate to two specific managerial characteristics, "gaining (informal) authority and support" or "control" characteristic and "providing assistance and guidance" or "command" characteristic, that can be emphasized in managerial training programs.

  1. Performance of small-scale aero-derivative industrial gas turbines derived from helicopter engines

    Directory of Open Access Journals (Sweden)

    Barinyima Nkoi

    2013-12-01

    Full Text Available This paper considers comparative assessment of simple and advanced cycle small-scale aero-derivative industrial gas turbines derived from helicopter engines. More particularly, investigation was made of technical performance of the small-scale aero-derivative engine cycles based on existing and projected cycles for applications in industrial power generation, combined heat and power concept, rotating equipment driving, and/or allied processes. The investigation was done by carrying out preliminary design and performance simulation of a simple cycle (baseline two-spool small-scale aero-derivative turboshaft engine model, and some advanced counterpart aero-derivative configurations. The advanced configurations consist of recuperated and intercooled/recuperated engine cycles of same nominal power rating of 1.567 MW. The baseline model was derived from the conversion of an existing helicopter engine model. In doing so, design point and off-design point performances of the engine models were established. In comparing their performances, it was observed that to a large extent, the advanced engine cycles showed superior performance in terms of thermal efficiency, and specific fuel consumption. In numerical terms, thermal efficiencies of recuperated engine cycle, and intercooled/recuperated engine cycles, over the simple cycle at DP increased by 13.5%, and 14.5% respectively, whereas specific fuel consumption of these cycles over simple cycle at DP decreased by 12.5%, and 13% respectively. This research relied on open access public literature for data.

  2. Effect of finite heat input on the power performance of micro heat engines

    International Nuclear Information System (INIS)

    Khu, Kerwin; Jiang, Liudi; Markvart, Tom

    2011-01-01

    Micro heat engines have attracted considerable interest in recent years for their potential exploitation as micro power sources in microsystems and portable devices. Thermodynamic modeling can predict the theoretical performance that can be potentially achieved by micro heat engine designs. An appropriate model can not only provide key information at the design stage but also indicate the potential room for improvement in existing micro heat engines. However, there are few models reported to date which are suitable for evaluating the power performance of micro heat engines. This paper presents a new thermodynamic model for determining the theoretical limit of power performance of micro heat engines with consideration to finite heat input and heat leakage. By matching the model components to those of a representative heat engine layout, the theoretical power, power density, and thermal efficiency achievable for a micro heat engine can be obtained for a given set of design parameters. The effects of key design parameters such as length and thermal conductivity of the engine material on these theoretical outputs are also investigated. Possible trade-offs among these performance objectives are discussed. Performance results derived from the developed model are compared with those of a working micro heat engine (P3) as an example. -- Highlights: → Thermodynamic model for micro heat engines. → Effect of different parameters on potential performance. → Tradeoffs for determining optimal size of micro engines.

  3. Effects of Reynold's number on flight performance of turbofan engine

    Energy Technology Data Exchange (ETDEWEB)

    Kozu, Masao; Yajima, Satoshi [Defense Agency Tokyo (Japan); Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan))

    1988-12-10

    Concerning the performance of the F3-30 turbofan engine which is carried on the intermediate trainer XT-4 of the Air Self Defense Force, tests simulating its flight conditions were conducted at the Altitude Test Facility (ATF) of the Arnold Engineering Development Center (AEDC), U.S. Air Force in order to adjust the effect of Reynold's number corresponding to the flight condition. This report summarizes the results of the above tests. As the results of the tests, it was revealed that in order to calculate with precision the flight performance of the F3-30 turbofan engine, it was required to adjust Reynold's number against the following figures, namely the fan air flow, compressor air flow, compressor adiabatic efficiency, low pressure turbine gas flow and low pressure turbine adiabatic efficiency. The engine performance calculated by using the above adjustments agreed well with the measured values of the ATF tests. 7 refs., 17 figs., 1 tab.

  4. Gasoline Engine Mechanics. Performance Objectives. Intermediate Course.

    Science.gov (United States)

    Jones, Marion

    Several intermediate performance objectives and corresponding criterion measures are listed for each of six terminal objectives presented in this curriculum guide for an intermediate gasoline engine mechanics course at the secondary level. (For the beginning course guide see CE 010 947.) The materials were developed for a two-semester (2 hour…

  5. 26 x 6.6 radial-belted aircraft tire performance

    Science.gov (United States)

    Davis, Pamela A.; Martinson, Veloria J.; Yager, Thomas J.; Stubbs, Sandy M.

    1991-01-01

    Preliminary results from testing of 26 x 6.6 radial-belted and bias-ply aircraft tires at NASA Langley's Aircraft Landing Dynamics Facility (ALDF) are reviewed. The 26 x 6.6 tire size evaluation includes cornering performance tests throughout the aircraft ground operational speed range for both dry and wet runway surfaces. Static test results to define 26 x 6.6 tire vertical stiffness properties are also presented and discussed.

  6. Reducing the viscosity of Jojoba Methyl Ester diesel fuel and effects on diesel engine performance and roughness

    Energy Technology Data Exchange (ETDEWEB)

    Selim, Mohamed Y.E. [Mech. Eng. Dept., UAE University, Al-Ain, Abu Dhabi 17555 (United Arab Emirates)

    2009-07-15

    An experimental investigation has been carried out to test two approaches to reduce the viscosity of the Jojoba Methyl Ester (JME) diesel fuel. The first approach is the heating of the fuel to two temperatures of 50 and 70 C as compared to the base ambient temperature and to diesel fuel too. The second approach is adding one chemical which is considered by its own as alternative and renewable fuel which is Diethyl Ether (DEE). The viscosity has been reduced by both methods to close to diesel values. The performance of a diesel engine using those fuels has been tested in a variable compression research engine Ricardo E6 with the engine speed constant at 1200 rpm. The measured parameters included the exhaust gas temperature, the ignition delay period, the maximum pressure rise rate, maximum pressure, and indicated mean effective pressure and maximum heat release rate. The engine performance is presented and the effects of both approaches are scrutinized. (author)

  7. Reducing the viscosity of Jojoba Methyl Ester diesel fuel and effects on diesel engine performance and roughness

    International Nuclear Information System (INIS)

    Selim, Mohamed Y.E.

    2009-01-01

    An experimental investigation has been carried out to test two approaches to reduce the viscosity of the Jojoba Methyl Ester (JME) diesel fuel. The first approach is the heating of the fuel to two temperatures of 50 and 70 deg. C as compared to the base ambient temperature and to diesel fuel too. The second approach is adding one chemical which is considered by its own as alternative and renewable fuel which is Diethyl Ether (DEE). The viscosity has been reduced by both methods to close to diesel values. The performance of a diesel engine using those fuels has been tested in a variable compression research engine Ricardo E6 with the engine speed constant at 1200 rpm. The measured parameters included the exhaust gas temperature, the ignition delay period, the maximum pressure rise rate, maximum pressure, and indicated mean effective pressure and maximum heat release rate. The engine performance is presented and the effects of both approaches are scrutinized.

  8. The new Mercedes-Benz V6 petrol engine with direct injection; Der neue V6-Ottomotor mit Direkteinspritzung von Mercedes-Benz

    Energy Technology Data Exchange (ETDEWEB)

    Waltner, Anton; Lueckert, Peter; Breitbach, Hermann; Doll, Gerhard; Herwig, Helmut; Kemmler, Roland; Weckenmann, Hartmut [Daimler AG, Stuttgart (Germany)

    2010-07-01

    With the new 6-cylinder engine, Mercedes-Benz has succeeded in implementing a design which, in addition to providing outstanding performance values along with the highest degree of comfort, also appropriately addresses environmental issues and economic viability. The new 60 V-angle and the extremely lightweight construction in the engine area provide an excellent degree of comfort. With third-generation direct injection (DEO3) in conjunction with multi-spark ignition, it was possible to develop new modes of operation thus opening up new areas of the characteristics map with fuel-optimised lean combustion. The brake specific fuel consumption values set new benchmarks for the combustion engine. Together with stop/start technology, shift point adjustment and the systematic reduction of rolling resistance, improvements in fuel consumption up to 20% are possible. All together, this engine design represents an outstanding engine line-up in all target vehicle model series from Mercedes-Benz. Sustainability for the future is also guaranteed through the advantageous injection technology and modularity. (orig.)

  9. Effect of hydroxy (HHO gas addition on gasoline engine performance and emiss

    Directory of Open Access Journals (Sweden)

    Mohamed M. EL-Kassaby

    2016-03-01

    Full Text Available The objective of this work was to construct a simple innovative HHO generation system and evaluate the effect of hydroxyl gas HHO addition, as an engine performance improver, into gasoline fuel on engine performance and emissions. HHO cell was designed, fabricated and optimized for maximum HHO gas productivity per input power. The optimized parameters were the number of neutral plates, distance between them and type and quantity of two catalysts of Potassium Hydroxide (KOH and sodium hydroxide (NaOH. The performance of a Skoda Felicia 1.3 GLXi gasoline engine was evaluated with and without the optimized HHO cell. In addition, the CO, HC and NOx emissions were measured using TECNO TEST exhaust gas analyzer TE488. The results showed that the HHO gas maximum productivity of the cell was 18 L/h when using 2 neutrals plates with 1 mm distance and 6 g/L of KOH. The results also showed 10% increment in the gasoline engine thermal efficiency, 34% reduction in fuel consumption, 18% reduction in CO, 14% reduction in HC and 15% reduction in NOx.

  10. Determination of performance degradation of a marine diesel engine by using curve based approach

    International Nuclear Information System (INIS)

    Kökkülünk, Görkem; Parlak, Adnan; Erdem, Hasan Hüseyin

    2016-01-01

    Highlights: • Mathematical model was developed for a marine diesel engine. • Measurements were taken from Main Engine of M/V Ince Inebolu. • The model was validated for the marine diesel engine. • Curve Based Method was performed to evaluate the performance. • Degradation values of a marine diesel engine were found for power and SFC. - Abstract: Nowadays, energy efficiency measures on ships are the top priority topic for the maritime sector. One of the important key parameters of energy efficiency is to find the useful tool to improve the energy efficiency. There are two steps to improve the energy efficiency on ships: Measurement and Evaluation of performance of main fuel consumers. Performance evaluation is the method that evaluates how much the performance changes owing to engine component degradation which cause to reduce the performance due to wear, fouling, mechanical problems, etc. In this study, zero dimensional two zone combustion model is developed and validated for two stroke marine diesel engine (MITSUI MAN B&W 6S50MC). The measurements are taken from a real ship named M/V Ince Inebolu by the research team during the normal operation of the main engine in the region of the Marmara Sea. To evaluate the performance, “Curve based method” is used to calculate the total performance degradation. This total degradation is classified as parameters of compression pressure, injection timing, injection pressure, scavenge air temperature and scavenge air pressure by means of developed mathematical model. In conclusion, the total degradation of the applied ship is found as 620 kW by power and 26.74 g/kW h by specific fuel consumption.

  11. Further developments in performance prediction techniques of adiabatic diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Rasihhan, Y

    1990-01-01

    The engine cycle simulation program 'SPICE', developed at Bath University, has been used extensively for insulated diesel engine research. The present study introduces more comprehensive engine heat transfer models thus enabling us to study the insulated engine heat transfer and performance characteristics in more detail. The new version of 'SPICE' separates the gas to wall heat transfer into two parts, convective and radiative. For this purpose, a detailed radiative heat transfer model which considers both the flame (gas and soot) and wall to wall radiative heat transfer is written. The previous engine resistance model is refined and replaced by a more detailed resistance model which considers piston-liner conduction heat transfer and 2-D heat flow in the liner. The wall surface temperature swing is also included in the engine heat transfer calculations which is quite significant in low conductivity ceramic insulated engines. A 1-D finite difference model is written for the transient heat transfer region of the wall and linked to the engine resistance model. This new version of 'SPICE' is used to predict the insulated engine heat transfer and performance for the experimental Petter PH1W engine for various insulation levels and schemes. An answer to the controversy of increase in engine heat loss with insulation is looked for. The effect of wall deposits on engine heat transfer and its significance for the insulated engine is highlighted. (Author).

  12. Developing excellence awareness at Davis-Besse through engineering quality management

    International Nuclear Information System (INIS)

    Gaudette, M.R.; Lash, J.H.; Haiman, D.L.

    1989-01-01

    At Davis-Besse nuclear power station engineering quality management includes a variety of chartered functions whose ultimate objective is to improve product and service quality and process efficiency. These functions were assigned in late 1988 to engineering assurance personnel, a section of the engineering department which reports directly to the engineering director but is independent of design activities. This independence ensures objectivity and allows the improvement process to span functional areas so that changes made in one engineering section do not negatively impact the activities of another section. The engineering quality management functions performed by the engineering assurance group are summarized. Engineering quality management at Davis-Besse has increased the degree of excellence evident in engineering products and services

  13. Engine performance, combustion, and emissions study of biomass to liquid fuel in a compression-ignition engine

    International Nuclear Information System (INIS)

    Ogunkoya, Dolanimi; Fang, Tiegang

    2015-01-01

    Highlights: • Renewable biomass to liquid (BTL) fuel was tested in a direct injection diesel engine. • Engine performance, in-cylinder pressure, and exhaust emissions were measured. • BTL fuel reduces pollutant emission for most conditions compared with diesel and biodiesel. • BTL fuel leads to high thermal efficiency and lower fuel consumption compared with diesel and biodiesel. - Abstract: In this work, the effects of diesel, biodiesel and biomass to liquid (BTL) fuels are investigated in a single-cylinder diesel engine at a fixed speed (2000 rpm) and three engine loads corresponding to 0 bar, 1.26 bar and 3.77 bar brake mean effective pressure (BMEP). The engine performance, in-cylinder combustion, and exhaust emissions were measured. Results show an increase in indicated work for BTL and biodiesel at 1.26 bar and 3.77 bar BMEP when compared to diesel but a decrease at 0 bar. Lower mechanical efficiency was observed for BTL and biodiesel at 1.26 bar BMEP but all three fuels had roughly the same mechanical efficiency at 3.77 bar BMEP. BTL was found to have the lowest brake specific fuel consumption (BSFC) and the highest brake thermal efficiency (BTE) among the three fuels tested. Combustion profiles for the three fuels were observed to vary depending on the engine load. Biodiesel was seen to have the shortest ignition delay among the three fuels regardless of engine loads. Diesel had the longest ignition delay at 0 bar and 3.77 bar BMEP but had the same ignition delay as BTL at 1.26 bar BMEP. At 1.26 bar and 3.77 bar BMEP, BTL had the lowest HC emissions but highest HC emissions at no load conditions when compared to biodiesel and diesel. When compared to diesel and biodiesel BTL had lower CO and CO 2 emissions. At 0 bar and 1.26 bar BMEP, BTL had higher NOx emissions than diesel fuel but lower NOx than biodiesel at no load conditions. At the highest engine load tested, NOx emissions were observed to be highest for diesel fuel but lowest for BTL. At 1

  14. Performance assessment for continuing and future operations at solid waste storage area 6

    International Nuclear Information System (INIS)

    1997-09-01

    This revised performance assessment (PA) for the continued disposal operations at Solid Waste Storage Area (SWSA) 6 on the Oak Ridge Reservation (ORR) has been prepared to demonstrate compliance with the performance objectives for low-level radioactive waste (LLW) disposal contained in the US Department of Energy (DOE) Order 5820.2A. This revised PA considers disposal operations conducted from September 26, 1988, through the projects lifetime of the disposal facility

  15. Performance assessment for continuing and future operations at solid waste storage area 6

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This revised performance assessment (PA) for the continued disposal operations at Solid Waste Storage Area (SWSA) 6 on the Oak Ridge Reservation (ORR) has been prepared to demonstrate compliance with the performance objectives for low-level radioactive waste (LLW) disposal contained in the US Department of Energy (DOE) Order 5820.2A. This revised PA considers disposal operations conducted from September 26, 1988, through the projects lifetime of the disposal facility.

  16. BENEFITS AND CHALLENGES OF VARIABLE COMPRESSION RATIO AT DIESEL ENGINES

    OpenAIRE

    Radivoje B Pešić; Saša T Milojević; Stevan P Veinović

    2010-01-01

    The compression ratio strongly affects the working process and provides an exceptional degree of control over engine performance. In conventional internal combustion engines, the compression ratio is fixed and their performance is therefore a compromise between conflicting requirements. One fundamental problem is that drive units in the vehicles must successfully operate at variable speeds and loads and in different ambient conditions. If a diesel engine has a fixed compression ratio, a minim...

  17. Effect of turbocharging system on the performance of a natural gas engine

    International Nuclear Information System (INIS)

    Kesgin, Ugur

    2005-01-01

    The effect of the turbocharging system on the performance of the gas engine family, which is used in combined power plants, is investigated. These investigations show a clear improvement potential for the future of the engine series optimised here. To do this, a computational model in which zero dimensional phenomena within the cylinder and one dimensional phenomena in the engine inlet and exhaust system are used is verified. Using this engine model, the effects of the parameters of the exhaust and turbocharging system on the engine performance are obtained. In particular, the following parameters are chosen: diameter of the exhaust manifold, diameter of the pipe at the turbine exit, efficiency of the turbocharger, location of the turbocharger, back pressure at the turbine exit and pressure losses (resistances) before the compressor. This paper presents the results of these investigations

  18. Effect of hydrogen-diesel combustion on the performance and combustion parameters of a dual fuelled diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Bose, P.K.; Banerjee, Rahul; Deb, Madhujit [Mechanical Engineering Department, National Institute of Technology, Agartala, Tripura-799055 (India)

    2013-07-01

    Petroleum crude is expected to remain main source of transport fuels at least for the next 20 to 30 years. The petroleum crude reserves however, are declining and consumption of transport fuels particularly in the developing countries is increasing at high rates. Severe shortage of liquid fuels derived from petroleum may be faced in the second half of this century. In this paper, experiments are performed in a fur stroke, single cylinder, compression ignition diesel engine with dual fuel mode. Diesel and hydrogen are used as pilot liquid and primary gaseous fuel, respectively. The objective of this study is to find out the effects on combustion and performance parameters observed at diesel hydrogen fuel mixture for all the different loadings (2kg,4kg,6kg,8kg,10kg and 12kg) in the engine.

  19. Study of two-stage turbine characteristic and its influence on turbo-compound engine performance

    International Nuclear Information System (INIS)

    Zhao, Rongchao; Zhuge, Weilin; Zhang, Yangjun; Yang, Mingyang; Martinez-Botas, Ricardo; Yin, Yong

    2015-01-01

    Highlights: • An analytical model was built to study the interactions between two turbines in series. • The impacts of HP VGT and LP VGT on turbo-compound engine performance were investigated. • The fuel reductions obtained by HP VGT at 1900 rpm and 1000 rpm are 3.08% and 7.83% respectively. • The optimum value of AR ranged from 2.0 to 2.5 as the turbo-compound engine speed decreases. - Abstract: Turbo-compounding is an effective way to recover waste heat from engine exhaust and reduce fuel consumption for internal combustion engine (ICE). The characteristics of two-stage turbine, including turbocharger turbine and power turbine, have significant effects on the overall performance of turbo-compound engine. This paper investigates the interaction between two turbines in a turbo-compound engine and its impact on the engine performance. Firstly an analytical model is built to investigate the effects of turbine equivalent flow area on the two-stage turbine characteristics, including swallowing capacity and load split. Next both simulation and experimental method are carried out to study the effects of high pressure variable geometry turbine (HP VGT), low pressure variable geometry turbine (LP VGT) and combined VGT on the engine overall performance. The results show that the engine performance is more sensitive to HP VGT compared with LP VGT at all the operation conditions, which is caused by the larger influences of HP VGT on the total expansion ratio and engine air–fuel ratio. Using the HP VGT method, the fuel reductions of the turbo-compound engine at 1900 rpm and 1000 rpm are 3.08% and 7.83% respectively, in comparison with the baseline engine. The corresponding optimum values of AR are 2.0 and 2.5

  20. Performance of a cycle diesel engine fed with biodiesel (B100)

    Energy Technology Data Exchange (ETDEWEB)

    Volpato, Carlos Eduardo Silva; Barbosa, Jackson Antonio; Salvador, Nilson [Universidade Federal de Lavras (UFLA), MG (Brazil). Dept. de Engenharia], E-mails: volpato@ufla.br, salvador@ufla.br; Conde, Alexon do Prado [Companhia Energetica de Minas Gerais (CEMIG), Belo Horizonte, MG (Brazil)], E-mail: alconde@cemig.com.br

    2008-07-01

    The objective of this work was to evaluate the performance of a cycle diesel engine using soybean biodiesel (B100) in relation to mineral oil diesel. The work was performed at the Department of Engineering at the Federal University of Lavras (UFLA), in Lavras, in the State of Minas Gerais, Brazil, in May, 2007. The parameters analyzed were: effective and reduced power, torque, specific and energy consumption of fuel, efficiency term-mechanics and volumetric. The experiments were installed in an experimental delineation entirely randomized arranged in factorial scheme followed by ANOVA analysis and Tukey test at the level of 5% of probability. There were studied five rotation levels in four repetitions. The results showed the viability of operation of a cycle diesel engine with substitute fuels such as soybean B100. (author)

  1. Thermal performance of a Stirling engine powered by a solar simulator

    International Nuclear Information System (INIS)

    Aksoy, Fatih; Karabulut, Halit; Çınar, Can; Solmaz, Hamit; Özgören, Yasar Önder; Uyumaz, Ahmet

    2015-01-01

    In this study, the performance of a beta type Stirling engine which works at relatively lower temperatures was investigated using 400 W and 1000 W halogen lamps as a heat source and helium as the working fluid. The working fluid was charged into the engine block and the pressure of the working fluid was ranged from 1 to 5 bars with 1 bar increments. The halogen lamps were placed into a cavity adjacent to the hot end of the displacer cylinder, which is made of aluminum alloy. In the experiments conducted with 400 W halogen lamp, the temperature of the cavity was 623 ± 10 K. The power, torque and thermal efficiency of the engine were determined to be 37.08 W, 1.68 Nm and 9.27%, at 5 bar charge pressure. For the 1000 W halogen lamp, the temperature of the cavity was determined to be 873 ± 10 K. The power, torque and thermal efficiency of the engine were determined to be 127.17 W, 3.4 Nm and 12.85%, at the same charge pressure. The experimental thermal efficiencies of the engine were also compared with thermodynamic nodal analysis. - Highlights: • The performance of a beta type Stirling engine was investigated. • 400 and 1000 W halogen lamps were used as a solar simulator in the experiments. • Cavity temperature was measured 623 and 873 K for 400 and 1000 W lamps. • 1000 W halogen lamp provided better engine performance and thermal efficiency. • Experimental results of efficiency were compared with nodal analysis results

  2. ATS-6 engineering performance report. Volume 4: Television experiments

    Science.gov (United States)

    Wales, R. O. (Editor)

    1981-01-01

    Experiments sponsored by the US Department of Health Education and Welfare are discussed, including telecommunications, Alaskan health service, Appalachian education satellite project, and the University of the West Indies. The Satellite Instructional Television Experiment in India is reviewed. Independent television experiments are addressed, including AIDSAT and Project Look Up.

  3. Modular Engineering Concept at Novo Nordisk Engineering

    DEFF Research Database (Denmark)

    Moelgaard, Gert; Miller, Thomas Dedenroth

    1997-01-01

    This report describes the concept of a new engineering method at Novo Nordisk Engineering: Modular Engineering (ME). Three tools are designed to support project phases with different levels of detailing and abstraction. ME supports a standard, cross-functional breakdown of projects that facilitates...

  4. An experimental investigation of Perkins A63544 diesel engine performance using D-Series fuel

    International Nuclear Information System (INIS)

    Hassan-beygi, Seyed Reza; Istan, Vahideh; Ghobadian, Barat; Aboonajmi, Mohammad

    2013-01-01

    Highlights: • The performance of a diesel engine was evaluated using newly developed D-Series fuel. • The specifications of D-Series fuel were in the range of ASTM D-6751-09 standard. • The D-Series fuel did not change the engine power and torque significantly except the D 65 B 25 E 10 fuel blend. • The D-Series fuel blends increased the engine specific fuel consumption compare with neat-diesel fuel. • The D 93 B 5 E 2 fuel blend could be suggested as an appropriate alternative for neat petro-diesel fuel. - Abstract: This paper reports the results of an investigation using a newly developed fuel mixture called ‘D-Series fuel’ on a Perkins A63544 direct injection diesel engine. The biodiesel and bioethanol fuels were added to diesel fuel in a manner that specifications of the formed mixture did not change considerably. The performance of the engine under test was then evaluated without any modification or change in engine components and systems using the D-Series fuel. The obtained data was statistically analyzed using two factors completely randomized design to study the effects of the engine speeds and fuel blend types on the engine power, torque, and specific fuel consumption. The analysis of variance showed that the engine speeds and fuel types had statistically significant effects at 1% probability level (P 65 B 25 E 10 , 65% diesel, 25% biodiesel and 10% bioethanol, blend which decreased the engine power. The engine torque was decreased with increasing the engine speed for all the fuel blends in range of 319–296 N m. The maximum torque reduction was about 25 N m for neat petro-diesel fuel. The engine torque was decreased significantly (P 93 B 5 E 2 fuel blend could be suggested as an appropriate alternative for neat petro-diesel fuel, though the D 86 B 10 E 4 and D 79 B 15 E 6 blends could be also suggested for greater ratios of biodiesel and bioethanol application in D-Series fuel application

  5. Effects of Gas Turbine Component Performance on Engine and Rotary Wing Vehicle Size and Performance

    Science.gov (United States)

    Snyder, Christopher A.; Thurman, Douglas R.

    2010-01-01

    In support of the Fundamental Aeronautics Program, Subsonic Rotary Wing Project, further gas turbine engine studies have been performed to quantify the effects of advanced gas turbine technologies on engine weight and fuel efficiency and the subsequent effects on a civilian rotary wing vehicle size and mission fuel. The Large Civil Tiltrotor (LCTR) vehicle and mission and a previous gas turbine engine study will be discussed as a starting point for this effort. Methodology used to assess effects of different compressor and turbine component performance on engine size, weight and fuel efficiency will be presented. A process to relate engine performance to overall LCTR vehicle size and fuel use will also be given. Technology assumptions and levels of performance used in this analysis for the compressor and turbine components performances will be discussed. Optimum cycles (in terms of power specific fuel consumption) will be determined with subsequent engine weight analysis. The combination of engine weight and specific fuel consumption will be used to estimate their effect on the overall LCTR vehicle size and mission fuel usage. All results will be summarized to help suggest which component performance areas have the most effect on the overall mission.

  6. Improving engineers' performance with computers

    International Nuclear Information System (INIS)

    Purvis, E.E. III

    1984-01-01

    The problem addressed is how to improve the performance of engineers in the design, operation, and maintenance of nuclear power plants. The application of computer science to this problem offers a challenge in maximizing the use of developments outside the nuclear industry and setting priorities to address the most fruitful areas first. Areas of potential benefits include data base management through design, analysis, procurement, construction, operation maintenance, cost, schedule and interface control and planning, and quality engineering on specifications, inspection, and training

  7. Towards artificial intelligence based diesel engine performance control under varying operating conditions using support vector regression

    Directory of Open Access Journals (Sweden)

    Naradasu Kumar Ravi

    2013-01-01

    Full Text Available Diesel engine designers are constantly on the look-out for performance enhancement through efficient control of operating parameters. In this paper, the concept of an intelligent engine control system is proposed that seeks to ensure optimized performance under varying operating conditions. The concept is based on arriving at the optimum engine operating parameters to ensure the desired output in terms of efficiency. In addition, a Support Vector Machines based prediction model has been developed to predict the engine performance under varying operating conditions. Experiments were carried out at varying loads, compression ratios and amounts of exhaust gas recirculation using a variable compression ratio diesel engine for data acquisition. It was observed that the SVM model was able to predict the engine performance accurately.

  8. Combustion Performance and Exhaust Emission of DI Diesel Engine Using Various Sources of Waste Cooking Oil

    Science.gov (United States)

    Afiq, Mohd; Azuhairi, Mohd; Jazair, Wira

    2010-06-01

    In Malaysia, more than 200-tone of cooking oil are used by domestic users everyday. After frying process, about a quarter of these cooking oil was remained and drained into sewage system. This will pollutes waterways and affects the ecosystem. The use of waste cooking oil (WCO) for producing bio-diesel was considered in economical factor which current production cost of bio-diesel production is higher in Malaysia due to higher price of palm oil. Thus, the aim of this study is to investigate the most suitable source of WCO to become a main source of bio-diesel for bio-diesel production in this country. To perform this research, three type of WCO were obtained from house's kitchen, cafeteria and mamak's restaurant. In this study, prospect of these bio-diesel source was evaluated based on its combustion performance and exhaust emissions operated in diesel engine in the form of waste cooking oil methyl ester (WCOME) and have been compared with pure diesel fuel. A 0.6 liter, single-cylinder, air-cooled direct injection diesel engine was used to perform this experiment. Experiment was done at variable engine loads and constant engine speed. As the result, among three stated WCOMEs, the one collected from house's kitchen gives the best performance in term of brake specific fuel consumption (bsfc) and brake power (BP) with lowest soot emission.

  9. An experimental investigation on engine performance and emissions of a supercharged H{sub 2}-diesel dual-fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Murari Mohon [Rajshahi University of Engineering and Technology (JSPS Research Fellow, Okayama University), Tsushima-Naka 3, Okayama 700-8530 (Japan); Department of Mechanical Engineering, Okayama University, Tsushima-Naka 3, Okayama 700-8530 (Japan); Tomita, Eiji; Kawahara, Nobuyuki; Harada, Yuji [Department of Mechanical Engineering, Okayama University, Tsushima-Naka 3, Okayama 700-8530 (Japan); Sakane, Atsushi [Mitsui Engineering and Shipbuilding Co. Ltd., 6-4 Tsukiji 5-chome, Chuo-ku, Tokyo (Japan)

    2010-01-15

    This study investigated the engine performance and emissions of a supercharged engine fueled by hydrogen and ignited by a pilot amount of diesel fuel in dual-fuel mode. The engine was tested for use as a cogeneration engine, so power output while maintaining a reasonable thermal efficiency was important. Experiments were carried out at a constant pilot injection pressure and pilot quantity for different fuel-air equivalence ratios and at various injection timings without and with charge dilution. The experimental strategy was to optimize the injection timing to maximize engine power at different fuel-air equivalence ratios without knocking and within the limit of the maximum cylinder pressure. The engine was tested first with hydrogen-operation condition up to the maximum possible fuel-air equivalence ratio of 0.3. A maximum IMEP of 908 kPa and a thermal efficiency of about 42% were obtained. Equivalence ratio could not be further increased due to knocking of the engine. The emission of CO was only about 5 ppm, and that of HC was about 15 ppm. However, the NOx emissions were high, 100-200 ppm or more. The charge dilution by N{sub 2} was then performed to obtain lower NOx emissions. The 100% reduction of NOx was achieved. Due to the dilution by N{sub 2} gas, higher amount of energy could be supplied from hydrogen without knocking, and about 13% higher IMEP was produced than without charge dilution. (author)

  10. Performance of diesel engine using diesel B3 mixed with crude palm oil.

    Science.gov (United States)

    Namliwan, Nattapong; Wongwuttanasatian, Tanakorn

    2014-01-01

    The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5-17% lower torque and power than that of diesel B3. The specific fuel consumption of mixed fuels was 7-33% higher than using diesel B3. The components of gas emissions by using mixed fuel had 1.6-52% fewer amount of carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2), and oxygen (O2) than those of diesel B3. On the other hand, nitric oxide (NO) and nitrogen oxides (NO X ) emissions when using mixed fuels were 10-39% higher than diesel B3. By comparing the physical properties, the performance of the engine, and the amount of gas emissions of mixed fuel, we found out that the 95 : 5 ratio by volume was a suitable ratio for agricultural diesel engine (low-speed diesel engine).

  11. Boosted performance of a compression-ignition engine with a displaced piston

    Science.gov (United States)

    Moore, Charles S; Foster, Hampton H

    1936-01-01

    Performance tests were made using a rectangular displacer arranged so that the combustion air was forced through equal passages at either end of the displacer into the vertical-disk combustion chamber of a single-cylinder, four-stroke-cycle compression-ignition test engine. After making tests to determine optimum displacer height, shape, and fuel-spray arrangement, engine-performance tests were made at 1,500 and 2,000 r.p.m. for a range of boost pressures from 0 to 20 inches of mercury and for maximum cylinder pressures up to 1,150 pounds per square inch. The engine operation for boosted conditions was very smooth, there being no combustion shock even at the highest maximum cylinder pressures. Indicated mean effective pressures of 240 pounds per square inch for fuel consumptions of 0.39 pound per horsepower-hour have been readily reproduced during routine testing at 2,000 r.p.m. at a boost pressure of 20 inches of mercury.

  12. Performance and environmental impact assessment of pulse detonation based engine systems

    Science.gov (United States)

    Glaser, Aaron J.

    Experimental research was performed to investigate the feasibility of using pulse detonation based engine systems for practical aerospace applications. In order to carry out this work a new pulse detonation combustion research facility was developed at the University of Cincinnati. This research covered two broad areas of application interest. The first area is pure PDE applications where the detonation tube is used to generate an impulsive thrust directly. The second focus area is on pulse detonation based hybrid propulsion systems. Within each of these areas various studies were performed to quantify engine performance. Comparisons of the performance between detonation and conventional deflagration based engine cycles were made. Fundamental studies investigating detonation physics and flow dynamics were performed in order to gain physical insight into the observed performance trends. Experimental studies were performed on PDE-driven straight and diverging ejectors to determine the system performance. Ejector performance was quantified by thrust measurements made using a damped thrust stand. The effects of PDE operating parameters and ejector geometric parameters on thrust augmentation were investigated. For all cases tested, the maximum thrust augmentation is found to occur at a downstream ejector placement. The optimum ejector geometry was determined to have an overall length of LEJECT/DEJECT =5.61, including an intermediate-straight section length of LSTRT /DEJECT=2, and diverging exhaust section with 4 deg half-angle. A maximum thrust augmentation of 105% was observed while employing the optimized ejector geometry and operating the PDE at a fill-fraction of 0.6 and a frequency of 10 Hz. When operated at a fill-fraction of 1.0 and a frequency of 30 Hz, the thrust augmentation of the optimized PDE-driven ejector system was observed to be 71%. Static pressure was measured along the interior surface of the ejector, including the inlet and exhaust sections. The

  13. A Probabilistic Design Methodology for a Turboshaft Engine Overall Performance Analysis

    Directory of Open Access Journals (Sweden)

    Min Chen

    2014-05-01

    Full Text Available In reality, the cumulative effect of the many uncertainties in engine component performance may stack up to affect the engine overall performance. This paper aims to quantify the impact of uncertainty in engine component performance on the overall performance of a turboshaft engine based on Monte-Carlo probabilistic design method. A novel probabilistic model of turboshaft engine, consisting of a Monte-Carlo simulation generator, a traditional nonlinear turboshaft engine model, and a probability statistical model, was implemented to predict this impact. One of the fundamental results shown herein is that uncertainty in component performance has a significant impact on the engine overall performance prediction. This paper also shows that, taking into consideration the uncertainties in component performance, the turbine entry temperature and overall pressure ratio based on the probabilistic design method should increase by 0.76% and 8.33%, respectively, compared with the ones of deterministic design method. The comparison shows that the probabilistic approach provides a more credible and reliable way to assign the design space for a target engine overall performance.

  14. Effects of gaseous ammonia direct injection on performance characteristics of a spark-ignition engine

    International Nuclear Information System (INIS)

    Ryu, Kyunghyun; Zacharakis-Jutz, George E.; Kong, Song-Charng

    2014-01-01

    Highlights: • This is the very first study in utilizing direct injection of gaseous ammonia in an SI engine. • Engine combustion using direct injection of gaseous ammonia is proven feasible. • Energy efficiency using ammonia is comparable to that using gasoline. • CO emissions are decreased but emissions of NOx and HC are increased when ammonia is used. - Abstract: The effects of direct injection of gaseous ammonia on the combustion characteristics and exhaust emissions of a spark-ignition engine were investigated. Port-injection gasoline was used to enhance the burning of ammonia that was directly injected into the engine cylinder. Appropriate direct injection strategies were developed to allow ammonia to be used in spark-ignition engines without sacrifice of volumetric efficiency. Experimental results show that with gasoline providing the baseline power of 0.6 kW, total engine power could increase to 2.7 kW when the injection timing of ammonia was advanced to 370 BTDC with injection duration of 22 ms. Engine performance with use of gasoline–ammonia was compared to that with gasoline alone. For operations using gasoline–ammonia, with baseline power from gasoline at 0.6 kW the appropriate ammonia injection timing was found to range from 320 to 370 BTDC for producing 1.5–2.7 kW. The peak pressures were slightly lower than those using gasoline alone because of the lower flame of ammonia, resulting in reduction of cylinder pressure. The brake specific energy consumption (BSEC) with gasoline–ammonia was very similar to that with gasoline alone. Ammonia direct injection caused slight reductions of BSCO for all the loads studied but significantly increased BSHC because of the reduced combustion temperature of ammonia combustion. The use of ammonia resulted in increased NOx emissions because of formation of fuel NOx. Ammonia slip was also detected in the engine exhaust because of incomplete combustion

  15. Performance Characteristics Comparison of CNG Port and CNG Direct Injection in Spark Ignition Engine

    Directory of Open Access Journals (Sweden)

    Rajesh Patel

    2018-03-01

    Full Text Available A comparative performance analysis is being carried out on a four cylinder, four stroke cycle, spark ignition engine having displacement volume 1297cc. The cylinder head of original gasoline based engine was modified by drilling holes from upper surfaces of head to individual combustion chamber to convert the engine in a CNG direct injection engine. The CNG port injection (CNG-PI system and CNG direct injection (CNG-DI system were incorporated with the single engine.  The engine was retrofitted to run on both CNG-PI and CNG-DI system alternately with common CNG tank and other engine loading and measurement system. The engine was equipped with electrical dynamometer having rheostat type loading. The CNG direct injection system was incorporated with various sensors and engine ECU. The operating parameters can be obtained on computer screen by loading the computer with engine through switch box. The engine was run over the speed range of 1000 rpm to 3000 rpm with incremental speed of 300 rpm. The performance parameters were calculated from observations and recorded for both CNG-PI and CNG-DI system. The experimental investigation exhibits that, the average 7-8% reduction in BSFC while the engine was running with CNG-DI system as compared to that of CNG-PI system. Also the engine produced 8-9% higher brake torque and hence higher brake power. The engine gives 6-7% higher brake thermal efficiency with CNG-DI system as compared to CNG-PI system.

  16. WFIRST: Coronagraph Systems Engineering and Performance Budgets

    Science.gov (United States)

    Poberezhskiy, Ilya; cady, eric; Frerking, Margaret A.; Kern, Brian; Nemati, Bijan; Noecker, Martin; Seo, Byoung-Joon; Zhao, Feng; Zhou, Hanying

    2018-01-01

    The WFIRST coronagraph instrument (CGI) will be the first in-space coronagraph using active wavefront control to directly image and characterize mature exoplanets and zodiacal disks in reflected starlight. For CGI systems engineering, including requirements development, CGI performance is predicted using a hierarchy of performance budgets to estimate various noise components — spatial and temporal flux variations — that obscure exoplanet signals in direct imaging and spectroscopy configurations. These performance budgets are validated through a robust integrated modeling and testbed model validation efforts.We present the performance budgeting framework used by WFIRST for the flow-down of coronagraph science requirements, mission constraints, and observatory interfaces to measurable instrument engineering parameters.

  17. Development of the environmental management integrated baseline at the Idaho National Engineering Laboratory using systems engineering

    International Nuclear Information System (INIS)

    Murphy, J.A.; Caliva, R.M.; Wixson, J.R.

    1997-01-01

    The Idaho National Engineering Laboratory (INEL) is one of many Department of Energy (DOE) national laboratories that has been performing environmental cleanup and stabilization, which was accelerated upon the end of the cold war. In fact, the INEL currently receives two-thirds of its scope to perform these functions. However, the cleanup is a highly interactive system that creates an opportunity for systems engineering methodology to be employed. At the INEL, a group called EM (Environmental Management) Integration has been given this charter along with a small core of systems engineers. This paper discusses the progress to date of converting the INEL legacy system into one that uses the systems engineering discipline as the method to ensure that external requirements are met

  18. Performance optimization of a Two-Stroke supercharged diesel engine for aircraft propulsion

    International Nuclear Information System (INIS)

    Carlucci, Antonio Paolo; Ficarella, Antonio; Trullo, Gianluca

    2016-01-01

    Highlights: • A Two-Stroke diesel engine for aircraft propulsion was modeled with a 0D/1D approach. • The results of the 0D/1D model are compared with those resulting from a 3D model. • The effect of several design and thermodynamic parameters have been analyzed. • Guidelines for the optimization of engine performance are provided. - Abstract: In Two-Stroke engines, the cylinder filling efficiency is antithetical to the cylinder scavenging efficiency; moreover, both of them are influenced by geometric and thermodynamic parameters characterizing the design and operation of both the engine and the related supercharging system. Aim of this work is to provide several guidelines about the definition of design and operation parameters for a Two-Stroke two banks Uniflow diesel engine, supercharged with two sequential turbochargers and an aftercooler per bank, with the goal of either increasing the engine brake power at take-off or decreasing the engine fuel consumption in cruise conditions. The engine has been modeled with a 0D/1D modeling approach. Then, the model capability in describing the effect of several parameters on engine performance has been assessed comparing the results of 3D simulations with those of 0D/1D model. The validated 0D/1D model has been used to simulate the engine behavior varying several design and operation engine parameters (exhaust valves opening and closing angles and maximum valve lift, scavenging ports opening angle, distance between bottom edge of the scavenging ports and bottom dead center, area of the single scavenging port and number of ports, engine volumetric compression ratio, low and high pressure compressor pressure ratios, air/fuel ratio) on a wide range of possible values. The parameters most influencing the engine performance are then recognized and their effect on engine thermodynamic behavior is discussed. Finally, the system configurations leading to best engine power at sea level and lowest fuel consumption in cruise

  19. Performance analysis and dynamic modeling of a single-spool turbojet engine

    Science.gov (United States)

    Andrei, Irina-Carmen; Toader, Adrian; Stroe, Gabriela; Frunzulica, Florin

    2017-01-01

    The purposes of modeling and simulation of a turbojet engine are the steady state analysis and transient analysis. From the steady state analysis, which consists in the investigation of the operating, equilibrium regimes and it is based on appropriate modeling describing the operation of a turbojet engine at design and off-design regimes, results the performance analysis, concluded by the engine's operational maps (i.e. the altitude map, velocity map and speed map) and the engine's universal map. The mathematical model that allows the calculation of the design and off-design performances, in case of a single spool turbojet is detailed. An in house code was developed, its calibration was done for the J85 turbojet engine as the test case. The dynamic modeling of the turbojet engine is obtained from the energy balance equations for compressor, combustor and turbine, as the engine's main parts. The transient analysis, which is based on appropriate modeling of engine and its main parts, expresses the dynamic behavior of the turbojet engine, and further, provides details regarding the engine's control. The aim of the dynamic analysis is to determine a control program for the turbojet, based on the results provided by performance analysis. In case of the single-spool turbojet engine, with fixed nozzle geometry, the thrust is controlled by one parameter, which is the fuel flow rate. The design and management of the aircraft engine controls are based on the results of the transient analysis. The construction of the design model is complex, since it is based on both steady-state and transient analysis, further allowing the flight path cycle analysis and optimizations. This paper presents numerical simulations for a single-spool turbojet engine (J85 as test case), with appropriate modeling for steady-state and dynamic analysis.

  20. Design and flight performance evaluation of the Mariners 6, 7, and 9 short-circuit current, open-circuit voltage transducers

    Science.gov (United States)

    Patterson, R. E.

    1973-01-01

    The purpose of the short-circuit voltage transducer is to provide engineering data to aid the evaluation of array performance during flight. The design, fabrication, calibration, and in-flight performance of the transducers onboard the Mariner 6, 7 and 9 spacecrafts are described. No significant differences were observed in the in-flight electrical performance of the three transducers. The transducers did experience significant losses due to coverslides or adhesive darkening, increased surface reflection, or spectral shifts within coverslide assembly. Mariner 6, 7 and 9 transducers showed non-cell current degradations of 3-1/2%, 3%, and 4%, respectively at Mars encounter and 6%, 3%, and 4-12%, respectively at end of mission. Mariner 9 solar Array Test 2 showed 3-12% current degradation while the transducer showed 4-12% degradation.

  1. Effect of cooled EGR on performance and exhaust gas emissions in EFI spark ignition engine fueled by gasoline and wet methanol blends

    Science.gov (United States)

    Rohadi, Heru; Syaiful, Bae, Myung-Whan

    2016-06-01

    Fuel needs, especially the transport sector is still dominated by fossil fuels which are non-renewable. However, oil reserves are very limited. Furthermore, the hazardous components produced by internal combustion engine forces many researchers to consider with alternative fuel which is environmental friendly and renewable sources. Therefore, this study intends to investigate the impact of cooled EGR on the performance and exhaust gas emissions in the gasoline engine fueled by gasoline and wet methanol blends. The percentage of wet methanol blended with gasoline is in the range of 5 to 15% in a volume base. The experiment was performed at the variation of engine speeds from 2500 to 4000 rpm with 500 intervals. The re-circulated exhaust gasses into combustion chamber was 5%. The experiment was performed at the constant engine speed. The results show that the use of cooled EGR with wet methanol of 10% increases the brake torque up to 21.3%. The brake thermal efficiency increases approximately 39.6% using cooled EGR in the case of the engine fueled by 15% wet methanol. Brake specific fuel consumption for the engine using EGR fueled by 10% wet methanol decreases up to 23% at the engine speed of 2500 rpm. The reduction of CO, O2 and HC emissions was found, while CO2 increases.

  2. Hybrid rocket engine research program at Ryerson University

    Energy Technology Data Exchange (ETDEWEB)

    Karpynczyk, J.; Greatrix, D.R. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Aerospace Engineering

    2007-07-01

    Hybrid rocket engines (HREs) are a combination of solid and liquid propellant rocket engine designs. A solid fuel grain is located in the main combustion chamber and nozzle aft, while a stored liquid or gaseous oxidizer source supplies the required oxygen content through a throttle valve, for combustion downstream in the main chamber. HREs have drawn significant interest in certain flight applications, as they can be advantageous in terms of cost, ease and safety in storage, controllability in flight, and availability of propellant constituents. Key factors that will lead to further practical usage of HREs for flight applications are their predictability and reproducibility of operational performance. This paper presented information on studies being conducted at Ryerson University aimed at analyzing and testing the performance of HREs. It discussed and illustrated the conventional HRE and analyzed engine performance considerations such as the fuel regression rate, mass flux about the fuel surface, burning rate, and zero transformation parameter. Other factors relating to HRE performance that were presented included induced forward and aft oxidizer flow swirl effects as a means for augmenting the fuel regression rate, stoichiometric grain length issues, and feed system stability. Last, the paper presented a simplified schematic diagram of a proposed thrust/test stand for HRE test firings. 2 refs., 3 figs.

  3. Development and Performance Verification of Fiber Optic Temperature Sensors in High Temperature Engine Environments

    Science.gov (United States)

    Adamovsky, Grigory; Mackey, Jeffrey R.; Kren, Lawrence A.; Floyd, Bertram M.; Elam, Kristie A.; Martinez, Martel

    2014-01-01

    A High Temperature Fiber Optic Sensor (HTFOS) has been developed at NASA Glenn Research Center for aircraft engine applications. After fabrication and preliminary in-house performance evaluation, the HTFOS was tested in an engine environment at NASA Armstrong Flight Research Center. The engine tests enabled the performance of the HTFOS in real engine environments to be evaluated along with the ability of the sensor to respond to changes in the engine's operating condition. Data were collected prior, during, and after each test in order to observe the change in temperature from ambient to each of the various test point levels. An adequate amount of data was collected and analyzed to satisfy the research team that HTFOS operates properly while the engine was running. Temperature measurements made by HTFOS while the engine was running agreed with those anticipated.

  4. Bearings for high performance requirements in two-stroke and four-stroke diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Ederer, U.G.

    1983-11-01

    Most measures to reduce fuel consumption in diesel engines lead, directly or indirectly, to more severe operating conditions for the engine bearings. In ever more instances the bearings become the components which limit useful engine life and the time between overhauls. Bearings with improved performance characteristics are required. During recent years, Miba Gleitlager AG has developed several solutions to meet these requirements. They consist of either material improvements, such as a cast white metal (SnSb 12Cu 3 NiCd) with higher fatigue strength, or an electroplated overlay (PbSn 18 Cu) with improved fatigue and wear resistance. New design solutions found included the steel-Al Sn 6-WM 85 bearing for two-stroke engines, the steel-Al Sn 6 PbSn 18 Cu bearing applied to two-stroke crosshead bearings, the steel-AlZn 4,5 PbSn 18 Cu bearing for high bearing loads in four-stroke engines, and the Miba-Rillenlager with its radically new running-surface structure for extreme load and wear conditions. The application potential of these bearings and the operating experience with them are discussed in this article.

  5. Improving the performance of dual fuel engines running on natural gas/LPG by using pilot fuel derived from jojoba seeds

    Energy Technology Data Exchange (ETDEWEB)

    Selim, Mohamed Y.E. [Mechanical Engineering Department, College of Engineering, UAE University, Jimmi, Al-Ain, P.O. Box 17555, Abu Dhabi (United Arab Emirates); Radwan, M.S.; Saleh, H.E. [Mechanical Power Engineering Department, Faculty of Engineering at Mattaria, Helwan University, Cairo (Egypt)

    2008-06-15

    The use of jojoba methyl ester as a pilot fuel was investigated for almost the first time as a way to improve the performance of dual fuel engine running on natural gas or liquefied petroleum gas (LPG) at part load. The dual fuel engine used was Ricardo E6 variable compression diesel engine and it used either compressed natural gas (CNG) or LPG as the main fuel and jojoba methyl ester as a pilot fuel. Diesel fuel was used as a reference fuel for the dual fuel engine results. During the experimental tests, the following have been measured: engine efficiency in terms of specific fuel consumption, brake power output, combustion noise in terms of maximum pressure rise rate and maximum pressure, exhaust emissions in terms of carbon monoxide and hydrocarbons, knocking limits in terms of maximum torque at onset of knocking, and cyclic variability data of 100 engine cycles in terms of maximum pressure and its pressure rise rate average and standard deviation. The tests examined the following engine parameters: gaseous fuel type, engine speed and load, pilot fuel injection timing, pilot fuel mass and compression ratio. Results showed that using the jojoba fuel with its improved properties has improved the dual fuel engine performance, reduced the combustion noise, extended knocking limits and reduced the cyclic variability of the combustion. (author)

  6. Orbit Transfer Vehicle Engine Study. Phase A, extension 1: Advanced expander cycle engine optimization

    Science.gov (United States)

    Mellish, J. A.

    1979-01-01

    The performance optimization of expander cycle engines at vacuum thrust levels of 10K, 15K, and 20K lb is discussed. The optimization is conducted for a maximum engine length with an extendible nozzle in the retracted position of 60 inches and an engine mixture ratio of 6.0:1. The thrust chamber geometry and cycle analyses are documented. In addition, the sensitivity of a recommended baseline expander cycle to component performance variations is determined and chilldown/start propellant consumptions are estimated.

  7. Performance of heat engines with non-zero heat capacity

    International Nuclear Information System (INIS)

    Odes, Ron; Kribus, Abraham

    2013-01-01

    Highlights: ► Finite heat capacity is a second irreversibility mechanism in addition to thermal resistance. ► Heat capacity introduces thermal transients and reverse heat flow. ► Engine maximum power and efficiency are lower for finite heat capacity. ► Implementing the optimal engine cycle requires active control. - Abstract: The performance of a heat engine is analyzed subject to two types of irreversibility: a non-zero heat capacity, together with the more common finite heat transfer rate between the engine and the external heat reservoirs. The heat capacity represents an engine body that undergoes significant temperature variations during the engine cycle. An option to cut off the heat exchange between the engine and the external surrounding for part of the engine cycle is also explored. A variational approach was taken to find the engine’s internal temperature profile (which defines the internal thermodynamic cycle) that would produce maximum power. The maximum power is shown to be lower than the case of zero heat capacity, due to a loss of heat that is stored in the engine body and then lost, bypassing the thermodynamic cycle. The maximum efficiency and the efficiency at maximum power are also lower than the zero heat capacity case. Similar to the Curzon–Ahlborn analysis, power can be traded for increased efficiency, but for high heat capacity, the range of efficiency that is available for such a trade is diminished. Isolating the engine during part of the cycle reduces maximum power, but the efficiency at maximum power and the maximum efficiency are improved, due to better exploitation of heat stored in the engine body. This might be useful for real engines that are limited by the internal energy change during a single engine cycle or by the operating frequency, leading to a broader power–efficiency curve.

  8. 6 sigma quality performance

    International Nuclear Information System (INIS)

    Yu, Yeong Hak

    2000-03-01

    This deals with 6 sigma quality performance introducing company which has 6 sigma quality management, 6 sigma quality activity and customer, secret of success of 6 sigma quality management, what 6 sigma is, 6 sigma quality management propel system 5 propel steps of project like point of 6 sigma, flow of problem solution, tool for propel of project, performance of CTQ and total customer satisfaction, and quality management system and 6 sigma quality.

  9. Engine Performance Test of the 1975 Chrysler - Nissan Model CN633 Diesel Engine

    Science.gov (United States)

    1975-09-01

    An engine test of the Chrysler-Nissan Model CN633 diesel engine was performed to determine its steady-state fuel consumption and emissions (HC, CO, NOx) maps. The data acquired are summarized in this report.

  10. A Comparative Study of the Effect of Turbocompounding and ORC Waste Heat Recovery Systems on the Performance of a Turbocharged Heavy-Duty Diesel Engine

    OpenAIRE

    Amin Mahmoudzadeh Andwari; Apostolos Pesiridis; Vahid Esfahanian; Ali Salavati-Zadeh; Apostolos Karvountzis-Kontakiotis; Vishal Muralidharan

    2017-01-01

    In this study the influence of utilization of two Waste Heat Recovery (WHR) strategies, namely organic Rankine cycle (ORC) and turbocompounding, have been investigated based on the performance of a heavy-duty diesel engine using 1-D simulation engine code (GT-Power) in terms of Brake Specific Fuel Consumptions (BSFC) at various engine speeds and Brake Mean Effective Pressures (BMEP). The model of a 6-cylinder turbocharged engine (Holset HDX55V) was calibrated using an experimental BSFC map to...

  11. Scalable creation of gold nanostructures on high performance engineering polymeric substrate

    Science.gov (United States)

    Jia, Kun; Wang, Pan; Wei, Shiliang; Huang, Yumin; Liu, Xiaobo

    2017-12-01

    The article reveals a facile protocol for scalable production of gold nanostructures on a high performance engineering thermoplastic substrate made of polyarylene ether nitrile (PEN) for the first time. Firstly, gold thin films with different thicknesses of 2 nm, 4 nm and 6 nm were evaporated on a spin-coated PEN substrate on glass slide in vacuum. Next, the as-evaporated samples were thermally annealed around the glass transition temperature of the PEN substrate, on which gold nanostructures with island-like morphology were created. Moreover, it was found that the initial gold evaporation thickness and annealing atmosphere played an important role in determining the morphology and plasmonic properties of the formulated Au NPs. Interestingly, we discovered that isotropic Au NPs can be easily fabricated on the freestanding PEN substrate, which was fabricated by a cost-effective polymer solution casting method. More specifically, monodispersed Au nanospheres with an average size of ∼60 nm were obtained after annealing a 4 nm gold film covered PEN casting substrate at 220 °C for 2 h in oxygen. Therefore, the scalable production of Au NPs with controlled morphology on PEN substrate would open the way for development of robust flexible nanosensors and optical devices using high performance engineering polyarylene ethers.

  12. Performance and emission of CI engine fuelled with camelina sativa oil

    International Nuclear Information System (INIS)

    Kruczyński, Stanisław W.

    2013-01-01

    Highlights: ► Camelina sativa as a potential source of alternative fuel. ► Neat camelina sativa oil as a fuel for CI engine. ► The engine performance and emissions of CI engine fuelled with neat camelina sativa oil. ► Comparison of rate of heat release for camelina sativa oil and diesel oil. - Abstract: The paper describes the results of the tests of CI Perkins 1104C-44 engine fuelled with camelina sativa oil. The engine was not especially calibrated for fuelling with the vegetable fuel. During the test the engine performance and emissions were analysed. For comparison the same speed characteristic was examined for standard fuelling of the engine with diesel oil. In order to understand the engine performance and emission the mass fraction burnt and the rate of heat release was calculated and compared for the same energy provided to the engine cylinder with the injected fuels. The results show that there is possible to receive relatively good engine performance for fuelling the engine with camelina sativa oil but there is a need to change the calibration parameters of the engine fuel system when the engine is fuelled with this fuel.

  13. Performance of Diesel Engine Using Diesel B3 Mixed with Crude Palm Oil

    Science.gov (United States)

    Namliwan, Nattapong; Wongwuttanasatian, Tanakorn

    2014-01-01

    The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5–17% lower torque and power than that of diesel B3. The specific fuel consumption of mixed fuels was 7–33% higher than using diesel B3. The components of gas emissions by using mixed fuel had 1.6–52% fewer amount of carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2), and oxygen (O2) than those of diesel B3. On the other hand, nitric oxide (NO) and nitrogen oxides (NOX) emissions when using mixed fuels were 10–39% higher than diesel B3. By comparing the physical properties, the performance of the engine, and the amount of gas emissions of mixed fuel, we found out that the 95 : 5 ratio by volume was a suitable ratio for agricultural diesel engine (low-speed diesel engine). PMID:24688402

  14. Model Engine Performance Measurement From Force Balance Instrumentation

    Science.gov (United States)

    Jeracki, Robert J.

    1998-01-01

    A large scale model representative of a low-noise, high bypass ratio turbofan engine was tested for acoustics and performance in the NASA Lewis 9- by 15-Foot Low-Speed Wind Tunnel. This test was part of NASA's continuing Advanced Subsonic Technology Noise Reduction Program. The low tip speed fan, nacelle, and an un-powered core passage (with core inlet guide vanes) were simulated. The fan blades and hub are mounted on a rotating thrust and torque balance. The nacelle, bypass duct stators, and core passage are attached to a six component force balance. The two balance forces, when corrected for internal pressure tares, measure the total thrust-minus-drag of the engine simulator. Corrected for scaling and other effects, it is basically the same force that the engine supports would feel, operating at similar conditions. A control volume is shown and discussed, identifying the various force components of the engine simulator thrust and definitions of net thrust. Several wind tunnel runs with nearly the same hardware installed are compared, to identify the repeatability of the measured thrust-minus-drag. Other wind tunnel runs, with hardware changes that affected fan performance, are compared to the baseline configuration, and the thrust and torque effects are shown. Finally, a thrust comparison between the force balance and nozzle gross thrust methods is shown, and both yield very similar results.

  15. Performance and combustion characteristics of direct-injection stratified-charge rotary engines

    Science.gov (United States)

    Nguyen, Hung Lee

    1987-01-01

    Computer simulations of the direct-injection stratified-charge (DISC) Wankel engine have been used to calculate heat release rates and performance and efficiency characteristics of the 1007R engine. Engine pressure data have been used in a heat release analysis to study the effects of heat transfer, leakage, and crevice flows. Predicted engine performance data are compared with experimental test data over a range of engine speeds and loads. An examination of methods to improve the performance of the Wankel engine with faster combustion, reduced leakage, higher compression ratio, and turbocharging is presented.

  16. Predicted performance of an integrated modular engine system

    Science.gov (United States)

    Binder, Michael; Felder, James L.

    1993-01-01

    Space vehicle propulsion systems are traditionally comprised of a cluster of discrete engines, each with its own set of turbopumps, valves, and a thrust chamber. The Integrated Modular Engine (IME) concept proposes a vehicle propulsion system comprised of multiple turbopumps, valves, and thrust chambers which are all interconnected. The IME concept has potential advantages in fault-tolerance, weight, and operational efficiency compared with the traditional clustered engine configuration. The purpose of this study is to examine the steady-state performance of an IME system with various components removed to simulate fault conditions. An IME configuration for a hydrogen/oxygen expander cycle propulsion system with four sets of turbopumps and eight thrust chambers has been modeled using the Rocket Engine Transient Simulator (ROCETS) program. The nominal steady-state performance is simulated, as well as turbopump thrust chamber and duct failures. The impact of component failures on system performance is discussed in the context of the system's fault tolerant capabilities.

  17. The Little Engines That Could: Modeling the Performance of World Wide Web Search Engines

    OpenAIRE

    Eric T. Bradlow; David C. Schmittlein

    2000-01-01

    This research examines the ability of six popular Web search engines, individually and collectively, to locate Web pages containing common marketing/management phrases. We propose and validate a model for search engine performance that is able to represent key patterns of coverage and overlap among the engines. The model enables us to estimate the typical additional benefit of using multiple search engines, depending on the particular set of engines being considered. It also provides an estim...

  18. Effects of chemical equilibrium on turbine engine performance for various fuels and combustor temperatures

    Science.gov (United States)

    Tran, Donald H.; Snyder, Christopher A.

    1992-01-01

    A study was performed to quantify the differences in turbine engine performance with and without the chemical dissociation effects for various fuel types over a range of combustor temperatures. Both turbojet and turbofan engines were studied with hydrocarbon fuels and cryogenic, nonhydrocarbon fuels. Results of the study indicate that accuracy of engine performance decreases when nonhydrocarbon fuels are used, especially at high temperatures where chemical dissociation becomes more significant. For instance, the deviation in net thrust for liquid hydrogen fuel can become as high as 20 percent at 4160 R. This study reveals that computer central processing unit (CPU) time increases significantly when dissociation effects are included in the cycle analysis.

  19. Device Engineering Towards Improved Tin Sulfide Solar Cell Performance and Performance Reproducibility

    Energy Technology Data Exchange (ETDEWEB)

    Steinmann, Vera; Chakraborty, Rupak; Rekemeyer, Paul; Siol, Sebastian; Martinot, Loic; Polizzotti, Alex; Yang, Chuanxi; Hartman, Katy; Gradecak, Silvija; Zakutayev, Andriy; Gordon, Roy G.; Buonassisi, Tonio

    2016-11-21

    As novel absorber materials are developed and screened for their photovoltaic (PV) properties, the challenge remains to rapidly test promising candidates in high-performing PV devices. There is a need to engineer new compatible device architectures, including the development of novel transparent conductive oxides and buffer layers. Here, we consider the two approaches of a substrate-style and a superstrate-style device architecture for novel thin-film solar cells. We use tin sulfide as a test absorber material. Upon device engineering, we demonstrate new approaches to improve device performance and performance reproducibility.

  20. Performance of compression ignition engine with indigenous castor oil bio diesel in Pakistan

    International Nuclear Information System (INIS)

    Chakrabarti, M.H.

    2009-01-01

    Castor oil available indigenously in Pakistan was converted successfully to bio diesel and blended to 10% quantity (by volume) with high speed mineral diesel (HSD) fuel. This fuel was tested in a compression-ignition engine in order to assess its environmental emissions as well as engine performance parameters. The blended fuel was found to give lower environmental emissions in most accounts except for higher CO/sub 2/ and higher NOx. In addition, three engine performance parameters were assessed; which were engine brake power, engine torque and exhaust temperature. In the first two cases, blended bio diesel fuel gave lower figures than pure mineral diesel due to lower calorific value. However, its higher flash point resulted in higher engine exhaust temperatures than pure mineral diesel. Overall, in terms of engine performance, castor oil bio diesel (from non edible oil of castor bean -growing on marginal lands of Pakistan) fared better in comparison to canola oil bio diesel (from expensive edible oil) and can be recommended for further tests at higher blend ratios. (author)

  1. Performance evaluation and experiment system for waste heat recovery of diesel engine

    International Nuclear Information System (INIS)

    Wenzhi, Gao; Junmeng, Zhai; Guanghua, Li; Qiang, Bian; Liming, Feng

    2013-01-01

    In this paper, a waste heat recovery system is proposed where a high speed turbocharged diesel engine acts as the topper of a combined cycle with exhaust gases used for a bottoming Rankine cycle. The paper describes a mathematical model to evaluate the performance of Rankine cycle system with a reciprocating piston expander. The paper focuses on the performance evaluation and parameter selection of the heat exchanger and reciprocating piston expander that are suitable to waste heat recovery of ICE (internal combustion engine). The paper also describes the experimental setup and the preliminary results. The simulation results show that a proper intake pressure should be 4–5 MPa at its given mass flow rate of 0.015–0.021 kg/s depending on the waste heat recovery of a turbocharged diesel engine (80 kW/2590 rpm). The net power and net power rise rate at various ICE rotation speeds are calculated. The result shows that introducing heat recovery system can increase the engine power output by 12%, when diesel engine operates at 80 kW/2590 rpm. The preliminary experimental results indirectly prove the simulation model by two negative work loops in the P–V curve, under a low intake pressure and steam flow rate condition. - Highlights: • We investigate waste heat recovery through secondary fluid power cycle. • We establish a thermodynamic model of reciprocating steam engine. • We conduct the performance evaluation and experimental system development. • Primary parameters of the heat exchangers and expander are determined

  2. Experimental investigation on performance and exhaust emissions of castor oil biodiesel from a diesel engine.

    Science.gov (United States)

    Shojaeefard, M H; Etgahni, M M; Meisami, F; Barari, A

    2013-01-01

    Biodiesel, produced from plant and animal oils, is an important alternative to fossil fuels because, apart from dwindling supply, the latter are a major source of air pollution. In this investigation, effects of castor oil biodiesel blends have been examined on diesel engine performance and emissions. After producing castor methyl ester by the transesterification method and measuring its characteristics, the experiments were performed on a four cylinder, turbocharged, direct injection, diesel engine. Engine performance (power, torque, brake specific fuel consumption and thermal efficiency) and exhaust emissions were analysed at various engine speeds. All the tests were done under 75% full load. Furthermore, the volumetric blending ratios of biodiesel with conventional diesel fuel were set at 5, 10, 15, 20 and 30%. The results indicate that lower blends of biodiesel provide acceptable engine performance and even improve it. Meanwhile, exhaust emissions are much decreased. Finally, a 15% blend of castor oil-biodiesel was picked as the optimized blend of biodiesel-diesel. It was found that lower blends of castor biodiesel are an acceptable fuel alternative for the engine.

  3. Dynamic Performance of High Bypass Ratio Turbine Engines With Water Ingestion

    Science.gov (United States)

    Murthy, S. N. B.

    1996-01-01

    The research on dynamic performance of high bypass turbofan engines includes studies on inlets, turbomachinery and the total engine system operating with air-water mixture; the water may be in vapor, droplet, or film form, and their combinations. Prediction codes (WISGS, WINCOF, WINCOF-1, WINCLR, and Transient Engine Performance Code) for performance changes, as well as changes in blade-casing clearance, have been established and demonstrated in application to actual, generic engines. In view of the continuous changes in water distribution in turbomachinery, the performance of both components and the total engine system must be determined in a time-dependent mode; hence, the determination of clearance changes also requires a time-dependent approach. In general, the performance and clearances changes cannot be scaled either with respect to operating or ingestion conditions. Removal of water prior to phase change is the most effective means of avoiding ingestion effects. Sufficient background has been established to perform definitive, full scale tests on a set of components and a complete engine to establish engine control and operability with various air-water vapor-water mixtures.

  4. Optimal Tuner Selection for Kalman-Filter-Based Aircraft Engine Performance Estimation

    Science.gov (United States)

    Simon, Donald L.; Garg, Sanjay

    2011-01-01

    An emerging approach in the field of aircraft engine controls and system health management is the inclusion of real-time, onboard models for the inflight estimation of engine performance variations. This technology, typically based on Kalman-filter concepts, enables the estimation of unmeasured engine performance parameters that can be directly utilized by controls, prognostics, and health-management applications. A challenge that complicates this practice is the fact that an aircraft engine s performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters such as efficiencies and flow capacities related to each major engine module. Through Kalman-filter-based estimation techniques, the level of engine performance degradation can be estimated, given that there are at least as many sensors as health parameters to be estimated. However, in an aircraft engine, the number of sensors available is typically less than the number of health parameters, presenting an under-determined estimation problem. A common approach to address this shortcoming is to estimate a subset of the health parameters, referred to as model tuning parameters. The problem/objective is to optimally select the model tuning parameters to minimize Kalman-filterbased estimation error. A tuner selection technique has been developed that specifically addresses the under-determined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine that seeks to minimize the theoretical mean-squared estimation error of the Kalman filter. This approach can significantly reduce the error in onboard aircraft engine parameter estimation

  5. Performance engineering challenges: the view from RENCI

    International Nuclear Information System (INIS)

    Fowler, R; Gamblin, T; Porterfield, A; Dreher, P; Huang, S; Joo, B

    2008-01-01

    Trends in chip technology and system design are causing a revolution in high-performance computing. The emergence of multicore processor chips, the construction of very large computing systems, and the increasing need to deal with power and energy issues in these systems are three of the most significant changes. We focus on the way that these trends have created a new set of challenges in the area of performance engineering, the measurement, analysis, and tuning of computing systems and applications. We discuss these changes and outline recent work at the Renaissance Computing Institute to meet these challenges

  6. Performance and emissions of a dual-fuel pilot diesel ignition engine operating on various premixed fuels

    International Nuclear Information System (INIS)

    Yousefi, Amin; Birouk, Madjid; Lawler, Benjamin; Gharehghani, Ayatallah

    2015-01-01

    Highlights: • Natural gas/diesel, methanol/diesel, and hydrogen/diesel cases were investigated. • For leaner mixtures, the hydrogen/diesel case has the highest IMEP and ITE. • The methanol/diesel case has the maximum IMEP and ITE for richer mixtures. • Hydrogen/diesel case experiences soot and CO free combustion at rich regions. - Abstract: A multi-dimensional computational fluid dynamics (CFD) model coupled with chemical kinetics mechanisms was applied to investigate the effect of various premixed fuels and equivalence ratios on the combustion, performance, and emissions characteristics of a dual-fuel indirect injection (IDI) pilot diesel ignition engine. The diesel fuel is supplied via indirect injection into the cylinder prior to the end of the compression stroke. Various premixed fuels were inducted into the engine through the intake manifold. The results showed that the dual-fuel case using hydrogen/diesel has a steeper pressure rise rate, higher peak heat release rate (PHRR), more advanced ignition timing, and shorter ignition delay compared to the natural gas/diesel and methanol/diesel dual-fuel cases. For leaner mixtures (Φ_P 0.32). For instance, with an equivalence ratio of 0.35, the ITE is 56.24% and 60.85% for hydrogen/diesel and methanol/diesel dual-fuel cases, respectively. For an equivalence ratio of 0.15, the natural gas/diesel simulation exhibits partial burn combustion and thus results in a negative IMEP. At equivalence ratios of 0.15, 0.2, and 0.25, the methanol/diesel case experiences misfiring phenomenon which consequently deteriorates the engine performance considerably. As for the engine-out emissions, the hydrogen/diesel results display carbon monoxide (CO) free combustion relative to natural gas/diesel and methanol/diesel engines; however, considerable amount of nitrogen oxides (NO_x) emissions are produced at an equivalence ratio of 0.35 which exceeds the Euro 6 NO_x limit. Due to the larger area exposed to high temperature regions

  7. Multimedia Search Engines : Concept, Performance, and Types

    OpenAIRE

    Sayed Rabeh Sayed

    2005-01-01

    A Research about multimedia search engines, it starts with definition of search engines at general and multimedia search engines, then explains how they work, and divided them into: Video search engines, Images search engines, and Audio search engines. Finally, it reviews a samples to multimedia search engines.

  8. Engine Tune-up Service. Unit 6: Emission Control Systems. Review Exercise Book. Automotive Mechanics Curriculum.

    Science.gov (United States)

    Bacon, E. Miles

    This book of pretests and review exercises is designed to accompany the Engine Tune-Up Service Student Guide for Unit 6, Emission Control Systems, available separately as CE 031 220. Focus of the exercises and pretests is inspecting, testing, and servicing emission control systems. Pretests and performance checklists are provided for each of the…

  9. Design and Demonstration of Emergency Control Modes for Enhanced Engine Performance

    Science.gov (United States)

    Liu, Yuan; Litt, Jonathan S.; Guo, Ten-Huei

    2013-01-01

    A design concept is presented for developing control modes that enhance aircraft engine performance during emergency flight scenarios. The benefits of increased engine performance to overall vehicle survivability during these situations may outweigh the accompanied elevated risk of engine failure. The objective involves building control logic that can consistently increase engine performance beyond designed maximum levels based on an allowable heightened probability of failure. This concept is applied to two previously developed control modes: an overthrust mode that increases maximum engine thrust output and a faster response mode that improves thrust response to dynamic throttle commands. This paper describes the redesign of these control modes and presents simulation results demonstrating both enhanced engine performance and robust maintenance of the desired elevated risk level.

  10. BENEFITS AND CHALLENGES OF VARIABLE COMPRESSION RATIO AT DIESEL ENGINES

    Directory of Open Access Journals (Sweden)

    Radivoje B Pešić

    2010-01-01

    Full Text Available The compression ratio strongly affects the working process and provides an exceptional degree of control over engine performance. In conventional internal combustion engines, the compression ratio is fixed and their performance is therefore a compromise between conflicting requirements. One fundamental problem is that drive units in the vehicles must successfully operate at variable speeds and loads and in different ambient conditions. If a diesel engine has a fixed compression ratio, a minimal value must be chosen that can achieve a reliable self-ignition when starting the engine in cold start conditions. In diesel engines, variable compression ratio provides control of peak cylinder pressure, improves cold start ability and low load operation, enabling the multi-fuel capability, increase of fuel economy and reduction of emissions. This paper contains both theoretical and experimental investigation of the impact that automatic variable compression ratios has on working process parameters in experimental diesel engine. Alternative methods of implementing variable compression ratio are illustrated and critically examined.

  11. Performance of a supercharged direct-injection stratified-charge rotary combustion engine

    Science.gov (United States)

    Bartrand, Timothy A.; Willis, Edward A.

    1990-01-01

    A zero-dimensional thermodynamic performance computer model for direct-injection stratified-charge rotary combustion engines was modified and run for a single rotor supercharged engine. Operating conditions for the computer runs were a single boost pressure and a matrix of speeds, loads and engine materials. A representative engine map is presented showing the predicted range of efficient operation. After discussion of the engine map, a number of engine features are analyzed individually. These features are: heat transfer and the influence insulating materials have on engine performance and exhaust energy; intake manifold pressure oscillations and interactions with the combustion chamber; and performance losses and seal friction. Finally, code running times and convergence data are presented.

  12. Systems engineering approach towards performance monitoring of emergency diesel generator

    International Nuclear Information System (INIS)

    Nurhayati Ramli; Lee, Y.K.

    2013-01-01

    Full-text: Systems engineering is an interdisciplinary approach and means to enable the realization of successful systems. In this study, systems engineering approach towards the performance monitoring of Emergency Diesel Generator (EDG) is presented. Performance monitoring is part and parcel of predictive maintenance where the systems and components conditions can be detected before they result into failures. In an effort to identify the proposal for addressing performance monitoring, the EDG boundary has been defined. Based on the Probabilistic Safety Analysis (PSA) results and industry operating experiences, the most critical component is identified. This paper proposed a systems engineering concept development framework towards EDG performance monitoring. The expected output of this study is that the EDG reliability can be improved by the performance monitoring alternatives through the systems engineering concept development effort. (author)

  13. Interface Engineering and Gate Dielectric Engineering for High Performance Ge MOSFETs

    Directory of Open Access Journals (Sweden)

    Jiabao Sun

    2015-01-01

    Full Text Available In recent years, germanium has attracted intensive interests for its promising applications in the microelectronics industry. However, to achieve high performance Ge channel devices, several critical issues still have to be addressed. Amongst them, a high quality gate stack, that is, a low defect interface layer and a dielectric layer, is of crucial importance. In this work, we first review the existing methods of interface engineering and gate dielectric engineering and then in more detail we discuss and compare three promising approaches (i.e., plasma postoxidation, high pressure oxidation, and ozone postoxidation. It has been confirmed that these approaches all can significantly improve the overall performance of the metal-oxide-semiconductor field effect transistor (MOSFET device.

  14. Performance and emissions of an engine fuelled by biogas of palm oil mill effluent

    Science.gov (United States)

    Arjuna, J.; Sitorus, T. B.; Ambarita, H.; Abda, S.

    2018-02-01

    This research investigates the performance and emissions of an engine by biogas and gasoline. The experiments use biogas of palm oil mill effluent (POME) with turbocharger at engine loading conditions (100, 200, 300, 400, and 500 Watt). Specific fuel consumption and thermal efficiency are used to compare engine performance, and emission analysis is based on parameters such as carbon monoxide (CO), hydrocarbon (HC), carbon dioxide (CO2) and oxide (O2). The experimental data show that the maximum thermal efficiency when engine use biogas and gasoline is 20.44% and 22.22% respectively. However, there was CO emission reduction significantly when the engine using POME biogas.

  15. Effect of turbo charging and steam injection methods on the performance of a Miller cycle diesel engine (MCDE)

    International Nuclear Information System (INIS)

    Gonca, Guven; Sahin, Bahri

    2017-01-01

    Highlights: • Performance of a diesel engine is simulated by finite time thermodynamics. • Effect of steam injection on performance of a Miller cycle engine is examined. • Model results are verified with the experimental data with less than 7% error. - Abstract: In this study, application of the steam injection method (SIM), Miller cycle (MC) and turbo charging (TC) techniques into a four stroke, direct-injection diesel engine has been numerically and empirically conducted. NOx emissions have detrimental influences on the environment and living beings. They are formed at the high temperatures, thus the Diesel engines are serious NOx generation sources since they have higher compression ratios and higher combustion temperatures. The international regulations have decreased the emission limits due to environmental reasons. The Miller cycle (MC) application and steam injection method (SIM) have been popular to abate NOx produced from the internal combustion engines (ICEs), in the recent years. However, the MC application can cause a reduction in power output. The most known technique which maximizes the engine power and abates exhaust emissions is TC. Therefore, if these three techniques are combined, the power loss can be tolerated and pollutant emissions can be minimized. While the application of the MC and SIM causes to diminish in the brake power and brake thermal efficiency of the engine up to 6.5% and 10%, the TC increases the brake power and brake thermal efficiency of the engine up to 18% and 12%. The experimental and theoretical results have been compared in terms of the torque, the specific fuel consumption (SFC), the brake power and the brake thermal efficiency. The results acquired from theoretical modeling have been validated with empirical data with less than 7% maximum error. The results showed that developed combination can increase the engine performance and the method can be easily applied to the Diesel engines.

  16. Experimental investigation of in-cylinder air flow to optimize number of helical guide vanes to enhance DI diesel engine performance using mamey sapote biodiesel

    Science.gov (United States)

    Kumar, A. Raj; Janardhana Raju, G.; Hemachandra Reddy, K.

    2018-03-01

    The current research work investigates the influence of helical guide vanes in to the intake runner of a D.I diesel engine operating by the high viscous Mamey Sapote biodiesel to enhance in-cylinder suction air flow features. Helical guide vanes of different number of vanes are produced from 3D printing and placed in the intake manifold to examine the air flow characteristics. Four different helical guide vane devices namely 3, 4, 5 and 6 vanes of the same dimensions are tested in a D.I diesel engine operating with Mamey Sapote biodiesel blend. As per the experimental results of engine performance and emission characteristics, it is found that 5 vanes helical guide vane swirl device exhibited in addition number of increased improvements such as the brake power and bake thermal efficiency by 2.4% and 8.63% respectively and the HC, NOx, Carbon monoxide and, Smoke densities are reduced by 15.62%, 4.23%, 14.27% and 9.6% at peak load operating conditions as collate with normal engine at the same load. Hence this investigation concluded that Helical Guide Vane Devices successfully enhanced the in-cylinder air flow to improve better addition of Mamey Sapote biodiesel with air leading in better performance of the engine than without vanes.

  17. Commissioning and Performance Analysis of WhisperGen Stirling Engine

    Science.gov (United States)

    Pradip, Prashant Kaliram

    Stirling engine based cogeneration systems have potential to reduce energy consumption and greenhouse gas emission, due to their high cogeneration efficiency and emission control due to steady external combustion. To date, most studies on this unit have focused on performance based on both experimentation and computer models, and lack experimental data for diversified operating ranges. This thesis starts with the commissioning of a WhisperGen Stirling engine with components and instrumentation to evaluate power and thermal performance of the system. Next, a parametric study on primary engine variables, including air, diesel, and coolant flowrate and temperature were carried out to further understand their effect on engine power and efficiency. Then, this trend was validated with the thermodynamic model developed for the energy analysis of a Stirling cycle. Finally, the energy balance of the Stirling engine was compared without and with heat recovery from the engine block and the combustion chamber exhaust.

  18. 48 CFR 836.606-73 - Application of 6 percent architect-engineer fee limitation.

    Science.gov (United States)

    2010-10-01

    ... architect-engineer fee limitation. 836.606-73 Section 836.606-73 Federal Acquisition Regulations System DEPARTMENT OF VETERANS AFFAIRS SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Architect-Engineer Services 836.606-73 Application of 6 percent architect-engineer fee limitation...

  19. The effect of insulated combustion chamber surfaces on direct-injected diesel engine performance, emissions, and combustion

    Science.gov (United States)

    Dickey, Daniel W.; Vinyard, Shannon; Keribar, Rifat

    1988-01-01

    The combustion chamber of a single-cylinder, direct-injected diesel engine was insulated with ceramic coatings to determine the effect of low heat rejection (LHR) operation on engine performance, emissions, and combustion. In comparison to the baseline cooled engine, the LHR engine had lower thermal efficiency, with higher smoke, particulate, and full load carbon monoxide emissions. The unburned hydrocarbon emissions were reduced across the load range. The nitrous oxide emissions increased at some part-load conditions and were reduced slightly at full loads. The poor LHR engine performance was attributed to degraded combustion characterized by less premixed burning, lower heat release rates, and longer combustion duration compared to the baseline cooled engine.

  20. A Comparative Study of Engine Performance and Exhaust Emissions Characteristics of Linseed Oil Biodiesel Blends with Diesel Fuel in a Direct Injection Diesel Engine

    Science.gov (United States)

    Salvi, B. L.; Jindal, S.

    2013-01-01

    This paper is aimed at study of the performance and emissions characteristics of direct injection diesel engine fueled with linseed oil biodiesel blends and diesel fuel. The comparison was done with base fuel as diesel and linseed oil biodiesel blends. The experiments were conducted with various blends of linseed biodiesel at different engine loads. It was found that comparable mass fraction burnt, better rate of pressure rise and BMEP, improved indicated thermal efficiency (8-11 %) and lower specific fuel consumption (3.5-6 %) were obtained with LB10 blend at full load. The emissions of CO, un-burnt hydrocarbon and smoke were less as compared to base fuel, but with slight increase in the emission of NOx. Since, linseed biodiesel is renewable in nature, so practically negligible CO2 is added to the environment. The linseed biodiesel can be one of the renewable alternative fuels for transportation vehicles and blend LB10 is preferable for better efficiency.

  1. Evaluation of engineered barriers at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Bhatt, R.N.; Porro, I.

    1998-03-01

    Subsurface Disposal (SDA) of the Radioactive Waste Management Complex serves as the low level waste burial ground at the Idaho National Engineering and Environmental Laboratory (INEEL). The low level wastes are buried in trenches, pits, and soil vaults in surficial sediments. A closure/post-closure plan must be written prior to closure of the SDA. The closure plan for the facility must include a design for an engineered barrier closure cover that will meet all applicable regulatory requirements. This paper describes the approach being followed at the INEEL to choose an appropriate cover design for the SDA closure. Regulatory requirements and performance objectives potentially applicable to closure of the SDA were identified. Technical issues related to SDA closure were identified from a literature search of previous arid site engineered barrier studies and from previous SDA closure cover evaluations. Five engineered barrier conceptual design alternatives were identified: (1) a bio/capillary barrier cover, (2) a thin soil cover, (3) a thick soil cover, (4) a Resource Conservation and Recovery Act cover, and (5) a concrete sealed surface cover. Two of these designs were chosen for in situ hydraulic testing, rather than all five, in order to maximize the amount of information generated relative to projected project costs. Testing of these two cover designs provides data to quantify hydrologic model input parameters and for verification of site specific hydrologic models for long term closure cover performance evaluation and detailed analysis of closure cover alternatives. The specific objectives of the field tests are to determine the water balance for the two covers over several years and to determine cover soil physical and hydraulic properties

  2. Performance simulation of a spark ignited free-piston engine generator

    Energy Technology Data Exchange (ETDEWEB)

    Mikalsen, R.; Roskilly, A.P. [Sir Joseph Swan Institute for Energy Research, University of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7RU (United Kingdom)

    2008-10-15

    Free-piston engines are under investigation by a number of research groups worldwide due to potential fuel efficiency and engine emissions advantages. The free-piston engine generator, in which a linear electric generator is fixed to the mover to produce electric power, has been proposed as an alternative prime mover for hybrid-electric vehicles. This paper investigates the performance of a spark ignited free-piston engine generator and compares it to a conventional engine using a computational fluid dynamics simulation model. The particular operating characteristics of the free-piston engine were not found to give noticeable performance advantages, and it is concluded that the main potential of this technology lies in the simplicity and flexibility of the concept. (author)

  3. Preliminary results on performance testing of a turbocharged rotary combustion engine

    Science.gov (United States)

    Meng, P. R.; Rice, W. J.; Schock, H. J.; Pringle, D. P.

    1982-01-01

    The performance of a turbocharged rotary engine at power levels above 75 kW (100 hp) was studied. A twin rotor turbocharged Mazda engine was tested at speeds of 3000 to 6000 rpm and boost pressures to 7 psi. The NASA developed combustion diagnostic instrumentation was used to quantify indicated and pumping mean effect pressures, peak pressure, and face to face variability on a cycle by cycle basis. Results of this testing showed that a 5900 rpm a 36 percent increase in power was obtained by operating the engine in the turbocharged configuration. When operating with lean carburetor jets at 105 hp (78.3 kW) and 4000 rpm, a brake specific fuel consumption of 0.45 lbm/lb-hr was measured.

  4. An investigation of the engine performance, emissions and combustion characteristics of coconut biodiesel in a high-pressure common-rail diesel engine

    International Nuclear Information System (INIS)

    How, H.G.; Masjuki, H.H.; Kalam, M.A.; Teoh, Y.H.

    2014-01-01

    An experimental investigation on engine performance, emissions, combustion and vibration characteristics with coconut biodiesel fuels was conducted in a high-pressure common-rail diesel engine under five different load operations (0.17, 0.34, 0.52, 0.69 and 0.86 MPa). The test fuels included a conventional diesel fuel and four different fuel blends of coconut biodiesel (B10, B20, B30 and B50). The results showed that biodiesel blended fuels have significant influences on the BSFC (brake specific fuel consumption) and BSEC (brake specific energy consumption) at all engine loads. In general, the use of coconut biodiesel blends resulted in a reduction of BSCO (brake specific carbon monoxide) and smoke emissions regardless of the load conditions. A large reduction of 52.4% in smoke opacity was found at engine load of 0.86 MPa engine load with B50. For combustion characteristics, a slightly shorter ignition delay and longer combustion duration were found with the use of biodiesel blends under all loading operations. It was found that generally the biodiesel blends produced lower peak heat release rate than baseline diesel. The vibration results showed that the largest reduction of 13.7% in RMS (root mean square) of acceleration was obtained with B50 at engine load of 0.86 MPa with respect to the baseline diesel. - Highlights: • The performance, emissions and combustion characteristics of biodiesel were studied. • A tangible increase in BSFC was observed at all engine loads with coconut biodiesel. • A slightly shorter ignition delay was found with the use of biodiesel blends. • The vibrations for coconut biodiesel blends in diesel engine were investigated. • B50 achieved the largest reduction in RMS of acceleration at 0.86 MPa engine load

  5. Predicting performance in a first engineering calculus course: implications for interventions

    Science.gov (United States)

    Hieb, Jeffrey L.; Lyle, Keith B.; Ralston, Patricia A. S.; Chariker, Julia

    2015-01-01

    At the University of Louisville, a large, urban institution in the south-east United States, undergraduate engineering students take their mathematics courses from the school of engineering. In the fall of their freshman year, engineering students take Engineering Analysis I, a calculus-based engineering analysis course. After the first two weeks of the semester, many students end up leaving Engineering Analysis I and moving to a mathematics intervention course. In an effort to retain more students in Engineering Analysis I, the department collaborated with university academic support services to create a summer intervention programme. Students were targeted for the summer programme based on their score on an algebra readiness exam (ARE). In a previous study, the ARE scores were found to be a significant predictor of retention and performance in Engineering Analysis I. This study continues that work, analysing data from students who entered the engineering school in the fall of 2012. The predictive validity of the ARE was verified, and a hierarchical linear regression model was created using math American College Testing (ACT) scores, ARE scores, summer intervention participation, and several metacognitive and motivational factors as measured by subscales of the Motivated Strategies for Learning Questionnaire. In the regression model, ARE score explained an additional 5.1% of the variation in exam performance in Engineering Analysis I beyond math ACT score. Students took the ARE before and after the summer interventions and scores were significantly higher following the intervention. However, intervention participants nonetheless had lower exam scores in Engineering Analysis I. The following factors related to motivation and learning strategies were found to significantly predict exam scores in Engineering Analysis I: time and study environment management, internal goal orientation, and test anxiety. The adjusted R2 for the full model was 0.42, meaning that the

  6. Effect of swirl on the performance and combustion of a biogas fuelled spark ignition engine

    International Nuclear Information System (INIS)

    Porpatham, E.; Ramesh, A.; Nagalingam, B.

    2013-01-01

    Highlights: • Tests were conducted on a biogas fuelled SI engine with normal and masked valve. • Improvement in brake power and brake thermal efficiency with masked valve. • Lean misfire limit is extended with enhanced swirl from 0.68 to 0.65. • Enhanced swirl decreases HC level from1530 ppm to 1340 ppm and increases NO emission from 2250 ppm to 3440 ppm. • The reduction in ignition delay and higher heat release rate with enhanced swirl. - Abstract: The influence of swirl on the performance, emissions and combustion in a constant speed Spark Ignition (SI) engine was studied experimentally. A single cylinder diesel engine was modified to operate as a biogas operated spark ignition engine. The engine was operated at 1500 rpm at throttle opening of 25% and 100% at various equivalence ratios. The tests covered a range of equivalence ratios from rich to lean operating limits and also at an optimum compression ratio of 13:1 with normal and masked intake valve to enhance swirl. The spark timing was set to MBT (Minimum advance for Best Torque). It was found that masked valve configuration enhanced the power output and brake thermal efficiency at full throttle. The lean limit of combustion also got extended. Heat release rates indicated enhanced combustion rates with masked valve, which are mainly responsible for the improvement in thermal efficiency. NO level increased with masked valve as compared to normal configuration. The spark timings were to be retarded by about 6 °CA and 4 °CA when compared to normal configuration at 25% and 100% throttle respectively

  7. Effect of Fuel on Performance of a Single Combustor of an I-16 Turbojet Engine at Simulated Altitude Conditions

    Science.gov (United States)

    Zettle, Eugene V; Bolz, Ray E; Dittrich, R T

    1947-01-01

    As part of a study of the effects of fuel composition on the combustor performance of a turbojet engine, an investigation was made in a single I-16 combustor with the standard I-16 injection nozzle, supplied by the engine manufacturer, at simulated altitude conditions. The 10 fuels investigated included hydrocarbons of the paraffin olefin, naphthene, and aromatic classes having a boiling range from 113 degrees to 655 degrees F. They were hot-acid octane, diisobutylene, methylcyclohexane, benzene, xylene, 62-octane gasoline, kerosene, solvent 2, and Diesel fuel oil. The fuels were tested at combustor conditions simulating I-16 turbojet operation at an altitude of 45,000 feet and at a rotor speed of 12,200 rpm. At these conditions the combustor-inlet air temperature, static pressure, and velocity were 60 degrees F., 12.3 inches of mercury absolute, and 112 feet per second respectively, and were held approximately constant for the investigation. The reproducibility of the data is shown by check runs taken each day during the investigation. The combustion in the exhaust elbow was visually observed for each fuel investigated.

  8. Irreversible performance of a quantum harmonic heat engine

    Science.gov (United States)

    Rezek, Yair; Kosloff, Ronnie

    2006-05-01

    The unavoidable irreversible loss of power in a heat engine is found to be of quantum origin. Following thermodynamic tradition, a model quantum heat engine operating in an Otto cycle is analysed, where the working medium is composed of an ensemble of harmonic oscillators and changes in volume correspond to changes in the curvature of the potential well. Equations of motion for quantum observables are derived for the complete cycle of operation. These observables are sufficient to determine the state of the system and with it all thermodynamical variables. Once the external controls are set, the engine settles to a limit cycle. Conditions for optimal work, power and entropy production are derived. At high temperatures and quasistatic operating conditions, the efficiency at maximum power coincides with the endoreversible result \\eta_q=1-\\sqrt{{T_c}/{T_h}} . The optimal compression ratio varies from {\\cal C} =\\sqrt{T_h/T_c} in the quasistatic limit where the irreversibility is dominated by heat conductance to {\\cal C} =(T_h/T_c)^{1/4} in the sudden limit when the irreversibility is dominated by friction. When the engine deviates from adiabatic conditions, the performance is subject to friction. The origin of this friction can be traced to the noncommutability of the kinetic and potential energy of the working medium.

  9. Design and Implementation of High-Performance GIS Dynamic Objects Rendering Engine

    Science.gov (United States)

    Zhong, Y.; Wang, S.; Li, R.; Yun, W.; Song, G.

    2017-12-01

    Spatio-temporal dynamic visualization is more vivid than static visualization. It important to use dynamic visualization techniques to reveal the variation process and trend vividly and comprehensively for the geographical phenomenon. To deal with challenges caused by dynamic visualization of both 2D and 3D spatial dynamic targets, especially for different spatial data types require high-performance GIS dynamic objects rendering engine. The main approach for improving the rendering engine with vast dynamic targets relies on key technologies of high-performance GIS, including memory computing, parallel computing, GPU computing and high-performance algorisms. In this study, high-performance GIS dynamic objects rendering engine is designed and implemented for solving the problem based on hybrid accelerative techniques. The high-performance GIS rendering engine contains GPU computing, OpenGL technology, and high-performance algorism with the advantage of 64-bit memory computing. It processes 2D, 3D dynamic target data efficiently and runs smoothly with vast dynamic target data. The prototype system of high-performance GIS dynamic objects rendering engine is developed based SuperMap GIS iObjects. The experiments are designed for large-scale spatial data visualization, the results showed that the high-performance GIS dynamic objects rendering engine have the advantage of high performance. Rendering two-dimensional and three-dimensional dynamic objects achieve 20 times faster on GPU than on CPU.

  10. Evaluation of engine performance and emission with methyl ester of Karanja oil

    Directory of Open Access Journals (Sweden)

    Shikha Gangil

    2016-09-01

    Full Text Available Biodiesel has been considered as potential alternative to petroleum diesel with the renewable origin for the existing compression ignition engine. The main objective of the present work is evaluating performance and emission characteristics of diesel engine for various blends (B20, B40, B60, B80 and B100 of Karanja biodiesel and commercial diesel. The experimental investigation was carried out in IC (internal combustion at variable loads and compared with conventional diesel fuel with respect to engine performance parameters i.e. brake specific fuel consumption (BSFC, brake specific power consumption (BSEC, brake thermal efficiency (η-B.Th, for varying load conditions. The results obtained indicated the better fuel properties and engine performance at B40. For all cases, BSFC reduced with increase in load. It can be observed that the BSEC for various blends is lower as compared with that of diesel fuel. The availability of oxygen in the Karanja oil methyl ester-diesel fuel blend may be the reason for the lower BSEC. Brake thermal efficiency is increased due reduced heat loss with increased in load. It was found that the emission level of CO and HC level decreased with increased in blend proportion in diesel fuel. NOx emission increased with increase in blend proportion in diesel fuel.

  11. The development of performance-based practical assessment model at civil engineering workshop in state polytechnic

    Science.gov (United States)

    Kristinayanti, W. S.; Mas Pertiwi, I. G. A. I.; Evin Yudhi, S.; Lokantara, W. D.

    2018-01-01

    Assessment is an important element in education that shall oversees students’ competence not only in terms of cognitive aspect, but alsothe students’ psychomotorin a comprehensive way. Civil Engineering Department at Bali State Polytechnic,as a vocational education institution, emphasizes on not only the theoretical foundation of the study, but also the application throughpracticum in workshop-based learning. We are aware of a need for performance-based assessment for these students, which would be essential for the student’s all-round performance in their studies.We try to develop a performance-based practicum assessment model that is needed to assess student’s ability in workshop-based learning. This research was conducted in three stages, 1) learning needs analysis, 2) instruments development, and 3) testing of instruments. The study uses rubrics set-up to test students’ competence in the workshop and test the validity. We obtained 34-point valid statement out of 35, and resulted in value of Cronbach’s alpha equal to 0.977. In expert test we obtained a value of CVI = 0.75 which means that the drafted assessment is empirically valid within thetrial group.

  12. Airbreathing Pulse Detonation Engine Performance

    Science.gov (United States)

    Povinelli, Louis A.; Yungster, Shaye

    2002-01-01

    This paper presents performance results for pulse detonation engines (PDE) taking into account the effects of dissociation and recombination. The amount of sensible heat recovered through recombination in the PDE chamber and exhaust process was found to be significant. These results have an impact on the specific thrust, impulse and fuel consumption of the PDE.

  13. Surface engineering for enhanced performance against wear

    CERN Document Server

    2013-01-01

    Surface Engineering constitutes a variety of processes and sub processes. Each chapter of this work covers specific processes by experts working in the area. Included for each topic are tribological performances for each process as well as results of recent research. The reader also will benefit from in-depth studies of diffusion coatings, nanocomposite films for wear resistance, surfaces for biotribological applications, thin-film wear, tribology of thermal sprayed coatings, hardfacing, plating for tribology and high energy beam surface modifications. Material scientists as well as engineers working with surface engineering for tribology will be particularly interested in this work.

  14. Thrust Performance Evaluation of a Turbofan Engine Based on Exergetic Approach and Thrust Management in Aircraft

    Science.gov (United States)

    Yalcin, Enver

    2017-05-01

    The environmental parameters such as temperature and air pressure which are changing depending on altitudes are effective on thrust and fuel consumption of aircraft engines. In flights with long routes, thrust management function in airplane information system has a structure that ensures altitude and performance management. This study focused on thrust changes throughout all flight were examined by taking into consideration their energy and exergy performances for fuel consumption of an aircraft engine used in flight with long route were taken as reference. The energetic and exergetic performance evaluations were made under the various altitude conditions. The thrust changes for different altitude conditions were obtained to be at 86.53 % in descending direction and at 142.58 % in ascending direction while the energy and exergy efficiency changes for the referenced engine were found to be at 80.77 % and 84.45 %, respectively. The results revealed here can be helpful to manage thrust and reduce fuel consumption, but engine performance will be in accordance with operation requirements.

  15. Bird's-eye View of Apollo 6 on Transporter at KSC

    Science.gov (United States)

    1968-01-01

    A bird's-eye view of Apollo 6 and its gantry leaving the Vehicle Assembly Building on the transporter heading to the launch site on Pad 39-A at Kennedy Space Center. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  16. Advancing the practice of systems engineering at JPL

    Science.gov (United States)

    Jansma, Patti A.; Jones, Ross M.

    2006-01-01

    In FY 2004, JPL launched an initiative to improve the way it practices systems engineering. The Lab's senior management formed the Systems Engineering Advancement (SEA) Project in order to "significantly advance the practice and organizational capabilities of systems engineering at JPL on flight projects and ground support tasks." The scope of the SEA Project includes the systems engineering work performed in all three dimensions of a program, project, or task: 1. the full life-cycle, i.e., concept through end of operations 2. the full depth, i.e., Program, Project, System, Subsystem, Element (SE Levels 1 to 5) 3. the full technical scope, e.g., the flight, ground and launch systems, avionics, power, propulsion, telecommunications, thermal, etc. The initial focus of their efforts defined the following basic systems engineering functions at JPL: systems architecture, requirements management, interface definition, technical resource management, system design and analysis, system verification and validation, risk management, technical peer reviews, design process management and systems engineering task management, They also developed a list of highly valued personal behaviors of systems engineers, and are working to inculcate those behaviors into members of their systems engineering community. The SEA Project is developing products, services, and training to support managers and practitioners throughout the entire system lifecycle. As these are developed, each one needs to be systematically deployed. Hence, the SEA Project developed a deployment process that includes four aspects: infrastructure and operations, communication and outreach, education and training, and consulting support. In addition, the SEA Project has taken a proactive approach to organizational change management and customer relationship management - both concepts and approaches not usually invoked in an engineering environment. This paper'3 describes JPL's approach to advancing the practice of

  17. An Experimental Study on the Diesel Engine Performance with Rape Seed Oil

    International Nuclear Information System (INIS)

    Oh, Yeong Og

    2002-02-01

    A four cycle diesel engine performance test was performed with four kinds of oils such as rape seed oil, effective micro-organism rape seed oil, activated clay rape seed oil and light oil. The experiment was conducted at full load condition with constant injection time of the engine and the test oil temperature was maintained at 70±2 .deg. C. 1. The torque and the horsepower with rape seed fuel is increased about 10% compare with light seed oil at full load condition of the engine. High viscosity of the rape makes oil films in the combustor which leads to higher compression ratio and explosion. The results of the high viscosity make higher torque of the engine. The brake specific fuel consumption of the rape seed fuel increased 8%∼10% than that of the light oil. This effect could be the difference of heating value between the two kinds of oil. 2. The emission of the smoke gas was decreased 29%, 38% and 52% compare with light oil in rape seed oil, effective micro-organism rape seed oil and activated clay rape respectively due to the low volatility and high viscosity of the soot. The NOx emission with rape seed oil is twice larger than that of the light oil at full load condition. The reason is that the fuel temperature increment effects on the combustor temperature and it makes thermal NOx of the engine. 3. The test engine could be started over 40 .deg. C of the rape seed oil. Engine inspection results shows that the soot adherence amount of the cylinder head piston head is higher in following order; activated clay rape seed oil > effective micro-organism rape seed oil > rape seed oil > light oil

  18. Engineering Solutions to Enhance Traffic Safety Performance on Two-Lane Highways

    Directory of Open Access Journals (Sweden)

    Lina Wu

    2015-01-01

    Full Text Available Improving two-lane highway traffic safety conditions is of practical importance to the traffic system, which has attracted significant research attention within the last decade. Many cost-effective and proactive solutions such as low-cost treatments and roadway safety monitoring programs have been developed to enhance traffic safety performance under prevailing conditions. This study presents research perspectives achieved from the Highway Safety Enhancement Project (HSEP that assessed safety performance on two-lane highways in Beijing, China. Potential causal factors are identified based on proposed evaluation criteria, and primary countermeasures are developed against inferior driving conditions such as sharp curves, heavy gradients, continuous downgrades, poor sight distance, and poor clear zones. Six cost-effective engineering solutions were specifically implemented to improve two-lane highway safety conditions, including (1 traffic sign replacement, (2 repainting pavement markings, (3 roadside barrier installation, (4 intersection channelization, (5 drainage optimization, and (6 sight distance improvement. The effectiveness of these solutions was examined and evaluated based on Empirical Bayes (EB models. The results indicate that the proposed engineering solutions effectively improved traffic safety performance by significantly reducing crash occurrence risks and crash severities.

  19. Emission and performance analysis on the effect of exhaust gas recirculation in alcohol-biodiesel aspirated research diesel engine.

    Science.gov (United States)

    Mahalingam, Arulprakasajothi; Munuswamy, Dinesh Babu; Devarajan, Yuvarajan; Radhakrishnan, Santhanakrishnan

    2018-05-01

    In this study, the effect of blending pentanol to biodiesel derived from mahua oil on emissions and performance pattern of a diesel engine under exhaust gas recirculation (EGR) mode was examined and compared with diesel. The purpose of this study is to improve the feasibility of employing biofuels as a potential alternative in an unmodified diesel engine. Two pentanol-biodiesel blends denoted as MOBD90P10 and MOBD80P20 which matches to 10 and 20 vol% of pentanol in biodiesel, respectively, were used as fuel in research engine at 10 and 20% EGR rates. Pentanol is chosen as a higher alcohol owing to its improved in-built properties than the other first-generation alcohols such as ethanol or methanol. Experimental results show that the pentanol and biodiesel blends (MOBD90P10 and MOBD80P20) have slightly higher brake thermal efficiency (0.2-0.4%) and lower brake-specific fuel consumption (0.6 to 1.1%) than that of neat biodiesel (MOBD100) at all engine loads. Nitrogen oxide (NOx) emission and smoke emission are reduced by 3.3-3.9 and 5.1-6.4% for pentanol and biodiesel blends compared to neat biodiesel. Introduction of pentanol to biodiesel reduces the unburned hydrocarbon (2.1-3.6%) and carbon monoxide emissions (3.1-4.2%) considerably. In addition, at 20% EGR rate, smoke, NO X emissions, and BTE drop by 7.8, 5.1, and 4.4% respectively. However, CO, HC emissions, and BSFC increased by 2.1, 2.8, and 3.8%, respectively, when compared to 0% EGR rate.

  20. Comparative Study of the academic performance between different curricula in Agricultural Engineering

    Science.gov (United States)

    Vazquez, J. L.; Serrano, A.; Caniego, J.

    2012-04-01

    Due to the introduction of new degrees on the College of Agricultural Engineering of the Technical University of Madrid adapted to the European Space for Higher Education (Bologna), we have made a comparative study of academic achievement obtained by the students during their first year at the Centre according to different curricula. We used data from 2 curricula leading to the degree in Agricultural Engineering, Curriculumn 74 (6 years and annual structure) and Curriculum 96 modified in 2006 (5 years with quarterly structure) and the new curriculum in grades (4 years semi-structured). It has been used as a data source, the qualifications of new students during the last three years prior to the extinction of the curriculum.The study shows that current rates of academic success or failure and dropout during the first year of college are very similar to those happening 12 years ago, when it was assumed that the preparation of students from high school was much higher than today. Keywords: Academic performance, curricula, Bologna.

  1. Prediction of small spark ignited engine performance using producer gas as fuel

    Directory of Open Access Journals (Sweden)

    N. Homdoung

    2015-03-01

    Full Text Available Producer gas from biomass gasification is expected to contribute to greater energy mix in the future. Therefore, effect of producer gas on engine performance is of great interest. Evaluation of engine performances can be hard and costly. Ideally, they may be predicted mathematically. This work was to apply mathematical models in evaluating performance of a small producer gas engine. The engine was a spark ignition, single cylinder unit with a CR of 14:1. Simulation was carried out on full load and varying engine speeds. From simulated results, it was found that the simple mathematical model can predict the performance of the gas engine and gave good agreement with experimental results. The differences were within ±7%.

  2. Comparative study of performance and emissions of a diesel engine using Chinese pistache and jatropha biodiesel

    International Nuclear Information System (INIS)

    Huang, Jincheng; Wang, Yaodong; Qin, Jian-bin; Roskilly, Anthony P.

    2010-01-01

    An experimental study of the performances and emissions of a diesel engine is carried out using two different biodiesels derived from Chinese pistache oil and jatropha oil compared with pure diesel. The results show that the diesel engine works well and the power outputs are stable running with the two selected biodiesels at different loads and speeds. The brake thermal efficiencies of the engine run by the biodiesels are comparable to that run by pure diesel, with some increases of fuel consumptions. It is found that the emissions are reduced to some extent when using the biodiesels. Carbon monoxide (CO) emissions are reduced when the engine run at engine high loads, so are the hydrocarbon (HC) emissions. Nitrogen oxides (NOx) emissions are also reduced at different engine loads. Smoke emissions from the engine fuelled by the biodiesels are lowered significantly than that fuelled by diesel. It is also found that the engine performance and emissions run by Chinese pistache are very similar to that run by jatropha biodiesel. (author)

  3. Successful testing of an emergency diesel generator engine at very low load

    International Nuclear Information System (INIS)

    Killinger, A.; Loeper, St.

    2001-01-01

    For more than 30 years, the nuclear power industry has been concerned about the ability of emergency diesel generator sets (EDGs) to operate for extended periods of time at low loads (typically less than 33% of design rating) and still be capable of meeting their design safety requirement. Most diesel engine manufacturers today still caution owners and operators to avoid running their diesel engines for extended periods of time at low loads. At one nuclear power plant, the emergency electrical bus arrangement only required approximately 25% of the EDG's design rating, which necessitated that the plant operators monitor EDG operating hours and periodically increase electrical load. In order to eliminate the plant operations burden of periodically loading the EDGs, the nuclear power plant decided to conduct a low-load test of a ''spare'' diesel engine. A SACM Model UD45V16S5D diesel engine was returned to the factory in Mulhouse, France where the week long testing at rated speed and 3% of design rating was completed. The test demonstrated that the engine was capable of operating for seven days (168 hours) at very low loads, with no loss of performance and no unusual internal wear or degradation. The planning and inspections associated with preparing the diesel engine for the test, the engine monitoring performed during the test, the final test results, and the results and material condition of the engine following the test are described. The successful diesel engine low-load test resulted in the elimination of unnecessary nuclear power plant operation restrictions that were based on old concerns about long-term, low-load operation of diesel engines. The paper describes the significance of this diesel engine test to the nuclear power plant and the entire nuclear power industry. (author)

  4. Effect of Injector Nozzle Holes on Diesel Engine Performance

    OpenAIRE

    Semin,; Yusof, Mohd Yuzri Mohd; Arof, Aminuddin Md; Shaharudin, Daneil Tomo; Ismail, Abdul Rahim

    2010-01-01

    All of the injector nozzle holes have examined and the results are shown that the seven holes nozzle have provided the best burning result for the fuel in-cylinder burned in any different engine speeds and the best burning is in low speed engine. In engine performance effect, all of the nozzles have examined and the five holes nozzle provided the best result in indicted power, indicated torque and ISFC in any different engine speeds.

  5. An Evaluation of Molecular Dynamics Performance on the Hybrid Cray XK6 Supercomputer

    International Nuclear Information System (INIS)

    Brown, W. Michael; Nguyen, Trung D.; Fuentes-Cabrera, Miguel A.; Fowlkes, Jason Davidson; Rack, Philip D.; Berger, Mark

    2012-01-01

    For many years, the drive towards computational physics studies that match the size and time-scales of experiment has been fueled by increases in processor and interconnect performance that could be exploited with relatively little modification to existing codes. Engineering and electrical power constraints have disrupted this trend, requiring more drastic changes to both hardware and software solutions. Here, we present details of the Cray XK6 architecture that achieves increased performance with the use of GPU accelerators. We review software development efforts in the LAMMPS molecular dynamics package that have been implemented in order to utilize hybrid high performance computers. We present benchmark results for solid-state, biological, and mesoscopic systems and discuss some challenges for utilizing hybrid systems. We present some early work in improving application performance on the XK6 and performance results for the simulation of liquid copper nanostructures with the embedded atom method.

  6. Experimental investigation of performance and emissions of a VCR diesel engine fuelled with n-butanol diesel blends under varying engine parameters.

    Science.gov (United States)

    Nayyar, Ashish; Sharma, Dilip; Soni, Shyam Lal; Mathur, Alok

    2017-09-01

    The continuous rise in the cost of fossil fuels as well as in environmental pollution has attracted research in the area of clean alternative fuels for improving the performance and emissions of internal combustion (IC) engines. In the present work, n-butanol is treated as a bio-fuel and investigations have been made to evaluate the feasibility of replacing diesel with a suitable n-butanol-diesel blend. In the current research, an experimental investigation was carried out on a variable compression ratio CI engine with n-butanol-diesel blends (10-25% by volume) to determine the optimum blending ratio and optimum operating parameters of the engine for reduced emissions. The best results of performance and emissions were observed for 20% n-butanol-diesel blend (B20) at a higher compression ratio as compared to diesel while keeping the other parameters unchanged. The observed deterioration in engine performance was within tolerable limits. The reductions in smoke, nitrogen oxides (NO x ), and carbon monoxide (CO) were observed up to 56.52, 17.19, and 30.43%, respectively, for B20 in comparison to diesel at rated power. However, carbon dioxide (CO 2 ) and hydrocarbons (HC) were found to be higher by 17.58 and 15.78%, respectively, for B20. It is concluded that n-butanol-diesel blend would be a potential fuel to control emissions from diesel engines. Graphical abstract ᅟ.

  7. Improving the performance of a compression ignition engine by directing flow of inlet air

    Science.gov (United States)

    Kemper, Carlton

    1946-01-01

    The object of this report is to present the results of tests performed by the National Advisory Committee for Aeronautics to determine the effect on engine performance of directing the flow of the inlet air to a 5-inch by 7-inch cylinder, solid injection, compression ignition engine, After a few preliminary tests, comparative runs were made at a speed of 1500 r.p.m. with and without directed air flow. It was found that directing the flow of the inlet air toward the fuel injection valve gave steadier engine operation, and an appreciable increase in power, and decreased fuel consumption. The results indicate the possibility of improving the performance of a given type of combustion chamber without changing its shape and with no change in valve timing. They would also seem to prove that directional turbulence, set up before the inlet valve of a four-stroke cycle engine, continues in the engine cylinder throughout the compression stroke.

  8. Analysis of Engine Parameters at Using Diesel-LPG and Diesel-CNG Mixture in Compression-ignition Engine

    Directory of Open Access Journals (Sweden)

    Michal Jukl

    2014-01-01

    Full Text Available This work is aimed on influence of diesel engine parameters that is used with mixture of gas and diesel fuel. The first part of the article describes diesel fuel systems where small part of diesel fuel is replaced by LPG or CNG fuel. These systems are often called as Diesel-Gas systems. Next part of the article focuses on tested car and measurement equipment. Measurement was performed by common-rail diesel engine in Fiat Doblň. Tests were carried out in laboratories of the Department of Engineering and Automobile Transport at the Mendel University in Brno. They were observed changes between emissions of used fuels – diesel without addition of gas, diesel + LPG and diesel + CNG mixture. It was found that that the addition of gas had positive effect on the performance parameters and emissions.

  9. Effect of variation in LPG composition on emissions and performance in a dual fuel diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    H.E. Saleh [Mattaria, Helwan University, Cairo (Egypt). Department of Mechanical Power Engineering

    2008-10-15

    This paper investigates the effect of variation in LPG composition on emissions and performance characteristics in a dual fuel engine run on diesel fuel and five gaseous fuel of LPG with different composition. To quantify the best LPG composition for dual fuel operation especially in order to improve the exhaust emissions quality while maintaining high thermal efficiency comparable to a conventional diesel engine, a two-cylinder, naturally aspirated, four-stroke, DI diesel engine converted to run as pilot-injected dual fuel engine. The tests and data collection were performed under various conditions of load at constant engine speed. From the results, it is observed that the exhaust emissions and fuel conversion efficiency of the dual fuel engine are found to be affected when different LPG composition is used as higher butane content lead to lower NOx levels while higher propane content reduces CO levels. Fuel No. 3 (70% propane, 30% butane) with mass fraction 40% substitution of the diesel fuel was the best LPG composition in the dual fuel operation except that at part loads. Also, tests were made for fuel No. 3-diesel blend in the dual fuel operation at part loads to improve the engine performances and exhaust emissions by using the Exhaust Gas Recirculation (EGR) method. 26 refs., 15 figs., 5 tabs.

  10. Performance of ceramic coatings on diesel engines

    International Nuclear Information System (INIS)

    MacAdam, S.; Levy, A.

    1986-01-01

    Partially stabilized zirconia ceramic thermal barrier coatings were plasma sprayed on the valve faces and tulips and the piston crowns and cylinder heads of a locomotive size diesel engine at a designated thickness of 375μm (0.015''). They were tested over a range of throttle settings for 500 hours using No. 2 diesel oil fuel. Properly applied coatings performed with no change in composition, morphology or thickness. Improperly applied coatings underwent spalling durability was dependent on quality control of the plasma spray process

  11. Optimal Tuner Selection for Kalman Filter-Based Aircraft Engine Performance Estimation

    Science.gov (United States)

    Simon, Donald L.; Garg, Sanjay

    2010-01-01

    A linear point design methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented. This technique specifically addresses the underdetermined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine which seeks to minimize the theoretical mean-squared estimation error. This paper derives theoretical Kalman filter estimation error bias and variance values at steady-state operating conditions, and presents the tuner selection routine applied to minimize these values. Results from the application of the technique to an aircraft engine simulation are presented and compared to the conventional approach of tuner selection. Experimental simulation results are found to be in agreement with theoretical predictions. The new methodology is shown to yield a significant improvement in on-line engine performance estimation accuracy

  12. Performance of discrete heat engines and heat pumps in finite time

    Science.gov (United States)

    Feldmann; Kosloff

    2000-05-01

    The performance in finite time of a discrete heat engine with internal friction is analyzed. The working fluid of the engine is composed of an ensemble of noninteracting two level systems. External work is applied by changing the external field and thus the internal energy levels. The friction induces a minimal cycle time. The power output of the engine is optimized with respect to time allocation between the contact time with the hot and cold baths as well as the adiabats. The engine's performance is also optimized with respect to the external fields. By reversing the cycle of operation a heat pump is constructed. The performance of the engine as a heat pump is also optimized. By varying the time allocation between the adiabats and the contact time with the reservoir a universal behavior can be identified. The optimal performance of the engine when the cold bath is approaching absolute zero is studied. It is found that the optimal cooling rate converges linearly to zero when the temperature approaches absolute zero.

  13. Engineering Performance of Polyurethane Bonded Aggregates

    Directory of Open Access Journals (Sweden)

    Haimin WU

    2017-08-01

    Full Text Available In this paper the engineering performance of polyurethane (PUR bonded aggregate were studied. The engineering performance, including compressive and flexural mechanical properties, void ratio, and coefficient of permeability were determined through laboratory tests. Moreover, the effects of two different curing conditions on the compressive strength properties of a PUR bonded aggregate were also evaluated. The compressive strengths of PUR bonded aggregates were found to be lower than that of conventional porous concrete, which is a commonly used cushion material. However, experimental results indicated a higher void ratio and coefficient of permeability, lower elasticity modulus, better toughness, and stronger adaptability to flexural deformation compared to porous concrete. Consequently, PUR bonded aggregate is a better solution than porous concrete when used as the cushion material of a geomembrane surface barrier for a high rock-fill dam.DOI: http://dx.doi.org/10.5755/j01.ms.23.2.15798

  14. Combustion and emissions characteristics of diesel engine fueled by biodiesel at partial load conditions

    International Nuclear Information System (INIS)

    An, H.; Yang, W.M.; Chou, S.K.; Chua, K.J.

    2012-01-01

    Highlights: ► Impact of engine load on engine’s performance, combustion and emission characteristics. ► The brake specific fuel consumption (BSFC) increases significantly at partial load conditions. ► The brake thermal efficiency (BTE) drops at lower engine loads, and increases at higher loads. ► The partial load also influences the trend of CO emissions. -- Abstract: This paper investigated the performance, combustion and emission characteristics of diesel engine fueled by biodiesel at partial load conditions. Experiments were conducted on a common-rail fuel injection diesel engine using ultra low sulfur diesel, biodiesel (B100) and their blend fuels of 10%, 20%, 50% (denoted as B10, B20 and B50 respectively) under various loads. The results show that biodiesel/blend fuels have significant impacts on the engine’s brake specific fuel consumption (BSFC) and brake thermal efficiency (BTE) at partial load conditions. The increase in BSFC for B100 is faster than that of pure diesel with the decrease of engine load. A largest increase of 28.1% in BSFC is found at 10% load. Whereas for BTE, the results show that the use of biodiesel results in a reduced thermal efficiency at lower engine loads and improved thermal efficiency at higher engine loads. Furthermore, the characteristics of carbon monoxide (CO) emissions are also changed at partial load conditions. When running at lower engine loads, the CO emission increases with the increase of biodiesel blend ratio and the decrease of engine speed. However, at higher engine loads, an opposite trend is obtained.

  15. An Experimental Investigation of Ethanol-Diesel Blends on Performance and Exhaust Emissions of Diesel Engines

    Directory of Open Access Journals (Sweden)

    Tarkan Sandalcı

    2014-08-01

    Full Text Available Ethanol is a promising alternative fuel, due to its renewable biobased origin. Also, it has lower carbon content than diesel fuel and it is oxygenated. For this reason, ethanol is providing remarkable potential to reduce particulate emulsions in compression-ignition engines. In this study, performance of ethanol-diesel blends has been investigated experimentally. Tested fuels were mineral diesel fuel (E0D100, 15% (v/v ethanol/diesel fuel blend (E15D85, and 30% (v/v ethanol/diesel fuel blend (E30D70. Firstly, the solubility of ethanol and diesel was experienced. Engine tests were carried out to reveal the performance and emissions of the engine fuelled with the blends. Full load operating conditions at various engine speeds were investigated. Engine brake torque, brake power, brake specific fuel consumption, brake thermal efficiency, exhaust gas temperature, and finally exhaust emissions were measured. Performance of the tested engine decreased substantially while improvement on smoke and gaseous emissions makes ethanol blend favorable.

  16. Dip-Coating Process Engineering and Performance Optimization for Three-State Electrochromic Devices

    Science.gov (United States)

    Wu, Lu; Yang, Dejiang; Fei, Lixun; Huang, Yue; Wu, Fang; Sun, Yiling; Shi, Jiayuan; Xiang, Yong

    2017-06-01

    Titanium dioxide (TiO2) nanoparticles were modified onto fluorine-doped tin oxide (FTO) via dip-coating technique with different nanoparticle sizes, lifting speeds, precursor concentrations, and dipping numbers. Electrodeposition-based electrochromic device with reversible three-state optical transformation (transparent, mirror, and black) was fabricated subsequently by sandwiching a suitable amount of gel electrolyte between modified FTO electrode and flat FTO electrode. Correlation between dip-coating process engineering, morphological features of TiO2 thin films, i.e., thickness and roughness, as well as performance of electrochromic devices, i.e., optical contrast, switching time, and cycling stability, were investigated. The modified device exhibits high optical contrast of 57%, the short coloration/bleaching switching time of 6 and 20 s, and excellent cycling stability after 1500 cycles of only 27% decrement rate by adjusting dip-coating processes engineering. The results in this study will provide valuable guidance for rational design of the electrochromic device with satisfactory performance.

  17. Modification and performance evaluation of a mono-valve engine

    Science.gov (United States)

    Behrens, Justin W.

    A four-stroke engine utilizing one tappet valve for both the intake and exhaust gas exchange processes has been built and evaluated. The engine operates under its own power, but has a reduced power capacity than the conventional 2-valve engine. The reduction in power is traced to higher than expected amounts of exhaust gases flowing back into the intake system. Design changes to the cylinder head will fix the back flow problems, but the future capacity of mono-valve engine technology cannot be estimated. The back flow of exhaust gases increases the exhaust gas recirculation (EGR) rate and deteriorates combustion. Intake pressure data shows the mono-valve engine requires an advanced intake valve closing (IVC) time to prevent back flow of charge air. A single actuation camshaft with advanced IVC was tested in the mono-valve engine, and was found to improve exhaust scavenging at TDC and nearly eliminated all charge air back flow at IVC. The optimum IVC timing is shown to be approximately 30 crank angle degrees after BDC. The mono-valve cylinder head utilizes a rotary valve positioned above the tappet valve. The open spaces inside the rotary valveand between the rotary valve and tappet valve represent a common volume that needs to be reduced in order to reduce the base EGR rate. Multiple rotary valve configurations were tested, and the size of the common volume was found to have no effect on back flow but a direct effect on the EGR rate and engine performance. The position of the rotary valve with respect to crank angle has a direct effect on the scavenging process. Optimum scavenging occurs when the intake port is opened just after TDC.

  18. Cryogenic rocket engine development at Delft aerospace rocket engineering

    NARCIS (Netherlands)

    Wink, J; Hermsen, R.; Huijsman, R; Akkermans, C.; Denies, L.; Barreiro, F.; Schutte, A.; Cervone, A.; Zandbergen, B.T.C.

    2016-01-01

    This paper describes the current developments regarding cryogenic rocket engine technology at Delft Aerospace Rocket Engineering (DARE). DARE is a student society based at Delft University of Technology with the goal of being the first student group in the world to launch a rocket into space. After

  19. High Performance Computing in Science and Engineering '14

    CERN Document Server

    Kröner, Dietmar; Resch, Michael

    2015-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS). The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and   engineers. The book comes with a wealth of color illustrations and tables of results.  

  20. CrossTalk: The Journal of Defense Software Engineering. Volume 27, Number 6, November/December 2014

    Science.gov (United States)

    2014-12-01

    conclusion lest the analysis is biased . 6 CrossTalk—November/December 2014 SOFTWARE ENGINEERING TOOLS AND THE PROCESSES THEY SUPPORT To demonstrate...In some Agile development environments the relative separa- tion between tools and processes is so seamless as to be almost subconscious to process...a well-articulated process description, but if the performer is a tool lover, he will find fault with the defined process, always having a bias for

  1. A review on the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends.

    Science.gov (United States)

    Damanik, Natalina; Ong, Hwai Chyuan; Tong, Chong Wen; Mahlia, Teuku Meurah Indra; Silitonga, Arridina Susan

    2018-06-01

    Biodiesels have gained much popularity because they are cleaner alternative fuels and they can be used directly in diesel engines without modifications. In this paper, a brief review of the key studies pertaining to the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends, exhaust aftertreatment systems, and low-temperature combustion technology is presented. In general, most biodiesel blends result in a significant decrease in carbon monoxide and total unburned hydrocarbon emissions. There is also a decrease in carbon monoxide, nitrogen oxide, and total unburned hydrocarbon emissions while the engine performance increases for diesel engines fueled with biodiesels blended with nano-additives. The development of automotive technologies, such as exhaust gas recirculation systems and low-temperature combustion technology, also improves the thermal efficiency of diesel engines and reduces nitrogen oxide and particulate matter emissions.

  2. YES 2K6: A mentorship program for young engineers and scientists

    Science.gov (United States)

    Boice, D. C.; Asbell, H. E.

    The Young Engineers and Scientists 2006 YES 2K6 Program is a community partnership between Southwest Research Institute SwRI and local high schools in San Antonio Texas USA YES has been highly successful during the past 14 years and YES 2K6 continues this trend This program provides talented high school juniors and seniors a bridge between classroom instruction and real world research experiences in physical sciences including space science and astronomy and engineering YES 2K6 consists of two parts 1 an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand develop skills and acquire tools for solving scientific problems attend mini-courses and seminars on electronics computers and the Internet careers science ethics and other topics and select individual research projects to be completed during the academic year and 2 a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit At the end of the school year students publicly present and display their work acknowledging their accomplishments and spreading career awareness to other students and teachers YES 2K6 developed a website for the Magnetospheric Multiscale Mission MMS from the perspective of high school students Over the past 14 years all YES graduates have entered college several have worked for SwRI and three scientific publications have resulted Student evaluations indicate the effectiveness of YES on

  3. Rotary engine performance computer program (RCEMAP and RCEMAPPC): User's guide

    Science.gov (United States)

    Bartrand, Timothy A.; Willis, Edward A.

    1993-01-01

    This report is a user's guide for a computer code that simulates the performance of several rotary combustion engine configurations. It is intended to assist prospective users in getting started with RCEMAP and/or RCEMAPPC. RCEMAP (Rotary Combustion Engine performance MAP generating code) is the mainframe version, while RCEMAPPC is a simplified subset designed for the personal computer, or PC, environment. Both versions are based on an open, zero-dimensional combustion system model for the prediction of instantaneous pressures, temperature, chemical composition and other in-chamber thermodynamic properties. Both versions predict overall engine performance and thermal characteristics, including bmep, bsfc, exhaust gas temperature, average material temperatures, and turbocharger operating conditions. Required inputs include engine geometry, materials, constants for use in the combustion heat release model, and turbomachinery maps. Illustrative examples and sample input files for both versions are included.

  4. Performance of engineering undergraduate students in mathematics: A case study in UniMAP

    Science.gov (United States)

    Saad, Syafawati Ab.; Azziz, Nor Hizamiyani Abdul; Zakaria, Siti Aisyah; Yazid, Nornadia Mohd

    2015-12-01

    The purpose of this paper is to study the trend performance of the first year engineering students at a public university in Mathematics course: Engineering Mathematics I. We analyze how ethnicity factor influenced students' performance in mathematics course over three years period. The performance of the undergraduate students in this study is measured by their cumulative grade point average (CGPA) in the first semester. Analysis of Variance (ANOVA) will be used to test the significance difference between three variables (Malay, Chinese and Indian). Method of simple linear regression (SLR) is used to test the relationship between the performances and to predict the future performance for this course. The findings of the study show that Chinese students perform better than Malay and Indian students.

  5. Performance of bio fuels in diesel engines

    International Nuclear Information System (INIS)

    Nunez I, Manuel L; Prada V, Laura P

    2007-01-01

    This paper shows the preliminary results of pilot plant tests developed in oil catalytic hydrotreating process, where the crude palm oil or a mixture of crude palm oil and mineral diesel is treated with an injection of 99% pure hydrogen flux, in a fixed bed reactor at high pressures and temperatures, in a presence of Nickel Molybdenum catalyst supported on alumina bed. The main product of this process is a fuel (bio diesel) which has the same or better properties than the diesel obtained by petroleum refining. It has been made some performance fuel tests in diesel engine? with good results in terms of power, torque and fuel consumption, without any changes in engine configuration. Considering the characteristics of the Catalytic hydrotreated bio diesel compare to conventional diesel, both fuels have similar distillation range? however, bio diesel has better flash point, cetane index and thermal stability. Gas fuels (methane, ethane, and propane) CO 2 and water are the secondary products of the process.

  6. Experimental evaluation of diesel engine performance and emission using blends of jojoba oil and diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Huzayyin, A.S.; Rady, M.A.; Dawood, A. [Benha High Inst. of Technology (Egypt). Dept. of Mechanical Engineering Technology; Bawady, A.H. [University of Ain Shams, Cairo (Egypt). Faculty of Engineering

    2004-08-01

    An experimental evaluation of using jojoba oil as an alternate diesel engine fuel has been conducted in the present work. Measurements of jojoba oil chemical and physical properties have indicated a good potential of using jojoba oil as an alternative diesel engine fuel. Blending of jojoba oil with gas oil has been shown to be an effective method to reduce engine problems associated with the high viscosity of jojoba oil. Experimental measurements of different performance parameters of a single cylinder, naturally aspirated, direct injection, diesel engine have been performed using gas oil and blends of gas oil with jojoba oil. Measurements of engine performance parameters at different load conditions over the engine speed range have generally indicated a negligible loss of engine power, a slight increase in brake specific fuel consumption and a reduction in engine NO{sub x} and soot emission using blends of jojoba oil with gas oil as compared to gas oil. The reduction in engine soot emission has been observed to increase with the increase of jojoba oil percentage in the fuel blend. (Author)

  7. Experimental evaluation of Diesel engine performance and emission using blends of jojoba oil and Diesel fuel

    International Nuclear Information System (INIS)

    Huzayyin, A.S.; Bawady, A.H.; Rady, M.A.; Dawood, A.

    2004-01-01

    An experimental evaluation of using jojoba oil as an alternate Diesel engine fuel has been conducted in the present work. Measurements of jojoba oil chemical and physical properties have indicated a good potential of using jojoba oil as an alternative Diesel engine fuel. Blending of jojoba oil with gas oil has been shown to be an effective method to reduce engine problems associated with the high viscosity of jojoba oil. Experimental measurements of different performance parameters of a single cylinder, naturally aspirated, direct injection, Diesel engine have been performed using gas oil and blends of gas oil with jojoba oil. Measurements of engine performance parameters at different load conditions over the engine speed range have generally indicated a negligible loss of engine power, a slight increase in brake specific fuel consumption and a reduction in engine NO x and soot emission using blends of jojoba oil with gas oil as compared to gas oil. The reduction in engine soot emission has been observed to increase with the increase of jojoba oil percentage in the fuel blend

  8. Performance and Emission Analysis of Rubber Seed, Palm, and Their Combined Blend in a Multi-Cylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    Ibrahim Khalil Adam

    2018-06-01

    Full Text Available In consideration of its vast resources in Malaysia, the potential use of a nonedible biodiesel source from rubber seed oil (RSO is explored. However, a mixture with a high saturation content feedstock is required to increase its oxidation stability, which is caused by its 78.93% unsaturation content. Two blends of 20% and 50% v/v rubber seed biodiesel (RB or palm biodiesel (PB and varying percentage mixtures of these two feedstock oils biodiesel (RPB were evaluated on combustion performance in a 55 kW multi-cylinder diesel engine at full load conditions. The results showed that feedstock blending offered benefits in terms of fuel properties enhancement, improved engine performance, and reduced emissions. In comparison to RB, RPB showed higher brake power (BP of 1.18–2.97% and lower brake specific fuel consumption (BSFC of 0.85–3.69%, smoke opacity (11.89–14.19%, carbon monoxide (CO of 2.48–6.93%, hydrocarbon (HC of 2.36–9.34%, and Nitrogen oxide (NO emissions of 2.34–5.93%. The cylinder pressures and heat release rates (HRR of RPB blends were 8.47–11.43% and 36.02–46.61% higher than diesel, respectively. The start of combustion angles (SOC of RB and RPB blends were from −13 to −15 °C and from −13.2 to −15.6 crank angle degree (°CA before top dead center (BTDC, but the combustion delays were 6–8 °C and 5.4–7.8 °C shorter when compared to diesel fuel which were −10 °C BTDC and 11 °C, respectively. It can be concluded that RPB blends showed better performance and emissions over the individual rubber seed and palm biodiesel blends and can replace diesel fuel in unmodified engines.

  9. Quality Assessment Survey at the School of Civil Engineering at Aalborg University

    DEFF Research Database (Denmark)

    Brohus, Henrik

    2008-01-01

    the study board of civil engineering. The questionnaire was jointly developed for all study boards at Aalborg University. The questionnaire forms an investigation of students' satisfaction and evaluation of the overall structure of the education including self-reported performance assessment. The paper......As part of an improved quality assessment procedure at the School of Civil Engineering at Aalborg University, an online survey has been undertaken among all students. Due to external requirements and a wish for more structured feedback, an online questionnaire was presented to all students under...... discusses the structure of the questionnaire and presents the results. Finally, suggestions for improvements regarding the questionnaire and further quality assessment are included. The response rate was 40%. Overall, the results showed a general satisfaction with the studies although substantial variance...

  10. Adjusting the specificity of an engine map based on the sensitivity of an engine control parameter relative to a performance variable

    Science.gov (United States)

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2014-10-28

    Methods and systems for engine control optimization are provided. A first and a second operating condition of a vehicle engine are detected. An initial value is identified for a first and a second engine control parameter corresponding to a combination of the detected operating conditions according to a first and a second engine map look-up table. The initial values for the engine control parameters are adjusted based on a detected engine performance variable to cause the engine performance variable to approach a target value. A first and a second sensitivity of the engine performance variable are determined in response to changes in the engine control parameters. The first engine map look-up table is adjusted when the first sensitivity is greater than a threshold, and the second engine map look-up table is adjusted when the second sensitivity is greater than a threshold.

  11. Experimental investigation of the performance and emissions of diesel engines by a novel emulsified diesel fuel

    International Nuclear Information System (INIS)

    Chen, Zhenbin; Wang, Xiaochen; Pei, Yiqiang; Zhang, Chengliang; Xiao, Mingwei; He, Jinge

    2015-01-01

    Highlights: • A novel bio-fuel, glucose solution emulsified diesel fuel, is evaluated. • Emulsified diesel has comparable brake thermal efficiency. • NO X emissions decrease with emulsified fuel at all loads. • Soot emissions decrease with emulsified fuel except at a few operating points. - Abstract: The subject of this paper was to study the performance and emissions of two typical diesel engines using glucose solution emulsified diesel fuel. Emulsified diesel with a 15% glucose solution by mass fraction was used in diesel engines and compared with pure diesel. For the agricultural diesel engine, performance and emission characteristics were measured under various engine loads. The results showed that the brake thermal efficiencies were improved using emulsified diesel fuel. Emulsified fuel decreased NO x and soot emissions except at a few specific operating conditions. HydroCarbon (HC) and CO emissions were increased. For the automotive diesel engine, performance and emissions were measured using the 13-mode European Stationary Cycle (ESC). It was found that brake thermal efficiencies of emulsified diesel and pure diesel were comparable at 75% and 100% load. Soot emissions decreased significantly while NO x emissions decreased slightly. HC emissions increased while CO emissions decreased at some operating conditions

  12. Engineering Nanowire n-MOSFETs at L_{g}<8 nm

    Science.gov (United States)

    Mehrotra, Saumitra R.; Kim, SungGeun; Kubis, Tillmann; Povolotskyi, Michael; Lundstrom, Mark S.; Klimeck, Gerhard

    2013-07-01

    As metal-oxide-semiconductor field-effect transistors (MOSFET) channel lengths (Lg) are scaled to lengths shorter than Lg<8 nm source-drain tunneling starts to become a major performance limiting factor. In this scenario a heavier transport mass can be used to limit source-drain (S-D) tunneling. Taking InAs and Si as examples, it is shown that different heavier transport masses can be engineered using strain and crystal orientation engineering. Full-band extended device atomistic quantum transport simulations are performed for nanowire MOSFETs at Lg<8 nm in both ballistic and incoherent scattering regimes. In conclusion, a heavier transport mass can indeed be advantageous in improving ON state currents in ultra scaled nanowire MOSFETs.

  13. Multivariate Analysis of Students' Performance in Math Courses and Specific Engineering Courses

    OpenAIRE

    H. Naccache; R. Hleiss

    2016-01-01

    The aim of this research is to study the relationship between the performance of engineering students in different math courses and their performance in specific engineering courses. The considered courses are taken mainly by engineering students during the first two years of their major. Several factors are being studied, such as gender and final grades in the math and specific engineering courses. Participants of this study comprised a sample of more than thousands of engineering students a...

  14. Performance and emission characteristics of a turpentine-diesel dual fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Karthikeyan, R. [Adhiparasakthi Engineering College, Melmaruvathur, Tamil Nadu (India); Mahalakshmi, N.V. [I.C. Engines Division, Department of Mechanical Engineering, College of Engineering Guindy, Chennai, Tamil Nadu (India)

    2007-07-15

    This paper describes an experimental study concerning the feasibility of using bio-oil namely turpentine obtained from the resin of pine tree. The emission and performance characteristics of a D.I. diesel engine were studied through dual fuel (DF) mode. Turpentine was inducted as a primary fuel through induction manifold and diesel was admitted into the engine through conventional fueling device as an igniter. The result showed that except volumetric efficiency, all other performance and emission parameters are better than those of diesel fuel with in 75% load. The toxic gases like CO, UBHC are slightly higher than that of the diesel baseline (DBL). Around 40-45% smoke reduction is obtained with DF mode. The pollutant No{sub x} is found to be equal to that of DBL except at full load. This study has proved that approximately 75% diesel replacement with turpentine is possible by DF mode with little engine modification. (author)

  15. An experimental study of the effect of octane number higher than engine requirement on the engine performance and emissions

    Energy Technology Data Exchange (ETDEWEB)

    Sayin, Cenk; Kilicaslan, Ibrahim; Canakci, Mustafa; Ozsezen, Necati [Kocaeli Univ., Dept. of Mechanical Education, Izmit (Turkey)

    2005-06-01

    In this study, the effect of using higher-octane gasoline than that of engine requirement on the performance and exhaust emissions was experimentally studied. The test engine chosen has a fuel system with carburettor because 60% of the vehicles in Turkey are equipped with the carburettor. The engine, which required 91-RON (Research Octane Number) gasoline, was tested using 95-RON and 91-RON. Results show that using octane ratings higher than the requirement of an engine not only decreases engine performance but also increases exhaust emissions. (Author)

  16. Performance Testing of Diesel Engine using Cardanol-Kerosene oil blend

    Directory of Open Access Journals (Sweden)

    Ravindra

    2018-01-01

    Full Text Available Awareness of environmental pollution and fossil fuel depletion has necessitated the use of biofuels in engines which have a relatively cleaner emissions. Cardanol is a biofuel, abundantly available in India, which is a by-product of cashew processing industries. In this study performance of raw Cardanol blended with kerosene has been tested in diesel engine. Volumetric blend BK30 (30% kerosene and 70% Cardanol has been used for the test. The properties like flash point, viscosity and calorific value of the blend have been determined. The test was carried out in four stroke diesel engine connected with an eddy current dynamometer. Performance of the engine has been analysed by finding the brake specific fuel consumption (BSFC and brake thermal efficiency (BTE. The results showed that the brake thermal efficiency of the blend is 29.87%, with less CO and smoke emission compared to diesel. The results were also compared with the performance of Cardanol diesel blend and Cardanol camphor oil blend, which were already tested in diesel engines by other researchers. Earlier research work reveals that the blend of 30% camphor oil and 70% Cardanol performs very closer to diesel fuel with a thermal efficiency of 29.1%. Similarly, higher brake thermal efficiency was obtained for 20% Cardanol and 80% diesel blend.

  17. Advanced materials for aircraft engine applications. Koku engine yo zairyo no doko

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The thrust/weight ratio which is thrust per unit weight of engine is a parameter of aircraft engine performance. With a mean material density of 6.6g/cm[sup 3], some of the supersonic plane engines are 7.9 in thrust/weight ratio. Its attaining 20 is predicted by some reports. The turbine inlet temperature is a parameter of engine temperature heightening exceeds 1400[degree]C. Its attaining 2000[degree]C in the 21st century is also predicted by some reports. By dividing the aircraft engine materials into both improvement and innovation material systems, the present paper explained the characteristics and present status of materials, and how to put them in practical use. As an improvement material, titanium alloy, nickel base alloy and resinous composite materials were exhibited with examples of having improved the established material system in performance and cost. Used as a turbine vane member, the nickel base alloy contributes, as a unidirectional coagulation alloy, single crystal alloy and oxide dispersion exciting alloy, to the creep resistance strengthening at high temperatures against the fatigue due to thermal strain. It is also explained how to put TiAl and FRM to practical use. 8 refs., 13 figs., 2 tabs.

  18. Retrofit Weight-Loss Outcomes at 6, 12, and 24 Months and Characteristics of 12-Month High Performers: A Retrospective Analysis.

    Science.gov (United States)

    Painter, Stefanie; Ditsch, Gary; Ahmed, Rezwan; Hanson, Nicholas Buck; Kachin, Kevin; Berger, Jan

    2016-08-22

    Obesity is the leading cause of preventable death costing the health care system billions of dollars. Combining self-monitoring technology with personalized behavior change strategies results in clinically significant weight loss. However, there is a lack of real-world outcomes in commercial weight-loss program research. Retrofit is a personalized weight management and disease-prevention solution. This study aimed to report Retrofit's weight-loss outcomes at 6, 12, and 24 months and characterize behaviors, age, and sex of high-performing participants who achieved weight loss of 10% or greater at 12 months. A retrospective analysis was performed from 2011 to 2014 using 2720 participants enrolled in a Retrofit weight-loss program. Participants had a starting body mass index (BMI) of >25 kg/m² and were at least 18 years of age. Weight measurements were assessed at 6, 12, and 24 months in the program to evaluate change in body weight, BMI, and percentage of participants who achieved 5% or greater weight loss. A secondary analysis characterized high-performing participants who lost ≥10% of their starting weight (n=238). Characterized behaviors were evaluated, including self-monitoring through weigh-ins, number of days wearing an activity tracker, daily step count average, and engagement through coaching conversations via Web-based messages, and number of coaching sessions attended. Average weight loss at 6 months was -5.55% for male and -4.86% for female participants. Male and female participants had an average weight loss of -6.28% and -5.37% at 12 months, respectively. Average weight loss at 24 months was -5.03% and -3.15% for males and females, respectively. Behaviors of high-performing participants were assessed at 12 months. Number of weigh-ins were greater in high-performing male (197.3 times vs 165.4 times, P=.001) and female participants (222 times vs 167 times, Pactivity tracker days and average steps per day were greater in high-performing females (304.7 vs

  19. Impact of ternary blends of biodiesel on diesel engine performance

    Directory of Open Access Journals (Sweden)

    Prem Kumar

    2016-06-01

    Full Text Available The Pongamia and waste cooking oils are the main non edible oils for biodiesel production in India. The aim of the present work is to evaluate the fuel properties and investigate the impact on engine performance using Pongamia and waste cooking biodiesel and their ternary blend with diesel. The investigation of the fuel properties shows that Pongamia biodiesel and waste cooking biodiesel have poor cold flow property. This will lead to starting problem in the engine operation. To overcome this problem the ternary blends of diesel, waste cooking biodiesel and Pongamia biodiesel are prepared. The cloud and pour point for ternary blend, (WCB20:PB20:D60 were found to be 7 °C and 6.5 °C which are comparable to cloud and pour point of diesel 6 °C and 5 °C, respectively. The result of the test showed that brake specific fuel consumption for Pongamia biodiesel and waste cooking biodiesel is higher than ternary blend, (WCB20:PB20:D60 due to their lower energy content. The brake thermal efficiency of ternary blend and diesel is comparable while the Pongamia and waste cooking biodiesel have low efficiency. The result of investigation showed that ternary blend can be developed as alternate fuel.

  20. Comparative Study of Performance and Combustion Characteristics of Conventional and Low Heat Rejection (Mullite Coated) Diesel Engines

    Science.gov (United States)

    Patond, S. B.; Chaple, S. A.; Shrirao, P. N.; Shaikh, P. I.

    2013-06-01

    Tests were performed on a single cylinder, four stroke, direct injection, diesel engine whose piston crown, cylinder head and valves were coated with a 0.5 mm thickness of 3Al2O3·2SiO2 (mullite) (Al2O3 = 60%, SiO2 = 40%) over a 150 μm thickness of NiCrAlY bond coat. The working conditions for the conventional engine (without coating) and LHR (mullite coated) engine were kept exactly same to ensure a comparison between the two configurations of the engine. This paper is intended to emphasis on performance and combustion characteristics of conventional and LHR (Mullite coated) diesel engines under identical conditions. Tests were carried out at same operational constraints i.e. air-fuel ratio and engine speed conditions for both conventional engine (without coating) and LHR (mullite coated) engines. The results showed that, there was as much as 1.8 % increasing on brake power for LHR (mullite coated) engine compared to conventional engine (without coating) at full load The average decrease in brake specific fuel consumption in the LHR engine compared with the conventional engine was 1.76 % for full engine load. However, there was increasing on cylinder gas pressure and net heat release rate for LHR engine compared to conventional engine. Also the results revealed that, there was as much as 22% increasing on exhaust gas temperature for LHR engine compared to conventional engine at full engine load.

  1. Comparative Study of Performance and Combustion Characteristics of Conventional and Low Heat Rejection (Mullite Coated) Diesel Engines

    International Nuclear Information System (INIS)

    Patond, S B; Chaple, S A; Shrirao, P N; Shaikh, P I

    2013-01-01

    Tests were performed on a single cylinder, four stroke, direct injection, diesel engine whose piston crown, cylinder head and valves were coated with a 0.5 mm thickness of 3Al 2 O 3 ·2SiO 2 (mullite) (Al 2 O 3 = 60%, SiO 2 = 40%) over a 150 μm thickness of NiCrAlY bond coat. The working conditions for the conventional engine (without coating) and LHR (mullite coated) engine were kept exactly same to ensure a comparison between the two configurations of the engine. This paper is intended to emphasis on performance and combustion characteristics of conventional and LHR (Mullite coated) diesel engines under identical conditions. Tests were carried out at same operational constraints i.e. air-fuel ratio and engine speed conditions for both conventional engine (without coating) and LHR (mullite coated) engines. The results showed that, there was as much as 1.8 % increasing on brake power for LHR (mullite coated) engine compared to conventional engine (without coating) at full load The average decrease in brake specific fuel consumption in the LHR engine compared with the conventional engine was 1.76 % for full engine load. However, there was increasing on cylinder gas pressure and net heat release rate for LHR engine compared to conventional engine. Also the results revealed that, there was as much as 22% increasing on exhaust gas temperature for LHR engine compared to conventional engine at full engine load.

  2. Development of engineering diffractometer at J-PARC

    International Nuclear Information System (INIS)

    Moriai, Atsushi; Torii, Shuki; Suzuki, Hiroshi; Harjo, Stefanus; Morii, Yukio; Arai, Masatoshi; Tomota, Yo; Suzuki, Tetsuya; Akiniwa, Yoshiaki; Kimura, Hidehiko; Akita, Koich

    2006-01-01

    An engineering diffractometer for investigations of stresses and crystallographic structures within engineering components is now being developed at J-PARC project. The diffractometer is designed to view a decoupled-poisoned liquid H 2 moderator providing neutrons with good symmetrical diffraction profiles in the acceptable wavelength range. The diffractometer will have a primary flight path of 40 m and a secondary flight path of 2.0 m for 90 o scattering detector banks, and will include a curved supermirror neutron guide to avoid intensity loss due to the long flight path and to reduce backgrounds from fast neutrons and gamma rays. Therefore, stresses with sufficient accuracies in many engineering studies are quite promising. The diffractometer involves a sample translator which is able to handle large and heavy real industrial-scaled components. Detailed design works are being continuously promoted. The optimization of the diffractometer has been performed with a Monte Carlo simulation, and an appropriate resolution of less than 0.2% in Δd/d has been confirmed

  3. Effect of hydrogen addition on combustion and emissions performance of a gasoline rotary engine at part load and stoichiometric conditions

    International Nuclear Information System (INIS)

    Ji, Changwei; Su, Teng; Wang, Shuofeng; Zhang, Bo; Yu, Menghui; Cong, Xiaoyu

    2016-01-01

    Highlights: • The performance of a H_2-blended gasoline rotary engine was studied. • The p, Bmep, T_m_a_x and η_b increased after H_2 blending. • Both the CA0-10 and CA10-90 were shortened by the H_2 addition. • H_2 addition resulted in the reduced HC, CO and CO_2 emissions. - Abstract: The rotary engines may encounter high fuel consumption and emissions due to its narrow and long combustion chamber design. The low ignition energy and high flame speed of hydrogen may help improve the combustion of rotary engines. In this paper, a gasoline rotary engine equipped with gasoline and hydrogen injectors was developed to investigate the combustion and emissions of hydrogen-blended gasoline rotary engines. The engine was run at 3000 rpm and a manifolds absolute pressure of 37.5 kPa with the stoichiometric excess air ratio. The spark timing was set to be 25°CA before the top dead center. The engine was first fueled with the pure gasoline and then blended with the hydrogen. The hydrogen volume fractions in the intake were gradually increased from 0% to 5.2%. The results showed that the combustion pressure, brake mean effective pressure, cylinder temperature and thermal efficiency were simultaneously increased after the hydrogen blending. The crank angle of peak pressure was advanced with the hydrogen addition. The hydrogen enrichment was effective on reducing flame development and propagation periods. HC emissions were reduced by 44.8% when the hydrogen volume fraction in the intake was raised from 0% to 5.2%, CO and CO_2 emissions were also reduced after the hydrogen blending.

  4. Design and manufacture of high performance hollow engine valves by Additive Layer Manufacturing

    International Nuclear Information System (INIS)

    Cooper, D.; Thornby, J.; Blundell, N.; Henrys, R.; Williams, M.A.; Gibbons, G.

    2015-01-01

    Highlights: • High performance engine valve has been redesigned and optimised for and using ALM. • FEA was utilised to optimise and select a design for manufacture and testing. • Micro computed tomography was used in design and validation as an NDT technique. • Real world test of components was conducted to evaluate their performance. • Has demonstrated the potential for ALM in a high performance engineering context. - Abstract: Additive Layer Manufacture (ALM) of metallic components provides significant opportunities for the reduction of component weight, in order to realise improvements in vehicle fuel efficiency or performance. This paper examines the potential benefits of ALM with regard to reducing the weight of Internal Combustion Engine inlet or exhaust valves. A case study component is presented, for which an improved ALM design has been created, manufactured and evaluated. Micro-Computed Tomography (μ-CT) scanning was utilised to reverse engineer an original component, and to assess the ALM component’s internal geometry and material integrity. The case study valve was re-designed using Finite Element Analysis (FEA) to select a light weighted design which provides a conservative 9.4 g, (20%) weight saving on the Original Equipment Manufacturer (OEM) component. An engine test of over 175,000 cycles at between 2000 and 9500 rpm was conducted, after which μ-CT scanning confirmed no evidence of internal cracking, failure or significant deformation

  5. Full Load Performance of a Spark Ignition Engine Fueled with Gasoline-Isobutanol Blends

    Directory of Open Access Journals (Sweden)

    Adrian Irimescu

    2009-10-01

    Full Text Available With fossil fuels reserves coming ever closer to depletion and the issue of air pollution caused by automotive transport becoming more and more important, mankind has looked for various solutions in the field of internal combustion engines. One of these solutions is using biofuels, and while the internal combustion engine will most likely disappear along with the last fossil fuel source, studying biofuels and their impact on automotive power-trains is a necessity even if only on a the short term basis. While engines built to run on alcohol-gasoline blends offer good performance levels even at high concentrations of alcohol, unmodified engines fueled with blends of biofuels and fossil fuels can exhibit a drop in power. The object of this study is evaluating such phenomena when a spark ignition engine is operated at full load.

  6. Exhaust gas concentration of CNG fuelled direct injection engine at MBT timing

    International Nuclear Information System (INIS)

    Hassan, M.K.; Aris, I.; Mahmod, S.; Sidek, R.

    2009-01-01

    Full text: This paper presents an experimental result of exhaust gas concentration of high compression engine fuelled with compressed natural gas (CNG) at maximum brake torque (MBT). The engine uses central direct injection (DI) technique to inject the CNG into the cylinder. The engine geometry bases on gasoline engine with 14:1 compression ratio and called CNGDI engine. The injectors are positioned within a certain degrees of spark plug location. The objective of the experiment is to study the influence and significant of MBT timing in CNGDI engine towards exhaust gases. The experimental tests were carried out using computer-controlled eddy-current dynamometer, which measures the CNGDI engine performance. At MBT region, exhaust gas concentration as such CO, HC, NO x , O 2 and CO 2 , were recorded and analyzed during the test using the Horiba analyzer. A closed loop wide band lambda sensor has been mounted at the exhaust manifold to indicate the oxygen level during the exercise. (author)

  7. Transient performance simulation of aircraft engine integrated with fuel and control systems

    International Nuclear Information System (INIS)

    Wang, C.; Li, Y.G.; Yang, B.Y.

    2017-01-01

    Highlights: • A new performance simulation method for engine hydraulic fuel systems is introduced. • Time delay of engine performance due to fuel system model is noticeable but small. • The method provides details of fuel system behavior in engine transient processes. • The method could be used to support engine and fuel system designs. - Abstract: A new method for the simulation of gas turbine fuel systems based on an inter-component volume method has been developed. It is able to simulate the performance of each of the hydraulic components of a fuel system using physics-based models, which potentially offers more accurate results compared with those using transfer functions. A transient performance simulation system has been set up for gas turbine engines based on an inter-component volume (ICV) method. A proportional-integral (PI) control strategy is used for the simulation of engine controller. An integrated engine and its control and hydraulic fuel systems has been set up to investigate their coupling effect during engine transient processes. The developed simulation system has been applied to a model aero engine. The results show that the delay of the engine transient response due to the inclusion of the fuel system model is noticeable although relatively small. The developed method is generic and can be applied to any other gas turbines and their control and fuel systems.

  8. Transient Performance of Radiator on Engine Rpm Variation with AC Loading

    Directory of Open Access Journals (Sweden)

    Made Ricki Murti

    2012-11-01

    Full Text Available Radiator is one of heat exchanger applications that has a function to remove out of heat must be able to operate properly for allowed engine temperature limit. Vehicles that operate on the street usually driving with varying rpm so that the heat produced by the combustion process is not constant and then this study analyze the performance of radiators as a function of time (transient condition. Tests is done on the condition of operating the engine with five rpm variations, each for one hour with air conditioning load and without air-conditioning load. The data to be collected includ the inlet and outlet temperature of radiator and radiator fluid volume flow. The results obtained is heat exhausted rate as a performance radiator is increasing as with increasing of engine rpm and at load conditions with the AC produces heat exhausted rate is greater than AC without AC load. The heat exhausted rate in an hour of machine operation still shows the system operates at a transient condition due to there still exists a numerical increase in the heat exhausted rate as a function of time.

  9. Effect of first and second generation biodiesel blends on engine performance and emission

    Energy Technology Data Exchange (ETDEWEB)

    Azad, A. K., E-mail: azad.cqu@gmail.com, E-mail: a.k.azad@cqu.edu.au; Rasul, M. G., E-mail: m.rasul@cqu.edu.au; Bhuiya, M. M. K., E-mail: m.bhuiya@cqu.edu.au [School of Engineering and Technology, Central Queensland University, Rockhampton, QLD 4702 (Australia); Islam, Rubayat, E-mail: rubayat12@yahoo.com [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000 (Bangladesh)

    2016-07-12

    The biodiesel is a potential source of alternative fuel which can be used at different proportions with diesel fuel. This study experimentally investigated the effect of blend percentage on diesel engine performance and emission using first generation (soybean) and second generation (waste cooking) biodiesel. The characterization of the biodiesel was done according to ASTM and EN standards and compared with ultralow sulfur diesel (ULSD) fuel. A multi-cylinder test bed engine coupled with electromagnetic dynamometer and 5 gas analyzer were used for engine performance and emission test. The investigation was made using B5, B10 and B15 blends for both biodiesels. The study found that brake power (BP) and brake torque (BT) slightly decreases and brake specific fuel consumption (BSFC) slightly increases with an increase in biodiesel blends ratio. Besides, a significant reduction in exhaust emissions (except NO{sub x} emission) was found for both biodiesels compared to ULSD. Soybean biodiesel showed better engine performance and emissions reduction compared with waste cooking biodiesel. However, NO{sub x} emission for B5 waste cooking biodiesel was lower than soybean biodiesel.

  10. Performance Engineering Technology for Scientific Component Software

    Energy Technology Data Exchange (ETDEWEB)

    Malony, Allen D.

    2007-05-08

    Large-scale, complex scientific applications are beginning to benefit from the use of component software design methodology and technology for software development. Integral to the success of component-based applications is the ability to achieve high-performing code solutions through the use of performance engineering tools for both intra-component and inter-component analysis and optimization. Our work on this project aimed to develop performance engineering technology for scientific component software in association with the DOE CCTTSS SciDAC project (active during the contract period) and the broader Common Component Architecture (CCA) community. Our specific implementation objectives were to extend the TAU performance system and Program Database Toolkit (PDT) to support performance instrumentation, measurement, and analysis of CCA components and frameworks, and to develop performance measurement and monitoring infrastructure that could be integrated in CCA applications. These objectives have been met in the completion of all project milestones and in the transfer of the technology into the continuing CCA activities as part of the DOE TASCS SciDAC2 effort. In addition to these achievements, over the past three years, we have been an active member of the CCA Forum, attending all meetings and serving in several working groups, such as the CCA Toolkit working group, the CQoS working group, and the Tutorial working group. We have contributed significantly to CCA tutorials since SC'04, hosted two CCA meetings, participated in the annual ACTS workshops, and were co-authors on the recent CCA journal paper [24]. There are four main areas where our project has delivered results: component performance instrumentation and measurement, component performance modeling and optimization, performance database and data mining, and online performance monitoring. This final report outlines the achievements in these areas for the entire project period. The submitted progress

  11. EASE+PEPSE: A productivity tool for the performance engineer

    International Nuclear Information System (INIS)

    Lucier, R.D.; Gay, R.R.

    1986-01-01

    Plant performance monitoring has gained increased emphasis given the current political, economic and licensing climate. Utility planners and management can no longer rely on smooth acceptance and financing of new power stations. Therefore, the emphasis has shifted to getting more production out of existing plants. There has also been a dramatic shift towards small but powerful personal computers for engineering applications. This paper discusses how well personal computer based software can fit into utility performance programs. In particular, the use of the EASE+PEPSE software at Yankee Atomic Electric Company is outlined

  12. An experimental study for the effects of boost pressure on the performance and exhaust emissions of a DI-HCCI gasoline engine

    Energy Technology Data Exchange (ETDEWEB)

    Mustafa Canakci [Kocaeli University, Izmit (Turkey). Department of Mechanical Education

    2008-07-15

    As an alternative combustion mode, the HCCI combustion has some benefits compared to conventional SI and CI engines, such as low NOx emission and high thermal efficiency. However, this combustion mode can produce higher UHC and CO emissions than those of conventional engines. In the naturally aspirated HCCI engines, the low engine output power limits its use in the current engine technologies. Intake air pressure boosting is a common way to improve the engine output power which is widely used in high performance SI and CI engine applications. Therefore, in this study, the effect of inlet air pressure on the performance and exhaust emissions of a DI-HCCI gasoline engine has been investigated after converting a heavy-duty diesel engine to a HCCI direct-injection gasoline engine. The experiments were performed at three different inlet air pressures while operating the engine at the same equivalence ratio and intake air temperature as in normally aspirated HCCI engine condition at different engine speeds. The SOI timing was set dependently to achieve the maximum engine torque at each test condition. The effects of inlet air pressure both on the emissions such as CO, UHC and NOx and on the performance parameters such as BSFC, torque, thermal and combustion efficiencies have been discussed. The relationships between the emissions are also provided. 34 refs., 19 figs., 4 tabs.

  13. Tailpipe emissions and engine performance of a light-duty diesel engine operating on petro- and bio-diesel fuel blends.

    Science.gov (United States)

    2014-06-01

    This report summarizes the experimental apparatus developed in the Transportation Air Quality Laboratory (TAQ Lab) at the University of Vermont to compare light-duty diesel engine performance and exhaust emissions when operating on petroleum diesel (...

  14. Evaluation of the performance of a dual fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Toshiharu [The Japan Gas Association, Tokyo (Japan). NGV Project Dept.; Daisho, Yasuhiro; Saito, Takeshi [Waseda Univ., Tokyo (Japan)

    1998-12-31

    Dual fuel operation, in which natural gas is mixed with the diesel engine intake air and ignition is by diesel fuel spray, has the advantage that engine conversion is simple. Under high load it has the same high efficiency as a diesel engine and it can be switched to normal diesel operation for long distance running. Also, NO{sub x} and black smoke emissions can also be reduced. However, the disadvantages are to increase HC and CO emissions, to reduce efficiency under low load, and to emit the large amount of NO{sub x} under high load. Waseda University was commissioned by Tokyo Gas Co., Ltd. to conduct research program involving experimentation ragarding a dual fuel engine. It was then discovered that the most effective means of solving the problems mentioned above is Exhaust Gas Recirculation (EGR) and that the effect can be increased by heating the intake air. An old engine before the current emission standard was converted to dual fuel operation. It was found that these measures enables NO{sub x}, black smoke and CO{sub 2} to be reduced while high thermal efficiency was maintained. They did not reach the point of satisfying latest Japanese emission standard. But it seemed that good results would have been obtained, if a base engine with good emissions had been converted for dual fuel operation. The results of assessing the performance of the dual fuel engine at this time are reported here, centered on the effect of EGR and intake heating. (orig.)

  15. An Educational Program for Newcomers to Enhance their Engineering Motivation and Creativity in Faculty of Engineering at Shizuoka University

    Science.gov (United States)

    Azuma, Naoto; Fujima, Nobuhisa; Nakamura, Tamotsu; Yamada, Shinkichi; Makizawa, Hisamitsu; Nakamura, Takato

    In Faculty of Engineering at Shizuoka University, a new one-year educational program of mechatronics for newcomers will start at April in 2006. This program involves three stages designed to enhance their motivation and creativity in engineering. At the first and second stages, there are three activities; practicing digital circuits, controlling robots with Boe-Bot from Parallax Inc., and making their own microcontroller boards. At the third stage, each student cooperates with his team-mates to make a robot loaded his own board and through the game-type of competition the performance of each team-robot is scored. Through this program, we hope that our students enhance their engineering motivation and creativity.

  16. 6th European Conference of the International Federation for Medical and Biological Engineering

    CERN Document Server

    Vasic, Darko

    2015-01-01

    This volume presents the Proceedings of the 6th European Conference of the International Federation for Medical and Biological Engineering (MBEC2014), held in Dubrovnik September 7 – 11, 2014. The general theme of MBEC 2014 is "Towards new horizons in biomedical engineering" The scientific discussions in these conference proceedings include the following themes: - Biomedical Signal Processing - Biomedical Imaging and Image Processing - Biosensors and Bioinstrumentation - Bio-Micro/Nano Technologies - Biomaterials - Biomechanics, Robotics and Minimally Invasive Surgery - Cardiovascular, Respiratory and Endocrine Systems Engineering - Neural and Rehabilitation Engineering - Molecular, Cellular and Tissue Engineering - Bioinformatics and Computational Biology - Clinical Engineering and Health Technology Assessment - Health Informatics, E-Health and Telemedicine - Biomedical Engineering Education

  17. Helicopter Gas Turbine Engine Performance Analysis : A Multivariable Approach

    NARCIS (Netherlands)

    Arush, Ilan; Pavel, M.D.

    2017-01-01

    Helicopter performance relies heavily on the available output power of the engine(s) installed. A simplistic single-variable analysis approach is often used within the flight-testing community to reduce raw flight-test data in order to predict the available output power under different atmospheric

  18. Performance Assessment and Scooter Verification of Nano-Alumina Engine Oil

    Directory of Open Access Journals (Sweden)

    Yu-Feng Lue

    2016-09-01

    Full Text Available The performance assessment and vehicle verification of nano-alumina (Al2O3 engine oil (NAEO were conducted in this study. The NAEO was produced by mixing Al2O3 nanoparticles with engine oil using a two-step synthesis method. The weight fractions of the Al2O3 nanoparticles in the four test samples were 0 (base oil, 0.5, 1.5, and 2.5 wt. %. The measurement of basic properties included: (1 density; (2 viscosity at various sample temperatures (20–80 °C. A rotary tribology testing machine with a pin-on-disk apparatus was used for the wear test. The measurement of the before-and-after difference of specimen (disk weight (wear test indicates that the NAEO with 1.5 wt. % Al2O3 nanoparticles (1.5 wt. % NAEO was the chosen candidate for further study. For the scooter verification on an auto-pilot dynamometer, there were three tests, including: (1 the European Driving Cycle (ECE40 driving cycle; (2 constant speed (50 km/h; and (3 constant throttle positions (20%, 40%, 60%, and 90%. For the ECE40 driving cycle and the constant speed tests, the fuel consumption was decreased on average by 2.75%, while it was decreased by 3.57% for the constant throttle case. The experimental results prove that the engine oil with added Al2O3 nanoparticles significantly decreased the fuel consumption. In the future, experiments with property tests of other nano-engine oils and a performance assessment of the nano-engine-fuel will be conducted.

  19. Simulating Effects of High Angle of Attack on Turbofan Engine Performance

    Science.gov (United States)

    Liu, Yuan; Claus, Russell W.; Litt, Jonathan S.; Guo, Ten-Huei

    2013-01-01

    A method of investigating the effects of high angle of attack (AOA) flight on turbofan engine performance is presented. The methodology involves combining a suite of diverse simulation tools. Three-dimensional, steady-state computational fluid dynamics (CFD) software is used to model the change in performance of a commercial aircraft-type inlet and fan geometry due to various levels of AOA. Parallel compressor theory is then applied to assimilate the CFD data with a zero-dimensional, nonlinear, dynamic turbofan engine model. The combined model shows that high AOA operation degrades fan performance and, thus, negatively impacts compressor stability margins and engine thrust. In addition, the engine response to high AOA conditions is shown to be highly dependent upon the type of control system employed.

  20. Size dependence of efficiency at maximum power of heat engine

    KAUST Repository

    Izumida, Y.; Ito, N.

    2013-01-01

    We perform a molecular dynamics computer simulation of a heat engine model to study how the engine size difference affects its performance. Upon tactically increasing the size of the model anisotropically, we determine that there exists an optimum size at which the model attains the maximum power for the shortest working period. This optimum size locates between the ballistic heat transport region and the diffusive heat transport one. We also study the size dependence of the efficiency at the maximum power. Interestingly, we find that the efficiency at the maximum power around the optimum size attains a value that has been proposed as a universal upper bound, and it even begins to exceed the bound as the size further increases. We explain this behavior of the efficiency at maximum power by using a linear response theory for the heat engine operating under a finite working period, which naturally extends the low-dissipation Carnot cycle model [M. Esposito, R. Kawai, K. Lindenberg, C. Van den Broeck, Phys. Rev. Lett. 105, 150603 (2010)]. The theory also shows that the efficiency at the maximum power under an extreme condition may reach the Carnot efficiency in principle.© EDP Sciences Società Italiana di Fisica Springer-Verlag 2013.

  1. Size dependence of efficiency at maximum power of heat engine

    KAUST Repository

    Izumida, Y.

    2013-10-01

    We perform a molecular dynamics computer simulation of a heat engine model to study how the engine size difference affects its performance. Upon tactically increasing the size of the model anisotropically, we determine that there exists an optimum size at which the model attains the maximum power for the shortest working period. This optimum size locates between the ballistic heat transport region and the diffusive heat transport one. We also study the size dependence of the efficiency at the maximum power. Interestingly, we find that the efficiency at the maximum power around the optimum size attains a value that has been proposed as a universal upper bound, and it even begins to exceed the bound as the size further increases. We explain this behavior of the efficiency at maximum power by using a linear response theory for the heat engine operating under a finite working period, which naturally extends the low-dissipation Carnot cycle model [M. Esposito, R. Kawai, K. Lindenberg, C. Van den Broeck, Phys. Rev. Lett. 105, 150603 (2010)]. The theory also shows that the efficiency at the maximum power under an extreme condition may reach the Carnot efficiency in principle.© EDP Sciences Società Italiana di Fisica Springer-Verlag 2013.

  2. PERFORMANCE AND EMISSION STUDIES ON DI-DIESEL ENGINE FUELED WITH PONGAMIA METHYL ESTER INJECTION AND METHANOL CARBURETION

    Directory of Open Access Journals (Sweden)

    HARIBABU, N.

    2010-03-01

    Full Text Available The target of the present study is to clarify ignition characteristics, combustion process and knock limit of methanol premixture in a dual fuel diesel engine, and also to improve the trade-off between NOx and smoke markedly without deteriorating the high engine performance. Experiment was conducted to evaluate the performance and emission characteristics of direct injection diesel engine operating in duel fuel mode using Pongamia methyl ester injection and methanol carburetion. Methanol is introduced into the engine at different throttle openings along with intake air stream by a carburetor which is arranged at bifurcated air inlet. Pongamia methyl ester fuel was supplied to the engine by conventional fuel injection. The experimental results show that exhaust gas temperatures are moderate and there is better reduction of NOx, HC, CO and CO2 at methanol mass flow rate of 16.2 mg/s. Smoke level was observed to be low and comparable. Improved thermal efficiency of the engine was observed.

  3. Exploring Advanced Technology Gas Turbine Engine Design and Performance for the Large Civil Tiltrotor (LCTR)

    Science.gov (United States)

    Snyder, Christopher A.

    2014-01-01

    A Large Civil Tiltrotor (LCTR) conceptual design was developed as part of the NASA Heavy Lift Rotorcraft Systems Investigation in order to establish a consistent basis for evaluating the benefits of advanced technology for large tiltrotors. The concept has since evolved into the second-generation LCTR2, designed to carry 90 passengers for 1,000 nautical miles at 300 knots, with vertical takeoff and landing capability. This paper explores gas turbine component performance and cycle parameters to quantify performance gains possible for additional improvements in component and material performance beyond those identified in previous LCTR2 propulsion studies and to identify additional research areas. The vehicle-level characteristics from this advanced technology generation 2 propulsion architecture will help set performance levels as additional propulsion and power systems are conceived to meet ever-increasing requirements for mobility and comfort, while reducing energy use, cost, noise and emissions. The Large Civil Tiltrotor vehicle and mission will be discussed as a starting point for this effort. A few, relevant engine and component technology studies, including previous LCTR2 engine study results will be summarized to help orient the reader on gas turbine engine architecture, performance and limitations. Study assumptions and methodology used to explore engine design and performance, as well as assess vehicle sizing and mission performance will then be discussed. Individual performance for present and advanced engines, as well as engine performance effects on overall vehicle size and mission fuel usage, will be given. All results will be summarized to facilitate understanding the importance and interaction of various component and system performance on overall vehicle characteristics.

  4. Noise and conversion performance of a high-Tc superconducting Josephson junction mixer at 0.6 THz

    Science.gov (United States)

    Gao, Xiang; Du, Jia; Zhang, Ting; Guo, Yingjie Jay

    2017-11-01

    This letter presents both theoretical and experimental investigations on the noise and conversion performance of a high-Tc superconducting (HTS) step-edge Josephson-junction mixer at the frequency of 0.6 THz and operating temperatures of 20-40 K. Based on the Y-factor and U-factor methods, a double-sideband noise temperature of around 1000 K and a conversion gain of -3.5 dB were experimentally obtained at 20 K. At the temperature of 40 K, the measured mixer noise and conversion efficiency are around 2100 K and -10 dB, respectively. The experimental data are in good agreement with the numerical analysis results using the three-port model. A detailed performance comparison with other reported HTS terahertz mixers has confirmed the superior performance of our presented mixer device.

  5. A Framework for Performing V&V within Reuse-Based Software Engineering

    Science.gov (United States)

    Addy, Edward A.

    1996-01-01

    Verification and validation (V&V) is performed during application development for many systems, especially safety-critical and mission-critical systems. The V&V process is intended to discover errors, especially errors related to critical processing, as early as possible during the development process. Early discovery is important in order to minimize the cost and other impacts of correcting these errors. In order to provide early detection of errors, V&V is conducted in parallel with system development, often beginning with the concept phase. In reuse-based software engineering, however, decisions on the requirements, design and even implementation of domain assets can be made prior to beginning development of a specific system. In this case, V&V must be performed during domain engineering in order to have an impact on system development. This paper describes a framework for performing V&V within architecture-centric, reuse-based software engineering. This framework includes the activities of traditional application-level V&V, and extends these activities into domain engineering and into the transition between domain engineering and application engineering. The framework includes descriptions of the types of activities to be performed during each of the life-cycle phases, and provides motivation for the activities.

  6. Effect of poultry fat oil biodiesel on tractor engine performance

    Directory of Open Access Journals (Sweden)

    M Bavafa

    2016-04-01

    (Fig.3. Its measuring range is 37-1537 ml min-1. Results and Discussion: The engine performance was evaluated in terms of engine power, engine torque and specific fuel consumption at different engine speeds. The variation of engine torques with B5, B10, B15, B20 and diesel fuel are presented in Fig. 4. The engine torque for biodiesel blends was more than that by diesel fuel only. The mean engine torques for B5, B10, B15 and B20 were 2.5%, 2.8%, 3%, and 3.5% higher than that by only diesel, respectively. This is due to the better combustion of biodiesel compared to diesel fuel. The variation of engine powers with B5, B10, B15, B20 and diesel fuel are presented in Fig. 5. The engine powers for biodiesel blends were more than that by diesel fuel. The mean engine powers for B5, B10, B15 and B20 were higher than that by diesel by 2.5%, 3%, 3.5%, and 4%, respectively. This is because of good combustion of biodiesel resulted from higher oxygen content. The mean specific fuel consumptions for B5, B10, B15 and B20 were higher than diesel fuel about 4.1%, 7%, 8.8%, and 2%, respectively (Fig. 8. The density of biodiesel was higher than that of diesel fuel, which means the same fuel consumption on volume basis results in higher specific fuel consumption in case of biodiesel. Conclusions: The values of viscosity, density and flash point of poultry fat oil biodiesel were found to be closely matched with ASTM D-6751 standard specifications. Viscosity and density of biodiesel were found more than those for diesel. The calorific value of biodiesel was found to be lower than that of diesel. Poultry fat oil biodiesel cannot be used as a neat diesel fuel in cold weather conditions due to its relatively low cloud point. Preheating and lowering freezing point is required to eliminate this problem. The engine performance with poultry fat oil biodiesel and its blends are comparable with those of pure diesel fuel. Results indicated that B20 blend had the best performance and the lowest

  7. Experience with performance based training of nuclear criticality safety engineers

    International Nuclear Information System (INIS)

    Taylor, R.G.

    1993-01-01

    For non-reactor nuclear facilities, the U.S. Department of Energy (DOE) does not require that nuclear criticality safety engineers demonstrate qualification for their job. It is likely, however, that more formalism will be required in the future. Current DOE requirements for those positions which do have to demonstrate qualification indicate that qualification should be achieved by using a systematic approach such as performance based training (PBT). Assuming that PBT would be an acceptable mechanism for nuclear criticality safety engineer training in a more formal environment, a site-specific analysis of the nuclear criticality safety engineer job was performed. Based on this analysis, classes are being developed and delivered to a target audience of newer nuclear criticality safety engineers. Because current interest is in developing training for selected aspects of the nuclear criticality safety engineer job, the analysis is incompletely developed in some areas

  8. Designing Liquid Rocket Engine Injectors for Performance, Stability, and Cost

    Science.gov (United States)

    Westra, Douglas G.; West, Jeffrey S.

    2014-01-01

    NASA is developing the Space Launch System (SLS) for crewed exploration missions beyond low Earth orbit. Marshall Space Flight Center (MSFC) is designing rocket engines for the SLS Advanced Booster (AB) concepts being developed to replace the Shuttle-derived solid rocket boosters. One AB concept uses large, Rocket-Propellant (RP)-fueled engines that pose significant design challenges. The injectors for these engines require high performance and stable operation while still meeting aggressive cost reduction goals for access to space. Historically, combustion stability problems have been a critical issue for such injector designs. Traditional, empirical injector design tools and methodologies, however, lack the ability to reliably predict complex injector dynamics that often lead to combustion stability. Reliance on these tools alone would likely result in an unaffordable test-fail-fix cycle for injector development. Recently at MSFC, a massively parallel computational fluid dynamics (CFD) program was successfully applied in the SLS AB injector design process. High-fidelity reacting flow simulations were conducted for both single-element and seven-element representations of the full-scale injector. Data from the CFD simulations was then used to significantly augment and improve the empirical design tools, resulting in a high-performance, stable injector design.

  9. A preliminary parametric performance assessment for the disposal of alpha-contaminated mixed low-level waste stored at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Smith, T.H.; Anderson, G.L.; Myers, J.

    1995-01-01

    A preliminary parametric performance assessment (PA) has been performed of potential waste disposal systems for alpha-contaminated mixed low-level waste (ALLW) currently stored at the Idaho National Engineering Laboratory. The radionuclide-confinement performance of treated ALLW in various final waste forms, in various disposal locations, and under various assumptions was evaluated. Compliance with performance objectives was assessed for the undisturbed waste scenario and for intrusion scenarios. Some combinations of final waste form, disposal site, and environmental transport assumptions lead to calculated does that comply with the performance objectives, while others do not. The results will help determine the optimum degree of ALLW immobilization to satisfy the performance objectives while minimizing cost

  10. A Comparison of the mechanical engineering and safety engineering student’s ICT attitudes at the Obuda University

    Directory of Open Access Journals (Sweden)

    Kiss Gabor

    2016-01-01

    Full Text Available Communication and technology are critical to education. However, using technology in education is not an easy task as communication barriers emerge. The aim of this research is to analyze the ICT attitudes from different faculties at the Obuda University that is between the mechanical engineering students and safety engineering students from the Donát Bánki Mechanical Safety Engineer Faculty. The students from these two groups will use different ICT tool at work after their graduation; the mechanical engineering students will work mostly with designer ICT tools, the safety engineering students will use security systems. It would be important to know whether instructors, when using ICT, have to follow different teaching methods and approaches in these two different groups or not. We measured the ICT attitude with a tool consisting of 23 items (Likert scaled. We worked with 361 students. The data analysis was performed with SPSS software using descriptive statistics and Mann-Whitney test. The results show both groups having the same positive ICT attitude however with one difference.

  11. PERFORMANCE AND EMISSION CHARACTERISTICS OF A CI ENGINE OPERATED ON VEGETABLE OILS AS ALTERNATIVE FUELS

    Directory of Open Access Journals (Sweden)

    K. Rajagopal

    2011-12-01

    Full Text Available An experimental analysis was done using a four-stroke, single cylinder, constant speed, water-cooled diesel engine, which was interfaced with Engine software. Performance and emission characteristics were evaluated for three non-edible vegetable oils, i.e. thumba, jojoba, neem oil, as well as jojoba methyl ester, to study the effect of injection pressure at 205, 220, 240 and 260 bar with a variation in injection timing at 23°bTDC and 28°bTDC. The performance of jojoba methyl ester improved with an increase in injection pressure. A maximum brake thermal efficiency of 29.72% was obtained with lower emissions compared to the other vegetable oils; this might be explained by low viscosity and better combustion. Further investigations were carried out with a new lubricant, SAE 5W-30, which improved the performance of the CI engine by 1.59%. All of the abovementioned investigations were fruitful and these results are expected to lead to substantial contributions in the development of a viable vegetable oil engine.

  12. Performance and control study of a low-pressure-ratio turbojet engine for a drone aircraft

    Science.gov (United States)

    Seldner, K.; Geyser, L. C.; Gold, H.; Walker, D.; Burgner, G.

    1972-01-01

    The results of analog and digital computer studies of a low-pressure-ratio turbojet engine system for use in a drone vehicle are presented. The turbojet engine consists of a four-stage axial compressor, single-stage turbine, and a fixed area exhaust nozzle. Three simplified fuel schedules and a generalized parameter fuel control for the engine system are presented and evaluated. The evaluation is based on the performance of each schedule or control during engine acceleration from a windmill start at Mach 0.8 and 6100 meters to 100 percent corrected speed. It was found that, because of the higher acceleration margin permitted by the control, the generalized parameter control exhibited the best dynamic performance.

  13. Impact of Biodiesel Blends and Di-Ethyl-Ether on the Cold Starting Performance of a Compression Ignition Engine

    Directory of Open Access Journals (Sweden)

    Adrian Clenci

    2016-04-01

    Full Text Available The use of biodiesel fuel in compression ignition engines has the potential to reduce CO2, which can lead to a reduction in global warming and environmental hazards. Biodiesel is an attractive fuel, as it is made from renewable resources. Many studies have been conducted to assess the impact of biodiesel use on engine performances. Most of them were carried out in positive temperature conditions. A major drawback associated with the use of biodiesel, however, is its poor cold flow properties, which have a direct influence on the cold starting performance of the engine. Since diesel engine behavior at negative temperatures is an important quality criterion of the engine’s operation, one goal of this paper is to assess the starting performance at −20 °C of a common automotive compression ignition engine, fueled with different blends of fossil diesel fuel and biodiesel. Results showed that increasing the biodiesel blend ratio generated a great deterioration in engine startability. Another goal of this study was to determine the biodiesel blend ratio limit at which the engine would not start at −20 °C and, subsequently, to investigate the impact of Di-Ethyl-Ether (DEE injection into the intake duct on the engine’s startability, which was found to be recovered.

  14. Performance of single cylinder, direct injection Diesel engine using water fuel emulsions

    International Nuclear Information System (INIS)

    Abu-Zaid, M.

    2004-01-01

    A single cylinder Diesel engine study of water-in-Diesel emulsions was conducted to investigate the effect of water emulsification on the engine performance and gases exhaust temperature. Emulsified Diesel fuels of 0, 5, 10, 15 and 20 water/Diesel ratios by volume, were used in a single cylinder, direct injection Diesel engine, operating at 1200-3300 rpm. The results indicate that the addition of water in the form of emulsion improves combustion efficiency. The engine torque, power and brake thermal efficiency increase as the water percentage in the emulsion increases. The average increase in the brake thermal efficiency for 20% water emulsion is approximately 3.5% over the use of Diesel for the engine speed range studied. The proper brake specific fuel consumption and gases exhaust temperature decrease as the percentage of water in the emulsion increases

  15. Performance analyses of naval ships based on engineering level of simulation at the initial design stage

    Directory of Open Access Journals (Sweden)

    Dong-Hoon Jeong

    2017-07-01

    Full Text Available Naval ships are assigned many and varied missions. Their performance is critical for mission success, and depends on the specifications of the components. This is why performance analyses of naval ships are required at the initial design stage. Since the design and construction of naval ships take a very long time and incurs a huge cost, Modeling and Simulation (M & S is an effective method for performance analyses. Thus in this study, a simulation core is proposed to analyze the performance of naval ships considering their specifications. This simulation core can perform the engineering level of simulations, considering the mathematical models for naval ships, such as maneuvering equations and passive sonar equations. Also, the simulation models of the simulation core follow Discrete EVent system Specification (DEVS and Discrete Time System Specification (DTSS formalisms, so that simulations can progress over discrete events and discrete times. In addition, applying DEVS and DTSS formalisms makes the structure of simulation models flexible and reusable. To verify the applicability of this simulation core, such a simulation core was applied to simulations for the performance analyses of a submarine in an Anti-SUrface Warfare (ASUW mission. These simulations were composed of two scenarios. The first scenario of submarine diving carried out maneuvering performance analysis by analyzing the pitch angle variation and depth variation of the submarine over time. The second scenario of submarine detection carried out detection performance analysis by analyzing how well the sonar of the submarine resolves adjacent targets. The results of these simulations ensure that the simulation core of this study could be applied to the performance analyses of naval ships considering their specifications.

  16. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    Science.gov (United States)

    Garg, Sanjay

    2014-01-01

    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface

  17. Experimental investigation of a low-temperature organic Rankine cycle (ORC) engine under variable heat input operating at both subcritical and supercritical conditions

    International Nuclear Information System (INIS)

    Kosmadakis, George; Manolakos, Dimitris; Papadakis, George

    2016-01-01

    Highlights: • Small-scale ORC engine with converted scroll expander is installed at laboratory. • Design suitable for supercritical operation. • ORC engine tested at temperature equal to 95 °C. • Focus is given on expansion and thermal efficiency. • Supercritical operation showed some promising performance. - Abstract: The detailed experimental investigation of an organic Rankine cycle (ORC) is presented, which is designed to operate at supercritical conditions. The net capacity of this engine is almost 3 kW and the laboratory testing of the engine includes the variation of the heat input and of the hot water temperature. The maximum heat input is 48 kW_t_h, while the hot water temperature ranges from 65 up to 100°C. The tests are conducted at the laboratory and the heat source is a controllable electric heater, which can keep the hot water temperature constant, by switching on/off its electrical resistances. The expansion machine is a modified scroll compressor with major conversions, in order to be able to operate with safety at high pressure (or even supercritical at some conditions). The ORC engine is equipped with a dedicated heat exchanger of helical coil design, suitable for such applications. The speeds of the expander and ORC pump are regulated with frequency inverters, in order to control the cycle top pressure and heat input. The performance of all components is evaluated, while special attention is given on the supercritical heat exchanger and the scroll expander. The performance tests examined here concern the variation of the heat input, while the hot water temperature is equal to 95 °C. The aim is to examine the engine performance at the design conditions, as well as at off-design ones. Especially the latter ones are very important, since this engine will be coupled with solar collectors at the final configuration, where the available heat is varied to a great extent. The engine has been measured at the laboratory, where a thermal

  18. Diesel engine performance and exhaust emission analysis using diesel-organic germanium fuel blend

    Directory of Open Access Journals (Sweden)

    Syafiq Zulkifli

    2017-01-01

    Full Text Available Alternative fuels such as biodiesel, bio-alcohol and other biomass sources have been extensively research to find its potential as an alternative sources to fossil fuels. This experiment compared the performance of diesel (D, biodiesel (BD and diesel-organic germanium blend (BG5 at five different speeds ranging from 1200-2400 rpm. BG5 shows significant combustion performance compared to BD. No significant changes of power observed between BG5 and BD at a low speed (1200 rpm. On the contrary, at higher speeds (1800 rpm and 2400 rpm, BG5 blend fuel shows increased engine power of 12.2 % and 9.2 %, respectively. Similarly, torque shows similar findings as engine power, whereby the improvement could be seen at higher speeds (1800 rpm and 2400 rpm when torque increased by 7.3 % and 2.3 %, respectively. In addition, the emission results indicated that for all speeds, CO2, and NO had reduced at an average of 2.1 % and 177 %, respectively. Meanwhile, CO emission had slightly increased compared to BD at low speeds by 0.04 %. However, the amount of CO released had decreased at an average of 0.03 % as the engine speed increased. Finally, measurement of O2 shows an increment at 16.4 % at all speed range.

  19. Flat-plate solar array project. Volume 6: Engineering sciences and reliability

    Science.gov (United States)

    Ross, R. G., Jr.; Smokler, M. I.

    1986-01-01

    The Flat-Plate Solar Array (FSA) Project activities directed at developing the engineering technology base required to achieve modules that meet the functional, safety, and reliability requirements of large scale terrestrial photovoltaic systems applications are reported. These activities included: (1) development of functional, safety, and reliability requirements for such applications; (2) development of the engineering analytical approaches, test techniques, and design solutions required to meet the requirements; (3) synthesis and procurement of candidate designs for test and evaluation; and (4) performance of extensive testing, evaluation, and failure analysis of define design shortfalls and, thus, areas requiring additional research and development. A summary of the approach and technical outcome of these activities are provided along with a complete bibliography of the published documentation covering the detailed accomplishments and technologies developed.

  20. Performance test of remote controlled engineering vehicle system for CBRN threat. Countermeasure performance for CBRN-environment

    International Nuclear Information System (INIS)

    Naruse, Masahiro; Uemura, Keisuke; Morishita, Masahiro

    2015-01-01

    A research of 'remote controlled engineering vehicle system for CBRN threat' was triggered by the nuclear accident that successively happened after the Great East Japan Earthquake. This project focuses on the remote controlled engineering system that can be used for multi purposes such as debris/obstacle clearing operation or various reconnaissance operation, under CBRN threat. For the remote-controlled engineering vehicle, we conducted a series of validation tests for countermeasure performance for CBRN-environment. As a result, it is proved that the vehicle possess required performances for CBRN threat. (author)

  1. Influence of using emulsified diesel fuel on the performance and pollutants emitted from diesel engine

    International Nuclear Information System (INIS)

    Alahmer, Ali

    2013-01-01

    Highlights: • Emulsified diesel fuels with water content of range 0–30% by volume were prepared. • Effect emulsified diesel fuel on diesel engine performance and pollutant emissions. • Using emulsified fuel improves the diesel engine performance and reduces emissions. - Abstract: This manuscript investigates the effect of emulsified diesel fuel on the engine performance and on the main pollutant emissions for a water-cooled, four stroke, four cylinders, and direct injection diesel engine. Emulsified diesel fuels with water content of range 0–30% by volume were used. The experiments were conducted in the speed range from 1000 to 3000 rpm. It was found that, in general, the using emulsified fuel improves the engine performance and reduces emissions. While the brake specific fuel consumption (BSFC) has a minimum value at 5% water content and 2000 rpm. The torque (T), the break mean effective pressure (BMEP) and thermal efficiency (η th ) are found to have maximum values under these conditions. The emission CO 2 was found to increase with engine speed and to decrease with water content. NO x produced from emulsified fuel is significantly less than that produced from pure diesel under the same conditions. And as the percentage of water content in the emulsion increases, the emitted amount of oxygen also increases

  2. Experimental study of DI diesel engine performance using biodiesel blends with kerosene

    Energy Technology Data Exchange (ETDEWEB)

    Azad, A.K.; Ameer Uddin, S.M.; Alam, M.M. [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000 (Bangladesh)

    2013-07-01

    The experimental investigation offers a comprehensive study of DI diesel engine performance using bio-diesel from mustard oil blends with kerosene. The vegetable oil without trans-esterification reaction have been blended with kerosene oil by volume in some percentage like 20%, 30%, 40% and 50% which have been named as M20 (20% mustard, 80% kerosene), M30 (30% mustard, 70% kerosene), M40 (40% mustard, 60% kerosene) and M50 (50% mustard, 50% kerosene). The properties of the bio-fuel blended with kerosene have been tested in the laboratories with maintaining different ASTM standards. Then a four stroke, single cylinder, direct injection diesel engine has been mounted on the dynamometer bed for testing the performance of the engine using the bio-diesel blends. Several engine parameters like bsfc, bhp, break mean effective pressure, exhaust gas temperature, lube oil temperature, sound level etc. have been determined. A comparison has been made for engine performance of different bio-diesel blends with kerosene with the engine performance of diesel fuel.

  3. An analytical and experimental study of performance on jatropha biodiesel engine

    Directory of Open Access Journals (Sweden)

    Ganapathy Thirunavukkarasu

    2009-01-01

    Full Text Available Biodiesel plays a major role as one of the alternative fuel options in direct injection diesel engines for more than a decade. Though many feed stocks are employed for making biodiesel worldwide, biodiesel derived from domestically available non-edible feed stocks such as Jatropha curcas L. is the most promising alternative engine fuel option especially in developing countries. Since experimental analysis of the engine is pricey as well as more time consuming and laborious, a theoretical thermodynamic model is necessary to analyze the performance characteristics of jatropha biodiesel fueled diesel engine. There were many experimental studies of jatropha biodiesel fueled diesel engine reported in the literature, yet theoretical study of this biodiesel run diesel engine is scarce. This work presents a theoretical thermodynamic study of single cylinder four stroke direct injection diesel engine fueled with biodiesel derived from jatropha oil. The two zone thermodynamic model developed in the present study computes the in-cylinder pressure and temperature histories in addition to various performance parameters. The results of the model are validated with experimental values for a reasonable agreement. The variation of cylinder pressure with crank angle for various models are also compared and presented. The effects of injection timing, relative air fuel ratio and compression ratio on the engine performance characteristics for diesel and jatropha biodiesel fuels are then investigated and presented in the paper.

  4. Diesel engine performance as influenced by fuel temperature

    Energy Technology Data Exchange (ETDEWEB)

    Sumner, H.R.; Best, W.D.; Monroe, G.E.

    1986-11-01

    The effects of diesel fuel temperature on the efficiency of a 4.4-L diesel engine were studied. Fuel temperatures of 41, 67, and 81 C were used with engine loads of 0 to 100% of full load at three engine frequencies. Regression equations were developed that predicted fuel economy as a function of PTO power at three engine frequencies. An increase in engine fuel temperature did not improve fuel economy, but did result in reduced fuel mass flow through the injector pump and reduced maximum PTO power. Reducing engine frequency improved fuel economy and supported the 'throttle back shift up' technique for saving fuel. 4 figs., 1 tab., 11 refs.

  5. Learning analytics for smart campus: Data on academic performances of engineering undergraduates in Nigerian private university.

    Science.gov (United States)

    Popoola, Segun I; Atayero, Aderemi A; Badejo, Joke A; John, Temitope M; Odukoya, Jonathan A; Omole, David O

    2018-04-01

    Empirical measurement, monitoring, analysis, and reporting of learning outcomes in higher institutions of developing countries may lead to sustainable education in the region. In this data article, data about the academic performances of undergraduates that studied engineering programs at Covenant University, Nigeria are presented and analyzed. A total population sample of 1841 undergraduates that studied Chemical Engineering (CHE), Civil Engineering (CVE), Computer Engineering (CEN), Electrical and Electronics Engineering (EEE), Information and Communication Engineering (ICE), Mechanical Engineering (MEE), and Petroleum Engineering (PET) within the year range of 2002-2014 are randomly selected. For the five-year study period of engineering program, Grade Point Average (GPA) and its cumulative value of each of the sample were obtained from the Department of Student Records and Academic Affairs. In order to encourage evidence-based research in learning analytics, detailed datasets are made publicly available in a Microsoft Excel spreadsheet file attached to this article. Descriptive statistics and frequency distributions of the academic performance data are presented in tables and graphs for easy data interpretations. In addition, one-way Analysis of Variance (ANOVA) and multiple comparison post-hoc tests are performed to determine whether the variations in the academic performances are significant across the seven engineering programs. The data provided in this article will assist the global educational research community and regional policy makers to understand and optimize the learning environment towards the realization of smart campuses and sustainable education.

  6. Interfacial Layer Engineering for Performance Enhancement in Polymer Solar Cells

    Directory of Open Access Journals (Sweden)

    Hao Zeng

    2015-02-01

    Full Text Available Improving power conversion efficiency and device performance stability is the most critical challenge in polymer solar cells for fulfilling their applications in industry at large scale. Various methodologies have been developed for realizing this goal, among them interfacial layer engineering has shown great success, which can optimize the electrical contacts between active layers and electrodes and lead to enhanced charge transport and collection. Interfacial layers also show profound impacts on light absorption and optical distribution of solar irradiation in the active layer and film morphology of the subsequently deposited active layer due to the accompanied surface energy change. Interfacial layer engineering enables the use of high work function metal electrodes without sacrificing device performance, which in combination with the favored kinetic barriers against water and oxygen penetration leads to polymer solar cells with enhanced performance stability. This review provides an overview of the recent progress of different types of interfacial layer materials, including polymers, small molecules, graphene oxides, fullerene derivatives, and metal oxides. Device performance enhancement of the resulting solar cells will be elucidated and the function and operation mechanism of the interfacial layers will be discussed.

  7. TOPSIS-based parametric optimization of compression ignition engine performance and emission behavior with bael oil blends for different EGR and charge inlet temperature.

    Science.gov (United States)

    Muniappan, Krishnamoorthi; Rajalingam, Malayalamurthi

    2018-05-02

    The demand for higher fuel energy and lesser exhaust emissions of diesel engines can be achieved by fuel being used and engine operating parameters. In the present work, effects of engine speed (RPM), injection timing (IT), injection pressure (IP), and compression ratio (CR) on performance and emission characteristics of a compression ignition (CI) engine were investigated. The ternary test fuel of 65% diesel + 25% bael oil + 10% diethyl ether (DEE) was used in this work and test was conducted at different charge inlet temperature (CIT) and exhaust gas recirculation (EGR). All the experiments are conducted at the tradeoff engine load that is 75% engine load. When operating the diesel engine with 320 K CIT, brake thermal efficiency (BTE) is improved to 28.6%, and carbon monoxide (CO) and hydrocarbon (HC) emissions have been reduced to 0.025% and 12.5 ppm at 18 CR. The oxide of nitrogen (NOx) has been reduced to 240 ppm at 1500 rpm for 30% EGR mode. Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method is frequently used in multi-factor selection and gray correlation analysis method is used to study uncertain of the systems.

  8. Study of advanced rotary combustion engines for commuter aircraft

    Science.gov (United States)

    Berkowitz, M.; Jones, C.; Myers, D.

    1983-01-01

    Performance, weight, size, and maintenance data for advanced rotary aircraft engines suitable for comparative commuter aircraft system evaluation studies of alternate engine candidates are provided. These are turbocharged, turbocompounded, direct injected, stratified charge rotary engines. Hypothetical engines were defined (an RC4-74 at 895 kW and an RC6-87 at 1490 kW) based on the technologies and design approaches used in the highly advanced engine of a study of advanced general aviation rotary engines. The data covers the size range of shaft power from 597 kW (800 hp) to 1865 kW (2500 hp) and is in the form of drawings, tables, curves and written text. These include data on internal geometry and configuration, installation information, turbocharging and turbocompounding arrangements, design features and technologies, engine cooling, fuels, scaling for weight size BSFC and heat rejection for varying horsepower, engine operating and performance data, and TBO and maintenance requirements. The basic combustion system was developed and demonstrated; however the projected power densities and performance efficiencies require increases in engine internal pressures, thermal loading, and rotative speed.

  9. Optimization of biodiesel production and engine performance from high free fatty acid Calophyllum inophyllum oil in CI diesel engine

    International Nuclear Information System (INIS)

    Ong, Hwai Chyuan; Masjuki, H.H.; Mahlia, T.M.I.; Silitonga, A.S.; Chong, W.T.; Leong, K.Y.

    2014-01-01

    Highlights: • Calophyllum inophyllum has been evaluated as a potential feedstock for biodiesel. • Acid and base catalyzed transesterification processes was used to produce biodiesel. • The physiochemical properties of CIME fulfilled specification of ASTM D6751. • Engine performance and emission are conducted for CIME and its blends. - Abstract: In the present study, crude Calophyllum inophyllum oil (CCIO) has been evaluated as a potential feedstock for biodiesel production. C.inophyllum oil has high acid value which is 59.30 mg KOH/g. Therefore, the degumming, esterification, neutralization and transesterification process are carried out to reduce the acid value to 0.34 mg KOH/g. The optimum yield was obtained at 9:1 methanol to oil ratio with 1 wt.%. NaOH catalyst at 50 °C for 2 h. On the other hand, the C.inophyllum biodiesel properties fulfilled the specification of ASTM D6751 and EN 14214 biodiesel standards. After that, the C.inophyllum biodiesel diesel blends were tested to evaluate the engine performance and emission characteristic. The performance and emission of 10% C.inophyllum biodiesel blends (CIB10) give a satisfactory result in diesel engines as the brake thermal increase 2.30% and fuel consumption decrease 3.06% compared to diesel. Besides, CIB10 reduces CO and smoke opacity compared to diesel. In short, C.inophyllum biodiesel can become an alternative fuel in the future

  10. Learning analytics for smart campus: Data on academic performances of engineering undergraduates in Nigerian private university

    Directory of Open Access Journals (Sweden)

    Segun I. Popoola

    2018-04-01

    Full Text Available Empirical measurement, monitoring, analysis, and reporting of learning outcomes in higher institutions of developing countries may lead to sustainable education in the region. In this data article, data about the academic performances of undergraduates that studied engineering programs at Covenant University, Nigeria are presented and analyzed. A total population sample of 1841 undergraduates that studied Chemical Engineering (CHE, Civil Engineering (CVE, Computer Engineering (CEN, Electrical and Electronics Engineering (EEE, Information and Communication Engineering (ICE, Mechanical Engineering (MEE, and Petroleum Engineering (PET within the year range of 2002–2014 are randomly selected. For the five-year study period of engineering program, Grade Point Average (GPA and its cumulative value of each of the sample were obtained from the Department of Student Records and Academic Affairs. In order to encourage evidence-based research in learning analytics, detailed datasets are made publicly available in a Microsoft Excel spreadsheet file attached to this article. Descriptive statistics and frequency distributions of the academic performance data are presented in tables and graphs for easy data interpretations. In addition, one-way Analysis of Variance (ANOVA and multiple comparison post-hoc tests are performed to determine whether the variations in the academic performances are significant across the seven engineering programs. The data provided in this article will assist the global educational research community and regional policy makers to understand and optimize the learning environment towards the realization of smart campuses and sustainable education. Keywords: Smart campus, Learning analytics, Sustainable education, Nigerian university, Education data mining, Engineering

  11. Acoustics: A branch of engineering at the Universidad Austral de Chile (UACh)

    Science.gov (United States)

    Poblete, Victor; Arenas, Jorge P.; Sommerhoff, Jorge

    2002-11-01

    At the end of the 1960s, the first acousticians graduating at UACh had acquired an education in applied physics and musical arts, since there was no College of Engineering at that time. Initially, they had a (rather modest) four-year undergraduate program, and most of the faculty were not specialized teachers. The graduates from such a program received a sound engineering degree and they were skilled for jobs in the musical industry and sound reinforcement companies. In addition, they worked as sound engineers and producers. Later, because of the scientific, industrial and educational changes in Chile during the 1980s, the higher education system had massive changes that affected all of the undergraduate and graduate programs of the 61 universities in Chile. The UACh College of Engineering was officially founded in 1989. Then, acoustics as an area of expertise was included, widened and developed as an interdisciplinary subject. Currently, the undergraduate program in acoustics at UACh offers a degree in engineering sciences and a 6-year professional studies in Civil Engineering (Acoustics), having two main fields: Sound and Image, and Environment and Industry.

  12. Effects of irreversibility and economics on the performance of a heat engine

    International Nuclear Information System (INIS)

    Ibrahim, O.M.; Klein, S.A.; Mitchell, J.W.

    1992-01-01

    In this paper, optimization of the power output of an internally irreversible heat engine is considered for finite capacitance rates of the external fluid streams. The method of Lagrange multipliers is used to solve for working fluid temperatures which yield maximum power. Analytical expressions for the maximum power and the cycle efficiency at miximum power are obtained. The effects of irreversibility and economics on the performance of a heat engine are investigated. A relationship between the maximum power point and economically optimum design is identified. It is demonstrated that, with certain reasonable economic assumptions, the maximum power point of a heat engine corresponds to a point of minimum life-cycle costs

  13. Job stress models, depressive disorders and work performance of engineers in microelectronics industry.

    Science.gov (United States)

    Chen, Sung-Wei; Wang, Po-Chuan; Hsin, Ping-Lung; Oates, Anthony; Sun, I-Wen; Liu, Shen-Ing

    2011-01-01

    Microelectronic engineers are considered valuable human capital contributing significantly toward economic development, but they may encounter stressful work conditions in the context of a globalized industry. The study aims at identifying risk factors of depressive disorders primarily based on job stress models, the Demand-Control-Support and Effort-Reward Imbalance models, and at evaluating whether depressive disorders impair work performance in microelectronics engineers in Taiwan. The case-control study was conducted among 678 microelectronics engineers, 452 controls and 226 cases with depressive disorders which were defined by a score 17 or more on the Beck Depression Inventory and a psychiatrist's diagnosis. The self-administered questionnaires included the Job Content Questionnaire, Effort-Reward Imbalance Questionnaire, demography, psychosocial factors, health behaviors and work performance. Hierarchical logistic regression was applied to identify risk factors of depressive disorders. Multivariate linear regressions were used to determine factors affecting work performance. By hierarchical logistic regression, risk factors of depressive disorders are high demands, low work social support, high effort/reward ratio and low frequency of physical exercise. Combining the two job stress models may have better predictive power for depressive disorders than adopting either model alone. Three multivariate linear regressions provide similar results indicating that depressive disorders are associated with impaired work performance in terms of absence, role limitation and social functioning limitation. The results may provide insight into the applicability of job stress models in a globalized high-tech industry considerably focused in non-Western countries, and the design of workplace preventive strategies for depressive disorders in Asian electronics engineering population.

  14. Experimental study on performance and exhaust emissions of a diesel engine fuelled with Ceiba pentandra biodiesel blends

    International Nuclear Information System (INIS)

    Silitonga, A.S.; Masjuki, H.H.; Mahlia, T.M.I.; Ong, Hwai Chyuan; Chong, W.T.

    2013-01-01

    Highlights: • Ceiba pentandra biodiesel was prepared by two-step transesterification. • The main FAC of C. pentandra is 18.54% of malvalic acid. • Engine performance and emission are conducted for CPME and its blends. • The CPB10 gives the best engine performance at 1900 rpm. • The CO, HC and smoke opacity were lower for all biodiesel blends. - Abstract: Nowadays, production of biodiesel from non-edible feedstock is gaining more attention than edible oil to replace diesel fuel. Thus, Ceiba pentandra is chosen as a potential biodiesel feedstock for the present investigations based on the availability in Indonesia and Malaysia. C. pentandra methyl ester was prepared by two-step acid esterification (H 2 SO 4 ) and base transesterification (NaOH) process. The purpose of this study is to examine the engine performance and emission characteristic of C. pentandra biodiesel diesel blends in internal combustion. Besides, the detailed properties of C. pentandra biodiesel, biodiesel diesel blends and diesel were measured and evaluated. After that, the biodiesel diesel blends (10%, 20%, 30% and 50%) were used to conduct engine performance and exhaust emission characteristic at different engine speeds. The experimental results showed that CPB10 blend give the best results on engine performance such as engine torque and power at 1900 rpm with full throttle condition. Besides, the brake specific fuel consumption at maximum torque (161 g/kW h) for CPB10 is higher about 22.98% relative to diesel fuel (198 g/kW h). This is shown that the lower biodiesel diesel blends ratio will increase the performance and reduce the fuel consumption. Moreover, the exhaust emissions showed that CO, HC and smoke opacity were reduced for all biodiesel diesel blends. However, NO x and CO 2 were increased compared to petrol diesel. Overall, the results proved that C. pentandra biodiesel is a suitable alternative and substitute fuel to diesel

  15. The design concept of the 6-degree-of-freedom hydraulic shaker at ESTEC

    Science.gov (United States)

    Brinkman, P. W.; Kretz, D.

    1992-01-01

    The European Space Agency (ESA) has decided to extend its test facilities at the European Space and Technology Center (ESTEC) at Noordwijk, The Netherlands, by implementing a 6-degree-of-freedom hydraulic shaker. This shaker will permit vibration testing of large payloads in the frequency range from 0.1 Hz to 100 Hz. Conventional single axis sine and random vibration modes can be applied without the need for a configuration change of the test set-up for vertical and lateral excitations. Transients occurring during launch and/or landing of space vehicles can be accurately simulated in 6-degrees-of-freedom. The performance requirements of the shaker are outlined and the results of the various trade-offs, which are investigated during the initial phase of the design and engineering program are provided. Finally, the resulting baseline concept and the anticipated implementation plan of the new test facility are presented.

  16. Demonstrating the Performance and Emission Characteristics of a Variable Compression Ratio, Alvar-Cycle Engine

    OpenAIRE

    Erlandsson, Olof; Lundholm, Gunnar; Söderberg, Fredrik; Johansson, Bengt; Wong, Victor W.

    1998-01-01

    This paper is a direct continuation of a previous study that addressed the performance and design of a variable compression engine, the Alvar-Cycle Engine [1]. The earlier study was presented at the SAE International Conference and Exposition in Detroit during February 23- 26, 1998 as SAE paper 981027. In the present paper test results from a single cylinder prototype are reviewed and compared with a similar conventional engine. Efficiency and emissions are shown as fu...

  17. Development of engineering diffractometer at J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    Moriai, Atsushi [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki, 319-1195 (Japan)]. E-mail: atsushi.moriai@jaea.go.jp; Torii, Shuki [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki, 319-1195 (Japan); Suzuki, Hiroshi [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki, 319-1195 (Japan); Harjo, Stefanus [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki, 319-1195 (Japan); Morii, Yukio [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki, 319-1195 (Japan); Arai, Masatoshi [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki, 319-1195 (Japan); Tomota, Yo [Ibaraki University, Hitachi-shi, Ibaraki, 316-8511 (Japan); Suzuki, Tetsuya [Ibaraki University, Hitachi-shi, Ibaraki, 316-8511 (Japan); Akiniwa, Yoshiaki [Nagoya University, Nagoya-shi, Aichi, 464-8603 (Japan); Kimura, Hidehiko [Nagoya University, Nagoya-shi, Aichi, 464-8603 (Japan); Akita, Koich [Musashi Institute of Technology, Setagaya-ku, Tokyo, 158-8557 (Japan)

    2006-11-15

    An engineering diffractometer for investigations of stresses and crystallographic structures within engineering components is now being developed at J-PARC project. The diffractometer is designed to view a decoupled-poisoned liquid H{sub 2} moderator providing neutrons with good symmetrical diffraction profiles in the acceptable wavelength range. The diffractometer will have a primary flight path of 40 m and a secondary flight path of 2.0 m for 90{sup o} scattering detector banks, and will include a curved supermirror neutron guide to avoid intensity loss due to the long flight path and to reduce backgrounds from fast neutrons and gamma rays. Therefore, stresses with sufficient accuracies in many engineering studies are quite promising. The diffractometer involves a sample translator which is able to handle large and heavy real industrial-scaled components. Detailed design works are being continuously promoted. The optimization of the diffractometer has been performed with a Monte Carlo simulation, and an appropriate resolution of less than 0.2% in {delta}d/d has been confirmed.

  18. Systems study on engineered barriers: barrier performance analysis

    International Nuclear Information System (INIS)

    Stula, R.T.; Albert, T.E.; Kirstein, B.E.; Lester, D.H.

    1980-09-01

    A performance assessment model for multiple barrier packages containing unreprocessed spent fuel has been modified and applied to several package designs. The objective of the study was to develop information to be used in programmatic decision making concerning engineered barrier package design and development. The assessment model, BARIER, was developed in previous tasks of the System Study on Engineered Barriers (SSEB). The new version discussed in this report contains a refined and expanded corrosion rate data base which includes pitting, crack growth, and graphitization as well as bulk corrosion. Corrosion rates for oxic and anoxic conditions at each of the two temperature ranges are supplied. Other improvements include a rigorous treatment of radionuclide release after package failure which includes resistance of damaged barriers and backfill, refined temperature calculations that account for convection and radiation, a subroutine to calculate nuclear gamma radiation field at each barrier surface, refined stress calculations with reduced conservatism and various coding improvements to improve running time and core usage. This report also contains discussion of alternative scenarios to the assumed flooded repository as well as the impact of water exclusion backfills. The model was used to assess post repository closure performance for several designs which were all variation of basic designs from the Spent Unreprocessed Fuel (SURF) program. Many designs were found to delay the onset of leaching by at least a few hundreds of years in all geologic media. Long delay times for radionuclide release were found for packages with a few inches of sorption backfill. Release of uranium, plutonium, and americium was assessed

  19. Systems study on engineered barriers: barrier performance analysis

    Energy Technology Data Exchange (ETDEWEB)

    Stula, R.T.; Albert, T.E.; Kirstein, B.E.; Lester, D.H.

    1980-09-01

    A performance assessment model for multiple barrier packages containing unreprocessed spent fuel has been modified and applied to several package designs. The objective of the study was to develop information to be used in programmatic decision making concerning engineered barrier package design and development. The assessment model, BARIER, was developed in previous tasks of the System Study on Engineered Barriers (SSEB). The new version discussed in this report contains a refined and expanded corrosion rate data base which includes pitting, crack growth, and graphitization as well as bulk corrosion. Corrosion rates for oxic and anoxic conditions at each of the two temperature ranges are supplied. Other improvements include a rigorous treatment of radionuclide release after package failure which includes resistance of damaged barriers and backfill, refined temperature calculations that account for convection and radiation, a subroutine to calculate nuclear gamma radiation field at each barrier surface, refined stress calculations with reduced conservatism and various coding improvements to improve running time and core usage. This report also contains discussion of alternative scenarios to the assumed flooded repository as well as the impact of water exclusion backfills. The model was used to assess post repository closure performance for several designs which were all variation of basic designs from the Spent Unreprocessed Fuel (SURF) program. Many designs were found to delay the onset of leaching by at least a few hundreds of years in all geologic media. Long delay times for radionuclide release were found for packages with a few inches of sorption backfill. Release of uranium, plutonium, and americium was assessed.

  20. The Effect of Ethanol-Diesel Blends on The Performance of A Direct Injection Diesel Engine

    Directory of Open Access Journals (Sweden)

    Arifin Nur

    2012-07-01

    Full Text Available The experiment was conducted on a conventional direct injection diesel engine. Performance test was carried out to evaluate the performance and emission characteristics of a conventional diesel engine that operates on ethanol-diesel blends. The test procedure was performed by coupling the diesel engine on the eddy current dynamometer. Fuel consumption was measured using the AVL Fuel Balance, and a hotwire anemometer was used to measure the air consumption. Some of the emission test devices were mounted on the exhaust pipe. The test of fuel variations started from 100% diesel fuel (D100 to 2.5% (DE2.5, 5% (DE5, 7.5% (DE7.5, and 10% (DE10 ethanol additions. Performance test was conducted at 1500 rpm with load variations from 0 to 60 Nm by increasing the load on each level by 10 Nm. The addition of 5% ethanol to diesel (DE5 increased the average pressure of combustion chamber indication to 48% as well as reduced the specific fuel consumption to 9.5%. There were better exhaust emission characteristics at this mixture ratio than diesel engine which used pure diesel fuel (D100, the reduction of CO to 37%, HC to 44% and opacity to 15.9%.

  1. Effect of advanced injection timing on the performance of rapeseed oil in diesel engines

    International Nuclear Information System (INIS)

    Nwafor, O.M.I.; Rice, G.; Ogbonna, A.I.

    2000-01-01

    Combustion studies on both diesel fuel and vegetable oil fuels, with the standard and advanced injection timing, were carried out using the same engine and test procedures so that comparative assessments may be made. The diesel engine principle demands self-ignition of the fuel as it is injected at some degrees before top dead centre (BTDC) into the hot compressed cylinder gas. Longer delays between injection and ignition lead to unacceptable rates of pressure rise with the result of diesel knock because too much fuel is ready to take part in premixed combustion. Alternative fuels have been noted to exhibit longer delay periods and slower burning rate especially at low load operating conditions hence resulting in late combustion in the expansion stroke. Advanced injection timing is expected to compensate these effects. The engine has standard injection timing of 30degC BTDC. The injection was first advanced by 5.5degC given injection timing of 35.5degC BTDC. The engine performance was very erratic on this timing. The injection was then advanced by 3.5degC and the effects are presented in this paper. The engine performance was smooth especially at low load levels. The ignition delay was reduced through advanced injection but tended to incur a slight increase in fuel consumption. Moderate advanced injection timing is recommended for low speed operations. (Author)

  2. Comparison of catalytic converter performance in internal combustion engine fueled with Ron 95 and Ron 97 gasoline

    Science.gov (United States)

    Leman, A. M.; Rahman, Fakhrurrazi; Jajuli, Afiqah; Feriyanto, Dafit; Zakaria, Supaat

    2017-09-01

    Generating ideal stability between engine performance, fuel consumption and emission is one of the main challenges in the automotive industry. The characteristics of engine combustion and creation of emission might simply change with different types of operating parameters. This study aims in investigating the relationship between two types of fuels on the performance and exhaust emission of internal combustion engine using ceramic and metallic catalytic converters. Experimental tests were performed on Mitsubishi 4G93 engine by applying several ranges of engine speeds to determine the conversion of pollutant gases released by the engine. The obtained results specify that the usage of RON 97 equipped with metallic converters might increase the conversion percentage of 1.31% for CO and 126 ppm of HC gases. The metallic converters can perform higher conversion compared to ceramic because in the high space velocities, metallic has higher surface geometry area and higher amount of transverse Peclet number (Pi). Ceramic converters achieved conversion at 2496 ppm of NOx gas, which is higher than the metallic converter.

  3. Investigating the pros and cons of browns gas and varying EGR on combustion, performance, and emission characteristics of diesel engine.

    Science.gov (United States)

    Thangaraj, Suja; Govindan, Nagarajan

    2018-01-01

    The significance of mileage to the fruitful operation of a trucking organization cannot be downplayed. Fuel is one of the biggest variable expenses in a trucking wander. An attempt is made in this research to improve the combustion efficiency of a diesel engine for better fuel economy by introducing hydroxy gas which is also called browns gas or HHO gas in the suction line, without compromising performance and emission. Brown's gas facilitates the air-fuel mixture to ignite faster and efficient combustion. By considering safety and handling issues in automobiles, HHO gas generation by electrolysis of water in the presence of sodium bicarbonate electrolytes (NaHCO 3 ) and usage was explored in this research work over compressed pure hydrogen, due to generation and capacity of immaculate hydrogen as of now confines the application in diesel engine operation. Brown's gas was utilized as a supplementary fuel in a single-cylinder, four-stroke compression ignition (CI) engine. Experiments were carried out on a constant speed engine at 1500 rpm, result shows at constant HHO flow rate of 0.73 liter per minute (LPM), brake specific fuel consumption (BSFC) decreases by 7% at idle load to 16% at full load, and increases brake thermal efficiency (BTE) by 8.9% at minimum load to 19.7% at full load. In the dual fuel (diesel +HHO) operation, CO emissions decreases by 19.4, 64.3, and 34.6% at 25, 50, and 75% load, respectively, and unburned hydrocarbon (UHC) emissions decreased by 11.3% at minimum load to 33.5% at maximum load at the expense of NO x emission increases by 1.79% at 75% load and 1.76% at full load than neat diesel operation. The negative impact of an increase in NO x is reduced by adding EGR. It was evidenced in this experimental work that the use of Brown's gas with EGR in the dual fuel mode in a diesel engine improves the fuel efficiency, performance, and reduces the exhaust emissions.

  4. The Effect of Modified Control Limits on the Performance of a Generic Commercial Aircraft Engine

    Science.gov (United States)

    Csank, Jeffrey T.; May, Ryan D.; Gou, Ten-Huei; Litt, Jonathan S.

    2012-01-01

    This paper studies the effect of modifying the control limits of an aircraft engine to obtain additional performance. In an emergency situation, the ability to operate an engine above its normal operating limits and thereby gain additional performance may aid in the recovery of a distressed aircraft. However, the modification of an engine s limits is complex due to the risk of an engine failure. This paper focuses on the tradeoff between enhanced performance and risk of either incurring a mechanical engine failure or compromising engine operability. The ultimate goal is to increase the engine performance, without a large increase in risk of an engine failure, in order to increase the probability of recovering the distressed aircraft. The control limit modifications proposed are to extend the rotor speeds, temperatures, and pressures to allow more thrust to be produced by the engine, or to increase the rotor accelerations and allow the engine to follow a fast transient. These modifications do result in increased performance; however this study indicates that these modifications also lead to an increased risk of engine failure.

  5. Performance assessment of a Multi-fuel Hybrid Engine for Future Aircraft

    NARCIS (Netherlands)

    Yin, F.; Gangoli Rao, A.

    2016-01-01

    This paper presents performance assessment of the proposed hybrid engine concept using Liquid Natural Gas (LNG) and kerosene. The multi-fuel hybrid engine is a new engine concept integrated with contra rotating fans, sequential dual combustion chambers to facilitate “Energy Mix” in aviation and a

  6. Performance assessment of a multi-fuel hybrid engine for future aircraft

    NARCIS (Netherlands)

    Yin, F.; Gangoli Rao, A.; Bhat, Abhishek; Chen, Min

    2018-01-01

    This paper presents the performance assessment of a novel turbofan engine using two energy sources: Liquid Natural Gas (LNG) and kerosene, called Multi-Fuel Hybrid Engine (MFHE). The MFHE is a new engine concept consisting of several novel features, such as a contra-rotating fan to sustain

  7. Performance Evaluation on Otto Engine Generator Using Gasoline and Biogas from Palm Oil Mill Effluent

    Science.gov (United States)

    Irvan; Trisakti, B.; Husaini, T.; Sitio, A.; Sitorus, TB

    2017-06-01

    Biogas is a flammable gas produced from the fermentation of organic materials by anaerobic bacteria originating from household waste manure and organic waste including palm oil mill effluent (POME). POME is mainly discharged from the sterilization unit of palm oil processing into crude palm oil. This study utilized biogas produced from liquid waste palm oil for use as fuel in the Otto engine generator 4 - stroke, type STARKE GFH1900LX with a peak power of 1.3 kW, 1.0 kW average power, bore 55 mm, stroke 40 mm, Vd 95 × 10-6 m3, Vc 10 × 10-6 m3, compression ratio of 10.5 : 1, and the number of cylinders = 1. The objective of this study is to evaluate the performance of Otto engine generator fueled with biogas that generated from POME, then comparing its performance fueled by gasoline. The performance included power, torque, specific fuel consumption, thermal efficiency, and the air-fuel ratio. Experiment was conducted by using a variation of the lamp load of 100, 200, 300, 400, and 500 W. The results revealed that the use of biogas as fuel decreased in power, torque, brake thermal efficiency, and air fuel ratio (AFR), while there is an increasing of value specific fuel consumption (SFC).

  8. Gender and engineering aptitude: Is the color of science, technology, engineering, and math materials related to children's performance?

    Science.gov (United States)

    Mulvey, Kelly Lynn; Miller, Bridget; Rizzardi, Victoria

    2017-08-01

    To investigate gender stereotypes, demonstrated engineering aptitude, and attitudes, children (N=105) solved an engineering problem using either pastel-colored or primary-colored materials. Participants also evaluated the acceptability of denial of access to engineering materials based on gender and counter-stereotypic preferences (i.e., a boy who prefers pastel-colored materials). Whereas material color was not related to differences in female participants' performance, younger boys assigned to pastel materials demonstrated lower engineering aptitude than did other participants. In addition, results documented age- and gender-related differences; younger participants, and sometimes boys, exhibited less flexibility regarding gender stereotypes than did older and female participants. The findings suggest that attempts to enhance STEM (science, technology, engineering, and math) engagement or performance through the color of STEM materials may have unintended consequences. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Developing a system engineering program to improve performance and reliability

    International Nuclear Information System (INIS)

    Keuter, D.

    1985-01-01

    After several maintenance, operational, and equipment problems last year, Trojan set out on a mission to improve plant performance and reliability by strengthening its on-site engineering organization. This paper presents Trojan's plans in developing an on-site system engineering organization

  10. Human Engineering Modeling and Performance Lab Study Project

    Science.gov (United States)

    Oliva-Buisson, Yvette J.

    2014-01-01

    The HEMAP (Human Engineering Modeling and Performance) Lab is a joint effort between the Industrial and Human Engineering group and the KAVE (Kennedy Advanced Visualiations Environment) group. The lab consists of sixteen camera system that is used to capture human motions and operational tasks, through te use of a Velcro suit equipped with sensors, and then simulate these tasks in an ergonomic software package know as Jac, The Jack software is able to identify the potential risk hazards.

  11. Prospects of biogas as dual fuel in small diesel engines

    International Nuclear Information System (INIS)

    Singh, Irvinder; Mittal, V.K.

    1992-01-01

    A study was conducted on diesel engines to find out the effect of induction rate of biogas on engine performance indices. The results of dual fuel engine performance was compared with diesel mode for various levels of biogas induction rate (0.3 to 7.2 l/s) engine load (20% to full load) and injection timing (20.6 to 48 before top dead centre). At full and 80% brake load, the best energy mix between diesel and biogas was 1.5:1 and 4:1 respectively. (author). 7 refs., 7 figs., 4 tabs

  12. E25 stratified torch ignition engine performance, CO_2 emission and combustion analysis

    International Nuclear Information System (INIS)

    Rodrigues Filho, Fernando Antonio; Moreira, Thiago Augusto Araujo; Valle, Ramon Molina; Baêta, José Guilherme Coelho; Pontoppidan, Michael; Teixeira, Alysson Fernandes

    2016-01-01

    Highlights: • A torch ignition engine prototype was built and tested. • Significant reduction of BSFC was achieved due to the use of the torch ignition system. • Low cyclic variability characterized the lean combustion process of the torch ignition engine prototype. • The torch ignition system allowed an average reduction of 8.21% at the CO_2 specific emissions. - Abstract: Vehicular emissions significantly increase atmospheric air pollution and the greenhouse effect. This fact associated with the fast growth of the global motor vehicle fleet demands technological solutions from the scientific community in order to achieve a decrease in fuel consumption and CO_2 emission, especially of fossil fuels to comply with future legislation. To meet this goal, a prototype stratified torch ignition engine was designed from a commercial baseline engine. In this system, the combustion starts in a pre-combustion chamber where the pressure increase pushes the combustion jet flames through a calibrated nozzle to be precisely targeted into the main chamber. These combustion jet flames are endowed with high thermal and kinetic energy being able to promote a stable lean combustion process. The high kinetic and thermal energy of the combustion jet flame results from the load stratification. This is carried out through direct fuel injection in the pre-combustion chamber by means of a prototype gasoline direct injector (GDI) developed for low fuel flow rate. During the compression stroke, lean mixture coming from the main chamber is forced into the pre-combustion chamber and, a few degrees before the spark timing, fuel is injected into the pre-combustion chamber aiming at forming a slightly rich mixture cloud around the spark plug which is suitable for the ignition and kernel development. The performance of the torch ignition engine running with E25 is presented for different mixture stratification levels, engine speed and load. The performance data such as combustion phasing

  13. Effect of Combustion-chamber Shape on the Performance of a Prechamber Compression-ignition Engine

    Science.gov (United States)

    Moore, C S; Collins, J H , Jr

    1934-01-01

    The effect on engine performance of variations in the shape of the prechamber, the shape and direction of the connecting passage, the chamber volume using a tangential passage, the injection system, and the direction od the fuel spray in the chamber was investigated using a 5 by 7 inch single-cylinder compression-ignition engine. The results show that the performance of this engine can be considerably improved by selecting the best combination of variables and incorporating them in a single design. The best combination as determined from these tests consisted of a disk-shaped chamber connected to the cylinder by means of a flared tangential passage. The fuel was injected through a single-orifice nozzle directed normal to the air swirl and in the same plane. At an engine speed of 1,500 r.p.m. and with the theoretical fuel quantity for no excess air, the engine developed a brake mean effective pressure of 115 pounds per square inch with a fuel consumption of 0.49 pound per brake horsepower-hour and an explosion pressure of 820 pounds per square inch. A brake mean effective pressure of 100 pounds per square inch with a brake-fuel consumption of 0.44 pound per horsepower-hour at 1,500 r.p.m. was obtained.

  14. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    Energy Technology Data Exchange (ETDEWEB)

    Victor W. Wong; Tian Tian; Grant Smedley; Jeffrey Jocsak

    2004-09-30

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston/ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and emissions. An iterative process of simulation, experimentation and analysis, are being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston/ring dynamic and friction models have been developed and applied that illustrated the fundamental relationships between design parameters and friction losses. Various low-friction strategies and ring-design concepts have been explored, and engine experiments have been done on a full-scale Waukesha VGF F18 in-line 6 cylinder power generation engine rated at 370 kW at 1800 rpm. Current accomplishments include designing and testing ring-packs using a subtle top-compression-ring profile (skewed barrel design), lowering the tension of the oil-control ring, employing a negative twist to the scraper ring to control oil consumption. Initial test data indicate that piston ring-pack friction was reduced by 35% by lowering the oil-control ring tension alone, which corresponds to a 1.5% improvement in fuel efficiency. Although small in magnitude, this improvement represents a first step towards anticipated aggregate improvements from other strategies. Other ring-pack design strategies to lower friction have been identified, including reduced axial distance between the top two rings, tilted top-ring groove. Some of these configurations have been tested and some await further evaluation. Colorado State University performed the tests and Waukesha Engine Dresser, Inc. provided technical support. Key elements of the continuing work include optimizing the engine piston design, application of surface and material developments in conjunction with improved lubricant properties, system modeling and analysis, and continued technology

  15. Criticality safety engineer training at WSRC

    International Nuclear Information System (INIS)

    Williamson, T.G.; Mincey, J.F.

    1993-01-01

    Two programs designed to prepare engineers for certification as criticality safety engineers are offered at Westinghouse Savannah River Company (WSRC). One program, Student On Loan Criticality Engineer Training (SOLCET), is an intensive 2-yr course involving lectures, rigorous problem assignments, and mentoring. The other program, In-Field Criticality Engineer Training (IN-FIELD), is a less intensive series of lectures and problem assignments. Both courses are conducted by members of the Applied Physics Group (APG) of the Savannah River Technical Center, the organization at WSRC responsible for the operation and maintenance of criticality codes and for training of code users

  16. Improving the performance of LOX/kerosene upper stage rocket engines

    Directory of Open Access Journals (Sweden)

    IgorN. Nikischenko

    2017-09-01

    Full Text Available Improved liquid rocket engine cycles were proposed and analyzed via comparison with existing staged combustion and gas-generator cycles. The key features of the proposed cycles are regenerative cooling of thrust chamber by oxygen and subsequent use of this oxygen for driving one or two oxygen pumps. The fuel pump(s are driven in a conventional manner, for example, using a fuel-rich gas-generator cycle. Comparison with staged combustion cycle based on oxygen-rich pre-burner showed that one of the proposed semi-expander cycles has a specific impulse only on 0.4% lower while providing much lower oxygen temperature, more efficient tank pressurizing system and built-in roll control. This semi-expander cycle can be considered as a more reliable and cost-effective alternative of staged combustion cycle. Another semi-expander cycle can be considered as an improvement of gas-generator cycle. All proposed semi-expander cycles were developed as a derivative of thrust chamber regenerative cooling performed by oxygen. Analysis of existing oxygen/kerosene engines showed that replacing of kerosene regenerative cooling with oxygen allows a significant increase of achievable specific impulse, via optimization of mixture ratio. It is especially the case for upper stage engines. The increasing of propellants average density can be considered as an additional benefit of mixture ratio optimization. It was demonstrated that oxygen regenerative cooling of thrust chamber is a feasible and the most promising option for oxygen/kerosene engines. Combination of oxygen regenerative cooling and semi-expander cycles potentially allows creating the oxygen/kerosene propulsion systems with minimum specific impulse losses. It is important that such propulsion systems can be fully based on inherited and well-proven technical solutions. A hypothetic upper stage engine with thrust 19.6 kN was chosen as a prospective candidate for theoretical analysis of the proposed semi

  17. Optimization of the dynamic and thermal performance of a resonant micro heat engine

    International Nuclear Information System (INIS)

    Bardaweel, H K; Richards, R F; Richards, C D; Anderson, M J

    2008-01-01

    The dynamic behavior of a flexing membrane micro heat engine is presented. The micro heat engine consists of a cavity filled with a saturated, two-phase working fluid bounded on the top by a flexible expander membrane and on the bottom by a stiff evaporator membrane. A lumped parameter model is developed to simulate the dynamic behavior of the micro heat engine. First, the model is validated against experimental data. Then, the model is used to investigate the effect of the duration of the heat addition process, the mass of the expander membrane and the thermal storage or thermal inertia associated with the engine cavity on the dynamic behavior of the micro engine. The results show the optimal duration for the heat addition process to be less than 10% of the engine cycle period. Increasing the mass of the flexible expander membrane is shown to reduce the resonant frequency of the engine to 130 Hz. Operating the engine at resonance leads to increased power output. The thermal storage or thermal inertia associated with the engine cavity is shown to have a strong effect on engine performance

  18. Dual-fuel natural gas/diesel engines: Technology, performance, and emissions

    Science.gov (United States)

    Turner, S. H.; Weaver, C. S.

    1994-11-01

    An investigation of current dual-fuel natural gas/diesel engine design, performance, and emissions was conducted. The most pressing technological problems associated with dual-fuel engine use were identified along with potential solutions. It was concluded that dual-fuel engines can achieve low NO(sub x) and particulate emissions while retaining fuel-efficiency and BMEP levels comparable to those of diesel engines. The investigation also examined the potential economic impact of dual-fuel engines in diesel-electric locomotives, marine vessels, farm equipment, construction, mining, and industrial equipment, and stand-alone electricity generation systems. Recommendations for further additional funding to support research, development, and demonstration in these applications were then presented.

  19. Tribological Performance of Duplex-Annealed Ti-6Al-2Sn-4Zr-2Mo Titanium Alloy at Elevated Temperatures Under Dry Sliding Condition

    Science.gov (United States)

    Heilig, Sebastian; Ramezani, Maziar; Neitzert, Thomas; Liewald, Mathias

    2018-03-01

    Ti-6Al-2Sn-4Zr-2Mo (Ti-6-2-4-2) is a typical near-α titanium alloy developed for high-temperature applications. It offers numerous enhanced properties like an outstanding strength-to-weight ratio, a low Young's modulus and exceptional creep and corrosion resistance. On the other hand, titanium alloys are known for their weak resistance to wear. Ti-6-2-4-2 is mainly applied in aero engine component parts, which are exposed to temperatures up to 565 °C. Through an increasing demand on efficiency, engine components are exposed to higher combustion pressures and temperatures. Elevated temperature tribology tests were conducted on a pin-on-disk tribometer equipped with a heating chamber. The tests were carried out under dry conditions with a constant sliding distance of 600 m with a speed of 0.16 m/s at the ball point. The sliding partner was AISI E52100 steel ball with the hardness of 58HRC. The varied input variables are normal load and temperature. It can be concluded that the coefficient of friction (CoF) increases with increasing temperature, while the wear rate decreases to its minimum at 600 °C due to increasing adhesion and oxidation mechanisms. Wear track observations using a scanning electron microscope (SEM) including energy-dispersive x-ray spectroscopy (EDS) were used to determine the occurring wear mechanisms.

  20. The influence of Compression Ratio to Performance of Four Stroke Engine Use of Arak Bali as a Fuel

    Directory of Open Access Journals (Sweden)

    I Dewa Made Krishna Muku

    2012-11-01

    Full Text Available Arak bali is alternative fuel as ethanol. Ethanol has octane number 108. Octane number which was higher can over come adetonation, and can work at higher compression ratio. This experiment has done to now how the effect of compression ratiovariation to the performance four strokes engine by arak bali fuel. This research was done by changing the compressionratio that is 8,8 : 1, 8,9 : 1, 9 : 1 and 9,3 : 1. The change was done by reducing combustion chamber by scrap the cylinderhead. The result, for the used arak bali fuel to the vehicle is, if engine compression ratio to increase can be influence ofengine performance to be increase and engine fuel consumption to be decrease. For premium is, if engine compression ratioto increase to influence of engine performance to be decrease and engine fuel consumption to be increase.

  1. Re-Engineering a High Performance Electrical Series Elastic Actuator for Low-Cost Industrial Applications

    Directory of Open Access Journals (Sweden)

    Kenan Isik

    2017-01-01

    Full Text Available Cost is an important consideration when transferring a technology from research to industrial and educational use. In this paper, we introduce the design of an industrial grade series elastic actuator (SEA performed via re-engineering a research grade version of it. Cost-constrained design requires careful consideration of the key performance parameters for an optimal performance-to-cost component selection. To optimize the performance of the new design, we started by matching the capabilities of a high-performance SEA while cutting down its production cost significantly. Our posit was that performing a re-engineering design process on an existing high-end device will significantly reduce the cost without compromising the performance drastically. As a case study of design for manufacturability, we selected the University of Texas Series Elastic Actuator (UT-SEA, a high-performance SEA, for its high power density, compact design, high efficiency and high speed properties. We partnered with an industrial corporation in China to research the best pricing options and to exploit the retail and production facilities provided by the Shenzhen region. We succeeded in producing a low-cost industrial grade actuator at one-third of the cost of the original device by re-engineering the UT-SEA with commercial off-the-shelf components and reducing the number of custom-made parts. Subsequently, we conducted performance tests to demonstrate that the re-engineered product achieves the same high-performance specifications found in the original device. With this paper, we aim to raise awareness in the robotics community on the possibility of low-cost realization of low-volume, high performance, industrial grade research and education hardware.

  2. Spark Ignition Characteristics of a L02/LCH4 Engine at Altitude Conditions

    Science.gov (United States)

    Kleinhenz, Julie; Sarmiento, Charles; Marshall, William

    2012-01-01

    The use of non-toxic propellants in future exploration vehicles would enable safer, more cost effective mission scenarios. One promising "green" alternative to existing hypergols is liquid methane/liquid oxygen. To demonstrate performance and prove feasibility of this propellant combination, a 100lbf LO2/LCH4 engine was developed and tested under the NASA Propulsion and Cryogenic Advanced Development (PCAD) project. Since high ignition energy is a perceived drawback of this propellant combination, a test program was performed to explore ignition performance and reliability versus delivered spark energy. The sensitivity of ignition to spark timing and repetition rate was also examined. Three different exciter units were used with the engine s augmented (torch) igniter. Propellant temperature was also varied within the liquid range. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks (in quiescent, room air). The escalating pressure and flow environment increases spark impedance and may at some point compromise an exciter s ability to deliver a spark. Reduced spark energies of these sparks result in more erratic ignitions and adversely affect ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1-6mJ, though multiple, similarly timed sparks of 55-75mJ were required for reliable ignition. An optimum time interval for spark application and ignition coincided with propellant introduction to the igniter and engine. Shifts of ignition timing were manifested by changes in the characteristics of the resulting ignition.

  3. Spark Ignition Characteristics of a LO2/LCH4 Engine at Altitude Conditions

    Science.gov (United States)

    Kleinhenz, Julie; Sarmiento, Charles; Marshall, William

    2012-01-01

    The use of non-toxic propellants in future exploration vehicles would enable safer, more cost effective mission scenarios. One promising "green" alternative to existing hypergols is liquid methane/liquid oxygen. To demonstrate performance and prove feasibility of this propellant combination, a 100lbf LO2/LCH4 engine was developed and tested under the NASA Propulsion and Cryogenic Advanced Development (PCAD) project. Since high ignition energy is a perceived drawback of this propellant combination, a test program was performed to explore ignition performance and reliability versus delivered spark energy. The sensitivity of ignition to spark timing and repetition rate was also examined. Three different exciter units were used with the engine's augmented (torch) igniter. Propellant temperature was also varied within the liquid range. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks (in quiescent, room air). The escalating pressure and flow environment increases spark impedance and may at some point compromise an exciter.s ability to deliver a spark. Reduced spark energies of these sparks result in more erratic ignitions and adversely affect ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1-6mJ, though multiple, similarly timed sparks of 55-75mJ were required for reliable ignition. An optimum time interval for spark application and ignition coincided with propellant introduction to the igniter and engine. Shifts of ignition timing were manifested by changes in the characteristics of the resulting ignition.

  4. Performance of CO2 enrich CNG in direct injection engine

    Science.gov (United States)

    Firmansyah, W. B.; Ayandotun, E. Z.; Zainal, A.; Aziz, A. R. A.; Heika, M. R.

    2015-12-01

    This paper investigates the potential of utilizing the undeveloped natural gas fields in Malaysia with high carbon dioxide (CO2) content ranging from 28% to 87%. For this experiment, various CO2 proportions by volume were added to pure natural gas as a way of simulating raw natural gas compositions in these fields. The experimental tests were carried out using a 4-stroke single cylinder spark ignition (SI) direct injection (DI) compressed natural gas (CNG) engine. The tests were carried out at 180° and 300° before top dead centre (BTDC) injection timing at 3000 rpm, to establish the effects on the engine performance. The results show that CO2 is suppressing the combustion of CNG while on the other hand CNG combustion is causing CO2 dissociation shown by decreasing CO2 emission with the increase in CO2 content. Results for 180° BTDC injection timing shows higher performance compared to 300° BTDC because of two possible reasons, higher volumetric efficiency and higher stratification level. The results also showed the possibility of increasing the CO2 content by injection strategy.

  5. Thermodynamic performance analysis of ramjet engine at wide working conditions

    Science.gov (United States)

    Ou, Min; Yan, Li; Tang, Jing-feng; Huang, Wei; Chen, Xiao-qian

    2017-03-01

    Although ramjet has the advantages of high-speed flying and higher specific impulse, the performance parameters will decline seriously with the increase of flight Mach number and flight height. Therefore, the investigation on the thermodynamic performance of ramjet is very crucial for broadening the working range. In the current study, a typical ramjet model has been employed to investigate the performance characteristics at wide working conditions. First of all, the compression characteristic analysis is carried out based on the Brayton cycle. The obtained results show that the specific cross-section area (A2 and A5) and the air-fuel ratio (f) have a great influence on the ramjet performance indexes. Secondly, the thermodynamic calculation process of ramjet is given from the view of the pneumatic thermal analysis. Then, the variable trends of the ramjet performance indexes with the flow conditions, the air-fuel ratio (f), the specific cross-sectional area (A2 and A5) under the fixed operating condition, equipotential dynamic pressure condition and variable dynamic pressure condition have been discussed. Finally, the optimum value of the specific cross-sectional area (A5) and the air-fuel ratio (f) of the ramjet model at a fixed work condition (Ma=3.5, H=12 km) are obtained.

  6. Performance and emissions of a supercharged dual-fuel engine fueled by hydrogen-rich coke oven gas

    Energy Technology Data Exchange (ETDEWEB)

    Roy, M.M.; Tomita, E.; Kawahara, N.; Harada, Y.; Sakane, A. [Okayama University, Okayama (Japan). Dept. of Mechanical Engineering

    2009-12-15

    This study investigated the engine performance and emissions of a supercharged dual-fuel engine fueled by hydrogen-rich coke oven gas and ignited by a pilot amount of diesel fuel. The engine was tested for use as a cogeneration engine, so power output while maintaining a reasonable thermal efficiency was important. Experiments were carried out at a constant pilot injection pressure and pilot quantity for different fuel-air equivalence ratios and at various injection timings without and with exhaust gas recirculation (EGR). The experimental strategy was to optimize the injection timing to maximize engine power at different fuel-air equivalence ratios without knocking and within the limit of the maximum cylinder pressure. The engine was tested first without EGR condition up to the maximum possible fuel-air equivalence ratio of 0.65. A maximum indicated mean effective pressure (IMEP) of 1425 kPa and a thermal efficiency of 39% were obtained. However, the nitrogen oxides (NOx) emissions were high. A simulated EGR up to 50% was then performed to obtain lower NOx emissions. The maximum reduction of NOx was 60% or more maintaining the similar levels of IMEP and thermal efficiency. Two-stage combustion was obtained; this is an indicator of maximum power output conditions and a precursor of knocking combustion.

  7. Biodiesel from lemon and lemon grass oil and its effect on engine performance and exhaust emission

    Science.gov (United States)

    Dhivagar, R.; Sundararaj, S.; Vignesh, V. R.

    2018-03-01

    In the present scenario many developing countries are depending on oil producing nations for their fuel resources. Due to demand and scarcity of the fuel, there has been a huge increase in fuel prices. The vehicular population is also continuously increasing and becoming a great menace to peoples. This paper aims to provide an alternate solution for petroleum based fuels. It suggests that biodiesel produced from lemon and lemon grass oil can be used as an alternative fuel. This work investigates the thermal performance of four stroke diesel engine using blends of biodiesel and diesel as a fuel. Performance parameters like brake thermal efficiency, mechanical efficiency and specific fuel consumption were measured at different loads for diesel and various combination of biofuel (L10, L20, and L30). The maximum brake thermal efficiency obtained is about 26.12%for L20 which is slightly higher than that of diesel (24.91%). Engine experimental results showed that exhaust emissions including CO2 and HC were reduced by 6% and 5% for L20 mixture of biodiesel whereas CO emission was as same as diesel. However, there was increase in NOxby 26% to the diesel fuel.

  8. 40 CFR Table 6 to Subpart IIIi of... - Optional 3-Mode Test Cycle for Stationary Fire Pump Engines

    Science.gov (United States)

    2010-07-01

    ... Engines [As stated in § 60.4210(g), manufacturers of fire pump engines may use the following test cycle... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Optional 3-Mode Test Cycle for Stationary Fire Pump Engines 6 Table 6 to Subpart IIII of Part 60 Protection of Environment ENVIRONMENTAL...

  9. Assessing students' performance in software requirements engineering education using scoring rubrics

    Science.gov (United States)

    Mkpojiogu, Emmanuel O. C.; Hussain, Azham

    2017-10-01

    The study investigates how helpful the use of scoring rubrics is, in the performance assessment of software requirements engineering students and whether its use can lead to students' performance improvement in the development of software requirements artifacts and models. Scoring rubrics were used by two instructors to assess the cognitive performance of a student in the design and development of software requirements artifacts. The study results indicate that the use of scoring rubrics is very helpful in objectively assessing the performance of software requirements or software engineering students. Furthermore, the results revealed that the use of scoring rubrics can also produce a good achievement assessments direction showing whether a student is either improving or not in a repeated or iterative assessment. In a nutshell, its use leads to the performance improvement of students. The results provided some insights for further investigation and will be beneficial to researchers, requirements engineers, system designers, developers and project managers.

  10. The scaling of performance and losses in miniature internal combustion engines

    Science.gov (United States)

    Menon, Shyam Kumar

    Miniature glow ignition internal combustion (IC) piston engines are an off--the--shelf technology that could dramatically increase the endurance of miniature electric power supplies and the range and endurance of small unmanned air vehicles provided their overall thermodynamic efficiencies can be increased to 15% or better. This thesis presents the first comprehensive analysis of small (system is developed that is capable of making reliable measurements of engine performance and losses in these small engines. Methodologies are also developed for measuring volumetric, heat transfer, exhaust, mechanical, and combustion losses. These instruments and techniques are used to investigate the performance of seven single-cylinder, two-stroke, glow fueled engines ranging in size from 15 to 450 g (0.16 to 7.5 cm3 displacement). Scaling rules for power output, overall efficiency, and normalized power are developed from the data. These will be useful to developers of micro-air vehicles and miniature power systems. The data show that the minimum length scale of a thermodynamically viable piston engine based on present technology is approximately 3 mm. Incomplete combustion is the most important challenge as it accounts for 60-70% of total energy losses. Combustion losses are followed in order of importance by heat transfer, sensible enthalpy, and friction. A net heat release analysis based on in-cylinder pressure measurements suggest that a two--stage combustion process occurs at low engine speeds and equivalence ratios close to 1. Different theories based on burning mode and reaction kinetics are proposed to explain the observed results. High speed imaging of the combustion chamber suggests that a turbulent premixed flame with its origin in the vicinity of the glow plug is the primary driver of combustion. Placing miniature IC engines on a turbulent combustion regime diagram shows that they operate in the 'flamelet in eddy' regime whereas conventional--scale engines operate

  11. PERFORMANCE EVALUATION OF EXTERNAL MIXTURE FORMATION STRATEGY IN HYDROGEN-FUELED ENGINE

    Directory of Open Access Journals (Sweden)

    Mohammed Kamil

    2011-12-01

    Full Text Available Mohammed Kamil1, M. M. Rahman2 and Rosli A. Bakar2Hydrogen induction strategy in an internal combustion engine plays a vital role in increasing the power density and prohibiting combustion anomalies. This paper inspects the performance characteristics of cylinder hydrogen-fueled engine with port injection feeding strategy. To that end, a one-dimensional gas dynamic model has been built to represent the flow and heat transfer in the components of the engine. The governing equations are introduced followed by the performance parameters and model description. Air-fuel ratio was varied from a stoichiometric limit to a lean limit. The rotational speed of the engine was also changed from 1000 to 4500 RPM. The injector location was fixed in the mid-point of the intake port. The general behavior of the hydrogen engine was similar to that of a gasoline engine, apart from a reduction in the power density, which was due to a decrease in the volumetric efficiency. This emphasizes the ability of retrofitting traditional engines for hydrogen fuel with minor modifications. The decrease in the volumetric efficiency needs to be rectified.

  12. Effects of injection timing on the engine performance and exhaust emissions of a dual-fuel diesel engine

    International Nuclear Information System (INIS)

    Sayin, Cenk; Canakci, Mustafa

    2009-01-01

    In this study, influence of injection timing on the engine performance and exhaust emissions of a naturally aspirated, single cylinder diesel engine has been experimentally investigated when using ethanol blended diesel fuel from 0% to 15% with an increment of 5%. The engine load was selected as 15 and 30 Nm. The tests were conducted at five different injection timings (21 deg., 24 deg., 27 deg., 30 deg. and 33 deg. CA BTDC) by changing the thickness of advance shim. The experimental test results showed that BSFC and emissions of NO x and CO 2 increased as BTE and emissions of CO and HC decreased with increasing amount of ethanol in the fuel mixture. When compared to the results of original injection timing (27 deg. CA BTDC), NO x and CO 2 emissions increased, and unburned HC and CO emissions decreased for the retarded injection timings (21 deg. and 24 deg. CA BTDC) at the all test conditions. On the other side, with the advanced injection timings (30 deg. and 33 deg. CA BTDC), decreasing HC and CO emissions diminished, and NO x and CO 2 emissions boosted. In terms of BSFC and BTE, retarded and advanced injection timings compared to the original injection timing in the all fuel blends gave negative results for all engine speeds and loads

  13. Effects of injection timing on the engine performance and exhaust emissions of a dual-fuel diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Sayin, Cenk [Department of Mechanical Education, Marmara University, 34722 Istanbul (Turkey); Canakci, Mustafa [Department of Mechanical Education, Kocaeli University, 41380 Izmit (Turkey); Alternative Fuels R and D Center, Kocaeli University, 41040 Izmit (Turkey)

    2009-01-15

    In this study, influence of injection timing on the engine performance and exhaust emissions of a naturally aspirated, single cylinder diesel engine has been experimentally investigated when using ethanol blended diesel fuel from 0% to 15% with an increment of 5%. The engine load was selected as 15 and 30 Nm. The tests were conducted at five different injection timings (21 , 24 , 27 , 30 and 33 CA BTDC) by changing the thickness of advance shim. The experimental test results showed that BSFC and emissions of NO{sub x} and CO{sub 2} increased as BTE and emissions of CO and HC decreased with increasing amount of ethanol in the fuel mixture. When compared to the results of original injection timing (27 CA BTDC), NO{sub x} and CO{sub 2} emissions increased, and unburned HC and CO emissions decreased for the retarded injection timings (21 and 24 CA BTDC) at the all test conditions. On the other side, with the advanced injection timings (30 and 33 CA BTDC), decreasing HC and CO emissions diminished, and NO{sub x} and CO{sub 2} emissions boosted. In terms of BSFC and BTE, retarded and advanced injection timings compared to the original injection timing in the all fuel blends gave negative results for all engine speeds and loads. (author)

  14. Impact of alternative fuels on the operational and environmental performance of a small turbofan engine

    International Nuclear Information System (INIS)

    Gaspar, R.M.P.; Sousa, J.M.M.

    2016-01-01

    Highlights: • A wide range of alternative fuels is studied in a small two-spool turbofan engine. • Impact of fuel properties on flame temperature and droplet evaporation considered. • Performance and pollutant emissions at different operating conditions are analyzed. • Use of alternative fuels generally leads to an improved performance of the engine. • Mostly reductions in soot emissions, but also cuts in NO_x and CO, are obtained. - Abstract: A wide range of alternative jet fuels is studied in this work for use in a small two-spool turbofan engine. These embrace the five production pathways currently approved by the American Society for Testing and Materials. Both neat products and blends (within certified limits) have been considered. The present analysis is based on a 0-D thermodynamic modeling of the aero-engine for off-design and transient simulations. In addition, the selected approach incorporates fuel effects on combustion and the impact of fuel properties on the flame temperature, as well as on the droplet evaporation rate. Predicted performance and pollutant emission outputs for the alternative fuels are presented at different operating conditions, namely: take-off, top of climb, cruise, low power and ground idle. The results are discussed and comprehensively compared with data available in the literature. It was concluded that the combustion of alternative fuels generally leads to enhancements in engine performance with respect to the use of conventional kerosene. Reductions in pollutant emissions occur mostly in soot, but also in nitrogen oxides and carbon monoxide, depending on the fuel and operating conditions. In contrast, increased emissions of unburned hydrocarbons are generally observed. Concerns about the aero-engine dynamic response are raised only in very few cases, involving the use of neat products.

  15. Validation of a zero-dimensional model for prediction of NOx and engine performance for electronically controlled marine two-stroke diesel engines

    DEFF Research Database (Denmark)

    Scappin, Fabio; Stefansson, Sigurður H.; Haglind, Fredrik

    2012-01-01

    The aim of this paper is to derive a methodology suitable for energy system analysis for predicting the performance and NOx emissions of marine low speed diesel engines. The paper describes a zero-dimensional model, evaluating the engine performance by means of an energy balance and a two zone...... experimental data from two MAN B&W engines; one case being data subject to engine parameter changes corresponding to simulating an electronically controlled engine; the second case providing data covering almost all model input and output parameters. The first case of validation suggests that the model can...

  16. Experience with performance based training of nuclear criticality safety engineers

    International Nuclear Information System (INIS)

    Taylor, R.G.

    1993-01-01

    Historically, new entrants to the practice of nuclear criticality safety have learned their job primarily by on-the-job training (OJT) often by association with an experienced nuclear criticality safety engineer who probably also learned their job by OJT. Typically, the new entrant learned what he/she needed to know to solve a particular problem and accumulated experience as more problems were solved. It is likely that more formalism will be required in the future. Current US Department of Energy requirements for those positions which have to demonstrate qualification indicate that it should be achieved by using a systematic approach such as performance based training (PBT). Assuming that PBT would be an acceptable mechanism for nuclear criticality safety engineer training in a more formal environment, a site-specific analysis of the nuclear criticality safety engineer job was performed. Based on this analysis, classes are being developed and delivered to a target audience of newer nuclear criticality safety engineers. Because current interest is in developing training for selected aspects of the nuclear criticality safety engineer job, the analysis i's incompletely developed in some areas. Details of this analysis are provided in this report

  17. Design of a high-performance rotary stratified-charge research aircraft engine

    Science.gov (United States)

    Jones, C.; Mount, R. E.

    1984-01-01

    The power section for an advanced rotary stratified-charge general aviation engine has been designed under contract to NASA. The single-rotor research engine of 40 cubic-inches displacement (RCI-40), now being procured for test initiation this summer, is targeted for 320 T.O. horse-power in a two-rotor production engine. The research engine is designed for operating on jet-fuel, gasoline or diesel fuel and will be used to explore applicable advanced technologies and to optimize high output performance variables. Design of major components of the engine is described in this paper.

  18. Infrared suppressor effect on T63 turboshaft engine performance

    Science.gov (United States)

    Bailey, E. E.; Civinskas, K. C.; Walker, C. L.

    1978-01-01

    Tests were conducted to determine if there are performance penalties associated with the installation of infrared (IR) suppressors on the T63-A-700 turboshaft engine. The testing was done in a sea-level, static test cell. The same engine (A-E402808 B) was run with the standard OH-58 aircraft exhaust stacks and with the ejector-type IR suppressors in order to make a valid comparison. Repeatability of the test results for the two configurations was verified by rerunning the conditions over a period of days. Test results showed no measurable difference in performance between the standard exhaust stacks and the IR suppressors.

  19. Human performance models for computer-aided engineering

    Science.gov (United States)

    Elkind, Jerome I. (Editor); Card, Stuart K. (Editor); Hochberg, Julian (Editor); Huey, Beverly Messick (Editor)

    1989-01-01

    This report discusses a topic important to the field of computational human factors: models of human performance and their use in computer-based engineering facilities for the design of complex systems. It focuses on a particular human factors design problem -- the design of cockpit systems for advanced helicopters -- and on a particular aspect of human performance -- vision and related cognitive functions. By focusing in this way, the authors were able to address the selected topics in some depth and develop findings and recommendations that they believe have application to many other aspects of human performance and to other design domains.

  20. Apollo 6 Transported to Launch Pad at KSC

    Science.gov (United States)

    1968-01-01

    Apollo 6, the second and last of the unmarned Saturn V test flights, is slowly transported past the Vehicle Assembly Building on the way to launch pad 39-A. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  1. Engine performance testing using variable RON95 fuel brands available in Malaysia

    Directory of Open Access Journals (Sweden)

    Mohd Riduan Aizuddin Fahmi

    2017-01-01

    Full Text Available There are various gasoline fuel producers available in Malaysia. The effects of fuel variations from different manufacturers on vehicle performance have always been a debate among users and currently the facts still remains inconclusive. Hence, this study focuses on analyzing various RON95 fuel brands available in the Malaysian market and finding the differences towards engine performance. In terms of engine output, the important data of power (hp and torque (Nm will be gathered by using an engine dynamometer. Another data that would also be taken into account is the knocking where the relative knock index can be measured in percentage using the knock sensor accelerometer. Results have shown that the performance of different fuel brands tested are indeed different albeit by only a small margin even though all fuels are categorized with the same octane rating. The power and torque results also imply that both are influenced by the amount of vibration generated due to engine knocking. Based from the overall outcome, consumers would not need to only focus on a certain type of gasoline brand as all differentiates the engine performance marginally.

  2. Influence of Antioxidant Addition in Jatropha Biodiesel on the Performance, Combustion and Emission Characteristics of a DI Diesel Engine

    Science.gov (United States)

    Arockiasamy, Prabu; Ramachandran Bhagavathiammal, Anand

    2018-04-01

    An experimental investigation is conducted on a single-cylinder DI diesel engine, to evaluate the performance, combustion and emission characteristics of Jatropha biodiesel with the addition of antioxidants namely, Succinimide (C4H5NO2), N,N-Dimethyl p-phenylenediamine dihydrochloride (C8H14Cl2N2) and N-Phenyl- p-phenylenediamine (C6H5NHC6H4NH2) at 500, 1000 and 2000 ppm. The performance, combustion and emission characteristic tests are conducted at a constant speed of 1500 rpm, injection pressure of 215 bar, injection timing of 26° before top dead centre for the nine test fuels and the experimental results are compared with neat diesel and neat biodiesel as base fuels. The experimental results show that the addition of antioxidant in biodiesel suppresses the NO emission by quenching the OH radicals that are produced by the reaction of hydrocarbon radicals with molecular nitrogen. The maximum percentage reduction of NO emission by 5, 6 and 7% are observed for N-Phenyl- p-phenylenediamine, N,N-Dimethyl p-phenylenediamine dihydrochloride and Succinimide blended test fuels at 2000 ppm antioxidant addition with biodiesel.

  3. Effect of Engine Modifications on Performance and Emission Characteristics of Diesel Engines with Alternative Fuels

    OpenAIRE

    Venkateswarlu, K.; Murthy, B.S.R

    2010-01-01

    Performance and emission characteristics unmodified diesel engines operating on different alternative fuels with smaller blend proportions are comparable with pure diesel operation. But with increased blend proportions due to the associated problems of vegetable oils like high viscosity and low volatility pollution levels increase which however is accompanied by operating and durability problems with the long term usage of engine. This paper discusses the necessary modifications required to o...

  4. Combustion phenomenon, performance and emissions of a diesel engine with aviation turbine JP-8 fuel and rapeseed biodiesel blends

    International Nuclear Information System (INIS)

    Labeckas, Gvidonas; Slavinskas, Stasys

    2015-01-01

    Highlights: • The 5 vol% RME added to JP-8 fuel improved lubricity 1.7 times according corrected wear scar diameter, μm. • The reverse trends revealed in the autoignition delay when operating with identical fuel blends J10 and B10. • The brake thermal efficiency increased by 1.0–3.6% when running on bio-fuels J5–J30 at speed of 2200 rpm. • The NO_x emissions increased by 5.2% when operating on bio-jet fuel J30 at full load and speed of 2200 rpm. • CO, HC emissions and smoke decreased with biofuel J20 and higher blends at both speeds of 1400 and 2200 rpm. - Abstract: The article presents the test results of an engine operating with diesel fuel (B5), turbine type JP-8 fuel and its 5 vol%, 10 vol%, 20 vol%, and 30 vol% blends with rapeseed oil methyl ester (RME). Additional fuel blend B10 was prepared by pouring 10 vol% of RME to diesel fuel to extend interpretation of the test results. The purpose of this study was to examine the effects of using jet-biodiesel fuel blends J5, J10, J20, J30, and B10 on the start of injection, ignition delay, combustion history, heat release, engine performance, and exhaust emissions. The engine performance parameters were examined at light 15% (1400 rpm) and 10% (2200 rpm), medium 50%, and high 100% loads and the two speeds: 1400 rpm at which maximum torque occurs and a rated speed of 2200 rpm. The autoignition delay and maximum heat release rate decreased, maximum cylinder pressure, and pressure gradients increased, whereas brake specific fuel consumption changed little and brake thermal efficiency was 1.0–3.6% higher when running with fuel blends J5 to J30 at rated speed compared with the data measured with neat jet fuel. The NO_x emissions increased slightly, but the CO, THC emissions, and smoke opacity boosted up significantly when using jet fuel blend J10 with a smooth reduction of unburned hydrocarbons for jet-biodiesel fuel blends with higher CN ratings. Operation at a full (100%) load with fuel blend J10

  5. The Audi 3.0l TFSI - the new top-of-the-range V6 engine; Der Audi 3,0l TFSI - die neue V6 Spitzenmotorisierung

    Energy Technology Data Exchange (ETDEWEB)

    Fitzen, M.; Hatz, W.; Eiser, A.; Heiduk, T.; Riegner, J. [Audi AG, Ingolstadt (Germany)

    2008-07-01

    The 3.0l TFSI represents the new top-of-the-range V6 engine from Audi. In its basic form this engine design delivers 213 kW (290 bhp) and 420 Nm. The fundamental design of the engine has been adopted from the naturally aspirated V6 engines as revised in 2006, including the measures to reduce frictional losses. An entirely new development is the supercharger module, with integrated Roots blower, bypass regulation and charge air intercooling. All the components are accommodated inside the V. As a result of the extremely compact dimensions it has also been possible to adopt the arrangement of the inlet and exhaust systems directly from the naturally aspirated engines without any changes. In conjunction with direct injection, this sets new standards in terms of responsiveness, efficiency and noise levels. The new Audi V6 3.0l TFSI combines excellent torque and power output with outstanding responsiveness, along with the package and exhaust-related benefits of a naturally aspirated engine. That makes it ideally suitable for a wide range of applications within the Audi model portfolio. The initial launch of the engine will be in the new A6 for the autumn of 2008. (orig.)

  6. Experimental investigation of n-butanol/diesel fuel blends and n-butanol fumigation – Evaluation of engine performance, exhaust emissions, heat release and flammability analysis

    International Nuclear Information System (INIS)

    Şahin, Zehra; Durgun, Orhan; Aksu, Orhan N.

    2015-01-01

    Highlights: • n-Butanol/diesel fuel blends and n-butanol fumigation investigated experimentally. • Flammability analysis of n-butanol performed. • Smoke decreases significantly for n-butanol/diesel fuel blends and n-butanol fumigation. • HC emission increases significantly for n-butanol/diesel fuel blends and n-butanol fumigation. • 2% n-Butanol/diesel fuel blend decreases slightly BSFC. - Abstract: The aim of this paper is to investigate and compare the effects of n-butanol/diesel fuel blends (nBDFBs) and n-butanol fumigation (nBF) on the engine performance and exhaust emissions in a turbocharged automobile diesel engine. Also, evaluations based on heat release and flammability analysis have been done. Experiments have been performed for various n-nBDFBs and nBF at different engine speeds and loads. For nBDFBs and nBF tests; nB2, nB4 and nB6 and nBF2, nBF4 and nBF6n-butanol percentages were selected. Here, for example nB2 and nBF2 contains 2% n-butanol and 98% diesel fuel by volume respectively. The test results showed that smoke decreases significantly by applying both of these two methods. However, decrement ratios of smoke for fumigation method are higher than that of blend method. NO x emission decreases for nB2, but it increases for nB4 and nB6 at selected engine speeds and loads. NO x emission decreases generally for nBF. For nB2 and nB4, BSFC decreases slightly but it increases for nB6. For nBF, BSFC increases at all of the test conditions. Adding n-butanol to diesel fuel becomes expensive for two methods. For nBDFBs, heat release rate (HRR) diagrams exhibit similar typical characteristic to NDF. However, for nBF, HRR shows slightly different pattern from NDF and a double peak is observed in the HRR diagram. The first peak occurs earlier than NDF and the second peak takes places later. In addition, this diagram shows that the first peak becomes larger and the second peak diminishes as n-butanol ratio is increased. Because of pilot injection of

  7. High Performance Computing in Science and Engineering '15 : Transactions of the High Performance Computing Center

    CERN Document Server

    Kröner, Dietmar; Resch, Michael

    2016-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2015. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.

  8. High Performance Computing in Science and Engineering '17 : Transactions of the High Performance Computing Center

    CERN Document Server

    Kröner, Dietmar; Resch, Michael; HLRS 2017

    2018-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2017. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance.The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.

  9. Investigation of microalgae HTL fuel effects on diesel engine performance and exhaust emissions using surrogate fuels

    International Nuclear Information System (INIS)

    Hossain, Farhad M.; Nabi, Md. Nurun; Rainey, Thomas J.; Bodisco, Timothy; Rahman, Md. Mostafizur; Suara, Kabir; Rahman, S.M.A.; Van, Thuy Chu; Ristovski, Zoran; Brown, Richard J.

    2017-01-01

    Highlights: • Development of a microalgae HTL surrogate of biocrude fuel using chemical compounds. • Physiochemical properties of surrogate blends were analysed. • Experimentally investigated diesel engine performance and emissions using surrogate fuels. • No significant changes in engine performance were observed with HTL surrogate blends. • Major emissions including PM, PN and CO were reduced significantly with increasing of NOx emission. - Abstract: This paper builds on previous work using surrogate fuel to investigate advanced internal combustion engine fuels. To date, a surrogate fuel of this nature has not been used for microalgae hydrothermal liquefaction (HTL) biocrude. This research used five different chemical groups found in microalgae HTL biocrude to design a surrogate fuel. Those five chemical groups constitute around 65% (by weight) of a microalgae biocrude produced by HTL. Weight percentage of the microalgae HTL biocrude chemical compounds were used to design the surrogate fuel, which was miscible with diesel at all percentages. The engine experiments were conducted on a EURO IIIA turbocharged common-rail direct-injection six-cylinder diesel engine to test engine performance and emissions. Exhaust emissions, including particulate matter and other gaseous emissions, were measured with the surrogate fuel and a reference diesel fuel. Experimental results showed that without significantly deteriorating engine performance, lower particulate mass, particulate number and CO emissions were observed with a penalty in NOx emissions for all surrogate blends compared to those of the reference diesel.

  10. Investigation on the lean combustion performance of a hydrogen-enriched n-butanol engine

    International Nuclear Information System (INIS)

    Zhang, Bo; Ji, Changwei; Wang, Shuofeng

    2017-01-01

    Highlights: • H_2 addition avails improving thermal efficiency of n-butanol engines. • Lean burn limit of n-butanol engine is extended by H_2 addition. • H_2 addition shortens the n-butanol engine combustion duration. • HC and CO from the n-butanol engine are decreased by H_2 addition. - Abstract: n-Butanol is a feasible fuel candidate for spark-ignition engines. The current paper carried out an experiment to explore effects of hydrogen addition on further improving the performance of a n-butanol engine under the part load and lean conditions. Within the test, the engine intake pressure and speed were respectively kept at 61.5 kPa and 1400 rpm. The volumetric fractions of hydrogen in the total intake gas (hydrogen + air) were constrained at 0 and 3%, respectively. Under a certain hydrogen blending level, the global excess air ratio of in-cylinder charge which was changed from the stoichiometric to near the lean burn limit was adjusted by varying the n-butanol injection duration. The experimental results confirmed that the brake thermal efficiency was heightened and the lean burn limit was extended after the hydrogen addition. Besides, compared with the pure n-butanol combustion, the hydrogen enrichment enables the engine to gain dropped ignition delay and rapid combustion duration. Moreover, CO and HC from the pure n-butanol engine were reduced by the hydrogen addition. NOx were generally reduced when the excess air ratio was raised. This suggested that NOx from the hydrogen-enriched butanol engine could also be controlled by lean combustion.

  11. Performance and fuel conversion efficiency of a spark ignition engine fueled with iso-butanol

    International Nuclear Information System (INIS)

    Irimescu, Adrian

    2012-01-01

    Highlights: ► Iso-butanol use in a port injection spark ignition engine. ► Fuel conversion efficiency calculated based on chassis dynamometer measurements. ► Combined study of engine efficiency and air–fuel mixture temperature. ► Excellent running characteristics with minor fuel system modifications. ► Up to 11% relative drop in part load efficiency due to incomplete fuel vaporization. -- Abstract: Alcohols are increasingly used as fuels for spark ignition engines. While ethanol is most commonly used, long chain alcohols such as butanol feature several advantages like increased heating value and reduced corrosive action. This study investigated the effect of fueling a port injection engine with iso-butanol, as compared to gasoline operation. Performance levels were maintained within the same limits as with the fossil fuel without modifications to any engine component. An additional electronic module was used for increasing fuel flow by extending the injection time. Fuel conversion efficiency decreased when the engine was fueled with iso-butanol by up to 9% at full load and by up to 11% at part load, calculated as relative values. Incomplete fuel evaporation was identified as the factor most likely to cause the drop in engine efficiency.

  12. Effectiveness of oxygen enriched hydrogen-HHO gas addition on DI diesel engine performance, emission and combustion characteristics

    Directory of Open Access Journals (Sweden)

    Premkartikkumar S.R.

    2014-01-01

    Full Text Available Nowadays, more researches focus on protecting the environment. Present investigation concern with the effectiveness of Oxygen Enriched hydrogen- HHO gas addition on performance, emission and combustion characteristics of a DI diesel engine. Here the Oxygen Enriched hydrogen-HHO gas was produced by the process of water electrolysis. When potential difference is applied across the anode and cathode electrodes of the electrolyzer, water is transmuted into Oxygen Enriched hydrogen-HHO gas. The produced gas was aspirated into the cylinder along with intake air at the flow rates of 1 lpm and 3.3 lpm. The results show that when Oxygen Enriched hydrogen-HHO gas was inducted, the brake thermal efficiency of the engine increased by 11.06%, Carbon monoxide decreased by 15.38%, Unburned hydrocarbon decreased by 18.18%, Carbon dioxide increased by 6.06%, however, the NOX emission increased by 11.19%.

  13. Performance and efficiency evaluation and heat release study of a direct-injection stratified-charge rotary engine

    Science.gov (United States)

    Nguyen, H. L.; Addy, H. E.; Bond, T. H.; Lee, C. M.; Chun, K. S.

    1987-01-01

    A computer simulation which models engine performance of the Direct Injection Stratified Charge (DISC) rotary engines was used to study the effect of variations in engine design and operating parameters on engine performance and efficiency of an Outboard Marine Corporation (OMC) experimental rotary combustion engine. Engine pressure data were used in a heat release analysis to study the effects of heat transfer, leakage, and crevice flows. Predicted engine data were compared with experimental test data over a range of engine speeds and loads. An examination of methods to improve the performance of the rotary engine using advanced heat engine concepts such as faster combustion, reduced leakage, and turbocharging is also presented.

  14. Performance and Emission Investigations of Jatropha and Karanja Biodiesels in a Single-Cylinder Compression-Ignition Engine Using Endoscopic Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mistri, Gayatri K.; Aggarwal, Suresh K.; Longman, Douglas; Agarwal, Avinash K.

    2015-09-07

    Biofuels produced from non-edible sources that are cultivated on marginal lands represent a viable source of renewable and carbon-neutral energy. In this context, biodiesel obtained from Jatropha and Karanja oil seeds have received significant interest, especially in South Asian subcontinent. Both of these fuels are produced from non-edible plant seeds with high oil content, which can be grown on marginal lands. In this research, we have investigated the performance and emission characteristics of Jatropha and Karanja methyl esters (biodiesel) and their blends with diesel. Another objective is to examine the effect of long-term storage on biodiesel’s oxidative stability. The biodiesels were produced at Indian Institute of Technology Kanpur, (IIT Kanpur), India, and the engine experiments were performed in a single cylinder, 4-stroke, compression ignition engine at Argonne National Laboratory (ANL), Chicago. An endoscope was used to visualize in-cylinder combustion events and examine the soot distribution. The effects of fuel and start of injection (SOI) on engine performance and emissions were investigated. Results indicated that ignition delay was shorter with biodiesel. Consequently the cylinder pressure and premixed heat release were higher for diesel compared to biodiesel. Engine performance data for biodiesel (J100, K100) and biodiesel blends (J30, K30) showed an increase in break thermal efficiency (BTE) (10.9%, 7.6% for biodiesel and blend, respectively), BSFC (13.1% and 5.6%), and NOx emission (9.8% and 12.9%), and a reduction in BSHC (8.64% and 12.9%), and BSCO (15.56% and 4.0%). The soot analysis from optical images qualitatively showed that biodiesel and blends produced less soot compared to diesel. The temperature profiles obtained from optical imaging further supported higher NOx in biodiesels and their blends compared to diesel. Additionally, the data indicated that retarding the injection timing leads to higher BSFC, but lower flame temperatures

  15. Bandgap Engineering of Lead-Free Double Perovskite Cs2 AgBiBr6 through Trivalent Metal Alloying.

    Science.gov (United States)

    Du, Ke-Zhao; Meng, Weiwei; Wang, Xiaoming; Yan, Yanfa; Mitzi, David B

    2017-07-03

    The double perovskite family, A 2 M I M III X 6 , is a promising route to overcome the lead toxicity issue confronting the current photovoltaic (PV) standout, CH 3 NH 3 PbI 3 . Given the generally large indirect band gap within most known double perovskites, band-gap engineering provides an important approach for targeting outstanding PV performance within this family. Using Cs 2 AgBiBr 6 as host, band-gap engineering through alloying of In III /Sb III has been demonstrated in the current work. Cs 2 Ag(Bi 1-x M x )Br 6 (M=In, Sb) accommodates up to 75 % In III with increased band gap, and up to 37.5 % Sb III with reduced band gap; that is, enabling ca. 0.41 eV band gap modulation through introduction of the two metals, with smallest value of 1.86 eV for Cs 2 Ag(Bi 0.625 Sb 0.375 )Br 6 . Band structure calculations indicate that opposite band gap shift directions associated with Sb/In substitution arise from different atomic configurations for these atoms. Associated photoluminescence and environmental stability of the three-metal systems are also assessed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Shuttle performance enhancement using an uprated OMS engine

    Science.gov (United States)

    Mallini, Charles J.; Boyd, William C.

    1988-01-01

    The NASA Space Shuttle's Orbital Maneuvering Engine (OME) has been investigated as the basis for an enhancement of Shuttle operational flexibility. The Johnson Space Center has given attention to an upgrading of the OME through the use of a gas generator-driven turbopump to raise engine specific impulse. Hardware tests have demonstrated the projected performance gains, which will yield an enhanced, intact ascent-abort capability, as well an an improved on-orbit payload and altitude capability. Attention is given to the application of these capabilities to the Hubble Space Telescope's deployment.

  17. Control room human engineering influences on operator performance

    International Nuclear Information System (INIS)

    Finlayson, F.C.

    1977-01-01

    Three general groups of factors influence operator performance in fulfilling their responsibilities in the control room: (1) control room and control system design, informational data displays (operator inputs) as well as control board design (for operator output); (2) operator characteristics, including those skills, mental, physical, and emotional qualities which are functions of operator selection, training, and motivation; (3) job performance guides, the prescribed operating procedures for normal and emergency operations. This paper presents some of the major results of an evaluation of the effect of human engineering on operator performance in the control room. Primary attention is given to discussion of control room and control system design influence on the operator. Brief observations on the influences of operator characteristics and job performance guides (operating procedures) on performance in the control room are also given. Under the objectives of the study, special emphasis was placed on the evaluation of the control room-operator relationships for severe emergency conditions in the power plant. Consequently, this presentation is restricted largely to material related to emergency conditions in the control room, though it is recognized that human engineering of control systems is of equal (or greater) importance for many other aspects of plant operation

  18. Performance and emissions of a heavy duty diesel engine fuelled whit palm oil biodiesel and premium diesel

    International Nuclear Information System (INIS)

    Acevedo, Helmer; Mantilla, Juan

    2011-01-01

    Biodiesels are promoted as alternative fuels due their potential to reduce dependency on fossil fuels and carbon emissions. Research has been addressed in order to study the emissions of light duty vehicles. However, the particle matter and gaseous emissions emitted from heavy-duty diesel engines fueled with palm-biodiesel and premium diesel fuel have seldom been addressed. The objective of this study was to explore the performance and emission levels of a Cummins 4-stroke, 9.5 liter, 6-cylinder diesel engine with common rail fuel injection, and a cooled exhaust gas recirculation (EGR). The palm-biodiesel lowered maximum engine output by much as 10 %. The engine emissions data is compared to standards from 2004, and is determined to pass all standards for diesel fuel, but does not meet emissions standards for PM or NOx for palm-biodiesel.

  19. Performance of the INTPIX6 SOI pixel detector

    International Nuclear Information System (INIS)

    Arai, Y.; Miyoshi, T.; Bugiel, Sz.; Dasgupta, R.; Idzik, M.; Kapusta, P.; Turala, M.; Kucewicz, W.

    2017-01-01

    Characterization of the monolithic pixel detector INPTIX6, designed at KEK and fabricated in Lapis 0.2 μ  m Fully-Depleted, Low-Leakage Silicon-On-Insulator (SOI) CMOS technology, was performed. The INTPIX6 comprises a large area of 1408 × 896 integrating type squared pixels of 12 micron pitch. In this work the performance and measurement results of the prototypes produced on lower resistivity Czochralski type (CZ-n) and high resistivity floating zone (FZ-n) sensor wafers are presented. Using 241 Am radioactive source the noise of INTPIX6 was measured, showing the ENC (Equivalent Noise Charge) of about 70 e − . The resolution calculated from the FWHM of the Iron-55 X-ray peak was about 100 e − . The radiation hardness of the SOI pixel detector was also investigated. The CZ-n type INTPIX6 received a dose of 60 krad and its performance has been continuously monitored during the irradiation.

  20. Performance of the INTPIX6 SOI pixel detector

    Science.gov (United States)

    Arai, Y.; Bugiel, Sz.; Dasgupta, R.; Idzik, M.; Kapusta, P.; Kucewicz, W.; Miyoshi, T.; Turala, M.

    2017-01-01

    Characterization of the monolithic pixel detector INPTIX6, designed at KEK and fabricated in Lapis 0.2 μ m Fully-Depleted, Low-Leakage Silicon-On-Insulator (SOI) CMOS technology, was performed. The INTPIX6 comprises a large area of 1408 × 896 integrating type squared pixels of 12 micron pitch. In this work the performance and measurement results of the prototypes produced on lower resistivity Czochralski type (CZ-n) and high resistivity floating zone (FZ-n) sensor wafers are presented. Using 241Am radioactive source the noise of INTPIX6 was measured, showing the ENC (Equivalent Noise Charge) of about 70 e-. The resolution calculated from the FWHM of the Iron-55 X-ray peak was about 100 e-. The radiation hardness of the SOI pixel detector was also investigated. The CZ-n type INTPIX6 received a dose of 60 krad and its performance has been continuously monitored during the irradiation.

  1. IMPLEMENTATION OF DIOXANE AND DIESEL FUEL BLENDS TO REDUCE EMISSION AND TO IMPROVE PERFORMANCE OF THE COMPRESSION IGNITION ENGINE

    OpenAIRE

    SENDILVELAN S.; SUNDAR RAJ C.

    2017-01-01

    Performance of a compression ignition engine fuelled with 1, 4 Dioxane- diesel blends is evaluated. A single-cylinder, air-cooled, direct injection diesel engine developing a power output of 5.2 kW at 1500 rev/min is used. Base data is generated with standard diesel fuel subsequently; five fuel blends namely 90:10, 80:20, 70:30, 60:40 and 50:50 percentages by volume of diesel and dioxane were prepared and tested in the diesel engine. Engine performance and emission data were used to optimize ...

  2. Adjusting the operating characteristics to improve the performance of an emulsified palm oil methyl ester run diesel engine

    International Nuclear Information System (INIS)

    Debnath, Biplab K.; Sahoo, Niranjan; Saha, Ujjwal K.

    2013-01-01

    Highlights: ► The oxygenated biodiesel has a lower calorific value and emits higher NO X than diesel. ► The objective is to study the water in palm oil biodiesel emulsion in a diesel engine. ► The tests are performed at higher compression ratio and retarded injection timing. ► The results obtained are compared with a POME run diesel engine. ► Higher efficiency, lower ignition delay and emissions are the outcomes. - Abstract: The popularity of emulsified fuels as alternative to diesel is cumulative. The water in diesel emulsion is the most practiced one. The presence of water in emulsion and its micro-explosion reduces emissions. However, the emulsified biodiesel is not properly explored. The reason may be due to its lesser calorific value that does not augment efficiency. Alongside oxygenated biodiesel generally emits higher NO X than diesel. Therefore, the present investigation targets at finding the performance, combustion and emission characteristics of emulsified biodiesel in a diesel engine at an elevated compression ratio (CR) and retarded injection timing (IT). This is because; at this CR–IT combination emulsified fuel will be injected at the warmer environment, mechanically created inside the cylinder. The objective is to achieve a faster combustion, lower ignition delay (ID), improved performance and emission characteristics. The biodiesel used in this work is the palm oil methyl ester (POME). The prepared two-phase water in POME (WIP) emulsion is tested in a variable compression ratio (VCR) diesel engine at CR = 18 and IT = 20°BTDC. The results obtained are then compared with the POME run engine data under the same CR and IT specifications. Additionally, experiments have also been conducted in the same engine at CR = 17.5 and IT = 23°BTDC to compare its results with those of WIP and POME run engines

  3. The new 3.5L V6 gasoline engine adopting the innovative stoichiometric direct injection system D-4S; Der neue 3.5L V6 Benzinmotor mit dem innovativen stoechiometrischen Direkteinspritzsystem D-4S

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, N.; Sugiyama, M.; Abe, S. [Toyota Motor Corp. (Japan)

    2006-07-01

    A new 3.5L V6 engine was introduced for the new Lexus sedan vehicles, GS350 and IS350 in Japan in August 2005. In 2006, this engine will be adapted to the power source of the new hybrid rear wheel driven vehicle GS450h. This new engine uses a newly developed stoichiometric direct injection system with two fuel injectors in each cylinder (this system is called D-4S: direct injection 4-stroke gasoline engine system superior version). One is a direct injection injector generating a dual-vertical-fan-shaped spray with wide dispersion, while the other is a port injector. This new fuel injection system can maximize the DI advantage for full-load performance. Simultaneously the optimisation of the intake and exhaust system and the increase of stiffness of the moving parts such as the timing chain system and the valve train system enable a specific power of 67kW/L and 234kW at 6400r/min to be achieved, placing it near the top of all naturally aspirated production gasoline engines in the world. Additionally, employing the dual-VVTi system (intake and exhaust VVT system) and the long dual exhaust pipe, an excellent maximum torque of 380Nm at 4800r/min was achieved while keeping 90 percent of maximum torque for a wide engine speed range from 2000r/min to 6500r/min. (orig.)

  4. Numerical study on steam injection in a turbocompound diesel engine for waste heat recovery

    International Nuclear Information System (INIS)

    Zhao, Rongchao; Li, Weihua; Zhuge, Weilin; Zhang, Yangjun; Yin, Yong

    2017-01-01

    Highlights: • Steam injection was adopted in a turbocompound engine to further recover waste heat. • Thermodynamics model for the turbocompound engine was established and calibrated. • Steam injection at CT inlet obtained lower engine BSFC than injection at PT inlet. • The optimal injected steam mass at different engine speeds was presented. • Turbocompounding combined with steam injection can reduce the BSFC by 6.0–11.2%. - Abstract: Steam injection and turbocompouding are both effective methods for engine waste heat recovery. The fuel saving potential obtained by the combination of the two methods is not clear. Based on a turbocompound engine developed in the previous study, the impacts of pre-turbine steam injection on the fuel saving potentials of the turbocompound engine were investigated in this paper. Firstly, thermodynamic cycle model for the baseline turbocompound engine is established using commercial software GT-POWER. The cycle model is calibrated with the experiment data of the turbocompound engine and achieves high accuracy. After that, the influences of steam mass flow rate, evaporating pressure and injection location on the engine performance are studied. In addition, the impacts of hot liquid water injection are also investigated. The results show that steam injection at the turbocharger turbine inlet can reduce the turbocompound engine BSFC at all speed conditions. The largest fuel reduction 6.15% is obtained at 1000 rpm condition. However, steam injection at power turbine inlet can only lower the BSFC at high speed conditions. Besides, it is found that hot liquid water injection in the exhaust cannot improve the engine performance. When compared with the conventional turbocharged engine, the combination of turbocompounding and steam injection can reduce the BSFC by 6.0–11.2% over different speeds.

  5. Bandgap engineering of lead-free double perovskite Cs_2AgBiBr_6 through trivalent metal alloying

    International Nuclear Information System (INIS)

    Du, Ke-zhao; Mitzi, David B.; Meng, Weiwei; Wang, Xiaoming; Yan, Yanfa

    2017-01-01

    The double perovskite family, A_2M"IM"I"I"IX_6, is a promising route to overcome the lead toxicity issue confronting the current photovoltaic (PV) standout, CH_3NH_3PbI_3. Given the generally large indirect band gap within most known double perovskites, band-gap engineering provides an important approach for targeting outstanding PV performance within this family. Using Cs_2AgBiBr_6 as host, band-gap engineering through alloying of In"I"I"I/Sb"I"I"I has been demonstrated in the current work. Cs_2Ag(Bi_1_-_xM_x)Br_6 (M=In, Sb) accommodates up to 75 % In"I"I"I with increased band gap, and up to 37.5 % Sb"I"I"I with reduced band gap; that is, enabling ca. 0.41 eV band gap modulation through introduction of the two metals, with smallest value of 1.86 eV for Cs_2Ag(Bi_0_._6_2_5Sb_0_._3_7_5)Br_6. Band structure calculations indicate that opposite band gap shift directions associated with Sb/In substitution arise from different atomic configurations for these atoms. Associated photoluminescence and environmental stability of the three-metal systems are also assessed. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Engineered Barrier System performance requirements systems study report. Revision 02

    International Nuclear Information System (INIS)

    Balady, M.A.

    1997-01-01

    This study evaluates the current design concept for the Engineered Barrier System (EBS), in concert with the current understanding of the geologic setting to assess whether enhancements to the required performance of the EBS are necessary. The performance assessment calculations are performed by coupling the EBS with the geologic setting based on the models (some of which were updated for this study) and assumptions used for the 1995 Total System Performance Assessment (TSPA). The need for enhancements is determined by comparing the performance assessment results against the EBS related performance requirements. Subsystem quantitative performance requirements related to the EBS include the requirement to allow no more than 1% of the waste packages (WPs) to fail before 1,000 years after permanent closure of the repository, as well as a requirement to control the release rate of radionuclides from the EBS. The EBS performance enhancements considered included additional engineered components as well as evaluating additional performance available from existing design features but for which no performance credit is currently being taken

  7. Engineered Barrier System performance requirements systems study report. Revision 02

    Energy Technology Data Exchange (ETDEWEB)

    Balady, M.A.

    1997-01-14

    This study evaluates the current design concept for the Engineered Barrier System (EBS), in concert with the current understanding of the geologic setting to assess whether enhancements to the required performance of the EBS are necessary. The performance assessment calculations are performed by coupling the EBS with the geologic setting based on the models (some of which were updated for this study) and assumptions used for the 1995 Total System Performance Assessment (TSPA). The need for enhancements is determined by comparing the performance assessment results against the EBS related performance requirements. Subsystem quantitative performance requirements related to the EBS include the requirement to allow no more than 1% of the waste packages (WPs) to fail before 1,000 years after permanent closure of the repository, as well as a requirement to control the release rate of radionuclides from the EBS. The EBS performance enhancements considered included additional engineered components as well as evaluating additional performance available from existing design features but for which no performance credit is currently being taken.

  8. Performance engineering in the community atmosphere model

    International Nuclear Information System (INIS)

    Worley, P; Mirin, A; Drake, J; Sawyer, W

    2006-01-01

    The Community Atmosphere Model (CAM) is the atmospheric component of the Community Climate System Model (CCSM) and is the primary consumer of computer resources in typical CCSM simulations. Performance engineering has been an important aspect of CAM development throughout its existence. This paper briefly summarizes these efforts and their impacts over the past five years

  9. Sensor Selection for Aircraft Engine Performance Estimation and Gas Path Fault Diagnostics

    Science.gov (United States)

    Simon, Donald L.; Rinehart, Aidan W.

    2016-01-01

    This paper presents analytical techniques for aiding system designers in making aircraft engine health management sensor selection decisions. The presented techniques, which are based on linear estimation and probability theory, are tailored for gas turbine engine performance estimation and gas path fault diagnostics applications. They enable quantification of the performance estimation and diagnostic accuracy offered by different candidate sensor suites. For performance estimation, sensor selection metrics are presented for two types of estimators including a Kalman filter and a maximum a posteriori estimator. For each type of performance estimator, sensor selection is based on minimizing the theoretical sum of squared estimation errors in health parameters representing performance deterioration in the major rotating modules of the engine. For gas path fault diagnostics, the sensor selection metric is set up to maximize correct classification rate for a diagnostic strategy that performs fault classification by identifying the fault type that most closely matches the observed measurement signature in a weighted least squares sense. Results from the application of the sensor selection metrics to a linear engine model are presented and discussed. Given a baseline sensor suite and a candidate list of optional sensors, an exhaustive search is performed to determine the optimal sensor suites for performance estimation and fault diagnostics. For any given sensor suite, Monte Carlo simulation results are found to exhibit good agreement with theoretical predictions of estimation and diagnostic accuracies.

  10. Collection of measurement data from in-situ experiment for performance confirmation of engineered barrier system at Horonobe Underground Research Laboratory. FY2015

    International Nuclear Information System (INIS)

    Nakayama, Masashi; Ohno, Hirokazu; Nakayama, Mariko; Kobayashi, Masato

    2016-07-01

    The Horonobe Underground Research Laboratory (URL) Project has being pursued by Japan Atomic Energy Agency to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formation at Horonobe, northern Hokkaido. The URL Project consists of two major research areas, 'Geoscientific Research' and 'Research and Development on Geological Disposal Technologies', and proceeds in three overlapping phases, 'Phase I: Surface-based investigations', 'Phase II: Investigations during tunnel excavation' and 'Phase III: Investigations in the underground facilities', over a period of around 20 years. Phase III investigation was started in 2010 fiscal year. The in-situ experiment for performance confirmation of engineered barrier system (EBS experiment) had been prepared from 2013 to 2014 fiscal year at G.L.-350m gallery, and heating by electric heater in simulated overpack had started in January, 2015. One of objectives of the experiment is acquiring data concerned with Thermal - Hydrological - Mechanical - Chemical (THMC) coupled behavior. These data will be used in order to confirm the performance of engineered barrier system. This report summarizes the measurement data acquired from the EBS experiment from December, 2014 to March, 2016. The summarized data of the EBS experiment will be published periodically. A CD-ROM is attached as an appendix. (J.P.N)

  11. Four-Stroke, Internal Combustion Engine Performance Modeling

    Science.gov (United States)

    Wagner, Richard C.

    In this thesis, two models of four-stroke, internal combustion engines are created and compared. The first model predicts the intake and exhaust processes using isentropic flow equations augmented by discharge coefficients. The second model predicts the intake and exhaust processes using a compressible, time-accurate, Quasi-One-Dimensional (Q1D) approach. Both models employ the same heat release and reduced-order modeling of the cylinder charge. Both include friction and cylinder loss models so that the predicted performance values can be compared to measurements. The results indicate that the isentropic-based model neglects important fluid mechanics and returns inaccurate results. The Q1D flow model, combined with the reduced-order model of the cylinder charge, is able to capture the dominant intake and exhaust fluid mechanics and produces results that compare well with measurement. Fluid friction, convective heat transfer, piston ring and skirt friction and temperature-varying specific heats in the working fluids are all shown to be significant factors in engine performance predictions. Charge blowby is shown to play a lesser role.

  12. Investigation of the effects of steam injection on performance and NO emissions of a diesel engine running with ethanol–diesel blend

    International Nuclear Information System (INIS)

    Gonca, Guven

    2014-01-01

    Highlights: • A combustion simulation is conducted by using two-zone combustion model. • Effect of steam injection into engine fueled ethanol–diesel blend are investigated. • It is shown that this method improves performance and diminish NO emissions. - Abstract: The use of ethanol–diesel blends in diesel engines without any modifications negatively affects the engine performance and NOx emissions. However, steam injection method decreases NOx emissions and improves the engine performance. In this study, steam injection method is applied into a single cylinder, four-stroke, direct injection, naturally aspirated diesel engine fueled with ethanol–diesel blend in order improve the performance and NOx emissions by using two-zone combustion model for 15% ethanol addition and 20% steam ratios at full load condition. The results obtained are compared with conventional diesel engine (D), steam injected diesel engine (D + S20), diesel engine fueled with ethanol–diesel blend (E15) and steam injected diesel engine fueled with ethanol–diesel blend (E15 + S20) in terms of performance and NO emissions. The results showed that as NO emissions considerably decrease the performance significantly increases with steam injection method

  13. An Integrated Architecture for On-Board Aircraft Engine Performance Trend Monitoring and Gas Path Fault Diagnostics

    Science.gov (United States)

    Simon, Donald L.

    2010-01-01

    Aircraft engine performance trend monitoring and gas path fault diagnostics are closely related technologies that assist operators in managing the health of their gas turbine engine assets. Trend monitoring is the process of monitoring the gradual performance change that an aircraft engine will naturally incur over time due to turbomachinery deterioration, while gas path diagnostics is the process of detecting and isolating the occurrence of any faults impacting engine flow-path performance. Today, performance trend monitoring and gas path fault diagnostic functions are performed by a combination of on-board and off-board strategies. On-board engine control computers contain logic that monitors for anomalous engine operation in real-time. Off-board ground stations are used to conduct fleet-wide engine trend monitoring and fault diagnostics based on data collected from each engine each flight. Continuing advances in avionics are enabling the migration of portions of the ground-based functionality on-board, giving rise to more sophisticated on-board engine health management capabilities. This paper reviews the conventional engine performance trend monitoring and gas path fault diagnostic architecture commonly applied today, and presents a proposed enhanced on-board architecture for future applications. The enhanced architecture gains real-time access to an expanded quantity of engine parameters, and provides advanced on-board model-based estimation capabilities. The benefits of the enhanced architecture include the real-time continuous monitoring of engine health, the early diagnosis of fault conditions, and the estimation of unmeasured engine performance parameters. A future vision to advance the enhanced architecture is also presented and discussed

  14. Design and Performance of LPG Fuel Mixer for Dual Fuel Diesel Engine

    Science.gov (United States)

    Desrial; Saputro, W.; Garcia, P. P.

    2018-05-01

    Small horizontal diesel engines are commonly used for agricultural machinery, however, availability of diesel fuel become one of big problems especially in remote area. Conversely, in line with government policy for conversion of kerosene into LPG for cooking, then LPG become more popular and available even in remote area. Therefore, LPG is potential fuel to replace the shortage of diesel fuel for operating diesel engine in remote area. The purpose of this study was to design mixing device for using dual fuel i.e. LPG and diesel fuel and evaluate its performance accordingly. Simulation by using CFD was done in order to analyze mixture characteristics of LPG in air intake manifold. The performance test was done by varying the amount of LPG injected in intake air at 20%, 25%, 30%, 35%, until 40%, respectively. Result of CFD contour simulation showed the best combination when mixing 30% LPG into the intake air. Performance test of this research revealed that mixing LPG in air intake can reduce the diesel fuel consumption about 0.7 l/hour (without load) and 1.14 l/hour (with load). Diesel engine revolution increases almost 300 rpm faster than when using diesel fuel only. Based on economic analysis, using the fuel combination (diesel fuel – LPG) is not recommended in the area near SPBU where the price of diesel fuel is standard. However, using the fuel combination LPG-diesel fuel is highly recommended in the remote areas in Indonesia where price of diesel fuel is comparatively expensive which will provide cheaper total fuel cost for diesel engine operation.

  15. Hot-Fire Testing of 100 LB(sub F) LOX/LCH4 Reaction Control Engine at Altitude Conditions

    Science.gov (United States)

    Marshall, William M.; Kleinhenz, Julie E.

    2010-01-01

    Liquid oxygen/liquid methane (LO2/LCH4 ) has recently been viewed as a potential green propulsion system for both the Altair ascent main engine (AME) and reaction control system (RCS). The Propulsion and Cryogenic Advanced Development Project (PCAD) has been tasked by NASA to develop these green propellant systems to enable safe and cost effective exploration missions. However, experience with LO2/LCH4 as a propellant combination is limited, so testing of these systems is critical to demonstrating reliable ignition and performance. A test program of a 100 lb f reaction control engine (RCE) is underway at the Altitude Combustion Stand (ACS) of the NASA Glenn Research Center, with a focus on conducting tests at altitude conditions. These tests include a unique propellant conditioning feed system (PCFS) which allows for the inlet conditions of the propellant to be varied to test warm to subcooled liquid propellant temperatures. Engine performance, including thrust, c* and vacuum specific impulse (I(sub sp,vac)) will be presented as a function of propellant temperature conditions. In general, the engine performed as expected, with higher performance at warmer propellant temperatures but better efficiency at lower propellant temperatures. Mixture ratio effects were inconclusive within the uncertainty bands of data, but qualitatively showed higher performance at lower ratios.

  16. Over compression influence to the performances of the spark ignition engines

    Science.gov (United States)

    Rakosi, E.; Talif, S. G.; Manolache, G.

    2016-08-01

    This paper presents the theoretical and experimental results of some procedures used in improving the performances of the automobile spark ignition engines. The study uses direct injection and high over-compression applied to a standard engine. To this purpose, the paper contains both the constructive solutions and the results obtained from the test bed concerning the engine power indices, fuel consumption and exhaust emissions.

  17. Advanced Reciprocating Engine Systems (ARES) Research at Argonne National Laboratory. A Report

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Sreenath [Argonne National Lab. (ANL), Argonne, IL (United States); Biruduganti, Muni [Argonne National Lab. (ANL), Argonne, IL (United States); Bihari, Bipin [Argonne National Lab. (ANL), Argonne, IL (United States); Sekar, Raj [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-08-01

    The goals of these experiments were to determine the potential of employing spectral measurements to deduce combustion metrics such as HRR, combustion temperatures, and equivalence ratios in a natural gas-fired reciprocating engine. A laser-ignited, natural gas-fired single-cylinder research engine was operated at various equivalence ratios between 0.6 and 1.0, while varying the EGR levels between 0% and maximum to thereby ensure steady combustion. Crank angle-resolved spectral signatures were collected over 266-795 nm, encompassing chemiluminescence emissions from OH*, CH*, and predominantly by CO2* species. Further, laser-induced gas breakdown spectra were recorded under various engine operating conditions.

  18. Rocket Engine Innovations Advance Clean Energy

    Science.gov (United States)

    2012-01-01

    During launch countdown, at approximately T-7 seconds, the Space Shuttle Main Engines (SSMEs) roar to life. When the controllers indicate normal operation, the solid rocket boosters ignite and the shuttle blasts off. Initially, the SSMEs throttle down to reduce stress during the period of maximum dynamic pressure, but soon after, they throttle up to propel the orbiter to 17,500 miles per hour. In just under 9 minutes, the three SSMEs burn over 1.6 million pounds of propellant, and temperatures inside the main combustion chamber reach 6,000 F. To cool the engines, liquid hydrogen circulates through miles of tubing at -423 F. From 1981to 2011, the Space Shuttle fleet carried crew and cargo into orbit to perform a myriad of unprecedented tasks. After 30 years and 135 missions, the feat of engineering known as the SSME boasted a 100-percent flight success rate.

  19. Development of Key Performance Indicators for the Engineering Technology Education Programs in Taiwan

    Science.gov (United States)

    Lee, Lung-Sheng; Lai, Chun-Chin

    2004-01-01

    In comparison with engineering, engineering technology is more practical and purposeful. The engineering technology education programs in Taiwan have been mainly offered in 56 universities/colleges of technology (UTs/CTs) and are anticipated to continuously improve their performance to prepare quality engineering technologists. However, it is…

  20. Experimental Study on Revetec Engine Cam Performance

    International Nuclear Information System (INIS)

    Gasim, Maisara Mohyeldin; Chui, Lee Giok; Anwar, Khirul Azhar bin

    2012-01-01

    In Revetec engine (three-lobed) cam replaces the crankshaft to convert the reciprocating motion of the engine piston, to a rotating motion in the drive line. Since the cam controls the piston movement, the cam profile has a great effect on engine performance. In this paper an experimental study was done to a (three- lobed) cam with Cycloidal motion profile but with different ratios between the base circle radius of the cam and the radius of the roller follower. DEWESoft was used to find the displacement and the vibration of the piston, and compare the actual results from the test with the theoretical results from the cam profile equation. The results showed that there is a periods of miss contact between the follower and the cam when the ratio between the base circle radius of the cam and the radius of the roller follower is less than a certain value, and also increasing of vibration. The suggested ratio between the cam and follower radius is to be more than 2:1.

  1. STUDIES AND EXPERIMENTAL RESEARCH CONCERNING THE PERFORMANCES OF THE INTERNAL COMBUSTION ENGINE, CONTROLLED OVER THE POWERTRAIN CONTROL MODULE

    Directory of Open Access Journals (Sweden)

    Narcis URICANU

    2012-05-01

    Full Text Available the paper present how can be controlled a road vehicle through a powertrain control module, a type of ECU, programmable ECU (Electronic Control Unit, when we want to increase the performances of the engine, compared with the standard performances of the engine. The programmable ECU is a control system which replaces the ECU from the vehicle and is able to manage, better than the standard ECU, the behaviour of the spark ignition engine on increasing the performances. Sports cars need to obtain the best performances from them engine, the specific regimes at which them must function impose certain limits which will be achieved during the competition. Nowadays the vehicles designers and engineering, working for the production cars, have adopted many solutions from the race cars area, due to the advantage offered by these elements (lightweight materials, fasts responses, high speeds and system like programmable ECU. To obtain more power on the engine, we have to find and applied the best solution concerning the internal combustion processes and the consequences concerning the exhaust. This papers present who can be increased the performances of the spark ignition engine through the air-flow ratio, controlled by the programmable ECU and with the sensors help, like water temperature sensor, intake air temperature sensor, throttle position sensor, lambda sensor

  2. Performance of the engineering analysis and data system 2 common file system

    Science.gov (United States)

    Debrunner, Linda S.

    1993-01-01

    The Engineering Analysis and Data System (EADS) was used from April 1986 to July 1993 to support large scale scientific and engineering computation (e.g. computational fluid dynamics) at Marshall Space Flight Center. The need for an updated system resulted in a RFP in June 1991, after which a contract was awarded to Cray Grumman. EADS II was installed in February 1993, and by July 1993 most users were migrated. EADS II is a network of heterogeneous computer systems supporting scientific and engineering applications. The Common File System (CFS) is a key component of this system. The CFS provides a seamless, integrated environment to the users of EADS II including both disk and tape storage. UniTree software is used to implement this hierarchical storage management system. The performance of the CFS suffered during the early months of the production system. Several of the performance problems were traced to software bugs which have been corrected. Other problems were associated with hardware. However, the use of NFS in UniTree UCFM software limits the performance of the system. The performance issues related to the CFS have led to a need to develop a greater understanding of the CFS organization. This paper will first describe the EADS II with emphasis on the CFS. Then, a discussion of mass storage systems will be presented, and methods of measuring the performance of the Common File System will be outlined. Finally, areas for further study will be identified and conclusions will be drawn.

  3. Analysis on the heating performance of a gas engine driven air to water heat pump based on a steady-state model

    International Nuclear Information System (INIS)

    Zhang, R.R.; Lu, X.S.; Li, S.Z.; Lin, W.S.; Gu, A.Z.

    2005-01-01

    In this study, the heating performance of a gas engine driven air to water heat pump was analyzed using a steady state model. The thermodynamic model of a natural gas engine is identified by the experimental data and the compressor model is created by several empirical equations. The heat exchanger models are developed by the theory of heat balance. The system model is validated by comparing the experimental and simulation data, which shows good agreement. To understand the heating characteristic in detail, the performance of the system is analyzed in a wide range of operating conditions, and especially the effect of engine waste heat on the heating performance is discussed. The results show that engine waste heat can provide about 1/3 of the total heating capacity in this gas engine driven air to water heat pump. The performance of the engine, heat pump and integral system are analyzed under variations of engine speed and ambient temperature. It shows that engine speed has remarkable effects on both the engine and heat pump, but ambient temperature has little influence on the engine's performance. The system and component performances in variable speed operating conditions is also discussed at the end of the paper

  4. Electrical performances of pyroelectric bimetallic strip heat engines describing a Stirling cycle

    Science.gov (United States)

    Arnaud, A.; Boughaleb, J.; Monfray, S.; Boeuf, F.; Cugat, O.; Skotnicki, T.

    2015-12-01

    This paper deals with the analytical modeling of pyroelectric bimetallic strip heat engines. These devices are designed to exploit the snap-through of a thermo-mechanically bistable membrane to transform a part of the heat flowing through the membrane into mechanical energy and to convert it into electric energy by means of a piezoelectric layer deposited on the surface of the bistable membrane. In this paper, we describe the properties of these heat engines in the case when they complete a Stirling cycle, and we evaluate the performances (available energy, Carnot efficiency...) of these harvesters at the macro- and micro-scale.

  5. Air and fuel supercharge in the performance of a diesel cycle engine

    Directory of Open Access Journals (Sweden)

    Marcelo Silveira de Farias

    Full Text Available ABSTRACT: This paper aimed to evaluate the performance of a Diesel cycle engine, changing the configurations for the air and fuel supply system. Variables analyzed were torque, power, specific fuel consumption and thermal efficiency in four different engine configurations (aspirated, aspirated + service, turbocharged + service and turbocharged. For that, there were dynamometer experiments by power take-off of an agricultural tractor. The experimental outline used was entirely randomized, in a bifatorial design with three repetitions. Results indicated that the engine supercharge, compared to its original configuration, provided a significant increase of torque and power. Only the addition of turbo does not caused a significant effect in the engine performance. Application of turbocharger provides an improvement in the burning of the air/fuel mixture, which favors the increase of engine power and; consequently, reduced the specific fuel consumption.

  6. Shape memory heat engines

    Science.gov (United States)

    Salzbrenner, R.

    1984-06-01

    The mechanical shape memory effect associated with a thermoelastic martensitic transformation can be used to convert heat directly into mechanical work. Laboratory simulation of two types of heat engine cycles (Stirling and Ericsson) has been performed to measure the amount of work available/cycle in a Ni-45 at. pct Ti alloy. Tensile deformations at ambient temperature induced martensite, while a subsequent increase in temperature caused a reversion to the parent phase during which a load was carried through the strain recovery (i.e., work was accomplished). The amount of heat necessary to carry the engines through a cycle was estimated from calorimeter measurements and the work performed/cycle. The measured efficiency of the system tested reached a maximum of 1.4 percent, which was well below the theoretical (Carnot) maximum efficiency of 35.6 percent.

  7. Treatability studies performed in support of an engineering evaluation/cost analysis

    International Nuclear Information System (INIS)

    Myers, J.M.; Mueller, J.P.; Sundquist, J.A.; Moore, G.W.

    1995-01-01

    The Southern Shipbuilding Corporation (SSC) site is located on 54 acres of wooded land adjacent to Bayou Bonfouca, approximately 1.8 miles downstream of the Bayou Bonfouca National Priorities List (NPL) Superfund site in Slidell, St. Tammany Parish, Louisiana. Two one-acre, impoundments on the SSC site were used to store wastes generated from vessel cleaning. Wastes stored in the impoundments are migrating into Bayou Bonfouca, which empties into Lake Pontchartrain. In addition, the impoundments are frequently invaded by flood waters. The US EPA Emergency Response Branch (EPA-ERB) performed a site investigation which indicated that the majority of the contamination is petroleum-related and that the compounds of concern are polycyclic aromatic hydrocarbons (PARs). The wastes are generally contained with the two impoundments and surrounding soils. As part of an Engineering Evaluation/Cost Basis (EE/CA) of potential response action alternatives, four treatability studies were performed. A thermal treatment (incineration) study was performed at the EPA's Incineration Research Facility (IRF). Biodegradation remedy selection feasibility assessment was conducted on-site. A remedy screening soil washing study was also performed by TAT. A solidification/stabilization (S/S) study was conducted through EPA's Risk Reduction Engineering Laboratory (RREL) to ascertain if the PAHs could be immobilized within a solid matrix. Experimental objectives, dead methodology and conclusions for these studies are presented as they relate to potential response actions being evaluated at the SSC site

  8. Services performed by an engineering consultant

    International Nuclear Information System (INIS)

    Seyffert, L.

    1984-01-01

    In the near future, services for the nuclear power plants in operation will become particularly important. Already at the present stage, engineering firms contribute to the planning of revisions and repair work, to the design, procurement and project management of new components and subsystems, respectively; they delegate supporting engineering personnel for the execution of in-plant measures, create special EDP software, develop quality assurance systems and work on quality control. This enumeration presents a rough outline of the field of activities, although it is far from complete. Also, the lines are drawn rather artibrarily, leaving out, for instance, the extensive activities in the fields of waste management and fuel management. These are main activities of specialized engineering firms which will be the subject of a future report. (orig.) [de

  9. Baseline performance and emissions data for a single-cylinder, direct-injected diesel engine

    Science.gov (United States)

    Dezelick, R. A.; Mcfadden, J. J.; Ream, L. W.; Barrows, R. F.

    1983-01-01

    Comprehensive fuel consumption, mean effective cylinder pressure, and emission test results for a supercharged, single-cylinder, direct-injected, four-stroke-cycle, diesel test engine are documented. Inlet air-to-exhaust pressure ratios were varied from 1.25 to 3.35 in order to establish the potential effects of turbocharging techniques on engine performance. Inlet air temperatures and pressures were adjusted from 34 to 107 C and from 193 to 414 kPa to determine the effects on engine performance and emissions. Engine output ranged from 300 to 2100 kPa (brake mean effective pressure) in the speed range of 1000 to 3000 rpm. Gaseous and particulate emission rates were measured. Real-time values of engine friction and pumping loop losses were measured independently and compared with motored engine values.

  10. Validation of the Performance of Engineered Barriers

    International Nuclear Information System (INIS)

    Choi, Jongwon; Cho, Wonjin; Kwon, Sangki

    2012-04-01

    To study the thermal-hydro-mechanical (THM) and thermal-hydro-mechanical-chemical (THMC) behavior of engineered barrier system (EBS), the engineering scale experiments, KENTEX and KENTEX-C were conducted to investigate THM and THMC behavior in the buffer. The computer modelling and simulation programmes were developed to analyze the distribution of temperature, water content, total pressure and the measured data on the migration behavior of anion and cation. In-situ heater test were performed to investigate the effect of the ventilation, thermal characteristics of EDZ, and effect of the anisotropy of rock mass and joint in addition to the investigation of the thermo-mechanical behavior in rock mass. The geophysics exploration and in-situ field tests were carried out to investigate the range of EDZ and its effects on the mechanical properties of rock. Subsequently, crack propagation characteristics and dynamic material properties of jointed rock mass in KURT were measured. Concurrently, the in-situ experiments were performed in the KURT to investigate the change of hydraulic properties in EDZ. The stainless steel molds are manufactured to fabricate the buffer blocks with various shapes. The experiments are carried out to check the mechanical properties, the workability for installation of the fabricated blocks and to investigate the resaturation processes. The state of the technology on application of cementitious materials to the HLW repository was analysed and the optimized low-pH cement recipe was obtained. And the material properties of low-pH and high-pH cement grouts were evaluated based on the grout recipes of ONKALO in Finland. The KURT was operated, and the various technical supports were provided to the in-situ experiments which were carried at KURT

  11. CUBE (Computer Use By Engineers) symposium abstracts. [LASL, October 4--6, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Ruminer, J.J. (comp.)

    1978-07-01

    This report presents the abstracts for the CUBE (Computer Use by Engineers) Symposium, October 4, through 6, 1978. Contributors are from Lawrence Livermore Laboratory, Los Alamos Scientific Laboratory, and Sandia Laboratories.

  12. An experimental study on performance and emission characteristics of a hydrogen fuelled spark ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Kahraman, Erol [Program of Energy Engineering, Izmir Institute of Technology, Urla, Izmir 35430 (Turkey); Cihangir Ozcanli, S.; Ozerdem, Baris [Department of Mechanical Engineering, Izmir Institute of Technology, Urla, Izmir 35430 (Turkey)

    2007-08-15

    In the present paper, the performance and emission characteristics of a conventional four cylinder spark ignition (SI) engine operated on hydrogen and gasoline are investigated experimentally. The compressed hydrogen at 20 MPa has been introduced to the engine adopted to operate on gaseous hydrogen by external mixing. Two regulators have been used to drop the pressure first to 300 kPa, then to atmospheric pressure. The variations of torque, power, brake thermal efficiency, brake mean effective pressure, exhaust gas temperature, and emissions of NO{sub x}, CO, CO{sub 2}, HC, and O{sub 2} versus engine speed are compared for a carbureted SI engine operating on gasoline and hydrogen. Energy analysis also has studied for comparison purpose. The test results have been demonstrated that power loss occurs at low speed hydrogen operation whereas high speed characteristics compete well with gasoline operation. Fast burning characteristics of hydrogen have permitted high speed engine operation. Less heat loss has occurred for hydrogen than gasoline. NO{sub x} emission of hydrogen fuelled engine is about 10 times lower than gasoline fuelled engine. Finally, both first and second law efficiencies have improved with hydrogen fuelled engine compared to gasoline engine. It has been proved that hydrogen is a very good candidate as an engine fuel. The obtained data are also very useful for operational changes needed to optimize the hydrogen fueled SI engine design. (author)

  13. 48 CFR 9.104-6 - Federal Awardee Performance and Integrity Information System.

    Science.gov (United States)

    2010-10-01

    ... Performance and Integrity Information System. 9.104-6 Section 9.104-6 Federal Acquisition Regulations System... Contractors 9.104-6 Federal Awardee Performance and Integrity Information System. (a) Before awarding a... Federal Awardee Performance and Integrity Information System (FAPIIS), (available at www.ppirs.gov, then...

  14. Comparison of performance of biodiesels of mahua oil and gingili oil in dual fuel engine

    Directory of Open Access Journals (Sweden)

    Nadar Kapilan N.

    2008-01-01

    Full Text Available In this work, an experimental work was carried out to compare the performance of biodiesels made from non edible mahua oil and edible gingili oil in dual fuel engine. A single cylinder diesel engine was modified to work in dual fuel mode and liquefied petroleum gas was used as primary fuel. Biodiesel was prepared by transesterification process and mahua oil methyl ester (MOME and gingili oil methyl ester (GOME were used as pilot fuels. The viscosity of MOME is slightly higher than GOME. The dual fuel engine runs smoothly with MOME and GOME. The test results show that the performance of the MOME is close to GOME, at the pilot fuel quantity of 0.45 kg/h and at the advanced injection timing of 30 deg bTDC. Also it is observed that the smoke, carbon monoxide and unburnt hydro carbon emissions of GOME lower than the MOME. But the GOME results in slightly higher NOx emissions. From the experimental results it is concluded that the biodiesel made from mahua oil can be used as a substitute for diesel in dual fuel engine.

  15. Effect of engine parameters and type of gaseous fuel on the performance of dual-fuel gas diesel engines. A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, B.B. [Centre for Energy, Indian Institute of Technology, Guwahati 781039 (India); Sahoo, N.; Saha, U.K. [Department of Mechanical Engineering, Indian Institute of Technology, Guwahati 781039 (India)

    2009-08-15

    Petroleum resources are finite and, therefore, search for their alternative non-petroleum fuels for internal combustion engines is continuing all over the world. Moreover gases emitted by petroleum fuel driven vehicles have an adverse effect on the environment and human health. There is universal acceptance of the need to reduce such emissions. Towards this, scientists have proposed various solutions for diesel engines, one of which is the use of gaseous fuels as a supplement for liquid diesel fuel. These engines, which use conventional diesel fuel and gaseous fuel, are referred to as 'dual-fuel engines'. Natural gas and bio-derived gas appear more attractive alternative fuels for dual-fuel engines in view of their friendly environmental nature. In the gas-fumigated dual-fuel engine, the primary fuel is mixed outside the cylinder before it is inducted into the cylinder. A pilot quantity of liquid fuel is injected towards the end of the compression stroke to initiate combustion. When considering a gaseous fuel for use in existing diesel engines, a number of issues which include, the effects of engine operating and design parameters, and type of gaseous fuel, on the performance of the dual-fuel engines, are important. This paper reviews the research on above issues carried out by various scientists in different diesel engines. This paper touches upon performance, combustion and emission characteristics of dual-fuel engines which use natural gas, biogas, producer gas, methane, liquefied petroleum gas, propane, etc. as gaseous fuel. It reveals that 'dual-fuel concept' is a promising technique for controlling both NO{sub x} and soot emissions even on existing diesel engine. But, HC, CO emissions and 'bsfc' are higher for part load gas diesel engine operations. Thermal efficiency of dual-fuel engines improve either with increased engine speed, or with advanced injection timings, or with increased amount of pilot fuel. The ignition

  16. Session 4: On-board exhaust gas reforming for improved performance of natural gas HCCI engines

    Energy Technology Data Exchange (ETDEWEB)

    Amieiro, A.; Golunski, S.; James, D. [Johnson Matthey Technology Centre, Sonning Common, Reading (United Kingdom); Miroslaw, Wyszynski; Athanasios, Megaritis; Peucheret, S. [Birmingham Univ., School of Engineering, Future Power Systems Research Group (United Kingdom); Hongming, Xu [Jaguar Cars Ltd, W/2/021 Engineering Centre, Whitley, Coventry (United Kingdom)

    2004-07-01

    Although natural gas (NG) is a non-renewable energy source, it is still a very attractive alternative fuel for transportation - it is inexpensive, abundant, and easier to refine than petroleum. Unfortunately the minimum spark energy required for NG ignition is higher than for liquid fuels, and engine performance is reduced since the higher volume of NG limits the air breathing capacity of the cylinders. On the other hand, the flammability range of NG is wider than for other hydrocarbons, so the engine can operate under leaner conditions. Environmentally, the use of NG is particularly attractive since it has a low flame temperature (resulting in reduced NO{sub x} emissions) and a low carbon content compared to diesel or gasoline (resulting in less CO, CO{sub 2} and particulate). In addition, NG is easily made sulphur-free, and has a high octane rating (RON = 110-130) which makes it suitable for high compression engine applications. Exhaust gas recirculation (EGR) into an engine is known to reduce both flame temperature and speed, and therefore produce lower NO{sub x} emissions. In general, a given volume of exhaust gas has a greater effect on flame speed and NO{sub x} emissions than the same quantity of excess air, although there is a limit to the amount of exhaust gas recirculation that can be used without inhibiting combustion. However, hydrogen addition to exhaust gas recirculation has been proved to reduce emissions while increasing flame speed, so improving both the emissions and the thermal efficiency of the engine. On-board reforming of some of the fuel, by reaction with exhaust gas during EGR, is a novel way of adding hydrogen to an engine. We have carried out reforming tests on mixtures of natural gas and exhaust gas at relatively low temperatures (400-600 C), to mimic the low availability of external heat within the integrated system. The reforming catalyst is a nickel-free formulation, containing precious metals promoted by metal oxides. The roles of

  17. Nanotechnology Concepts at MSFC: Engineering Directorate

    Science.gov (United States)

    Bhat, Biliyar; Kaul, Raj; Shah, Sandeep; Smithers, Gweneth; Watson, Michael D.

    2000-01-01

    Nanotechnology is the art and science of building materials and devices at the ultimate level of finesse: atom by atom. Our nation's space program has needs for miniaturization of components, minimization of weight and maximization of performance, and nanotechnology will help us get there. MSFC - Engineering Directorate (ED) is committed to developing nanotechnology that will enable MSFC missions in space transportation, space science and space optics manufacturing. MSFC-ED has a dedicated group of technologists who are currently developing high pay-off nanotechnology concepts. This poster presentation will outline some of the concepts being developed at this time including, nanophase structural materials, carbon nanotube reinforced metal and polymer matrix composites, nanotube temperature sensors and aerogels. The poster will outline these concepts and discuss associated technical challenges in turning these concepts into real components and systems.

  18. Infiltration performance of engineered surfaces commonly used for distributed stormwater management.

    Science.gov (United States)

    Valinski, N A; Chandler, D G

    2015-09-01

    Engineered porous media are commonly used in low impact development (LID) structures to mitigate excess stormwater in urban environments. Differences in infiltrability of these LID systems arise from the wide variety of materials used to create porous surfaces and subsequent maintenance, debris loading, and physical damage. In this study, the infiltration capacity of six common materials was tested by multiple replicate experiments with automated mini-disk infiltrometers. The tested materials included porous asphalt, porous concrete, porous brick pavers, flexible porous pavement, engineered soils, and native soils. Porous asphalt, large porous brick pavers, and curb cutout rain gardens showed the greatest infiltration rates. Most engineered porous pavements and soils performed better than the native silt loam soils. Infiltration performance was found to be related more to site design and environmental factors than material choice. Sediment trap zones in both pavements and engineered soil rain gardens were found to be beneficial to the whole site performance. Winter chloride application had a large negative impact on poured in place concrete, making it a poor choice for heavily salted areas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. A Historical Review of Cermet Fuel Development and the Engine Performance Implications

    Science.gov (United States)

    Stewart, Mark E.

    2015-01-01

    To better understand Cermet engine performance, examined historical material development reports two issues: High vaporization rate of UO2, High temperature chemical stability of UO2. Cladding and chemical stabilizers each result in large, order of magnitude improvements in high temperature performance. Few samples were tested above 2770 K. Results above 2770 K are ambiguous. Contemporary testing may clarify performance. Cermet sample testing during the NERVA Rover era. Important properties, melting temperature, vaporization rate, strength, Brittle-to-Ductile Transition, cermet sample test results, engine performance, location, peak temperature.

  20. Thermodynamic Performance of Heat Exchangers in a Free Piston Stirling Engine

    Directory of Open Access Journals (Sweden)

    Ayodeji Sowale

    2018-02-01

    Full Text Available There is an increasing request in energy recovery systems that are more efficient, environmentally friendly and economical. The free piston Stirling engine has been investigated due to its structural simplicity and high efficiency, coupled with its cogeneration ability. This study presents the numerical investigation of quasi-steady model of a gamma type free piston Stirling engine (FPSE, including the thermodynamic analysis of the heat exchangers. Advanced thermodynamic models are employed to derive the initial set of operational parameters of the FPSE due to the coupling of the piston’s (displacer and piston dynamics and the working process. The proximity effect of the heater and cooler on the regenerator effectiveness in relation to the heat losses, output power, net work and thermal efficiency of the FPSE are also observed and presented in this study. It can be observed that at temperatures of 541.3 °C and 49.8 °C of the heater and cooler, respectively, with heater volume of 0.004 m3, regenerator volume of 0.003 m3 and cooler volume of 0.005 m3, the FPSE produced an output performance of 996.7 W with a thermal efficiency of 23% at a frequency of 30 Hz. This approach can be employed to design effective high performance FPSE due to their complexity and also predict a satisfactory performance.

  1. Application and Evaluation of Control Modes for Risk-Based Engine Performance Enhancements

    Science.gov (United States)

    Liu, Yuan; Litt, Jonathan S.; Sowers, T. Shane; Owen, A. Karl; Guo, Ten-Huei

    2015-01-01

    The engine control system for civil transport aircraft imposes operational limits on the propulsion system to ensure compliance with safety standards. However, during certain emergency situations, aircraft survivability may benefit from engine performance beyond its normal limits despite the increased risk of failure. Accordingly, control modes were developed to improve the maximum thrust output and responsiveness of a generic high-bypass turbofan engine. The algorithms were designed such that the enhanced performance would always constitute an elevation in failure risk to a consistent predefined likelihood. This paper presents an application of these risk-based control modes to a combined engine/aircraft model. Through computer and piloted simulation tests, the aim is to present a notional implementation of these modes, evaluate their effects on a generic airframe, and demonstrate their usefulness during emergency flight situations. Results show that minimal control effort is required to compensate for the changes in flight dynamics due to control mode activation. The benefits gained from enhanced engine performance for various runway incursion scenarios are investigated. Finally, the control modes are shown to protect against potential instabilities during propulsion-only flight where all aircraft control surfaces are inoperable.

  2. Numerical Study on the Performance Characteristics of Hydrogen Fueled Port Injection Internal Combustion Engine

    OpenAIRE

    Rosli A. Bakar; Mohammed K. Mohammed; M. M. Rahman

    2009-01-01

    This study was focused on the engine performance of single cylinder hydrogen fueled port injection internal combustion engine. GT-Power was utilized to develop the model for port injection engine. One dimensional gas dynamics was represented the flow and heat transfer in the components of the engine model. The governing equations were introduced first, followed by the performance parameters and model description. Air-fuel ratio was varied from stoichiometric limit to a lean limit and the rota...

  3. Optimum performance characteristics of a solar-driven Stirling heat engine system

    International Nuclear Information System (INIS)

    Liao, Tianjun; Lin, Jian

    2015-01-01

    Graphical abstract: T–S diagram of the SHE cycle. - Highlights: • Based on Lagrange multiplier method, the optimal performance are investigated. • The energy balance between the absorber and the hot side of Stirling heat engine is considered. • The effects of major parameters on the optimal performance are investigated. - Abstract: A solar-driven Stirling heat engine system composed of a Stirling heat engine, a solar collector, and a heat sink is presented, in which the radiation and convection heat losses of the solar collector, the heat-leak between the thermal absorber and heat sink, the regenerative losses of the Stirling heat engine, and the energy balance between the thermal absorber and the high isothermal process of the Stirling heat engine are taken into consideration. Based on the irreversible thermodynamics and Lagrange multiplier method, the maximum power output and the corresponding optimal efficiency of the system are determined and the absorber temperature that maximizes the optimal system efficiency is calculated numerically. The influences of some system parameters such as the concentrating ratio, the volume ratio during the regenerative processes and irreversibilities of heat exchange processes on the optimal efficiency are analyzed in details. The results obtained here may provide a new idea to design practical solar-driven Stirling heat engine system

  4. Combustion, emission and engine performance characteristics of used cooking oil biodiesel - A review

    Energy Technology Data Exchange (ETDEWEB)

    Enweremadu, C.C. [Department of Mechanical Engineering, Vaal University of Technology, Private Bag X021, Vanderbijlpark 1900 (South Africa); Rutto, H.L. [Department of Chemical Engineering, Vaal University of Technology, Private Bag X021, Vanderbijlpark 1900 (South Africa)

    2010-12-15

    As the environment degrades at an alarming rate, there have been steady calls by most governments following international energy policies for the use of biofuels. One of the biofuels whose use is rapidly expanding is biodiesel. One of the economical sources for biodiesel production which doubles in the reduction of liquid waste and the subsequent burden of sewage treatment is used cooking oil (UCO). However, the products formed during frying, such as free fatty acid and some polymerized triglycerides, can affect the transesterification reaction and the biodiesel properties. This paper attempts to collect and analyze published works mainly in scientific journals about the engine performance, combustion and emissions characteristics of UCO biodiesel on diesel engine. Overall, the engine performance of the UCO biodiesel and its blends was only marginally poorer compared to diesel. From the standpoint of emissions, NOx emissions were slightly higher while un-burnt hydrocarbon (UBHC) emissions were lower for UCO biodiesel when compares to diesel fuel. There were no noticeable differences between UCO biodiesel and fresh oil biodiesel as their engine performances, combustion and emissions characteristics bear a close resemblance. This is probably more closely related to the oxygenated nature of biodiesel which is almost constant for every biodiesel (biodiesel has some level of oxygen bound to its chemical structure) and also to its higher viscosity and lower calorific value, which have a major bearing on spray formation and initial combustion. (author)

  5. Factors of airplane engine performance

    Science.gov (United States)

    Gage, Victor R

    1921-01-01

    This report is based upon an analysis of a large number of airplane-engine tests. It contains the results of a search for fundamental relations between many variables of engine operation. The data used came from over 100 groups of tests made upon several engines, primarily for military information. The types of engines were the Liberty 12 and three models of the Hispano-Suiza. The tests were made in the altitude chamber, where conditions simulated altitudes up to about 30,000 feet, with engine speeds ranging from 1,200 to 2,200 r.p.m. The compression ratios of the different engines ranged from under 5 to over 8 to 1. The data taken on the tests were exceptionally complete, including variations of pressure and temperature, besides the brake and friction torques, rates of fuel and air consumption, the jacket and exhaust heat losses.

  6. Stack Parameters Effect on the Performance of Anharmonic Resonator Thermoacoustic Heat Engine

    KAUST Repository

    Nouh, Mostafa A.

    2014-01-01

    A thermoacoustic heat engine (TAHE) converts heat into acoustic power with no moving parts. It exhibits several advantages over traditional engines, such as simple design, stable functionality, and environment-friendly working gas. In order to further improve the performance of TAHE, stack parameters need to be optimized. Stack\\'s position, length and plate spacing are the three main parameters that have been investigated in this study. Stack\\'s position dictates both the efficiency and the maximum produced acoustic power of the heat engine. Positioning the stack closer to the pressure anti-node might ensure high efficiency on the expense of the maximum produced acoustic power. It is noticed that the TAHE efficiency can further be improved by spacing the plates of the stack at a value of 2.4 of the thermal penetration depth, δk . Changes in the stack length will not affect the efficiency much as long as the temperature gradient across the stack, as a ratio of the critical temperature gradient ψ is more than 1. Upon interpreting the effect of these variations, attempts are made towards reaching the engine\\'s most powerful operating point.

  7. Experiments in Creative Engineering at the Department of Mechanical Engineering in Kurume National College of Technology

    Science.gov (United States)

    Tanaka, Hiroshi; Hashimura, Shinji; Hiroo, Yasuaki

    We present a program to learn ability to solve problems on engineering. This program is called “Experiments in creative engineering” in the department of mechanical engineering in Kurume National College of Technology advanced engineering school. In the program, students have to determine own theme and manufacture experimental devices or some machines by themselves. The students must also perform experiments to valid the function and performance of their devices by themselves. The restriction of the theme is to manufacture a device which function dose not basically exist in the world with limited cost (up to 20,000Yen) . As the results of questionnaire of students, the program would be very effective to the creative education for the students.

  8. Performance and Emission of VCR-CI Engine with palm kernel and eucalyptus blends

    Directory of Open Access Journals (Sweden)

    Srinivas kommana

    2016-09-01

    Full Text Available This study aims at complete replacement of conventional diesel fuel by biodiesel. In order to achieve that, palm kernel oil and eucalyptus oil blend has been chosen. Eucalyptus oil was blended with methyl ester of palm kernel oil in 5%, 10% and 15% by volume. Tests were conducted with diesel fuel and blends on a 4 stroke VCR diesel engine for comparative analysis with 220 bar injection pressure and 19:1 compression ratio. All the test fuels were used in computerized 4 stroke single cylinder variable compression ratio engine at five different loads (0, 6, 12, 18 and 24 N m. Present investigation depicts the improved combustion and reduced emissions for the PKO85% + EuO15% blend when compared to diesel at full load conditions.

  9. A framework to improve performance measurement in engineering projects

    OpenAIRE

    Zheng , Li; Baron , Claude; Esteban , Philippe; Xue , Rui; Zhang , Qiang

    2017-01-01

    International audience; A wide range of methods and good practices have been developed for the measurement of projects performance. They help project managers to effectively monitor the project progress and evaluate results. However, from a literature review, we noticed several remaining critical issues in measuring projects performance, such as an unbalanced development of Key Performance Indicators types between lagging and leading indicators. On the other hand, systems engineering measurem...

  10. Experimental investigation of performance and regulated emissions of a diesel engine with Calophyllum inophyllum biodiesel blends accompanied by oxidation inhibitors

    International Nuclear Information System (INIS)

    Rizwanul Fattah, I.M.; Masjuki, H.H.; Kalam, M.A.; Wakil, M.A.; Ashraful, A.M.; Shahir, S.A.

    2014-01-01

    Highlights: • Calophyllum inophyllum biodiesel blends were evaluated using antioxidants. • Blend fuel properties met the ASTM D7467 specification. • Usage of antioxidants provided good stabilization with improved BP and BSFC. • Treated blends showed lower NOx but higher CO and HC compared to untreated blend. - Abstract: Biodiesel having higher unsaturation possesses lower oxidation stability, which needs treatment of oxidation inhibitors or antioxidants. It is expected that antioxidants may affect the clean burning characteristic of biodiesel. Calophyllum inophyllum Linn oil is one of the promising non-edible based feedstock which consists of mostly unsaturated fatty acids. This paper presents an experimental investigation of the antioxidant addition effect on engine performance and emission characteristics. Biodiesel (CIBD) was produced by one step esterification using sulfuric acid (H 2 SO 4 ) as catalyst and one step transesterification using potassium hydroxide (KOH) as a catalyst. Two monophenolic, 2(3)-tert-Butyl-4-methoxyphenol (BHA) and 2,6-di-tert-butyl-4-methylphenol (BHT) and one diphenolic, 2-tert-butylbenzene-1,4-diol (TBHQ) were added at 2000 ppm concentration to 20% CIBD (CIB20). The addition of antioxidants increased oxidation stability without causing any significant negative effect of physicochemical properties. TBHQ showed the greatest capability in increasing stability of CIB20. The tests were carried out using a 55 kW 2.5 L four-cylinder diesel engine at constant load varying speed condition. The performance results indicate that CIB20 showed 1.36% lower mean brake power (BP) and 4.90% higher mean brake specific fuel consumption (BSFC) compared to diesel. The addition of antioxidants increased BP and reduced BSFC slightly. Emission results show that CIB20 increased NOx but decreased CO and HC emission. Antioxidants reduced 1.6–3.6% NOx emission, but increased both CO and HC emission compared to CIB20. However, the level was below the

  11. Impact of Dissociation and Sensible Heat Release on Pulse Detonation and Gas Turbine Engine Performance

    Science.gov (United States)

    Povinelli, Louis A.

    2001-01-01

    A thermodynamic cycle analysis of the effect of sensible heat release on the relative performance of pulse detonation and gas turbine engines is presented. Dissociation losses in the PDE (Pulse Detonation Engine) are found to cause a substantial decrease in engine performance parameters.

  12. Global Journal of Engineering Research - Vol 6, No 2 (2007)

    African Journals Online (AJOL)

    The effect of spark-plug location on Nox and VOC emissions in a single cylinder two-store Si engine using blend fuel · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. F I Abam, A Kuhe, M I Ofem, 79-82. http://dx.doi.org/10.4314/gjer.v6i2.18951 ...

  13. Criterion for the engineering performance of carbon materials under neutron irradiation

    International Nuclear Information System (INIS)

    Virgil'ev, Yu.S.

    2002-01-01

    The criterion for the engineering performance and substation of its applicability to the reactor graphite are proposed. The complex indicator, representing the ratio of strength limits by compression and bending is proposed as the above criterion, characterizing the graphite quality. The growth of this criterion indicates the accumulation of large heterogeneities microcracks of technological or radiation character. The decrease in this indicator testifies to the growth of small heterogeneities, and consequently to the increase in the graphite engineering performance [ru

  14. Effects of pilot injection timing and EGR on a modern V6 common rail direct injection diesel engine

    Science.gov (United States)

    Rosli Abdullah, Nik; Mamat, Rizalman; Wyszynski, Miroslaw L.; Tsolakis, Anthanasios; Xu, Hongming

    2013-12-01

    Nitric oxide and smoke emissions in diesel engine can be controlled by optimising the air/fuel mixture. Early injection produces premixed charge resulted in simultaneous NOx and smoke emissions reduction. However, there could be an increase in hydrocarbons and CO emissions due to fuel impinged to the cylinder wall. The focus of the present work is to investigate the effects of a variation of pilot injection timing with EGR to NOx and smoke level on a modern V6 common rail direct injection. This study is carried out at two different engine load conditions of 30 Nm and 55 Nm, at constant engine speed of 2000 rpm. The results show that the early pilot injection timing contributed to the lower smoke level and higher NOx emissions. The higher level of NOx is due to higher combustion temperatures resulting from the complete combustion. Meanwhile, the lower smoke level is due to complete fuel combustion and soot oxidation. The early pilot injection timing produces an intermediate main ignition delay which also contributed to complete combustion. The formation of smoke is higher at a high engine load compared with low engine load due to the higher amount of fuel being injected.

  15. Chemical Engineering at NASA

    Science.gov (United States)

    Collins, Jacob

    2008-01-01

    This viewgraph presentation is a review of the career paths for chemicals engineer at NASA (specifically NASA Johnson Space Center.) The author uses his personal experience and history as an example of the possible career options.

  16. Intake plenum volume and its influence on the engine performance, cyclic variability and emissions

    International Nuclear Information System (INIS)

    Ceviz, M.A.

    2007-01-01

    Intake manifold connects the intake system to the intake valve of the engine and through which air or air-fuel mixture is drawn into the cylinder. Details of the flow in intake manifolds are extremely complex. Recently, most of engine companies are focused on variable intake manifold technology due to their improvement on engine performance. This paper investigates the effects of intake plenum volume variation on engine performance and emissions to constitute a base study for variable intake plenum. Brake and indicated engine performance characteristics, coefficient of variation in indicated mean effective pressure (COV imep ) as an indicator for cyclic variability, pulsating flow pressure in the intake manifold runner, and CO, CO 2 and HC emissions were taken into consideration to evaluate the effects of different plenum volumes. The results of this study showed that the variation in the plenum volume causes an improvement on the engine performance and the pollutant emissions. The brake torque and related performance characteristics improved pronouncedly about between 1700 and 2600 rpm by increasing plenum volume. Additionally, although the increase in the plenum volume caused the mixture leaner due to the increase in the intake runner pressure and lean mixtures inclined to increase the cyclic variability, a decrease was interestingly observed in the COV imep

  17. Experiment and Simulation Study of Single Cylinder Diesel Engine Performance, Using Soybean Oil Biodiesel

    Directory of Open Access Journals (Sweden)

    Muhammad Rizqi Ariefianto

    2017-01-01

    Full Text Available Abstract— The most common fuel uses in the world is made from fossil. Fossil fuel is categorized as a non-renewable energy source. For that reason, there should be an alternative fuel to replace fossil fuel by using biodiesel and one of the stock comes from soybean bean. Before using the biodiesel made from soybean bean oil, there should be a research to find out the properties and the effect of biodiesel from soybean bean oil regarding the performance of the engine. The research can be conducted in experiment and simulation. The properties result of soybean oil biodiesel should be tested to confirm whether this biodiesel have meet the standard requirement of biodieselor not. This biodiesel sproperties are Flash Point value is 182 o C , Pour Point value is -7 o C, Density at 15 o C is 890 Kg/m3, Kinematic Viscosity at 40 o C is 5.58 (cSt, and Lower Heating Value is 42.27686 MJ/kg. The result from this research is the highest power from simulation is 9% higher than the experiment. The highest torque from the experiment is 37% lower than the simulation’s torque. Lowest SFOC from experiment is  28% lower than the simulation’s SFOC. Highest BMEP from simulation is 20% higher than the highest BMEP from experiment. The  highest thermal efficiency from experiment is 6% higher than the highest thermal efficiency from simulation. The engine performance result using soybean oil biodiesel is not better than the Pertamina Dex. For that reason, the use of this biodiesel is not suggested to substitute Pertamina Dex.

  18. Collection of measurement data from in-situ experiment for performance confirmation of engineered barrier system at Horonobe Underground Research Laboratory. FY2014

    International Nuclear Information System (INIS)

    Nakayama, Masashi; Ohno, Hirokazu; Nakayama, Mariko; Kobayashi, Masato

    2015-09-01

    The Horonobe Underground Research Laboratory (URL) Project has being pursued by Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formation at Horonobe, northern Hokkaido. The URL Project consists of two major research areas, “Geoscientific Research” and “Research and Development on Geological Disposal Technologies”, and proceeds in three overlapping phases, “Phase I: Surface-based investigations”, “Phase II: Investigations during tunnel excavation” and “Phase III: Investigations in the underground facilities”, over a period of around 20 years. Phase III investigation was started in 2010 fiscal year. The in-situ experiment for performance confirmation of engineered barrier system (EBS experiment) had been prepared from 2013 to 2014 fiscal year at G.L.-350m gallery, and heating by electric heater in simulated overpack had started in January, 2015. One of objectives of the experiment is acquiring data concerned with Thermal – Hydrological – Mechanical – Chemical (THMC) coupled behavior. These data will be used in order to confirm the performance of engineered barrier system. This report summarizes the measurement data acquired from the EBS experiment from December, 2014 to March, 2015. The summarized data of the EBS experiment will be published periodically. A CD-ROM is attached as an appendix. (J.P.N)

  19. Doing Systems Engineering Without Thinking About It at NASA Dryden Flight Research Center

    Science.gov (United States)

    Bohn-Meyer, Marta; Kilp, Stephen; Chun, Peggy; Mizukami, Masashi

    2004-01-01

    When asked about his processes in designing a new airplane, Burt Rutan responded: ...there is always a performance requirement. So I start with the basic physics of an airplane that can get those requirements, and that pretty much sizes an airplane... Then I look at the functionality... And then I try a lot of different configurations to meet that, and then justify one at a time, throwing them out... Typically I'll have several different configurations... But I like to experiment, certainly. I like to see if there are other ways to provide the utility. This kind of thinking engineering as a total systems engineering approach is what is being instilled in all engineers at the NASA Dryden Flight Research Center.

  20. Integration of FMIPv6 in HMIPv6 to Improve Hand-over Performance

    Science.gov (United States)

    Patil, Dipali P.; Patil, G. A.

    2010-11-01

    Mobile users move frequently between networks, as they stay connected to the Internet. Thus, as mobility increases across networks, handovers will significantly impact the quality of the connection and user application. Handover performance is very important when evaluating IP mobility protocols. Since handover request are driven by several needs such as cost reduction criteria, network resource optimization and service related requirements. Current works to support seamless mobility in IPv6 network are classified into HMIPv6 and FMIPv6. These two approaches have pros and cons respectively and are being standardized independently in IETF. If one can integrate properly these two approaches, it is expected that the one can get more effective protocols that can provide better handover performance. This paper integrates FHMIPv6 in HMIPv6 (F-HMIPv6) so as to provide effectively fast handover on the hierarchical Mobile IPv6. The simulation performed using Ns-2 extensions to show that a performance of proposed system is better in terms of packet loss and hand-over delay.

  1. The new TOYOTA 4.8L V10 petrol high performance engine for LEXUS LFA super car

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Takamitsu; Kawamura, Hiroshi; Tsukamoto, Keisuke; Nagai, Masakatsu; Uchida, Takahiro [Toyota Motor Corporation (Japan); Maruyama, Heiji [Yamaha Motor Corporation (Japan)

    2011-07-01

    The new 1LR-GUE V10 high performance engine was designed exclusively for the Lexus LFA super car (below picture). Achieving the speed and performance of a true super car was merely the starting point. The engine was developed to create a feeling of infinite acceleration potential. Response is instant and based on close understanding of driver's reactions. Vehicle handling provides unsurpassed response and feedback with ideal transient torque characteristics and marvelous sound with unique design. The performance of this engine was accomplished by combining world-class high revolution speed and high power (per liter). The new 4.8L engine produces 412kW (560hp) at 8700rpm and redline is 9000rpm (fuel cut-off speed is 9500rpm). It meets the latest emission standard Euro V and achieves good fuel consumption with a wide range stoechiometric air fuel ratio, till speeds up to 240km/h. (orig.)

  2. Combustion of jojoba methyl ester in an indirect injection diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Selim, M.Y.E. [United Arab Emirates University, Al-Ain (United Arab Emirates). Mechanical Engineering Dept.; Radwan, M.S.; Elfeky, S.M.S. [Helwan University, Cairo (Egypt). Mechanical Power Engineering Dept.

    2003-07-01

    An experimental investigation has been carried out to examine for the first time the performance and combustion noise of an indirect injection diesel engine running with new fuel derived from pure jojoba oil, jojoba methyl ester, and its blends with gas oil. A Ricardo E6 compression swirl diesel engine was fully instrumented for the measurement of combustion pressure and its rise rate and other operating parameters. Test parameters included the percentage of jojoba methyl ester in the blend, engine speed, load, injection timing and engine compression ratio. Results showed that the new fuel derived from jojoba is generally comparable and a good replacement to gas oil in diesel engine at most engine operating conditions, in terms of performance parameters and combustion noise produced. (author)

  3. PERFORMANCE EVALUATION OF EXTERNAL MIXTURE FORMATION STRATEGY IN HYDROGEN-FUELED ENGINE

    OpenAIRE

    Mohammed Kamil; M. M. Rahman; Rosli A. Bakar

    2011-01-01

    Mohammed Kamil1, M. M. Rahman2 and Rosli A. Bakar2Hydrogen induction strategy in an internal combustion engine plays a vital role in increasing the power density and prohibiting combustion anomalies. This paper inspects the performance characteristics of cylinder hydrogen-fueled engine with port injection feeding strategy. To that end, a one-dimensional gas dynamic model has been built to represent the flow and heat transfer in the components of the engine. The governing equations are introdu...

  4. Analytical Modelling of the Effects of Different Gas Turbine Cooling Techniques on Engine Performance =

    Science.gov (United States)

    Uysal, Selcuk Can

    In this research, MATLAB SimulinkRTM was used to develop a cooled engine model for industrial gas turbines and aero-engines. The model consists of uncooled on-design, mean-line turbomachinery design and a cooled off-design analysis in order to evaluate the engine performance parameters by using operating conditions, polytropic efficiencies, material information and cooling system details. The cooling analysis algorithm involves a 2nd law analysis to calculate losses from the cooling technique applied. The model is used in a sensitivity analysis that evaluates the impacts of variations in metal Biot number, thermal barrier coating Biot number, film cooling effectiveness, internal cooling effectiveness and maximum allowable blade temperature on main engine performance parameters of aero and industrial gas turbine engines. The model is subsequently used to analyze the relative performance impact of employing Anti-Vortex Film Cooling holes (AVH) by means of data obtained for these holes by Detached Eddy Simulation-CFD Techniques that are valid for engine-like turbulence intensity conditions. Cooled blade configurations with AVH and other different external cooling techniques were used in a performance comparison study. (Abstract shortened by ProQuest.).

  5. Performance analysis of diesel engine heat pump incorporated with heat recovery

    International Nuclear Information System (INIS)

    Shah, N.N.; Huang, M.J.; Hewitt, N.J.

    2016-01-01

    Highlights: • Diesel engine heat pump with heat recovery. • Water-to-water source heat pump based on R134a. • Possibility for different flow temperature for heat distribution system. • Possible retrofit application in off-gas or weak electricity network area. • Potential to diversify use of fossil fuel, primary energy and CO_2 emission savings. - Abstract: This paper presents experimental study of diesel engine heat pump (DEHP) system to find potential as retrofit technology in off-gas or weak electricity network area to replace existing gas/oil/electric heating system in domestic sector. Test set-up of diesel engine driven water-to-water heat pump system was built which included heat recovery arrangement from the engine coolant & exhaust gas. The system was designed to meet typical house heating demand in Northern Ireland. Performance of DEHP was evaluated to meet house-heating demand at different flow temperature (35, 45, 55 & 65 °C), a typical requirement of underfloor space heating, medium/high temperature radiators and domestic hot water. The performance was evaluated against four-evaporator water inlet temperature (0, 5, 10 & 15 °C) and at three different engine speed 1600, 2000 & 2400 rpm. Experiment results were analysed in terms of heating/cooling capacity, heat recovery, total heat output, primary energy ratio (PER), isentropic efficiency, etc. Test results showed that DEHP is able to meet house-heating demand with help of heat recovery with reduced system size. Heat recovery contributed in a range of 22–39% in total heat output. It is possible to achieve high flow temperature in a range of 74 °C with help of heat recovery. Overall system PER varied in a range of 0.93–1.33. Speed increment and flow temperature has significant impact on heat recovery, total heat output and PER. A case scenario with different flow temperature to match house-heating demand has been presented to show working potential with different heat distribution system

  6. IMPLEMENTATION OF DIOXANE AND DIESEL FUEL BLENDS TO REDUCE EMISSION AND TO IMPROVE PERFORMANCE OF THE COMPRESSION IGNITION ENGINE

    Directory of Open Access Journals (Sweden)

    SENDILVELAN S.

    2017-11-01

    Full Text Available Performance of a compression ignition engine fuelled with 1, 4 Dioxane- diesel blends is evaluated. A single-cylinder, air-cooled, direct injection diesel engine developing a power output of 5.2 kW at 1500 rev/min is used. Base data is generated with standard diesel fuel subsequently; five fuel blends namely 90:10, 80:20, 70:30, 60:40 and 50:50 percentages by volume of diesel and dioxane were prepared and tested in the diesel engine. Engine performance and emission data were used to optimize the blends for reducing emission and improving performance. Results show improved performance with B10 blends compared to neat fuel for all conditions of the engine. Other blends recorded marginal decrease in brake thermal efficiency. The maximum efficiency for B30, B50 blends at peak load are 26.3%, 25.2% respectively against 29.1% for sole fuel. NOx emissions were found to be high or the blends. Peak pressure and rate of pressure rise are increased with increase in dioxane ratio due to improved combustion rate. Heat release pattern shows higher premixed combustion rate with the blends. Higher ignition delay and lower combustion duration are found with all blends than neat diesel fuel.

  7. Systems Engineering Knowledge Asset (SEKA) Management for Higher Performing Engineering Teams: People, Process and Technology toward Effective Knowledge-Workers

    Science.gov (United States)

    Shelby, Kenneth R., Jr.

    2013-01-01

    Systems engineering teams' value-creation for enterprises is slower than possible due to inefficiencies in communication, learning, common knowledge collaboration and leadership conduct. This dissertation outlines the surrounding people, process and technology dimensions for higher performing engineering teams. It describes a true experiment…

  8. Performance evaluation of a diesel engine using biodiesel

    International Nuclear Information System (INIS)

    Shahid, E.M.; Jamal, Y.

    2011-01-01

    This article is a comparative study of use of mineral diesel and biodiesel derived from cotton seed oil of Pakistani origin. The main problems associated with biodiesel are, its very high viscosity and specific gravity, which are due to long chain triglyceride esters with free fatty acids. The esters are converted into simple structure mono-glycerides esters via transesterification process. The experiments were carried out using blends of diesel and biodiesel with different ratios, to investigate the performance characteristics of engine and exhaust emissions. The experimental results show that the engine using B100 resulting in about 10% higher brake specific fuel consumption and about 10% lower brake thermal efficiency as compared to the use of B0. The engine emissions were almost free from SO/sub x/, having reduced amount of CO, CO/sub 2/0, and THC, but having higher amount of NOx, when B100 was used as fuel. The fuel is becoming more popular due to the reduction in nasty pollutant emissions. (author)

  9. Numerical analysis of a downsized spark-ignition engine fueled by butanol/gasoline blends at part-load operation

    International Nuclear Information System (INIS)

    Scala, F.; Galloni, E.; Fontana, G.

    2016-01-01

    Highlights: • Bio-fuels will reduce the overall CO_2 emission. • The properties of butanol/gasoline–air mixtures have been determined. • A 1-D model of a SI engine has been calibrated and validated. • The butanol content reduces the combustion duration. • The optimal ignition timing slightly changes. - Abstract: In this paper, the performance of a turbocharged SI engine, firing with butanol/gasoline blends, has been investigated by means of numerical simulations of the engine behavior. When engine fueling is switched from gasoline to alcohol/gasoline mixture, engine control parameters must be adapted. The main necessary modifications in the Electronic Control Unit have been highlighted in the paper. Numerical analyses have been carried out at partial load operation and at two different engine speeds (3000 and 4000 rpm). Several n-butanol/gasoline mixtures, differing for the alcohol contents, have been analyzed. Such engine performances as torque and indicated efficiency have been evaluated. Both these characteristics decrease with the alcohol contents within the mixtures. On the contrary, when the engine is fueled by neat n-butanol, torque and efficiency reach values about 2% higher than those obtained with neat gasoline. Furthermore, the optimal spark timing, for alcohol/gasoline mixture operation, must be retarded (up to 13%) in comparison with the correspondent values of the gasoline operation. In general, engine performance and operation undergo little variations when fuel supplying is switched from gasoline to alcohol/gasoline blends.

  10. Performance, emission and combustion analysis of a compression ignition engine using biofuel blends

    Directory of Open Access Journals (Sweden)

    Ors Ilker

    2017-01-01

    Full Text Available This study aimed to investigate the effects on performance, emission, and combustion characteristics of adding biodiesel and bioethanol to diesel fuel. Diesel fuel and blend fuels were tested in a water-cooled compression ignition engine with direct injection. Test results showed that brake specific fuel consumption and volumetric efficiency increased by about 30.6% and 3.7%, respectively, with the addition of bioethanol to binary blend fuels. The results of the blend fuel’s combustion analysis were similar to the diesel fuel’s results. Bioethanol increased maximal in-cylinder pressure compared to biodiesel and diesel fuel at both 1400 rpm and 2800 rpm. Emissions of CO increased by an amount of about 80% for fuels containing a high level of bioethanol when compared to CO emissions for diesel fuel. Using biodiesel, NO emissions increased by an average of 31.3%, HC emissions decreased by an average of 39.25%, and smoke opacity decreased by an average of 6.5% when compared with diesel fuel. In addition, when using bioethanol, NO emissions and smoke opacity decreased by 55% and 17% on average, respectively, and HC emissions increased by an average of 53% compared with diesel fuel.

  11. Effects of butanol-diesel fuel blends on the performance and emissions of a high-speed DI diesel engine

    International Nuclear Information System (INIS)

    Rakopoulos, D.C.; Rakopoulos, C.D.; Giakoumis, E.G.; Dimaratos, A.M.; Kyritsis, D.C.

    2010-01-01

    An experimental investigation is conducted to evaluate the effects of using blends of n-butanol (normal butanol) with conventional diesel fuel, with 8%, 16% and 24% (by volume) n-butanol, on the performance and exhaust emissions of a standard, fully instrumented, four-stroke, high-speed, direct injection (DI), Ricardo/Cussons 'Hydra' diesel engine located at the authors' laboratory. The tests are conducted using each of the above fuel blends or neat diesel fuel, with the engine working at a speed of 2000 rpm and at three different loads. In each test, fuel consumption, exhaust smokiness and exhaust regulated gas emissions such as nitrogen oxides, carbon monoxide and total unburned hydrocarbons are measured. The differences in the measured performance and exhaust emission parameters of the three butanol-diesel fuel blends from the baseline operation of the diesel engine, i.e., when working with neat diesel fuel, are determined and compared. It is revealed that this fuel, which can be produced from biomass (bio-butanol), forms a challenging and promising bio-fuel for diesel engines. The differing physical and chemical properties of butanol against those for the diesel fuel are used to aid the correct interpretation of the observed engine behavior.

  12. Experimental investigation of CI engine combustion, performance and emissions in DEE–kerosene–diesel blends of high DEE concentration

    International Nuclear Information System (INIS)

    Patil, K.R.; Thipse, S.S.

    2015-01-01

    Highlights: • First ever study on DEE–kerosene–diesel blends used in CI engine. • DEE–diesel blends have reduced the trade-off between PM and NOx of diesel engine. • Optimum performance blend has been found as DE15D. • Adulteration effects of kerosene with diesel have also been investigated. • Additions of kerosene with DE15D blend have deteriorated the overall engine performance. - Abstract: An experimental investigation had been carried out to evaluate the effects of oxygenated cetane improver diethyl ether (DEE) blends with kerosene and diesel on the combustion, performance and emission characteristics of a direct injection diesel engine. Initially, 2%, 5%, 8%, 10%, 15%, 20% and 25% DEE (by volume) were blended into diesel. The DEE–diesel blends have reduced the trade-off between PM and NOx of diesel engine and the optimum performance blend has been found as DE15D. Similarly, 5%, 10% and 15% kerosene (by volume) were blended into diesel to investigate the adulteration effect. In addition, a study was carried out to evaluate the effects of kerosene adulteration on DE15D by blending with 5%, 10% and 15% kerosene (by volume). The engine tests were carried out at 10%, 25%, 50%, 75% and 100% of full load for all test fuels. Laboratory fuel tests showed that the DEE is completely miscible with diesel and kerosene in any proportion. It was observed that the density, kinematic viscosity and calorific value of the blends decreases, while the oxygen content and cetane number of the blends increases with the concentration of DEE addition. The experimental test results showed that the DEE–kerosene–diesel blends have low brake thermal efficiency, high brake specific fuel consumption, high smoke at full load, low smoke at part load, overall low NO, almost similar CO, high HC at full load and low HC at part load as compared to DE15D blend

  13. Effects of ethanol-diesel fuel blends on the performance and exhaust emissions of heavy duty DI diesel engine

    International Nuclear Information System (INIS)

    Rakopoulos, D.C.; Rakopoulos, C.D.; Kakaras, E.C.; Giakoumis, E.G.

    2008-01-01

    An experimental investigation is conducted to evaluate the effects of using blends of ethanol with conventional diesel fuel, with 5% and 10% (by vol.) ethanol, on the performance and exhaust emissions of a fully instrumented, six-cylinder, turbocharged and after-cooled, heavy duty, direct injection (DI), Mercedes-Benz engine, installed at the authors' laboratory, which is used to power the mini-bus diesel engines of the Athens Urban Transport Organization sub-fleet with a view to using bio-ethanol produced from Greek feedstock. The tests are conducted using each of the above fuel blends, with the engine working at two speeds and three loads. Fuel consumption, exhaust smokiness and exhaust regulated gas emissions such as nitrogen oxides, carbon monoxide and total unburned hydrocarbons are measured. The differences in the measured performance and exhaust emissions of the two ethanol-diesel fuel blends from the baseline operation of the engine, i.e. when working with neat diesel fuel, are determined and compared. Theoretical aspects of diesel engine combustion combined with the widely differing physical and chemical properties of the ethanol against those for the diesel fuel, are used to aid the correct interpretation of the observed engine behavior

  14. A Comparative Study of the Effect of Turbocompounding and ORC Waste Heat Recovery Systems on the Performance of a Turbocharged Heavy-Duty Diesel Engine

    Directory of Open Access Journals (Sweden)

    Amin Mahmoudzadeh Andwari

    2017-07-01

    Full Text Available In this study the influence of utilization of two Waste Heat Recovery (WHR strategies, namely organic Rankine cycle (ORC and turbocompounding, have been investigated based on the performance of a heavy-duty diesel engine using 1-D simulation engine code (GT-Power in terms of Brake Specific Fuel Consumptions (BSFC at various engine speeds and Brake Mean Effective Pressures (BMEP. The model of a 6-cylinder turbocharged engine (Holset HDX55V was calibrated using an experimental BSFC map to predict engine exhaust thermodynamic conditions such as exhaust mass flow rate and exhaust temperature under various operating conditions. These engine exhaust conditions were then utilized to feed the inlet conditions for both the ORC and turbocompounding models, evaluating the available exhaust energy to be recovered by each technology. Firstly the ORC system model was simulated to obtain the power that can be generated from the system. Having this additional power converted to useful work, the BSFC was observed to reduce around 2–5% depending upon engine’s speed and BMEP. The initial model of the engine was then modified by considering a second turbine representing turbocompounding heat recovery system. The BSFC was increased due to the back-pressure from the second turbine, but the energy generated from the turbine was sufficient to reduce the BSFC further. However, by application of turbocompounding no improvement in BSFC was achieved at low engine’s speeds. It is concluded that ORC heat recovery system produces a satisfactory results at low engine speeds with both low and high loads whereas at medium and high engine speeds turbocompounding heat recovery system causes higher BSFC reduction.

  15. Thermal analysis of the effect of thick thermal barrier coatings on diesel engine performance

    International Nuclear Information System (INIS)

    Hoag, K.L.; Frisch, S.R.; Yonushonis, T.M.

    1986-01-01

    The reduction of heat rejection from the diesel engine combustion chamber has been the subject of a great deal of focus in recent years. In the pursuit of this goal, Cummins Engine Company has received a contract from the Department of Energy for the development of thick thermal barrier coatings for combustion chamber surfaces. This contract involves the analysis of the impact of coatings on diesel engine performance, bench test evaluation of various coating designs, and single cylinder engine tests. The efforts reported in this paper center on the analysis of the effects of coatings on engine performance and heat rejection. For this analysis the conventional water cooled engine was compared with an engine having limited oil cooling, and utilizing zirocnia coated cylinder had firedecks and piston crowns. The analysis showed little or no benefits of similarly coating the valves or cylinder liner

  16. Performance and emissions analysis on using acetone–gasoline fuel blends in spark-ignition engine

    Directory of Open Access Journals (Sweden)

    Ashraf Elfasakhany

    2016-09-01

    Full Text Available In this study, new blended fuels were formed by adding 3–10 vol. % of acetone into a regular gasoline. According to the best of the author's knowledge, it is the first time that the influence of acetone blends has been studied in a gasoline-fueled engine. The blended fuels were tested for their energy efficiencies and pollutant emissions using SI (spark-ignition engine with single-cylinder and 4-stroke. Experimental results showed that the AC3 (3 vol.% acetone + 97 vol.% gasoline blended fuel has an advantage over the neat gasoline in exhaust gases temperature, in-cylinder pressure, brake power, torque and volumetric efficiency by about 0.8%, 2.3%, 1.3%, 0.45% and 0.9%, respectively. As the acetone content increases in the blends, as the engine performance improved where the best performance obtained in this study at the blended fuel of AC10. In particular, exhaust gases temperature, in-cylinder pressure, brake power, torque and volumetric efficiency increase by about 5%, 10.5%, 5.2%, 2.1% and 3.2%, respectively, compared to neat gasoline. In addition, the use of acetone with gasoline fuel reduces exhaust emissions averagely by about 43% for carbon monoxide, 32% for carbon dioxide and 33% for the unburnt hydrocarbons. The enhanced engine performance and pollutant emissions are attributed to the higher oxygen content, slight leaning effect, lower knock tendency and high flame speeds of acetone, compared to the neat gasoline. Finally the mechanism of acetone combustion in gasoline-fueled engines is proposed in this work; two main pathways for acetone combustion are highlighted; furthermore, the CO, CO2 and UHC (unburnt hydrocarbons mechanisms of formation and oxidation are acknowledged. Such acetone mechanism is employed for further understanding acetone combustion in spark-ignition engines.

  17. Study of performance and emission characteristics of a partially coated LHR SI engine blended with n-butanol and gasoline

    Directory of Open Access Journals (Sweden)

    Nitesh Mittal

    2013-09-01

    Full Text Available To meet the present requirements of the automotive industry, there is continuous search to improve the performance, exhaust emission, and life of the IC engines. The meet the first two challenges, researchers are working both on newer engine technologies and fuels. Some of the published work indicates that coating on the combustion surface of the engine with ceramic material results in improved performance and reduced emission levels when fueled with alternate fuel blended fuels, and this serves as a base for this work. Normal-Butanol has molecular structure that is adaptable to gasoline, and it is considered as one of the alternative fuels for SI engines. Blending butanol with gasoline changes the properties of the fuel and alters the engine performance and emission characteristics. This is because heat which is released at a rate as a result of combustion of the compressed air–fuel mixture in the combustion chamber gets changed with respect to change fuel properties, air fuel ratio, and engine speed. An experimental investigation is carried out on a partially insulated single cylinder SI engine to study the performance and emission characteristics when fueled with two different blends of butanol and gasoline. The cylinder head surface and valves are coated with a ceramic material consisting of Zirconium dioxide (ZrO2 with 8% by weight of Yttrium Oxide (Y2O3 to a thickness of 0.3 mm by plasma spray method. Two different fuel blends containing 10% and 15% by volume of butanol in Gasoline are tested on an engine dynamometer using the uncoated and ceramic coated engines. The results strongly indicate that combination of ceramic coated engine and butanol gasoline blended fuel has potential to improve the engine performance.

  18. A Framework for Performing Verification and Validation in Reuse Based Software Engineering

    Science.gov (United States)

    Addy, Edward A.

    1997-01-01

    Verification and Validation (V&V) is currently performed during application development for many systems, especially safety-critical and mission- critical systems. The V&V process is intended to discover errors, especially errors related to critical processing, as early as possible during the development process. The system application provides the context under which the software artifacts are validated. This paper describes a framework that extends V&V from an individual application system to a product line of systems that are developed within an architecture-based software engineering environment. This framework includes the activities of traditional application-level V&V, and extends these activities into domain engineering and into the transition between domain engineering and application engineering. The framework includes descriptions of the types of activities to be performed during each of the life-cycle phases, and provides motivation for the activities.

  19. Performance Estimation and Fault Diagnosis Based on Levenberg–Marquardt Algorithm for a Turbofan Engine

    Directory of Open Access Journals (Sweden)

    Junjie Lu

    2018-01-01

    Full Text Available Establishing the schemes of accurate and computationally efficient performance estimation and fault diagnosis for turbofan engines has become a new research focus and challenges. It is able to increase reliability and stability of turbofan engine and reduce the life cycle costs. Accurate estimation of turbofan engine performance counts on thoroughly understanding the components’ performance, which is described by component characteristic maps and the fault of each component can be regarded as the change of characteristic maps. In this paper, a novel method based on a Levenberg–Marquardt (LM algorithm is proposed to enhance the fidelity of the performance estimation and the credibility of the fault diagnosis for the turbofan engine. The presented method utilizes the LM algorithm to figure out the operating point in the characteristic maps, preparing for performance estimation and fault diagnosis. The accuracy of the proposed method is evaluated for estimating performance parameters in the transient case with Rayleigh process noise and Gaussian measurement noise. The comparison among the extended Kalman filter (EKF method, the particle filter (PF method and the proposed method is implemented in the abrupt fault case and the gradual degeneration case and it has been shown that the proposed method has the capability to lead to more accurate result for performance estimation and fault diagnosis of turbofan engine than current popular EKF and PF diagnosis methods.

  20. Catalyst deterioration over the lifetime of small utility engines.

    Science.gov (United States)

    Doll, Nicholas J; Reisel, John R

    2007-10-01

    In this paper, the deterioration of catalysts in small, four-stroke, spark-ignition engines is described. The laboratory testing performed followed a proven test method that mimics the lifetime of a small air-cooled utility engine operating under normal field conditions. The engines used were single-cylinder, 6.5-hp, side-valve engines. These engines have a nominal 125-hr lifetime. The effectiveness of the catalysts was determined by testing exhaust emissions before and after the catalyst to determine the catalyst's efficiency. This was done several times during the lifetime of the engines to determine the deterioration in the performance of the catalysts at lowering pollutant emissions. Additional testing was performed on the catalysts to determine wear patterns, contamination, and recoverable activity. The results indicate that considerable catalyst deterioration is occurring over the lifetime of the engine. The results reveal that soot buildup, poisons, and active surface loss appear to be the contributing factors to the deterioration. These results were determined after analyzing the exhaust emissions data, scanning electron microscope results analysis, and the impact of regeneration attempts. An ANOVA statistical analysis was performed, and it was determined that the emissions are also impacted, to some degree, by time and the engine itself.

  1. Direct injection of gaseous LPG in a two-stroke SI engine for improved performance

    International Nuclear Information System (INIS)

    Pradeep, V.; Bakshi, Shamit; Ramesh, A.

    2015-01-01

    Improvements in a two-stroke, spark-ignition (2S–SI) engine can be realized by curtailing short-circuiting losses effectively through direct injection of the fuel. Liquefied petroleum gas (LPG) is an alternative transportation fuel that is used in several countries. However, limited information is available on LPG fuelled direct injected engines. Hence, there is a need to study these systems as applied to 2S–SI engines in order to bring out their potential benefits. A manifold injected 2S–SI engine is modified for direct injection of LPG, in gaseous form, from the cylinder head. This engine is evaluated for performance, emission and combustion. Evaluation at various throttle positions and constant speed showed that this system can significantly improve the thermal efficiency and lower the hydrocarbon (HC) emissions. Up to 93% reduction in HC emissions and improved combustion rates are observed compared to the conventional manifold injection system with LPG. CO emissions are higher and peak NO emissions are lower with this system due to the presence of richer in–cylinder trapped mixtures and charge stratification. This system can operate with similar injection timings at different throttle positions which make electronic control simpler. It can work with low injection pressures in the range of 4–5 bars. All these advantages are attractive for commercial viability of this engine. - Highlights: • Energy saving, low pressure, direct gaseous LPG injection in engine. • Significant reduction in HC emissions at all operating conditions. • No significant changes in injection timings for different throttle positions.

  2. Influence of Compression Ratio on the Performance and Emission Characteristics of Annona Methyl Ester Operated DI Diesel Engine

    Directory of Open Access Journals (Sweden)

    Senthil Ramalingam

    2014-09-01

    Full Text Available This study aims to find the optimum performance and emission characteristics of single cylinder variable compression ratio (VCR engine with different blends of Annona methyl ester (AME as fuel. The performance parameters such as specific fuel consumption (SFC, brake thermal efficiency (BTE, and emission levels of HC, CO, Smoke, and NOx were compared with the diesel fuel. It is found that, at compression ratio of 17: 1 for A20 blended fuel (20% AME + 80% Diesel shows better performance and lower emission level which is very close to neat diesel fuel. The engine was operated with different values of compression ratio (15, 16, and 17 to find out best possible combination for operating engine with blends of AME. It is also found that the increase of compression ratio increases the BTE and reduces SFC and has lower emission without any engine in design modifications.

  3. A Comparative Study on Energy and Exergy Analyses of a CI Engine Performed with Different Multiple Injection Strategies at Part Load: Effect of Injection Pressure

    Directory of Open Access Journals (Sweden)

    Muammer Özkan

    2015-01-01

    Full Text Available In this study, a four stroke four cylinder direct injection CI engine was run using three different injection pressures. In all measurements, the fuel quantity per cycle, the pre injection and main injection timing, the boost pressure and the engine speed were kept constant. The motor tests were performed under 130, 140 and 150 MPa rail pressure. During the theoretical part of the study, combustion, emission, energy and exergy analysis were made using the test results. An increase in the injection pressure increases combustion efficiency. The results show that combustion efficiency is not enough by itself, because the increase in the power need of the injection pump, decreases the thermal efficiency. The increase in the combustion temperature, increases the cooling loss and decreases the exergetic efficiency. In addition, the NOx emissions increased by 12% and soot emissions decreased 44% via increasing injection pressure by 17%. The thermal and exergetic efficiencies are found inversely proportional with injection pressure. Exergy destruction is found independent of the injection pressure and its value is obtained as ~6%.

  4. Performance of engine-driven rotary endodontic instruments with a superimposed bending deflection: V. Gates Glidden and Peeso drills.

    Science.gov (United States)

    Brantley, W A; Luebke, N H; Luebke, F L; Mitchell, J C

    1994-05-01

    A laboratory study was performed on Gates Glidden and Peeso drills to determine the incidence of shaft fracture when a bending deflection was superimposed on the rotating drills. Samples of sizes #1 to #6 stainless steel Gates Glidden drills, sizes #1 to #6 stainless steel and carbon steel-type P Peeso drills, and sizes #009 to #023 carbon steel-type B-1 Peeso drills from each of two manufacturers were evaluated with a unique apparatus that applied a 2-mm bending deflection while rotating the instruments. The apparatus did not restrict movement of the bur head during rotation. The test drills were rotated at 2500, 4000, and 7000 revolutions per minute, and the number of revolutions at failure was recorded. Scanning electron microscopic observations established that the stainless steel Gates Glidden and Peeso drills failed by ductile fracture, whereas the carbon steel Peeso drills failed by brittle fracture. Instrument fracture was always near the handpiece shank with this test, and the length of the fractured drills was measured from the working tip. It is recommended that this additional test be adopted to determine fatigue properties of engine-driven rotary endodontic instruments in establishing international performance standards.

  5. Study on Fault Diagnostics of a Turboprop Engine Using Inverse Performance Model and Artificial Intelligent Methods

    Science.gov (United States)

    Kong, Changduk; Lim, Semyeong

    2011-12-01

    Recently, the health monitoring system of major gas path components of gas turbine uses mostly the model based method like the Gas Path Analysis (GPA). This method is to find quantity changes of component performance characteristic parameters such as isentropic efficiency and mass flow parameter by comparing between measured engine performance parameters such as temperatures, pressures, rotational speeds, fuel consumption, etc. and clean engine performance parameters without any engine faults which are calculated by the base engine performance model. Currently, the expert engine diagnostic systems using the artificial intelligent methods such as Neural Networks (NNs), Fuzzy Logic and Genetic Algorithms (GAs) have been studied to improve the model based method. Among them the NNs are mostly used to the engine fault diagnostic system due to its good learning performance, but it has a drawback due to low accuracy and long learning time to build learning data base if there are large amount of learning data. In addition, it has a very complex structure for finding effectively single type faults or multiple type faults of gas path components. This work builds inversely a base performance model of a turboprop engine to be used for a high altitude operation UAV using measured performance data, and proposes a fault diagnostic system using the base engine performance model and the artificial intelligent methods such as Fuzzy logic and Neural Network. The proposed diagnostic system isolates firstly the faulted components using Fuzzy Logic, then quantifies faults of the identified components using the NN leaned by fault learning data base, which are obtained from the developed base performance model. In leaning the NN, the Feed Forward Back Propagation (FFBP) method is used. Finally, it is verified through several test examples that the component faults implanted arbitrarily in the engine are well isolated and quantified by the proposed diagnostic system.

  6. Impact of Fire Resistant Fuel Blends on Compression Ignition Engine Performance

    Science.gov (United States)

    2011-07-01

    exhaust backpressure .  Emissions are sampled from an exhaust probe installed between the engine and exhaust system butterfly valve.  Crankcase...1  3.0  EFFECTS ON ENGINE PERFORMANCE...fuel as it is heated, effectively limiting oxygen available to combust with the fuel. The research program ended in 1987 without the FRF blend

  7. TRW - Lunar Descent Engine. Chapter 6, Appendix H

    Science.gov (United States)

    Elverum, Gerard W.

    2009-01-01

    As we went through the program, what we determined, and what we all agreed on, was that the thrust coefficient (Cf) of the nozzle, after you get past a certain point, is really an engineering parameter. It s not a fundamental parameter that is going to be highly variable. Once we knew what the contour of the nozzle was, and once we knew what its characteristic was out to 2:1, we could calculate what the 48:1 thrust coefficient was going to be. In every case that we made a test, the calculation was precise. We weren't looking for a problem out at 48:1. Once we crushed the nozzle and said, "Yeah, we can land on the boulder," and once we had the thermal profile of that columbium nozzle, we did not require a lot of effort there. The real characterization was done in throttling over the 10:1 with the injector and controlling the mixture ratio on that - the whole head-end assembly - out to 2:1. I think everybody at NASA and Grumman agreed that flying like you test is great, particularly if you are using an aircraft engine. But, in this case, the thrust coefficient of the nozzle was not an issue. We had the tandem configuration of the service module, the command module, and the LEM sitting out there, and we were to fire the LEM. On Apollo 5, we were firing the LEM to show how it would work. There was a problem. I can t remember where the problem was, but something caused a problem before that engine had finished its burn. It was not in the engine, but there was some other problem, and NASA made a controlled shutdown. Then, they came to us and asked, "Hey, we re up there. We want to finish this test program. Is it okay if we restart that engine again in space with this tandem configuration?" We said, "As long as it has been more than forty minutes since you shut down, our analysis says that you will be okay in terms of the thermal characteristics of the inside of that chamber." They restarted it and pushed that system around in orbit on Apollo 5. It turned out, that when

  8. An experimental study on the performance of the moving regenerator for a γ-type twin power piston Stirling engine

    International Nuclear Information System (INIS)

    Chen, Wen-Lih; Wong, King-Leung; Chen, Hung-En

    2014-01-01

    Highlights: • Stacked-woven metal screens have been used as regenerator matrix materials. • Copper has been found as a superior regenerator matrix material than stainless steel. • Working gas flow direction has to be normal to screen surface to produce good engine performance. • Pressure drop through the regenerator plays a very important role on performance. • There exists an optimal fill factor. - Abstract: In this paper, a helium charge γ-type twin power piston Stirling engine has been studied experimentally to understand the effects of several regenerator parameters on the overall performance of the engine. The regenerator incorporated in this engine is a moving regenerator which is housed inside the displacer of the engine, and the parameters investigated include regenerator matrix material, matrices arrangement, matrix wire diameter, and fill factor. Stacked-woven metal screens have been used as regenerator matrix materials. The results include engine shaft torque, power, and efficiency versus engine speed at several engine’s hot-end temperatures. It is found that all parameters pose significant impact on engine performance. Copper is a superior regenerator material than stainless steel for the current engine; regenerator matrix screens have to be installed in a manner that the working-gas-flow direction is normal to the surface of matrix screens; very small wire diameter results in large pressure drop and reduce regenerator effectiveness; and there exists an optimal fill factor. The study offers some important information for the design of moving regenerator in a γ-type Stirling engine

  9. PERFORMANCE AND EMISSION CHARACTERISTICS OF CI ENGINE FUELLED WITH NON EDIBLE VEGETABLE OIL AND DIESEL BLENDS

    Directory of Open Access Journals (Sweden)

    T. ELANGO

    2011-04-01

    Full Text Available This study investigates performance and emission characteristics of a diesel engine which is fuelled with different blends of jatropha oil and diesel (10–50%. A single cylinder four stroke diesel engine was used for the experiments at various loads and speed of 1500 rpm. An AVL 5 gas analyzer and a smoke meter were used for the measurements of exhaust gas emissions. Engine performance (specific fuel consumption SFC, brake thermal efficiency, and exhaust gas temperature and emissions (HC, CO, CO2, NOx and Smoke Opacity were measured to evaluate and compute the behaviour of the diesel engine running on biodiesel. The results showed that the brake thermal efficiency of diesel is higher at all loads. Among the blends maximum brake thermal efficiency and minimum specific fuel consumption were found for blends upto 20% Jatropha oil. The specific fuel consumption of the blend having 20% Jatropha oil and 80% diesel (B20 was found to be comparable with the conventional diesel. The optimum blend is found to be B20 as the CO2 emissions were lesser than diesel while decrease in brake thermal efficiency is marginal.

  10. Effects of bioethanol ultrasonic generated aerosols application on diesel engine performances

    Directory of Open Access Journals (Sweden)

    Mariasiu Florin

    2015-01-01

    Full Text Available In this paper the effects of an experimental bioethanol fumigation application using an experimental ultrasound device on performance and emissions of a single cylinder diesel engine have been experimentally investigated. Engine performance and pollutant emissions variations were considered for three different types of fuels (biodiesel, biodiesel-bioethanol blend and biodiesel and fumigated bioethanol. Reductions in brake specific fuel consumption and NOx pollutant emissions are correlated with the use of ultrasonic fumigation of bioethanol fuel, comparative to use of biodiesel-bioethanol blend. Considering the fuel consumption as diesel engine’s main performance parameter, the proposed bioethanol’s fumigation method, offers the possibility to use more efficient renewable biofuels (bioethanol, with immediate effects on environmental protection.

  11. Monitoring the Long-Term Performance of Engineered Containment Systems: Role of Ecological Processes

    International Nuclear Information System (INIS)

    Traynham, B.; Clarke, J.H.; Burger, J.; Waugh, J.

    2009-01-01

    Engineered covers have been widely used to minimize water infiltration into landfills used by U. S. Department of Energy (DOE) for the disposal of radioactive and hazardous chemical waste. The degradation of engineered covers over time is a complex process that is influenced by site specific characteristics, the structure and dynamics of the indigenous plant community, and the interplay of physical and biological factors at contaminated sites. It is necessary to develop a rigorous method to evaluate long-term performance of covers and other engineered barriers with quantification of risk and uncertainty. Because many of the contaminants of concern are long-lived, this methodology must consider changes in the environmental setting (e.g., precipitation, temperature) and cover components for long time periods (>100 years). Current monitoring approaches focus solely on hydrologic properties of the cover system. Additionally, cover design guidelines, such as those from RCRA, are not performance based and do not consider long-term site-specific influences such as climate, vegetation, and soils. Fundamental ecological processes such as succession are not even factored into current models, yet they directly affect the integrity of landfill covers through biointrusion, erosion, and water balance. Therefore, it is useful to identify ecological parameters and processes most important to performance for prioritization of site characterization and long-term monitoring activities. This investigation into the role of ecological monitoring of isolation containment systems utilizes the software platform GoldSim to identify important parameters and processes for performance verification and monitoring. (authors)

  12. High-Performance Liquid Chromatography in the Undergraduate Chemical Engineering Laboratory

    Science.gov (United States)

    Frey, Douglas D.; Guo, Hui; Karnik, Nikhila

    2013-01-01

    This article describes the assembly of a simple, low-cost, high-performance liquid chromatography (HPLC) system and its use in the undergraduate chemical engineering laboratory course to perform simple experiments. By interpreting the results from these experiments students are able to gain significant experience in the general method of…

  13. Improving the performance and fuel consumption of dual chamber stratified charge spark ignition engines

    Energy Technology Data Exchange (ETDEWEB)

    Sorenson, S.C.; Pan, S.S.; Bruckbauer, J.J.; Gehrke, G.R.

    1979-09-01

    A combined experimental and theoretical investigation of the nature of the combustion processes in a dual chamber stratified charge spark ignition engine is described. This work concentrated on understanding the mixing process in the main chamber gases. A specially constructed single cylinder engine was used to both conduct experiments to study mixing effects and to obtain experimental data for the validation of the computer model which was constructed in the theoretical portion of the study. The test procedures are described. Studies were conducted on the effect of fuel injection timing on performance and emissions using the combination of orifice size and prechamber to main chamber flow rate ratio which gave the best overall compromise between emissions and performance. In general, fuel injection gave slightly higher oxides of nitrogen, but considerably lower hydrocarbon and carbon monoxide emissions than the carbureted form of the engine. Experiments with engine intake port redesign to promote swirl mixing indicated a substantial increase in the power output from the engine and, that an equivalent power levels, the nitric oxide emissions are approximately 30% lower with swirl in the main chamber than without swirl. The development of a computer simulation of the combustion process showed that a one-dimensional combustion model can be used to accurately predict trends in engine operation conditions and nitric oxide emissions even though the actual flame in the engine is not completely one-dimensional, and that a simple model for mixing of the main chamber and prechamber intake gases at the start of compression proved adequate to explain the effects of swirl, ignition timing, overall fuel air ratio, volumetric efficiency, and variations in prechamber air fuel ratio and fuel rate percentage on engine power and nitric oxide emissions. (LCL)

  14. Developing engineering analysis capabilities at a nuclear utility

    International Nuclear Information System (INIS)

    Miller, J.S.

    1992-01-01

    When a nuclear plant is originally designed and constructed, a large staff of analytical and design personnel is used by the architectural and engineering (A/E) firm(s) and the nuclear steam supply system (NSSS) engineering firm(s) to provide the technical specifications needed for the plant to function and satisfy US Nuclear Regulatory Commission (NRC) requirements. During this design process, thousands of calculations are performed, some using large sophisticated computer programs. Once the plant is operational, the utility assumes the large responsibility for plant design. Utility personnel must understand the fundamentals of operating the plant, the technical information in the updated safety analysis report, all calculations used to design the plant, and the input for all design specification documents. Without this knowledge, utility personnel cannot successfully perform modifications or new analyses required by the NRC, such as probabilistic risk assessment (PRA) and motor-operated valve programs, and maintain the safe and reliable operation of the plant. Therefore, it is very important to have on-site personnel who understand how the calculations are performed and used in the design basis. This paper discusses the organization of the engineering analysis group, which provides technical support for River Bend Station (RBS) of Gulf States Utilities

  15. Vehicle driving cycle performance of the spark-less di-ji hydrogen engine

    Energy Technology Data Exchange (ETDEWEB)

    Boretti, Alberto A. [School of Science and Engineering, University of Ballarat, PO Box663, Ballarat, VIC 3353 (Australia)

    2010-05-15

    The paper describes coupled CFD combustion simulations and CAE engine performance computations to describe the operation over the full range of load and speed of an always lean burn, Direct Injection Jet Ignition (DI-JI) hydrogen engine. Jet ignition pre-chambers and direct injection are enablers of high efficiencies and load control by quantity of fuel injected. Towards the end of the compression stroke, a small quantity of hydrogen is injected within the spark-less pre-chamber of the DI-JI engine, where it mixes with the air entering from the main chamber and auto-ignites because of the high temperature of the hot glow plug. Then, jets of partially combusted hot gases enter the main chamber igniting there in the bulk, over multiple ignition points, lean stratified mixtures of air and fuel. Engine maps of brake specific fuel consumption vs. speed and brake mean effective pressure are computed first. CAE vehicle simulations are finally performed evaluating the fuel consumption over emission cycles of a vehicle equipped with this engine. (author)

  16. Tailoring Systems Engineering Processes in a Conceptual Design Environment: A Case Study at NASA Marshall Spaceflight Center's ACO

    Science.gov (United States)

    Mulqueen, John; Maples, C. Dauphne; Fabisinski, Leo, III

    2012-01-01

    This paper provides an overview of Systems Engineering as it is applied in a conceptual design space systems department at the National Aeronautics and Space Administration (NASA) Marshall Spaceflight Center (MSFC) Advanced Concepts Office (ACO). Engineering work performed in the NASA MFSC's ACO is targeted toward the Exploratory Research and Concepts Development life cycle stages, as defined in the International Council on Systems Engineering (INCOSE) System Engineering Handbook. This paper addresses three ACO Systems Engineering tools that correspond to three INCOSE Technical Processes: Stakeholder Requirements Definition, Requirements Analysis, and Integration, as well as one Project Process Risk Management. These processes are used to facilitate, streamline, and manage systems engineering processes tailored for the earliest two life cycle stages, which is the environment in which ACO engineers work. The role of systems engineers and systems engineering as performed in ACO is explored in this paper. The need for tailoring Systems Engineering processes, tools, and products in the ever-changing engineering services ACO provides to its customers is addressed.

  17. Improvement of locally produced gasoline and studying its effects on both the performance of the engine and the environment

    International Nuclear Information System (INIS)

    Hamdan, M.A.; Al-Subaih, T.A.

    2002-01-01

    This study aims at investigating the effect of methyl-tertiary butyl ether (MTBE) addition to gasoline on its octane number and, hence, the performance of an engine. Also, its effect on the emitted gases was investigated. Locally produced gasoline was blended with five different percentages of MTBE, namely 0%, 5%, 10%, 15% and 20%. Then, these fuels were burned in an engine, which is coupled to a gas analyzer. It was found that the octane number of the gasoline increases continuously and linearly with MTBE percentage in the gasoline. The best performance of the engine occurs at around 10% MTBE addition and this percentage also gives the best reduction in exhaust eases emissions. (author)

  18. Virtual reality boosts performance at AREVA Projects

    International Nuclear Information System (INIS)

    Bernasconi, F.

    2017-01-01

    AREVA Projects is one of the 6 business units of New AREVA and it is dedicated to engineering works in a vast fan of activities from mining to waste management via uranium chemistry and nuclear fuel recycling. AREVA projects has opted for innovation to improve performance. Since 2012 virtual reality has been used through the creation of a room equipped with a high-definition screen and stereoscopic goggles. At the beginning virtual reality was used to test and validate procedures for handling equipment thanks to a dynamical digital simulation of this equipment. Now virtual reality is massively used to validate the design phase of projects without having to fabricate a physical mock-up which saves time. The next step in the use of virtual reality is the implementation of a new version of devices like helmets, gloves... that will allow a better interaction with the virtual world. The continuously increasing of computer power is always pushing back the limits of what is possible in virtual reality. (A.C.)

  19. Effect of replacing nitrogen with helium on a closed cycle diesel engine performance

    Directory of Open Access Journals (Sweden)

    Alaa M. Abo El Ela

    2016-09-01

    Full Text Available One of most important problems of closed cycle diesel engine is deterioration of cylinder pressure and consequently the engine power. Therefore this research aimed to establish a multi zone model using Computational Fluid Dynamic (CFD code; ANSYS Fluent 14.0 to enhance the closed cycle diesel engine performance. The present work investigates the effect of replacing nitrogen gas with helium gas in different concentration under different engine load and equivalence ratios. The numerical model results were validated with comparing them with those obtained from the previous experimental results. The engine which was used for the simulation analysis and the previous experimental work was a single cylinder with a displacement volume of 825 cm3, compression ratio of 17 and run at constant speed of 1500 RPM. The numerical results showed that replacing nitrogen with helium resulted in increasing the in-cylinder pressure. The results showed also that a percentage of 0.5–10% of helium on mass basis is sufficient in the recovery needed to overcome the drop in-cylinder pressure and hence power due to the existence of CO2 in the recycled gas up to 25%. When the CO2 % reaches 25%, it is required to use at least 10% of He as replacement gas to achieve the required recovery.

  20. Analysis and simulation of Wiseman hypocycloid engine

    Directory of Open Access Journals (Sweden)

    Priyesh Ray

    2014-12-01

    Full Text Available This research studies an alternative to the slider-crank mechanism for internal combustion engines, which was proposed by the Wiseman Technologies Inc. Their design involved replacing the crankshaft with a hypocycloid gear assembly. The unique hypocycloid gear arrangement allowed the piston and connecting rod to move in a straight line creating a perfect sinusoidal motion, without any side loads. In this work, the Wiseman hypocycloid engine was modeled in a commercial engine simulation software and compared to slider-crank engine of the same size. The engine’s performance was studied, while operating on diesel, ethanol, and gasoline fuel. Furthermore, a scaling analysis on the Wiseman engine prototypes was carried out to understand how the performance of the engine is affected by increasing the output power and cylinder displacement. It was found that the existing 30cc Wiseman engine produced about 7% less power at peak speeds than the slider-crank engine of the same size. These results were concurrent with the dynamometer tests performed in the past. It also produced lower torque and was about 6% less fuel efficient than the slider-crank engine. The four-stroke diesel variant of the same Wiseman engine performed better than the two-stroke gasoline version. The Wiseman engine with a contra piston (that allowed to vary the compression ratio showed poor fuel efficiency but produced higher torque when operating on E85 fuel. It also produced about 1.4% more power than while running on gasoline. While analyzing effects of the engine size on the Wiseman hypocycloid engine prototypes, it was found that the engines performed better in terms of power, torque, fuel efficiency, and cylinder brake mean effective pressure as the displacement increased. The 30 horsepower (HP conceptual Wiseman prototype, while operating on E85, produced the most optimum results in all aspects, and the diesel test for the same engine proved to be the most fuel efficient.

  1. Ecological risk assessment at the Idaho National Engineering Laboratory: Overview

    International Nuclear Information System (INIS)

    VanHorn, R.; Bensen, T.; Green, T.; Hampton, N.; Staley, C.; Morris, R.; Brewer, R.; Peterson, S.

    1994-01-01

    The paper will present an overview of the methods and results of the screening level ecological risk assessment (ERA) performed at the Idaho National Engineering Laboratory (INEL). The INEL is a site with some distinct characteristics. First it is a large Department of Energy (DOE) laboratory (2,300 km 2 ) having experienced 40 years of nuclear material production operations. Secondly, it is a relatively undisturbed cold desert ecosystem. Neither of these issues have been sufficiently addressed in previous ERAs. It was necessary in many instances to develop methods that differed from those used in other studies. This paper should provide useful methodologies for the ERAs performed at other similar sites

  2. Performance, combustion, and emission characteristics of a diesel engine fueled by biodiesel-diesel mixtures with multi-walled carbon nanotubes additives

    International Nuclear Information System (INIS)

    El-Seesy, Ahmed I.; Abdel-Rahman, Ali K.; Bady, Mahmoud; Ookawara, S.

    2017-01-01

    Highlights: • Considerable improvements in the combustion of JB20D50MWCNTs compared to pure JB20D. • p_m_a_x, dp/dθ_m_a_x and dQg/dθ_m_a_x increased by 7%, 4% and 4%, respectively. • Brake specific fuel consumption decreased by 15%. • NO_x, CO, and UHC reduced by 35%, 50%, and 60%, respectively. • Significant enhancement in all engine performance was achieved at a concentration of 40 mg/l. - Abstract: In this work, the effects of adding Multi-Walled Carbon nanotubes (MWCNTs) to Jojoba methyl ester-diesel blended fuel (JB20D) on performance, combustion and emissions characteristics of a compression-ignition engine were experimentally investigated. The JB20D with 10, 20, 30, 40 and 50 mg/l of MWCNTs were examined at different engine loads and speeds. Compared to pure diesel, the use of JB20D without MWCNTs caused a slight decrease in the engine performance and an increase in the engine emissions at most examined conditions. The MWCNTs–B20D blended fuel attained a maximum increase of 16% in the brake thermal efficiency and a decrease of 15% in the brake specific fuel consumption at the dose level of 50 mg/l compared to JB20D. The MWCNTs-JB20D blended fuel also brought about an enhancement in combustion characteristics where the peak cylinder pressure, the maximum rate of pressure rise and the peak heat release rate were increased by 7%, 4%, and 4%, respectively, at the same dose level. According to the measured emissions, a significant reduction of engine emissions was achieved at the dose level of 20 mg/l, where NO_x, CO, and UHC were reduced by 35%, 50%, and 60%, respectively. According to the obtained results, the recommended concentration of MWCNTs in JB20D was concluded to be 40 mg/l, which could give significant improvements in overall the parameters of engine performance and emissions with a good balance between them.

  3. The National Energy Audit (NEAT) Engineering Manual (Version 6)

    Energy Technology Data Exchange (ETDEWEB)

    Gettings, M.B.

    2001-04-20

    Government-funded weatherization assistance programs resulted from increased oil prices caused by the 1973 oil embargo. These programs were instituted to reduce US consumption of oil and help low-income families afford the increasing cost of heating their homes. In the summer of 1988, Oak Ridge National Laboratory (ORNL) began providing technical support to the Department of Energy (DOE) Weatherization Assistance Program (WAP). A preliminary study found no suitable means of cost-effectively selecting energy efficiency improvements (measures) for single-family homes that incorporated all the factors seen as beneficial in improving cost-effectiveness and usability. In mid-1989, ORNL was authorized to begin development of a computer-based measure selection technique. In November of 1992 a draft version of the program was made available to all WAP state directors for testing. The first production release, Version 4.3, was made available in october of 1993. The Department of Energy's Weatherization Assistance Program has continued funding improvements to the program increasing its user-friendliness and applicability. initial publication of this engineering manual coincides with availability of Version 6.1, November 1997, though algorithms described generally apply to all prior versions. Periodic updates of specific sections in the manual will permit maintaining a relevant document. This Engineering Manual delineates the assumptions used by NEAT in arriving at the measure recommendations based on the user's input of the building characteristics. Details of the actual data entry are available in the NEAT User's Manual (ORNL/Sub/91-SK078/1) and will not be discussed in this manual.

  4. Evaluation of combustion, performance, and emissions of optimum palm–coconut blend in turbocharged and non-turbocharged conditions of a diesel engine

    International Nuclear Information System (INIS)

    Arbab, M.I.; Varman, M.; Masjuki, H.H.; Kalam, M.A.; Imtenan, S.; Sajjad, H.; Rizwanul Fattah, I.M.

    2015-01-01

    Highlights: • Properties limitation of biodiesel has been overcome using multiple biodiesel blends. • New biodiesel was developed using biodiesel–biodiesel optimum blend. • Engine performance and emission was tested with the newly developed biodiesels. • New biodiesels showed better engine performance than other tested fuels. - Abstract: Fossil fuel depletion, global warming with rapid changes in climate, and increases in oil prices have motivated scientists to search for alternative fuel. Biodiesel can be an effective solution despite some limitations, such as poor fuel properties and engine performance. From this perspective, experiments were carried out to improve fuel properties and engine performance by using a binary blend of palm and coconut biodiesel at an optimized ratio. MATLAB optimization tool was used to determine this blend ratio. A new biodiesel was developed and represented by PC (optimum blend of palm and coconut biodiesel). Engine performance and emission were tested under a full load at variable speed condition by using a 20% blend of each biodiesel with petroleum diesel, and the results were compared with petroleum diesel under both turbocharged and non-turbocharged conditions. PC20 (blend of 20% PC biodiesel and 80% petroleum diesel) showed the highest engine power with lower brake-specific fuel consumption than the other tested fuels in the presence of a turbocharger. The emissions of PC20 were lower than those of all other tested fuels. The experimental analysis reveals that PC showed superior performance and emission over palm biodiesel blend

  5. Reliability engineering. Theory and practice. 6. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Birolini, Alessandro

    2010-07-01

    This book shows how to build in, evaluate, and demonstrate reliability and availability of components, equipment, systems. It presents the state-of-the-art of reliability engineering, both in theory and practice, and is based on the author's 30 years experience in this field, half in industry and half as Professor of Reliability Engineering at the ETH, Zurich. The structure of the book allows rapid access to practical results. Besides extensions to cost models and approximate expressions, new in this edition are investigations on common cause failures, phased-mission systems, availability demonstration and estimation, confidence limits at system level, trend tests for early failures or wearout, as well as a review of maintenance strategies, an introduction to Petri nets and dynamic FTA, and a set of problems for home-work. Methods and tools are given in a way that they can be tailored to cover different reliability requirement levels and be used for safety analysis as well. This book is a textbook establishing a link between theory and practice, with a large number of tables, figures, and examples to support the practical aspects. (orig.)

  6. The Effect of Ethanol-Diesel Blends on The Performance of A Direct Injection Diesel Engine

    OpenAIRE

    Arifin Nur; Yanuandri Putrasari; Iman Kartolaksono Reksowardojo

    2012-01-01

    The experiment was conducted on a conventional direct injection diesel engine. Performance test was carried out to evaluate the performance and emission characteristics of a conventional diesel engine that operates on ethanol-diesel blends. The test procedure was performed by coupling the diesel engine on the eddy current dynamometer. Fuel consumption was measured using the AVL Fuel Balance, and a hotwire anemometer was used to measure the air consumption. Some of the emission test devices we...

  7. A study experiment of auto idle application in the excavator engine performance

    Energy Technology Data Exchange (ETDEWEB)

    Purwanto, Wawan, E-mail: wawan5527@gmail.com; Maksum, Hasan; Putra, Dwi Sudarno, E-mail: dwisudarnoputra@ft.unp.ac.id; Wahyudi, Retno [State University of Padang, West Sumatera (Indonesia); Azmi, Meri, E-mail: meriazmi@gmail.com [State Polytechnic of Padang, West Sumatera (Indonesia)

    2016-03-29

    The purpose of this study was to analyze the effect of applying auto idle to excavator engine performance, such as machine unitization and fuel consumption in Excavator. Steps to be done are to modify the system JA 44 and 67 in Vehicle Electronic Control Unit (V-ECU). The modifications will be obtained from the pattern of the engine speed. If the excavator attachment is not operated, the engine speed will return to the idle speed automatically. From the experiment results the auto idle reduces fuel consumption in excavator engine.

  8. Effect of hydroxy (HHO) gas addition on gasoline engine performance and emiss

    OpenAIRE

    Mohamed M. EL-Kassaby; Yehia A. Eldrainy; Mohamed E. Khidr; Kareem I. Khidr

    2016-01-01

    The objective of this work was to construct a simple innovative HHO generation system and evaluate the effect of hydroxyl gas HHO addition, as an engine performance improver, into gasoline fuel on engine performance and emissions. HHO cell was designed, fabricated and optimized for maximum HHO gas productivity per input power. The optimized parameters were the number of neutral plates, distance between them and type and quantity of two catalysts of Potassium Hydroxide (KOH) and sodium hydroxi...

  9. An experimental study on performance and emission characteristics of a hydrogen fuelled spark ignition engine

    OpenAIRE

    Kahraman, Erol; Özcanlı, Şevket Cihangir; Özerdem, Barış

    2007-01-01

    In the present paper, the performance and emission characteristics of a conventional four cylinder spark ignition (SI) engine operated on hydrogen and gasoline are investigated experimentally. The compressed hydrogen at 20 MPa has been introduced to the engine adopted to operate on gaseous hydrogen by external mixing. Two regulators have been used to drop the pressure first to 300 kPa, then to atmospheric pressure. The variations of torque, power, brake thermal efficiency, brake mean effectiv...

  10. Performance and exhaust emission characteristics of direct-injection Diesel engine when operating on shale oil

    International Nuclear Information System (INIS)

    Labeckas, Gvidonas; Slavinskas, Stasys

    2005-01-01

    This article presents the comparative bench testing results of a naturally aspirated, four stroke, four cylinder, water cooled, direct injection Diesel engine when running on Diesel fuel and shale oil that is produced in Estonia from local oil shale. The purpose of this research is to investigate the possibility of practical usage of the shale oil as the alternative fuel for a high speed Diesel engine as well as to evaluate the combustion efficiency, brake specific fuel consumption, emission composition changes and the smoke opacity of the exhausts. Test results show that when fuelling a fully loaded engine with shale oil, the brake specific fuel consumption at the maximum torque and rated power is correspondingly higher by 12.3% and 20.4%. However, the brake thermal efficiencies do not differ widely and their maximum values remain equal to 0.36-0.37 for Diesel fuel and 0.32-0.33 for shale oil. The total nitrogen oxide emissions from the shale oil at engine partial loads remain considerably lower although when running at the maximum torque and rated power, the NO x emissions become correspondingly higher by 21.8% and 27.6%. The smoke opacity of the fully loaded engine at a wide range of speeds is lower by 30-35%, whereas the carbon monoxide and unburned hydrocarbon emissions in the exhausts at moderate and full load regimes do not undergo significant changes

  11. Stack Parameters Effect on the Performance of Anharmonic Resonator Thermoacoustic Heat Engine

    KAUST Repository

    Nouh, Mostafa A.; Arafa, Nadim M.; Abdel-Rahman, Ehab

    2014-01-01

    A thermoacoustic heat engine (TAHE) converts heat into acoustic power with no moving parts. It exhibits several advantages over traditional engines, such as simple design, stable functionality, and environment-friendly working gas. In order to further improve the performance of TAHE, stack parameters need to be optimized. Stack's position, length and plate spacing are the three main parameters that have been investigated in this study. Stack's position dictates both the efficiency and the maximum produced acoustic power of the heat engine. Positioning the stack closer to the pressure anti-node might ensure high efficiency on the expense of the maximum produced acoustic power. It is noticed that the TAHE efficiency can further be improved by spacing the plates of the stack at a value of 2.4 of the thermal penetration depth, δk . Changes in the stack length will not affect the efficiency much as long as the temperature gradient across the stack, as a ratio of the critical temperature gradient ψ is more than 1. Upon interpreting the effect of these variations, attempts are made towards reaching the engine's most powerful operating point.

  12. INVESTIGATION OF COMBUSTION, PERFORMANCE AND EMISSION CHARACTERISTICS OF SPARK IGNITION ENGINE FUELLED WITH BUTHANOL – GASOLINE MIXTURE AND A HYDROGEN ENRICHED AIR

    OpenAIRE

    Alfredas Rimkus; Mindaugas Melaika; Jonas Matijošius; Šarūnas Mikaliūnas; Saugirdas Pukalskas

    2016-01-01

    In this study, spark ignition engine fuelled with buthanol-gasoline mixture and a hydrogen-enriched air was investigated. Engine performance, emissions and combustion characteristics were investigated with different buthanol (10% and 20% by volume) gasoline mixtures and additionally supplied oxygen and hydrogen (HHO) gas mixture (3.6 l/min) in the sucked air. Hydrogen, which is in the HHO gas, improves gasoline and gasoline-buthanol mixture combustion, increases indicated pressure during comb...

  13. Experimental studies on the combustion characteristics and performance of a direct injection engine fueled with biodiesel/diesel blends

    International Nuclear Information System (INIS)

    Qi, D.H.; Chen, H.; Geng, L.M.; Bian, Y. ZH.

    2010-01-01

    Biodiesel is an alternative diesel fuel that can be produced from different kinds of vegetable oils. It is an oxygenated, non-toxic, sulphur-free, biodegradable, and renewable fuel and can be used in diesel engines without significant modification. However, the performance, emissions and combustion characteristics will be different for the same biodiesel used in different types of engine. In this study, the biodiesel produced from soybean crude oil was prepared by a method of alkaline-catalyzed transesterification. The effects of biodiesel addition to diesel fuel on the performance, emissions and combustion characteristics of a naturally aspirated DI compression ignition engine were examined. Biodiesel has different properties from diesel fuel. A minor increase in brake specific fuel consumption (BSFC) and decrease in brake thermal efficiency (BTE) for biodiesel and its blends were observed compared with diesel fuel. The significant improvement in reduction of carbon monoxide (CO) and smoke were found for biodiesel and its blends at high engine loads. Hydrocarbon (HC) had no evident variation for all tested fuels. Nitrogen oxides (NOx) were slightly higher for biodiesel and its blends. Biodiesel and its blends exhibited similar combustion stages to diesel fuel. The use of transesterified soybean crude oil can be partially substituted for the diesel fuel at most operating conditions in terms of the performance parameters and emissions without any engine modification.

  14. Analysis of 100-lb(sub f) (445-N) LO2-LCH4 Reaction Control Engine Impulse Bit Performance

    Science.gov (United States)

    Marshall, William M.; Klenhenz, Julie E.

    2012-01-01

    Recently, liquid oxygen-liquid methane (LO2-LCH4) has been considered as a potential green propellant alternative for future exploration missions. The Propulsion and Cryogenic Advanced Development (PCAD) project was tasked by NASA to develop this propulsion combination to enable safe and cost-effective exploration missions. To date, limited experience with such combinations exist, and as a result a comprehensive test program is critical to demonstrating with the viability of implementing such a system. The NASA Glenn Research Center conducted a test program of a 100-lbf (445-N) reaction control engine (RCE) at the Center s Altitude Combustion Stand (ACS), focusing on altitude testing over a wide variety of operational conditions. The ACS facility includes unique propellant conditioning feed systems (PCFS), which allow precise control of propellant inlet conditions to the engine. Engine performance as a result of these inlet conditions was examined extensively during the test program. This paper is a companion to the previous specific impulse testing paper, and discusses the pulsed-mode operation portion of testing, with a focus on minimum impulse bit (MIB) and repeatable pulse performance. The engine successfully demonstrated target MIB performance at all conditions, as well as successful demonstration of repeatable pulse widths. Some anomalous conditions experienced during testing are also discussed, including a double pulse phenomenon, which was not noted in previous test programs for this engine.

  15. Performance and emission comparison of a supercharged dual-fuel engine fueled by producer gases with varying hydrogen content

    Energy Technology Data Exchange (ETDEWEB)

    Mohon Roy, Murari [Rajshahi University of Engineering and Technology (JSPS Research Fellow, Okayama University), Tsushima-Naka 3, Okayama 700-8530 (Japan); Department of Mechanical Engineering, Okayama University, Tsushima-Naka 3, Okayama 700-8530 (Japan); Tomita, Eiji; Kawahara, Nobuyuki; Harada, Yuji [Department of Mechanical Engineering, Okayama University, Tsushima-Naka 3, Okayama 700-8530 (Japan); Sakane, Atsushi (Mitsui Engineering and Shipbuilding Co. Ltd., 6-4 Tsukiji 5-chome, Chuo-ku, Tokyo)

    2009-09-15

    This study investigated the effect of hydrogen content in producer gas on the performance and exhaust emissions of a supercharged producer gas-diesel dual-fuel engine. Two types of producer gases were used in this study, one with low hydrogen content (H{sub 2} = 13.7%) and the other with high hydrogen content (H{sub 2} = 20%). The engine was tested for use as a co-generation engine, so power output while maintaining a reasonable thermal efficiency was important. Experiments were carried out at a constant injection pressure and injection quantity for different fuel-air equivalence ratios and at various injection timings. The experimental strategy was to optimize the injection timing to maximize engine power at different fuel-air equivalence ratios without knocking and within the limit of the maximum cylinder pressure. Two-stage combustion was obtained; this is an indicator of maximum power output conditions and a precursor of knocking combustion. Better combustion, engine performance, and exhaust emissions (except NO{sub x}) were obtained with the high H{sub 2}-content producer gas than with the low H{sub 2}-content producer gas, especially under leaner conditions. Moreover, a broader window of fuel-air equivalence ratio was found with highest thermal efficiencies for the high H{sub 2}-content producer gas. (author)

  16. Preliminary Axial Flow Turbine Design and Off-Design Performance Analysis Methods for Rotary Wing Aircraft Engines. Part 2; Applications

    Science.gov (United States)

    Chen, Shu-cheng, S.

    2009-01-01

    In this paper, preliminary studies on two turbine engine applications relevant to the tilt-rotor rotary wing aircraft are performed. The first case-study is the application of variable pitch turbine for the turbine performance improvement when operating at a substantially lower shaft speed. The calculations are made on the 75 percent speed and the 50 percent speed of operations. Our results indicate that with the use of the variable pitch turbines, a nominal (3 percent (probable) to 5 percent (hypothetical)) efficiency improvement at the 75 percent speed, and a notable (6 percent (probable) to 12 percent (hypothetical)) efficiency improvement at the 50 percent speed, without sacrificing the turbine power productions, are achievable if the technical difficulty of turning the turbine vanes and blades can be circumvented. The second casestudy is the contingency turbine power generation for the tilt-rotor aircraft in the One Engine Inoperative (OEI) scenario. For this study, calculations are performed on two promising methods: throttle push and steam injection. By isolating the power turbine and limiting its air mass flow rate to be no more than the air flow intake of the take-off operation, while increasing the turbine inlet total temperature (simulating the throttle push) or increasing the air-steam mixture flow rate (simulating the steam injection condition), our results show that an amount of 30 to 45 percent extra power, to the nominal take-off power, can be generated by either of the two methods. The methods of approach, the results, and discussions of these studies are presented in this paper.

  17. An investigation into the RCCI engine operation under low load and its achievable operational range at different engine speeds

    International Nuclear Information System (INIS)

    Wang, Yifeng; Zhu, ZhongWen; Yao, Mingfa; Li, Tie; Zhang, Weijing; Zheng, Zunqing

    2016-01-01

    (168.6 g/kW h) occurred at an engine speed of 1900 r/min with an EGR rate of 56%, and the corresponding indicated thermal efficiency is up to 50%. In addition, intake boosting can be very effective for expanding the RCCI operating range at low engine speed (900 r/min), but excessive pressure rise rates could become problematic with increased amount of fuel injection.

  18. Nuclear engineering education initiative at Ibaraki University

    International Nuclear Information System (INIS)

    Matsumura, Kunihito; Kanto, Yasuhiro; Tanaka, Nobuatsu; Saigusa, Mikio; Kurumada, Akira; Kikuchi, Kenji

    2015-01-01

    With the help of a grant from the Ministry of Education, Culture, Sports, Science and Technology, Ibaraki University has been engaging for six years in the development and preparation of educational environment on nuclear engineering for each of graduate and undergraduate. Core faculty conducts general services including the design and implementation of curriculum, operational improvement, and implementation of lectures. 'Beginner-friendly introduction for nuclear power education' is provided at the Faculty of Engineering, and 'nuclear engineering education program' at the Graduate School of Science and Engineering. All the students who have interest or concern in the accidents at nuclear power plants or the future of nuclear power engineering have opportunities to learn actively. This university participates in the alliance or association with other universities, builds industry - government - academia cooperation with neighboring institutions such as the Japan Atomic Energy Agency, and makes efforts to promote the learning and development of applied skills related to nuclear engineering through training and study tours at each facility. For example, it established the Frontier Applied Atomic Science Center to analyze the structure and function of materials using the strong neutron source of J-PARC. As the efforts after the earthquake accident, it carried out a radiation survey work in Fukushima Prefecture. In addition, it proposed and practiced the projects such as 'development of methods for the evaluation of transfer/fixation properties and decontamination of radioactive substances,' and 'structure analysis of radioactive substances remaining in soil, litter, and polluted water and its application to the decontamination.' (A.O.)