WorldWideScience

Sample records for ats satellites

  1. Natural Satellite Ephemerides at JPL

    Science.gov (United States)

    Jacobson, Robert Arthur; Brozovic, Marina

    2015-08-01

    There are currently 176 known natural planetary satellites in the solar system; 150 are officially recognized by the IAU and 26 have IAU provisional designations. We maintain ephemerides for all of the satellites at NASA's Jet Propulsion Laboratory (JPL) and make them available electronically through the On-Line Solar System Data Service known as Horizons(http://ssd.jpl.nasa.gov/horizons) and in the form of generic Spice Kernels (SPK files) from NASA's Navigation and Ancillary Information Facility (http://naif.jpl.nasa.gov/naif). General satellite information such as physical constants and descriptive orbital elements can be found on the JPL Solar System Dynamics Website (http://ssd.jpl.nasa.gov). JPL's ephemerides directly support planetary spacecraft missions both in navigation and science data analysis. They are also used in general scientific investigations of planetary systems. We produce the ephemerides by fitting numerically integrated orbits to observational data. Our model for the satellite dynamics accounts for the gravitational interactions within a planetary system and the external gravitational perturbations from the Sun and planets. We rely on an extensive data set to determine the parameters in our dynamical models. The majority of the observations are visual, photographic, and CCD astrometry acquired from Earthbased observatories worldwide and the Hubble Space Telescope. Additional observations include optical and photoelectric transits, eclipses, occultations, Earthbased radar ranging, spacecraft imaging,and spacecraft radiometric tracking. The latter data provide information on the planet and satellite gravity fields as well as the satellite position at the times of spacecraft close encounters. In this paper we report on the status of the ephemerides and our plan for future development, specifically that in support of NASA's Juno, Cassini, and New Horizons missions to Jupiter, Saturn, and Pluto, respectively.

  2. Capture of Irregular Satellites at Jupiter

    CERN Document Server

    Nesvorny, D; Deienno, R

    2014-01-01

    The irregular satellites of outer planets are thought to have been captured from heliocentric orbits. The exact nature of the capture process, however, remains uncertain. We examine the possibility that irregular satellites were captured from the planetesimal disk during the early Solar System instability when encounters between the outer planets occurred (Nesvorny, Vokrouhlicky & Morbidelli 2007, AJ 133; hereafter NVM07). NVM07 already showed that the irregular satellites of Saturn, Uranus and Neptune were plausibly captured during planetary encounters. Here we find that the current instability models present favorable conditions for capture of irregular satellites at Jupiter as well, mainly because Jupiter undergoes a phase of close encounters with an ice giant. We show that the orbital distribution of bodies captured during planetary encounters provides a good match to the observed distribution of irregular satellites at Jupiter. The capture efficiency for each particle in the original transplanetary d...

  3. Capture of irregular satellites at Jupiter

    International Nuclear Information System (INIS)

    The irregular satellites of outer planets are thought to have been captured from heliocentric orbits. The exact nature of the capture process, however, remains uncertain. We examine the possibility that irregular satellites were captured from the planetesimal disk during the early solar system instability when encounters between the outer planets occurred. Nesvorný et al. already showed that the irregular satellites of Saturn, Uranus, and Neptune were plausibly captured during planetary encounters. Here we find that the current instability models present favorable conditions for capture of irregular satellites at Jupiter as well, mainly because Jupiter undergoes a phase of close encounters with an ice giant. We show that the orbital distribution of bodies captured during planetary encounters provides a good match to the observed distribution of irregular satellites at Jupiter. The capture efficiency for each particle in the original transplanetary disk is found to be (1.3-3.6) × 10–8. This is roughly enough to explain the observed population of jovian irregular moons. We also confirm Nesvorný et al.'s results for the irregular satellites of Saturn, Uranus, and Neptune.

  4. Capture of irregular satellites at Jupiter

    Energy Technology Data Exchange (ETDEWEB)

    Nesvorný, David; Vokrouhlický, David; Deienno, Rogerio [Department of Space Studies, Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States)

    2014-03-20

    The irregular satellites of outer planets are thought to have been captured from heliocentric orbits. The exact nature of the capture process, however, remains uncertain. We examine the possibility that irregular satellites were captured from the planetesimal disk during the early solar system instability when encounters between the outer planets occurred. Nesvorný et al. already showed that the irregular satellites of Saturn, Uranus, and Neptune were plausibly captured during planetary encounters. Here we find that the current instability models present favorable conditions for capture of irregular satellites at Jupiter as well, mainly because Jupiter undergoes a phase of close encounters with an ice giant. We show that the orbital distribution of bodies captured during planetary encounters provides a good match to the observed distribution of irregular satellites at Jupiter. The capture efficiency for each particle in the original transplanetary disk is found to be (1.3-3.6) × 10{sup –8}. This is roughly enough to explain the observed population of jovian irregular moons. We also confirm Nesvorný et al.'s results for the irregular satellites of Saturn, Uranus, and Neptune.

  5. Comparison of INMARSAT and ATS3 satellite communication

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-29

    There exists a need to provide communication through a satellite- based network which allows a user to communicate from a remote site to a fixed site. This discussion provides a comparison, both technical and financial, between the existing ATS3 satellite system and the commercial INMARSAT system. This comparison identified the limitations of each system to provide various types of communication.

  6. Measurement of Satellite Bunches at the LHC

    CERN Document Server

    Jeff, A; Boccardi, A; Bozyigit, S; Bravin, E; Lefevre, T; Rabiller, A; Roncarolo, F; Welsch, C P; Fisher, A S

    2012-01-01

    The RF gymnastics involved in the delivery of proton and lead ion bunches to the LHC can result in satellite bunches of varying intensity occupying the nominally empty RF buckets. Quantification of these satellites is crucial for bunch-by-bunch luminosity normalization as well as for machine protection. We present an overview of the longitudinal density monitor (LDM) which is the principal instrument for the measurement of satellite bunches in the LHC. The LDM uses single photon counting of synchrotron light. The very high energies reached in the LHC, combined with a dedicated undulator for diagnostics, allow synchrotron light measurements to be made with both protons and heavy ions. The arrival times of photons are collected over a few million turns, with the resulting histogram corrected for the effects of the detector’s deadtime and afterpulsing in order to reconstruct the longitudinal profile of the entire LHC ring. The LDM has achieved a dynamic range in excess of 105 and a time resolution of 90 ps. Ex...

  7. Library Information Network Experiment with ATS-F Satellite Telecommunications.

    Science.gov (United States)

    Gaven, Patricia; Williams, R. David

    ATS-F will be used by the Alaskan library community to develop a knowledge base for the library function of information delivery utilizing satellite technology. The experiment comprises three segments: (1) a weekly 15-minute participatory audio-video unit aimed at school children; (2) a weekly half-hour audio-video unit aimed at a variety of adult…

  8. Permanent GNSS Observations at Agh-Ust Satellite Observatory

    Science.gov (United States)

    Kudrys, Jacek

    2016-06-01

    GPS satellite observations at the Faculty of Mining Surveying and Environmental Engineering AGH-UST are conducted since the early 90s of the last century. In 2001, efforts have been made on getting permanently functioning GPS station. At present, observatory is EPN operational center for two GNSS stations KRAW and KRA1. Moreover, KRA1 station is one of fundamental control points in polish horizontal network. The article gives the history and scope of the research carried out in the satellite observatory AGH-UST during the period 2001 - 2015.

  9. Workers at CCAS attach solar panel to FUSE satellite.

    Science.gov (United States)

    1999-01-01

    At Hangar AE, Cape Canaveral Air Station (CCAS), workers attach a solar panel to NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. FUSE was developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., to investigate the origin and evolution of the lightest elements in the universe - hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum. FUSE is targeted for launch June 23 from Launch Pad 17A, CCAS, aboard a Boeing Delta II rocket.

  10. Partial cross sections of helium satellites at medium photon energies

    Energy Technology Data Exchange (ETDEWEB)

    Wehlitz, R.; Sellin, I.A. [Univ. of Tennessee, Knoxville, TN (United States); Hemmers, O. [Univ. of Nevada, Las Vegas, NV (United States)] [and others

    1997-04-01

    Still of current interest is the important role of single ionization with excitation compared to single ionization alone. The coupling between the electrons and the incoming photon is a single-particle operator. Thus, an excitation in addition to an ionization, leading to a so-called satellite line in a photoelectron spectrum, is entirely due to electron-electron interaction and probes the electron correlation in the ground and final state. Therefore the authors have undertaken the study of the intensity of helium satellites He{sup +}nl (n = 2 - 6) relative to the main photoline (n = 1) as a function of photon energy at photon energies well above threshold up to 900 eV. From these results they could calculate the partial cross-sections of the helium satellites. In order to test the consistency of their satellite-to-1s ratios with published double-to-single photoionization ratios, the authors calculated the double-to-single photoionization ratio from their measured ratios using the theoretical energy-distribution curves of Chang and Poe and Le Rouzo and Dal Cappello which proved to be valid for photon energies below 120 eV. These calculated double-to-single ionization ratios agree fairly well with recent ion measurements. In the lower photon energy range the authors ratios agree better with the ratios of Doerner et al. while for higher photon energies the agreement is better with the values of Levin et al.

  11. Does an NSAID a Day Keep Satellite Cells at Bay?

    DEFF Research Database (Denmark)

    Mackey, Abigail L

    2013-01-01

    the activity of satellite cells, the muscle stem cell responsible for repair and maintenance of skeletal muscle. The signaling pathways that are potentially modified by NSAID exposure are also considered. Growth factors as well as inflammatory cells and connective tissue appear to be key factors...... in the response of muscle under conditions where cyclooxygenase and prostaglandin activity are blocked through NSAID ingestion or infusion. Discrepancies in the literature regarding the response of young and old individuals are addressed, where it appears that the elderly may benefit from NSAID ingestion......, although this clearly requires further study. The long-term implications for the muscle of the apparent inhibitory effect of NSAIDs on satellite cells in younger individuals are not clear and it is possible these may first become apparent with chronic use in athletes training at a high level...

  12. Tether de-orbiting of satellites at end of mission

    Science.gov (United States)

    Sanmartin, Juan R.; Sánchez-Torres, Antonio

    2012-07-01

    The accumulation of space debris around the Earth has become critical for Space security. The BETs project, financed by the European Commission through its FP7-Space program, is focusing on preventing generation of new debris by de-orbiting satellites at end of mission. The de-orbiting system considered, involving an electrodynamic bare tape-tether, uses no propellant and no power supply, while generating power for on-board use during de-orbiting. As an example, preliminary results are here presented on a specific orbit/satellite case: 1300 km altitude and 65 degrees inclination, and 500 kg mass. Design tether dimensions are 8 km length, 1.5 cm width, and 0.05 mm thickness; subsystem masses are limited to twice tether mass. Simple calculations, using orbit-averaging, solar mid-cycle phase, and ionospheric and geomagnetic field models, yield 2.6 months time for de-orbiting down to 200 km, with a probability of about 1 percent of debris cutting the tape. References: Sanmartin, J.R., Lorenzini, E.C., and Martinez-Sanchez, M., Electrodynamic Tether Applications and Constraints, J. Space. Rockets 47, 442-456, 2010. Sanmartin, J.R. et al., A universal system to de-orbit satellites at end of life, Journal of Space Technology and Science, to appear.

  13. Satellite sweeping of electrons at Neptune and Uranus

    Science.gov (United States)

    Cooper, John F.

    1990-01-01

    Knowledge of satellite sweeping parameters at Neptune and Uranus, and of their functional dependences on particle energy and pitch angle, can be critical in the proper identification of parent absorbers for observed absorption signatures in regions where OTD (offset, tilted dipole) models are valid representations of the measured magnetic fields. In this paper, critical electron energies are calculated for longitudinal drift resonance, snowplow (i.e., strong) absorption, leapfrog, and corkscrew effects, using a reduced version of OTD that neglects nonaxial dipole offsets. Earlier analytic work on sweeping rates is extended to give the radial dependence of these rates within the minimum-L region and to set limits on diffusion of electrons with the simplifying approximation that leapfrog effects are ignored.

  14. The Coverage Analysis for Low Earth Orbiting Satellites at Low Elevation

    Directory of Open Access Journals (Sweden)

    Shkelzen Cakaj

    2014-07-01

    Full Text Available Low Earth Orbit (LEO satellites are used for public networking and for scientific purposes. Communication via satellite begins when the satellite is positioned in its orbital position. Ground stations can communicate with LEO satellites only when the satellite is in their visibility region. The duration of the visibility and the communication vary for each LEO satellite pass over the station, since LEO satellites move too fast over the Earth. The satellite coverage area is defined as a region of the Earth where the satellite is seen at a minimum predefined elevation angle. The satellite’s coverage area on the Earth depends on orbital parameters. The communication under low elevation angles can be hindered by natural barriers. For safe communication and for savings within a link budget, the coverage under too low elevation is not always provided. LEO satellites organized in constellations act as a convenient network solution for real time global coverage. Global coverage model is in fact the complementary networking process of individual satellite’s coverage. Satellite coverage strongly depends on elevation angle. To conclude about the coverage variation for low orbiting satellites at low elevation up to 10º, the simulation for attitudes from 600km to 1200km is presented through this paper.

  15. Broadcasting satellites at 12 GHz for Region 2: Technical characteristics

    Science.gov (United States)

    Miller, E. F.

    1984-01-01

    Technical parameters such as satellite antenna characteristics, Earth station requirements, bandwidths, channelization, and allowable carrier-to-interference ratios are discussed. An overview of the downlink plan is given, including a histogram of the transmitter power requirements. The plan includes satellite orbit positions, spacecraft transmitted powers, antennas beam sizes, channel assignments, and polarizations.

  16. Satellite remote sensing at the Sea Empress spill - a help or potential hindrance

    International Nuclear Information System (INIS)

    The application of satellite images in an oil spill response operation, was discussed. The oil movement and satellite imagery of the Sea Empress spill was described in detail. There were large discrepancies in the predictions by Radarsat satellite imagery and the actual oil movement, and in this instance, the satellite imagery proved to be more of a distraction than a useful tool. It was suggested that the greatest potential for satellite imagery is in detecting smaller releases of oil, such as from illegal tank washings, ballast waters from ships, or operational malfunctions at oil rigs. 4 refs., 10 figs

  17. Aeronautical Satellite Comunications at T1 Data Rates

    Science.gov (United States)

    Agan, M. J.; Densmore, A. C.

    1996-01-01

    The Advanced Communications Technology Satellite (ACTS) Broadband Aeronautical Terminal was developed by NASA's Jet Propulsion Laboratory together with various industry/government partners to investigate high data rate aeronautical applications of ACTS technologies.

  18. Mechanisms To Assess Gram Stain Interpretation Proficiency of Technologists at Satellite Laboratories▿

    OpenAIRE

    Munson, Erik; Block, Timothy; Basile, Janice; Hryciuk, Jeanne E.; Schell, Ronald F.

    2007-01-01

    To address Gram stain interpretation proficiency in a satellite/centralized microbiology laboratory paradigm, two programs were devised. In quality assurance program 1, nonmicrobiology technologists at satellite laboratories were required to interpret standardized Gram-stained specimens of clinical material prepared by an experienced microbiologist at a central laboratory. In quality assurance program 2, clinical Gram stains prepared and read by the satellite laboratorians were reviewed by ex...

  19. A deeper look at the color of Saturnian irregular satellites

    CERN Document Server

    Grav, T

    2006-01-01

    We have performed broadband color photometry of the twelve brightest irregular satellites of Saturn with the goal of understanding their surface composition, as well as their physical relationship. We find that the satellites have a wide variety of different surface colors, from the negative spectral slopes of the two retrograde satellites S IX Phoebe (S'=-2.5+/-0.4 %/100nm) and S XXV Mundilfari (S'=-5.0+/-1.9 %/100nm) to the fairly red slope of S XXII Ijiraq (S'=19.5+/-0.9 %/100nm). We further find that there exist a correlation between dynamical families and spectral slope, with the prograde clusters, the Gallic and Inuit, showing tight clustering in colors among most of their members. The retrograde objects are dynamically and physically more dispersed, but some internal structure is apparent.

  20. Analysis of Propellantless Tethered System for the De-Orbiting of Satellites at End of Life

    OpenAIRE

    Zanutto, Denis

    2013-01-01

    The increase of orbital debris and the consequent proliferation of smaller objects through fragmentation is driving the need for mitigation strategies that address this issue at its roots. The present guidelines for mitigation point out the need to deorbit new satellites injected into low Earth orbit (LEO) within a 25-year time. The issue is then how to deorbit the satellite with an efficient system that does not impair drastically the propellant budget of the satellite and, consequently, red...

  1. Eclipses and Occultations of Galilean Satellites Observed at Yunnan Observatory in 2003

    Institute of Scientific and Technical Information of China (English)

    Qing-Yu Peng; Beno(i)t Noyelles

    2007-01-01

    We describe and analyze observations of mutual events of Galilean satellites made at the Yunnan Observatory in February 2003 from CCD imaging for the first time in China.Astrometric positions were deduced from these photometric observations by modelling the relative motion and the photometry of the involved satellites during each event.

  2. Telemedicine in Alaska: The ATS-6 Satellite Biomedical Demonstration. Final Report.

    Science.gov (United States)

    Foote, Dennis; And Others

    A demonstration project explored the potential of satellite video consulation to improve the quality of rural health care in Alaska. Satellite ground stations permitting both transmission and reception of black and white television were installed at clinics in Fairbanks, Fort Yukon, Galena, and Tanana. Receive-only television capability was…

  3. Satellite Quenching and Galactic Conformity at 0.3 < z < 2.5

    CERN Document Server

    Kawinwanichakij, Lalitwadee; Papovich, Casey; Kacprzak, Glenn G; Labbé, Ivo; Spitler, Lee R; Straatman, Caroline; Tran, Kim-Vy; Allen, Rebecca; Behroozi, Peter S; Cowley, Michael; Dekel, Avishai; Glazebrook, Karl; Hartley, William G; Kelson, Daniel D; Koo, David C; Lee, Seong-Kook; Lu, Yu; Nanayakkara, Themiya; Persson, Eric; Primack, Joel R; Tilvi, Vithal; Tomczak, Adam R; van Dokkum, Pieter

    2015-01-01

    We measure the evolution of the quiescent fraction and quenching efficiency of satellites around star-forming and quiescent central galaxies with stellar mass $\\log(M_{\\mathrm{cen}}/M_{\\odot})>10.5$ at $0.39.3$. Satellites for both star-forming and quiescent central galaxies have higher quiescent fractions compared to field galaxies matched in stellar mass at all redshifts. We also observe "galactic conformity": satellites around quiescent centrals are more likely to be quenched compared to the satellites around star-forming centrals. In our sample, this conformity signal is significant at $\\gtrsim3\\sigma$ for $0.6at $0.3satellite quenching) has been present for a significant fraction of the age of the universe. The satellite quenching efficiency increases with increasing stellar mass of the central, but does not appear to depend on the stellar mass of the satellite to the mass limit ...

  4. Summary of satellite tagged sea turtles at NOAA Galveston 2002-2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The database contains a list of satellite tags affixed to sea turtles at the NOAA Galveston Laboratory. The information includes: species, date of tagging, and tag...

  5. Satellite and Ground Based Thermal Observation of the 2014 Effusive Eruption at Stromboli Volcano

    Directory of Open Access Journals (Sweden)

    Klemen Zakšek

    2015-12-01

    Full Text Available As specifically designed platforms are still unavailable at this point in time, lava flows are usually monitored remotely with the use of meteorological satellites. Generally, meteorological satellites have a low spatial resolution, which leads to uncertain results. This paper presents the first long term satellite monitoring of active lava flows on Stromboli volcano (August–November 2014 at high spatial resolution (160 m and relatively high temporal resolution (~3 days. These data were retrieved by the small satellite Technology Experiment Carrier-1 (TET-1, which was developed and built by the German Aerospace Center (DLR. The satellite instrument is dedicated to high temperature event monitoring. The satellite observations were accompanied by field observations conducted by thermal cameras. These provided short time lava flow dynamics and validation for satellite data. TET-1 retrieved 27 datasets over Stromboli during its effusive activity. Using the radiant density approach, TET-1 data were used to calibrate the MODVOLC data and estimate the time averaged lava discharge rate. With a mean output rate of 0.87 m3/s during the three-month-long eruption, we estimate the total erupted volume to be 7.4 × 106 m3.

  6. AKR-like emissions observed at low altitude by the DEMETER satellite

    OpenAIRE

    Parrot, Michel; Berthelier, Jean-Jacques

    2012-01-01

    International audience This paper reports observations of Auroral Kilometric Radiation (AKR) by the low altitude satellite DEMETER (700 km) during the super magnetic storm of November 2004. AKR is generated along auroral field lines at altitudes above ~ 3000 km and escapes from the Earth so that most observations have been made close to the source regions or at large distances from the Earth. However, EM waves with AKR-like frequency spectra detected by the low altitude EXOS-C satellite we...

  7. Site testing at astronomical sites: seeing evaluation from satellite based data

    CERN Document Server

    Ortolani, Stefano Cavazzani Sergio

    2011-01-01

    We present for the first time a new method to estimate the seeing using remote sounding from the IR night time data of the GOES 12 satellite. We discuss the derived correlation between the ground data and the satellite derived values from the analysis of the sites located at Cerro Paranal (Chile) and Roque de los Muchachos (Canary Islands, Spain). We get a ground-satellite correlation percentage of about 90%. Finally, studying the correlation between the afternoon data and the following night, we are able to provide a forecast of the photometric night quality.

  8. Kursk Magnetic Anomaly at Satellite Altitude: Revisited with the Orsted Satellite

    Science.gov (United States)

    Taylor, Patrick T.; VonFrese, Ralph R. B.; Kim, Hyung Rae

    2000-01-01

    The Kursk Magnetic Anomaly (KMA) of Russia (51 deg north, 37 deg east) has long been recognized as one of the largest magnetic anomalies on Earth. It is associated with the massive iron-ore formations of this region, however, model studies have revealed that the relationship between the two is not obvious. In an early effort to demonstrate the validity of Magsat data for crustal research a detailed study of the KMA, at an average altitude of 350 km and the surrounding region was made. They recorded a 27 nT high and a -9 nT low giving a 37 nT peak-to-trough anomaly over the immediate area of the KMA. Despite the much higher altitude of Orsted (620 to 850 km) we revisited the KMA to determine if this mission would also be able to record an associated anomalous crustal signature. The Orsted profiles we selected were from April to August 1999. From these data we chose those with an altitude range of 644 to 700 km and they were subsequently gridded, by least-squares collocation, to a mean elevation of 660 km. Both ascending and descending data were examined and signals common to both were extracted and averaged. A correlation coefficient between these two orbit orientations of 0.82 was computed. The quadrant-swapping method of Kim et al. was applied. Removal of the main geomagnetic field was accomplished with a polynomial fitting procedure. A positive anomaly of >2.5 nT with ari associated negative of 3 nT peak-to-trough range were computed. These Magsat and Orsted results are consistent with the decay of a dipole field over the studied altitude range. Significant differences between these two anomaly fields are due to the greater number of orbit profiles and therefore greater number of intersecting orbits (ascending and descending) available in the Orsted compilation. Of the four largest amplitude anomalies in the Orsted field three are present in the Magsat map. The fourth (>2.5 nT), however, is associated with the Belorussian-Lithuanian anteclise. This sugaests that

  9. A comparative study of spherical and flat-Earth geopotential modeling at satellite elevations

    Science.gov (United States)

    Parrott, M. H.; Hinze, W. J.; Braile, L. W.

    1985-01-01

    Flat-Earth and spherical-Earth geopotential modeling of crustal anomaly sources at satellite elevations are compared by computing gravity and scalar magnetic anomalies perpendicular to the strike of variably dimensioned rectangular prisms at altitudes of 150, 300, and 450 km. Results indicate that the error caused by the flat-Earth approximation is less than 10% in most geometric conditions. Generally, error increase with larger and wider anomaly sources at higher altitudes. For most crustal source modeling applications at conventional satellite altitudes, flat-Earth modeling can be justified and is numerically efficient.

  10. Simultaneous field-aligned currents at Swarm and Cluster satellites

    DEFF Research Database (Denmark)

    Dunlop, M. W.; Yang, J. Y.; Yang, Y. Y.;

    2015-01-01

    We show for the first time, with direct, multispacecraft calculations of electric current density, and other methods, matched signatures of field-aligned currents (FACs) sampled simultaneously near the ionosphere at low (∼500km altitude) orbit and in the magnetosphere at medium (similar to 2.5 RE...

  11. The Coverage Analysis for Low Earth Orbiting Satellites at Low Elevation

    OpenAIRE

    Shkelzen Cakaj; Bexhet Kamo; Algenti Lala; Alban Rakipi

    2014-01-01

    Low Earth Orbit (LEO) satellites are used for public networking and for scientific purposes. Communication via satellite begins when the satellite is positioned in its orbital position. Ground stations can communicate with LEO satellites only when the satellite is in their visibility region. The duration of the visibility and the communication vary for each LEO satellite pass over the station, since LEO satellites move too fast over the Earth. The satellite coverage area is defined as a regio...

  12. Gravitational detection of a low-mass dark satellite at cosmological distance

    CERN Document Server

    Vegetti, S; McKean, J P; Auger, M W; Fassnacht, C D; Koopmans, L V E

    2012-01-01

    The mass-function of dwarf satellite galaxies that are observed around Local Group galaxies substantially differs from simulations based on cold dark matter: the simulations predict many more dwarf galaxies than are seen. The Local Group, however, may be anomalous in this regard. A massive dark satellite in an early-type lens galaxy at z = 0.222 was recently found using a new method based on gravitational lensing, suggesting that the mass fraction contained in substructure could be higher than is predicted from simulations. The lack of very low mass detections, however, prohibited any constraint on their mass function. Here we report the presence of a 1.9 +/- 0.1 x 10^8 M_sun dark satellite in the Einstein-ring system JVAS B1938+666 at z = 0.881, where M_sun denotes solar mass. This satellite galaxy has a mass similar to the Sagittarius galaxy, which is a satellite of the Milky Way. We determine the logarithmic slope of the mass function for substructure beyond the local Universe to be alpha = 1.1^+0.6_-0.4, ...

  13. Easy-to-Build Satellite Beacon Receiver for Propagation Experimentation at Millimeter Bands

    Directory of Open Access Journals (Sweden)

    F. Machado

    2014-04-01

    Full Text Available This paper describes the design and development of a digital satellite beacon receiver for propagation experimentation. Satellite beacons are frequently available for pointing large antennas, but such signals can be used for measuring rain attenuation and other phenomena as, for example, tropospheric scintillation. A fairly inexpensive beacon receiver has been built using off-the-shelf parts. This instrument is not at all bulky making it suitable for easy transportation. This article analyzes the receiver specifications, describes in detail its structure and presents some operational test results.

  14. ATM Quality of Service Parameters at 45 Mbps Using a Satellite Emulator: Laboratory Measurements

    Science.gov (United States)

    Ivancic, William D.; Bobinsky, Eric A.

    1997-01-01

    Results of 45-Mbps DS3 intermediate-frequency loopback measurements of asynchronous transfer mode (ATM) quality of service parameters (cell error ratio and cell loss ratio) are presented. These tests, which were conducted at the NASA Lewis Research Center in support of satellite-ATM interoperability research, represent initial efforts to quantify the minimum parameters for stringent ATM applications, such as MPEG-1 and MPEG-2 video transmission. Portions of these results were originally presented to the International Telecommunications Union's ITU-R Working Party 4B in February 1996 in support of their Draft Preliminary Recommendation on the Transmission of ATM Traffic via Satellite.

  15. Study of wind speed attenuation at Kavaratti Island using land-based, offshore, and satellite measurements

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; Rivankar, P.; Balakrishnan Nair, T.M.B.

    The role of dense coconut palms in attenuating the wind speed at Kavaratti Island, which is located in the southeastern Arabian Sea, is examined based on land-based and offshore wind measurements (U sub(10)) using anchored-buoy-mounted and satellite...

  16. Precise orbit determination for quad-constellation satellites at Wuhan University: strategy, result validation, and comparison

    Science.gov (United States)

    Guo, Jing; Xu, Xiaolong; Zhao, Qile; Liu, Jingnan

    2016-02-01

    This contribution summarizes the strategy used by Wuhan University (WHU) to determine precise orbit and clock products for Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS). In particular, the satellite attitude, phase center corrections, solar radiation pressure model developed and used for BDS satellites are addressed. In addition, this contribution analyzes the orbit and clock quality of the quad-constellation products from MGEX Analysis Centers (ACs) for a common time period of 1 year (2014). With IGS final GPS and GLONASS products as the reference, Multi-GNSS products of WHU (indicated by WUM) show the best agreement among these products from all MGEX ACs in both accuracy and stability. 3D Day Boundary Discontinuities (DBDs) range from 8 to 27 cm for Galileo-IOV satellites among all ACs' products, whereas WUM ones are the largest (about 26.2 cm). Among three types of BDS satellites, MEOs show the smallest DBDs from 10 to 27 cm, whereas the DBDs for all ACs products are at decimeter to meter level for GEOs and one to three decimeter for IGSOs, respectively. As to the satellite laser ranging (SLR) validation for Galileo-IOV satellites, the accuracy evaluated by SLR residuals is at the one decimeter level with the well-known systematic bias of about -5 cm for all ACs. For BDS satellites, the accuracy could reach decimeter level, one decimeter level, and centimeter level for GEOs, IGSOs, and MEOs, respectively. However, there is a noticeable bias in GEO SLR residuals. In addition, systematic errors dependent on orbit angle related to mismodeled solar radiation pressure (SRP) are present for BDS GEOs and IGSOs. The results of Multi-GNSS combined kinematic PPP demonstrate that the best accuracy of position and fastest convergence speed have been achieved using WUM products, particularly in the Up direction. Furthermore, the accuracy of static BDS only PPP degrades when the BDS IGSO and MEO satellites switches to orbit-normal orientation

  17. Comparison of land surface temperature measurements at NOAA CRN sites with airborne and satellite observations

    Science.gov (United States)

    Krishnan, P.; Kochendorfer, J.; Baker, B.; Dumas, E.; Meyers, T. P.; Guillevic, P.; Corda, S.; Muratore, J.; Martos, B.

    2011-12-01

    Land surface temperature (LST) is a key variable for studying global or regional land surface processes and the energy and water vapor exchange at the biosphere-atmosphere interface. In an effort to better quantify the spatial variability and overall representativeness of single-point surface temperature measurement being recorded at NOAA's Climate Reference Network (CRN) sites and to improve the accuracy of satellite land surface temperature measurements, airborne flight campaigns were conducted over two vegetated sites in Tennessee, USA during 2010 to 2011. During the campaign, multiple measurements of land surface temperature were made using Infra-Red temperature sensors at micrometeorological tower sites and onboard an instrumented Piper Navajo airborne research aircraft. In addition to this, coincident Moderate Resolution Imaging Spectroradiometer (MODIS) LST observations, onboard the NASA Terra and Aqua Earth Observing System satellites were used. The aircraft-based and satellite based land surface temperature measurements were compared to in situ, tower based LST measurements. Preliminary results show good agreement between in situ, aircraft and satellite measurements.

  18. Interference at the Single Photon Level Along Satellite-Ground Channels

    Science.gov (United States)

    Vallone, Giuseppe; Dequal, Daniele; Tomasin, Marco; Vedovato, Francesco; Schiavon, Matteo; Luceri, Vincenza; Bianco, Giuseppe; Villoresi, Paolo

    2016-06-01

    Quantum interference arising from the superposition of states is striking evidence of the validity of quantum mechanics, confirmed in many experiments and also exploited in applications. However, as for any scientific theory, quantum mechanics is valid within the limits in which it has been experimentally verified. In order to extend such limits, it is necessary to observe quantum interference in unexplored conditions such as moving terminals at large distances in space. Here, we experimentally demonstrate single photon interference at a ground station due to the coherent superposition of two temporal modes reflected by a rapidly moving satellite a thousand kilometers away. The relative speed of the satellite induces a varying modulation in the interference pattern. The measurement of the satellite distance in real time by laser ranging allows us to precisely predict the instantaneous value of the interference phase. We then observed the interference patterns with a visibility up to 67% with three different satellites and with a path length up to 5000 km. Our results attest to the viability of photon temporal modes for fundamental tests of physics and quantum communication in space.

  19. Estimating photosynthetically active radiation (PAR) at the Earth's surface from satellite observations

    International Nuclear Information System (INIS)

    Current satellite algorithms to estimate photosynthetically active radiation (PAR) at the Earth's surface are reviewed, and selected results are presented. PAR can be obtained directly from top-of-atmosphere solar radiance, which is used to determine the transmissivity of the atmosphere. Since clouds do not absorb significantly at PAR wavelengths, the radiative transfer modeling is generally simplified compared to that for total insolation. The accuracies reported, about 10% and 6% on daily and monthly time scales, respectively, are useful for modeling oceanic and terrestrial primary productivity. The large short-term variability in the ratio of PAR and insolation, essentially due to clouds, is reduced at those time scales, suggesting that reasonably accurate PAR climatologies may be obtained from available insolation climatologies (satellite or other). (author)

  20. The impact of introducing a satellite dispensary service at an outpatient HIV clinic

    OpenAIRE

    S Vekeria; Jalali, F.; S Sonecha; Bates, I.

    2012-01-01

    Background: Studies have demonstrated the potential impact of pharmaceutical services in HIV care [1]. We sought to extend HIV pharmacy services at the Dean Street outpatient HIV/GUM clinic to improve efficiency and enhance client satisfaction. The pharmacy team was expanded and a satellite dispensary was opened in the clinic. This project compares the new dispensary service with the previous one offered. Method: Comparisons were made between the pre- and post-change period across a range of ...

  1. Night sky brightness at sites from DMSP-OLS satellite measurements

    OpenAIRE

    Cinzano, Pierantonio; Elvidge, Cristopher D.

    2004-01-01

    We apply the sky brightness modelling technique introduced and developed by Roy Garstang to high-resolution DMSP-OLS satellite measurements of upward artificial light flux and to GTOPO30 digital elevation data in order to predict the brightness distribution of the night sky at a given site in the primary astronomical photometric bands for a range of atmospheric aerosol contents. This method, based on global data and accounting for elevation, Earth curvature and mountain screening, allows the ...

  2. An evaluation of the CMAQ reproducibility of satellite tropospheric NO2 column observations at different local times over East Asia

    Science.gov (United States)

    Irie, H.; Yamaji, K.; Ikeda, K.; Uno, I.; Itahashi, S.; Ohara, T.; Kurokawa, J.

    2013-12-01

    Despite the importance of the role of nitrogen dioxide (NO2) in tropospheric chemistry, the causes leading to the discrepancy between satellite-derived and modeled tropospheric NO2 vertical column densities (VCDs) over East Asia remain unclear. Here the reproducibility of satellite tropospheric NO2 VCD data by a regional chemical transport model (CMAQ) with the Regional Emission inventory in ASia (REAS) Version 2 is evaluated from the viewpoint of the diurnal variation of tropospheric NO2 VCDs, where satellite observations at different local times (SCIAMACHY/ENVISAT, OMI/Aura, and GOME-2/Metop-A) are utilized. As a case study, we concentrate on June 2007 for a detailed evaluation based on various sensitivity simulations from the aspects of emission and spatial resolution. Within uncertainty in satellite data, CMAQ generally reproduces absolute values of monthly-mean satellite NO2 VCDs over most of 12 selected diagnostic regions in East Asia. Reconsideration of literature satellite bias estimates brings the satellite-derived NO2 diurnal variation pattern closer to that of CMAQ. The diurnal variation pattern is insensitive to any sensitivity simulations conducted in this study. Improving the model horizontal resolution tends to show better agreement with satellite data in AM but not in PM in China. Compared to satellite data, CMAQ shows a weak NO2 diurnal variation in daytime over China. Our findings support the need for detailed evaluation of chemical processes in CMAQ.

  3. Satellite laser ranging using superconducting nanowire single-photon detectors at 1064  nm wavelength.

    Science.gov (United States)

    Xue, Li; Li, Zhulian; Zhang, Labao; Zhai, Dongsheng; Li, Yuqiang; Zhang, Sen; Li, Ming; Kang, Lin; Chen, Jian; Wu, Peiheng; Xiong, Yaoheng

    2016-08-15

    Satellite laser ranging operating at 1064 nm wavelength using superconducting nanowire single-photon detectors (SNSPDs) is successfully demonstrated. A SNSPD with an intrinsic quantum efficiency of 80% and a dark count rate of 100 cps at 1064 nm wavelength is developed and introduced to Yunnan Observatory in China. With improved closed-loop telescope systems (field of view of about 26''), satellites including Cryosat, Ajisai, and Glonass with ranges of 1600 km, 3100 km, and 19,500 km, respectively, are experimentally ranged with mean echo rates of 1200/min, 4200/min, and 320/min, respectively. To the best of our knowledge, this is the first demonstration of laser ranging for satellites using SNSPDs at 1064 nm wavelength. Theoretical analysis of the detection efficiency and the mean echo rate for typical satellites indicate that it is possible for a SNSPD to range satellites from low Earth orbit to geostationary Earth orbit. PMID:27519105

  4. Geostationary Satellite (GOES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from radiometer instruments on SMS (ATS) and GOES satellites in geostationary orbit. These satellites produced...

  5. ATS-6 - A satellite for human needs. [Health, Education, Telecommunications Experiment

    Science.gov (United States)

    Whalen, A. A.; Johnston, W. A., Jr.

    1975-01-01

    On May 30, 1974, NASA launched the ATS-6 experimental communications satellite into a geosynchronous orbit at a station centered over the United States. The 1400 kg satellite was designed to be body-stabilized with a 3-axis control system capable of precision offset pointing. It deployed a 9.1 meter (30 foot) parabolic reflector antenna with a transponder that covered a frequency range from VHF through C-band. The high RF gains obtained with the antenna were to be used for many dramatic communications experiments, one of which was the Health/Education Telecommunications Experiment (HET), a demonstration of direct broadcast of color television to low cost terminals in remote regions of the United States. More than 120 terminals with 3-meter antennas were deployed in Alaska, Washington, the Rocky Mountains, and Appalachia to provide educational and health services to selected community centers. After 11 months of nearly continuous service, the performance of both the satellite and the experiment have exceeded all expectations.

  6. Gravity field modeling at the sea areas using satellite altimetry observations Case study: Gravity field modeling at the Coastal Fars

    International Nuclear Information System (INIS)

    Nowadays, satellite altimetry observations had made it possible to determine sea surface variations, in the global scale, to high degree of precision. Using satellite altimetry observations, Mean Sea Level (MSL) can be determined, which by Kowing Sea Surface Topography (SST), can be converted into high-resolution marine geoid. In this paper we are proposing a method for computation of the Earth's gravity field at the sea areas, which is different from usual methods. Indeed, our method is based on conversion of geoidal heights into gravity potential values at the reference ellipsoid 2 Ea,b , by using ellipsoidal Brun's formula, and forward application of solution of Fixed-Free Two Boundary Value Problem (FFTBVP), previously proposed by the authors for the geoid computations without application of Stokes formula. Numerical results of application of the proposed method at the test area of CoastalFars (at southern part of Iran) show the success of the method. Considering the low cost and high precision of satellite altimetry observations, the proposed method suggests an efficient substitution to shipborne gravity observations for gravity field molding at the sea areas

  7. New progress of ranging technology at Wuhan Satellite Laser Ranging Station

    Science.gov (United States)

    Xia, Zhiz-Hong; Ye, Wen-Wei; Cai, Qing-Fu

    1993-01-01

    A satellite laser ranging system with an accuracy of the level of centimeter has been successfully developed at the Institute of Seismology, State Seismological Bureau with the cooperation of the Institute of Geodesy and Geophysics, Chinese Academy of Science. With significant improvements on the base of the second generation SLR system developed in 1985, ranging accuracy of the new system has been upgraded from 15 cm to 3-4 cm. Measuring range has also been expanded, so that the ETALON satellite with an orbit height of 20,000 km launched by the former U.S.S.R. can now be tracked. Compared with the 2nd generation SLR system, the newly developed system has the following improvements. A Q modulated laser is replaced by a mode-locked YAG laser. The new device has a pulse width of 150 ps and a repetition rate of 1-4 pps. A quick response photomultiplier has been adopted as the receiver for echo; for example, the adoption of the MCP tube has obviously reduced the jitter error of the transit time and has improved the ranging accuracy. The whole system is controlled by an IBM PC/XT Computer to guide automatic tracking and measurement. It can carry out these functions for satellite orbit calculation, real-time tracking and adjusting, data acquisition and the preprocessed of observing data, etc. The automatization level and reliability of the observation have obviously improved.

  8. Characteristics of satellite accelerometer measurements of thermospheric neutral winds at high latitudes

    Science.gov (United States)

    Doornbos, E.; Ridley, A. J.; Cnossen, I.; Aruliah, A. L.; Foerster, M.

    2015-12-01

    Thermospheric neutral winds play an important part in the coupled thermosphere-ionosphere system at high latitudes. Neutral wind speeds have been derived from the CHAMP and GOCE satellites, which carried precise accelerometers in low Earth orbits. Due to the need to simultaneously determine thermosphere neutral density from the accelerometer in-track measurements, only information on the wind component in the cross-track direction, perpendicular to the flight direction can be derived. However, contrary to ground-based Fabry-Perot interferometer and scanning Doppler imager observations of the thermosphere wind, these satellite-based measurements provide equally distributed coverage over both hemispheres. The sampling of seasonal and local time variations depend on the precession rate of the satellite's orbital plane, with CHAMP covering about 28 cycles of 24-hour local solar time coverage, during its 10 year mission (2000-2010), while the near sun-synchronous orbit of GOCE resulted in a much more limited local time coverage ranging from 6:20 to 8:00 (am and pm), during a science mission duration of 4 years (2009-2013). For this study, the wind data from both CHAMP and GOCE have been analysed in terms of seasonal variations and geographic and geomagnetic local solar time and latitude coordinates, in order to make statistical comparisons for both the Northern and Southern polar areas. The wind data from both satellites were studied independently and in combination, in order to investigate how the strengths and weaknesses of the instruments and orbit parameters of these missions affect investigations of interhemispheric differences. Finally, the data have been compared with results from coupled ionosphere-thermosphere models and from ground-based FPI and SDI measurements.

  9. Near-Real-Time, Global Radar Data at the Alaska Satellite Facility DAAC from NASA's SMAP Satellite

    Science.gov (United States)

    Arko, S. A.; Allen, A. R.; Dixon, I. R.

    2014-12-01

    The Alaska Satellite Facility (ASF) Distributed Active Archive Center (DAAC) is supporting NASA's SMAP (Soil Moisture Active Passive) satellite mission, which launches in January 2015. SMAP will measure global soil moisture and its freeze-thaw state every 3 days using an L-band synthetic aperture radar (SAR) and radiometer. ASF, along with the National Snow and Ice Data Center DAAC and NASA's Earth Science Data and Information System (ESDIS), is identifying and developing tools and technologies to facilitate use of global, near-real-time data by the SMAP user community. ASF will host the SMAP Level 1 radar data and make them available for download through ASF's data discovery interface, Vertex, and the ASF Application Programming Interface. Vertex allows a user to search, visualize and download SAR data, browse images and relevant metadata, and will offer the complete SMAP L1 radar archive to the public. The entire SMAP archive consisting of level 1-4 data can be accessed via Reverb, the NASA EOSDIS metadata and service discovery tool. In anticipation of the SMAP launch and data release, ASF has developed and released a new website (https://www.asf.alaska.edu/smap/) and a suite of web resources, including interactive media, technical information, a product guide, related publications, and tools for working with the HDF5 data format. The ASF SMAP team is exploring OPeNDAP and the Jet Propulsion Laboratory's Webification technologies for enhancing in-browser data visualization and analysis. These technologies, and tools developed with them, represent opportunities for exposing this valuable dataset to areas with limited bandwidth or understanding of radar data. This presentation will highlight the enabling technologies and techniques ASF is employing to bring these data to new scientific and applications users and respond to ever-changing user needs.

  10. Wideband satellite phase coherent beacon observations at auroral and equatorial latitudes - A review

    International Nuclear Information System (INIS)

    This paper presents a brief review of some of the principal results from the first two years of operation of the Wideband satellite which transmits phase-coherent signals from S-band to VHF. The auroral zone data show narrow regions of enhanced scintillation well equatorward of the discrete aurora. Such enhancements can be explained as a purely geometrical effect if the irregularities within the major precipitation regions have a sheet-like structure. Evidence of a localized irregularity source at the poleward boundary of the plasma trough is also found. Model computations are discussed and applied to the interpretation of equatorial data

  11. Tracking of the ATS-3 synchronous satellite by the Very Long Baseline Interferometer (VLBI) technique

    Science.gov (United States)

    Ramasastry, J.; Rosenbaum, B.; Michelini, R. D.; Frost, D.; Ross, S.; Boornazian, A.

    1972-01-01

    During 1971, a series of very long baseline interferometer observations were made of the C-band (6 cm) radio signals from the ATS-3 communications satellite which is in a synchronous, near-equatorial orbit. The first series of observations were conducted during May-June 1971 from Rosman, North Carolina (NASA/ATS Station 85' dish) and Mojave, California (NASA/ATS Station, 40' dish). The second series of observations were conducted during August-September, 1971 from Rosman, North Carolina (NASA/ATS Station, 85' dish), Owens Valley, California (Cal Tech, 130' dish) and Agassiz, Massachusetts (SAO Agassiz Radio Observatory, 84' dish). The ATS-3 Spacecraft position was determined with a precision of 70-100 meters and its velocity with a precision of less than a mm/sec. The ATS-3 orbital elements were computed using the GEODYN program and the derived values are consistent with those derived from conventional tracking data.

  12. Excess radiation according to the data of the experiment at the ''Kosmos-721'' satellite

    International Nuclear Information System (INIS)

    The penetrating radiation composition is studied using the ''Kosmos-721'' satellite at the 210-240 km altitudes. The dependencies of the proton counting rate at the 30-60, 60-90 and >90 MeV energ ies, the α-particle counting rate at the 120-1450 and >1450 MeV energy and the electron counting rate at the >2.5 MeV energy are given. It is shown that the measured values of excess radiation are in good agreement with the measurement results on the sounding balloons. The latitudinal dependencies of the excess radiation proton fluxes are obtained. The differential energy spectrum of the excess radiation protons at the equator is drawn. The conclusion is made that the excess radiation fluxes at the 210-240 km altitudes are basically defined by the albedo particles

  13. Optimum sizing of bare-tape tethers for de-orbiting satellites at end of mission

    Science.gov (United States)

    Sanmartín, J. R.; Sánchez-Torres, A.; Khan, S. B.; Sánchez-Arriaga, G.; Charro, M.

    2015-10-01

    De-orbiting satellites at end of mission would prevent generation of new space debris. A proposed de-orbit technology involves a bare conductive tape-tether, which uses neither propellant nor power supply while generating power for on-board use during de-orbiting. The present work shows how to select tape dimensions for a generic mission so as to satisfy requirements of very small tether-to-satellite mass ratio mt/MS and probability Nf of tether cut by small debris, while keeping de-orbit time tf short and product tf × tether length low to reduce maneuvers in avoiding collisions with large debris. Design is here discussed for particular missions (initial orbit of 720 km altitude and 63° and 92° inclinations, and 3 disparate MS values, 37.5, 375, and 3750 kg), proving it scalable. At mid-inclination and a mass-ratio of a few percent, de-orbit time takes about 2 weeks and Nf is a small fraction of 1%, with tape dimensions ranging from 1 to 6 cm, 10 to 54 μ m, and 2.8 to 8.6 km. Performance drop from middle to high inclination proved moderate: if allowing for twice as large mt/MS, increases are reduced to a factor of 4 in tf and a slight one in Nf, except for multi-ton satellites, somewhat more requiring because efficient orbital-motion-limited electron collection restricts tape-width values, resulting in tape length (slightly) increasing too.

  14. Microbiological monitoring and automated event sampling at karst springs using LEO-satellites.

    Science.gov (United States)

    Stadler, H; Skritek, P; Sommer, R; Mach, R L; Zerobin, W; Farnleitner, A H

    2008-01-01

    Data communication via Low-Earth-Orbit (LEO) Satellites between portable hydrometeorological measuring stations is the backbone of our system. This networking allows automated event sampling with short time increments also for E. coli field analysis. All activities of the course of the event-sampling can be observed on an internet platform based on a Linux-Server. Conventionally taken samples compared with the auto-sampling procedure revealed corresponding results and were in agreement with the ISO 9308-1 reference method. E. coli concentrations were individually corrected by event specific inactivation coefficients (0.10-0.14 day(-1)), compensating losses due to sample storage at spring temperature in the auto sampler.Two large summer events in 2005/2006 at an important alpine karst spring (LKAS2) were monitored including detailed analysis of E. coli dynamics (n = 271) together with comprehensive hydrological characterisations. High-resolution time series demonstrated a sudden increase of E. coli concentrations in spring water (approximately 2 log10 units) with a specific time delay after the beginning of the event. Statistical analysis suggested the spectral absorption coefficient measured at 254 nm (SAC254) as an early warning surrogate for real time monitoring of faecal input. Together with the LEO-satellite based system it is a helpful tool for early-warning systems in the field of drinking water protection. PMID:18776628

  15. Satellite Communications

    CERN Document Server

    Pelton, Joseph N

    2012-01-01

    The field of satellite communications represents the world's largest space industry. Those who are interested in space need to understand the fundamentals of satellite communications, its technology, operation, business, economic, and regulatory aspects. This book explains all this along with key insights into the field's future growth trends and current strategic challenges. Fundamentals of Satellite Communications is a concise book that gives all of the key facts and figures as well as a strategic view of where this dynamic industry is going. Author Joseph N. Pelton, PhD, former Dean of the International Space University and former Director of Strategic Policy at Intelstat, presents a r

  16. Simultaneous conjugate ground-satellite ULF pulsation measurements at the middle latitudes

    Directory of Open Access Journals (Sweden)

    K. Prikner

    Full Text Available The spectra of three series of simultaneous ground (Budkov Observatory and satellite (Freja ULF measurements have been processed. The following features were studied in the FFT spectra, power-spectra and cross-spectra of the six-minute samples, recorded during quasi-conjugate approaches of Freja to the local Budkov magnetic field line: (a the Doppler frequency shift (about 1mHz and less in the predominant and some particular spectral components on Freja; (b the amplitude relations between the ground and satellite (ratios 0.3 to 0.8; (c phase shifts between particular signal components on the spacecraft above the ionosphere (in the azimuthal y-direction on Freja and on the ground (in the meridional x-direction at Budkov have been estimated (phase lags on the ground ≤ 0.9rad and (d also dynamical characteristics of the fundamental wave modes in the (x,y-plane, perpendicular to the magnetic field line, have been estimated for the predominant spectral components, considering standing oscillation along the field line. Azimuthal wave numbers were about 2.0, propagating northwest at ~400km/s.

  17. Investigation of high-energy primary cosmic ray particles at the Kosmos-1543 satellite

    International Nuclear Information System (INIS)

    Primary cosmic rays in the energy range above 1 TeV have been investigated at the Kosmos-1543 satellite. The experiments were carried out using Sokol device consisting of ionization calorimeter and two Cherenkov counters. It is shown that the ratio between different cosmic ray nuclei in the range of charges 2≤Z≤26 in the energy range 1-10 TeV is similar to that at considerably lower energies. The energy distribution of separate He, C, O, Fe nuclei in the energy range from approximately 2 to approximately 50 TeV doesn't contradict the ratio ε2.5 I(ε)=const, where I(ε) - intensity at the energy of ε GeV/nucleon

  18. Multiple satellite estimates of urban fractions and climate effects at regional scale

    Science.gov (United States)

    Jia, G.; Xu, R.; He, Y.

    2014-12-01

    Regional climate is controlled by large scale forcing at lateral boundary and physical processes within the region. Landuse in East Asia has been changed substantially in the last three decades, featured with expansion of urban built-up at unprecedented scale and speed. The fast expansion of urban areas could contribute to local even regional climate change. However, current spatial datasets of urban fractions do not well represent extend and expansion of urban areas in the regions, and the best available satellite data and remote sensing techniques have not been well applied to serve regional modeling of urbanization impacts on near surface temperature and other climate variables. Better estimates of localized urban fractions and urban climate effects are badly needed. Here we use high and mid resolution satellite data to estimate urban fractions and to assess effects of urban heat islands at local and regional scales. With our fractional cover, data fusion, and differentiated threshold approaches, estimated urban extent was greater than previously reported in many global datasets. Many city clusters were merging into each other, with gradual blurring boundaries and disappearing of gaps among member cities. Cities and towns were more connected with roads and commercial corridors, while wildland and urban greens became more isolated as patches among built-up areas. Those new estimates are expected to effectively improve climate simulation at local and regional scales in East Asia. There were significant positive relations between urban fraction and urban heat island effects as demonstrated by VNIR and TIR data from multiple satellites. Stronger warming was detected at the meteorological stations that experienced greater urbanization, i.e., those with a higher urbanization rate. While the total urban area affects the absolute temperature values, the change of the urban area (urbanization rate) likely affects the temperature trend. Increases of approximately 10% in

  19. An evaluation of the CMAQ reproducibility of satellite tropospheric NO2 column observations at different local times over East Asia

    Directory of Open Access Journals (Sweden)

    H. Irie

    2013-05-01

    Full Text Available Despite the importance of the role of nitrogen dioxide (NO2 in tropospheric chemistry, the causes leading to the discrepancy between satellite-derived and modeled tropospheric NO2 vertical column densities (VCDs over East Asia remain unclear. Here the reproducibility of satellite tropospheric NO2 VCD data by a regional chemical transport model (CMAQ with the Regional Emission inventory in ASia (REAS Version 2 is evaluated from the viewpoint of the diurnal variation of tropospheric NO2 VCDs, where satellite observations at different local times (SCIAMACHY/ENVISAT, OMI/Aura, and GOME-2/Metop-A are utilized considering literature validation results. As a case study, we concentrate on June and December 2007 for a detailed evaluation based on various sensitivity simulations, for example with different spatial resolutions (80, 40, 20, and 10 km for CMAQ. For June, CMAQ generally reproduces absolute values of satellite NO2 VCDs and their diurnal variations over all 12 selected diagnostic regions in East Asia. In contrast, a difficulty arises in interpreting the significant disagreement between satellite and CMAQ values over most of the diagnostic regions in December. The disagreement cannot be explained by any of the sensitivity simulations performed in this study. To address this, more investigations, including further efforts for satellite validations in wintertime, are needed.

  20. Toward global mapping of river discharge using satellite images and at-many-stations hydraulic geometry

    Science.gov (United States)

    Gleason, Colin J.; Smith, Laurence C.

    2014-01-01

    Rivers provide critical water supply for many human societies and ecosystems, yet global knowledge of their flow rates is poor. We show that useful estimates of absolute river discharge (in cubic meters per second) may be derived solely from satellite images, with no ground-based or a priori information whatsoever. The approach works owing to discovery of a characteristic scaling law uniquely fundamental to natural rivers, here termed a river’s at-many-stations hydraulic geometry. A first demonstration using Landsat Thematic Mapper images over three rivers in the United States, Canada, and China yields absolute discharges agreeing to within 20–30% of traditional in situ gauging station measurements and good tracking of flow changes over time. Within such accuracies, the door appears open for quantifying river resources globally with repeat imaging, both retroactively and henceforth into the future, with strong implications for water resource management, food security, ecosystem studies, flood forecasting, and geopolitics. PMID:24639551

  1. Night sky brightness at sites from DMSP-OLS satellite measurements

    CERN Document Server

    Cinzano, P

    2004-01-01

    We apply the sky brightness modelling technique introduced and developed by Roy Garstang to high-resolution DMSP-OLS satellite measurements of upward artificial light flux and to GTOPO30 digital elevation data in order to predict the brightness distribution of the night sky at a given site in the primary astronomical photometric bands for a range of atmospheric aerosol contents. This method, based on global data and accounting for elevation, Earth curvature and mountain screening, allows the evaluation of sky glow conditions over the entire sky for any site in the World, to evaluate its evolution, to disentangle the contribution of individual sources in the surrounding territory, and to identify main contributing sources. Sky brightness, naked eye stellar visibility and telescope limiting magnitude are produced as 3-dimensional arrays whose axes are the position on the sky and the atmospheric clarity. We compared our results to available measurements.

  2. Toward global mapping of river discharge using satellite images and at-many-stations hydraulic geometry.

    Science.gov (United States)

    Gleason, Colin J; Smith, Laurence C

    2014-04-01

    Rivers provide critical water supply for many human societies and ecosystems, yet global knowledge of their flow rates is poor. We show that useful estimates of absolute river discharge (in cubic meters per second) may be derived solely from satellite images, with no ground-based or a priori information whatsoever. The approach works owing to discovery of a characteristic scaling law uniquely fundamental to natural rivers, here termed a river's at-many-stations hydraulic geometry. A first demonstration using Landsat Thematic Mapper images over three rivers in the United States, Canada, and China yields absolute discharges agreeing to within 20-30% of traditional in situ gauging station measurements and good tracking of flow changes over time. Within such accuracies, the door appears open for quantifying river resources globally with repeat imaging, both retroactively and henceforth into the future, with strong implications for water resource management, food security, ecosystem studies, flood forecasting, and geopolitics. PMID:24639551

  3. Space Solar Power Satellite Technology Development at the Glenn Research Center: An Overview

    Science.gov (United States)

    Dudenhoefer, James E.; George, Patrick J.

    2000-01-01

    NASA Glenn Research Center (GRC). is participating in the Space Solar Power Exploratory Research and Technology program (SERT) for the development of a solar power satellite concept. The aim of the program is to provide electrical power to Earth by converting the Sun's energy and beaming it to the surface. This paper will give an overall view of the technologies being pursued at GRC including thin film photovoltaics, solar dynamic power systems, space environmental effects, power management and distribution, and electric propulsion. The developmental path not only provides solutions to gigawatt sized space power systems for the future, but provides synergistic opportunities for contemporary space power architectures. More details of Space Solar Power can be found by reading the references sited in this paper and by connecting to the web site http://moonbase.msfc.nasa.gov/ and accessing the "Space Solar Power" section "Public Access" area.

  4. Trends in communications satellites

    CERN Document Server

    Curtin, Denis J

    1979-01-01

    Trends in Communications Satellites offers a comprehensive look at trends and advances in satellite communications, including experimental ones such as NASA satellites and those jointly developed by France and Germany. The economic aspects of communications satellites are also examined. This book consists of 16 chapters and begins with a discussion on the fundamentals of electrical communications and their application to space communications, including spacecraft, earth stations, and orbit and wavelength utilization. The next section demonstrates how successful commercial satellite communicati

  5. Annual evapotranspiration retrieved from satellite vegetation indices for the eastern Mediterranean at 250 m spatial resolution

    Science.gov (United States)

    Helman, D.; Givati, A.; Lensky, I. M.

    2015-11-01

    We present a model to retrieve actual evapotranspiration (ET) from satellites' vegetation indices (Parameterization of Vegetation Indices for ET estimation model, or PaVI-E) for the eastern Mediterranean (EM) at a spatial resolution of 250 m. The model is based on the empirical relationship between satellites' vegetation indices (normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) from MODIS) and total annual ET (ETAnnual) estimated at 16 FLUXNET sites, representing a wide range of plant functional types and ETAnnual. Empirical relationships were first examined separately for (a) annual vegetation systems (i.e. croplands and grasslands) and (b) systems with combined annual and perennial vegetation (i.e. woodlands, forests, savannah and shrublands). Vegetation indices explained most of the variance in ETAnnual in those systems (71 % for annuals, and 88 % for combined annual and perennial systems), while adding land surface temperature data in a multiple-variable regression and a modified version of the Temperature and Greenness model did not result in better correlations (p > 0.1). After establishing empirical relationships, PaVI-E was used to retrieve ETAnnual for the EM from 2000 to 2014. Models' estimates were highly correlated (R = 0.92, p basins with R of 0.75 and 0.77 and relative biases of 5.2 and -5.2 %, respectively (p < 0.001 for both). In the absence of high-resolution (< 1 km) ET models for the EM the proposed model is expected to contribute to the hydrological study of this region, assisting in water resource management, which is one of the most valuable resources of this region.

  6. Ionospheric storm characteristics deduced from satellite radio beacon observations at three European stations

    International Nuclear Information System (INIS)

    Faraday rotation observations carried out at the stations Neustrelitz (53.30 N, 13.10 E), Graz (47.10 N, 15.50 E) and Florence (43.00 N, 10.70 E) by receiving the VHF beacon of the geostationary satellite SIRIO have been used to analyze more than hundred storm periods mainly on a statistical basis. Additionally, total electron content data obtained from differential Doppler measurements at NNSS satellite signals and vertical sounding data of the stations Dourbes (50.10 N, 4.60 E) and Rome (41.80 N, 12.50 E) are included in this analysis. The average response of the ionosphere shows an extended positive phase in winter whereas a well pronounced negative phase is typical for summer conditions. It is evident that the positive phase in electron content occurs in all seasons on the first storm day. The more pronounced storm effects in electron content than in f0 F2 indicate the important role of the upper ionosphere during storms. Further hints have been found for perturbations propagating equatorwards with seasonal dependent velocities accompanied by wind induced uplifting and mass transport of O2 and N2 leading to an enhanced loss of plasma. Immediately after SSC an eastward directed electric field is assumed to lift up the ionospheric plasma into regions of reduced loss. In general the storm associated percentage deviations of ionospheric electron content, F2 layer critical frequency, slab thickness as well as F2 layer height increase with enhanced geomagnetic activity

  7. Modelling LAI at a regional scale with ISBA-A-gs: comparison with satellite-derived LAI over southwestern France

    Directory of Open Access Journals (Sweden)

    A. Brut

    2009-04-01

    Full Text Available A CO2-responsive land surface model (the ISBA-A-gs model of Météo-France is used to simulate photosynthesis and Leaf Area Index (LAI in southwestern France for a 3-year period (2001–2003. A domain of about 170 000 km2 is covered at a spatial resolution of 8 km. The capability of ISBA-A-gs to reproduce the seasonal and the inter-annual variability of LAI at a regional scale, is assessed with two satellite-derived LAI products. One originates from the CYCLOPES programme using SPOT/VEGETATION data, and the second is based on MODIS data. The comparison reveals discrepancies between the two satellite LAI estimates and between satellite and simulated LAI values, both in their intensity and in the timing of the leaf onset. The model simulates higher LAI values for the C3 crops and coniferous trees than the satellite observations, which may be due to a saturation effect within the satellite signal. The simulated leaf onset presents a significant delay for mountainous grasslands. In-situ observations at a mid-altitude grassland site show that the generic temperature response of photosynthesis used in the model is not appropriate for plants adapted to the cold climatic conditions of the mountainous areas. This study demonstrates the potential of LAI remote sensing products for identifying and locating models' shortcomings at a regional scale.

  8. A comparative study of spherical and flat-Earth geopotential modeling at satellite elevations

    Science.gov (United States)

    Parrott, M. H.; Hinze, W. J.; Braile, L. W.; Vonfrese, R. R. B.

    1985-01-01

    Flat-Earth modeling is a desirable alternative to the complex spherical-Earth modeling process. These methods were compared using 2 1/2 dimensional flat-earth and spherical modeling to compute gravity and scalar magnetic anomalies along profiles perpendicular to the strike of variably dimensioned rectangular prisms at altitudes of 150, 300, and 450 km. Comparison was achieved with percent error computations (spherical-flat/spherical) at critical anomaly points. At the peak gravity anomaly value, errors are less than + or - 5% for all prisms. At 1/2 and 1/10 of the peak, errors are generally less than 10% and 40% respectively, increasing to these values with longer and wider prisms at higher altitudes. For magnetics, the errors at critical anomaly points are less than -10% for all prisms, attaining these magnitudes with longer and wider prisms at higher altitudes. In general, in both gravity and magnetic modeling, errors increase greatly for prisms wider than 500 km, although gravity modeling is more sensitive than magnetic modeling to spherical-Earth effects. Preliminary modeling of both satellite gravity and magnetic anomalies using flat-Earth assumptions is justified considering the errors caused by uncertainties in isolating anomalies.

  9. Target practice: aiming at satellite repeats with DNA minor groove binders.

    Science.gov (United States)

    Susbielle, Guillaume; Blattes, Roxane; Brevet, Vanessa; Monod, Caroline; Käs, Emmanuel

    2005-07-01

    Much progress has been made in recent years in developing small molecules that target the minor groove of DNA. Striking advances have led to the design of synthetic molecules that recognize specific DNA sequences with affinities comparable to those of eukaryotic transcription factors. This makes it feasible to modulate or inhibit DNA/protein interactions in vivo, a major step towards the development of general strategies of anti-gene therapy. Examples from anti-parasitic drugs also suggest that synthetic molecules can affect a variety of cellular functions crucial to cell viability by more generally targeting vast portions of genomes based on their biased base composition. This provides a rationale for developing approaches based on selective interactions with broad genomic targets such as satellite repeats that are associated with structural or architectural components of chromatin essential for cellular proliferation. Using examples drawn from the Drosophila melanogaster model system, we review here the use of synthetic polyamides or diamidines that bind the DNA minor groove and can be used as highly selective agents capable of interfering with specific protein/DNA interactions that occur in A+T-rich repeated sequences that constitute a significant portion of eukaryotic genomes. The satellite localization of cellular proteins that bind the minor groove of DNA via domains such as the AT hook motif is highly sensitive to these molecules. A major consequence of the competition between these proteins and their synthetic mimics is an alteration of the nuclear localization and function of proteins such as topoisomerase II, a major target of anti-cancer drugs. PMID:16101491

  10. The distribution of satellites around massive galaxies at 1 < z < 3 in ZFOURGE/CANDELS: Dependence on star formation activity

    Energy Technology Data Exchange (ETDEWEB)

    Kawinwanichakij, Lalitwadee; Papovich, Casey; Quadri, Ryan F.; Tran, Kim-Vy H.; Mehrtens, Nicola [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Spitler, Lee R.; Cowley, Michael [Department of Physics and Astronomy, Faculty of Sciences, Macquarie University, Sydney, NSW 2109 (Australia); Kacprzak, Glenn G.; Glazebrook, Karl; Nanayakkara, Themiya [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, VIC 3122 (Australia); Labbé, Ivo; Straatman, Caroline M. S. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Allen, Rebecca [Australian Astronomical Observatories, P.O. Box 915, North Ryde, NSW 1670 (Australia); Davé, Romeel [University of the Western Cape, Bellville, Cape Town 7535 (South Africa); Dekel, Avishai [Center for Astrophysics and Planetary Science, Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Ferguson, Henry C.; Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Hartley, W. G. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Koo, David C. [University of California Observatories/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Lu, Yu, E-mail: kawinwanichakij@physics.tamu.edu [Kavli Institute for Particle Astrophysics and Cosmology, 452 Lomita Mall, Stanford, CA 94305 (United States); and others

    2014-09-10

    We study the statistical distribution of satellites around star-forming and quiescent central galaxies at 1 < z < 3 using imaging from the FourStar Galaxy Evolution Survey and the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey. The deep near-IR data select satellites down to log (M/M {sub ☉}) > 9 at z < 3. The radial satellite distribution around centrals is consistent with a projected Navarro-Frenk-White profile. Massive quiescent centrals, log (M/M {sub ☉}) > 10.78, have ∼2 times the number of satellites compared to star-forming centrals with a significance of 2.7σ even after accounting for differences in the centrals' stellar-mass distributions. We find no statistical difference in the satellite distributions of intermediate-mass quiescent and star-forming centrals, 10.48 < log (M/M {sub ☉}) < 10.78. Compared to the Guo et al. semi-analytic model, the excess number of satellites indicates that quiescent centrals have halo masses 0.3 dex larger than star-forming centrals, even when the stellar-mass distributions are fixed. We use a simple toy model that relates halo mass and quenching, which roughly reproduces the observed quenched fractions and the differences in halo mass between star-forming and quenched galaxies only if galaxies have a quenching probability that increases with halo mass from ∼0 for log (M{sub h} /M {sub ☉}) ∼ 11 to ∼1 for log (M{sub h} /M {sub ☉}) ∼ 13.5. A single halo-mass quenching threshold is unable to reproduce the quiescent fraction and satellite distribution of centrals. Therefore, while halo quenching may be an important mechanism, it is unlikely to be the only factor driving quenching. It remains unclear why a high fraction of centrals remain star-forming even in relatively massive halos.

  11. The distribution of satellites around massive galaxies at 1 < z < 3 in ZFOURGE/CANDELS: Dependence on star formation activity

    International Nuclear Information System (INIS)

    We study the statistical distribution of satellites around star-forming and quiescent central galaxies at 1 < z < 3 using imaging from the FourStar Galaxy Evolution Survey and the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey. The deep near-IR data select satellites down to log (M/M ☉) > 9 at z < 3. The radial satellite distribution around centrals is consistent with a projected Navarro-Frenk-White profile. Massive quiescent centrals, log (M/M ☉) > 10.78, have ∼2 times the number of satellites compared to star-forming centrals with a significance of 2.7σ even after accounting for differences in the centrals' stellar-mass distributions. We find no statistical difference in the satellite distributions of intermediate-mass quiescent and star-forming centrals, 10.48 < log (M/M ☉) < 10.78. Compared to the Guo et al. semi-analytic model, the excess number of satellites indicates that quiescent centrals have halo masses 0.3 dex larger than star-forming centrals, even when the stellar-mass distributions are fixed. We use a simple toy model that relates halo mass and quenching, which roughly reproduces the observed quenched fractions and the differences in halo mass between star-forming and quenched galaxies only if galaxies have a quenching probability that increases with halo mass from ∼0 for log (Mh /M ☉) ∼ 11 to ∼1 for log (Mh /M ☉) ∼ 13.5. A single halo-mass quenching threshold is unable to reproduce the quiescent fraction and satellite distribution of centrals. Therefore, while halo quenching may be an important mechanism, it is unlikely to be the only factor driving quenching. It remains unclear why a high fraction of centrals remain star-forming even in relatively massive halos.

  12. FODA/IBEA satellite access scheme for MIXED traffic at variable bit and coding rates system description

    OpenAIRE

    Celandroni, Nedo; Ferro, Erina; Mihal, Vlado; Potort?, Francesco

    1992-01-01

    This report describes the FODA system working at variable coding and bit rates (FODA/IBEA-TDMA) FODA/IBEA is the natural evolution of the FODA-TDMA satellite access scheme working at 2 Mbit/s fixed rate with data 1/2 coded or uncoded. FODA-TDMA was used in the European SATINE-II experiment [8]. We remind here that the term FODA/IBEA system is comprehensive of the FODA/IBEA-TDMA (1) satellite access scheme and of the hardware prototype realised by the Marconi R.C. (U.K.). Both of them come fro...

  13. Issues in Data Fusion for Satellite Aerosol Measurements for Applications with GIOVANNI System at NASA GES DISC

    Science.gov (United States)

    Gopalan, Arun; Zubko, Viktor; Leptoukh, Gregory G.

    2008-01-01

    We look at issues, barriers and approaches for Data Fusion of satellite aerosol data as available from the GES DISC GIOVANNI Web Service. Daily Global Maps of AOT from a single satellite sensor alone contain gaps that arise due to various sources (sun glint regions, clouds, orbital swath gaps at low latitudes, bright underlying surfaces etc.). The goal is to develop a fast, accurate and efficient method to improve the spatial coverage of the Daily AOT data to facilitate comparisons with Global Models. Data Fusion may be supplemented by Optimal Interpolation (OI) as needed.

  14. Health Care and Satellite Radio Communication in Village Alaska. Final Report of the ATS-1 Biomedical Satellite: Experiment Evaluation.

    Science.gov (United States)

    Kreimer, Osvaldo; And Others

    The executive summary is the first section of this final report of the evaluation of the ATS-1 medical communication system in Alaska. The second section introduces the background of these studies and the sociogeographic setting and health situation of the Alaska natives. The third section presents the main research findings about both the…

  15. Evidence for a change in the dominant satellite galaxy quenching mechanism at z = 1

    Science.gov (United States)

    Balogh, Michael L.; McGee, Sean L.; Mok, Angus; Muzzin, Adam; van der Burg, Remco F. J.; Bower, Richard G.; Finoguenov, Alexis; Hoekstra, Henk; Lidman, Chris; Mulchaey, John S.; Noble, Allison; Parker, Laura C.; Tanaka, Masayuki; Wilman, David J.; Webb, Tracy; Wilson, Gillian; Yee, Howard K. C.

    2016-03-01

    We present an analysis of galaxies in groups and clusters at 0.8 1010.3 M⊙, we find fconvert ˜ 0.4 in the groups and ˜0.6 in the clusters, similar to comparable measurements at z = 0. This means the time between first accretion into a more massive halo and final star formation quenching is tp ˜ 2 Gyr. This is substantially longer than the estimated time required for a galaxy's star formation rate to become zero once it starts to decline, suggesting there is a long delay time during which little differential evolution occurs. In contrast with local observations we find evidence that this delay time-scale may depend on stellar mass, with tp approaching tHubble for Mstar ˜ 109.5 M⊙. The result suggests that the delay time must not only be much shorter than it is today, but may also depend on stellar mass in a way that is not consistent with a simple evolution in proportion to the dynamical time. Instead, we find the data are well-matched by a model in which the decline in star formation is due to `overconsumption', the exhaustion of a gas reservoir through star formation and expulsion via modest outflows in the absence of cosmological accretion. Dynamical gas removal processes, which are likely dominant in quenching newly accreted satellites today, may play only a secondary role at z = 1.

  16. Satellite monitoring at high spatial resolution of water bodies used for irrigation purposes

    Science.gov (United States)

    Baup, F.; Flanquart, S.; Marais-Sicre, C.; Fieuzal, R.

    2012-04-01

    In a changing climate context, with an increase of the need for food, it becomes increasingly important to improve our knowledge for monitoring agricultural surfaces by satellite for a better food management and to reduce the waste of natural resources (water storages and shortages, irrigation management, increase of soil and water salinity, soil erosion, threats on biodiversity). The main objective of this study is to evaluate the potentialities of multi-spectral and multi-resolution satellites for monitoring the temporal evolution of water bodies surfaces (mainly used for irrigation purposes). This analysis is based on the use of a series of images acquired between the years 2003 and 2011. The year 2010 is considered as a reference, with 110 acquisitions performed during the MCM'10 campaign (Multispectral Crop Monitoring 2010, http://www.cesbio.ups-tlse.fr/us/mcm.html). Those images are provided by 8 satellites (optical, thermal and RADAR) such as ALOS, TERRASAR-X, RADARSAT-2, FORMOSAT-2, SPOT-2, SPOT-4, SPOT-5, LANDSAT-5. The studied area is situated in the South-West of Toulouse in France; in a region governed by a temperate climate. The irrigated cultures represent almost 12% of the cultivated surface in 2009. The method consists in estimating the water bodies surfaces by using a generic approach suitable for all images, whatever the wavelength (optical, infrared, RADAR). The supervised parallelepiped classification allows discriminating four types of surfaces coverage: forests, water expanses, crops and bare soils. All RADAR images are filtered (Gamma) to reduce speckle effects and false detections of water bodies. In the context if the "South-West" project of the CESBIO laboratory, two spatial coverages are analyzed: SPOT 4 (4800km2) and FORMOSAT 2 (576km2). At these scales, 154 and 38 water bodies are identify. They respectively represent 4.85 km2 (0.10% of the image cover) and 2.06 km2 (0.36% of the image cover). Statistical analyses show that 8% of lakes

  17. River Discharge Estimation Solely from Satellite Imagery and at-Many-Stations Hydraulic Geometry (AMHG)

    Science.gov (United States)

    Gleason, C. J.; Smith, L. C.; Lee, J.

    2014-12-01

    Knowledge of river discharge is critically important for water resource management, climate modeling, and improved understanding of the global water cycle, yet discharge is poorly known in much of the world. Remote sensing holds promise to mitigate this gap, yet many current approaches for quantitative retrievals of river discharge require in situ calibration or a priori knowledge of river hydraulics, limiting their utility in unmonitored regions. This talk demonstrates a novel remotely sensed discharge retrieval method that requires no prior knowledge and no ancillary data whatsoever. The approach is enabled by a newly discovered river-specific geomorphic scaling phenomenon, termed at-many-stations hydraulic geometry (AMHG), which holds that a river's paired at-a-station hydraulic geometry (AHG) parameters (a and b, c and f, k and m) are log-linearly related along a river. An associated AMHG discharge retrieval method uses only remotely sensed cross sectional river top width as an input to an unconstrained optimization of width-AHG via a genetic algorithm. Using the AMHG approach, we demonstrate successful retrieval of river discharge to within 20-30% of in situ gauge observations for the Mississippi, Athabasca, and Yangtze rivers. Expanding the method to 34 rivers globally, we find that the AMHG discharge retrieval method is sensitive to river morphology, cross sectional geometry, the quality of input widths, and genetic algorithm optimization parameters. These results suggest that the AMHG discharge retrieval method can meaningfully address global discharge knowledge gaps solely from repeat satellite imagery.

  18. Sensors, Circuits, and Satellites - NGSS at it's best: the integration of three dimensions with NASA science

    Science.gov (United States)

    Butcher, G. J.; Roberts-Harris, D.

    2013-12-01

    A set of innovative classroom lessons were developed based on informal learning activities in the 'Sensors, Circuits, and Satellites' kit manufactured by littleBits™ Electronics that are designed to lead students through a logical science content storyline about energy using sound and light and fully implements an integrated approach to the three dimensions of the Next Generation of Science Standards (NGSS). This session will illustrate the integration of NGSS into curriculum by deconstructing lesson design to parse out the unique elements of the 3 dimensions of NGSS. We will demonstrate ways in which we have incorporated the NGSS as we believe they were intended. According to the NGSS, 'The real innovation in the NGSS is the requirement that students are required to operate at the intersection of practice, content, and connection. Performance expectations are the right way to integrate the three dimensions. It provides specificity for educators, but it also sets the tone for how science instruction should look in classrooms. (p. 3). The 'Sensors, Circuits, and Satellites' series of lessons accomplishes this by going beyond just focusing on the conceptual knowledge (the disciplinary core ideas) - traditionally approached by mapping lessons to standards. These lessons incorporate the other 2 dimensions -cross-cutting concepts and the 8-practices of Sciences and Engineering-via an authentic and exciting connection to NASA science, thus implementing the NGSS in the way they were designed to be used: practices and content with the crosscutting concepts. When the NGSS are properly integrated, students are engaged in science and engineering content through the coupling of practice, content and connection. In the past, these two dimensions have been separated as distinct entities. We know now that coupling content and practices better demonstrates what goes on in real world science and engineering. We set out to accomplish what is called for in NGSS by integrating these

  19. Energetic electron enhancements below the radiation belt and X-ray contamination at low-orbiting satellites

    CERN Document Server

    Suvorova, Alla V; Huang, Chien-Ming

    2014-01-01

    The work concerns a problem of electron-induced contaminant at relatively low latitudes to high-energy astrophysical measurements on board the low-orbiting satellites. We show the results of a statistical analysis of the energetic electron enhancements in energy range 30-300 keV observed by a fleet of NOAA/POES low-orbiting satellites over the time period from 1999 to 2012. We demonstrate geographical distributions of great and moderate long-lasting enhancements caused by different type of the solar wind drivers.

  20. Satellite Measurements of Lava Extrusion Rate at Volcán Reventador, Ecuador

    Science.gov (United States)

    Arnold, D. W. D.; Biggs, J.; Ebmeier, S. K.; Vallejo Vargas, S.; Naranjo, M. F.

    2015-12-01

    The extrusion rate of lava at active volcanoes provides a principle control on the style of eruptive behavior and the extent of lava flows, while also providing information about magma supply to the volcano. Measurements of extrusion rate at active volcanoes are therefore important for assessing hazard, and improving understanding of volcanic systems. Volcán Reventador is an asymmetric stratovolcano in the Cordillera Real of Ecuador. The largest historically observed eruption at Reventador in 2002 has been followed by several periods of eruptive activity. Eruptions are characterised by effusion of andesitic to basaltic-andesitic lava flows, and Vulcanian explosions. The ongoing eruption at Reventador therefor provides an excellent target for investigating the link between effusion rate, explosivity, and lava flow behaviour. Satellite InSAR provides regular observations of the volcano, even during night or periods of cloud cover. We use a dataset of Radarsat-2 and TanDEM-X imagery, with intervals of 11 to 192 days, over the period 2011 to 2014 to measure the extent, thickness and volume of new lava flows at Reventador. We use radar amplitude and inteferometric coherence to map 25 individual lava flows, as well as pyroclastic deposits and changes in lava dome morphology. We observe 43 Mm3 of deposits over a three year period, giving an average effusion rate of 0.5 m3s-1. We do not observe any ground deformation due to magmatic sources at Reventador, therefore variations in lava effusion rate can be interpreted as changes in the magma supply to the volcano. We investigate the link between variations in effusion rate and the length, area, thickness, and aspect ratio of lava flows, and the explosive-effusive transition. We also characterise the relationship between lava flow age, thickness, and subsidence rate.

  1. A. A. Michelson's Jovian Galilean-Satellite Interferometer at Lick Observatory in 1891

    Science.gov (United States)

    Osterbrock, D. E.

    2004-12-01

    Albert A. Michelson, America's first Nobel laureate in physics, measured the angular diameter of the red supergiant star Betelgeuse in 1920 with Francis G. Pease, using the 100-inch Mount Wilson reflector as the basis of his stellar interferometer. But he had first published the concept in 1890 and tested it on celestial objects with a telescope at Lick Observatory in 1891. He used its 12-inch refractor to measure the angular diameters of the four Galilean satellites of Jupiter, assisted at the telescope by W. W. Campbell, then a young astronomer who had just joined the Lick staff. Edward S. Holden, the Lick director, had invited Michelson to come to Mount Hamilton and use its telescopes as a guest observer. Michelson had first tried and proved his method on artificial circular disks in his laboratory at Clark University, Worcester, Mass., using a 2-inch "glass." Then in 1889 and 1890 he hoped to test it at Harvard College Observatory, but apparently the telescope or the atmospheric conditions did not work out. At Lick he did achieve success, and his measured angular diameters were nearer to the true values we know from close-up space measurements of today than those of any of the top visual observers of the time. Correspondence in the Lick Archives shows that Michelson intended to come back there to use its big 36-inch refractor to improve the measurements, but he never did so. Selections from Michelson's published papers and photographs of him, the telescope, and the instrument will be posted.

  2. Larmor electric field observed at the Earth's magnetopause by Polar satellite

    Energy Technology Data Exchange (ETDEWEB)

    Koga, D., E-mail: dkaqua@kyudai.jp; Gonzalez, W. D.; Silveira, M. V. D. [National Institute for Space Research - INPE, São José dos Campos, São Paulo (Brazil); Mozer, F. S. [Space Sciences Laboratory, University of California, Berkeley, California 94720 (United States); Cardoso, F. R. [School of Engineering - EEL, University of São Paulo, Lorena, São Paulo (Brazil)

    2014-10-15

    We present, for the first time, observational evidence of a kinetic electric field near the X-line associated with asymmetric reconnection at the Earth's dayside magnetopause using Polar observations. On March 29, 2003, Polar satellite detected an asymmetric collisionless reconnection event. This event shows a unipolar Hall electric field signature and a simple deviation from the guide field during the magnetopause crossing, with the absence of an ion plasma jet outflow indicating that the magnetopause crossing was near the X-line. As expected from particle-in-cell simulations by Malakit et al. (Phys. Rev. Lett. 111, 135001 (2013)), an earthward pointing normal electric field appears in the magnetospheric side of the ion diffusion region. The electric field satisfies two necessary conditions for the existence of the finite ion Larmor radius effect: (1) the ion Larmor radius (r{sub g2}) is larger than the distance between the stagnation point and the edge of the ion diffusion region in the strong magnetic field side (δ{sub S2}) and (2) the spatial extent of the kinetic electric field (δ{sub EL}) is of the order of the ion Larmor radius. Furthermore, it is shown that the peak value of the Larmor electric field is comparable to the predicted value. The observation of the Larmor electric field can be valuable in other analyses to show that the crossing occurred near the X-line.

  3. Studying bio-thermal effects at and around MSW dumps using Satellite Remote Sensing and GIS.

    Science.gov (United States)

    Mahmood, Khalid; Batool, Syeda Adila; Chaudhry, Muhammad Nawaz

    2016-09-01

    Estimating negative impacts of MSW dumps on its surrounding environment is the key requirement for any remedial measures. This study has been undertaken to map bio-thermal effects of MSW dumping at and around dumping facilities (non-engineered) using satellite imagery for Faisalabad, Pakistan. Thirty images of Landsat 8 have been selected after validation for the accuracy of their observational details from April 2013 to October 2015. Land Surface Temperature (LST), NDVI, SAVI and MSAVI have been derived from these images through Digital Image Processing (DIP) and have been subjected to spatio-temporal analysis in GIS environment. MSW dump has been found with average temperature elevation of 4.3K and 2.78K from nearby agriculture land and urban settlement respectively. Vegetation health has been used as the bio-indicator of MSW effects and is implemented through NDVI, SAVI, MSAVI. Spatial analyses have been used to mark boundary of bio-thermally affected zone around dumped MSW and measure 700m. Seasonal fluctuations of elevated temperatures and boundary of the bio-thermally affected zones have also been discussed. Based on the direct relation found between vegetation vigor and the level of deterioration within the bio-thermally affected region, use of crops with heavy vigor is recommended to study MSW hazard influence using bio-indicators of vegetation health. PMID:27129945

  4. Satellite tagging and biopsy sampling of killer whales at subantarctic Marion Island: effectiveness, immediate reactions and long-term responses.

    Directory of Open Access Journals (Sweden)

    Ryan R Reisinger

    Full Text Available Remote tissue biopsy sampling and satellite tagging are becoming widely used in large marine vertebrate studies because they allow the collection of a diverse suite of otherwise difficult-to-obtain data which are critical in understanding the ecology of these species and to their conservation and management. Researchers must carefully consider their methods not only from an animal welfare perspective, but also to ensure the scientific rigour and validity of their results. We report methods for shore-based, remote biopsy sampling and satellite tagging of killer whales Orcinus orca at Subantarctic Marion Island. The performance of these methods is critically assessed using 1 the attachment duration of low-impact minimally percutaneous satellite tags; 2 the immediate behavioural reactions of animals to biopsy sampling and satellite tagging; 3 the effect of researcher experience on biopsy sampling and satellite tagging; and 4 the mid- (1 month and long- (24 month term behavioural consequences. To study mid- and long-term behavioural changes we used multievent capture-recapture models that accommodate imperfect detection and individual heterogeneity. We made 72 biopsy sampling attempts (resulting in 32 tissue samples and 37 satellite tagging attempts (deploying 19 tags. Biopsy sampling success rates were low (43%, but tagging rates were high with improved tag designs (86%. The improved tags remained attached for 26±14 days (mean ± SD. Individuals most often showed no reaction when attempts missed (66% and a slight reaction-defined as a slight flinch, slight shake, short acceleration, or immediate dive-when hit (54%. Severe immediate reactions were never observed. Hit or miss and age-sex class were important predictors of the reaction, but the method (tag or biopsy was unimportant. Multievent trap-dependence modelling revealed considerable variation in individual sighting patterns; however, there were no significant mid- or long-term changes

  5. Characterising volcanic cycles at Soufriere Hills Volcano, Montserrat: Time series analysis of multi-parameter satellite data

    Science.gov (United States)

    Flower, Verity J. B.; Carn, Simon A.

    2015-10-01

    The identification of cyclic volcanic activity can elucidate underlying eruption dynamics and aid volcanic hazard mitigation. Whilst satellite datasets are often analysed individually, here we exploit the multi-platform NASA A-Train satellite constellation to cross-correlate cyclical signals identified using complementary measurement techniques at Soufriere Hills Volcano (SHV), Montserrat. In this paper we present a Multi-taper (MTM) Fast Fourier Transform (FFT) analysis of coincident SO2 and thermal infrared (TIR) satellite measurements at SHV facilitating the identification of cyclical volcanic behaviour. These measurements were collected by the Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer (MODIS) (respectively) in the A-Train. We identify a correlating cycle in both the OMI and MODIS data (54-58 days), with this multi-week feature attributable to episodes of dome growth. The ~ 50 day cycles were also identified in ground-based SO2 data at SHV, confirming the validity of our analysis and further corroborating the presence of this cycle at the volcano. In addition a 12 day cycle was identified in the OMI data, previously attributed to variable lava effusion rates on shorter timescales. OMI data also display a one week (7-8 days) cycle attributable to cyclical variations in viewing angle resulting from the orbital characteristics of the Aura satellite. Longer period cycles possibly relating to magma intrusion were identified in the OMI record (102-, 121-, and 159 days); in addition to a 238-day cycle identified in the MODIS data corresponding to periodic destabilisation of the lava dome. Through the analysis of reconstructions generated from cycles identified in the OMI and MODIS data, periods of unrest were identified, including the major dome collapse of 20th May 2006 and significant explosive event of 3rd January 2009. Our analysis confirms the potential for identification of cyclical volcanic activity through combined

  6. Optical Algorithms at Satellite Wavelengths for Total Suspended Matter in Tropical Coastal Waters

    Directory of Open Access Journals (Sweden)

    Alain Muñoz-Caravaca

    2008-07-01

    Full Text Available Is it possible to derive accurately Total Suspended Matter concentration or its proxy, turbidity, from remote sensing data in tropical coastal lagoon waters? To investigate this question, hyperspectral remote sensing reflectance, turbidity and chlorophyll pigment concentration were measured in three coral reef lagoons. The three sites enabled us to get data over very diverse environments: oligotrophic and sediment-poor waters in the southwest lagoon of New Caledonia, eutrophic waters in the Cienfuegos Bay (Cuba, and sediment-rich waters in the Laucala Bay (Fiji. In this paper, optical algorithms for turbidity are presented per site based on 113 stations in New Caledonia, 24 stations in Cuba and 56 stations in Fiji. Empirical algorithms are tested at satellite wavebands useful to coastal applications. Global algorithms are also derived for the merged data set (193 stations. The performances of global and local regression algorithms are compared. The best one-band algorithms on all the measurements are obtained at 681 nm using either a polynomial or a power model. The best two-band algorithms are obtained with R412/R620, R443/R670 and R510/R681. Two three-band algorithms based on Rrs620.Rrs681/Rrs412 and Rrs620.Rrs681/Rrs510 also give fair regression statistics. Finally, we propose a global algorithm based on one or three bands: turbidity is first calculated from Rrs681 and then, if < 1 FTU, it is recalculated using an algorithm based on Rrs620.Rrs681/Rrs412. On our data set, this algorithm is suitable for the 0.2-25 FTU turbidity range and for the three sites sampled (mean bias: 3.6 %, rms: 35%, mean quadratic error: 1.4 FTU. This shows that defining global empirical turbidity algorithms in tropical coastal waters is at reach.

  7. Correlation Between the "seeing FWHM" of Satellite Optical Observations and Meteorological Data at the OWL-Net Station, Mongolia

    Science.gov (United States)

    Bae, Young-Ho; Jo, Jung Hyun; Yim, Hong-Suh; Park, Young-Sik; Park, Sun-Youp; Moon, Hong Kyu; Choi, Young-Jun; Jang, Hyun-Jung; Roh, Dong-Goo; Choi, Jin; Park, Maru; Cho, Sungki; Kim, Myung-Jin; Choi, Eun-Jung; Park, Jang-Hyun

    2016-06-01

    The correlation between meteorological data collected at the optical wide-field patrol network (OWL-Net) Station No. 1 and the seeing of satellite optical observation data was analyzed. Meteorological data and satellite optical observation data from June 2014 to November 2015 were analyzed. The analyzed meteorological data were the outdoor air temperature, relative humidity, wind speed, and cloud index data, and the analyzed satellite optical observation data were the seeing full-width at half-maximum (FWHM) data. The annual meteorological pattern for Mongolia was analyzed by collecting meteorological data over four seasons, with data collection beginning after the installation and initial set-up of the OWL-Net Station No. 1 in Mongolia. A comparison of the meteorological data and the seeing of the satellite optical observation data showed that the seeing degrades as the wind strength increases and as the cloud cover decreases. This finding is explained by the bias effect, which is caused by the fact that the number of images taken on the less cloudy days was relatively small. The seeing FWHM showed no clear correlation with either temperature or relative humidity.

  8. Solar UV irradiance measured at ground and compared with satellite TOMS/NASA derived data at different locations in Argentina

    Science.gov (United States)

    Wolfram, W.; Quel, E.; Paladini, A.; Orce, V.; Piacentini, R. D.

    The solar UV radiation incident on different and distant places of Argentina (Ushuaia, Puerto Madryn, Buenos Aires and Jujuy) obtained at 305, 320, 340 and 380 nm with a GUV-511/Biospherical narrowband radiometer of the CONICET Latitudinal UV-PAR radiation monitoring network, were compared with TUV model calculations in order to derive the effective aerosol optical depths in the locations indicated above. The adjusted spectral curve is employed in order to determine, -with the inclusion of the erythemal action spectrum, the corresponding integrated dose for each day. This value, usually called exposure, is compared with the data derived at noon from those taken by the satellite instrument TOMS/NASA on board of Earth Probe. Other biological UV irradiances like carcinogenesis and ADN and plant damages are also analyzed. In particular, the signals produced by the ozone hole and minihole events (with values lowers or equal to 220 DU) are clearly distinguished in the biological actions that depend strongly on the most energetic UVB radiations.

  9. A satellite view of the direct effect of aerosols on solar radiation at global scale

    Science.gov (United States)

    Hatzianastassiou, Nikolaos; Papadimas, Christos D.; Matsoukas, Christos; Fotiadi, Aggeliki; Benas, Nikolaos; Vardavas, Ilias

    2016-04-01

    006 (C006) MODIS-Aqua monthly dataset and covers world desert areas that were not covered previously. The missing aerosol information is completed by the Global Aerosol Data Set (GADS). The RTM required input data are supplemented by other than aerosol data in which cloud optical data are key ones. For this information, namely cloud optical depth, as well as for other cloud properties like cloud cover we rely on the well established International Satellite Cloud Climatology Project (ISCCP) dataset, which ensures information for different cloud types, low, middle and high, all over the globe. The RTM runs under aerosol present and absent conditions enable the computation of aerosol DREs at the Earth's surface, as well as at the top of the atmosphere (TOA) and within the atmosphere. The spatial and temporal coverage and resolution of the study is constrained by the availability of all model input data, and the DREs are obtained on a monthly mean basis and at 2.5 by 2.5 degrees latitude-longitude resolution for the period 2000-2009. The DRE spatial and temporal, seasonal and inter-annual, variation is examined over the globe, with emphasis on specific world regions of aerosol interest, like deserts or areas of anthropogenic or biomass burning activity. The contribution of aerosols to the regional and global solar radiation budget and its spatio-temporal distribution and associated tendencies are also assessed.

  10. Gravitational waves and stalled satellites from massive galaxy mergers at z ≤ 1

    Energy Technology Data Exchange (ETDEWEB)

    McWilliams, Sean T.; Pretorius, Frans [Department of Physics, Princeton University, Princeton, NJ 08544 (United States); Ostriker, Jeremiah P., E-mail: Sean.McWilliams@mail.wvu.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2014-07-10

    We present a model for merger-driven evolution of the mass function for massive galaxies and their central supermassive black holes at late times. We discuss the current observational evidence in favor of merger-driven massive galaxy evolution during this epoch, and demonstrate that the observed evolution of the mass function can be reproduced by evolving an initial mass function under the assumption of negligible star formation. We calculate the stochastic gravitational wave signal from the resulting black hole binary mergers in the low redshift universe (z ≤ 1) implied by this model, and find that this population has a signal-to-noise ratio 2 × to 5 × larger than previous estimates for pulsar timing arrays, with a (2σ, 3σ) lower limit within this model of h{sub c}(f = 1 yr{sup –1}) = (1.1 × 10{sup –15}, 6.8 × 10{sup –16}). The strength of this signal is sufficient to make it detectable with high probability under conservative assumptions within the next several years. A principle reason that this result is larger than previous estimates is our use of a recent recalibration of the black hole-stellar mass correlation for the brightest cluster galaxies, which increases our estimate by a factor of ∼2 relative to past results. For cases where a galaxy merger fails to lead to a black hole merger, we estimate the probability for a given number of satellite black holes to remain within a massive host galaxy, and interpret the result in light of ULX observations. We find that in rare cases, wandering supermassive black holes may be bright enough to appear as ULXs.

  11. Multi-Temporal Satellite Imagery for Urban Expansion Assessment at Sharjah City /UAE

    International Nuclear Information System (INIS)

    Change detection is the process of identifying differences in land cover over time. As human and natural forces continue to alter the landscape, it is important to develop monitoring methods to assess and quantify these changes. Recent advances in satellite imagery, in terms of improved spatial and temporal resolutions, are allowing for efficient identification of change patterns and the prediction of areas of growth. Sharjah is the third largest and most populous city in the United Arab Emirates (UAE). It is located along the northern coast of the Persian Gulf on the Arabian Peninsula. After the discovery of oil and its export in the last four decades at UAE, it has experienced very rapid growth in industry, economy and population. The main purpose of this study is to detect urban development in Sharjah city by detecting and registering linear features in multi-temporal Landsat images. This paper used linear features for image registration that were chosen since they can be reliably extracted from imagery with significantly different geometric and radiometric properties. Derived edges from the registered images are used as the basis for change detection. Image registration and pixel-pixel subtraction has been implement using multi- temporal Landsat images for Sharjah City. Straight-line segments have been used for accurate co-registration as well as main element for a reliable change detection procedure. Results illustrate that highest range of growth that represented by linear features (building and roads) have been accrued during 1976 – 1987 and stand for 36.24% of the total urban features inside Sharjah city. Moreover, result shows that since 1976 to 2010, the cumulative urban expansion inside Sharjah city is 71.9%

  12. Gravitational waves and stalled satellites from massive galaxy mergers at z ≤ 1

    International Nuclear Information System (INIS)

    We present a model for merger-driven evolution of the mass function for massive galaxies and their central supermassive black holes at late times. We discuss the current observational evidence in favor of merger-driven massive galaxy evolution during this epoch, and demonstrate that the observed evolution of the mass function can be reproduced by evolving an initial mass function under the assumption of negligible star formation. We calculate the stochastic gravitational wave signal from the resulting black hole binary mergers in the low redshift universe (z ≤ 1) implied by this model, and find that this population has a signal-to-noise ratio 2 × to 5 × larger than previous estimates for pulsar timing arrays, with a (2σ, 3σ) lower limit within this model of hc(f = 1 yr–1) = (1.1 × 10–15, 6.8 × 10–16). The strength of this signal is sufficient to make it detectable with high probability under conservative assumptions within the next several years. A principle reason that this result is larger than previous estimates is our use of a recent recalibration of the black hole-stellar mass correlation for the brightest cluster galaxies, which increases our estimate by a factor of ∼2 relative to past results. For cases where a galaxy merger fails to lead to a black hole merger, we estimate the probability for a given number of satellite black holes to remain within a massive host galaxy, and interpret the result in light of ULX observations. We find that in rare cases, wandering supermassive black holes may be bright enough to appear as ULXs.

  13. Applications technology satellite F&G /ATS F&G/ mobile terminal.

    Science.gov (United States)

    Greenbaum, L. A.; Baker, J. L.

    1971-01-01

    The mobile terminal is a flexible, easily transportable system. The terminal design incorporates a combination of unique and proven hardware to provide maximum utility consistent with reliability. The flexibility built into the system will make it possible to satisfy the requirements of the applications technology satellite program concerned with the conduction of various spacecraft technology experiments. The terminal includes two parabolic antennas.

  14. Gravitational detection of a low-mass dark satellite galaxy at cosmological distance

    NARCIS (Netherlands)

    Vegetti, S.; Lagattuta, D. J.; McKean, J. P.; Auger, M. W.; Fassnacht, C. D.; Koopmans, L. V. E.

    2012-01-01

    The mass function of dwarf satellite galaxies that are observed around Local Group galaxies differs substantially from simulations(1-5) based on cold dark matter: the simulations predict many more dwarf galaxies than are seen. The Local Group, however, may be anomalous in this regard(6,7). A massive

  15. Study of wind speed attenuation at Kavaratti Island using land-based, offshore, and satellite measurements

    Science.gov (United States)

    Joseph, Antony; Rivonkar, Pradhan; Balakrishnan Nair, T. M.

    2012-06-01

    The role of dense coconut palms in attenuating the wind speed at Kavaratti Island, which is located in the southeastern Arabian Sea, is examined based on land-based and offshore wind measurements (U10) using anchored-buoy-mounted and satellite-borne sensors (QuikSCAT scatterometer and TMI microwave imager) during an 8-year period (2000-2007). It is found that round the year monthly-mean wind speed measurements from the Port Control Tower (PCT) located within the coconut palm farm at the Kavaratti Island are weaker by 15-61% relative to those made from the nearby offshore region. Whereas wind speed attenuation at the island is ~15-40% in the mid-June to mid-October south-west monsoon period, it is ~41-61% during the rest of the year. Wind direction measurements from all the devices overlapped, except in March-April during which the buoy measurements deviated from the other measurements by ~20°. U10 wind speed measurements from PCT during the November 2009 tropical cyclone "Phyan" indicated approximately 50-80% attenuation relative to those from the seaward boundary of the island's lagoon (and therefore least influenced by the coconut palms). The observed wind speed attenuation can be understood through the theory of free turbulent flow jets embodied in the boundary-layer fluid dynamics, according to which both the axial and transverse components of the efflux of flows discharged through the inter-leaves porosity (orifice) undergo increasing attenuation in the downstream direction with increasing distance from the orifice. Thus, the observed wind speed attenuation at Kavaratti Island is attributable to the decline in wind energy transmission from the seaward boundary of the coconut palm farm with distance into the farm. Just like mangrove forests function as bio-shields against forces from oceanic waves and stormsurges through their large above-ground aerial root systems and standing crop, and thereby playing a distinctive role in ameliorating the effects of

  16. Orbit determination and prediction for Beidou GEO satellites at the time of the spring/autumn equinox

    Science.gov (United States)

    Li, XiaoJie; Zhou, JianHua; Hu, XiaoGong; Liu, Li; Guo, Rui; Zhou, ShanShi

    2015-08-01

    Geostationary (GEO) satellites form an indispensable component of the constellation of Beidou navigation system (BDS). The ephemerides, or predicted orbits of these GEO satellites(GEOs), are broadcast to positioning, navigation, and timing users. User equivalent ranging error (UERE) based on broadcast message is better than 1.5 m (root formal errors: RMS) for GEO satellites. However, monitoring of UERE indicates that the orbital prediction precision is significantly degraded when the Sun is close to the Earth's equatorial plane (or near spring or autumn Equinox). Error source analysis shows that the complicated solar radiation pressure on satellite buses and the simple box-wing model maybe the major contributor to the deterioration of orbital precision. With the aid of BDS' two-way frequency and time transfer between the GEOs and Beidou time (BDT, that is maintained at the master control station), we propose a new orbit determination strategy, namely three-step approach of the multi-satellite precise orbit determination (MPOD). Pseudo-range (carrier phase) data are transformed to geometric range (biased geometric range) data without clock offsets; and reasonable empirical acceleration parameters are estimated along with orbital elements to account for the error in solar radiation pressure modeling. Experiments with Beidou data show that using the proposed approach, the GEOs' UERE when near the autumn Equinox of 2012 can be improved to 1.3 m from 2.5 m (RMS), and the probability of user equivalent range error (UERE)<2.0 m can be improved from 50% to above 85%.

  17. Upwelling to Outflowing Oxygen Ions at Auroral Latitudes during Quiet Times: Exploiting a New Satellite Database

    Science.gov (United States)

    Redmon, Robert J.

    The mechanisms by which thermal O+ escapes from the top of the ionosphere and into the magnetosphere are not fully understood even with 30 years of active research. This thesis introduces a new database, builds a simulation framework around a thermospheric model and exploits these tools to gain new insights into the study of O+ ion outflows. A dynamic auroral boundary identification system is developed using Defense Meteorological Satellite Program (DMSP) spacecraft observations at 850 km to build a database characterizing the oxygen source region. This database resolves the ambiguity of the expansion and contraction of the auroral zone. Mining this new dataset, new understanding is revealed. We describe the statistical trajectory of the cleft ion fountain return flows over the polar cap as a function of activity and the orientation of the interplanetary magnetic field y-component. A substantial peak in upward moving O+ in the morning hours is discovered. Using published high altitude data we demonstrate that between 850 and 6000 km altitude, O+ is energized predominantly through transverse heating; and acceleration in this altitude region is relatively more important in the cusp than at midnight. We compare data with a thermospheric model to study the effects of solar irradiance, electron precipitation and neutral wind on the distribution of upward O+ at auroral latitudes. EUV irradiance is shown to play a dominant role in establishing a dawn-focused source population of upwelling O+ that is responsible for a pre-noon feature in escaping O+ fluxes. This feature has been corroborated by observations on platforms including the Dynamics Explorer 1 (DE-1), Polar, and Fast Auroral Snapshot SnapshoT (FAST) spacecraft. During quiet times our analysis shows that the neutral wind is more important than electron precipitation in establishing the dayside O+ upwelling distribution. Electron precipitation is found to play a relatively modest role in controlling dayside, and a

  18. High-kinetic-energy photoemission spectroscopy of Ni at 1s : 6-eV satellite at 4 eV

    Science.gov (United States)

    Karis, O.; Svensson, S.; Rusz, J.; Oppeneer, P. M.; Gorgoi, M.; Schäfers, F.; Braun, W.; Eberhardt, W.; Mårtensson, N.

    2008-12-01

    Electron correlations are responsible for many profound phenomena in solid-state physics. A classical example is the 6-eV satellite in the photoelectron spectrum of Ni. Until now the satellite structure has only been investigated at the L shell and more shallow levels. Here we report a high-kinetic-energy photoemission spectroscopy (HIKE) investigation of Ni metal. We present 1s and 2p photoelectron spectra, obtained using excitation energies up to 12.6 keV. Our investigation demonstrates that the energy position of the satellite relative to the main line is different for the 1s and the 2p levels. In combination with electronic structure calculations, we show that this energy shift is attributed to unique differences in the core-valence coupling for the K and L2,3 shells in 3d transition metals, resulting in different screening of the core holes.

  19. Behind the Scenes at the DLR National Satellite Data Archive, a Brief History and Outlook of Long Term Data Preservation

    OpenAIRE

    Reck, Christoph A. W.; Mikusch, Eberhard; Kiemle, Stephan; Molch, Katrin; Wildegger, Wilhelm

    2011-01-01

    The Earth Observation Center (EOC) at the German Aerospace Center (DLR) is the center of competence in Germany, providing expertise in earth observation research and development activities, as well as operational tasks for data reception, processing and archiving. We briefly present the German Satellite Data Archive (D-SDA) with systems and activities that make it possible to accomplish successful Long Term Data Preservation (LTDP) over more than 20 years with nearly exponentially growing dat...

  20. Accurate location of nuclear explosions at Azgir, Kazakhstan, from satellite images and seismic data: Implications for monitoring decoupled explosions

    Science.gov (United States)

    Sykes, Lynn R.; Deng, Jishu; Lyubomirskiy, Paul

    1993-09-01

    The 10 largest tamped nuclear explosions detonated by the Former Soviet Union in and near two salt domes near Azgir were relocated using seismic data and the locations of shot points on a SPOT satellite image taken in 1988. Many of the shot points are clearly recognized on the satellite image and can be located with an accuracy of 60 m even though testing was carried out at those points many years earlier, i. e. between 1966 and 1979. Onsite inspections and a local seismic monitoring network combined with our accurate locations of previous explosions would insure that any cavities that remain standing from those events could not be used for undetected decoupled nuclear testing down to a very small yield. Since the Azgir area, like much of the Pre-Caspian depression, is arid, it would not be a suitable place for constructing large cavities in salt by solution mining and then using them for clandestine nuclear testing.

  1. Measurements of VLF-particle interactions at the South Atlantic Magnetic Anomaly on board a Brazilian geophysical satellite

    International Nuclear Information System (INIS)

    A summary of the proposal for measurements of VLF wave-particle interactions, expected to occur at the South Atlantic magnetic anomaly, to be carried out on board a Brazilian geophysical satellite, will be presented. The expected domain of such interactions refers to electromagnetic VLF waves and to energetic-relativistic inner belt electrons, pitch angle diffusing into the atmosphere via cyclotron resonances. The detectors involve a tri-axial search coil magnetometer and a surface barrier silicon telescope. A modified and preliminary version of this proposed experiment will be carried out on board long duration balloon flights, well before the beginning of the intended satellite measurements. For the ballon flights the particle detector will be replaced by an x-ray detector, which can also monitor parameters related to the electron precipitation. (author)

  2. Precipitation Analysis at Fine Time Scales using TRMM and Other Satellites: Real-time and Research Products and Applications

    Science.gov (United States)

    Adler, Robert; Huffman, George; Bolvin, David; Nelkin, Eric; Curtis, Scott; Pierce, Harold; Gu, Guo-Jon

    2004-01-01

    Quasi-global precipitation analyses at fine time scales (3-hr) are described. TRMM observations (radar and passive microwave) are used to calibrate polar-orbit microwave observations from SSM/I (and other satellites instruments, including AMSR and AMSU) and geosynchronous IR observations. The individual data sets are then merged using a priority order based on quality to form the TRMM Multi-satellite Precipitation Analysis (MPA). Raingauge information is used to help constrain the satellite-based estimates over land. The TRMM standard research product (Version 6 3B-42 of the TRMM products) will be available for the entire TRMM period (January 1998-present) by the end of 2004. The real-time version of this merged product has been produced over the past two years and is available on the U.S. TRMM web site (trmm.gsfc.nasa.gov) at 0.25" latitude-longitude resolution over the latitude range from 5O0N-50"S. Validation of daily totals indicates good results, with limitations noted in mid-latitude winter over land and regions of shallow, orographic precipitation. Various applications of these estimates are described, includmg: 1) detecting potential floods in near real-time; 2) analyzing Indian Ocean precipitation variations related to the initiation of El Nino; 3) determining characteristics of the African monsoon; and 4) analysis of diurnal variations.

  3. Precipitation Analysis at Fine Time Scales using TRMM and Other Satellites: Realtime and Research Products and Applications

    Science.gov (United States)

    Adler, Robert; Huffman, George; Bolvin, David; Nelkin, Eric; Curtis, Scott; Pierce, Harold; Gu, Guojon

    2004-01-01

    Quasi-global precipitation analyses at fine time scales (3-hr) are described. TRMM observations (radar and passive microwave) are used to calibrate polar-orbit microwave observations from SSM/I (and other satellites instruments, including AMSR and AMSU) and geosynchronous IR observations. The individual data sets are then merged using a priority order based on quality to form the TRMM Multi-satellite Precipitation Analysis (MPA). Raingauge information is used to help constrain the satellite-based estimates over land. The TRMM standard research product (Version 6 3B-42 of the TRMM products) will be available for the entire TRMM period (January 1998-present) by the end of 2004. The real-time version of this merged product has been produced over the past two years and is available on the U.S. TRMM web site (trmm.gsfc.nasa.gov) at 0.25 deg latitude-longitude resolution over the latitude range from 50 deg N-50 deg S. Validation of daily totals indicates good results, with limitations noted in mid-latitude winter over land and regions of shallow, orographic precipitation. Various applications of these estimates are described, including: 1) detecting potential floods in near real-time; 2) analyzing Indian Ocean precipitation variations related to the initiation of El Nino; 3) determining characteristics of the African monsoon; and 4) analysis of diurnal variations.

  4. Precipitation Analysis at Fine Time Scales Using Multiple Satellites: Real-time and Research Products and Applications

    Science.gov (United States)

    Adler, Robert; Huffman, George; Bolvin, David; Nelkin, Eric; Curtis, Scott; Pierce, Harold

    2004-01-01

    Quasi-global precipitation analyses at fine time scales (3-hr) are described. TRMM observations (radar and passive microwave) are used to calibrate polar-orbit microwave observations from SSM/I (and other satellites instruments, including AMSR and AMSU) and geosynchronous IR observations. The individual data sets are then merged using a priority order based on quality to form the Multi-satellite Precipitation Analysis (MPA). Raingauge information is used to help constrain the satellite-based estimates over land. The TRMM standard research product (Version 6 3B-42 of the TRMM products) will be available for the entire TRMM period (January 1998-present) in 2004. The real-time version of this merged product has been produced over the past two years and is available on the U.S. TRMM web site (trmm.gsfc.nasa.gov) at 0.25" latitude-longitude resolution over the latitude range from 5O"N-5O0S. Validation of daily totals indicates good results, with limitations noted in mid-latitude winter over land and regions of shallow, orographic precipitation. Various applications of these estimates are described, including: 1) detecting potential floods in near real-time; 2) analyzing Indian Ocean precipitation variations related to the initiation of El Nino; 3) determining characteristics of the African monsoon; and 4) analysis of diurnal variations.

  5. CHINA LAUNCHES NEW SCIENTIFIC SATELLITE

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    China on Sept. 27, 2004 launched a scientific satellite atop a Long March 2D carrier rocket from Jiuquan Satellite Launch Center in Gansu province. 10 minutes after the launch, the satellite entered a preset orbit and is running sound at the orbit. It is the 20th recoverable satellite for scientific and technological

  6. Differences between ground Dobson, Brewer and satellite TOMS-8, GOME-WFDOAS total ozone observations at Hradec Kralove, Czech

    Directory of Open Access Journals (Sweden)

    K. Vanicek

    2006-01-01

    Full Text Available This paper presents key results achieved by an analysis of the relation between high-quality simultaneous Dobson, Brewer ground and TOMS-V8, GOME-WFDOAS satellite total ozone observations for Hradec Kralove, Czech Republic. Statistically significant seasonal differences with maxima up to 4% of monthly averages have been found between Dobson and Brewer measurements during the winter/spring months. These differences can influence estimations of ozone trends if combined data series are used after replacing a Dobson instrument by a Brewer spectrophotometer. The differences can be attributed mostly to the influence of temperature on ozone absorption coefficients and to total sulphur dioxide. Similar seasonal differences exist between Dobson, GOME and Brewer, TOMS data sets at Hradec Kralove while Dobson versus TOMS and Brewer versus GOME observations fit well with each other within the instrumental accuracy of spectrophotometers. The above findings are supposed to be relevant to other mid and high latitude stations and they have been confirmed by several independent analyses. The conclusions should be considered by data users because the differences between particular ground and satellite data sets can influence validation of satellite ozone observing systems and analyses of recovery of the ozone layer in mid and high latitudes, among others.

  7. The role of high-resolution geomagnetic field models for investigating ionospheric currents at low Earth orbit satellites

    Science.gov (United States)

    Stolle, Claudia; Michaelis, Ingo; Rauberg, Jan

    2016-07-01

    Low Earth orbiting geomagnetic satellite missions, such as the Swarm satellite mission, are the only means to monitor and investigate ionospheric currents on a global scale and to make in situ measurements of F region currents. High-precision geomagnetic satellite missions are also able to detect ionospheric currents during quiet-time geomagnetic conditions that only have few nanotesla amplitudes in the magnetic field. An efficient method to isolate the ionospheric signals from satellite magnetic field measurements has been the use of residuals between the observations and predictions from empirical geomagnetic models for other geomagnetic sources, such as the core and lithospheric field or signals from the quiet-time magnetospheric currents. This study aims at highlighting the importance of high-resolution magnetic field models that are able to predict the lithospheric field and that consider the quiet-time magnetosphere for reliably isolating signatures from ionospheric currents during geomagnetically quiet times. The effects on the detection of ionospheric currents arising from neglecting the lithospheric and magnetospheric sources are discussed on the example of four Swarm orbits during very quiet times. The respective orbits show a broad range of typical scenarios, such as strong and weak ionospheric signal (during day- and nighttime, respectively) superimposed over strong and weak lithospheric signals. If predictions from the lithosphere or magnetosphere are not properly considered, the amplitude of the ionospheric currents, such as the midlatitude Sq currents or the equatorial electrojet (EEJ), is modulated by 10-15 % in the examples shown. An analysis from several orbits above the African sector, where the lithospheric field is significant, showed that the peak value of the signatures of the EEJ is in error by 5 % in average when lithospheric contributions are not considered, which is in the range of uncertainties of present empirical models of the EEJ.

  8. Basic studies on the estimation of climate values (normals for decade air temperature) at unit cell by using satellite data

    International Nuclear Information System (INIS)

    Basic studies on the estimation of normals for decade air temperature at unit cell were performed using daily mean air temperature derived from satellite IR data. Analyses were taken with the assumption that “the difference between a daily mean air temperature and normals for decade air temperature is approximate among areas sharing similar climates”. Items and procedures for analyses are as follows. (1) Characteristic for mean decade air temperature and frequency for decade air temperature. (2) Classification for AMeDAS observation sites in Hokkaido to make some groups of areas sharing similar climates. (3) Characteristic of difference between a daily mean air temperature and normals for decade air temperature, and proof of the assumption. (4) Estimation of daily mean air temperature derived from satellite IR data. (5) Estimation of quasi-normals for decade air temperature using satellite IR data. The results for analyses are as follows. (1) The assumption that the difference between a daily mean air temperature and normals for decade air temperature is approximate among areas sharing similar climates was proved. Therefore, it is possible to estimate quasi-normals for decade air temperature using daily mean air temperature derived from satellite IR data. (2) There was a significance level of 1% between daily mean air temperature of AMeDAS data and surface temperature for 960 cm cell derived from Landsat TM data on July 8, 1993 in Ishikari Plain. And quasi-normals for decade air temperature in early July could be estimated to 0.1°C accuracy, except for data from Eniwa-Shimamatsu AMeDAS observation site. (author)

  9. Behavior of nearby synchronous rotation of a Poincar\\'e-Hough satellite at low eccentricity

    OpenAIRE

    Noyelles, Benoît

    2011-01-01

    This paper presents a study of the Poincar\\'e-Hough model of rotation of the synchronous natural satellites, in which these bodies are assumed to be composed of a rigid mantle and a triaxial cavity filled with inviscid fluid of constant uniform density and vorticity. In considering an Io-like body on a low eccentricity orbit, we describe the different possible behaviors of the system, depending on the size, polar flattening and shape of the core. We use for that the numerical tool. We propaga...

  10. Using satellite and airborne LiDAR to model woodpecker habitat occupancy at the landscape scale.

    Directory of Open Access Journals (Sweden)

    Lee A Vierling

    Full Text Available Incorporating vertical vegetation structure into models of animal distributions can improve understanding of the patterns and processes governing habitat selection. LiDAR can provide such structural information, but these data are typically collected via aircraft and thus are limited in spatial extent. Our objective was to explore the utility of satellite-based LiDAR data from the Geoscience Laser Altimeter System (GLAS relative to airborne-based LiDAR to model the north Idaho breeding distribution of a forest-dependent ecosystem engineer, the Red-naped sapsucker (Sphyrapicus nuchalis. GLAS data occurred within ca. 64 m diameter ellipses spaced a minimum of 172 m apart, and all occupancy analyses were confined to this grain scale. Using a hierarchical approach, we modeled Red-naped sapsucker occupancy as a function of LiDAR metrics derived from both platforms. Occupancy models based on satellite data were weak, possibly because the data within the GLAS ellipse did not fully represent habitat characteristics important for this species. The most important structural variables influencing Red-naped Sapsucker breeding site selection based on airborne LiDAR data included foliage height diversity, the distance between major strata in the canopy vertical profile, and the vegetation density near the ground. These characteristics are consistent with the diversity of foraging activities exhibited by this species. To our knowledge, this study represents the first to examine the utility of satellite-based LiDAR to model animal distributions. The large area of each GLAS ellipse and the non-contiguous nature of GLAS data may pose significant challenges for wildlife distribution modeling; nevertheless these data can provide useful information on ecosystem vertical structure, particularly in areas of gentle terrain. Additional work is thus warranted to utilize LiDAR datasets collected from both airborne and past and future satellite platforms (e.g. GLAS, and

  11. Solar satellites

    Energy Technology Data Exchange (ETDEWEB)

    Poher, C.

    1982-01-01

    A reference system design, projected costs, and the functional concepts of a satellite solar power system (SSPS) for converting sunlight falling on solar panels of a satellite in GEO to a multi-GW beam which could be received by a rectenna on earth are outlined. Electricity transmission by microwaves has been demonstrated, and a reference design system for supplying 5 GW dc to earth was devised. The system will use either monocrystalline Si or concentrator GaAs solar cells for energy collection in GEO. Development is still needed to improve the lifespan of the cells. Currently, the cell performance degrades 50 percent in efficiency after 7-8 yr in space. Each SSPS satellite would weigh either 34,000 tons (Si) or 51,000 tons (GaAs), thereby requiring the fabrication of a heavy lift launch vehicle or a single-stage-to-orbit transport in order to minimize launch costs. Costs for the solar panels have been estimated at $500/kW using the GaAs technology, with transport costs for materials to GEO being $40/kg.

  12. Discriminating raining from non-raining clouds at mid-latitudes using multispectral satellite data

    Directory of Open Access Journals (Sweden)

    T. Nauss

    2006-01-01

    Full Text Available We propose a new method for the delineation of precipitation using cloud properties derived from optical satellite data. This approach is not only sufficient for the detection of mainly convective precipitation by means of the commonly used connection between infrared cloud top temperature and rainfall probability but enables the detection of stratiform precipitation (e.g., in connection with mid-latitude frontal systems. The scheme presented is based on the concept model, that precipitating clouds must have both a sufficient vertical extent and large enough droplets. Therefore, we have analysed MODIS scenes during the severe European summer floods in 2002 and retrieved functions for the computation of an auto-adaptive threshold value of the effective cloud droplet radius with respect to the corresponding optical thickness which links these cloud properties with rainfall areas on a pixel basis.

  13. Discriminating raining from non-raining clouds at mid-latitudes using multispectral satellite data

    Directory of Open Access Journals (Sweden)

    T. Nauss

    2006-02-01

    Full Text Available We propose a new method for the delineation of precipitation using cloud properties derived from optical satellite data. This approach is not only sufficient for the detection of mainly convective driven precipitation by means of the commonly used connection between infrared cloud-top temperature and rainfall probability but enables the detection of stratiform precipitation (e.g., in connection with mid-latitude frontal systems. The scheme presented is based on the concept model, that precipitating clouds must have both a large enough vertical extent and large enough droplets. Therefore, we have analyzed Terra-MODIS scenes during the severe European summer floods in 2002 and retrieved functions for the computation of an auto-adaptive threshold value of the effective cloud droplet radius with respect to the corresponding optical thickness which links these cloud properties with rainfall areas on a pixel basis.

  14. Methods for Multitemporal Analysis of Satellite Data Aimed at Environmental Risk Monitoring

    Science.gov (United States)

    Caprioli, M.; Scognamiglio, A.

    2012-08-01

    In the last years the topic of Environmental monitoring has raised a particular importance, also according to minor short-term stability and predictability of climatic events. Facing this situation, often in terms of emergency, involves high and unpredictable costs for public Agencies. Prevention of damages caused by natural disasters does not regard only weather forecasts, but requires constant attention and practice of monitoring and control of human activity on territory. Practically, the problem is not knowing if and when an event will affect a determined area, but recognizing the possible damages if this event happened, by adopting the adequate measures to reduce them to a minimum, and requiring the necessary tools for a timely intervention. On the other hand, the surveying technologies should be the most possible accurate and updatable in order to guarantee high standards, involving the analysis of a great amount of data. The management of such data requires the integration and calculation systems with specialized software and fast and reliable connection and communication networks. To solve such requirements, current satellite technology, with recurrent data acquisition for the timely generation of cartographic products updated and coherent to the territorial investigation, offers the possibility to fill the temporal gap between the need of urgent information and official reference information. Among evolved image processing techniques, Change detection analysis is useful to facilitate individuation of environmental temporal variations, contributing to reduce the users intervention by means of the processes automation and improving in a progressive way the qualitative and quantitative accuracy of results. The research investigate automatic methods on land cover transformations by means of "Change detection" techniques executable on satellite data that are heterogeneous for spatial and spectral resolution with homogenization and registration in an unique

  15. Transformation of internal solitary waves at the "deep" and "shallow" shelf: satellite observations and laboratory experiment

    Directory of Open Access Journals (Sweden)

    O. D. Shishkina

    2013-10-01

    Full Text Available An interaction of internal solitary waves with the shelf edge in the time periods related to the presence of a pronounced seasonal pycnocline in the Red Sea and in the Alboran Sea is analysed via satellite photos and SAR images. Laboratory data on transformation of a solitary wave of depression while passing along the transverse bottom step were obtained in a tank with a two-layer stratified fluid. The certain difference between two characteristic types of hydrophysical phenomena was revealed both in the field observations and in experiments. The hydrological conditions for these two processes were named the "deep" and the "shallow" shelf respectively. The first one provides the generation of the secondary periodic short internal waves – "runaway" edge waves – due to change in the polarity of a part of a soliton approaching the shelf normally. Another one causes a periodic shear flow in the upper quasi-homogeneous water layer with the period of incident solitary wave. The strength of the revealed mechanisms depends on the thickness of the water layer between the pycnocline and the shelf bottom as well as on the amplitude of the incident solitary wave.

  16. Use of high spatial resolution satellite imagery to characterize landscapes at risk for bluetongue.

    Science.gov (United States)

    Guis, Hélène; Tran, Annelise; de La Rocque, Stéphane; Baldet, Thierry; Gerbier, Guillaume; Barragué, Bruno; Biteau-Coroller, Fabienne; Roger, François; Viel, Jean-François; Mauny, Frédéric

    2007-01-01

    The recent and rapid spread in the Mediterranean Basin of bluetongue, a viral disease of ruminants transmitted by some species of Culicoides (biting midges), highlights the necessity of determining the conditions of its emergence. This study uses high spatial resolution satellite imagery and methods from landscape ecology science to identify environmental parameters related to bluetongue occurrence in Corsica, a French Mediterranean island where the disease occurred for the first time in 2000. A set of environmental variables recorded in the neighborhood of 80 sheep farms were related to case occurrence through a logistic regression model computed within three subsequent buffer distances of 0.5, 1 and 2 km. The results reveal the role of landscape metrics, particularly those characterizing land-use units such as prairies and woodlands, as well as farm type, latitude and sunshine to explain the presence of bluetongue. Internal and external validation both indicate that the best results are obtained with the 1 km buffer size model (area under Receiver Operating Characteristic curve = 0.9 for internal validation and 0.81 for external validation). The results show that high spatial resolution remote sensing (i.e. 10 m pixels) and landscape ecology approaches contribute to improving the understanding of bluetongue epidemiology. PMID:17583664

  17. Comparison of the CALIPSO satellite and ground-based observations of cirrus clouds at the ARM TWP sites

    Energy Technology Data Exchange (ETDEWEB)

    Thorsen, Tyler J.; Fu, Q.; Comstock, Jennifer M.

    2011-11-10

    Statistics of ice cloud macrophysical and optical properties from the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) instrument on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite are compared with those from ground-based lidar observations over a 31 month period. Ground-based lidar observations are taken from the micropulse lidars (MPL) at the three Department of Energy Atmospheric Radiation Measurement (ARM) tropical western pacific (TWP) sites: Manus, Nauru and Darwin. CALIPSO observations show a larger cloud fraction at high altitudes while the ground-based MPLs show a larger cloud fraction at low altitudes. The difference in mean ice cloud top and base heights at the Manus and Nauru sites are all within 0.51 km, although differences are statistically significant. Mean ice cloud geometrical thickness agree to within 0.05 km at the Manus and Nauru sites. Larger differences exist at Darwin due to excessive degradation of the MPL output power during our sampling period. Both sets of observations show thicker clouds during the nighttime which may be real but could also be partially an artifact of the decreased signal-to-noise ratio during the daytime. The number of ice cloud layers per profile are also shown to be consistent after accounting for the difference in spatial resolution. For cloud optical depths, four different retrieval methods are compared, two for each set of observations. All products show that the majority of ice cloud optical depths ({approx}60%) fall below an optical depth of 0.2. For most comparisons all four retrievals agree to within the uncertainty intervals. We find that both CALIPSO retrievals agree best to ground-based optical depths when the lidar ratio in the latter is retrieved instead of set to a fixed value. Also thoroughly compared is the cloud properties for the subset of ice clouds which reside in the tropical tropopause layer (TTL).

  18. Satellite Geomagnetism

    OpenAIRE

    Olsen, Nils; Stolle, Claudia

    2012-01-01

    Observations of Earth’s magnetic field from space began more than 50 years ago. A continuous monitoring of the field using low Earth orbit (LEO) satellites, however, started only in 1999, and three satellites have taken highprecision measurements of the geomagnetic field during the past decade. The unprecedented time-space coverage of their data opened revolutionary new possibilities for monitoring, understanding, and exploring Earth’s magnetic field. In the near future, the three-satellite c...

  19. Centriolar satellites

    DEFF Research Database (Denmark)

    Tollenaere, Maxim A X; Mailand, Niels; Bekker-Jensen, Simon

    2015-01-01

    Centriolar satellites are small, microscopically visible granules that cluster around centrosomes. These structures, which contain numerous proteins directly involved in centrosome maintenance, ciliogenesis, and neurogenesis, have traditionally been viewed as vehicles for protein trafficking...... highlight newly discovered regulatory mechanisms targeting centriolar satellites and their functional status, and we discuss how defects in centriolar satellite components are intimately linked to a wide spectrum of human diseases....

  20. An interhemispheric comparison of GPS phase scintillation with auroral emission observed at the South Pole and from the DMSP satellite

    Directory of Open Access Journals (Sweden)

    Paul Prikryl

    2013-06-01

    Full Text Available The global positioning system (GPS phase scintillation caused by high-latitude ionospheric irregularities during an intense high-speed stream (HSS of the solar wind from April 29 to May 5, 2011, was observed using arrays of GPS ionospheric scintillation and total electron content monitors in the Arctic and Antarctica. The one-minute phase-scintillation index derived from the data sampled at 50 Hz was complemented by a proxy index (delta phase rate obtained from 1-Hz GPS data. The scintillation occurrence coincided with the aurora borealis and aurora australis observed by an all-sky imager at the South Pole, and by special sensor ultraviolet scanning imagers on board satellites of the Defense Meteorological Satellites Program. The South Pole (SP station is approximately conjugate with two Canadian High Arctic Ionospheric Network stations on Baffin Island, Canada, which provided the opportunity to study magnetic conjugacy of scintillation with support of riometers and magnetometers. The GPS ionospheric pierce points were mapped at their actual or conjugate locations, along with the auroral emission over the South Pole, assuming an altitude of 120 km. As the aurora brightened and/or drifted across the field of view of the all-sky imager, sequences of scintillation events were observed that indicated conjugate auroras as a locator of simultaneous or delayed bipolar scintillation events. In spite of the greater scintillation intensity in the auroral oval, where phase scintillation sometimes exceeded 1 radian during the auroral break-up and substorms, the percentage occurrence of moderate scintillation was highest in the cusp. Interhemispheric comparisons of bipolar scintillation maps show that the scintillation occurrence is significantly higher in the southern cusp and polar cap.

  1. Studies on aerosol properties during ICARB–2006 campaign period at Hyderabad, India using ground-based measurements and satellite data

    Indian Academy of Sciences (India)

    K V S Badarinath; Shailesh Kumar Kharol

    2008-07-01

    Continuous and campaign-based aerosol field measurements are essential in understanding fundamental atmospheric aerosol processes and for evaluating their effect on global climate, environment and human life. Synchronous measurements of Aerosol Optical Depth (AOD), Black Carbon (BC) aerosol mass concentration and aerosol particle size distribution were carried out during the campaign period at tropical urban regions of Hyderabad, India. Daily satellite datasets of DMSP-OLS were processed for night-time forest fires over the Indian region in order to understand the additional sources (forest fires) of aerosol. The higher values in black carbon aerosol mass concentration and aerosol optical depth correlated well with forest fires occurring over the region. Ozone Monitoring Instrument (OMI) aerosol index (AI) variations showed absorbing aerosols over the region and correlated with ground measurements.

  2. Satellite Geomagnetism

    DEFF Research Database (Denmark)

    Olsen, Nils; Stolle, Claudia

    2012-01-01

    Observations of Earth’s magnetic field from space began more than 50 years ago. A continuous monitoring of the field using low Earth orbit (LEO) satellites, however, started only in 1999, and three satellites have taken highprecision measurements of the geomagnetic field during the past decade...

  3. Hoar crystal development and disappearance at Dome C, Antarctica: observation by near-infrared photography and passive microwave satellite

    Directory of Open Access Journals (Sweden)

    N. Champollion

    2013-08-01

    Full Text Available Hoar crystals episodically cover the snow surface in Antarctica and affect the roughness and reflective properties of the air–snow interface. However, little is known about their evolution and the processes responsible for their development and disappearance despite a probable influence on the surface mass balance and energy budget. To investigate hoar evolution, we use continuous observations of the surface by in situ near-infrared photography and by passive microwave remote sensing at Dome C in Antarctica. From the photography data, we retrieved a daily indicator of the presence/absence of hoar crystals using a texture analysis algorithm. The analysis of this 2 yr long time series shows that Dome C surface is covered almost half of the time by hoar. The development of hoar crystals takes a few days and seems to occur whatever the meteorological conditions. In contrast, the disappearance of hoar is rapid (a few hours and coincident with either strong winds or with moderate winds associated with a change in wind direction from southwest (the prevailing direction to southeast. From the microwave satellite data, we computed the polarisation ratio (i.e. horizontal over vertical polarised brightness temperatures, an indicator known to be sensitive to hoar in Greenland. Photography data and microwave polarisation ratio are correlated, i.e. high values of polarisation ratio which theoretically correspond to low snow density values near the surface are associated with the presence of hoar crystals in the photography data. Satellite data over nearly ten years (2002–2011 confirm that a strong decrease of the polarisation ratio (i.e. signature of hoar disappearance is associated with an increase of wind speed or a change in wind direction from the prevailing direction. The photography data provides, in addition, evidence of interactions between hoar and snowfall. Further adding the combined influence of wind speed and wind direction results in a

  4. Effect of Bias Correction of Satellite-Rainfall Estimates on Runoff Simulations at the Source of the Upper Blue Nile

    Directory of Open Access Journals (Sweden)

    Emad Habib

    2014-07-01

    Full Text Available Results of numerous evaluation studies indicated that satellite-rainfall products are contaminated with significant systematic and random errors. Therefore, such products may require refinement and correction before being used for hydrologic applications. In the present study, we explore a rainfall-runoff modeling application using the Climate Prediction Center-MORPHing (CMORPH satellite rainfall product. The study area is the Gilgel Abbay catchment situated at the source basin of the Upper Blue Nile basin in Ethiopia, Eastern Africa. Rain gauge networks in such area are typically sparse. We examine different bias correction schemes applied locally to the CMORPH product. These schemes vary in the degree to which spatial and temporal variability in the CMORPH bias fields are accounted for. Three schemes are tested: space and time-invariant, time-variant and spatially invariant, and space and time variant. Bias-corrected CMORPH products were used to calibrate and drive the Hydrologiska Byråns Vattenbalansavdelning (HBV rainfall-runoff model. Applying the space and time-fixed bias correction scheme resulted in slight improvement of the CMORPH-driven runoff simulations, but in some instances caused deterioration. Accounting for temporal variation in the bias reduced the rainfall bias by up to 50%. Additional improvements were observed when both the spatial and temporal variability in the bias was accounted for. The rainfall bias was found to have a pronounced effect on model calibration. The calibrated model parameters changed significantly when using rainfall input from gauges alone, uncorrected, and bias-corrected CMORPH estimates. Changes of up to 81% were obtained for model parameters controlling the stream flow volume.

  5. Can key vegetation parameters be retrieved at the large-scale using LAI satellite products and a generic modelling approach ?

    Science.gov (United States)

    Dewaele, Helene; Calvet, Jean-Christophe; Carrer, Dominique; Laanaia, Nabil

    2016-04-01

    In the context of climate change, the need to assess and predict the impact of droughts on vegetation and water resources increases. The generic approaches permitting the modelling of continental surfaces at large-scale has progressed in recent decades towards land surface models able to couple cycles of water, energy and carbon. A major source of uncertainty in these generic models is the maximum available water content of the soil (MaxAWC) usable by plants which is constrained by the rooting depth parameter and unobservable at the large-scale. In this study, vegetation products derived from the SPOT/VEGETATION satellite data available since 1999 are used to optimize the model rooting depth over rainfed croplands and permanent grasslands at 1 km x 1 km resolution. The inter-annual variability of the Leaf Area Index (LAI) is simulated over France using the Interactions between Soil, Biosphere and Atmosphere, CO2-reactive (ISBA-A-gs) generic land surface model and a two-layer force-restore (FR-2L) soil profile scheme. The leaf nitrogen concentration directly impacts the modelled value of the maximum annual LAI. In a first step this parameter is estimated for the last 15 years by using an iterative procedure that matches the maximum values of LAI modelled by ISBA-A-gs to the highest satellite-derived LAI values. The Root Mean Square Error (RMSE) is used as a cost function to be minimized. In a second step, the model rooting depth is optimized in order to reproduce the inter-annual variability resulting from the drought impact on the vegetation. The evaluation of the retrieved soil rooting depth is achieved using the French agricultural statistics of Agreste. Retrieved leaf nitrogen concentrations are compared with values from previous studies. The preliminary results show a good potential of this approach to estimate these two vegetation parameters (leaf nitrogen concentration, MaxAWC) at the large-scale over grassland areas. Besides, a marked impact of the

  6. Recent progress in satellite radio beacon studies with particular emphasis on the ATS-6 radio beacon experiment

    International Nuclear Information System (INIS)

    In May 1974 a new era in satellite radio beacon studies of the ionosphere opened with the ATS-6 Radio Beacon Experiment. The history of radio beacon studies up to that time is reviewed briefly and the particular features of the ATS-6 beacon are discussed together with the basic theory required to interpret the measurements. The main emphasis is on the ATS-6 beacon experiment but other beacon data are discussed which provide the necessary background. The diurnal and seasonal variations of the total electron content and the plasmaspheric content are presented for the U.S.A. and Europe. In winter the plasmaspheric content over the Western Hemisphere maximizes at night while in Europe and the Pacific it appears to peak near noon. This is thought to be caused by flow of plasma from the local and conjugate ionospheres. Night maxima of total electron content are found showing that they do not arise from depletions of the plasmaspheric content. The plasmaspheric content is highly sensitive to solar-terrestrial disturbance, it reaches a minimum on the third day of a storm and may take between 10 and 20 days of partial filling and emptying to recover. Travelling disturbances in U.S.A., Europe, and India show similarities of speeds but not of direction. Beacon observations of micropulsations in total content, tropospheric fluctuations and Fresnel diffraction by intense ionospheric irregularities are discussed together with radio wave scintillations and some applications of beacon radio data to communications and navigation. (orig.)

  7. Using Participatory and Service Design to Identify Emerging Needs and Perceptions of Library Services among Science and Engineering Researchers Based at a Satellite Campus

    Science.gov (United States)

    Johnson, Andrew; Kuglitsch, Rebecca; Bresnahan, Megan

    2015-01-01

    This study used participatory and service design methods to identify emerging research needs and existing perceptions of library services among science and engineering faculty, post-graduate, and graduate student researchers based at a satellite campus at the University of Colorado Boulder. These methods, and the results of the study, allowed us…

  8. Simulation of at-sensor radiance over land for proposed thermal channels of Imager payload onboard INSAT-3D satellite using MODTRAN model

    Indian Academy of Sciences (India)

    M R Pandya; D B Shah; H J Trivedi; S Panigrahy

    2011-02-01

    INSAT-3D is the new generation Indian satellite designed for improved Earth observations through two payloads – Imager and Sounder. Study was conducted with an aim of simulating satellite level signal over land in the infrared channels of the Imager payload using a radiative transfer model MODTRAN. Satellite level at-sensor radiance corresponding to all four infrared channels of INSAT-3D Imager payload is obtained using MODTRAN and sensitivity of at-sensor radiance was inferred as a function of input parameters namely, surface temperature, emissivity, view angle and atmospheric water vapour, which is helpful in understanding the signal simulation scheme needed for retrieving a very critical parameter namely, land surface temperature.

  9. Low Cost Propulsion Development for Small Satellites at the Surrey Space Centre

    OpenAIRE

    Haag, Gary; Sweeting, Martin; Richardson, Guy

    1999-01-01

    The Surrey Space Centre (SSC) has led the way in demonstrating the utility of microsatellite size spacecraft for research, humanitarian, commercial, and military applications. SSC recognises that cost effective propulsion technology for small spacecraft is an enabling technology for expanding the utility of these assets and has been actively researching this field since 1993. This paper provides an overview of propulsion research and development at the Surrey Space Centre. The paper will summ...

  10. Small Satellite Transporter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary objective is to determine whether this small satellite transporter is capable of transporting at least four 6U CubeSats is possible for a given set of...

  11. Propagation effects by roadside trees measured at UHF and L-band for mobile satellite systems

    Science.gov (United States)

    Goldhirsh, Julius; Vogel, Wolfhard J.

    1988-01-01

    Propagation field tests were performed in Central Maryland and involved a helicopter and mobile van as the source and receiving platforms, respectively. Tests were implemented at both UHF (870 MHz) and L-band (1.5 GHz) during a period in which the trees were in full blossom and contained maximum moisture. Cumulative fade distributions were determined from the data for various fixed elevation angles, side of the road driving, and road types for both worst and best case path geometries and for overall average road conditions.

  12. Evidence for a change in the dominant satellite galaxy quenching mechanism at z=1

    CERN Document Server

    Balogh, Michael L; Mok, Angus; Muzzin, Adam; van der Burg, Remco F J; Bower, Richard G; Finoguenov, Alexis; Hoekstra, Henk; Lidman, Chris; Mulchaey, John S; Noble, Allison; Parker, Laura C; Tanaka, Masayuki; Wilman, David J; Webb, Tracy; Wilson, Gillian; Yee, Howard K C

    2015-01-01

    We present an analysis of galaxies in groups and clusters at $0.810^{10.3}M_\\odot$, we find $f_{\\rm convert}\\sim 0.4$ in the groups and $\\sim 0.6$ in the clusters, similar to comparable measurements at $z=0$. This means the time between first accretion into a more massive halo and final star formation quenching is $t_p\\sim 2$ Gyr. This is substantially longer than the estimated time required for a galaxy's star formation rate to become zero once it starts to decline, suggesting there is a long delay time during which little differential evolution occurs. In contrast with local observations we find evidence that this delay timescale may depend on stellar mass, with $t_p$ approaching $t_{\\rm Hubble}$ for $M_{\\rm star}\\sim 10^{9.5}M_\\odot$. The result suggests that the delay time must not only be much shorter than it is today, but may also depend on stellar mass in a way that is not consistent with a simple evolution in proportion to the dynamical time. Instead, we find the data are well-matched by a model in wh...

  13. Dynamic magmatic processes at a continental rift caldera, observed using satellite geodesy

    Science.gov (United States)

    Lloyd, Ryan; Biggs, Juliet; Birhanu, Yelebe; Wilks, Matt; Gottsmann, Jo; Kendall, Mike; Lewi, Elias

    2016-04-01

    Large silicic calderas are a key feature of developing continental rifts, such as the Main Ethiopian Rift (MER), and are often observed to be deforming. Corbetti is one such example of a Holocene caldera in the MER that is undergoing deformation. However, the cause of the unrest, and the relationship to rift processes such as magma storage, transport and extension remain poorly understood. To investigate, we use InSAR (ascending and descending Cosmo-SkyMed data) and continuous GPS to observe the temporal and spatial evolution of sustained uplift at the Corbetti Caldera. Within the caldera, which was thought to have formed ~200 ka, there is evidence for numerous periods of resurgent volcanism in the form of plinian eruptions as well as effusive obsidian flows. How the sources of these varying styles of volcanism are reconciled at depth and in time is currently poorly constrained. Previous research has shown that pre-rift structures have a significant influence on the strain field, and hence on the magmatic and hydrothermal processes which drive it. The Cosmo-SkyMed data used in this study was specifically chosen such that each ascending image has a corresponding descending image acquired as contemporaneously as possible. This is necessary, given the rate of uplift, so as to reduce the number of assumptions when constructing time-series from multiple look directions, and when incorporating GPS data. We decompose the ascending and descending line-of-site deformation signals into vertical and east-west components and use finite source modeling to constrain the depth and geometry of the source of deformation. These results are then compared to available seismic, dynamic microgravity and magnetotelluric data to better understand this system, and how it is related to the volcanic hazard and local geothermal resources.

  14. Satellite observations

    Science.gov (United States)

    1984-05-01

    In 1982 and 1983, six scientific satellites were operated successfully. Two of them, JIKIKEN and ISS-b, performed observations of the Earth's plasma environment. HINOTORI, the solar maximum satellite, observed a number of solar flares. HAKUCHO and newly launched TENMA conducted various observations of cosmic X-ray sources. HIMAWARI-2 is a meteorological satellite but its payload includes a solar particle monitor. EXOS-C was successfully launched in February, 1983, and participants in the MAP (Middle Atmosphere Program). Following these missions, the PLANET-A project comprising two missions, MS-T5 and PLANET-A, is under preparation for the participation in the international cooperative exploration of Comet P/Halley. The third X-ray astronomy satellite ASTRO-C is currently scheduled for 1987 launch.

  15. Gravitational waves and stalled satellites from massive galaxy mergers at z < 1

    CERN Document Server

    McWilliams, Sean T; Pretorius, Frans

    2012-01-01

    We present a model for merger-driven evolution of the mass function for massive galaxies and their central supermassive black holes at late times. We discuss the current observational evidence in favor of merger-driven massive galaxy evolution during this epoch, and demonstrate that the observed evolution of the mass function can be reproduced by evolving an initial mass function under the assumption of negligible star formation. We calculate the stochastic gravitational wave signal from the resulting black-hole binary mergers in the low redshift universe (z < 1) implied by this model, and find that this population has a signal-to-noise ratio as much as ~5x larger than previous estimates for pulsar timing arrays, with an expectation value for the characteristic strain h_c(f =1 yr^{-1})=5.8 x 10^{-15} that is already in tension with observational constraints, and a 2-sigma lower limit within this model of h_c(f =1 yr^{-1})=2.0 x 10^{-15}. The strength of this signal may therefore be detectable with the data...

  16. Efficient satellite quenching at z~1 from the GEEC2 spectroscopic survey of galaxy groups

    CERN Document Server

    Mok, Angus; McGee, Sean L; Wilman, David J; Finoguenov, Alexis; Tanaka, Masayuki; Giodini, Stefania; Bower, Richard G; Connelly, Jennifer L; Hou, Annie; Mulchaey, John S; Parker, Laura C

    2013-01-01

    We present deep GMOS-S spectroscopy for 11 galaxy groups at 0.866%) for eight of the eleven groups. Using an optical-NIR colour-colour diagram, the galaxies in the sample were separated with a dust insensitive method into three categories: passive (red), star-forming (blue), and intermediate (green). The strongest environmental dependence is observed in the fraction of passive galaxies, which make up only ~20 per cent of the field in the mass range 10^{10.3}

  17. Climate Monitoring Network on Maunakea - Master Station at Summit and Lower Elevation Satellite Stations

    Science.gov (United States)

    McKenzie, M. M.; Klasner, F.; Giambelluca, T. W.; Businger, S.

    2014-12-01

    Maunakea, a dormant shield volcano on the Big Island of Hawai'i, rises 13,796 feet above sea level, making it the highest point in the Pacific Basin. From sea floor to summit, it's the tallest mountain in the world. The high elevation, low air and light pollution, as well as dry weather year round make it the best location in the world for astronomy observations. The summit is home to 13 ground based telescope facilities. Like all alpine regions, it is an extremely fragile and unique ecosystem because of the harsh conditions and short growing seasons located at high altitudes. The summit is home to several federal and/or state protected species. It supports 11 species of arthropods found nowhere else on Earth. Most noted of these is the Wēkiu bug, whose habitat has been altered by the infrastructural development on the mountain. Arthropod habitat model development has highlighted gaps in climate information, for example, lack of climate precipitation data, snow data and reliable temperature data. Furthermore, in tropical regions, precipitation is the most variable climate component due to topography and local winds. The telescopes collect weather data for the purpose of knowing when it is dry and clear for astronomical observation. Although existing weather stations associated with the telescopes meet some weather and climate monitoring needs, it cannot address the full range of issues needed due to technological limitation and site design. Precipitation does not occur often and is likely to be in the form of snow or ice. Snow cover data has not been directly recorded despite astronomical recording of other meteorological data that began in the1960s. Therefore, the need to monitor the weather and climate in a long-term and well-calibrated way is critical for management of the ecosystems on the slopes of Maunakea. Long-term weather and climate monitoring stations are the primary building blocks for research partnerships, which encourage collaboration and ultimately

  18. Beginnings of Satellite Navigation

    Directory of Open Access Journals (Sweden)

    Miljenko Solarić

    2008-05-01

    Full Text Available The first satellite navigation system called the Navy Navigation Satellite System (NNSS or TRANSIT was planned in the USA in 1958. It consisted of 5-6 artificial Earth satellites, was set in motion for the USA military in 1964, and in 1967 for civilian purposes. The frequency shift of received radio waves emitted from the satellite and caused by the Doppler effect was measured. The TRANSIT satellite speed of approaching or moving away was derived from that; the TRANSIT satellites emmited also their own coordinates. Then the ship's position was determined by an intersection of three hyperboloids, which were determined from differences of distances in three time intervals. Maintenance of this navigation system was stopped in 1996, but it is still being used in the USA Navy for exploring the ionosphere. Furthermore, results of Doppler measurements in international projects at the Hvar Observatory from 1982 and 1983. This was the first time in Croatia and the former country that the coordinates of the Hvar Observatory were determined in the unique world coordinate system WGS'72. The paper ends with a brief representation of the Tsiklon Doppler navigation system produced in the former Soviet Union, and there is a list of some of numerous produced and designed satellite navigation systems.Ključne riječi

  19. Computer simulation of satellite resonances caused by the beam-beam interaction at a crossing angle in the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    The beam-beam interaction at horizontal and vertical crossing angles in the SSC is simulated. It is shown that with the present SSC parameters several satellite resonances can be excited. The dependence on the working point, the crossing angle, the space charge parameter and the synchrotron frequency is investigated. 2 refs., 9 figs

  20. Dependence of Quenching of Central and Satellite Galaxies at z=0 and z=1 on Halo Mass and Distance from its Centre

    CERN Document Server

    Woo, Joanna; Faber, S M; Noeske, Kai; Koo, David C; Gerke, Brian F; Cooper, Michael C; Salim, Samir; Dutton, Aaron A; Newman, Jeffrey; Weiner, Benjamin J; Bundy, Kevin; Willmer, Christopher N A; Davis, Marc; Yan, Renbin

    2012-01-01

    We study the dependence of star-formation quenching on galaxy masses and environ- ment, in the SDSS (z ~ 0.1) and the AEGIS (z ~ 1). We address stellar mass M*, halo mass Mh, density over the nearest N neighbours deltaN, and distance to the halo centre D. Quenching is defined by low star formation rate rather than red colour, since one third of red galaxies are star forming. The fraction of quenched galaxies predominantly depends on Mh, while for satellites it also depends on D. For centrals the quenched fraction depends only weakly on deltaN and M* at low z, and somewhat more at z ~ 1, when the quenched fraction and Mh are lower. For satellites, M*-dependent quenching is noticeable at high D, reflecting a quenching dependence on sub-halo mass for recently captured satellites. At small D, where satellites likely fell in long ago, quenching strongly depends on Mh, and not on M*. The Mh-dependence of quenching is consistent with theoretical wisdom where virial shock heating in massive haloes shuts down accretio...

  1. Dynamics of the outer belt of energetic electrons according to the data of simultaneous measurements at the Interkosmos-19 and Kosmos-900 satellites

    International Nuclear Information System (INIS)

    Dynamics of the outer belt of energetic electrons according to the data of simultaneous measurements at the ''Interkosmos-19'' and ''Kosmos-900'' satellites under different geomagnetic activity in March, 1979, is investigated. Electron differential spectra are presented. For the first time a rapid diffusional electron wave is registered during magnetic storm in a wide energy range

  2. Using Satellite Classes to Optimise Access to and Participation in First-Year Business Management: A Case at an Open and Distance-Learning University in South Africa

    Science.gov (United States)

    Swanepoel, Elana; De Beer, Andreas; Muller, Helene

    2009-01-01

    We investigated the effect of satellite classes as a component of blended learning, to enhance student performance of the Business Management I and Management I students at an open and distance-learning university. We discuss the evolution of distance education, the interactivities promoted by open and distance learning and the concept of blended…

  3. MIPAS database: new HNO3 line parameters at 7.6 μm validated with MIPAS satellite measurements

    Directory of Open Access Journals (Sweden)

    A. Perrin

    2015-11-01

    Full Text Available Improved line positions and intensities have been generated for the 7.6 μm spectral region of nitric acid. They were obtained relying on a recent reinvestigation of the nitric acid band system at 7.6 μm and comparisons of HNO3 volume mixing ratio profiles retrieved from the "Michelson Interferometer for Passive Atmospheric Sounding" (MIPAS limb emission radiances in the 11 and 7.6 μm domains. This has led to an improved database called "MIPAS-2015". Comparisons with available laboratory information (individual line intensities, integrated absorption cross sections, and absorption cross sections show that MIPAS-2015 provides an improved description of the 7.6 μm region of nitric acid. This study should help to improve HNO3 satellite retrievals by allowing measurements to be performed simultaneously in the 11 and 7.6 μm micro-windows. In particular, it should be useful to analyze existing MIPAS and IASI spectra as well as spectra to be recorded by the forthcoming "Infrared Atmospheric Sounding Interferometer – New Generation" (IASI-NG instrument.

  4. Formation of diverse ring-satellite systems around Centaurs through tidal disruption at close encounters with giant planet

    CERN Document Server

    Hyodo, Ryuki; Genda, Hidenori; Ohtsuki, Keiji

    2016-01-01

    Centaurs are minor planets orbiting between Jupiter and Neptune that have or had crossing orbits with one or more giant planets. Recent observations and reinterpretation of previous observations have revealed the existence of ring systems around 10199 Chariklo and 2060 Chiron. However, the origin of the ring systems around such a minor planet is still an open question. Here, we propose that the tidal disruption of a differentiated object that experiences a close encounter with a giant planet could naturally form diverse ring-satellite systems around the Centaurs. During the close encounter, the icy mantle of the passing object is preferentially ripped off by the planet's tidal force and the debris is distributed mostly within the Roche limit of the largest remnant body. Assuming the existence of $20-50$wt% silicate core below the icy mantle, a disk of particles is formed when the objects pass within $0.4-0.8$ of the planet's Roche limit with the relative velocity at infinity $3-6$km s$^{-1}$ and 8h initial sp...

  5. The effects of clouds on the detection of light signals from near-ground nuclear bursts at satellite

    CERN Document Server

    Zhang Zhong Shan; Zhao Wen Li; Gao Chun Xi

    2002-01-01

    The effects of clouds on the detection of light signals from near-ground nuclear bursts are analysed quantitatively. The results indicate: the degree of the effect increasing with the growth of clouds optical thickness and satellite look angle; clouds lead really harmful effect in detectable signal intensity and precision of optical location, but degree of the effect is not great too. The enhancement of the photon optical paths by multiple scattering within the cloud will cause both a delay and a time-broadening of an impulsive light signal, and get 'lower and fat'; upward optical transmission of light through clouds is essentially the same as if there were no cloud present at all, when a point source is above the geometrical mid-plane of the cloud. And if the point source is below the mid-plane, then upward optical transmission of light through clods will be related closely to the distance of the source below the mid-plane. Given also some charts which evaluate conveniently degree of the effect due to clouds...

  6. MIPAS database: new HNO3 line parameters at 7.6  µm validated with MIPAS satellite measurements

    Science.gov (United States)

    Perrin, Agnès; Flaud, Jean-Marie; Ridolfi, Marco; Vander Auwera, Jean; Carlotti, Massimo

    2016-05-01

    Improved line positions and intensities have been generated for the 7.6 µm spectral region of nitric acid. They were obtained relying on a recent reinvestigation of the nitric acid band system at 7.6 µm and comparisons of HNO3 volume mixing ratio profiles retrieved from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) limb emission radiances in the 11 and 7.6 µm domains. This has led to an improved database called MIPAS-2015. Comparisons with available laboratory information (individual line intensities, integrated absorption cross sections, and absorption cross sections) show that MIPAS-2015 provides an improved description of the 7.6 µm region of nitric acid. This study should help to improve HNO3 satellite retrievals by allowing measurements to be performed simultaneously in the 11 and 7.6 µm micro-windows. In particular, it should be useful to analyze existing MIPAS and IASI spectra as well as spectra to be recorded by the forthcoming Infrared Atmospheric Sounding Interferometer - New Generation (IASI-NG) instrument.

  7. CHINA LAUNCHES 2 SCIENTIFIC EXPERIMENT SATELLITES

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    China placed 2 scientific experiment satellites into preset orbits atop a LM-4B launch vehicle on Sept. 9, 2004. A LM-4B blasted off at 7:14 am from Taiyuan Satellite Launch Center in Shanxi Province. Sources from the Xi'an Satellite Monitor and Control Center said that one satellite,

  8. China Launches First Ever Nano-satellite

    Institute of Scientific and Technical Information of China (English)

    LiuJie

    2004-01-01

    China successfully launched two scientific satellites, including a nano-satellite for the first time, heralding a breakthrough in space technology. A LM-2C rocket carrying Nano-Satellite I (NS-1), which weighs just 25kg and an Experiment Satellite I, weighing 204kg blasted off at 11:59 p.m. on April 18,

  9. SULFRO: a Swarm of Nano-/Micro-Satellite at SE L2 for Space Ultra-Low Frequency Radio Observatory

    OpenAIRE

    Wu, Shufan; Chen, Wen; Zhang, Yonghe; Baan, Willem; An, Tao

    2014-01-01

    The Space Ultra-Low Frequency Radio Observatory (SULFRO) concept is a constellation consisting of a micro-satellite Mothership and 12 nano-satellite Daughters each being equipped with an omni-directional antenna system that enables observing ‘all the sky all the time’ in the 1-100MHz frequency range. The constellation is in a Lissajous or Halo orbit around the second Sun-Earth Lagrange point (L2), in a passive formation flying mode. The Daughters’ three dipole antennas detect low frequency ra...

  10. Design and testing of the navigation model for three axis stabilized earth oriented satellites applied to the ATS-6 satellite image data base

    Science.gov (United States)

    Kuhlow, W. W.; Chatters, G. C.

    1977-01-01

    An earth edge methodology has been developed to account for the relative attitude changes between successive ATS-6 images which allows reasonable high quality wind sets to be produced. The method consists of measuring the displacements of the right and left infrared earth edges between successive ATS-6 images as a function of scan line; from these measurements the attitude changes can be deduced and used to correct the apparent cloud displacement measurements. The wind data sets generated from ATS-6 using the earth-edge methodology were compared with those derived from the SMS-1 images (and model) covering the same time period. Quantitative comparisons for low level trade cumuli were made at interpolated uniformly spaced grid points and for selected individual comparison clouds. Selected individual comparison clouds, the root-mean-square differences for the U and V components were 1.0 and 1.2 meters per second with a maximum wind direction difference of 15 deg.

  11. Uncertainties assessment and satellite validation over 2 years time series of multispectral and hyperspectral measurements in coastal waters at Long Island Sound Coastal Observatory

    Science.gov (United States)

    Ahmed, S. A.; Harmel, T.; Gilerson, A.; Tonizzo, A.; Hlaing, S.; Weidemann, A.; Arnone, R. A.

    2011-11-01

    Optical remote sensing of coastal waters from space is a basic requirement for monitoring global water quality and assessing anthropogenic impacts. However, this task remains highly challenging due to the optical complexity of the atmosphere-water system in coastal areas. In order to support present and future multi- and hyper-spectral calibration/validation activities for the Ocean Color Radiometry (OCR) satellites, as well as the development of new measurements and retrieval techniques for coastal waters, City College of New York along with the Naval Research Laboratory (Stennis) has established a scientifically comprehensive observation platform, the Long Island Sound Coastal Observatory (LISCO). As an integral part of the NASA AERONET - Ocean Color Network, LISCO is equipped with a multispectral SeaPRISM system. In addition, LISCO expands its observational capabilities through hyperspectral measurements with a HyperSAS system. The related multi- and hyperspectral data processing and data quality analysis are described. The three main OCR satellites, MERIS, MODIS and SeaWiFS, have been evaluated against the LISCO dataset of quality-checked measurements of SeaPRISM and HyperSAS. Adjacency effects impacting satellite data have been analyzed and found negligible. The remote sensing reflectances retrieved from satellite and in situ data are also compared. These comparisons show satisfactory correlations (R2 > 0.91 at 547nm) and consistencies (median value of the absolute percentage difference ~ 7.4%). It is also found that merging of the SeaPRISM and HyperSAS data at LISCO site significantly improve the overall data quality which makes this dataset highly suitable for satellite data validation purposes or for potential vicarious calibration activities.

  12. Integration of Satellite Imagery and Forest Inventory in Mapping Dominant and Associated Species at a Regional Scale

    Science.gov (United States)

    Zhang, Yangjian; He, Hong S.; Dijak, William D.; Yang, Jian; Shifley, Stephen R.; Palik, Brian J.

    2009-08-01

    To achieve the overall objective of restoring natural environment and sustainable resource usability, each forest management practice effect needs to be predicted using a simulation model. Previous simulation efforts were typically confined to public land. Comprehensive forest management practices entail incorporating interactions between public and private land. To make inclusion of private land into management planning feasible at the regional scale, this study uses a new method of combining Forest Inventory and Analysis (FIA) data with remotely sensed forest group data to retrieve detailed species composition and age information for the Missouri Ozark Highlands. Remote sensed forest group and land form data inferred from topography were integrated to produce distinct combinations (ecotypes). Forest types and size classes were assigned to ecotypes based on their proportions in the FIA data. Then tree species and tree age determined from FIA subplots stratified by forest type and size class were assigned to pixels for the entire study area. The resulting species composition map can improve simulation model performance in that it has spatially explicit and continuous information of dominant and associated species, and tree ages that are unavailable from either satellite imagery or forest inventory data. In addition, the resulting species map revealed that public land and private land in Ozark Highlands differ in species composition and stand size. Shortleaf pine is a co-dominant species in public land, whereas it becomes a minor species in private land. Public forest is older than private forest. Both public and private forests have deviated from historical forest condition in terms of species composition. Based on possible reasons causing the deviation discussed in this study, corresponding management avenues that can assist in restoring natural environment were recommended.

  13. Do clouds save the great barrier reef? satellite imagery elucidates the cloud-SST relationship at the local scale.

    Directory of Open Access Journals (Sweden)

    Susannah M Leahy

    Full Text Available Evidence of global climate change and rising sea surface temperatures (SSTs is now well documented in the scientific literature. With corals already living close to their thermal maxima, increases in SSTs are of great concern for the survival of coral reefs. Cloud feedback processes may have the potential to constrain SSTs, serving to enforce an "ocean thermostat" and promoting the survival of coral reefs. In this study, it was hypothesized that cloud cover can affect summer SSTs in the tropics. Detailed direct and lagged relationships between cloud cover and SST across the central Great Barrier Reef (GBR shelf were investigated using data from satellite imagery and in situ temperature and light loggers during two relatively hot summers (2005 and 2006 and two relatively cool summers (2007 and 2008. Across all study summers and shelf positions, SSTs exhibited distinct drops during periods of high cloud cover, and conversely, SST increases during periods of low cloud cover, with a three-day temporal lag between a change in cloud cover and a subsequent change in SST. Cloud cover alone was responsible for up to 32.1% of the variation in SSTs three days later. The relationship was strongest in both El Niño (2005 and La Niña (2008 study summers and at the inner-shelf position in those summers. SST effects on subsequent cloud cover were weaker and more variable among study summers, with rising SSTs explaining up to 21.6% of the increase in cloud cover three days later. This work quantifies the often observed cloud cooling effect on coral reefs. It highlights the importance of incorporating local-scale processes into bleaching forecasting models, and encourages the use of remote sensing imagery to value-add to coral bleaching field studies and to more accurately predict risks to coral reefs.

  14. Backscattering and vegetation water content response of paddy crop at C-band using RISAT-1 satellite data

    Science.gov (United States)

    Kumar, Pradeep; Prasad, Rajendra; Choudhary, Arti; Gupta, Dileep Kumar; Narayan Mishra, Varun; Srivastava, Prashant K.

    2016-04-01

    The study about the temporal behaviour of vegetation water content (VWC) is essential for monitoring the growth of a crop to improve agricultural production. In agriculture, VWC could possibly provide information that can be used to infer water stress for irrigation decisions, vegetation health conditions, aid in yield estimation and assessment of drought conditions (Penuelas et al., 1993). The VWC is an important parameter for soil moisture retrieval in microwave remote sensing (Srivastava et al., 2014). In the present study, the backscattering and VWC response of paddy crop has been investigated using medium resolution (MRS) radar imaging satellite-1 (RISAT-1) synthetic aperture radar (SAR) data in Varanasi, India. The VWC of paddy crop was measured at its five different growth stages started from 15 July 2013 to 23 October 2013 from the transplanting to maturity stage during Kharif season. The whole life of paddy crop was divided into three different major growth stages like vegetative stage, reproductive stage and ripening stage. During vegetative stage, the backscattering coefficients were found increasing behaviour until the leaves became large and dense due to major contribution of stems and the interaction between the stems and water underneath the paddy crop. During reproductive stage, the backscattering coefficients were found to increase slowly due to random scattering by vertical leaves. The increase in the size of leaves cause to cover most of the spaces between plants resulted to quench the contributions from the stems and the water underneath. At the maturity stage, the backscattering showed its decreasing behaviour. The VWC of paddy crop was found increasing up to vegetative to reproductive stages (28 September 2013) and then started decreasing during the ripening (maturity) stage. Similar behaviour was obtained between backscattering coefficients and VWC that showed an increasing trend from vegetative to reproductive stage and then lowering down at

  15. Some background about satellites

    Science.gov (United States)

    Burns, Joseph A.

    1986-01-01

    Four tables of planetary and satellite data are presented which list satellite discoveries, planetary parameters, satellite orbits, and satellite physical properties respectively. A scheme for classifying the satellites is provided and it is noted that most known moons fall into three general classes: regular satellites, collisional shards, and irregular satellites. Satellite processes are outlined with attention given to origins, dynamical and thermal evolution, surface processes, and composition and cratering. Background material is provided for each family of satellites.

  16. The orbit determination of the global positioning system satellites for geodetic applications: developments and results at the Geographical Survey Institute.

    Science.gov (United States)

    Murakami, M.

    1989-03-01

    The subject which this paper deals with is a 1-ppm level determination of the orbits of the Global Positioning System satellites for geodetic applications. A detailed model of the observables is developed. A new method of processing the phase and the range observables simultaneously to determine the GPS orbits is presented. Results are included and discussed.

  17. Two types of the winter ionospheric troughs by the Kosmos-900 satellite data at 350-550 km

    International Nuclear Information System (INIS)

    On the basis of the Kosmos-900 satellite data for the altitudes of 350-550 km the causes of strong latitude spread of ionospheric trough position in winter day conditions are studied. It is shown that there are two types of the troughs. Temporal and spatial characteristics of these troughs are described

  18. CHINA RETRIEVES 19th RECOVERABLE SATELLITE

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    China on Sept.25 recovered its 19th recoverable sci-tech experimental satellite 27 days after the satellite orbited in space. The satellite, which was launched on Aug.29 from the Jiuquan Satellite Launch Center in Gansu Province, northwest China, touched the ground at 7:55 a.m.on Sept.25. The satellite, atop a Long March 2C carrier rocket, is mainly for

  19. Satellite description

    Science.gov (United States)

    Gillett, F. C.; Clegg, P. E.; Neugebauer, G.; Langford, D.; Pouw, A.; Irace, W.; Houck, J.

    The onboard computers and their associated software, the attitude control system, and data recording and the communication links of the infrared astronomy satellite (TRAS) are discussed. The IRAS telescope system is considered in detail. Attention is directed towards the cryogenics, thermal control, optics, focal plane assembly, and electronics associated with the telescope system.

  20. Analysis of the nature of excessive cosmic radiation in the area of the Brazilian magnetic anomaly at altitudes 250-500km, from Kosmos-225 satellite data

    Science.gov (United States)

    Raychenko, L. V.

    1974-01-01

    Results are presented from a study of the region of anomalous cosmic radiation in the area of the Brazilian magnetic anomaly at the altitudes 250-500 km, using data measurements taken on the Kosmos-225 satellite (14-29 June 1968). The existence of a stable intensity anomaly discovered in the experiments on the second and third Soviet spacecraft-satellites is confirmed. The total vector of the geomagnetic field at different altitudes was compared with isoline maps. An altitude profile of the South Atlantic anomaly of radiation intensity was obtained, using data from the same instrument. The nature of the anomalies in cosmic radiation intensity over the regions of negative magnetic anomalies is discussed.

  1. Simple criteria to determine detachment point of towed satellite tags provide first evidence of return migrations of whale sharks (Rhincodon typus) at the Galapagos Islands, Ecuador

    OpenAIRE

    Hearn, Alex R; Green, Jonathan R; Espinoza, Eduardo; Peñaherrera, Cesar; Acuña, David; Klimley, A

    2013-01-01

    Abstract Background Attachment of towed, floating satellite tags to large marine organisms has provided scientists with a wealth of information on the movements of these species. These tags generally are not programmed to detach at a particular time, yet are often prone to detachment by natural means after only a few days or weeks. It is important to be able to distinguish between the tracks provided by a detached, floating tag, and one that is attach...

  2. Differences between ground Dobson, Brewer and satellite TOMS-8, GOME-WFDOAS total ozone observations at Hradec Kralove, Czech

    OpenAIRE

    Vanicek, K.

    2006-01-01

    This paper presents key results achieved on analysis of relation between high-quality simultaneous Dobson, Brewer ground and TOMS-V8, GOME-WFDOAS satellite total ozone observations for Hradec Kralove, Czech Republic. Statistically significant seasonal differences with maxima up to 4% of monthly averages have been found between Dobson and Brewer measurements in winter/spring months. These differences can influence estimation of ozone trends if combined data series are used after replacement of...

  3. Study of interstellar helium from photometric observations at 58.4 nm of the interplanetary environment from Prognoz 6 satellite

    International Nuclear Information System (INIS)

    This thesis is devoted to an ''interplanetary helium'' experiment, the aim of the work being to acquire a greater understanding of the local interstellar environment and its interaction with the solar system. Measurements made from the Prognoz 6 satellite on ultraviolet fluxes from hydrogen (121.6 nm) and neutral and ionized helium (58.4 nm and 30.4 nm respectively) were used to construct a computer model. Most of the work performed deals with comparing and interpreting the results obtained

  4. zCOSMOS 20k: Satellite galaxies are the main drivers of environmental effects in the galaxy population at least to z~0.7

    CERN Document Server

    Kovac, K; Knobel, C; Bschorr, T J; Peng, Y; Carollo, C M; Contini, T; Kneib, J -P; Fevre, O Le; Mainieri, V; Renzini, A; Scodeggio, M; Zamorani, G; Bardelli, S; Bolzonella, M; Bongiorno, A; Caputi, K; Cucciati, O; de la Torre, S; de Ravel, L; Franzetti, P; Garilli, B; Iovino, A; Kampczyk, P; Lamareille, F; Borgne, J -F Le; Brun, V Le; Maier, C; Mignoli, M; Oesch, P; Pello, R; Montero, E Perez; Presotto, V; Silverman, J; Tanaka, M; Tasca, L; Tresse, L; Vergani, D; Zucca, E; Aussel, H; Koekemoer, A M; Floch, E Le; Moresco, M; Pozzetti, L

    2013-01-01

    We explore the role of environment in the evolution of galaxies over 0.1at lower redshift, the red fraction appears to be separable in mass and environment, suggesting the action of two processes: mass and environmental quenching. The parameters describing these appear to be essentially the same at z~0.7 as locally. We explore the relation between red fraction, mass and environment also for the central and satellite galaxies separately, paying close attention to the effects of impurities in the central-satellite classification and using carefully constructed samples matched in stellar mass. There is little evidence for a dependence of the red fraction of centrals on overdensity. Satellites are consistently redder at all overdensities, a...

  5. Satellite Heart

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The usefulness of China’s own global navigation system is being extended by technological breakthroughs China has successfully developed the country’s first navigation chip that is expected to be the heart of the country’s satellite-based navigation system,according to a report released on February 21. The Navigation I chip,developed by the Shanghai Fukong Hualong Micro-system

  6. Asteroid Satellites

    Science.gov (United States)

    Merline, W. J.

    2001-11-01

    Discovery and study of small satellites of asteroids or double asteroids can yield valuable information about the intrinsic properties of asteroids themselves and about their history and evolution. Determination of the orbits of these moons can provide precise masses of the primaries, and hence reliable estimates of the fundamental property of bulk density. This reveals much about the composition and structure of the primary and will allow us to make comparisons between, for example, asteroid taxonomic type and our inventory of meteorites. The nature and prevalence of these systems will also give clues as to the collisional environment in which they formed, and have further implications for the role of collisions in shaping our solar system. A decade ago, binary asteroids were more of a theoretical curiosity. In 1993, the Galileo spacecraft allowed the first undeniable detection of an asteroid moon, with the discovery of Dactyl, a small moon of Ida. Since that time, and particularly in the last year, the number of known binaries has risen dramatically. Previously odd-shaped and lobate near-Earth asteroids, observed by radar, have given way to signatures indicating, almost certainly, that at least four NEAs are binary systems. The tell-tale lightcurves of several other NEAs reveal a high likelihood of being double. Indications are that among the NEAs, there may be a binary frequency of several tens of percent. Among the main-belt asteroids, we now know of 6 confirmed binary systems, although their overall frequency is likely to be low, perhaps a few percent. The detections have largely come about because of significant advances in adaptive optics systems on large telescopes, which can now reduce the blurring of the Earth's atmosphere to compete with the spatial resolution of space-based imaging (which itself, via HST, is now contributing valuable observations). Most of these binary systems have similarities, but there are important exceptions. Searches among other

  7. MAX-DOAS measurements and satellite validation of tropospheric NO2 and SO2 vertical column densities at a rural site of North China

    Science.gov (United States)

    Jin, Junli; Ma, Jianzhong; Lin, Weili; Zhao, Huarong; Shaiganfar, Reza; Beirle, Steffen; Wagner, Thomas

    2016-05-01

    North China (NC), namely Huabei in Chinese, is one of the most severely polluted regions in China, and the air pollution issues in this region have received a worldwide attention. We performed ground-based Multi Axis Differential Absorption Spectroscopy (MAX-DOAS) measurements at Gucheng, (39°08‧N, 115°40‧E), a rural site of North China about 110 km southwest of Beijing, from September 2008 to September 2010. The tropospheric vertical column densities (VCDs) of NO2 and SO2 were retrieved using the so-called geometric approximation. The results show that the tropospheric NO2 and SO2 VCDs over NC have nearly the same seasonal variation pattern, with the maximum in winter and minimum in summer, while their diurnal variations are different. We also compared the tropospheric NO2 and SO2 VCDs from our MAX-DOAS measurements with several products of corresponding OMI (Ozone Monitoring Instrument) satellite observations. While in summer good agreement is found, the satellite observations systematically underestimate the tropospheric NO2 in winter over the polluted rural area of NC, probably mostly due to the so called aerosol shielding effect. In contrast, for SO2 no such clear conclusion can be drawn, probably owing to the larger uncertainties from MAX-DOAS and in particular satellite retrievals. This indicates that improvements of the retrieval algorithm for MAX-DOAS and off-line corrections of satellite measurements for the tropospheric SO2 VCDs should be given more emphasis in the future.

  8. Accurate location of nuclear explosions at Azgir, Kazakhstan, from satellite images and seismic data: Implications for monitoring decoupled explosions

    Energy Technology Data Exchange (ETDEWEB)

    Sykes, L.R.; Deng, J. (Lamont-Doherty Earth Observatory, Palisades, NY (United States) Columbia Univ., New York, NY (United States)); Lyubomirskiy, P. (Lamont-Doherty Earth Observatory, Palisades, NY (United States))

    1993-09-15

    This paper reports on the accurate location of ten large tamped nuclear explosions near Azgir, Kazakhstan, conducted by the former Soviet Union in salt domes. The events are located from shot points on a SPOT satellite image, and from reconstructed seismic events recorded on seismographs scattered around the world, including recently released data from the Soviet Union. A concern behind the location of these events, is the possibility that the caverns created by these shots might be used for seismically decoupled testing of nuclear explosions in the future.

  9. Validation of three satellite-derived databases of surface solar radiation using measurements performed at 42 stations in Brazil

    Science.gov (United States)

    Thomas, Claire; Wey, Etienne; Blanc, Philippe; Wald, Lucien

    2016-06-01

    The SoDa website (www.soda-pro.com) is populated with numerous solar-related Web services. Among them, three satellite-derived irradiation databases can be manually or automatically accessed to retrieve radiation values within the geographical coverage of the Meteosat Second Generation (MSG) satellite: the two most advanced versions of the HelioClim-3 database (versions 4 and 5, respectively HC3v4 and HC3v5), and the CAMS radiation service. So far, these databases have been validated against measurements of several stations in Europe and North Africa only. As the quality of such databases depends on the geographical regions and the climates, this paper extends this validation campaign and proposes an extensive comparison on Brazil and global irradiation received on a horizontal surface. Eleven stations from the Brazilian Institute of Space Research (INPE) network offer 1 min observations, and thirty-one stations from the Instituto Nacional de Meteorologia (INMET) network offer hourly observations. The satellite-derived estimates have been compared to the corresponding observations on hourly, daily and monthly basis. The bias relative to the mean of the measurements for HC3v5 is mostly comprised between 1 and 3 %, and that for HC3v4 between 2 and 5 %. These are very satisfactory results and they demonstrate that HC3v5, and to a lesser extent HC3v4, may be used in studies of long-term changes in SSI in Brazil. The situation is not so good with CAMS radiation service for which the relative bias is mostly comprised between 5 and 10 %. For hourly irradiation, the relative RMSE ranges from 15 to 33 %. The correlation coefficient is very large for all stations and the three databases, with an average of 0.96. The three databases reproduce well the hour from hour changes in SSI. The errors show a tendency to increase with the viewing angle of the MSG satellite. They are greater in tropical areas where the relative humidity in the atmosphere is important. It is concluded

  10. Validation of three satellite-derived databases of surface solar radiation using measurements performed at 42 stations in Brazil

    Science.gov (United States)

    Thomas, Claire; Wey, Etienne; Blanc, Philippe; Wald, Lucien

    2016-06-01

    The SoDa website (www.soda-pro.com" target="_blank">www.soda-pro.com) is populated with numerous solar-related Web services. Among them, three satellite-derived irradiation databases can be manually or automatically accessed to retrieve radiation values within the geographical coverage of the Meteosat Second Generation (MSG) satellite: the two most advanced versions of the HelioClim-3 database (versions 4 and 5, respectively HC3v4 and HC3v5), and the CAMS radiation service. So far, these databases have been validated against measurements of several stations in Europe and North Africa only. As the quality of such databases depends on the geographical regions and the climates, this paper extends this validation campaign and proposes an extensive comparison on Brazil and global irradiation received on a horizontal surface. Eleven stations from the Brazilian Institute of Space Research (INPE) network offer 1 min observations, and thirty-one stations from the Instituto Nacional de Meteorologia (INMET) network offer hourly observations. The satellite-derived estimates have been compared to the corresponding observations on hourly, daily and monthly basis. The bias relative to the mean of the measurements for HC3v5 is mostly comprised between 1 and 3 %, and that for HC3v4 between 2 and 5 %. These are very satisfactory results and they demonstrate that HC3v5, and to a lesser extent HC3v4, may be used in studies of long-term changes in SSI in Brazil. The situation is not so good with CAMS radiation service for which the relative bias is mostly comprised between 5 and 10 %. For hourly irradiation, the relative RMSE ranges from 15 to 33 %. The correlation coefficient is very large for all stations and the three databases, with an average of 0.96. The three databases reproduce well the hour from hour changes in SSI. The errors show a tendency to increase with the viewing angle of the MSG satellite. They are greater in tropical areas where the relative humidity in the

  11. MIST Student Satellite

    OpenAIRE

    Gårdebäck, Agnes; Haugdahl, Vincent

    2015-01-01

    In this report, parts of the systems engineering of a spacecraft are presented. In 2014 the Royal Institute of Technology KTH initiated a new space technology and research platform, the KTH Space Centre. The first student project at KTH Space Centre was the MIST student satellite with the scope of the system design and construction of a real satellite due for launch in 2017. As part of the MIST project this bachelor thesis covers the mission analysis and parts of the system design. The system...

  12. Satellite Control Laboratory

    OpenAIRE

    Wisniewski, Rafal; Bak, Thomas

    2001-01-01

    The Satellite Laboratory at the Department of Control Engineering of Aalborg University (SatLab) is a dynamic motion facility designed for analysis and test of micro spacecraft. A unique feature of the laboratory is that it provides a completely gravity-free environment. A test spacecraft is suspended on an air bearing, and rotates freely in 3 degrees of freedom. In order to avoid any influence of the gravitational force the centre of mass of the satellite is placed in the geometric centre of...

  13. Satellite voice broadcast system study, volume 2

    Science.gov (United States)

    Horstein, M.

    1985-01-01

    This study investigates the feasibility of providing Voice of America (VOA) broadcasts by satellite relay, rather than via terrestrial relay stations. Satellite voice broadcast systems are described for three different frequency bands: HF (26 MHz), VHF (68 MHz), and L-band (1.5 GHz). The geographical areas of interest at HF and L-band include all major land masses worldwide with the exception of the U.S., Canada, and Australia. Geostationary satellite configurations are considered for both frequency bands. In addition, a system of subsynchronous, circular satellites with an orbit period of 8 hours is developed for the HF band. VHF broadcasts, which are confined to the Soviet Union, are provied by a system of Molniya satellites. Satellites intended for HF or VHF broadcastinbg are extremely large and heavy. Satellite designs presented here are limited in size and weight to the capability of the STS/Centaur launch vehicle combination. Even so, at HF it would take 47 geostationary satellites or 20 satellites in 8-hour orbits to fully satisfy the voice-channel requirements of the broadcast schedule provided by VOA. On the other hand, three Molniya satellites suffice for the geographically restricted schedule at VHF. At L-band, only four geostationary satellites are needed to meet the requirements of the complete broadcast schedule. Moreover, these satellites are comparable in size and weight to current satellites designed for direct broadcast of video program material.

  14. Observations of artificial satellites

    Directory of Open Access Journals (Sweden)

    A. MAMMANO

    1964-06-01

    Full Text Available The following publication gives the results of photographic
    observations of artificial satellites made at Asiago during the second
    and third year of this programme. The fixed camera technique and that
    with moving film (the latter still in its experimental stage have been used.

  15. Gigabit Satellite Network for NASA's Advanced Communication Technology Satellite (ACTS)

    Science.gov (United States)

    Hoder, Douglas; Bergamo, Marcos

    1996-01-01

    The advanced communication technology satellite (ACTS) gigabit satellite network provides long-haul point-to-point and point-to-multipoint full-duplex SONET services over NASA's ACTS. at rates up to 622 Mbit/s (SONET OC-12), with signal quality comparable to that obtained with terrestrial fiber networks. Data multiplexing over the satellite is accomplished using time-division multiple access (TDMA) techniques coordinated with the switching and beam hopping facilities provided by ACTS. Transmissions through the satellite are protected with Reed-Solomon encoding. providing virtually error-free transmission under most weather conditions. Unique to the system are a TDMA frame structure and satellite synchronization mechanism that allow: (a) very efficient utilization of the satellite capacity: (b) over-the-satellite dosed-loop synchronization of the network in configurations with up to 64 ground stations: and (c) ground station initial acquisition without collisions with existing signalling or data traffic. The user interfaces are compatible with SONET standards, performing the function of conventional SONET multiplexers and. as such. can be: readily integrated with standard SONET fiber-based terrestrial networks. Management of the network is based upon the simple network management protocol (SNMP). and includes an over-the-satellite signalling network and backup terrestrial internet (IP-based) connectivity. A description of the ground stations is also included.

  16. Total ozone and solar ultraviolet radiation, as derived from satellite and ground-based instrumentation at Dundee, Scotland

    International Nuclear Information System (INIS)

    Daily ozone measurements from satellite sensor data (Total Ozone Mapping Spectrometer-TOMS) over Dundee, Scotland (56.5° N, 3° W) during 1986±1992 with daily broad-band measurements of solar ultraviolet (UV) radiation reaching the ground deduced from ground-based instrumentation were used to investigate their correlation. The erythemally active UV radiation showed an increase of 35% during 1986±1992 while the total ozone amount showed a decrease of 10% during the same period. Furthermore, the ratio of the increase of UV radiation to the decrease in ozone concentration was maximum in July, showing that a small percentage decrease in total ozone during summer leads to a large percentage increase in solar UV radiation reaching the ground. (author)

  17. Sky alert! when satellites fail

    CERN Document Server

    Johnson, Les

    2013-01-01

    How much do we depend on space satellites? Defense, travel, agriculture, weather forecasting, mobile phones and broadband, commerce...the list seems endless. But what would our live be like if the unimaginable happened and, by accident or design, those space assets disappeared? Sky Alert! explores what our world would be like, looking in turn at areas where the loss could have catastrophic effects. The book - demonstrates our dependence on space technology and satellites; - outlines the effect on our economy, defense, and daily lives if satellites and orbiting spacecraft were destroyed; - illustrates the danger of dead satellites, spent rocket stages, and space debris colliding with a functioning satellites; - demonstrates the threat of dramatically increased radiation levels associated with geomagnetic storms; - introduces space as a potential area of conflict between nations.

  18. China Launches Two Natural Disaster Monitoring Satellites

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ China launched two satellites, HJ-1A and HJ-1B, to monitor the environment and natural disasters at 11:25am on September 6 (Beijing time) from the Taiyuan Satellite Launch Center in Shanxi Province. The two satellites are expected to improve the country's ability in the rapid monitoring of environmental changes and reducing calamities.

  19. Six years of mesospheric CO estimated from ground-based frequency-switched microwave radiometry at 57° N compared with satellite instruments

    Directory of Open Access Journals (Sweden)

    P. Forkman

    2012-06-01

    Full Text Available Measurements of mesospheric carbon monoxide, CO, provide important information about the dynamics in the mesosphere region since CO has a long lifetime at these altitudes. Ground-based measurements of mesospheric CO made at the Onsala Space Observatory, OSO, (57° N, 12° E are presented. The dataset covers the period 2002–2008 and is hence uniquely long. The simple and stable 115 GHz frequency-switched radiometer, calibration method, retrieval procedure and error characterization are described. A comparison between our measurements and co-located CO measurements from the satellite sensors ACE-FTS on Scisat (v2.2, MLS on Aura (v3-3, MIPAS on Envisat (V3O_CO_12 + 13 and V4O_CO_200 and SMR on Odin (v225 and v021 is done. Our instrument, OSO, and the four satellite instruments show the same general variation of the vertical distribution of mesospheric CO in both the annual cycle and in shorter time period events with high CO mixing ratios during winter and very low amounts during summer in the observed 55–85 km altitude range. During 2004–2008 the agreement of the OSO instrument and the satellite sensors ACE-FTS, MLS and MIPAS(200 is good in the altitude range 55–70 km. Above 70 km OSO show up to 25% higher CO column values compared to both ACE and MLS. For the time period 2002–2003 CO from MIPAS(12 + 13 is up to 60% lower than OSO between 55 and 70 km. Mesospheric CO from the two versions of SMR deviates up to ±65% when compared to OSO, but the analysis is based on only a few co-locations.

  20. Internetworking with satellite constellations

    OpenAIRE

    Wood, L.

    2001-01-01

    Here, we examine networking and internetworking issues affecting satellite networking in complex satellite constellation networks, and determine what is needed in order to support services based on the TCP/IP suite well in satellite constellations.

  1. Perception via satellite

    Science.gov (United States)

    Robinove, Charles J.

    1970-01-01

    The earth resources observation satellite (EROS) program in the Department of the Interior is intended to gather and use data from satellites and aircraft on natural and man-made features of the earth's surface. Earth resources technology satellite will provide the EROS program with data for use in dealing with natural resource problems and understanding the interaction between man and the environment. Applications will include studies of tectonic features, hydrologic problems, location of fish schools, determination of the conditions of range land, mapping land use for urban planning, studies of erosion and change along coastlines and major streams, and inventories of land use and land forms. In addition, the ERTS data may be used for detecting forest and crop diseases and inventorying crops. The ERTS satellite will be in a polar, sun-synchronous orbit so that each point on the earth's surface will be sensed every 17 to 20 days, at the same time of day. Multispectral photography is being investigated for its usefulness in hydrology. Side-looking airborne radar has not yet been widely used in hydrologic studies, although it is an excellent tool for all-weather, day or night, coverage of large areas. Other techniques being investigated include passive microwave radiometry, ultraviolet and visible stimulated luminescence, and absorption spectroscopy.

  2. Satellite observations of Lava Lake activity at Nyiragongo volcano, ex-Zaire, during the Rwandan refugee crisis.

    Science.gov (United States)

    Oppenheimer, C

    1998-09-01

    In June 1994 the summit crater of Nyiragongo volcano, located in the Great Lakes region of central Africa, began to fill with new lava, ending nearly 12 years of quiescence. An earlier eruption of the volcano in 1977 had culminated in the catastrophic draining of a lava lake through fissures in the crater wall, feeding highly mobile lava flows which reached the outskirts of Goma and killed more than 70 people. By July 1994, as many as 20,000 Hutu refugees were arriving in Goma every hour, only 18 km south from the summit of Nyiragongo. The exodus brought more than one million people to the camps near the town raising fears of a repeat of the 1977 eruption. This paper examines the role that satellite remote sensing could have played in surveillance of the volcano during this time, and demonstrates the potential for monitoring this and other volcanoes in the future. Images recorded by the spaceborne Advanced Very High Resolution Radiometer (AVHRR)--freely available over the Internet--provide semi-quantitative information on the activity of the volcano. The aim of this paper is to promote the wider use of readily available technologies. PMID:9753815

  3. Inversion of suspended sediment concentration at the Hangzhou Bay based on the high-resolution satellite HJ-1A/B imagery

    Science.gov (United States)

    Meng, Qinghui; Mao, Zhihua; Huang, Haiqing; Shen, Yuzhang

    2013-09-01

    HJ-1A/B were two small satellite constellations, that were launched for the environment and disaster monitoring and forecasting on September 6th, 2008. Based on the advantages of high temporal and spacial resolution of the HJ CCD data, this paper aims at evaluate four inversion algorithms of suspended sediments concentration by the remote sensing reflectance in the Hangzhou Bay. First, the atmospheric correction of HJ-1 A/B CCD imagery was carried out using fast line-of-sight atmospheric analysis of spectral hypercubes (FLAASH) model, in which aerosol optical depth was retrieved from synchronous Terra/MODIS data. Then, four classical band ratio algorithms were evaluated. Results show that He's GOCI model was better than others with 12.75% relative error. At last, we compare the discrepancy between He's GOCI algorithm and any other three model, results indicate that the other three empirical algorithms performance not very good because of the difference come from different satellite data, various study area, different research season, distinct correction result. This research has an important practical significance to improving the SSC inversion in the HZB.

  4. Attitude control of a nano satellite

    OpenAIRE

    2010-01-01

    The CubeSTAR satellite is a student satellite project at the University of Oslo. The main mission is to measure the turbulence in the electron plasma using a novel Multi Needle Langmuir Probe system developed at the University of Oslo. In order to get correct measurements, it’s important that the probes are located in the front of the satellite in the orbit velocity direction. In this thesis, the attitude control problem of the CubeSTAR nano-satellite is the main topic. The satellite wil...

  5. The specific features of gold ore provinces of the south of Siberia in a magnetic field at ground height and heights of flight of satellite Champ.

    Science.gov (United States)

    Litvinova, Tamara; Petrova, Alevtina

    2010-05-01

    The specific features of gold ore provinces of the south of Siberia in a magnetic field at ground height and heights of flight of satellite Champ. T.Litvinova -All-Russian Geological Research Institute (VSEGEI) A. Petrova - St. Petersburg, SPbF IZMIRAN, Russian Academy of Sciences, St. Petersburg For allocation of specific features known gold ore objects (Olimpiadninskoje, Suchoi Log, etc.) is executed the morphological analysis of the magnetic field received on materials of aeromagnetic data and satellite measurements at heights of 100 and 400 km. On the ground data on a map of magnetic anomalies of Russia of scale 1:2 500000 of 50 km on the extended structures crossing known gold ore deposits and promising ore units have been constructed geomagnetic and densitys sections up to depth. On geomagnetic and densitys sections to known large gold ore to deposits are dated deep synvertical the permeable zones described by a synlenticular -layered structure. Extended horizons of not magnetic formations are located on depths about 10, 12, 15-18, 30 and 40 km. On deep densitys sections reference sites ¬ the Suchoi Log, Olimpiadninskoje and Vodorazdelnoje ¬ is characterized by zones of inversion of density. Areas of the loosened breeds are dated to synvertical to deep zones of hydrothermal and fluid study of breeds inside which the loosened lenses in intervals of depths from 2 up to 5 km are formed, 8-13 km, 18-20 and 25-30 km of 35-40 km within the limits of the bottom bark. The analysis of a magnetic field has shown, that gold mineralization in researched region is dated for zones of long-living regional explosive infringements, to permeable terrigenous to thicknesses of depressions, to adjournment depression structures in units of crossing of tectonofluid zones of diagonal orientation. Terrigenous adjournment depression structures are shown on a geomagnetic section as the powerful deflections filled with low-magnetic thicknesses. These deflections are dated to

  6. Satellite-based remote sensing of running water habitats at large riverscape scales: Tools to analyze habitat heterogeneity for river ecosystem management

    Science.gov (United States)

    Hugue, F.; Lapointe, M.; Eaton, B. C.; Lepoutre, A.

    2016-01-01

    We illustrate an approach to quantify patterns in hydraulic habitat composition and local heterogeneity applicable at low cost over very large river extents, with selectable reach window scales. Ongoing developments in remote sensing and geographical information science massively improve efficiencies in analyzing earth surface features. With the development of new satellite sensors and drone platforms and with the lowered cost of high resolution multispectral imagery, fluvial geomorphology is experiencing a revolution in mapping streams at high resolution. Exploiting the power of aerial or satellite imagery is particularly useful in a riverscape research framework (Fausch et al., 2002), where high resolution sampling of fluvial features and very large coverage extents are needed. This study presents a satellite remote sensing method that requires very limited field calibration data to estimate over various scales ranging from 1 m to many tens or river kilometers (i) spatial composition metrics for key hydraulic mesohabitat types and (ii) reach-scale wetted habitat heterogeneity indices such as the hydromorphological index of diversity (HMID). When the purpose is hydraulic habitat characterization applied over long river networks, the proposed method (although less accurate) is much less computationally expensive and less data demanding than two dimensional computational fluid dynamics (CFD). Here, we illustrate the tools based on a Worldview 2 satellite image of the Kiamika River, near Mont Laurier, Quebec, Canada, specifically over a 17-km river reach below the Kiamika dam. In the first step, a high resolution water depth (D) map is produced from a spectral band ratio (calculated from the multispectral image), calibrated with limited field measurements. Next, based only on known river discharge and estimated cross section depths at time of image capture, empirical-based pseudo-2D hydraulic rules are used to rapidly generate a two-dimensional map of flow velocity

  7. Virtual Satellite Integration Environment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An integrated environment for rapid design studies of small satellite missions will be developed. This environment will be designed to streamline processes at the...

  8. Satellite radar data reveal short-term pre-explosive displacements and a complex conduit system at Volcán de Colima, Mexico

    Directory of Open Access Journals (Sweden)

    Jacqueline T. Salzer

    2014-06-01

    Full Text Available The geometry of the volcanic conduit is a main parameter controlling the dynamics and the style of volcanic eruptions and their precursors, but also one of the main unknowns. Pre-eruptive signals that originate in the upper conduit region include seismicity and deformation of different types and scales. However, the locality of the source of these signals and thus the conduit geometry often remain unconstrained at steep sloped and explosive volcanoes due to the sparse instrumental coverage in the summit region and difficult access. Here we infer the shallow conduit system geometry of Volcán de Colima, Mexico, based on ground displacements detected in high resolution satellite radar data up to seven hours prior to an explosion in January 2013. We use Boundary Element Method modeling to reproduce the data synthetically and constrain the parameters of the deformation source, in combination with an analysis of photographs of the summit. We favour a two-source model, indicative of distinct regions of pressurization at very shallow levels. The location of the upper pressurization source coincides with that of post-explosive extrusion; we therefore attribute the displacements to transient (elastic pre-explosive pressurization of the conduit system. Our results highlight the geometrical complexity of shallow conduit systems at explosive volcanoes and its effect on the distribution of pre-eruptive deformation signals. An apparent absence of such signals at many explosive volcanoes may relate to its small temporal and spatial extent, partly controlled by upper conduit structures. Modern satellite radar instruments allow observations at high spatial and temporal resolution that may be the key for detecting and improving our understanding of the generation of precursors at explosive volcanoes.

  9. Satellite radar data reveal short-term pre-explosive displacements and a complex conduit system at Volcán de Colima, Mexico

    Science.gov (United States)

    Salzer, Jacqueline; Nikkhoo, Mehdi; Walter, Thomas; Sudhaus, Henriette; Reyes-Dávila, Gabriel; Bretón, Mauricio; Arambula, Raúl

    2014-06-01

    The geometry of the volcanic conduit is a main parameter controlling the dynamics and the style of volcanic eruptions and their precursors, but also one of the main unknowns. Pre-eruptive signals that originate in the upper conduit region include seismicity and deformation of different types and scales. However, the locality of the source of these signals and thus the conduit geometry often remain unconstrained at steep sloped and explosive volcanoes due to the sparse instrumental coverage in the summit region and difficult access. Here we infer the shallow conduit system geometry of Volcán de Colima, Mexico, based on ground displacements detected in high resolution satellite radar data up to seven hours prior to an explosion in January 2013. We use Boundary Element Method modeling to reproduce the data synthetically and constrain the parameters of the deformation source, in combination with an analysis of photographs of the summit. We favour a two-source model, indicative of distinct regions of pressurization at very shallow levels. The location of the upper pressurization source coincides with that of post-explosive extrusion; we therefore attribute the displacements to transient (elastic) pre-explosive pressurization of the conduit system. Our results highlight the geometrical complexity of shallow conduit systems at explosive volcanoes and its effect on the distribution of pre-eruptive deformation signals. An apparent absence of such signals at many explosive volcanoes may relate to its small temporal and spatial extent, partly controlled by upper conduit structures. Modern satellite radar instruments allow observations at high spatial and temporal resolution that may be the key for detecting and improving our understanding of the generation of precursors at explosive volcanoes.

  10. Attenuation of electromagnetic waves at the frequency ~1.7 kHz in the upper ionosphere observed by the DEMETER satellite in the vicinity of earthquakes

    Directory of Open Access Journals (Sweden)

    Michel Parrot

    2012-04-01

    Full Text Available

    The DEMETER satellite was the first satellite specifically dedicated to the recording of electromagnetic phenomena connected with seismic activity. Almost 6.5 years of measurements provide good opportunities to analyze a unique dataset with global Earth coverage. We present the results of a statistical study of the intensity of very low frequency electromagnetic waves recorded in the upper ionosphere. Robust two-step data processing has been used. The expected unperturbed distribution of the power spectral densities of electromagnetic emissions was calculated first. Then, the power spectral densities measured in the vicinities of earthquakes are compared with the unperturbed distribution and are examined for the presence of uncommon effects related to seismic activity. The statistical significance of the observed effects is evaluated. We confirm the previously reported results of a very small, but statistically significant, decrease in wave intensities a few hours before times of main shocks using this much larger dataset. The wave intensity decrease at a frequency of about 1.7 kHz is observed only during the night and only for shallow earthquakes. This can potentially be explained by increases in the cut-off frequency of the Earth ionosphere waveguide caused by imminent earthquakes.

     

  11. Development of a Model for Estimation of Acacia Senegal Tree Biomass Using Allometry and Aster Satellite Imagery at Ennuhud, West Kordofan State, Sudan

    Science.gov (United States)

    Elamin, Hatim; Elnour Adam, Hassan; Csaplovics, Elmar

    The current paper deals with the development of a biomass model for Acacia senegal trees by applying allometric equations for ground data combined with ASTER satellite data sets. The current study is conducted around Ennuhud area which is located in Ennuhud locality in West Kordofan State, Sudan. Primary data are obtained by application of random sampling around Ennuhud town where Acacia senegal tree species is abundant. Ten sample units are taken. Each unit contains five sample plots (15x15 m), one in the centre and the others in the four directions 100 m away from the centre forming a total of 50 sample plots. The tree coordinates, diameter/diameters (diameter at breast height ≥ 5 cm), height and crown diameters will be recorded. Sensor data were acquired from ASTER remote sensing satellite (29.03.2007 & 26.01.2011) and integrated with the in-situ data. The expected findings allow for the calculation of the mean diameter of trees. The tree above ground biomass (TAGB), tree below ground biomass (TBGB) and the tree total biomass (TTB) of Acacia senegal are computed consequently. Remotely sensed data are integrated with the ground data for creating the data base for calculating the correlation of the relationship between the two methods of data collection. The application of allometric equations is useful as a non-destructive method for biomass estimation by the application of remote sensing is recommended for biomass modelling over large areas. Keywords: Biomass model, Acacia senegal tree, remote sensing, Ennuhud, North Kordofan

  12. Iodine Satellite

    Science.gov (United States)

    Kamhawi, Hani; Dankanich, John; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Iodine Satellite (iSat) spacecraft will be the first CubeSat to demonstrate high change in velocity from a primary propulsion system by using Hall thruster technology and iodine as a propellant. The mission will demonstrate CubeSat maneuverability, including plane change, altitude change and change in its closest approach to Earth to ensure atmospheric reentry in less than 90 days. The mission is planned for launch in fall 2017. Hall thruster technology is a type of electric propulsion. Electric propulsion uses electricity, typically from solar panels, to accelerate the propellant. Electric propulsion can accelerate propellant to 10 times higher velocities than traditional chemical propulsion systems, which significantly increases fuel efficiency. To enable the success of the propulsion subsystem, iSat will also demonstrate power management and thermal control capabilities well beyond the current state-of-the-art for spacecraft of its size. This technology is a viable primary propulsion system that can be used on small satellites ranging from about 22 pounds (10 kilograms) to more than 1,000 pounds (450 kilograms). iSat's fuel efficiency is ten times greater and its propulsion per volume is 100 times greater than current cold-gas systems and three times better than the same system operating on xenon. iSat's iodine propulsion system consists of a 200 watt (W) Hall thruster, a cathode, a tank to store solid iodine, a power processing unit (PPU) and the feed system to supply the iodine. This propulsion system is based on a 200 W Hall thruster developed by Busek Co. Inc., which was previously flown using xenon as the propellant. Several improvements have been made to the original system to include a compact PPU, targeting greater than 80 percent reduction in mass and volume of conventional PPU designs. The cathode technology is planned to enable heaterless cathode conditioning, significantly increasing total system efficiency. The feed system has been designed to

  13. Small Satellites Big Business?

    OpenAIRE

    A. Marchetto, Carl

    2008-01-01

    Biography-Carl A. Marchetto is Senior Vice President and President, ATK Space Systems for Alliant Tech¬systems (ATK). Prior to joining ATK in January 2008, Carl was Executive Vice President and General Manager Space Sys¬tems group for Orbital Sciences, where he led an organization designing, building, and servicing communication, space research and earth imaging satellites for commercial, gov¬ernment and academic customers. Carl’s previous experience includes a decade at Eastman Kodak that sa...

  14. Understanding Droughts and their Agricultural Impact in North America at the Basin Scale through the Development of Satellite Based Drought Indicators

    Science.gov (United States)

    Munoz Hernandez, A.; Lawford, R. G.

    2012-12-01

    Drought is a major constraint severely affecting numerous agricultural regions in North America. Decision makers need timely information on the existence of a drought as well as its intensity, frequency, likely duration, and economic and social effects in order to implement adaptation strategies and minimize its impacts. Countries like Mexico and Canada face a challenge associated with the lack of consistent and reliable in-situ data that allows the computation of drought indicators at resolutions that effectively supports decision makers at the watershed scale. This study focuses on (1) the development of near-real time drought indicators at high resolution utilizing various satellite data for use in improving adaptation plans and mitigation actions at the basin level; (2) the quantification of the relationships between current and historical droughts and their agricultural impacts by evaluating thresholds for drought impacts; and (3) the assessment of the effects of existing water policies, economic subsidies, and infrastructure that affect the vulnerability of a particular region to the economic impacts of a drought. A pilot study area located in Northwest Mexico and known as the Rio Yaqui Basin was selected for this study in order to make comparisons between the satellite based indicators derived from currently available satellite products to provide an assessment of the quality of the products generated. The Rio Yaqui Basin, also referred to as the "bread basket" of Mexico, is situated in an arid to semi-arid region where highly sophisticated irrigation systems have been implemented to support extensive agriculture. Although for many years the irrigation systems acted as a safety net for the farmers, recent droughts have significantly impacted agricultural output, affected thousands of people, and increase the dependence on groundwater. The drought indices generated are used in conjunction with a decision-support model to provide information on drought impacts

  15. Examining the quasibiennial oscillation of total ozone and ozone concentrations at separate stratospheric levels according to data of TOMS satellite instrumentation

    Science.gov (United States)

    Bazhenov, O. E.; Makeev, A. P.

    2014-11-01

    The pattern of the quasibiennial oscillation of total ozone over northern territories of Russia (1996-2013) and ozone concentrations at separate stratospheric levels over Arctic sites (2005-2013) are analyzed according to data of TOMS satellite instrumentation. It is shown that the entire period of 1996-2013 can be divided into three intervals: before 2002- 2004, interval between 2002-2004 and 2008-2010, and period after 2008-2010. The quasibiennial oscillation is quite clearly manifested in the first and third periods and is distorted in the second period. The time series of the mixing ratio, composed for separate altitudinal levels, exhibit quasibiennial oscillation, which takes shape at heights of ~30 km and weakens in overlying regions.

  16. Observation of the two-hole satellite in Cr and Fe metal by resonant photoemission at the 2p absorption energy

    International Nuclear Information System (INIS)

    Valence-band spectra of Cr and Fe metal were measured with photon energies around their respective 2p energies. An Auger signal is found to be superimposed on the valence-band photoemission signal for photon energies at and above the 2p absorption energy, but also for excitation energies down to ∼4 eV below the 2p absorption energy. This is the radiationless resonance Raman (resonant Raman Auger) regime and gives rise to a signal that is equivalent, in terms of the final state, to the 6 eV satellite in Ni with energies at 3.5 eV below EF in Cr and 3.2 eV below EF in Fe. (c) 2000 The American Physical Society

  17. Satellite Control Laboratory

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Bak, Thomas

    2001-01-01

    The Satellite Laboratory at the Department of Control Engineering of Aalborg University (SatLab) is a dynamic motion facility designed for analysis and test of micro spacecraft. A unique feature of the laboratory is that it provides a completely gravity-free environment. A test spacecraft......-axis magnetometer, three piezoelectric gyros, and four reaction wheels in a tetrahedron configuration. The operation of the spacecraft is fully autonomous. The data flow between the transducers and the onboard computer placed physically outside the satellite is provided by a radio link. The purpose...... of the laboratory is to conduct dynamic tests of the control and attitude determination algorithms during nominal operation and in abnormal conditions. Further it is intended to use SatLab for validation of various algorithms for fault detection, accommodation and supervisory control. Different mission objectives...

  18. Stratospheric ozone interannual variability (1995–2011 as observed by lidar and satellite at Mauna Loa Observatory, HI and Table Mountain Facility, CA

    Directory of Open Access Journals (Sweden)

    G. Kirgis

    2013-05-01

    Full Text Available The Jet Propulsion Laboratory (JPL lidars, at the Mauna Loa Observatory, Hawaii (MLO, 19.5° N, 155.6° W and the JPL Table Mountain Facility (TMF, California, 34.5° N, 117.7° W, have been measuring vertical profiles of stratospheric ozone routinely since the early 1990's and late-1980s respectively. Interannual variability of ozone above these two sites was investigated using a multi-linear regression analysis on the deseasonalised monthly mean lidar and satellite time-series at 1 km intervals between 20 and 45 km from January 1995 to April 2011, a period of low volcanic aerosol loading. Explanatory variables representing the 11 yr solar cycle, the El Niño Southern Oscillation, the Quasi-Biennial Oscillation, the Eliassen-Palm flux, and horizontal and vertical transport were used. A new proxy, the mid-latitude Ozone Depleting Gas Index, which shows a decrease with time as an outcome of the Montreal Protocol, was introduced and compared to the more commonly used linear trend method. The analysis also compares the lidar time-series and a merged time-series obtained from the space-borne Stratospheric Aerosol and Gas Experiment II, Halogen Occultation Experiment, and Aura-Microwave Limb Sounder instruments. The results from both lidar and satellite measurements are consistent with recent model simulations which propose changes in tropical upwelling. Additionally, at TMF the Ozone Depleting Gas Index explains as much variance as the Quasi-Biennial Oscillation in the upper stratosphere. Over the past 17 yr a diminishing downward trend in ozone was observed before 2000 and a net increase, and sign of ozone recovery, is observed after 2005. Our results which include dynamical proxies suggest possible coupling between horizontal transport and the 11 yr solar cycle response, although a dataset spanning a period longer than one solar cycle is needed to confirm this result.

  19. NEGESAR: NEw GEneration Satellite Architecture

    OpenAIRE

    Boer, Fabrizio; Borghesi, Giancarlo

    2000-01-01

    Reduce to the minimum any analog-based system on board the next generation satellites and replace them with the more performing and reliable digital platforms shall be the challenge for all the Space Business World in the next decade. The micro-size NEGESAT Company (2 experienced Space Engineers) has launched, since early 99, the project called NEGESAR (NEw GEneration Satellite ARchitecture) aiming at this objective: to give the Space User a way to launch active and complex Electronic Equipme...

  20. Satellite data compression

    CERN Document Server

    Huang, Bormin

    2011-01-01

    Satellite Data Compression covers recent progress in compression techniques for multispectral, hyperspectral and ultra spectral data. A survey of recent advances in the fields of satellite communications, remote sensing and geographical information systems is included. Satellite Data Compression, contributed by leaders in this field, is the first book available on satellite data compression. It covers onboard compression methodology and hardware developments in several space agencies. Case studies are presented on recent advances in satellite data compression techniques via various prediction-

  1. The escape of natural satellites from Mercury and Venus

    International Nuclear Information System (INIS)

    It is suggested that the slow rotations of Mercury and Venus may be connected with the absence of natural satellites around them. If Mercury or Venus possessed a satellite at the time of formation, the tidal evolution would have caused the satellite to recede. At a sufficiently large distance from the planet, the Sun's gravitational influence makes the satellite orbit unstable. The natural satellites of Mercury and Venus might have escaped as a consequence of this instability. (Auth.)

  2. Retrieval of river discharge solely from satellite imagery and at-many-stations hydraulic geometry: Sensitivity to river form and optimization parameters

    Science.gov (United States)

    Gleason, Colin J.; Smith, Laurence C.; Lee, Jinny

    2014-12-01

    Knowledge of river discharge is critically important for water resource management, climate modeling, and improved understanding of the global water cycle, yet discharge is poorly known in much of the world. Remote sensing holds promise to mitigate this gap, yet current approaches for quantitative retrievals of river discharge require in situ calibration or a priori knowledge of river hydraulics, limiting their utility in unmonitored regions. Recently, Gleason and Smith (2014) demonstrated discharge retrievals within 20-30% of in situ observations solely from Landsat TM satellite images through discovery of a river-specific geomorphic scaling phenomenon termed at-many-stations hydraulic geometry (AMHG). This paper advances the AMHG discharge retrieval approach via additional parameter optimizations and validation on 34 gauged rivers spanning a diverse range of geomorphic and climatic settings. Sensitivity experiments reveal that discharge retrieval accuracy varies with river morphology, reach averaging procedure, and optimization parameters. Quality of remotely sensed river flow widths is also important. Recommended best practices include a proposed global parameter set for use when a priori information is unavailable. Using this global parameterization, AMHG discharge retrievals are successful for most investigated river morphologies (median RRMSE 33% of in situ gauge observations), except braided rivers (median RRMSE 74%), rivers having low at-a-station hydraulic geometry b exponents (reach-averaged b rivers having extreme discharge variability (median RRMSE > 1000%). Excluding such environments, 26-41% RRMSE agreement between AMHG discharge retrievals and in situ gauge observations suggests AMHG can meaningfully address global discharge knowledge gaps solely from repeat satellite imagery.

  3. Leucocytes, cytokines and satellite cells

    DEFF Research Database (Denmark)

    Paulsen, Gøran; Mikkelsen, Ulla Ramer; Raastad, Truls;

    2012-01-01

    -damaging exercise', primarily eccentric exercise. We review the evidence for the notion that the degree of muscle damage is related to the magnitude of the cytokine response. In the third and final section, we look at the satellite cell response to a single bout of eccentric exercise, as well as the role of the...... variation in individual responses to a given exercise should, however be expected. The link between cytokine and satellite cell responses and exercise-induced muscle damage is not so clear The systemic cytokine response may be linked more closely to the metabolic demands of exercise rather than muscle...... damage. With the exception of IL-6, the sources of systemic cytokines following exercise remain unclear The satellite cell response to severe muscle damage is related to regeneration, whereas the biological significance of satellite cell proliferation after mild damage or non-damaging exercise remains...

  4. Xichang Satellite Launch Center

    Institute of Scientific and Technical Information of China (English)

    LiuJie

    2004-01-01

    Xichang Satellite Launch Center(XSLC) is mainly for geosynchronous orbit launches. The main purpose of XSLC is to launch spacecraft, such as broadcasting,communications and meteorological satellites, into geo-stationary orbit.Most of the commercial satellite launches of Long March vehicles have been from Xichang Satellite Launch Center. With 20 years' development,XSLC can launch 5 kinds of launch vehicles and send satellites into geostationary orbit and polar orbit. In the future, moon exploration satellites will also be launched from XSLC.

  5. China's satellite communications discussed

    Science.gov (United States)

    Ruhou, Z.

    1986-04-01

    In 1972, China began to enter the age of satellite comunications, and it was realized that satellites could play a large role in television transmission in China. The experimental broadcasting of satellite television programs was begun in 1978, and satisfactory results were obtained. The success of the television transmission demonstration has led to important decisions regarding development of a domestic satellite communications system. Before specialized communications satellites are launched, the decision was made to lease an international communications satellite transmitter. The responsibility of the ground stations were discussed.

  6. Rain and cloud effects on a satellite dual-frequency radar altimeter system operating at 13.5 and 35 GHz

    Science.gov (United States)

    Walsh, E. J.; Monaldo, F. M.; Goldhirsh, J.

    1984-01-01

    The influence of clouds and rain on the return waveform signatures from satellite borne radar altimeters operating at 13.5 and 35 GHz are examined. It is specifically demonstrated that spatial nonuniformity in the cloud liquid water content or variations of the rain rate may result in significant distortions of the altimeter signature. The distorted signal is produced as a result of nonuniform attenuation occurring at the different range bins associated with the reflected signal. Determination of the mean sea height by employing tracking algorithms on these distorted echoes may result in gross errors. Although the influence of clouds on the altimeter signature and hence tracking precision is minimal at 13.5 GHz (e.g., less than 4 cm for a 1-s average), it may produce unacceptable mean sea level uncertainties at 35 GHz (e.g., 20 cm for a 1-s average) assuming a significant waveheight of 4 m. On the other hand, the signatures at both 13.5 GHz and 35 GHz become grossly distorted for rain rates of 10 mm/h and higher resulting in mean sea height errors of 46 and 65 cm, respectively, for significant wave heights of 2 m.

  7. Galileo satellite antenna modeling

    Science.gov (United States)

    Steigenberger, Peter; Dach, Rolf; Prange, Lars; Montenbruck, Oliver

    2015-04-01

    The space segment of the European satellite navigation system Galileo currently consists of six satellites. Four of them belong to the first generation of In-Orbit Validation (IOV) satellites whereas the other two are Full Operational Capability (FOC) satellites. High-precision geodetic applications require detailed knowledge about the actual phase center of the satellite and receiver antenna. The deviation of this actual phase center from a well-defined reference point is described by phase center offsets (PCOs) and phase center variations (PCVs). Unfortunately, no public information is available about the Galileo satellite antenna PCOs and PCVs, neither for the IOV, nor the FOC satellites. Therefore, conventional values for the IOV satellite antenna PCOs have been adopted for the Multi-GNSS experiment (MGEX) of the International GNSS Service (IGS). The effect of the PCVs is currently neglected and no PCOs for the FOC satellites are available yet. To overcome this deficiency in GNSS observation modeling, satellite antenna PCOs and PCVs are estimated for the Galileo IOV satellites based on global GNSS tracking data of the MGEX network and additional stations of the legacy IGS network. Two completely independent solutions are computed with the Bernese and Napeos software packages. The PCO and PCV values of the individual satellites are analyzed and the availability of two different solutions allows for an accuracy assessment. The FOC satellites are built by a different manufacturer and are also equipped with another type of antenna panel compared to the IOV satellites. Signal transmission of the first FOC satellite has started in December 2014 and activation of the second satellite is expected for early 2015. Based on the available observations PCO estimates and, optionally PCVs of the FOC satellites will be presented as well. Finally, the impact of the new antenna model on the precision and accuracy of the Galileo orbit determination is analyzed.

  8. Transitions in eruption style at Merapi Volcano (Java, Indonesia); insights from satellite thermal infrared images and numerical modeling

    Science.gov (United States)

    Carr, B. B.; Clarke, A. B.; Vanderkluysen, L.; De'Michieli Vitturi, M.

    2012-12-01

    Merapi is a 2968 m high volcano located in the Central Java Province of Indonesia and one of the country's most active volcanoes. Episodes of andesitic dome growth are periodically interrupted by explosive eruptions, which have caused at least 429 fatalities in the last 20 years alone. We use thermal infrared (TIR) images from the Moderate Resolution Imaging Spectrometer (MODIS) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instruments to measure heat flux at Merapi Volcano over the time period from 2006-2010. We also estimate effusion rates at the vent from the heat flux values using the method of Harris and Ripepe (2007, Geophys. Res. Let. 34). Our data set includes over 500 MODIS images and over 40 ASTER scenes that allow us to observe trends in heat flux at the vent over time. We produce a 5-year record of heat flux at Merapi that includes a typical Merapi-style, dome-building effusive eruption in 2006 and the explosive VEI 3-4 eruption of 2010. We are able to confirm the accuracy of heat flux measurements and effusion rate estimates from TIR data by comparison with a limited number of ground observations from the 2006 and 2010 eruptions. Our observations capture transitions in activity at Merapi from inactive to active and from effusive to explosive as well as the time scales over which these transitions occur. We use a numerical approach to model magma ascent in the volcanic conduit in order to understand factors that may have led to significant changes in eruption rate and style over this period. We constrain relevant model input and output parameters using previous petrologic, seismic, and geodetic studies of the Merapi system, and vary several critical parameters over reasonable ranges as documented in the literature. Results suggest that chamber pressure and some combination of total volatile content and rate of open-system degassing are the primary parameters controlling the observed transitions in eruption rate and style.

  9. The Phase Space and Stellar Populations of Cluster Galaxies at z ~ 1: Simultaneous Constraints on the Location and Timescale of Satellite Quenching

    Science.gov (United States)

    Muzzin, Adam; van der Burg, R. F. J.; McGee, Sean L.; Balogh, Michael; Franx, Marijn; Hoekstra, Henk; Hudson, Michael J.; Noble, Allison; Taranu, Dan S.; Webb, Tracy; Wilson, Gillian; Yee, H. K. C.

    2014-11-01

    We investigate the velocity versus position phase space of z ~ 1 cluster galaxies using a set of 424 spectroscopic redshifts in nine clusters drawn from the GCLASS survey. Dividing the galaxy population into three categories, that is, quiescent, star-forming, and poststarburst, we find that these populations have distinct distributions in phase space. Most striking are the poststarburst galaxies, which are commonly found at small clustercentric radii with high clustercentric velocities, and appear to trace a coherent "ring" in phase space. Using several zoom simulations of clusters, we show that the coherent distribution of the poststarbursts can be reasonably well reproduced using a simple quenching scenario. Specifically, the phase space is best reproduced if these galaxies are quenched with a rapid timescale (0.1 0.5 Gyr) or by quenching galaxies at larger radii (R ~ R 200). We compare this quenching timescale to the timescale implied by the stellar populations of the poststarburst galaxies and find that the poststarburst spectra are well-fit by a rapid quenching (τ Q = 0.4+0.3-0.4 Gyr) of a typical star-forming galaxy. The similarity between the quenching timescales derived from these independent indicators is a strong consistency check of the quenching model. Given that the model implies satellite quenching is rapid and occurs well within R 200, this would suggest that ram-pressure stripping of either the hot or cold gas component of galaxies are the most plausible candidates for the physical mechanism. The high cold gas consumption rates at z ~ 1 make it difficult to determine whether hot or cold gas stripping is dominant; however, measurements of the redshift evolution of the satellite quenching timescale and location may be capable of distinguishing between the two. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on

  10. Satellite virtual atomic clock with pseudorange difference function

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Satellite atomic clocks are the basis of GPS for the control of time and frequency of navigation signals. In the Chinese Area Positioning System (CAPS), a satellite navigation system without the satellite atomic clocks onboard is successfully developed. Thus, the method of time synchronization based on satellite atomic clocks in GPS is not suitable. Satellite virtual atomic clocks are used to implement satellite navigation. With the satellite virtual atomic clocks, the time at which the signals are transmitted from the ground can be delayed into the time that the signals are transmitted from the satellites and the pseudorange measuring can be fulfilled as in GPS. Satellite virtual atomic clocks can implement the navigation, make a pseudorange difference, remove the ephemeris error, and improve the accuracy of navigation positioning. They not only provide a navigation system without satellite clocks, but also a navigation system with pseudorange difference.

  11. Complex Satellite

    OpenAIRE

    Wigor Webers; Yu. Tsvetkov; O. Brekhov; A. Krapivny; N. Nikolaev; S. Filippov; A. Pchelkin

    2009-01-01

    It is offered to complete the project "Swarm" by gradient magnetic surveys at the lengthy measuring base onboard stratospheric balloons. At altitudes over 20 km there are zonal air flows together with which a stratospheric balloon can make round-the-world flights. An advantage of the method of gradient surveys consists in the fact that such method allows to localize the sources creating significant values of gradients of the geomagnetic field, in a volume of the sphere having a radius of abou...

  12. GPS Satellite Simulation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The GPS satellite simulation facility consists of a GPS satellite simulator controlled by either a Silicon Graphics Origin 2000 or PC depending upon unit under test...

  13. China's Recoverable Satellites

    Institute of Scientific and Technical Information of China (English)

    Tang Boehang

    2008-01-01

    @@ By the end of 2006, China had launched 24 recoverable satellites (FSW) in total. Among them, 23 were launched successfully, of which all but one were successfully recovered. Recoverable satellites launched by China are listed in Table 1.

  14. Satellite broadcasting in Europe

    Science.gov (United States)

    Bartholome, P.

    1984-05-01

    Three main communications services are recognized by the International Telecommunications Union: the Fixed Service, the Mobile Service and the Broadcasting Service. In Europe, EUTELSAT has just begun to exploit the first ECS satellite. The ESA-launched satellite was originally designed to provide an international public telecommunication service, however, the satellite will be used now almost exclusively for TV program distribution, while a second ECS satellite will be used for telephony. Despite plans for the launch of a third, countries in Europe are looking to other organizations such as INTELSAT for greater satellite capacity. Other organizations include Unisat, DFS/Copernicus, GDL, and Videosat. Both satellite and cable networks will increase the program-viewing audience, thus encouraging plans for a pan-European television service intended for an international audience. Although the combination of cable networks and distribution satellites looks promising, high-power broadcasting satellites will play an important role because of flexibility and additional program distribution.

  15. Satellite Tags- Hawaii EEZ

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Satellite tagging was implemented in 2013. Satellite tagging is conducted using a Dan Inject air rifle and deployment arrows designed by Wildlife Computers. Two...

  16. Bringing satellite winds to hub-height

    DEFF Research Database (Denmark)

    Badger, Merete; Pena Diaz, Alfredo; Bredesen, Rolv Erlend; Berge, Erik; Hahmann, Andrea N.; Badger, Jake; Karagali, Ioanna; Hasager, Charlotte Bay; Mikkelsen, Torben

    2012-01-01

    Satellite observations of the ocean surface can provide detailed information about the spatial wind variability over large areas. This is very valuable for the mapping of wind resources offshore where other measurements are costly and sparse. Satellite sensors operating at microwave frequencies...... measure the amount of radar backscatter from the sea surface, which is a function of the instant wind speed, wind direction, and satellite viewing geometry. A major limitation related to wind retrievals from satellite observations is that existing empirical model functions relate the radar backscatter to...... wind speed at the height 10 m only. The extrapolation of satellite wind fields to higher heights, which are more relevant for wind energy, remains a challenge which cannot be addressed by means of satellite data alone. As part of the EU-NORSEWInD project (2008-12), a hybrid method has been developed...

  17. An interhemispheric comparison of GPS phase scintillation with auroral emission observed at the South Pole and from the DMSP satellite

    OpenAIRE

    Prikryl, P.; Communications Research Centre, Ottawa, ON, Canada; Zhang, Y.; Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States; Ebihara, Y.; Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan; Ghoddousi-Fard, R.; Natural Resources Canada, Geodetic Survey Division, Ottawa, ON, Canada; Jayachandran, P. T.; University of New Brunswick, Physics Department, Fredericton, NB, Canada; Kinrade, J.; University of Bath, Electronic and Electrical Engineering, Bath, United Kingdom; Mitchell, C. N.; University of Bath, U.K.; Weatherwax, A. T.; Siena College, Physics and Astronomy, Loudonville, NY, United States; Bust, G.; Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States; Cilliers, P. J.; South African National Space Agency, Hermanus, South Africa; Spogli, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia; Alfonsi, Lu.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia; Romano, V.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia; Ning, B.; Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China; Li, G.; Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China

    2013-01-01

    The global positioning system (GPS) phase scintillation caused by highlatitude ionospheric irregularities during an intense high-speed stream (HSS) of the solar wind from April 29 to May 5, 2011, was observed using arrays of GPS ionospheric scintillation and total electron content monitors in the Arctic and Antarctica. The one-minute phase-scintillation index derived from the data sampled at 50 Hz was complemented by a proxy index (delta phase rate) obtained from 1-Hz GPS data. The scintil...

  18. Ionosphere of low and equatorial latitudes at the height of 500 km during magnetospheric ionospheric disturbances in September - December, 1977 (from the ''Kosmos-900'' satellite data)

    International Nuclear Information System (INIS)

    The ''Kosmos-900'' satellite data on variation of charged particles concentration obtained at different phases of geomagnetic storms in September-December 1977 permit to analyze the influence of magnetospheric ionospheric disturbances on the ionosphere of low and equatorial latitudes. In particular, the equatorial anomaly in latitudinal distribution of charged frequency for the noon hours disappears, while in the nighttime does not correspond to generally accepted theoretical representations. Appearance of concentration inhomogeneities depends on the rate of change of the Dsub(st)-index, particularly at the magnetic storm rehabilitation phase. Occurrence of inhomogeneities in the region of the greatest gradients of charged particle concentration testifies to the gradient-drift mechanism of the particle formation. The dependence of inhomogeneity occurrence frequency on the rate of change of the Dsub(st)-index is by no means associated with the Relay-Taylor mechanism of ''bubble'' occurrence. Therefore, plasma instabilities caused by plasma interaction with the ring current in the case of considerable variations of the latter are one more inde-- pendent source of the formation of inhomogeneities at low latitudes

  19. Satellite communication engineering

    CERN Document Server

    Kolawole, Michael Olorunfunmi

    2013-01-01

    An undeniably rich and thorough guide to satellite communication engineering, Satellite Communication Engineering, Second Edition presents the fundamentals of information communications systems in a simple and succinct way. This book considers both the engineering aspects of satellite systems as well as the practical issues in the broad field of information transmission. Implementing concepts developed on an intuitive, physical basis and utilizing a combination of applications and performance curves, this book starts off with a progressive foundation in satellite technology, and then moves on

  20. The phase space and stellar populations of cluster galaxies at z ∼ 1: simultaneous constraints on the location and timescale of satellite quenching

    International Nuclear Information System (INIS)

    We investigate the velocity versus position phase space of z ∼ 1 cluster galaxies using a set of 424 spectroscopic redshifts in nine clusters drawn from the GCLASS survey. Dividing the galaxy population into three categories, that is, quiescent, star-forming, and poststarburst, we find that these populations have distinct distributions in phase space. Most striking are the poststarburst galaxies, which are commonly found at small clustercentric radii with high clustercentric velocities, and appear to trace a coherent 'ring' in phase space. Using several zoom simulations of clusters, we show that the coherent distribution of the poststarbursts can be reasonably well reproduced using a simple quenching scenario. Specifically, the phase space is best reproduced if these galaxies are quenched with a rapid timescale (0.1 <τ Q < 0.5 Gyr) after they make their first passage of R ∼ 0.5 R 200, a process that takes a total time of ∼1 Gyr after first infall. The poststarburst phase space is not well reproduced using long quenching timescales (τ Q > 0.5 Gyr) or by quenching galaxies at larger radii (R ∼ R 200). We compare this quenching timescale to the timescale implied by the stellar populations of the poststarburst galaxies and find that the poststarburst spectra are well-fit by a rapid quenching (τ Q = 0.4−0.4+0.3 Gyr) of a typical star-forming galaxy. The similarity between the quenching timescales derived from these independent indicators is a strong consistency check of the quenching model. Given that the model implies satellite quenching is rapid and occurs well within R 200, this would suggest that ram-pressure stripping of either the hot or cold gas component of galaxies are the most plausible candidates for the physical mechanism. The high cold gas consumption rates at z ∼ 1 make it difficult to determine whether hot or cold gas stripping is dominant; however, measurements of the redshift evolution of the satellite quenching timescale and

  1. The phase space and stellar populations of cluster galaxies at z ∼ 1: simultaneous constraints on the location and timescale of satellite quenching

    Energy Technology Data Exchange (ETDEWEB)

    Muzzin, Adam; Van der Burg, R. F. J.; McGee, Sean L.; Balogh, Michael; Franx, Marijn; Hoekstra, Henk [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Hudson, Michael J. [Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1 (Canada); Noble, Allison; Taranu, Dan S.; Yee, H. K. C. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Webb, Tracy [Department of Physics, McGill University, Montréal, QC (Canada); Wilson, Gillian [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States)

    2014-11-20

    We investigate the velocity versus position phase space of z ∼ 1 cluster galaxies using a set of 424 spectroscopic redshifts in nine clusters drawn from the GCLASS survey. Dividing the galaxy population into three categories, that is, quiescent, star-forming, and poststarburst, we find that these populations have distinct distributions in phase space. Most striking are the poststarburst galaxies, which are commonly found at small clustercentric radii with high clustercentric velocities, and appear to trace a coherent 'ring' in phase space. Using several zoom simulations of clusters, we show that the coherent distribution of the poststarbursts can be reasonably well reproduced using a simple quenching scenario. Specifically, the phase space is best reproduced if these galaxies are quenched with a rapid timescale (0.1 <τ {sub Q} < 0.5 Gyr) after they make their first passage of R ∼ 0.5 R {sub 200}, a process that takes a total time of ∼1 Gyr after first infall. The poststarburst phase space is not well reproduced using long quenching timescales (τ {sub Q} > 0.5 Gyr) or by quenching galaxies at larger radii (R ∼ R {sub 200}). We compare this quenching timescale to the timescale implied by the stellar populations of the poststarburst galaxies and find that the poststarburst spectra are well-fit by a rapid quenching (τ {sub Q} = 0.4{sub −0.4}{sup +0.3} Gyr) of a typical star-forming galaxy. The similarity between the quenching timescales derived from these independent indicators is a strong consistency check of the quenching model. Given that the model implies satellite quenching is rapid and occurs well within R {sub 200}, this would suggest that ram-pressure stripping of either the hot or cold gas component of galaxies are the most plausible candidates for the physical mechanism. The high cold gas consumption rates at z ∼ 1 make it difficult to determine whether hot or cold gas stripping is dominant; however, measurements of the redshift

  2. Satellite Instrument Calibration for Measuring Global Climate Change. Report of a Workshop at the University of Maryland Inn and Conference Center, College Park, MD. , November 12-14, 2002

    Science.gov (United States)

    Ohring, G.; Wielicki, B.; Spencer, R.; Emery, B.; Datla, R.

    2004-01-01

    Measuring the small changes associated with long-term global climate change from space is a daunting task. To address these problems and recommend directions for improvements in satellite instrument calibration some 75 scientists, including researchers who develop and analyze long-term data sets from satellites, experts in the field of satellite instrument calibration, and physicists working on state of the art calibration sources and standards met November 12 - 14, 2002 and discussed the issues. The workshop defined the absolute accuracies and long-term stabilities of global climate data sets that are needed to detect expected trends, translated these data set accuracies and stabilities to required satellite instrument accuracies and stabilities, and evaluated the ability of current observing systems to meet these requirements. The workshop's recommendations include a set of basic axioms or overarching principles that must guide high quality climate observations in general, and a roadmap for improving satellite instrument characterization, calibration, inter-calibration, and associated activities to meet the challenge of measuring global climate change. It is also recommended that a follow-up workshop be conducted to discuss implementation of the roadmap developed at this workshop.

  3. The influence of rain and clouds on a satellite dual frequency radar altimeter system operating at 13 and 35 GHz

    Science.gov (United States)

    Walsh, E. J.; Monaldo, F. M.; Goldhirsh, J.

    1983-01-01

    The effects of inhomogeneous spatial attenuation resulting from clouds and rain on the altimeter estimate of the range to mean sea level are modelled. It is demonstrated that typical cloud and rain attenuation variability at commonly expected spatial scales can significantly degrade altimeter range precision. Rain cell and cloud scale sizes and attenuations are considered as factors. The model simulation of altimeter signature distortion is described, and the distortion of individual radar pulse waveforms by different spatial scales of attenuation is considered. Examples of range errors found for models of a single cloud, a rain cell, and cloud streets are discussed.

  4. Discharge Estimation Using Satellite Gravity During Flood Seasons at the Óbidos Gauge Station, Amazon River

    Science.gov (United States)

    Eom, J.; Seo, K. W.; Lee, Y. K.

    2014-12-01

    Reliable measurement of river discharge is important for management of water resource and understanding of hydrological cycles particularly associated with global and regional climate changes. Practically, to obtain continuous time series of river discharge, regression analysis of an empirical relationship between accumulated water level and discharge data is used. During wet season, however, the relationship includes more uncertainty due to the difficulty of accurate discharge measurement. This is particularly true for the Amazon River because significant amount of water flows outside river channel during flooding. For an alternative way to estimate river discharge, we use GRACE time-varying gravity measurement from January 2003 to December 2012. We first apply Empirical Orthogonal Function (EOF) for GRACE time-varying gravity fields in Amazon and successfully isolate gravity signal in the main stream. The EOF time series represents relative river discharge variations without larger uncertainty during flooding season compared to conventional in-situ discharge estimate. Estimates of Amazon River discharge based on GRACE data are very close to those from observed at gauge stations during dry seasons. However, our estimates are larger than in-situ data in high water seasons, and the difference is the maximum at the 2009 flooding. This is probably because in-situ observation underestimates river discharge during wet season due possibly to detoured water in river pathway developed during flooding while GRACE observes integrated water mass variations in river channels.

  5. SaVi: satellite constellation visualization

    CERN Document Server

    Wood, Lloyd

    2012-01-01

    SaVi, a program for visualizing satellite orbits, movement, and coverage, is maintained at the University of Surrey. This tool has been used for research in academic papers, and by industry companies designing and intending to deploy satellite constellations. It has also proven useful for demonstrating aspects of satellite constellations and their geometry, coverage and movement for educational and teaching purposes. SaVi is introduced and described briefly here.

  6. Pakistan National Student Satellite Program (PNSSP)

    OpenAIRE

    Alvi, Bilal Ahmad

    2013-01-01

    Micro-satellite development at University environment provides hands-on experience of building a satellite from design through launch and orbit operations for students in a cost effective way. Since multi-disciplinary efforts are required for satellite program are normally available in Universities therefore this kind of projects coupled with team building would provide valuable contribution to aerospace field. It would not only involve traini...

  7. Towards generic satellite payloads: software radio

    OpenAIRE

    Morlet, Catherine; Boucheret, Marie-Laure; Calmettes, Vincent; Paillassa, Béatrice; Pérennou, Tanguy

    2003-01-01

    Satellite payloads are becoming much more complex with the evolution towards multimedia applications. Moreover satellite lifetime increases while standard and services evolve faster, necessitating a hardware platform that can evolves for not developing new systems on each change. The same problem occurs in terrestrial systems like mobile networks and a foreseen solution is the software defined radio technology. In this paper we describe a way of introducing this concept at satellite level to ...

  8. A satellite for demonstration of Panel Extension Satellite (PETSAT)

    Science.gov (United States)

    Sugawara, Yoshiki; Sahara, Hironori; Nakasuka, Shinichi; Greenland, Stephen; Morimoto, Takeshi; Koyama, Kanichi; Kobayashi, Chisato; Kikuchi, Hideaki; Okada, Takanori; Tanaka, Hidenori

    2008-07-01

    This paper presents the current status, configuration, architecture, and key technologies of SOHLA-2, the demonstration mission of the PETSAT (Panel ExTension SATellite) concept. The PETSAT proposal is for a modular satellite consisting of any number of unfolding functional panels. These panels are designed around an open architecture and connected through standardized interfaces. The interfaces between panels incorporate a reliable "plug-in" format, such that when combined, the integrated system takes on the intended satellite function in a redundant and distributed manner. By combining the different panel types in any number and configuration, flexibility to mission requirements is achieved. Some panels for performing basic satellite functions will be available as commercial-off-the-shelf components, and others custom developed dependent on the mission. During launch these panels are stowed in a folded low volume configuration, which is then extended on-orbit, realizing a satellite with a large area for the mounting of solar arrays, mission systems, extensible booms, or any other components. SOHLA-2 is both a concept demonstration and a lightning detection mission in the VHF band. It weighs less than 50 kg and consists of six panels: communication, attitude control, propulsion, mission, experiment and bus function. The bus function panel is based on the successful Cubesat XI developed at the University of Tokyo and this acts as the manager of the technology demonstration aspects for the mission. By basing the architecture upon a proven technology, the reliability of the satellite is increased. It is intended that the satellite be launched in early 2008.

  9. On the stratospheric aerosol budget at Northern mid-latitudes from 21 years of ground-based lidar and satellite observations

    Science.gov (United States)

    Khaykin, Sergey; Godin-Beekmann, Sophie; Hauchecorne, Alain; Vernier, Jean-Paul; Jumelet, Julien; Keckhut, Philippe

    2016-04-01

    The paper presents a new high-quality 21-year series of continuous stratospheric aerosol observations at Observatoire de Haute-Provence (OHP, 44° N, 6° E) in Southern France using two powerful and well-maintained lidar systems. In contrast to previous studies making use of the observations by aerosol-dedicated lidars operating within the Network for Detection of Atmospheric Composition Change (NDACC), we exploit the backscatter measurements from the off-line 355 nm channel of stratospheric ozone lidar (LiO3S) and low-gain 532 nm channel of stratospheric temperature lidar (LTA). The presented series of stratospheric aerosol backscatter and extinction at 532 nm, spanning from January 1994 through 2016, include on average 10-11 lidar acquisitions per month after careful quality screening. The OHP lidar observations are compared with global space-borne measurements of zonal-mean stratospheric extinction by SAGE II, GOMOS, OSIRIS and CALIOP instruments, altogether covering the time span of OHP lidar data sets. Both ground-based and satellite monthly-mean stratospheric Aerosol Optical Depth between 17 and 30 km altitude (sAOD1730km) series are in good cross-agreement with discrepancies well below the measurement errors, thereby ensuring the quality and coherency of all data sets exploited for our study. The global satellite observations are then used to identify the drivers of stratospheric aerosol variability observed locally by the OHP lidars. The 21-year aerosol series reflect two essential periods in the global volcanic activity over the past two decades. The first one, a long volcanically-quiescent period of low aerosol burden (0.002

  10. The 2007-8 volcanic eruption on Jebel at Tair island (Red Sea) observed by satellite radar and optical images

    KAUST Repository

    Xu, Wenbin

    2014-01-31

    We use high-resolution optical images and Interferometric Synthetic Aperture Radar (InSAR) data to study the September 2007-January 2008 Jebel at Tair eruption. Comparison of pre- and post-eruption optical images reveals several fresh ground fissures, a new scoria cone near the summit, and that 5.9 ± 0.1 km2 of new lava covered about half of the island. Decorrelation in the InSAR images indicates that lava flowed both to the western and to the northeastern part of the island after the start of the eruption, while later lavas were mainly deposited near the summit and onto the north flank of the volcano. From the InSAR data, we also estimate that the average thickness of the lava flows is 3.8 m, resulting in a bulk volume of around 2.2 × 107 m3. We observe no volcano-wide pre- or post-eruption uplift, which suggests that the magma source may be deep. The co-eruption interferograms, on the other hand, reveal local and rather complex deformation. We use these observations to constrain a tensile dislocation model that represents the dike intrusion that fed the eruption. The model results show that the orientation of the dike is perpendicular to the Red Sea rift, implying that the local stresses within the volcanic edifice are decoupled from the regional stress field. © 2014 Springer-Verlag Berlin Heidelberg.

  11. At-sea and on-shore cycles of juvenile Steller sea lions ( Eumetopias jubatus) derived from satellite dive recorders: A comparison between declining and increasing populations

    Science.gov (United States)

    Call, Katherine A.; Fadely, Brian S.; Greig, Angie; Rehberg, Michael J.

    2007-02-01

    We calculated the durations of time on-shore and at-sea for juvenile Steller sea lions ( Eumetopias jubatus) using satellite dive recorders deployed between 2000 and 2002, and compared two genetically distinct populations; one increasing (eastern stock; n=42) and one that experienced an 80% decline in population since the mid-1970s (western stock; n=89). Data represented 24-h periods divided into 72 20-min increments indicating whether an animal was on-shore (dry) or at-sea (wet). Time apportioned between land and sea was described on a per-trip basis (rather than a 24-h cycle) and durations ranged from 20 min to several days. We tested differences in the durations of on-shore and at-sea events among sex, geographic region, year, and age at capture using mixed-effects models. Animal identifier was included as a random effect to account for repeated measures on the same individual. Sea lions from the eastern Aleutian Islands, central Aleutian Islands, and central Gulf of Alaska hauled out just after sunrise, and departure times coincided with dusk. For Prince William Sound and Southeast Alaska animals, arrivals and departures occurred throughout the day and were not related to crepuscular period. Mean duration on-shore did not differ among sex, region, year or age, and was unrelated to previous trip duration. This may suggest a minimum rest period for juvenile Steller sea lions or that dependant animals are maximizing their time on-shore suckling. Time spent at-sea varied among individuals from both populations and development of maternal independence, inferred from significant increases in time spent at sea, occurred approximately 10 months later in individuals from Prince William Sound and Southeast Alaska than in the other regions, suggesting environmental and developmental differences among regions.

  12. Retrieval of near-surface sulfur dioxide (SO2 concentrations at a global scale using IASI satellite observations

    Directory of Open Access Journals (Sweden)

    S. Bauduin

    2015-10-01

    Full Text Available SO2 from volcanic eruptions is now operationally monitored from space in both ultraviolet (UV and thermal infrared (TIR spectral range, but anthropogenic SO2 has almost solely been measured from UV sounders. Indeed, TIR instruments are well-known to have a poor sensitivity to the boundary layer (PBL, due to generally low thermal contrast (TC between the ground and the air above it. Recent studies have demonstrated the capability of the Infrared Atmospheric Sounding Interferometer (IASI to measure near-surface SO2 locally, for specific atmospheric conditions. In this work, we develop a retrieval method allowing the inference of SO2 near-surface concentrations from IASI measurements at a global scale. This method consists of two steps. Both are based on the computation of radiance indexes representing the strength of the SO2 ν3 band in IASI spectra. The first step allows retrieving the peak altitude of SO2 and selecting near-surface SO2. In the second step, 0–4 km columns of SO2 are inferred using a look-up table (LUT approach. Using this new retrieval method, we obtain the first global distribution of near-surface SO2 from IASI-A, and identify the dominant anthropogenic hotspot sources and volcanic degassing. The 7-year daily time evolution of SO2 columns above two industrial source areas (Beijing in China and Sar Cheshmeh in Iran is investigated and correlated to the seasonal variations of the parameters that drive the IASI sensitivity to the PBL composition. Apart from TC, we show that humidity is the most important parameter which determines IR sensitivity to near-surface SO2. As IASI provides twice daily global measurements, the differences between the retrieved columns for the morning and evening orbits are investigated. This paper finally presents a first intercomparison of the measured 0–4 km columns with an independent iterative retrieval method and with observations of the Ozone Monitoring Instrument (OMI.

  13. Retrieval of near-surface sulfur dioxide (SO2) concentrations at a global scale using IASI satellite observations

    Science.gov (United States)

    Bauduin, Sophie; Clarisse, Lieven; Theys, Nicolas; Clerbaux, Cathy; Coheur, Pierre-François

    2015-04-01

    Sulfur dioxide (SO2) is an atmospheric trace gas with both natural and anthropogenic sources. In the troposphere, SO2 released by industrial activities mainly stays close to the ground level. The IASI/MetOp infrared remote sensor has shown over the years good performances for tracking SO2 plumes in the free troposphere. Probing anthropogenic SO2 pollution on the other hand is a challenge due to the generally low sensitivity of infrared measurements to the near-surface atmosphere, itself caused by the weak thermal contrasts between the ground and the air above it. Recent studies, which have focused on local sources (the industrial area of Norilsk and of the North China Plain), have however demonstrated that IASI was able to retrieve SO2 near-surface concentrations in favorable meteorological situations, and in particular in case of large temperature inversions. Expanding on these findings, this work presents new observations of near-surface SO2 at global scale from IASI observations. The method, which includes the determination of the SO2 plume altitude and SO2 boundary layer column, will be briefly presented. Global distributions of anthropogenic pollution will be shown, focusing on the identification of the principal hotspots and of exceptional pollution events. A first assessment of the retrieved columns with correlative measurements will be provided for some local sources. IASI measurements and new OMI SO2 retrievals will be compared. This will highlight the complementarity of these current TIR and UV sounders for measuring SO2 pollution, which could be exploited in the future with IASI-NG and Sentinel-5 instruments.

  14. The power relay satellite

    Science.gov (United States)

    Glaser, Peter E.

    The availability and use of renewable energy sources compatible with reducing risks to the global environment are key to sustainable development. Large-scale, renewable energy resources at undeveloped or underutilized sites are potentially available on several continents. The Power Relay Satellite (PRS) concept has the potential to access these remote energy resources by coupling primary electricity generation from terrestrial transmission lines. A global PRS network can be envisioned to provide a high degree of flexibility for supplying energy demands worldwide with wireless power transmitted from sites on Earth to geosynchronous orbit and then reflected to receivers interfacing with terrestrial power transmision networks. Past developments in wireless power transmission (WPT) are reviewed and recent successful results are noted. The origins of the PRS concept, and a possible configuration are discussed, principles of WPT at microwave frequencies, functional requirements, and system design contraints are outlined, and space transportation concepts presented. PRS assessments including applicable technologies, economic projections, and societal issues are highlighted. It is concluded that the PRS provides a promising option to access renewable resources at great distances from major markets, and represents an important stage in the future development in the future of solar power satellites.

  15. Retrieval of near-surface sulfur dioxide (SO2) concentrations at a global scale using IASI satellite observations

    Science.gov (United States)

    Bauduin, Sophie; Clarisse, Lieven; Hadji-Lazaro, Juliette; Theys, Nicolas; Clerbaux, Cathy; Coheur, Pierre-François

    2016-02-01

    SO2 from volcanic eruptions is now operationally monitored from space in both the ultraviolet (UV) and thermal infrared (TIR) spectral range, but anthropogenic SO2 has almost solely been measured from UV sounders. Indeed, TIR instruments are well known to have a poor sensitivity to the planetary boundary layer (PBL), due to generally low thermal contrast (TC) between the ground and the air above it. Recent studies have demonstrated the capability of the Infrared Atmospheric Sounding Interferometer (IASI) to measure near-surface SO2 locally, for specific atmospheric conditions. In this work, we develop a retrieval method allowing the inference of SO2 near-surface concentrations from IASI measurements at a global scale. This method consists of two steps. Both are based on the computation of radiance indexes representing the strength of the SO2 ν3 band in IASI spectra. The first step allows the peak altitude of SO2 to be retrieved and near-surface SO2 to be selected. In the second step, 0-4 km columns of SO2 are inferred using a look-up table (LUT) approach. Using this new retrieval method, we obtain the first global distribution of near-surface SO2 from IASI-A, and identify the dominant anthropogenic hotspot sources and volcanic degassing. The 7-year daily time evolution of SO2 columns above two industrial source areas (Beijing in China and Sar Cheshmeh in Iran) is investigated and correlated to the seasonal variations of the parameters that drive the IASI sensitivity to the PBL composition. Apart from TC, we show that humidity is the most important parameter which determines IR sensitivity to near-surface SO2 in the ν3 band. As IASI provides global measurements twice daily, the differences between the retrieved columns for the morning and evening orbits are investigated. This paper finally presents a first intercomparison of the measured 0-4 km columns with an independent iterative retrieval method and with observations of the Ozone Monitoring Instrument (OMI).

  16. Kagawa Satellite “STARS” in Shikoku

    Science.gov (United States)

    Nohmi, Masahiro; Yamamoto, Takeshi; Andatsu, Akira; Takagi, Yohei; Nishikawa, Yusuke; Kaneko, Takashi; Kunitom, Daisuke

    The Space Tethered Autonomous Robotic Satellite (STARS) is being developed in Kagawa University, and it will be launched by the H-IIA rocket by Japan Aerospace Exploration Agency (JAXA) in summer 2008. STARS is the first satellite developed in Shikoku, and its specific characteristics are: (i) mother and daughter satellites, which have basic satellite system respectively, and those are launched at the same time; (ii) large space system more than 5m by extending tether; (iii) robotic system, the daughter satellite controls its arm link and the mother satellite controls tether extension. Development of STARS in Kagawa University demonstrates space technology in local community, which has been considered to be a national project. Also, it promotes popularization, enlightenment, and understanding of space technology in local area of the Kagawa prefecture and around it.

  17. Telepresence systems for satellite servicing

    International Nuclear Information System (INIS)

    Telepresence system concepts for satellite servicing are described which are designed to perform complex tasks at remote worksites. Required performance characteristics are developed for specific satellite service functions, and technology issues are identified. Concepts with the operator both nearby and at a great distance from the worksite, with resulting significant time delays, are addressed. A laboratory program established to support the development of such systems is described and preliminary test conclusions are presented. Technology developments required to resolve outstanding technical issues are identified and associated future flight test programs are discussed

  18. Theory of geostationary satellites

    CERN Document Server

    Zee, Chong-Hung

    1989-01-01

    Geostationary or equatorial synchronous satellites are a daily reminder of our space efforts during the past two decades. The nightly television satellite weather picture, the intercontinental telecommunications of television transmissions and telephone conversations, and the establishrnent of educational programs in remote regions on Earth are constant reminders of the presence of these satellites. As used here, the term 'geo­ stationary' must be taken loosely because, in the long run, the satellites will not remain 'stationary' with respect to an Earth-fixed reference frame. This results from the fact that these satellites, as is true for all satellites, are incessantly subject to perturbations other than the central-body attraction of the Earth. Among the more predominant pertur­ bations are: the ellipticity of the Earth's equator, the Sun and Moon, and solar radiation pressure. Higher harmonics of the Earth's potential and tidal effects also influence satellite motion, but they are of second­ order whe...

  19. Meteorological satellite systems

    CERN Document Server

    Tan, Su-Yin

    2014-01-01

    “Meteorological Satellite Systems” is a primer on weather satellites and their Earth applications. This book reviews historic developments and recent technological advancements in GEO and polar orbiting meteorological satellites. It explores the evolution of these remote sensing technologies and their capabilities to monitor short- and long-term changes in weather patterns in response to climate change. Satellites developed by various countries, such as U.S. meteorological satellites, EUMETSAT, and Russian, Chinese, Japanese and Indian satellite platforms are reviewed. This book also discusses international efforts to coordinate meteorological remote sensing data collection and sharing. This title provides a ready and quick reference for information about meteorological satellites. It serves as a useful tool for a broad audience that includes students, academics, private consultants, engineers, scientists, and teachers.

  20. The Mexican national satellite system

    Science.gov (United States)

    Sanchez Ruiz, M. E.; Briskman, R. D.

    1983-10-01

    The satellites, tracking, telemetry, command, and monitoring facilities, and the earth station complex for the Mexican national satellite system, Morelos, are described. The spacecraft are intended to provide educational television, rural telephony, data transmission, and business and industrial services. Scheduled for 1985 launch, the satellites will be placed in GEO and use the C and Ku bands with 12 narrow band and six wideband transponders. Spin-stabilized and solar cell powered, the functional mass will be 666 kg, including propellant. The solar panels will provide 940 W of power and 830 W will be available from NiCd batteries during eclipse conditions. The earth station will be located at Iztapalapa, which will have a 12 m antenna, redundant uplink and downlink radios, and command and ranging equipment. Back-up capability will be provided by a station at Tulancingo. Ku band and C band stations are in planning.

  1. The Phase Space and Stellar Populations of Cluster Galaxies at z ~ 1: Simultaneous Constraints on the Location and Timescale of Satellite Quenching

    CERN Document Server

    Muzzin, Adam; McGee, Sean L; Balogh, Michael; Franx, Marijn; Hoekstra, Henk; Hudson, Michael J; Noble, Allison; Taranu, Dan; Webb, Tracy; Wilson, Gillian; Yee, H K C

    2014-01-01

    We investigate the velocity vs. position phase space of z ~ 1 cluster galaxies using a set of 424 spectroscopic redshifts in 9 clusters drawn from the GCLASS survey. Dividing the galaxy population into three categories: quiescent, star-forming, and poststarburst, we find that these populations have distinct distributions in phase space. Most striking are the poststarburst galaxies, which are commonly found at small clustercentric radii with high clustercentric velocities, and appear to trace a coherent ``ring" in phase space. Using several zoom simulations of clusters we show that the coherent distribution of the poststarbursts can be reasonably well-reproduced using a simple quenching scenario. Specifically, the phase space is best reproduced if satellite quenching occurs on a rapid timescale (0.1 < tau_{Q} < 0.5 Gyr) after galaxies make their first passage of R ~ 0.5R_{200}, a process that takes a total time of ~ 1 Gyr after first infall. We compare this quenching timescale to the timescale implied by...

  2. On the perturbations on satellites probing General Relativity

    CERN Document Server

    Sargsyan, S; Mirzoyan, S

    2013-01-01

    Non-gravitational Yarkovsky-Rubincam effect for LAGEOS and LAGEOS 2 satellites used to probe General Relativity has been revealed by means of the Kolmogorov analysis of their perturbations. We present the method and its efficiency at modeling of generated systems with properties expected at the satellite laser ranging measurements and then at satellite residual data analysis.

  3. Toward a High-Resolution Monitoring of Continental Surface Water Extent and Dynamics, at Global Scale: from GIEMS (Global Inundation Extent from Multi-Satellites) to SWOT (Surface Water Ocean Topography)

    Science.gov (United States)

    Prigent, Catherine; Lettenmaier, Dennis P.; Aires, Filipe; Papa, Fabrice

    2016-03-01

    Up to now, high-resolution mapping of surface water extent from satellites has only been available for a few regions, over limited time periods. The extension of the temporal and spatial coverage was difficult, due to the limitation of the remote sensing technique [e.g., the interaction of the radiation with vegetation or cloud for visible observations or the temporal sampling with the synthetic aperture radar (SAR)]. The advantages and the limitations of the various satellite techniques are reviewed. The need to have a global and consistent estimate of the water surfaces over long time periods triggered the development of a multi-satellite methodology to obtain consistent surface water all over the globe, regardless of the environments. The Global Inundation Extent from Multi-satellites (GIEMS) combines the complementary strengths of satellite observations from the visible to the microwave, to produce a low-resolution monthly dataset (0.25^circ × 0.25^circ) of surface water extent and dynamics. Downscaling algorithms are now developed and applied to GIEMS, using high-spatial-resolution information from visible, near-infrared, and synthetic aperture radar (SAR) satellite images, or from digital elevation models. Preliminary products are available down to 500-m spatial resolution. This work bridges the gaps and prepares for the future NASA/CNES Surface Water Ocean Topography (SWOT) mission to be launched in 2020. SWOT will delineate surface water extent estimates and their water storage with an unprecedented spatial resolution and accuracy, thanks to a SAR in an interferometry mode. When available, the SWOT data will be adopted to downscale GIEMS, to produce a long time series of water surfaces at global scale, consistent with the SWOT observations.

  4. VLBI observations of geosynchronous satellites

    Science.gov (United States)

    Shu, Fengchun; Zhang, Xiuzhong; Zheng, Weimin

    The principle of determining spacecraft angular position with differential VLBI (Very Long Baseline Interferometry) technique is described. The first domestic differential VLBI observations of geosynchronous satellites were performed with participations of Shanghai, Urumqi and Kunming stations. Three strong quasars within angular separation of 15° from target satellites were selected as reference radio sources. The main purpose of such observations is to obtain interferometric fringes of the satellites, and to estimate accuracy of differential VLBI observations. A 2-station FX type correlator at SHAO (Shanghai Astronomical Observatory) was used to do cross-correlations of radio signals in MK3A-C tape format. Strong fringes of the satellites were detected to all stations. The precision of time delay and rate was derived from the correlator output. Based on system errors analysis, we estimated that ΔDOR (Delta Differential One-way Ranging) error was about 41 cm, and ΔDOD (Delta Differential One-way Doppler) error was about 0.148mm/s, which corresponded, respectively, to the position error of 8m and the velocity error of 2.8mm/s for the geosynchronous satellite on the plane of sky.

  5. Space Solar Power: Satellite Concepts

    Science.gov (United States)

    Little, Frank E.

    1999-01-01

    Space Solar Power (SSP) applies broadly to the use of solar power for space related applications. The thrust of the NASA SSP initiative is to develop concepts and demonstrate technology for applying space solar power to NASA missions. Providing power from satellites in space via wireless transmission to a receiving station either on earth, another celestial body or a second satellite is one goal of the SSP initiative. The sandwich design is a satellite design in which the microwave transmitting array is the front face of a thin disk and the back of the disk is populated with solar cells, with the microwave electronics in between. The transmitter remains aimed at the earth in geostationary orbit while a system of mirrors directs sunlight to the photovoltaic cells, regardless of the satellite's orientation to the sun. The primary advantage of the sandwich design is it eliminates the need for a massive and complex electric power management and distribution system for the satellite. However, it requires a complex system for focusing sunlight onto the photovoltaic cells. In addition, positioning the photovoltaic array directly behind the transmitting array power conversion electronics will create a thermal management challenge. This project focused on developing designs and finding emerging technology to meet the challenges of solar tracking, a concentrating mirror system including materials and coatings, improved photovoltaic materials and thermal management.

  6. Satellite voice broadcase system study. Volume 1: Executive summary

    Science.gov (United States)

    Horstein, M.

    1985-01-01

    The feasibility of providing Voice of America (VOA) broadcasts by satellite relay was investigated. Satellite voice broadcast systems are described for three different frequency bands: HF, FHV, and L-band. Geostationary satellite configurations are considered for both frequency bands. A system of subsynchronous, circular satellites with an orbit period of 8 hours was developed for the HF band. The VHF broadcasts are provided by a system of Molniya satellites. The satellite designs are limited in size and weight to the capability of the STS/Centaur launch vehicle combination. At L-band, only four geostationary satellites are needed to meet the requirements of the complete broadcast schedule. These satellites are comparable in size and weight to current satellites designed for the direct broadcast of video program material.

  7. Dark Matter tested with satellites

    CERN Document Server

    Combes, F

    2009-01-01

    Recently, the distribution of velocity dispersion as far as 400kpc around red isolated galaxies was derived from statistical studies of satellites in the SDSS (Klypin & Prada 2009). This could help to constrain dark matter models at intermediate scales. We compare the predictions of different DM distributions, LCDM with NFW or cored profiles, and also modified gravity models, with observations. It is shown how the freedom in the various parameters (radial distribution of satellites, velocity anisotropy, external field effect), prevents to disentangle the models, which all can give pretty good fits to the data. In all cases, realistic radial variations of velocity anisotropy are used for the satellites, and a constant stellar-mass to light ratio for the host galaxies.

  8. Satellite Data Transmission (SDT) requirement

    Science.gov (United States)

    Chie, C. M.; White, M.; Lindsey, W. C.

    1984-01-01

    An 85 Mb/s modem/codec to operate in a 34 MHz C-band domestic satellite transponder at a system carrier to noise power ratio of 19.5 dB is discussed. Characteristics of a satellite channel and the approach adopted for the satellite data transmission modem/codec selection are discussed. Measured data and simulation results of the existing 50 Mbps link are compared and used to verify the simulation techniques. Various modulation schemes that were screened for the SDT are discussed and the simulated performance of two prime candidates, the 8 PSK and the SMSK/2 are given. The selection process that leads to the candidate codec techniques are documented and the technology of the modem/codec candidates is assessed. Costs of the modems and codecs are estimated.

  9. Small satellites and their regulation

    CERN Document Server

    Jakhu, Ram S

    2014-01-01

    Since the launch of UoSat-1 of the University of Surrey (United Kingdom) in 1981, small satellites proved regularly to be useful, beneficial, and cost-effective tools. Typical tasks cover education and workforce development, technology demonstration, verification and validation, scientific and engineering research as well as commercial applications. Today the launch masses range over almost three orders of magnitude starting at less than a kilogram up to a few hundred kilograms, with budgets of less than US$ 100.00 and up to millions within very short timeframes of sometimes less than two years. Therefore each category of small satellites provides specific challenges in design, development and operations. Small satellites offer great potentials to gain responsive, low-cost access to space within a short timeframe for institutions, companies, regions and countries beyond the traditional big players in the space arena. For these reasons (particularly the low cost of construction, launch and operation), small (m...

  10. Small satellite solar array substrate

    Science.gov (United States)

    Fiore, John N.; Rosanova, Giulio

    1994-01-01

    The SMall EXplorer (SMEX) Fast Auroral SnapshoT (FAST) spacecraft was developed to investigate plasma physics of auroral phenomena at high orbital altitude. The FAST satellite comprises a variety of deployable booms with sensors on the ends, and instruments that protrude from the main body of the spacecraft to obtain the plasma and electromagnetic fields data. This required the plasma disturbance around the satellite to be kept to a minimum. A non deployable, body mounted solar array was implemented. This led to the design of a light weight solar array substrate with a high degree of structural integrity.

  11. Trend of China land water storage redistribution at medi-and large-spatial scales in recent five years by satellite gravity observations

    Institute of Scientific and Technical Information of China (English)

    ZHONG Min; DUAN JianBin; XU HouZe; PENG Peng; YAN HaoMing; ZHU YaoZhong

    2009-01-01

    The GRACE (Gravity Recovery and Climate Experiment) satellite gravity mission has provided a new method to study land water mass redistribution at medi-and long-spatial scales in recent years. We estimate continental water mass redistribution in China using GRACE observations during 2003 to 2007. The results show some large regions with increase or decrease of land water mass storage in the cen-tral northern region, Tibetan Plateau, the Three Gorges region, the place where Qinghai, Sichuan and Gansu provinces meet, and the Altun Mountains region in the Xinjiang Uygur Autonomous Region. In the first two regions, it is obvious that water (ice) mass storages are decreasing. Water mass in the central northern region decreases at a linear rate of 2.4 cm/a equivalent water height, equal to 5.2 billion cubic meters per year during the five years' period, and water mass depletion in Hebei Province is ~ 4.5 billion cubic meters per year in the same period, which is consistent with the average water mass de-pletion of 4.0 billion cubic meters per year of overused underground water in the recent 30 years esti-mated by Hebei Province Water Resources Bureau. Furthermore, GRACE can detect the water mass accumulation of ~ 5 cm equivalent water height within the region spreading over about 0.12 million square kilometers due to the Three Gorges dam construction in June 2003. We also find a water mass gain of ~ 1.1 cm/a in the areas where Qinghai, Sichuan and Gansu provinces meet. This indicates that the climate of these regions has been becoming gradually humid in recent years.

  12. Reinventing the Solar Power Satellite

    Science.gov (United States)

    Landis, Geoffrey A.

    2004-01-01

    The selling price of electrical power varies with time. The economic viability of space solar power is maximum if the power can be sold at peak power rates, instead of baseline rate. Price and demand of electricity was examined from spot-market data from four example markets: New England, New York City, suburban New York, and California. The data was averaged to show the average price and demand for power as a function of time of day and time of year. Demand varies roughly by a factor of two between the early-morning minimum demand, and the afternoon maximum; both the amount of peak power, and the location of the peak, depends significantly on the location and the weather. The demand curves were compared to the availability curves for solar energy and for tracking and non-tracking satellite solar power systems in order to compare the market value of terrestrial and solar electrical power. In part 2, new designs for a space solar power (SSP) system were analyzed to provide electrical power to Earth for economically competitive rates. The approach was to look at innovative power architectures to more practical approaches to space solar power. A significant barrier is the initial investment required before the first power is returned. Three new concepts for solar power satellites were invented and analyzed: a solar power satellite in the Earth-Sun L2 point, a geosynchronous no-moving parts solar power satellite, and a nontracking geosynchronous solar power satellite with integral phased array. The integral-array satellite had several advantages, including an initial investment cost approximately eight times lower than the conventional design.

  13. On the perturbations on satellites probing General Relativity

    International Nuclear Information System (INIS)

    The non-gravitational Yarkovsky–Rubincam effect for the LAGEOS and LAGEOS 2 satellites, which is used to probe General Relativity, has been revealed by means of the Kolmogorov analysis of their perturbations. We present the method and its efficiency at modeling generated systems with properties expected at the satellite laser ranging measurements. We then present a satellite residual data analysis. (paper)

  14. Communication satellite applications

    Science.gov (United States)

    Pelton, Joseph N.

    The status and future of the technologies, numbers and services provided by communications satellites worldwide are explored. The evolution of Intelsat satellites and the associated earth terminals toward high-rate all-digital telephony, data, facsimile, videophone, videoconferencing and DBS capabilities are described. The capabilities, services and usage of the Intersputnik, Eutelsat, Arabsat and Palapa systems are also outlined. Domestic satellite communications by means of the Molniya, ANIK, Olympus, Intelsat and Palapa spacecraft are outlined, noting the fast growth of the market and the growing number of different satellite manufacturers. The technical, economic and service definition issues surrounding DBS systems are discussed, along with presently operating and planned maritime and aeronautical communications and positioning systems. Features of search and rescue and tracking, data, and relay satellite systems are summarized, and services offered or which will be offered by every existing or planned communication satellite worldwide are tabulated.

  15. GPS Satellites Orbits: Resonance

    Directory of Open Access Journals (Sweden)

    Luiz Danilo Damasceno Ferreira

    2009-01-01

    Full Text Available The effects of perturbations due to resonant geopotential harmonics on the semimajor axis of GPS satellites are analyzed. For some GPS satellites, secular perturbations of about 4 m/day can be obtained by numerical integration of the Lagrange planetary equations considering in the disturbing potential the main secular resonant coefficients. Amplitudes for long-period terms due to resonant coefficients are also exhibited for some hypothetical satellites orbiting in the neighborhood of the GPS satellites orbits. The results are important to perform orbital maneuvers of GPS satellites such that they stay in their nominal orbits. Also, for the GPS satellites that are not active, the long-period effects due to the resonance must be taken into account in the surveillance of the orbital evolutions of such debris.

  16. Satellite communication engineering

    CERN Document Server

    Kolawole, Michael Olorunfunmi

    2002-01-01

    Highlighting satellite and earth station design, links and communication systems, error detection and correction, and regulations and procedures for system modeling, integrations, testing, and evaluation, Satellite Communication Engineering provides a simple and concise overview of the fundamental principles common to information communications. It discusses block and feedback ciphering; covers orbital errors; evaluates multi-beam satellite networks; illustrates bus, electrical, and mechanical systems design; analyzes system reliability and availability; elucidates reflector/lens, phased array

  17. Methods of satellite oceanography

    Science.gov (United States)

    Stewart, R. H.

    1985-01-01

    The theoretical basis for remote sensing measurements of climate and ocean dynamics is examined. Consideration is given to: the absorption of electromagnetic radiation in the atmosphere; scattering in the atmosphere; and satellite observations using visible light. Consideration is also given to: the theory of radio scatter from the sea; scatter of centimeter waves from the sea; and the theory of operation of synthetic aperture radars. Additional topics include: the coordinate systems of satellite orbits for oceanographic remote sensing applications; the operating features of the major U.S. satellite systems for viewing the ocean; and satellite altimetry.

  18. Temperature diagnostics using lithium-like satellites

    International Nuclear Information System (INIS)

    A 60-kJ theta-pinch was operated at a filling pressure of 16 mtorr using a gas mixture of 2% neon and 98% helium. The resonance and intercombination lines from Ne IX and the Li-like satellites were observed with a Bragg crystal monochromator. The electron temperature of the plasma was deduced from the intensity ratios of the Ne IX resonance line and the dielectronic satellites using recent theoretical calculations. The temperature values ranged from 210 eV to 340 eV during the time of occurrence of these satellites. The temperature measured at 1.0 μs by laser scattering for a similar plasma condition was in close agreement with that obtained by the resonance line/satellite ratio. This lends confidence to use of the satellite technique for temperature measurements in other plasmas

  19. Saturn's F ring and shepherd satellites a natural outcome of satellite system formation

    Science.gov (United States)

    Hyodo, Ryuki; Ohtsuki, Keiji

    2015-09-01

    Saturn's F ring is a narrow ring of icy particles, located 3,400 km beyond the outer edge of the main ring system. Enigmatically, the F ring is accompanied on either side by two small satellites, Prometheus and Pandora, which are called shepherd satellites. The inner regular satellites of giant planets are thought to form by the accretion of particles from an ancient massive ring and subsequent outward migration. However, the origin of a system consisting of a narrow ring and shepherd satellites remains poorly understood. Here we present N-body numerical simulations to show that a collision of two of the small satellites that are thought to accumulate near the main ring's outer edge can produce a system similar to the F ring and its shepherd satellites. We find that if the two rubble-pile satellites have denser cores, such an impact results in only partial disruption of the satellites and the formation of a narrow ring of particles between two remnant satellites. Our simulations suggest that the seemingly unusual F ring system is a natural outcome at the final stage of the formation process of the ring-satellite system of giant planets.

  20. Reliable multicast transport by satellite: a hybrid satellite/terrestrial solution with erasure codes

    OpenAIRE

    De Belleville, Florestan; Dairaine, Laurent; Lacan, Jérôme; Fraboul, Christian

    2004-01-01

    Geostationary satellites are an efficient way to provide a large scale multipoint communication service. In the context of reliable multicast communications, a new hybrid satellite/terrestrial approach is proposed. It aims at reducing the overall communication cost using satellite broadcasting only when enough receivers are present, and terrestrial transmissions otherwise. This approach has been statistically evaluated for a particular cost function and seems interesting. Then since the hybri...

  1. Satellite Control Laboratory

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Bak, Thomas

    2001-01-01

    The Satellite Laboratory at the Department of Control Engineering of Aalborg University (SatLab) is a dynamic motion facility designed for analysis and test of micro spacecraft. A unique feature of the laboratory is that it provides a completely gravity-free environment. A test spacecraft is...... laboratory is to conduct dynamic tests of the control and attitude determination algorithms during nominal operation and in abnormal conditions. Further it is intended to use SatLab for validation of various algorithms for fault detection, accommodation and supervisory control. Different mission objectives...... can be implemented in the laboratory, e.g. three-axis attitude control, slew manoeuvres, spins stabilization using magnetic actuation and/or reaction wheels. The spacecraft attitude can be determined applying magnetometer measurements....

  2. The solar power satellite

    Energy Technology Data Exchange (ETDEWEB)

    Combes, P.F.

    1982-01-01

    The construction, launch, components, and operations of satellite solar power systems (SSPS) for direct beaming of solar energy converted to electricity to earth stations are outlined. The reference designs of either Si or concentrator GaAs solar cell assemblies large enough to project 5 GW of power are described. The beam will be furnished by klystrons or amplitrons for reception by rectennas on earth. Conforming to the law of amplitude and the equiphase law will permit high efficiencies, pointing accuracy, and low power deposition/sq cm, thus avoiding environmental problems, although some telecommunications systems may suffer interference. The construction of the dipole rectenna grid is sketched, noting that one receiver would be an ellipse sized at 10 x 13 km. Various forms of pollution which could result from the construction of an SSPS are examined.

  3. Development, Validation, and Potential Enhancements to the Second-Generation Operational Aerosol Product at the National Environmental Satellite, Data, and Information Service of the National Oceanic and Atmospheric Administration

    Science.gov (United States)

    Stowe, Larry L.; Ignatov, Alexander M.; Singh, Ramdas R.

    1997-01-01

    A revised (phase 2) single-channel algorithm for aerosol optical thickness, tau(sup A)(sub SAT), retrieval over oceans from radiances in channel 1 (0.63 microns) of the Advanced Very High Resolution Radiometer (AVHRR) has been implemented at the National Oceanic and Atmospheric Administration's National Environmental Satellite Data and Information Service for the NOAA 14 satellite launched December 30, 1994. It is based on careful validation of its operational predecessor (phase 1 algorithm), implemented for NOAA 14 in 1989. Both algorithms scale the upward satellite radiances in cloud-free conditions to aerosol optical thickness using an updated radiative transfer model of the ocean and atmosphere. Application of the phase 2 algorithm to three matchup Sun-photometer and satellite data sets, one with NOAA 9 in 1988 and two with NOAA 11 in 1989 and 1991, respectively, show systematic error is less than 10%, with a random error of sigma(sub tau) approx. equal 0.04. First results of tau(sup A)(sub SAT) retrievals from NOAA 14 using the phase 2 algorithm, and from checking its internal consistency, are presented. The potential two-channel (phase 3) algorithm for the retrieval of an aerosol size parameter, such as the Junge size distribution exponent, by adding either channel 2 (0.83 microns) from the current AVHRR instrument, or a 1.6-microns channel to be available on the Tropical Rainfall Measurement Mission and the NOAA-KLM satellites by 1997 is under investigation. The possibility of using this additional information in the retrieval of a more accurate estimate of aerosol optical thickness is being explored.

  4. Accumulation of satellites

    International Nuclear Information System (INIS)

    Formation and evolution of circumplanetary satellite swarms are investigated. Characteristic times of various processes are estimated. The characteristic time for the accumulation of the bodies in the swarm was several orders of magnitude shorter than that of the planet, i.e. than the time of the replenishment of the material by the swarm (108 yr). The model of the accumulation of the swarm is constructed taking into account the increase of its mass due to trapping of heliocentrically moving particles and its decrease due to outfall of the inner part of the swarm onto the growing planet. The accumulation of circumplanetary bodies is also considered. The main features of the evolution of the swarm essentially depend on the size distribution of bodies in the swarm and in the zone of the planet and also on the degree of the concentration of the swarm mass toward the planet. If the sum of the exponents of the inverse power laws of these distributions is less than 7, the model of the transparent swarm developed in this paper should be preferred. When this sum is greater than 7, the model of opaque swarm suggested by A. Harris and W.M. Kaula is better. There is predominant trapping of small particles into the swarm due to their more frequent collisions. Optical thickness of the protoplanetary cloud in radial direction is estimated. It is shown that at the final stage of the planetary accumulation, the cloud was semitransparent in the region of terrestrial planets and volatile substances evaporated at collisions could be swept out from the outer parts of the satellite swarm by the solar wind

  5. MEMOS - Mars Environment Monitoring Satellite

    Science.gov (United States)

    Ott, T.; Barabash, S.; von Schéele, F.; Clacey, E.; Pokrupa, N.

    2007-08-01

    The Swedish Institute of Space Physics (IRF) in cooperation with the Swedish Space Corporation (SSC) has conducted first studies on a Mars Environment Monitoring Satellite (MEMOS). The MEMOS microsatellite (mass budget. The low thrust level enables precise and active nutation damping. Moreover the system offers the possibility of implementing active orbit control or formation flight demonstrations at Mars. Attitude will be determined on-board with an accuracy based on MEMS-technology. TM/TC will be relayed via the parent satellite in the UHF frequency range. Therefore the Electra Lite (ELT) Proximity-1 transceiver will autonomously communicate with the parent satellite at inter-satellite ranges 2 kbit/s. The transceiver also implements a coherent transponding mode for orbit determination through two-way Doppler ranging between the parent satellite and MEMOS. In addition ELT is compatible with a future Martian communication and navigation network pursued by NASA, which could be taken advantage of in the future for relaying data or performing ranging via other satellites part of the network. A system design driver for inter-satellite communication at Mars is the high demand of power. This leads to a disk-shape and thus easy to accommodate spacecraft configuration of MEMOS comprising a single sun-pointing solar array favourable in terms of power and spin stability. Multi-junction solar cells, which currently have an efficiency of ~29% under laboratory conditions are a key factor to keep MEMOS solar array area of ~1.15 m2 small compared to the worst case system power requirements of ~105 W. During eclipse periods high-efficient Li-ion batteries (6 x 20 Wh) will ensure power supply. The spacecraft and payload design will incorporate new technology developments such as autonomous navigation, MicroElectroMechanical Systems MEMS, Micro- Opto-ElectroMechanical Systems MOEMS and new materials to achieve low mass at high performance. Thereby it will profit from Swedish

  6. Artificial earth satellites

    Directory of Open Access Journals (Sweden)

    V. R. Thiruvenkatachar

    1958-10-01

    Full Text Available A general discussion is given of the scientific and technological problems involved in the launching of earth satellites, covering various aspects such as the dynamical relationships involved, the propulsion and guidance systems, tracking and data transmission etc. The possible uses of satellites for scientific research as well as some of the likely future developments are also briefly indicated.

  7. Satellite communication systems

    CERN Document Server

    Evans, BG

    1999-01-01

    The book is very clear and comprehensive. The scope of the book is very large: almost all aspects of current satellite communication systems are studied. Hence, the book keeps its promise in that it provides a quick start for someone who is new to the satellite communications business.

  8. Communications technology satellite

    Science.gov (United States)

    1976-01-01

    A description of the Communications Technology Satellite (CTS), its planned orbit, its experiments, and associated ground facilities was given. The communication experiments, to be carried out by a variety of groups in both the United States and Canada, include tele-education, tele-medicine, community interaction, data communications and broadcasting. A historical summary of communications satellite development was also included.

  9. 15 CFR 950.8 - Satellite Data Services Division (SDSD).

    Science.gov (United States)

    2010-01-01

    ... Technology Satellites (ATS) I and III geostationary research spacecraft; tens of thousands of images from the... THE ENVIRONMENTAL DATA SERVICE ENVIRONMENTAL DATA AND INFORMATION § 950.8 Satellite Data Services... environmental and earth resources satellite data to other users once the original collection purposes...

  10. Development of a Robotics-based Satellites Docking Simulator

    OpenAIRE

    Zebenay, M.

    2014-01-01

    The European Proximity Operation Simulator (EPOS) is a hardware-in-the-loop (HIL) system aiming, among other objectives, at emulating on-orbit docking of spacecraft for verification and validation of the docking phase. This HIL docking simulator set-up essentially consists of docking interfaces, simulating the servicing satellite called chaser satellite, the serviced satellite called target satellite, a sensor of the forces and torques during contact, and two industrial robots that hold the d...

  11. Demonstration of Small Satellite Technologies by the Bird Mission

    OpenAIRE

    K. Brieß; S. Montenegro; Bärwald, W.; Halle, W.; Kayal, H.; E. Lorenz; W. Skrbek; Studemund, H.; Terzibaschian, T.; Walter, I.

    2002-01-01

    The first satellites at the beginning of the space age were small satellites. Primarily because of the fact that the launch capacity was small. Later on the launchers and satellites grew, and today a lot of big missions with a high complexity are in space. These missions serve the science, the military and defense, commercial and operational users as well as public and private interests. Today’s technology allows the supplement of the big missions by small satellite missions. By exploring new...

  12. Initial Study on Application of SPOT5 Satellite Data to Forest Resource Inventory at County Level%SPOT5卫星数据在旗县森林资源调查中的应用

    Institute of Scientific and Technical Information of China (English)

    段河

    2011-01-01

    SPOT5卫星数据应用是当前森林资源遥感调查的热点。文章对应用SPOT5卫星数据进行旗县森林资源调查的方法作了分析和总结,并提出了建议。%The application of SPOT5 satellite data to current remote sensing inventory of forest resources is afocal topic at present.In the paper systematic summary of the methods,precision and benefit of forest re-sources inventory at county level by using SPOT5 satellite data has been done and compared themwithmethodsof traditional inventory and TMsatellite image remote sensing.

  13. Electric propulsion for small satellites

    International Nuclear Information System (INIS)

    Propulsion is required for satellite motion in outer space. The displacement of a satellite in space, orbit transfer and its attitude control are the task of space propulsion, which is carried out by rocket engines. Electric propulsion uses electric energy to energize or accelerate the propellant. The electric propulsion, which uses electrical energy to accelerate propellant in the form of plasma, is known as plasma propulsion. Plasma propulsion utilizes the electric energy to first, ionize the propellant and then, deliver energy to the resulting plasma leading to plasma acceleration. Many types of plasma thrusters have been developed over last 50 years. The variety of these devices can be divided into three main categories dependent on the mechanism of acceleration: (i) electrothermal, (ii) electrostatic and (iii) electromagnetic. Recent trends in space exploration associate with the paradigm shift towards small and efficient satellites, or micro- and nano-satellites. A particular example of microthruster considered in this paper is the micro-cathode arc thruster (µCAT). The µCAT is based on vacuum arc discharge. Thrust is produced when the arc discharge erodes some of the cathode at high velocity and is accelerated out the nozzle by a Lorentz force. The thrust amount is controlled by varying the frequency of pulses with demonstrated range to date of 1–50 Hz producing thrust ranging from 1 µN to 0.05 mN. (paper)

  14. Electric propulsion for small satellites

    Science.gov (United States)

    Keidar, Michael; Zhuang, Taisen; Shashurin, Alexey; Teel, George; Chiu, Dereck; Lukas, Joseph; Haque, Samudra; Brieda, Lubos

    2015-01-01

    Propulsion is required for satellite motion in outer space. The displacement of a satellite in space, orbit transfer and its attitude control are the task of space propulsion, which is carried out by rocket engines. Electric propulsion uses electric energy to energize or accelerate the propellant. The electric propulsion, which uses electrical energy to accelerate propellant in the form of plasma, is known as plasma propulsion. Plasma propulsion utilizes the electric energy to first, ionize the propellant and then, deliver energy to the resulting plasma leading to plasma acceleration. Many types of plasma thrusters have been developed over last 50 years. The variety of these devices can be divided into three main categories dependent on the mechanism of acceleration: (i) electrothermal, (ii) electrostatic and (iii) electromagnetic. Recent trends in space exploration associate with the paradigm shift towards small and efficient satellites, or micro- and nano-satellites. A particular example of microthruster considered in this paper is the micro-cathode arc thruster (µCAT). The µCAT is based on vacuum arc discharge. Thrust is produced when the arc discharge erodes some of the cathode at high velocity and is accelerated out the nozzle by a Lorentz force. The thrust amount is controlled by varying the frequency of pulses with demonstrated range to date of 1-50 Hz producing thrust ranging from 1 µN to 0.05 mN.

  15. Overview of the meteorological satellite

    Energy Technology Data Exchange (ETDEWEB)

    Kodaira, Nobuhiko

    1988-01-25

    The geostational meteorological satellite (Himawari) GMS-3 is now in activity. The next satellite GMS-4-4 is to be launched in 1989. GMS is a geostational meteorological satellite with rotates at 100 rpm by the spin stabilization system. The spin axis is perpendicular to the orbital plane across the earth. For imaging of the earth, GMS scans the earth from the west to the east, with a visible IR radiator. With the computer recently introduced, the observation can be successively made every 1 hour interval in the normal condition. The cloud-moving image obtained by the successive observation shows the cloud movement more smoothly, as compared with that obtained by conventional observation every 3 hour interval. The main meteorological observation items which can not be achieved by the present meteorological satellite include rainfall and ground atmospheric pressure. TRMM for measuring rainfalls is under co-investigation of U.S.A. and Japan. Measurement of atomospheric pressure has not reached the practical use stage yet. Typical measuring method utilizes the O/sub 2/ absorption wavelength range with a microwave. (6 figs, 2 tabs, 4 refs)

  16. Seamless Mosaicing of Very High Resolution Satellite Data at Continental Scale: A Case-Study for Big Data Science from Space

    OpenAIRE

    Soille, Pierre

    2014-01-01

    The seamless mosaicing of massive very high resolution imagery addresses several aspects related to big data from space. Data volume is directly proportional to the size the input data, i.e., order of several TeraPixels for a continent. Data velocity derives from the fact that the input data is delivered over several years to meet maximum cloud contamination constraints with the considered satellites. Data variety results from the need to collect and integrate various ancillary data for ...

  17. Heat shock factor 1 binds to and transcribes satellite II and III sequences at several pericentromeric regions in heat-shocked cells

    Energy Technology Data Exchange (ETDEWEB)

    Eymery, Angeline, E-mail: aeymery@gmail.com [Universite Joseph Fourier-Grenoble I (France); INSERM Institut Albert Bonniot U823, La Tronche, F-38700 (France); Souchier, Catherine, E-mail: catherine.souchier@ujf-grenoble.fr [Universite Joseph Fourier-Grenoble I (France); INSERM Institut Albert Bonniot U823, La Tronche, F-38700 (France); Vourc' h, Claire, E-mail: claire.vourch@ujf-grenoble.fr [Universite Joseph Fourier-Grenoble I (France); INSERM Institut Albert Bonniot U823, La Tronche, F-38700 (France); Jolly, Caroline, E-mail: caroline.jolly@upmf-grenoble.fr [Universite Joseph Fourier-Grenoble I (France); INSERM Institut Albert Bonniot U823, La Tronche, F-38700 (France)

    2010-07-01

    Cells respond to stress by activating the synthesis of heat shock proteins (HSPs) which protect the cells against the deleterious effects of stress. This mechanism is controlled by the heat shock factor 1 (HSF1). In parallel to HSP gene transcription, in human cells, HSF1 also binds to and transcribes satellite III repeated sequences present in numerous copies in the 9q12 pericentromeric region of chromosome 9. These HSF1 accumulation sites are termed nuclear stress bodies (nSBs). In tumor cells, however, the number of nSBs is higher than the number of 9q12 copies, suggesting the existence of other HSF1 targets. In this paper, we were interested in characterizing these other HSF1 binding sites. We show that HSF1 indeed binds to the pericentromeric region of 14 chromosomes, thereby directing the formation of 'secondary nSBs'. The appearance of secondary nSBs depends on the number of satellite sequences present in the target locus, and on the cellular amount of HSF1 protein. Moreover, secondary nSBs also correspond to transcription sites, thus demonstrating that heat shock induces a genome-wide transcription of satellite sequences. Finally, by analyzing published transcriptomic data, we show that the derepression of these large heterochromatic blocks does not significantly affect the transcription of neighboring genes.

  18. Heat shock factor 1 binds to and transcribes satellite II and III sequences at several pericentromeric regions in heat-shocked cells

    International Nuclear Information System (INIS)

    Cells respond to stress by activating the synthesis of heat shock proteins (HSPs) which protect the cells against the deleterious effects of stress. This mechanism is controlled by the heat shock factor 1 (HSF1). In parallel to HSP gene transcription, in human cells, HSF1 also binds to and transcribes satellite III repeated sequences present in numerous copies in the 9q12 pericentromeric region of chromosome 9. These HSF1 accumulation sites are termed nuclear stress bodies (nSBs). In tumor cells, however, the number of nSBs is higher than the number of 9q12 copies, suggesting the existence of other HSF1 targets. In this paper, we were interested in characterizing these other HSF1 binding sites. We show that HSF1 indeed binds to the pericentromeric region of 14 chromosomes, thereby directing the formation of 'secondary nSBs'. The appearance of secondary nSBs depends on the number of satellite sequences present in the target locus, and on the cellular amount of HSF1 protein. Moreover, secondary nSBs also correspond to transcription sites, thus demonstrating that heat shock induces a genome-wide transcription of satellite sequences. Finally, by analyzing published transcriptomic data, we show that the derepression of these large heterochromatic blocks does not significantly affect the transcription of neighboring genes.

  19. Overview of commercial satellite communications

    Science.gov (United States)

    Beakley, G. W.

    1984-07-01

    A brief history of communications satellites is presented, taking into account the launching of Sputnik 1 in October 1957, the Explorer 1 in January of 1958, the launch of the Score as the world's first active communications satellite in December 1958, the Communications Satellite Act in 1962, and the launch of 'Early Bird' in 1964. The Intelsat satellites are considered along with maritime satellite communications, the U.S. domestic satellite systems, Alaskan satellite communications, cable television, broadcast TV stations, print media, the hotel/motel industry as a large market for satellite communications terminals, the opening of a minicable and satellite master antenna TV market for TV receive-only systems, and business telecommunications earth terminals. Attention is also given to future directions regarding satellite positions, the concept of 'video-plus', and direct broadcast satellites.

  20. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio

    2013-01-01

    Top space experts from around the world have collaborated to produce this comprehensive, authoritative, and clearly illustrated reference guide to the fast growing, multi-billion dollar field of satellite applications and space communications. This handbook, done under the auspices of the International Space University based in France, addresses not only system technologies but also examines market dynamics, technical standards and regulatory constraints. The handbook is a completely multi-disciplinary reference book that covers, in an in-depth fashion, the fields of satellite telecommunications, Earth observation, remote sensing, satellite navigation, geographical information systems, and geosynchronous meteorological systems. It covers current practices and designs as well as advanced concepts and future systems. It provides a comparative analysis of the common technologies and design elements for satellite application bus structures, thermal controls, power systems, stabilization techniques, telemetry, com...

  1. Biological satellite Kosmos-936

    Science.gov (United States)

    Vedeshin, L. A.

    1978-01-01

    A description is given of physiological experiments performed on the biological satellite Kosmos-936. Other experiments to determine the electrostatic and dielectric responses to the effects of cosmic radiation are discussed.

  2. Epos TCS Satellite Data

    Science.gov (United States)

    Manunta, Michele; Mandea, Mioara; Fernández-Turiel, José Luis; Stramondo, Salvatore; Wright, Tim; Walter, Thomas; Bally, Philippe; Casu, Francesco; Zeni, Giovanni; Buonanno, Sabatino; Zinno, Ivana; Tizzani, Pietro; Castaldo, Raffaele; Ostanciaux, Emilie; Diament, Michel; Hooper, Andy; Maccaferri, Francesco; Lanari, Riccardo

    2016-04-01

    TCS Satellite Data is devoted to provide Earth Observation (EO) services, transversal with respect to the large EPOS community, suitable to be used in several application scenarios. In particular, the main goal is to contribute with mature services that have already well demonstrated their effectiveness and relevance in investigating the physical processes controlling earthquakes, volcanic eruptions and unrest episodes as well as those driving tectonics and Earth surface dynamics. The TCS Satellite Data will provide two kinds of services: satellite products/services, and Value-added satellite products/services. The satellite products/services are composed of three (EPOSAR, GDM and COMET) well-identified and partly already operational elements for delivering Level 1 products. Such services will be devoted to the generation of SAR interferograms, DTM and ground displacement maps through the exploitation of different advanced EO techniques for InSAR and optical data analysis. The Value-added satellite products/services are composed of 4 elements (EPOSAR, 3D-Def, Mod and COMET) of Level 2 and 3 products. Such services integrate satellite and in situ measurements and observations to retrieve information on source mechanism, such as the geometry (spatial location, depth, volume changes) and the physical parameters of the deformation sources, through the exploitation of modelling approaches. The TCS Satellite Data will provide products in two different processing and delivery modes: 1- surveillance mode - routinely product generation; 2- on demand mode - product generation performed on demand by the user. Concerning the surveillance mode, the goal is providing continuous satellite measurements in areas of particular interest from a geophysical perspective (supersites). The objective is the detection of displacement patterns changing along time and their geophysical explanation. This is a valid approach for inter-seismic movements and volcanic unrest, post-seismic and post

  3. ASTRID II satellit projekt

    DEFF Research Database (Denmark)

    Jørgensen, John Leif; Primdahl, Fritz

    1997-01-01

    The report describes the instruments developed for the Swedish micro satellite "ASTRID II". Specifications of the two instruments realized under this contract, a Stellar Compass and a CSC magnetometer are given follwed by a description of the project status and plan.......The report describes the instruments developed for the Swedish micro satellite "ASTRID II". Specifications of the two instruments realized under this contract, a Stellar Compass and a CSC magnetometer are given follwed by a description of the project status and plan....

  4. Laser Payloads on Small Satellites

    OpenAIRE

    Lingvay, L.S.; Bowman, A.P.; Wallace, A. S.

    1990-01-01

    Laser payloads on satellites have the ability to enhance our communications capabilities and information gathering power from space. Implementation of lasers to Lightsats provides one method to assess the effectiveness of these technologies at reduced risk. This paper will focus on the main applications of lasers in space and how laser systems may be adapted to the Lightsat environment. This will include a discussion of the different types of lasers, which types are suitable for space based p...

  5. Marine Corps Tactical Satellite Communications

    OpenAIRE

    Daniel, Walter; Rivas, Gavino; Bruninga, Robert

    1992-01-01

    A tactical satellite communications exercise using the DARPA Microsats was conducted by Naval Academy personnel at the Quantico Marine Corps Base in Virginia. Midshipmen used a military UHF radio, a modified amateur radio transmitter, and scanner receivers while a station in Annapolis communicated with them. Voice communications were clear and understandable even when the tactical teams were in the woods. Amateur radio operators and scanner enthusiasts around the eastern half of the United St...

  6. Small Earth Observing Satellites Flying with Large Satellites in the A-Train

    Science.gov (United States)

    Kelly, Angelita C.; Loverro, Adam; Case, Warren F.; Queruel, Nadege; Marechal, Chistophe; Barroso, Therese

    2009-01-01

    This paper/poster presents a real-life example of the benefits of flying small satellites with other satellites, large or small, and vice versa. Typically, most small satellites fly payloads consisting of one or two instruments and fly in orbits that are independent from that of other satellites. The science data from these satellites are either used in isolation or correlated with instrument data from other satellites. Data correlation with other satellites is greatly improved when the measurements of the same point or air mass are taken at approximately the same time. Scientists worldwide are beginning to take advantage of the opportunities for improved data correlation, or coincidental science, offered by the international Earth Observing Constellation known as the A-Train (sometimes referred to as the Afternoon Constellation). Most of the A-Train satellites are small - the A-Train is anchored by two large NASA satellites (EOS-Aqua and EOS-Aura), but consists also of 5 small satellites (CloudSat, CALIPSO, PARASOL, OCO and Glory these last two will join in 2009). By flying in a constellation, each mission benefits from coincidental observations from instruments on the other satellites in the constellation. Essentially, from a data point of view, the A-Train can be envisioned as a single, virtual science platform with multiple instruments. Satellites in the A-Train fly at 705 km in sun-synchronous orbits. Their mean local times at the equator are within seconds to a few minutes of each other. This paper describes the challenges of operating an international constellation of independent satellites from the U.S. and Europe to maximize the coincidental science opportunities while at the same time minimizing the level of operational interactions required between team members. The A-Train mission teams have been able to demonstrate that flying as members of an international constellation does not take away the flexibility to accommodate new requirements. Specific

  7. Performance Analysis of BDS Satellite Orbits during Eclipse Periods: Results of Satellite Laser Ranging Validation

    Directory of Open Access Journals (Sweden)

    PENG Hanbing

    2016-06-01

    Full Text Available The performance of BeiDou satellite orbits during eclipse periods is an important part of the performance analysis of BeiDou Navigation Satellite System (BDS. Accuracy evaluation of satellite orbits in ephemeris of BDS during eclipse periods can provide support for the service performance assessment. It also helps to find possible deficiencies in the orbit modeling during eclipse periods, which may further contribute to the improvements of functional models for precise orbit determination. The effects of eclipse periods on the orbits of the three types of satellites of BDS are analyzed with the satellite laser ranging (SLR observations ranging from January 2014 to July 2015. At the same time, the orbit radial accuracy of BDS broadcast and precise ephemeris are validated. The results show that, obvious orbit accuracy decrease can be observed in both broadcast and precise ephemeris for IGSO/MEO satellites during eclipse periods (especially the yaw-maneuver periods. And orbit radial errors of IGSO/MEO satellites in broadcast ephemeris reach 1.5~2.0 m, and exceed 10.0 cm for that in precise ephemeris. Performance decrease of the GEO satellite orbit during eclipse arcs can hardly be revealed by the orbit radial residual series. During non-eclipse periods, radial accuracy of IGSO/MEO and GEO satellite orbits in broadcast ephemeris are better than 0.5 m and 0.9 m respectively. The radial accuracy of IGSO/MEO satellite orbits in precise ephemeris are better than 10.0 cm and that of the GEO satellite is about 50.0 cm with a systematic bias of 40.0 cm around.

  8. Satellite medical centers project

    Science.gov (United States)

    Aggarwal, Arvind

    2002-08-01

    World class health care for common man at low affordable cost: anywhere, anytime The project envisages to set up a national network of satellite Medical centers. Each SMC would be manned by doctors, nurses and technicians, six doctors, six nurses, six technicians would be required to provide 24 hour cover, each SMC would operate 24 hours x 7 days. It would be equipped with the Digital telemedicine devices for capturing clinical patient information and investigations in the form of voice, images and data and create an audiovisual text file - a virtual Digital patient. Through the broad band connectivity the virtual patient can be sent to the central hub, manned by specialists, specialists from several specialists sitting together can view the virtual patient and provide a specialized opinion, they can see the virtual patient, see the examination on line through video conference or even PCs, talk to the patient and the doctor at the SMC and controlle capturing of information during examination and investigations of the patient at the SMC - thus creating a virtual Digital consultant at the SMC. Central hub shall be connected to the doctors and consultants in remote locations or tertiary care hospitals any where in the world, thus creating a virtual hub the hierarchical system shall provide upgradation of knowledge to thedoctors in central hub and smc and thus continued medical education and benefit the patient thru the world class treatment in the smc located at his door step. SMC shall be set up by franchisee who shall get safe business opportunity with high returns, patients shall get Low cost user friendly worldclass health care anywhere anytime, Doctors can get better meaningful selfemplyment with better earnings, flexibility of working time and place. SMC shall provide a wide variety of services from primary care to world class Global consultation for difficult patients.

  9. Satellite Application for Disaster Management Information Systems

    Science.gov (United States)

    Okpanachi, George

    Abstract Satellites are becoming increasingly vital to modern day disaster management activities. Earth observation (EO) satellites provide images at various wavelengths that assist rapid-mapping in all phases of the disaster management cycle: mitigation of potential risks in a given area, preparedness for eventual disasters, immediate response to a disaster event, and the recovery/reconstruction efforts follo wing it. Global navigation satellite systems (GNSS) such as the Global Positioning System (GPS) assist all the phases by providing precise location and navigation data, helping manage land and infrastructures, and aiding rescue crews coordinate their search efforts. Effective disaster management is a complex problem, because it involves many parameters, which are usually not easy to measure and even identify: Analysis of current situation, planning, optimum resource management, coordination, controlling and monitoring current activities and making quick and correct decisions are only some of these parameters, whose complete list is very long. Disaster management information systems (DMIS) assist disaster management to analyse the situation better, make decisions and suggest further actions following the emergency plans. This requires not only fast and thorough processing and optimization abilities, but also real-time data provided to the DMIS. The need of DMIS for disaster’s real-time data can be satisfied by small satellites data utilization. Small satellites can provide up-to-data, plus a better media to transfer data. This paper suggests a rationale and a framework for utilization of small Satellite data by DMIS. DMIS should be used ‘’before’’, ‘’during’’ and ‘’after’’ the disasters. Data provided by the Small Satellites are almost crucial in any period of the disasters, because early warning can save lives, and satellite data may help to identify disasters before they occur. The paper also presents’ ‘when’’,

  10. Discovery of a new Jupiter satellite

    Science.gov (United States)

    Jewitt, D. C.; Danielson, G. E.; Synnott, S. P.

    1979-01-01

    During detailed analysis of Voyager 2 pictures of the Jupiter ring, a starlike object was identified in the plane of the ring. The same object was subsequently found on a higher-resolution frame and proved to be a satellite of Jupiter. This satellite has a circular orbit whose radius is 1.8 Jupiter radii, a period of 7 hours and 8 minutes, and a diameter of less than 40 kilometers. It is located at the outer edge of the Jupiter ring.

  11. Extrapolating Satellite Winds to Turbine Operating Heights

    OpenAIRE

    Badger, Merete; Pena Diaz, Alfredo; Hahmann, Andrea N.; Mouche, Alexis; Hasager, Charlotte Bay

    2016-01-01

    Ocean wind retrievals from satellite sensors are typically performed for the standard level of 10 m. This restricts their full exploitation for wind energy planning, which requires wind information at much higher levels where wind turbines operate. A new method is presented for the vertical extrapolation of satellitebased wind maps. Winds near the sea surface are obtained from satellite data and used together with an adaptation of the Monin–Obukhov similarity theory to estimate the wind speed...

  12. China's Meteorological Satellite Application System

    Institute of Scientific and Technical Information of China (English)

    Zhang Jiashen

    2008-01-01

    @@ China's meteorological satellite program consists of five systems,namely the satellite system,the launch vehicle system,the launch center system,TT&C and the ground application system.The satellite system consists of FengYun (FY) polar orbiting series and FY geostationary series,which are launched by LM launch vehicles from Taiyan Satellite Launch Center (TSLC) and Xichang Satellite Launch Center (XSLC) respectively.

  13. Configurable software for satellite graphics

    Energy Technology Data Exchange (ETDEWEB)

    Hartzman, P D

    1977-12-01

    An important goal in interactive computer graphics is to provide users with both quick system responses for basic graphics functions and enough computing power for complex calculations. One solution is to have a distributed graphics system in which a minicomputer and a powerful large computer share the work. The most versatile type of distributed system is an intelligent satellite system in which the minicomputer is programmable by the application user and can do most of the work while the large remote machine is used for difficult computations. At New York University, the hardware was configured from available equipment. The level of system intelligence resulted almost completely from software development. Unlike previous work with intelligent satellites, the resulting system had system control centered in the satellite. It also had the ability to reconfigure software during realtime operation. The design of the system was done at a very high level using set theoretic language. The specification clearly illustrated processor boundaries and interfaces. The high-level specification also produced a compact, machine-independent virtual graphics data structure for picture representation. The software was written in a systems implementation language; thus, only one set of programs was needed for both machines. A user can program both machines in a single language. Tests of the system with an application program indicate that is has very high potential. A major result of this work is the demonstration that a gigantic investment in new hardware is not necessary for computing facilities interested in graphics.

  14. Autonomous satellite constellation orbit determination using the star sensor and inter-satellite links data

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A method of autonomous orbit determination for a satellite constellation using a star sensor combined with inter satellite links(ISLs) is studied.Two types of simulated observation data,Three-Satellite Constellation ISLs and background stellar observations by a CCD star sensor,are first produced.Based on these data,an observation equation is built for the constellation joint autonomous orbit determination,in which the simulations are run.The accuracy of this method with different orbital determination models are analyzed and compared with regard to the effect of potential measurement errors.The results show that autonomous satellite constellation orbit determination using star sensor measurement and ISLs data is feasible.Finally,this paper arrives at several conclusions which contribute to extending this method to a more general satellite constellation.

  15. The Principle of Navigation Constellation Composed of SIGSO Communication Satellites

    CERN Document Server

    Ji, Hai-Fu; Ai, Guo-Xiang; Shi, Hu-Li

    2012-01-01

    The Chinese Area Positioning System (CAPS), a navigation system based on GEO communication satellites, was developed in 2002 by astronomers at Chinese Academy of Sciences. Extensive positioning experiments of CAPS have been performed since 2005. On the basis of CAPS, this paper studies the principle of navigation constellation composed of Slightly Inclined Geostationary Orbit (SIGSO) communication satellites. SIGSO satellites are derived from end-of-life Geostationary Orbit (GEO) satellites under inclined orbit operation. Considering the abundant frequency resources of SIGSO satellites, multi-frequency observations could be conducted to enhance the precision of pseudorange measurements and ameliorate the positioning performence. The constellation composed of two GEO satellites and four SIGSO satellites with inclination of 5 degrees can provide the most territory of China with 24-hour maximum PDOP less than 42. With synthetic utilization of the truncated precise (TP) code and physical augmentation factor in fo...

  16. Satellite Imaging System

    Directory of Open Access Journals (Sweden)

    AA Somaie

    2013-06-01

    Full Text Available The aim of this paper is to present the essential elements of the electro-optical imaging system EOIS for space applications and how these elements can affect its function. After designing a spacecraft for low orbiting missions during day time, the design of an electro-imaging system becomes an important part in the satellite because the satellite will be able to take images of the regions of interest. An example of an electro-optical satellite imaging system will be presented through this paper where some restrictions have to be considered during the design process. Based on the optics principals and ray tracing techniques the dimensions of lenses and CCD (Charge Coupled Device detector are changed matching the physical satellite requirements. However, many experiments were done in the physics lab to prove that the resizing of the electro optical elements of the imaging system does not affect the imaging mission configuration. The procedures used to measure the field of view and ground resolution will be discussed through this work. Examples of satellite images will be illustrated to show the ground resolution effects.

  17. Megha-Tropiques satellite mission: sensors performances

    Science.gov (United States)

    Karouche, Nadia; Raju, Garuda

    2010-10-01

    MEGHA-TROPIQUES is an CNES-ISRO collaborative satellite mission designed to study processes related to large tropical convective systems and their life cycle, and to provide key elements related to atmospheric energy and water budget at various time and space scales. The satellite will perform high repetitive measurements using a low inclined (20°) orbit, and will carry 4 instruments : • MADRAS Instrument: A conical scanning microwave imager designed to estimate precipitations and clouds properties. • SAPHIR Instrument: A microwave sensor used to retrieve vertical humidity profiles. • SCARAB Instrument: An wide band optical radiometer used to retrieve Earth Radiation budget parameters. • GPS-ROS instrument: The sensor will provide temperature and humidity profiles of the Earth's atmosphere The MEGHA-TROPIQUES satellite is planned to be launched in 2011 by the Indian PSLV launcher. This paper presents the mission, the satellite definition and the measured performances of the sensors.

  18. Future large broadband switched satellite communications networks

    Science.gov (United States)

    Staelin, D. H.; Harvey, R. R.

    1979-01-01

    Critical technical, market, and policy issues relevant to future large broadband switched satellite networks are summarized. Our market projections for the period 1980 to 2000 are compared. Clusters of switched satellites, in lieu of large platforms, etc., are shown to have significant advantages. Analysis of an optimum terrestrial network architecture suggests the proper densities of ground stations and that link reliabilities 99.99% may entail less than a 10% cost premium for diversity protection at 20/30 GHz. These analyses suggest that system costs increase as the 0.6 power of traffic. Cost estimates for nominal 20/30 GHz satellite and ground facilities suggest optimum system configurations might employ satellites with 285 beams, multiple TDMA bands each carrying 256 Mbps, and 16 ft ground station antennas. A nominal development program is outlined.

  19. Potential of High-Resolution Satellite Imagery for Mapping Distribution and Evaluating Ecological Characteristics of Tree Species at the Angkor Monument, Cambodia

    Directory of Open Access Journals (Sweden)

    Tomita Mizuki

    2015-01-01

    Full Text Available Large trees play several vital roles in the Angkor monuments landscape. They protect biodiversity, enhance the tourism experience, and provide various ecosystem services to local residents. A clear understanding of forest composition and distribution of individual species, as well as timely monitoring of changes, is necessary for conservation of these trees. using traditional field work, obtaining this sort of data is time-consuming and labour-intensive. This research investigates classification of very high resolution remote sensing data as a tool for efficient analyses. QuickBird satellite imagery was used to clarify the tree species community in and around Preah Khan temple, to elucidate differences in ecological traits among the three dominant species (Dipterocarpus alatus, Lagerstroemia calyculata and Tetrameles nudiflora, and to identify crowns of the dominant species.

  20. Jupiter and Its Galilean Satellites

    Science.gov (United States)

    McGrath, Melissa A.

    2012-01-01

    Jupiter is one of the two most studied planets other than Earth in our Solar System. It is the largest, fastest rotating, has the strongest magnetic field, and an incredibly diverse set of satellites, most prominent of which are the four Galilean satellites discovered in 1610. Io, Europa, Ganymede and Callisto encompass some of the most bizarre environments known in the solar system, from Io, the most volcanically active and perhaps the most inhospitable body known, to Europa, currently thought to be the most likely extraterrestrial abode for habitability, to Ganymede, which is larger than Mercury, and Callisto, which has the oldest surface known in the solar system with the widest array of crater morphologies known. One of the premier areas of scientific return in solar system research in the past 15 years, due in large part to the Galileo mission and observations by the Hubble Space Telescope, has been a remarkable increase in our knowledge about these satellites. Discoveries have been made of tenuous molecular oxygen atmospheres on Europa and Ganymede, a magnetic field and accompanying auroral emissions at the poles of Ganymede, and of ozone and sulfur dioxide embedded in the surfaces of Europa, Ganymede and Callisto. Io's unusual sulfur dioxide atmosphere, including its volcanic plumes and strong electrodynamic interaction with magnetospheric plasma, has finally been quantitatively characterized. This talk will present highlights from the recent discoveries and advances in our understanding of these fascinating objects.

  1. Satellite-based laser windsounder

    International Nuclear Information System (INIS)

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project''s primary objective is to determine the technical feasibility of using satellite-based laser wind sensing systems for detailed study of winds, aerosols, and particulates around and downstream of suspected proliferation facilities. Extensive interactions with the relevant operational organization resulted in enthusiastic support and useful guidance with respect to measurement requirements and priorities. Four candidate wind sensing techniques were evaluated, and the incoherent Doppler technique was selected. A small satellite concept design study was completed to identify the technical issues inherent in a proof-of-concept small satellite mission. Use of a Mach-Zehnder interferometer instead of a Fabry-Perot would significantly simplify the optical train and could reduce weight, and possibly power, requirements with no loss of performance. A breadboard Mach-Zehnder interferometer-based system has been built to verify these predictions. Detailed plans were made for resolving other issues through construction and testing of a ground-based lidar system in collaboration with the University of Wisconsin, and through numerical lidar wind data assimilation studies

  2. Detection and surveillance by satellite

    International Nuclear Information System (INIS)

    In parallel with the conventional methods used for detecting nuclear explosions and revealing signs of proliferation and, as a consequence, the monitoring of human activities. Among the main advantages of satellites is their ability to carry out non-intrusive observations of any part of the Earth's surface at all times, while remaining in full compliance with legal requirements. Satellite-based detection is based on the electromagnetic pulse (EMP) and various optical effects. The modification of signals as they traverse the atmosphere and ionosphere should also be taken into account, but such changes in no way hinder the detection. Ultra-high frequencies are the most suitable for detection since they are less affected by the ionosphere. Signals propagated in this way are characteristic and can be distinguished from those due to lightning storms. However, some important questions arise because of the recent discovery of a new type of lightning which propagates from the tops of clouds towards the ionosphere. The electromagnetic signal in some respects is similar to that produced by an explosion. Site surveillance depends on the analysis and processing of satellite imagery such as obtained by SPOT, Landsat or ERSI. More precise measurements obtained by interferometry (ERSI) enable the observation of small-amplitude strains with can lead to the discrimination of natural seismic events from nuclear explosions. (authors)

  3. Satellite-based laser windsounder

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, J.F.; Czuchlewski, S.J.; Quick, C.R. [and others

    1997-08-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project`s primary objective is to determine the technical feasibility of using satellite-based laser wind sensing systems for detailed study of winds, aerosols, and particulates around and downstream of suspected proliferation facilities. Extensive interactions with the relevant operational organization resulted in enthusiastic support and useful guidance with respect to measurement requirements and priorities. Four candidate wind sensing techniques were evaluated, and the incoherent Doppler technique was selected. A small satellite concept design study was completed to identify the technical issues inherent in a proof-of-concept small satellite mission. Use of a Mach-Zehnder interferometer instead of a Fabry-Perot would significantly simplify the optical train and could reduce weight, and possibly power, requirements with no loss of performance. A breadboard Mach-Zehnder interferometer-based system has been built to verify these predictions. Detailed plans were made for resolving other issues through construction and testing of a ground-based lidar system in collaboration with the University of Wisconsin, and through numerical lidar wind data assimilation studies.

  4. Desert dust satellite retrieval intercomparison

    Directory of Open Access Journals (Sweden)

    E. Carboni

    2012-01-01

    Full Text Available This work provides a comparison of satellite retrievals of Saharan desert dust aerosol optical depth (AOD during a strong dust event through March 2006. In this event, a large dust plume was transported over desert, vegetated, and ocean surfaces. The aim is to identify and understand the differences between current algorithms, and hence improve future retrieval algorithms. The satellite instruments considered are AATSR, AIRS, MERIS, MISR, MODIS, OMI, POLDER, and SEVIRI. An interesting aspect is that the different algorithms make use of different instrument characteristics to obtain retrievals over bright surfaces. These include multi-angle approaches (MISR, AATSR, polarisation measurements (POLDER, single-view approaches using solar wavelengths (OMI, MODIS, and the thermal infrared spectral region (SEVIRI, AIRS. Differences between instruments, together with the comparison of different retrieval algorithms applied to measurements from the same instrument, provide a unique insight into the performance and characteristics of the various techniques employed. As well as the intercomparison between different satellite products, the AODs have also been compared to co-located AERONET data. Despite the fact that the agreement between satellite and AERONET AODs is reasonably good for all of the datasets, there are significant differences between them when compared to each other, especially over land. These differences are partially due to differences in the algorithms, such as assumptions about aerosol model and surface properties. However, in this comparison of spatially and temporally averaged data, at least as significant as these differences are sampling issues related to the actual footprint of each instrument on the heterogeneous aerosol field, cloud identification and the quality control flags of each dataset.

  5. Digital Video Broadcast Return Channel via Satellite (DVB-RCS Hub for Satellite Based E-Learning

    Directory of Open Access Journals (Sweden)

    N.G.Vasantha Kumar

    2011-02-01

    Full Text Available This paper discusses in-house designed and developed scale-down DVB-RCS hub along with the performance of the realized hub. This development is intended to support the Satellite Based e-Learning initiative in India. The scale-down DVB-RCS HUB is implemented around a single PC with other subsystems making it very cost effective and unique of its kind. This realization will drastically reduce the total cost of Satellite based Education Networks as very low cost commercially available Satellite Interactive Terminals (SITs complying to open standard could be used at remote locations. The system is successfully tested to work with a commercial SIT using a GEO satellite EDUSAT which is especially dedicated for satellite based e-Learning. The internal detail of the DVB-RCS Forward and Return Link Organization and how it manages the Satellite Interactive Terminals access to the satellite channel using MF-TDMA approach has been described.

  6. DIGITAL VIDEO BROADCAST RETURN CHANNEL VIA SATELLITE (DVB-RCS HUB FOR SATELLITE BASED E-LEARNING

    Directory of Open Access Journals (Sweden)

    N.G.Vasantha Kumar

    2011-02-01

    Full Text Available This paper discusses in-house designed and developed scale-down DVB-RCS hub along with the performance of the realized hub. This development is intended to support the Satellite Based e-Learning initiative in India. The scale-down DVB-RCS HUB is implemented around a single PC with other subsystems making it very cost effective and unique of its kind. This realization will drastically reduce the total cost of Satellite based Education Networks as very low cost commercially available Satellite Interactive Terminals (SITs complying to open standard could be used at remote locations. The system is successfully tested to work with a commercial SIT using a GEO satellite EDUSAT which is especially dedicated for satellite based e-Learning. The internal detail of the DVB-RCS Forward and Return Link Organization and how it manages the Satellite Interactive Terminals access to the satellite channel using MF-TDMA approach has been described.

  7. The reionization of galactic satellite populations

    Energy Technology Data Exchange (ETDEWEB)

    Ocvirk, P.; Gillet, N.; Aubert, D.; Chardin, J. [Observatoire Astronomique de Strasbourg, Université de Strasbourg, CNRS UMR 7550, 11 rue de l' Université, F-67000 Strasbourg (France); Knebe, A.; Yepes, G. [Grupo de Astrofísica, Departamento de Fisica Teorica, Modulo C-8, Universidad Autónoma de Madrid, Cantoblanco E-280049 (Spain); Libeskind, N.; Gottlöber, S. [Leibniz-Institute für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Hoffman, Y. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)

    2014-10-10

    We use high-resolution simulations of the formation of the local group, post-processed by a radiative transfer code for UV photons, to investigate the reionization of the satellite populations of an isolated Milky Way-M31 galaxy pair in a variety of scenarios. We use an improved version of ATON which includes a simple recipe for radiative feedback. In our baseline models, reionization is initiated by low-mass, radiatively regulated halos at high redshift, until more massive halos appear, which then dominate and complete the reionization process. We investigate the relation between reionization history and present-day positions of the satellite population. We find that the average reionization redshift (z {sub r}) of satellites is higher near galaxy centers (MW and M31). This is due to the inside out reionization patterns imprinted by massive halos within the progenitor during the epoch of reionization, which end up forming the center of the galaxy. Due to incomplete dynamical mixing during galaxy assembly, these early patterns survive to present day, resulting in a clear radial gradient in the average satellite reionization redshift, up to the virial radius of MW and M31 and beyond. In the lowest emissivity scenario, the outer satellites are reionized about 180 Myr later than the inner satellites. This delay decreases with increasing source model emissivity, or in the case of external reionization by Virgo or M31, because reionization occurs faster overall and becomes spatially quasi-uniform at the highest emissivity.

  8. The reionization of galactic satellite populations

    International Nuclear Information System (INIS)

    We use high-resolution simulations of the formation of the local group, post-processed by a radiative transfer code for UV photons, to investigate the reionization of the satellite populations of an isolated Milky Way-M31 galaxy pair in a variety of scenarios. We use an improved version of ATON which includes a simple recipe for radiative feedback. In our baseline models, reionization is initiated by low-mass, radiatively regulated halos at high redshift, until more massive halos appear, which then dominate and complete the reionization process. We investigate the relation between reionization history and present-day positions of the satellite population. We find that the average reionization redshift (z r) of satellites is higher near galaxy centers (MW and M31). This is due to the inside out reionization patterns imprinted by massive halos within the progenitor during the epoch of reionization, which end up forming the center of the galaxy. Due to incomplete dynamical mixing during galaxy assembly, these early patterns survive to present day, resulting in a clear radial gradient in the average satellite reionization redshift, up to the virial radius of MW and M31 and beyond. In the lowest emissivity scenario, the outer satellites are reionized about 180 Myr later than the inner satellites. This delay decreases with increasing source model emissivity, or in the case of external reionization by Virgo or M31, because reionization occurs faster overall and becomes spatially quasi-uniform at the highest emissivity.

  9. The Air Density Explorer Satellite Program

    Science.gov (United States)

    Keating, G. M.; Prior, E. J.

    1973-01-01

    Since 1961, four satellites designed specifically for determination of the density and composition variations of the earth's neutral atmosphere at satellite altitudes have been launched: Explorer 9, Explorer 19, Explorer 24, and Explorer 39. Studies of the orbital decay of these satellites have resulted in major revisions in our conception of the upper atmosphere at satellite altitudes. These features include the winter helium bulge detected near 1000 km with its north-south asymmetry, the summer atomic oxygen bulge near 500 km, and the winter enhancement of atomic oxygen near 120 km. The Langley Research Center is now in the process of designing and fabricating the Dual Air Density Explorers. These will be two satellites launched by means of a single Scout rocket in 1975, and they are expected to remain in essentially the same orbital plane throughout the 2-year mission. Each satellite is drag sensitive and uses a mass spectrometer in a unique system which is insensitive to orientation, is highly sensitive to the upper atmosphere, and is capable of in-flight calibration.

  10. Small satellites - An overview

    Science.gov (United States)

    Ward, A. K.

    The present review of small satellites examines spacecraft activities in the U.K. and compiles a checklist of advantages and applications for the class. These advantages are illustrated with references to recent small satellite missions and technologies developed to facilitate such launches and projects. Specific programs examined include AMPTE-UKS, Viking, and the UoSAT program, and information is given regarding the Small Explorer program, the RAE Space Technology Research Vehicle, the AEA Argos Program, and space research programs in both Japan and India. Low-cost launches are shown to be available in the form of the Ariane Structure for Auxiliary Payloads, the Pegasus and Delta vehicles, and with the Shuttle Free-flying Getaway Special. Small-satellite technologies that play key roles in their effective implementation are: structure/thermal advances, attitude control systems, on-board communications, and power and data-handling systems.

  11. Solar Power Satellites

    CERN Document Server

    Flournoy, Don M

    2012-01-01

    Communication satellites are a $144 billion industry. Is there any space-based industry that could possibly beat that market? 'Solar Power Satellites' shows why and how the space satellite industry will soon begin expanding its market from relaying signals to Earth to generating energy in space and delivering it to the ground as electricity. In all industrialized nations, energy demand is growing exponentially. In the developing world, the need for energy is as basic as food and water. The Sun's energy is available everywhere, and it is non-polluting. As business plans demonstrate its technical feasibility, commercial potential, and environmental acceptability, every country on Earth will look to space for the power it needs.

  12. ESA's satellite communications programme

    Science.gov (United States)

    Bartholome, P.

    1985-02-01

    The developmental history, current status, and future plans of the ESA satellite-communications programs are discussed in a general survey and illustrated with network diagrams and maps. Consideration is given to the parallel development of national and European direct-broadcast systems and telecommunications networks, the position of the European space and electronics industries in the growing world market, the impact of technological improvements (both in satellite systems and in ground-based networks), and the technological and commercial advantages of integrated space-terrestrial networks. The needs for a European definition of the precise national and international roles of satellite communications, for maximum speed in implementing such decisions (before the technology becomes obsolete), and for increased cooperation and standardization to assure European equipment manufacturers a reasonable share of the market are stressed.

  13. Geostationary satellites collocation

    CERN Document Server

    Li, Hengnian

    2014-01-01

    Geostationary Satellites Collocation aims to find solutions for deploying a safe and reliable collocation control. Focusing on the orbital perturbation analysis, the mathematical foundations for orbit and control of the geostationary satellite are summarized. The mathematical and physical principle of orbital maneuver and collocation strategies for multi geostationary satellites sharing with the same dead band is also stressed. Moreover, the book presents some applications using the above algorithms and mathematical models to help readers master the corrective method for planning station keeping maneuvers. Engineers and scientists in the fields of aerospace technology and space science can benefit from this book. Hengnian Li is the Deputy Director of State Key Laboratory of Astronautic Dynamics, China.

  14. Satellite laser ranging to GPS and GLONASS

    Science.gov (United States)

    Sośnica, Krzysztof; Thaller, Daniela; Dach, Rolf; Steigenberger, Peter; Beutler, Gerhard; Arnold, Daniel; Jäggi, Adrian

    2015-07-01

    Satellite laser ranging (SLR) to the satellites of the global navigation satellite systems (GNSS) provides substantial and valuable information about the accuracy and quality of GNSS orbits and allows for the SLR-GNSS co-location in space. In the framework of the NAVSTAR-SLR experiment two GPS satellites of Block-IIA were equipped with laser retroreflector arrays (LRAs), whereas all satellites of the GLONASS system are equipped with LRAs in an operational mode. We summarize the outcome of the NAVSTAR-SLR experiment by processing 20 years of SLR observations to GPS and 12 years of SLR observations to GLONASS satellites using the reprocessed microwave orbits provided by the center for orbit determination in Europe (CODE). The dependency of the SLR residuals on the size, shape, and number of corner cubes in LRAs is studied. We show that the mean SLR residuals and the RMS of residuals depend on the coating of the LRAs and the block or type of GNSS satellites. The SLR mean residuals are also a function of the equipment used at SLR stations including the single-photon and multi-photon detection modes. We also show that the SLR observations to GNSS satellites are important to validate GNSS orbits and to assess deficiencies in the solar radiation pressure models. We found that the satellite signature effect, which is defined as a spread of optical pulse signals due to reflection from multiple reflectors, causes the variations of mean SLR residuals of up to 15 mm between the observations at nadir angles of 0 and 14. in case of multi-photon SLR stations. For single-photon SLR stations this effect does not exceed 1 mm. When using the new empirical CODE orbit model (ECOM), the SLR mean residual falls into the range 0.1-1.8 mm for high-performing single-photon SLR stations observing GLONASS-M satellites with uncoated corner cubes. For best-performing multi-photon stations the mean SLR residuals are between and mm due to the satellite signature effect.

  15. Satellite oceanography - The instruments

    Science.gov (United States)

    Stewart, R. H.

    1981-01-01

    It is pointed out that no instrument is sensitive to only one oceanographic variable; rather, each responds to a combination of atmospheric and oceanic phenomena. This complicates data interpretation and usually requires that a number of observations, each sensitive to somewhat different phenomena, be combined to provide unambiguous information. The distinction between active and passive instruments is described. A block diagram illustrating the steps necessary to convert data from satellite instruments into oceanographic information is included, as is a diagram illustrating the operation of a radio-frequency radiometer. Attention is also given to the satellites that carry the various oceanographic instruments.

  16. Oceanography from satellites

    Science.gov (United States)

    Wilson, W. S.

    1981-01-01

    It is pointed out that oceanographers have benefited from the space program mainly through the increased efficiency it has brought to ship operations. For example, the Transit navigation system has enabled oceanographers to compile detailed maps of sea-floor properties and to more accurately locate moored subsurface instrumentation. General descriptions are given of instruments used in satellite observations (altimeter, color scanner, infrared radiometer, microwave radiometer, scatterometer, synthetic aperture radar). It is pointed out that because of the large volume of data that satellite instruments generate, the development of algorithms for converting the data into a form expressed in geophysical units has become especially important.

  17. Satellites orbits and missions

    CERN Document Server

    Capderou, Michel

    2006-01-01

    Introduction Keplerian motion 1.1 Preamble 1.2 Acceleration 1.3 Central acceleration 1.4 Newtonian acceleration 1.5 Keplerian motion : trajectory and period 1.6 The three anomalies 1.7 Representation of the anomalies 1.8 Integrals of motion 1.9 Historical note on universal attraction 1.10 Annex : Ellipses Satellites on keplerian orbit 2.1 Gravitational field 2.2 The N-body and the two-body problem 2.3 Orbital parameters 2.4 Case of quasi-circular orbits 2.5 Keplerian period Satellites on real o

  18. GPS satellite surveying

    CERN Document Server

    Leick, Alfred; Tatarnikov, Dmitry

    2015-01-01

    THE MOST COMPREHENSIVE, UP-TO-DATE GUIDE ON GPS TECHNOLOGY FOR SURVEYING Three previous editions have established GPS Satellite Surveying as the definitive industry reference. Now fully updated and expanded to reflect the newest developments in the field, this Fourth Edition features cutting-edge information on GNSS antennas, precise point positioning, real-time relative positioning, lattice reduction, and much more. Expert authors examine additional tools and applications, offering complete coverage of geodetic surveying using satellite technologies. The past decade has seen a major evolut

  19. Multispectral satellite image understanding

    CERN Document Server

    Unsalan, Cem

    2011-01-01

    This book presents a comprehensive review of image processing methods, for the analysis of land use in residential areas. Combining a theoretical framework with highly practical applications, this book describes a system for the effective detection of single houses and streets in very high resolution. It features a Foreword by Prof. Dr. Peter Reinartz of the German Aerospace Center. This title provides end-of-chapter summaries and review questions; presents a detailed review on remote sensing satellites; examines the multispectral information that can be obtained from satellite images, with a

  20. Collision Avoidance: Coordination of Predicted Conjunctions between NASA Satellites and Satellites of other Countries

    Science.gov (United States)

    Kelly, A.; Watson, W.

    2014-09-01

    This paper describes one of the challenges facing the flight operations teams of the International Earth Observing constellation satellites at the 705 km orbit, including NASAs satellites. The NASA Earth Science Mission Operations (ESMO) Project has been dealing with predicted conjunctions (close approach) between operational/non-operational space objects and the satellites in the International Earth observing constellations for several years. Constellation satellites include: NASAs Earth Observing System (EOS) Terra, Aqua, and Aura, CloudSat, the joint NASA/CNES CALIPSO mission, Earth Observing 1 (EO-1), the Japan Aerospace and Exploration Agency (JAXA) Global Change Observation Mission-Water 1 (GCOM-W1) mission, the United States Geological Survey (USGS) Landsat 7 and Landsat 8, and until 2013, Argentinas SAC-C mission and the CNES PARASOL mission. The NASA Conjunction Analysis and Risk Assessment (CARA) team provides daily reports to the ESMO Project regarding any high interest close approach events (HIEs) involving the constellation satellites. The daily CARA reports provide risk assessment results that help the operations teams to determine if there is a need to perform a risk mitigation action. If the conjuncting space object is an operational satellite that is capable of maneuvering, the affected satellite team needs to coordinate their action plan with the owner operator of the conjuncting satellite. It is absolutely critical for the two teams to communicate as soon as possible. The goal is to minimize the collision risk; this can happen if both satellite operators do not coordinate their maneuver plans. The constellation teams have established guidelines for coordinating HIEs. This coordination process has worked successfully for several years for satellites that are operated by other organizations in the United States and by NASAs international partners, all with whom NASA has a cooperative agreement. However, the situation is different for HIEs with

  1. L-shell bifurcation of electron outer belt at the recovery phase of geomagnetic storm as observed by STEP-F and SphinX instruments onboard the CORONAS-Photon satellite

    Science.gov (United States)

    Dudnik, Oleksiy; Sylwester, Janusz; Kowalinski, Miroslaw; Podgorski, Piotr

    2016-07-01

    Radiation belts and sporadically arising volumes comprising enhanced charged particle fluxes in the Earth's magnetosphere are typically studied by space-borne telescopes, semiconductor, scintillation, gaseous and other types of detectors. Ambient and internal electron bremsstrahlung in hard X-ray arises as a result of interaction of precipitating particles with the atmosphere (balloon experiments) and with the satellite's housings and instrument boxes (orbital experiments). Theses emissions provide a number of new information on the physics of radiation belts. The energies of primary electrons and their spectra responsible for measured X-ray emissions remain usually unknown. Combined measurements of particle fluxes, and their bremsstrahlung by individual satellite instruments placed next to each other provide insight to respective processes. The satellite telescope of electrons and protons STEP-F and the solar X-ray spectrophotometer SphinX were placed in close proximity to each other aboard CORONAS-Photon, the low, circular and highly inclined orbit satellite. Based on joint analysis of the data we detected new features in the high energy particle distributions of the Earth's magnetosphere during deep minimum of solar activity [1-3]. In this research the bifurcation of Van Allen outer electron radiation belt during the weak geomagnetic storm and during passage of interplanetary shock are discussed. Outer belt bifurcation and growth of electron fluxes in a wide energy range were recorded by both instruments during the recovery phase of May 8, 2009 substorm. STEP-F recorded also barely perceptible outer belt splitting on August 5, 2009, after arrival of interplanetary shock to the Earth's magnetosphere bowshock. The STEP-F and SphinX data are compared with the space weather indexes, and with relativistic electron fluxes observed at geostationary orbit. We discuss possible mechanism of the phenomena consisting in the splitting of drift shells because of Earth

  2. Ocean Tidal Dissipation and its Role in Solar System Satellite Evolution

    OpenAIRE

    Chen, Erinna

    2013-01-01

    The history of satellites in the Solar System is quite diverse. For example, satellites like Io and Enceladus exhibit active volcanism currently, while satellites like Ganymede and Tethys show signs of geologic activity in the deep past, but not at present. The energy dissipated by tides has been identified as a major heat source for satellites, but calculations for satellite tidal dissipation primarily focus on dissipation in a solid layer, such as the ice shell. An exciting discovery of the...

  3. Prediction of GNSS satellite clocks

    International Nuclear Information System (INIS)

    interval 2-3 ns are obtained. This represents a distance-error of 60-90 cm. A comparison of the results from GNSS-VC/static to the predicted Ultra-Rapid-clocks of the ACs of the IGS confirms the very good quality of our clock solution which is at the level of the best AC solutions. The use of GNSS-VC/static for GLONASS-satellite-clocks is problematic. The GLONASS satellite clocks show a hard to characterize behaviour covering a number of jumps and breaks in the time-series within just a few hours. Therefore the prediction of GLONASS-satellite-clocks seems not reasonable at this time. In view of more stable clocks upcoming with the new GLONASS satellite generation K a similar model as used to characterize the GPS Rubidium clock might be applicable. The results of GNSS-VC/static are affected by a three-hours-delay. Thus an almost real-time solution to obtain high quality clock predictions has been established in parallel. The programme GNSS-VC/kalman enables to evaluate the parameters of the prediction-model by a Kalman-filter approach. Because of the short prediction-interval of just six hours the model is reduced to a simple quadratic polynomial. Input-data are RT-clock-corrections evaluated with the programme RTR-Control [Opitz, 2010] based on the observation data provided by the IGS-RT project. The clock correction polynomial coefficients are estimated every minute. After an initialization period of the filter (about 30 minutes) the mean error of the polynomial parameters as well as the evaluated clock corrections is below 2 ns for most of the satellite clock (author)

  4. Advances in satellite oceanography

    Science.gov (United States)

    Brown, O. B.; Cheney, R. E.

    1983-01-01

    Technical advances and recent applications of active and passive satellite remote sensing techniques to the study of oceanic processes are summarized. The general themes include infrared and visible radiometry, active and passive microwave sensors, and buoy location systems. The surface parameters of sea surface temperature, windstream, sea state, altimetry, color, and ice are treated as applicable under each of the general methods.

  5. Learning Through Satellite Broadcasting

    Science.gov (United States)

    Krishnamoorthy, P. V.

    1975-01-01

    SITE is an experimental project which would provide vital inputs in designing and executing a satellite-based instructional television system, particularly in rural areas, to stimulate national development in India with important managerial, economic, technological, and social implications. (Author/BP)

  6. Man-made Satellites

    Institute of Scientific and Technical Information of China (English)

    郝昌明

    2005-01-01

    If you watch the sky about an hour after the sun goes down, you may see some “moving stars”. But they're not real stars. They're manmade satellites (卫星). And the biggest of all is the International Space Station (ISS国际空间站).

  7. Experimental Satellite Quantum Communications.

    Science.gov (United States)

    Vallone, Giuseppe; Bacco, Davide; Dequal, Daniele; Gaiarin, Simone; Luceri, Vincenza; Bianco, Giuseppe; Villoresi, Paolo

    2015-07-24

    Quantum communication (QC), namely, the faithful transmission of generic quantum states, is a key ingredient of quantum information science. Here we demonstrate QC with polarization encoding from space to ground by exploiting satellite corner cube retroreflectors as quantum transmitters in orbit and the Matera Laser Ranging Observatory of the Italian Space Agency in Matera, Italy, as a quantum receiver. The quantum bit error ratio (QBER) has been kept steadily low to a level suitable for several quantum information protocols, as the violation of Bell inequalities or quantum key distribution (QKD). Indeed, by taking data from different satellites, we demonstrate an average value of QBER=4.6% for a total link duration of 85 s. The mean photon number per pulse μ_{sat} leaving the satellites was estimated to be of the order of one. In addition, we propose a fully operational satellite QKD system by exploiting our communication scheme with orbiting retroreflectors equipped with a modulator, a very compact payload. Our scheme paves the way toward the implementation of a QC worldwide network leveraging existing receivers. PMID:26252672

  8. Defense Meteorological Satellite Program (DMSP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Defense Meteorological Satellite Program (DMSP) satellites collect visible and infrared cloud imagery as well as monitoring the atmospheric, oceanographic,...

  9. The Demeter micro satellite launch campaign

    Science.gov (United States)

    Dubourg, V.; Kainov, V.; Thoby, M.; Silkin, O.; Solovey, V.

    The CNES Micro satellite DEMETER is planned for launch by the end of June 2004 on a DNEPR launcher, from the Baíkonur cosmodrome. DEMETER will be the main payload among nine co-passengers. DEMETER, initiated by CNES in 1998, is the first model of the MYRIADE micro satellites line of product; at the time when this abstract is issued, the satellite is going through the final integration tests, as well as the last system validation phase. The space head module of the launcher has been developed by the Ukrainian YSDO company, and a successful fit check test campaign has been performed in December 2003 and January 2004 that allowed confirming the compatibility of the payloads with their launcher interface. The launch campaign is in process of preparation, implying a close partnership between the satellite team at CNES and Russian and Ukrainian launcher authorities: DEMETER is a pioneer not only for the satellite concept itself, but also for being the first satellite of this range (3 axis stabilized, including an hydrazine propulsion system and developed by a national space agency) being launched on a Russian space adapted intercontinental ballistic missile SS18. The launch service is contracted and managed by ISC Kosmotras, and it will also be the first sun synchronous orbit launch for DNEPR. Thus the launch preparation proved to be a very challenging endeavour providing all the actors with very rich human experience, as well as technical exchanges, in the fields of launcher technology and interfaces, facilities adaptation, logistics and project coordination. In the coming paper, a short presentation of the DEMETER satellite and of the DNEPR launcher will be made, but the main purpose is to present: the launch campaign preparation milestones, the launch campaign itself and related preliminary results and the lessons learnt from this first CNES/DNEPR experience to open the way to the future MYRIADE launches. A common CNES/KOSMOTRAS presentation is proposed at the

  10. DFH Satellite Co.,Ltd.

    Institute of Scientific and Technical Information of China (English)

    SunQing

    2004-01-01

    DFH Satellite Co.,Ltd. is a hi-tech enterprise founded and sponsored by China Aerospace Science and Technology Corporation(CASC) and one of CASC subsidiaries,China Academy of Space Technology (CAST). The company is mainly engaged in the research and development of small satellites and micro-satellites, Osystem designs and product development for satellite application projects as well as the international exchanges and cooperation.

  11. NOAA's future GOES satellite program

    Science.gov (United States)

    Howard, Edward; Heymann, Roger; Dittberner, Gerald J.; Kirkner, Steven

    1996-10-01

    Future weather satellites for NOAA at geosynchronous orbit may be smaller, less costly, and developed by a different process than is currently done. This path is sometimes called the 'smaller, cheaper and faster' process being pursued by NASA. We believe in the future there will be less money, a focus on using the right technology and the desire to get the most value for the resources invested in space missions. In this paper we give an update on our progress to define future GOES. It will include our efforts to trade on user requirement early, to use evolutionary technology, and to consider new cost reduction and program management techniques.

  12. Dynamic Modeling of Micro-Satellite Spartnik's Attitude

    OpenAIRE

    Menges, Brian; Guadiamos, Carlos; Pernicka, Henry

    1997-01-01

    Spartnik is a micro-satellite under construction at San Jose State University. In order to control the satellite and ensure payloads and antenna are oriented properly a passive attitude control system has been developed. Like some other micro-satellites, Spartnik will combine spin stabilization with magnetic stabilization. Thus, Spartnik will "spin" due to solar radiation pressure and perform a controlled "tumble" due to the permanent magnets aligning with the magnetic field of the Earth. Con...

  13. Using satellites to monitor Severn Bridge structure, UK

    OpenAIRE

    Roberts, GW; Brown, CJ; Tang, X; Ogundipe, O

    2015-01-01

    The Severn Bridge is a large UK suspension bridge. In 2010, a series of field surveys was commissioned to monitor the magnitude and frequencies of the bridge’s movements, through attaching nine dual-frequency survey grade global navigation satellite system receivers on the bridge and two reference satellite receivers adjacent to the structure. The satellite antenna locations and configuration allow the movements of the north cable to be analysed at four locations, as well as the differential ...

  14. Satellite data-relay activities in Arizona

    Science.gov (United States)

    Boner, F.C.; Blee, J.W.; Shope, W.G.

    1985-01-01

    The U.S. Geological Survey (USGS) Arizona District collects data from automated streamflow stations for a wide variety of uses. Data from these stations are provided to Federal, State, and local agencies that have a responsibility to issue flood warnings; to generate forecasts of water availability; to monitor flow to insure compliance with treaties and other legal mandates; and to manage reservoirs for hydropower, flood abatement, and municipal and irrigation water supply. In the mid-1970's, the escalation of data collection costs and a need for more timely data led the Arizona District to examine alternatives for remote data acquisition. On the basis of successful data communications experiments with NASA 's Landsat satellite, an operational system for satellite-data relay was developed in 1976 using the National Oceanic and Atmospheric Administrations 's (NOAA) Geostationary Operational Environmental Satellite (GOES). A total of 62 data collection platforms (DCP's) was operated in 1983. Satellite telemetry operations are controlled at the remote data-collection stations by small battery-operated data collection platforms. The DCP 's periodically collect data from the sensors, store the data in computer memory, and at preset times transmit the data to the GOES satellite. The satellite retransmits the data to Earth where a ground-receive station transmits or transfers the data by land communications to the USGS computer in Reston, Virginia, for processing. The satellite relay transfers the data from sensor to computer in minutes; therefore, the data are available to users on a near real-time basis. (Author 's abstract)

  15. Testing gravitational physics with satellite laser ranging

    Science.gov (United States)

    Ciufolini, Ignazio; Paolozzi, Antonio; Pavlis, Erricos C.; Ries, John; Koenig, Rolf; Matzner, Richard; Sindoni, Giampiero; Neumeyer, Hans

    2011-08-01

    Laser ranging, both Lunar (LLR) and Satellite Laser Ranging (SLR), is one of the most accurate techniques to test gravitational physics and Einstein's theory of General Relativity. Lunar Laser Ranging has provided very accurate tests of both the strong equivalence principle, at the foundations of General Relativity, and of the weak equivalence principle, at the basis of any metric theory of gravity; it has provided strong limits to the values of the so-called PPN (Parametrized Post-Newtonian) parameters, that are used to test the post-Newtonian limit of General Relativity, strong limits to conceivable deviations to the inverse square law for very weak gravity and accurate measurements of the geodetic precession, an effect predicted by General Relativity. Satellite laser ranging has provided strong limits to deviations to the inverse square gravity law, at a different range with respect to LLR, and in particular has given the first direct test of the gravitomagnetic field by measuring the gravitomagnetic shift of the node of a satellite, a frame-dragging effect also called Lense-Thirring effect. Here, after an introduction to gravitomagnetism and frame-dragging, we describe the latest results in measuring the Lense-Thirring effect using the LAGEOS satellites and the latest gravity field models obtained by the space mission GRACE. Finally, we describe an update of the LARES (LAser RElativity Satellite) mission. LARES is planned for launch in 2011 to further improve the accuracy in the measurement of frame-dragging.

  16. Simultaneous assimilation of satellite and eddy covariance data for improving terrestrial water and carbon simulations at a semi-arid woodland site in Botswana

    Directory of Open Access Journals (Sweden)

    T. Kato

    2012-03-01

    Full Text Available Terrestrial productivity in semi-arid woodlands is strongly susceptible to changes in precipitation, and semi-arid woodlands constitute an important element of the global water and carbon cycles. Here, we use the Carbon Cycle Data Assimilation System (CCDAS to investigate the mechanisms controlling ecological and hydrogical activities for a semi-arid savanna woodland site in Maun, Botswana. Twenty-four eco-hydrological process parameters of a terrestrial ecosystem model are optimized against two data streams either separately or simultaneously: daily averaged latent heat flux (LHF derived from eddy covariance measurement, and decadal fraction of absorbed photosynthetically active radiation (FAPAR derived from Sea-viewing Wide Field-of-view Sensor (SeaWiFS.

    Assimilation of both LHF and FAPAR for the years 2000 and 2001 leads to improved agreement between measured and simulated quantities not only for LHF and FAPAR, but also for photosynthetic CO2 uptake. The closest agreement is found for each observed data stream when only the same data stream is assimilated. The mean uncertainty reduction (relative to the prior over all parameters is 16.1% for the simultaneous assimilation of LHF and FAPAR, 9.2% for assimilating LHF only, and 7.8% for assimilating FAPAR only. Furthermore, the set of parameters with the highest uncertainty reduction is similar between assimilating only FAPAR or only LHF. The highest uncertainty reduction is found for a parameter describing maximum plant-available soil moisture for all three cases. This indicates that not only LHF but also satellite-derived FAPAR data can be used to constrain and indirectly observe hydrological quantities.

  17. Wind Statistics Offshore based on Satellite Images

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Mouche, Alexis; Badger, Merete;

    2009-01-01

    Ocean wind maps from satellites are routinely processed both at Risø DTU and CLS based on the European Space Agency Envisat ASAR data. At Risø the a priori wind direction is taken from the atmospheric model NOGAPS (Navel Operational Global Atmospheric Prediction System) provided by the U.S. Navy......’s Master Environmental Library. At CLS the a priori wind direction is taken from the ECMWF (European Centre of Medium-range Weather Forecasting). It is also possible to use other sources of wind direction e.g. the satellite-based ASCAT wind directions as demonstrated by CLS. The wind direction has to known...... and Irish Seas. Results comparing satellite scatterometer winds to offshore meteorological observations have shown good results, and more comparisons are planned in this respect during the Norsewind project....

  18. 5th China Satellite Navigation Conference

    CERN Document Server

    Jiao, Wenhai; Wu, Haitao; Lu, Mingquan

    2014-01-01

    China Satellite Navigation Conference (CSNC) 2014 Proceedings presents selected research papers from CSNC2014, held on 21-23 May in Nanjing, China. The theme of CSNC2014 is 'BDS Application: Innovation, Integration and Sharing'. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 9 topics to match the corresponding sessions in CSNC2014, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.  SUN Jiadong is the Chief Designer of the Compass/ BDS, and the Academician of Chinese Academy of Sciences (CAS); JIAO Wenhai is a researcher at China Satellite Navigation Office; WU Haitao is a professor at Navigation Headquarters, CAS; LU Mingquan is a professor at Department of Electronic Engineering of Tsinghua University.

  19. Weather Prediction Improvement Using Advanced Satellite Technology

    Science.gov (United States)

    Einaudi, Franco; Uccellini, L.; Purdom, J.; Rogers, D.; Gelaro, R.; Dodge, J.; Atlas, R.; Lord, S.

    2001-01-01

    We discuss in this paper some of the problems that exist today in the fall utilization of satellite data to improve weather forecasts and we propose specific recommendations to solve them. This discussion can be viewed as an aspect of the general debate on how best to organize the transition from research to operational satellites and how to evaluate the impact of a research instrument on numerical weather predictions. A method for providing this transition is offered by the National Polar-Orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP). This mission will bridge the time between the present NOAA and Department of Defense (DOD) polar orbiting missions and the initiation of the converged NPOESS series and will evaluate some of the Earth Observing System (EOS) instruments as appropriate for operational missions. Thus, this mission can be viewed as an effort to meet the operational requirements of NOAA and DOD and the research requirements of NASA. More generally, however, it can be said that the process of going from the conception of new, more advanced instruments to their operational implementation and full utilization by the weather forecast communities is not optimal. Instruments developed for research purposes may have insufficient funding to explore their potential operational capabilities. Furthermore, instrument development programs designed for operational satellites typically have insufficient funding for assimilation algorithms needed to transform the satellite observations into data that can be used by sophisticated global weather forecast models. As a result, years often go by before satellite data are efficiently used for operational forecasts. NASA and NOAA each have unique expertise in the design of satellite instruments, their use for basic and applied research and their utilization in weather and climate research. At a time of limited resources, the two agencies must combine their efforts to work toward common

  20. North and northeast Greenland ice discharge from satellite radar interferometry

    DEFF Research Database (Denmark)

    Rignot, E.J.; Gogineni, S.P.; Krabill, W.B.;

    1997-01-01

    Ice discharge from north and northeast Greenland calculated from satellite radar interferometry data of 14 outlet glaciers is 3.5 times that estimated from iceberg production. The satellite estimates, obtained at the grounding line of the outlet glaciers, differ from those obtained at the glacier...

  1. A new method for determination of satellite orbits by transfer

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The original idea of a new method for determination of satellite orbits by transfer is from Two-Way Satellite Time and Frequency Transfer (TWSTFT). The original method is called "determination of satellite orbit by transfer". The method is not only for determination of satellite orbit but also for the time transfer with high accuracy and precision. The advantage is that the accuracy and the precision for determination of satellite orbit are very high and the new method is favorable for various applications. The combination of various signals disseminated and received forms various modes of satellite orbit determinations. If receivers at stations receive the own station-disseminated signals via a satellite transponder, it forms an orbit determination mode called "receiving the own station-disseminated signals mode". If receivers at all stations receive the signals disseminated from the master station via satellite transponders, it forms an orbit determination mode called "receiving the master station-disseminated signals mode". If all of receivers at stations receive all stations-disseminated signals via satellite transponders, it forms an orbit determination mode called "receiving all stations-disseminated signals mode". Also there are other combinations of signals for satellite orbit determination. For dif- ferent orbit determination modes with different signal combinations, their rigorous formulae of proc- essing are hereby presented in this paper. The accurate and the precise satellite orbit determination for both of the modes, "receiving the own station-disseminated signals mode" and "receiving the master station-disseminated signals mode" is attempted. It shows that the accuracy and precision for both of modes are nearly the same, the ranging accuracy is better than 1 cm, and the observation residuals of satellite orbit determination are better than 9 cm in the observation duration of 1 day.

  2. Cooperative and cognitive satellite systems

    CERN Document Server

    Chatzinotas, Symeon; De Gaudenzi, Riccardo

    2015-01-01

    Cooperative and Cognitive Satellite Systems provides a solid overview of the current research in the field of cooperative and cognitive satellite systems, helping users understand how to incorporate state-of-the-art communication techniques in innovative satellite network architectures to enable the next generation of satellite systems. The book is edited and written by top researchers and practitioners in the field, providing a comprehensive explanation of current research that allows users to discover future technologies and their applications, integrate satellite and terrestrial systems

  3. Thematic mapping from satellite imagery

    CERN Document Server

    Denègre, J

    2013-01-01

    Thematic Mapping from Satellite Imagery: A Guidebook discusses methods in producing maps using satellite images. The book is comprised of five chapters; each chapter covers one stage of the process. Chapter 1 tackles the satellite remote sensing imaging and its cartographic significance. Chapter 2 discusses the production processes for extracting information from satellite data. The next chapter covers the methods for combining satellite-derived information with that obtained from conventional sources. Chapter 4 deals with design and semiology for cartographic representation, and Chapter 5 pre

  4. Plan of advanced satellite communications experiment using ETS-VI

    Science.gov (United States)

    Shiomi, Tadashi

    1988-01-01

    Communications Research Laboratory (CRL, Ministry of Posts and Telecommunications, Japan) has been engaged in development of three advanced satellite communication payloads aiming at experiments by Japan's 2-ton class Engineering Test Satellite VI (ETS-VI) which is to be launched in H-II rocket by NASDA in August 1992. CRL's three experimental systems are: (1) S-band inter-satellite communications; (2) millimeter-wave inter-satellite and personal-satellite communications; and (3) optical inter-satellite communications. CRL develops experimental optical communication system with telescope of 75 mm diameter which has gimbal mirror beam pointing/tracking mechanism. The onboard system has fundamental optical communication functions with laser diode transmitter of wavelength 0.83 micron, laser beam point-ahead mechanism, receiver of wavelength 0.51 micron, modulation/demodulation subsystem, and so on.

  5. Declassified Intelligence Satellite Photographs

    Science.gov (United States)

    U.S. Geological Survey

    2008-01-01

    Declassified photographs from U.S. intelligence satellites provide an important worldwide addition to the public record of the Earth's land surface. This imagery was released to the National Archives and Records Administration (NARA) and the U.S. Geological Survey (USGS) in accordance with Executive Order 12951 on February 23, 1995. The NARA has the original declassified film and a viewing copy. The USGS has another copy of the film to complement the Landsat archive. The declassified collection involves more than 990,000 photographs taken from 1959 through 1980 and was released on two separate occasions: February 1995 (Declass 1) and September 2002 (Declass 2). The USGS copy is maintained by the Earth Resources Observation and Science (EROS) Center, near Sioux Falls, South Dakota. Both the NARA and EROS provide public access to this unique collection that extends the record of land-surface change back another decade from the advent of the Landsat program that began satellite operations in 1972.

  6. Satellite servicing economic study

    Science.gov (United States)

    1990-01-01

    Previous studies have shown that satellite servicing is cost effective; however, all of these studies were of different formats, dollar year, learning rates, availability, etc. Therefore, it was difficult to correlate any useful trends from these studies. The reviewed study was initiated to correlate the economic data into a common data base, using a common set of assumptions. A selected set of existed funded programs was then analyzed to provide an independent analysis of the servicing options and potential economic benefits.

  7. STARBANDSM - Satellite Internet Service

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    The Internet has become one of the most important communication systems in the present. However people across the continental United States have not been able to get broadband Internet service. StarBand service, with no special phone lines or cable modems required is a feasible solution. StarBand is America’s first consumer two-way, always-on, high-speed satellite Internet service.

  8. Laser ICESat-satellite

    OpenAIRE

    Webredactie M&C

    2010-01-01

    The ICESat satellite, launched in 2003, is equipped with an altimeter that uses a laser beam to determine its distance from the Earth. Forty short laser pulses per second hit an area of Earth's surface that is 70 metres in diameter. These measurement circles are 170 metres apart. Each measurement represents the average vertical shift in the 70m measurement circle. ICESat can detect variations of 1.5 cm a year or more in the elevation of the ice surface.

  9. SAC-A Satellite

    OpenAIRE

    Machado, Marcos; Roggero, Edgardo; Alonso, Roberto; Anigstein, Pablo; Caruso, Daniel; Bratina, Juan; Vega, Julio; Pena, Ricardo Sanchez

    1996-01-01

    The SAC-A is a Low Cost - Short Schedule - Small Bus dedicated to test equipment and new technologies which may be used in operational or scientific missions with more immunity to failures. The opportunity to fly in a low orbit for a reasonable period of time, allows the characterization of the behavior of this new instrumentation in real world applications and also to compute performance. The 68 kg satellite will have an almost octagonal configuration to be fitted within the Hitchhiker Motor...

  10. Lens Antenna For Mobile/Satellite Communication

    Science.gov (United States)

    Bodnar, D. G.; Rainer, B. K.

    1988-01-01

    Flat, compact antenna made of stripline elements aimed at fixed elevation angle but steered electronically in azimuth. Design simplified by maintaining fixed elevation and relying on width of beam to cover desired elevation range. Need for phase shifter at each radiating element eliminated by arranging elements in circles and feeding through stripline disks called "R-KR lenses". Used in Mobile/Satellite Service, antenna mounted on top of vehicle on Earth and used to keep transmitted and received antenna beams aimed approximately toward communication satellite.

  11. Binary Satellite Galaxies

    CERN Document Server

    Evslin, Jarah

    2013-01-01

    Suggestions have appeared in the literature that the following five pairs of Milky Way and Andromeda satellite galaxies are gravitationally bound: Draco and Ursa Minor, Leo IV and V, Andromeda I and III, NGC 147 and 185, and the Magellanic clouds. Under the assumption that a given pair is gravitationally bound, the Virial theorem provides an estimate of its total mass and so its instantaneous tidal radius. For all of these pairs except for the Magellanic clouds the resulting total mass is 2 to 4 orders of magnitude higher than that within the half light radius. Furthermore in the case of each pair except for Leo IV and Leo V, the estimated tidal radius is inferior to the separation between the two satellites. Therefore all or almost all of these systems are not gravitationally bound. We note several possible explanations for the proximities and similar radial velocities of the satellites in each pair, for example they may have condensed from the same infalling structure or they may be bound by a nongravitatio...

  12. Space Solar Power Satellite Systems, Modern Small Satellites, and Space Rectenna

    Science.gov (United States)

    Bergsrud, Corey Alexis Marvin

    Space solar power satellite (SSPS) systems is the concept of placing large satellite into geostationary Earth orbit (GEO) to harvest and convert massive amounts of solar energy into microwave energy, and to transmit the microwaves to a rectifying antenna (rectenna) array on Earth. The rectenna array captures and converts the microwave power into usable power that is injected into the terrestrial electric grid for use. This work approached the microwave power beam as an additional source of power (with solar) for lower orbiting satellites. Assuming the concept of retrodirectivity, a GEO-SSPS antenna array system tracks and delivers microwave power to lower orbiting satellites. The lower orbiting satellites are equipped with a stacked photovoltaic (PV)/rectenna array hybrid power generation unit (HPGU) in order to harvest solar and/or microwave energy for on-board use during orbit. The area, and mass of the PV array part of the HPGU was reduced at about 32% beginning-of-life power in order to achieve the spacecraft power requirements. The HPGU proved to offer a mass decrease in the PGU, and an increase in mission life due to longer living component life of the rectenna array. Moreover, greater mission flexibility is achieved through a track and power delivery concept. To validate the potential advantages offered by a HPGU, a mission concept was presented that utilizes modern small satellites as technology demonstrators. During launch, a smaller power receiving "daughter" satellite sits inside a larger power transmitting "mother" satellite. Once separated from the launch vehicle the daughter satellite is ejected away from the mother satellite, and each satellite deploys its respective power transmitting or power receiving hardware's for experimentation. The concept of close proximity mission operations between the satellites is considered. To validate the technology of the space rectenna array part of the HPGU, six milestones were completed in the design. The first

  13. Developing an ADCS Prototype for NTNU Test Satellite

    OpenAIRE

    Rein, Øyvind

    2014-01-01

    NUTS is a student satellite program at NTNU with a goal of launching a cube satellite into space. Students contribute through projects, master theses or voluntary work. The satellite will shoot pictures of earth with a camera that will be fixed to the satellite's body.In order to accurately point the camera towards the desired target an Attitude Determination and Control System is required. In this thesis, a prototype of the ADCS has been developed along with a platform for testing softw...

  14. Satellite anomalies caused by disturbed space weather

    Science.gov (United States)

    Allen, J. H.

    2003-04-01

    Seven types of satellite anomalies are discussed and examples are given from historical reports. Types of anomalies and their causes are: o Single Event Upsets (SEU) caused by penetrating energetic ions; o Deep dielectric ("bulk") charging (DDC) by high-energy electrons; o Surface charging by thermal electrons causing electrostatic discharge (ESD) and Phantom Commands (PC); o Magnetopause crossing events (MPE) that reverse ambient fields at geostationary satellite altitudes; o dB/dT of field-aligned currents causing satellite tumbling at lower altitudes; o Optical effects of high-energy ions on star-trackers and limb sensors; and o Power panel degradation from high-energy ions. Recent and older events are considered, in part because the problems recur even though technology has changed to take them into account and awareness of the conditions causing them seems widespread. Systematic anomaly reporting is requested to increase the significance of records collected for particular events.

  15. Highly Structured Plasma Density and Associated Electric and Magnetic Field Irregularities at Sub-Auroral, Middle, and Low Latitudes in the Topside Ionosphere Observed with the DEMETER and DMSP Satellites

    Science.gov (United States)

    Pfaff, Robert F.; Liebrecht, C; Berthelier, Jean-Jacques; Parrot, M.; Lebreton, Jean-Pierre

    2007-01-01

    Detailed observations of the plasma structure and irregularities that characterize the topside ionosphere at sub-auroral, middle, and low-latitudes are gathered with probes on the DEMETER and DMSP satellites. In particular, we present DEMETER observations near 700 km altitude that reveal: (1) the electric field irregularities and density depletions at mid-latitudes are remarkably similar to those associated with equatorial spread-F at low latitudes; (2) the mid-latitude density structures contain both depletions and enhancements with scale lengths along the spacecraft trajectory that typically vary from 10's to 100's of km; (3) in some cases, ELF magnetic field irregularities are observed in association with the electric field irregularities on the walls of the plasma density structures and appear to be related to finely-structured spatial currents and/or Alfven waves; (4) during severe geomagnetic storms, broad regions of nightside plasma density structures are typically present, in some instances extending from the equator to the subauroral regions; and (5) intense, broadband electric and magnetic field irregularities are observed at sub-auroral latitudes during geomagnetic storm periods that are typically associated with the trough region. Data from successive DEMETER orbits during storm periods in both the daytime and nighttime illustrate how enhancements of both the ambient plasma density, as well as sub-auroral and mid-latitude density structures, correlate and evolve with changes in the Dst. The DEMETER data are compared with near simultaneous observations gathered by the DMSP satellites near 840 km. The observations are related to theories of sub-auroral and mid-latitude plasma density structuring during geomagnetic storms and penetration electric fields and are highly germane to understanding space weather effects regarding disruption of communication and navigation signals in the near-space environment.

  16. Financial evaluation of the integration of satellite technology for snow cover measurements at a hydroelectric plant. (Utilization of Radarsat I in the La Grande river basin, Quebec)

    International Nuclear Information System (INIS)

    The emergence, on the markets, of new technologies evokes, for the potential users, a lot of questions concerning the implementation and operation costs associated with these technologies. Nevertheless, for a lot of users, costs should be considered with the benefits these technologies are able to generate. The benefit-cost analysis is a useful tool for a financial evaluation of the transferability of the technology. This method has been selected to evaluate the eventual implementation of remote sensing technologies for snow cover measurements in the La Grande river basin (Quebec, Canada). Indeed, a better assessment of the snow water equivalent leads to a better forecasting of the water inputs due to the snowmelt. Thus, the improvement of the snow cover monitoring has direct impact on hydroelectric reservoir management. The benefit-cost analysis was used to compare three acquisition modes of the satellite Radarsat 1 (ScanSAR, Wide and Standard). The costs considered for this project are: R and D costs and operations costs (the purchase of images and costs of ground truth measurements). We evaluated the raw benefits on the basis of reducing the standard deviation of predicted inflows. The results show that the ScanSAR mode is the primary remote sensing tool for the monitoring of the snow cover, on an operational basis. With this acquisition mode, the benefit-cost ratios range between 2.3:1 and 3.9:1, using a conservative 4% reduction of the standard deviation. Even if the reduction is only 3%, ScanSAR remains profitable. Due to the large number of images needed to cover all the territory, the Standard and Wide modes are penalized by the purchase and the processing costs of the data and with delays associated to the processing. Nevertheless, with these two modes, it could be possible to work with a partial coverage of the watershed, 75% being covered in 4 days in Wide mod. The estimated B/C ratios (1.5:1 and 2:1) confirm the advantages of this alternative

  17. Role of neutral wind and storm time electric fields inferred from the storm time ionization distribution at low latitudes: in-situ measurements by Indian satellite SROSS-C2

    Directory of Open Access Journals (Sweden)

    P. Subrahmanyam

    2005-11-01

    Full Text Available Recently, there has been a renewal of interest in the study of the effects of solar weather events on the ionization redistribution and irregularity generation. The observed changes at low and equatorial latitudes are rather complex and are noted to be a function of location, the time of the storm onset and its intensity, and various other characteristics of the geomagnetic storms triggered by solar weather events. At these latitudes, the effects of geomagnetic storms are basically due to (a direct penetration of the magnetospheric electric fields to low latitudes, (b development of disturbance dynamo, (c changes in atmospheric neutral winds at ionospheric level and (d changes in neutral composition triggered by the storm time atmospheric heating.

    In the present study an attempt is made to further understand some of the observed storm time effects in terms of storm time changes in zonal electric fields and meridional neutral winds. For this purpose, observations made by the Retarding Potential Analyzer (RPA payload on board the Indian satellite SROSS-C2 are examined for four prominent geomagnetic storm events that occurred during the high solar activity period of 1997-2000. Available simultaneous observations, from the GPS satellite network, are also used. The daytime passes of SROSS-C2 have been selected to examine the redistribution of ionization in the equatorial ionization anomaly (EIA region. In general, EIA is observed to be weakened 12-24 h after the main phase onset (MPO of the storm. The storm time behaviour inferred by SROSS-C2 and the GPS satellite network during the geomagnetic storm of 13 November 1998, for which simultaneous observations are available, is found to be consistent. Storm time changes in the delay of received GPS signals are noted to be ~1-3 m, which is a significant component of the total delay observed on a quiet day.

    An attempt is made to identify and

  18. German telecommunications satellite (Deutscher fernmelde satellit) (DFS-1 and -2)

    Science.gov (United States)

    Hiendlmeier, G.; Schmeller, H.

    1991-01-01

    The German Telecommunications Satellite (DFS) Program is to provide telecommunications service for high data rate transmission of text and video data to the Federal Republic of Germany within the 11-14 GHz and 20-30 GHz bands. The space segment of this program is composed of three satellites, DFS-1, DFS-2, and DFS-3, which will be located at 23.5 degrees E longitude of the geostationary orbit. The DFS will be launched from the Center Spatial Guyanis in French Giana on an Ariane launch vehicle. The mission follows the typical injection sequence: parking orbit, transfer orbit, and earth orbit. Attitude maneuvers will be performed to orient the spacecraft prior to Apogee Kick Motor (AKM) firing. After AKM firing, drift phase orbital and attitude maneuvers will be performed to place the spacecraft in its final geostationary position. The Deep Space Network (DSN) will support the transfer and drift orbit mission phases. Information is presented in tabular form for the following areas: DSN support, compatibility testing, frequency assignments, telemetry, command, and tracking support responsibilities.

  19. Quasi-satellite dynamics in formation flight

    CERN Document Server

    Mikkola, Seppo

    2016-01-01

    The quasi-satellite (QS) phenomenon makes two celestial bodies to fly near each other (Mikkola et al. 2006) and that effect can be used also to make artificial satellites move in tandem. We consider formation flight of two or three satellites in low eccentricity near Earth orbits. With the help of weak ion thrusters it is possible to accomplish tandem flight. With ion thrusters it is also possible to mimic many kinds of mutual force laws between the satellites. We found that both a constant repulsive force or an attractive force that decreases with the distance are able to preserve the formation in which the eccentricities cause the actual relative motion and the weak thrusters keep the mean longitude difference small. Initial values are important for the formation flight but very exact adjustment of orbital elements is not important. Simplicity is one of our goals in this study and this result is achieved at least in the way that, when constant force thrusters are used, the satellites only need to detect the...

  20. The Missing Satellite Problem in 3D

    CERN Document Server

    Nierenberg, A M; Menci, N; Lu, Y; Torrey, Paul; Vogelsberger, M

    2016-01-01

    It is widely believed that the large discrepancy between the observed number of satellite galaxies and the predicted number of dark subhalos can be resolved via a variety of baryonic effects which suppress star formation in low mass halos.Supporting this hypothesis, numerous high resolution simulations with star formation, and associated feedback have been shown to reproduce the satellite luminosity function around Milky Way-mass simulated galaxies at redshift zero. However, a more stringent test of these models is their ability to simultaneously match the satellite luminosity functions of a range of host halo masses and redshifts. In this work we measure the luminosity function of faint (sub-Small Magellanic Cloud luminosity) satellites around hosts with stellar masses 10.5$<\\log_{10}$M$_*$/M$_\\odot<11.5$ to an unprecedented redshift of 1.5. This new measurement of the satellite luminosity function provides powerful new constraining power; we compare these results with predictions from four different s...

  1. Solar power satellite system sizing tradeoffs

    Energy Technology Data Exchange (ETDEWEB)

    Arndt, G.D.; Monford, L.G.

    1981-02-01

    Technical and economic tradeoffs of smaller solar power satellite systems configured with larger antennas, reduced output power, and smaller rectennas, are considered. The differential costs in electricity for seven antenna/rectenna configurations operating at 2.45 GHz and five satellite systems operating at 5.8 GHz are calculated. Two 2.45 GHz configurations dependent upon the ionospheric power density limit are chosen as examples. If the ionospheric limit could be increased to 54 mW sq/cm from the present 23 mW sq/cm level, a 1.53 km antenna satellite operating at 2.45 GHz would provide 5.05 GW of output power from a 6.8 km diameter rectenna. This system gives a 54 percent reduction in rectenna area relative to the reference solar power satellite system at a modest 17 percent increase in electricity costs. At 5.8 GHz, an 0.75 km antenna providing 2.72 GW of power from a 5.8 km diameter rectenna is selected for analysis. This configuration would have a 67 percent reduction in rectenna area at a 36 percent increase in electricity costs. Ionospheric, atmospheric, and thermal limitations are discussed. Antenna patterns for three configurations to show the relative main beam and sidelobe characteristics are included.

  2. Electronic correlations and satellites in superconducting oxides

    International Nuclear Information System (INIS)

    The satellite observed at binding energy of 12--13 eV below the Fermi level in the high-T/sub c/ oxide superconductors La/sub 2-//sub x/Sr/sub x/CuO4 and YBa2Cu3O/sub 7-//sub δ/ is viewed as originating from a state with two holes bound at the same Cu site. As in the case of Ni metal, the satellite is caused by an intra-d-shell shakeup process into a Cu 3d8 final state and its intensity is enhanced at resonance because of a super-Koster-Kronig transition. Based on the t-matrix approach for the hole self-energy, we study the effect of electronic correlations on the one-electron band structure. We examine the position of the satellite and find a large Coulomb interaction energy of ∼5 eV at the Cu site when the experimental satellite position is duplicated by the theory. Since this energy is comparable with the 3d bandwidth, the two-hole bound state is a high-energy excitation. This indicates that in the ground state a creation of two holes at the Cu site is unlikely and thus holes are formed at the O sites when Sr is substituted for La in La2CuO4 and when the oxidation is increased in YBa2Cu3O/sub 7-//sub δ/

  3. Satellite Contributions to Global Change Studies

    Science.gov (United States)

    Parkinson, Claire L.

    2009-01-01

    By providing a global view with a level playing field (no region missed because of unfavorable surface conditions or political boundaries), satellites have made major contributions to improved monitoring and understanding of our constantly changing planet. The global view has allowed surprising realizations like the relative sparsity of lightning strikes over oceans and the large-scale undulations on the massive Antarctic ice sheet. It has allowed the tracking of all sorts of phenomena, including aerosols, both natural and anthropogenic, as they move with the atmospheric circulation and impact weather and human health. But probably nothing that the global view allows is more important in the long term than its provision. of unbiased data sets to address the issue of global change, considered by many to be among the most important issues facing humankind today. With satellites we can monitor atmospheric temperatures at all latitudes and longitudes, and obtain a global average that lessens the likelihood of becoming endlessly mired in the confusions brought about by the certainty of regional differences. With satellites we can monitor greenhouse gases such as CO2 not just above individual research stations but around the globe. With satellites we can monitor the polar sea ice covers, as we have done since the late 1970s, determining and quantifying the significant reduction in Arctic sea ice and the slight growth in Antarctic sea ice over that period, With satellites we can map the full extent and changes in the Antarctic stratospheric ozone depletions that were first identified from using a single ground station; and through satellite data we have witnessed from afar land surface changes brought about by humans both intentionally, as with wide-scale deforestation, and unintentionally, as with the decay of the Aral Sea. The satellite data are far from sufficient for all that we need in order to understand the global system and forecast its changes, as we also need

  4. The Spatial Distribution of Satellite Galaxies Selected from Redshift Space

    CERN Document Server

    Agustsson, Ingolfur

    2015-01-01

    We investigate the spatial distribution of satellite galaxies that were obtained from a mock redshift survey of the first Millennium Run simulation. The satellites were identified using typical redshift space criteria and, hence, the sample includes both genuine satellites and a large number of interlopers. As expected from previous work, the 3D locations of the satellites are well-fitted by a combination of a Navarro, Frenk & White (NFW) density profile and a power law. At fixed stellar mass, the NFW scale parameter, r_s, for the satellite distribution of red hosts exceeds that for the satellite distribution of blue hosts. In both cases the dependence of r_s on host stellar mass is well-fitted by a power law. For the satellites of red hosts, r_s^{red} \\propto (M_\\ast / M_sun)^{0.71 \\pm 0.05} while for the satellites of blue hosts, r_s^{blue} \\propto (M_\\ast / M_sun)^{0.48 \\pm 0.07}. For hosts with stellar masses greater than 4.0E+10 M_sun, the satellite distribution around blue hosts is much more concent...

  5. Automated satellite telemetry processing system

    Science.gov (United States)

    Parunakian, David; Kalegaev, Vladimir; Barinova, Vera

    In this paper we describe the design and important implementation details of the new automated system for processing satellite telemetry developedat Skobeltsyn Institute of Nuclear Physics of Moscow State University (SINP MSU) . We discuss the most common tasks and pitfall for such systems built around data stream from a single spacecraft or a single instrument, and suggest a solution that allows to quickly develop telemetry processing modules and to integrate them with an existing polling mechanism, support infrastructure and data storage in Oracle or MySQL database systems. We also demonstrate the benefits of this approach using modules for processing three different spacecraft data streams: Coronas-Photon (2009-003A), Tatiana-2 (2009-049D) and Meteor-M no.1 (2009-049A). The data format and protocols used by each of these spacecraft have distinct peculiarities, which nevertheless did not pose a problem for integrating their modules into the main system. Remote access via web interface to Oracle databases and sophisticated visualization tools create a possibility of efficient scientific exploitation of satellite data. Such a system is already deployed at the web portal of the Space Monitoring Data Center (SMDC) of SINP MSU (http://smdc.sinp.msu.ru).

  6. Development of concepts for satellite retrieval devices

    Science.gov (United States)

    Pruett, E. C.; Robertson, K. B., III; Loughead, T. E.

    1979-01-01

    The teleoperator being developed to augment the Space Transportation System (STS) for satellite placement, retrieval, or servicing at altitudes or orbital planes where it would be impractical to use the shuttle is primarily a general purpose propulsion stage that can be fitted with manipulator arms, automated servicers and satellite retrieval devices for particular missions. Design concepts for a general purpose retrieval device for docking with a satellite to which a grappling fixture has been attached, and for a retrieval device for docking with the Solar Maximum Mission (SMM) spacecraft were defined. The mechanical aspects of these two devices are discussed as well as the crew operations involved and problems created by the requirement for remote control. Drawings for the two retrieval device concepts are included.

  7. Hubble Space Telescope Observations of Galilean Satellites

    Science.gov (United States)

    McGrath, M. A.

    One of the premier areas of scientific return from Hubble Space Telescope (HST) observations of solar system objects has been studies of the Galilean satellites of Jupiter. Because these objects are unresolvable in most ground-based observations, HST's spatially resolved imaging and spectroscopy of their surfaces, atmospheres, and electrodynamic interactions with the Jovian magnetosphere have provided unique results. This talk will review highlights of the science results from HST observations of the Galilean satellites, including discovery of auroral emissions at the poles of Ganymede, the recent discovery of molecular sulfur in the Pele plume on Io, and the presence of SO2 in the surface of Callisto.

  8. Vehicle antenna development for mobile satellite applications

    Science.gov (United States)

    Woo, K.

    1988-01-01

    The paper summarizes results of a vehicle antenna program at JPL in support of a developing U.S. mobile satellite services (MSS) designed to provide telephone and data services for the continental United States. Two classes of circularly polarized vehicle antennas have been considered for the MSS: medium-gain, satellite-tracking antennas with 10-12-dBic gain; and low-gain, azimuthally omnidirectional antennas with 3-5-dBic gain. The design and performance of these antennas are described, and the two antennas are shown to have peculiar advantages and disadvantages.

  9. Satellite radar for monitoring forest resources

    Science.gov (United States)

    Hoffer, Roger M.; Lee, Kyu-Sung

    1990-01-01

    An evaluation is made of the computer analysis results of a study which used Seasat satellite radar data obtained in 1978 and Shuttle Imaging Radar-B data obtained in 1984. The change-detection procedures employed demonstrate that deforestation and reforestation activities can be effectively monitored on the basis of radar data gathered at satellite altitudes. The computer-processing techniques applied to the data encompassed (1) overlay display, (2) ratios, (3) differences, (4) principal-component analysis, and (5) classification; of these, overlay display is noted to quickly and easily yield a qualitative display of the multidate data.

  10. A NOVEL MODULATION FOR MOBILE SATELLITE COMMUNICATIONS

    Institute of Scientific and Technical Information of China (English)

    Xie Zhidong; Bian Dongming; Hu Jing; Sun Qian

    2011-01-01

    It is a challenging problem to design a high performance modulation for mobile satellite communications due to the limited power and bandwidth resource.The paper improves Feher patented Quadrature Phase Shift Keying (FQPSK) by redefining the waveform.The novel FQPSK,with constant envelope,can be used to improve the power efficiency and frequency efficiency of mobile satellite communication.The study shows that the improved FQPSK outperforms conventional FQPSK over AWGN and is immune to the non-linearity of high power amplifier.At last,the impact of flat fading and multi-path fading of channel on the BER performance of improved modulation is analyzed.

  11. Offshore winds mapped from satellite remote sensing

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay

    2014-01-01

    uncertainty on the model results on the offshore wind resource, it is necessary to compare model results with observations. Observations from ground-based wind lidar and satellite remote sensing are the two main technologies that can provide new types of offshore wind data at relatively low cost. The...... advantages of microwave satellite remote sensing are 1) horizontal spatial coverage, 2) long data archives and 3) high spatial detail both in the coastal zone and of far-field wind farm wake. Passive microwave ocean wind speed data are available since 1987 with up to 6 observations per day with near...

  12. Visibility and Geometry of Global Satellite Navigation Systems Constellations

    Science.gov (United States)

    Januszewski, Jacek

    2015-12-01

    Nowadays (November 2015) there are two global fully operational satellite navigation systems, American GPS and Russian GLONASS. Two next are under construction, Galileo in Europe and BeiDou in China. As the error of observer's position obtained from these systems depends on geometry factor DOP (Dilution Of Precision) among other things the knowledge of the number of satellites visible by this observer above given masking elevation angle Hmin and the distributions of DOP coefficient values, GDOP in particular, is very important. The lowest and the greatest number of satellites visible in open area by the observer at different latitudes for different Hmin, the percentage of satellites visible above angle H (9 intervals, each 10O wide), distributions (in per cent) of satellites azimuths (8 intervals, each 45O wide) and GDOP coefficient values (8 intervals) for Hmin = 5O for all these four systems at different observer's latitudes (9 intervals, each wide 10O wide) are presented in the paper. Additionally the lowest elevation for which the number of satellites visible at different latitudes by the observer in open area above this angle is equal 4 or 3 and the distributions (in per cent) of GDOP coefficient values for different Hmin at observer's latitudes 50-60O for the same four systems are showed. All calculations were made for constellation of GPS 27 satellites, GLONASS 24, Galileo 30 and BeiDou 27 MEO satellites.

  13. Ground to satellite secure key exchange using quantum cryptography

    International Nuclear Information System (INIS)

    We examine the possibility of secure key exchange between a ground station and a low earth orbit satellite using the technique of quantum cryptography. The study suggests there are no technical obstacles to building a system that could exchange keys at kilobaud rates between a metre diameter telescope on the ground and a satellite with a 10 cm diameter lightweight telescope

  14. Transmitter microdischarges in communications and broadcast Satellites

    Science.gov (United States)

    Briskman, Robert D.; Kaliski, Michael A. R.

    2016-09-01

    Most commercial communications and broadcast satellites operating at microwave radio frequencies use traveling wave tube amplifiers (TWTAs) as high power transmitters. Since TWTAs work at high voltages, it is not uncommon to experience micro-discharges, especially early in life. This observation led to the introduction of an autonomous restart function in the companion high voltage power supply (the electronic power conditioner or EPC) of the TWTA as a safety feature. A microdischarge with enough energy above a threshold would lead to a momentary removal of high voltages, followed by an automatic restart, which is usually sufficient to allow the microdischarge event to clear with minimal loss of RF transmission. In most cases the energy involved in the microdischarge is low enough that the removal of high voltages is not required and the event may go undetected. However, an unusual signature was first noted in early 1997 on a Ku-band satellite transmitter, where the characteristics of the microdischarge event were such that the control anode voltage dropped below nominal and typically recovered over a 20 min period. Such microdischarge events became known as the "20 min Effect" which has since been observed over subsequent years on other Ku-band TWTAs, as well as on Ka-band and S-band satellite TWTA transmitters in numerous satellites. This paper summarizes the in-orbit data on such microdischarges as well as the believed cause. In addition, the paper includes results from three S-band TWTAs which have operated on life test for many years. Due to ease of their monitoring instrumentation as contrast to monitoring microdischarges on orbiting operational satellites via telemetry, new data have been accumulated on this effect. The data substantiate the previous findings that microdischarges do not significantly affect satellite operation or their transmissions nor diminish the TWTAs performance, including long lifetime.

  15. Soviet satellite communications science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Birch, J.N.; Campanella, S.J.; Gordon, G.D.; McElroy, D.R.; Pritchard, W.L.; Stamminger, R.

    1991-08-01

    This is a report by six US scientists and engineers concerning the current state of the art and projections of future Soviet satellite communications technologies. The panel members are experts in satellite stabilization, spacecraft environments, space power generation, launch systems, spacecraft communications sciences and technologies, onboard processing, ground stations, and other technologies that impact communications. The panel assessed the Soviet ability to support high-data-rate space missions at 128 Mbps by evaluating current and projected Soviet satellite communications technologies. A variety of space missions were considered, including Earth-to-Earth communications via satellites in geostationary or highly elliptical orbits, those missions that require space-to-Earth communications via a direct path and those missions that require space-to-Earth communications via a relay satellite. Soviet satellite communications capability, in most cases, is 10 years behind that of the United States and other industrialized nations. However, based upon an analysis of communications links needed to support these missions using current Soviet capabilities, it is well within the current Soviet technology to support certain space missions outlined above at rates of 128 Mbps or higher, although published literature clearly shows that the Soviet Union has not exceeded 60 Mbps in its current space system. These analyses are necessary but not sufficient to determine mission data rates, and other technologies such as onboard processing and storage could limit the mission data rate well below that which could actually be supported via the communications links. Presently, the Soviet Union appears to be content with data rates in the low-Earth-orbit relay via geostationary mode of 12 Mbps. This limit is a direct result of power amplifier limits, spacecraft antenna size, and the utilization of K{sub u}-band frequencies. 91 refs., 16 figs., 15 tabs.

  16. Understanding satellite navigation

    CERN Document Server

    Acharya, Rajat

    2014-01-01

    This book explains the basic principles of satellite navigation technology with the bare minimum of mathematics and without complex equations. It helps you to conceptualize the underlying theory from first principles, building up your knowledge gradually using practical demonstrations and worked examples. A full range of MATLAB simulations is used to visualize concepts and solve problems, allowing you to see what happens to signals and systems with different configurations. Implementation and applications are discussed, along with some special topics such as Kalman Filter and Ionosphere. W

  17. UCI Satellite-II

    OpenAIRE

    Carroll, Keegan; Chen, Geoffrey Hsiao-Wei; Timilsina, Navin; Walter, Scott; Fimbres, Cristhian; Mai, Zaw; Phung, Diane; Kampley, Leann; Lasquete, Kevin W.S.; Patel, Akash; Dunford , Amy; Deason, Ross; Salazar, Eric Salaza; Tarif , Abdullaah R.; Shojaei, Kamran

    2013-01-01

    The principal idea involves the utilization of existing solar radiation to degrade model pollutants (midodrine and humic acid) in aqueous solution.  The decomposition of said pollutants will be observed through a photochemical effect known as “fluorescence”, whereby substances emit light after absorbing electromagnetic radiation.  The experiment will be carried out on a Class 2U Cube Satellite; hence the designation of “UCISAT-2.”  In addition, UCISAT-2 will utilize an electric propulsion sys...

  18. China Satellite Navigation Conference

    CERN Document Server

    Liu, Jingnan; Fan, Shiwei; Wang, Feixue

    2016-01-01

    These Proceedings present selected research papers from CSNC2016, held during 18th-20th May in Changsha, China. The theme of CSNC2016 is Smart Sensing, Smart Perception. These papers discuss the technologies and applications of the Global Navigation Satellite System (GNSS), and the latest progress made in the China BeiDou System (BDS) especially. They are divided into 12 topics to match the corresponding sessions in CSNC2016, which broadly covered key topics in GNSS. Readers can learn about the BDS and keep abreast of the latest advances in GNSS techniques and applications.

  19. Economics of satellite communications systems

    Science.gov (United States)

    Pritchard, Wilbur L.

    arrives at a schedule of costs and payments for all the items and the years in which they will be incurred. The second category of costing problems is one of financing or engineering economics. All the costs are first "present valued" to some reference period using rates of return appropriate to the particular situation. One finally arrives at sets of annual costs which can be used as the basis for setting lease costs or revenue requirements and tariffs. The correspondence between methods using discounted rates of return and capital recovery formulae on one hand and those using various depreciation schedules, such as is typical of regulated industries on the other hand, is discussed. The remainder of the paper is devoted to discussing the relationship between critical parameters, such as replacement schedules, design lifetime, satellite power and Earth station antenna size, and the overall costs. It is shown that optima for these parameters may exist and can be calculated. In particular, the optimization of satellite replacement schedules to minimize the present value of total investment over a very long period is presented, along with simplified versions of the theory suitable for system planning. The choice of EIRP is also discussed and a procedure for choosing the value that minimizes the costs is shown.

  20. The alignment of SDSS satellites with the VPOS: effects of the survey footprint shape

    Science.gov (United States)

    Pawlowski, Marcel S.

    2016-02-01

    It is sometimes argued that the uneven sky coverage of the Sloan Digital Sky Survey (SDSS) biases the distribution of satellite galaxies discovered by it to align with the polar plane defined by the 11 brighter, classical Milky Way (MW) satellites. This might prevent the SDSS satellites from adding significance to the MW's vast polar structure (VPOS). We investigate whether this argument is valid by comparing the observed situation with model satellite distributions confined to the exact SDSS footprint area. We find that the SDSS satellites indeed add to the significance of the VPOS and that the survey footprint rather biases away from a close alignment between the plane fitted to the SDSS satellites and the plane fitted to the 11 classical satellites. Finding the observed satellite phase-space alignments of both the classical and SDSS satellites is an ˜5σ event with respect to an isotropic distribution. This constitutes a robust discovery of the VPOS and makes it more significant than the Great Plane of Andromeda (GPoA). Motivated by the GPoA, which consists of only about half of M31's satellites, we also estimate which fraction of the MW satellites is consistent with being part of an isotropic distribution. Depending on the underlying satellite plane width, only 2 to 6 out of the 27 considered MW satellites are expected to be drawn from isotropy, and an isotropic component of ≳50 per cent of the MW satellite population is excluded at 95 per cent confidence.

  1. A decentralized design philosophy for satellites

    DEFF Research Database (Denmark)

    Nielsen, Jens Frederik Dalsgaard; Larsen, Jesper Abildgaard

    2011-01-01

    For the last decade development and construction of student cubesat satellites has played an important part in the engineering Master Program within Electrical Engineering and Information Technology at Aalborg University, Denmark. As a result three cubesats AAU CUBESAT, AAUSAT-II and AAUSAT3 has...

  2. Molecular biology of fuselloviruses and their satellites

    DEFF Research Database (Denmark)

    Contursi, Patrizia; Fusco, Salvatore; Cannio, Raffaele;

    2014-01-01

    Fuselloviruses, also known as Sulfolobus Spindle-shaped viruses (SSVs), are "lemon"- or "spindle"-shaped double-stranded DNA viruses. Among them, SSV1, SSV2 and the satellite viruses pSSVx and pSSVi have been investigated at the structural, genetic, transcriptomic, proteomic and biochemical level...

  3. Extrapolating Satellite Winds to Turbine Operating Heights

    DEFF Research Database (Denmark)

    Badger, Merete; Pena Diaz, Alfredo; Hahmann, Andrea N.;

    2016-01-01

    Ocean wind retrievals from satellite sensors are typically performed for the standard level of 10 m. This restricts their full exploitation for wind energy planning, which requires wind information at much higher levels where wind turbines operate. A new method is presented for the vertical...... nearshore areas where most offshore wind farms are built....

  4. Global canopy interception from satellite observations

    Science.gov (United States)

    A new methodology for retrieving rainfall interception rates from multi satellite observations is presented. The approach makes use of the daily productof the Global Precipitation Climatology Project (GPCP) as driving data and applies Gash’s analytical model to derive interception rates at global sc...

  5. Satellite Network Hacking & Security Analysis

    Directory of Open Access Journals (Sweden)

    Adam Ali.Zare Hudaib

    2016-04-01

    Full Text Available Satellites play a significant role in communication, early warning systems, global broadcasting, meteorology, navigation, reconnaissance, remote sensing, and surveillance.Satellite services cover practically every sector, from mobile cellular communication to telemedicine, so any interference with them could have a serious effect. Satellites are a strategic asset for any country and are considered as “critical infrastructure,” therefore they are considerable as privileged targets for a possible cyber attack.

  6. Vibration Testing for Small Satellites

    OpenAIRE

    Wilson, Delbert

    1989-01-01

    Most people involved in the design and construction of small satellites are unfamiliar with vibration testing. Yet most satellites undergo vibration testing to qualify them for flight. Some familiarity with the basic aspects of vibration testing is needed to insure that a vibration test on a satellite is valid. This paper sets forth the basic equipment, practices and concepts of vibration testing. It provides guidelines for specifying a vibration test, designing fixtures, attaching instrument...

  7. Living antennas on communication satellites

    DEFF Research Database (Denmark)

    Lumholt, Michael

    2003-01-01

    Crises change the global pattern of communication. The communications problems occur because the satellites are optimized to cover specific geographic areas, and these areas cannot be altered once the satellites are in Earth orbit. An effective solution to the problem is to equip communication sa...... satellites with "living" antennas that can adjust their radiation coverage areas according to the new demands. The development of living antennas is, therefore, among the focus areas identified and supported by the European Space Agency, ESA....

  8. Effect of Ionosphere on Geostationary Communication Satellite Signals

    Science.gov (United States)

    Erdem, Esra; Arikan, Feza; Gulgonul, Senol

    2016-07-01

    Geostationary orbit (GEO) communications satellites allow radio, television, and telephone transmissions to be sent live anywhere in the world. They are extremely important in daily life and also for military applications. Since, satellite communication is an expensive technology addressing crowd of people, it is critical to improve the performance of this technology. GEO satellites are at 35,786 kilometres from Earth's surface situated directly over the equator. A satellite in a geostationary orbit (GEO) appears to stand still in the sky, in a fixed position with respect to an observer on the earth, because the satellite's orbital period is the same as the rotation rate of the Earth. The advantage of this orbit is that ground antennas can be fixed to point towards to satellite without their having to track the satellite's motion. Radio frequency ranges used in satellite communications are C, X, Ku, Ka and even EHG and V-band. Satellite signals are disturbed by atmospheric effects on the path between the satellite and the receiver antenna. These effects are mostly rain, cloud and gaseous attenuation. It is expected that ionosphere has a minor effect on the satellite signals when the ionosphere is quiet. But there are anomalies and perturbations on the structure of ionosphere with respect to geomagnetic field and solar activity and these conditions may cause further affects on the satellite signals. In this study IONOLAB-RAY algorithm is adopted to examine the effect of ionosphere on satellite signals. IONOLAB-RAY is developed to calculate propagation path and characteristics of high frequency signals. The algorithm does not have any frequency limitation and models the plasmasphere up to 20,200 km altitude, so that propagation between a GEO satellite and antenna on Earth can be simulated. The algorithm models inhomogeneous, anisotropic and time dependent structure of the ionosphere with a 3-D spherical grid geometry and calculates physical parameters of the

  9. The Italian contribution to the CSES satellite

    Science.gov (United States)

    Conti, Livio

    2016-04-01

    We present the Italian contribution to the CSES (China Seismo-Electromagnetic Satellite) mission. The CSES satellite aims at investigating electromagnetic field, plasma and particles in the near-Earth environment in order to study in particular seismic precursors, particles fluxes (from Van Allen belts, cosmic rays, solar wind, etc.), anthropogenic electromagnetic pollution and more in general the atmosphere-ionosphere-magnetosphere coupling mechanisms that can affect the climate changes. The launch of CSES - the first of a series of several satellite missions - is scheduled by the end of 2016. The CSES satellite has been financed by the CNSA (China National Space Agency) and developed by CEA (China Earthquake Administration) together with several Chinese research institutes and private companies such as the DFH (that has developed the CAST2000 satellite platform). Italy participates to the CSES satellite mission with the LIMADOU project funded by ASI (Italian Space Agency) in collaboration with the Universities of Roma Tor Vergata, Uninettuno, Trento, Bologna and Perugia, as well as the INFN (Italian National Institute of Nuclear Physics), INGV (Italian National Institute of Geophysics and Volcanology) and INAF-IAPS (Italian National Institute of Astrophysics and Planetology). Many analyses have shown that satellite observations of electromagnetic fields, plasma parameters and particle fluxes in low Earth orbit may be useful in order to study the existence of electromagnetic emissions associated with the occurrence of earthquakes of medium and high magnitude. Although the earthquakes forecasting is not possible today, it is certainly a major challenge - and perhaps even a duty - for science in the near future. The claims that the reported anomalies (of electromagnetic, plasma and particle parameters) are seismic precursors are still intensely debated and analyses for confirming claimed correlations are still lacking. In fact, ionospheric currents, plasma

  10. Solar power satellite

    Science.gov (United States)

    Davis, H. P.

    1978-01-01

    The solar power satellite (SPS) concept, under evaluation by NASA since 1974, is discussed. A typical system providing a total of 10,000 MW of electrical power to the ground receiving stations is considered. Energy conversion systems, including the photovoltaic device category using single-crystal silicon cells, are taken into account, as are the 2.45-GHz microwave power-transmission link and the ground receiver (or rectenna). Concepts involving space construction of the satellite's large structures (5 x 25 km) are described, noting that a process similar to the familiar roll-forming of light sheet metal parts has been adapted to the space environment. Transportation vehicles are discussed, including the Space Shuttle planned to reach 60 flights per year by the mid 1980's. Electrical power forecasts and advanced systems cost projections are analyzed, together with a description of costs estimates. The indirect economics of energy research and development, and the present NASA/DOE SPS program are noted.

  11. Neptunian Satellites observed with Keck AO system

    Science.gov (United States)

    Marchis, F.; Urata, R.; de Pater, I.; Gibbard, S.; Hammel, H. B.; Berthier, J.

    2004-05-01

    The Neptunian system was observed on 9 different nights between July 2002 and October 2003 with the 10-m Keck telescope on Mauna Kea, Hawaii, and its facility instrument NIRC2 coupled with the Adaptive Optics system. Data were recorded in J (1.2μ m), and H (2.2μ m) bands. The angular resolution achieved on a one-minute integration time image is 0.50 arcsec, corresponding to a spatial resolution of 1100 km. The images display small structures such as the rings (de Pater et al. 2004), clouds in the atmosphere (Gibbard et al. 2003), and inner satellites, mainly Proteus, Larissa, Galatea, Despina, and Thalassa. On the 40 images, the positions and intensities of the satellites detected were accurately measured fitting the signal with a gaussian profile. The center of Neptune was obtained by fitting the disk position with an ellipse. After correcting for the detector distortion, we compared the satellite positions with the predicted ones delivered by several ephemerides. We used the JPL (NEP016 + NEP022 + DE405) and two IMCCE ephemerides, an old version (VSOP87+Owen et al., 1991) and a more recent one (DE405+Le Guyader et al., 1993). All cases, we confirmed the presence of an apparent shift between the predicted and the observed positions. Table 1 (see http://astron.berkeley.edu/ fmarchis/Science/Neptune/Satellites/) summarizes the mean distance of the shift for satellites most frequently observed and the various ephemerides. In this presentation, we will report the positions of the satellites, and present their color and possible photometric variations derived from the observations. This work has been partially supported by the National Science Foundation Science and Technology Center for Adaptive Optics, managed by the University of California at Santa Cruz under cooperative agreement No. AST - 9876783.

  12. Satellite quantum communication towards GEO distances

    Science.gov (United States)

    Vallone, Giuseppe; Dequal, Daniele; Tomasin, M.; Schiavon, M.; Vedovato, F.; Bacco, Davide; Gaiarin, Simone; Bianco, Giuseppe; Luceri, Vincenza; Villoresi, Paolo

    2016-04-01

    We report on several experiments of single photon transmission from space to ground realized at the Matera Laser Ranging Observatory (MLRO) of the Italian Space Agency in Matera (Italy). We simulated a source of coherent pulses attenuated to the single photon level by exploiting laser ranging satellites equipped with corner-cube retroreflectors (CCRs). By such technique we report QC with qubits encoded in polarization from low-Earth-orbit (LEO) at distance up to 2500km from the ground station, achieving a low quantum bit error ratio (QBER) for different satellites. The same technique is exploited to demonstrate single photon exchange with a medium-Earth-orbit (MEO) satellite, Lageos-2 at more than 7000 km of distance from the MLRO station. In both experiments the temporal jitter of the received counts is of the order of 1.2ns FWHM due to the intrinsic jitter of the single photon detectors. In order to improve the discrimination of signal from the background and reaching distances corresponding to GEO satellites, we improved the detection scheme by using fast single photon detectors with 40 ps FWHM jitter. We report improved single photon detection jitter from Beacon-C and Ajisai, obtaining 340 ps FWHM in the best case.

  13. Steller sea lion satellite telemetry data used to determine at-sea distribution in the western-central Aleutian Islands, 2000-2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset was used for an analysis of the at-sea distribution of Steller sea lions in the western-central Aleutian Islands, Alaska. This analysis was prepared to...

  14. Integration of GOES, MODIS and HyspIRI Thermal Satellite Imagery for Evaluationof Daily Evapotranspiration at the Sub-Field Scale

    Science.gov (United States)

    Development of robust algorithms for routine monitoring of evapotranspiration (ET) over large areas at spatial resolutions that discriminate individual agricultural fields (<100 m resolution) and small hydrologic features will benefit an array of water resource management applications. Land-surface...

  15. Definition and architecture of the EGPM mini-satellite

    Science.gov (United States)

    Martinerie, Francis; Caubet, Eric; Viltard, Nicolas; Tam, Sebastian Y.

    2003-04-01

    The goal of the NASA/NASDA GLobal Precipitation Mission (GPM) is to provide frequent global rainfall observations, using a satellite cluster based on a 'core' platform and a number of 'drone' satellites large enough to provide a repeat observation cycle of about 3 hours. ESA has proposed a contribution to GPM in the form of a drone satellite, with a scheduled launch foreseen by 2007. The 'E-GPM' Drone satellite is currently studied within the frame of the ESA Earth Opporutnity Missions Program, and involves many innovative aspects, among which are: (i) a 5 band, 13 channel conical scan radiometer, operating at 18.7, 23.8, 36.5, 89 and 157 GHz for rainfall water content and ice content estimation of the atmosphere; (ii) a Nadir pointing Precipitation Radar embarked in order to enhance the overall accuracy of precipitation estimates, operating at 35.6 GHz. The radar will provide high quality estimates of vertical profile precipitation; (iii) an implementation on a small satellite based on Alcatel's multi-mission PROTEUS Platform, already flying with the JASON altimetry satellite launched in 2001. This presentation summarizes the definition of the E-GPM satellite, from the scientific requirements to the satellite and instrument design, performance, and budget.

  16. LUMINOUS SATELLITES OF EARLY-TYPE GALAXIES. I. SPATIAL DISTRIBUTION

    International Nuclear Information System (INIS)

    We study the spatial distribution of faint satellites of intermediate redshift (0.1 s = 1.7+0.9-0.8) that is comparable to the number of Milky Way satellites with similar host-satellite contrast. The average projected radial profile of the satellite distribution is isothermal (γp = -1.0+0.3-0.4), which is consistent with the observed central mass density profile of massive early-type galaxies. Furthermore, the satellite distribution is highly anisotropic (isotropy is ruled out at a >99.99% confidence level). Defining φ to be the offset between the major axis of the satellite spatial distribution and the major axis of the host light profile, we find a maximum posterior probability of φ = 0 and |φ| less than 420 at the 68% confidence level. The alignment of the satellite distribution with the light of the host is consistent with simulations, assuming that light traces mass for the host galaxy as observed for lens galaxies. The anisotropy of the satellite population enhances its ability to produce the flux ratio anomalies observed in gravitationally lensed quasars.

  17. An enhanced algorithm to estimate BDS satellite's differential code biases

    Science.gov (United States)

    Shi, Chuang; Fan, Lei; Li, Min; Liu, Zhizhao; Gu, Shengfeng; Zhong, Shiming; Song, Weiwei

    2016-02-01

    This paper proposes an enhanced algorithm to estimate the differential code biases (DCB) on three frequencies of the BeiDou Navigation Satellite System (BDS) satellites. By forming ionospheric observables derived from uncombined precise point positioning and geometry-free linear combination of phase-smoothed range, satellite DCBs are determined together with ionospheric delay that is modeled at each individual station. Specifically, the DCB and ionospheric delay are estimated in a weighted least-squares estimator by considering the precision of ionospheric observables, and a misclosure constraint for different types of satellite DCBs is introduced. This algorithm was tested by GNSS data collected in November and December 2013 from 29 stations of Multi-GNSS Experiment (MGEX) and BeiDou Experimental Tracking Stations. Results show that the proposed algorithm is able to precisely estimate BDS satellite DCBs, where the mean value of day-to-day scattering is about 0.19 ns and the RMS of the difference with respect to MGEX DCB products is about 0.24 ns. In order to make comparison, an existing algorithm based on IGG: Institute of Geodesy and Geophysics, China (IGGDCB), is also used to process the same dataset. Results show that, the DCB difference between results from the enhanced algorithm and the DCB products from Center for Orbit Determination in Europe (CODE) and MGEX is reduced in average by 46 % for GPS satellites and 14 % for BDS satellites, when compared with DCB difference between the results of IGGDCB algorithm and the DCB products from CODE and MGEX. In addition, we find the day-to-day scattering of BDS IGSO satellites is obviously lower than that of GEO and MEO satellites, and a significant bias exists in daily DCB values of GEO satellites comparing with MGEX DCB product. This proposed algorithm also provides a new approach to estimate the satellite DCBs of multiple GNSS systems.

  18. Satellite-based internet: A tutorial

    OpenAIRE

    Hu, Y.; Li, VOK

    2001-01-01

    In a satellite-based Internet system, satellites are used to interconnect heterogeneous network segments and to provide ubiquitous direct Internet access to homes and businesses. This article presents satellite-based Internet architectures and discusses multiple access control, routing, satellite transport, and integrating satellite networks into the global Internet.

  19. Tethered Satellite System Contingency Investigation Board

    Science.gov (United States)

    1992-11-01

    The Tethered Satellite System (TSS-1) was launched aboard the Space Shuttle Atlantis (STS-46) on July 31, 1992. During the attempted on-orbit operations, the Tethered Satellite System failed to deploy successfully beyond 256 meters. The satellite was retrieved successfully and was returned on August 6, 1992. The National Aeronautics and Space Administration (NASA) Associate Administrator for Space Flight formed the Tethered Satellite System (TSS-1) Contingency Investigation Board on August 12, 1992. The TSS-1 Contingency Investigation Board was asked to review the anomalies which occurred, to determine the probable cause, and to recommend corrective measures to prevent recurrence. The board was supported by the TSS Systems Working group as identified in MSFC-TSS-11-90, 'Tethered Satellite System (TSS) Contingency Plan'. The board identified five anomalies for investigation: initial failure to retract the U2 umbilical; initial failure to flyaway; unplanned tether deployment stop at 179 meters; unplanned tether deployment stop at 256 meters; and failure to move tether in either direction at 224 meters. Initial observations of the returned flight hardware revealed evidence of mechanical interference by a bolt with the level wind mechanism travel as well as a helical shaped wrap of tether which indicated that the tether had been unwound from the reel beyond the travel by the level wind mechanism. Examination of the detailed mission events from flight data and mission logs related to the initial failure to flyaway and the failure to move in either direction at 224 meters, together with known preflight concerns regarding slack tether, focused the assessment of these anomalies on the upper tether control mechanism. After the second meeting, the board requested the working group to complete and validate a detailed integrated mission sequence to focus the fault tree analysis on a stuck U2 umbilical, level wind mechanical interference, and slack tether in upper tether

  20. Mapping dry-season tree transpiration of an oak woodland at the catchment scale, using object-attributes derived from satellite imagery and sap flow measurements

    NARCIS (Netherlands)

    Reyes-Acosta, J. Leonardo; Lubczynski, Maciek W.

    2013-01-01

    Tree transpiration is an important plant-physiological process that influences the water cycle, thereby influencing ecosystems and even the quantity of available water resources. However, direct tree-transpiration measurements, particularly at large spatial scales, are still rare, due to the complex

  1. Integrated Satellite-HAP Systems

    DEFF Research Database (Denmark)

    Cianca, Ernestina; De Sanctis, Mauro; De Luise, Aldo;

    2005-01-01

    Thus far, high-altitude platform (HAP)-based systems have been mainly conceived as an alternative to satellites for complementing the terrestrial network. This article aims to show that HAP should no longer be seen as a competitor technology by investors of satellites, but as a key element for an...

  2. Multicast Routing in Satellite Network

    Institute of Scientific and Technical Information of China (English)

    郭惠玲; 宋姝; 李磊; 刘志涛; 郭鹏程

    2004-01-01

    There are some problems in the dual-layer satellite MPLs metworks to be composed of LEO and MEO. In order to solve the problems, this paper presents a plan by means of unicast LSP to implement multicast in the dual-layer satellite MPLs networks. It has advantages of saving space and reducing extra charge.

  3. Detection of a strong rfi-threat in the BI NGO frequency range due to the new Chinese satellite navigation system COMPASS at 1207.14 MHz

    Science.gov (United States)

    Monstein, Chr.

    2013-06-01

    Currently, a simple in-sensitive but cheap receiving system (which was originally designed for solar observations) is configured to receive frequencies covering BINGO frequency range from 960 MHz up to 1260 MHz. During the day the antenna tracks the sun but in the night the 5m parabolic dish is pointing to the sky to a fixed position at azimuth 180° and elevation 80°.

  4. The role of technology in influencing future civil communications satellites

    Science.gov (United States)

    Bagwell, James W.; Mahle, Christoph E.

    1990-01-01

    Technology, both as an enabler and as a driver of new and improved communication satellites, is discussed. A brief look at the beginnings and evolution of satellite communications is given to reveal the continuing influence of technology over the past 25 years. An assessment of the current state of the art which serves as a benchmark representing how far technology has come and as a basis for comparison for future possibilities is presented. A short tutorial on communications satellite basics is presented, followed by an assessment of technologies used for satellite antennas and signal amplification and routing. A discussion of future service requirements follows, and emerging technologies are identified along with possible improved communications capabilities that can result from them. The outlook for the role of technology for future communication satellites is summarized.

  5. A description and evaluation of FAO satellite rainfall estimation algorithm

    Science.gov (United States)

    Dinku, Tufa; Alessandrini, Stefano; Evangelisti, Mauro; Rojas, Oscar

    2015-09-01

    There are ongoing efforts to improve the accuracy of satellite rainfall estimates. One of these efforts comes from the Food and Agriculture Organization (FAO) of the United Nations. The FAO effort involves combining satellite rainfall estimates and meteorological model outputs with station measurements. The algorithm of the FAO satellite rainfall estimates (FAO-RFE) is presented and evaluated by comparing with raingauge data and other satellite rainfall products over eastern and western parts of Africa. The evaluations were done at daily and ten-daily time scales. The FAO-RFE has shown significant improvement over the individual inputs. However, comparison of FAO-RFE with other satellite rainfall products has shown a slight improvement only over areas with good station input. The main weakness of the FAO-RFE is that it overestimates rainfall occurrences, which is attributed to the forecast product used in the algorithm.

  6. Experience and Methodology gained from 4 years of Student Satellite Projects

    DEFF Research Database (Denmark)

    Alminde, Lars; Bisgaard, Morten; Bhanderi, Dan;

    2005-01-01

    The AAU Cubesat student satellite project at Aalborg University was initiated in September 2001 and led to the launch of the satellite on the 30th of June 2003 with a “Rockot” rocket from Plesetsk in Russia. The satellite survived three months in orbit and based on the experiences gained the next...

  7. Asteroid 2014 OL339: yet another Earth quasi-satellite

    CERN Document Server

    Marcos, C de la Fuente

    2014-01-01

    Our planet has one permanently bound satellite -the Moon-, a likely large number of mini-moons or transient irregular natural satellites, and three temporary natural retrograde satellites or quasi-satellites. These quasi-moons -(164207) 2004 GU9, (277810) 2006 FV35 and 2013 LX28- are unbound companions to the Earth. The orbital evolution of quasi-satellites may transform them into temporarily bound satellites of our planet. Here, we study the dynamical evolution of the recently discovered Aten asteroid 2014 OL339 to show that it is currently following a quasi-satellite orbit with respect to the Earth. This episode started at least about 775 yr ago and it will end 165 yr from now. The orbit of this object is quite chaotic and together with 164207 are the most unstable of the known Earth quasi-satellites. This group of minor bodies is, dynamically speaking, very heterogeneous but three of them exhibit Kozai-like dynamics: the argument of perihelion of 164207 oscillates around -90 degrees, the one of 277810 libr...

  8. Orbits of Potential Pluto Satellites and Rings Between Charon and Hydra

    OpenAIRE

    Porter, Simon B.; Stern, S. Alan

    2015-01-01

    Pluto and its five known satellites form a complex dynamic system. Here we explore where additional satellites could exist exterior to Charon (the innermost moon) but interior of Hydra (the outermost). We also provide dynamical constraints for the masses of the known satellites. We show that there are significant stable regions interior of Styx and between Nix and Kerberos. In addition, we show that coorbitals of the known small satellites are stable, even at high inclinations, and discuss ma...

  9. Chuangxin-1-02 And Shiyan Satellite 3 Launched Atop A LM-2D

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ A LM-2D launch vehicle blasted off from Jiuquan Satellite Launch Center (JSLC) at 08:15 (Beijing time) on November 5, sending Chuangxin-l-02 and Shiyan Satellite 3 into space. According to the data released by the Xi'an Satellite Control Center (XSCC), Chuangxin-1-02 separated from the launch vehicle 856 seconds after the takeoff, and Shiyan Satellite 3 separated from the rocket 63 seconds thereafter.

  10. The SAMSON Project – Cluster Flight and Geolocation with Three Autonomous Nano-satellites

    OpenAIRE

    Gurfil, Pini; Herscovitz, Jacob; Pariente, Meidad

    2012-01-01

    Satellite Mission for Swarming and Geolocation (SAMSON) is a new satellite mission initiated and led by the Technion – Israel Institute of Technology and supported by Israeli space industries and other partners. SAMSON shall include three inter-communicating nano-satellites, based on the Cubesat standard. The mission is planned for at least one year, and has two goals: (1) demonstrate long-term autonomous cluster flight of multiple satellites and (2) geolocate a cooperative radiating electrom...

  11. Satellite system performance assessment for in-flight entertainment and air traffic control

    OpenAIRE

    Radzik, José; Pirovano, Alain; Tao, Na; Bousquet, Michel

    2007-01-01

    International audience Concurrent satellite systems have been proposed for IFE (In-Flight Entertainment) communications, thus demonstrating the capability of satellites to provide multimedia access to users in aircraft cabin. At the same time, an increasing interest in the use of satellite communications for ATC (Air Traffic Control) has been motivated by the increasing load of traditional radio links mainly in the VHF band, and uses the extended capacities the satellite may provide. Howev...

  12. Induction studies with satellite data

    DEFF Research Database (Denmark)

    Olsen, Nils

    1999-01-01

    analysis of the geomagnetic field is performed, and the Q-response, which is the transfer function between the internal (induced) and the external (inducing) expansion coefficients is determined for a specific frequency. In the second approach, known as the geomagnetic depth sounding method, the C...... paper reviews and discusses the possibilities for induction studies using high-precision magnetic measurements from low-altitude satellites. The different methods and various transfer functions are presented, with special emphasis on the differences in analysing data from ground stations and from...... satellites. The results of several induction studies with scalar satellite data (from the POGO satellites) and with vector data (from the Magsat mission) demonstrate the ability to probe the Earth's conductivity from space. However, compared to the results obtained with ground data the satellite results are...

  13. Retrieval and satellite intercomparison of O3 measurements from ground-based FTIR Spectrometer at Equatorial Station: Addis Ababa, Ethiopia

    OpenAIRE

    S. Takele Kenea; G. Mengistu Tsidu; Blumenstock, T.; Hase, F.; Clarmann, T.; Stiller, G. P.

    2013-01-01

    Since May 2009, high-resolution Fourier Transform Infrared (FTIR) solar absorption spectra have been recorded at Addis Ababa (9.01° N latitude, 38.76° E longitude, 2443 m altitude above sea level), Ethiopia. The vertical profiles and total column amounts of ozone (O3) are deduced from the spectra by using the retrieval code PROFFIT (V9.5) and regularly determined instrumental line shape (ILS). A detailed error analysis of the O3 retrieval is performed. Averaging kernels of t...

  14. Ground-based FTIR and MAX-DOAS observations of formaldehyde at Réunion Island and comparisons with satellite and model data

    OpenAIRE

    C. Vigouroux; F. Hendrick; T. Stavrakou; B. Dils; I. De Smedt; Hermans, C.; A. Merlaud; F. Scolas; C. Senten; Vanhaelewyn, G.; S. Fally; Carleer, M.; Metzger, J.-M.; Müller, J.-F.; Van Roozendael, M.

    2009-01-01

    Formaldehyde (HCHO) columns have been retrieved from ground-based Fourier transform infrared (FTIR) campaign measurements in 2004 and 2007 and from UV-Visible MAX-DOAS measurements in 2004–2005 at the NDACC site of Réunion Island (21° S, 55° E). The FTIR and MAX-DOAS daily mean formaldehyde total columns are intercompared in their common measurement period, from August to October 2004. The ground-based data are also compared to correlative SCIAMACHY data. The comparison...

  15. Coordinated rocket and satellite measurements of an auroral event. I - Satellite observations and analysis

    Science.gov (United States)

    Rees, M. H.; Stewart, A. I.; Sharp, W. E.; Hays, P. B.; Hoffman, R. A.; Brace, L. H.; Doering, J. P.; Peterson, W. K.

    1977-01-01

    Results of a coordinated auroral experiment involving the Atmosphere Explorer C satellite and a sounding rocket are reported. Auroral primary electron fluxes and neutral gas densities measured by instruments on the satellite are used in a model calculation of the thermospheric manifestation of the aurora. There is encouraging agreement between the calculated and measured electron density, electron temperature, secondary electron flux, and O I emissions at 5577 and 6300 A. A discrepancy between the calculated and the rocket-measured 3914-A emission profile is discussed in terms of experiment geometry and auroral physics. The coordinated measurements are used to infer vertical fluxes of ionization and of electron thermal energy at high altitudes

  16. The Next Landsat Satellite: The Landsat Data Continuity Mission

    Science.gov (United States)

    Rons, James R.; Dwyer, John L.; Barsi, Julia A.

    2012-01-01

    The Landsat program is one of the longest running satellite programs for Earth observations from space. The program was initiated by the launch of Landsat 1 in 1972. Since then a series of six more Landsat satellites were launched and at least one of those satellites has been in operations at all times to continuously collect images of the global land surface. The Department of Interior (DOI) U.S. Geological Survey (USGS) preserves data collected by all of the Landsat satellites at their Earth Resources Observation and Science (EROS) Center in Sioux Falls, South Dakota. This 40-year data archive provides an unmatched record of the Earth's land surface that has undergone dramatic changes in recent decades due to the increasing pressure of a growing population and advancing technologies. EROS provides the ability for anyone to search the archive and order digital Landsat images over the internet for free. The Landsat data are a public resource for observing, characterizing, monitoring, trending, and predicting land use change over time providing an invaluable tool for those addressing the profound consequences of those changes to society. The most recent launch of a Landsat satellite occurred in 1999 when Landsat 7 was placed in orbit. While Landsat 7 remains in operation, the National Aeronautics and Space Administration (NASA) and the DOI/ USGS are building its successor satellite system currently called the Landsat Data Continuity Mission (LDCM). NASA has the lead for building and launching the satellite that will carry two Earth-viewing instruments, the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The OLI will take images that measure the amount of sunlight reflected by the land surface at nine wavelengths of light with three of those wavelengths beyond the range of human vision. T1RS will collect coincident images that measure light emitted by the land surface as a function of surface temperature at two longer wavelengths well beyond the

  17. Toward high-resolution monitoring of continental surface water extent and dynamics, at global scale : from GIEMS (Global Inundation Extent from Multi-Satellites) to SWOT (Surface Water Ocean Topography)

    OpenAIRE

    Prigent, C.; Lettenmaier, D. P.; Aires, F.; Papa, Fabrice

    2016-01-01

    Up to now, high-resolution mapping of surface water extent from satellites has only been available for a few regions, over limited time periods. The extension of the temporal and spatial coverage was difficult, due to the limitation of the remote sensing technique [e.g., the interaction of the radiation with vegetation or cloud for visible observations or the temporal sampling with the synthetic aperture radar (SAR)]. The advantages and the limitations of the various satellite techniques are ...

  18. Toward a High-Resolution Monitoring of Continental Surface Water Extent and Dynamics, at Global Scale: from GIEMS (Global Inundation Extent from Multi-Satellites) to SWOT (Surface Water Ocean Topography)

    OpenAIRE

    Prigent, Catherine; Lettenmaier, Dennis P; Aires, Filipe; Papa, Fabrice

    2016-01-01

    Up to now, high-resolution mapping of surface water extent from satellites has only been available for a few regions, over limited time periods. The extension of the temporal and spatial coverage was difficult, due to the limitation of the remote sensing technique e.g., the interaction of the radiation with vegetation or cloud for visible observations or the temporal sampling with the synthetic aperture radar (SAR)]. The advantages and the limitations of the various satellite techniques are r...

  19. Polar-Orbiting Satellite (POES) Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Visible and Infrared satellite imagery taken from camera systems or radiometer instruments on satellites in orbit around the poles. Satellite campaigns include...

  20. An Assessment of New Satellite Data Products for the Development of a Long-Term Global Solar Resource at 10-100 km

    Science.gov (United States)

    Stackhouse, Paul W., Jr.; Minnis, Patrick; Perez, Richard; Sengupta, Manajit; Knapp, Kenneth; Mikovitz, J. Colleen; Schlemmer, James; Scarino, Benjamin; Zhang, Taiping; Cox, Stephen J.

    2016-01-01

    A project representing an effort to reprocess the NASA based solar resource data sets is reviewed. The effort represented a collaboration between NASA, NOAA, NREL and the SUNY-Albany and aimed to deliver a 10 km resolution, 3-hourly data set spanning from 1983 through near-present. Part of the project was to transition project capability to NREL for annual processing to extend data set. Due to delays in the key input project called ISCCP, we evaluate only Beta versions of this data set and also introduce the potential use of another NASA Langley based cloud data set for the CERES project. The CERES project uses these cloud properties to compute global top-of-atmosphere and surface fluxes at the 1x1 degree resolution. Here, we also briefly discuss these data sets in potential usage for solar resource benchmarking.

  1. North and northeast Greenland ice discharge from satellite radar interferometry

    OpenAIRE

    Rignot, EJ; Gogineni, SP; Krabill, WB; Ekholm, S

    1997-01-01

    Ice discharge from north and northeast Greenland calculated from satellite radar interferometry data of 14 outlet glaciers is 3.5 times that estimated from iceberg production. The satellite estimates, obtained at the grounding line of the outlet glaciers, differ from those obtained at the glacier front, because basal melting is extensive at the underside of the floating glacier sections. The results suggest that the north and northeast parts of the Greenland ice sheet may be thinning and cont...

  2. Satellite imagery in a nuclear age

    International Nuclear Information System (INIS)

    Increasingly, high resolution satellite imaging systems are becoming available from multiple and diverse sources with capabilities useful for answering security questions. With increased supply, data availability and data authenticity may be assured. In a commercial market a supplier can ill afford the loss in market share that would result from any falsification of data. Similarly rising competitors willing to sell imagery of national security sites will decrease the tendency to endure self-imposed restrictions on sales of those sites. International organizations operating in the security interests of all nations might also gain preferential access. Costa for imagery will also fall to the point were individuals can afford purchases of satellite images. International organizations will find utility in exploiting imagery for solving international security problems. Housed within international organizations possessing competent staff, procedures, and 'shared destiny' stakes in resolving compliance discrepancies, the use of satellite imagery may provide a degree of stability in a world in which individuals, non-governmental organizations and governments may choose to exploit the available information for political gain. The use of satellite imagery outside these international organizations might not necessarily be aimed at seeking mutually beneficial solutions for international problems

  3. Monitoring Phenological Trends From Satellite Imagery

    Science.gov (United States)

    Reed, B.; Brown, J.; Whalen, A.

    2004-12-01

    While there is convincing evidence that global climate change is taking place, there is still considerable controversy over the magnitude and consequences of any changes. One of the primary manifestations of climate change is the effect on patterns of vegetation growth; the timing of the growing season, the vigor of vegetation, and vegetation composition. The satellite data record provides an objective view of vegetation activity by measuring surface reflectance values at regular time intervals. Time-series analyses of satellite data can provide information on emerging trends of vegetation dynamics that may be related to global change. The objective of this project is to conduct a trend analysis of vegetation dynamics in the conterminous United States, as measured by satellite data, to assess regions of changing vegetation activity, and to evaluate the regions to determine the driving forces of these changes. To assess vegetation dynamics we analyze phenological metrics (e.g., time of start of season , end of season, duration of season, and seasonally integrated greenness) derived from satellite data and evaluate trends in these metrics by studying the climate record, agricultural statistics, and land cover data bases to assess the driving forces of the trends. The types of trends that we identify include trends toward earlier/later start and end of season, longer/shorter growing seasons, and greater/lesser vegetation production. Early results indicate geographically specific drivers across various ecoregions of the US.

  4. Global Warming: Evidence from Satellite Observations

    Science.gov (United States)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.

    2001-01-01

    Observations made in Channel 2 (53.74 GHz) of the Microwave Sounding Unit (MSU) radiometer, flown on-board sequential, sun-synchronous, polar orbiting NOAA operational satellites, indicate that the mean temperature of the atmosphere over the globe increased during the period 1980 to 1999. In this study we have minimized systematic errors in the time series introduced by the satellite orbital drift in an objective manner. This is done with the help the onboard warm black body temperature, which is used in the calibration of the MSU radiometer. The corrected MSU Channel 2 observations of the NOAA satellite series reveal that the vertically weighted global mean temperature of the atmosphere, with a peak weight near the mid-troposphere, warmed at the rate of 0.13 K per decade (with an uncertainty of 0.05 K per decade) during 1980 to 1999. The global warming deduced from conventional meteorological data that have been corrected for urbanization effects agrees reasonably with this satellite deuced result.

  5. The exterior tidal potential acting on a satellite. [satellite orbits/satellite perturbation - gravitation effects

    Science.gov (United States)

    Musen, P.

    1975-01-01

    A theory is presented that points out the existence of several long period and 'cross effects' in the coefficients in the expansion of the geopotential and in the motion of satellites. The tidal potential, defined as small periodic variations in the geopotential, was calculated. The influence of these geopotential variations on satellite perturbation is examined. Spherical harmonics were employed.

  6. Using satellite remote sensing and hydrologic modeling to improve understanding of crop management and agricultural water use at regional to global scales

    Science.gov (United States)

    Salmon, Jessica Meghan

    Croplands are essential to human welfare. In the coming decades, croplands will experience substantial stress from climate change, population growth, changing diets, urban expansion, and increased demand for biofuels. Food security in many parts of the world therefore requires informed crop management and adaptation strategies. In this dissertation, I explore two key dimensions of crop management with significant potential to improve adaptation pathways: irrigation and crop calendars. Irrigation, which is widely used to boost crop yields, is a key strategy for adapting to changes in drought frequency and duration. However, irrigation competes with household, industrial, and environmental needs for freshwater resources. Accurate information regarding irrigation patterns is therefore required to develop strategies that reduce unsustainable water use. To address this need, I fused information from remote sensing, climate datasets, and crop inventories to develop a new global database of rain-fed, irrigated, and paddy croplands. This database describes global agricultural water management with good realism and at higher spatial resolution than existing maps. Crop calendar management helps farmers to limit crop damage from heat and moisture stress. However, global crop calendar information currently lacks spatial and temporal detail. In the second part of my dissertation I used remote sensing to characterize global cropping patterns annually, from 2001-2010, at 0.08 degree spatial resolution. Comparison of this new dataset with existing sources of crop calendar data indicates that remote sensing is able to correct substantial deficiencies in available data sources. More importantly, the database provides previously unavailable information related to year-to-year variability in cropping patterns. Asia, home to roughly one half of the Earth's population, is expected to experience significant food insecurity in coming decades. In the final part of my dissertation, I used a

  7. Estimation of annual heat flux balance at the sea surface from sst (NOAA-satellite and ships drift data off southeast Brazil

    Directory of Open Access Journals (Sweden)

    Yoshimine Ikeda

    1985-01-01

    Full Text Available The objective of this work is to study the possibility of estimating the heat flux balance at the sea surface from GOSSTCOMP (Global Ocean Sea Surface Temperature Computation developed by NOAA/NESS, USA, and sea surface current data based from ships drift information obtained from Pilot Charts, published by the Diretoria de Hidrografia e Navegação (DHN, Brazilian Navy. The annual mean value of the heat flux balance at the sea surface off southeast Brazil for 1977, is estimated from data on the balance between the heat transported by the currents and that transported by eddy diffusion for each volume defined as 2º x 2º (Lat. x Long. square with a constant depth equivalent to an oceanic mixed layer, 100 m thick. Results show several oceanic areas where there are net flows of heat from atmosphere towards the sea surface. In front of Rio de Janeiro the heat flow was downward and up to 70 ly day-1 and is probably related to the upwellirug phenomenon normally occurring in that area. Another coastal area between Lat. 25ºS to 28ºS indicated an downward flow up to 50 ly day-1; and for an area south of Lat. 27ºS, Long. 040ºW - 048ºW an downward flow up to 200 ly day-1, where the transfer was probably due to the cold water of a nortward flux from the Falkland (Malvinas Current. Results also show several oceanic areas where net flows of heat (of about -100 ly day-1 were toward the atmosphere. In the oceanic areas Lat. 19ºS - 23ºS and Lat. 24ºS - 30ºS, the flows were probably due to the warm water of a southward flux of the Brazil Current. The resulting fluxes from the warm waters of the Brazil Current when compared with those from warm waters of the Gulf Stream and Kuroshio, indicate that the Gulf Stream carries about 3.3 times and the Kuroshio 1.7 times more heat than the Brazil Current. These values agree with those of data available on the heat fluxes of the above mentioned Currents calculated by different methods (Budyko, 1974.

  8. Theory of satellite geodesy applications of satellites to geodesy

    CERN Document Server

    Kaula, William M

    2000-01-01

    The main purpose of this classic text is to demonstrate how Newtonian gravitational theory and Euclidean geometry can be used and developed in the earth's environment. The second is to collect and explain some of the mathematical techniques developed for measuring the earth by satellite.Book chapters include discussions of the earth's gravitational field, with special emphasis on spherical harmonies and the potential of the ellipsoid; matrices and orbital geometry; elliptic motion, linear perturbations, resonance, and other aspects of satellite orbit dynamics; the geometry of satellite obser

  9. Satellite-Derived Management Zones

    Science.gov (United States)

    Lepoutre, Damien; Layrol, Laurent

    2005-01-01

    The term "satellite-derived management zones" (SAMZ) denotes agricultural management zones that are subdivisions of large fields and that are derived from images of the fields acquired by instruments aboard Earth-orbiting satellites during approximately the past 15 years. "SAMZ" also denotes the methodology and the software that implements the methodology for creating such zones. The SAMZ approach is one of several products of continuing efforts to realize a concept of precision agriculture, which involves optimal variations in seeding, in application of chemicals, and in irrigation, plus decisions to farm or not to farm certain portions of fields, all in an effort to maximize profitability in view of spatial and temporal variations in the growth and health of crops, and in the chemical and physical conditions of soils. As used here, "management zone" signifies, more precisely, a subdivision of a field within which the crop-production behavior is regarded as homogeneous. From the perspective of precision agriculture, management zones are the smallest subdivisions between which the seeding, application of chemicals, and other management parameters are to be varied. In the SAMZ approach, the main sources of data are the archives of satellite imagery that have been collected over the years for diverse purposes. One of the main advantages afforded by the SAMZ approach is that the data in these archives can be reused for purposes of precision agriculture at low cost. De facto, these archives contain information on all sources of variability within a field, including weather, crop types, crop management, soil types, and water drainage patterns. The SAMZ methodology involves the establishment of a Web-based interface based on an algorithm that generates management zones automatically and quickly from archival satellite image data in response to requests from farmers. A farmer can make a request by either uploading data describing a field boundary to the Web site or else

  10. Lasers for coherent optical satellite links with large dynamics

    CERN Document Server

    Chiodo, Nicola; Acef, Ouali; Clairon, Andre; Wolf, Peter

    2013-01-01

    We present the experimental realization of a laser system for ground to satellite optical Doppler ranging at the atmospheric turbulence limit. Such a system needs to display good frequency stability (a few parts in 10^{-14}) whilst allowing large and well controlled frequency sweeps of +/- 12 GHz at rates exceeding 100 MHz/s. Furthermore it needs to be sufficiently compact and robust for transportation to different astronomical observation sites where it is to be interfaced with satellite ranging telescopes. We demonstrate that our system fulfills those requirements and should therefore allow operation of ground to low Earth orbit satellite coherent optical links limited only by atmospheric turbulence.

  11. Neural networks for meteorological satellite image interpretation

    OpenAIRE

    Brewer, Michael Robert.

    1997-01-01

    Meteorological satellite images at visible and infra-red wavelengths are an invaluable source of information on cloud systems because of their extensive coverage of the whole of the Earth's surface, providing data in areas that are only sparsely monitored, if at all, by other means. Although this information has been used subjectively by forecasters for many years, the lack of automatic, quantitative analysis techniques largely prevents its assimilation into numerical weather ...

  12. The natural satellites ephemerides facility MULTI-SAT

    Science.gov (United States)

    Emel'Yanov, N. V.; Arlot, J.-E.

    2008-08-01

    Context: There is a need in some research facilities for deriving ephemerides, controlling observations, verifying various models of motion, and calculating the coordinates in space of natural planetary satellites. Aims: The goal of our work is to elaborate the ephemerides of all natural satellites based upon all observations available to date and readily accessible for any user via the Internet. Methods: For all outer planetary satellites, original numerical models of motion are used that are based on all published observations. For other satellites, the theoretical models of the motion are taken from publications that are as recent as possible. Complete collection of the theories and models of motion is realized as a software for the ephemerides of natural satellites available on the web pages of the so-called server MULTI-SAT. Results: A new facility for producing ephemerides of all natural satellites of planets (except the Moon) has been created at IMCCE and SAI. Special features of the ephemerides are realized, such as predicting the phenomena and providing configurations useful for the observers. The server MULTI-SAT is accessible through the Internet. The URL addresses are http://www.imcce.fr/sat (English and French versions at IMCCE) and http://www.sai.msu.ru/neb/nss/index.htm (English, French, and Russian versions at SAI). This paper includes a complete review of the most precise theories of motion of all natural satellites that we used and an analysis of the precision of the proposed ephemerides.

  13. Ground-based FTIR and MAX-DOAS observations of formaldehyde at Réunion Island and comparisons with satellite and model data

    Directory of Open Access Journals (Sweden)

    C. Vigouroux

    2009-07-01

    Full Text Available Formaldehyde (HCHO columns have been retrieved from ground-based Fourier transform infrared (FTIR campaign measurements in 2004 and 2007 and from UV-Visible MAX-DOAS measurements in 2004–2005 at the NDACC site of Réunion Island (21° S, 55° E. The FTIR and MAX-DOAS daily mean formaldehyde total columns are intercompared in their common measurement period, from August to October 2004. The ground-based data are also compared to correlative SCIAMACHY data. The comparisons account for the vertical sensitivity differences of the data sets, by including their respective averaging kernels. Complete error budgets are also presented.

    The FTIR and MAX-DOAS daily mean total columns agree very well: no significant bias is observed and the standard deviation of the comparisons is only 8%. Both FTIR and MAX-DOAS HCHO total columns are in good agreement with SCIAMACHY values in the 2004–2005 period, with standard deviations of 21% and 31%, respectively. The same seasonal cycle is observed by the different instruments, with a minimum in austral winter and a maximum in February–March.

    The FTIR and MAX-DOAS data are confronted with HCHO columns calculated by a global CTM, the IMAGES model. The model underestimates the HCHO columns by 23–29% in comparison with FTIR, and by 15% in comparison with DOAS. This bias might have multiple causes, including an underestimation of OH concentrations in the model (as indicated by a sensitivity study using prescribed OH fields and/or an underestimated contribution of large-scale transport of HCHO precursors from Madagascar. The latter hypothesis is comforted by the large observed day-to-day variability of HCHO columns, and by the observation that the peak values of FTIR columns can often be associated with free tropospheric transport patterns from source regions over Madagascar to Réunion Island, according to simulations performed with the Lagrangian particle dispersion model FLEXPART.

  14. ALOS satellite imagery utilizations for safeguards

    International Nuclear Information System (INIS)

    This paper introduces examples of satellite imageries analysis and utilizations for safeguards activities. Recently, many kinds of satellite imageries are available in the world i.e., high-spatial resolution, multi- and hyper-spectral, multi-function, and multi-polarization radars. The problem is that how to obtain the required information from these digital images. The Japan Aerospace Exploration Agency (JAXA) has successfully launched the Advanced Land Observing Satellite (ALOS, the nickname is 'Daichi') on 24th January, 2006. The mission objectives are cartography, regional observation, disaster monitoring etc. ALOS has three instruments, PRISM, AVNIR-2, and PALSAR, to achieve these objectives. An overview of ALOS is provided. ALOS follows the Japanese Earth Resources Satellite- 1 (JERS-1) and the Advanced Earth Observing Satellite (ADEOS) and utilizes advanced land-observing technology. ALOS is fling in a Sun-synchronous orbit with an inclination angle of 98.16 degrees, 691.65 km of altitude at the equator, and a repeat cycle of 46 days. The mission data can downlink at either a data rate of 240 Mbps via the Data Relay Technology Satellite (DRTS) or at 120 Mbps for direct transmission to the ground station. ALOS also has a solid-state data recorder with a capacity of 90 GBytes. The descriptions of the satellite and instruments were reported in the references. PRISM stands for Panchromatic Remote-sensing Instrument for Stereo Mapping and it is used to generate a digital surface model (DSM) with high spatial resolution. PRISM consists of three independent optical systems for forward-, nadir-, and backward-looking to generate an accurate DSM. It acquires the images in the same orbit at almost the same time with a 2.5- meter spatial resolution. The nadir-looking radiometer can provide coverage 70 km wide, and the forward- and backward-looking radiometers each provide coverage 35 km wide. Fig. 2 shows the first acquired image by the nadir-looking radiometer of PRISM

  15. Scheduling of VLBI satellite observations for an improved ITRF

    Science.gov (United States)

    Hellerschmied, Andreas; Böhm, Johannes; Neidhardt, Alexander; Haas, Rüdiger; Kodet, Jan; Plank, Lucia

    2015-04-01

    Observations of Earth orbiting satellites with the Very Long Baseline Interferometry (VLBI) technique provide a variety of new possibilities and promote the integration of different geodetic techniques, which is one of the main purposes of GGOS, the Global Geodetic Observing System of the IAG. Promising applications can be found e.g. in the field of inter-technique frame ties, having the potential to improve future realizations of the International Terrestrial Reference Frame (ITRF). Although several test observations to GNSS satellites have been carried out in recent years, this approach is still far away from being applied operationally. Difficulties already start at the observation planning level, with the standard VLBI scheduling software not being prepared to include satellites as observation targets in the required control files. The newly developed satellite scheduling module of the Vienna VLBI Software (VieVS) for the planning of satellite observations with VLBI antennas offers a solution to this. It allows the user to prepare schedules for selected satellites, which are simultaneously visible from a chosen station network. The generated schedule files in the current VEX format provide the possibility to carry out actual satellite observations with standard geodetic antennas, e.g. of the IVS network. The antennas can be controlled directly with the issued schedule files by commanding sequences of discrete celestial positions, without the requirement of modifications in the antenna control intended for satellite tracking. In January 2014 several successful test observations to GLONASS satellites were carried out on the baseline Onsala-Wettzell based on schedules generated with VieVS. Correlations of the recorded data showed that the observations - and therefore the scheduling with VieVS - were successful. The next step is to update the new software for the possibility to combine observations to satellites and to quasars in one schedule. The development of

  16. Multi-mission Satellite Management

    Science.gov (United States)

    Jamilkowski, M. L.; Teter, M. A.; Grant, K. D.; Dougherty, B.; Cochran, S.

    2015-12-01

    NOAA's next-generation environmental satellite, the Joint Polar Satellite System (JPSS) replaces the current Polar-orbiting Operational Environmental Satellites (POES). JPSS satellites carry sensors which collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The first JPSS satellite was launched in 2011 and is currently NOAA's primary operational polar satellite. The JPSS ground system is the Common Ground System (CGS), and provides command, control, and communications (C3) and data processing (DP). A multi-mission system, CGS provides combinations of C3/DP for numerous NASA, NOAA, DoD, and international missions. In preparation for the next JPSS satellite, CGS improved its multi-mission capabilities to enhance mission operations for larger constellations of earth observing satellites with the added benefit of streamlining mission operations for other NOAA missions. CGS's multi-mission capabilities allows management all of assets as a single enterprise, more efficiently using ground resources and personnel and consolidating multiple ground systems into one. Sophisticated scheduling algorithms compare mission priorities and constraints across all ground stations, creating an enterprise schedule optimized to mission needs, which CGS executes to acquire the satellite link, uplink commands, downlink and route data to the operations and data processing facilities, and generate the final products for delivery to downstream users. This paper will illustrate the CGS's ability to manage multiple, enterprise-wide polar orbiting missions by demonstrating resource modeling and tasking, production of enterprise contact schedules for NOAA's Fairbanks ground station (using both standing and ad hoc requests), deconflicting resources due to ground outages, and updating resource allocations through dynamic priority definitions.

  17. Using satellite precipitation data for hydrological modeling

    Science.gov (United States)

    Commandeur, Tom

    2013-04-01

    The growing demand for precipitation data covering larger areas of the globe as lead to the need of innovative approaches to the operationalization of data streams. One possible classical solution is combining and calibrating various ground radar stations, however the availability and cost of these data streams work against its use for global coverage . The alternative is to use Earth Observation data from satellites. There is a wide range of weather data available from polar orbital satellites with sensors for measurements. The biggest advantage is that the spatial coverage is wide, however the temporal resolution for the covered area is more limited. To take advantage of the better of two worlds, geostationary satellites can be used to give the temporal resolution for the same covered area at a regular interval. EUMETSAT's Multi-Sensor Precipitation Estimate (MPE) is based on a classical blending algorithm. This algorithm combines SSM/I instruments on DMSP satellites with the 10.8 micron IR window channel on Meteosat satellites. The result is precipitation estimates with a spatial coverage on most of Europe and Africa and a temporal resolution of 15 minutes. To be able to receive the latest MPE data from EUMETSAT in near real-time a reception station for EUMETCast needs to be set up. With this reception station all data received from Meteosat satellites can be acquired as well as third-party products. The data is post-processed by Meteorological Products Extraction Facility of EUMETSAT, mostly for correction of image distortion and quality assurance. Due to this the data is received with a delay of about 15 minutes. MPE data is stored, by default, in Geostationary Satellite View projection and needs to be transformed into a usable projection system. Projections are translated into WGS84 after which they can be interpolated onto a regular spaced latitude/longitude grid. This paper handles the description of the process of transformation and interpolation

  18. Earth rotation parameters from satellite techniques

    Science.gov (United States)

    Thaller, Daniela; Beutler, Gerhard; Jäggi, Adrian; Meindl, Michael; Dach, Rolf; Sosnica, Krzysztof; Baumann, Christian

    2013-04-01

    It has been demonstrated since several years that satellite techniques are capable of determining Earth Rotation Parameters (ERPs) with a daily or even sub-daily resolution. Especially Global Navigation Satellite Systems (GNSS) with their huge amount of observations can determine time series of polar motion (PM) and length of day (LOD) rather well. But also SLR with its spherical satellites whose orbital motions are easy to model and that allow long orbital arc lengths can deliver valuable contributions to Earth rotation. We analyze GNSS solutions (using GPS and GLONASS) and SLR solutions (using LAGEOS) regarding their potential of estimating polar motion and LOD with daily and subdaily temporal resolution. A steadily improving modeling applied in the analysis of space-geodetic data aims at improved time series of geodetic parameters, e.g., the ERPs. The Earth's gravity field and especially its temporal variations are one point of interest for an improved modeling for satellite techniques. For modeling the short-periodic gravity field variations induced by mass variations in the atmosphere and the oceans the GRACE science team provides the Atmosphere and Ocean Dealiasing (AOD) products. They contain 6-hourly gravity fields of the atmosphere and the oceans. We apply these corrections in the analysis of satellite-geodetic data and show the impact on the estimated ERPs. It is well known that the degree-2 coefficients of the Earth's gravity field are correlated with polar motion and LOD. We show to what extent temporal variations in the degree-2 coefficients are influencing the ERP estimates.

  19. Advanced Communications Technology Satellite (ACTS)

    Science.gov (United States)

    Gedney, Richard T.; Schertler, Ronald J.

    1989-06-01

    The NASA Advanced Communications Technology Satellite (ACTS) was conceived to help maintain U.S. leadership in the world's communications-satellite market. This experimental satellite is expected to be launched by NASA in 1992 and to furnish the technology necessary for establishing very small aperture terminal digital networks which provide on-demand full-mesh connectivity, and 1.544-MBPS services with only a single hop. Utilizing on-board switching and processing, each individual voice or data circuit can be separately routed to any location in the network. This paper provides an overview of the ACTS and discusses the value of the technology for future communications systems.

  20. Magnetic Satellite Missions and Data

    DEFF Research Database (Denmark)

    Olsen, Nils; Kotsiaros, Stavros

    2011-01-01

    Although the first satellite observations of the Earth’s magnetic field were already taken more than 50 years ago, continuous geomagnetic measurements from space are only available since 1999. The unprecedented time-space coverage of this recent data set opened revolutionary new possibilities for...... exploring the Earth’s magnetic field from space. In this chapter we discuss characteristics of satellites measuring the geomagnetic field and report on past, present and upcoming magnetic satellite missions. We conclude with some basics about space magnetic gradiometry as a possible path for future...

  1. Satellite communications principles and applications

    CERN Document Server

    Calcutt, David

    1994-01-01

    Satellites are increasingly used for global communications, as well as for radio and television transmissions. With the growth of mobile communications, and of digital technology, the use of satellite systems is set to expand substantially and already all students of electronics or communications engineering must study the subject.This book steers a middle path between offering a basic understanding of the process of communication by satellite and the methodology used; and the extensive mathematical analysis normally adopted in similar texts. It presents the basic concepts, using as mu

  2. 2011年上海天文台卫星激光测距观测报告%Report on Satellite Laser Ranging Observations at Shanghai Astronomical Observatory 2011

    Institute of Scientific and Technical Information of China (English)

    吴志波; 张海峰; 李朴; 陈菊平; 张忠萍

    2012-01-01

    介绍了2011年上海天文台卫星激光测距系统的常规观测情况.本年度对激光测距接收终端系统进行了改造,提高了激光接收效率并满足了测距系统观测试验需求.开展了提高大能量激光器输出功率等空间碎片测距系统改造工作,使目标圈次测量成功率达50%,为该测量技术进一步发展打下了基础.%This paper is a report on satellite laser ranging observations at Shanghai Observatory in 2011. The telescope receiving terminal system has been modified for increasing the receiving ability of laser signal and meeting the need for measuring experiments. The updating works for space debris laser ranging system have been also implemented, such as increasing the power of laser. The success rate of passes of targets measured is up to 50% and that lays the foundation of further studying the technology of space debris laser ranging.

  3. Saturn's magnetosphere, rings, and inner satellites

    Science.gov (United States)

    van Allen, J. A.; Thomsen, M. F.; Randall, B. A.; Rairden, R. L.; Grosskreutz, C. L.

    1980-01-01

    The discovery of the Saturn magnetosphere and its characterization by Pioneer 11 are reported, and findings on the planet's rings and satellites obtained by energetic charged particle measurements within the inner magnetosphere are presented. Bow shock crossings identified by the Pioneer plasma analyzer and magnetometer at distances of 24.1, 23.1 and 20.0 Saturn radii indicate the presence of a magnetosphere with physical dimensions and charged particle populations intermediate between those of the earth and Jupiter, with a scale more similar to that of the earth. Particle angular distributions on the inbound leg of the trajectory are consistent with a dipole magnetic field approximately perpendicular to the planet's equator, while on the outbound leg the distributions indicate the presence of an equatorial current sheet. Charged particle absorption features are detected at the orbits of Dione and Mimas, encompassing the orbits of Tethys and Enceladus, and at 2.534 and 2.343 Saturn radii indicating the presence of satellites of diameters greater than 170 km. Charged particle measurements also confirm the Pioneer division in the rings between 2.292 and 2.336 Saturn radii, a suspected satellite at 2.82 Saturn radii, the presence of the F ring between 2.336 and 2.371 Saturn radii and the outer radius of the A ring at 2.292 Saturn radii.

  4. The stellar-subhalo mass relation of satellite galaxies

    CERN Document Server

    Rodriguez-Puebla, A; Avila-Reese, V

    2012-01-01

    We extend the abundance matching technique (AMT) to infer the satellite-subhalo and central-halo mass relations (MRs) of galaxies, as well as the corresponding satellite conditional mass functions (CMFs). We use the observed galaxy stellar mass function (GSMF) decomposed into centrals and satellites and the LCDM halo/subhalo mass functions as inputs. We explore the effects of defining the subhalo mass at the time of accretion (m_acc) vs. at the time of observation (m_obs). We test the standard assumption that centrals and satellites follow the same MRs, showing that this assumption leads to predictions in disagreement with observations, specially for m_obs. Instead, when the satellite-subhalo MRs are constrained following our AMT, they are always different from the central-halo MR: the smaller the stellar mass (Ms), the less massive is the subhalo of satellites as compared to the halo of centrals of the same Ms. On average, for Ms<2x10^11Msol, the dark mass of satellites decreased by 60-65% with respect to...

  5. Guidance and Control System for a Satellite Constellation

    Science.gov (United States)

    Bryson, Jonathan Lamar; Cox, James; Mays, Paul Richard; Neidhoefer, James Christian; Ephrain, Richard

    2010-01-01

    A distributed guidance and control algorithm was developed for a constellation of satellites. The system repositions satellites as required, regulates satellites to desired orbits, and prevents collisions. 1. Optimal methods are used to compute nominal transfers from orbit to orbit. 2. Satellites are regulated to maintain the desired orbits once the transfers are complete. 3. A simulator is used to predict potential collisions or near-misses. 4. Each satellite computes perturbations to its controls so as to increase any unacceptable distances of nearest approach to other objects. a. The avoidance problem is recast in a distributed and locally-linear form to arrive at a tractable solution. b. Plant matrix values are approximated via simulation at each time step. c. The Linear Quadratic Gaussian (LQG) method is used to compute perturbations to the controls that will result in increased miss distances. 5. Once all danger is passed, the satellites return to their original orbits, all the while avoiding each other as above. 6. The delta-Vs are reasonable. The controller begins maneuvers as soon as practical to minimize delta-V. 7. Despite the inclusion of trajectory simulations within the control loop, the algorithm is sufficiently fast for available satellite computer hardware. 8. The required measurement accuracies are within the capabilities of modern inertial measurement devices and modern positioning devices.

  6. Tectonics of the Outer Planet Satellites

    Science.gov (United States)

    McKinnon, W. B.; Collins, G. C.; Moore, J. M.; Nimmo, F.; Pappalardo, R. T.; Prockter, L. M.; Schenk, P. M.

    2010-01-01

    Tectonic features on the satellites of the outer planets range from the familiar, such as clearly recognizable graben on many satellites, to the bizarre, such as the ubiquitous double ridges on Europa, the twisting sets of ridges on Triton, or the isolated giant mountains rising from Io's surface. All of the large and middle-sized outer planet satellites except Io are dominated by water ice near their surfaces. Though ice is a brittle material at the cold temperatures found in the outer solar system, the amount of energy it takes to bring it close to its melting point is lower than for a rocky body. Therefore, some unique features of icy satellite tectonics may be influenced by a near-surface ductile layer beneath the brittle surface material, and several of the icy satellites may possess subsurface oceans. Sources of stress to drive tectonism are commonly dominated by the tides that deform these satellites as they orbit their primary giant planets. On several satellites, the observed tectonic features may be the result of changes in their tidal figures, or motions of their solid surfaces with respect to their tidal figures. Other driving mechanisms for tectonics include volume changes due to ice or water phase changes in the interior, thermoelastic stress, deformation of the surface above rising diapirs of warm ice, and motion of subsurface material toward large impact basins as they fill in and relax. Most satellites exhibit evidence for extensional deformation, and some exhibit strike-slip faulting, whereas contractional tectonism appears to be rare. Io s surface is unique, exhibiting huge isolated mountains that may be blocks of crust tilting and foundering into the rapidly emptying interior as the surface is constantly buried by deposits from hyperactive volcanoes. Of the satellites, diminutive Enceladus is spectacularly active; its south polar terrain is a site of young tectonism, copious heat flow, and tall plumes venting into space. Europa's surface is

  7. Satellite Eye for Galathea 3. Annual report 2006

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Sørensen, Peter; Pedersen, Leif Toudal;

    were collected from locations along the planned route. During the expedition large amounts of satellite images are collected and stored in a database. Most images can be viewed online through Google Earth along with the ship observations in near-real-time. This means that researchers onboard the ship...... Vædderen, pupils in the classrooms and the public at any moment can take a look at the conditions seen from the eyes of the Earth observing satellites....

  8. Hybrid Maritime Satellite Communication Antenna

    DEFF Research Database (Denmark)

    Smith, Thomas Gunst

    Hybrid antennas for a maritime satellite communication terminal with simultaneous operation at L- and Ka-band have been investigated. The frequency bands of interest are 1; 525:0 1; 660:5 MHz (RX+TX, RHCP), 19:7 20:2 (RX, LHCP) and 29:5 30:0 GHz (TX, RHCP), which are all part of the Inmarsat BGAN...... and Inmarsat GX services, respectively. The results of this study are three antenna concepts, which demonstrates high performance at both L- and Ka-band. A combined single/dual-reflector antenna is designed, which presents a favourable way of combining feed antennas for the diverse frequencies. This...... antenna enables the use of a conventional horn-fed dual-reflector for Ka-band, while a backfire helical antenna is used to form a single-reflector antenna at L-band. Simulations show excellent performance of the L-band backfire helical reflector antenna, due to the utilization of the entire antenna...

  9. Dynamics of multi-tethered pyramidal satellite formation

    Science.gov (United States)

    Alary, D.; Andreev, K.; Boyko, P.; Ivanova, E.; Pritykin, D.; Sidorenko, V.; Tourneur, C.; Yarotsky, D.

    2015-12-01

    This paper is devoted to the dynamics of a multi-tethered pyramidal satellite formation rotating about its axis of symmetry in the nominal mode. Whereas the combination of rotation and gravity-gradient forces is insufficient to maintain the mutual positions of satellites, they are assumed to be equipped with low-thrust rocket engines. We propose a control strategy that allows the stabilization of the nominal spin state and demonstrate the system's proper operation by numerically simulating its controlled motion. The discussed multi-tethered formations could be employed, for example, to provide co-location of several satellites at a slot in geostationary orbit.

  10. Satellite based wind resource assessment over the South China Sea

    DEFF Research Database (Denmark)

    Badger, Merete; Astrup, Poul; Hasager, Charlotte Bay;

    2014-01-01

    modeling to develop procedures and best practices for satellite based wind resource assessment offshore. All existing satellite images from the Envisat Advanced SAR sensor by the European Space Agency (2002-12) have been collected over a domain in the South China Sea. Wind speed is first retrieved from...... description in order to calculate the mean wind climate at different levels up to 100 m. Time series from coarser-resolution satellite wind products i.e. the Special Sensor Microwave Imager (SSM/I) data are used to calculate the long-term temporal variability of the wind climate. This can be used...

  11. Chang'e-1 Satellite Completed Its Preset Objectives

    Institute of Scientific and Technical Information of China (English)

    He Ying

    2008-01-01

    @@ By October 23, Chang'e-1 satellite with a one-year design lifetime has been operating in lunar orbit for one year, completed more than 4000 orbits, covering the entire moon 12 times. The satellite's platform works normally at present and all systems and equipment onboard work in their main mode. The satellite has obtained a large quantity of scientific data and achieved the preset objectives of precise orbit maneuver, successful moon orbiting, effective exploration and oneyear lifetime. The Chang'e-1 mission is a complete success.

  12. Observing Climate with Satellites - Are We on Thin Ice?

    Science.gov (United States)

    Tucker, Compton

    2012-01-01

    The Earth s climate is determined by irradiance from the Sun and properties of the atmosphere, oceans, and land that determine the reflection, absorption, and emission of energy within our atmosphere and at the Earth s surface. Since the 1970s, Earth-viewing satellites have complimented non-satellite geophysical observations with consistent, quantitative, and spatially-continuous measurements that have led to an unprecedented understanding of the Earth s climate system. I will describe the Earth s climate system as elaborated by satellite and in situ observations, review arguments against global warming, and show the convergence of evidence for human-caused warming of our planet.

  13. Sensor Calibration in Support for NOAA's Satellite Mission

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Sensor calibration, including its definition, purpose, traceability options, methodology, complexity, and importance, is examined in this paper in the context of supporting NOAA's satellite mission. Common understanding of sensor calibration is essential for the effective communication among sensor vendors,calibration scientists, satellite operators, program managers, and remote sensing data users, who must cooperate to ensure that a nation's strategic investment in a sophisticated operational environmental satellite system serves the nation's interest and enhances the human lives around the world. Examples of calibration activities at NOAA/NESDIS/ORA are selected to further illustrate these concepts and to demonstrate the lessons learned from the past experience.

  14. Boom potential of a rotating satellite in sunlight

    Science.gov (United States)

    Lai, S. T.; Cohen, H. A.; Aggson, T. L.; Mcneil, W. J.

    1986-01-01

    An interpretation is provided for the behavior of long boom potential measurements taken on the spinning P78-2 (SCATHA) satellite at near geosynchronous altitudes. This study uses data taken during a quiet day, with the satellite in sunlight. The data show periodic variations with a maximum amplitude of 6 V. The theory explains why the variations correlate well with sun direction but not with the geomagnetic field. A current balance model, assuming a Maxwellian distribution of photoelectrons, is studied. The photoelectron temperature, the degrees of positive charging of the boom and of the satellite, and the ambient electron flux are calculated. Deviations from the model are discussed.

  15. Study on Service Level Management in Integrated Satellite Information Network

    Institute of Scientific and Technical Information of China (English)

    SHANG Rui-qiang; ZHAO Jian-li; WANG Guang-xing

    2005-01-01

    Integrated Satellite Information Network (ISIN) includes those nodes in space and those on ground. It is the way to realize the fusion of satellite communication and traditional network technology. A satellite network management system based on Multiplex Network Management Protocol (MNMP) has accomplished traditional management, such as configuration, performance and fault management. An architecture of Service Level Management (SLM) in ISIN is proposed, and a service topology management and Service Level Agreement (SLA) are deeply researched. At last, service security and fault management are briefly discussed, and a simulation system is accomplished.

  16. A study of time dissemination via satellite in India

    Science.gov (United States)

    Mathur, B. S.; Banerjee, P.; Sood, P. C.; Saxena, M.; Kumar, N.; Suri, A. K.; Jain, C. L.; Kumar, K.

    1979-01-01

    A simultaneous two way clock synchronization experiment between three Earth stations, was performed and improvements over the technique earlier attempted in which transmit/receive roles of the two stations were alternated at regular intervals, were studied. Time signals via two modes high frequency and satellite were critically monitored and analyzed. This time format was modified to include the additional information about time of the day in year, month, day, hour, minute and second as well as DUT1 in BCD code and was disseminated via the satellite. These signals were decoded, displayed and studied. Some preliminary work on time transfer via TV using direct satellite broadcast, was also conducted.

  17. Visual Data Analysis for Satellites

    Science.gov (United States)

    Lau, Yee; Bhate, Sachin; Fitzpatrick, Patrick

    2008-01-01

    The Visual Data Analysis Package is a collection of programs and scripts that facilitate visual analysis of data available from NASA and NOAA satellites, as well as dropsonde, buoy, and conventional in-situ observations. The package features utilities for data extraction, data quality control, statistical analysis, and data visualization. The Hierarchical Data Format (HDF) satellite data extraction routines from NASA's Jet Propulsion Laboratory were customized for specific spatial coverage and file input/output. Statistical analysis includes the calculation of the relative error, the absolute error, and the root mean square error. Other capabilities include curve fitting through the data points to fill in missing data points between satellite passes or where clouds obscure satellite data. For data visualization, the software provides customizable Generic Mapping Tool (GMT) scripts to generate difference maps, scatter plots, line plots, vector plots, histograms, timeseries, and color fill images.

  18. Commercial satellite broadcasting for Europe

    Science.gov (United States)

    Forrest, J. R.

    1988-12-01

    A review is presented of the current television broadcasting situation in European countries, which involves a varied mix of terrestrial VHF or UHF systems and cable networks. A small market has emerged in Europe for receivers using the low-power telecommunications satellite transmission between the program providers and cable network companies. This is expected to change with the launch of medium-power pan-European telecommunication satellites (e.g. ASTRA, EUTELSAT II), which are now directly addressing the market of home reception. DBS (direct broadcast satellite) in the UK, using the D-MAC transmission standard, will offer three additional television channels, data broadcasting services, and a planned evolution to compatible forms of wide-screen, high-definition television. Comments are given on receiver and conditional access system standardization. Some views are expressed on satellite broadcasting as part of an overall broadcasting framework for the future.

  19. Virtual Satellite Integration Environment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advatech Pacific proposes to develop a Virtual Satellite Integration Environment (VSIE) for the NASA Ames Mission Design Center. The VSIE introduces into NASA...

  20. Biogeography based Satellite Image Classification

    CERN Document Server

    Panchal, V K; Kaur, Navdeep; Kundra, Harish

    2009-01-01

    Biogeography is the study of the geographical distribution of biological organisms. The mindset of the engineer is that we can learn from nature. Biogeography Based Optimization is a burgeoning nature inspired technique to find the optimal solution of the problem. Satellite image classification is an important task because it is the only way we can know about the land cover map of inaccessible areas. Though satellite images have been classified in past by using various techniques, the researchers are always finding alternative strategies for satellite image classification so that they may be prepared to select the most appropriate technique for the feature extraction task in hand. This paper is focused on classification of the satellite image of a particular land cover using the theory of Biogeography based Optimization. The original BBO algorithm does not have the inbuilt property of clustering which is required during image classification. Hence modifications have been proposed to the original algorithm and...

  1. Magnetospheric Interaction of the Galilean Satellites with Jupiter: Auroral Emissions from the Satellites and their Magnetic Footprints

    Science.gov (United States)

    Clarke, J. T.

    2003-12-01

    Each of the Galilean satellites of Jupiter has an electrodynamic interaction with Jupiter's magnetic field, due to their motion with respect to the corotating field which sweeps past each satellite. With the exception of Callisto, these interactions can be observed via auroral emissions from the magnetic footprints of each satellite in Jupiter's atmosphere, and also via auroral emissions produced in the satellite's atmosphere. Remote sensing observations from the JIMO spacecraft could provide measurements of these auroral emissions with excellent spatial resolution and time coverage, strongly complementing in situ plasma and field measurements near each satellite. The measurement of the auroral emissions at both ends of the field lines threading each satellite would provide important constraints on the nature and strength of the interaction. Extended time series made possible by remote sensing would reveal the variations of these emissions with the location of each satellite in Jupiter's field and the corotating plasma. The time coverage would also provide a baseline for the interpretation of the in situ measurements, which measure one location at a time. The prospects for this remote sensing by JIMO will be explored based on information from the Hubble Space Telescope measurements of Jupiter's auroral emissions.

  2. Radio interferometry and satellite tracking

    CERN Document Server

    Kawase, Seiichiro

    2012-01-01

    Worldwide growth of space communications has caused a rapid increase in the number of satellites operating in geostationary orbits, causing overcrowded orbits. This practical resource is designed to help professionals overcome this problem. This timely book provides a solid understanding of the use of radio interferometers for tracking and monitoring satellites in overcrowded environments. Practitioners learn the fundamentals of radio interferometer hardware, including antennas, receiving equipment, signal processing and phase detection, and measurement accuracies. This in-depth volume describ

  3. TERSat: Trapped Energetic Radiation Satellite

    OpenAIRE

    Clements, Emily; Alvisio, Bruno; Babuscia, Alessandra; Casas, Zachary; Coffee, Brian; Giblin, Sydney; Hallock, Laura; Kingsbury, Ryan; Leaman, Michael; Lynch, Naomi; O'Connor, Michael; Qian, Elizabeth; Schmidt, Frank; de Soria-Santacruz, Maria; Sotomayor, Lionel

    2012-01-01

    Radiation damage caused by interactions with high-energy particles in the Van Allen Radiation Belts is a leading cause of component failures for satellites in low and medium Earth orbits (LEO, MEO). Very Low Frequency (VLF) electromagnetic waves have been shown to couple energy to high energy radiation belt particles and change their properties. For example, data from the IMAGE (Imager for Magnetopause-to-Aurora Global Exploration) satellite suggest that the gap between the inner ...

  4. Existence of undiscovered Uranian satellites

    International Nuclear Information System (INIS)

    Structure in the Uranian ring system as observed in recent occultations may contain indirect evidence for the existence of undiscovered satellites. Using the Alfven and Arrhenius (1975, 1976) scenario for the formation of planetary systems, the orbital radii of up to nine hypothetical satellites interior to Miranda are computed. These calculations should provide interesting comparisons when the results from the Voyager 2 encounter with Uranus are made public. 15 refs., 1 fig., 1 tab

  5. Gaussian Entanglement Distribution via Satellite

    OpenAIRE

    Hosseinidehaj, Nedasadat; Malaney, Robert

    2014-01-01

    In this work we analyse three quantum communication schemes for the generation of Gaussian entanglement between two ground stations. Communication occurs via a satellite over two independent atmospheric fading channels dominated by turbulence-induced beam wander. In our first scheme the engineering complexity remains largely on the ground transceivers, with the satellite acting simply as a reflector. Although the channel state information of the two atmospheric channels remains unknown in thi...

  6. Multi-satellite observations of magnetic fields in space plasmas

    International Nuclear Information System (INIS)

    The most common method of detecting electric currents in space has been by virtue of the magnetic perturbations they produce. A satellite can pass through a field-aligned ''Birkeland'' current and measure the in-situ magnetic perturbations. Satellite-borne magnetic field experiments may also be used to observe characteristics of resonant oscillations of the Earth's magnetic field at ULF frequencies. Examples of such measurements with magnetic field experiments on the Viking, AMPTE/CCE, and DMSP-F7 satellites will be presented. The Viking satellite, launched in February, 1986, is Sweden's first satellite and is in a polar orbit with 3.1 R/sub e/ apogee. AMPTE/CCE was launched in August, 1984, with satellites from West Germany and the United Kingdom, for the purpose of creating artificial comets in space. It is in an equatorial orbit with a 8.8 R/sub e/ apogee. The Defense Meteorological Satellite Program (DMSP)-F7 satellite was launched in October, 1983 into an 800 km circular sun-synchronous orbit in the 0830-2030 magnetic local time plane. Viking and AMPTE/CCE observed harmonic ULF pulsations when they were near the same flux tube, but separated by about 10 R/sub e/. These unique observations are used to investigate the characteristics and sources of multiple field line resonances of Alfven waves. On another occasion, Viking and DMSP-F7 observed similar magnetic perturbations at widely separated locations. The authors interpret these perturbations as due to a complicated system of large-scale stable Birkeland currents in the morning sector. This multi-satellite data set is in the early stages of exploration, but already confirms the usefulness of coordinated multi-position observations of magnetic fields in space

  7. Statistical Design Model (SDM) of satellite thermal control subsystem

    Science.gov (United States)

    Mirshams, Mehran; Zabihian, Ehsan; Aarabi Chamalishahi, Mahdi

    2016-07-01

    Satellites thermal control, is a satellite subsystem that its main task is keeping the satellite components at its own survival and activity temperatures. Ability of satellite thermal control plays a key role in satisfying satellite's operational requirements and designing this subsystem is a part of satellite design. In the other hand due to the lack of information provided by companies and designers still doesn't have a specific design process while it is one of the fundamental subsystems. The aim of this paper, is to identify and extract statistical design models of spacecraft thermal control subsystem by using SDM design method. This method analyses statistical data with a particular procedure. To implement SDM method, a complete database is required. Therefore, we first collect spacecraft data and create a database, and then we extract statistical graphs using Microsoft Excel, from which we further extract mathematical models. Inputs parameters of the method are mass, mission, and life time of the satellite. For this purpose at first thermal control subsystem has been introduced and hardware using in the this subsystem and its variants has been investigated. In the next part different statistical models has been mentioned and a brief compare will be between them. Finally, this paper particular statistical model is extracted from collected statistical data. Process of testing the accuracy and verifying the method use a case study. Which by the comparisons between the specifications of thermal control subsystem of a fabricated satellite and the analyses results, the methodology in this paper was proved to be effective. Key Words: Thermal control subsystem design, Statistical design model (SDM), Satellite conceptual design, Thermal hardware

  8. Geomorphology of coastal environments from satellite images

    International Nuclear Information System (INIS)

    This study aims at recognizing coastal environments supported by data from the Landsat Thematic Mapper (TM) satellite. The digital processing of images, System Information Geographic (SIG) techniques and field observation in one section of the “Província Costeira do Rio Grande do Sul” between the Rio Grande and the São Gonçalo channels - resulted in a geomorphologic profile and mapping

  9. ARJIS satellite demonstration project

    Science.gov (United States)

    Severance, Steve; Williams, Carl

    2005-06-01

    In 2003, the California Space Authority (CSA) was provided funding by the U. S. Congress through the Defense Appropriations Act to develop a project that would demonstrate the U.S. space enterprise capability that would contribute to the effectiveness of those engaged in Homeland Security. The project was given broad latitude in selecting the area of Homeland Security to be addressed and the nature of the space technology to be applied. CSA became aware of a nascent law enforcement data-sharing project in the San Diego region known as the Automated Regional Justice Information System (ARJIS). First developed by the police departments in San Diego, ARJIS is an innovative system that shares criminal justice information among 50 federal, state, and local agencies. ARJIS was completing a pilot project that enabled officers to receive information on handheld computers, which was transmitted wirelessly through cellular networks. The accessed information came from several databases that collectively contained the entire region's crime and arrest reports, traffic citations, and incidents, as well as state and county wants and warrants. The fundamental limitations that plague all cellular-based devices caught CSA's attention and resulted in a cooperative effort to harden the communications link between the patrol officer and critical data. The principal goal of the SATCOM development task was to create a proof-of-concept application that would use SATCOM links to augment the current ARJIS handheld wireless (cellular) capability. The successful technical demonstration and the positive support for satellite communications from the law enforcement community showed that this project filled a need-both for improved information sharing and for highly reliable communications systems.

  10. Optimal design of the satellite constellation arrangement reconfiguration process

    Science.gov (United States)

    Fakoor, Mahdi; Bakhtiari, Majid; Soleymani, Mahshid

    2016-08-01

    In this article, a novel approach is introduced for the satellite constellation reconfiguration based on Lambert's theorem. Some critical problems are raised in reconfiguration phase, such as overall fuel cost minimization, collision avoidance between the satellites on the final orbital pattern, and necessary maneuvers for the satellites in order to be deployed in the desired position on the target constellation. To implement the reconfiguration phase of the satellite constellation arrangement at minimal cost, the hybrid Invasive Weed Optimization/Particle Swarm Optimization (IWO/PSO) algorithm is used to design sub-optimal transfer orbits for the satellites existing in the constellation. Also, the dynamic model of the problem will be modeled in such a way that, optimal assignment of the satellites to the initial and target orbits and optimal orbital transfer are combined in one step. Finally, we claim that our presented idea i.e. coupled non-simultaneous flight of satellites from the initial orbital pattern will lead to minimal cost. The obtained results show that by employing the presented method, the cost of reconfiguration process is reduced obviously.

  11. Satellite galaxies around present-day massive ellipticals

    CERN Document Server

    Ruiz, Pablo; Mármol-Queraltó, Esther

    2013-01-01

    Using the spectroscopic and photometric catalogues of the Sloan Digital Sky Survey (SDSS DR7), we have explored the satellite distribution around $\\sim$1000 massive (M$_\\star$$\\gtrsim$2$\\times$10$^{11}$M$_\\odot$) visually classified elliptical galaxies down to a satellite mass ratio of 1:400 (i.e. 5$\\times$$10^{8}$$\\lesssim$M$_{sat}$$\\lesssim$2$\\times$10$^{11}$M$_\\odot$). Our host galaxies were selected to be representative of a mass complete sample. The satellites of these galaxies were searched within a projected radial distance of 100 kpc to their hosts. We have found that only 17-23% of the massive ellipticals has at least a satellite down to a mass ratio 1:10. This number increases to 40-52% if we explore satellites down to 1:100 and is $>$55-70% if we go further down to 1:400. The average projected radial distance of the satellites to their hosts is $\\sim$59 kpc (which can be decreased down to 49-51 kpc if we account for incompleteness effects). The number of satellites per galaxy host only increases ve...

  12. Orbits of Potential Pluto Satellites and Rings Between Charon and Hydra

    CERN Document Server

    Porter, Simon B

    2015-01-01

    Pluto and its five known satellites form a complex dynamic system. Here we explore where additional satellites could exist exterior to Charon (the innermost moon) but interior of Hydra (the outermost). We also provide dynamical constraints for the masses of the known satellites. We show that there are significant stable regions interior of Styx and between Nix and Kerberos. In addition, we show that coorbitals of the known small satellites are stable, even at high inclinations, and discuss mass constraints on undiscovered satellites in such orbits.

  13. Congestion control and routing over satellite networks

    Science.gov (United States)

    Cao, Jinhua

    Satellite networks and transmissions find their application in fields of computer communications, telephone communications, television broadcasting, transportation, space situational awareness systems and so on. This thesis mainly focuses on two networking issues affecting satellite networking: network congestion control and network routing optimization. Congestion, which leads to long queueing delays, packet losses or both, is a networking problem that has drawn the attention of many researchers. The goal of congestion control mechanisms is to ensure high bandwidth utilization while avoiding network congestion by regulating the rate at which traffic sources inject packets into a network. In this thesis, we propose a stable congestion controller using data-driven, safe switching control theory to improve the dynamic performance of satellite Transmission Control Protocol/Active Queue Management (TCP/AQM) networks. First, the stable region of the Proportional-Integral (PI) parameters for a nominal model is explored. Then, a PI controller, whose parameters are adaptively tuned by switching among members of a given candidate set, using observed plant data, is presented and compared with some classical AQM policy examples, such as Random Early Detection (RED) and fixed PI control. A new cost detectable switching law with an interval cost function switching algorithm, which improves the performance and also saves the computational cost, is developed and compared with a law commonly used in the switching control literature. Finite-gain stability of the system is proved. A fuzzy logic PI controller is incorporated as a special candidate to achieve good performance at all nominal points with the available set of candidate controllers. Simulations are presented to validate the theory. An effocient routing algorithm plays a key role in optimizing network resources. In this thesis, we briefly analyze Low Earth Orbit (LEO) satellite networks, review the Cross Entropy (CE

  14. The satellite total solar irradiance database

    Science.gov (United States)

    Willson, R. C.

    2009-12-01

    A precise knowledge of the total solar irradiance (TSI) over time is essential to understanding the physics of solar luminosity variation and its impact on the Earth in the form of climate change. A National Research Council study found that sustained trends as small as 0.25% per century were the most likely forcing for ‘little ice age’ climate minima during the 12th - 19th centuries. Recent phenomenological analyses of TSI observations and proxies indicate that TSI variation is an important climate change forcing on many timescales including the industrial era. The profound sociological and economic implications of understanding the relative climate change contributions of natural and anthropogenic forcings makes it essential that the satellite TSI database be precisely sustained into the foreseeable future. There are currently three satellite TSI monitoring experiments in operation: SOHO/VIRGO, ACRIMSAT/ACRIM3 and SORCE/TIM, in order of deployment (1996, 2000 and 2003, resp.). Results reported on their ‘native scales show the same basic variations in TSI over time, yet some smaller variations detected by ACRIM3 are less well defined or absent in the results of VIRGO and TIM. There is also a scale difference issue: TIM results are 0.35% lower than those of ACRIM3 and VIRGO, outside the ± 0.1% uncertainty bounds predicted for ACRIM3 and VIRGO, and well outside TIM’s ± 0.01% uncertainty design goal. TIM’s failure to achieve 0.01% uncertainty in flight demonstrates that the TSI monitoring paradigm shift of relying on measurement accuracy rather than a redundant/overlap strategy to provide long term traceability cannot be realized with current ‘ambient temperature’ technology. The only viable monitoring approach for the foreseeable future continues to be the redundant/overlap strategy that has provided the 31 year satellite TSI database to date with useful traceability. Intercomparisons of flight experiments at their levels of mutual precision can

  15. Dynamic simulation of tethered satellite systems

    International Nuclear Information System (INIS)

    The idea of connecting several spacecrafts by tethers to create mechanical systems with interesting dynamic properties was first brought up by Tsiolkovskii at the end of the nineteenth century, long before the technical means for realization were available. Today, after about 30 years of worldwide research, Tethered Satellite Systems have evolved into a promising technology with a considerable number of possible applications. These systems can be used to build large structures in orbit and provide a fuel-saving way of returning payloads from a space station. Conducting tethers interacting with the Earth's magnetic field can serve as motors or generators, transforming kinetic and electric energy into each other very efficiently. To develop this new technology seventeen experiments have been carried out in orbit since 1966 with NASA's TSS missions being the most well known. The work introduced in this thesis is part of a project carried out by the Institute of Mechanics of the Vienna University of Technology as contractor of the European Space Agency. A software package for the dynamic simulation of Tethered Satellite Systems with variable tether length has been developed to serve as a tool for the development and testing of such systems. The focus is on the deployment and retrieval of the tether, which is an important but tricky process, and has to be controlled by proper control algorithms. This can elegantly be done by a force acting on the tether at the point where it leaves the satellite. In the simulation program a mechanical model consisting of two satellites and a massive, perfectly flexible, visco-elastic tether is considered. The actual length of the tether is not given as a prescribed function of time but is an additional unknown and has to be calculated from the dynamics of the entire system and the forces acting on the tether. Hence the deployment mechanism has an important influence on the deployment dynamics. In this work the tether is considered to

  16. Genomic organization and transcription of satellite DNA in the ant Aphaenogaster subterranea (Hymenoptera, Formicidae).

    Science.gov (United States)

    Lorite, P; Renault, S; Rouleux-Bonnin, F; Bigot, S; Periquet, G; Palomeque, T

    2002-08-01

    A satellite DNA family (APSU) was isolated and characterized in the ant Aphaenogaster subterranea. This satellite DNA is organized in tandem repeats of 162 bp and is relatively AT rich (51.9%). Sequence analysis showed a high level of homogeneity between monomers. Loss of satellite DNA has been detected in queens in relation to workers, because the amount of satellite DNA in queens is about 25% of the amount found in workers. Restriction analysis of the total DNA with methylation-sensitive enzymes suggests that this DNA is not methylated. Analysis of the electrophoretic mobility of satellite DNA on non-denaturing polyacrylamide showed that this satellite DNA is only very lightly curved. Their possible transcription was analyzed using reverse transcription and polymerase chain reaction (RT-PCR). The satellite DNA is transcribed on the two DNA strands at the same level in worker and queen pupae, as well as in worker adults. PMID:12175063

  17. Eppur si muove: Positional and kinematic correlations of satellite pairs in the low Z universe

    CERN Document Server

    Ibata, Rodrigo A; Lewis, Geraint F; Ibata, Neil G; Martin, Nicolas

    2014-01-01

    We have recently shown (Ibata et al. 2014) that pairs of satellite galaxies located diametrically opposite each other around their host possess predominantly anti-correlated velocities. This is consistent with a scenario in which $\\sim 50$% of satellite galaxies belong to kinematically-coherent rotating planar structures, similar to those detected around the giant galaxies of the Local Group. Here we extend this analysis, examining the incidence of satellites of giant galaxies drawn from an SDSS photometric redshift catalog. We find that there is a $\\sim 17$% overabundance ($> 3 \\sigma$ significance) of candidate satellites at positions diametrically opposite a spectroscopically confirmed satellite. We show that cosmological simulations do not possess this property when the contamination is included, and that there are in fact, after subtracting contamination, 2 to 3 times more satellites diametrically opposed to a spectroscopically confirmed satellite than at $90\\deg$ from it. We also examine the correlation...

  18. Geostationary meteorological satellite systems - An overview

    Science.gov (United States)

    Blersch, Donald J.; Probert, Todd C.

    Past and present geosynchronous meteorological satellites developed in the USA, Europe, Japan, India, and the Soviet Union are reviewed. Particular attention is given to the Applications Technology Satellite Program, GOES and SMS/GOES, METEOSAT, GMS/Himawari, the Indian National Satellite, and a Soviet geostationary meteorological satellite program, GOMS.

  19. Fast Development Of China's Small Satellite Industry

    Institute of Scientific and Technical Information of China (English)

    Sun Hongjin

    2009-01-01

    @@ China Spacesat Co., Ltd of China Academy of Space Technology (CAST) recently said, along with the successful launch of HJ-1A/B for the environment and disaster monitoring and forecasting small satellite constellation and after years of efforts, small satellite development technology has achieved fruitful results, and the development status has been greatly improved.China's small satellite technology has realized a great-leap-forward in development from a single satellite model to series model, from the satellite program to space industry. China has explored a development road for China's small satellite industrialization, and a modern small satellite development base has resulted.

  20. Satellite detection, long-range transport, and air quality impacts of volcanic sulfur dioxide from the 2014-2015 flood lava eruption at Bárðarbunga (Iceland)

    Science.gov (United States)

    Schmidt, Anja; Leadbetter, Susan; Theys, Nicolas; Carboni, Elisa; Witham, Claire S.; Stevenson, John A.; Birch, Cathryn E.; Thordarson, Thorvaldur; Turnock, Steven; Barsotti, Sara; Delaney, Lin; Feng, Wuhu; Grainger, Roy G.; Hort, Matthew C.; Höskuldsson, Ármann; Ialongo, Iolanda; Ilyinskaya, Evgenia; Jóhannsson, Thorsteinn; Kenny, Patrick; Mather, Tamsin A.; Richards, Nigel A. D.; Shepherd, Janet

    2015-09-01

    The 2014-2015 Bárðarbunga-Veiðivötn fissure eruption at Holuhraun produced about 1.5 km3 of lava, making it the largest eruption in Iceland in more than 200 years. Over the course of the eruption, daily volcanic sulfur dioxide (SO2) emissions exceeded daily SO2 emissions from all anthropogenic sources in Europe in 2010 by at least a factor of 3. We present surface air quality observations from across Northern Europe together with satellite remote sensing data and model simulations of volcanic SO2 for September 2014. We show that volcanic SO2 was transported in the lowermost troposphere over long distances and detected by air quality monitoring stations up to 2750 km away from the source. Using retrievals from the Ozone Monitoring Instrument (OMI) and the Infrared Atmospheric Sounding Interferometer (IASI), we calculate an average daily SO2 mass burden of 99 ± 49 kilotons (kt) of SO2 from OMI and 61 ± 18 kt of SO2 from IASI for September 2014. This volcanic burden is at least a factor of 2 greater than the average SO2 mass burden between 2007 and 2009 due to anthropogenic emissions from the whole of Europe. Combining the observational data with model simulations using the United Kingdom Met Office's Numerical Atmospheric-dispersion Modelling Environment model, we are able to constrain SO2 emission rates to up to 120 kilotons per day (kt/d) during early September 2014, followed by a decrease to 20-60 kt/d between 6 and 22 September 2014, followed by a renewed increase to 60-120 kt/d until the end of September 2014. Based on these fluxes, we estimate that the eruption emitted a total of 2.0 ± 0.6 Tg of SO2 during September 2014, in good agreement with ground-based remote sensing and petrological estimates. Although satellite-derived and model-simulated vertical column densities of SO2 agree well, the model simulations are biased low by up to a factor of 8 when compared to surface observations of volcanic SO2 on 6-7 September 2014 in Ireland. These biases are

  1. Viewpoints on control of military satellite communications

    Science.gov (United States)

    Heppe, S. B.

    1983-07-01

    The three main factors are system management, communication protocols, and the control system architecture. Each of these is analyzed here in terms of a model. The model for system management is the definition of system control of the Defense Communications System, referred to as DCS syscon. The model for communication protocols is referred to as the ISO model of OSI, ISO denoting the International Standards Organization and OSI denoting open systems interconnection. The model of the control system architecture is an elemental model. The interplay between the models is highlighted. Examples are presented from the Defense Satellite Communications System and from MILSTAR. Prospects for the future are considered in view of the integration expected as systems become more capable and sophisticated. It is expected that many of the real-time control functions performed at the worldwide and theater levels will be automated on the satellite.

  2. Hydrocarbons on the Icy Satellites of Saturn

    Science.gov (United States)

    Cruikshank, Dale P.

    2010-01-01

    The Visible-Infrared Mapping Spectrometer on the Cassini Spacecraft has obtained spectral reflectance maps of the satellites of Saturn in the wavelength region 0.4-5.1 micrometers since its insertion into Saturn orbit in late 2004. We have detected the spectral signature of the C-H stretching molecular mode of aromatic and aliphatic hydrocarbons in the low albedo material covering parts of several of Saturn's satellites, notably Iapetus and Phoebe (Cruikshank et al. 2008). The distribution of this material is complex, and in the case of Iapetus we are seeking to determine if it is related to the native grey-colored materials left as lag deposits upon evaporation of the ices, or represents in-fall from an external source, notably the newly discovered large dust ring originating at Phoebe. This report covers our latest exploration of the nature and source of this organic material.

  3. Real-time monitoring of seismic data using satellite telemetry

    OpenAIRE

    L. Merucci; F. M. De Simoni; Simoni, B.; G. Calderoni

    1997-01-01

    This article describes the ARGO Satellite Seismic Network (ARGO SSN) as a reliable system for monitoring, collection, visualisation and analysis of seismic and geophysical low-frequency data, The satellite digital telemetry system is composed of peripheral geophysical stations, a centraI communications node (master sta- tion) located in CentraI Italy, and a data collection and processing centre located at ING (Istituto Nazionale di Geofisica), Rome. The task of the peripheral stations is to d...

  4. Mobile communications by satellite in Europe - Overview of ESA activities

    Science.gov (United States)

    Rogard, R.; Jongejans, A.; Bartholome, P.

    ESA is conducting studies aimed at the definition of a Land Mobile Satellite System for digital communications within the Western European region, in view of recent market studies indicating the existence of substantial demand for the provision of mobile communications services by satellite. Attention is presently given to the 'Prodat' low-rate system and its ARQ-coding scheme, Prodat's CDMA return link (noting interference protection and spectrum use efficiency criteria) and the aims of Prodat performance trials.

  5. Modeling of tethered satellite formations using graph theory

    DEFF Research Database (Denmark)

    Larsen, Martin Birkelund; Smith, Roy S; Blanke, Mogens

    2011-01-01

    could form stable formations in space are cumbersome when done at a case to case basis, and a common framework providing a basic model of the dynamics of tethered satellite formations can therefore be advantageous. This paper suggests the use of graph theoretical quantities to describe a tethered...... stationary configurations and an upper limit of their number is determined. The method is shown to be valid for general tethered satellite formations that form a tree structure....

  6. Detection and classification of oil spills in MODIS satellite imagery

    OpenAIRE

    Alawadi, Fahad A.M.

    2011-01-01

    Using satellite imagery to achieve an early and accurate identification of oil spills will contribute towards the reduction of their impact on the marine ecosystem. Satellite imagery provided by the synthetic aperture radar (SAR) sensors are widely used for this task over the multi-temporal and multi-band visible near infra-red (VNIR) sensors. This is due to the SAR imaging capabilities through clouds, dust storms, soot and at night times, which limit the capability of VNIR sensors. However, ...

  7. Preliminary Mission Analysis and Design for a Small Satellite SWARM

    OpenAIRE

    Tanapura, Noravidhya

    2012-01-01

    The thesis is a preliminary mission analysis and design of a small satellite swarm. The concept of the mission is to probe altitudes between 200 km and 6000 km to study the structures and dynamics of the magnetic field aligned currents. The mission lifetime is about 3 months. Aerodynamic drag at low altitudes is used for orbit and formation control. During the perigee passage, the satellite would decelerate due to drag, therefore, reducing its apogee. In addition, the attitude control of the ...

  8. Satellite power system in the service of man

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, F.W.

    1981-01-01

    The solar power satellite concept is discussed in its various aspects: technical assumptions; unit power output; economic impact; impact on resources; environmental impacts; primary system functions; transmission of energy to earth; reception and conversion to usable energy on earth; space transport; station-keeping and attitude control; fabrication and assembly in space; power beam phase control; satellite maintenance; ancillary functions at rectenna site; and emerging technologies.

  9. Satellite's Motion under the Effect of Magnetic Torque

    Directory of Open Access Journals (Sweden)

    Rashmi Bhardwaj

    2006-01-01

    Full Text Available Non-integrability of planar oscillation of a satellite in an elliptic orbit under the influence of magnetic torque has been studied. The amplitude of the oscillation remains constant upto the second order of approximation. The analysis regarding the stability of the stationary planar oscillation of a satellite near the resonance frequency shows that discontinuity occurs in the amplitude of the oscillation at a frequency of the external periodic force which is less than the frequency of the natural oscillation.

  10. Satellite based wind resource assessment over the South China Sea

    OpenAIRE

    Badger, Merete; Astrup, Poul; Hasager, Charlotte Bay; Chang, Rui; Zhu, Rong

    2014-01-01

    Wind maps from satellites cover large areas and show horizontal wind speed variations offshore in great detail. This information is an excellent supplement to mast observations, which are limited to specific points, and to model simulations, which are typically run at coarser resolution. Wind maps from satellite synthetic aperture radar (SAR) data are particularly suitable for offshore wind energy applications because they offer a spatial resolution up to 500 m and include coastal seas. In th...

  11. Estimating seasonal evapotranspiration from temporal satellite images

    Science.gov (United States)

    Singh, Ramesh K.; Liu, Shu-Guang; Tieszen, Larry L.; Suyker, Andrew E.; Verma, Shashi B.

    2012-01-01

    Estimating seasonal evapotranspiration (ET) has many applications in water resources planning and management, including hydrological and ecological modeling. Availability of satellite remote sensing images is limited due to repeat cycle of satellite or cloud cover. This study was conducted to determine the suitability of different methods namely cubic spline, fixed, and linear for estimating seasonal ET from temporal remotely sensed images. Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC) model in conjunction with the wet METRIC (wMETRIC), a modified version of the METRIC model, was used to estimate ET on the days of satellite overpass using eight Landsat images during the 2001 crop growing season in Midwest USA. The model-estimated daily ET was in good agreement (R2 = 0.91) with the eddy covariance tower-measured daily ET. The standard error of daily ET was 0.6 mm (20%) at three validation sites in Nebraska, USA. There was no statistically significant difference (P > 0.05) among the cubic spline, fixed, and linear methods for computing seasonal (July–December) ET from temporal ET estimates. Overall, the cubic spline resulted in the lowest standard error of 6 mm (1.67%) for seasonal ET. However, further testing of this method for multiple years is necessary to determine its suitability.

  12. Evaluation of Antarctic polar stratospheric clouds data obtained by ground based lidars (at Dome C, McMurdo and Dumont D'Urville) and the satellite based CALIOP lidar system versus a subset of CCMVAL-2 chemistry-climate models.

    Science.gov (United States)

    Snels, Marcel; Fierli, Federico; de Muro, Mauro; Cagnazzo, Chiara; Cairo, Francesco; Di Liberto, Luca

    2016-04-01

    Polar stratospheric clouds play an important role in the ozone depletion process in polar regions and are thus strongly linked to climate changes. Long term observations are needed to monitor the presence of PSCs and to compare to climate models. The last decades PSCs in Antarctica have been observed by using the CALIOP lidar system on the CALIPSO satellite and by ground based lidars at Dumont D'Urville, McMurdo, Casey, and since 2014 at Dome C. We evaluate the Antarctic PSC observational databases of CALIPSO and the ground-based lidars of NDACC (Network for Detection of Atmospheric Composition Changes) located in McMurdo and Dumont D'Urville and Dome C stations and provide a process-oriented evaluation of PSC in a subset of CCMVAL-2 chemistry-climate models. Lidar observatories have a decadal coverage, albeit with discontinuities, spanning from 1992 to today hence offering a unique database. A clear issue is the representativeness of ground-based long-term data series of the Antarctic stratosphere conditions that may limit their value in climatological studies and model evaluation. The comparison with the CALIPSO observations with a global coverage is, hence, a key issue. In turn, models can have a biased representation of the stratospheric conditions and of the PSC microphysics leading to large discrepancies in PSC occurrence and composition. Point-to-point comparison is difficult due to sparseness of the database and to intrinsic differences in spatial distribution between models and observations. However, a statistical analysis of PSC observations shows a satisfactory agreement between ground-based and satellite borne-lidar. The differences may be attributed to averaging processes for data with a bad signal to noise ratio, which tends to smear out the values of the optical parameters. Data from some Chemistry Climate models (CCMs) having provided PSC surface areas on daily basis have been evaluated using the same diagnostic type that may be derived CALIPSO (i

  13. Using Cell Phones From Satellites

    Science.gov (United States)

    Horan, Stephen

    2000-01-01

    During the past several years, an interest has grown in using commercial telecommunications techniques to supply Telemetry and Command (T&C) services. Recently, the National Aeronautics and Space Administration (NASA) Space Operations Management Office (SOMO) has outlined plans to utilize satellite-based telecommunications services to support space operations in space missions over the next several decades. NASA currently obtains the bulk of its telecommunications services for earth-orbiting satellites via the existing government-owned and controlled Space Network (SN) system. This system consists of the constellation of Tracking and Data Relay Satellites (TDRS) in Geostationary Earth Orbit (GEO) and the associated ground terminals and communications intrastructure. This system is valuable and effective for scientific satellites costing over one million dollars. However, for smaller satellites, this system becomes problematic due to the cost of transponders and support infrastructure. The nominal transponders for using the TDRS cannot be obtained for a cost in dollars, and size, weight, or power that the 3 Corner Satellite project can afford. For these types of nanosatellite missions, alternatives that fit the mission cost and satellite profiles are needed. In particular, low-cost access using existing commercial infrastructure would be useful to mission planners. In particular, the ability to obtain low data rate T&C services would be especially valuable. The nanosatellites generally have low T&C requirements and therefore would benefit from using commercial services that could operate in the 2400 bps - 9600 bps range, especially if contact times longer than the 5 - 10 minute ground station passes could be found.

  14. The Transiting Exoplanet Survey Satellite

    CERN Document Server

    Ricker, George R; Vanderspek, Roland; Latham, David W; Bakos, Gaspar A; Bean, Jacob L; Berta-Thompson, Zachory K; Brown, Timothy M; Buchhave, Lars; Butler, Nathaniel R; Butler, R Paul; Chaplin, William J; Charbonneau, David; Christensen-Dalsgaard, Jorgen; Clampin, Mark; Deming, Drake; Doty, John; De Lee, Nathan; Dressing, Courtney; Dunham, E W; Endl, Michael; Fressin, Francois; Ge, Jian; Henning, Thomas; Holman, Matthew J; Howard, Andrew W; Ida, Shigeru; Jenkins, Jon; Jernigan, Garrett; Johnson, John Asher; Kaltenegger, Lisa; Kawai, Nobuyuki; Kjeldsen, Hans; Laughlin, Gregory; Levine, Alan M; Lin, Douglas; Lissauer, Jack J; MacQueen, Phillip; Marcy, Geoffrey; McCullough, P R; Morton, Timothy D; Narita, Norio; Paegert, Martin; Palle, Enric; Pepe, Francesco; Pepper, Joshua; Quirrenbach, Andreas; Rinehart, S A; Sasselov, Dimitar; Sato, Bun'ei; Seager, Sara; Sozzetti, Alessandro; Stassun, Keivan G; Sullivan, Peter; Szentgyorgyi, Andrew; Torres, Guillermo; Udry, Stephane; Villasenor, Joel

    2014-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will search for planets transiting bright and nearby stars. TESS has been selected by NASA for launch in 2017 as an Astrophysics Explorer mission. The spacecraft will be placed into a highly elliptical 13.7-day orbit around the Earth. During its two-year mission, TESS will employ four wide-field optical CCD cameras to monitor at least 200,000 main-sequence dwarf stars with I<13 for temporary drops in brightness caused by planetary transits. Each star will be observed for an interval ranging from one month to one year, depending mainly on the star's ecliptic latitude. The longest observing intervals will be for stars near the ecliptic poles, which are the optimal locations for follow-up observations with the James Webb Space Telescope. Brightness measurements of preselected target stars will be recorded every 2 min, and full frame images will be recorded every 30 min. TESS stars will be 10-100 times brighter than those surveyed by the pioneering Kepler missio...

  15. RCA direct broadcast satellite configuration

    Science.gov (United States)

    Miller, R.; Buntschuh, R. F.

    System requirements and the spacecraft configuration for a DBS mission in 1986, contracted by RCA Americom, are presented. Performance features are to include a dc power of 315 W, a stationkeeping accuracy of up to 0.1 deg, a pointing accuracy of up to 0.05 deg, and continental U.S. coverage. Four on-orbit operating satellites are needed, each weighing at least 1100 kg, having antennas of about 3 m diam, six RF channels, and no eclipse operating requirements. Three-axis stabilization, a pivoted momentum wheel, hydrazine thrusters, a bipropellant liquid perigee stage, a solid apogee kick motor, Ni-Cd batteries, 230 W power amplifiers, and launch compatibility with the STS. The spacecraft length will be approximately 23 m with solar panels deployed. Feedhorns will be used on for transmissions and a switching network will be installed to optimize time zone coverage. Each spacecraft will generate over 1.38 kW of on-board RF power.

  16. Star Formation in Satellite Galaxies

    CERN Document Server

    Gutíerrez, C M; Funes, J G; Ribeiro, M B

    2006-01-01

    We present narrow-band observations of the H$\\alpha$ emission in a sample of 31 satellite orbiting isolated giant spiral galaxies. The sample studied spans the range $-19at least another Hubble time. Four of the o...

  17. Probabilistic Precipitation Estimation with a Satellite Product

    Directory of Open Access Journals (Sweden)

    Nir Y. Krakauer

    2015-04-01

    Full Text Available Satellite-based precipitation products have been shown to represent precipitation well over Nepal at monthly resolution, compared to ground-based stations. Here, we extend our analysis to the daily and subdaily timescales, which are relevant for mapping the hazards caused by storms as well as drought. We compared the Tropical Rainfall Measuring Mission (TRMM Multi-satellite Precipitation Analysis (TMPA 3B42RT product with individual stations and with the gridded APHRODITE product to evaluate its ability to retrieve different precipitation intensities. We find that 3B42RT, which is freely available in near real time, has reasonable correspondence with ground-based precipitation products on a daily timescale; rank correlation coefficients approach 0.6, almost as high as the retrospectively calibrated TMPA 3B42 product. We also find that higher-quality ground and satellite precipitation observations improve the correspondence between the two on the daily timescale, suggesting opportunities for improvement in satellite-based monitoring technology. Correlation of 3B42RT and 3B42 with station observations is lower on subdaily timescales, although the mean diurnal cycle of precipitation is roughly correct. We develop a probabilistic precipitation monitoring methodology that uses previous observations (climatology as well as 3B42RT as input to generate daily precipitation accumulation probability distributions at each 0.25° x 0.25° grid cell in Nepal and surrounding areas. We quantify the information gain associated with using 3B42RT in the probabilistic model instead of relying only on climatology and show that the quantitative precipitation estimates produced by this model are well calibrated compared to APHRODITE.

  18. Satellite Applications for K-12 Geoscience Education

    Science.gov (United States)

    Mooney, M.; Ackerman, S.; Lettvin, E.; Emerson, N.; Whittaker, T. M.

    2007-12-01

    This presentation will highlight interactive on-line curriculum developed at the Cooperative Institute for Meteorological Satellite Studies (CIMSS) at the University of Wisconsin in Madison. CIMSS has been on the forefront of educational software design for over two decades, routinely integrating on-line activities into courses on satellite remote sensing. In 2006, CIMSS began collaborating with education experts and researchers from the University of Washington to create an NSF-funded distance learning course for science teachers called Satellite Applications for Geoscience Education. This course includes numerous web-based learning activities, including a distance education tool called VISITview which allows instructors to connect with multiple students simultaneously to conduct a lesson. Developed at CIMSS to facilitate training of National Weather Service forecasters economically and remotely, VISITview is especially effective for groups of people discussing and analyzing maps or images interactively from many locations. Along with an on-line chat function, VISITview participants can use a speaker phone or a networked voice-enabled application to create a learning environment similar to a traditional classroom. VISITview will be used in two capacities: first, instructors will convey topics of current relevance in geoscience disciplines via VISITview. Second, the content experts will participate in "virtual visits" to the classrooms of the educators who take the course for full credit. This will enable scientists to interact with both teachers and students to answer questions and discuss exciting or inspiring examples that link satellite data to their areas of research. As long as a school has Internet access, an LCD projector and a speakerphone, VISITview sessions can be shared with an entire classroom. The geoscientists who developed material for the course and conducting VISITview lectures include a geologist from the University of Wisconsin-Richland, an

  19. Effect of satellite helical harmonics on the stellarator configuration

    International Nuclear Information System (INIS)

    We discuss the problem of self-consistent analytical description of stellarators with a helical field which has, besides the main harmonic, two nearest satellites with the same period in the toroidal angle. The expression for the flux function explicitly incorporating the effect of such satellites on the shape of magnetic surfaces is obtained. It is shown that they produce the shift of magnetic surfaces. The expression for this shift is derived. Two problems are considered where the behavior of B2 on a magnetic surface is important: Pfirsch-Schlueter current at the presence of satellites and possibility of fulfillment of quasisymmetry condition (B2 on a magnetic surface does not depend on one of the angular Boozer coordinates) at least at a single magnetic surface. It is shown that effect of satellite harmonics on the magnitude of Pfirsch-Schlueter current turns out to be much smaller than it was predicted earlier on the basis of simplified model where the shift related with satellites was not taken into account. It is shown that quasisymmetry condition in a configuration with two satellites can be fulfilled only in linear approximation in helical field. The analysis is performed for conventional stellarators with planar circular axis making use of stellarator expansion. (author) 54 refs

  20. Building Technological Capability within Satellite Programs in Developing Countries

    Science.gov (United States)

    Wood, Danielle Renee

    capability building assessment shows that most trainee engineers gradually progressed from no experience with satellites through theoretical training to supervised experience; a minority achieved independent experience. At the organizational level, the emerging space organizations achieved high levels of autonomy in project definition and satellite operation, but they were dependent on foreign firms for satellite design, manufacture, test and launch. The case studies can be summarized by three archetypal projects defined as "Politically Pushed," "Structured," and "Risk Taking." Countries in the case studies tended to start in a Politically Pushed mode, and then moved into either Structured or Risk Taking mode. Decision makers in emerging satellite programs can use the results of this dissertation to consider the broad set of architectural options for capability building. Future work will continue to probe how specific architectural decisions impact capability building outcomes in satellite projects and other technologies. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)