WorldWideScience

Sample records for atroviride enzymes produced

  1. Enzymatic hydrolysis of steam-pretreated lignocellulosic materials with Trichoderma atroviride enzymes produced in-house

    Directory of Open Access Journals (Sweden)

    Macrelli Stefano

    2009-07-01

    Full Text Available Abstract Background Improvement of the process of cellulase production and development of more efficient lignocellulose-degrading enzymes are necessary in order to reduce the cost of enzymes required in the biomass-to-bioethanol process. Results Lignocellulolytic enzyme complexes were produced by the mutant Trichoderma atroviride TUB F-1663 on three different steam-pretreated lignocellulosic substrates, namely spruce, wheat straw and sugarcane bagasse. Filter paper activities of the enzymes produced on the three materials were very similar, while β-glucosidase and hemicellulase activities were more dependent on the nature of the substrate. Hydrolysis of the enzyme preparations investigated produced similar glucose yields. However, the enzymes produced in-house proved to degrade the xylan and the xylose oligomers less efficiently than a commercial mixture of cellulase and β-glucosidase. Furthermore, accumulation of xylose oligomers was observed when the TUB F-1663 supernatants were applied to xylan-containing substrates, probably due to the low β-xylosidase activity of the enzymes. The efficiency of the enzymes produced in-house was enhanced by supplementation with extra commercial β-glucosidase and β-xylosidase. When the hydrolytic capacities of various mixtures of a commercial cellulase and a T. atroviride supernatant produced in the lab were investigated at the same enzyme loading, the glucose yield appeared to be correlated with the β-glucosidase activity, while the xylose yield seemed to be correlated with the β-xylosidase level in the mixtures. Conclusion Enzyme supernatants produced by the mutant T. atroviride TUB F-1663 on various pretreated lignocellulosic substrates have good filter paper activity values combined with high levels of β-glucosidase activities, leading to cellulose conversion in the enzymatic hydrolysis that is as efficient as with a commercial cellulase mixture. On the other hand, in order to achieve good xylan

  2. Changes in metabolome and in enzyme activities during germination of Trichoderma atroviride conidia.

    Science.gov (United States)

    Kaliňák, Michal; Simkovič, Martin; Zemla, Peter; Matata, Matej; Molnár, Tomáš; Liptaj, Tibor; Varečka, L'udovít; Hudecová, Daniela

    2014-08-01

    The aim of this work was to study the metabolic changes during germination of Trichoderma atroviride conidia along with selected marker enzyme activities. The increase in proteinogenic amino acid concentrations together with the increase in glutamate dehydrogenase activity suggests a requirement for nitrogen metabolism. Even though the activities of tricarboxylic acid cycle enzymes also increased, detected organic acid pools did not change, which predisposes this pathway to energy production and supply of intermediates for further metabolism. The concentrations of many metabolites, including the main osmolytes mannitol and betaine, also increased during the formation of germ tubes. The activities of H(+)-ATPase and GDPase, the only marker enzymes that did not have detectable activity in non-germinated conidia, were shown with germ tubes.

  3. Enhancing rice resistance to fungal pathogens by transformation with cell wall degrading enzyme genes from Trichoderma atroviride

    Institute of Scientific and Technical Information of China (English)

    刘梅; 孙宗修; 朱洁; 徐同; HARMANGaryE; LORITOMatteo

    2004-01-01

    Three genes encoding for fungal cell wall degrading enzymes (CWDEs), ech42, nag70 and gluc78 from the biocontrol fungus Trichoderma atroviride were inserted into the binary vector pCAMBIA1305.2 singly and in all possible combinations and transformed to rice plants. More than 1800 independently regenerated plantlets in seven different populations (for each of the three genes and each of the four gene combinations) were obtained. The ech42 gene encoding for an endochitinase increased resistance to sheath blight caused by Rhizoctonia solani, while the exochitinase-encoding gene, nag70, had lesser effect. The expression level of endochitinase but exochitinase was correlated with disease resistance. Nevertheless, exochitinase enhanced the effect of endochitinase on disease resistance when the two genes co-expressed in transgenics. Resistance to Magnaporthe grisea was found in all kinds of regenerated plants including that with single gluc78. A few lines expressing either ech42 or nag70 gene were immune to the disease. Transgenic plants are being tested to further evaluate disease resistance at field level. This is the first report of multiple of expression of genes encoding CWDEs from Trichoderma atroviride that result in resistance to blast and sheath blight in rice.

  4. Rice transformation with cell wall degrading enzyme genes from Trichoderma atroviride and its effect on plant growth and resistance to fungal pathogens

    Institute of Scientific and Technical Information of China (English)

    Liu Mei; Sun Zong-Xiu; Zhu Jie; Xu Tong; Gary E Harman; Matteo Lorito; Sheri Woo

    2004-01-01

    @@ Three genes encoding for fungal cell wall degrading enzymes (CWDE), ech42, nag70 and gluc78from the biocontrol fungus Trichoderma atroviride were inserted into the binary vector pCAMBIA1305. 2 singly and in all possible combinations. The coding sequences were placed downstream of the rice actin promoter and all vectors were used to transform rice plants. A total of more than 1,800 independently regenerated plantlets in seven different populations (for each of the three genes and each of the four gene combinations) were obtained. Expression in plant was obtained for all the fungal genes used singly or in combinations. The ech42 gene encoding for an endochitinase increased resistance to sheath blight caused by Rhizoctonia solani, while the exochitinase-encoding gene, nag70, had a lesser effect. The expression level of endochitinase but not of the exochitinase was correlated with disease resistance. Nevertheless, exochitinase enhanced the positive effect of endochitinase on disease resistance when two genes were co-expressed in transgenic rice. Improved resistance to Magnaporthe grisea was found in all types of regenerated plants, including those with the gluc78 gene alone, while a few lines expressing either ech42 or nag70 appeared to be immune to this pathogen. Transgenic plants expressing the gluc78 gene alone were stunted and only few of them survived, even though they showed resistance to M. grisea. However, combination with either one of the two other genes ( ech42, nag70 ) as included in the same T-DNA region, reduced the negative effect of gluc78 on plant growth. This is the first report of single or multiple of expression of transgens encoding CWDEs that results in resistance to blast and sheath blight in rice.

  5. Study of signal transduction factors involved in mycoparasitic response of Trichoderma atroviride

    Institute of Scientific and Technical Information of China (English)

    Lorito M; Zeilinger S; Ambrosino P; Brunner K; Reithner B; Mach R L; Woo S L; Cristilli M; Scala F

    2004-01-01

    @@ Numerous Trichoderma spp. are mycoparasites and commercially applied as biological control agents against a large number of plant pathogenic fungi. The mycoparasitic interaction is host-specific and several research strategies have been applied to identify the main genes and compounds involved in the antagonist-plant-pathogen three-way interaction. During mycoparasitism, signals from the host fungus are recognised by Trichoderma, stimulating antifungal activities that are accompanied by morphological changes and the secretion of hydrolytic enzymes and antibiotics. Interestingly some morphological changes appeared highly conserved in the strategy of pathogenicity within the fungal world, i.e. the formation of appressoria as well as the secretion of hydrolytic enzymes seem to be general mechanisms of attack both for plant pathogens and mycoparasitic antagonists. This knowledge is being used to identify receptors and key components of signalling pathways involved in fungus-fungus interaction. For this purpose we have cloned the first genes (tmk1 , tga1 , tga3) from T. atroviride showing a high similarity to MAP kinase and G protein subunits (see abstract by Zeilinger et al.),which have been found to have an important role in pathogenicity by Magnaporthe grisea. To identify the function and involvement of these factors in mycoparasitism by T. atroviride, tmk1, tga1, tga3disruptant strains were produced. The knock-out mutants were tested by in vivo biocontrol assays for their ability to inhibit soil and foliar plant pathogens such as Rhizoctonia solani, Pythium ultimum and Botrytis cinerea . Disruption of these genes corresponded to a complete loss of biocontrol ability,suggesting a significant role in mycoparasitism. In particular, it has been suggested that tga3 regulates the expression of chitinase-encoding genes, the secretion of the corresponding enzymes and the process of conidiation. Comparative proteome analysis of wild type and disruptants supported this

  6. Disruption of the Eng18B ENGase gene in the fungal biocontrol agent Trichoderma atroviride affects growth, conidiation and antagonistic ability.

    Directory of Open Access Journals (Sweden)

    Mukesh K Dubey

    Full Text Available The recently identified phylogenetic subgroup B5 of fungal glycoside hydrolase family 18 genes encodes enzymes with mannosyl glycoprotein endo-N-acetyl-β-D-glucosaminidase (ENGase-type activity. Intracellular ENGase activity is associated with the endoplasmic reticulum associated protein degradation pathway (ERAD of misfolded glycoproteins, although the biological relevance in filamentous fungi is not known. Trichoderma atroviride is a mycoparasitic fungus that is used for biological control of plant pathogenic fungi. The present work is a functional study of the T. atroviride B5-group gene Eng18B, with emphasis on its role in fungal growth and antagonism. A homology model of T. atroviride Eng18B structure predicts a typical glycoside hydrolase family 18 (αβ(8 barrel architecture. Gene expression analysis shows that Eng18B is induced in dual cultures with the fungal plant pathogens Botrytis cinerea and Rhizoctonia solani, although a basal expression is observed in all growth conditions tested. Eng18B disruption strains had significantly reduced growth rates but higher conidiation rates compared to the wild-type strain. However, growth rates on abiotic stress media were significantly higher in Eng18B disruption strains compared to the wild-type strain. No difference in spore germination, germ-tube morphology or in hyphal branching was detected. Disruption strains produced less biomass in liquid cultures than the wild-type strain when grown with chitin as the sole carbon source. In addition, we determined that Eng18B is required for the antagonistic ability of T. atroviride against the grey mould fungus B. cinerea in dual cultures and that this reduction in antagonistic ability is partly connected to a secreted factor. The phenotypes were recovered by re-introduction of an intact Eng18B gene fragment in mutant strains. A putative role of Eng18B ENGase activity in the endoplasmic reticulum associated protein degradation pathway of endogenous

  7. Enzyme and biochemical producing fungi

    DEFF Research Database (Denmark)

    Lübeck, Peter Stephensen; Lübeck, Mette; Nilsson, Lena;

    2010-01-01

    We are developing a biorefinery concept for biological production of chemicals, drugs, feed and fuels using plant biomass as raw material in well-defined cell-factories. Among the important goals is the discovery of new biocatalysts for production of enzymes, biochemicals and fuels and already our...... screening of a large collection of fungal strains isolated from natural habitats have resulted in identification of strains with high production of hydrolytic enzymes and excretion of organic acids. Our research focuses on creating a fungal platform based on synthetic biology for developing new cell...

  8. Factors that contribute to the mycoparasitism stimulus in Trichoderma atroviride strain P1

    Institute of Scientific and Technical Information of China (English)

    Woo S L; Lorito M; Formisano E; Fogliano V; Cosenza C; Mauro A; Turrà D; Soriente I; Ferraioli S; Scala F

    2004-01-01

    @@ Trichoderma atroviride strain P1 has been used extensively to study the mycoparasitic mechanisms in the interaction between plant pathogenic host and beneficial antagonistic fungi. Mutants of P1 containing the green fluorescent protein (gfp) or glucose oxidase (gox) reporter systems and different inducible promoters (from the exochitinase nag1 gene, or the endochitinase ech42 gene of P1) were used to determine the factors that activate the biocontrol gene expression cascade in the antagonist. The following compounds were tested singly and in various combinations: purified Trichoderma P1 enzymes (endochitinase, exochitinase, chitobiosidase,glucanase); antagonist culture filtrates (T. atroviride P1 wild-type and relative knock-out mutants, T.harzianum, T. reesei); pathogen culture filtrates (Botrytis, Pythium, Rhizoctonia); purified fungal cell walls (CWs) from Trichoderma , Botrytis, Pythium, Rhizoctonia; colloidal crab shell chitin; and plant extracts from cucumber leaves, stems or roots. Strong induction of mycoparasitism was found with the various digestion products produced by treating fungal CWs and colloidal chitin with purified enzymes or fungal culture filtrates. Filtrates from chitinase knock-out mutants, as well as CWs from Oomycetes fungi, were less active in producing the stimulus for mycoparasitism. The host CW digestion products were separated by molecular weight (MW) to determine which compounds were able to activate Trichoderma. Micromolecules of MW less than 3 kDa were found to trigger mycoparasitism gene expression before physical contact with the host pathogen. These compounds stimulated mycelial growth and spore germination of the antagonist. Purification of these host-derived compounds was conducted by HPLC and in vivo assay. The obtained inducers were able to stimulate both the production of endochitinase and exochitinase enzymes, even under repressing conditions in the presence of glucose. Inducers stimulated the biocontrol effect of P1 in

  9. PURIFICATION OF GLUTAMINASE ENZYME PRODUCED FROM ERWINIA

    OpenAIRE

    PUSHPINDER PAUL

    2013-01-01

    The purpose of this study was to do Purification of the Glutaminase enzyme produced from free cells of Erwinia species at flask level. Glutaminase can be isolated from a number of sources such as plants, animals and microorganisms. Glutaminase is an important enzyme that serves many functions. It plays a key role in the energy and nitrogen metabolism of mammalian cells. Glutaminase is very important food enzyme used in food industries for flavor enhancement. Glutaminase, in combination with o...

  10. Vision and development in Trichoderma atroviride

    Institute of Scientific and Technical Information of China (English)

    Casas S; Cortés C; Ríos M; Rosales T; Bibbins M; Olmedo V; Herrera-Estrella A

    2004-01-01

    @@ Phototropism, the induction of carotenogenesis and reproductive structures, and resetting of the circadian rhythm are controlled by blue light. Trichoderma is used as a photomorphogenetic model due to its ability to conidiate upon exposure to light. In total darkness, T. atroviride grows indefinitely as a mycelium provided that nutrients are not limiting. However, nutrient deprivation and light trigger the conidiation process. A pulse of blue light given to a radially growing colony induces synchronous sporulation. A ring of conidiophores bearing green conidia is produced at what had been the colony perimeter at the time of the light pulse. All known responses to blue light in N. crassa are initiated by a couple of transcription factors encoded by the white-collar genes (wc -1 and wc-2). WC-1 and WC-2 bind to the promoters of light regulated genes to rapidly activate transcription in response to light. In T. atroviride the photolyase encoding gene phr1 undergoes fast transcriptional activation in response to light. The presence of putative WCC binding boxes in the promoter of phr1 , suggested that light responses in Trichoderma could be under the control of white-collar homologues. We cloned two genes and demonstrated by gene replacement that both are essential for photoconidiation and photolyase gene expression. Therefore, they were named blue-light regulator one and two (blr1 and blr2 ). The BLR1 protein has all the characteristics of a blue-light photoreceptor. The generation of subtractive cDNA libraries allowed us to identify novel, BLR independent, light responses including the regulation of gene expression by blue-light. In addition, we recently initiated a Trichoderma ESTs sequencing project. Until now, we have sequenced above 3000 ESTs, from which we have obtained approximately 1800 unigenes. This unigene set was printed in microarrays and used to search for light induced genes. Twenty five clearly induced and around thirty repressed genes have been

  11. Trametes suaveolens as ligninolytic enzyme producer

    Directory of Open Access Journals (Sweden)

    Knežević Aleksandar

    2013-01-01

    Full Text Available Species of the genus Trametes represent one of the most efficient lignin-degraders which can be attributed to a well developed ligninolytic enzyme system. Current trends are screening of ability of new species to produce these enzymes, as well as the optimization of conditions for their overproduction. Therefore, the aim of the study was to evaluate the potential of T. suaveolens to synthesize laccase and Mn-oxidizing peroxidases during fermentation of the selected plant raw materials. Level of enzyme activities was measured on 7, 10 and 14th day of submersion, as well as the solid-state fermentation of wheat straw and oak sawdust in the presence of NH4NO3 in previously determined optimal nitrogen concentration of 25 mM. The enzyme activity was determined spectrophotometrically using ABTS and phenol red as the substrates. The highest level of laccase activity (1087.1 U/L was noted after 7 days of wheat straw solid-state fermentation, while during the submerged cultivation the production of the enzyme was not noted. Submerged cultivation in oak sawdust-enriched medium was the optimal for activity of Mn-dependent peroxidase (1767.7 U/L on day 14 and Mn-independent peroxidase (1113.7 U/L on day 7. Introduction of T. suaveolens to produce ligninolytic enzyme represented the base for further study, as well as the determination of relation between enzyme activity and rate of lignin degradation. It could lead to greater possibility of fungal species selection with high delignification capacity, which could take participation in sustainable production of food, feed, fibres, and energy, environmentally friendly pollution prevention, and bioremediation.

  12. Proteomic response of the biological control fungus Trichoderma atroviride to growth on the cell walls of Rhizoctonia solani.

    Science.gov (United States)

    Grinyer, Jasmine; Hunt, Sybille; McKay, Matthew; Herbert, Ben R; Nevalainen, Helena

    2005-06-01

    Trichoderma atroviride has a natural ability to parasitise phytopathogenic fungi such as Rhizoctonia solani and Botrytis cinerea, therefore providing an environmentally sound alternative to chemical fungicides in the management of these pathogens. Two-dimensional electrophoresis was used to display cellular protein patterns of T. atroviride (T. harzianum P1) grown on media containing either glucose or R. solani cell walls. Protein profiles were compared to identify T. atroviride proteins up-regulated in the presence of the R. solani cell walls. Twenty-four protein spots were identified using matrix-assisted laser desorption ionisation mass spectrometry, liquid chromatography mass spectrometry and N-terminal sequencing. Identified up-regulated proteins include known fungal cell wall-degrading enzymes such as N-acetyl-beta-D: -glucosaminidase and 42-kDa endochitinase. Three novel proteases of T. atroviride were identified, containing sequence similarity to vacuolar serine protease, vacuolar protease A and a trypsin-like protease from known fungal proteins. Eukaryotic initiation factor 4a, superoxide dismutase and a hypothetical protein from Neurospora crassa were also up-regulated as a response to R. solani cell walls. Several cell wall-degrading enzymes were identified from the T. atroviride culture supernatant, providing further evidence that a cellular response indicative of biological control had occurred. PMID:15856359

  13. Screening and isolation of halophilic bacteria producing industrially important enzymes

    Directory of Open Access Journals (Sweden)

    Sumit Kumar

    2012-12-01

    Full Text Available Halophiles are excellent sources of enzymes that are not only salt stable but also can withstand and carry out reactions efficiently under extreme conditions. The aim of the study was to isolate and study the diversity among halophilic bacteria producing enzymes of industrial value. Screening of halophiles from various saline habitats of India led to isolation of 108 halophilic bacteria producing industrially important hydrolases (amylases, lipases and proteases. Characterization of 21 potential isolates by morphological, biochemical and 16S rRNA gene analysis found them related to Marinobacter, Virgibacillus, Halobacillus, Geomicrobium, Chromohalobacter, Oceanobacillus, Bacillus, Halomonas and Staphylococcus genera. They belonged to moderately halophilic group of bacteria exhibiting salt requirement in the range of 3-20%. There is significant diversity among halophiles from saline habitats of India. Preliminary characterization of crude hydrolases established them to be active and stable under more than one extreme condition of high salt, pH, temperature and presence of organic solvents. It is concluded that these halophilic isolates are not only diverse in phylogeny but also in their enzyme characteristics. Their enzymes may be potentially useful for catalysis under harsh operational conditions encountered in industrial processes. The solvent stability among halophilic enzymes seems a generic novel feature making them potentially useful in non-aqueous enzymology.

  14. Screening and isolation of halophilic bacteria producing industrially important enzymes.

    Science.gov (United States)

    Kumar, Sumit; Karan, Ram; Kapoor, Sanjay; S P, Singh; S K, Khare

    2012-10-01

    Halophiles are excellent sources of enzymes that are not only salt stable but also can withstand and carry out reactions efficiently under extreme conditions. The aim of the study was to isolate and study the diversity among halophilic bacteria producing enzymes of industrial value. Screening of halophiles from various saline habitats of India led to isolation of 108 halophilic bacteria producing industrially important hydrolases (amylases, lipases and proteases). Characterization of 21 potential isolates by morphological, biochemical and 16S rRNA gene analysis found them related to Marinobacter, Virgibacillus, Halobacillus, Geomicrobium, Chromohalobacter, Oceanobacillus, Bacillus, Halomonas and Staphylococcus genera. They belonged to moderately halophilic group of bacteria exhibiting salt requirement in the range of 3-20%. There is significant diversity among halophiles from saline habitats of India. Preliminary characterization of crude hydrolases established them to be active and stable under more than one extreme condition of high salt, pH, temperature and presence of organic solvents. It is concluded that these halophilic isolates are not only diverse in phylogeny but also in their enzyme characteristics. Their enzymes may be potentially useful for catalysis under harsh operational conditions encountered in industrial processes. The solvent stability among halophilic enzymes seems a generic novel feature making them potentially useful in non-aqueous enzymology. PMID:24031991

  15. In vitro sensitivity of antagonistic Trichoderma atroviride to herbicides

    Directory of Open Access Journals (Sweden)

    Patricia Helena Santoro

    2014-04-01

    Full Text Available Trichoderma atroviride was tested in vitro for its sensitivity to different herbicides. The dosages tested were recommended dosage (RD, half dosage (½RD, and double dosage (2RD. Germination, colony-forming units (CFU, radial growth, and spore production were evaluated. Carfentrazone-ethyl and sulfentrazone inhibited the germination at RD and 2RD. A reduction in the CFU was observed for glufosinate-ammonium, atrazine, carfentrazone-ethyl, diuron + paraquat dichloride, imazapyr, oxyfluorfen, and sulfentrazone at each of the tested dosages. Radial growth was influenced by ametryn, atrazine, carfentrazone-ethyl, oxyfluorfen, and sulfentrazone herbicides, with an 80% reduction of the colonial area. Spore production was affected by carfentrazone-ethyl, oxyfluorfen, and sulfentrazone with colonial area reductions of over 70%. It was concluded that 2,4 D, clomazone, and imazapyr herbicides showed the least toxicity to T. atroviride and should be used in the crops where the fungus has been applied for phytopathogen control.

  16. In vitro sensitivity of antagonistic Trichoderma atroviride to herbicides

    OpenAIRE

    Patricia Helena Santoro; Silvia Akimi Cavaguchi; Talita Moretto Alexandre; Janaina Zorzetti; Pedro Manuel Oliveira Janeiro Neves

    2014-01-01

    Trichoderma atroviride was tested in vitro for its sensitivity to different herbicides. The dosages tested were recommended dosage (RD), half dosage (½RD), and double dosage (2RD). Germination, colony-forming units (CFU), radial growth, and spore production were evaluated. Carfentrazone-ethyl and sulfentrazone inhibited the germination at RD and 2RD. A reduction in the CFU was observed for glufosinate-ammonium, atrazine, carfentrazone-ethyl, diuron + paraquat dichloride, imazapyr, oxyfluorfen...

  17. G protein signalling involved in host recognition and mycoparasitismrelated chitinase expression in Trichoderma atroviride

    Institute of Scientific and Technical Information of China (English)

    Susanne Zeilinger; Barbara Reithner; Kurt Brunner; Valeria Scala; Isabel Peiβl; Matteo Lorito; Robert L Mach

    2004-01-01

    @@ Mycoparasitic species of Trichoderma are commercially applied as biological control agents against various fungal pathogens. The mycoparasitic interaction is host specific and includes recognition,attack and subsequent penetration and killing of the host. Investigations on the underlying events revealed that Trichoderma responds to multiple signals from the host (e. g. lectins or other ligands such as low molecular weight components released from the host's cell wall) and host attack is accompanied by morphological changes and the secretion of hydrolytic enzymes and antibiotics.Degradation of the cell wall of the host fungus is-besides glucanases and proteases-mainly achieved by chitinases. In vivo studies showed that the ech42 gene (encoding endochitinase 42) is expressed before physical contact of Trichoderma with its host, probably representing one of the earliest events in mycoparasitism, whereas Nag1 (N-acetylglucosaminidase) plays a key role in the general induction of the chitinolytic enzyme system of T. atroviride . Investigations on the responsible signal transduction pathways of T. atroviride led to the isolation of several genes encoding key components of the cAMP and MAP kinase signaling pathways, as alpha and β subunits of heterotrimeric G proteins, the regulatory subunit of cAMP-dependent protein kinase,adenylate cyclase, and three MAP kinases. Analysis of knockout mutants, generated by Agrobacterium-mediated transformation, revealed that at least two alpha-subunits of heterotrimeric G proteins are participating in mycoparasitism-related signal transduction. The Tga1 G alpha subunit was shown to be involved in mycoparasitism-related processes such as chitinase expression and overproduction of toxic secondary metabolites, whereas Tga3 was found to be completely avirulent showing defects in chitinase formation and host recognition.

  18. Cooperation between ligninolytic enzymes produced by superior mixed flora

    Institute of Scientific and Technical Information of China (English)

    WANG Hai-lei; LI Zong-yi; GUO Wei-yun; WANG Zhen-yu; PAN Feng

    2005-01-01

    Since the ability to degrade lignin with one kind of white-rot fungi or bacteria was very limited, superior mixed flora's ability to degrade lignin was investigated by an orthogonal experiment in this paper. The results showed that superior mixed flora reinforced the ability to degrade lignin, the degradation rates of both sample 9 and 10 were beyond 80% on the day 9. The cooperation between lignin peroxidase(LiP), Mn-dependent peroxidase(MnP) and laccase (Lac) for lignin degradation was also studied. By examining the activities of three enzymes produced by superior mixed flora, it was found that Lac was a key enzyme in the process of biological degradation of lignin but Lip was not; the enzyme activity ratios of Lac/MnP and Lac/LiP were significantly correlative with the degradation rate of lignin at the 0.01 level; and the ratio of MnP/LiP was an important factor affecting the degradation rate of lignin.

  19. PRODUCING OF ENZYME PREPARATION AND ANALYSIS OF ENZYME PREPARATION OF PEROXIDASE AND CATALASE OF SOME SPECIES OF BASIDIOMYCETES

    Directory of Open Access Journals (Sweden)

    Fedotov O.V.

    2013-04-01

    Full Text Available A method for obtaining of enzyme preparations of enzyme preparations (EP of peroxidases and catalases fungal extracellular and inracellular origin from cultures of Basidiomycetes was developed. The strains Flammulina velutipes F-vv, Agrocybe cylindracea167; Fistulina hepatica Fh-08 and Pleurotus ostreatus P-208 and P-01 were used as producers of oxidoreductases. Strains were grown on modified glucose-peptone media. Fractionation was carried out by salting out the enzymes with ammonium sulfate at 40-70% saturation of peroxidases and 80% of saturation - for catalase. These solutions protein fractions was further purified by dialysis and gel filtration on Molselekt granules G-50 and G-75. The enzyme solution was subjected to freeze-drying. The individual characteristics of the enzyme preparations were found. The individual characteristics of the enzyme preparations are the activity of enzymes, the protein content and amino-acid composition of enzyme preparations. It was established that strain F. velutipes F-vv was an active producer of intracellular and strain of A. cylindracea 167 was an active producer of extracellular peroxidase. The strains of P. ostreatus P-01 and P-208 were the active producers of extracellular catalase, and the strainsof F. hepatica Fh-08 were active producers of intracellular catalase. The developed methods for producing of enzymes catalase and peroxidase preparations of extra-and intracellular origin provided new antioxidant enzymes, which have their own properties and application prospects in various sectors of industry and science research.

  20. Extracellular ATP activates MAPK and ROS signaling during injury response in the fungus Trichoderma atroviride

    Directory of Open Access Journals (Sweden)

    Elizabeth eMedina-Castellanos

    2014-11-01

    Full Text Available The response to mechanical damage is crucial for the survival of multicellular organisms, enabling their adaptation to hostile environments. Trichoderma atroviride, a filamentous fungus of great importance in the biological control of plant diseases, responds to mechanical damage by activating regenerative processes and asexual reproduction (conidiation. During this response, reactive oxygen species (ROS are produced by the NADPH oxidase (Nox1/NoxR complex. To understand the underlying early signaling events, we evaluated molecules such as extracellular ATP (eATP and Ca2+ that are known to trigger wound-induced responses in plants and animals. Concretely, we investigated the activation of mitogen-activated protein kinase (MAPK pathways by eATP, Ca2+ and ROS. Indeed, application of exogenous ATP and Ca2+ triggered conidiation. Furthermore, eATP promoted the Nox1-dependent production of ROS and activated a MAPK pathway. Mutants in the MAPK-encoding genes tmk1 and tmk3 were affected in wound-induced conidiation, and phosphorylation of both Tmk1 and Tmk3 was triggered by eATP. We conclude that in this fungus, eATP acts as a damage-associated molecular pattern (DAMP. Our data indicate the existence of an eATP receptor and suggest that in fungi, eATP triggers pathways that converge to regulate asexual reproduction genes that are required for injury-induced conidiation. By contrast, Ca2+ is more likely to act as a downstream second messenger. The early steps of mechanical damage response in T. atroviride share conserved elements with those known from plants and animals.

  1. Screening genus Penicillium for producers of cellulolytic and xylanolytic enzymes

    DEFF Research Database (Denmark)

    Krogh, Kristian Bertel Rømer; Mørkeberg, Astrid; Frisvad, Jens Christian;

    2004-01-01

    For enzymatic hydrolysis of lignocellulosic material, cellulolytic enzymes from Trichoderma reesei are most commenly used, but, there is a need for more efficient enzyme cocktails. In this study, the production of cellulolytic and xylanolytic enzymes was investigated in 12 filamentous fungi from...

  2. Xenobiotic Compounds Degradation by Heterologous Expression of a Trametes sanguineus Laccase in Trichoderma atroviride.

    Directory of Open Access Journals (Sweden)

    Edgar Balcázar-López

    Full Text Available Fungal laccases are enzymes that have been studied because of their ability to decolorize and detoxify effluents; they are also used in paper bleaching, synthesis of polymers, bioremediation, etc. In this work we were able to express a laccase from Trametes (Pycnoporus sanguineus in the filamentous fungus Trichoderma atroviride. For this purpose, a transformation vector was designed to integrate the gene of interest in an intergenic locus near the blu17 terminator region. Although monosporic selection was still necessary, stable integration at the desired locus was achieved. The native signal peptide from T. sanguineus laccase was successful to secrete the recombinant protein into the culture medium. The purified, heterologously expressed laccase maintained similar properties to those observed in the native enzyme (Km and kcat and kcat/km values for ABTS, thermostability, substrate range, pH optimum, etc. To determine the bioremediation potential of this modified strain, the laccase-overexpressing Trichoderma strain was used to remove xenobiotic compounds. Phenolic compounds present in industrial wastewater and bisphenol A (an endocrine disruptor from the culture medium were more efficiently removed by this modified strain than with the wild type. In addition, the heterologously expressed laccase was able to decolorize different dyes as well as remove benzo[α]pyrene and phenanthrene in vitro, showing its potential for xenobiotic compound degradation.

  3. Xenobiotic Compounds Degradation by Heterologous Expression of a Trametes sanguineus Laccase in Trichoderma atroviride

    Science.gov (United States)

    Balcázar-López, Edgar; Méndez-Lorenzo, Luz Helena; Batista-García, Ramón Alberto; Esquivel-Naranjo, Ulises; Ayala, Marcela; Kumar, Vaidyanathan Vinoth; Savary, Olivier; Cabana, Hubert; Herrera-Estrella, Alfredo; Folch-Mallol, Jorge Luis

    2016-01-01

    Fungal laccases are enzymes that have been studied because of their ability to decolorize and detoxify effluents; they are also used in paper bleaching, synthesis of polymers, bioremediation, etc. In this work we were able to express a laccase from Trametes (Pycnoporus) sanguineus in the filamentous fungus Trichoderma atroviride. For this purpose, a transformation vector was designed to integrate the gene of interest in an intergenic locus near the blu17 terminator region. Although monosporic selection was still necessary, stable integration at the desired locus was achieved. The native signal peptide from T. sanguineus laccase was successful to secrete the recombinant protein into the culture medium. The purified, heterologously expressed laccase maintained similar properties to those observed in the native enzyme (Km and kcat and kcat/km values for ABTS, thermostability, substrate range, pH optimum, etc). To determine the bioremediation potential of this modified strain, the laccase-overexpressing Trichoderma strain was used to remove xenobiotic compounds. Phenolic compounds present in industrial wastewater and bisphenol A (an endocrine disruptor) from the culture medium were more efficiently removed by this modified strain than with the wild type. In addition, the heterologously expressed laccase was able to decolorize different dyes as well as remove benzo[α]pyrene and phenanthrene in vitro, showing its potential for xenobiotic compound degradation. PMID:26849129

  4. [Enzyme activity of an actinomycete producer of carotenes and macrotetrolides].

    Science.gov (United States)

    Nefelova, M V; Sverdlova, A N

    1982-01-01

    The activity of pyruvate dehydrogenase and dehydrogenases of the tricarboxylic acid cycle was assayed in the mycelium of Streptomyces chrysomallus var. Carotenoides growing under different conditions of the medium. The activity of the enzymes increased when acetic, citric and succinic acids were added at different periods of the growth. Moreover, addition of the acids increased the time of intensive functioning of the dehydrogenases whose activity abruptly decreased after 60 h of the growth under the control conditions.

  5. Screening of Strains Producing Alkaline Protease from Soil and Study on the Conditions for Enzyme Production

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to screen strains producing alkaline protease from soil and study the conditions for enzyme production.[Method] Eight strains producing alkaline protease were isolated from soil through plate isolation,and the ability of enzyme production was measured by filter paper and Folin-phenol method.The strain with the strongest ability of enzyme production was screened as a candidate strain,then the factors influencing the ability of enzyme production was studied,finally the conditions for e...

  6. Olive mill wastewaters treatment by enzymes producing microorganisms

    OpenAIRE

    Gonçalves, Cristiana; Oliveira, Felisbela Maria Araújo; Abrunhosa, Luís; Venâncio, Armando; Alves, M. M.; Belo, Isabel

    2010-01-01

    Olive mill industry is a traditional agricultural industry in Mediterranean countries. These countries produce almost all the olive oil sold worldwide. Olive oil production results on a large amount of wastewaters (OMW), which represents a major environmental problem. OMW is a dark liquid residue with high organic content composed mainly by sugars, tannins, polyphenols, polyalcohols, organic acids, proteins, pectins and lipids. Different treatments and disposal alternatives can be found in th...

  7. The transcription factor Ste12 mediates the regulatory role of the Tmk1 MAP kinase in mycoparasitism and vegetative hyphal fusion in the filamentous fungus Trichoderma atroviride.

    Science.gov (United States)

    Gruber, Sabine; Zeilinger, Susanne

    2014-01-01

    Mycoparasitic species of the fungal genus Trichoderma are potent antagonists able to combat plant pathogenic fungi by direct parasitism. An essential step in this mycoparasitic fungus-fungus interaction is the detection of the fungal host followed by activation of molecular weapons in the mycoparasite by host-derived signals. The Trichoderma atroviride MAP kinase Tmk1, a homolog of yeast Fus3/Kss1, plays an essential role in regulating the mycoparasitic host attack, aerial hyphae formation and conidiation. However, the transcription factors acting downstream of Tmk1 are hitherto unknown. Here we analyzed the functions of the T. atroviride Ste12 transcription factor whose orthologue in yeast is targeted by the Fus3 and Kss1 MAP kinases. Deletion of the ste12 gene in T. atroviride not only resulted in reduced mycoparasitic overgrowth and lysis of host fungi but also led to loss of hyphal avoidance in the colony periphery and a severe reduction in conidial anastomosis tube formation and vegetative hyphal fusion events. The transcription of several orthologues of Neurospora crassa hyphal fusion genes was reduced upon ste12 deletion; however, the Δste12 mutant showed enhanced expression of mycoparasitism-relevant chitinolytic and proteolytic enzymes and of the cell wall integrity MAP kinase Tmk2. Based on the comparative analyses of Δste12 and Δtmk1 mutants, an essential role of the Ste12 transcriptional regulator in mediating outcomes of the Tmk1 MAPK pathway such as regulation of the mycoparasitic activity, hyphal fusion and carbon source-dependent vegetative growth is suggested. Aerial hyphae formation and conidiation, in contrast, were found to be independent of Ste12.

  8. The transcription factor Ste12 mediates the regulatory role of the Tmk1 MAP kinase in mycoparasitism and vegetative hyphal fusion in the filamentous fungus Trichoderma atroviride.

    Science.gov (United States)

    Gruber, Sabine; Zeilinger, Susanne

    2014-01-01

    Mycoparasitic species of the fungal genus Trichoderma are potent antagonists able to combat plant pathogenic fungi by direct parasitism. An essential step in this mycoparasitic fungus-fungus interaction is the detection of the fungal host followed by activation of molecular weapons in the mycoparasite by host-derived signals. The Trichoderma atroviride MAP kinase Tmk1, a homolog of yeast Fus3/Kss1, plays an essential role in regulating the mycoparasitic host attack, aerial hyphae formation and conidiation. However, the transcription factors acting downstream of Tmk1 are hitherto unknown. Here we analyzed the functions of the T. atroviride Ste12 transcription factor whose orthologue in yeast is targeted by the Fus3 and Kss1 MAP kinases. Deletion of the ste12 gene in T. atroviride not only resulted in reduced mycoparasitic overgrowth and lysis of host fungi but also led to loss of hyphal avoidance in the colony periphery and a severe reduction in conidial anastomosis tube formation and vegetative hyphal fusion events. The transcription of several orthologues of Neurospora crassa hyphal fusion genes was reduced upon ste12 deletion; however, the Δste12 mutant showed enhanced expression of mycoparasitism-relevant chitinolytic and proteolytic enzymes and of the cell wall integrity MAP kinase Tmk2. Based on the comparative analyses of Δste12 and Δtmk1 mutants, an essential role of the Ste12 transcriptional regulator in mediating outcomes of the Tmk1 MAPK pathway such as regulation of the mycoparasitic activity, hyphal fusion and carbon source-dependent vegetative growth is suggested. Aerial hyphae formation and conidiation, in contrast, were found to be independent of Ste12. PMID:25356841

  9. The transcription factor Ste12 mediates the regulatory role of the Tmk1 MAP kinase in mycoparasitism and vegetative hyphal fusion in the filamentous fungus Trichoderma atroviride.

    Directory of Open Access Journals (Sweden)

    Sabine Gruber

    Full Text Available Mycoparasitic species of the fungal genus Trichoderma are potent antagonists able to combat plant pathogenic fungi by direct parasitism. An essential step in this mycoparasitic fungus-fungus interaction is the detection of the fungal host followed by activation of molecular weapons in the mycoparasite by host-derived signals. The Trichoderma atroviride MAP kinase Tmk1, a homolog of yeast Fus3/Kss1, plays an essential role in regulating the mycoparasitic host attack, aerial hyphae formation and conidiation. However, the transcription factors acting downstream of Tmk1 are hitherto unknown. Here we analyzed the functions of the T. atroviride Ste12 transcription factor whose orthologue in yeast is targeted by the Fus3 and Kss1 MAP kinases. Deletion of the ste12 gene in T. atroviride not only resulted in reduced mycoparasitic overgrowth and lysis of host fungi but also led to loss of hyphal avoidance in the colony periphery and a severe reduction in conidial anastomosis tube formation and vegetative hyphal fusion events. The transcription of several orthologues of Neurospora crassa hyphal fusion genes was reduced upon ste12 deletion; however, the Δste12 mutant showed enhanced expression of mycoparasitism-relevant chitinolytic and proteolytic enzymes and of the cell wall integrity MAP kinase Tmk2. Based on the comparative analyses of Δste12 and Δtmk1 mutants, an essential role of the Ste12 transcriptional regulator in mediating outcomes of the Tmk1 MAPK pathway such as regulation of the mycoparasitic activity, hyphal fusion and carbon source-dependent vegetative growth is suggested. Aerial hyphae formation and conidiation, in contrast, were found to be independent of Ste12.

  10. Ultrasound-assisted extraction and characterization of hydrolytic and oxidative enzymes produced by solid state fermentation.

    Science.gov (United States)

    Szabo, Orsolya Erzsebet; Csiszar, Emilia; Toth, Karolina; Szakacs, George; Koczka, Bela

    2015-01-01

    Ligninolytic and hydrolytic enzymes were produced with six selected fungi on flax substrate by solid state fermentation (SSF). The extracellular enzyme production of the organisms in two SSF media was evaluated by measuring the soluble protein concentration and the filter paper, endoxylanase, 1,4-β-d-glucosidase, 1,4-β-d-endoglucanase, polygalacturonase, lignin peroxidase, manganese peroxidase and laccase activities of the clear culture solutions produced by conventional extraction from the SSF materials. The SSF material of the best enzyme producer (Trichoderma virens TUB F-498) was further investigated to enhance the enzyme recovery by low frequency ultrasound treatment. Performance of both the original and ultrasound macerated crude enzyme mixtures was evaluated in degradation of the colored lignin-containing and waxy materials of raw linen fabric. Results proved that sonication (at 40%, 60% and 80% amplitudes, for 60min) did not result in reduction in the filter paper, lignin peroxidase and laccase activities of the crude enzyme solution, but has a significant positive effect on the efficiency of enzyme extraction from the SSF material. Depending on the parameters of sonication, the enzyme activities in the extracts obtained can be increased up to 129-413% of the original activities measured in the control extracts recovered by a common magnetic stirrer. Sonication also has an effect on both the enzymatic removal of the lignin-containing color materials and hydrophobic surface layer from the raw linen.

  11. Hybrid promiscuous (Hypr) GGDEF enzymes produce cyclic AMP-GMP (3', 3'-cGAMP).

    Science.gov (United States)

    Hallberg, Zachary F; Wang, Xin C; Wright, Todd A; Nan, Beiyan; Ad, Omer; Yeo, Jongchan; Hammond, Ming C

    2016-02-16

    Over 30 years ago, GGDEF domain-containing enzymes were shown to be diguanylate cyclases that produce cyclic di-GMP (cdiG), a second messenger that modulates the key bacterial lifestyle transition from a motile to sessile biofilm-forming state. Since then, the ubiquity of genes encoding GGDEF proteins in bacterial genomes has established the dominance of cdiG signaling in bacteria. However, the observation that proteobacteria encode a large number of GGDEF proteins, nearing 1% of coding sequences in some cases, raises the question of why bacteria need so many GGDEF enzymes. In this study, we reveal that a subfamily of GGDEF enzymes synthesizes the asymmetric signaling molecule cyclic AMP-GMP (cAG or 3', 3'-cGAMP). This discovery is unexpected because GGDEF enzymes function as symmetric homodimers, with each monomer binding to one substrate NTP. Detailed analysis of the enzyme from Geobacter sulfurreducens showed it is a dinucleotide cyclase capable of switching the major cyclic dinucleotide (CDN) produced based on ATP-to-GTP ratios. We then establish through bioinformatics and activity assays that hybrid CDN-producing and promiscuous substrate-binding (Hypr) GGDEF enzymes are found in other deltaproteobacteria. Finally, we validated the predictive power of our analysis by showing that cAG is present in surface-grown Myxococcus xanthus. This study reveals that GGDEF enzymes make alternative cyclic dinucleotides to cdiG and expands the role of this widely distributed enzyme family to include regulation of cAG signaling.

  12. North Western Spain hot springs are a source of lipolytic enzyme-producing thermophilic microorganisms.

    Science.gov (United States)

    Deive, Francisco J; Alvarez, María S; Sanromán, M Angeles; Longo, Maria A

    2013-02-01

    Several hot springs in Galicia (North Western Spain) have been investigated as potential sources of lipolytic enzyme-producing thermophilic microorganisms. After isolating 12 esterase producing strains, 9 of them were assured to be true lipase producers, and consequently grown in submerged cultures, obtaining high extracellular activities by two of them. Furthermore, a preliminary partial characterization of the crude lipase, obtained by ultrafiltration of the cell-free culture supernatant, was carried out at several pH and temperature values. It is outstanding that several enzymes turned out to be multiextremozymes, since they had their optimum temperature and pH at typical values from thermoalkalophiles. The thermal stability in aqueous solution of the crude enzymes was also assayed, and the influence of some potential enzyme stabilizing compounds was tested. Finally, the viability of the selected microorganisms has been demonstrated at bioreactor scale.

  13. Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    DEFF Research Database (Denmark)

    Andersen, Mikael Rørdam; Salazar, Margarita Pena; Schaap, Peter J.;

    2011-01-01

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme...... and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis supported up-regulation of genes associated with biosynthesis of amino acids that are abundant...

  14. Isolation of moderately halophilic pseudoalteromonas producing extracellular hydrolytic enzymes from persian gulf.

    Science.gov (United States)

    Ardakani, M Roayaie; Poshtkouhian, A; Amoozegar, M A; Zolgharnein, H

    2012-03-01

    Extracellular hydrolytic enzymes such as amylases, proteases, lipases and DNases have quite diverse potential usages in different areas such as food industry, biomedical sciences and chemical industries, also it would be of great importance to have available enzymes showing optimal activities at different values of salt concentrations and temperature. Halophiles are the most likely source of such enzymes, because not only their enzymes are salt-tolerant, but many are also thermotolerant. The purpose of this study was isolation of hydrolytic extracellular enzyme producing halophilic bacteria from water and sediment of the Persian Gulf. Isolated bacteria from water and sediment were inoculated in media with concentration of 0-20% NaCl to determine the optimum salt concentration for growth, isolates were also inoculated in 4 types of solid medium containing substrates of 3 extracellular hydrolytic enzymes including amylase, Protease and Lipase, to determine the quantitative detection of enzyme production, selected strains after more accurate physiological and biochemical studies were identified regarding phylogeny and molecular characteristics using 16S rRNA technique. Isolated enzyme producing bacteria belong to Pseudoalteromonas genera. PMID:23450116

  15. [Diversity and enzyme-producing activity of culturable halophilic bacteria in Daishan Saltern of East China].

    Science.gov (United States)

    Yang, Dan-Dan; Li, Qian; Huang, Jing-Jing; Chen, Min

    2012-11-01

    Soil and saline water samples were collected from the Daishan Saltern of East China, and the halophilic bacteria were isolated and cultured by using selective media, aimed to investigate the diversity and enzyme-producing activity of culturable halophilic bacteria in saltern environment. A total of 181 strains were isolated by culture-dependent method. Specific primers were used to amplify the 16S rRNA gene of bacteria and archaea. The operation taxonomy units (OTUs) were determined by ARDRA method, and the representative strain of each OTU was sequenced. The phylogenetic position of all the isolated strains was determined by 16S rRNA sequencing. The results showed that the isolated 181 strains displayed 21 operational taxonomic units (OTUs), of which, 12 OTUs belonged to halophilic bacteria, and the others belonged to halophilic archaea. Phylogenetic analysis indicated that there were 7 genera presented among the halophilic bacteria group, and 4 genera presented among the halophilic archaea group. The dominant halophilic strains were of Halomonas and Haloarcula, with 46.8% in halophilic bacteria and 49.1% in halophilic archaea group, respectively. Enzyme-producing analysis indicated that most strains displayed enzyme-producing activity, including the activities of producing amylase, proteinase and lipase, and the dominant strains capable of enzyme-producing were of Haloarcula. Our results showed that in the environment of Daishan Saltern, there existed a higher diversity of halophilic bacteria, being a source sink for screening enzyme-producing bacterial strains. PMID:23431797

  16. Production of Enzymes from Agroindustrial Wastes by Biosurfactant-Producing Strains of Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Francisco Fábio Cavalcante Barros

    2013-01-01

    Full Text Available Bacteria in the genus Bacillus are the source of several enzymes of current industrial interest. Hydrolases, such as amylases, proteases, and lipases, are the main enzymes consumed worldwide and have applications in a wide range of products and industrial processes. Fermentation processes by Bacillus subtilis using cassava wastewater as a substrate are reported in the technical literature; however, the same combination of microorganisms and this culture medium is limited or nonexistent. In this paper, the amylase, protease, and lipase production of ten Bacillus subtilis strains previously identified as biosurfactant producers in cassava wastewater was evaluated. The LB1a and LB5a strains were selected for analysis using a synthetic medium and cassava wastewater and were identified as good enzyme producers, especially of amylases and proteases. In addition, the enzymatic activity results indicate that cassava wastewater was better than the synthetic medium for the induction of these enzymes.

  17. Production of Enzymes from Agroindustrial Wastes by Biosurfactant-Producing Strains of Bacillus subtilis.

    Science.gov (United States)

    Barros, Francisco Fábio Cavalcante; Simiqueli, Ana Paula Resende; de Andrade, Cristiano José; Pastore, Gláucia Maria

    2013-01-01

    Bacteria in the genus Bacillus are the source of several enzymes of current industrial interest. Hydrolases, such as amylases, proteases, and lipases, are the main enzymes consumed worldwide and have applications in a wide range of products and industrial processes. Fermentation processes by Bacillus subtilis using cassava wastewater as a substrate are reported in the technical literature; however, the same combination of microorganisms and this culture medium is limited or nonexistent. In this paper, the amylase, protease, and lipase production of ten Bacillus subtilis strains previously identified as biosurfactant producers in cassava wastewater was evaluated. The LB1a and LB5a strains were selected for analysis using a synthetic medium and cassava wastewater and were identified as good enzyme producers, especially of amylases and proteases. In addition, the enzymatic activity results indicate that cassava wastewater was better than the synthetic medium for the induction of these enzymes. PMID:23533780

  18. Nematocidal activity of extracellular enzymes produced by the nematophagous fungus Duddingtonia flagrans on cyathostomin infective larvae.

    Science.gov (United States)

    Braga, Fabio Ribeiro; Soares, Filippe Elias Freitas; Giuberti, Thais Zanotti; Lopes, Aline Del Carmen Garcias; Lacerda, Tracy; Ayupe, Tiago de Hollanda; Queiroz, Paula Viana; Gouveia, Angélica de Souza; Pinheiro, Larissa; Araújo, Andreia Luíza; Queiroz, José Humberto; Araújo, Jackson Victor

    2015-09-15

    Duddingtonia flagrans produces chitinases, however, optimization of the production of these enzymes still needs to be explored, and its nematocidal activity should still be the subject of studies. The objective of the present study was to optimize chitinase production, and evaluate the nematocidal activity of extracellular enzymes produced by the nematophagous fungus D. flagrans on cyathostomin infective larvae. An isolate from D. flagrans (AC001) was used in this study. For the production of enzymes (protease and chitinase), two different culture media were inoculated with AC001 conidia. Both enzymes were purified. The statistical Plackett-Burman factorial design was used to investigate some variables and their effect on the production of chitinases by D. flagrans. After that, the design central composite (CCD) was used in order to determine the optimum levels and investigate the interactions of these variables previously observed. Only two variables (moisture and incubation time), in the evaluated levels, had a significant effect (pemployability for this chitinase. PMID:26319197

  19. Production of Enzymes from Agroindustrial Wastes by Biosurfactant-Producing Strains of Bacillus subtilis.

    Science.gov (United States)

    Barros, Francisco Fábio Cavalcante; Simiqueli, Ana Paula Resende; de Andrade, Cristiano José; Pastore, Gláucia Maria

    2013-01-01

    Bacteria in the genus Bacillus are the source of several enzymes of current industrial interest. Hydrolases, such as amylases, proteases, and lipases, are the main enzymes consumed worldwide and have applications in a wide range of products and industrial processes. Fermentation processes by Bacillus subtilis using cassava wastewater as a substrate are reported in the technical literature; however, the same combination of microorganisms and this culture medium is limited or nonexistent. In this paper, the amylase, protease, and lipase production of ten Bacillus subtilis strains previously identified as biosurfactant producers in cassava wastewater was evaluated. The LB1a and LB5a strains were selected for analysis using a synthetic medium and cassava wastewater and were identified as good enzyme producers, especially of amylases and proteases. In addition, the enzymatic activity results indicate that cassava wastewater was better than the synthetic medium for the induction of these enzymes.

  20. Host cell capable of producing enzymes useful for degradation of lignocellulosic material

    Science.gov (United States)

    Los, Alrik Pieter; Sagt, Cornelis Maria Jacobus; Schooneveld-Bergmans, Margot Elisabeth Francoise; Damveld, Robbertus Antonius

    2015-08-18

    The invention relates to a host cell comprising at least four different heterologous polynucleotides chosen from the group of polynucleotides encoding cellulases, hemicellulases and pectinases, wherein the host cell is capable of producing the at least four different enzymes chosen from the group of cellulases, hemicellulases and pectinases, wherein the host cell is a filamentous fungus and is capable of secretion of the at least four different enzymes. This host cell can suitably be used for the production of an enzyme composition that can be used in a process for the saccharification of cellulosic material.

  1. Cooperation, competition, and coalitions in enzyme-producing microbes: Social evolution and nutrient depolymerization rates

    Directory of Open Access Journals (Sweden)

    Henry Joseph Folse

    2012-09-01

    Full Text Available Extracellular enzymes represent a public good for microbial communities, as they break down complex molecules into simple molecules that microbes can take up. These communities are vulnerable to cheating by microbes that do not produce enzymes, but benefit from those produced by others. However, extracellular enzymes are ubiquitous and play an important role in the depolymerization of nutrients. We developed a multi-genotype, multi-nutrient model of a community of exoenzyme-producing microbes, in order to investigate the relationship between diversity, social interactions, and nutrient depolymerization. We focused on coalitions between complementary types of microbes and their implications for spatial pattern formation and nutrient depolymerization. The model included polymers containing carbon, nitrogen, or phosphorus, and eight genotypes of bacteria, which produced different subsets of the three enzymes responsible for hydrolyzing these polymers. We allowed social dynamics to emerge from a mechanistic model of enzyme production, action, and diffusion. We found that diversity was maximized at high rates of either diffusion or enzyme production (but not both. Conditions favoring cheating also favored the emergence of coalitions. We characterized the spatial patterns formed by different interactions, showing that same-type cooperation leads to aggregation, but between-type cooperation leads to an interwoven, filamentous pattern. Contrary to expectations based on niche complementarity, we found that nutrient depolymerization declined with increasing diversity due to a negative competitive effect of coalitions on generalist producers, leading to less overall enzyme production. This decline in depolymerization was stronger for non-limiting nutrients in the system. This study shows that social interactions among microbes foraging for complementary resources can influence microbial diversity, microbial spatial distributions, and rates of nutrient

  2. Hybrid promiscuous (Hypr) GGDEF enzymes produce cyclic AMP-GMP (3', 3'-cGAMP).

    Science.gov (United States)

    Hallberg, Zachary F; Wang, Xin C; Wright, Todd A; Nan, Beiyan; Ad, Omer; Yeo, Jongchan; Hammond, Ming C

    2016-02-16

    Over 30 years ago, GGDEF domain-containing enzymes were shown to be diguanylate cyclases that produce cyclic di-GMP (cdiG), a second messenger that modulates the key bacterial lifestyle transition from a motile to sessile biofilm-forming state. Since then, the ubiquity of genes encoding GGDEF proteins in bacterial genomes has established the dominance of cdiG signaling in bacteria. However, the observation that proteobacteria encode a large number of GGDEF proteins, nearing 1% of coding sequences in some cases, raises the question of why bacteria need so many GGDEF enzymes. In this study, we reveal that a subfamily of GGDEF enzymes synthesizes the asymmetric signaling molecule cyclic AMP-GMP (cAG or 3', 3'-cGAMP). This discovery is unexpected because GGDEF enzymes function as symmetric homodimers, with each monomer binding to one substrate NTP. Detailed analysis of the enzyme from Geobacter sulfurreducens showed it is a dinucleotide cyclase capable of switching the major cyclic dinucleotide (CDN) produced based on ATP-to-GTP ratios. We then establish through bioinformatics and activity assays that hybrid CDN-producing and promiscuous substrate-binding (Hypr) GGDEF enzymes are found in other deltaproteobacteria. Finally, we validated the predictive power of our analysis by showing that cAG is present in surface-grown Myxococcus xanthus. This study reveals that GGDEF enzymes make alternative cyclic dinucleotides to cdiG and expands the role of this widely distributed enzyme family to include regulation of cAG signaling. PMID:26839412

  3. Screening of Alkaline Protease-Producing Streptomyces diastaticus and Optimization of Enzyme Production

    Directory of Open Access Journals (Sweden)

    Elham Dawoodi

    2014-12-01

    Full Text Available Background and Aim: Alkaline proteases are used in pharmaceutical, film and photography, silk production and food, leather and detergent industries. Actinomycetes are gram positive bacteria that produce different enzymes such as proteases. The aims of this research were isolation of native alkaline protease-producing Actinomycete spp. from different soil samples as well as optimizing the conditions for enzyme production. Materials and Methods: The different soil samples were collected from different locations of the provinces of Khouzestan, Chahar Mahalo Bakhtiari and Isfahan, Iran. After determining of the best alkaline protease producing species using Lowry method, the optimization of alkaline protease was performed. Results: The alkaline protease producing Actinomycete spp. was isolated from soil. The most enzyme activity was measured in S.diastaticus. The best concentration of sucrose as the carbon source for the highest production of alkaline protease was 10 g/l. The optimum pH and temperature for the alkaline protease production by S. diastaticus were 10 and 30°C respectively. The maximum activity of alkaline protease was measured at 200 rpm as the best aeration speed. Conclusions: This is the first report of alkaline protease production by Streptomyces diastaticus in Iran. The accomplished examinations in this research confirmed the previous theories of alkaline protease production by Actinomycetes relatively. Regarding the immense applications of alkaline proteases in several industries and isolation of a native alkaline protease producing Actinomycete, The production potential of this enzyme in our country could be accessible in the near future.

  4. Croatian produced unifloral honey characterized according to the protein and proline content and enzyme activities

    Directory of Open Access Journals (Sweden)

    Flanjak Ivana

    2016-06-01

    Full Text Available In honey, the content of proteins, including the enzymes, is relatively low and has a minor nutritive significance. On the other hand, the proteins, including the enzymes, are usually used as honey quality evaluation parameters. This is because protein content and enzyme activities vary regarding the botanical origin of the honey. Since the results of protein content, glucose-oxidase, and acid phosphatase, for honeys produced in Croatia, are not available, four of the most abundant honey types produced in Croatia (black locust, sage, chestnut, and honeydew honey are characterised according to the protein and proline content and enzyme activities. The characterisation was done to determine specificities and contribute to the characterisation of unifloral honeys. Dark honey types (honeydew and chestnut honey had a higher proline content, and diastase, invertase, and glucose-oxidase activity than lighter sage and black locust honey. Black locust honey has a naturally low enzyme activity and showed the highest acid phosphatase activity among the analysed honey types, while honeydew honey, otherwise known to possess high proline content and enzyme activity, had a low protein content comparable to black locust honey. Statistically significant correlations were obtained between all analysed parameters, with the exception of acid phosphatase activity.

  5. [Effect of pyrazole on the activity of acetaldehyde-producing enzymes in the liver].

    Science.gov (United States)

    Gerashchenko, D Iu; Gorenshteĭn, B I; Pyzhik, T N; Ostrovskiĭ, Iu M

    1993-01-01

    Influence of pyrazole on the endogenous ethanol level and activities of acetaldehyde-producing enzymes was investigated. Drastic enhancement of the endogenous ethanol level in the blood and tissues was accompanied by an insignificant increase of phosphoethanolamine lyase activity, while activity of threonine aldolase and pyruvate dehydrogenase was unchanged.

  6. The significance of cellulolytic enzymes produced by Trichoderma in opportunistic lifestyle of this fungus.

    Science.gov (United States)

    Strakowska, Judyta; Błaszczyk, Lidia; Chełkowski, Jerzy

    2014-07-01

    The degradation of native cellulose to glucose monomers is a complex process, which requires the synergistic action of the extracellular enzymes produced by cellulolytic microorganisms. Among fungi, the enzymatic systems that can degrade native cellulose have been extensively studied for species belonging to the genera of Trichoderma. The majority of the cellulolytic enzymes described so far have been examples of Trichoderma reesei, extremely specialized in the efficient degradation of plant cell wall cellulose. Other Trichoderma species, such as T. harzianum, T. koningii, T. longibrachiatum, and T. viride, known for their capacity to produce cellulolytic enzymes, have been isolated from various ecological niches, where they have proved successful in various heterotrophic interactions. As saprotrophs, these species are considered to make a contribution to the degradation of lignocellulosic plant material. Their cellulolytic potential is also used in interactions with plants, especially in plant root colonization. However, the role of cellulolytic enzymes in species forming endophytic associations with plants or in those existing in the substratum for mushroom cultivation remains unknown. The present review discusses the current state of knowledge about cellulolytic enzymes production by Trichoderma species and the encoding genes, as well as the involvement of these proteins in the lifestyle of Trichoderma.

  7. Enzyme

    Science.gov (United States)

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  8. Characterization of cellulase enzyme produced by Chaetomium sp. isolated from books and archives

    Directory of Open Access Journals (Sweden)

    Moza Mohammed AL-Kharousi

    2015-12-01

    Full Text Available Background: Cellulase is an important industrial enzyme used to degrade cellulosic biomass. The demand for cellulase enzyme is continuously increasing because of its applications in various industries. Hence, screening of cellulase producing microorganisms from different sources has gained significant importance. Material and Methods: In this study, fungi isolated from books and archives were screened for their cellulase producing abilities. Four different fungi were isolated from books and archives using potato dextrose agar. Screening of these isolates for cellulase production was carried out using carboxymethyl cellulose broth. The most efficient fungus was subjected to cellulase fermentation and enzymes produced were purified and partially characterized. Results: Four different fungi, Chaetomium sp., Aspergillus niger, Aspergillus nidulans and Penicillium sp., were isolated from books and archives. All the isolates were tested for their ability to producecellulase enzyme. During the primary screening Chaetomium sp. showed good growth and highercellulase activity (155.3±25.6 U/mL in carboxymethyl cellulose medium than the other fungi. The cellulase fermentation study was conducted with Chaetomium sp. using carboxymethyl cellulose asa substrate. During the stationary phase (144 h of the growth, the cellulase activity of Chaetomium sp. was significantly high. The maximum mycelial weight of this fungi was obtained at 168 h. Viscosity of the Chaetomium sp. inoculated fermentation medium continuously decreased until 144 h because of the degradation of carboxymethyl cellulose. During cellulase fermentation, pHincreased from the initial neutral pH to 8.5. Purified cellulase showed a specific activity of 7.3 U/mg. It exhibited maximum activity at 20°C and was stable between pH 5 and 9. Conclusions: Books and archives could be a good source for the isolation of cellulase producing fungi.

  9. Heterologous overproduction of β-fructofuranosidase from yeast Xanthophyllomyces dendrorhous, an enzyme producing prebiotic sugars.

    Science.gov (United States)

    Gimeno-Pérez, María; Linde, Dolores; Fernández-Arrojo, Lucía; Plou, Francisco J; Fernández-Lobato, María

    2015-04-01

    The β-fructofuranosidase Xd-INV from the yeast Xanthophyllomyces dendrorhous is the largest microbial enzyme producing neo-fructooligosaccharides (neo-FOS) known to date. It mainly synthesizes neokestose and neonystose, oligosaccharides with potentially improved prebiotic properties. The Xd-INV gene comprises an open reading frame of 1995 bp, which encodes a 665-amino acid protein. Initial N-terminal sequencing of Xd-INV pointed to a majority extracellular protein of 595 amino acids lacking the first 70 residues (potential signal peptide). Functionality of the last 1785 bp of Xd-INV gene was previously proved in Saccharomyces cerevisiae but only weak β-fructofuranosidase activity was quantified. In this study, different strategies to improve this enzyme level in a heterologous system have been used. Curiously, best results were obtained by increasing the protein N-terminus sequence in 39 amino acids, protein of 634 residues. The higher β-fructofuranosidase activity detected in this study, about 15 U/mL, was obtained using Pichia pastoris and represents an improvement of about 1500 times the level previously obtained in a heterologous organism and doubles the best level of activity obtained by the natural producer. Heterologously expressed protein was purified and characterized biochemically and kinetically. Except by its glycosylation degree (10 % lower) and thermal stability (4-5 °C lower in the 60-85 °C range), the properties of the heterologous enzyme, including ability to produce neo-FOS, remained unchanged. Interestingly, besides the neo-FOS referred before blastose was also detected (8-22 g/L) in the reaction mixtures, making Xd-INV the first yeast enzyme producing this non-conventional disaccharide reported to date. PMID:25359470

  10. Mycolytic enzymes produced by Streptomyces violaceusniger and their role in antagonism towards wood-rotting fungi.

    Science.gov (United States)

    Nagpure, Anand; Choudhary, Bharti; Gupta, Rajinder K

    2014-05-01

    Extracellular mycolytic enzymes produced under submerged fermentation by the fungal antagonist Streptomyces violaceusniger MTCC 3959 were characterized. This streptomycete produced higher amounts of extracellular chitinase and protease during late exponential phase, whereas β-1,3-glucanase production was at peak in mid-stationary phase. Cell-free culture filtrate (CCF) exhibited a broad range of antifungal activity against both white rot and brown rot fungi. The inhibitory activity was completely lost after treatment with proteinase K and heat, indicating that extracellular antifungal metabolites are heat labile and proteinaceous in nature. Optimum pH and temperature for enzyme activity were: 9.0 and 60 °C for chitinase; 6.0 and 60 °C for β-1,3-glucanase; and 9.0 and 70 °C for protease. Mycolytic enzymes were moderately thermostable, and had a wide pH stability range extending from pH 5.0 to 10.0. The zymogram analysis of CCF revealed five chitinase isoenzymes with an apparent molecular weight of 20.8, 33.3, 45.6, 67.4, and 114.8 kDa, one β-1,3-glucanase appeared as a single band of ∼131.8 kDa and four protease isoenzymes with approximate molecular weights of 22.8, 62.52, 74.64, and 120.5 kDa. S. violaceusniger MTCC 3959 produced mycolytic enzymes that can be effectively used for suppression of phytopathogenic basidiomycetes. It has the potential to be an effective biofungicide. PMID:23686763

  11. Mycolytic enzymes produced by Streptomyces violaceusniger and their role in antagonism towards wood-rotting fungi.

    Science.gov (United States)

    Nagpure, Anand; Choudhary, Bharti; Gupta, Rajinder K

    2014-05-01

    Extracellular mycolytic enzymes produced under submerged fermentation by the fungal antagonist Streptomyces violaceusniger MTCC 3959 were characterized. This streptomycete produced higher amounts of extracellular chitinase and protease during late exponential phase, whereas β-1,3-glucanase production was at peak in mid-stationary phase. Cell-free culture filtrate (CCF) exhibited a broad range of antifungal activity against both white rot and brown rot fungi. The inhibitory activity was completely lost after treatment with proteinase K and heat, indicating that extracellular antifungal metabolites are heat labile and proteinaceous in nature. Optimum pH and temperature for enzyme activity were: 9.0 and 60 °C for chitinase; 6.0 and 60 °C for β-1,3-glucanase; and 9.0 and 70 °C for protease. Mycolytic enzymes were moderately thermostable, and had a wide pH stability range extending from pH 5.0 to 10.0. The zymogram analysis of CCF revealed five chitinase isoenzymes with an apparent molecular weight of 20.8, 33.3, 45.6, 67.4, and 114.8 kDa, one β-1,3-glucanase appeared as a single band of ∼131.8 kDa and four protease isoenzymes with approximate molecular weights of 22.8, 62.52, 74.64, and 120.5 kDa. S. violaceusniger MTCC 3959 produced mycolytic enzymes that can be effectively used for suppression of phytopathogenic basidiomycetes. It has the potential to be an effective biofungicide.

  12. Exploring omega-3 fatty acids, enzymes and biodiesel producing thraustochytrids from Australian and Indian marine biodiversity.

    Science.gov (United States)

    Gupta, Adarsha; Singh, Dilip; Byreddy, Avinesh R; Thyagarajan, Tamilselvi; Sonkar, Shailendra P; Mathur, Anshu S; Tuli, Deepak K; Barrow, Colin J; Puri, Munish

    2016-03-01

    The marine environment harbours a vast diversity of microorganisms, many of which are unique, and have potential to produce commercially useful materials. Therefore, marine biodiversity from Australian and Indian habitat has been explored to produce novel bioactives, and enzymes. Among these, thraustochytrids collected from Indian habitats were shown to be rich in saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs), together constituting 51-76% of total fatty acids (TFA). Indian and Australian thraustochytrids occupy separate positions in the dendrogram, showing significant differences exist in the fatty acid profiles in these two sets of thraustochytrid strains. In general, Australian strains had a higher docosahexaenoic acid (DHA) content than Indian strains with DHA at 17-31% of TFA. A range of enzyme activities were observed in the strains, with Australian strains showing overall higher levels of enzyme activity, with the exception of one Indian strain (DBTIOC-1). Comparative analysis of the fatty acid profile of 34 strains revealed that Indian thraustochytrids are more suitable for biodiesel production since these strains have higher fatty acids content for biodiesel (FAB, 76%) production than Australian thraustochytrids, while the Australian strains are more suitable for omega-3 (40%) production. PMID:26580151

  13. Heterologous expression of the glucose oxidase gene in Trichoderma atroviride leads enhanced ability to attack phytopathogenic fungi and induction of plant systemic disease resistance

    Institute of Scientific and Technical Information of China (English)

    Robert L Mach; Brunner Kurt; Matteo Lorito; Susanne Zeilinger; Rosalia Ciliento; Sheridan Woo

    2004-01-01

    @@ A transgenic strain of Trichoderma atroviride that expresses the Aspergillus niger glucose oxidase gene goxA under a homologous pathogen-inducible promoter (nag1) has been constructed, with the aim of increasing the ability of this biocontrol agent (BCA) to attack phytopathogenic fungi and enhance plant systemic disease resistance. The sporulation and growth rate of the transgenic progenies were similar to the wild-type strain Pl. goxA expression occurred immediately after contact with the plant pathogen,and the glucose oxidase formed was secreted extracellularly. The transformed strain SJ3 4, containing 12-14 copies of the transgene, produced significantly less N-acetyl-glucosaminidase and endochitinase then wild type. However, the ability of its culture filtrate to inhibit the germination of Botrytis cinerea spores was increased by about 3-fold. In comparison to P1, the transgenic strain more quickly overgrew and lysed in vitro the pathogens Rhizoctonia solani and Pythium ultimum.

  14. Characterization and identification of enzyme-producing microflora isolated from the gut of sea cucumber Apostichopus japonicus

    Science.gov (United States)

    Li, Fenghui; Gao, Fei; Tan, Jie; Fan, Chaojing; Sun, Huiling; Yan, Jingping; Chen, Siqing; Wang, Xiaojun

    2016-01-01

    Gut microorganisms play an important role in the digestion of their host animals. The purpose of this research was to isolate and assess the enzyme-producing microbes from the Apostichopus japonicus gut. Thirty-nine strains that can produce at least one of the three digestive enzymes (protease, amylase, and cellulase) were qualitatively screened based on their extracellular enzyme-producing abilities. The enzyme-producing strains clustered into eight groups at the genetic similarity level of 100% by analyzing the restriction patterns of 16S rDNA amplified with Mbo I. Phylogenetic analysis revealed that 37 strains belonged to the genus Bacillus and two were members of the genus Virgibacillus. Enzyme-producing capability results indicate that the main enzyme-producing microflora in the A. japonicus gut was Bacillus, which can produce protease, amylase, and cellulase. Virgibacillus, however, can only produce protease. The high enzyme-producing capability of the isolates suggests that the gut microbiota play an important role in the sea cucumber digestive process.

  15. Comparative genomics of citric-acid producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.; Baker, Scott E.; Andersen, Mikael R.; Salazar, Margarita P.; Schaap, Peter J.; Vondervoot, Peter J.I. van de; Culley, David; Thykaer, Jette; Frisvad, Jens C.; Nielsen, Kristen F.; Albang, Richard; Albermann, Kaj; Berka, Randy M.; Braus, Gerhard H.; Braus-Stromeyer, Susanna A.; Corrochano, Luis M.; Dai, Ziyu; Dijck, Piet W.M. van; Hofmann, Gerald; Lasure, Linda L.; Magnusson, Jon K.; Meijer, Susan L.; Nielsen, Jakob B.; Nielsen, Michael L.; Ooyen, Albert J.J. van; Panther, Kathyrn S.; Pel, Herman J.; Poulsen, Lars; Samson, Rob A.; Stam, Hen; Tsang, Adrian; Brink, Johannes M. van den; Atkins, Alex; Aerts, Andrea; Shapiro, Harris; Pangilinan, Jasmyn; Salamov, Asaf; Lou, Yigong; Lindquist, Erika; Lucas, Susan; Grimwood, Jane; Kubicek, Christian P.; Martinez, Diego; Peij, Noel N.M.E. van; Roubos, Johannes A.; Nielsen, Jens

    2011-04-28

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compels additional exploration. We therefore undertook whole genome sequencing of the acidogenic A. niger wild type strain (ATCC 1015), and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was utilized to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 megabase of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis revealed up-regulation of the electron transport chain, specifically the alternative oxidative pathway in ATCC 1015, while CBS 513.88 showed significant up-regulation of genes relevant to glucoamylase A production, such as tRNA-synthases and protein transporters. Our results and datasets from this integrative systems biology analysis resulted in a snapshot of fungal evolution and will support further optimization of cell factories based on filamentous fungi.[Supplemental materials (10 figures, three text documents and 16 tables) have been made available

  16. Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei.

    Science.gov (United States)

    Bischof, Robert H; Ramoni, Jonas; Seiboth, Bernhard

    2016-01-01

    More than 70 years ago, the filamentous ascomycete Trichoderma reesei was isolated on the Solomon Islands due to its ability to degrade and thrive on cellulose containing fabrics. This trait that relies on its secreted cellulases is nowadays exploited by several industries. Most prominently in biorefineries which use T. reesei enzymes to saccharify lignocellulose from renewable plant biomass in order to produce biobased fuels and chemicals. In this review we summarize important milestones of the development of T. reesei as the leading production host for biorefinery enzymes, and discuss emerging trends in strain engineering. Trichoderma reesei has very recently also been proposed as a consolidated bioprocessing organism capable of direct conversion of biopolymeric substrates to desired products. We therefore cover this topic by reviewing novel approaches in metabolic engineering of T. reesei. PMID:27287427

  17. PhaC Synthases and PHA Depolymerases: The Enzymes that Produce and Degrade Plastic

    Directory of Open Access Journals (Sweden)

    Amro A. Amara

    2011-12-01

    Full Text Available PHAs are a group of intracellular biodegradable polymer produced by (most bacteria under unbalanced growth conditions. A series of enzymes are involved in different PHAs synthesis, however PhaC synthases are responsible for the polymerization step. PHAs are accumulated in bacterial cells from soluble to insoluble form as storage materials inside the inclusion bodies during unbalanced nutrition or to save organisms from reduces equivalents. PHAs are converted again to soluble components by another pathways and enzymes for the degradation process. PHAs depolymerases are the responsible enzymes. This review is designed to give the non-specialists a condense background about PHAs especially for researcher and students in medicinal and pharmaceutical filled. ABSTRAK: PHAs (polyhydroxyalkanoate merupakan sekumpulan polimer terbiodegradasikan intrasel yang dihasilkan oleh (kebanyakan bakteria di bawah keadaan tumbesaran tak seimbang. Satu rangkaian enzim terlibat dalam sistesis PHAs yang berbeza, namun sintesis PhaC bertanggungjawab dalam peringkat pempolimeran. PHAs dikumpulkan dalam sel bakteria dari bentuk larut dan tak larut sebagai bahan simpan di dalam jasad terangkum semasa nutrisi tak seimbang atau untuk menyelamatkan organisma daripada pengurangan tak keseimbangan. PHAs ditukarkan sekali lagi kepada komponen larut dengan cara lain dan enzim lain untuk proses degradasi. PHAs depoly-merases (enzim yang memangkin penguraian makro molekul kepada molekul yang lebih mudah merupakan enzim yang bertanggunjawab. Kajian semula ini direka untuk memberi mereka yang bukan pakar, satu ringkasan tentang PHAs terutamanya penyelidik dan penuntut dalam bidang peubatan dan farmaseutikal.

  18. A NOVEL STRAIN OF Aspergillus niger PRODUCING A COCKTAIL OF HYDROLYTIC DEPOLYMERISING ENZYMES FOR THE PRODUCTION OF SECOND GENERATION BIOFUELS

    Directory of Open Access Journals (Sweden)

    Namita Bansal

    2011-02-01

    Full Text Available The screening and isolation of fungi producing a cocktail of hydrolytic enzymes was studied. Among the various isolates obtained from different soil samples, a strain NS-2 was selected. The phylogenetic analysis of this strain showed highest homology (99% with Aspergillus niger. It was capable of producing cellulolytic, hemicellulolytic, amylolytic, and pectinolytic enzymes in appreciable titers on wheat bran based liquid and solid state media. The mixture of enzymes produced by this organism could effectively hydrolyze various domestic waste residues, revealing conversion efficiencies of 89 to 92% and produced high reducing sugar yields of 0.48 to 0.66 g/g of dry residue. This enzyme cocktail could potentially find a significant application in the conversion of agricultural and other waste residues having cellulose, hemicellulose, starch, and pectin as carbohydrates to produce simpler sugars which can be fermented for the production of second generation biofuels.

  19. Isotopomeric characterization of nitrous oxide produced by reaction of enzymes extracted from nitrifying and denitrifying bacteria

    Directory of Open Access Journals (Sweden)

    T. Yamazaki

    2013-10-01

    Full Text Available Nitrous oxide (N2O is a potent greenhouse gas and produced in denitrification and nitrification in environmental nitrogen cycle by various microorganism. Site preference (SP of 15N in N2O, which is defined as the difference in the natural abundance of isotopomers 14N15NO and 15N14NO relative to 14N14NO, has been reported to be a useful tool to quantitatively distinguish N2O production pathway. To determine representative SP value for each microbial process, we firstly measured SP of N2O produced in the enzyme reaction of hydroxylamine oxidoreductase (HAO purified from two species of ammonia oxidizing bacteria (AOB, Nitrosomonas europaea and Nitrosococcus oceani, and that of nitric oxide reductase (NOR from Paracoccus denitrificans, respectively. The SP value for NOR reaction (−5.9 ± 2.1‰ showed nearly the same value as that reported for N2O produced by P. denitrificans in pure culture. In contrast, SP value for HAO reaction (36.3 ± 2.3‰ was a little higher than the values reported for N2O produced by AOB in aerobic pure culture. Using the SP values obtained by HAO and NOR reactions, we calculated relative contribution of the nitrite (NO2– reduction (which is followed by NO reduction to N2O production by N. oceani incubated under different O2 availability. Our calculations revealed that previous in vivo studies might have underestimated the SP value for NH2OH oxidation pathway possibly due to a small contribution of NO2– reduction pathway. Further evaluation of isotopomer signatures of N2O using common enzymes of other processes related to N2O would improve the isotopomer analysis of N2O in various environments.

  20. Isotopomeric characterization of nitrous oxide produced by reaction of enzymes extracted from nitrifying and denitrifying bacteria

    Science.gov (United States)

    Yamazaki, T.; Hozuki, T.; Arai, K.; Toyoda, S.; Koba, K.; Fujiwara, T.; Yoshida, N.

    2014-05-01

    Nitrous oxide (N2O) is a potent greenhouse gas and produced in denitrification and nitrification by various microorganisms. Site preference (SP) of 15N in N2O, which is defined as the difference in the natural abundance of isotopomers 14N15NO and 15N14NO relative to 14N14NO, has been reported to be a useful tool to quantitatively distinguish N2O production pathways. To determine representative SP values for each microbial process, we firstly measured SP of N2O produced in the enzyme reaction of hydroxylamine oxidoreductase (HAO) purified from two species of ammonia oxidizing bacteria (AOB), Nitrosomonas europaea and Nitrosococcus oceani, and that of nitric oxide reductase (NOR) from Paracoccus denitrificans. The SP value for NOR reaction (-5.9 ± 2.1‰) showed nearly the same value as that reported for N2O produced by P. denitrificans in pure culture. In contrast, SP value for HAO reaction (36.3 ± 2.3‰) was a little higher than the values reported for N2O produced by AOB in aerobic pure culture. Using the SP values obtained by HAO and NOR reactions, we calculated relative contribution of the nitrite (NO2-) reduction (which is followed by NO reduction) to N2O production by N. oceani incubated under different O2 availability. Our calculations revealed that previous in vivo studies might have underestimated the SP value for the NH2OH oxidation pathway possibly due to a small contribution of NO2- reduction pathway. Further evaluation of isotopomer signatures of N2O using common enzymes of other processes related to N2O would improve the isotopomer analysis of N2O in various environments.

  1. Inhibition of Biofilm Formation by T7 Bacteriophages Producing Quorum-Quenching Enzymes

    Science.gov (United States)

    Lamas-Samanamud, Gisella R.

    2014-01-01

    Bacterial growth in biofilms is the major cause of recalcitrant biofouling in industrial processes and of persistent infections in clinical settings. The use of bacteriophage treatment to lyse bacteria in biofilms has attracted growing interest. In particular, many natural or engineered phages produce depolymerases to degrade polysaccharides in the biofilm matrix and allow access to host bacteria. However, the phage-produced depolymerases are highly specific for only the host-derived polysaccharides and may have limited effects on natural multispecies biofilms. In this study, an engineered T7 bacteriophage was constructed to encode a lactonase enzyme with broad-range activity for quenching of quorum sensing, a form of bacterial cell-cell communication via small chemical molecules (acyl homoserine lactones [AHLs]) that is necessary for biofilm formation. Our results demonstrated that the engineered T7 phage expressed the AiiA lactonase to effectively degrade AHLs from many bacteria. Addition of the engineered T7 phage to mixed-species biofilms containing Pseudomonas aeruginosa and Escherichia coli resulted in inhibition of biofilm formation. Such quorum-quenching phages that can lyse host bacteria and express quorum-quenching enzymes to affect diverse bacteria in biofilm communities may become novel antifouling and antibiofilm agents in industrial and clinical settings. PMID:24951790

  2. Inhibition of biofilm formation by T7 bacteriophages producing quorum-quenching enzymes.

    Science.gov (United States)

    Pei, Ruoting; Lamas-Samanamud, Gisella R

    2014-09-01

    Bacterial growth in biofilms is the major cause of recalcitrant biofouling in industrial processes and of persistent infections in clinical settings. The use of bacteriophage treatment to lyse bacteria in biofilms has attracted growing interest. In particular, many natural or engineered phages produce depolymerases to degrade polysaccharides in the biofilm matrix and allow access to host bacteria. However, the phage-produced depolymerases are highly specific for only the host-derived polysaccharides and may have limited effects on natural multispecies biofilms. In this study, an engineered T7 bacteriophage was constructed to encode a lactonase enzyme with broad-range activity for quenching of quorum sensing, a form of bacterial cell-cell communication via small chemical molecules (acyl homoserine lactones [AHLs]) that is necessary for biofilm formation. Our results demonstrated that the engineered T7 phage expressed the AiiA lactonase to effectively degrade AHLs from many bacteria. Addition of the engineered T7 phage to mixed-species biofilms containing Pseudomonas aeruginosa and Escherichia coli resulted in inhibition of biofilm formation. Such quorum-quenching phages that can lyse host bacteria and express quorum-quenching enzymes to affect diverse bacteria in biofilm communities may become novel antifouling and antibiofilm agents in industrial and clinical settings. PMID:24951790

  3. Structural characterization of bioengineered α-D-glucans produced by mutant glucansucrase GTF180 enzymes of lactobacillus reuteri strain 180

    NARCIS (Netherlands)

    Leeuwen, S.S. van; Kralj, S.; Eeuwema, W.; Gerwig, G.J.; Dijkhuizen, L.; Kamerling, J.P.

    2009-01-01

    Mutagenesis of specific amino acid residues of the glucansucrase (GTF180) enzyme from Lactobacillus reuteri strain 180 yielded 12 mutant enzymes that produced modified exopolysaccharides (mEPSs) from sucrose. Ethanol-precipitated and purified mEPSs were subjected to linkage analysis, Smith degradati

  4. 华山松疱锈病的重寄生真菌(深绿木霉)中几丁质酶基因cDNA片段的克隆%Cloning of cDNA Fragment of Chitinase Gene from the Mycoparasite Trichoderma atroviride on Armandii Pine Blister Rust

    Institute of Scientific and Technical Information of China (English)

    马长乐; 李靖; 陈玉惠; 刘小烛

    2008-01-01

    [Objective] The aim of this study was to isolate chitinase gene from Trichoderma atroviride strain SS003. [Method] With the aeciospore wall of armandii pine blister rust as inducer, chitinase gene was induced to express in Trichoderma atroviride cells. The cDNA fragment of chitinase gene was cloned by RT-PCR approach. [Result] The activity of chitinase induced reached 40.17 μg/10 min; and the specific fragment amplified was 834 bp in length and proved to be the fragment of chitinase gene by sequencing and sequence analysis. [Conclusion] The result showed the feasibility of isolating the full length of chitinase gene and its transformation, and further producing chitinase.

  5. Gate crashing arbuscular mycorrhizas: in vivo imaging shows the extensive colonization of both symbionts by Trichoderma atroviride.

    Science.gov (United States)

    Lace, Beatrice; Genre, Andrea; Woo, Sheridan; Faccio, Antonella; Lorito, Matteo; Bonfante, Paola

    2015-02-01

    Plant growth-promoting fungi include strains of Trichoderma species that are used in biocontrol, and arbuscular mycorrhizal (AM) fungi, that enhance plant nutrition and stress resistance. The concurrent interaction of plants with these two groups of fungi affects crop performance but has only been occasionally studied so far. Using in vivo imaging of green fluorescent protein-tagged lines, we investigated the cellular interactions occurring between Trichoderma atroviride PKI1, Medicago truncatula and two Gigaspora species under in vitro culture conditions. Trichoderma atroviride did not activate symbiotic-like responses in the plant cells, such as nuclear calcium spiking or cytoplasmic aggregations at hyphal contact sites. Furthermore, T. atroviride parasitized G. gigantea and G. margarita hyphae through localized wall breaking and degradation - although this was not associated with significant chitin lysis nor the upregulation of two major chitinase genes. Trichoderma atroviride colonized broad areas of the root epidermis, in association with localized cell death. The infection of both symbionts was also observed when T. atroviride was applied to a pre-established AM symbiosis. We conclude that - although this triple interaction is known to improve plant growth in agricultural environments - in vitro culture demonstrate a particularly aggressive mycoparasitic and plant-colonizing behaviour of a biocontrol strain of Trichoderma.

  6. Endophytic Fungi from Frankincense Tree Improves Host Growth and Produces Extracellular Enzymes and Indole Acetic Acid.

    Directory of Open Access Journals (Sweden)

    Abdul Latif Khan

    Full Text Available Boswellia sacra, an economically important frankincense-producing tree found in the desert woodlands of Oman, is least known for its endophytic fungal diversity and the potential of these fungi to produce extracellular enzymes and auxins. We isolated various fungal endophytes belonging to Eurotiales (11.8%, Chaetomiaceae (17.6%, Incertae sadis (29.5%, Aureobasidiaceae (17.6%, Nectriaceae (5.9% and Sporomiaceae (17.6% from the phylloplane (leaf and caulosphere (stem of the tree. Endophytes were identified using genomic DNA extraction, PCR amplification and sequencing the internal transcribed spacer regions, whereas a detailed phylogenetic analysis of the same gene fragment was made with homologous sequences. The endophytic colonization rate was significantly higher in the leaf (5.33% than the stem (0.262%. The Shannon-Weiner diversity index was H' 0.8729, while Simpson index was higher in the leaf (0.583 than in the stem (0.416. Regarding the endophytic fungi's potential for extracellular enzyme production, fluorogenic 4-methylumbelliferone standards and substrates were used to determine the presence of cellulases, phosphatases and glucosidases in the pure culture. Among fungal strains, Penicillum citrinum BSL17 showed significantly higher amounts of glucosidases (62.15±1.8 μM-1min-1mL and cellulases (62.11±1.6 μM-1min-1mL, whereas Preussia sp. BSL10 showed significantly higher secretion of glucosidases (69.4±0.79 μM-1min-1mL and phosphatases (3.46±0.31μM-1min-1mL compared to other strains. Aureobasidium sp. BSS6 and Preussia sp. BSL10 showed significantly higher potential for indole acetic acid production (tryptophan-dependent and independent pathways. Preussia sp. BSL10 was applied to the host B. sacra tree saplings, which exhibited significant improvements in plant growth parameters and accumulation of photosynthetic pigments. The current study concluded that endophytic microbial resources producing extracellular enzymes and auxin

  7. Endophytic Fungi from Frankincense Tree Improves Host Growth and Produces Extracellular Enzymes and Indole Acetic Acid

    Science.gov (United States)

    Khan, Abdul Latif; Al-Harrasi, Ahmed; Al-Rawahi, Ahmed; Al-Farsi, Zainab; Al-Mamari, Aza; Waqas, Muhammad; Asaf, Sajjad; Elyassi, Ali; Mabood, Fazal; Shin, Jae-Ho; Lee, In-Jung

    2016-01-01

    Boswellia sacra, an economically important frankincense-producing tree found in the desert woodlands of Oman, is least known for its endophytic fungal diversity and the potential of these fungi to produce extracellular enzymes and auxins. We isolated various fungal endophytes belonging to Eurotiales (11.8%), Chaetomiaceae (17.6%), Incertae sadis (29.5%), Aureobasidiaceae (17.6%), Nectriaceae (5.9%) and Sporomiaceae (17.6%) from the phylloplane (leaf) and caulosphere (stem) of the tree. Endophytes were identified using genomic DNA extraction, PCR amplification and sequencing the internal transcribed spacer regions, whereas a detailed phylogenetic analysis of the same gene fragment was made with homologous sequences. The endophytic colonization rate was significantly higher in the leaf (5.33%) than the stem (0.262%). The Shannon-Weiner diversity index was H′ 0.8729, while Simpson index was higher in the leaf (0.583) than in the stem (0.416). Regarding the endophytic fungi’s potential for extracellular enzyme production, fluorogenic 4-methylumbelliferone standards and substrates were used to determine the presence of cellulases, phosphatases and glucosidases in the pure culture. Among fungal strains, Penicillum citrinum BSL17 showed significantly higher amounts of glucosidases (62.15±1.8 μM-1min-1mL) and cellulases (62.11±1.6 μM-1min-1mL), whereas Preussia sp. BSL10 showed significantly higher secretion of glucosidases (69.4±0.79 μM-1min-1mL) and phosphatases (3.46±0.31μM-1min-1mL) compared to other strains. Aureobasidium sp. BSS6 and Preussia sp. BSL10 showed significantly higher potential for indole acetic acid production (tryptophan-dependent and independent pathways). Preussia sp. BSL10 was applied to the host B. sacra tree saplings, which exhibited significant improvements in plant growth parameters and accumulation of photosynthetic pigments. The current study concluded that endophytic microbial resources producing extracellular enzymes and auxin

  8. Endophytic Fungi from Frankincense Tree Improves Host Growth and Produces Extracellular Enzymes and Indole Acetic Acid.

    Science.gov (United States)

    Khan, Abdul Latif; Al-Harrasi, Ahmed; Al-Rawahi, Ahmed; Al-Farsi, Zainab; Al-Mamari, Aza; Waqas, Muhammad; Asaf, Sajjad; Elyassi, Ali; Mabood, Fazal; Shin, Jae-Ho; Lee, In-Jung

    2016-01-01

    Boswellia sacra, an economically important frankincense-producing tree found in the desert woodlands of Oman, is least known for its endophytic fungal diversity and the potential of these fungi to produce extracellular enzymes and auxins. We isolated various fungal endophytes belonging to Eurotiales (11.8%), Chaetomiaceae (17.6%), Incertae sadis (29.5%), Aureobasidiaceae (17.6%), Nectriaceae (5.9%) and Sporomiaceae (17.6%) from the phylloplane (leaf) and caulosphere (stem) of the tree. Endophytes were identified using genomic DNA extraction, PCR amplification and sequencing the internal transcribed spacer regions, whereas a detailed phylogenetic analysis of the same gene fragment was made with homologous sequences. The endophytic colonization rate was significantly higher in the leaf (5.33%) than the stem (0.262%). The Shannon-Weiner diversity index was H' 0.8729, while Simpson index was higher in the leaf (0.583) than in the stem (0.416). Regarding the endophytic fungi's potential for extracellular enzyme production, fluorogenic 4-methylumbelliferone standards and substrates were used to determine the presence of cellulases, phosphatases and glucosidases in the pure culture. Among fungal strains, Penicillum citrinum BSL17 showed significantly higher amounts of glucosidases (62.15±1.8 μM-1min-1mL) and cellulases (62.11±1.6 μM-1min-1mL), whereas Preussia sp. BSL10 showed significantly higher secretion of glucosidases (69.4±0.79 μM-1min-1mL) and phosphatases (3.46±0.31μM-1min-1mL) compared to other strains. Aureobasidium sp. BSS6 and Preussia sp. BSL10 showed significantly higher potential for indole acetic acid production (tryptophan-dependent and independent pathways). Preussia sp. BSL10 was applied to the host B. sacra tree saplings, which exhibited significant improvements in plant growth parameters and accumulation of photosynthetic pigments. The current study concluded that endophytic microbial resources producing extracellular enzymes and auxin could

  9. Cradle-to-gate environmental assessment of enzyme products produced industrially in Denmark by Novozymes A/S

    DEFF Research Database (Denmark)

    Nielsen, Per H.; Oxenbøll, Karen; Wenzel, Henrik

    2007-01-01

    Goal, Scope and Background. Enzymes are biological catalysts with an enormous capacity to increase the speed of a huge variety biochemical reactions. Industrially produced enzymes are used in a broad variety of sectors to increase quality, speed and yield of processes, and reduce energy consumption...... and use of hazardous chemicals. The present paper provides a methodological framework for analysing environmental impacts of enzyme products and environmental data for five characteristic enzyme products. Methods. Life cycle assessment is used as an analytical tool and modelling of enzyme production...... is facilitated in SimaPro 6.0 software. Detailed data on enzyme production are derived from Novozymes' production facilities in Denmark. Data on ingredients are derived from the literature, publicly available databases and from Novozymes' suppliers. Results and Conclusions. Cradle-to-gate environmental data...

  10. Genetically engineered immunomodulatory Streptococcus thermophilus strains producing antioxidant enzymes exhibit enhanced anti-inflammatory activities.

    Science.gov (United States)

    Del Carmen, Silvina; de Moreno de LeBlanc, Alejandra; Martin, Rebeca; Chain, Florian; Langella, Philippe; Bermúdez-Humarán, Luis G; LeBlanc, Jean Guy

    2014-02-01

    The aims of this study were to develop strains of lactic acid bacteria (LAB) having both immunomodulatory and antioxidant properties and to evaluate their anti-inflammatory effects both in vitro, in different cellular models, and in vivo, in a mouse model of colitis. Different Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains were cocultured with primary cultures of mononuclear cells. Analysis of the pro- and anti-inflammatory cytokines secreted by these cells after coincubation with candidate bacteria revealed that L. delbrueckii subsp. bulgaricus CRL 864 and S. thermophilus CRL 807 display the highest anti-inflammatory profiles in vitro. Moreover, these results were confirmed in vivo by the determination of the cytokine profiles in large intestine samples of mice fed with these strains. S. thermophilus CRL 807 was then transformed with two different plasmids harboring the genes encoding catalase (CAT) or superoxide dismutase (SOD) antioxidant enzymes, and the anti-inflammatory effects of recombinant streptococci were evaluated in a mouse model of colitis induced by trinitrobenzenesulfonic acid (TNBS). Our results showed a decrease in weight loss, lower liver microbial translocation, lower macroscopic and microscopic damage scores, and modulation of the cytokine production in the large intestines of mice treated with either CAT- or SOD-producing streptococci compared to those in mice treated with the wild-type strain or control mice without any treatment. Furthermore, the greatest anti-inflammatory activity was observed in mice receiving a mixture of both CAT- and SOD-producing streptococci. The addition of L. delbrueckii subsp. bulgaricus CRL 864 to this mixture did not improve their beneficial effects. These findings show that genetically engineering a candidate bacterium (e.g., S. thermophilus CRL 807) with intrinsic immunomodulatory properties by introducing a gene expressing an antioxidant enzyme enhances its anti

  11. Optimizing Immobilized Enzyme Performance in Cell-Free Environments to Produce Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Belfort, Georges [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Chemical and Biological Engineering; Grimaldi, Joseph J. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Chemical and Biological Engineering

    2015-01-27

    Limitations on biofuel production using cell culture (Escherichia coli, Clostridium, Saccharomyces cerevisiae, brown microalgae, blue-green algae and others) include low product (alcohol) concentrations (≤0.2 vol%) due to feedback inhibition, instability of cells, and lack of economical product recovery processes. To overcome these challenges, an alternate simplified biofuel production scheme was tested based on a cell-free immobilized enzyme system. Using this cell free system, we were able to obtain about 2.6 times higher concentrations of iso-butanol using our non-optimized system as compared with live cell systems. This process involved two steps: (i) converts acid to aldehyde using keto-acid decarboxylase (KdcA), and (ii) produces alcohol from aldehyde using alcohol dehydrogenase (ADH) with a cofactor (NADH) conversion from inexpensive formate using a third enzyme, formate dehydrogenase (FDH). To increase stability and conversion efficiency with easy separations, the first two enzymes were immobilized onto methacrylate resin. Fusion proteins of labile KdcA (fKdcA) were expressed to stabilize the covalently immobilized KdcA. Covalently immobilized ADH exhibited long-term stability and efficient conversion of aldehyde to alcohol over multiple batch cycles without fusions. High conversion rates and low protein leaching were achieved by covalent immobilization of enzymes on methacrylate resin. The complete reaction scheme was demonstrated by immobilizing both ADH and fKdcA and using FDH free in solution. The new system without in situ removal of isobutanol achieved a 55% conversion of ketoisovaleric acid to isobutanol at a concentration of 0.5 % (v/v). Further increases in titer will require continuous removal of the isobutanol using our novel brush membrane system that exhibits a 1.5 fold increase in the separation factor of isobutanol from water versus that obtained for commercial silicone rubber membranes. These bio-inspired brush membranes are based on the

  12. Isolation and screening of strains producing high amounts of rutin degrading enzymes from Fagopyrum tataricum seeds.

    Science.gov (United States)

    Zheng, Ya-Di; Luo, Qing-Lin; Zhou, Mei-Liang; Wang, De-Zhou; Zhang, Ye-Dong; Shao, Ji-Rong; Zhu, Xue-Mei; Tang, Yu

    2013-02-01

    The rutin degrading enzyme (RDE) was isolated and purified from tartary buckwheat seeds. The RDE was purified about 11.34-fold and its final yield was 3.5%, which was very low, due to our purification strategy of giving priority to purity over yield. The RDE molecular weight was estimated to be about 60 kDa. When rutin was used as substrate, an optimal enzyme activity was seen at around pH 5.0 and 40 °C. Strains isolation strategy characterized by the use of rutin as sole carbon source in enrichment cultures was used to isolate RDE-producing strains. Then the active strains were identified by morphology characterization and 18s rDNA-ITS (Internal Transcribed Spacer) gene sequencing. Three isolates coded as B3, W2, Y2 were successfully isolated from fusty Fagopyrum tataricum flour cultures. Strain B3 possessed the highest unit activity among these three strains, and its total activity reached up to 171.0 Unit. The active isolate (B3) could be assigned to Penicillium farinosum. When the Penicillium farinosum strains were added to tartary buckwheat flour cultures at pH 5.0, 30 °C after 5 days fermentation, the quercetin production raised up to 1.78 mg/l, almost 5.1 times higher than the fermentation without the above active strains. Hence, a new approach was available to utilize microorganism-aided fermentation for effective quercetin extraction from Fagopyrum tataricum seeds.

  13. Genetic diversity of Trichoderma atroviride strains collected in Poland and identification of loci useful in detection of within-species diversity.

    Science.gov (United States)

    Skoneczny, Dominik; Oskiera, Michał; Szczech, Magdalena; Bartoszewski, Grzegorz

    2015-07-01

    Molecular markers that enable monitoring of fungi in their natural environment or assist in the identification of specific strains would facilitate Trichoderma utilization, particularly as an agricultural biocontrol agent (BCA). In this study, sequence analysis of internal transcribed spacer regions 1 and 2 (ITS1 and ITS2) of the ribosomal RNA (rRNA) gene cluster, a fragment of the translation elongation factor 1-alpha (tef1) gene, and random amplified polymorphic DNA (RAPD) markers were applied to determine the genetic diversity of Trichoderma atroviride strains collected in Poland, and also in order to identify loci and PCR-based molecular markers useful in genetic variation assessment of that fungus. Although tef1 and RAPD analysis showed limited genetic diversity among T. atroviride strains collected in Poland, it was possible to distinguish major groups that clustered most of the analyzed strains. Polymorphic RAPD amplicons were cloned and sequenced, yielding sequences representing 13 T. atroviride loci. Based on these sequences, a set of PCR-based markers specific to T. atroviride was developed and examined. Three cleaved amplified polymorphic sequence (CAPS) markers could assist in distinguishing T. atroviride strains. The genomic regions identified may be useful for further exploration and development of more precise markers suitable for T. atroviride identification and monitoring, especially in environmental samples.

  14. Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey

    Energy Technology Data Exchange (ETDEWEB)

    Seidl, Verena; Song, Lifu; Lindquist, Erika; Gruber, Sabine; Koptchinskiy, Alexeji; Zeilinger, Susanne; Schmoll, Monika; Martinez, Pedro; Sun, Jibin; Grigoriev, Igor; Herrera-Estrella, Alfredo; Baker, Scott E; Kubicek, Christian P.

    2010-07-23

    BACKGROUND: Combating the action of plant pathogenic microorganisms by mycoparasitic fungi has been announced as an attractive biological alternative to the use of chemical fungicides since two decades. The fungal genus Trichoderma includes a high number of taxa which are able to recognize, combat and finally besiege and kill their prey. Only fragments of the biochemical processes related to this ability have been uncovered so far, however. RESULTS: We analyzed genome-wide gene expression changes during the begin of physical contact between Trichoderma atroviride and two plant pathogens Botrytis cinerea and Rhizoctonia solani, and compared with gene expression patterns of mycelial and conidiating cultures, respectively. About 3000 ESTs, representing about 900 genes, were obtained from each of these three growth conditions. 66 genes, represented by 442 ESTs, were specifically and significantly overexpressed during onset of mycoparasitism, and the expression of a subset thereof was verified by expression analysis. The upregulated genes comprised 18 KOG groups, but were most abundant from the groups representing posttranslational processing, and amino acid metabolism, and included components of the stress response, reaction to nitrogen shortage, signal transduction and lipid catabolism. Metabolic network analysis confirmed the upregulation of the genes for amino acid biosynthesis and of those involved in the catabolism of lipids and aminosugars. CONCLUSION: The analysis of the genes overexpressed during the onset of mycoparasitism in T. atroviride has revealed that the fungus reacts to this condition with several previously undetected physiological reactions. These data enable a new and more comprehensive interpretation of the physiology of mycoparasitism, and will aid in the selection of traits for improvement of biocontrol strains by recombinant techniques.

  15. Enhanced enzymatic hydrolysis of langostino shell chitin with mixtures of enzymes from bacterial and fungal sources.

    Science.gov (United States)

    Donzelli, Bruno G G; Ostroff, Gary; Harman, Gary E

    2003-09-01

    A combination of enzyme preparations from Trichoderma atroviride and Serratia marcescens was able to completely degrade high concentrations (100 g/L) of chitin from langostino crab shells to N-acetylglucosamine (78%), glucosamine (2%), and chitobiose (10%). The result was achieved at 32 degrees C in 12 days with no pre-treatment (size reduction or swelling) of the substrate and without removal of the inhibitory end-products from the mixture. Enzymatic degradation of three forms of chitin by Serratia/Trichoderma and Streptomyces/Trichoderma blends was carried out according to a simplex-lattice mixture design. Fitted polynomial models indicated that there was synergy between prokaryotic and fungal enzymes for both hydrolysis of crab chitin and reduction of turbidity of colloidal chitin (primarily endo-type activity). Prokaryotic/fungal enzymes were not synergistic in degrading chitosan. Enzymes from prokaryotic sources had much lower activity against chitosan than enzymes from T. atroviride.

  16. Construction and screening of a functional metagenomic library to identify novel enzymes produced by Antarctic bacteria

    Institute of Scientific and Technical Information of China (English)

    Ignacio Ferrés; Vanesa Amarelle; Francisco Noya; Elena Fabiano

    2015-01-01

    A metagenomic fosmid library of approximately 52 000 clones was constructed to identify functional genes encoding cold-adapted enzymes. Metagenomic DNA was extracted from a sample of glacial meltwater, collected on the Antarctic Peninsula during the ANTARKOS XXIX Expedition during the austral summer of 2012–2013. Each clone contained an insert of about 35–40 kb, so the library represented almost 2 Gb of genetic information from metagenomic DNA. Activity-driven screening was used to detect the cold-adapted functions expressed by the library. Fifty lipase/esterase and two cellulase-producing clones were isolated, and two clones able to grow on Avicel® as the sole carbon source. Interestingly, three clones formed a brown precipitate in the presence of manganese (II). Accumulation of manganese oxides was determined with a leucoberbelin blue assay, indicating that these three clones had manganese-oxidizing activity. To the best of our knowledge, this is the first report of a manganese oxidase activity detected with a functional metagenomic strategy.

  17. Purification, crystallization and preliminary X-ray analysis of two hydrogen sulfide-producing enzymes from Fusobacterium nucleatum

    International Nuclear Information System (INIS)

    Two homologous hydrogen sulfide-producing enzymes, Fn1220 and Cdl, from F. nucleatum (which actively produces hydrogen sulfide) were overproduced, purified and crystallized. The crystals obtained were characterized by X-ray diffraction. Hydrogen sulfide produced by oral bacteria is responsible for oral malodour. Two homologous hydrogen sulfide-producing enzymes, Fn1220 and Cdl, from Fusobacterium nucleatum (which actively produces hydrogen sulfide) were overproduced, purified and crystallized. X-ray diffraction data were collected from the crystals using a synchrotron-radiation source. The Fn1220 crystal belonged to tetragonal space group P41212 or P43212 (unit-cell parameters a = b = 116.8, c = 99.2 Å) and the Cdl crystal belonged to monoclinic space group P21 (unit-cell parameters a = 84.9, b = 70.9, c = 87.6 Å, β = 90.3°)

  18. The Psychrotolerant Antarctic Fungus Lecanicillium muscarium CCFEE 5003: A Powerful Producer of Cold-Tolerant Chitinolytic Enzymes.

    Science.gov (United States)

    Fenice, Massimiliano

    2016-01-01

    Lecanicillium muscarium CCFEE 5003, isolated in Continental Antarctica, is a powerful producer of extracellular cold-tolerant enzymes. Chitin-hydrolyzing enzymes seems to be the principal extracellular catalytic activities of this psychrotolerant fungus. The production of chitinolytic activities is induced by chitin and other polysaccharides and is submitted to catabolite repression. The chitinolytic system of L. muscarium consists of a number of different proteins having various molecular weights and diverse biochemical characteristics, but their most significant trait is the marked cold-tolerance. L. muscarium and selected strains of the biocontrol agent of pathogenic fungi Trichoderma harzianum, have been compared for their ability to produce chitinolytic enzymes at different temperatures. At low temperatures the Antarctic strain was definitely much more efficient. Moreover, the fungus was able to exert a strong mycoparasitic action against various other fungi and oomycetes at low temperatures. The parasitic role of this organism appeared related to the production of cell wall degrading enzymes being the release of extracellular chitinolytic enzymes a key event in the mycoparasitic process. Due to the mentioned characteristics, L. muscarium could have an important role for potential applications such as the degradation of chitin-rich materials at low temperature and the biocontrol of pathogenic organisms in cold environments. For these reasons and in view of future industrial application, the production of chitinolytic enzymes by the Antarctic fungus has been up-scaled and optimised in bench-top bioreactor. PMID:27058517

  19. An in vitro Study on the Adsorption, Absorption and Uptake Capacity of Zn by the Bioremediator Trichoderma atroviride

    Directory of Open Access Journals (Sweden)

    Mazyar Yazdani

    2010-01-01

    Full Text Available The concentrations of Zn in the sediment of a polluted river at the Serdang Industrial Area were determined. These polluted sediment samples revealed high level of Zn (219. 27 µg/g. Isolation of fungi from this polluted sediment was also carried out using Rose Bengal Agar (RBA. The isolated fungi were exposed to different concentrations of Zn (0-6000 mg/L on Potato Dextrose Agar (PDA to find the most tolerant isolate. Trichoderma atroviride was found to have the highest tolerance and it was studied for growth rate, Zn uptake capacity, its tolerance to Zn and also localization of Zn by using Potato Dextrose Broth (PDB as the liquid culture medium. In the present study the results found out that the uptake capacity of T. atroviride ranged from 18.1-26.7 mg/g in liquid media at Zn concentrations from 500 to 1000 mg/L. The isolate showed 47.6-64% adsorption and 30.4¬45.1% absorption for Zn. Based on the present study, 5.7-7.4% of Zn removal was observed due to biomass washing. The high adsorption, relatively low absorption and high uptake capacity of Zn suggest that T. atroviride is a potential bioremediator of Zn. However, further studies are needed to confirm its practical use as a bioremediating agent for Zn under field conditions.

  20. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Blennow, Per Gunnar Andreas; Jensen, Susanne Langgård;

    2012-01-01

    is preferentially derived from amylose, which can be increased by suppressing amylopectin synthesis by silencing of starch branching enzymes (SBEs). However all the previous works attempting the production of high RS crops resulted in only partly increased amylose-content and/or significant yield loss. Results...... In this study we invented a new method for silencing of multiple genes. Using a chimeric RNAi hairpin we simultaneously suppressed all genes coding for starch branching enzymes (SBE I, SBE IIa, SBE IIb) in barley (Hordeum vulgare L.), resulting in production of amylose-only starch granules in the endosperm...... yield in a living organism. This was achieved by a new method of simultaneous suppression of the entire complement of genes encoding starch branching enzymes. We demonstrate that amylopectin is not essential for starch granule crystallinity and integrity. However the slower initial growth of shoots from...

  1. Is the High Cu Tolerance of Trichoderma atroviride Isolated from the Cu-Polluted Sediment Due to Adaptation? An In Vitro Toxicological Study

    International Nuclear Information System (INIS)

    The tolerance of Cu by Trichoderma atroviride, a tolerant fungus isolated from the drainage surface sediment of the Serdang Industrial Area was investigated under in vitro conditions. Only this fungus species can tolerate up to 600 mg/ L of Cu on solid medium Potato Dextrose Agar based on the isolation of the most tolerant fungus from the polluted sediment. Toxicity test performed on T. atroviride, showed a maximum tolerance at 300 mg/L of Cu concentration when grown in liquid medium Potato Dextrose Broth (PDB). The EC50 value of the isolate was 287.73 mg/ L of Cu concentration in PDB. The Cu concentration in the drainage surface sediment, where the T. atroviride was isolated from, was 347.64 μg/ g while the geochemical distributions of the non-resistant and resistant fractions of Cu were 99.6 and 0.4 %, respectively. The sediment data indicated that the drainage had greatly received anthropogenic Cu from the nearby industries which are involved in the manufacturing of plastics and electronic products. The present findings indicate that the high Cu tolerance showed by T. atroviride could be due to the well adaptation of the fungus to the Cu polluted sediment. Therefore, T. atroviride could be a potential bioremediator of Cu pollution in the freshwater ecosystem. (author)

  2. Characterization of poly(L-lactide)-degrading enzyme produced by thermophilic filamentous bacteria Laceyella sacchari LP175.

    Science.gov (United States)

    Hanphakphoom, Srisuda; Maneewong, Narisara; Sukkhum, Sukhumaporn; Tokuyama, Shinji; Kitpreechavanich, Vichien

    2014-01-01

    Eleven strains of poly(L-lactide) (PLLA)-degrading thermophilic bacteria were isolated from forest soils and selected based on clear zone formation on an emulsified PLLA agar plate at 50°C. Among the isolates, strain LP175 showed the highest PLLA-degrading ability. It was closely related to Laceyella sacchari, with 99.9% similarity based on the 16S rRNA gene sequence. The PLLA-degrading enzyme produced by the strain was purified to homogeneity by 48.1% yield and specific activity of 328 U·mg-protein-1 with a 15.3-fold purity increase. The purified enzyme was strongly active against specific substrates such as casein and gelatin and weakly active against Suc-(Ala)₃-pNA. Optimum enzyme activity was exhibited at a temperature of 60°C with thermal stability up to 50°C and a pH of 9.0 with pH stability in a range of 8.5-10.5. Molecular weight of the enzyme was approximately 28.0 kDa, as determined by gel filtration and SDS-PAGE. The inhibitors phenylmethylsulfonyl fluoride (PMSF), ethylenediaminetetraacetate (EDTA), and ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) strongly inhibited enzyme activity, but the activity was not inhibited by 1 mM 1,10-phenanthroline (1,10-phen). The N-terminal amino acid sequences had 100% homology with thermostable serine protease (thermitase) from Thermoactinomyces vulgaris. The results obtained suggest that the PLLA-degrading enzyme produced by L. sacchari strain LP175 is serine protease. PMID:24646757

  3. SYNERGISTIC ACTIVITY OF ENZYMES PRODUCED BY EUPENICILLIUM JAVANICUM AND ASPERGILLUS NIGER NRRL 337 ON PALM OIL FACTORY WASTES

    Directory of Open Access Journals (Sweden)

    TRESNAWATI PURWADARIA

    2003-01-01

    Full Text Available The use of palm kernel cake (PKC and palm oil mill effluent (POME, substances from palm oil factory wastes, for monogastric is limited by their high cellulose and mannan contents. Hydrolytic enzymes have been supplemented to increase the nutrient digestibility. The maximal digestibility was obtained in the synergistic action of all enzyme components including B-D-endoglucanase (CMCase, B-D-glucosidase, B-D-mannanase, p-D-mannosidase, and oc-D-galactosidase. Two kinds of enzymes produced by Eupenicillium javanicum and Aspergillus niger NRRL 337 on the submerged culture containing 3% coconut meal were selected to hydrolyze PKC or dry POME. Enzyme from E. javanicum contained higher CMCase, B-D-mannanase, and a-D- galactosidase activities, while that from A. niger NRRL 337 contained more p-D-glucosidase and p-D-mannosidase activities. Saccharification (hydrolytic activities of enzyme mixtures on PKC and POME were determined at pH 5.0, the optimal pH for p-D-mannanase from E. javanicum, and at 5.4 the optimal pH for a-D-galactosidase from E. javanicum and P-D-glucosidase from A. niger NRRL 337. The enzyme proportions of E. javanicum and A. niger NRRL 337 were 100 : 0, 80 : 20, 60 : 40, 40 : 60, and 0 : 100%. The highest Saccharification activity on both substrates was observed on the mixture of 80% A. niger NRRL 337. The pH levels did not significantly affect Saccharification activity. Fiber components in PKC were more digestable than in POME. Further analysis on the reducing sugar components using thin layer chromatography showed that more monomers were produced in the 60 or 80% of A. niger NRRL 337. The glycosidases of A. niger NRRL 337 played more important role in the Saccharification activity.

  4. Optimizing immobilized enzyme performance in cell-free environments to produce liquid fuels.

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sanat

    2015-02-05

    The overall goal of this project was to optimize enzyme performance for the production of bio-diesel fuel. Enzyme immobilization has attracted much attention as a means to increase productivity. Mesorporous silica materials have been known to be best suited for immobilizing enzymes. A major challenge is to ensure that the enzymatic activity is retained after immobilization. Two major factors which drive enzymatic deactivation are protein-surface and inter-protein interactions. Previously, we studied protein stability inside pores and how to optimize protein-surface interactions to minimize protein denaturation. In this work we studied eh effect of surface curvature and chemistry on inter-protein interactions. Our goal was to find suitable immobilization supports which minimize these inter-protein interactions. Our studies carried out in the frame work of Hydrophobic-Polar (HP) model showed that enzymes immobilized inside hydrophobic pores of optimal sizes are best suited to minimize these inter-protein interactions. Besides, this study is also of biological importance to understand the role of chaperonins in protein disaggregation. Both of these aspects profited immensely with collaborations with our experimental colleague, Prof. Georges Belfort (RPI), who performed the experimental analog of our theoretical works.

  5. A Trichoderma atroviride stress-activated MAPK pathway integrates stress and light signals.

    Science.gov (United States)

    Esquivel-Naranjo, Edgardo Ulises; García-Esquivel, Mónica; Medina-Castellanos, Elizabeth; Correa-Pérez, Víctor Alejandro; Parra-Arriaga, Jorge Luis; Landeros-Jaime, Fidel; Cervantes-Chávez, José Antonio; Herrera-Estrella, Alfredo

    2016-06-01

    Cells possess stress-activated protein kinase (SAPK) signalling pathways, which are activated practically in response to any cellular insult, regulating responses for survival and adaptation to harmful environmental changes. To understand the function of SAPK pathways in T. atroviride, mutants lacking the MAPKK Pbs2 and the MAPK Tmk3 were analysed under several cellular stresses, and in their response to light. All mutants were highly sensitive to cellular insults such as osmotic and oxidative stress, cell wall damage, high temperature, cadmium, and UV irradiation. Under oxidative stress, the Tmk3 pathway showed specific roles during development, which in conidia are essential for tolerance to oxidant agents and appear to play a minor role in mycelia. The function of this pathway was more evident in Δpbs2 and Δtmk3 mutant strains when combining oxidative stress or cell wall damage with light. Light stimulates tolerance to osmotic stress through Tmk3 independently of the photoreceptor Blr1. Strikingly, photoconidiation and expression of blue light regulated genes was severally affected in Δtmk3 and Δpbs2 strains, indicating that this pathway regulates light responses. Furthermore, Tmk3 was rapidly phosphorylated upon light exposure. Thus, our data indicate that Tmk3 signalling cooperates with the Blr photoreceptor complex in the activation of gene expression. PMID:26878111

  6. Automated thermometric enzyme immunoassay of human proinsulin produced by Escherichia coli

    International Nuclear Information System (INIS)

    The authors have determined and monitored the production and release of human proinsulin by genetically engineered Escherichia coli cells. Several M9 media samples were analyzed sequentially after centrifugation with the aid of a rapid automated flow-through thermometric enzyme-linked immunosorbent assay (TELISA) system. The response time was 7 min after after sample injection and a single assay was complete after 13 min. Insulin concentrations in the range of 0.1-50 μg/ml could be determined. The TELISA method correlated well with conventional radioimmunoassay determinations. Standard curves were reproducible over a period of several days even when the immobilized antibody column was stored at 250C in the enzyme thermistor unit. Thus, immediate assay start up was possible

  7. Automated thermometric enzyme immunoassay of human proinsulin produced by Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Birnbaum, S.; Buelow, L.; Hardy, K.; Danielsson, B.; Mosbach, K.

    1986-10-01

    The authors have determined and monitored the production and release of human proinsulin by genetically engineered Escherichia coli cells. Several M9 media samples were analyzed sequentially after centrifugation with the aid of a rapid automated flow-through thermometric enzyme-linked immunosorbent assay (TELISA) system. The response time was 7 min after after sample injection and a single assay was complete after 13 min. Insulin concentrations in the range of 0.1-50 ..mu..g/ml could be determined. The TELISA method correlated well with conventional radioimmunoassay determinations. Standard curves were reproducible over a period of several days even when the immobilized antibody column was stored at 25/sup 0/C in the enzyme thermistor unit. Thus, immediate assay start up was possible.

  8. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Blennow, Andreas; Jensen, Susanne L;

    2012-01-01

    Background Starch is stored in higher plants as granules composed of semi-crystalline amylopectin and amorphous amylose. Starch granules provide energy for the plant during dark periods and for germination of seeds and tubers. Dietary starch is also a highly glycemic carbohydrate being degraded...... is preferentially derived from amylose, which can be increased by suppressing amylopectin synthesis by silencing of starch branching enzymes (SBEs). However all the previous works attempting the production of high RS crops resulted in only partly increased amylose-content and/or significant yield loss. Results...... In this study we invented a new method for silencing of multiple genes. Using a chimeric RNAi hairpin we simultaneously suppressed all genes coding for starch branching enzymes (SBE I, SBE IIa, SBE IIb) in barley (Hordeum vulgare L.), resulting in production of amylose-only starch granules in the endosperm...

  9. Angiotensin I-Converting Enzyme Inhibitory Peptides of Chia (Salvia hispanica) Produced by Enzymatic Hydrolysis

    OpenAIRE

    Maira Rubi Segura Campos; Fanny Peralta González; Luis Chel Guerrero; David Betancur Ancona

    2013-01-01

    Synthetic angiotensin I-converting enzyme (ACE-I) inhibitors can have undesirable side effects, while natural inhibitors have no side effects and are potential nutraceuticals. A protein-rich fraction from chia (Salvia hispanica L.) seed was hydrolyzed with an Alcalase-Flavourzyme sequential system and the hydrolysate ultrafiltered through four molecular weight cut-off membranes (1 kDa, 3 kDa, 5 kDa, and 10 kDa). ACE-I inhibitory activity was quantified in the hydrolysate and ultrafiltered fra...

  10. Characterization of the glucansucrase GTF180 W1065 mutant enzymes producing polysaccharides and oligosaccharides with altered linkage composition.

    Science.gov (United States)

    Meng, Xiangfeng; Pijning, Tjaard; Tietema, Martin; Dobruchowska, Justyna M; Yin, Huifang; Gerwig, Gerrit J; Kralj, Slavko; Dijkhuizen, Lubbert

    2017-02-15

    Exopolysaccharides produced by lactic acid bacteria are extensively used for food applications. Glucansucrase enzymes of lactic acid bacteria use sucrose to catalyze the synthesis of α-glucans with different linkage compositions, size and physico-chemical properties. Crystallographic studies of GTF180-ΔN show that at the acceptor binding sites +1 and +2, residue W1065 provides stacking interactions to the glucosyl moiety. However, the detailed functional roles of W1065 have not been elucidated. We performed random mutagenesis targeting residue W1065 of GTF180-ΔN, resulting in the generation of 10 mutant enzymes that were characterized regarding activity and product specificity. Characterization of mutant enzymes showed that residue W1065 is critical for the activity of GTF180-ΔN. Using sucrose, and sucrose (donor) plus maltose (acceptor) as substrates, the mutant enzymes synthesized polysaccharides and oligosaccharides with changed linkage composition. The stacking interaction of an aromatic residue at position 1065 is essential for polysaccharide synthesis. PMID:27664611

  11. Purification and Partial Characterization of a Collagenolytic Enzyme Produced by Pseudomonas aeraginosa SCU Screened from Rotten Hides

    Institute of Scientific and Technical Information of China (English)

    Yang Guangyao(杨光垚); Zhang Yizheng

    2004-01-01

    Strain Pseudomonas Aeraginosa SCU isolated from rotten hides is shown to produce various gelatinolytic enzymes with molecular masses ranging from ~50 to ~200 kD. A gelatinolytic enzyme called PAC exhibiting collagenolytic activity is purified by SP sepharose fast flow, Sephadex G-200 gel filtration and native PAGE cutting method. The purified enzyme has an apparent molecular weight of about 110 kD by SDS PAGE without β-mercaptoethanol. Treatment withβ-Me suggests that PAC is dissociated into three subunits approximately 33 kD,25 kD and 20 kD with a ratio of 2∶1∶1, named sub A, sub B and sub C repectively. EDTA and EGTA display a significant inhibitory effect on the enzyme activity while PMSF, leupeptin and pepstain do not appreciably inhibit it. The first 15 amino acid residues of the major subunit (subA) are determined and the sequence is Ala-Glu-Ala-Gly-Gly-Pro-Gly-Gly-Asn-Gln-Lys-Ile-Gly -Lys-Tyr. This sequence is identical to that of elastase of P.aeruginosa. The fragment of encoding mature sub A is cloned and its sequence is determined, which has a high homology with the gene of elastase. These results indicate that PAC is a novel collagenolytic metalloprotease composed of three kinds of subunits, of which elastase is the major one.

  12. Optimization of enzyme complexes for efficient hydrolysis of corn stover to produce glucose.

    Science.gov (United States)

    Yu, Xiaoxiao; Liu, Yan; Meng, Jiatong; Cheng, Qiyue; Zhang, Zaixiao; Cui, Yuxiao; Liu, Jiajing; Teng, Lirong; Lu, Jiahui; Meng, Qingfan; Ren, Xiaodong

    2015-05-01

    Hydrolysis of cellulose to glucose is the critical step for transferring the lignocellulose to the industrial chemicals. For improving the conversion rate of cellulose of corn stover to glucose, the cocktail of celllulase with other auxiliary enzymes and chemicals was studied in this work. Single factor tests and Response Surface Methodology (RSM) were applied to optimize the enzyme mixture, targeting maximum glucose release from corn stover. The increasing rate of glucan-to-glucose conversion got the higher levels while the cellulase was added 1.7μl tween-80/g cellulose, 300μg β-glucosidase/g cellulose, 400μg pectinase/g cellulose and 0.75mg/ml sodium thiosulphate separately in single factor tests. To improve the glucan conversion, the β-glucosidase, pectinase and sodium thiosulphate were selected for next step optimization with RSM. It is showed that the maximum increasing yield was 45.8% at 377μg/g cellulose Novozyme 188, 171μg/g cellulose pectinase and 1mg/ml sodium thiosulphate.

  13. Identification of Antarctic culturable bacteria able to produce diverse enzymes of potential biotechnological interest

    Institute of Scientific and Technical Information of China (English)

    Ignacio Ferrés; Vanesa Amarelle; Francisco Noya; Elena Fabiano

    2015-01-01

    It is estimated that more than three quarters of the Earth’s biosphere is in perennially cold environments. Despite the extreme environmental conditions of desiccation and freezing, microbes can colonize these habitats through the adaptation of metabolic functions and the synthesis of structurally adapted enzymes. Enzymes within psychrophilic microbes exhibit high specific activity at low and moderate temperature, with low thermostability. In this study we used a classic microbiological approach to isolate Antarctic bacteria with cellulolytic, lipolytic, and ligninolytic activities. From 15 different environmental samples, we generated a collection of approximately 800 bacterial isolates that could grow on R2A or Marine medium at 4°C. This collection was then screened for the presence of the three types of activity at 4°C. We found that 47.7% of the isolates displayed lipolytic activity, 10.2% had cellulase/xylanase activity, and 7.7% showed guaiacol oxidase activity. Of these, 10% displayed two different types of activity, while 0.25% displayed all three types of activity. Our results indicate that cold environments represent outstanding resources for bioprospecting and the study of enzymatic adaptation.

  14. Mechanism of Excretion of a Bacterial Proteinase: Demonstration of Two Proteolytic Enzymes Produced by a Sarcina Strain (Coccus P)

    Energy Technology Data Exchange (ETDEWEB)

    SARNER, NITZA Z; BISSELL, MINA J; GIROLAMO, MARIO Di; GORINI, LUIGI

    1970-06-29

    A Sarcina strain (Coccus P) produces two proteolytic enzymes. One is found only extracellularly, is far more prevalent, and is actively excreted during exponential growth. It is the enzyme responsible for the known strong proteolytic activity of the cultures of this strain. A second protease is, however, produced which remains associated with the intact cells but is released by the protoplasts. The two enzymes appear unrelated in their derivation. Calcium ions play an essential role in preventing autodigestion of the excreted enzyme. Bacterial proteins are found outside the cell boundary as a consequence either of passive processes such as leakage or lysis or of active excretion. Under conditions in which leakage and lysis do not occur, as during exponential growth, the cell boundary is a barrier causing a complete separation of the bulk of the intracellular proteins from the one or very few extracellular proteins, with no trace of either type being detectable on the wrong side of the boundary. Since in bacteria there is no evidence of protein being produced other than internally, the separation into intraand extracellular proteins should occur after peptide chain formation. The question arises as to whether the structure of the cell boundary or that of the excreted proteins themselves determines this separation. Coccus P, a Sarcina closely related to Micrococcus lysodeikticus (3), produces an extracellular proteinase during the exponential phase of growth so that the process appears to be active excretion. The organism grows exponentially in a defined synthetic medium (12) to relatively high cell density (10{sup 9} cells/ml); therefore the mechanism of excretion can be studied over an extended period of time without the difficulties of changing growth rates. Coagulation of reconstituted skim milk provides a simple and sensitive assay for enzyme activity (I 1). The extracellular proteinase has also been purified and partially characterized (6-8). It has been shown

  15. Inhibition of Biofilm Formation by T7 Bacteriophages Producing Quorum-Quenching Enzymes

    OpenAIRE

    Pei, Ruoting; Lamas-Samanamud, Gisella R.

    2014-01-01

    Bacterial growth in biofilms is the major cause of recalcitrant biofouling in industrial processes and of persistent infections in clinical settings. The use of bacteriophage treatment to lyse bacteria in biofilms has attracted growing interest. In particular, many natural or engineered phages produce depolymerases to degrade polysaccharides in the biofilm matrix and allow access to host bacteria. However, the phage-produced depolymerases are highly specific for only the host-derived polysacc...

  16. Biological reactor for anaerobic digestion of organic materials to produce methane gas by fermentation by enzymes. Bioreaktor fuer anaerobe Ausfaulung organischer Stoffe zur Methangaserzeugung mittels Fermentierung durch Enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Lindemann, R.W.

    1981-11-12

    In order to make undisturbed development of the methane bacteria possible, the biomass (organic waste of all kinds, e.g. sewage sludge, manure, organic industrial waste) is first pre-fermented by adding enzymes. The methane bacteria, which are used to inject the biomass in the fermentation reactor, are fermented separately in feeding solutions. The biological reactor is a system heated by a thermostatically controlled waterbath, with at least 12 individual digestion chambers, which are filled in sequence with biomass. Circulation and therefore destruction of the floating sludge layer is done with biogas produced under pressure in the system. By adding lime solution, a pH value of 7 is set in the chambers. The advantages of the invention consist of a shortened digestion time (6 days) and a reduced CO/sub 2/ consist at a gas yield of 80%.

  17. Producing the Ethylene Signal: Regulation and Diversification of Ethylene Biosynthetic Enzymes.

    Science.gov (United States)

    Booker, Matthew A; DeLong, Alison

    2015-09-01

    Strictly controlled production of ethylene gas lies upstream of the signaling activities of this crucial regulator throughout the plant life cycle. Although the biosynthetic pathway is enzymatically simple, the regulatory circuits that modulate signal production are fine tuned to allow integration of responses to environmental and intrinsic cues. Recently identified posttranslational mechanisms that control ethylene production converge on one family of biosynthetic enzymes and overlay several independent reversible phosphorylation events and distinct mediators of ubiquitin-dependent protein degradation. Although the core pathway is conserved throughout seed plants, these posttranslational regulatory mechanisms may represent evolutionarily recent innovations. The evolutionary origins of the pathway and its regulators are not yet clear; outside the seed plants, numerous biochemical and phylogenetic questions remain to be addressed.

  18. A homogeneous assay principle for universal substrate quantification via hydrogen peroxide producing enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Zscharnack, Kristin; Kreisig, Thomas; Prasse, Agneta A. [Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig (Germany); Zuchner, Thole, E-mail: Thole.Zuechner@octapharma.com [Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig (Germany); Center for Biotechnology and Biomedicine, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig (Germany)

    2015-01-07

    Highlights: • Application of the TRF-based PATb system for universal oxidase substrate detection. • H{sub 2}O{sub 2} generated by choline or glucose oxidase quenches the TRF signal of PATb. • The assay time is only limited by the oxidase catalysis rate. • Glucose is precisely detected in human serum consistent to a commercial assay. • A reliable quantification of choline in infant formula is shown. - Abstract: H{sub 2}O{sub 2} is a widely occurring molecule which is also a byproduct of a number of enzymatic reactions. It can therefore be used to quantify the corresponding enzymatic substrates. In this study, the time-resolved fluorescence emission of a previously described complex consisting of phthalic acid and terbium (III) ions (PATb) is used for H{sub 2}O{sub 2} detection. In detail, glucose oxidase and choline oxidase convert glucose and choline, respectively, to generate H{sub 2}O{sub 2} which acts as a quencher for the PATb complex. The response time of the PATb complex toward H{sub 2}O{sub 2} is immediate and the assay time only depends on the conversion rate of the enzymes involved. The PATb assay quantifies glucose in a linear range of 0.02–10 mmol L{sup −1}, and choline from 1.56 to 100 μmol L{sup −1} with a detection limit of 20 μmol L{sup −1} for glucose and 1.56 μmol L{sup −1} for choline. Both biomolecules glucose and choline could be detected without pretreatment with good precision and reproducibility in human serum samples and infant formula, respectively. Furthermore, it is shown that the detected glucose concentrations by the PATb system agree with the results of a commercially available assay. In principle, the PATb system is a universal and versatile tool for the quantification of any substrate and enzyme reaction where H{sub 2}O{sub 2} is involved.

  19. Angiotensin I-Converting Enzyme Inhibitory Peptides of Chia (Salvia hispanica) Produced by Enzymatic Hydrolysis.

    Science.gov (United States)

    Segura Campos, Maira Rubi; Peralta González, Fanny; Chel Guerrero, Luis; Betancur Ancona, David

    2013-01-01

    Synthetic angiotensin I-converting enzyme (ACE-I) inhibitors can have undesirable side effects, while natural inhibitors have no side effects and are potential nutraceuticals. A protein-rich fraction from chia (Salvia hispanica L.) seed was hydrolyzed with an Alcalase-Flavourzyme sequential system and the hydrolysate ultrafiltered through four molecular weight cut-off membranes (1 kDa, 3 kDa, 5 kDa, and 10 kDa). ACE-I inhibitory activity was quantified in the hydrolysate and ultrafiltered fractions. The hydrolysate was extensive (DH = 51.64%) and had 58.46% ACE-inhibitory activity. Inhibition ranged from 53.84% to 69.31% in the five ultrafiltered fractions and was highest in the <1 kDa fraction (69.31%). This fraction's amino acid composition was identified and then it was purified by gel filtration chromatography and ACE-I inhibition measured in the purified fractions. Amino acid composition suggested that hydrophobic residues contributed substantially to chia peptide ACE-I inhibitory strength, probably by blocking angiotensin II production. Inhibitory activity ranged from 48.41% to 62.58% in the purified fractions, but fraction F1 (1.5-2.5 kDa) exhibited the highest inhibition (IC50 = 3.97 μg/mL; 427-455 mL elution volume). The results point out the possibility of obtaining bioactive peptides from chia proteins by means of a controlled protein hydrolysis using Alcalase-Flavourzyme sequentional system.

  20. Angiotensin I-Converting Enzyme Inhibitory Peptides of Chia (Salvia hispanica Produced by Enzymatic Hydrolysis

    Directory of Open Access Journals (Sweden)

    Maira Rubi Segura Campos

    2013-01-01

    Full Text Available Synthetic angiotensin I-converting enzyme (ACE-I inhibitors can have undesirable side effects, while natural inhibitors have no side effects and are potential nutraceuticals. A protein-rich fraction from chia (Salvia hispanica L. seed was hydrolyzed with an Alcalase-Flavourzyme sequential system and the hydrolysate ultrafiltered through four molecular weight cut-off membranes (1 kDa, 3 kDa, 5 kDa, and 10 kDa. ACE-I inhibitory activity was quantified in the hydrolysate and ultrafiltered fractions. The hydrolysate was extensive (DH = 51.64% and had 58.46% ACE-inhibitory activity. Inhibition ranged from 53.84% to 69.31% in the five ultrafiltered fractions and was highest in the <1 kDa fraction (69.31%. This fraction’s amino acid composition was identified and then it was purified by gel filtration chromatography and ACE-I inhibition measured in the purified fractions. Amino acid composition suggested that hydrophobic residues contributed substantially to chia peptide ACE-I inhibitory strength, probably by blocking angiotensin II production. Inhibitory activity ranged from 48.41% to 62.58% in the purified fractions, but fraction F1 (1.5–2.5 kDa exhibited the highest inhibition (IC50 = 3.97 μg/mL; 427–455 mL elution volume. The results point out the possibility of obtaining bioactive peptides from chia proteins by means of a controlled protein hydrolysis using Alcalase-Flavourzyme sequentional system.

  1. [Screening and Enzyme Production Characteristics of Thermophilic Cellulase-producing Strains].

    Science.gov (United States)

    Feng, Hong-mei; Qin, Yong-sheng; Li, Xiao-fan; Zhou, Jin-xing; Peng, Xia-wei

    2016-04-15

    A total of 6 thermophilic cellulase-producing strainswere isolated from organic garden waste mixed chicken composting at thermophilic period. These isolates were identified as Streptomyces thermoviolaceus, S. thermodiastaticus, S. thermocarboxydus, S. albidoflavus, S. thermovulgaris and Brevibacillus borstelensis through 16S rRNA gene sequence alignment and phylogenetic tree analysis. The cellulose-degrading microbial community has been investigated in few researches so far both at home and abroad. In this study, the mixed strains M-1 was made up of the 6 cellulose-decomposing microorganisms. The CMCase activity of the mixed strains M- 1 was stronger than any of the 6 single strains. Production of CMCase from mixed strains M-1 was studied by optimizing different physico-chemical parameters. The Maximum CMCase production (135.9 U · mL⁻¹) of strains M-1 was achieved at 45 °C in a liquid medium (pH 4) inoculated with 1% (volume fraction), containing a mixture of wheat bran and starch, corn flour and KNO₃. After optimization of separation conditions, CMCase production capacity was improved by 1.8 times. PMID:27548981

  2. The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning.

    Science.gov (United States)

    Garnica-Vergara, Amira; Barrera-Ortiz, Salvador; Muñoz-Parra, Edith; Raya-González, Javier; Méndez-Bravo, Alejandro; Macías-Rodríguez, Lourdes; Ruiz-Herrera, León Francisco; López-Bucio, José

    2016-03-01

    Plants interact with root microbes via chemical signaling, which modulates competence or symbiosis. Although several volatile organic compounds (VOCs) from fungi may affect plant growth and development, the signal transduction pathways mediating VOC sensing are not fully understood. 6-pentyl-2H-pyran-2-one (6-PP) is a major VOC biosynthesized by Trichoderma spp. which is probably involved in plant-fungus cross-kingdom signaling. Using microscopy and confocal imaging, the effects of 6-PP on root morphogenesis were found to be correlated with DR5:GFP, DR5:VENUS, H2B::GFP, PIN1::PIN1::GFP, PIN2::PIN2::GFP, PIN3::PIN3::GFP and PIN7::PIN7::GFP gene expression. A genetic screen for primary root growth resistance to 6-PP in wild-type seedlings and auxin- and ethylene-related mutants allowed identification of genes controlling root architectural responses to this metabolite. Trichoderma atroviride produced 6-PP, which promoted plant growth and regulated root architecture, inhibiting primary root growth and inducing lateral root formation. 6-PP modulated expression of PIN auxin-transport proteins in a specific and dose-dependent manner in primary roots. TIR1, AFB2 and AFB3 auxin receptors and ARF7 and ARF19 transcription factors influenced the lateral root response to 6-PP, whereas EIN2 modulated 6-PP sensing in primary roots. These results indicate that root responses to 6-PP involve components of auxin transport and signaling and the ethylene-response modulator EIN2. PMID:26568541

  3. Screening of physiologically active strain of the filamentous fungi - a producer of a complex of lytic enzymes

    International Nuclear Information System (INIS)

    Filamentous Aspergillus fungi were studied to obtain a producer of a complex of the enzymes specific to biodegradation of polymers of cellular walls of vegetable and microbic biomass. Strains were selected by the increased biosynthetic ability in relation to the beta-glucanase (BG), chitinase (CT), mannanase (MN), proteases and pectinases. It was estimated during deep cultivation in the environment containing wheat bran. The fullest complex of hydrolytic enzymes (glucanase, MN, CT, protease and a polygalacturonase (PG)), and also the level of enzymatic activities was in the culture liquid obtained as a result of biosynthesis of Aspergillus foetidus 37-4 (S 37-4) strain. For its cultivation the medium containing salts like potassium dihydrogen phosphate, magnesium sulfate and ammonium sulfate in optimum concentration, and also dioses (maltose, sucrose) and polysaccharides (starch, chitin, pectin) was chosen. The greatest zones of hydrolysis are traced during planting S 37-4 in agar medium containing maltose and low methoxyl citrus pectin. As the synthesis inductor of hemicellulase, MN and CT malt sprouts were used, and of PG - not clarified beet bin fibers. Cultivation was carried out on a thermostatically controlled shaker at 30 deg. C for 120 h. Increase of activity of synthesizable enzymes when using low methoxyl citrus pectin as a media part equaled for BG 5-19%, for PG - 25%, when using a maltose for CT - 100%, MN - 29%. To increase biosynthetic ability of S 37-4 as a mutagen 3-staged ultra-violet radiation (wavelength is 265 nanometers) was applied. The obtained 379-K-5 strain surpassed in activity level a parental strain BG - by 84.8%, CT - by 45.0%, MN - by 62.9%, PG - by 89.0%. The following (4th) stage of radiation led to death of the strain. In comparison with a parental S 37-4 the colony of a mutant strain possessed the bigger size and plentiful formation of an air mycelium, ability to sporogenesis was less expressed

  4. AI-2 Key Enzyme S-Ribosylhomocysteinase from Strain Klebsiella pneumoniae CICC 10011 Producing 2,3-Butanediol

    Institute of Scientific and Technical Information of China (English)

    DAI Jian-ying; ZHANG Li-fu; XIU Zhi-long

    2011-01-01

    S-Ribosylhomocysteinase(LuxS) is the key enzyme in the synthetic pathway of a quorum sensing autoin ducer AI-2. LuxS from a 2,3-butanediol produced strain Klebisella pneumoniae CICC 10011 was cloned and charac terized. The luxS gene is composed of 540 bp with 172 amino acids encoded. The Km value for S-ribosylhomo-cysteine(SRH) was (27+1) μmol/L, kcat was (0.112±0.004) s-1 and kcat/Km was 4.4×103 L.mol-1 s-1 at 25 ℃. LuxS was activated by divalent metal ions, the highest activity was detected with Co2+ form, followed by Mg2+, Ba2+, Mn2+,Fe2+ and Ca2+, and activation constant for Co2+ is (16±2) μmol/L.

  5. Cradle-to-Gate Environmental Assessment of Enzyme Products Produced Industrially in Denmark by Novozymes A/S

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Oxenbøll, Karen Margrethe; Wenzel, Henrik

    2007-01-01

    chemicals. The present paper provides a methodological framework for analysing environmental impacts of enzyme products and environmental data for five characteristic enzyme products. Life cycle assessment is used as an analytical tool and modelling of enzyme production is facilitated in SimaPro 6...

  6. Selection of a Streptomyces strain able to produce cell wall degrading enzymes and active against Sclerotinia sclerotiorum.

    Science.gov (United States)

    Fróes, Adriana; Macrae, Andrew; Rosa, Juliana; Franco, Marcella; Souza, Rodrigo; Soares, Rosângela; Coelho, Rosalie

    2012-10-01

    Control of plant pathogen Sclerotinia sclerotiorum is an ongoing challenge because of its wide host range and the persistence of its sclerotia in soil. Fungicides are the most commonly used method to control this fungus but these can have ecotoxicity impacts. Chitinolytic Streptomyces strains isolated from Brazilian tropical soils were capable of inhibiting S. sclerotiorum growth in vitro, offering new possibilities for integrated pest management and biocontrol, with a new approach to dealing with an old problem. Strain Streptomyces sp. 80 was capable of irreversibly inhibiting fungal growth. Compared to other strains, its crude enzymes had the highest chitinolytic levels when measured at 25°C and strongly inhibited sclerotia from S. sclerotiorum. It produced four hydrolytic enzymes involved in fungal cell wall degradation when cultured in presence of the fungal mycelium. The best production, obtained after three days, was 0.75 U/ml for exochitinase, 0.9 U/ml for endochitinase, 0.16 U/ml for glucanase, and 1.78 U/ml for peptidase. Zymogram analysis confirmed two hydrolytic bands of chitinolytic activity with apparent molecular masses of 45.8 and 206.8 kDa. One glucanase activity with an apparent molecular mass of 55 kDa was also recorded, as well as seven bands of peptidase activity with apparent molecular masses ranging from 15.5 to 108.4 kDa. Differential interference contrast microscopy also showed alterations of hyphal morphology after co-culture. Streptomyces sp. 80 seems to be promising as a biocontrol agent against S. sclerotiorum, contributing to the development of new methods for controlling plant diseases and reducing the negative impact of using fungicides. PMID:23124748

  7. Conclusion on the peer review of the pesticide risk assessment of the active substance [Trichoderma atroviride strain I-1237

    Directory of Open Access Journals (Sweden)

    European Food Safety Authority

    2012-10-01

    Full Text Available

    The conclusions of the European Food Safety Authority (EFSA following the peer review of the initial risk assessments carried out by the competent authority of the rapporteur Member State France, for the pesticide active substance Trichoderma atroviride strain I-1237 are reported. The context of the peer review was that required by Commission Regulation (EU No 188/2011. The conclusions were reached on the basis of the evaluation of the representative uses of Trichoderma atroviride strain I-1237 as a fungicide in vineyards and grapevine nursery. The reliable endpoints concluded as being appropriate for use in regulatory risk assessment, derived from the available studies and literature in the dossier peer reviewed, are presented. Missing information identified as being required by the regulatory framework is listed.

  8. Use of a Mixture of Thermophilic Enzymes Produced by the Fungus Thermoascus aurantiacus to Enhance the Enzymatic Hydrolysis of the Sugarcane Bagasse Cellulose

    OpenAIRE

    Monte, J. R.; Carvalho, W.; A. M.F. Milagres

    2010-01-01

    Problem statement: The production of hydrolytic enzymes by T. aurantiacus has been performed under solid-state fermentations using lignocellulosic materials. The influences of the inoculum size and of the fermentation medium on the production of hemicellulases and cellulases were studied. Filtrates from the cultures were used to hydrolyze a pulp of sugarcane bagasse and the produced enzymes were shown to be candidates for use as co-adjuvants in plant saccharification. ...

  9. Comparation of the Flavor of Different Cheese Flavouring Agents Produced by Using Surface Ripening Bacterium and/or Enzymes

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2013-10-01

    Full Text Available To accelerate cheese ripening, enhance its flavor types and intensity and make cheese flavoring agent in shorter time, surface ripening bacterium (Brevibacterium linens and Debaryomyces hansenii and/or enzymes (Flavorzyme 500 MG and Palatase 20000 L were used in cheese curd. In this study, aroma compounds generated by using ripening cultures and/or enzymes were analyzed. The control l was made by inoculating ripening cultures, while the control 2 was made through enzymes-modified only. Results showed that cheese flavoring agent made by using ripening strains in combination with enzymes had more volatile flavor compounds (at least 44 than that used just ripening bacterium (26 or just two enzymes (27. Then, through Solid-phase microextraction and Gas Chromatography-Mass Spectrometry analysis, we knew that sample 1, which was made through proteolysis first, next sprayed ripening cultures and last lipolysis, generated 54 flavor compounds. Sample 2, which enzymed cheese curd first, then incubated ripening cultures, had 44 aroma compounds. However, the controls 1, incubated ripening strains only, had 26 volatile compounds, while the control 2, enzymed only, had 27 volatile compounds. This study reveals that ripening bacterium could contribute more to the generation of acids, sulphur compounds, miscellaneous compounds and alcohols, it has a good potential to be used in cheese flavoring agents making. Besides, the combination of surface strains and enzymes, especially using Flavorzyme 500 MG first, then sprayed ripening cultures and at last Palatase 20000 L, could get more volatile compounds.

  10. Screening and characterization of thermo-active enzymes of biotechnological interest produced by thermophilic Bacillus isolated from hot springs in Tunisia.

    Science.gov (United States)

    Thebti, Wajdi; Riahi, Yosra; Gharsalli, Rawand; Belhadj, Omrane

    2016-01-01

    As part of the contribution to the global efforts in research of thermostable enzymes being of industrial interest, we focus on the isolation of thermophilic bacteria from Tunisian hot springs. Among the collection of 161 strains of thermophilic Bacillus isolated from different samples of thermal water in Tunisia, 20% are capable of growing at 100°C and the rest grow at 70°C or above. Preliminary activity tests on media supplemented with enzyme-substrates confirmed that 35 strains produced amylases, 37 - proteases, 43 - cellulases, 31 - xylanases and 37 - mannanases. The study of the effect of temperature on enzyme activity led to determination of the optimal temperatures of activities that vary between 60 and 100°C. Several enzymes were active at high temperatures (80, 90 and 100°C) and kept their activity even at 110°C. Several isolated strains producing enzymes with high optimal temperatures of activity were described for the first time in this study. Both strains B62 and B120 are producers of amylase, protease, cellulase, xylanase, and mannanase. The sequencing of 16S DNA identified isolated strains as Geobacillus kaustophillus, Aeribacillus pallidus, Geobacillus galactosidasus and Geobacillus toebii.

  11. Enzyme-linked immunosorbent assay detection of trichothecenes produced by the Bioherbicide Myrothecium verrucaria in cell cultures, extracts, and plant tissues

    Science.gov (United States)

    Commercially available enzyme linked immunosorbent assay (ELISA) plates for trichothecene detection, possessing cross-reactivity with several trichothecene mycotoxins (e.g., verrucarin A, and J, roridin A, L-2, E, and H), were tested for their ability to detect trichothecenes produced by a strain of...

  12. The identification of enzyme targets for the optimization of a valine producing Corynebacterium glutamicum strain using a kinetic model.

    Science.gov (United States)

    Magnus, Jørgen Barsett; Oldiges, Marco; Takors, Ralf

    2009-01-01

    The enzyme targets for the rational optimization of a Corynebacterium glutamicum strain constructed for valine production are identified by analyzing the control of flux in the valine/leucine pathway. The control analysis is based on measurements of the intracellular metabolite concentrations and on a kinetic model of the reactions in the investigated pathway. Data-driven and model-based methods are used and evaluated against each other. The approach taken gives a quantitative evaluation of the flux control and it is demonstrated how the understanding of flux control is used to reach specific recommendations for strain optimization. The flux control coefficients (FCCs) with respect to the valine excretion rate were calculated, and it was found that the control is distributed mainly between the acetohydroxyacid synthase enzyme (FCC = 0.32), the branched chain amino acid transaminase (FCC = 0.27), and the exporting translocase (FCC = 0.43). The availability of the precursor pyruvate has substantial influence on the valine flux, whereas the cometabolites are less important as demonstrated by the calculation of the respective response coefficients. The model is further used to make in-silico predictions of the change in valine flux following a change in enzyme level. A doubling of the enzyme level of valine translocase will result in an increase in valine flux of 31%. By optimizing the enzyme levels with respect to valine flux it was found that the valine flux can be increased by a factor 2.5 when the optimal enzyme levels are implemented.

  13. On-site enzymes produced from Trichoderma reesei RUT-C30 and Aspergillus saccharolyticus for hydrolysis of wet exploded corn stover and loblolly pine.

    Science.gov (United States)

    Rana, Vandana; Eckard, Anahita D; Teller, Philip; Ahring, Birgitte K

    2014-02-01

    Cellulase production by two filamentous fungi Trichoderma reesei RUT-C30 and novel fungal strain, Aspergillus saccharolyticus on pretreated corn stover was investigated. Cellulase production was followed by the hydrolysis of two feedstocks, wet-exploded corn stover (WECS) and wet-exploded loblolly pine (WELP) by on-site produced enzyme cocktails containing cellulase from T. reesei RUT-C30 and β-glucosidase from A. saccharolyticus. The sugar yields using the on-site enzyme cocktails were compared with commercial enzymes preparations, Celluclast 1.5L and Novozym 188 at two substrate concentrations, 5% and 10% (w/w) and enzyme loading at 5 and 15 FPU/g glucan for WECS and WELP. The highest sugar yields were obtained at 5% (w/w) substrate concentration and 15 FPU/g glucan for both feedstocks. Glucose yields of 81% and 88% were obtained from on-site and commercial enzymes, respectively using WECS as feed stock. The sugar yields were 55% and 58% for WELP samples hydrolyzed with on-site and commercial enzymes, respectively.

  14. Use of a Mixture of Thermophilic Enzymes Produced by the Fungus Thermoascus aurantiacus to Enhance the Enzymatic Hydrolysis of the Sugarcane Bagasse Cellulose

    Directory of Open Access Journals (Sweden)

    J. R. Monte

    2010-01-01

    Full Text Available Problem statement: The production of hydrolytic enzymes by T. aurantiacus has been performed under solid-state fermentations using lignocellulosic materials. The influences of the inoculum size and of the fermentation medium on the production of hemicellulases and cellulases were studied. Filtrates from the cultures were used to hydrolyze a pulp of sugarcane bagasse and the produced enzymes were shown to be candidates for use as co-adjuvants in plant saccharification. Aproach: The present study focuses on the effect of different culture conditions on production of cellulases and hemicellulases by T. aurantiacus. It is also provides a possible application of T. aurantiacus enzymes in the degradation of sugarcane bagasse pulp, considering that this thermophilic fungus is a potential source of thermostable enzymes. Results: T. aurantiacus was cultivated on four different agricultural residues: sugarcane bagasse, sugarcane straw, wheat straw and corn cob. Xylanase was produced with much more expressive activity than cellulases. The highest titre of xylanase was obtained on sugarcane straw at 9 days (1679.8 IU g−1; the same was observed for β- glucosidase (29.9 IU g−1 at 6 days. With an inoculum load of 108 spores g−1, the amount of exoglucanase produced by the fungus considerably exceeds that produced with 104 spores g−1. Xylanases and cellulases purified from filtrates of the cultures were investigated to hydrolyze a bagasse pulp prepared with alkaline peroxide. Xylanase or sulphuric acid were used as pretreatments for xylan removal, increasing the cellulase performance on pulp bagasse. However, results revealed that the removal of hemicellulose is not the only main factor limiting the cellulose hydrolysis. Conclusion: Results indicate that the xylanase action on alkaline-pretreated sugar cane bagasse enhances the cellulolytic effect promoted by a commercial cellulase. This study thus presents an evaluation of the

  15. Mutagenesis of squash (Cucurbita moschata) glycerol-3-phosphate acyltransferase (GPAT) to produce an enzyme with altered substrate selectivity.

    Science.gov (United States)

    Hayman, M W; Fawcett, T; Schierer, T F; Simon, J W; Kroon, J T; Gilroy, J S; Rice, D W; Rafferty, J; Turnbull, A P; Sedelnikova, S E; Slabas, A R

    2000-12-01

    In an attempt to rationalize the relationship between structure and substrate selectivity of glycerol-3-phosphate acyltransferase (GPAT, 1AT, EC 2.3.1.15) we have cloned a number of cDNAs into the pET overexpression system using a PCR-based approach. Following assay of the recombinant enzyme we noted that the substrate selectivity of the squash (Cucurbita moschata) enzyme had altered dramatically. This form of GPAT has now been crystallized and its full three-dimensional structure elucidated. Since we now have two forms of the enzyme that display different substrate selectivities this should provide a powerful tool to determine the basis of the selectivity changes. Kinetic and structural analyses are currently being performed to rationalize the changes which have taken place.

  16. Structure of branching enzyme- and amylomaltase modified starch produced from well-defined amylose to amylopectin substrates

    DEFF Research Database (Denmark)

    Sorndecha, Waraporn; Sagnelli, Domenico; Meier, Sebastian;

    2016-01-01

    Thermostable branching enzyme (BE, EC 2.4.1.18) from Rhodothermus obamensis in combination with amylomaltase (AM, EC 2.4.1.25) from Thermus thermophilus was used to modify starch structure exploring potentials to extensively increase the number of branch points in starch. Amylose is an important...... constituent in starch and the effect of amylose on enzyme catalysis was investigated using amylose-only barley starch (AO) and waxy maize starch (WX) in well-defined ratios. All products were analysed for amylopectin chain length distribution, α-1,6 glucosidic linkages content, molar mass distribution...... and digestibility by using rat intestinal α-glucosidases. For each enzyme treatment series, increased AO content resulted in a higher rate of α-1,6 glucosidic linkage formation but as an effect of the very low initial branching of the AO, the final content of α-1,6 glucosidic linkages was slightly lower as compared...

  17. The Probiotic Lactobacillus johnsonii NCC 533 produces high-molecular-mass inulin from sucrose by using an inulosucrase enzyme

    NARCIS (Netherlands)

    Anwar, Munir A.; Kralj, Slavko; van der Maarel, Marc J. E. C.; Dijkhuizen, Lubbert

    2008-01-01

    Fructansucrase enzymes polymerize the fructose moiety of sucrose into levan or inulin fructans, with beta(2-6) and beta(2-1) linkages, respectively. The probiotic bacterium Lactobacillus johnsonii strain NCC 533 possesses a single fructansucrase gene (open reading frame AAS08734) annotated as a puta

  18. 酱香型大曲酶系与大曲中微生物产酶关系的研究%The Relations between Enzyme System in Jiangxiang Daqu and Enzyme Produced by Microbial Metabolism

    Institute of Scientific and Technical Information of China (English)

    王晓丹; 胡宝东; 班世栋; 肖蓓; 邱树毅

    2015-01-01

    Jiangxiang Daqu, produced by wheat, is a block starter containing a variety of fungi and enzymes. With the deep exploration of Ji-angxiang Daqu, people know more about Jiangxiang Daqu gradually. The importance of Daqu enzyme system has been highlighted. A large amount of enzyme is produced by microbial metabolism in Daqu. Accordingly, there is surely a direct relation between Daqu enzyme system and microbes in Daqu. In this experiment, the activities of acidic protease, glucoamylase, cellulase, pectinase, lipase in enzyme system in Ji-angxiang Daqu were measured. Enzyme production test was carried with 48 bacteria strains and 35 fungus strains which were screened from Ji-angxiang Daqu, and the varieties and the activities of the produced enzyme were determined at the same time. The results suggested that, all the screened bacteria strains and fungi strains could produce enzyme, and strains with high-yield of enzyme could be used for the preparation of in-tensified Daqu. The physiochemical indexes of Jiangxiang Daqu could indirectly reflect the relation between Daqu enzyme system and the mi-crobes in Daqu. This study provided theoretical evidence for the optimization of Daqu-making techniques and the preparation of intensified Daqu.%酱香型大曲是以小麦为原料制成的含有多种菌类和酶类的曲块.随着对酱香型大曲研究的深入,人们对酱香型大曲的认识也在逐渐加深.酱香型大曲酶系的重要性也就凸显出来.酱香型大曲中微生物代谢产生大量的酶,酱香型大曲酶系和大曲中微生物必定存在着直接的关联性.本实验对酱香型大曲酶系中酸性蛋白酶、糖化酶、纤维素酶、果胶酶和脂肪酶进行活力测定,对从酱香型大曲中筛选出的48株细菌和35株霉菌进行产酶试验,并对产酶种类、酶活大小进行测定.筛选出的48株细菌和35株霉菌大都可以产酶,产酶量高的菌株可以用于强化大曲的制备.酱香型大曲的

  19. Application of alkaline thermo-stable lipase(s) enzyme produced from irradiated microbial isolate in the field of detergent technology

    International Nuclear Information System (INIS)

    Due to continuous demand for manufacture of high quality, low coast industrial detergents containing lipolytic enzymes and due to continuous accumulation of enviro-agro-industrial wastes which are good and suitable conditions for growth and reproduction of pathogenic microorganisms, our study aims at isolating thermoalkalophilic lipase producer microorganisms from enviro-agro-industrial wastes and selection of the most potent isolate for studying physiological conditions controlling enzyme formation also purification characterization and some applications on purified and crude enzyme as bio-detergent. Some environmental and industrial wastes were collected from different places. The industrial wastes include, cotton seed, soyabean, sun flower, lin seed and olive oil wastes. Environmental wastes include poultry and fish wastes, all these wastes were dried at 70 degree C, grounded and used for isolation of microorganisms and lipase(s) production.Nine thermoalkalophilic bacterial isolates were isolated from enviro-agro-industrial wastes at ph 11.5 and 70 degree C. They were purified and screening for their ability of thermoalkalo-stable lipase(s) formation, this is followed by examining the effect of different nutritional media and exposure of bacterial isolates to different doses of gamma irradiation and the influence of these radiation on lipase(s) productivity by these isolates. From the results it was found that.1- The most potent lipase(s) forming bacterial isolates were isolates number B2 and B3 which cultivated on medium A amended with fish-wastes as being the best nutritional medium for enzyme formation. 2-Bacterial isolate B2 finally was selected as being the most potent lipase(s) forming bacterial isolate cultivated on fish-wastes and yeast extract (in tap water) and identified according to key's of Bergey Manual of Systematic Bacteriology (1984) as being Bacillus brevis B2.The optimum culture conditions for maximum biosynthesis of extracellular lipase

  20. The Epl1 and Sm1 proteins from Trichoderma atroviride and Trichoderma virens differentially modulate systemic disease resistance against different life style pathogens in Solanum lycopersicum

    Directory of Open Access Journals (Sweden)

    Miguel Angel eSalas-Marina

    2015-02-01

    Full Text Available Fungi belonging to the genus Trichoderma, commonly found in soil or colonizing plant roots, exert beneficial effects on plants, including the promotion of growth and the induction of resistance to disease. T. virens and T. atroviride secrete the proteins Sm1 and Epl1, respectively, which elicit local and systemic disease resistance in plants. In this work, we show that these fungi promote growth in tomato (Solanum lycopersicum plants. T. virens was more effective than T. atroviride in promoting biomass gain, and both fungi were capable of inducing systemic protection in tomato against Alternaria solani, Botrytis cinerea, and Pseudomonas syringae pv. tomato (Pst DC3000. Deletion (KO of epl1 in T. atroviride resulted in diminished systemic protection against A. solani and B. cinerea, whereas the T. virens sm1 KO strain was less effective in protecting tomato against Pst DC3000 and B. cinerea. Importantly, over-expression (OE of epl1 and sm1 led to an increase in disease resistance against all tested pathogens. Although the Trichoderma WT strains induced both systemic acquired resistance (SAR- and induced systemic resistance (ISR-related genes in tomato, inoculation of plants with OE and KO strains revealed that Epl1 and Sm1 play a minor role in the induction of these genes. However, we found that Epl1 and Sm1 induce the expression of a peroxidase and an α-dioxygenase encoding genes, respectively, which could be important for tomato protection by Trichoderma spp. Altogether, these observations indicate that colonization by beneficial and/or infection by pathogenic microorganisms dictates many of the outcomes in plants, which are more complex than previously thought.

  1. Familiar Stranger: Ecological Genomics of the Model Saprotroph and Industrial Enzyme Producer Trichoderma reesei Breaks the Stereotypes.

    Science.gov (United States)

    Druzhinina, I S; Kubicek, C P

    2016-01-01

    The filamentous fungus Trichoderma reesei (Hypocreales, Ascomycota) has properties of an efficient cell factory for protein production that is exploited by the enzyme industry, particularly with respect to cellulase and hemicellulase formation. Under conditions of industrial fermentations it yields more than 100g secreted protein L(-1). Consequently, T. reesei has been intensively studied in the 20th century. Most of these investigations focused on the biochemical characteristics of its cellulases and hemicellulases, on the improvement of their properties by protein engineering, and on enhanced enzyme production by recombinant strategies. However, as the fungus is rare in nature, its ecology remained unknown. The breakthrough in the understanding of the fundamental biology of T. reesei only happened during 2000s-2010s. In this review, we compile the current knowledge on T. reesei ecology, physiology, and genomics to present a holistic view on the natural behavior of the organism. This is not only critical for science-driven further improvement of the biotechnological applications of this fungus, but also renders T. reesei as an attractive model of filamentous fungi with superior saprotrophic abilities. PMID:27261782

  2. Verticase:a Fibrinolytic Enzyme Produced by Verticillium sp.Tj33,an Endophyte of Trachelospermum jasminoides

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Plant endophytes are among the most important resources of biologically active metabolites.Twenty-three endophyte strains residing in Trachelospermum jasminoides were cultivated In with the cultures assayed for the fibrinolytic substance production.As a result,the culture of Verticillium sp.Tj33 was shown to be the most active.A fibrinolytic enzyme designated as verticase was subsequently purified from the supernatant of Verticillium sp.culture broth by a combination of DEAE-52,Sephadex G-75 and hydrophobic column chromatographies.Verticase,with its molecular mass of 31 kDa and pl of 8.5,was demonstrated to be homogeneous by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectric focusing electrophoresis.Verticase is an enzyme that hydrolyzes fibrin directly without activation of plaminogen.It was stable in a broad pH range from 4 through to 11 with the optimal reaction pH value and temperature shown to be around 9-10 and 50-60℃,respectively.The fibrinolytic activity of verticase was severely inhibited by phenylmethylsulfony fluoride,Indicating that verticase was a serine protease.

  3. GROWTH AND ENZYME PRODUCTION DURING CONTINUOUS CULTURES OF A HIGH AMYLASE-PRODUCING VARIANT OF Aspergillus Oryzae

    Directory of Open Access Journals (Sweden)

    T.C. Zangirolami

    2002-03-01

    Full Text Available Growth and product formation by a selected variant of Aspergillus oryzae showing high alpha-amylase production was studied in continuous cultivations carried out at six different specific growth rates, using glucose as the growth-limiting nutrient. The analysis of the steady-state data revealed that the variant and wild-type strains were similar with respect to glucose uptake system and stoichiometric coefficients. However, the variant was capable of maintaining an enzyme production as high as 40 FAUgDW-1h-1 at a dilution rate of 0.2 h-1, while the wild-type strain reached a maximum specific alpha-amylase production rate of 17 FAUgDW-1h-1 at a dilution rate of 0.1 h-1. Using a morphologically structured model originally proposed for the wild-type strain, it was possible to describe enzyme production, biomass formation and glucose consumption after modification of a few parameters to adjust the model to the characteristics of the selected variant.

  4. Application of Trichoderma harzianum (T22) and Trichoderma atroviride (P1) as plant growth promoters, and their compatibility with copper oxychloride

    Institute of Scientific and Technical Information of China (English)

    Francesco Vinale; Gaetano D' Ambrosio; Khalid Abadi; Felice Scala; Roberta Marra; David Turrà; Sheridan L Woo; Matteo Lorito

    2004-01-01

    @@ Trichoderma strains are used in agriculture because they provide to the plants the following benefits:i) are rhizosphere competence and establish stable rhizosphere microbial communities; ii) control plant disease caused by pathogenic and competitive microflora, by using a variety of mechanisms; iii)improve vegetative growth, root development and yield; iv) make nutrients more available to the plant. In this work we have investigated the ability of T. harzianum T22 and T. atroviride P1 to improve plant growth of locally important horticultural crops: lettuce, tomatoes and peppers and to prevent disease in the greenhouse and field. The effect of the Trichoderma treatment was evaluated by determining the weight of fresh and dry roots and above ground plant biomass, measuring plants height, counting the number of emerged leaves (lettuce, tomatoes and peppers) and quantifying production (tomatoes and peppers). No disease symptoms were found during production, although Fusarium sp. strains pathogenic to tomato were detected in the soil. Compounds containing copper oxychloride are frequently used for fungal disease control in agriculture. In order to investigate the compatibility of T. harzianum T22 and T. atroviride P1 with copper oxychloride applications, the effect on mycelia growth was monitored in both liquid and solid medium. In general, the tests indicated a high level of tolerance of the Trichoderma strains to concentrations of copper oxychloride varying from 0.1 to 5 mmol/L.

  5. Multiple forms of pectin-degrading enzymes produced by intersterile groups P, S and F of Heterobasidion annosum (Fr.) Bref.

    OpenAIRE

    Comparini, C; L. CECERE; Capretti, P.; A. SCALA

    2000-01-01

    The time-course of polygalacturonase (PG) and pectin lyase (PNL) activities shown in vitro by several isolates belonging to the intersterile groups (IGs) S and F of Heterobasidion annosum are reported and discussed in relation to their mycelial growth and the changes in the pH and viscosity of the growth medium they produce. IG-S, characterized by a narrow host range, always produced low levels of enzymatic activity. IG-F grew more abundantly and faster than IG-P and IG-S. In the nutrient med...

  6. Endophytic fungi found in association with Bacopa monnieri as potential producers of industrial enzymes and antimicrobial bioactive compounds

    Directory of Open Access Journals (Sweden)

    Meenu Katoch

    2014-10-01

    Full Text Available This study aimed to screen the endophytic fungal species of ethano-medicinal plant Bacopa monnieri (L. Pennell for their ability to produce antimicrobial substances against Bacillus subtilis, Pseudomonas aeroginosa, Salmonella typhimurium, Escherichia coli, Klebsiella pneumonia, Staphylococcus aureus, and Candida albicans. Endophytes were also screened for their ability to produce amylase, cellulase, protease and lipase to evaluate their ecological role within the host plant. Twenty-six endophytes were isolated and seventeen were identified. All the isolated endophytes exhibited amylolytic activity. Lipolytic, cellulolytic, proteolytic activity was shown by 98, 28 and 31% isolates, respectively. Similarly, all the endophytes (100% exhibited significant antimicrobial activity against K. pneumonia, while seventeen endophytes (89.5% were active against S. aureus. Fourteen endophytes (78.9% showed significant antimicrobial activity against B. subtilis and C. albicans. Eleven (57.8%, nine (50%, four (21% endophytes were active against S. typhimurium, E. coli and P. aeruginosa, respectively.

  7. Leucoagaricus gongylophorus Produces Diverse Enzymes for the Degradation of Recalcitrant Plant Polymers in Leaf-Cutter Ant Fungus Gardens

    Energy Technology Data Exchange (ETDEWEB)

    Aylward, Frank O. [Univ. of Wisconsin, Madison, WI (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burnum-Johnson, Kristin E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tringe, Susannah G. [Dept. of Energy Joint Genome Inst., Walnut Creek, CA (United States); Teiling, Clotilde [Roche Diagnostics, Indianapolis, IN (United States); Tremmel, Daniel [Univ. of Wisconsin, Madison, WI (United States); Moeller, Joseph [Univ. of Wisconsin, Madison, WI (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Scott, Jarrod J. [Univ. of Wisconsin, Madison, WI (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Barry, Kerrie W. [Dept. of Energy Joint Genome Inst., Walnut Creek, CA (United States); Piehowski, Paul D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nicora, Carrie D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Malfatti, Stephanie [Dept. of Energy Joint Genome Inst., Walnut Creek, CA (United States); Monroe, Matthew E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Purvine, Samuel O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Goodwin, Lynne A. [Dept. of Energy Joint Genome Inst., Walnut Creek, CA (United States); Smith, Richard D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weinstock, George [Washington Univ. School of Medicine, St. Louis, MS (United States); Gerardo, Nicole [Emory Univ., Atlanta, GA (United States); Suen, Garret [Dept. of Energy Joint Genome Inst., Walnut Creek, CA (United States); Lipton, Mary S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Currie, Cameron R. [Univ. of Wisconsin, Madison, WI (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smothsonian Tropical Research Inst., Balboa (Panama)

    2013-06-12

    Plants represent a large reservoir of organic carbon comprised largely of recalcitrant polymers that most metazoans are unable to deconstruct. Many herbivores gain access to nutrients in this material indirectly by associating with microbial symbionts, and leaf-cutter ants are a paradigmatic example. These ants use fresh foliar biomass as manure to cultivate fungus gardens composed primarily of Leucoagaricus gongylophorus, a basidiomycetous symbiont that produces specialized hyphal swellings that serve as a food source for the host ant colony. Although leaf-cutter ants are conspicuous herbivores that contribute substantially to carbon turnover in Neotropical ecosystems, the process through which plant biomass is degraded in their fungus gardens is not well understood. Here we present the first draft genome of L. gongylophorus, and using genomic, metaproteomic, and phylogenetic tools we investigate its role in lignocellulose degradation in the fungus gardens of both Atta cephalotes and Acromyrmex echinatior leaf-cutter ants. We show that L. gongylophorus produces a diversity of lignocellulases in fungus gardens, and is likely the primary driver of plant biomass degradation in these ecosystems. We also show that this fungus produces distinct sets of lignocellulases throughout the different stages of biomass degradation, including numerous cellulases and laccases that may be playing an important but previously uncharacterized role in lignocellulose degradation. Our study provides a comprehensive analysis of plant biomass degradation in leaf-cutter ant fungus gardens and provides insight into the molecular dynamics underlying the symbiosis between these dominant herbivores and their obligate fungal cultivar.

  8. Expression of steroidogenic enzymes and their transcription factors in cortisol-producing adrenocortical adenomas: immunohistochemical analysis and quantitative real-time polymerase chain reaction studies.

    Science.gov (United States)

    Kubota-Nakayama, Fumie; Nakamura, Yasuhiro; Konosu-Fukaya, Sachiko; Azmahani, Abdullah; Ise, Kazue; Yamazaki, Yuto; Kitawaki, Yuko; Felizola, Saulo J A; Ono, Yoshikiyo; Omata, Kei; Morimoto, Ryo; Iwama, Noriyuki; Satoh, Fumitoshi; Sasano, Hironobu

    2016-08-01

    Adrenal Cushing syndrome (CS) is caused by the overproduction of cortisol in adrenocortical tumors including adrenal cortisol-producing adenoma (CPA). In CS, steroidogenic enzymes such as 17α-hydroxylase/17, 20-lase (CYP17A1), 3β-hydroxysteroid dehydrogenase (HSD3B), and 11β-hydroxylase (CYP11B1) are abundantly expressed in tumor cells. In addition, several transcriptional factors have been reported to play pivotal roles in the regulation of these enzymes in CPA, but their correlations with those enzymes above have still remained largely unknown. Therefore, in this study, we examined the status of steroidogenic enzymes and their transcriptional factors in 78 and 15 CPA cases by using immunohistochemistry and quantitative real-time polymerase chain reaction (qPCR), respectively. Immunoreactivity of HSD3B2, CYP11B1, CYP17A1, steroidogenic factor-1 (SF1[NR5A1]), GATA6, and nerve growth factor induced-B (NGFIB[NR4A1]) was detected in tumor cells. Results of qPCR analysis revealed that expression of HSD3B2 mRNA was significantly higher than that of HSD3B1, and CYP11B1 mRNA was significantly higher than CYP11B2. In addition, the expression of CYP11B1 mRNA was positively correlated with those of NR5A1, GATA6, and NR4A1. These results all indicated that HSD3B2 but not HSD3B1 was mainly involved in cortisol overproduction in CPA. In addition, NR5A1, GATA6, and NR4A1 were all considered to play important roles in cortisol overproduction through regulating CYP11B1 gene transcription. PMID:27085553

  9. Enzymes produced by halotolerant spore-forming gram-positive bacterial strains isolated from a resting habitat (Restinga de Jurubatiba) in Rio de Janeiro, Brazil: focus on proteases.

    Science.gov (United States)

    D Santos, Anderson Fragoso; Pacheco, Clarissa Almeida; Valle, Roberta D Santos; Seldin, Lucy; D Santos, André Luis Souza

    2014-12-01

    The screening for hydrolases-producing, halotolerant, and spore-forming gram-positive bacteria from the root, rhizosphere, and non-rhizosphere soil of Blutaparon portulacoides, a plant found in the Restinga de Jurubatiba located at the northern region of Rio de Janeiro State, Brazil, resulted in the isolation of 22 strains. These strains were identified as Halobacillus blutaparonensis (n = 2), Oceanobacillus picturae (n = 5), and Oceanobacillus iheyensis (n = 15), and all showed the ability to produce different extracellular enzymes. A total of 20 isolates (90.9 %) showed activity for protease, 5 (22.7 %) for phytase, 3 (13.6 %) for cellulase, and 2 (9.1 %) for amylase. Some bacterial strains were capable of producing three (13.6 %) or two (9.1 %) distinct hydrolytic enzymes. However, no bacterial strain with ability to produce esterase and DNase was observed. The isolate designated M9, belonging to the species H. blutaparonensis, was the best producer of protease and also yielded amylase and phytase. This strain was chosen for further studies regarding its protease activity. The M9 strain produced similar amounts of protease when grown either without or with different NaCl concentrations (from 0.5 to 10 %). A simple inspection of the cell-free culture supernatant by gelatin-sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed the presence of three major alkaline proteases of 40, 50, and 70 kDa, which were fully inhibited by phenylmethylsulfonyl fluoride (PMSF) and tosyl-L-phenylalanine chloromethyl ketone (TPCK) (two classical serine protease inhibitors). The secreted proteases were detected in a wide range of temperature (from 4 to 45 °C) and their hydrolytic activities were stimulated by NaCl (up to 10 %). The serine proteases produced by the M9 strain cleaved gelatin, casein, albumin, and hemoglobin, however, in different extensions. Collectively, these results suggest the potential use of the M9 strain in biotechnological

  10. Identification of growth stage molecular markers in Trichoderma sp. 'atroviride type B' and their potential application in monitoring fungal growth and development in soil.

    Science.gov (United States)

    Mendoza-Mendoza, Artemio; Steyaert, Johanna; Nieto-Jacobo, Maria Fernanda; Holyoake, Andrew; Braithwaite, Mark; Stewart, Alison

    2015-11-01

    Several members of the genus Trichoderma are biocontrol agents of soil-borne fungal plant pathogens. The effectiveness of biocontrol agents depends heavily on how they perform in the complex field environment. Therefore, the ability to monitor and track Trichoderma within the environment is essential to understanding biocontrol efficacy. The objectives of this work were to: (a) identify key genes involved in Trichoderma sp. 'atroviride type B' morphogenesis; (b) develop a robust RNA isolation method from soil; and (c) develop molecular marker assays for characterizing morphogenesis whilst in the soil environment. Four cDNA libraries corresponding to conidia, germination, vegetative growth and conidiogenesis were created, and the genes identified by sequencing. Stage specificity of the different genes was confirmed by either Northern blot or quantitative reverse-transcriptase PCR (qRT-PCR) analysis using RNA from the four stages. con10, a conidial-specific gene, was observed in conidia, as well as one gene also involved in subsequent stages of germination (L-lactate/malate dehydrogenase encoding gene). The germination stage revealed high expression rates of genes involved in amino acid and protein biosynthesis, while in the vegetative-growth stage, genes involved in differentiation, including the mitogen-activated protein kinase kinase similar to Kpp7 from Ustilago maydis and the orthologue to stuA from Aspergillus nidulans, were preferentially expressed. Genes involved in cell-wall synthesis were expressed during conidiogenesis. We standardized total RNA isolation from Trichoderma sp. 'atroviride type B' growing in soil and then examined the expression profiles of selected genes using qRT-PCR. The results suggested that the relative expression patterns were cyclic and not accumulative.

  11. Quality Of Cloudy Plum Juice Produced From Fresh Fruit Of Prunus Domestica L. – The Effect Of Cultivar And Enzyme Treatment

    Directory of Open Access Journals (Sweden)

    Zbrzeźniak Monika

    2015-12-01

    Full Text Available The quality of cloudy juices produced from two plum cultivars varied in chemical characteristics and native polyphenol oxidase (PPO activity, and was studied in relation to specific pectinolytic activity of enzyme preparations used for fresh fruit maceration before pressing. Process effectiveness expressed as juice yield, turbidity and the rate of transfer of anthocyanins and polyphenols were determined for five different enzyme preparations, whose activity was also analysed. Juice yields obtained after 1 hour mash maceration (50 ºC, 100 g·t−1 were between 86.6 and 95.4%. The anthocyanins content of the obtained juices strongly depended on the cultivar and ranged from 26 to 50 mg·L−1 for ‘Promis’, and from 269 to 289 mg·L−1 for ‘Čačanska Najbolja’, which could be related to the differences in the measured PPO activity (175.4 and 79.8 nkat·g−1, respectively. The type of enzyme preparation strongly affected the degradation rate of anthocyanins during juice processing. Peonidin-3-rutinoside proved to be the most stable during plum juice production in contrast to cyanidin-3-glucoside. Irrespectively of the cultivar, the juice prepared with the mixture of Rohapect PTE + Rohament PL (2 : 1 showed the highest turbidity among the investigated combinations. The results suggest that for the production of cloudy plum juice use of a preparation with low pectin methyl esterase and polygalacturonase activities and high pectin lyase activity could be recommended.

  12. Purification and characterization of an anti-cancer enzyme produced by marine Vibrio Costicola under a novel solid state fermentation process

    Directory of Open Access Journals (Sweden)

    G. Nagendra Prabhu

    1999-01-01

    Full Text Available L - Glutaminase, a therapeutically and industrially important enzyme, was produced from marine Vibrio costicola by a novel solid state fermentation process using polystyrene beads as inert support. The new fermentation system offered several advantages over the conventional systems, such as the yield of leachate with minimum viscosity and high specific activity for the target product besides facilitating the easy estimation of biomass. The enzyme thus produced was purified and characterised. It was active at physiological pH, showed high substrate specificity towards L - glutamine and had a Km value of 7.4 x 10-2 M. It also exhibited high salt and temperature tolerance indicating good scope for its industrial and therapeutic applications.O L - Glutaminase, uma enzima terapêutica industrialmente importante foi produzida a partir do Vibrio costicola marinho. Por um processo de fermentação no estado sólido, em particular contas de poliestireno foram utilizadas como suporte inerte. O novo sistema de fermentação ofereceu várias vantagens sobre os sistemas convencionais, como rendimento de "leachate" com viscosidade mínima e atividade específica alta para o produto; facilidade a estimação da biomassa. A enzima assim produzida foi purificada e caracterizada. A enzima apresentou atividade elevada em pH fisiológico e alta especificidade ao substrato em direção a L - glutamina com um valor Km de 7.4 x 10-2 M. A enzima também exibiu alta tolerância ao sal e temperatura demonstrando ser um bom indicador para aplicações terapêuticas e industriais.

  13. The expression of a xylanase targeted to ER-protein bodies provides a simple strategy to produce active insoluble enzyme polymers in tobacco plants.

    Directory of Open Access Journals (Sweden)

    Immaculada Llop-Tous

    Full Text Available BACKGROUND: Xylanases deserve particular attention due to their potential application in the feed, pulp bleaching and paper industries. We have developed here an efficient system for the production of an active xylanase in tobacco plants fused to a proline-rich domain (Zera of the maize storage protein γ-zein. Zera is a self-assembling domain able to form protein aggregates in vivo packed in newly formed endoplasmic reticulum-derived organelles known as protein bodies (PBs. METHODOLOGY/PRINCIPAL FINDINGS: Tobacco leaves were transiently transformed with a binary vector containing the Zera-xylanase coding region, which was optimized for plant expression, under the control of the 35S CaMV promoter. The fusion protein was efficiently expressed and stored in dense PBs, resulting in yields of up to 9% of total protein. Zera-xylanase was post-translationally modified with high-mannose-type glycans. Xylanase fused to Zera was biologically active not only when solubilized from PBs but also in its insoluble form. The resistance of insoluble Zera-xylanase to trypsin digestion demonstrated that the correct folding of xylanase in PBs was not impaired by Zera oligomerization. The activity of insoluble Zera-xylanase was enhanced when substrate accessibility was facilitated by physical treatments such as ultrasound. Moreover, we found that the thermostability of the enzyme was improved when Zera was fused to the C-terminus of xylanase. CONCLUSION/SIGNIFICANCE: In the present work we have successfully produced an active insoluble aggregate of xylanase fused to Zera in plants. Zera-xylanase chimeric protein accumulates within ER-derived protein bodies as active aggregates that can easily be recovered by a simple density-based downstream process. The production of insoluble active Zera-xylanase protein in tobacco outlines the potential of Zera as a fusion partner for producing enzymes of biotechnological relevance. Zera-PBs could thus become efficient and low

  14. Expression of androgen-producing enzyme genes and testosterone concentration in Angus and Nellore heifers with high and low ovarian follicle count.

    Science.gov (United States)

    Loureiro, Bárbara; Ereno, Ronaldo L; Favoreto, Mauricio G; Barros, Ciro M

    2016-07-15

    Follicle population is important when animals are used in assisted reproductive programs. Bos indicus animals have more follicles per follicular wave than Bos taurus animals. On the other hand, B taurus animals present better fertility when compared with B indicus animals. Androgens are positively related with the number of antral follicles; moreover, they increase growth factor expression in granulose cells and oocytes. Experimentation was designed to compare testosterone concentration in plasma, and follicular fluid and androgen enzymes mRNA expression (CYP11A1, CYP17A1, 3BHSD, and 17BHSD) in follicles from Angus and Nellore heifers. Heifers were assigned into two groups according to the number of follicles: low and high follicle count groups. Increased testosterone concentration was measured in both plasma and follicular fluid of Angus heifers. However, there was no difference within groups. Expression of CYP11A1 gene was higher in follicles from Angus heifers; however, there was no difference within groups. Expression of CYP17A1, 3BHSD, and 17BHSD genes was higher in follicles from Nellore heifers, and expression of CYP17A1 and 3BHSD genes was also higher in HFC groups from both breeds. It was found that Nellore heifers have more antral follicles than Angus heifers. Testosterone concentration was higher in Angus heifers; this increase could be associated with the increased mRNA expression of CYP11A1. Increased expression of androgen-producing enzyme genes (CYP17A1, 3BHSD, and 17BHSD) was detected in Nellore heifers. It can be suggested that testosterone is acting through different mechanisms to increase follicle development in Nellore and improve fertility in Angus heifers. PMID:26948295

  15. Variations on conserved signaling pathways in biocontrol and development:G protein and MAPK genes of Trichoderma.atroviride and T.virens

    Institute of Scientific and Technical Information of China (English)

    Benjiamin A Horwitz

    2004-01-01

    @@ Filamentous fungi employ conserved eukaryotic signaling pathway to detect and respond to environmental signals, including the presence of the host. Genetic experiment in which a particular signaling protein is lost, or its activity enhanced, have defined some of the function of heterotrimeric G proteins and MAP kinases in development and virulence. A hallmark of these studies is that orthologs in different species may have different functions. Antagonistic fungal-fungal interactions form the basis for biological control of plant disease. These interactions may employ novel modes of regulation by conserved signaling elements. Tag1, a G protein a subunit of Trichoderma. atroviride belonging to fungal Gi class, is involved in repression of sporulation and hyphal coiling(1). Deletion of ortholog of this gene, TgaA, in Trichoderma (Gliocladium) virens, however, did not affect sporulation and growth, yet tgaA mutants are unable to parasitize S. rolfsii sclerotia(2). Mutation of a second G αsubunit gene is now under study. TmkA, a MAPK gene of T. virens, is involved in biocontrol properties and repression of conidiation (3). Using suppression-subtraction hybridization and other approaches, we are beginning to identify additional elements of the signaling cascades and their downsteam targets. The role of G protein and MAPK genes are sometimes specific to a particular host fungus or to parasitism of mycelia or sclerotia (2, 3). Also of relevance to biocontrol, signal transduction pathway provide a means to alter the balance between sporulation, mycelial growth and hyphal coiling.

  16. 产KPC酶肺炎克雷伯菌检测及耐药性研究%Detection of Klebsiella Pneumoniae Producing KPC Enzymes and Resistance Research

    Institute of Scientific and Technical Information of China (English)

    刘静; 邵冬华

    2012-01-01

    目的 探讨我院产肺炎克雷伯菌碳青霉烯酶( KPC)肺炎克雷伯菌对碳青霉烯类药物耐药率升高的原因.方法 对2009-2011年我院各类临床标本中分离的肺炎克雷伯菌进行统计及药敏结果分析.对2010年1月-2011年12月间分离的耐碳青霉烯类药物的肺炎克雷伯菌做改良Hodge试验和金属β-内酰胺酶检测,阳性菌株筛查KPC酶及耐药细菌(NDM-1)基因.结果 2009、2010年肺炎克雷伯菌对亚胺培南仍保持高敏感性,对2010年分离的8株耐亚胺培南的肺炎克雷伯菌做改良Hodge试验均为阴性(2009年菌株未保留).2011年肺炎克雷伯菌对碳青霉烯类药物的耐药性显著升高,47株耐碳青霉烯类药物的肺炎克雷伯菌改良Hodge试验阳性,KPC酶阳性;2株耐碳青霉烯类药物的肺炎克雷伯菌金属β-内酰胺酶阳性;所有菌株NDM-1基因检测均为阴性.结论 由KPC酶介导的耐碳青霉烯类药物的肺炎克雷伯菌在临床分离菌株中显著增加.KPC酶基因的出现是碳青霉烯类抗菌药物广泛应用引起的耐药基因突变,携带KPC酶的质粒存在不同种属细菌间进行转移的可能性,临床应加强监控,防止产碳青霉烯酶菌株在医院环境中暴发和流行.%Objective To explore the causes of increased resistance rate of klebsiella pneumoniae producing KPC enzymes to carbapenems. Methods Data of separated klebsiella pneumoniae in clinical collections from 2009 to December 2011 in our hospital were statistically analyzed for drug sensitivity. Separated anti-carbapenems klebsiella pneumoniae separated by our hospital during January 2010 and December 2011 underwent the modified Hodge test, metal bata lactamase detection, KPC enzyme of positive strains screening and NDM-1 encoding genes test. Results There was hypersensitivity of klebsiella pneumoniae to imipenem in 2009 and 2010, and in 2010, only 8 strains of anti-imipenem resistant klebsiella pneumoniae were found negative with the

  17. The metabolic profile of acteoside produced by human or rat intestinal bacteria or intestinal enzyme in vitro employed UPLC-Q-TOF-MS.

    Science.gov (United States)

    Cui, Qingling; Pan, Yingni; Xu, Xiaotong; Zhang, Wenjie; Wu, Xiao; Qu, Shouhe; Liu, Xiaoqiu

    2016-03-01

    Acteoside, the main and representative phenylethanoid glycosides of Herba Cistanches, possesses wide bioactivities but low oral bioavailability. It may serve as the prodrug and be converted into the active forms in gastrointestinal tract, which mainly occurred in intestinal tract composed of intestinal bacteria and intestinal enzyme. Intestinal bacteria, a new drug target, take a significant role on exerting pharmacological effects of drugs by oral administration. In this paper, acteoside was incubated with human or rat intestinal bacteria or rat intestinal enzyme for 36 h to seek metabolites responsible for pharmacodynamics. The samples were analyzed by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Besides the parent compound, 14 metabolites were detected and identified based on their retention times and fragmentation patterns in their MS spectra including 8 degradation metabolites, 2 isomers in intestinal bacteria and intestinal enzyme samples and 4 parent metabolites only found in intestinal enzymes. The metabolic pathway of acteoside was thus proposed. Identification of these metabolites of acteoside by the intestinal bacteria or intestinal enzyme gave an insight to clarify pharmacological mechanism of traditional Chinese medicines and identify the real active molecules.

  18. Screening for and Identification of Novel Glucarpidase Producing Bacteria : Cloning and molecular characterisation of novel enzymes involved in ADEPT for cancer treatment

    NARCIS (Netherlands)

    Alqahtani, Alanood; Alyafei, Afrah; Abdallah, Fatma; Latiff, Aishah; Groves, Matthew; Dömling, Alex; Goda, Sayed

    2014-01-01

    Antibody Directed Enzyme Prodrug Therapy (ADEPT) is a novel therapy which has already been implemented in cancer therapy to solve the problem of drug resistance and lack of tumor selectivity. Repeated cycles of (ADEPT) and the use of glucarpidase in detoxification of cytotoxic methotrexate (MTX) are

  19. Molecular analysis of a Clostridium butyricum NCIMB 7423 gene encoding 4-alpha-glucanotransferase and characterization of the recombinant enzyme produced in Escherichia coli.

    Science.gov (United States)

    Goda, S K; Eissa, O; Akhtar, M; Minton, N P

    1997-10-01

    An Escherichia coli clone was detected in a Clostridium butyricum NCIMB 7423 plasmid library capable of degrading soluble amylose. Deletion subcloning of its recombinant plasmid indicated that the gene(s) responsible for amylose degradation was localized on a 1.8 kb NspHI-Scal fragment. This region was sequenced in its entirety and shown to encompass a large ORF capable of encoding a protein with a calculated molecular mass of 57,184 Da. Although the deduced amino acid sequence showed only weak similarity with known amylases, significant sequences identity was apparent with the 4-alpha-glucano-transferase enzymes of Streptococcus pneumoniae (46.9%), potato (42.9%) and E. coli (16.2%). The clostridial gene (designated maIQ) was followed by a second ORF which, through its homology to the equivalent enzymes of E. coli and S. pneumoniae, was deduced to encode maltodextrin phosphorylase (MaIP). The translation stop codon of MaIQ overlapped the translation start codon of the putative maIP gene, suggesting that the two genes may be both transcriptionally and translationally coupled. 4-alpha-Glucanotransferase catalyses a disproportionation reaction in which single or multiple glucose units from oligosaccharides are transferred to the 4-hydroxyl group of acceptor sugars. Characterization of the recombinant C. butyricum enzyme demonstrated that glucose, maltose and maltotriose could act as acceptor, whereas of the three only maltotriose could act as donor. The enzyme therefore shares properties with the E. coli MaIQ protein, but differs significantly from the glucanotransferase of Thermotoga maritima, which is unable to use maltotriose as donor or glucose as acceptor. Physiologically, the concerted action of 4-alpha-glucanotransferase and maltodextrin phosphorylase provides C. butyricum with a mechanism of utilizing amylose/maltodextrins with little drain on cellular ATP reserves. PMID:9353929

  20. Enhanced oxidation of benzo[a]pyrene by crude enzyme extracts produced during interspecific fungal interaction of Trametes versicolor and Phanerochaete chrysosporium

    Institute of Scientific and Technical Information of China (English)

    Linbo Qian; Baoliang Chen

    2012-01-01

    The effects of interspecific fungal interactions between Trametes versicolor and Phanerochaete chrysosporium on laccase activity and enzymatic oxidation of polycyclic aromatic hydrocarbons (PAHs) were investigated.A deadlock between the two mycelia rather than replacement of one fungus by another was observed on an agar medium.The laccase activity in crude enzyme extracts from interaction zones reached a maximum after a 5-day incubation,which was significantly higher than that from regions of T.versicolor or P.chrysosporium alone.The enhanced induction of laccase activity lasted longer in half nutrition than in normal nutrition.A higher potential to oxidize benzo[a]pyrene by a crude enzyme preparation extracted from the interaction zones was demonstrated.After a 48 hr incubation period,the oxidation of benzo[a]pyrene by crude enzyme extracts from interaction zones reached 26.2%,while only 9.5% of benzo[a]pyrene was oxidized by crude extracts from T.versicolor.The oxidation was promoted by the co-oxidant 2,2'-azinobis-3-ethylbenzthiazoline-6-sulphonate diammonium salt (ABTS).These findings indicate that the application of co-culturing of white-rot fungi in bioremediation is a potential ameliorating technique for the restoration of PAH-contaminated soil.

  1. Fusion of GFP to the M.EcoKI DNA methyltransferase produces a new probe of Type I DNA restriction and modification enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kai; Roberts, Gareth A.; Stephanou, Augoustinos S.; Cooper, Laurie P.; White, John H. [School of Chemistry, University of Edinburgh, The King' s Buildings, Edinburgh, EH9 3JJ (United Kingdom); Dryden, David T.F., E-mail: david.dryden@ed.ac.uk [School of Chemistry, University of Edinburgh, The King' s Buildings, Edinburgh, EH9 3JJ (United Kingdom)

    2010-07-23

    Research highlights: {yields} Successful fusion of GFP to M.EcoKI DNA methyltransferase. {yields} GFP located at C-terminal of sequence specificity subunit does not later enzyme activity. {yields} FRET confirms structural model of M.EcoKI bound to DNA. -- Abstract: We describe the fusion of enhanced green fluorescent protein to the C-terminus of the HsdS DNA sequence-specificity subunit of the Type I DNA modification methyltransferase M.EcoKI. The fusion expresses well in vivo and assembles with the two HsdM modification subunits. The fusion protein functions as a sequence-specific DNA methyltransferase protecting DNA against digestion by the EcoKI restriction endonuclease. The purified enzyme shows Foerster resonance energy transfer to fluorescently-labelled DNA duplexes containing the target sequence and to fluorescently-labelled ocr protein, a DNA mimic that binds to the M.EcoKI enzyme. Distances determined from the energy transfer experiments corroborate the structural model of M.EcoKI.

  2. Analysis of Bacterial Community and Screening and Identification of Enzyme-Producing Bacteria in Intestine of Antheraea pernyi%柞蚕肠道菌群分析及产酶菌的筛选与鉴定

    Institute of Scientific and Technical Information of China (English)

    邹昌瑞; 魏国清; 刘朝良; 朱保建; 王在贵; 杨文静

    2011-01-01

    [目的]研究柞蚕肠道菌群结构及产酶菌,探寻具有新的生理功能的微生物,用于研制微生态制剂,以提高柞蚕生产的叶丝转化率及抗病能力.[方法]采用培养法分离柞树叶饲喂的5龄柞蚕幼虫肠道细菌,通过生理生化特性结合16S rDNA系统发育分析,对其肠道细菌群落类型进行鉴定,采用筛选培养基筛选产纤维素酶、蛋白酶、脂肪酶的菌株.[结果]获得的柞蚕肠道菌有芽孢杆菌、葡萄球菌、肠杆菌,其中以芽孢杆菌为主要菌群.芽孢杆菌是肠道菌中产纤维素酶、蛋白酶的主要菌群;葡萄球菌产蛋白酶能力较弱;肠杆菌不产酶.[结论]柞蚕肠道菌与家蚕肠道菌群结构相似,筛选出的产酶菌活性较高,可以制备微生态制剂用于蚕业生产.%[Objective] The objective of this study is to isolate and identify bacterial community and enzyme-producing bacteria in intestine of Antheraea pernyi larvae and to develop microecological agents for increasing leaf-silk conversation rate and disease resistance. [ Method ] Bacteria were isolated from intestine of fifth instars Antheraea pernyi larvae reared on oak leaves by isolated culture. Intestinal bacterial community was identified according to physiological and biochemical characteristics and phylogenetic analysis based on 16S rDNA sequences. Cellulase, protease, lipase-producing strains were screened on selective medium. [Result] The intestinal bacteria isolated from Antheraea pernyi larvae belong to Bacillus, Staphylococcus and Enterobacter. Among them, Bacillus is the main bacteria and the main enzyme-producing bacteria which could produce cellulase and protease, Staphylococcus could produce protease weakly, Enterobacter couldn't produce enzyme. [Conclusion] Intestinal bacteria community of Antheraea pernyi was similar to that of Bombyx mori, which could be developed as microecological agents in sericulture for the enzyme-producing strains exhibiting high activity.

  3. Mutation of Douchi Fibrinolytic Enzyme Producing Strain Bacillus subtilis LD-8547%豆豉溶栓酶产生菌Bacillus subtilis LD-8547的诱变选育

    Institute of Scientific and Technical Information of China (English)

    袁军; 李国良; 沈榕强; 庄振宏; 杨燕凌

    2012-01-01

    为了通过诱变筛选获得豆豉溶栓酶高酶活菌株.研究以豆豉溶栓酶产生菌株Bacillus subtilis LD-8547为出发菌株,分别通过紫外线诱变和硫酸二乙酯的复合诱变,根据奶粉平板和血粉平板上菌落透明圈的大小进行初筛和复筛.并采用四肽底物测定法进行了溶栓酶的酶活力测定.结果表明,通过实验获得了产豆豉溶栓酶酶活力达18 228 U/mL的LD-8547-25菌株,比诱变出发菌株的酶活力提高了107%.为豆豉溶栓酶高酶活菌株的诱变筛选提供了有益的试验数据.%In order to obtain the strain producing Douchi fibrinolytic enzyme with higher activity. Douchi fibrinolytic enzyme producing strain Bacillus subtilis LD-8547 was treated by ultraviolet radiation and DES. After screening, a strain with high fibrinolytic enzyme activity was obtained. After five generations of the mutant, its ability to produce the enzyme was still stable. And the catalytic activity of the mutation was 18 228 U/mL approximately all the time, 1.07 times higher than that of the wild strain.

  4. Identification and characterization of CYP79D6v4, a cytochrome P450 enzyme producing aldoximes in black poplar (Populus nigra)

    OpenAIRE

    Irmisch, Sandra; Unsicker, Sybille B; Gershenzon, Jonathan; Köllner, Tobias G.

    2013-01-01

    After herbivore feeding, poplar trees produce complex volatile blends containing terpenes, green leaf volatiles, aromatics, and nitrogen-containing compounds such as aldoximes and nitriles. It has been shown recently that volatile aldoximes released from gypsy moth (Lymantria dispar) caterpillar-damaged black poplar (Populus nigra) trees attract parasitoids that are caterpillar enemies. In western balsam poplar (P. trichocarpa), volatile aldoximes are produced by 2 P450 monooxygenases, CYP79D...

  5. Kunstige Enzymer

    DEFF Research Database (Denmark)

    Bols, Mikael; Bjerre, Jeannette; Marinescu, Lavinia

    2007-01-01

    Enzymer har en enestående evne til at accelerere kemiske processer. Der forskes målrettet i at optimere enzymer baseret på cyclodextrin.......Enzymer har en enestående evne til at accelerere kemiske processer. Der forskes målrettet i at optimere enzymer baseret på cyclodextrin....

  6. 发酵香肠中微生物产生的酶及其作用%Enzyme Produced by Microorganism and Its Effect on Fermented Sausage

    Institute of Scientific and Technical Information of China (English)

    王海燕; 张春江; 罗欣

    2001-01-01

    本文阐述了发酵香肠中由微生物产生的硝酸还原酶、过氧化氢酶、蛋白酶和脂酶的作用%The function of nitrate reductase,hydrogen peroxidease,proteaseand lipase that produced by microorganism in fermented sausage were elaborated.

  7. Production of xylooligosaccharides in SSF by Bacillus subtilis KCX006 producing β-xylosidase-free endo-xylanase and multiple xylan debranching enzymes.

    Science.gov (United States)

    Reddy, Shyam Sunder; Krishnan, Chandraraj

    2016-01-01

    Xylanase and xylooligosaccharides (XOS) are employed in food and feed industries. Though xylanase production from lignocellulosic materials (LCMs) by solid-state fermentation (SSF) is well known, the XOS formed during growth is not recovered due to its conversion to xylose by β-xylosidase and subsequent bacterial metabolism. A new strain, Bacillus subtilis KCX006, was exceptionally found to synthesize β-xylosidase-free endo-xylanase and multiple xylan debranching enzymes constitutively in the presence of LCMs. Absence of β-xylosidase resulted in accumulation of XOS during growth of KCX006 on LCMs. Therefore, this strain was used for simultaneous production of xylanase and XOS from agro-residues in solid-state fermentation (SSF). Partial purification of XOS from culture supernatant using activated charcoal followed by high-performance liquid chromatography (HPLC) analysis showed xylobiose to xylotetraose formed as the major products. Among various LCM substrates, wheat bran and groundnut oil-cake supported highest xylanase and XOS production at 2158 IU/gdw and 24.92 mg/gdw, respectively. The levels of xylanase and XOS were improved by 1.5-fold (3102 IU/gdw) and 1.9-fold (48 mg/gdw), respectively, by optimization of culture conditions. PMID:25310011

  8. Bacterial Type I Glutamine Synthetase of the Rifamycin SV Producing Actinomycete, Amycolatopsis mediterranei U32, is the Only Enzyme Responsible for Glutamine Synthesis under Physiological Conditions

    Institute of Scientific and Technical Information of China (English)

    Wen-Tao PENG; Jin WANG; Ting WU; Jian-Qiang HUANG; Jui-Shen CHIAO; Guo-Ping ZHAO

    2006-01-01

    The structural gene for glutamine synthetase, glnA, from Amycolatopsis mediterranei U32 was cloned via screening a genomic library using the analog gene from Streptomyces coelicolor. The clone was functionally verified by complementing for glutamine requirement of an Escherichia coli glnA null mutant under the control of a lac promoter. Sequence analysis showed an open reading frame encoding a protein of466 amino acid residues. The deduced amino acid sequence bears significant homologies to other bacterial type I glutamine synthetases, specifically, 71% and 72% identical to the enzymes of S. coelicolor and Mycobacterium tuberculosis, respectively. Disruption of this glnA gene in A. mediterranei U32 led to glutamine auxotrophy with no detectable glutamine synthetase activity in vivo. In contrast, the cloned glnA+ gene can complement for both phenotypes in trans. It thus suggested that in A. mediterranei U32, the glnA gene encoding glutamine synthetase is uniquely responsible for in vivo glutamine synthesis under our laboratory defined physiological conditions.

  9. Production of some extracellular enzymes by a lignin peroxidase-producing brown rot fungus, Polyporus ostreiformis, and its comparative abilities for lignin degradation and dye decolorization.

    OpenAIRE

    Dey, S.; Maiti, T K; Bhattacharyya, B C

    1994-01-01

    Polyporus ostreiformis produced Mn peroxidase, acid protease, alpha-amylase, and lignin peroxidase, with maximum activities of 40, 8,300, and 4,200 U liter-1 and 50 nkat liter-1, respectively, in nitrogen-limited liquid media. The fungus removed only 18.6% lignin from rice straw in 3 weeks but effected 99% decolorization of Congo red dye in 9 days.

  10. pH值对3个根霉菌株产酶活性的影响%Enzyme-producing Abilities of Three Rhizopus Strains at Different pH Levels

    Institute of Scientific and Technical Information of China (English)

    田国政; 孙东发; 汪兴平

    2011-01-01

    The pH reaction conditions for enzyme-producing of three Rhizopus of ERh1123,ERh3421 and ERh5131,which was cultivated in culture medium with different pH value,and the activeness level of saccharified enzyme,liquefied enzyme and protease achived from aboved culture medium have been respectively measured in reactions with certain substrates,and analysed the influence of enzyme-producing by pH value.The study shows that,at optimal culture medium of pH value of 4.6~5.2,the activeness of saccharified enzymes produced by above strains can be reached at level of 1.41×102~1.59×102U/g,and liquefied enzymes 0.69×103~2.21×103U/g;and for protease the activeness can reach 1.98×103U/g ~2.58×102 U/g in culture medium with 5.8 of pH value;in reaction with certain substrates,the optimal level of pH value for saccharified enzyme was 4.6,protease 5.8,liquefied enzyme 5.2~5.8,and the activeness of enzyme of the former two,in contrast to that at condition of enzyme-producing,can be respectively improved to 1.52×102~3.21×102U/g and 2.56×102~2.97×102U/g,but no change for liquefied enzyme.Generally,there exists considerable improving for enzyme activeness levels by pH value of culture medium and of reaction liquied with substrates.%在不同的pH值培养基中培养ERh1123、ERh3421、ERh5131 3个根霉菌株,研究其产酶的pH条件,同时将得到的酶液在不同的pH值条件下与一定的底物反应,分别测定了糖化酶、液化酶、蛋白酶活性,研究了pH条件对产酶活性的影响。结果表明:菌株产糖化酶、液化酶的适宜pH为4.6~5.2,在此条件下,糖化酶的活性为1.41×102~1.59×102U/g,液化酶的活性为0.69×103~2.21×103U/g,菌株产蛋白酶的适宜pH为5.8,其活性为1.98×103U/g~2.58×102U/g;反应时糖化酶适宜的pH为4.6,蛋白酶适宜的pH为5.8,液化酶适宜的pH为5.2-5.8,反应时酶的活性与产酶条件下相比,前两种酶的活性可分别提高到1.52×102~3.21×102U/g,2.56

  11. Analysis on drug resistance in Gram-negative bacilli producing AmpC enzyme%医院感染革兰阴性杆菌产AmpC酶状况及耐药性检测分析

    Institute of Scientific and Technical Information of China (English)

    李文波; 刘琼; 卢青云; 高武; 刘丽华; 王沛; 张玉娟

    2012-01-01

    Objective To investigate the nosocomial infection status and drug resistance of Gram-negative bacilli producing ceph-alosporinaseC AmpC enzyme). Methods Strains producing AmpC lactamases were detected by three-dimensional extract test. Drug susceptibility was determined by K - B disk diffusions method. Results The overall incidence rate of strains positive with AmpC lactamases was 18. 4% (109/331). The susceptibility rate of AmpC enzyme positive strains to third-generation cephalosporins, cephamycins,monobactam and antibiotics combined with inhibitors decreased,and relatively lower to Impenem,Cefepime and Ami-kacin, with resistace rate of (2/61) ,44. 26% (27/61) and 31. 1% (19/61) respectively. Resistance rates of AmpC enzyme positive strains were obviously greater than those of negative strains. Conclusion Drug resistance of Gram-negative bacilli might be associated with AmpC enzyme. Imipenem and forth-generation cephalosporins could be considered firstly for treatment of infection caused by AmpC enzyme positive Gram-negative bacilli.%目的 探讨产头孢菌素酶(AmpC酶)革兰阴性杆菌医院内感染现状及对药物敏感性的影响.方法 对临床标本进行分离鉴定,采用K-B法对常规药物进行耐药性检测,采用美国国家临床实验室标准化委员会(NCCLS)推荐的三维法检测AmpC酶.结果 在331株革兰阴性杆菌中检出产AmpC酶109株,产酶率为18.4%,产酶菌株对第3代头孢菌素、头霉素类、环丙沙星及含酶抑制剂复合物药物敏感率下降明显,对亚胺培南、头孢吡肟、丁胺卡那耐药率较低,分别为3.28%(2/61)、44.26%(27/61)、31.1%(19/61),产酶菌株对抗菌药物的耐药率明显高于非产酶菌株.结论 革兰阴性杆菌耐药与产AmpC酶有关,治疗该菌感染应选用亚胺培南、第4代头孢菌素等.

  12. Optimization of blood collection card method/enzyme-linked immunoassay for monitoring exposure of bottlenose dolphin to brevetoxin-producing red tides.

    Science.gov (United States)

    Maucher, Jennifer M; Briggs, Lyn; Podmore, Colleen; Ramsdell, John S

    2007-01-15

    Blood collection cards have been successfully used as a tool to monitor brevetoxin (PbTx) exposure in several species, including fish, mice, and rats. Previous methanolic methods used for extracting brevetoxin from blood collection cards have shown dolphin blood to have matrix difficulties in several biological assays. To better biomonitor protected marine mammal species in the Florida area, which is historically prone to unusual mortality events caused by brevetoxin exposure, we have modified the previous extraction method to consistently recover brevetoxin with a known efficiency from dolphin blood collection card samples with minimal matrix interference. A combination of phosphate-buffered saline (PBS) with 6% MeOH and 100% acetonitrile was used to elute blood from the cellulose card and precipitate proteins, respectively. Analysis was performed using a newly developed direct enzyme-linked immunoassay (ELISA), which yields a sample limit of quantification of 1 ng PbTx-3 equiv/mL. This extraction method allowed for linear recovery of PbTx-3 spiked into dolphin blood (1-30 ng/mL) with a consistent recovery rate of 58% and has subsequently been used to monitor brevetoxins in dolphins, as well as sea turtles and manatees, in regions endemic to red tides. In addition, two known metabolites of PbTx-2 were isolated and also found to be detectable using the ELISA. The cysteine conjugate (m/z 1018) and cysteine sulfoxide conjugate (m/z 1034) were found to have linear recoveries of 87% and 66%, respectively. In summary, this method of extracting brevetoxins and their metabolites from blood collection cards, in conjunction with the ELISA detection method, is a simple and reliable way to biomonitor physiologically relevant toxin levels in protected marine animals. PMID:17310722

  13. 岱山盐场可培养嗜盐菌的多样性及其产酶活性筛选%Diversity and enzyme-producing activity of culturable halophilic bacteria in Daishan Saltern of East China

    Institute of Scientific and Technical Information of China (English)

    杨丹丹; 黎乾; 黄晶晶; 陈敏

    2012-01-01

    Soil and saline water samples were collected from the Daishan Saltern of East China, and the haiophilic bacteria were isolated and cultured by using selective media, aimed to investigate the diversity and enzyme-producing activity of culturable haiophilic bacteria in saltern environment. A total of 181 strains were isolated by culture-dependent method. Specific primers were used to amplify the 16S rRNA gene of bacteria and archaea. The operation taxonomy units (OTUs) were determined by ARDRA method, and the representative strain of each OTU was sequenced. The phyloge-netic position of all the isolated strains was determined by 16S rRNA sequencing. The results showed that the isolated 181 strains displayed 21 operational taxonomic units (OTUs) , of which, 12 OTUs belonged to haiophilic bacteria, and the others belonged to haiophilic archaea. Phyloge-netic analysis indicated that there were 7 genera presented among the haiophilic bacteria group, and 4 genera presented among the haiophilic archaea group. The dominant haiophilic strains were of Hahmonas and Haloarcida, with 46. 8% in haiophilic bacteria and 49. 1% in haiophilic archaea group, respectively. Enzyme-producing analysis indicated that most strains displayed enzyme-producing activity, including the activities of producing amylase, proteinase and lipase, and the dominant strains capable of enzyme-producing were of Haloarcula. Our results showed that in the environment of Daishan Saltern, there existed a higher diversity of haiophilic bacteria, being a source sink for screening enzyme-producing bacterial strains.%从岱山盐场采集样品,利用选择性培养基分离培养嗜盐菌,对盐田环境中可培养嗜盐菌的多样性及产酶活性进行研究.共分离得到181株嗜盐菌菌株,通过真细菌和古生菌两对通用引物扩增其16S rRNA基因,并采用限制性内切酶Hinf I进行ARDRA(amplified rDNA restriction analysis)多态性分析,共分为21个

  14. Detection of Shiga toxin-producing Escherichia coli by sandwich enzyme-linked immunosorbent assay using chicken egg yolk IgY antibodies

    Directory of Open Access Journals (Sweden)

    Yanil R Parma

    2012-06-01

    Full Text Available Enterohemorrhagic Escherichia coli (EHEC, a subset of Shiga toxin producing E. coli (STEC is associated with a spectrum of diseases that includes diarrhea, hemorrhagic colitis and a life-threatening hemolytic uremic syndrome (HUS. Regardless of serotype, Shiga toxins (Stx1 and/or Stx2 are uniformly expressed by all EHEC, and so exploitable targets for laboratory diagnosis of these pathogens. In this study, a sandwich ELISA for determination of Shiga toxin (Stx was developed using anti-Stx2 B subunit antibodies and its performance was compared with that of the Vero cell assay and a commercial immunoassay kit. Chicken IgY was used as capture antibody and a HRP-conjugated rabbit IgG as the detection antibody. The anti-Stx2B IgY was harvested from eggs laid by hens immunized with a recombinant protein fragment. Several parameters were tested in order to optimize the sandwich ELISA assay, including concentration of antibodies, type and concentration of blocking agent, and incubation temperatures. Supernatants from 42 STEC strains of different serotypes and stx variants, including stx2EDL933, stx2vha, stx2vhb, stx2g, stx1EDL933 and stx1d were tested. All Stx variants were detected by the sandwich ELISA, with a detection limit of 400 ng /ml Stx2. Twenty three strains negative for stx genes, including different bacteria species, showed no activity in Vero cell assay and produced negative results in ELISA, except for 2 strains. Our results show that anti-Stx2B IgY sandwich ELISA could be used in routine diagnosis as a rapid, specific and economic method for detection of Shiga toxin-producing E. coli.

  15. Enzymes for Pancreatic Islet Isolation Impact Chemokine-Production and Polarization of Insulin-Producing β-Cells with Reduced Functional Survival of Immunoisolated Rat Islet-Allografts as a Consequence.

    Science.gov (United States)

    de Vos, Paul; Smink, Alexandra M; Paredes, Genaro; Lakey, Jonathan R T; Kuipers, Jeroen; Giepmans, Ben N G; de Haan, Bart J; Faas, Marijke M

    2016-01-01

    The primary aim of this study was to determine whether normal variations in enzyme-activities of collagenases applied for rat-islet isolation impact longevity of encapsulated islet grafts. Also we studied the functional and immunological properties of rat islets isolated with different enzyme preparations to determine whether this impacts these parameters. Rat-islets were isolated from the pancreas with two different collagenases with commonly accepted collagenase, neutral protease, and clostripain activities. Islets had a similar and acceptable glucose-induced insulin-release profile but a profound statistical significant difference in production of the chemokines IP-10 and Gro-α. The islets were studied with nanotomy which is an EM-based technology for unbiased study of ultrastructural features of islets such as cell-cell contacts, endocrine-cell condition, ER stress, mitochondrial conditions, and cell polarization. The islet-batch with higher chemokine-production had a lower amount of polarized insulin-producing β-cells. All islets had more intercellular spaces and less interconnected areas with tight cell-cell junctions when compared to islets in the pancreas. Islet-graft function was studied by implanting encapsulated and free islet grafts in rat recipients. Alginate-based encapsulated grafts isolated with the enzyme-lot inducing higher chemokine production and lower polarization survived for a two-fold shorter period of time. The lower survival-time of the encapsulated grafts was correlated with a higher influx of inflammatory cells at 7 days after implantation. Islets from the same two batches transplanted as free unencapsulated-graft, did not show any difference in survival or function in vivo. Lack of insight in factors contributing to the current lab-to-lab variation in longevity of encapsulated islet-grafts is considered to be a threat for clinical application. Our data suggest that seemingly minor variations in activity of enzymes applied for islet

  16. Methods for producing diterpenes

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention discloses that by combining different di TPS enzymes of class I and class II different diterpenes may be produced including diterpenes not identified in nature. Surprisingly it is revealed that a di TPS enzyme of class I of one species may be combined with a di TPS enzyme...... of class II from a different species, resulting in a high diversity of diterpenes, which can be produced....

  17. 产剑麻皂苷水解酶菌株的筛选与鉴定%Screening and Identiifcation of Sisalana Saponin Hydrolytic Enzyme Producing Strains

    Institute of Scientific and Technical Information of China (English)

    邓天发; 王京博; 谢庆武

    2013-01-01

    目的筛选能酶解剑麻皂苷并释放游离剑麻皂素的菌株。方法用薄层色谱法(TLC)初筛能酶解剑麻皂苷游离出剑麻皂素的菌株,再用酶活性比色测定和高效液相色谱法(HPLC)复筛目的菌株。通过形态学观察和ITS序列测定,初步鉴定菌种。结果筛选到31株目的菌株,其中丝状真菌13株,细菌18株。丝状真菌的酶活性高于细菌。鉴定其中酶活性较高的4株真菌:菌种T1为黑曲霉,T2、T3为链孢霉属,T4为青霉属。结论 TLC可快速筛选酶解剑麻皂苷并释放游离剑麻皂素的菌种。黑曲霉、链孢霉和青霉均有较强的酶解剑麻皂苷并释放游离剑麻皂素的能力。%Objective To screen the strains which can hydrolyze the agave sisalana saponin and release the tigogenin. Methods Using the TLC assay, the strains that can hydrolyze the agave sisalana saponin and release the tigogenin were first screened out, then the destination strains were screened out again, using the enzymatic colorimetric determination and HPLC determination. By morphological observation and ITS sequencing, the strains were preliminary identified. Results 31 destination strains were screened out, among which 13 strains were filamentous fungi and 18 were bacteria. The activity of the hydrolytic enzyme of the fungi was higher than that the bacteria. The 4 fungi strains T1, T2, T3 and T4 with higher enzymatic activity were identified as Aspergillus niger, Neurospora sitophila, and Penicillium, respectively. Conclusion Using the TLC assay, the screening of the strains that can hydrolyze the agave sisalana saponin and release the tigogenin was accelerated. Aspergillus niger, Neurospora sitophila, and Penicillium all have the capacity to hydrolyze the agave sisalana saponin and release the tigogenin.

  18. 毛霉高产蛋白酶菌株产酶条件的优化%Optimization of the Producing Conditions of Enzyme for Mucor With High Productive Protease Strain

    Institute of Scientific and Technical Information of China (English)

    刘芳; 曹新志; 游见明; 刘春明

    2012-01-01

    The article studied the producing conditions of enzyme for Mucor with high productive protease strain that was induced mutation by UV. The purpose was to improve enzyme activity further. The results of single factor experiments and orthogonal tests indicated that the optimal culture medium initial pH value, proportion of bran and soybean meal, ratio of material and water, culture temperature, culture time for this excellent mutant strain to produce protease were 7.0, 7.3,1:1.1, 28℃ 3d. The strain's protease activity was 180.529U/g after optimization, which had increased by 54%.%对经紫外线诱变选育的毛霉高产蛋白酶菌株进行产酶条件优化,使酶活得到进一步提高.单因素试验和正交试验得该优良突变菌株的最优产酶条件为:培养基初始pH 7.0,麸皮豆粕比7∶3,料水比1∶1.1,培养温度28℃,培养时间3d.优化后蛋白酶活力达180.529U/g,比优化前提高了54%.

  19. Possible practical utility of an enzyme cocktail produced by sludge-degrading microbes for methane and hydrogen production from digested sludge.

    Science.gov (United States)

    Sato, Hayato; Kuribayashi, Kyohei; Fujii, Katsuhiko

    2016-01-25

    Digested sludge (DS) is a major waste product of anaerobic digestion of sewage sludge and is resistant to biodegradation. In this study, we examined suitability of the hydrolases produced by DS-degrading fungal strains (DS-hydrolases) for methane and hydrogen fermentation from DS. Although the strains are mesophilic, DS-hydrolases showed strong chitinase and keratinase activity at ∼50°C. SDS-PAGE analysis suggested that the strains possess a multienzyme system, which allows the hydrolases of some strains to be stable in a wide range of temperatures. Addition of the DS-hydrolases to a vial-scale anaerobic digester enhanced methane and hydrogen production from DS at pH 9.0 and 5.0, respectively. The hydrogen production was also enhanced by the use of methacrylate ester-precipitated DS as a substrate. Further improvement of culture and reaction conditions may make these hydrolases suitable for production of renewable fuels.

  20. 淀粉分解菌的筛选及产酶条件的优化%Screening of amylase-producing bacteria and optimization of the condition for enzyme production

    Institute of Scientific and Technical Information of China (English)

    刘震; 张永根; 张微微; 王丽娟

    2012-01-01

    A amylase-producing bacteria was isolated from the potato pulp. Amylase production was increased by optimizing the conditions of enzyme production, and also determined the amylase characterization. The bacteria was identified as bacillus LZ-1 according to its physiological and biochemical analysis; The activity of amylase was assayed by the method of DNS, and the condition of enzyme production was optimized too. The results showed that the condition was potato starch 2%, peptone 1%, MgSO4 0.05%, CaCl2 0.05%, FeSO4 0.005%, NaCl 0.5%, KH2PO4 0.1%, pH 7.0. The enzyme production by this strain reached the maximum level of 58.63 U/ml after 48 h cultivation at 37 ℃, 180 r/min. The studies on amylase characterization demonstrated that optimum activity was at 70 t and pH 6.0. The enzyme was stable at pH 4.0~8.0. When the temperature below 75 ℃, the enzyme was heat stable. The higher activity of amylase was produced in the design of conditions and the enzyme was pH and heat stable.%研究旨在从马铃薯渣中筛选出一株酶活较高的淀粉分解菌,通过优化菌株的产酶条件来提高其淀粉酶产量,同时还测定了所产淀粉酶的酶学性质.根据菌体的形态和生化特征,初步鉴定为芽孢杆菌LZ-1;利用DNS法测定了淀粉酶的酶活,并优化了其产酶培养基.结果表明,最适培养基为:马铃薯淀粉2%、蛋白胨1%、硫酸镁0.05%、氯化钙0.05%、硫酸亚铁0.005%、氯化钠0.5%、磷酸二氢钾0.1%,pH值7.0.180 r/min,37℃摇床发酵48 h后,产酶量达到了58.63 U/ml通过酶学性质测定,表明酶反应最适温度和pH值分别为70℃和6.0,在pH值4.0~8.0范围内稳定,当温度低于75℃时,热稳定性良好.该淀粉分解菌在设计发酵条件下能够产生较高酶活的淀粉酶,且所产酶具有较好的热稳定性和pH值稳定性.

  1. Annual changes and enzyme-producing strains of heterotrophic bacteria and vibrio in oyster Crassostrea hongkongensis farmed%近江牡蛎Crassostrea hongkongensis体内细菌的周年变化及细菌产酶能力

    Institute of Scientific and Technical Information of China (English)

    王瑞旋; 冯玉婷; 冯娟; 王江勇

    2012-01-01

    对近江牡蛎体内异养细菌进行1周年的监测(2010年1月~ 2010年12月),分离得到的异养菌(180株)鉴定到属,并检测产生蛋白酶、淀粉酶和脂肪酶的能力.结果显示,正常贝体内异养菌和弧菌数分别为7.3×103~ 6.6 ×104CFU/g和8.0×10~ 8.2×103 CFU/g,随机分离的菌株分属肠杆菌科的部分属Enterbacteriaceae、弧菌属Vibrio、气单胞菌属Aeromonas、假单胞菌属Pseudomonas、葡萄球菌属Staphylococcus、发光杆菌属Photobacterium、无色杆菌属Achromobacter、芽孢杆菌属Bacillus 等.产酶试验结果表明,正常贝体分泌蛋白酶和纤维素酶的菌株数量最高出现于9月份,产酶菌株比例分别高达91.7%和63.9%,分泌淀粉酶和脂肪酶菌株数量高峰出现于7月份,产酶菌株比例均达81.8%,其中15株能同时分泌这4种酶.%The quantitative and qualitative studies on the bacterial population in fanned oyster Crassostrea hongkongensis were surveyed for one year. The strains ( about 180 ) from the body of oyster were purified and identified for their genus, and the enzyme-producing ( protease, amylase, lipase and cellulase ) of the strains was measured. The results showed that the the heterotrophic bacteria and vibrio were 7. 3 ×103 ~6. 6 x 104CFU/g and 8.0×10-8.2 ×103CFU/g in heathy oysters,respectively. The 180 strains were identified as Enterbacteriaceae,Vibrio,Aeromonas,Pseudomonas,Staphylococcus,Phdtobacterium,Achromobacte,Bacillus and so on. The zymogenic experiment results showed that the crest value of strains producing protease and cellulose appeared in Sep. , and the percentage reached 91. 7% and 63. 9% ,respectively,while the peak of strains producing amylase and lipase emerged in Jul. ,and the percentage reached 81.8%. The results also showed that there were 15 strains produced the 4 enzymes simultaneously.

  2. Isolation and Identification of Extracellular Enzyme-Producing Bacteria from the Intestinal Tract of Litopenaeus vannamei%具有多种胞外酶的对虾肠道黏附菌的分离和鉴定

    Institute of Scientific and Technical Information of China (English)

    刘慧玲; 罗鹏; 杨世平; 李广聪; 莫嘉文; 王蔚

    2012-01-01

    用对虾饲料培养基从健康凡纳滨对虾肠道分离出500株黏附细菌,以产淀粉酶、脂肪酶和蛋白酶能力为指标,筛选出产该3种消化酶的细菌90株,占总菌株的18%.对其中生长较快的69株进行16SrDNA基因测序,确定其分类地位.结果显示,69株菌分别属于不动杆菌属(Acinetobacter)、芽孢杆菌属(Bacillus)、葡萄球菌属(Staphylococcus)、假交替单胞菌属(Pseudoalteromonas)、气单胞菌属(Aeromonas)、嗜盐单胞菌属(Halomonas)、利斯顿氏菌属(Listonella)、莫拉氏菌属(Moraxella)等,其中数量最多是芽胞杆菌属,占鉴定细菌总数的53.62%,数量最少是气单胞菌属和嗜盐单胞菌属,均占鉴定细菌总数的2.90%.表明对虾肠道黏附菌群中具有较多能分泌多种消化酶的细菌,可进一步开发为促进对虾消化功能的益生菌.%500 strains adhesive bacteria were isolated from the intestinal tract of Litopenaeus vannamei by using shrimp-feed abstraction medium. All bacterial strains were screened for producing capability of protease, amylase and lipase. There were 90 strains that could produce three extracellular enzymes, 18.0% of the total intestinal adhesive bacterial populations. 69 strains with rapid growth were identified according to homology analysis of 16S rDNA sequences. They were grouped into eight genera as follows: Acinetobacter, Bacillus, Staphylococcus, Pseudoalteromonas, Aeromonas, Halomonas, Listonella, Moraxella, respectively. The dominant genus was Bacillus, which account for 53.62% of the total identified strains. There were least number strains belong to Aeromonas and Halomonas, which account for 2.90% of the total identified isolates, respectively. The results indicate that there are plentiful extracellular enzyme-producing bacterium adhered to intestine of shrimp with the potential to be promising probiotic of promoting digestion.

  3. 刺参肠道潜在产酶益生菌的筛选和鉴定%Screening and identification of potential enzyme producing probiotics from gut of sea cucumber Apostichopus japonicus

    Institute of Scientific and Technical Information of China (English)

    杨志平; 孙飞雪; 刘志明; 张磊; 曹为; 马悦欣

    2013-01-01

    从健康刺参Apostichopus japonicus(体质量为10~30 g)肠道中分离出50株细菌,以点种法在选择培养基上对菌株产淀粉酶、蛋白酶、脂肪酶和纤维素酶的能力进行测试,筛选出产3种酶以上的细菌13株,并定量测定了其中9株菌的淀粉酶和蛋白酶活力.依据产酶能力选6株细菌进行溶血试验.结果表明:6株菌均不产生溶血素,不具有潜在的致病性,选3株产酶细菌BC26、BC228、BC232进行毒力测试,经一个月观察证实,无论给刺参腹腔注射细胞浓度为107 cfu/mL的菌悬液,还是投喂含细菌浓度为109 cfu/g的干饲料,刺参都是安全的;对细菌16S rDNA序列同源性的分析表明,BC26、BC228、BC232菌株分别与芽孢杆菌Bacillus sp.FA132、假交替单胞菌Pseudoalteromonas sp.NBRC102016和塔斯马尼亚弧菌Vibrio tasmaniensis 04102的相似性均为99%.%Fifty bacterial strains were isolated from gut of healthy sea cucumber Apostichopus japonicus with body weight of 10-30 g, whose extracellular amylase, protease, lipase and cellulase activities were detected using selective media by point inoculation method. Thirteen bacterial strains producing 3 enzymes were screened, nine strains of which were further quantitatively assayed for amylase and protease activities. Hemolysis was tested in six bacterial strains selected depending on the extracellular enzyme producing ability. The results showed that the six bacterial strains did not secreted hemolysin, without potential pathogenicity. The toxicity test revealed that three enzyme producing bacterial strains,BC26, BC228 and BC232, were found to be safe for the sea cucumber which were challenged by intra-peritoneal injection of 0.1 mL cell suspension of the three bacterial strains at concentration of 107 cfu/mL, and which were fed the diet containing the three bacterial cells at 109 cfu/g once daily for one month. Similarity analysis of 16S rDNA sequences indicated that the bacterial strain BC26 had

  4. Actinomycetes Strains Screening for Xanthan- degrading and Study on Ferment Conditions for Enzyme Producing%产黄原胶降解酶放线菌筛选及发酵工艺研究

    Institute of Scientific and Technical Information of China (English)

    古丽·艾合买提; 穆斯塔帕·克地尔; 唐娴

    2011-01-01

    [Objective] Xanthan is a kind of extracellular polysaccharose (EPS) produced by a plant pathogen of Xanthomonas campestris . It has a main chain structure similar to cellulose and is difficult to degrade, and can be -widely used for thickening agent, suspending agent, emulsifying agent and stabilizing agent as biogel with its special physical properties. However, it can also cause black rotten disease for crucifer. The purpose of this program is to obtain oligosaccharide produced by biodegradation of xanthan which used for biochemical to control black rotten disease by screening actinomycetes strains for xanthan - degrading. [ Method ] The program was carried out by screening actinomycetes strains from natural soil based on xanthan - degrading ability, identifying by 16S rRNA analysis, selecting mutants by ultraviolet mutation for higher enzyme activity, and studying on ferment conditions for enzyme producing by one factor and orthogonal tests. [Result]A strain of Streptomyces sp has been obtained, and the xanthan - degrading enzyme activity of its fermentation liquid reached 200 IU/L after culture medium and ferment conditions optimization.%[目的]黄原胶是植物致病菌野油菜黄单胞菌所分泌的胞外多糖,其主链类似纤维素很难降解,可作为生物胶用于增稠剂、悬浮剂、乳化剂和稳定剂,还能引起十字花科植物黑腐病.筛选分离对黄原胶有显著降解作用的放线菌,以生物方法降解黄原胶,降解产物黄原胶寡糖可有效防治黑腐病,具有开发为生物农药的潜力.[方法]从自然土壤样品中进行分离筛选、纯化、16S rRNA鉴定及诱变选育,获得高效降解黄原胶放线菌菌株,通过发酵工艺研究,确定最适产酶条件.[结果]优化产酶培养基配方为:蔗糖3%,( NH4 )2SO4 0.5%,KNO31%,酵母膏0.1%.菌株发酵产酶培养条件为:发酵温度28℃,pH7.5,500mL瓶装量为150 mL,底物浓度0.5%,接种量为5%.[结论]获得一株高效

  5. Genetic and biochemical evidence that recombinant Enterococcus spp. strains expressing gelatinase (GelE) produce bovine milk-derived hydrolysates with high angiotensin converting enzyme-inhibitory activity (ACE-IA).

    Science.gov (United States)

    Gútiez, Loreto; Borrero, Juan; Jiménez, Juan J; Gómez-Sala, Beatriz; Recio, Isidra; Cintas, Luis M; Herranz, Carmen; Hernández, Pablo E

    2014-06-18

    In this work, genes encoding gelatinase (gelE) and serine proteinase (sprE), two extracellular proteases produced by Enterococcus faecalis DBH18, were cloned in the protein expression vector pMG36c, containing the constitutive P32 promoter, generating the recombinant plasmids pCG, pCSP, and pCGSP encoding gelE, sprE, and gelE-sprE, respectively. Transformation of noncaseinolytic E. faecalis P36, E. faecalis JH2-2, E. faecium AR24, and E. hirae AR14 strains with these plasmids permitted detection of caseinolytic activity only in the strains transformed with pCG or pCGSP. Complementation of a deletion (knockout) mutant of E. faecalis V583 for production of gelatinase (GelE) with pCG unequivocally supported that gelE is responsible for the caseinolytic activity of the transformed strain grown in bovine skim milk (BSM). RP-HPLC-MS/MS analysis of hydrolysates of transformed Enterococcus spp. strains grown in BSM permitted the identification of 38 major peptide fragments including peptides with previously reported angiotensin converting enzyme-inhibitory activity (ACE-IA), antihypertensive activity, and antioxidant activity.

  6. Typing and selection of wild strains of Trichoderma spp. producers of extracellular laccase.

    Science.gov (United States)

    Cázares-García, Saila Viridiana; Arredondo-Santoyo, Marina; Vázquez-Marrufo, Gerardo; Soledad Vázquez-Garcidueñas, Ma; Robinson-Fuentes, Virginia A; Gómez-Reyes, Víctor Manuel

    2016-05-01

    Using the ITS region and the gene tef1, 23 strains of the genus Trichoderma were identified as belonging to the species T. harzianum (n = 14), T. olivascens (n = 1), T. trixiae (n = 1), T. viridialbum (n = 1), T. tomentosum (n = 2), T. koningii (n = 1), T. atroviride (n = 1), T. viride (n = 1), and T. gamsii (n = 1). Strains expressing extracellular laccase activity were selected by decolorization/oxidation assays in solid media, using azo, anthraquinone, indigoid, and triphenylmethane dyes, and the phenolic substances tannic acid and guaiacol. No strain decolorized Direct Blue 71 or Chicago Blue 6B, but all of them weakly oxidized guaiacol, decolorized Methyl Orange, and efficiently oxidized tannic acid. Based in decolorization/oxidation assays, strains CMU-1 (T. harzianum), CMU-8 (T. atroviride), CMU-218 (T. viride), and CMU-221 (T. tomentosum) were selected for evaluating their extracellular laccase activity in liquid media. Strain CMU-8 showed no basal laccase activity, while strains CMU-1, CMU-218, and CMU-221 had a basal laccase activity of 1,313.88 mU/mL, 763.88 mU/mL, and 799.53 mU/mL, respectively. Addition of sorghum straw inhibited laccase activity in strain CMU-1 by 34%, relative to the basal culture, while strains CMU-8, CMU-21, and CMU-221 increased their laccase activity by 1,321.5%, 64%, and 47%, respectively. These results show that assayed phenolic substrates are good tools for selecting laccase producer strains in Trichoderma. These same assays indicate the potential use of studied strains for bioremediation processes. Straw laccase induction suggests that analyzed strains have potential for straw delignification in biopulping and other biotechnological applications. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:787-798, 2016. PMID:26821938

  7. Modifying enzyme activity and selectivity by immobilization

    OpenAIRE

    Rodrigues, Rafael C.; Ortiz, Claudia; Berenguer Murcia, Ángel; Torres, Rodrigo; Fernández Lafuente, Roberto

    2013-01-01

    Immobilization of enzymes may produce alterations in their observed activity, specificity or selectivity. Although in many cases an impoverishment of the enzyme properties is observed upon immobilization (caused by the distortion of the enzyme due to the interaction with the support) in some instances such properties may be enhanced by this immobilization. These alterations in enzyme properties are sometimes associated with changes in the enzyme structure. Occasionally, these variations will ...

  8. Lignolytic Enzymes Production from Selected Mushrooms

    Directory of Open Access Journals (Sweden)

    H.M. Shantaveera Swamy

    2015-06-01

    Full Text Available In this paper, ligninase enzymes produced by selected mushrooms have been reported. We collected mushrooms from Western Ghats, most of them were edible food. Thirty samples isolated were tested using a plate assay through direct agar plate assay by using ABTS, decolourisation containing the fifteen isolates were able to decolourise the dye, indicating a lignin-degrading ability. Spectrophotometric enzyme assays from all selected isolates were carried out to examine the production of Ligninolytic enzymes (Laccase, lignin peroxidase and manganese peroxidase. Ten selected isolates produced all three kinds of enzymes tested. Lignolytic enzymes are groups of enzymes these are actively involved in bioremediation.

  9. Food Enzymes

    Science.gov (United States)

    McBroom, Rachel; Oliver-Hoyo, Maria T.

    2007-01-01

    Many students view biology and chemistry as two unrelated, separate sciences; how these courses are generally taught in high schools may do little to change that impression. The study of enzymes provide a great opportunity for both biology and chemistry teachers to share with students the interdisciplinary nature of science. This article describes…

  10. Enzyme immunoassay

    DEFF Research Database (Denmark)

    Feldt-Rasmussen, B; Dinesen, B; Deckert, M

    1985-01-01

    An enzyme linked immunoadsorbent assay for urinary albumin using commercially available reagents is described. The assay range is 2.5-120 micrograms/l. When samples are analysed in two standard dilutions, the assayable albumin concentration range is 2.5-240 mg/l, covering the clinical range from...

  11. Microflora in digestive tract of Apostichopus japonicus and enzyme producing and hemolytic analysis%刺参肠道微生物组成分析及产酶、溶血性试验

    Institute of Scientific and Technical Information of China (English)

    张喜昌; 费世洲; 常亚青; 刘小林; 王高学

    2014-01-01

    Microflora in the intestinal tract and on the intestinal wall of both cultured and wild Apostichopus japonicus was studied in this paper. The screening for probiotics was performed based on enzyme producing and hemolytic analysis. The results showed that the number of bacteria in the intestinal wall and tract of wild Apostichopus japonicus was (3.30 ± 0.41) ×107 cfu/g and (6.39 ± 0.32) ×107 cfu/g, respectively. The number of bacteria in the intestinal wall and tract of cultured group was (2.83 ± 0.31) ×107 cfu/g and (5.67 ± 0.53) ×107 cfu/g, respectively. The dominant species in the intestinal tract of wild group was Vibrio and the Pseudomonas and Shewanella were the secondary dominant species. The dominant species in the cultured group was Vibrio and Pseudomonas. In 224 strains of bacteria, a total of 160 strains of bacteria produced enzyme with a ratio of 71.43%. Among these bacteria, 114 strains could produce protease, 114 strains could produce amylase, and 108 strains could produce lipase. The percentages were 50.89%, 50.89%, and 48.21%, respectively. A total of 23 strains of bacteria could produce hemolytic toxin in 99 strains of bacteria, which accounts for 23.23%of the total bacterial population. Through the comprehensive analysis of test data, we selected 6 strains of bacteria as intestinal potential probiotic strains of Apostichopus japonicus, which were HS1(Pseudomonas), HS5(Bacillus), HS7(Shewanella), HS8(Vibrio), HS10(Vibrio), and HS11(Vibrio) respectively.%对野生和人工养殖刺参的肠壁及内容物中的菌群数量、种类组成进行了研究;并结合产酶试验和溶血性试验,对刺参肠道益生菌做了初步的体外筛选。结果表明,野生刺参肠壁及内容物中的细菌数量分别为(3.30±0.41)×107 cfu/g、(6.39±0.32)×107 cfu/g,养殖刺参肠壁及内容物中的细菌数量分别为(2.83±0.31)×107 cfu/g、(5.67±0.53)×107 cfu/g。野生刺参肠道优势菌为弧菌属(Vibrio),次优势菌为假单

  12. Cleavage of the Carboxyl-Terminus of LEACS2, a Tomato 1-Aminocycl opropane-1-Carboxylic Acid Synthase Isomer, by a 64-kDa Tomato Metalloprotease Produces a Truncated but Active Enzyme

    Institute of Scientific and Technical Information of China (English)

    Jian-Feng LI; Robert QI; Liang-Hu QU; Autar K Mattoo; Ning LI

    2005-01-01

    l-Aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) is the principal enzyme in phytohormone ethylene biosynthesis. Previous studies have shown that the hypervariable C-terminus of ACS is proteolytically processed in vivo. However, the protease responsible for this has not yet been identified. In the present study, we investigated the processing of the 55-kDa full-length tomato ACS (LeACS2) into 52-, 50- and 49-kDa truncated isoforms in ripening tomato (Lycopersicon esculentum Mill. cv.Cooperation 903) fruit using the sodium dodecyl sulfate-boiling method. Meanwhile, an LeACS2-processing protease was purified via multi-step column chromatography from tomato fruit. Subsequent biochemical analysis of the 64-kDa purified protease revealed that it is a metalloprotease active at multiple cleavage sites within the hypervariable C-terminus of LeACS2. N-terminal sequencing and matrix-assisted laser desorption/ionization time-of-flight analysis indicated that the LeACS2-processing metalloprotease cleaves at the C-terminal sites Lys438, Glu447, Lys448, Asn456, Ser460, Ser462, Lys463, and Leu474, but does not cleave the Nterminus of LeACS2. Four C-terminus-deleted (26-50 amino acids) LeACS2 fusion proteins were overproduced and subjected to proteolysis by this metalloprotease to identify the multiple cleavage sites located on the N-terminal side of the phosphorylation site Ser460. The results indisputably confirmed the presence of cleavage sites within the region between the α-helix domain (H14) and Ser460 for this metalloprotease.Furhermore, the resulting C-terminally truncated LeACS2 isoforms were active enzymatically. Because this protease could produce LeACS2 isoforms in vitro similar to those detected in vivo, it is proposed that this metalloprotease may be involved in the proteolysis of LeACS2 in vivo.

  13. Alkylating enzymes.

    Science.gov (United States)

    Wessjohann, Ludger A; Keim, Jeanette; Weigel, Benjamin; Dippe, Martin

    2013-04-01

    Chemospecific and regiospecific modifications of natural products by methyl, prenyl, or C-glycosyl moieties are a challenging and cumbersome task in organic synthesis. Because of the availability of an increasing number of stable and selective transferases and cofactor regeneration processes, enzyme-assisted strategies turn out to be promising alternatives to classical synthesis. Two categories of alkylating enzymes become increasingly relevant for applications: firstly prenyltransferases and terpene synthases (including terpene cyclases), which are used in the production of terpenoids such as artemisinin, or meroterpenoids like alkylated phenolics and indoles, and secondly methyltransferases, which modify flavonoids and alkaloids to yield products with a specific methylation pattern such as 7-O-methylaromadendrin and scopolamine.

  14. Random-walk enzymes

    Science.gov (United States)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C →U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  15. Random-walk enzymes.

    Science.gov (United States)

    Mak, Chi H; Pham, Phuong; Afif, Samir A; Goodman, Myron F

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C→U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  16. Engineering enzymes

    OpenAIRE

    Dutton, P. Leslie; Moser, Christopher C.

    2011-01-01

    Fundamental research into bioinorganic catalysis of the kind presented at this Faraday Discussion has the potential to turn inspiration drawn from impressive natural energy and chemical transformations into artificial catalyst constructions useful to mankind. Creating bio-inspired artificial constructions requires a level of understanding well beyond simple description of structures and mechanisms of natural enzymes. To be useful, such description must be augmented by a practical sense of str...

  17. Consumer attitudes to enzymes in food production

    DEFF Research Database (Denmark)

    Søndergaard, Helle Alsted; Grunert, Klaus G.; Scholderer, Joachim

    2005-01-01

    The use of enzymes in food production has potential benefits for both food manufacturers and consumers. A central question is how consumers react to new ways of producing foods with enzymes. This study investigates the formation of consumer attitudes to different enzyme production methods in three...... European countries. Results show that consumers are most positive towards non-GM enzyme production methods. The enzyme production method is by far the most important factor for the formation of buying intentions compared to price and benefits. Results also show that environmental concern and attitudes...... to technological progress are the socio-political attitudes that have the highest predictive value regarding attitudes to enzyme production methods....

  18. Enzyme technology: Key to selective biorefining

    DEFF Research Database (Denmark)

    Meyer, Anne S.

    2014-01-01

    to the reaction is a unique trait of enzyme catalysis. Since enzyme selectivity means that a specific reaction is catalysed between particular species to produce definite products, enzymes are particularly fit for converting specific compounds in mixed biomass streams. Since enzymes are protein molecules...... their rational use in biorefinery processes requires an understanding of the basic features of enzymes and reaction traits with respect to specificity, kinetics, reaction optima, stability and structure-function relations – we are now at a stage where it is possible to use nature’s enzyme structures as starting...... point and then improve the functional traits by targeted mutation of the protein. The talk will display some of our recent hypotheses related to enzyme action, recently obtained results within knowledge-based enzyme improvements as well as cast light on research methods used in optimizing enzyme...

  19. Engineering Cellulase Enzymes for Bioenergy

    Science.gov (United States)

    Atreya, Meera Elizabeth

    Sustainable energy sources, such as biofuels, offer increasingly important alternatives to fossil fuels that contribute less to global climate change. The energy contained within cellulosic biofuels derives from sunlight energy stored in the form of carbon-carbon bonds comprising sugars such as glucose. Second-generation biofuels are produced from lignocellulosic biomass feedstocks, including agricultural waste products and non-food crops like Miscanthus, that contain lignin and the polysaccharides hemicellulose and cellulose. Cellulose is the most abundant biological material on Earth; it is a polymer of glucose and a structural component of plant cell walls. Accessing the sugar is challenging, as the crystalline structure of cellulose resists degradation; biochemical and thermochemical means can be used to depolymerize cellulose. Cellulase enzymes catalyze the biochemical depolymerization of cellulose into glucose. Glucose can be used as a carbon source for growth of a biofuel-producing microorganism. When it converts glucose to a hydrocarbon fuel, this microbe completes the biofuels process of transforming sunlight energy into accessible, chemical energy capable of replacing non-renewable transportation fuels. Due to strong intermolecular interactions between polymer chains, cellulose is significantly more challenging to depolymerize than starch, a more accessible polymer of glucose utilized in first-generation biofuels processes (often derived from corn). While most mammals cannot digest cellulose (dietary fiber), certain fungi and bacteria produce cellulase enzymes capable of hydrolyzing it. These organisms secrete a wide variety of glycoside hydrolase and other classes of enzymes that work in concert. Because cellulase enzymes are slow-acting and expensive to produce, my aim has been to improve the properties of these enzymes as a means to make a cellulosic biofuels process possible that is more efficient and, consequently, more economical than current

  20. The use of enzymes for beer brewing

    NARCIS (Netherlands)

    Donkelaar, van Laura H.G.; Mostert, Joost; Zisopoulos, Filippos K.; Boom, Remko M.; Goot, van der Atze Jan

    2016-01-01

    The exergetic performance of beer produced by the conventional malting and brewing process is compared with that of beer produced using an enzyme-assisted process. The aim is to estimate if the use of an exogenous enzyme formulation reduces the environmental impact of the overall brewing process. Th

  1. Isolation and identification of enzyme-producing bacteria from the digestive tract of Epinehelus moara in re-circulating aquaculture sys-tems%工厂化循环水养殖条件下云纹石斑鱼消化道产酶菌的分离鉴定

    Institute of Scientific and Technical Information of China (English)

    施兆鸿; 王建建; 高权新

    2015-01-01

    The purpose of this research was to study the bacterial community structure in digestive tract and en-zyme production capacity of enzyme-producing bacteria, and provide reference for selection and application of probiotics for carnivorous fish culture. In this experiment, samples of juvenile saladfish (Epinehelus moara) stomach, pyloric caeca, foregut, midgut, and hindgut were obtained in recirculating aquaculture systems. Bacterial community structure was analyzed using 16S rDNA-PCR. The enzyme-producing bacteria were isolated and iden-tified by isolating and screening enzyme-producing bacteria. Moreover, the enzyme activities were tested. Twenty-seven strains were isolated and cultured under experimental conditions, including 13 strains of Pseudo-monas, 5 strains of Exiguobacterium, 7 strains of Acinetobacter, 1 strain of Stenotrophomonas, and 1 strain of Staphylococcus, which accounted for 48.2%, 18.5%, 25.9%, 3.7%, and 3.7%, respectively, of the isolated bacteria. The sequence homology of corresponding genes was greater than 98%. Fifteen strains produced enzymes and ac-counted for 55.6%of all bacteria;these bacteria included 7 strains of Pseudomonas, 5 strains of Exiguobacterium, 2 strains of Acinetobacter and 1 strain of Stenotrophomonas. Among these bacteria, 13 strains can produce both protease and amylase, whereas 4 strains can produce protease, amylase, and lipase. Among the enzyme-producing bacteria, 5 strains can produce 3 enzymes and 9 strains can produce 2 enzymes. Moreover, the bacteria in the midgut and hindgut were most abundant, and those in the stomach, diverticulum pyloricum and foregut were less abundant; the bacteria that produce lipase were concentrated in the midgut. Protease and amylase were the main enzymes produced by these bacteria; these two enzymes were highly productive, with protease activity up to (87.732±1.134) U/mL and amylase activity between (77.176±0.599) U/mL and (73.458±0.574) U/mL. Only one strain produced cellulase, and

  2. [Studies on the correlation between production of L-malic acid and some cytosolic enzymes in the L-malic acid producing strain Aspergillus sp. N1-14].

    Science.gov (United States)

    Zhou, X; Wu, Q; Cai, Z; Zhang, J

    2000-10-01

    The cytosol enzymatic study in the case of high L-malic acid(LMA) production of Aspergillus sp. N1-14' was reported. The activities of 4 kind enzymes that catalyse the CO2 fixation reactions have been detected, which are pyruvate carboxylase(PC), phosphoenolpyruvate carboxlase (PEPC), phosphoenolpyurvate carboxykinase(PCK) and malic enzyme(ME). With the exception of ME, the linear correlation was found between activities of three carboxlases and the production rate of LMA. The activity of malate dehydrogenase(MDH) was at the level of 2-3 exponential higher than that of the other analysed enzymes, while the activity of succinate dehydrogenase(SDH) was much lower, and as a discrepancy, SDH was in a positive correlation to the content of LMA in fermenting slurry(r = 0.9252). It is shown that the accumulated LMA acted as an activator of SDH. Through dynamic study, it is found that, in contrast with the slow and even increase of biomass, the content of cytosol protein(Cp) sharply fluctuated mainly due to the changes of aeration conditions. The data of the linear correlation coefficients(r) of activities of cytosol enzymes to Cp(PC r = 0.9563, PEPC r = 0.7688, PCK r = 0.7300, MDH r = 0.3920, SDH r = -0.2086) exhibited an inner law of protein synthesis. Experiment of increasing the amount of spore inoculum resulted in increase of LMA and decrease of SA. After fermenting 120 h in a 5 L stirred fermentor, with 3-fold of original spore inoculum 105.88 g/L of LMA was achieved, the overall productivity was 0.883 g/(L.h), the converting rate of glucose to LMA was 78.43%. This result supports the exist of a inner law of protein synthesis in the early period of LMA fermentation by Aspergillus sp. N1-14'.

  3. 粗酶水解全脂豆粉提取油脂和蛋白%Oil and protein simultaneously extracted from soybean using crude enzyme produced by microbial fermentation

    Institute of Scientific and Technical Information of China (English)

    吴海波; 江连洲; 程建军; 姚刚

    2011-01-01

    Enzyme-assisted aqueous extraction processing (EAEP) is an environmentally friendly alternative technology to hexane extraction of soybean oil, EAEP has significant challenges, however, that must be overcome before becoming practical: the high price of enzyme, activity is influenced significantly by conditions, which has discouraged industrial adoption of EAEP. In this study Bacillus subtilis was inoculated into the optimal medium and fermented for 42 h, it was found that the broth contained alkaline and neutral protease. Extruded full fat soybean flour was hydrolyzed by the crude enzyme obtained from fermentation liquid after condensation at alkaline protease activity of (2 000±200) U/mL, neutral protease of (1 500±200) U/mL. The total off extraction yield reached the highest value of 94.2%, and 90.1% of total protein yield was obtained under conditions that were temperature 55 ℃, solid/liquid ratio 1:8 g/mL, the initial pH value 10, hydrolysis time 6 h. As compared to the commercial Alcalase protease, the total oil recovery enhanced by 1.9%, the protein recovery reduced by 2% with crude enzyme extraction, and the hydrolyzed protein molecular weights were smaller and distributed wider. The use of crude enzyme resulted in better oil quality as compared with solvent extraction, though no significant difference was observed between the treatments of crude enzyme and Alcalase protease.%水酶法提取大豆油和蛋白是一项可替代溶剂浸提制油工艺的绿色环保技术,但是商品酶的价格较高且酶活易受外界环境影响,使水酶法制油技术的应用受到限制.该试验在优化过的培养基中接种枯草芽孢杆菌发酵培养42 h,所得发酵液经测定含有碱性和中性两种蛋白酶,所得粗酶经透析浓缩后,在碱性蛋白酶活为(2 000±200)U/mL,中性蛋白酶活为(1 500±200)U/mL时,在酶液中接入挤压膨化豆粉水解.通过对酶解条件的优化,试验证实在温度55℃,料液比1∶8g

  4. Enzyme detection by microfluidics

    DEFF Research Database (Denmark)

    2013-01-01

    Microfluidic-implemented methods of detecting an enzyme, in particular a DNA-modifying enzyme, are provided, as well as methods for detecting a cell, or a microorganism expressing said enzyme. The enzyme is detected by providing a nucleic acid substrate, which is specifically targeted...... by that enzyme...

  5. Controlled enzyme catalyzed heteropolysaccharide degradation

    DEFF Research Database (Denmark)

    Rasmussen, Louise Enggaard

    The work presented in this PhD thesis has provided a better understanding of the enzyme kinetics and quantitative phenomena of the hydrolysis of xylan substrates by selected pure enzyme preparations. Furthermore, the options for producing specific substituted xylooligosaccharides from selected...... substrates by specific xylanase treatment have been examined. The kinetics of the enzymatic degradation of water-extractable wheat arabinoxylan (WE-AX) during designed treatments with selected monocomponent enzymes was investigated by monitoring the release of xylose and arabinose. The results of different...... between -xylosidase and the α-L-arabinofuranosidases on the xylose release were low as compared to the effect of xylanase addition with β-xylosidase, which increased the xylose release by ~25 times in 30 minutes. At equimolar addition levels of the four enzymes, the xylanase activity was thus rate...

  6. Determination of free amino acids in whole-fat Turkish White Brined Cheese produced by animal and microbial milk-clotting enzymes with and without the addition of starter culture

    Directory of Open Access Journals (Sweden)

    Ufuk Eren-Vapur

    2012-12-01

    Full Text Available Coagulating enzymes are essential ingredients for the production of different cheese varieties. The objective of this research was to summarize the effect of rennet type (calf rennet and microbial rennet from Rhizomucor miehei and starter culture on the sensory properties and free amino acids (FAA release during the ripening of Turkish White brined cheese. The concentrations of FAA and sensory properties were similar for cheeses made with both types of coagulant and starter culture. Aminoacids Phe, Leu - Ile, Gln, Val, Pro and Ala were the principal FAAs in the White brined cheeses at all stages of ripening.

  7. 三种白腐菌及其组合菌种木质素降解酶比较研究%Comparative studies on lignin degradation enzymes produced by three species of white-rot fungi and combination of the strains

    Institute of Scientific and Technical Information of China (English)

    段传人; 朱丽平; 姚月良

    2009-01-01

    朱红栓菌Trametes cinnabarina、糙皮侧耳Pleurotus ostreatus、黄孢原毛平革菌Phanerochaete chrysosporium是产生木质素降解酶能力强的菌株.对三种白腐菌及其组合菌种产生木质素降解酶能力和行为进行了比较分析和研究.结果表明,最佳培养方式为液体振荡培养;最佳培养基为酵母膏液体培养基.在产漆酶(laccases,lacs)方面,Pleurotus ostreatus和Phanerochaete chrysosporium的组合菌种的酶活最强,在第6天出现峰值,酶活达到450U/L;在产锰过氧化物酶(manganese peroxidases,maps)方面,Trametes cinnabarina和Pleurotus ostreatus的组合菌种的酶活最强,在第10天出现峰值,酶活达到1050U/L;在产木质素过氧化物酶(lignin peroxidases,lips)方面,Trametes cinnabarina和Phanerochaete chrysosporium的组合菌种的酶活最强,在第8天出现产酶峰值,酶活达到2990U/L.筛选结果表明,组合菌种比单菌种产生的三种主要木质素降解酶的活性强,这为白腐菌高效产酶提供了一条新的途径,并为白腐菌研究领域的后续工作奠定基础.%Trametes cinnabarina, Pleurotus ostreatus and Phanerochaete chrysosporium are high-yielding strains producing lignin degradation enzymes. Comparative studies on lignin degradation enzymes produced by these three species of white-rot fungi and combination of the swains were conducted. The results showed that liquid-shaking culture was the best culture method, yeast extract liquid medium was the best medium. As far as laccase (lacs) production was concerned, the enzyme activities of lacs produced by the combination of Pleurotus ostreatus and Phanerochaete chrysosporium were the highest, reaching 450U/L on day 6; the enzyme activities of manganese peroxidases (mnps) produced by the combination of Trametes cinnabarina and Pleurotus ostreatus were the highest, reaching 1050U/L on day 10; the enzyme activities of lignin peroxidases (lips) produced by the combination of Trametes cinnabarina and

  8. Assessment of the angiotensin-I-converting enzyme (ACE-I) inhibitory and antioxidant activities of hydrolysates of bovine brisket sarcoplasmic proteins produced by papain and characterisation of associated bioactive peptidic fractions.

    Science.gov (United States)

    Di Bernardini, Roberta; Mullen, Anne Maria; Bolton, Declan; Kerry, Joseph; O'Neill, Eileen; Hayes, Maria

    2012-01-01

    The main objective was to investigate the angiotensin-I-converting enzyme (ACE-I) inhibitory and antioxidant activities of sarcoplasmic proteins isolated from the brisket muscle (Pectoralis profundus) of 3 (Bos taurus) cattle and hydrolysed with papain for 24 h at 37°C. Sarcoplasmic protein hydrolysates were ultra-filtered using molecular weight cut off (MWCO) membranes and 10-kDa and 3-kDa filtrates were obtained. The total sarcoplasmic protein extracts and the 3-kDa filtrates were tested for angiotensin I-converting enzyme inhibitory (ACE-I) activities. The total hydrolysates, 10-kDa and 3-kDa filtrates were also tested for their associated antioxidant activities using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity assay, the ferric ion reducing antioxidant power (FRAP) assay and the Fe(2+) metal chelating ability assay. The peptidic content of the total hydrolysates, the 10-kDa and the 3-kDa filtrates were analysed using an ORBITRAP mass spectrometer, and mass spectral data obtained were analysed using TurboSEQUEST. Eleven peptides were characterised from the total hydrolysates, fifteen from the 10-kDa filtrate fractions, whilst nine peptides were characterised from the 3-kDa filtrate fractions. Similarities between the amino acid sequences of the peptides identified in this study and previously identified antioxidant and ACE-I inhibitory peptides detailed in the BIOPEP database were outlined. PMID:21880436

  9. Insolubilized enzymes for food synthesis

    Science.gov (United States)

    Marshall, D. L.

    1972-01-01

    Cellulose matrix with numerous enzyme-coated silica particles of colloidal size permanently bound at various sites within matrix was produced that has high activity and possesses requisite physical characteristics for filtration or column operations. Product also allows coupling step in synthesis of edible food to proceed under mild conditions.

  10. New rhamnogalacturonan degrading enzymes from Aspergillus aculeatus.

    NARCIS (Netherlands)

    Mutter, M.

    1997-01-01

    Three new  rhamnogalacturonan degrading enzymes were purified from a commercial enzyme preparation, Pectinex Ultra SP, produced by the fungus Aspergillus aculeatus . Pectinex Ultra SP is industrially used in the mash treatment of apples and pears in juice production, increasing juice yield. Rhamnoga

  11. The rhizobacterium Arthrobacter agilis produces dimethylhexadecylamine, a compound that inhibits growth of phytopathogenic fungi in vitro.

    Science.gov (United States)

    Velázquez-Becerra, Crisanto; Macías-Rodríguez, Lourdes I; López-Bucio, José; Flores-Cortez, Idolina; Santoyo, Gustavo; Hernández-Soberano, Christian; Valencia-Cantero, Eduardo

    2013-12-01

    Plant diseases caused by fungal pathogens such as Botrytis cinerea and the oomycete Phytophthora cinnamomi affect agricultural production worldwide. Control of these pests can be done by the use of fungicides such as captan, which may have deleterious effects on human health. This study demonstrates that the rhizobacterium Arthrobacter agilis UMCV2 produces volatile organic compounds that inhibit the growth of B. cinerea in vitro. A single compound from the volatile blends, namely dimethylhexadecylamine (DMHDA), could inhibit the growth of both B. cinerea and P. cinnamomi when supplied to the growth medium in low concentrations. DMHDA also inhibited the growth of beneficial fungi Trichoderma virens and Trichoderma atroviride but at much higher concentrations. DMHDA-related aminolipids containing 4, 8, 10, 12, and 14 carbons in the alkyl chain were tested for their inhibitory effect on the growth of the pathogens. The results show that the most active compound from those tested was dimethyldodecylamine. This effect correlates with a decrease in the number of membrane lipids present in the mycelium of the pathogen including eicosanoic acid, (Z)-9-hexadecenoic acid, methyl ester, and (Z)-9-octadecenoic acid, methyl ester. Strawberry leaflets treated with DMHDA were not injured by the compound. These data indicate that DMHDA and related compounds, which can be produced by microorganisms may effectively inhibit the proliferation of certain plant pathogens. PMID:23674267

  12. Therapeutic efficacy of amikacin combined with fosfomycin against bacteria producing KPC enzymes%阿米卡星与磷霉素治疗产KPC酶细菌的疗效观察

    Institute of Scientific and Technical Information of China (English)

    郑海岚; 华俊彦; 朱雅艳; 叶伟红

    2014-01-01

    目的:了解阿米卡星、磷霉素联合使用和单独使用对产K PC酶细菌的疗效,为临床治疗产K PC酶细菌感染提供依据。方法收集2011年1月-2012年12月检测出产K PC酶20例住院患者资料,采用阿米卡星和磷霉素单用或联用治疗,并对其临床疗效和细菌学清除率进行回顾性统计分析。结果阿米卡星联用磷霉素的临床有效率和细菌学清除率均为71.4%,单用阿米卡星的临床有效率和细菌学清除率分别为57.1和28.6%,单用磷霉素的临床有效率和细菌学清除率分别为33.3%和16.7%。结论阿米卡星、磷霉素单用治疗产K PC酶细菌疗效不佳,但联用后可获得较好的疗效。%OBJECTIVE To analyze clinical therapeutic efficacy of amikacin combined with fosfomycin or amikacin/fosfomycin only against KPC-producing bacteria ,in order to provide evidence for the clinical therapy of KPC-producing bacteria infections .METHODS Totally 20 patients with KPC-producing bacteria infections were collecte d and treated with amikacin combined with fosfomycin or amikacin/fosfomycin only ,and the therapeutic effect and bacteria clearance rate were analyzed retrospectively .RESULTS The effective rate and the bacteria clearance rate of amikacin combination with fosfomycin were both 71 .43% ,while those of the method of amikacin only were 57 .1% and 28 .6% respectively . And those of the method of fosfomycin only were 33 .3% and 16 .7%respectively .CONCLUSION Amikacin combined with fosfomycin against KPC-producing bacteria could obtain well therapeutic effect ,which was much better than using amikacin or fosfomycin only .

  13. Lignolytic enzymes produced by Trametes villosa ccb176 under different culture conditions Enzimas ligninóliticas produzidas por Trametes villosa ccb176 em diferentes condições de cultivo

    Directory of Open Access Journals (Sweden)

    Renata Yamanaka

    2008-03-01

    Full Text Available The expression of the enzymatic system produced by basidiomycetous fungi, which is involved in the degradation of xenobiotics, mainly depends on culture conditions, especially of the culture medium composition. Trametes villosa is a strain with a proven biotechnological potential for the degradation of organochlorine compounds and for the decolorization of textile dyes. The influence of glucose concentration, addition of a vegetable oil-surfactant emulsion, nature of the surfactant and the presence of manganese and copper on the growth, pH and production of laccase, total peroxidase and manganese-dependent peroxidase activities were evaluated. In general, acidification of the medium was observed, with the pH reaching a value close to 3.5 within the first days of growth. Laccase was the main activity detected under the different conditions and was produced throughout the culture period of the fungus, irrespective of the growth phase. Supplementation of the medium with vegetable oil emulsified with a surfactant induced manganese-dependent peroxidase activity in T. villosa. Higher specific yields of laccase activity were obtained with the addition of copper.A expressão do sistema enzimático produzido por fungos basidiomicetos envolvido na degradação de xenobióticos é bastante dependente das condições de cultivo, principalmente da composição do meio de cultivo. Trametes villosa CCB176 é uma linhagem com comprovado potencial biotecnológico para degradação de compostos organoclorados e descoloração de corantes têxteis. Foi avaliada a influência da concentração de glicose, adição de emulsão de óleo vegetal e surfactante, natureza do surfactante e os metais manganês e cobre no crescimento, pH e na produção das atividades de lacase, de peroxidases totais e de peroxidase dependente de manganês. No geral, ocorreu acidificação do meio com pH atingindo valor próximo a 3,5, nos primeiros dias de crescimento. Lacase foi a

  14. Enzyme inhibition by iminosugars

    DEFF Research Database (Denmark)

    López, Óscar; Qing, Feng-Ling; Pedersen, Christian Marcus;

    2013-01-01

    Imino- and azasugar glycosidase inhibitors display pH dependant inhibition reflecting that both the inhibitor and the enzyme active site have groups that change protonation state with pH. With the enzyme having two acidic groups and the inhibitor one basic group, enzyme-inhibitor complexes...

  15. 21 CFR 173.150 - Milk-clotting enzymes, microbial.

    Science.gov (United States)

    2010-04-01

    ... HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.150 Milk-clotting enzymes, microbial... of cheese in accordance with the following prescribed conditions: (a) Milk-clotting enzyme is derived... minimum required to produce its intended effect in the production of those cheeses for which it...

  16. Assay Methods for H2S Biogenesis and Catabolism Enzymes

    OpenAIRE

    Banerjee, Ruma; Chiku, Taurai; Kabil, Omer; Libiad, Marouane; Motl, Nicole; Yadav, Pramod K.

    2015-01-01

    H2S is produced from sulfur-containing amino acids, cysteine and homocysteine, or a catabolite, 3-mercaptopyruvate, by three known enzymes: cystathionine β-synthase, γ-cystathionase, and 3-mercaptopyruvate sulfurtransferase. Of these, the first two enzymes reside in the cytoplasm and comprise the transsulfuration pathway, while the third enzyme is found both in the cytoplasm and in the mitochondrion. The following mitochondrial enzymes oxidize H2S: sulfide quinone oxidoreductase, sulfur dioxy...

  17. New applications for enzymes in oil and gas production

    Energy Technology Data Exchange (ETDEWEB)

    Harris, R.E.; McKay, I.D. [Cleansorb Ltd., Yateley (United Kingdom)

    1999-04-01

    Enzymes have been previously used as gel breakers. In these applications, the enzyme removes a chemical which is no longer required, such as biopolymers in filter cakes after drilling or in frac gels after the frac has occurred. Enzymes are now used to produce useful oilfield chemicals in-situ for acidizing, sand consolidation and water shutoff applications. Enzyme-based processes for generating other useful oil-field chemicals, including minerals, gels and resins, are being developed, and these applications are discussed.

  18. Technometry - the assessment of technico-economic attainments. Enzymes, genetically produced drugs, solar cell arrays, lasers, sensors, industrial robots in the Federal Republic of Germany, Japan and in the USA. Technometrie - die Bemessung des technisch-wirtschaftlichen Leistungsstandes. Enzyme, gentechnisch hergestellte Arzneimittel, Solargeneratoren, Laser, Sensoren, Industrieroboter in der Bundesrepublik Deutschland, Japan und den Vereinigten Staaten

    Energy Technology Data Exchange (ETDEWEB)

    Grupp, H.; Hohmeyer, O.; Kollert, R.; Legler, H.

    1987-01-01

    The competitiveness of a given economic system can conveniently be assessed using analytical methods which at an early stage allow to recognize possible technical drawbacks (technological gaps). The study presents a promising analytical method (indicators, technometry). Details on the pioneer activities going on in Japan and details on the fundamentals of technometry and technological indicators are followed by a presentation of selected fields of technology, namely immobilized biocatalysts, genetically produced drugs, power engineering (solar cells and solar cell arrays), physical technologies (laser radiation sources), measurement techniques (sensors), production engineering (industrial robots, market and technology reports, technico-scientific evaluation). The study concludes with explaining a number of results applicable to all the fields discussed (technological indicators, macroeconomic indicators, technico-economic indicators for selected fields of technology. (HWJ).

  19. Enzymes for improved biomass conversion

    Energy Technology Data Exchange (ETDEWEB)

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  20. Production of Protease Enzyme from Wheat Straw

    OpenAIRE

    Mohammed A. Atiya

    2008-01-01

    Protease enzyme production was studied and optimized as a first step to collect information about solid state fermenter) to produce protease enzyme. A local isolated Aspergillus niger was used for this study with constant spores feeding in every experiment at (105/g). Experiments carried out in conical flasks with (250 ml) containing (10 g) of wheat straw as a substrate with different conditions included temperature, pH, hydration ratio, and fermentation time, the results comprised by measuri...

  1. Lignolytic Enzymes Production from Selected Mushrooms

    OpenAIRE

    H.M. Shantaveera Swamy; Ramalingappa

    2015-01-01

    In this paper, ligninase enzymes produced by selected mushrooms have been reported. We collected mushrooms from Western Ghats, most of them were edible food. Thirty samples isolated were tested using a plate assay through direct agar plate assay by using ABTS, decolourisation containing the fifteen isolates were able to decolourise the dye, indicating a lignin-degrading ability. Spectrophotometric enzyme assays from all selected isolates were carried out to examine the production of Ligninoly...

  2. Controlled enzyme catalyzed heteropolysaccharide degradation:Xylans

    OpenAIRE

    Rasmussen, Louise Enggaard; Meyer, Anne S.

    2011-01-01

    The work presented in this PhD thesis has provided a better understanding of the enzyme kinetics and quantitative phenomena of the hydrolysis of xylan substrates by selected pure enzyme preparations. Furthermore, the options for producing specific substituted xylooligosaccharides from selected substrates by specific xylanase treatment have been examined. The kinetics of the enzymatic degradation of water-extractable wheat arabinoxylan (WE-AX) during designed treatments with selected monocompo...

  3. Enzymes as catalysts in polymer chemistry

    OpenAIRE

    Sinigoi, Loris

    2011-01-01

    The use of enzymes in synthetic chemistry is attracting the interest of many researchers thanks to their extraordinary efficiency under mild conditions, high stereo- regio- and chemoselectivity and low environmental impact. Their application in the field of polymer chemistry has provided new synthetic strategies for useful polymers. The advantages coming from the use of enzymes are mainly: i) the possibility to synthesize polymers with novel properties and difficult to produce by conventional...

  4. Isolation and optimization of pectinase enzyme production one of useful industrial enzyme in Aspergillus niger, Rhizopus oryzae, Penicilium chrysogenum

    OpenAIRE

    akram songol; mandana behbahani

    2016-01-01

    Introduction: Pectinase enzyme is one of the most important industrial enzymes which isolated from a wide variety of microorganisms such as bacteria and filamentous fungi. This enzyme has been usually used in the fruit and textile industry. In this study, the isolation and optimization of pectinase-producing fungi on decaying rotten fruits were studied. Materials and methods: Isolation and screening of pectinase producing fungi performed through plate culture on pectin medium and staining...

  5. Producing earthworm fibrinolytic enzyme to fight against clots

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ On the basis of achievements scored by CAS scientists,a demonstration engineering project for lumbrokinase-based drugs and industrialization of earthworm derivatives has recently passed the acceptance check under the auspices of the National Development and Reform Commission (NDRC).

  6. 一株产α-淀粉酶嗜热菌的分离鉴定及其产酶条件的优化%Isolation and Identification of A Thermophilic Train Producing α-amylase and Optimization of Its Enzyme-producing Conditions

    Institute of Scientific and Technical Information of China (English)

    吕美云; 刘紫英; 耿丽媛

    2015-01-01

    35 thermophilic strains producing α-amylase were isolated from hot spring waters in Wentang town,Yichun city in Jiangxi .The strain which showed high α-amylase activity was selected and named as YC-15.The strain was identified as Bacillus subtilis based on analysis of 16S rRNA gene sequence which was exhibited 98% similarity with the 16S rRNA se-quences of Bacillus subtilis,as wall as morphological characteristics, physiological and biochemical characteristics.The optimum cultural conditions of strain YC-15 for the α-amylase production were as follows: The optimum carbon source for producingα-amylase was 2% soluble starch; the optimum nitrogen source was 0.5% yeast extract + 0.5% peptone ;and the optimum initial pH values were 7.0;and the optimum temperatures were 55℃, a neutral thermophiles strains producing α-amylase.%从江西省宜春市温汤镇温泉水域中筛选出35株产α-淀粉酶嗜热菌株,选取一株产α-淀粉酶活力较高的嗜热菌YC-15为出发菌株,对其进行16S rRNA基因序列分析. 结果表明,YC-15与枯草芽孢杆菌(Bacillus subtilis)的16S rRNA序列相似性达98%,结合其形态﹑生理生化特征,进一步证明了YC-15在分类上应归属枯草芽孢杆菌.并对YC-15产酶条件进行了研究,其最佳碳源为2%可溶性淀粉,最佳氮源为0.5%酵母膏+0.5%蛋白胨,最适产酶初始pH为7.0,最适产酶温度55℃,属中性嗜热产α-淀粉酶菌.

  7. 一株产纤维素酶的甲醇利用细菌的鉴定及其纤维素降解条件优化%Identification and optimal degradation conditions for cellulase-degrading enzyme of a methanol-utilizing and cellulase-producing bacterium

    Institute of Scientific and Technical Information of China (English)

    高健; 肖丹青; 刘喜平; 王能强; 张大为

    2012-01-01

    采用刚果红染色法,从废弃矿山周边土壤中筛选出一株产纤维素酶的甲醇利用细菌,命名为xt - 04.形态特征、生理试验及16S rDNA序列和gyrB序列分析表明,该菌株属于Bacillus methylotrophicus.为提高该菌所产纤维素酶的降解能力,首先通过单因子实验考察了底物CMC -Na浓度、反应温度及缓冲液pH值对纤维素酶活力的影响;然后采用响应面分析法对影响纤维素酶活力的3个单因子进行了优化.结果表明,单因素实验得出的适宜反应温度、缓冲液pH和底物浓度分别为70℃、5.0和2% (20 mg/mL);响应面法得出的最高酶活力条件:反应温度、pH和底物浓度分别为66.1℃、4.81和19.01mg/mL.在最优条件下,酶活力达到17.85 U/mL,比优化前的酶活力12.84 U/mL提高了39.01%.因此,鉴于这种纤维素酶能耐受较高温度和酸性条件,该菌株所产纤维素酶可能在工业中具有良好的应用前景.%A methanol-utilizing and cellulase-producing bacteria, designated strain xt-04, was isolated from the soil of abandoned mine lands of Hunan Province by Congo red staining test. This strain was identified as the species Bacillus methylotrophicus based on the morphological, physiological characteristics and 16S rDNA and gyrB gene sequences analysis. In order to improve the catalytic ability of the cellulase produced by this strain, influences of the concentration of CMC-Na, temperature and pH on the activity of cellulose-decomposing enzyme were investigated by single factor experiment. Then, response surface analysis was used to optimize the influences of three factors on the cellulase activity. The results indicated that the appropriate concentrations of CMC-Na, temperature and pH, based on single-factor experiments, were 20 mg/mL, 70 ℃ , and 5.0, respectively. And the optimal concentrations of CMC-Na, temperature and pH of cellulase-producing, from response surface analysis, were 19.01 mg/mL, 66.1 ℃ and 4

  8. Magnetically responsive enzyme powders

    Energy Technology Data Exchange (ETDEWEB)

    Pospiskova, Kristyna, E-mail: kristyna.pospiskova@upol.cz [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Safarik, Ivo, E-mail: ivosaf@yahoo.com [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)

    2015-04-15

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (−20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties. - Highlights: • Cross-linked enzyme powders were prepared in various liquid media. • Insoluble enzymes were magnetized using iron oxides particles. • Magnetic iron oxides particles were prepared by microwave-assisted synthesis. • Magnetic modification was performed under low (freezing) temperature. • Cross-linked powdered trypsin and lipase can be used repeatedly for reaction.

  9. Magnetically responsive enzyme powders

    International Nuclear Information System (INIS)

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (−20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties. - Highlights: • Cross-linked enzyme powders were prepared in various liquid media. • Insoluble enzymes were magnetized using iron oxides particles. • Magnetic iron oxides particles were prepared by microwave-assisted synthesis. • Magnetic modification was performed under low (freezing) temperature. • Cross-linked powdered trypsin and lipase can be used repeatedly for reaction

  10. HYDRATION AND ENZYME ACTIVITY

    OpenAIRE

    Poole, P.

    1984-01-01

    Hydration induced conformation and dynamic changes are followed using a variety of experimental techniques applied to hen egg white lysozyme. These changes are completed just before the onset of enzyme activity, which occurs before all polar groups are hydrated, and before monolayer coverage is attained. We suggest that these hydration induced changes are necessary for the return of enzyme activity.

  11. Artificial Enzymes, "Chemzymes"

    DEFF Research Database (Denmark)

    Bjerre, Jeannette; Rousseau, Cyril Andre Raphaël; Pedersen, Lavinia Georgeta M;

    2008-01-01

    "Chemzymes", based on cyclodextrins and other molecules. Only the chemzymes that have shown enzyme-like activity that has been quantified by different methods will be mentioned. This review will summarize the work done in the field of artificial glycosidases, oxidases, epoxidases, and esterases, as well...... as chemzymes that catalyze conjugate additions, cycloadditions, and self-replicating processes. The focus will be mainly on cyclodextrin-based chemzymes since they have shown to be good candidate structures to base an enzyme model skeleton on. In addition hereto, other molecules that encompass binding......Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models...

  12. 厌氧菌群SVY42产酶条件分析及产木聚糖酶菌株的分离鉴定%Enzyme-Producing Conditions Analysis of Anaerobic Bactearial Population SVY42 andIsolation and Identification of a Xylanase-Producing Strain

    Institute of Scientific and Technical Information of China (English)

    赵超; 李婷; 邓云金; 刘晓艳; 黄一帆; 刘斌

    2013-01-01

    A highly effective and stable cellulose and hemicellulose degradable anaerobic bacterial population (ABP) SVY42 from the samples collected from Great Basin Hot Spring in Nevada,USA as material was enriched with and obtained.Their production conditions of CMCase,β-galactosidase and xylanase by ABP SVY42 were studied with the giant Juncao,bagasse,waste mushroom culturing cylinder,sodium carboxymethyl cellulose (CMC),filter paper and xylan as carbon sources.Based on these,a xylanase high-producing strain was screened using xylan as substrate.The highest β-galactosidase activity was 0.23 U/mL using the giant Juncao as substrate.The highest CMCase and xylanase activities were 0.31 U/mL and 0.35 U/mL using xylan as substrate respectively.A xylanase high-producing thermophilic strain SVY42-1 from ABP SVY42 was screened from ABP SVY42.The xylanase activity reached 0.26 U/mL under the optimal temperature (41℃) and pH (8.0).Strain SVY42-1 was identified by 16S rDNA sequencing analysis and only 93.8% similar to the highest homology of the known strains,and identified initially belong to a new genus.%以美国内华达州大盆地温泉采集样品为材料,富集获得纤维素及半纤维素高效稳定降解厌氧菌群SVY42,以巨菌草、甘蔗渣、废菇筒、羧甲基纤维素钠、滤纸、木聚糖为碳源,分析菌群SVY42产内切葡聚糖酶(CMC酶)、β-葡萄糖苷酶和木聚糖酶的情况.在此基础上,以木聚糖为底物筛选高产木聚糖酶的菌株.菌群SVY42在以巨菌草作为碳源时的β-葡萄糖苷酶活最高为0.23 U/mL,以木聚糖作为碳源时CMC酶活和木聚糖酶活均为最高,分别为0.31 U/mL和0.35 U/mL.从菌群SVY42中筛选得到1株高产木聚糖酶厌氧菌株SVY42-1,该菌在最适温度41℃和pH 8.0条件下,其木聚糖酶活力为0.26 U/mL,对其进行16S rDNA序列系统进化分析,SVY42-1与已知菌株的最高同源性仅为93.81%,初步鉴定属于新属.

  13. Assay Methods for H2S Biogenesis and Catabolism Enzymes

    Science.gov (United States)

    Banerjee, Ruma; Chiku, Taurai; Kabil, Omer; Libiad, Marouane; Motl, Nicole; Yadav, Pramod K.

    2015-01-01

    H2S is produced from sulfur-containing amino acids, cysteine and homocysteine, or a catabolite, 3-mercaptopyruvate, by three known enzymes: cystathionine β-synthase, γ-cystathionase, and 3-mercaptopyruvate sulfurtransferase. Of these, the first two enzymes reside in the cytoplasm and comprise the transsulfuration pathway, while the third enzyme is found both in the cytoplasm and in the mitochondrion. The following mitochondrial enzymes oxidize H2S: sulfide quinone oxidoreductase, sulfur dioxygenase, rhodanese, and sulfite oxidase. The products of the sulfide oxidation pathway are thiosulfate and sulfate. Assays for enzymes involved in the production and oxidative clearance of sulfide to thiosulfate are described in this chapter. PMID:25725523

  14. Production of extremophilic bacterial cellulase enzymes in aspergillus niger.

    Energy Technology Data Exchange (ETDEWEB)

    Gladden, John Michael

    2013-09-01

    Enzymes can be used to catalyze a myriad of chemical reactions and are a cornerstone in the biotechnology industry. Enzymes have a wide range of uses, ranging from medicine with the production of pharmaceuticals to energy were they are applied to biofuel production. However, it is difficult to produce large quantities of enzymes, especially if they are non-native to the production host. Fortunately, filamentous fungi, such as Aspergillus niger, are broadly used in industry and show great potential for use a heterologous enzyme production hosts. Here, we present work outlining an effort to engineer A. niger to produce thermophilic bacterial cellulases relevant to lignocellulosic biofuel production.

  15. Enzyme immobilization by means of ultrafiltration techniques.

    Science.gov (United States)

    Scardi, V; Cantarella, M; Gianfreda, L; Palescandolo, R; Alfani, F; Greco, G

    1980-01-01

    Unstirred, plane membrane, ultrafiltration cells have been used as enzymatic reactor units. Because of the concentration polarization phenomena which take place in the system, at steady-state the enzyme is confined (dynamically immobilized) within an extremely narrow region upstream the ultrafiltration membrane. Correspondingly its concentration attains fairly high values. Kinetic studies have been therefore performed under quite unusual experimental conditions in order to better approximate local enzyme concentration levels in immobilized enzyme systems. Studies have been also carried out on the kinetics of enzyme deactivation in the continuous presence of substrate and reaction products. Once the enzyme concentration profile is completely developed, further injection into the system of suitable amounts of an inert proteic macromolecule (albumin polymers) gives rise to the formation of a gel layer onto the ultrafiltration membrane within which the enzyme is entrapped (statically immobilized). The effect of this immobilization technique has been studied as far as the kinetics of the main reaction, the substrate mass transfer resistances and the enzyme stability are concerned. The rejective properties of such gel layers towards enzymatic molecules have been exploited in producing multilayer, multi-enzymatic reactors. PMID:7417597

  16. Replacement of the human topoisomerase linker domain with the plasmodial counterpart renders the enzyme camptothecin resistant

    DEFF Research Database (Denmark)

    Arnò, Barbara; D'Annessa, Ilda; Tesauro, Cinzia;

    2013-01-01

    A human/plasmodial hybrid enzyme, generated by swapping the human topoisomerase IB linker domain with the corresponding domain of the Plasmodium falciparum enzyme, has been produced and characterized. The hybrid enzyme displays a relaxation activity comparable to the human enzyme, but it is chara...

  17. Microbial Enzymes: Tools for Biotechnological Processes

    Directory of Open Access Journals (Sweden)

    Jose L. Adrio

    2014-01-01

    Full Text Available Microbial enzymes are of great importance in the development of industrial bioprocesses. Current applications are focused on many different markets including pulp and paper, leather, detergents and textiles, pharmaceuticals, chemical, food and beverages, biofuels, animal feed and personal care, among others. Today there is a need for new, improved or/and more versatile enzymes in order to develop more novel, sustainable and economically competitive production processes. Microbial diversity and modern molecular techniques, such as metagenomics and genomics, are being used to discover new microbial enzymes whose catalytic properties can be improved/modified by different strategies based on rational, semi-rational and random directed evolution. Most industrial enzymes are recombinant forms produced in bacteria and fungi.

  18. Microbial enzymes: tools for biotechnological processes.

    Science.gov (United States)

    Adrio, Jose L; Demain, Arnold L

    2014-01-16

    Microbial enzymes are of great importance in the development of industrial bioprocesses. Current applications are focused on many different markets including pulp and paper, leather, detergents and textiles, pharmaceuticals, chemical, food and beverages, biofuels, animal feed and personal care, among others. Today there is a need for new, improved or/and more versatile enzymes in order to develop more novel, sustainable and economically competitive production processes. Microbial diversity and modern molecular techniques, such as metagenomics and genomics, are being used to discover new microbial enzymes whose catalytic properties can be improved/modified by different strategies based on rational, semi-rational and random directed evolution. Most industrial enzymes are recombinant forms produced in bacteria and fungi.

  19. Membrane Assisted Enzyme Fractionation

    DEFF Research Database (Denmark)

    Yuan, Linfeng

    . In this thesis, separations using crossflow elecro-membrane filtration (EMF) of amino acids, bovine serum albumin (BSA) and industrial enzymes from Novozymes were performed. The main objective of this study was to investigate the technological feasibility of EMF in the application of industrial enzyme...... fractionation, such as removal of a side activity from the main enzyme activity. As a proof-of-concept, amino acids were used as model solution to test the feasibility of EMF in the application of amphoteric molecule separation. A single amino acid was used to illustrate the effect of an electric field...... on the separation performance were very small in the investigated range. The mass transport of each enzyme can be well explained by the Extended-Nernst-Planck equation. Better separation was observed at lower feed concentration, higher solution pH in the investigated range and with a polysulfone (PS) MF membrane...

  20. Overproduction of ligninolytic enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Elisashvili, Vladimir; Kachlishvili, Eva; Torok, Tamas

    2014-06-17

    Methods, compositions, and systems for overproducing ligninolytic enzymes from the basidiomycetous fungus are described herein. As described, the method can include incubating a fungal strain of Cerrena unicolor IBB 303 in a fermentation system having growth medium which includes lignocellulosic material and then cultivating the fungal strain in the fermentation system under conditions wherein the fungus expresses the ligninolytic enzymes. In some cases, the lignocellulosic material is mandarin peel, ethanol production residue, walnut pericarp, wheat bran, wheat straw, or banana peel.

  1. Enzyme with rhamnogalacturonase activity.

    OpenAIRE

    Kofod, L.V.; Andersen, L N; Dalboge, H; Kauppinen, M.S.; Christgau, S; Heldt-Hansen, H.P.; Christophersen, C.; Nielsen, P.M.; Voragen, A. G. J.; Schols, H.A.

    1998-01-01

    An enzyme exhibiting rhamnogalacturonase activity, capable of cleaving a rhamnogalacturonan backbone in such a manner that galacturonic acids are left as the non-reducing ends, and which exhibits activity on hairy regions from a soy bean material and/or on saponified hairy regions from a sugar beet material. The enzyme has the amino acid sequence of SEQ ID NO:2 and is encoded by the DNA sequence of SEQ ID NO:1

  2. RNA-modifying enzymes.

    Science.gov (United States)

    Ferré-D'Amaré, Adrian R

    2003-02-01

    A bewildering number of post-transcriptional modifications are introduced into cellular RNAs by enzymes that are often conserved among archaea, bacteria and eukaryotes. The modifications range from those with well-understood functions, such as tRNA aminoacylation, to widespread but more mysterious ones, such as pseudouridylation. Recent structure determinations have included two types of RNA nucleobase modifying enzyme: pseudouridine synthases and tRNA guanine transglycosylases.

  3. Screening and Identification of Lipase-producing Bacteria from Intestinal Canal of Dendrolimus kikuchii and Preliminary Studies on Its Enzyme Properties%思茅松毛虫肠道产脂肪酶菌株的筛选鉴定及酶学性质初步研究

    Institute of Scientific and Technical Information of China (English)

    孙佑赫; 周开艳; 熊智

    2012-01-01

    利用纯培养和筛选培养,从思茅松毛虫幼虫肠道中分离得到7株产脂肪酶的菌株.通过提取基因组DNA并进行16S rDNA序列测定,构建产酶菌株的系统发育树,初步鉴定结果显示:菌株D2、D12、D19属于假单胞菌属(Pseudomonas sp.),菌株D7、D17属于芽胞杆菌属(Bacillus sp.),菌株D9、D16属于克雷伯氏菌(Klebsiella sp.).初步研究所产脂肪酶的酶学性质,确定这些酶的最适作用温度30~40℃、最适作用pH值8.0~9.0,为中温碱性脂肪酶.%Seven lipase-producing bacterial strains (LPBS) were isolated from intestinal canal of larva of Kikuchi pine caterpillar (Dendrolimus kikuchii) using pure and screening culture. Through extraction of genomic DNA and measurement of 16S rDNA sequences, a phylogenetic tree of the LPBS was constructed. Initial characterization results showed that these strains belonged to Pseudomonas (D2, D12, D19), Bacillus (D7, D17), and Klebsiella (D9, D16). The enzyme properties of the produced lipase were preliminarily studied. And confirmed that the most suitable reaction conditions of the lipase was 30-40℃ and pH 8. 0 - 9. 0, they were mild alkaline lipase.

  4. Directing filtration to optimize enzyme immobilization in reactive membranes

    DEFF Research Database (Denmark)

    Luo, Jianquan; Marpani, Fauziah; Brites, Rita;

    2014-01-01

    In this work, fouling principles in force in ultrafiltration were deployed to understand the role of selected variables-applied pressure (1-3bar), enzyme concentration (0.05-0.2gL-1), pH (5-9) and membrane properties-on fouling-induced enzyme immobilization. The immobilization and subsequent...... enzymatic reaction efficiency were evaluated in terms of enzyme loading, conversion rate and biocatalytic stability. Alcohol dehydrogenase (ADH) was selected as a model enzyme. Lower pressure, higher enzyme concentration and lower pH resulted in higher irreversible fouling resistance and lower permeate flux....... High pH during immobilization produced increased permeate flux but declines in conversion rates, likely because of the weak immobilization resulting from strong electrostatic repulsion between enzymes and membrane. The results showed that pore blocking as a fouling mechanism permitted a higher enzyme...

  5. Rice bran as a substrate for proteolytic enzyme production

    OpenAIRE

    Alagarsamy Sumantha; Paul Deepa; Chandran Sandhya; George Szakacs; Carlos Ricardo Soccol; Ashok Pandey

    2006-01-01

    Rice bran was used as the substrate for screening nine strains of Rhizopus sp. for neutral protease production by solid-state fermentation. The best producer, Rhizopus microsporus NRRL 3671, was used for optimizing the process parameters for enzyme production. Fermentation carried out with 44.44 % initial moisture content at a temperature of 30 C for 72 h was found to be the optimum for enzyme secretion by the fermenting organism. While most of the carbon supplements favored enzyme production...

  6. Perspectives of Solid State Fermentation for Production of Food Enzymes

    Directory of Open Access Journals (Sweden)

    Cristobal Noe Aguilar

    2008-01-01

    Full Text Available Food industry represents one of the economic sectors where microbial metabolites have found a wide variety of applications. This is the case of some enzymes, such as amylases, cellulases, pectinases and proteases which have played a very important role as food additives. Most of these enzymes have been produced by submerged cultures at industrial level. Many works in the literature present detailed aspects involved with those enzymes and their importance in the food industry. However, the production and application studies of those enzymes produced by solid state fermentations are scarce in comparison with submerged fermentation. This review involves production aspects of the seven enzymes: tannases, pectinases, caffeinases, mannanases, phytases, xylanases and proteases, which can be produced by solid state fermentation showing attractive advantages. Additionally, process characteristics of solid state fermentation are considered.

  7. Red cell enzymes.

    Science.gov (United States)

    Paniker, N V

    1975-03-01

    As compared to other cells of the body, the mammalian red cell has one of the simplest structural organizations. As a result, this cell has been extensively used in studies involving the structure, function, and integrity of cell membranes as well as cytoplasmic events. Additionally, the metabolic activities of the red blood cell are also relatively simple. During the past quarter century or so, an ocean of knowledge has been gathered on various aspects of red cell metabolism and function. The fields of enzymes, hemoglobin, membrane, and metabolic products comprise the major portion of this knowledge. These advances have made valuable contributions to biochemistry and medicine. Despite these favorable aspects of this simple, anucleated cell, it must be conceded that our knowledge about the red cell is far from complete. We are still in the dark concerning the mechanism involved in several aspects of its membrane, hemoglobin, enzymes, and a large number of other constituents. For example, a large number of enzymes with known catalytic activity but with unknown function have eluded investigators despite active pursuit. This review will be a consolidation of our present knowledge of human red cell enzymes, with particular reference to their usefulness in the diagnosis and therapy of disease. Owing to the multitude of publications by prominent investigators on each of the approximately 50 enzymes discussed in this review, it was impossible to cite a majority of them.

  8. Activity assessment of microbial fibrinolytic enzymes.

    Science.gov (United States)

    Kotb, Essam

    2013-08-01

    Conversion of fibrinogen to fibrin inside blood vessels results in thrombosis, leading to myocardial infarction and other cardiovascular diseases. In general, there are four therapy options: surgical operation, intake of antiplatelets, anticoagulants, or fibrinolytic enzymes. Microbial fibrinolytic enzymes have attracted much more attention than typical thrombolytic agents because of the expensive prices and the side effects of the latter. The fibrinolytic enzymes were successively discovered from different microorganisms, the most important among which is the genus Bacillus. Microbial fibrinolytic enzymes, especially those from food-grade microorganisms, have the potential to be developed as functional food additives and drugs to prevent or cure thrombosis and other related diseases. There are several assay methods for these enzymes; this may due to the insolubility of substrate, fibrin. Existing assay methods can be divided into three major groups. The first group consists of assay of fibrinolytic activity with natural proteins as substrates, e.g., fibrin plate methods. The second and third groups of assays are suitable for kinetic studies and are based on the determination of hydrolysis of synthetic peptide esters. This review will deal primarily with the microorganisms that have been reported in literature to produce fibrinolytic enzymes and the first review discussing the methods used to assay the fibrinolytic activity.

  9. Amylolytic enzyme production byRhizopus oryzae grown on agricultural commodities.

    Science.gov (United States)

    Yu, R C; Hang, Y D

    1990-03-01

    The amylolytic enzyme production byRhizopus oryzae NRRL 395 grown on different agricultural commodities was datermined. The mould produced much higher enzyme activity from barley, corn, bats, and rice than from cassava. The optimal temperature for enzyme production was 30°C. Neutralization with CaCO3 greatly enhanced the rate of enzyme production. Nitrogen supplementation of cassava resulted in higher enzyme yields.

  10. Angiotensin-converting enzyme

    DEFF Research Database (Denmark)

    Sørensen, P G; Rømer, F K; Cortes, D

    1984-01-01

    In order to evaluate bleomycin-associated lung damage in humans, lung function parameters and serum levels of the endothelial-bound angiotensin-converting enzyme (ACE) were determined by serial measurements in 11 patients who were treated for testicular cancer. None developed clinical or radiolog......In order to evaluate bleomycin-associated lung damage in humans, lung function parameters and serum levels of the endothelial-bound angiotensin-converting enzyme (ACE) were determined by serial measurements in 11 patients who were treated for testicular cancer. None developed clinical...

  11. The surface science of enzymes

    DEFF Research Database (Denmark)

    Rod, Thomas Holm; Nørskov, Jens Kehlet

    2002-01-01

    ? To solve these problems we must understand in some detail how enzymes interact with reactants from its surroundings. These interactions take place at the surface of the enzyme and the question of enzyme function can be viewed as the surface science of enzymes. In this article we discuss how to describe......One of the largest challenges to science in the coming years is to find the relation between enzyme structure and function. Can we predict which reactions an enzyme catalyzes from knowledge of its structure-or from its amino acid sequence? Can we use that knowledge to modify enzyme function...

  12. ISFET based enzyme sensors

    NARCIS (Netherlands)

    Schoot, van der Bart H.; Bergveld, Piet

    1987-01-01

    This paper reviews the results that have been reported on ISFET based enzyme sensors. The most important improvement that results from the application of ISFETs instead of glass membrane electrodes is in the method of fabrication. Problems with regard to the pH dependence of the response and the dyn

  13. Computational enzyme design

    Science.gov (United States)

    Bolon, Daniel N.

    2002-08-01

    The long-term objective of computational enzyme design is the ability to generate efficient protein catalysts for any chemical reaction. This thesis develops and experimentally validates a general computational approach for the design of enzymes with novel function. In order to include catalytic mechanism in protein design, a high-energy state (HES) rotamer (side chain representation) was constructed. In this rotamer, substrate atoms are in a HES. In addition, at least one amino acid side chain is positioned to interact favorably with substrate atoms in their HES and facilitate the reaction. Including an amino acid side chain in the HES rotamer automatically positions substrate relative to a protein scaffold and allows protein design algorithms to search for sequences capable of interacting favorably with the substrate. Because chemical similarity exists between the transition state and the high-energy state, optimizing the protein sequence to interact favorably with the HES rotamer should lead to transition state stabilization. In addition, the HES rotamer model focuses the subsequent computational active site design on a relevant phase space where an amino acid is capable of interacting in a catalytically active geometry with substrate. Using a HES rotamer model of the histidine mediated nucleophilic hydrolysis of p-nitrophenyl acetate, the catalytically inert 108 residue E. coli thioredoxin as a scaffold, and the ORBIT protein design software to compute sequences, an active site scan identified two promising active site designs. Experimentally, both candidate ?protozymes? demonstrated catalytic activity significantly above background. In addition, the rate enhancement of one of these ?protozymes? was the same order of magnitude as the first catalytic antibodies. Because polar groups are frequently buried at enzyme-substrate interfaces, improved modeling of buried polar interactions may benefit enzyme design. By studying native protein structures, rules have been

  14. The Moderately Efficient Enzyme: Futile Encounters and Enzyme Floppiness.

    Science.gov (United States)

    Bar-Even, Arren; Milo, Ron; Noor, Elad; Tawfik, Dan S

    2015-08-18

    The pioneering model of Henri, Michaelis, and Menten was based on the fast equilibrium assumption: the substrate binds its enzyme reversibly, and substrate dissociation is much faster than product formation. Here, we examine this assumption from a somewhat different point of view, asking what fraction of enzyme-substrate complexes are futile, i.e., result in dissociation rather than product formation. In Knowles' notion of a "perfect" enzyme, all encounters of the enzyme with its substrate result in conversion to product. Thus, the perfect enzyme's catalytic efficiency, kcat/KM, is constrained by only the diffusion on-rate, and the fraction of futile encounters (defined as φ) approaches zero. The available data on >1000 different enzymes suggest that for ≥90% of enzymes φ > 0.99 and for the "average enzyme" φ ≥ 0.9999; namely, <1 of 10(4) encounters is productive. Thus, the "fast equilibrium" assumption holds for the vast majority of enzymes. We discuss possible molecular origins for the dominance of futile encounters, including the coexistence of multiple sub-states of an enzyme's active site (enzyme floppiness) and/or its substrate. Floppiness relates to the inherent flexibility of proteins, but also to conflicting demands, or trade-offs, between rate acceleration (the rate-determining chemical step) and catalytic turnover, or between turnover rate and accuracy. The study of futile encounters and active-site floppiness may contribute to a better understanding of enzyme catalysis, enzyme evolution, and improved enzyme design.

  15. Ethanologenic Enzymes of Zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Ingram, Lonnie O' Neal

    1999-03-01

    Zymomonas mobilis is a unique microorganism in being both obligately fermentative and utilizing a Entner-Doudoroff pathway for glycolysis. Glycolytic flux in this organism is readily measured as evolved carbon dioxide, ethanol, or glucose consumed and exceeds 1 {micro}mole glucose/min per mg cell protein. To support this rapid glycolysis, approximately 50% of cytoplasmic protein is devoted to the 13 glycolytic and fermentative enzymes which constitute this central catabolic pathway. Only 1 ATP (net) is produced from each glucose metabolized. During the past grant period, we have completed the characterization of 11 of the 13 glycolytic genes from Z. mobilis together with complementary but separate DOE-fimded research by a former post-dot and collaborator, Dr. Tyrrell Conway. Research funded in my lab by DOE, Division of Energy Biosciences can be divided into three sections: A. Fundamental studies; B. Applied studies and utility; and C. Miscellaneous investigations.

  16. Enzyme Computation - Computing the Way Proteins Do

    Directory of Open Access Journals (Sweden)

    Jaime-Alberto Parra-Plaza

    2013-08-01

    Full Text Available It is presented enzyme computation, a computational paradigm based on the molecular activity inside the biological cells, particularly in the capacity of proteins to represent information, of enzymes to transform that information, and of genes to produce both elements according to the dynamic requirements of a given system. The paradigm explodes the rich computational possibilities offered by metabolic pathways and genetic regulatory networks and translates those possibilities into a distributed computational space made up of active agents which communicate through the mechanism of message passing. Enzyme computation has been tested in diverse problems, such as image processing, species classification, symbolic regression, and constraints satisfaction. Also, given its distributed nature, an implementation in dynamical reconfigurable hardware has been possible.

  17. Polyhydroyxalkanoate Synthase Fusions as a Strategy for Oriented Enzyme Immobilisation

    Directory of Open Access Journals (Sweden)

    David O. Hooks

    2014-06-01

    Full Text Available Polyhydroxyalkanoate (PHA is a carbon storage polymer produced by certain bacteria in unbalanced nutrient conditions. The PHA forms spherical inclusions surrounded by granule associate proteins including the PHA synthase (PhaC. Recently, the intracellular formation of PHA granules with covalently attached synthase from Ralstonia eutropha has been exploited as a novel strategy for oriented enzyme immobilisation. Fusing the enzyme of interest to PHA synthase results in a bifunctional protein able to produce PHA granules and immobilise the active enzyme of choice to the granule surface. Functionalised PHA granules can be isolated from the bacterial hosts, such as Escherichia coli, and maintain enzymatic activity in a wide variety of assay conditions. This approach to oriented enzyme immobilisation has produced higher enzyme activities and product levels than non-oriented immobilisation techniques such as protein inclusion based particles. Here, enzyme immobilisation via PHA synthase fusion is reviewed in terms of the genetic designs, the choices of enzymes, the control of enzyme orientations, as well as their current and potential applications.

  18. Structure/function relationships in cellulolytic enzymes

    Institute of Scientific and Technical Information of China (English)

    Marc Claeyssens

    2004-01-01

    @@ Cellulose and hemicellulose (mostly xylan), together with lignin, are the major polymeric constituents of plant cell walls and from the largest reservoir of fixed carbon in nature. The enzymatic hydrolysis of polymeric substances by extracellular enzymes, such as cellulases, hemicellulases and laccases, is preferred to chemical depolymerisation to avoid the production of toxic by-products and waste that are expensive to treat. The monosaccharides released through enzymatic hydrolysis can subsequently be microbially converted to commercial commodities, such as bio-ethanol (fuel extender) or microbial protein as feed supplements. The individual depolymerisering enzymes used, such as cellulases,xylanases and laccases, also have industrial application in (i) biobleaching in the paper and pulp industry, (ii) improvement of animal feed (poultry and ruminants) digestibility in feed industries, and (iii) dough rheology and bread volume in the baking process, and beer viscosity and filtration velocity during brewing. The cloning of the genes, coding for several xylan degrading enzymes, and their expression in Baker' s yeast (Saccharomyces cerevisiae) and filamentous fungi (Aspergillus species)opened the possibility to study the pure enzymes, without contaminating activity.Trichoderma reesei produces several of these enzymes and detailed information on their specificity,synergies and structure/activity relationships is known. An overview will be presented.

  19. Study on drug resistance of ESBLs-producing Klebsiella pneumoniae to aminoglycosides and genotypes of aminoglycoside modifying enzymes%产ESBLs肺炎克雷伯菌氨基糖苷类耐药性及其修饰酶基因型的研究

    Institute of Scientific and Technical Information of China (English)

    梁彩倩; 张永标; 杨晓燕; 冯亚群; 符永玫

    2012-01-01

    Objective: To explore the resistance of ESBLs - producing Klebsiella pneumoniae to aminoglycosides and the genotypes of aminoglycoside modifying enzymes ( AMEs). Methods; The susceptibility tests of amikacin, gentamicin, tobramycin and netilmicin were done by Kirby - Bauer diffusions method. PCR was used to amplify 6 kinds of AMEs genes, then the PCR positive products were sequenced to identify their genotypeSj Results; Among the 77 ESBLs - producing KPN strains, the resistant rates to amikacin, gentamicin, tobramycin and netilmicin were 22. 1% , 59.7% , 44.2% and 42.9% , respectively. The detection rates of aac(3) - Ⅱ , aac(6') -Ib, ant(3") -Ⅰ and ant(2") -Ⅰ genes were 49.4% , 35.1% , 22.1% and 6.5% respectively, but aac(3) -Ⅰ and aac(6') -Ⅱ gene were not found. Conclusion: ESBLs - producing KPN are highly resistant to aminoglycosides, which is closely related with AMEs. The prevalent principal genotypes are aac(3) - Ⅱ , aac(6') - Ib and ant(3") -Ⅰ genes in these isolates.%目的:了解产超广谱β-内酰胺酶(ESBLs)肺炎克雷伯菌对氨基糖苷类的耐药性,及其氨基糖苷类修饰酶(AMEs)基因型的流行状况.方法:采用K-B纸片法测定阿米卡星、庆大霉素、妥布霉素、奈替米星的敏感性,应用PCR方法扩增6种AMEs基因,并对PCR阳性产物进行测序以确定其基因型.结果:77株产ESBLs肺炎克雷伯菌对阿米卡星、庆大霉素、妥布霉素、奈替米星的耐药率分别为22.1%、59.7%、44.2%、42.9%,aac(3)-Ⅱ、aac (6′)-Ⅰb、ant(3")-Ⅰ、ant(2")-Ⅰ基因检出率分别为49.4%、35.1%、22.1%、6.5%,未检出aac(3)-Ⅰ和aac(6′)-Ⅱ基因.结论:产ESBLs肺炎克雷伯菌对氨基糖苷类高度耐药,其耐药性与AMEs密切相关,流行的AMEs基因型主要为aac(3)-Ⅱ、aac(6′)-Ⅰb和ant(3")-Ⅰ.

  20. Enzyme linked immunoassay with stabilized polymer saccharide enzyme conjugates

    Science.gov (United States)

    Callstrom, M.R.; Bednarski, M.D.; Gruber, P.R.

    1997-11-25

    An improvement in enzyme linked immunoassays is disclosed wherein the enzyme is in the form of a water soluble polymer saccharide conjugate which is stable in hostile environments. The conjugate comprises the enzyme which is linked to the polymer at multiple points through saccharide linker groups. 19 figs.

  1. Treating Wastewater With Immobilized Enzymes

    Science.gov (United States)

    Jolly, Clifford D.

    1991-01-01

    Experiments show enzymes are immobilized on supporting materials to make biocatalyst beds for treatment of wastewater. With suitable combination of enzymes, concentrations of various inorganic and organic contaminants, including ammonia and urea, reduced significantly.

  2. Nedd8 processing enzymes in Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    O'Donoghue, Jean; Bech-Otschir, Dawadschargal; Larsen, Ida;

    2013-01-01

    Conjugation of the ubiquitin-like modifier Nedd8 to cullins is critical for the function of SCF-type ubiquitin ligases and thus facilitates ubiquitin conjugation and ultimately degradation of SCF substrates, including several cell cycle regulators. Like ubiquitin, Nedd8 is produced as a precursor...... that must first be processed before it becomes active. In Saccharomyces cerevisiae this is carried out exclusively by the enzyme Yuh1....

  3. The Catalytic Function of Enzymes.

    Science.gov (United States)

    Splittgerber, Allan G.

    1985-01-01

    Discusses: structure of the enzyme molecule; active site; reaction mechanism; transition state; factors affecting enzyme reaction rates, concentration of enzyme; concentration of substrate; product concentration; temperature effects and pH effects; factors causing a lowering of activation energy; proximity and orientation effects; substrate strain…

  4. 产耐热木聚糖酶细菌的分离鉴定及酶易错PCR致突变条件优化%Isolation & Identification of a Heat-Resistant Xylanase-Producing Bacterial Strain & Optimization of the Enzyme Error-Prone PCR Mutagenic Conditions

    Institute of Scientific and Technical Information of China (English)

    赵超; 张宁宁; 梅凡; 艾超; 阮灵伟; 黄一帆; 刘斌

    2013-01-01

    从福建省永泰县温泉采集样品中筛选到1株产耐热木聚糖酶嗜热菌株TC-W7,并获得该木聚糖酶基因。在此基础上,采用易错PCR技术在木聚糖酶基因中引入突变,研究Mg2+浓度、Mn2+浓度、dTTP/dCTP浓度等条件对突变率的影响。通过形态特征、生理生化试验及16S rRNA序列相似性比对分析,初步鉴定菌株TC-W7为土壤芽胞杆菌(Geobacillus),菌株TC-W7在最适温度75℃和 pH 8.2条件下,其木聚糖酶活力为215.83 U/mL,Triton X-100和DDT能显著增强该酶的活性。在 Mg2+浓度为20μmol/L,Mn2+浓度为0.80μmol/L,dTTP/dCTP浓度为0.30 mmol/L的致突变条件下,碱基突变率为0.98%。 Geobacillus sp. TC-W7产木聚糖酶具有较好的耐热和耐碱等工业应用特性,对该酶易错PCR致突变条件优化结果,可用于后续木聚糖酶的耐热定向进化。%A heat-resistant xylanase-producing bacterial strain TC-W7 from samples collected in a hot spring in Yong-tai County, Fujian Province was screened and obtained xylanase gene of the strain. Based on these an error-prone PCR ( Ep-PCR) technique was adopted to introduce mutation in the xylanase gene, to study the effects of the concentration such as Mg2+, Mn2+ and dTTP/dCTP and other conditions on the mutation rate. It was initially identified that strain TC-W7 belonged to Geobacillus through morphology features, physiological and biochemical tests as well as 16S rRNA sequence comparative analysis. Under the most suitable temperature 75℃ and pH 8. 2, the activity of xylanase was at 215. 83 U/mL, Triton X-100 and DDT could remarkably increase the activity of xylanase. The base mutation rate was at 0. 98% under the mutagenic conditions of 20. 0 μmol/L Mg2+, 0. 80 μmol/L Mn2+ and 0. 30 mmol/L dTTP/dCTP. The xylanase-producing Geobacillus sp. TC-W7 had a fine heat and alkali resistance and other industry appli-cable features. The results of Ep-PCR mutagenic conditions optimization of the enzyme can be used for

  5. Autodisplay of enzymes--molecular basis and perspectives.

    Science.gov (United States)

    Jose, Joachim; Maas, Ruth Maria; Teese, Mark George

    2012-10-15

    To display an enzyme on the surface of a living cell is an important step forward towards a broader use of biocatalysts. Enzymes immobilized on surfaces appeared to be more stable compared to free molecules. It is possible by standard techniques to let the bacterial cell (e.g. Escherichia coli) decorate its surface with the enzyme and produce it on high amounts with a minimum of costs and equipment. Moreover, these cells can be recovered and reused in several subsequent process cycles. Among other systems, autodisplay has some extra features that could overcome limitations in the industrial applications of enzymes. One major advantage of autodisplay is the motility of the anchoring domain. Enzyme subunits exposed at the cell surface having affinity to each other will spontaneously form dimers or multimers. Using autodisplay enzymes with prosthetic groups can be displayed, expanding the application of surface display to the industrial important P450 enzymes. Finally, up to 10⁵-10⁶ enzyme molecules can be displayed on a single cell. In the present review, we summarize recent achievements in the autodisplay of enzymes with particular attention to industrial needs and process development. Applications that will provide sustainable solutions towards a bio-based industry are discussed.

  6. Studies on Ganoderma lucidum III. production of pectolytic enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, L.S.; Tseng, T.C.

    1986-07-01

    Pectolytic enzymes produced by Ganoderma lucidum B in culture and polypropylene bags were investigated. Two pectolytic enzymes, i.e., endo-polygalacturonase (endo-PG) and endo-pectic methyl trans-eliminase (endo-PMTE) were obtained from crude enzymes of G. lucidum B extract from mycelia polypropylene bags. The endo-PMTE has to optimal pH at 4.5 and 8.0. The enzyme stimulated by Ca/sup + +/ ion and preferred only pectin; the enzyme activity decreased at temperature above 50/sup 0/C. The endo-PMTE a and endo-PMTE b, obtained from polypropylene bag with mycelia of G. lucidum B, were purified by 60-80% ammonium sulfate fractionation, Sephadex G-100 gel filtration, DEAE-cellulose ion exchange column chromatography and isoelectric focusing, showing pI at 8.2 and 5.5. Disc gel electrophoresis confirmed two peaks corresponding to endo-PMTE a and b as isoenzymes. Pectolytic enzymes purified by 60-80% ammonium sulfate fraction macerated potato disc and it was more active than the crude enzyme. At pH 4.5, maceration of potato disc by pectolytic enzymes more effective than those at pH 8.0 or 7.0. At pH 8.0, Ca/sup + +/ ion stimulate pectolytic enzyme activities and accelerated maceration.

  7. Ethanol from wood. Cellulase enzyme production

    Energy Technology Data Exchange (ETDEWEB)

    Szengyel, Zsolt

    2000-03-01

    Conversion of biomass to liquid fuels, such as ethanol, has been investigated during the past decades. First due to the oil crisis of the 1970s and lately because of concerns about greenhouse effect, ethanol has been found to be a suitable substitute for gasoline in transportation. Although ethanol is produced in large quantities from corn starch, the conversion of lignocellulosic biomass to ethanol is rather problematic. However, cellulosic raw materials are important as they are available in large quantities from agriculture and forestry. One of the most extensively investigated processes is the enzymatic process, in which fungal cellulolytic enzymes are used to convert the cellulose content of the biomass to glucose, which is then fermented to ethanol. In order to make the raw material accessible to biological attack, it has to be pretreated first. The most successful method, which has been evaluated for various lignocellulosic materials, is the steam pretreatment. In this thesis the utilization of steam pretreated willow (hardwood) and spruce (softwood) was examined for enzyme production using a filamentous fungus T. reesei RUT C30. Various carbon sources originating from the steam pretreated materials have been investigated. The replacement of the solid carbon source with a liquid carbon source, as well as the effect of pH, was studied. The effect of toxic compounds generated during pretreatment was also examined. Comparative study of softwood and hardwood showed that steam pretreated hardwood is a better carbon source than softwood. The hydrolytic potential of enzyme solutions produced on wood derived carbon sources was better compared to commercial cellulases. Also enzyme solutions produced on steam pretreated spruce showed less sensitivity towards toxic compounds formed during steam pretreatment.

  8. Spatial distribution of enzyme activities in the rhizosphere

    Science.gov (United States)

    Razavi, Bahar S.; Zarebanadkouki, Mohsen; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    The rhizosphere, the tiny zone of soil surrounding roots, certainly represents one of the most dynamic habitat and interfaces on Earth. Activities of enzymes produced by both plant roots and microbes are the primary biological drivers of organic matter decomposition and nutrient cycling. That is why there is an urgent need in spatially explicit methods for the determination of the rhizosphere extension and enzyme distribution. Recently, zymography as a new technique based on diffusion of enzymes through the 1 mm gel plate for analysis has been introduced (Spohn & Kuzyakov, 2013). We developed the zymography technique to visualize the enzyme activities with a higher spatial resolution. For the first time, we aimed at quantitative imaging of enzyme activities as a function of distance from the root tip and the root surface in the soil. We visualized the two dimensional distribution of the activity of three enzymes: β-glucosidase, phosphatase and leucine amino peptidase in the rhizosphere of maize using fluorogenically labelled substrates. Spatial-resolution of fluorescent images was improved by direct application of a substrate saturated membrane to the soil-root system. The newly-developed direct zymography visualized heterogeneity of enzyme activities along the roots. The activity of all enzymes was the highest at the apical parts of individual roots. Across the roots, the enzyme activities were higher at immediate vicinity of the roots (1.5 mm) and gradually decreased towards the bulk soil. Spatial patterns of enzyme activities as a function of distance from the root surface were enzyme specific, with highest extension for phosphatase. We conclude that improved zymography is promising in situ technique to analyze, visualize and quantify spatial distribution of enzyme activities in the rhizosphere hotspots. References Spohn, M., Kuzyakov, Y., 2013. Phosphorus mineralization can be driven by microbial need for carbon. Soil Biology & Biochemistry 61: 69-75

  9. Optimization Conditions of Production Fibrinolytic Enzyme from Bacillus lichniformis B4 Local Isolate

    OpenAIRE

    Essam F. Al-Juamily; Bushra H. Al-Zaidy

    2012-01-01

    The study was conducted with the aim to found local isolate belongs to Bacillus lichniformis to produce fibrinolytic enzyme with highest activity under optimal conditions. Forty-five local isolates belongs to the genus Bacillus lichniformis were selected for production of fibrinolytic enzyme (E.C. 3.4.). The isolate Bacillus lichniformis B4 was selected due to its high productivity of fibrinolytic enzyme. The optimal conditions for fibrinolytic enzyme production were determined, using a solid...

  10. Corn Gluten Hydrolysis By Alcalase: Effects of Process Parameters on Hydrolysis, Solubilization and Enzyme Inactivation

    OpenAIRE

    Kilic-Apar, D.; Ozbek, B.

    2008-01-01

    The aim of this study was to investigate the influences of substrate concentration, enzyme concentration, temperature and pH on hydrolysis and solubilization of corn gluten as well as enzyme stability. The corn gluten was hydrolyzed by Alcalase enzyme (a bacterial protease produced by a selected strain of Bacillus Licheniformis) that was chosen among five commercial enzymes examined. The optimum process conditions for hydrolysis and solubilization were obtained as 30 g L-1 substrate mass conc...

  11. Activity, life time and effect of hydrolytic enzymes for enhanced biogas production from sludge anaerobic digestion.

    Science.gov (United States)

    Odnell, Anna; Recktenwald, Michael; Stensén, Katarina; Jonsson, Bengt-Harald; Karlsson, Martin

    2016-10-15

    As an alternative to energy intensive physical methods, enzymatic treatment of sludge produced at wastewater treatment plants for increased hydrolysis and biogas production was investigated. Several hydrolytic enzymes were assessed with a focus on how enzyme activity and life time was influenced by sludge environments. It could be concluded that the activity life time of added enzymes was limited (implementation, enzymes better suited to the sludge environments are needed. PMID:27498254

  12. Applications of Enzymes in Oil and Oilseed Processing

    DEFF Research Database (Denmark)

    Xu, Xuebing

    conventionally high temperature conditioning or cooking is necessary. The good story in industry is the fish oil and olive oil processing. Good quality and higher oil yield have been achieved through the use of enzymes in the processing stages. For the refining stage, the use of enzymes for degumming has......Enzymes, through the last 20-30 years research and development, have been widely explored for the uses in oil and oilseed processing. Following the conventional processing technology from oilseeds, the oil can be produced through pressing or solvent extraction. The crude oil is then refined to meet...... edible requirements. The oil can be also modified to meet functional or even nutritional needs. In each of those steps, enzymes have been used in industry successfully. For the oil processing stage, enzymes have been used to destroy the cell structure so that makes the oil release easier, where...

  13. Measuring the Enzyme Activity of Arabidopsis Deubiquitylating Enzymes.

    Science.gov (United States)

    Kalinowska, Kamila; Nagel, Marie-Kristin; Isono, Erika

    2016-01-01

    Deubiquitylating enzymes, or DUBs, are important regulators of ubiquitin homeostasis and substrate stability, though the molecular mechanisms of most of the DUBs in plants are not yet understood. As different ubiquitin chain types are implicated in different biological pathways, it is important to analyze the enzyme characteristic for studying a DUB. Quantitative analysis of DUB activity is also important to determine enzyme kinetics and the influence of DUB binding proteins on the enzyme activity. Here, we show methods to analyze DUB activity using immunodetection, Coomassie Brilliant Blue staining, and fluorescence measurement that can be useful for understanding the basic characteristic of DUBs.

  14. Production of extracellular proteolytic enzymes by Beauveria bassiana

    Directory of Open Access Journals (Sweden)

    Józefa Chrzanowska

    2014-08-01

    Full Text Available The production of proteolytic enzymes by two strains of Beauveria bassiana 278, B. bassiana 446 and one strain of Ascosphera apis 496 was analysed. It was demonstrated that the strain of B. bassiana 278 proved to be the best producer of basic and acid proteases. The influence of different environmental factors such as nitrogen and carbon sources on the production of extracellular hydrolytic enzymes was assessed. In addition the acid protease from B. bassiana was partially characterized.

  15. Production of Protease Enzyme from Wheat Straw

    Directory of Open Access Journals (Sweden)

    Mohammed A. Atiya

    2008-01-01

    Full Text Available Protease enzyme production was studied and optimized as a first step to collect information about solid state fermenter to produce protease enzyme. A local isolated Aspergillus niger was used for this study with constant spores feeding in every experiment at (105/g. Experiments carried out in conical flasks with (250 ml containing (10 g of wheat straw as a substrate with different conditions included temperature, pH, hydration ratio, and fermentation time, the results comprised by measuring protease activity (u. The results showed that the best activity can be obtained at (T = 32°C, t= 100 hrs, pH= 2.5 and hydration ratio is 1:3. On the other hand the results is courage to proceed to design a solid state protease fermenter from wheat straw.

  16. Enzyme-Based Fiber Optic Sensors

    Science.gov (United States)

    Kulp, Thomas J.; Camins, Irene; Angel, Stanley M.

    1988-06-01

    Fiber optic chemical sensors capable of detecting glucose and penicillin were developed. Each consists of a polymer membrane that is covalently attached to the tip of a glass optical fiber. The membrane contains the enzyme and a pH-sensitive fluorescent dye (fluorescein). A signal is produced when the enzyme catalyzes the conversion of the analyte (glucose or penicillin) into a product (gluconic or penicilloic acid, respectively) that lowers the microenvironmental pH of the membrane and, consequently, lowers the fluorescence intensity of the dye. Each sensor is capable of responding to analyte concentrations in the range of ~0.1 to 100 mM. The penicillin optrode response time is 40 to 60 s while that for glucose is ~5 to 12 min.

  17. Negative cooperativity in regulatory enzymes.

    Science.gov (United States)

    Levitzki, A; Koshland, D E

    1969-04-01

    Negative cooperativity has been observed in CTP synthetase, an allosteric enzyme which contains a regulatory site. Thus, the same enzyme exhibits negative cooperativity for GTP (an effector) and glutamine (a substrate) and positive cooperativity for ATP and UTP (both substrates). In the process of the delineation of these phenomena, diagnostic procedures for negative cooperativity were developed. Application of these procedures to other enzymes indicates that negative cooperativity is a characteristic of many of them. These findings add strong support for the sequential model of subunit interactions which postulates that ligand-induced conformational changes are responsible for regulatory and cooperative phenomena in enzymes. PMID:5256410

  18. Enzyme therapeutics for systemic detoxification.

    Science.gov (United States)

    Liu, Yang; Li, Jie; Lu, Yunfeng

    2015-08-01

    Life relies on numerous biochemical processes working synergistically and correctly. Certain substances disrupt these processes, inducing living organism into an abnormal state termed intoxication. Managing intoxication usually requires interventions, which is referred as detoxification. Decades of development on detoxification reveals the potential of enzymes as ideal therapeutics and antidotes, because their high substrate specificity and catalytic efficiency are essential for clearing intoxicating substances without adverse effects. However, intrinsic shortcomings of enzymes including low stability and high immunogenicity are major hurdles, which could be overcome by delivering enzymes with specially designed nanocarriers. Extensive investigations on protein delivery indicate three types of enzyme-nanocarrier architectures that show more promise than others for systemic detoxification, including liposome-wrapped enzymes, polymer-enzyme conjugates, and polymer-encapsulated enzymes. This review highlights recent advances in these nano-architectures and discusses their applications in systemic detoxifications. Therapeutic potential of various enzymes as well as associated challenges in achieving effective delivery of therapeutic enzymes will also be discussed.

  19. Purification of a novel fructosyltransferase from Lactobacillus reuteri strain 121 and characterization of the levan produced

    OpenAIRE

    van Hijum, SAFT; Bonting, K.; van der Maarel, MJEC; Dijkhuizen, L.

    2001-01-01

    Fructosyltransferase (FTF) enzymes have been characterized from various Gram-positive bacteria, but not from Lactobacillus sp. In a screening of 182 lactobacilli for polysaccharide production only one strain, Lactobacillus reuteri strain 121, was found to produce a fructan being a levan. Here we report the first-time identification and biochemical characterization of a Lactobacillus FTF enzyme. When incubated with sucrose the enzyme produced a levan that is identical to that produced by Lb. r...

  20. Production of theabrownins using a crude fungal enzyme concentrate.

    Science.gov (United States)

    Wang, Qiuping; Gong, Jiashun; Chisti, Yusuf; Sirisansaneeyakul, Sarote

    2016-08-10

    Theabrownins were produced from infusions of sun-dried green tea leaves using a crude enzyme concentrate of Aspergillus tubingensis TISTR 3647. This fungus had been isolated from a solid state fermentation of Pu-erh type tea. The crude enzyme concentrate contained activities of peroxidase, catechol oxidase and laccase. The enzyme concentrate effectively oxidized the phenolic compounds in green tea infusion to theabrownins. A theabrownins concentration of 56.0g/L was obtained in 44h. The reaction mixture contained the green tea infusion and crude enzyme concentrate in the volume ratio of 1: 0.205. The tea infusion had been produced using 200g of tea leaves per liter of distilled water. The reaction was carried out in a stirred bioreactor at 37°C with an aeration rate of 1 vvm, an agitation speed of 250rpm and a controlled pH of 7.0. Peroxidase, catechol oxidase, and laccase acted synergistically to convert the phenolic compounds in green tea infusion to theabrownins. Previously, theabrownins had been produced from green tea infusions only by using live fungal cultures. Production using the microorganism-free enzyme concentrate was comparable to production using the fungus A. tubingensis TISTR 3647. The proposed novel production process using the fungal crude enzymes and green tea infusion, offers a more controlled, reproducible and highly productive option for commercial production of theabrownins. PMID:27318175

  1. Chryseobacterium indologenes, novel mannanase-producing bacteria

    Directory of Open Access Journals (Sweden)

    Surachai Rattanasuk

    2009-10-01

    Full Text Available Mannanase is a mannan degrading enzyme which is produced by microorganisms, including bacteria. This enzyme can be used in many industrial processes as well as for improving the quality of animal feeds. The aim of the present study was toscreen and characterize the mannanase-producing bacteria. Two genera of bacteria were isolated from Thai soil samples,fermented coconut, and fertilizer. Screening was carried out on agar plates containing mannan stained with iodine solution.The bacteria were identified by partial 16S rRNA gene sequence, biochemical test and morphology, respectively. The mannanase activity was determined by zymogram and DNS method. Two strains of bacteria with mannanase activity were identified as Bacillus and Chryseobacterium. This is the first report of mannanase-producing Chryseobacterium.

  2. Lignocellulolytic enzyme production of Pleurotus ostreatus growth in agroindustrial wastes

    Directory of Open Access Journals (Sweden)

    José Maria Rodrigues da Luz

    2012-12-01

    Full Text Available The mushroom Pleurotus ostreatus has nutritional and medicinal characteristics that depend on the growth substrate. In nature, this fungus grows on dead wood, but it can be artificially cultivated on agricultural wastes (coffee husks, eucalyptus sawdust, corncobs and sugar cane bagasse. The degradation of agricultural wastes involves some enzyme complexes made up of oxidative (laccase, manganese peroxidase and lignin peroxidase and hydrolytic enzymes (cellulases, xylanases and tanases. Understanding how these enzymes work will help to improve the productivity of mushroom cultures and decrease the potential pollution that can be caused by inadequate discharge of the agroindustrial residues. The objective of this work was to assess the activity of the lignocellulolytic enzymes produced by two P. ostreatus strains (PLO 2 and PLO 6. These strains were used to inoculate samples of coffee husks, eucalyptus sawdust or eucalyptus bark add with or without 20 % rice bran. Every five days after substrate inoculation, the enzyme activity and soluble protein concentration were evaluated. The maximum activity of oxidative enzymes was observed at day 10 after inoculation, and the activity of the hydrolytic enzymes increased during the entire period of the experiment. The results show that substrate composition and colonization time influenced the activity of the lignocellulolytic enzymes.

  3. Computational enzyme design: transitioning from catalytic proteins to enzymes.

    Science.gov (United States)

    Mak, Wai Shun; Siegel, Justin B

    2014-08-01

    The widespread interest in enzymes stem from their ability to catalyze chemical reactions under mild and ecologically friendly conditions with unparalleled catalytic proficiencies. While thousands of naturally occurring enzymes have been identified and characterized, there are still numerous important applications for which there are no biological catalysts capable of performing the desired chemical transformation. In order to engineer enzymes for which there is no natural starting point, efforts using a combination of quantum chemistry and force-field based protein molecular modeling have led to the design of novel proteins capable of catalyzing chemical reactions not catalyzed by naturally occurring enzymes. Here we discuss the current status and potential avenues to pursue as the field of computational enzyme design moves forward.

  4. Radiation produced biomaterials

    International Nuclear Information System (INIS)

    radiation technique. Immobilization of biologically active species in hydrogel matrices, their use as drug delivery systems and enzyme traps as well as modification of material surfaces to improve their biocompatibility and ability to bond antigens and antibodies have been the main subject of their investigations. The rising interest in the field of application of radiation to bioengineering was also recognized by the International Atoimc Energy Agency, which has initiated the international programs relating to those studies. In these lectures some directions of investigations on the formation of hydrogels and their applications for biomedical purposes have been specified. Also, some examples of commercialized products being produced by means of radiation technique have been presented

  5. Enzyme immunoassay for human ferritin

    International Nuclear Information System (INIS)

    We described an enzyme immunoassay with use of β-D-galactosidase for quantitation of ferritin in human serum. The minimum detectable ferritin concentration is 0.25 μg/L of serum, which is comparable to results obtained by radioimmunoassay. The correlation coefficient between values determined by enzyme immunoassay and radioimmunoassay was 0.95

  6. Phage lytic enzymes: a history

    Institute of Scientific and Technical Information of China (English)

    David; Trudil

    2015-01-01

    There are many recent studies regarding the efficacy of bacteriophage-related lytic enzymes: the enzymes of ‘bacteria-eaters’ or viruses that infect bacteria. By degrading the cell wall of the targeted bacteria, these lytic enzymes have been shown to efficiently lyse Gram-positive bacteria without affecting normal flora and non-related bacteria. Recent studies have suggested approaches for lysing Gram-negative bacteria as well(Briersa Y, et al., 2014). These enzymes include: phage-lysozyme, endolysin, lysozyme, lysin, phage lysin, phage lytic enzymes, phageassociated enzymes, enzybiotics, muralysin, muramidase, virolysin and designations such as Ply, PAE and others. Bacteriophages are viruses that kill bacteria, do not contribute to antimicrobial resistance, are easy to develop, inexpensive to manufacture and safe for humans, animals and the environment. The current focus on lytic enzymes has been on their use as anti-infectives in humans and more recently in agricultural research models. The initial translational application of lytic enzymes, however, was not associated with treating or preventing a specifi c disease but rather as an extraction method to be incorporated in a rapid bacterial detection assay(Bernstein D, 1997).The current review traces the translational history of phage lytic enzymes–from their initial discovery in 1986 for the rapid detection of group A streptococcus in clinical specimens to evolving applications in the detection and prevention of disease in humans and in agriculture.

  7. Enzyme immobilization on graft copolymers

    NARCIS (Netherlands)

    Mohy Eldin, M.S.

    1999-01-01

    Immobilised enzymes can be reused, easily separated from the reaction medium, and are more stable in most of the cases. Despite of these advantages, there are still some problems facing the usage of the immobilised enzyme in industry. One of those problems is diffusion-limitation of both the reactan

  8. Moonlighting enzymes in parasitic protozoa.

    Science.gov (United States)

    Collingridge, Peter W; Brown, Robert W B; Ginger, Michael L

    2010-08-01

    Enzymes moonlight in a non-enzymatic capacity in a diverse variety of cellular processes. The discovery of these non-enzymatic functions is generally unexpected, and moonlighting enzymes are known in both prokaryotes and eukaryotes. Importantly, this unexpected multi-functionality indicates that caution might be needed on some occasions in interpreting phenotypes that result from the deletion or gene-silencing of some enzymes, including some of the best known enzymes from classic intermediary metabolism. Here, we provide an overview of enzyme moonlighting in parasitic protists. Unequivocal and putative examples of moonlighting are discussed, together with the possibility that the unusual biological characteristics of some parasites either limit opportunities for moonlighting to arise or perhaps contribute to the evolution of novel proteins with clear metabolic ancestry.

  9. Effects of irradiation on enzymes in E. coli

    Energy Technology Data Exchange (ETDEWEB)

    Geyer, H.

    1962-08-15

    To determine the effects of irradiation on enzymes in Escherichia coli strain Crookes, the influence of x radiation on the content of the coenzyme pyridoxal phosphate was investigated. The method of pyridoxal phosphate assay used was based on the fact that E. coli is able to produce tryptophanase. Enzyme activity was measured by determination of indole produced from tryptophane. Doses of 10,000 and 80,000 r of x radiation were given to resting cells and growing cells. It was found that pyridoxal phosphate production and content were not infiuenced by irradiation. (H.M.G.)

  10. Epigenetics of dominance for enzyme activity

    Indian Academy of Sciences (India)

    Kuldip S Trehan; Kulbir S Gill

    2002-03-01

    We have isolated and purified two parental homodimers and a unique heterodimer of acid phosphatase [coded by Acph-11.05() and Acph-10.95()] from isogenic homozygotes and heterozygotes of Drosophila malerkotliana. and produce qualitatively different allozymes and the two alleles are expressed equally within and across all three genotypes and and play an equal role in the epigenetics of dominance. Subunit interaction in the heterodimer over a wide range of H+ concentrations accounts for the epigenetics of dominance for enzyme activity.

  11. Marine-derived fungi: diversity of enzymes and biotechnological applications

    Science.gov (United States)

    Bonugli-Santos, Rafaella C.; dos Santos Vasconcelos, Maria R.; Passarini, Michel R. Z.; Vieira, Gabriela A. L.; Lopes, Viviane C. P.; Mainardi, Pedro H.; dos Santos, Juliana A.; de Azevedo Duarte, Lidia; Otero, Igor V. R.; da Silva Yoshida, Aline M.; Feitosa, Valker A.; Pessoa, Adalberto; Sette, Lara D.

    2015-01-01

    The ocean is considered to be a great reservoir of biodiversity. Microbial communities in marine environments are ecologically relevant as intermediaries of energy, and play an important role in nutrient regeneration cycles as decomposers of dead and decaying organic matter. In this sense, marine-derived fungi can be considered as a source of enzymes of industrial and/or environmental interest. Fungal strains isolated from different substrates, such as invertebrates, decaying wood, seawater, sediments, and mangrove detritus, have been reported to be producers of hydrolytic and/or oxidative enzymes, with alginate lyase, amylase, cellulase, chitinase, glucosidase, inulinase, keratinase, ligninase, lipase, nuclease, phytase, protease, and xylanase being among the enzymes produced by fungi of marine origin. These enzymes present temperature and pH optima ranging from 35 to 70∘C, and 3.0 to 11.0, respectively. High-level production in bioreactors is mainly performed using submerged-state fermentation. Certain marine-derived fungal strains present enzymes with alkaline and cold-activity characteristics, and salinity is considered an important condition in screening and production processes. The adaptability of marine-derived fungi to oceanic conditions can be considered an attractive point in the field of fungal marine biotechnology. In this review, we focus on the advances in discovering enzymes from marine-derived fungi and their biotechnological relevance. PMID:25914680

  12. Linking Hydrolysis Performance to Trichoderma reesei Cellulolytic Enzyme Profile

    DEFF Research Database (Denmark)

    Lehmann, Linda Olkjær; Petersen, Nanna; I. Jørgensen, Christian;

    2016-01-01

    Trichoderma reesei expresses a large number of enzymes involved in lignocellulose hydrolysis and the mechanism of how these enzymes work together is too complex to study by traditional methods, e.g. by spiking with single enzymes and monitoring hydrolysis performance. In this study a multivariate...... approach, partial least squares regression, was used to see if it could help explain the correlation between enzyme profile and hydrolysis performance. Diverse enzyme mixtures were produced by Trichoderma reesei Rut-C30 by exploiting various fermentation conditions and used for hydrolysis of washed...

  13. In vivo and in vitro olefin cyclopropanation catalyzed by heme enzymes

    Science.gov (United States)

    Coelho, Pedro S; Brustad, Eric M; Arnold, Frances H; Wang, Zhan; Lewis, Jared C

    2015-03-31

    The present invention provides methods for catalyzing the conversion of an olefin to any compound containing one or more cyclopropane functional groups using heme enzymes. In certain aspects, the present invention provides a method for producing a cyclopropanation product comprising providing an olefinic substrate, a diazo reagent, and a heme enzyme; and admixing the components in a reaction for a time sufficient to produce a cyclopropanation product. In other aspects, the present invention provides heme enzymes including variants and fragments thereof that are capable of carrying out in vivo and in vitro olefin cyclopropanation reactions. Expression vectors and host cells expressing the heme enzymes are also provided by the present invention.

  14. An enzyme with rhamnogalacturonase activity.

    OpenAIRE

    Kovod, L.V.; Dalboge, H; Andersen, L N; Kauppinen, M.; Christgan, S.; Heldt-Hansen, H.P.; Christophersen, C.; Nielsen, P.M.; Voragen, A. G. J.; Schols, H.A.

    1994-01-01

    An enzyme exhibiting rhamnogalacturonase activity, which enzyme: a) is encoded by the DNA sequence shown in SEQ ID No. 1 or a sequence homologous thereto encoding a polypeptide with RGase activity, b) has the amino acid sequence shown in SEQ ID No. 2 or an analogue thereof, c) is reactive with an antibody raised against the enzyme encoded by the DNA sequence shown in SEQ ID No. 1, d) has a pH optimum above pH 5, and/or e) has a relative activity of at least 30t a pH in the range of 5.5-6.5. T...

  15. Microbial Enzymes with Special Characteristics for Biotechnological Applications

    Directory of Open Access Journals (Sweden)

    Poonam Singh Nigam

    2013-08-01

    Full Text Available This article overviews the enzymes produced by microorganisms, which have been extensively studied worldwide for their isolation, purification and characterization of their specific properties. Researchers have isolated specific microorganisms from extreme sources under extreme culture conditions, with the objective that such isolated microbes would possess the capability to bio-synthesize special enzymes. Various Bio-industries require enzymes possessing special characteristics for their applications in processing of substrates and raw materials. The microbial enzymes act as bio-catalysts to perform reactions in bio-processes in an economical and environmentally-friendly way as opposed to the use of chemical catalysts. The special characteristics of enzymes are exploited for their commercial interest and industrial applications, which include: thermotolerance, thermophilic nature, tolerance to a varied range of pH, stability of enzyme activity over a range of temperature and pH, and other harsh reaction conditions. Such enzymes have proven their utility in bio-industries such as food, leather, textiles, animal feed, and in bio-conversions and bio-remediations.

  16. Enzymes from Extreme Environments and their Industrial Applications

    Directory of Open Access Journals (Sweden)

    Jennifer Ann Littlechild

    2015-10-01

    Full Text Available This article will discuss the importance of specific extremophilic enzymes for applications in industrial biotechnology. It will specifically address those enzymes that have applications in the area of biocatalysis. Such enzymes now play an important role in catalysing a variety of chemical conversions that were previously carried out by traditional chemistry. The biocatalytic process is carried out under mild conditions and with greater specificity. The enzyme process does not result in the toxic waste that is usually produced in a chemical process that would require careful disposal. In this sense the biocatalytic process is referred to as carrying out ‘green chemistry’ which is considered to be environmentally friendly.Some of the extremophilic enzymes to be discussed have already been developed for industrial processes such as an L-aminoacylase and a γ- lactamase. The industrial applications of other extremophilic enzymes including transaminases, carbonic anhydrases, dehalogenases, specific esterases and epoxide hydrolases are currently being assessed. Specific examples of these industrially important enzymes which have been studied in the authors group will be presented in this review.

  17. USE OF ENZYMES IN HYDROLYSIS OF MAIZE STALKS

    Directory of Open Access Journals (Sweden)

    Ivo Valchev

    2009-02-01

    Full Text Available Lignocellulosic biomass is the most abundant organic raw material in the world. Cellulose and hemicellulose from plants and other biomass can be hydrolyzed to produce sugars. Native lignocellulosic biomass provides limited accessibility to cellulase enzymes due to structural features. The investigations were carried out with waste lignocellulosic raw material, consisting of maize stalks and cobs. Enzyme hydrolysis was performed after acid hydrolysis with a cellulasic product. It was established that the enzyme stage, as a first treatment phase, was inefficient. It was found that cellulase activity was considerably improved after acid hydrolysis of a crushed mass. A two-stage process with acidic and then enzyme hydrolysis method was most efficient and promising for obtaining sugars for ethanol production.

  18. ORGANOPHOSPHATE DEGRADING ENZYMES - PHASE I

    Science.gov (United States)

    Agave BioSystems in collaboration with Carl A. Batt proposes to develop decon-nanoparticles, which will leverage ongoing opportunities in enzyme engineering and the fabrication of functionalized magnetic nanoparticles. Enhanced performance will be engineered into the system t...

  19. Halophilic Bacteria as a Source of Novel Hydrolytic Enzymes

    Directory of Open Access Journals (Sweden)

    Encarnación Mellado

    2013-01-01

    Full Text Available Hydrolases constitute a class of enzymes widely distributed in nature from bacteria to higher eukaryotes. The halotolerance of many enzymes derived from halophilic bacteria can be exploited wherever enzymatic transformations are required to function under physical and chemical conditions, such as in the presence of organic solvents and extremes in temperature and salt content. In recent years, different screening programs have been performed in saline habitats in order to isolate and characterize novel enzymatic activities with different properties to those of conventional enzymes. Several halophilic hydrolases have been described, including amylases, lipases and proteases, and then used for biotechnological applications. Moreover, the discovery of biopolymer-degrading enzymes offers a new solution for the treatment of oilfield waste, where high temperature and salinity are typically found, while providing valuable information about heterotrophic processes in saline environments. In this work, we describe the results obtained in different screening programs specially focused on the diversity of halophiles showing hydrolytic activities in saline and hypersaline habitats, including the description of enzymes with special biochemical properties. The intracellular lipolytic enzyme LipBL, produced by the moderately halophilic bacterium Marinobacter lipolyticus, showed advantages over other lipases, being an enzyme active over a wide range of pH values and temperatures. The immobilized LipBL derivatives obtained and tested in regio- and enantioselective reactions, showed an excellent behavior in the production of free polyunsaturated fatty acids (PUFAs. On the other hand, the extremely halophilic bacterium, Salicola marasensis sp. IC10 showing lipase and protease activities, was studied for its ability to produce promising enzymes in terms of its resistance to temperature and salinity.

  20. 响应面法优化Paenibacillus sp.JX426产黄原胶降解酶发酵培养基%Optimization of fermentation medium for xanthan gum degrading enzyme produced from Paenibacillus sp.JX426 by response surface methodology

    Institute of Scientific and Technical Information of China (English)

    庞倩婵; 纪凯华; 王燕森; 马挺; 高年发; 梁风来; 李国强

    2011-01-01

    A Paenibacillus sp. JX426 newly isolated from soil samples had high ability of xanthan gum degradation. To improve its activity of xanthan degrading enzyme, Plackett-Burman experimental design, steepest ascent experimental design and Box-Behnken(BBD)response surface experimental design were applied to optimize the fermentation condition of xanthan gum degrading enzyme by Paenibacillus sp. JX426. Firstly, Plackett-Burman experiment was used to select three significant factors (the content ofxanthan gum, yeast extract and CaCl2). The maximum content of enzyme activity was obtained by experimental design of steepest ascent. Three significant factors were then optimized by Box-Behnken (BBD) response surface. The results showed the optimal content of xanthan gum, yeast extract and CaCl2 were 0.39%, 0.042% and 0.02%, respectively. Under these optimal conditions, the xanthan-degrading enzyme activity was 4.20U/ml, which was increased by 37.7% compared with the value of 3.05U/ml before optimization.%从土壤中分离筛选出1株具有较强黄原胶降解能力的类芽孢杆菌(Paenibacillus sp.)JX426.为了获得高活力的黄原胶降解酶,研究借助Minimb15软件,采用Plackett-Burman试验设计方法、最陡爬坡试验设计方法和响应面分析方法对菌株JX426进行了液体发酵条件的优化.首先通过Plackett-Burman方法对7个相关影响因素的效应进行了评价,并筛选出有显著正效应的黄原胶、CaCl2添加量和有显著负效应的酵母粉添加量等3个因素,然后利用最陡爬坡试验设计方法和响应面分析方法确定了上述3个因素的最佳工艺参数,即黄原胶、CaCl2和酵母粉的添加量分别为0.39%、0.02%和0.042%.试验结果表明,在最佳浓度和组成条件下,黄原胶降解酶的酶活能达到4.20U/mL,较优化前的3.05U/mL提高了37.7%,为黄原胶降解菌的实际应用奠定了基础.

  1. Enzymes: principles and biotechnological applications.

    Science.gov (United States)

    Robinson, Peter K

    2015-01-01

    Enzymes are biological catalysts (also known as biocatalysts) that speed up biochemical reactions in living organisms, and which can be extracted from cells and then used to catalyse a wide range of commercially important processes. This chapter covers the basic principles of enzymology, such as classification, structure, kinetics and inhibition, and also provides an overview of industrial applications. In addition, techniques for the purification of enzymes are discussed.

  2. Effect of age and diet composition on activity of pancreatic enzymes in birds.

    Science.gov (United States)

    Brzęk, Paweł; Ciminari, M Eugenia; Kohl, Kevin D; Lessner, Krista; Karasov, William H; Caviedes-Vidal, Enrique

    2013-07-01

    Digestive enzymes produced by the pancreas and intestinal epithelium cooperate closely during food hydrolysis. Therefore, activities of pancreatic and intestinal enzymes processing the same substrate can be hypothesized to change together in unison, as well as to be adjusted to the concentration of their substrate in the diet. However, our knowledge of ontogenetic and diet-related changes in the digestive enzymes of birds is limited mainly to intestinal enzymes; it is largely unknown whether they are accompanied by changes in activities of enzymes produced by the pancreas. Here, we analyzed age- and diet-related changes in activities of pancreatic enzymes in five passerine and galloanserine species, and compared them with simultaneous changes in activities of intestinal enzymes. Mass-specific activity of pancreatic amylase increased with age in young house sparrows but not in zebra finches, in agreement with changes in typical dietary starch content and activity of intestinal maltase. However, we found little evidence for the presence of adaptive, diet-related modulation of pancreatic enzymes in both passerine and galloanserine species, even though in several cases the same birds adaptively modulated activities of their intestinal enzymes. In general, diet-related changes in mass-specific activities of pancreatic and intestinal enzymes were not correlated. We conclude that activity of pancreatic enzymes in birds is under strong genetic control, which enables evolutionary adjustment to typical diet composition but is less adept for short term, diet-related flexibility.

  3. Crystallography captures catalytic steps in human methionine adenosyltransferase enzymes.

    Science.gov (United States)

    Murray, Ben; Antonyuk, Svetlana V; Marina, Alberto; Lu, Shelly C; Mato, Jose M; Hasnain, S Samar; Rojas, Adriana L

    2016-02-23

    The principal methyl donor of the cell, S-adenosylmethionine (SAMe), is produced by the highly conserved family of methionine adenosyltranferases (MATs) via an ATP-driven process. These enzymes play an important role in the preservation of life, and their dysregulation has been tightly linked to liver and colon cancers. We present crystal structures of human MATα2 containing various bound ligands, providing a "structural movie" of the catalytic steps. High- to atomic-resolution structures reveal the structural elements of the enzyme involved in utilization of the substrates methionine and adenosine and in formation of the product SAMe. MAT enzymes are also able to produce S-adenosylethionine (SAE) from substrate ethionine. Ethionine, an S-ethyl analog of the amino acid methionine, is known to induce steatosis and pancreatitis. We show that SAE occupies the active site in a manner similar to SAMe, confirming that ethionine also uses the same catalytic site to form the product SAE.

  4. Cellulose and hemicellulose-degrading enzymes in Fusarium commune transcriptome and functional characterization of three identified xylanases

    DEFF Research Database (Denmark)

    Yuhong, Huang; Busk, Peter Kamp; Lange, Lene

    2015-01-01

    and hemicellulose-degrading enzymes of classical fungal enzyme producers with those of Fusarium species. The results indicated that Fusarium species are robust cellulose and hemicellulose degraders. Wheat bran, carboxymethylcellulose and xylan-based growth media induced a broad spectrum of lignocellulolytic enzymes...

  5. Clinical utility of chitotriosidase enzyme activity in nephropathic cystinosis

    OpenAIRE

    Elmonem, M.A.; Makar, S.H.; Heuvel, L.P.W.J. van den; Abdelaziz, H.; Abdelrahman, S.M.; Bossuyt, X; Janssen, M.C.; Cornelissen, E.; Lefeber, D.J.; Joosten, L.; Nabhan, M.M.; Arcolino, F.O.; Hassan, F. A. [فكري حسن; Chevronnay, H.P. Gaide; Soliman, N.A.

    2014-01-01

    BackgroundNephropathic cystinosis is an inherited autosomal recessive lysosomal storage disorder characterized by the pathological accumulation and crystallization of cystine inside different cell types. WBC cystine determination forms the basis for the diagnosis and therapeutic monitoring with the cystine depleting drug (cysteamine). The chitotriosidase enzyme is a human chitinase, produced by activated macrophages. Its elevation is documented in several lysosomal storage disorders. Although...

  6. Enzyme encapsulation in magnetic chitosan-Fe3O4 microparticles.

    Science.gov (United States)

    Costa-Silva, Tales Alexandre; Marques, Polyana Samorano; Souza, Cláudia Regina Fernandes; Said, Suraia; Oliveira, Wanderley Pereira

    2015-01-01

    Two simple procedures for the preparation of magnetic chitosan enzyme microparticles have been investigated and used for the immobilisation of endophytic fungus Cercospora kikuchii lipase as model enzyme. In the first case, lipase was entrapped in Fe3O4-chitosan microparticles by cross-linking method, while in the second case magnetic immobilised derivatives were produced using spray drying. Immobilised enzymes showed high enzyme activity retention and stability during storage without significant loss of activity. Glutaraldehyde Fe3O4-chitosan powders presented a higher lipase activity retention and storage stability than the others preparations. However, the immobilised derivatives produced by cross-linking showed higher enzyme activity after reuse cycles. The results proved that the magnetic Fe3O4-chitosan microparticles are an effective support for the enzyme immobilisation since the immobilised lipase showed best properties than the free form.

  7. 一株高产琼胶酶菌株MA-B22的分子鉴定与产酶条件优化%Isolation and identification of a bacterium MA-B22 producing agarase and the optimal cultivation of enzyme production

    Institute of Scientific and Technical Information of China (English)

    卢斌; 柯才焕; 杨明; 康康; 赵晶

    2009-01-01

    琼胶酶在多糖降解应用中的作用日益重要,而从海洋微生物中筛选琼胶酶高产菌株成为一个重要途径.本研究从养殖的杂色鲍体内分离到一株高产琼胶酶的菌株MA-B22.该菌为革兰氏阴性菌,经16S rRNA序列鉴定表明,与Tamlana agarivorans sp.nov.具有99%同源性,因此初步定为Tamlana sp..在2216E培养基中该菌株在培养时间60 h,温度25℃,起始pH为6.0条件下产酶活性最高.基于上述培养条件,通过单因素和正交实验确定了培养基的最佳基本组成:氮源为牛肉膏(其最适浓度为6.0‰),碳源为琼脂(其最适浓度为2.5‰),配制培养基的人工海水的最适盐度为25.经培养条件优化后,该菌胞外琼胶酶活力可达1021.79 U/mL,较优化前提高8.82倍.实验首次对Tamlana sp.属的琼胶酶活性进行确定并优化其产酶条件,为构建琼胶酶高产工程菌株提供了基础,并可能为今后鲍养殖提供潜在的益生菌.%Agarase plays a key role in degrading many complex polysaccharides. The screening of agar-degrading bacteria from marine environment and organisms becomes an important means. A gram-negative bacterial strain, MA-B22 with high agarase activity was isolated from small abalone Haliotis diversicolor. By 16S rRNA analysis, this strain has 99% homology to Tamlana agarivorans sp. Nov. , it was named Tamlana sp. In this report. Under 2216E medium, the optimal temperature, pH value and culture time are 25℃, 6.0 and 60h respectively. With one-factor-at-a-time method and orthogonal designed experiment, the optimal compositions of the ferment medium were confirmed. It contained 2.5‰ agar, 6.0‰ beef extract based on the salinity of 25. The highest enzyme activity of agarase was detected by DNS method at 1021.79 U/mL, which is 8.82 times higher than before. MA-B22 demonstrated high-performance characteristics of enzyme production. This is the first report on the agar-degrading Tamlana sp. And optimal cultivation to

  8. Activity, life time and effect of hydrolytic enzymes for enhanced biogas production from sludge anaerobic digestion.

    Science.gov (United States)

    Odnell, Anna; Recktenwald, Michael; Stensén, Katarina; Jonsson, Bengt-Harald; Karlsson, Martin

    2016-10-15

    As an alternative to energy intensive physical methods, enzymatic treatment of sludge produced at wastewater treatment plants for increased hydrolysis and biogas production was investigated. Several hydrolytic enzymes were assessed with a focus on how enzyme activity and life time was influenced by sludge environments. It could be concluded that the activity life time of added enzymes was limited (enzymes, due to endogenous protease activity. In biogas in situ experiments, subtilisin at a 1% mixture on basis of volatile solids, was the only enzyme providing a significantly increased biomethane production of 37%. However, even at this high concentration, subtilisin could not hydrolyze all available substrate within the life time of the enzyme. Thus, for large scale implementation, enzymes better suited to the sludge environments are needed.

  9. The impact of molluscicides on enzyme activities in the hepatopancreas of Deroceras reticulatum (Müller)

    OpenAIRE

    Triebskorn, Rita

    1991-01-01

    The influence of three commercial molluscicide pellets, Cloethocarb, Mesurol, and Spiess Urania 2000, on the activities of six enzymes in the hepatopancreas of Deroceras reticulatum were investigated by light and electron microscope histochemisty as well as by photometric studies. In the digestive cells, enzymes catalyzing energy-producing digestive processes (non-specific esterases and acid phosphatases) are induced, while, in the crypt cells, enzymes related to energy-consuming metabolic pa...

  10. Detection of Sulfatase Enzyme Activity with a CatalyCEST MRI Contrast Agent.

    Science.gov (United States)

    Sinharay, Sanhita; Fernández-Cuervo, Gabriela; Acfalle, Jasmine P; Pagel, Mark D

    2016-05-01

    A chemical exchange saturation transfer (CEST) MRI contrast agent has been developed that detects sulfatase enzyme activity. The agent produces a CEST signal at δ=5.0 ppm before enzyme activity, and a second CEST signal appears at δ=9.0 ppm after the enzyme cleaves a sulfate group from the agent. The comparison of the two signals improved detection of sulfatase activity. PMID:26956002

  11. Detection of Sulfatase Enzyme Activity with a CatalyCEST MRI Contrast Agent.

    Science.gov (United States)

    Sinharay, Sanhita; Fernández-Cuervo, Gabriela; Acfalle, Jasmine P; Pagel, Mark D

    2016-05-01

    A chemical exchange saturation transfer (CEST) MRI contrast agent has been developed that detects sulfatase enzyme activity. The agent produces a CEST signal at δ=5.0 ppm before enzyme activity, and a second CEST signal appears at δ=9.0 ppm after the enzyme cleaves a sulfate group from the agent. The comparison of the two signals improved detection of sulfatase activity.

  12. Phospholipase A(2) - An enzyme that is sensitive to the physics of its substrate

    DEFF Research Database (Denmark)

    Høyrup, Lise Pernille Kristine; Jørgensen, Kent; Mouritsen, O.G.

    2002-01-01

    A simple statistical mechanical model of lipid bilayers is proposed to account for the non-equilibrium action of the enzyme phospholipase A(2). The enzyme hydrolyses lipid-bilayer substrates and produces product molecules that lead to local variations in the bilayer interfacial pressure. Computer...... simulation of the model shows, in quantitative agreement with experimental data, that the enzyme activity is modulated by nano-scale lipid-domain formation in the lipid bilayer leading to a characteristic lag-burst behavior....

  13. Studies on starch structure and the differential properties of starch branching enzymes

    OpenAIRE

    Andersson, Lena

    2001-01-01

    Starch is a staple food in human and animal diets, but also a raw material widely used for industrial purposes. By genetical modification of starch-synthesising enzymes in crop plants, starch yields could be increased and novel starches with particular qualities could be produced for industrial use. However, the process of starch biosynthesis and its regulation is still not completely understood. One of the major groups of enzymes in starch biosynthesis is the starch branching enzymes (SBEs),...

  14. Heavy enzymes--experimental and computational insights in enzyme dynamics.

    Science.gov (United States)

    Swiderek, Katarzyna; Ruiz-Pernía, J Javier; Moliner, Vicent; Tuñón, Iñaki

    2014-08-01

    The role of protein motions in the chemical step of enzyme-catalyzed reactions is the subject of an open debate in the scientific literature. The systematic use of isotopically substituted enzymes has been revealed as a useful tool to quantify the role of these motions. According to the Born-Oppenheimer approximation, changing the mass of the protein does not change the forces acting on the system but alters the frequencies of the protein motions, which in turn can affect the rate constant. Experimental and theoretical studies carried out in this field are presented in this article and discussed in the framework of Transition State Theory.

  15. A Study on Effect of different culture media on amylase enzyme production by a native strain of Bacillus subtilis

    OpenAIRE

    ziba Akbari; Hashem Nayeri; Keivan Beheshtimaal

    2015-01-01

    Introduction: Amylases are among the most important enzymes and have great significance in present-day biotechnology. Amylase with commercial applications is mainly derived from the genus Bacillus. The main purpose of this study is identification and isolatation amylase enzyme producer Bacillus, determining the amylase enzyme activity and affecting a number of culture medium on amylase enzyme production. Materials and methods: Soil, water and wastewater samples were collected from agricul...

  16. 海洋低温β-半乳糖苷酶菌株筛选、鉴定及酶的分离纯化%Isolation,identification and enzyme purification of a strain producing cold-activity β-galactosidase from marine

    Institute of Scientific and Technical Information of China (English)

    崔爱萍; 迟乃玉; 张庆芳

    2013-01-01

    筛选自黄海海泥产β-半乳糖苷酶的菌株CD6,依据形态学特征、生理生化特征及分子生物学特征鉴定为土生拉乌尔菌(Raoultella terrigena).通过透析、超滤和柱层析方法分离纯化菌株β-半乳糖苷酶,测定该酶的最适反应温度为20℃,30℃剩余相对酶活85%;超过35℃酶活力即迅速下降,确定其为低温酶.%A strain CD6 from Huanghai sea mud was identified as Raoultella terrigena according to its morphology, taxonomical properties and molecular characterization.The purified β-galactosidase was obtained through dialysis, ultrafiltration, and column chromatography.Researches on the β-galactosidase showed that its optimal temperature was 25℃ and it was defined as cold-activity enzyme.

  17. Robust enzyme design: bioinformatic tools for improved protein stability.

    Science.gov (United States)

    Suplatov, Dmitry; Voevodin, Vladimir; Švedas, Vytas

    2015-03-01

    The ability of proteins and enzymes to maintain a functionally active conformation under adverse environmental conditions is an important feature of biocatalysts, vaccines, and biopharmaceutical proteins. From an evolutionary perspective, robust stability of proteins improves their biological fitness and allows for further optimization. Viewed from an industrial perspective, enzyme stability is crucial for the practical application of enzymes under the required reaction conditions. In this review, we analyze bioinformatic-driven strategies that are used to predict structural changes that can be applied to wild type proteins in order to produce more stable variants. The most commonly employed techniques can be classified into stochastic approaches, empirical or systematic rational design strategies, and design of chimeric proteins. We conclude that bioinformatic analysis can be efficiently used to study large protein superfamilies systematically as well as to predict particular structural changes which increase enzyme stability. Evolution has created a diversity of protein properties that are encoded in genomic sequences and structural data. Bioinformatics has the power to uncover this evolutionary code and provide a reproducible selection of hotspots - key residues to be mutated in order to produce more stable and functionally diverse proteins and enzymes. Further development of systematic bioinformatic procedures is needed to organize and analyze sequences and structures of proteins within large superfamilies and to link them to function, as well as to provide knowledge-based predictions for experimental evaluation.

  18. Boosting Farm Produce Supply

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In the wake of escalating inflation,securing farm produce supply and stablizing grain prices could help to alleviate economic pressure The Chinese Government has pledged to secure a stable supply of farm produce.According to a document released after the annual Central Rural Work Conference held on December 22-23 in Beijing,preventing short supplies of farm produce and avoiding"ex-

  19. Glycosylation of resveratrol protects it from enzymic oxidation.

    Science.gov (United States)

    Regev-Shoshani, Gilly; Shoseyov, Oded; Bilkis, Itzhak; Kerem, Zohar

    2003-01-01

    Plant polyphenols, including dietary polyphenols such as resveratrol, are important components in the plant antioxidant and defence systems. They are also known to exert beneficial effects on human health through diet. As they are produced, these polyphenols may be subjected to deleterious enzymic oxidation by the plant polyphenol oxidases. They are generally synthesized as glycosides like 5,4'-dihydroxystilbene-3-O-beta-D-glucopyranoside, the 3-glucoside of resveratrol. The effects of the glycosylation and methylation of the parent resveratrol on its enzymic oxidation were studied. Methyl and glucosyl derivatives were synthesized using simple one-step methodologies. The kinetics of their enzymic oxidation by tyrosinases were defined. Substitution at the p-hydroxy group, by either glucose or methyl, abolished enzymic oxidation by both mushroom and grape tyrosinases. Substitution at the m-hydroxy group with methyl had a small effect, but substitution with glucose resulted in a much lower affinity of the enzymes for the glycoside. We suggest that glycosylation of polyphenols in nature helps to protect these vital molecules from enzymic oxidation, extending their half-life in the cell and maintaining their beneficial antioxidant capacity and biological properties. PMID:12697026

  20. Clinical uses of an enzyme-containing dentifrice.

    Science.gov (United States)

    Midda, M; Cooksey, M W

    1986-11-01

    Previous studies have shown that the inclusion of certain enzymes in mouthrinses and dentifrices will reduce plaque and gingivitis scores. The enzymes that are most effective clinically have, as their active ingredients, amyloglucosidase and glucose oxidase. These produce hydrogen peroxide from dietary fermentable carbohydrates which in turn converts thiocyanate to hypothiocyanite in the presence of salivary lactoperoxidase. The resultant hypothiocyanite acts as a bacterial inhibitor by interfering with cell metabolism; thus, there is a reduction in plaque accumulation and therefore in gingival inflammation. Pilot studies have compared over a short period the action of the trial dentifrice with enzymes and fluoride at 1100 ppm, using as controls the paste without enzymes but with fluoride and a commercial fluoride paste. There was an expected reduction in all scores with all products due to the mechanical removal of plaque, but a significantly greater reduction in gingivitis was noted in the paste with enzymes. This study is of longer duration with many more subjects. Baseline data include plaque and gingival indices and Periotron readings for crevicular fluid. The trial is of a double-blind non-crossover study design using a split-mouth technique. One side of the mouth is given a prophylaxis and the subject given one of the 3 test pastes to use. Readings were repeated every 2 weeks for 3 months. The results show a significant reduction in gingivitis scores in the enzyme-containing dentifrice group.

  1. Micromotors Powered by Enzyme Catalysis.

    Science.gov (United States)

    Dey, Krishna K; Zhao, Xi; Tansi, Benjamin M; Méndez-Ortiz, Wilfredo J; Córdova-Figueroa, Ubaldo M; Golestanian, Ramin; Sen, Ayusman

    2015-12-01

    Active biocompatible systems are of great current interest for their possible applications in drug or antidote delivery at specific locations. Herein, we report the synthesis and study of self-propelled microparticles powered by enzymatic reactions and their directed movement in substrate concentration gradient. Polystyrene microparticles were functionalized with the enzymes urease and catalase using a biotin-streptavidin linkage procedure. The motion of the enzyme-coated particles was studied in the presence of the respective substrates, using optical microscopy and dynamic light scattering analysis. The diffusion of the particles was found to increase in a substrate concentration dependent manner. The directed chemotactic movement of these enzyme-powered motors up the substrate gradient was studied using three-inlet microfluidic channel architecture. PMID:26587897

  2. Subcellular localization of pituitary enzymes

    Science.gov (United States)

    Smith, R. E.

    1970-01-01

    A cytochemical procedure is reported for identifying subcellular sites of enzymes hydrolyzing beta-naphthylamine substrates, and to study the sites of reaction product localization in cells of various tissues. Investigations using the substrate Leu 4-methoxy-8-naphthylamine, a capture with hexonium pararosaniline, and the final chelation of osmium have identified the hydrolyzing enzyme of rat liver cells; this enzyme localized on cell membranes with intense deposition in the areas of the parcanaliculi. The study of cells in the anterior pituitary of the rat showed the deposition of reaction product on cell membrane; and on the membranes of secretion granules contained within the cell. The deposition of reaction product on the cell membrane however showed no increase or decrease with changes in the physiological state of the gland and release of secretion granules from specific cells.

  3. On-Site Enzyme Production by Trichoderma asperellum for the Degradation of Duckweed

    DEFF Research Database (Denmark)

    Bech, Lasse; Herbst, Florian-Alexander; Grell, Morten Nedergaard;

    2015-01-01

    The on-site production of cell wall degrading enzymes is an important strategy for the development of sustainable bio-refinery processes. This study concerns the optimization of production of plant cell wall-degrading enzymes produced by Trichoderma asperellum. A comparative secretome analysis...

  4. Bioethanol production by inherent enzymes from rye and wheat with addition of organic farming cheese whey

    DEFF Research Database (Denmark)

    Kádár, Zsófia; Christensen, Anne Deen; Thomsen, Mette Hedegaard;

    2011-01-01

    . Throughout our studies, wheat and rye grain was used as raw material in bioethanol production with the purpose of producing in situ enzymes (during germination) for the hydrolysis of starch in the grains and compared with commercial amylase enzyme preparations. Whey permeate was incorporated into the grain...

  5. Biologically produced sulfur

    NARCIS (Netherlands)

    Kleinjan, W.E.; Keizer, de A.; Janssen, A.J.H.

    2003-01-01

    Sulfur compound oxidizing bacteria produce sulfur as an intermediate in the oxidation of hydrogen sulfide to sulfate. Sulfur produced by these microorganisms can be stored in sulfur globules, located either inside or outside the cell. Excreted sulfur globules are colloidal particles which are stabil

  6. Enzymes as Green Catalysts for Precision Macromolecular Synthesis.

    Science.gov (United States)

    Shoda, Shin-ichiro; Uyama, Hiroshi; Kadokawa, Jun-ichi; Kimura, Shunsaku; Kobayashi, Shiro

    2016-02-24

    The present article comprehensively reviews the macromolecular synthesis using enzymes as catalysts. Among the six main classes of enzymes, the three classes, oxidoreductases, transferases, and hydrolases, have been employed as catalysts for the in vitro macromolecular synthesis and modification reactions. Appropriate design of reaction including monomer and enzyme catalyst produces macromolecules with precisely controlled structure, similarly as in vivo enzymatic reactions. The reaction controls the product structure with respect to substrate selectivity, chemo-selectivity, regio-selectivity, stereoselectivity, and choro-selectivity. Oxidoreductases catalyze various oxidation polymerizations of aromatic compounds as well as vinyl polymerizations. Transferases are effective catalysts for producing polysaccharide having a variety of structure and polyesters. Hydrolases catalyzing the bond-cleaving of macromolecules in vivo, catalyze the reverse reaction for bond forming in vitro to give various polysaccharides and functionalized polyesters. The enzymatic polymerizations allowed the first in vitro synthesis of natural polysaccharides having complicated structures like cellulose, amylose, xylan, chitin, hyaluronan, and chondroitin. These polymerizations are "green" with several respects; nontoxicity of enzyme, high catalyst efficiency, selective reactions under mild conditions using green solvents and renewable starting materials, and producing minimal byproducts. Thus, the enzymatic polymerization is desirable for the environment and contributes to "green polymer chemistry" for maintaining sustainable society.

  7. Isolation and optimization of pectinase enzyme production one of useful industrial enzyme in Aspergillus niger, Rhizopus oryzae, Penicilium chrysogenum

    Directory of Open Access Journals (Sweden)

    akram songol

    2016-06-01

    Full Text Available Introduction: Pectinase enzyme is one of the most important industrial enzymes which isolated from a wide variety of microorganisms such as bacteria and filamentous fungi. This enzyme has been usually used in the fruit and textile industry. In this study, the isolation and optimization of pectinase-producing fungi on decaying rotten fruits were studied. Materials and methods: Isolation and screening of pectinase producing fungi performed through plate culture on pectin medium and staining with Lugol's iodine solution. The best strains were identified by ITS1, 4 sequencing as Aspergillus fumigatus, Rhizopus oryzae, Penicilium chrysogenum. The enzyme production was optimized by application of the five factorial design, each at three levels. These factors are carbon sources (whey, glucose and stevia, ammonium sulfate, manganese sulfate, temperature, and pH. Pectinase concentration was measured by the Miller method. Results: The results indicate that optimum condition for enzyme production for three fungi strains was obtained at 32 °C, pH = 6, 3g / L manganese sulfate, 2.75g / L of ammonium sulfate and 10g / L of each carbon source. The best experiment in obtaining the optimum enzyme contained 1.328 mg / ml of glucose for Aspergillus niger 1.284 and 1.039 mg / ml of whey for Rhizopus oryzae and Penicilium chrysogenum. Molecular weight of enzyme was about 40 and 37 kDa which was obtained by SDS- PAGE. Discussion and conclusion: The results indicate that three strains could grow in a wide range of carbon source, pH and temperature, which could be a good candidate for industrial application.

  8. Effect of solar irradiation on extracellular enzymes of Aeromonas proteolytica

    Science.gov (United States)

    Foster, B. G.

    1973-01-01

    The bacterium Aeromonas proteolytica was selected for studying the effects of solar irradiation on extracellular enzymes because it produces an endopeptidase that is capable of degrading proteins and a hemolysin that is active in lysing human erythrocytes. Possible alterations in the rate of enzyme production in response to the test conditions are currently underway and are not available for this preliminary report. Completed viability studies are indicative that little difference exists among the survival curves derived for cells exposed to various components of ultraviolet irradiation in space.

  9. Drug resistance of extended spectrum β-lactamase-producing Escherichia coli and factors for enzyme production%产超广谱β-内酰胺酶大肠埃希菌的耐药性及产酶因素分析

    Institute of Scientific and Technical Information of China (English)

    穆海霞; 陈俊清; 吴容

    2011-01-01

    OBJECTIVE To explore the factors associated with production of extended spectrum fl- lactamase-producing Escherichia coli and the measures to prevent its sprgad and treatment. METHODS A total of 2Q5 E. Coli strains isolated from various specimens of in patients admitted from Jan 2008 to Jan 2010 were analysed. The drug resistance of these strains were analysed using KB method recommended by CLSI. RESULTS A total of 89 ESBLs-producing E. Coli were isolated from the 205 E. Coli strains during the 3 years. The isolation rate was 43. 5%. All ESBLs producing" strains were sensitive to imipenium and amikacin and the resistancerate to njtrofurantion piperacillin/tazobactam, cefoxitin was less than 10. 0%. The resistance rate remained almost the same in the 3 years. Prolon ged continuous use of antibiotics, high freguency of antibiotics usage, the use of the third generation cephalosporins, combination of antibiotics and frequent changes of antibiotics could induce the emergence of ESBLs producing strains. CONCLUSIONS The sensitivity rates of ESBLs producing strains to impenium amikacin, nitrofurantion, piperacillin/tagobactam and cefoxitin are higher than 90. 0% but the strains themselves are cross-resistant and multidrug-resistant to other antibiotics. Continuous use of antibiotics for a long time, the use of third generation cephalosporin, combination of antibiotics and frequent dressing can easily lead to ESBLs-producing.%目的 分析医院2008年1月-2010年1月产超广谱β-内酰胺酶(ESBLs)大肠埃希菌的耐药性及其产酶因素.方法收集2008年1月-2010年1月住院患者不同标本分离的大肠埃希菌205株,按照CLSI推荐的纸片扩散法(K-B法),进行耐药性检测和产ESBLs菌株的确认;产ESBLs组与非产ESBLs组之间比较计数资料采用t检验、卡方检验及多因素logistic回归进行分析.结果 205株大肠埃希菌中,检出产ESBLs大肠埃希菌89株,检出率43.4%;所有产ESBLs大肠埃希菌对亚胺培南

  10. Thermodynamics of Enzyme-Catalyzed Reactions Database

    Science.gov (United States)

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  11. Enzyme recovery using reversed micelles.

    NARCIS (Netherlands)

    Dekker, M.

    1990-01-01

    The objective of this study was to develop a liquid-liquid extraction process for the recovery of extracellular enzymes. The potentials of reaching this goal by using reversed micelles in an organic solvent have been investigated.Reversed micelles are aggregates of surfactant molecules containing an

  12. The enzymes associated with denitrification

    Science.gov (United States)

    Hochstein, L. I.; Tomlinson, G. A.

    1988-01-01

    The enzymes involved in the reduction of nitrogenous oxides are thought to be intermediates in denitrification processes. This review examines the roles of nitrate reductase, nitrite reductases, nitric oxide reductase, mechanisms of N-N bond formation, and nitrous oxide reductases.

  13. Kathepsine C : Een allosterisch enzyme

    NARCIS (Netherlands)

    Gorter, Jeannette

    1969-01-01

    In chapter I an introduction into allosteric systems is given. In chapter II is a detailed method is described for the applica of Gly-Phe--p. nitroanilide (GPNA) as a substrate for the activity assay of the lysosomal enzyme cathepsin C. It is an allosteric which is activated by Cl-, Br-, 1-, CNS-, N

  14. Udfordringer ved undervisning i enzymer

    DEFF Research Database (Denmark)

    Skriver, Karen; Dandanell, Gert; von Stemann, Jakob Hjorth;

    2015-01-01

    Enzymer er et centralt emne i biokemiundervisning. Det forudsætter og anvender grundlæggende viden inden for og kompetencer i kemi og matematik. Artiklen undersøger hvilke forståelsesvanskeligheder og udfordringer der er knyttet til dette område, såvel som virtuelle øvelsers potentiale i denne...

  15. Plants producing biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Papavinasam, S. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Materials Technology Lab

    2009-08-15

    Biofuels are currently produced primarily from five plants, namely corn, canola, sugar cane, palm oil, jatropha. However, research and development efforts are underway around the world produce biofuels from other sources, particularly from algae. This paper described the characteristics of the top 5 plants and their role in the production of biofuels. Countries where these plants are cultivated were also summarized. The article indicated that producing ethanol from corn, is not very efficient since growing corn requires more fertilizer and pesticides than most other crops, plus the corn kernels have to undergo energy-intensive distillation and chemical extraction processes. China is the world's largest producer of rapeseed oil, with an annual production of 12 million tons. The countries of the European Union collectively produce another 16 million tons, of which nearly 4 million tons were used in 2006 to produce biodiesel. Brazil is the world's largest producer of sugar cane, and accounts for about 45 per cent of global ethanol production. Malaysia and Indonesia are the key players in the palm oil market, accounting for 85 per cent of global production. India has identified more than 11 million hectares that would be suitable for growing jatropha, whose seeds contain up to 40 per cent oil that can be burned in a conventional diesel engine after extraction. 1 tab.

  16. METHOD OF PRODUCING NEUTRONS

    Science.gov (United States)

    Imhoff, D.H.; Harker, W.H.

    1964-01-14

    This patent relates to a method of producing neutrons in which there is produced a heated plasma containing heavy hydrogen isotope ions wherein heated ions are injected and confined in an elongated axially symmetric magnetic field having at least one magnetic field gradient region. In accordance with the method herein, the amplitude of the field and gradients are varied at an oscillatory periodic frequency to effect confinement by providing proper ratios of rotational to axial velocity components in the motion of said particles. The energetic neutrons may then be used as in a blanket zone containing a moderator and a source fissionable material to produce heat and thermal neutron fissionable materials. (AEC)

  17. Enzymes involved in triglyceride hydrolysis.

    Science.gov (United States)

    Taskinen, M R; Kuusi, T

    1987-08-01

    The lipolytic enzymes LPL and HL play important roles in the metabolism of lipoproteins and participate in lipoprotein interconversions. LPL was originally recognized to be the key enzyme in the hydrolysis of chylomicrons and triglyceride, but it also turned out to be one determinant of HDL concentration in plasma. When LPL activity is high, chylomicrons and VLDL are rapidly removed from circulation and a concomitant rise of the HDL2 occurs. In contrast, low LPL activity impedes the removal of triglyceride-rich particles, resulting in the elevation of serum triglycerides and a decrease of HDL (HDL2). Concordant changes of this kind in LPL and HDL2 are induced by many physiological and pathological perturbations. Finally, the operation of LPL is also essential for the conversion of VLDL to LDL. This apparently clear-cut role of LPL in lipoprotein interconversions is contrasted with the enigmatic actions of HL. The enzyme was originally thought to participate in the catalyses of chylomicron and VLDL remnants generated in the LPL reaction. However, substantial in vitro and in vivo data indicate that HL is a key enzyme in the degradation of plasma HDL (HDL2) in a manner which opposes LPL. A scheme is presented for the complementary actions of the two enzymes in plasma HDL metabolism. In addition, recent studies have attributed a role to HL in the catabolism of triglyceride-rich lipoproteins, particularly those containing apo E. However, this function becomes clinically important only under conditions where the capacity of the LPL-mediated removal system is exceeded. Such a situation may arise when the input of triglyceride-rich particles (chylomicrons and/or VLDL) is excessive or LPL activity is decreased or absent.

  18. Engineering cytochrome p450 enzymes.

    Science.gov (United States)

    Gillam, Elizabeth M J

    2008-01-01

    The last 20 years have seen the widespread and routine application of methods in molecular biology such as molecular cloning, recombinant protein expression, and the polymerase chain reaction. This has had implications not only for the study of toxicological mechanisms but also for the exploitation of enzymes involved in xenobiotic clearance. The engineering of P450s has been performed with several purposes. The first and most fundamental has been to enable successful recombinant expression in host systems such as bacteria. This in turn has led to efforts to solubilize the proteins as a prerequisite to crystallization and structure determination. Lagging behind has been the engineering of enzyme activity, hampered in part by our still-meager comprehension of fundamental structure-function relationships in P450s. However, the emerging technique of directed evolution holds promise in delivering both engineered enzymes for use in biocatalysis and incidental improvements in our understanding of sequence-structure and sequence-function relationships, provided that data mining can extract the fundamental correlations underpinning the data. From the very first studies on recombinant P450s, efforts were directed toward constructing fusions between P450s and redox partners in the hope of generating more efficient enzymes. While this aim has been allowed to lie fallow for some time, this area merits further investigation as does the development of surface-displayed P450 systems for biocatalytic and biosensor applications. The final application of engineered P450s will require other aspects of their biology to be addressed, such as tolerance to heat, solvents, and high substrate and product concentrations. The most important application of these enzymes in toxicology in the near future is likely to be the biocatalytic generation of drug metabolites for the pharmaceutical industry. Further tailoring will be necessary for specific toxicological applications, such as in

  19. Optimization of pectinase enzyme production in Aspergillus fumigatus isolated from rotten fruits

    OpenAIRE

    2015-01-01

    Introduction: Pectinase is one of the most important industrial enzymes which was isolated from a wide variety of microorganisms such as bacteria and filamentous fungi. This enzyme has been usually used in the juice and textile industry. In this study, the isolation and optimization of pectinase-producing fungi on decaying rotten fruits were studied. Materials and methods: Isolation and screening of pectinase producing fungi have been done by plate culture on pectin medium and staining wi...

  20. Cost-effective lignocellulolytic enzyme production by Trichoderma reesei on a cane molasses medium

    OpenAIRE

    He, Jun; Wu, Ai-Min; Chen, Daiwen; Yu, Bing; Mao, Xiangbing; Zheng, Ping; Yu, Jie; Tian, Gang

    2014-01-01

    Background Cane molasses, an important residue of the sugar industry, have the potential as a cost-effective carbon source that could serve as nutrients for industrial enzyme-producing microorganisms, especially filamentous fungi. However, the enzyme mixtures produced in such a complex medium are poorly characterized. In this study, the secretome of Trichoderma reesei grown on a cane molasses medium (CMM) as well as on a lactose-based conventional medium (LCM) were compared and analyzed by us...

  1. Agricultural Producer Certificates

    Data.gov (United States)

    Montgomery County of Maryland — A Certified Agricultural Producer, or representative thereof, is an individual who wishes to sell regionally-grown products in the public right-of-way. A Certified...

  2. 7 CFR 58.436 - Rennet, pepsin, other milk clotting enzymes and flavor enzymes.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Rennet, pepsin, other milk clotting enzymes and flavor enzymes. 58.436 Section 58.436 Agriculture Regulations of the Department of Agriculture (Continued... clotting enzymes and flavor enzymes. Enzyme preparations used in the manufacture of cheese shall be...

  3. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation.

    Science.gov (United States)

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-07-22

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. PMID:27302062

  4. 白蚁肠道木质素及纤维素分解菌的分离鉴定及产酶条件优化%Isolation, Identification and Enzyme-producing Conditions Optimization of Lignin-Utilizing and Cellulose-Utilizing Bacterium from the Gut of Termite

    Institute of Scientific and Technical Information of China (English)

    高云航; 王巍; 李秋菊; 马红霞; 娄玉杰

    2013-01-01

    Five strains of bacteria with decomposed function for lignin and cellulose were isolated from gut of termite with a congo red and Azure-B plate method. MX5 strain with the strongest decomposed function was identified as Bacillus licheniformis by morphological observation, physiological and biochemical identification and 16S rRNA identification. Optimization test of producing lignin and cellulose show MX5 strain has the highest production activity with 0. 5% of straw as carbon source, mixture of 0. 5% yeast extract and ammonium sulfate as the nitrogen source and cultrue in shake flask at 37 ℃ for 96 h with 1% noculation amount and initial pH 8. 0. Selecting excellent strains which produced ligninase and cellulase has far-reaching significance for improving the utilization of wood fiber feed, reducing environmental pollution and so on..%利用刚果红法、Azure-B平板法从白蚁肠道中分离出5株同时具有木质素降解和纤维素分解功能的菌株,选取其中分解功能最强的菌株MX5经形态观察、生化鉴定和16S rRNA鉴定为芽孢杆菌属的地衣芽孢杆菌Bacillus licheniformis.产酶条件优化试验结果表明,菌株MX5以w=0.5%秸秆为碳源,w=0.5%酵母粉和硫酸铵混合物为氮源,初始pH8.0,37℃摇瓶培养96 h,接种量为1%时,产酶活性最高.筛选出产酶活性优良的菌株,对提高木质纤维素的利用率、降低环境污染等方面意义深远.

  5. A highly sensitive peptide substrate for detecting two Aß-degrading enzymes: neprilysin and insulin-degrading enzyme.

    Science.gov (United States)

    Chen, Po-Ting; Liao, Tai-Yan; Hu, Chaur-Jong; Wu, Shu-Ting; Wang, Steven S-S; Chen, Rita P-Y

    2010-06-30

    Neprilysin has been singled out as the most promising candidate for use in the degradation of Abeta as a therapy for Alzheimer's disease. In this study, a quenched fluorogenic peptide substrate containing the first seven residues of the Abeta peptide plus a C-terminal Cysteine residue was synthesized to detect neprilysin activity. A fluorophore was attached to the C-terminal Cysteine and its fluorescence was quenched by a quencher linked to the N-terminus of the peptide. When this peptide substrate was degraded by an endopeptidase, fluorescence was produced and proved to be a sensitive detection system for endopeptidase activity. Our results showed that this assay system was extremely sensitive to neprilysin and insulin-degrading enzyme, but insensitive, or much less sensitive, to other Abeta-degrading enzymes. As low as 0.1 nM of neprilysin and 0.2 nM of insulin-degrading enzyme can be detected.

  6. Early-branching Gut Fungi Possess A Large, And Comprehensive Array Of Biomass-Degrading Enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, Kevin V.; Haitjema, Charles; Henske, John K.; Gilmore, Sean P.; Borges-Rivera, Diego; Lipzen, Anna; Brewer, Heather M.; Purvine, Samuel O.; Wright, Aaron T.; Theodorou, Michael K.; Grigoriev, Igor V.; Regev, Aviv; Thompson, Dawn; O' Malley, Michelle A.

    2016-03-11

    The fungal kingdom is the source of almost all industrial enzymes in use for lignocellulose bioprocessing. Its more primitive members, however, remain relatively unexploited. We developed a systems-level approach that integrates RNA-Seq, proteomics, phenotype and biochemical studies of relatively unexplored early-branching free-living fungi. Anaerobic gut fungi isolated from herbivores produce a large array of biomass-degrading enzymes that synergistically degrade crude, unpretreated plant biomass, and are competitive with optimized commercial preparations from Aspergillus and Trichoderma. Compared to these model platforms, gut fungal enzymes are unbiased in substrate preference due to a wealth of xylan-degrading enzymes. These enzymes are universally catabolite repressed, and are further regulated by a rich landscape of noncoding regulatory RNAs. Furthermore, we identified several promising sequence divergent enzyme candidates for lignocellulosic bioprocessing.

  7. Natural, Culinary Fruit Peels as a Potential substr ate for Pectinolytic Enzyme

    Directory of Open Access Journals (Sweden)

    PRAVEEN KUMAR. G

    2014-09-01

    Full Text Available Pectinases or Pectinolytic enzymes are the one which have broadest applications in the food processing, alcoholic beverages and textiles industries. These enzymes are chiefly produced from the plants and microorganisms. The fruit peels are regarded as waste by most of the industries. And the disposal of them becomes the serious problem, as it leads to the environmental pollution. On the other hand, it is of low-cost and it contains pectin, a natural substrate that contains selective chemical compound which is suitable for the production of pectinase enzyme. This review mainly concerned about the selection ofsubstrate as peels and the production of pectinolytic enzymes using different fruit peels, comparison of fermentation method that is suitable for enzyme production using peels as substrates, different enzyme assay methods, computer software controller for fermentation used and also applications of pectinase.

  8. Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes.

    Science.gov (United States)

    Solomon, Kevin V; Haitjema, Charles H; Henske, John K; Gilmore, Sean P; Borges-Rivera, Diego; Lipzen, Anna; Brewer, Heather M; Purvine, Samuel O; Wright, Aaron T; Theodorou, Michael K; Grigoriev, Igor V; Regev, Aviv; Thompson, Dawn A; O'Malley, Michelle A

    2016-03-11

    The fungal kingdom is the source of almost all industrial enzymes in use for lignocellulose bioprocessing. We developed a systems-level approach that integrates transcriptomic sequencing, proteomics, phenotype, and biochemical studies of relatively unexplored basal fungi. Anaerobic gut fungi isolated from herbivores produce a large array of biomass-degrading enzymes that synergistically degrade crude, untreated plant biomass and are competitive with optimized commercial preparations from Aspergillus and Trichoderma. Compared to these model platforms, gut fungal enzymes are unbiased in substrate preference due to a wealth of xylan-degrading enzymes. These enzymes are universally catabolite-repressed and are further regulated by a rich landscape of noncoding regulatory RNAs. Additionally, we identified several promising sequence-divergent enzyme candidates for lignocellulosic bioprocessing.

  9. Fabricating and imaging carbon-fiber immobilized enzyme ultramicroelectrodes with scanning electrochemical microscopy.

    Science.gov (United States)

    Ge, F; Tenent, R C; Wipf, D O

    2001-01-01

    The scanning electrochemical microscope (SECM) is used to image the activity of enzymes immobilized on the surfaces of disk-shaped carbon-fiber electrodes. SECM was used to map the concentration of enzymatically produced hydroquinone or hydrogen peroxide at the surface of a 33-microm diameter disk-shaped carbon-fiber electrode modified by an immobilized glucose-oxidase layer. Sub-monolayer coverage of the enzyme at the electrode surface could be detected with micrometer resolution. The SECM was also employed as a surface modification tool to produce microscopic regions of enzyme activity by using a variety of methods. One method is a gold-masking process in which microscopic gold patterns act as mask for producing patterns of chemical modification. The gold masks allow operation in both a positive or negative process for patterning enzyme activity. A second method uses the direct mode of the SECM to produce covalently attached amine groups on the carbon surface. The amine groups are anchors for attachment of glucose oxidase by use of a biotin/avidin process. The effect of non-uniform enzyme activity was investigated by using the SECM tip to temporarily damage an immobilized enzyme surface. SECM imaging can observe the spatial extent and time-course of the enzyme recovery process. PMID:11993673

  10. Detoxification of azo dyes by bacterial oxidoreductase enzymes.

    Science.gov (United States)

    Mahmood, Shahid; Khalid, Azeem; Arshad, Muhammad; Mahmood, Tariq; Crowley, David E

    2016-08-01

    Azo dyes and their intermediate degradation products are common contaminants of soil and groundwater in developing countries where textile and leather dye products are produced. The toxicity of azo dyes is primarily associated with their molecular structure, substitution groups and reactivity. To avoid contamination of natural resources and to minimize risk to human health, this wastewater requires treatment in an environmentally safe manner. This manuscript critically reviews biological treatment systems and the role of bacterial reductive and oxidative enzymes/processes in the bioremediation of dye-polluted wastewaters. Many studies have shown that a variety of culturable bacteria have efficient enzymatic systems that can carry out complete mineralization of dye chemicals and their metabolites (aromatic compounds) over a wide range of environmental conditions. Complete mineralization of azo dyes generally involves a two-step process requiring initial anaerobic treatment for decolorization, followed by an oxidative process that results in degradation of the toxic intermediates that are formed during the first step. Molecular studies have revealed that the first reductive process can be carried out by two classes of enzymes involving flavin-dependent and flavin-free azoreductases under anaerobic or low oxygen conditions. The second step that is carried out by oxidative enzymes that primarily involves broad specificity peroxidases, laccases and tyrosinases. This review focuses, in particular, on the characterization of these enzymes with respect to their enzyme kinetics and the environmental conditions that are necessary for bioreactor systems to treat azo dyes contained in wastewater.

  11. Microbial dextran-hydrolyzing enzymes: fundamentals and applications.

    Science.gov (United States)

    Khalikova, Elvira; Susi, Petri; Korpela, Timo

    2005-06-01

    Dextran is a chemically and physically complex polymer, breakdown of which is carried out by a variety of endo- and exodextranases. Enzymes in many groups can be classified as dextranases according to function: such enzymes include dextranhydrolases, glucodextranases, exoisomaltohydrolases, exoisomaltotriohydrases, and branched-dextran exo-1,2-alpha-glucosidases. Cycloisomalto-oligosaccharide glucanotransferase does not formally belong to the dextranases even though its side reaction produces hydrolyzed dextrans. A new classification system for glycosylhydrolases and glycosyltransferases, which is based on amino acid sequence similarities, divides the dextranases into five families. However, this classification is still incomplete since sequence information is missing for many of the enzymes that have been biochemically characterized as dextranases. Dextran-degrading enzymes have been isolated from a wide range of microorganisms. The major characteristics of these enzymes, the methods for analyzing their activities and biological roles, analysis of primary sequence data, and three-dimensional structures of dextranases have been dealt with in this review. Dextranases are promising for future use in various scientific and biotechnological applications.

  12. Endothelin-converting enzymes and related metalloproteases in Alzheimer's disease.

    Science.gov (United States)

    Pacheco-Quinto, Javier; Herdt, Aimee; Eckman, Christopher B; Eckman, Elizabeth A

    2013-01-01

    The efficient clearance of amyloid-β (Aβ) is essential to modulate levels of the peptide in the brain and to prevent it from accumulating in senile plaques, a hallmark of Alzheimer's disease (AD) pathology.We and others have shown that failure in Aβ catabolism can produce elevations in Aβ concentration similar to those observed in familial forms of AD. Based on the available evidence, it remains plausible that in late-onset AD, disturbances in the activity of Aβ degrading enzymes could induce Aβ accumulation, and that this increase could result in AD pathology. The following review presents a historical perspective of the parallel discovery of three vasopeptidases (neprilysin and endothelin-converting enzymes-1 and -2) as important Aβ degrading enzymes. The recognition of the role of these vasopeptidases in Aβ degradation, beyond bringing to light a possible explanation of how cardiovascular risk factors may influence AD risk, highlights a possible risk of the use of inhibitors of these enzymes for other clinical indications such as hypertension. We will discuss in detail the experiments conducted to assess the impact of vasopeptidase deficiency (through pharmacological inhibition or genetic mutation) on Aβ accumulation, as well as the cooperative effect of multiple Aβ degrading enzymes to regulate the concentration of the peptide at multiple sites, both intracellular and extracellular, throughout the brain.

  13. Digestive enzymes from workers and soldiers of termite Nasutitermes corniger.

    Science.gov (United States)

    Lima, Thâmarah de Albuquerque; Pontual, Emmanuel Viana; Dornelles, Leonardo Prezzi; Amorim, Poliana Karla; Sá, Roberto Araújo; Coelho, Luana Cassandra Breitenbach Barroso; Napoleão, Thiago Henrique; Paiva, Patrícia Maria Guedes

    2014-10-01

    The digestive apparatus of termites may have several biotechnological applications, as well as being a target for pest control. This report discusses the detection of cellulases (endoglucanase, exoglucanase, and β-glucosidase), hemicellulases (β-xylosidase, α-l-arabinofuranosidase, and β-d-xylanase), α-amylase, and proteases (trypsin-like, chymotrypsin-like, and keratinase-type) in gut extracts from Nasutitermes corniger workers and soldiers. Additionally, the effects of pH (3.0-11.0) and temperature (30-100°C) on enzyme activities were evaluated. All enzymes investigated were detected in the gut extracts of worker and soldier termites. Endoglucanase and β-xylanase were the main cellulase and hemicellulase, respectively. Zymography for proteases of worker extracts revealed polypeptides of 22, 30, and 43kDa that hydrolyzed casein, and assays using protease inhibitors showed that serine proteases were the main proteases in worker and soldier guts. The determined enzyme activities and their response to different pH and temperature values revealed that workers and soldiers contained a distinct digestive apparatus. The ability of these termites to efficiently digest the main components of lignocellulosic materials stimulates the purification of gut enzymes. Further investigation into their biotechnological potential as well as whether the enzymes detected are produced by the termites or by their symbionts is needed. PMID:25026598

  14. Lipid peroxidation and antioxidant enzymes in male infertility.

    Directory of Open Access Journals (Sweden)

    Dandekar S

    2002-07-01

    Full Text Available BACKGROUND AND AIM: Mammalian spermatozoa are rich in polyunsaturated fatty acids and are very susceptible to attack by reactive oxygen species (ROS and membrane lipid peroxide ion. Normally a balance is maintained between the amount of ROS produced and that scavenged. Cellular damage arises when this equilibrium is disturbed. A shift in the levels of ROS towards pro-oxidants in semen and vaginal secretions can induce an oxidative stress on spermatozoa. The aim was to study lipid peroxidation and antioxidant enzymes such as catalase, glutathione peroxidase and superoxide dismutase (SOD and to correlate the same, with the ′water test′, in male infertility. SETTINGS: Experimental study. SUBJECTS AND METHODS: Ejaculates from a total of 83 infertile and fertile healthy individuals were obtained. Lipid peroxidation and antioxidant enzyme levels were studied and correlated with water test. RESULTS: The results indicate that (i the antioxidant enzyme catalase showed no significant changes in the various pathological samples, (ii antioxidant enzymes SOD and glutathione peroxidase correlate positively with asthenozoospermic samples and (iii the degree of lipid peroxidation also correlates positively with the poorly swollen sperm tails. The increase in SOD and glutathione peroxidase values, in the pathological cases represents an attempt made to overcome the reactive oxygen species. CONCLUSION: Water test could be used as a preliminary marker test for sperm tail damage by reactive oxygen species, since it correlates very well with lipid peroxidation and antioxidant enzymes.

  15. The rumen: a unique source of enzymes for enhancing livestock production.

    Science.gov (United States)

    Selinger, L B; Forsberg, C W; Cheng, K J

    1996-10-01

    Increasing competition in the livestock industry has forced producers to cut costs by adopting new technologies aimed at increasing production efficiency. One particularly promising technology is feeding enzymes as supplements for animal diets. Supplementation of diets for non-ruminants (e.g., swine and poultry) with fibrolytic enzymes, such as cellulases, xylanases and beta-glucanases, increases the feed conversion efficiency and growth rate of the animals. Enzymatic hydrolysis of plant cell wall polymers (e.g., cellulose, xylan, beta-glucans) releases glucose and xylose and eliminates the antinutritional effects of beta-glucans and arabinoxylans. Enzyme supplementation of diets for ruminants has also been shown to improve growth performance, even though the rumen itself represents the most potent fibrolytic fermentation system known. Implementation of this technology in the livestock industry has been limited largely because of the cost of development and production of enzymes. Over the last decade, however, developments in recombinant DNA technology have increased the efficiency of existing microbial production systems and facilitated exploitation of alternative sources of industrial enzymes. The ruminal ecosystem is among the novel enzyme sources currently being explored. Understanding the role of enzymes in feed digestion through characterization of the enzymology and genetics involved in digestion of feedstuffs by ruminants will provide insight required to improve the products currently available to producers. Characterization of genes encoding a variety of hydrolytic enzymes, such as cellulases, xylanases, beta-glucanases, amylases, pectinases, proteases, phytases and tannases, will foster the development of more efficacious enzyme supplements and enzyme expression systems for enhancing nutrient utilization by domestic animals. Characteristics of the original source organism need no longer restrict the production of a useful enzyme. Recent reports of

  16. Substrate mediated enzyme prodrug therapy.

    Directory of Open Access Journals (Sweden)

    Betina Fejerskov

    Full Text Available In this report, we detail Substrate Mediated Enzyme Prodrug Therapy (SMEPT as a novel approach in drug delivery which relies on enzyme-functionalized cell culture substrates to achieve a localized conversion of benign prodrug(s into active therapeutics with subsequent delivery to adhering cells or adjacent tissues. For proof-of-concept SMEPT, we use surface adhered micro-structured physical hydrogels based on poly(vinyl alcohol, β-glucuronidase enzyme and glucuronide prodrugs. We demonstrate enzymatic activity mediated by the assembled hydrogel samples and illustrate arms of control over rate of release of model fluorescent cargo. SMEPT was not impaired by adhering cells and afforded facile time - and dose - dependent uptake of the in situ generated fluorescent cargo by hepatic cells, HepG2. With the use of a glucuronide derivative of an anticancer drug, SN-38, SMEPT afforded a decrease in cell viability to a level similar to that achieved using parent drug. Finally, dose response was achieved using SMEPT and administration of judiciously chosen concentration of SN-38 glucuronide prodrug thus revealing external control over drug delivery using drug eluting surface. We believe that this highly adaptable concept will find use in diverse biomedical applications, specifically surface mediated drug delivery and tissue engineering.

  17. Selection of lipase-producing microorganisms through submerged fermentation.

    Science.gov (United States)

    Colla, Luciane Maria; Primaz, Andreiza Lazzarotto; Benedetti, Silvia; Loss, Raquel Aparecida; de Lima, Marieli; Reinehr, Christian Oliveira; Bertolin, Telma Elita; Costa, Jorge Alberto Vieira

    2010-01-01

    Lipases are enzymes used in various industrial sectors such as food, pharmaceutical and chemical synthesis industries. The selection of microorganisms isolated from soil or wastewater is an alternative to the discovery of new species with high enzymes productivity and with different catalytic activities. In this study, the selection of lipolytic fungi was carried out by submerged fermentation. A total of 27 fungi were used, of which 20 were isolated from dairy effluent and 7 from soil contaminated with diesel oil. The largest producers were the fungi Penicillium E-3 with maximum lipolytic activity of 2.81 U, Trichoderma E-19 and Aspergillus O-8 with maximum activities of 2.34 and 2.03 U where U is the amount of enzyme that releases 1 micromol of fatty acid per min per mL of enzyme extract. The fungi had maximum lipolytic activities on the 4th day of fermentation. PMID:20737918

  18. Efficient production and evaluation of lignocellulolytic enzymes using a constitutive protein expression system in Penicillium oxalicum.

    Science.gov (United States)

    Hu, Yibo; Xue, Haizhao; Liu, Guodong; Song, Xin; Qu, Yinbo

    2015-06-01

    Native lignocellulolytic enzyme systems secreted by filamentous fungi can be further optimized by protein engineering or supplementation of exogenous enzyme components. We developed a protein production and evaluation system in cellulase-producing fungus Penicillium oxalicum. First, by deleting the major amylase gene amy15A, a strain Δ15A producing few extracellular proteins on starch was constructed. Then, three lignocellulolytic enzymes (BGL4, Xyn10B, and Cel12A) with originally low expression levels were successfully expressed with selected constitutive promoters in strain Δ15A. BGL4 and Cel12A overexpression resulted in increased specific filter paper activity (FPA), while the overexpression of Xyn10B improved volumetric FPA but not specific FPA. By switching the culture medium, this platform is convenient to produce originally low-expressed lignocellulolytic enzymes in relatively high purities on starch and to evaluate the effect of their supplementation on the performance of a complex cellulase system on cellulose.

  19. Producing superhydrophobic roof tiles

    Science.gov (United States)

    Carrascosa, Luis A. M.; Facio, Dario S.; Mosquera, Maria J.

    2016-03-01

    Superhydrophobic materials can find promising applications in the field of building. However, their application has been very limited because the synthesis routes involve tedious processes, preventing large-scale application. A second drawback is related to their short-term life under outdoor conditions. A simple and low-cost synthesis route for producing superhydrophobic surfaces on building materials is developed and their effectiveness and their durability on clay roof tiles are evaluated. Specifically, an organic-inorganic hybrid gel containing silica nanoparticles is produced. The nanoparticles create a densely packed coating on the roof tile surface in which air is trapped. This roughness produces a Cassie-Baxter regime, promoting superhydrophobicity. A surfactant, n-octylamine, was also added to the starting sol to catalyze the sol-gel process and to coarsen the pore structure of the gel network, preventing cracking. The application of ultrasound obviates the need to use volatile organic compounds in the synthesis, thereby making a ‘green’ product. It was also demonstrated that a co-condensation process effective between the organic and inorganic species is crucial to obtain durable and effective coatings. After an aging test, high hydrophobicity was maintained and water absorption was completely prevented for the roof tile samples under study. However, a transition from a Cassie-Baxter to a Wenzel state regime was observed as a consequence of the increase in the distance between the roughness pitches produced by the aging of the coating.

  20. Top Hispanic Degree Producers

    Science.gov (United States)

    Diverse: Issues in Higher Education, 2012

    2012-01-01

    This article presents a list of the top 100 producers of associate, bachelor's and graduate degrees awarded to minority students based on research conducted by Dr. Victor M.H. Borden, professor of educational leadership and policy students at the Indiana University Bloomington. For the year 2012, the listings focus on Hispanic students. Data for…

  1. Container for respiring produce

    NARCIS (Netherlands)

    Krijgsman, J.; Stroeks, A.A.M.; Thoden Van Velzen, E.U.

    2009-01-01

    The present invention relates to the use of a packaging material in the construction of a container for respiring produce, wherein the packaging material consists of a polyether-ester block copolymer or a blend of polyether-ester block copolymers and which packaging material has all of the following

  2. Producing CD-ROMs.

    Science.gov (United States)

    Hyams, Peter, Ed.

    1992-01-01

    This issue presents 11 articles that address issues relating to the production of CD-ROMs. Highlights include current uses of CD-ROM; standards; steps involved in producing CD-ROMs, including data capture, conversion, and tagging, product design, and indexing; authoring; selecting indexing and retrieval software; costs; multimedia CD-ROMs; and…

  3. Tea-Producer

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    CHEN Shuiyue is a tea producer in Shengzhou, Zhejiang Province, the biggest tea production and export base in China. One day last September, accompanied by two staff members from the local women’s federation, I visited Chen Shuiyue’s holne. Traveling along a bumpy road, we arrived at Yingguiyan Village, in Chongren County,

  4. A DNA tweezer-actuated enzyme nanoreactor.

    Science.gov (United States)

    Liu, Minghui; Fu, Jinglin; Hejesen, Christian; Yang, Yuhe; Woodbury, Neal W; Gothelf, Kurt; Liu, Yan; Yan, Hao

    2013-01-01

    The functions of regulatory enzymes are essential to modulating cellular pathways. Here we report a tweezer-like DNA nanodevice to actuate the activity of an enzyme/cofactor pair. A dehydrogenase and NAD(+) cofactor are attached to different arms of the DNA tweezer structure and actuation of enzymatic function is achieved by switching the tweezers between open and closed states. The enzyme/cofactor pair is spatially separated in the open state with inhibited enzyme function, whereas in the closed state, enzyme is activated by the close proximity of the two molecules. The conformational state of the DNA tweezer is controlled by the addition of specific oligonucleotides that serve as the thermodynamic driver (fuel) to trigger the change. Using this approach, several cycles of externally controlled enzyme inhibition and activation are successfully demonstrated. This principle of responsive enzyme nanodevices may be used to regulate other types of enzymes and to introduce feedback or feed-forward control loops.

  5. Electro-ultrafiltration of industrial enzyme solutions

    DEFF Research Database (Denmark)

    Enevoldsen, Ann Dorrit; Hansen, Erik Børresen; Jonsson, Gunnar Eigil

    2007-01-01

    To reduce the problems with fouling and concentration polarization during crossflow ultrafiltration of industrial enzyme solutions an electric field is applied across the membrane. The filtration performance during electro-ultrafiltration (EUF) has been tested with several enzymes. Results show...

  6. Extracellular enzyme kinetics scale with resource availability

    Science.gov (United States)

    Microbial community metabolism relies on external digestion, mediated by extracellular enzymes that break down complex organic matter into molecules small enough for cells to assimilate. We analyzed the kinetics of 40 extracellular enzymes that mediate the degradation and assimi...

  7. 7 CFR 1250.305 - Egg producer or producer.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Egg producer or producer. 1250.305 Section 1250.305... Research and Promotion Order Definitions § 1250.305 Egg producer or producer. Egg producer or producer... laying hens is in some other party to the contract. In the event the party to an oral contract...

  8. Inhibition of existing denitrification enzyme activity by chloramphenicol.

    OpenAIRE

    Brooks, M H; Smith, R L; Macalady, D L

    1992-01-01

    Chloramphenicol completely inhibited the activity of existing denitrification enzymes in acetylene-block incubations with (i) sediments from a nitrate-contaminated aquifer and (ii) a continuous culture of denitrifying groundwater bacteria. Control flasks with no antibiotic produced significant amounts of nitrous oxide in the same time period. Amendment with chloramphenicol after nitrous oxide production had begun resulted in a significant decrease in the rate of nitrous oxide production. Chlo...

  9. The Application of Enzyme and Yeast

    OpenAIRE

    Zhao, Qing

    2012-01-01

    This bachelor’s thesis concerns the application of enzymes and yeasts for bio-industry. The purpose of this work is to understand the basic knowledge about enzyme and yeast, and meanwhile, to find out their different applications. Through comprehensive study, the knowledge was accumulated which brought a clear understanding for the enzyme structure and yeast microorganism, together with their working principles for the bioprocess. For wood-based industry, the different enzymes used in bi...

  10. Determining Enzyme Activity by Radial Diffusion

    Science.gov (United States)

    Davis, Bill D.

    1977-01-01

    Discusses advantages of radial diffusion assay in determining presence of enzyme and/or rough approximation of amount of enzyme activities. Procedures are included for the preparation of starch-agar plates, and the application and determination of enzyme. Techniques using plant materials (homogenates, tissues, ungerminated embryos, and seedlings)…

  11. Activation of interfacial enzymes at membrane surfaces

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Andresen, Thomas Lars; Halperin, Avi;

    2006-01-01

    A host of water-soluble enzymes are active at membrane surfaces and in association with membranes. Some of these enzymes are involved in signalling and in modification and remodelling of the membranes. A special class of enzymes, the phospholipases, and in particular secretory phospholipase A2 (s...

  12. Rhamnogalacturonan I modifying enzymes: an update

    DEFF Research Database (Denmark)

    Silva, Ines R.; Jers, Carsten; Meyer, Anne S.;

    2016-01-01

    Rhamnogalacturonan I (RGI) modifying enzymes catalyse the degradation of the RGI backbone and encompass enzymes specific for either the α1,2-bond linking galacturonic acid to rhamnose or the α1,4-bond linking rhamnose to galacturonic acid in the RGI backbone. The first microbial enzyme found...

  13. 21 CFR 864.4400 - Enzyme preparations.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Enzyme preparations. 864.4400 Section 864.4400...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Specimen Preparation Reagents § 864.4400 Enzyme preparations. (a) Identification. Enzyme preparations are products that are used in the...

  14. Host cells and methods for producing isoprenyl alkanoates

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taek Soon; Fortman, Jeffrey L.; Keasling, Jay D.

    2015-12-01

    The invention provides for a method of producing an isoprenyl alkanoate in a genetically modified host cell. In one embodiment, the method comprises culturing a genetically modified host cell which expresses an enzyme capable of catalyzing the esterification of an isoprenol and a straight-chain fatty acid, such as an alcohol acetyltransferase (AAT), wax ester synthase/diacylglycerol acyltransferase (WS/DGAT) or lipase, under a suitable condition so that the isoprenyl alkanoate is produced.

  15. Identification of a novel fungus, Leptosphaerulina chartarum SJTU59 and characterization of its xylanolytic enzymes.

    Directory of Open Access Journals (Sweden)

    Qiong Wu

    Full Text Available Xylanolytic enzymes are widely used in processing industries, e.g., pulp and paper, food, livestock feeds, and textile. Furthermore, certain xylanotic enzymes have demonstrated the capability to improve the resistance and immunity of plants. Screening of high-yield microbial xylanolytic enzyme producers is significant for improving large-scale cost-effective xylanolytic enzyme production. This study provided new evidence of high-level xylanolytic enzyme production by a novel fungus, designated Leptosphaerulina chartarum SJTU59. Under laboratory conditions, L. chartarum SJTU59 produced xylanolytic enzymes of up to 17.566 U/mL (i.e., 878.307 U/g substrate. The enzyme solution was relatively stable over a wide range of pH (pH 3.0 to pH 9.0 and temperature (40°C to 65°C while showing high resistance to the majority of metal ions tested. Composition analysis of the hydrolytic products of xylan showed sufficient degradation by xylanolytic enzymes from L. chartarum SJTU59, mainly the monosaccharide xylose, and a small amount of xylobiose were enzymatically produced; whereas in the presence of sufficient xylan substrates, mainly xylooligosaccharides, an emerging prebiotic used in food industry, were produced. In addition, the xylanolytic enzyme preparation from L. chartarum SJTU59 could initiate tissue necrosis and oxidative burst in tobacco leaves, which may be related to enhanced plant defense to adversity and disease. L. chartarum SJTU59 possessed a complex xylanolytic enzyme system, from which two novel endo-β-1,4-xylanases of the glycoside hydrolase (GH family 10, one novel endo-β-1,4-xylanase of the GH family 11, and one novel β-xylosidase of the GH family 43 were obtained via rapid amplification of complementary DNA ends. Given the high yield and stable properties of xylanolytic enzymes produced by L. chartarum SJTU59, future studies will be conducted to characterize the properties of individual xylanolytic enzymes from L. chartarum SJTU59

  16. Antibody directed enzyme prodrug therapy: Discovery of novel genes, isolation of novel gene variants and production of long acting drugs for efficient cancer treatment

    NARCIS (Netherlands)

    Goda, S.K.; AlQahtani, A.; Rashidi, F.A.; Dömling, A.

    2015-01-01

    Background: Cancer accounts for 13% of the mortality rate worldwide. Antibody-Directed Enzyme Prodrug Therapy (ADEPT) is a novel strategy to improve the selectivity of cancer treatment. The ADEPT uses the bacterial enzyme, glucarpidase to produce the antibody-enzyme complex. Also the glucarpidase is

  17. Curious cases of the enzymes

    OpenAIRE

    Ulusu, Nuriye Nuray

    2015-01-01

    Life as we know it heavily relies on biological catalysis, in fact, in a very nonromantic version of it, life could be considered as a series of chemical reactions, regulated by the guarding principles of thermodynamics. In ancient times, a beating heart was a good sign of vitality, however, to me, it is actually the presence of active enzymes that counts. Though we do not usually pay attention, the history of enzymology is as old as humanity itself, and dates back to the ancient times. This ...

  18. Curious cases of the enzymes

    OpenAIRE

    Ulusu Nuriye Nuray

    2015-01-01

    J Med Biochem 2015; 34 (3) DOI: 10.2478/jomb-2014-0045 UDK 577. 1 : 61 ISSN 1452-8258 J Med Biochem 34: 271–281, 2015 Review article Pregledni ~lanak CURIOUS CASES OF THE ENZYMES NEOBI^NA ISTORIJA ENZIMA Nuriye Nuray Ulusu Koç University, School of Medicine, Sariyer-Istanbul, Turkey Address for correspondence: N. Nuray Ulusu, PhD Koç University School of Medicine Professor of Biochemistry Rumelifeneri Yolu Sarıyer-Istanbul – Turkey Phone: +90 (212)...

  19. Genomic and secretomic analyses reveal unique features of the lignocellulolytic enzyme system of Penicillium decumbens.

    Science.gov (United States)

    Liu, Guodong; Zhang, Lei; Wei, Xiaomin; Zou, Gen; Qin, Yuqi; Ma, Liang; Li, Jie; Zheng, Huajun; Wang, Shengyue; Wang, Chengshu; Xun, Luying; Zhao, Guo-Ping; Zhou, Zhihua; Qu, Yinbo

    2013-01-01

    Many Penicillium species could produce extracellular enzyme systems with good lignocellulose hydrolysis performance. However, these species and their enzyme systems are still poorly understood and explored due to the lacking of genetic information. Here, we present the genomic and secretomic analyses of Penicillium decumbens that has been used in industrial production of lignocellulolytic enzymes in China for more than fifteen years. Comparative genomics analysis with the phylogenetically most similar species Penicillium chrysogenum revealed that P. decumbens has evolved with more genes involved in plant cell wall degradation, but fewer genes in cellular metabolism and regulation. Compared with the widely used cellulase producer Trichoderma reesei, P. decumbens has a lignocellulolytic enzyme system with more diverse components, particularly for cellulose binding domain-containing proteins and hemicellulases. Further, proteomic analysis of secretomes revealed that P. decumbens produced significantly more lignocellulolytic enzymes in the medium with cellulose-wheat bran as the carbon source than with glucose. The results expand our knowledge on the genetic information of lignocellulolytic enzyme systems in Penicillium species, and will facilitate rational strain improvement for the production of highly efficient enzyme systems used in lignocellulose utilization from Penicillium species.

  20. Evaluation of a Hypocrea jecorina Enzyme Preparation for Hydrolysis of Tifton 85 Bermudagrass

    Science.gov (United States)

    Ximenes, E. A.; Brandon, S. K.; Doran-Peterson, J.

    Tifton 85 bermudagrass, developed at the ARS-USDA in Tifton, GA, is grown on over ten million acres in the USA for hay and forage. Of the bermudagrass cultivars, Tifton 85 exhibits improved digestibility because the ratio of ether- to ester-linked phenolic acids has been lowered using traditional plant breeding techniques. A previously developed pressurized batch hot water (PBHW) method was used to treat Tifton 85 bermudagrass for enzymatic hydrolysis. Native grass (untreated) and PBHW-pretreated material were compared as substrates for fungal cultivation to produce enzymes. Cellulase activity, measured via the filter paper assay, was higher for fungi cultivated on PBHW-pretreated grass, whereas the other nine enzyme assays produced higher activities for the untreated grass. Ferulic acid and vanillin levels increased significantly for the enzyme preparations produced using PBHW-pretreated grass and the release of these phenolic compounds may have contributed to the observed reduction in enzyme activities. Culture supernatant from Tifton 85 bermudagrass-grown fungi were combined with two commercial enzyme preparations and the enzyme activity profiles are reported. The amount of reducing sugar liberated by the enzyme mixture from Hypocrea jecorina (after 192 h incubation with untreated bermudagrass) individually or in combination with feruloyl esterase was 72.1 and 84.8%, respectively, of the commercial cellulase preparation analyzed under the same conditions.

  1. Production and optimization of L-glutaminase enzyme from Hypocrea jecorina pure culture.

    Science.gov (United States)

    Bülbül, Dilara; Karakuş, Emine

    2013-01-01

    L-Glutaminase (L-glutamine amidohydrolase, EC 3.5.1.2) is the important enzyme that catalyzes the deamination of L-glutamine to L-glutamic acid and ammonium ions. Recently, L-glutaminase has received much attention with respect to its therapeutic and industrial applications. It acts as a potent antileukemic agent and shows flavor-enhancing capacity in the production of fermented foods. Glutaminase activity is widely distributed in plants, animal tissues, and microorganisms, including bacteria, yeasts, and fungi. This study presents microbial production of glutaminase enzyme from Hypocrea jecorina pure culture and determination of optimum conditions and calculation of kinetic parameters of the produced enzyme. The optimum values were determined by using sa Nesslerization reaction for our produced glutaminase enzyme. The optimum pH value was determined as 8.0 and optimum temperature as 50°C for the glutaminase enzyme. The Km and Vmax values, the kinetic parameters, of enzyme produced from Hypocrea jecorina, pure culture were determined as 0.491 mM for Km and 13.86 U/L for Vmax by plotted Lineweaver-Burk graphing, respectively. The glutaminase enzyme from H. jecorina microorganism has very high thermal and storage stability.

  2. Enzyme Analysis to Determine Glucose Content

    Science.gov (United States)

    Carpenter, Charles; Ward, Robert E.

    Enzyme analysis is used for many purposes in food science and technology. Enzyme activity is used to indicate adequate processing, to assess enzyme preparations, and to measure constituents of foods that are enzyme substrates. In this experiment, the glucose content of corn syrup solids is determined using the enzymes, glucose oxidase and peroxidase. Glucose oxidase catalyzes the oxidation of glucose to form hydrogen peroxide (H2O2), which then reacts with a dye in the presence of peroxidase to give a stable colored product.

  3. Direct Electron Transfer of Enzymes in a Biologically Assembled Conductive Nanomesh Enzyme Platform.

    Science.gov (United States)

    Lee, Seung-Woo; Lee, Ki-Young; Song, Yong-Won; Choi, Won Kook; Chang, Joonyeon; Yi, Hyunjung

    2016-02-24

    Nondestructive assembly of a nanostructured enzyme platform is developed in combination of the specific biomolecular attraction and electrostatic coupling for highly efficient direct electron transfer (DET) of enzymes with unprecedented applicability and versatility. The biologically assembled conductive nanomesh enzyme platform enables DET-based flexible integrated biosensors and DET of eight different enzyme with various catalytic activities.

  4. DNA-Based Enzyme Reactors and Systems

    Directory of Open Access Journals (Sweden)

    Veikko Linko

    2016-07-01

    Full Text Available During recent years, the possibility to create custom biocompatible nanoshapes using DNA as a building material has rapidly emerged. Further, these rationally designed DNA structures could be exploited in positioning pivotal molecules, such as enzymes, with nanometer-level precision. This feature could be used in the fabrication of artificial biochemical machinery that is able to mimic the complex reactions found in living cells. Currently, DNA-enzyme hybrids can be used to control (multi-enzyme cascade reactions and to regulate the enzyme functions and the reaction pathways. Moreover, sophisticated DNA structures can be utilized in encapsulating active enzymes and delivering the molecular cargo into cells. In this review, we focus on the latest enzyme systems based on novel DNA nanostructures: enzyme reactors, regulatory devices and carriers that can find uses in various biotechnological and nanomedical applications.

  5. Enzyme extraction by ultrasound from sludge flocs

    Institute of Scientific and Technical Information of China (English)

    YU Guanghui; HE Pinjing; SHAO Liming; ZHU Yishu

    2009-01-01

    Enzymes play essential roles in the biological processes of sludge treatment. In this article, the ultrasound method to extract enzymes from sludge flocs was presented. Results showed that using ultrasound method at 20 kHz could extract more types of enzymes than that ultrasound at 40 kHz and ethylenediamine tetraacetic acid (EDTA) methods. The optimum parameters of ultrasound extraction at 20 kHz were duration of 10 min and power of 480 W. Under the condition, ultrasound could break the cells and extract both the extracellular and intercellular enzymes. Ultrasound power was apparently more susceptive to enzyme extraction than duration, suggesting that the control of power during ultrasound extraction was more important than that of duration. The Pearson correlation analysis between enzyme activities and cation contents revealed that the different types of enzymes had distinct cation binding characteristics.

  6. INDUCTION OF ENZYME COCKTAILS BY LOW COST CARBON SOURCES FOR PRODUCTION OF MONOSACCHARIDE-RICH SYRUPS FROM PLANT MATERIALS

    Directory of Open Access Journals (Sweden)

    Caroline T. Gilleran

    2010-05-01

    Full Text Available The production of cellulases, hemicellulases, and starch-degrading enzymes by the thermophilic aerobic fungus Talaromyces emersonii under liquid state culture on various food wastes was investigated. A comprehensive enzyme screening was conducted, which resulted in the identification of spent tea leaves as a potential substrate for hydrolytic enzyme production. The potent, polysaccharide-degrading enzyme-rich cocktail produced when tea leaves were utilised as sole carbon source was analysed at a protein and mRNA level and shown to exhibit high level production of key cellulose and hemicellulose degrading enzymes. As presented in this paper, the crude enzyme preparation produced after 120 h growth of Talaromyces emersonii on used tea leaves is capable of hydrolysing other lignocellulosic materials into their component monosaccharides, generating high value sugar syrups with a host of industrial applications including conversion to fuels and chemicals.

  7. Producer, customer and supplier

    Energy Technology Data Exchange (ETDEWEB)

    Stoops, B. [PanCanadian Petroleum Ltd., Calgary, AB (Canada)

    1998-07-01

    PanCanadian`s strategy for electricity use was discussed. PanCanadian is one of Canada`s largest oil producers. The company is growth oriented, has a strong asset base and is financially sound. With its growing power consumption and increased competition, the company needs to control costs, particularly in the changing regulatory climate. Reduction in emissions is also one of the challenges facing the company. Under these circumstances the company has the opportunity to play more than one role: as a proactive consumer actively managing its own consumption, as a generator of its own electric power, and as a supplier of electricity to the grid. 2 figs.

  8. Enzyme research and applications in biotechnological intensification of biogas production.

    Science.gov (United States)

    Parawira, Wilson

    2012-06-01

    Biogas technology provides an alternative source of energy to fossil fuels in many parts of the world. Using local resources such as agricultural crop remains, municipal solid wastes, market wastes and animal waste, energy (biogas), and manure are derived by anaerobic digestion. The hydrolysis process, where the complex insoluble organic materials are hydrolysed by extracellular enzymes, is a rate-limiting step for anaerobic digestion of high-solid organic solid wastes. Biomass pretreatment and hydrolysis are areas in need of drastic improvement for economic production of biogas from complex organic matter such as lignocellulosic material and sewage sludge. Despite development of pretreatment techniques, sugar release from complex biomass still remains an expensive and slow step, perhaps the most critical in the overall process. This paper gives an updated review of the biotechnological advances to improve biogas production by microbial enzymatic hydrolysis of different complex organic matter for converting them into fermentable structures. A number of authors have reported significant improvement in biogas production when crude and commercial enzymes are used in the pretreatment of complex organic matter. There have been studies on the improvement of biogas production from lignocellulolytic materials, one of the largest and renewable sources of energy on earth, after pretreatment with cellulases and cellulase-producing microorganisms. Lipids (characterised as oil, grease, fat, and free long chain fatty acids, LCFA) are a major organic compound in wastewater generated from the food processing industries and have been considered very difficult to convert into biogas. Improved methane yield has been reported in the literature when these lipid-rich wastewaters are pretreated with lipases and lipase-producing microorganisms. The enzymatic treatment of mixed sludge by added enzymes prior to anaerobic digestion has been shown to result in improved degradation of the

  9. Milk Lactose Hydrolysis In A Batch Reactor: Optimisation Of Process Parameters, Kinetics Of Hydrolysis And Enzyme Inactivation

    OpenAIRE

    Sener, N.; Kilic-Apar, D.; DEMIRHAN, E.; Ozbek, B.

    2008-01-01

    The present investigation describes the effects of the process quantities on enzymatic hydrolysis of milk lactose and enzyme stability. The lactose hydrolysis reactions were carried out in 250 mL of milk by using a commercial β-galactosidase produced from Kluyveromyces marxianus lactis. The residual lactose mass concentration (g L-1) and residual enzyme activity (%) against time were investigated vs. process variables such as temperature, impeller speed and enzyme concentration. Optimum condi...

  10. Modeling of Pharmacokinetics of Cocaine in Human Reveals the Feasibility for Development of Enzyme Therapies for Drugs of Abuse

    OpenAIRE

    Fang Zheng; Chang-Guo Zhan

    2012-01-01

    A promising strategy for drug abuse treatment is to accelerate the drug metabolism by administration of a drug-metabolizing enzyme. The question is how effectively an enzyme can actually prevent the drug from entering brain and producing physiological effects. In the present study, we have developed a pharmacokinetic model through a combined use of in vitro kinetic parameters and positron emission tomography data in human to examine the effects of a cocaine-metabolizing enzyme in plasma on th...

  11. Cellulose degradation by oxidative enzymes

    Directory of Open Access Journals (Sweden)

    Maria Dimarogona

    2012-09-01

    Full Text Available Enzymatic degradation of plant biomass has attracted intensive research interest for the production of economically viable biofuels. Here we present an overview of the recent findings on biocatalysts implicated in the oxidative cleavage of cellulose, including polysaccharide monooxygenases (PMOs or LPMOs which stands for lytic PMOs, cellobiose dehydrogenases (CDHs and members of carbohydrate-binding module family 33 (CBM33. PMOs, a novel class of enzymes previously termed GH61s, boost the efficiency of common cellulases resulting in increased hydrolysis yields while lowering the protein loading needed. They act on the crystalline part of cellulose by generating oxidized and non-oxidized chain ends. An external electron donor is required for boosting the activity of PMOs. We discuss recent findings concerning their mechanism of action and identify issues and questions to be addressed in the future.

  12. Encapsulation of Enzymes and Peptides

    Science.gov (United States)

    Meesters, Gabrie M. H.

    A large part of formulated peptides and proteins, e.g., enzymes used as food ingredients, are formulated in a liquid form. Often, they are dissolved in water to which glycerol or sorbitol is added to reduce the water activity of the liquid, thus reducing the change of microbial growth. Still, there are reasons to formulate them in a solid form. Often, these reasons are stability, since a dry formulation is often much better than liquid formulations, and less transportation cost, since less mass is transported if one gets rid of the liquid; however, most of the times, the reason is that the product is mixed with a solid powder. Here, a liquid addition would lead to lump formation.

  13. Multi-enzyme Process Modeling

    DEFF Research Database (Denmark)

    Andrade Santacoloma, Paloma de Gracia

    The subject of this thesis is to develop a methodological framework that can systematically guide mathematical model building for better understanding of multi-enzyme processes. In this way, opportunities for process improvements can be identified by analyzing simulations of either existing...... features of the process and provides the information required to structure the process model by using a step-by-step procedure with the required tools and methods. In this way, this framework increases efficiency of the model development process with respect to time and resources needed (fast and effective...... in the scientific literature. Reliable mathematical models of such multi-catalytic schemes can exploit the potential benefit of these processes. In this way, the best outcome of the process can be obtained understanding the types of modification that are required for process optimization. An effective evaluation...

  14. Process for producing hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Doi, K.; Komatsu, A.; Moroe, M.; Moroe, T.

    1980-07-22

    A process is described for producing a hydrocarbon product consisting essentially of hydrocarbons having about 10 to 50 carbon atoms with 60% or more of said product consisting of hydrocarbons containing 25 to 32 carbon atoms which comprises subjecting a synthetic polyisoprene rubber having 92 to 97% cis-type double bods to a thermally destructive distillation at about 300 to 400/sup 0/ C for about 30 minutes under a reduced pressure of about 0.1 to 5 mm. Hg to obtain said hydrocarbon product consisting essentially of hydrocarbons having about 10 to 50 carbon atoms with 60% or more of said product consisting of hydrocarbons containing 25 to 35 carbon atoms, said hydrocarbon product not having a bad odor and containing scarcely any resinous material.

  15. Method of producing alkylbenzene

    Energy Technology Data Exchange (ETDEWEB)

    Samokhvalov, A.I.; Golod, A.L.; Khadzhiyev, S.N.; Kirilin, Yu.A.; Nikitin, Yu.A.; Sumanov, V.T.

    1979-09-25

    An improved method of producing alkylbenzene (AB) by alkylation of isoparaffin hydrocarbons using olefin hydrocarbons in the presence of H/sub 2/SO/sub 4/ (I) by turbulent contact of (I) and a mixture of hydrocarbons at a reagent feed rate 1.0-8.0 m/sec for 0.1-1.5 seconds at a temperature from -2 to +120 degrees and pressure of approximately 48 atm is proposed. The parameters of the alkylation process are cited. The AB obtained features an octane number of 92.2 and contains 5.2 parts per million esters of I. The method makes it possible to obtain high quality AB and simplifies equipment and reduces process time.

  16. The Polyphenols Stability, Enzyme Activity and Physico-Chemical Parameters During Producing Wild Elderberry Concentrated Juice

    OpenAIRE

    Ante Galić; Verica Dragović-uzelac; Branka Levaj; Danijela Bursać Kovačević; Stjepan Pliestić; Sabina Arnautović

    2009-01-01

    The influence of processing wild elderberry into concentrated juice on polyphenols (total phenols, flavonoids, non-flavonoids, anthocyanins, flavan-3-ols, hydrolysed tannins) stability, activity of polyphenol oxidase (PPO) and peroxidase (POD), and changes of physico-chemical parameters (total and soluble dry matter, total acidity, pH, sugars) were investigated. The amounts of total phenols, flavonoids, non-flavonoids, falvan-3-ols and hydrolysed tannins were analyzed using Folin-Ciocalteu co...

  17. Genetically Engineered Immunomodulatory Streptococcus thermophilus Strains Producing Antioxidant Enzymes Exhibit Enhanced Anti-Inflammatory Activities

    OpenAIRE

    del Carmen, Silvina; de Moreno de LeBlanc, Alejandra; Martin, Rebeca; Chain, Florian; Langella, Philippe; Bermúdez-Humarán, Luis G; LeBlanc, Jean Guy

    2014-01-01

    The aims of this study were to develop strains of lactic acid bacteria (LAB) having both immunomodulatory and antioxidant properties and to evaluate their anti-inflammatory effects both in vitro, in different cellular models, and in vivo, in a mouse model of colitis. Different Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains were cocultured with primary cultures of mononuclear cells. Analysis of the pro- and anti-inflammatory cytokines secreted by these cells...

  18. Isolation of lipase producing Bacillus sp. from olive mill wastewater and improving its enzyme activity.

    Science.gov (United States)

    Ertuğrul, Sevgi; Dönmez, Gönül; Takaç, Serpil

    2007-11-19

    The bacteria that could grow on media containing olive mill wastewater (OMW) were isolated and their lipase production capacities were investigated. The strain possessing the highest lipase activity among 17 strains grown on tributyrin agar medium was identified as Bacillus sp. The effect of initial pH on the lipase activity was investigated in tributyrin medium and pH 6 was found to be the optimal. The liquid medium composition was improved by replacing tributyrin with various carbon sources. Among the media containing different compositions of triolein, trimyristin, trilaurin, tricaprin, tricaprylin, tributyrin, triacetin, Tween 80, OMW, glucose, and whey; the medium contained 20% whey +1% triolein was found to give the highest lipase activity. Cultivation of Bacillus sp. in the optimal medium at pH 6 and 30 degrees C for 64h resulted in the extracellular and intracellular lipase activities of 15 and 168U/ml, respectively.

  19. The Polyphenols Stability, Enzyme Activity and Physico-Chemical Parameters During Producing Wild Elderberry Concentrated Juice

    Directory of Open Access Journals (Sweden)

    Ante Galić

    2009-12-01

    Full Text Available The influence of processing wild elderberry into concentrated juice on polyphenols (total phenols, flavonoids, non-flavonoids, anthocyanins, flavan-3-ols, hydrolysed tannins stability, activity of polyphenol oxidase (PPO and peroxidase (POD, and changes of physico-chemical parameters (total and soluble dry matter, total acidity, pH, sugars were investigated. The amounts of total phenols, flavonoids, non-flavonoids, falvan-3-ols and hydrolysed tannins were analyzed using Folin-Ciocalteu colorimetric method, while the total anthocyanins were determined by bisulphite bleaching method. Total phenols ranged from 25.87 mg/g DM to 38.87 mg/g DM. Total anthocyanins were the most abundant polyphenols in all investigated samples (raw elderberries, elderberries after blanching, elderberry juice after disintegration and pressing, concentrated elderberry juice and their concentration ranged from 13.12 mg/g DM to 25.67 mg/g DM. Other polyphenols determined in high concentration were hydrolysed tannins, followed by fl avan-3-ols, flavonoids and nonfavonoids. After blanching, the concentration of all polyphenols did not decrease significantly. After disintegration of elderberries the concentration of all polyphenols increased, probably due to inactivation of PPO and POD and better isolation of polyphenols from homogenized puree. During processing of elderberry juice into concentrated juice most polyphenols were stable. Total acidity and pH value were not changed during processing, whereas the amounts of total and reducing sugar increased after pressing and additionally after concentration. The obtained results suggest that raw elderberries as well as elderberry concentrated juice are high potential source of polyphenols especially anthocyanins.

  20. Influence of pyruvate, threonine and phosphoethanolamine on activities of some acetaldehyde-producing enzymes.

    Science.gov (United States)

    Gerashchenko, D; Gorenshtein, B; Pyzhik, T; Ostrovsky, Y u

    1993-07-01

    Threonine (50 mg/100 g, i.p.) leads to increased hepatic threonine aldolase activity in rats, although endogenous ethanol concentrations remain stable. After pyruvate administration (50 mg/100 g, i.p.), endogenous blood ethanol levels are raised within 30 min, but return to normal at 60 min. The activity of threonine aldolase is decreased in the liver, whereas phosphoethanolamine lyase and pyruvate dehydrogenase activities remain unchanged. Phosphoethanolamine administration (23 mg/100 g, i.p.) did not change the endogenous ethanol concentration or pyruvate dehydrogenase, threonine aldolase and phosphoethanolamine lyase activities. Pyruvate appears to be a better precursor of acetaldehyde than threonine or phosphoethanolamine.

  1. Models for gibberellic acid transport and enzyme production and transport in the aleurone layer of barley.

    Science.gov (United States)

    O'Brien, Ricky; Fowkes, Nev; Bassom, Andrew P

    2010-11-01

    Gibberellins are growth hormones produced in the embryo of grain released during germination. They promote growth through the production of enzymes in the aleurone layer surrounding the endosperm. These enzymes then diffuse into the endosperm and produce the sugars required by the growing acrospire. Here we model the transport of gibberellins into and along the aleurone layer, the consequent production of enzymes, and their transport into the endosperm. Simple approximate solutions of the governing equations are obtained which suggest that the enzymes are released immediately behind a gibberellin front which travels with almost constant speed along the aleurone layer. The model also suggests that this propagation speed is determined primarily by conditions near the scutellum-aleurone junction, which may enable the embryo to actively control the germination process.

  2. Extracellular ligninolytic enzymes production by Pleurotus eryngii on agroindustrial wastes.

    Science.gov (United States)

    Akpinar, Merve; Urek, Raziye Ozturk

    2014-01-01

    Pleurotus eryngii (DC.) Gillet (MCC58) was investigated for its ligninolytic ability to produce laccase (Lac), manganese peroxidase (MnP), aryl alcohol oxidase (AAO), and lignin peroxidase (LiP) enzymes through solid-state fermentation using apricot and pomegranate agroindustrial wastes. The reducing sugar, protein, lignin, and cellulose levels in these were studied. Also, the production of these ligninolytic enzymes was researched over the growth of the microorganism throughout 20 days, and the reducing sugar, protein, and nitrogen levels were recorded during the stationary cultivation at 28 ± 0.5°C. The highest Lac activity was obtained as 1618.5 ± 25 U/L on day 12 of cultivation using apricot. The highest MnP activity was attained as 570.82 ± 15 U/L on day 17 in pomegranate culture and about the same as apricot culture. There were low LiP activities in both cultures. The maximum LiP value detected was 16.13 ± 0.8 U/L in apricot cultures. In addition, AAO activities in both cultures showed similar trends up to day 17 of cultivation, with the highest AAO activity determined as 105.99 ± 6.3 U/L on day 10 in apricot cultures. Decolorization of the azo dye methyl orange was also achieved with produced ligninolytic enzymes by P. eryngii using apricot and pomegranate wastes. PMID:24279903

  3. Optimisation of nitrate reductase enzyme activity to synthesise silver nanoparticles.

    Science.gov (United States)

    Khodashenas, Bahareh; Ghorbani, Hamid Reza

    2016-06-01

    Today, the synthesis of silver nanoparticles (Ag NPs) is very common since it has many applications in different areas. The synthesis of these nanoparticles is done by means of physical, chemical, or biological methods. However, due to its inexpensive and environmentally friendly features, the biological method is more preferable. In the present study, using nitrate reductase enzyme available in the Escherichia coli (E. coli) bacterium, the biosynthesis of Ag NPs was investigated. In addition, the activity of the nitrate reductase enzyme was optimised by changing its cultural conditions, and the effects of silver nitrate (AgNO3) concentration and enzyme amount on nanoparticles synthesis were studied. Finally, the produced nanoparticles were studied using ultraviolet -visible (UV-Vis) spectrophotometer, dynamic light scattering technique, and transmission electron microscopy. UV-Visible spectrophotometric study showed the characteristic peak for Ag NPs at wavelength 405-420 nm for 1 mM metal precursor solution (AgNO3) with 1, 5, 10, and 20 cc supernatant and 435 nm for 0.01M AgNO3 with 20 cc supernatant. In this study, it was found that there is a direct relationship between the AgNO3 concentration and the size of produced Ag NPs. PMID:27256897

  4. Nanoassembly of immobilized ligninolytic enzymes for biocatalysis, bioremediation, and biosensing

    Science.gov (United States)

    Kuila, Debasish; Tien, Ming; Lvov, Yuri M.; McShane, Michael J.; Aithal, Rajendra K.; Singh, Saurabh; Potluri, Avinash; Kaul, Swati; Patel, Devendra S.; Krishna, Gopal

    2004-12-01

    Extracellular enzymes, lignin peroxidase (LiP) and manganese peroxidase (MnP) from white rot fungus Phanerochaete chrysosoporium, have been shown to degrade various harmful organic compounds ranging from chlorinated compounds to polycyclic aromatic hydrocarbons (PAH) to polymeric dyes. The problems in using immobilized enzymes for biocatalysis/bioremediation are their loss of activity and long-term stability. To address these issues, adsorption by layer-by-layer assembly (LbL) using polyelectrolytes, entrapment using gelatin, and chmisorption using coupling reagents have been investigated. In order to increase surface area for catalysis, porous silicon, formed by electrochemical etching of silicon, has been considered. The efficacy of these extremely stable nanoassemblies towards degradation of model organic compounds-veratryl alcohol (VA and 2,6-dimethoxyphenol (DMP)-in aqueous and in a mixture of aqueous/acetone has already been demonstrated. In parallel, we are pursuing development of sensors using these immobilized enzymes. Experiments carried out in solution show that NO can reversibly bind Ferri-LiP to produce a diamagnetic complex with a distinct change in its optical spectrum. NO can be photolyzed off to produce the spectrum of native paramagnetic ferri-species. Preliminary data on the detection of NO by LiP, based on surface plasmon resonance (SPR) using fiber optic probe, are presented.

  5. Cellulolytic Enzymes Production by Solid State Culture

    Directory of Open Access Journals (Sweden)

    Miguel A. Medina-Morales

    2011-01-01

    Full Text Available Problem statement: Great interest in the use of lignocellulosic biomass is increasing in order to diminish the accumulation of residues, such as pecan nut shells. One of the alternatives is the fungal degradation of these residues. Approach: The capacity of Trichoderma (coded as T1, T2 and T3 strains to produce cellulase and xylonite was evaluated. Results: Pecan nut shell fibers were used as sole carbon source. The fiber characterization study showed that cellulose levels were of 0.1% while hemicellulose was up to 25 %. Three Trichoderma strains were used on solid fungal cultures using the fibers as sole carbon and inductor source for the production of cellulolytic enzymes. The behavior of the sugars liberated by the fungi showed that the strain T2 is able to accumulate more monomeric reducing sugars than the other two strains, this could be attributed at this strain has a higher sugar liberation rate and slower sugar consumption rate. This strain also expressed more cellulase and xylanase activity. The low quantity of cellulose registered in the fibers can still be used to induce cellulase activity. Conclusion: The T2 strain had the highest level of enzymatic activity both cellulase and xylanase.

  6. LIPASES PRODUCED BY YEASTS: POWERFUL BIOCATALYSTS FOR INDUSTRIAL PURPOSES

    Directory of Open Access Journals (Sweden)

    Luiza Lux Lock

    2007-12-01

    Full Text Available The term “lipolytic enzymes” refers to the lipases and carboxylic ester hydrolases. Lipase production is widespread among yeasts, but few are capable of producing lipases with interesting characteristics and in sufficient amounts to be industrially useful. The literature concerning lipases produced by Candida rugosa, Yarrowia (Candida lipolytica, Candida antarctica and other emerging lipase-producing yeasts is reviewed. The use of recombinant lipases is discussed, with emphasis on the utilization of heterologous expression systems and design of chimeras. Finally, the three approaches that aim the improvement of lipase production or the modification of the substrate selectivity of the enzyme (medium engineering, biocatalyst engineering, and protein engineering are discussed.

  7. Molecular dynamics investigation of the ionic liquid/enzyme interface: application to engineering enzyme surface charge.

    Science.gov (United States)

    Burney, Patrick R; Nordwald, Erik M; Hickman, Katie; Kaar, Joel L; Pfaendtner, Jim

    2015-04-01

    Molecular simulations of the enzymes Candida rugosa lipase and Bos taurus α-chymotrypsin in aqueous ionic liquids 1-butyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium ethyl sulfate were used to study the change in enzyme-solvent interactions induced by modification of the enzyme surface charge. The enzymes were altered by randomly mutating lysine surface residues to glutamate, effectively decreasing the net surface charge by two for each mutation. These mutations resemble succinylation of the enzyme by chemical modification, which has been shown to enhance the stability of both enzymes in ILs. After establishing that the enzymes were stable on the simulated time scales, we focused the analysis on the organization of the ionic liquid substituents about the enzyme surface. Calculated solvent charge densities show that for both enzymes and in both solvents that changing positively charged residues to negative charge does indeed increase the charge density of the solvent near the enzyme surface. The radial distribution of IL constituents with respect to the enzyme reveals decreased interactions with the anion are prevalent in the modified systems when compared to the wild type, which is largely accompanied by an increase in cation contact. Additionally, the radial dependence of the charge density and ion distribution indicates that the effect of altering enzyme charge is confined to short range (≤1 nm) ordering of the IL. Ultimately, these results, which are consistent with that from prior experiments, provide molecular insight into the effect of enzyme surface charge on enzyme stability in ILs. PMID:25641162

  8. Measurement of peroxisomal enzyme activities in the liver of brown trout (Salmo trutta, using spectrophotometric methods

    Directory of Open Access Journals (Sweden)

    Resende Albina D

    2003-03-01

    Full Text Available Abstract Background This study was aimed primarily at testing in the liver of brown trout (Salmo trutta spectrophotometric methods previously used to measure the activities of catalase and hydrogen peroxide producing oxidases in mammals. To evaluate the influence of temperature on the activities of those peroxisomal enzymes was the second objective. A third goal of this work was the study of enzyme distribution in crude cell fractions of brown trout liver. Results The assays revealed a linear increase in the activity of all peroxisomal enzymes as the temperature rose from 10° to 37°C. However, while the activities of hydrogen peroxide producing oxidases were strongly influenced by temperature, catalase activity was only slightly affected. A crude fraction enriched with peroxisomes was obtained by differential centrifugation of liver homogenates, and the contamination by other organelles was evaluated by the activities of marker enzymes for mitochondria (succinate dehydrogenase, lysosomes (aryl sulphatase and microsomes (NADPH cytochrome c reductase. For peroxisomal enzymes, the activities per mg of protein (specific activity in liver homogenates were strongly correlated with the activities per g of liver and with the total activities per liver. These correlations were not obtained with crude peroxisomal fractions. Conclusions The spectrophotometric protocols originally used to quantify the activity of mammalian peroxisomal enzymes can be successfully applied to the study of those enzymes in brown trout. Because the activity of all studied peroxisomal enzymes rose in a linear mode with temperature, their activities can be correctly measured between 10° and 37°C. Probably due to contamination by other organelles and losses of soluble matrix enzymes during homogenisation, enzyme activities in crude peroxisomal fractions do not correlate with the activities in liver homogenates. Thus, total homogenates will be used in future seasonal and

  9. Enzymes in Fish and Seafood Processing

    Science.gov (United States)

    Fernandes, Pedro

    2016-01-01

    Enzymes have been used for the production and processing of fish and seafood for several centuries in an empirical manner. In recent decades, a growing trend toward a rational and controlled application of enzymes for such goals has emerged. Underlying such pattern are, among others, the increasingly wider array of enzyme activities and enzyme sources, improved enzyme formulations, and enhanced requirements for cost-effective and environmentally friendly processes. The better use of enzyme action in fish- and seafood-related application has had a significant impact on fish-related industry. Thus, new products have surfaced, product quality has improved, more sustainable processes have been developed, and innovative and reliable analytical techniques have been implemented. Recent development in these fields are presented and discussed, and prospective developments are suggested. PMID:27458583

  10. Evaluation of pressure tuning of enzymes

    DEFF Research Database (Denmark)

    Naghshineh, Mahsa

    and high energy consumption. Therefore, searching for an environmentally friendly method of pectin extraction is a task for science and industry. Employment of hydrolytic enzymes may represent a green approach to obtain intact pectin polymer. However, the low stability/activity of enzymes, and low polymer...... yield of enzymatic extraction limits the application of enzyme in pectin production. There is evidence that emerging technology of high hydrostatic pressure processing can result in stabilization and activation of some enzymes. Therefore, the use of high hydrostatic pressure in combination with enzyme...... (cellulase/xylanase: 50/0, 50/25, 50/50, 25/50, and 0/50 U/g lime peel) at ambient pressure, 100 and 200 MPa were used to extract pectin from dried lime peel waste. It was found that pressure level, type and concentration of enzyme significantly influenced pectin yield and degree of esterification (DE...

  11. Prediction of Wild-type Enzyme Characteristics

    DEFF Research Database (Denmark)

    Geertz-Hansen, Henrik Marcus

    of biotechnology, including enzyme discovery and characterization. This work presents two articles on sequence-based discovery and functional annotation of enzymes in environmental samples, and two articles on analysis and prediction of enzyme thermostability and cofactor requirements. The first article presents...... a sequence-based approach to discovery of proteolytic enzymes in metagenomes obtained from the Polar oceans. We show that microorganisms living in these extreme environments of constant low temperature harbour genes encoding novel proteolytic enzymes with potential industrial relevance. The second article...... presents a web server for the processing and annotation of functional metagenomics sequencing data, tailored to meet the requirements of non-bioinformaticians. The third article presents analyses of the molecular determinants of enzyme thermostability, and a feature-based prediction method of the melting...

  12. Identification of functional domains in Arabidopsis thaliana mRNA decapping enzyme (AtDcp2)

    OpenAIRE

    Gunawardana, Dilantha; Cheng, Heung-Chin; Gayler, Kenwyn R.

    2007-01-01

    The Arabidopsis thaliana decapping enzyme (AtDcp2) was characterized by bioinformatics analysis and by biochemical studies of the enzyme and mutants produced by recombinant expression. Three functionally significant regions were detected: (i) a highly disordered C-terminal region with a putative PSD-95, Discs-large, ZO-1 (PDZ) domain-binding motif, (ii) a conserved Nudix box constituting the putative active site and (iii) a putative RNA binding domain consisting of the conserved Box B and a p...

  13. Protein Hydrolysis from Catfish Prepared by Papain Enzyme and Antioxidant Activity of Hydrolyzate

    OpenAIRE

    Ace Baehaki1); Shanti Dwita Lestari; Achmad Rizky Romadhoni

    2015-01-01

    The objective of this research was to make a protein hydrolysates from catfish (Pangasius pangasius) enzymatically using papain enzyme and analyzed the antioxidant activity of protein hydrolysates produced. The research used the method completely randomized design with two replications the treatment were the difference concentration of the papain enzyme (0%, 1%, 2%, 3%, 4%, 5%, and 6%). The parameters of research were antioxidative activity using DPPH (2,2-difenil-1–pikrilhidra...

  14. The Enterococcus hirae Mur-2 enzyme displays N-acetylglucosaminidase activity

    OpenAIRE

    Eckert, Catherine; Magnet, Sophie; Mesnage, Stéphane

    2007-01-01

    Enterococcus hirae produces two autolytic enzymes named Mur-1 and Mur-2, both previously described as N-acetylmuramidases. We used tandem mass spectrometry to show that Mur-2 in fact displays N-acetylglucosaminidase activity. This result reveals that Mur-2 and its counterparts studied to date, which are members of glycosyl hydrolase family 73 from the CAZy (Carbohydrate-Active enZyme) database, display the same catalytic activity.

  15. Reaction of Mycobacterium tuberculosis Cytochrome P450 Enzymes with Nitric Oxide†

    OpenAIRE

    Ouellet, Hugues; Lang, Jérôme; Couture, Manon; Ortiz de Montellano, Paul R.

    2009-01-01

    During the initial growth infection stage of Mycobacterium tuberculosis (Mtb), •NO produced by host macrophages inhibits heme-containing terminal cytochrome oxidases, inactivates iron/sulfur proteins and promotes entry into latency. Here we evaluate the potential of •NO as an inhibitor of Mtb cytochrome P450 enzymes, as represented by CYP130, CYP51 and the two previously uncharacterized enzymes CYP125 and CYP142. Using UV-visible absorption, resonance Raman, and stopped-flow spectroscopy, we ...

  16. Enzyme engineering reaches the boiling point

    OpenAIRE

    Arnold, Frances H.

    1998-01-01

    The boiled enzyme was toppled as a standard enzymology control when researchers in the 1970s started uncovering enzymes that loved the heat (1). Identification of a variety of intrinsically hyperstable enzymes from hyperthermophilic organisms, with optimal growth temperatures of 100°C and above, has piqued academic curiosity (e.g., how do these proteins withstand such ‘‘extreme’’ conditions?) and generated considerable interest for their possible applications in biotechnology (2, 3). The real...

  17. Recent advances in sulfotransferase enzyme activity assays

    OpenAIRE

    Paul, Priscilla; Suwan, Jiraporn; Liu, Jian; Dordick, Jonathan S.; Linhardt, Robert J.

    2012-01-01

    Sulfotransferases are enzymes that catalyze the transfer of sulfo groups from a donor, for example 3′-phosphoadenosine 5′-phosphosulfate, to an acceptor, for example the amino or hydroxyl groups of a small molecule, xenobiotic, carbohydrate, or peptide. These enzymes are important targets in the design of novel therapeutics for treatment of a variety of diseases. This review examines assays used for this important class of enzyme, paying particular attention to sulfotransferases acting on car...

  18. Pectinases: aplicações industriais e perspectivas Pectinolytic enzymes: industrial applications and future perspectives

    Directory of Open Access Journals (Sweden)

    Mariana Uenojo

    2007-04-01

    Full Text Available Pectic substances are structural heteropolysaccharides that occur in the middle lamellae and primary cell walls of higher plants. They are composed of partially methyl-esterified galacturonic acid residues linked by alpha-1, 4-glycosidic bonds. Pectinolytic enzymes are complex enzymes that degrade pectic polymers and there are several classes of enzymes, which include pectin esterases, pectin and pectate lyases and polygalacturonases. Plants, filamentous fungi, bacteria and yeasts are able to produce pectinases. In the industrial world, pectinases are used in fruit juice clarification, in the production of wine, in the extraction of olive oil, fiber degumming and fermentation of tea, coffee and cocoa.

  19. Modeling cutinase enzyme regulation in polyethylene terepthalate plastic biodegradation

    Science.gov (United States)

    Apri, M.; Silmi, M.; Heryanto, T. E.; Moeis, M. R.

    2016-04-01

    PET (Polyethylene terephthalate) is a plastic material that is commonly used in our daily life. The high production of PET and others plastics that can be up to three hundred million tons per year, is not matched by its degradation rate and hence leads to environmental pollution. To overcome this problem, we develop a biodegradation system. This system utilizes LC Cutinase enzyme produced by engineered escherichia coli bacteria to degrade PET. To make the system works efficaciously, it is important to understand the mechanism underlying its enzyme regulation. Therefore, we construct a mathematical model to describe the regulation of LC Cutinase production. The stability of the model is analyzed. We show that the designated biodegradation system can give an oscillatory behavior that is very important to control the amount of inclusion body (the miss-folded proteins that reduce the efficiency of the biodegradation system).

  20. The mechanisms of Excited states in enzymes

    DEFF Research Database (Denmark)

    Petersen, Frederic Nicolas Rønne; Bohr, Henrik

    2010-01-01

    Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes.......Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes....

  1. Enzyme-based antifouling coatings: a review

    DEFF Research Database (Denmark)

    Olsen, Stefan Møller; Pedersen, Leif Toudal; Laursen, M.H.;

    2007-01-01

    for successful development of enzymatic AF coatings. The approaches described in the literature are divided into direct and indirect enzymatic AF, depending on the intended action of the enzymes. Direct antifouling is used when the enzymes themselves are active antifoulants. Indirect antifouling refers...... to the use of enzymes to release an active biocide with AF activity. For direct AF, several patents have been granted, and a commercial product has been launched. However, the achievement of an efficient broad-spectrum AF coating based on a single or a few enzymes has not yet been achieved. An indirect AF...

  2. Power Producer Production Valuation

    Directory of Open Access Journals (Sweden)

    M. Kněžek

    2008-01-01

    Full Text Available The ongoing developments in the electricity market, in particular the establishment of the Prague Energy Exchange (PXE and the associated transfer from campaign-driven sale to continuous trading, represent a significant change for power companies.  Power producing companies can now optimize the sale of their production capacities with the objective of maximizing profit from wholesale electricity and supporting services. The Trading Departments measure the success rate of trading activities by the gross margin (GM, calculated by subtracting the realized sales prices from the realized purchase prices and the production cost, and indicate the profit & loss (P&L to be subsequently calculated by the Control Department. The risk management process is set up on the basis of a business strategy defining the volumes of electricity that have to be sold one year and one month before the commencement of delivery. At the same time, this process defines the volume of electricity to remain available for spot trading (trading limits. 

  3. A Study on Effect of different culture media on amylase enzyme production by a native strain of Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    ziba Akbari

    2015-12-01

    Full Text Available Introduction: Amylases are among the most important enzymes and have great significance in present-day biotechnology. Amylase with commercial applications is mainly derived from the genus Bacillus. The main purpose of this study is identification and isolatation amylase enzyme producer Bacillus, determining the amylase enzyme activity and affecting a number of culture medium on amylase enzyme production. Materials and methods: Soil, water and wastewater samples were collected from agricultural area, choghakhor lake in chahar mahal e bakhtiari province and from food factory in Esfahan. Bacillus isolates were screened for amylolytic properties by starch hydrolysis test on starch agar plate. Amylase producing Bacillus were identified biochemical tests and molecular experiments. Amylase enzyme activity of isolates was measured using di-nitro salicylic acid (DNS method. Enzyme production was studied in variose medium culture TSB, NB, Yeast extract, molases and milk medium. Results: The enzyme amylase-producing strains, one sample showed was the highest amylase activity. The Bacillus has been detected as a member of Bacillus subtilis according to Bergey's Manual of Systematic Bacteriology and molecular recognition. The enzyme activity of Bacillus subtilis was measured 7/21 (U/ml in production media. Trough medium culture maximum amylase production for Bacillus subtilis was achieved in molases medium. Discussion and conclusion: In this study, Bacillus subtilis strains isolated from wastewater of a significant amount of enzyme producing 7/21 (U/ml as indicated. Among the medium-amylase from Bacillus subtilis highest enzyme activity was observed in beet molasses. According to this study, the use of Bacillus strains is an efficient way to achieve the amylase enzyme.

  4. A plant type III polyketide synthase that produces pentaketide chromone.

    Science.gov (United States)

    Abe, Ikuro; Utsumi, Yoriko; Oguro, Satoshi; Morita, Hiroyuki; Sano, Yukie; Noguchi, Hiroshi

    2005-02-01

    A novel plant-specific type III polyketide synthase (PKS) that catalyzes formation of a pentaketide chromone, 5,7-dihydroxy-2-methylchromone, from five molecules of malonyl-CoA, was cloned and sequenced from aloe (Aloe arborescens). Site-directed mutagenesis revealed that Met207 (corresponding to Thr197 in CHS) determines the polyketide chain length and the product specificity of the enzyme; remarkably, replacement of a single amino acid residue, Met207, with Gly yielded a mutant enzyme that efficiently produces aromatic octaketides, SEK4 and SEK4b, the products of the minimal PKS for actinorhodin (act from Streptomyces coelicolor), from eight molecules of malonyl-CoA. This provided new insights into the catalytic functions and specificities of the CHS-superfamily type III PKS enzymes. PMID:15686354

  5. Effects of frying oil and Houttuynia cordata thunb on xenobiotic-metabolizing enzyme system of rodents

    Institute of Scientific and Technical Information of China (English)

    Ya-Yen Chen; Chiao-Ming Chen; Pi-Yu Chao; Tsan-Ju Chang; Jen-Fang Liu

    2005-01-01

    AIM: To evaluate the effects of frying oil and Houttuynia cordata Thunb (H. cordata), a vegetable traditionally consumed in Taiwan, on the xenobiotic-metabolizing enzyme system of rodents.METHODS: Forty-eight Sprague-Dawley rats were fed with a diet containing 0%, 2% or 5% H. cordata powder and 15% fresh soybean oil or 24-h oxidized frying oil (OFO)for 28 d respectively. The level of microsomal protein, total cytochrome 450 content (CYP450) and enzyme activities including NADPH reductase, ethoxyresorufin O-deethylase (EROD), pentoxyresorufin O-dealkylase (PROD), aniline hydroxylase (ANH), aminopyrine demethylase (AMD), and quinone reductase (QR) were determined. QR represented phase Ⅱ enzymes, the rest of the enzymes tested represented phase Ⅰ enzymes.RESULTS: The oxidized frying oil feeding produced a significant increase in phase Ⅰ and Ⅱ enzyme systems,including the content of CYP450 and microsomal protein,and the activities of NADPH reductase, EROD, PROD, ANH,AMD and QR in rats (P<0.05). In addition, the activities of EROD, ANH and AMD decreased and QR increased after feeding with H. cordata in OFO-fed group (P<0.05). The feeding with 2% H. cordata diet showed the most significant effect.CONCLUSION: The OFO diet induces phases Ⅰ and Ⅱ enzyme activity, and the 2% H. cordata diet resulted in a better regulation of the xenobiotic-metabolizing enzyme system.

  6. Enzymes for Enhanced Oil Recovery (EOR)

    Energy Technology Data Exchange (ETDEWEB)

    Nasiri, Hamidreza

    2011-04-15

    Primary oil recovery by reservoir pressure depletion and secondary oil recovery by waterflooding usually result in poor displacement efficiency. As a consequence there is always some trapped oil remaining in oil reservoirs. Oil entrapment is a result of complex interactions between viscous, gravity and capillary forces. Improving recovery from hydrocarbon fields typically involves altering the relative importance of the viscous and capillary forces. The potential of many EOR methods depends on their influence on fluid/rock interactions related to wettability and fluid/fluid interactions reflected in IFT. If the method has the potential to change the interactions favorably, it may be considered for further investigation, i.e. core flooding experiment, pilot and reservoir implementation. Enzyme-proteins can be introduced as an enhanced oil recovery method to improve waterflood performance by affecting interactions at the oil-water-rock interfaces. An important part of this thesis was to investigate how selected enzymes may influence wettability and capillary forces in a crude oil-brine-rock system, and thus possibly contribute to enhanced oil recovery. To investigate further by which mechanisms selected enzyme-proteins may contribute to enhance oil recovery, groups of enzymes with different properties and catalytic functions, known to be interfacially active, were chosen to cover a wide range of possible effects. These groups include (1) Greenzyme (GZ) which is a commercial EOR enzyme and consists of enzymes and stabilizers (surfactants), (2) The Zonase group consists of two types of pure enzyme, Zonase1 and Zonase2 which are protease enzymes and whose catalytic functions are to hydrolyze (breakdown) peptide bonds, (3) The Novozyme (NZ) group consists of three types of pure enzyme, NZ2, NZ3 and NZ6 which are esterase enzymes and whose catalytic functions are to hydrolyze ester bonds, and (4) Alpha-Lactalbumin ( -La) which is an important whey protein. The effect of

  7. Micropollutant degradation via extracted native enzymes from activated sludge.

    Science.gov (United States)

    Krah, Daniel; Ghattas, Ann-Kathrin; Wick, Arne; Bröder, Kathrin; Ternes, Thomas A

    2016-05-15

    A procedure was developed to assess the biodegradation of micropollutants in cell-free lysates produced from activated sludge of a municipal wastewater treatment plant (WWTP). This proof-of-principle provides the basis for further investigations of micropollutant biodegradation via native enzymes in a solution of reduced complexity, facilitating downstream protein analysis. Differently produced lysates, containing a variety of native enzymes, showed significant enzymatic activities of acid phosphatase, β-galactosidase and β-glucuronidase in conventional colorimetric enzyme assays, whereas heat-deactivated controls did not. To determine the enzymatic activity towards micropollutants, 20 compounds were spiked to the cell-free lysates under aerobic conditions and were monitored via LC-ESI-MS/MS. The micropollutants were selected to span a wide range of different biodegradabilities in conventional activated sludge treatment via distinct primary degradation reactions. Of the 20 spiked micropollutants, 18 could be degraded by intact sludge under assay conditions, while six showed reproducible degradation in the lysates compared to the heat-deactivated negative controls: acetaminophen, N-acetyl-sulfamethoxazole (acetyl-SMX), atenolol, bezafibrate, erythromycin and 10,11-dihydro-10-hydroxycarbamazepine (10-OH-CBZ). The primary biotransformation of the first four compounds can be attributed to amide hydrolysis. However, the observed biotransformations in the lysates were differently influenced by experimental parameters such as sludge pre-treatment and the addition of ammonium sulfate or peptidase inhibitors, suggesting that different hydrolase enzymes were involved in the primary degradation, among them possibly peptidases. Furthermore, the transformation of 10-OH-CBZ to 9-CA-ADIN was caused by a biologically-mediated oxidation, which indicates that in addition to hydrolases further enzyme classes (probably oxidoreductases) are present in the native lysates. Although the

  8. Micropollutant degradation via extracted native enzymes from activated sludge.

    Science.gov (United States)

    Krah, Daniel; Ghattas, Ann-Kathrin; Wick, Arne; Bröder, Kathrin; Ternes, Thomas A

    2016-05-15

    A procedure was developed to assess the biodegradation of micropollutants in cell-free lysates produced from activated sludge of a municipal wastewater treatment plant (WWTP). This proof-of-principle provides the basis for further investigations of micropollutant biodegradation via native enzymes in a solution of reduced complexity, facilitating downstream protein analysis. Differently produced lysates, containing a variety of native enzymes, showed significant enzymatic activities of acid phosphatase, β-galactosidase and β-glucuronidase in conventional colorimetric enzyme assays, whereas heat-deactivated controls did not. To determine the enzymatic activity towards micropollutants, 20 compounds were spiked to the cell-free lysates under aerobic conditions and were monitored via LC-ESI-MS/MS. The micropollutants were selected to span a wide range of different biodegradabilities in conventional activated sludge treatment via distinct primary degradation reactions. Of the 20 spiked micropollutants, 18 could be degraded by intact sludge under assay conditions, while six showed reproducible degradation in the lysates compared to the heat-deactivated negative controls: acetaminophen, N-acetyl-sulfamethoxazole (acetyl-SMX), atenolol, bezafibrate, erythromycin and 10,11-dihydro-10-hydroxycarbamazepine (10-OH-CBZ). The primary biotransformation of the first four compounds can be attributed to amide hydrolysis. However, the observed biotransformations in the lysates were differently influenced by experimental parameters such as sludge pre-treatment and the addition of ammonium sulfate or peptidase inhibitors, suggesting that different hydrolase enzymes were involved in the primary degradation, among them possibly peptidases. Furthermore, the transformation of 10-OH-CBZ to 9-CA-ADIN was caused by a biologically-mediated oxidation, which indicates that in addition to hydrolases further enzyme classes (probably oxidoreductases) are present in the native lysates. Although the

  9. Specificity of antisera produced against mitomycin C.

    Science.gov (United States)

    Fujiwara, K; Saikusa, H; Kitagawa, T; Takahashi, S; Konishi, Y

    1983-12-01

    The specificity of antisera produced in rabbits for use in mitomycin C (MMC) enzyme immunoassay has been examined employing competitive experiments using several mitomycin analogs and the chemically or biologically degraded preparations of MMC. These studies demonstrate that the antiserum distinguished alterations in the chemical structure of the molecule, showing decreased immunoreactivity with mitomycin A (7.8%) and B (0.78%). On the other hand, porfiromycin and acetyl MMC (Ac-MMC), which commonly possess the substituted groups (methyl and acetyl groups, respectively) at the aziridine ring, showed enhanced reactivity with the antiserum (about two times and ten times as compared to the parent MMC, respectively), suggesting that the antigen used for antibody production was the MMC acylated at the imino group of the aziridine ring. The values of the chemically or biologically degraded preparations of MMC quantified by this enzyme immunoassay were in good agreement with those of the remaining nonreacted MMC measured spectrophotometrically, thus indicating that the anti-MMC antiserum hardly cross-reacted with these degradation products. PMID:6418380

  10. The Impact of Enzyme Orientation and Electrode Topology on the Catalytic Activity of Adsorbed Redox Enzymes

    Science.gov (United States)

    McMillan, Duncan G. G.; Marritt, Sophie J.; Kemp, Gemma L.; Gordon-Brown, Piers; Butt, Julea N.; Jeuken, Lars J. C.

    2014-01-01

    It is well established that the structural details of electrodes and their interaction with adsorbed enzyme influences the interfacial electron transfer rate. However, for nanostructured electrodes, it is likely that the structure also impacts on substrate flux near the adsorbed enzymes and thus catalytic activity. Furthermore, for enzymes converting macro-molecular substrates it is possible that the enzyme orientation determines the nature of interactions between the adsorbed enzyme and substrate and therefore catalytic rates. In essence the electrode may impede substrate access to the active site of the enzyme. We have tested these possibilities through studies of the catalytic performance of two enzymes adsorbed on topologically distinct electrode materials. Escherichia coli NrfA, a nitrite reductase, was adsorbed on mesoporous, nanocrystalline SnO2 electrodes. CymA from Shewanella oneidensis MR-1 reduces menaquinone-7 within 200 nm sized liposomes and this reaction was studied with the enzyme adsorbed on SAM modified ultra-flat gold electrodes. PMID:24634538

  11. The Impact of Enzyme Orientation and Electrode Topology on the Catalytic Activity of Adsorbed Redox Enzymes.

    Science.gov (United States)

    McMillan, Duncan G G; Marritt, Sophie J; Kemp, Gemma L; Gordon-Brown, Piers; Butt, Julea N; Jeuken, Lars J C

    2013-11-01

    It is well established that the structural details of electrodes and their interaction with adsorbed enzyme influences the interfacial electron transfer rate. However, for nanostructured electrodes, it is likely that the structure also impacts on substrate flux near the adsorbed enzymes and thus catalytic activity. Furthermore, for enzymes converting macro-molecular substrates it is possible that the enzyme orientation determines the nature of interactions between the adsorbed enzyme and substrate and therefore catalytic rates. In essence the electrode may impede substrate access to the active site of the enzyme. We have tested these possibilities through studies of the catalytic performance of two enzymes adsorbed on topologically distinct electrode materials. Escherichia coli NrfA, a nitrite reductase, was adsorbed on mesoporous, nanocrystalline SnO2 electrodes. CymA from Shewanella oneidensis MR-1 reduces menaquinone-7 within 200 nm sized liposomes and this reaction was studied with the enzyme adsorbed on SAM modified ultra-flat gold electrodes.

  12. Engineering Cellulase Enzymes for Bioenergy

    OpenAIRE

    Atreya, Meera Elizabeth

    2015-01-01

    Sustainable energy sources, such as biofuels, offer increasingly important alternatives to fossil fuels that contribute less to global climate change. The energy contained within cellulosic biofuels derives from sunlight energy stored in the form of carbon-carbon bonds comprising sugars such as glucose. Second-generation biofuels are produced from lignocellulosic biomass feedstocks, including agricultural waste products and non-food crops like Miscanthus, that contain lignin and the polysacch...

  13. Methods for producing complex films, and films produced thereby

    Science.gov (United States)

    Duty, Chad E.; Bennett, Charlee J. C.; Moon, Ji -Won; Phelps, Tommy J.; Blue, Craig A.; Dai, Quanqin; Hu, Michael Z.; Ivanov, Ilia N.; Jellison, Jr., Gerald E.; Love, Lonnie J.; Ott, Ronald D.; Parish, Chad M.; Walker, Steven

    2015-11-24

    A method for producing a film, the method comprising melting a layer of precursor particles on a substrate until at least a portion of the melted particles are planarized and merged to produce the film. The invention is also directed to a method for producing a photovoltaic film, the method comprising depositing particles having a photovoltaic or other property onto a substrate, and affixing the particles to the substrate, wherein the particles may or may not be subsequently melted. Also described herein are films produced by these methods, methods for producing a patterned film on a substrate, and methods for producing a multilayer structure.

  14. Production of amylolytic enzymes by bacillus spp

    International Nuclear Information System (INIS)

    Sixty six bacteria and twenty fungi were isolated from various sources. These varied from rotten fruites to local drinks and soil samples from different parts of Sudan. On the basis of index of amylolytic activity, forty one bacteria and twelve fungi were found to hydrolyse strach. The best ten strach hydrolysing isolates were identified all as bacilli (Bacillus licheniformis SUD-K1, SUD-K2, SUD-K4, SUD-O, SUD-SRW, SUD-BRW, SUD-By, Bacillus subtilis SUD-K3, and Bacillus circulans SUD-D and SUD-K7). Their amylase productivity was studied with respect to temperature and time. Amylolytic activity was measured by spectrophotometer, the highest activity was produced in around 24 hours of growth in all; six of which gave the highest amylase activity at 50 deg C and the rest at 45C. Based on the thermal production six isolates were chosen for further investigation. These were Bacillus licheniformis SUD-K1, SUD-K2, SUD-K4, SUD-O, Bacillus subtilis SUD-K3 and Bacillus circulans SUD-K7. The inclusion of strach and Mg++ ions in the culture medium gave the highest enzyme yield. The Ph 9.0 was found to be the optimum for amylase production for all isolates except Bacillus subtilis SUD-K3 which had an optimum at pH 7.0. Three isolates (Bacillus licheniformis SUD-K1, SUD-K4 and SUD-O recorded highestamylase production in a medium supplemented with peptone while the rest (Bacillus licheniformis SUD-K2, Bacillus subtilis SUD-K3 and Bacillus circulans SUD-K7) gave highest amylase productivity in a medium supplemented with malt extract. Four isolates (Bacillus licheniformis SUD-K1 and Bacillus subtilis SUD-K3 gave maximum amylase production in a medium containing 0.5% soluble strach while the rest (gave maximum amylase production at 2%. Soluble strach was found to be best substrate among the different carbon sources tested. The maximum temperature for amylase activity ranged from 60-70 deg C and 1% strach concentration was optimum for all isolates. Addition of different metal ions

  15. Endotoxin contamination of enzyme conjugates used in enzyme-linked immunosorbent assays.

    OpenAIRE

    Bryant, R. E.; Chamovitz, B N; Morse, S A; Apicella, M A; Morthland, V H

    1983-01-01

    The specificity of the enzyme-linked immunosorbent assay(s) is thought to depend on the specificity of the antibody used in the assay system. Therefore, the association of broadly reactive antigens like endotoxin with enzyme conjugates or other enzyme-linked immunosorbent assay reagents has the potential of altering the specificity of reactions in the enzyme-linked immunosorbent assay. Using the Limulus amoebocyte lysate assay, we demonstrated that commercially prepared conjugates of goat ant...

  16. Identification of thermostable beta-xylosidase activities produced by Aspergillus brasiliensis and Aspergillus niger

    DEFF Research Database (Denmark)

    Pedersen, Mads; Lauritzen, H.K.; Frisvad, Jens Christian;

    2007-01-01

    Twenty Aspergillus strains were evaluated for production of extracellular cellulolytic and xylanolytic activities. Aspergillus brasiliensis, A. niger and A. japonicus produced the highest xylanase activities with the A. brasiliensis and A. niger strains producing thermostable beta-xylosidases. Th...... is a well known enzyme producer, this is the first report of xylanase and thermostable beta-xylosidase production from the newly identified, non-ochratoxin-producing species A. brasiliensis....

  17. Identification of thermostable β-xylosidase activities produced by Aspergillus brasiliensis and Aspergillus niger

    DEFF Research Database (Denmark)

    Pedersen, Mads; Lauritzen, Henrik Klitgaard; Frisvad, Jens Christian;

    2007-01-01

    Twenty Aspergillus strains were evaluated for production of extracellular cellulolytic and xylanolytic activities. Aspergillus brasiliensis, A. niger and A. japonicus produced the highest xylanase activities with the A. brasiliensis and A. niger strains producing thermostable beta-xylosidases. Th...... is a well known enzyme producer, this is the first report of xylanase and thermostable beta-xylosidase production from the newly identified, non-ochratoxin-producing species A. brasiliensis....

  18. Bacterial Enzymes and Antibiotic Resistance- Oral Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Maltz, Lauren [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-25

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β-lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes.

  19. Immobilization to prevent enzyme incompatibility with proteases

    NARCIS (Netherlands)

    Vossenberg, P.; Beeftink, H.H.; Cohen Stuart, M.A.; Tramper, J.

    2011-01-01

    Enzyme incompatibility is a problem in multi-enzyme processes that involve a non-specific protease, such as Alcalase. An example is the one-pot enzymatic synthesis of peptides catalyzed by a lipase and a protease. The incompatibility between lipase B from Candida antarctica (CalB) and Alcalase was s

  20. Enzyme Activity Experiments Using a Simple Spectrophotometer

    Science.gov (United States)

    Hurlbut, Jeffrey A.; And Others

    1977-01-01

    Experimental procedures for studying enzyme activity using a Spectronic 20 spectrophotometer are described. The experiments demonstrate the effect of pH, temperature, and inhibitors on enzyme activity and allow the determination of Km, Vmax, and Kcat. These procedures are designed for teaching large lower-level biochemistry classes. (MR)

  1. A toy quantum analog of enzymes

    CERN Document Server

    Svetlichny, George

    2015-01-01

    We present a quantum system incorporating qualitative aspects of enzyme action in which the possibility of quantum superposition of several conformations of the enzyme-substrate complex is investigated. We present numerical results showing quantum effects that transcend the case of a statistical mixture of conformations.

  2. Orphan enzymes in ether lipid metabolism.

    Science.gov (United States)

    Watschinger, Katrin; Werner, Ernst R

    2013-01-01

    Ether lipids are an emerging class of lipids which have so far not been investigated and understood in every detail. They have important roles as membrane components of e.g. lens, brain and testis, and as mediators such as platelet-activating factor. The metabolic enzymes for biosynthesis and degradation have been investigated to some extent. As most involved enzymes are integral membrane proteins they are tricky to handle in biochemical protocols. The sequence of some ether lipid metabolising enzymes has only recently been reported and other sequences still remain obscure. Defined enzymes without assigned sequence are known as orphan enzymes. One of these enzymes with uncharacterised sequence is plasmanylethanolamine desaturase, a key enzyme for the biosynthesis of one of the most abundant phospholipids in our body, the plasmalogens. This review aims to briefly summarise known functions of ether lipids, give an overview on their metabolism including the most prominent members, platelet-activating factor and the plasmalogens. A special focus is set on the description of orphan enzymes in ether lipid metabolism and on the successful strategies how four previous orphans have recently been assigned a sequence. Only one of these four was characterised by classical protein purification and sequencing, whereas the other three required alternative strategies such as bioinformatic candidate gene selection and recombinant expression or development of an inhibitor and multidimensional metabolic profiling.

  3. Cytochrome P450 enzyme systems in fungi

    NARCIS (Netherlands)

    Brink, H.M. van den; Gorcom, R.F.M. van; Hondel, C.A.M.J.J. van den; Punt, P.J.

    1998-01-01

    The involvement of cytochrome P450 enzymes in many complex fungal bioconversion processes has been characterized in recent years. Accordingly, there is now considerable scientific interest in fungal cytochrome P450 enzyme systems. In contrast to S. cerevisiae, where surprisingly few P450 genes have

  4. Enzyme Catalysis and the Gibbs Energy

    Science.gov (United States)

    Ault, Addison

    2009-01-01

    Gibbs-energy profiles are often introduced during the first semester of organic chemistry, but are less often presented in connection with enzyme-catalyzed reactions. In this article I show how the Gibbs-energy profile corresponds to the characteristic kinetics of a simple enzyme-catalyzed reaction. (Contains 1 figure and 1 note.)

  5. Enzyme adsorption at solid-liquid interfaces.

    NARCIS (Netherlands)

    Duinhoven, S.

    1992-01-01

    Enzymes are proteins with the capacity of catalysing various reactions. Nowadays two types of enzymes, proteases and lipases, are available for use in detergent formulations for household and industrial laundry washing. Proteases are capable of catalysing the hydrolysis of proteins while lipases ena

  6. Illustrating Enzyme Inhibition Using Gibbs Energy Profiles

    Science.gov (United States)

    Bearne, Stephen L.

    2012-01-01

    Gibbs energy profiles have great utility as teaching and learning tools because they present students with a visual representation of the energy changes that occur during enzyme catalysis. Unfortunately, most textbooks divorce discussions of traditional kinetic topics, such as enzyme inhibition, from discussions of these same topics in terms of…

  7. Biocatalytic material comprising multilayer enzyme coated fiber

    Science.gov (United States)

    Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA

    2009-11-03

    The present invention relates generally to high stability, high activity biocatalytic materials and processes for using the same. The materials comprise enzyme aggregate coatings having high biocatalytic activity and stability useful in heterogeneous environment. These new materials provide a new biocatalytic immobilized enzyme system with applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  8. Application of radiopolymerization for immobilization of enzymes

    International Nuclear Information System (INIS)

    Hydrophilic glass-forming monomers were used in an application of irradiation technology for the immobilization of cellulase and cellobiase. Experiments to observe the effect of additives such as silicates and polyethylene glycol in the enzyme entrapment are reported on. In all cases, enzymatic activity was maintained for more than fifteen batch enzyme reactions. (Author)

  9. Methods for producing partially digested restriction DNA fragments and for producing a partially modified PCR product

    Science.gov (United States)

    Wong, Kwong-Kwok

    2000-01-01

    The present invention is an improved method of making a partially modified PCR product from a DNA fragment with a polymerase chain reaction (PCR). In a standard PCR process, the DNA fragment is combined with starting deoxynucleoside triphosphates, a primer, a buffer and a DNA polymerase in a PCR mixture. The PCR mixture is then reacted in the PCR producing copies of the DNA fragment. The improvement of the present invention is adding an amount of a modifier at any step prior to completion of the PCR process thereby randomly and partially modifying the copies of the DNA fragment as a partially modified PCR product. The partially modified PCR product may then be digested with an enzyme that cuts the partially modified PCR product at unmodified sites thereby producing an array of DNA restriction fragments.

  10. Enzyme Activity of Cenococcum geophilum Isolates on Enzyme-specific Solid Media

    OpenAIRE

    Obase, Keisuke; Lee, Sang Yong; Chun, Kun Woo; Lee, Jong Kyu

    2011-01-01

    Enzyme activities of Cenococcum geophilum isolates were examined on enzyme-specific solid media. Deoxyribonuclease, phosphatase, and urease were detected in all isolates, whereas cellulase was not detected in any of the isolates. Variations in enzyme activities of amylase, caseinolysis, gelatinase, lipase, and ribonuclease were observed among isolates.

  11. Enzyme activity assay of glycoprotein enzymes based on a boronate affinity molecularly imprinted 96-well microplate.

    Science.gov (United States)

    Bi, Xiaodong; Liu, Zhen

    2014-12-16

    Enzyme activity assay is an important method in clinical diagnostics. However, conventional enzyme activity assay suffers from apparent interference from the sample matrix. Herein, we present a new format of enzyme activity assay that can effectively eliminate the effects of the sample matrix. The key is a 96-well microplate modified with molecularly imprinted polymer (MIP) prepared according to a newly proposed method called boronate affinity-based oriented surface imprinting. Alkaline phosphatase (ALP), a glycoprotein enzyme that has been routinely used as an indicator for several diseases in clinical tests, was taken as a representative target enzyme. The prepared MIP exhibited strong affinity toward the template enzyme (with a dissociation constant of 10(-10) M) as well as superb tolerance for interference. Thus, the enzyme molecules in a complicated sample matrix could be specifically captured and cleaned up for enzyme activity assay, which eliminated the interference from the sample matrix. On the other hand, because the boronate affinity MIP could well retain the enzymatic activity of glycoprotein enzymes, the enzyme captured by the MIP was directly used for activity assay. Thus, additional assay time and possible enzyme or activity loss due to an enzyme release step required by other methods were avoided. Assay of ALP in human serum was successfully demonstrated, suggesting a promising prospect of the proposed method in real-world applications.

  12. Size product modulation by enzyme concentration reveals two distinct levan elongation mechanisms in Bacillus subtilis levansucrase.

    Science.gov (United States)

    Raga-Carbajal, Enrique; Carrillo-Nava, Ernesto; Costas, Miguel; Porras-Dominguez, Jaime; López-Munguía, Agustín; Olvera, Clarita

    2016-04-01

    Two levan distributions are produced typically by Bacillus subtilis levansucrase (SacB): a high-molecular weight (HMW) levan with an average molecular weight of 2300 kDa, and a low-molecular weight (LMW) levan with 7.2 kDa. Previous results have demonstrated how reaction conditions modulate levan molecular weight distribution. Here we demonstrate that the SacB enzyme is able to perform two mechanisms: a processive mechanism for the synthesis of HMW levan and a non-processive mechanism for the synthesis of LMW levan. Furthermore, the effect of enzyme and substrate concentration on the elongation mechanism was studied. While a negligible effect of substrate concentration was observed, we found that SacB elongation mechanism is determined by enzyme concentration. A high concentration of enzyme is required to synthesize LMW levan, involving the sequential formation of a wide variety of intermediate size levan oligosaccharides with a degree of polymerization (DP) up to ∼70. In contrast, an HMW levan distribution is synthesized through a processive mechanism producing oligosaccharides with DP <20, in reactions occurring at low enzyme concentration. Additionally, reactions where levansucrase concentration was varied while the total enzyme activity was kept constant (using a combination of active SacB and an inactive SacB E342A/D86A) allowed us to demonstrate that enzyme concentration and not enzyme activity affects the final levan molecular weight distribution. The effect of enzyme concentration on the elongation mechanism is discussed in detail, finding that protein-product interactions are responsible for the mechanism shift. PMID:26646447

  13. Enzyme-Immobilized Microfluidic Process Reactors

    Directory of Open Access Journals (Sweden)

    Hideaki Maeda

    2011-07-01

    Full Text Available Microreaction technology, which is an interdisciplinary science and engineering area, has been the focus of different fields of research in the past few years. Several microreactors have been developed. Enzymes are a type of catalyst, which are useful in the production of substance in an environmentally friendly way, and they also have high potential for analytical applications. However, not many enzymatic processes have been commercialized, because of problems in stability of the enzymes, cost, and efficiency of the reactions. Thus, there have been demands for innovation in process engineering, particularly for enzymatic reactions, and microreaction devices represent important tools for the development of enzyme processes. In this review, we summarize the recent advances of microchannel reaction technologies especially for enzyme immobilized microreactors. We discuss the manufacturing process of microreaction devices and the advantages of microreactors compared to conventional reaction devices. Fundamental techniques for enzyme immobilized microreactors and important applications of this multidisciplinary technology are also included in our topics.

  14. Directed Evolution of Enzymes for Industrial Biocatalysis.

    Science.gov (United States)

    Porter, Joanne L; Rusli, Rukhairul A; Ollis, David L

    2016-02-01

    Enzymes have the potential to catalyse a wide variety of chemical reactions. They are increasingly being sought as environmentally friendly and cost-effective alternatives to conventional catalysts used in industries ranging from bioremediation to applications in medicine and pharmaceutics. Despite the benefits, they are not without their limitations. Many naturally occurring enzymes are not suitable for use outside of their native cellular environments. However, protein engineering can be used to generate enzymes tailored for specific industrial applications. Directed evolution is particularly useful and can be employed even when lack of structural information impedes the use of rational design. The aim of this review is to provide an overview of current industrial applications of enzyme technology and to show how directed evolution can be used to modify and to enhance enzyme properties. This includes a brief discussion on library generation and a more detailed focus on library screening methods, which are critical to any directed evolution experiment.

  15. Evaluation of thermostable enzymes for bioethanol processing

    DEFF Research Database (Denmark)

    Skovgaard, Pernille Anastasia

    of fermentable sugars (glucose) as cellulose is tightly linked to hemicellulose and lignin. Lignocellulose is disrupted during pretreatment, but to degrade cellulose to single sugars, lignocellulolytic enzymes such as cellulases and hemicellulases are needed. Lignocellulolytic enzymes are costly...... for the ioethanol production, but the expenses can be reduced by using thermostable enzymes, which are known for their increased stability and inhibitor olerance. However, the advantage of using thermostable enzymes has not been studied thoroughly and more knowledge is needed for development of bioethanol processes....... Enzymes are added to the bioethanol process after pretreatment. For an efficient sugar and ethanol yield, the solids content of biomass is normally increased, which results in highly viscous slurries that are difficult to mix. Therefore, the first enzymatic challenge is to ensure rapid reduction...

  16. Production of cellulolytic enzymes from ascomycetes

    DEFF Research Database (Denmark)

    Hansen, Gustav Hammerich; Lübeck, Mette; Frisvad, Jens Christian;

    2015-01-01

    Optimizing production of cellulose degrading enzymes is of great interest in order to increase the feasibility of constructing biorefinery facilities for a sustainable supply of energy and chemical products. The ascomycete phylum has a large potential for the production of cellulolytic enzymes....... Although numerous enzymatic profiles have already been unraveled, the research has been covering only a limited number of species and genera, thus leaving many ascomycetes to be analyzed. Such analysis requires choosing appropriate media and cultivation methods that ensure enzyme profiles with high...... specificities and activities. However, the choice of media, cultivation methods and enzyme assays highly affect the enzyme activity profile observed. This review provides an overview of enzymatic profiles for several ascomycetes covering phylogenetically distinct genera and species. The profiles of cellulose...

  17. Producing Runaway Stars

    Science.gov (United States)

    Kohler, Susanna

    2016-07-01

    How are the hypervelocity stars weve observed in our galaxy produced? A recent study suggests that these escapees could be accelerated by a massive black hole in the center of the Large Magellanic Cloud.A Black Hole SlingshotSince their discovery in 2005, weve observed dozens of candidate hypervelocity stars stars whose velocity in the rest frame of our galaxy exceeds the local escape velocity of the Milky Way. These stars present a huge puzzle: how did they attain these enormous velocities?One potential explanation is known as the Hills mechanism. In this process, a stellar binary is disrupted by a close encounter with a massive black hole (like those thought to reside at the center of every galaxy). One member of the binary is flung out of the system as a result of the close encounter, potentially reaching very large velocities.A star-forming region known as LHA 120-N 11, located within the LMC. Some binary star systems within the LMC might experience close encounters with a possible massive black hole at the LMCs center. [ESA/NASA/Hubble]Blame the LMC?Usually, discussions of the Hills mechanism assume that Sagittarius A*, the supermassive black hole at the center of the Milky Way, is the object guilty of accelerating the hypervelocity stars weve observed. But what if the culprit isnt Sgr A*, but a massive black hole at the center of the Large Magellanic Cloud (LMC), one of the Milky Ways satellite galaxies?Though we dont yet have evidence of a massive black hole at the center of the LMC, the dwarf galaxy is large enough to potentially host one as large as 100,000 solar masses. Assuming that it does, two scientists at the University of Cambridge, Douglas Boubert and Wyn Evans, have now modeled how this black hole might tear apart binary star systems and fling hypervelocity stars around the Milky Way.Models for AccelerationBoubert and Evans determined that the LMCs hypothetical black hole could easily eject stars at ~100 km/s, which is the escape velocity of the

  18. Fungal Inulinases as Potential Enzymes for Application in the Food Industry

    Directory of Open Access Journals (Sweden)

    Maria Rosa Vela Sebastiăo Fernandes

    2013-08-01

    Full Text Available Inulinase is a versatile enzyme used in many fields, especially in food industry, to produce high fructose syrups and Fructo-Oligosaccharides (FOS. In this review study, fungal inulinases were investigated with a particular emphasis on their production, properties and their potential applications in the food industry. The production of inulinases has been reported from various fungal and yeast strains such as Penicillium, Kluyveromyces and Aspergillus sp. Microorganisms are the best sources for inulinases production, as are easy to be cultivated and produce high enzymes yields.

  19. Asymmetric Synthesis Using Enzymes in Supercritical CO2

    Institute of Scientific and Technical Information of China (English)

    T. Matsuda

    2005-01-01

    @@ 1Introduction Great efforts have been extended to catalysis in supercritical CO2 (scCO2) since the early 1990's due to the environmental friendliness, high diffusivity, high solubilizing power, easiness of the product separation,etc.. A combined process of scCO2 and enzymatic catalyst system would be a promising synthetic tool to produce optically active compounds because the enzyme has advantages of being natural and having high enantioselectivity in nature. Here we report asymmetric synthesis using lipase and alcohol dehydrogenase in scCO2[1,2].

  20. Lung angiotensin converting enzyme activity in rats with pulmonary hypertension.

    OpenAIRE

    Keane, P. M.; Kay, J M; Suyama, K L; Gauthier, D.; Andrew, K

    1982-01-01

    We have studied serum and lung tissue angiotensin converting enzyme (ACE) activity in female Wistar rats with pulmonary hypertension induced by two different methods. Chronic pulmonary hypertension was produced in one group of 10 rats (CH) by confinement in a hypobaric chamber (380 mmHg) for three weeks, and in another group fo 10 rats (M) by a single subcutaneous injection of monocrotaline (60 mg/kg body weight). In these two groups of tests rats and in 20 untreated controls (C), we evaluate...

  1. Microbial and biochemical studies on phytase enzyme in some microorganisms

    International Nuclear Information System (INIS)

    Mixed calcium and magnesium salts of phytic acid myoinositol hexa phosphoric acid are widely distributed in food stuffs of plant origin, they may bind essential proteins, phospholipids and microelements to form indigestible compounds. In this concern, destruction of phytic acid and its salts by different methods is very important, one of them is by using microbial phytase. This study aims to produce phytase enzyme from microorganisms and study the best conditions of production and purification and also the properties of the partially purified phytase. 22 figs., 29 tabs., 61 refs

  2. Enhanced hydrolysis of lignocellulosic biomass: Bi-functional enzyme complexes expressed in Pichia pastoris improve bioethanol production from Miscanthus sinensis.

    Science.gov (United States)

    Shin, Sang Kyu; Hyeon, Jeong Eun; Kim, Young In; Kang, Dea Hee; Kim, Seung Wook; Park, Chulhwan; Han, Sung Ok

    2015-12-01

    Lignocellulosic biomass is the most abundant utilizable natural resource. In the process of bioethanol production from lignocellulosic biomass, an efficient hydrolysis of cellulose and hemicellulose to release hexose and pentose is essential. We have developed a strain of Pichia pastoris that can produce ethanol via pentose and hexose using an assembly of enzyme complexes. The use of enzyme complexes is one of the strategies for effective lignocellulosic biomass hydrolysis. Xylanase XynB from Clostridium cellulovorans and a chimeric endoglucanase cCelE from Clostridium thermocellum were selected as enzyme subunits, and were bound to a recombinant scaffolding protein mini-CbpA from C. cellulovorans to assemble the enzyme complexes. These complexes efficiently degraded xylan and carboxymethylcellulose (CMC), producing approximately 1.18 and 1.07 g/L ethanol from each substrate, respectively, which is 2.3-fold and 2.7-fold higher than that of the free-enzyme expressing strain. Miscanthus sinensis was investigated as the lignocellulosic biomass for producing bioethanol, and 1.08 g/L ethanol was produced using our recombinant P. pastoris strain, which is approximately 1.9-fold higher than that of the wild-type strain. In future research, construction of enzyme complexes containing various hydrolysis enzymes could be used to develop biocatalysts that can completely degrade lignocellulosic biomass into valuable products such as biofuels. PMID:26479167

  3. Partial purification and characterization of Xylanase from Trichoderma viride produced under SSF

    Directory of Open Access Journals (Sweden)

    M Irfan

    2012-03-01

    Full Text Available Summary: In the present study xylanase enzyme was produced from Trichoderma viride in solid state fermentation using sugarcane bagasse as a substrate. The whole fermentation process was carried out in 250ml Erlenmeyer flask at 30oC for seven days of fermentation period. The enzyme was partially purified by ammonium sulphate (60% fractionation followed by dialysis. The partially purified enzyme was further characterized showing optimum pH and temperature of 5.0 and 50oC respectively. Metal profile of the enzyme showed that it was stimulated by FeSO4 (134%, CaCl2 (129%, BaCl2 (105%, MgSO4 (113%, MnCl2 (102% or AgCl (107% and it was strongly inhibited by EDTA (26% or HgSO4 (32%. Industrial Relevance: In the present study, xylanase enzyme was produced and characterized from Trichoderma viride in solid state fermentation using cheap substrate. This enzyme is very helpful in industrial sector especially in pulp and paper industry, food industry and also in bioethanol production. Pilot scale production of this enzyme in industries can reduce the import cost of the enzyme and make the whole process cost effective. Keywords: Partial purification; Characterization; Xylanase; Trichoderma viride; SSF

  4. Highly efficient enzyme encapsulation in a protein nanocage: towards enzyme catalysis in a cellular nanocompartment mimic.

    Science.gov (United States)

    Schoonen, Lise; Nolte, Roeland J M; van Hest, Jan C M

    2016-08-14

    The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions. PMID:27407020

  5. Geranylphenazinediol, an acetylcholinesterase inhibitor produced by a Streptomyces species.

    Science.gov (United States)

    Ohlendorf, Birgit; Schulz, Dirk; Erhard, Arlette; Nagel, Kerstin; Imhoff, Johannes F

    2012-07-27

    Geranylphenazinediol (1), a new phenazine natural product, was produced by the Streptomyces sp. strain LB173, which was isolated from a marine sediment sample. The structure was established by analysis of NMR and MS data. 1 inhibited the enzyme acetylcholinesterase in the low micromolar range and showed weak antibacterial activity. In order to get a more detailed picture of the activity profile of 1, its inhibitory potential was compared to that of related structures. PMID:22775474

  6. Persistence of bacterial proteolytic enzymes in lake ecosystems.

    Science.gov (United States)

    Kiersztyn, Bartosz; Siuda, Waldemar; Chróst, Ryszard J

    2012-04-01

    This study analyzes proteolytic enzyme persistence and the role of dead (or metabolically inactive) aquatic bacteria in organic matter cycling. Samples from four lakes of different trophic status were used. Irrespective of the trophic status of the examined lakes, bacterial aminopeptidases remained active even 72 h after the death of the bacteria that produced them. The total pool of proteolytic enzymes in natural lake water samples was also stable. We found that the rates of amino acid enzymatic release from proteinaceous matter added to preserved lake water sample were constant for at least 96 h (r(2)  = 0.99, n = 17, P ≤ 0.0001, V(max)  = 84.6 nM h(-1) ). We also observed that proteases built into bacterial cell debris fragments remained active for a long time, even after the total destruction of cells. Moreover, during 24 h of incubation time, about 20% of these enzymatically active fragments adsorbed onto natural seston particles, becoming a part of the 'attached enzymes system' that is regarded as the 'hot-spot' of protein degradation in aquatic ecosystems. PMID:22150269

  7. Extraction of Coconut Oil from Coconut Milk Foulants Using Enzyme

    Directory of Open Access Journals (Sweden)

    Saikhwan Phanida

    2016-01-01

    Full Text Available Coconut milk manufacturing process encounters problems with foulants formed during pasteurization process. For example, fouling layers reduce heat transfer efficiency of a heat exchanger. As the fouling layers are considered as waste, this research aimed at extracting coconut oil from the foulants to produce a product from the waste. A model coconut milk foulant was used to simulate foulants formed during batch pasteurization process and coconut oil was extracted from the foulant using celloulase enzyme. The extracted oil then was evaluated in terms of fatty acid composition and antioxidant properties (total phenolic and flavonoid contents. The antioxidant activities were evaluated using DPPH (1,1-diphenyl-2-picrylhydrazyl radical scavenging and FRAP (Ferric reducing antioxidant power methods. Results showed that the oil extracted from the foulants appeared similar to virgin coconut oil (VCO; the extracted oil appeared as clear viscous liquid with aroma associated with roasted coconut. The oil extracted using enzyme contained all fatty acids found in VCO in lower proportions but large extent of linoleic acid was found. Antioxidant capacity was similar to that of VCO. The foulants after the extraction of fat using enzyme were easier to clean suggesting the possibility to couple cleaning of coconut milk foulants and oil extraction in the same process.

  8. L-Methionase: A Therapeutic Enzyme to Treat Malignancies

    Directory of Open Access Journals (Sweden)

    Bhupender Sharma

    2014-01-01

    Full Text Available Cancer is an increasing cause of mortality and morbidity throughout the world. L-methionase has potential application against many types of cancers. L-Methionase is an intracellular enzyme in bacterial species, an extracellular enzyme in fungi, and absent in mammals. L-Methionase producing bacterial strain(s can be isolated by 5,5′-dithio-bis-(2-nitrobenzoic acid as a screening dye. L-Methionine plays an important role in tumour cells. These cells become methionine dependent and eventually follow apoptosis due to methionine limitation in cancer cells. L-Methionine also plays an indispensable role in gene activation and inactivation due to hypermethylation and/or hypomethylation. Membrane transporters such as GLUT1 and ion channels like Na2+, Ca2+, K+, and Cl− become overexpressed. Further, the α-subunit of ATP synthase plays a role in cancer cells growth and development by providing them enhanced nutritional requirements. Currently, selenomethionine is also used as a prodrug in cancer therapy along with enzyme methionase that converts prodrug into active toxic chemical(s that causes death of cancerous cells/tissue. More recently, fusion protein (FP consisting of L-methionase linked to annexin-V has been used in cancer therapy. The fusion proteins have advantage that they have specificity only for cancer cells and do not harm the normal cells.

  9. Metagenomics as a Tool for Enzyme Discovery: Hydrolytic Enzymes from Marine-Related Metagenomes.

    Science.gov (United States)

    Popovic, Ana; Tchigvintsev, Anatoly; Tran, Hai; Chernikova, Tatyana N; Golyshina, Olga V; Yakimov, Michail M; Golyshin, Peter N; Yakunin, Alexander F

    2015-01-01

    This chapter discusses metagenomics and its application for enzyme discovery, with a focus on hydrolytic enzymes from marine metagenomic libraries. With less than one percent of culturable microorganisms in the environment, metagenomics, or the collective study of community genetics, has opened up a rich pool of uncharacterized metabolic pathways, enzymes, and adaptations. This great untapped pool of genes provides the particularly exciting potential to mine for new biochemical activities or novel enzymes with activities tailored to peculiar sets of environmental conditions. Metagenomes also represent a huge reservoir of novel enzymes for applications in biocatalysis, biofuels, and bioremediation. Here we present the results of enzyme discovery for four enzyme activities, of particular industrial or environmental interest, including esterase/lipase, glycosyl hydrolase, protease and dehalogenase.

  10. Bacterial enzymes involved in lignin degradation.

    Science.gov (United States)

    de Gonzalo, Gonzalo; Colpa, Dana I; Habib, Mohamed H M; Fraaije, Marco W

    2016-10-20

    Lignin forms a large part of plant biomass. It is a highly heterogeneous polymer of 4-hydroxyphenylpropanoid units and is embedded within polysaccharide polymers forming lignocellulose. Lignin provides strength and rigidity to plants and is rather resilient towards degradation. To improve the (bio)processing of lignocellulosic feedstocks, more effective degradation methods of lignin are in demand. Nature has found ways to fully degrade lignin through the production of dedicated ligninolytic enzyme systems. While such enzymes have been well thoroughly studied for ligninolytic fungi, only in recent years biochemical studies on bacterial enzymes capable of lignin modification have intensified. This has revealed several types of enzymes available to bacteria that enable them to act on lignin. Two major classes of bacterial lignin-modifying enzymes are DyP-type peroxidases and laccases. Yet, recently also several other bacterial enzymes have been discovered that seem to play a role in lignin modifications. In the present review, we provide an overview of recent advances in the identification and use of bacterial enzymes acting on lignin or lignin-derived products. PMID:27544286

  11. The optimization of fermentation conditions and enzyme properties of Stenotrophomonas maltophilia for protease production.

    Science.gov (United States)

    Wang, Zaigui; Sun, Linghong; Cheng, Jia; Liu, Chaoliang; Tang, Xiangfang; Zhang, Hongfu; Liu, Ying

    2016-03-01

    Intestinal bacteria play a significant physiological role in silkworms. Proteases secreted by intestinal microbes can promote the digestion of the nutrient by Bombyx mori and the absorption of mulberry leaves. Intestinal bacteria from Jingsong × Haoyue in the fourth larvae were isolated and purified to obtain high activity protease-producing bacteria. The morphology of the identified bacterial colony was examined by microscopy combined with the 16S rDNA method. The results showed that this bacterium was Gram negative and that it belonged to Stenotrophomonas maltophilia, which produces the proteases. To improve the utilization rate of these proteases, we studied the proper culture conditions for producing proteases, and we further studied the properties of the proteases that were produced. The results showed that the optimal enzyme-producing conditions were as follows: pH of 7.0, culture temperature of 35 °C, incubation time of 36 H, and outfit fluid amount of 60 mL per 100 mL. Meanwhile, the properties of the preliminary enzyme purification indicated that the best pH of the enzymes was 9.0 and the optimal reaction temperature was 50 °C. The enzymes are alkaline proteases that show satisfactory stability at 30 °C and pH 9.0. Consequently, it is suitable for the proteases secreted by S. maltophilia to play a bioactive role in the silkworm gut. PMID:25656812

  12. Bacterial and fungal keratitis in Upper Egypt: In vitro screening of enzymes, toxins and antifungal activity

    Directory of Open Access Journals (Sweden)

    Abdullah A Gharamah

    2014-01-01

    Full Text Available Purpose: This work was conducted to study the ability of bacterial and fungal isolates from keratitis cases in Upper Egypt to produce enzymes, toxins, and to test the isolated fungal species sensitivity to some therapeutic agents. Materials and Methods: One hundred and fifteen patients clinically diagnosed to have microbial keratitis were investigated. From these cases, 37 bacterial isolates and 25 fungal isolates were screened for their ability to produce extra-cellular enzymes in solid media. In addition, the ability of fungal isolates to produce mycotoxins and their sensitivity to 4 antifungal agents were tested. Results: Protease, lipase, hemolysins, urease, phosphatase, and catalase were detected respectively in 48.65%, 37.84%, 59.46%, 43.24%, 67.57%, and 100% out of 37 bacterial isolates tested. Out of 25 fungal isolates tested during the present study, 80% were positive for protease, 84% for lipase and urease, 28% for blood hemolysis, and 100% for phosphatase and catalase enzymes. Thirteen fungal isolates were able to produce detectable amounts of 7 mycotoxins in culture medium (aflatoxins (B1, B2, G1, and G2, sterigmatocystin, fumagillin, diacetoxyscirpenol, zearalenone, T-2 toxin, and trichodermin. Among the antifungal agents tested in this study, terbinafine showed the highest effect against most isolates in vitro. Conclusion: In conclusion, the ability of bacterial and fungal isolates to produce extracellular enzymes and toxins may be aid in the invasion and destruction of eye tissues, which, in turn, lead to vision loss.

  13. Understanding Free and Complexed Enzyme Mechanisms and Factors Contributing to Cell Wall Recalcitrance (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Resch, M.; Donohoe, B.; Katahira, R.; Ashutosh, M.; Beckham, G.; Himmel, M.; Decker, S.

    2014-04-01

    Fungal free enzymes and bacterial complexed cellulosomes deconstruct biomass using different physical mechanisms. Free enzymes, which typically contain a large proportion of GH7 cellobiohydrolase, diffuse throughout the substrate and hydrolyze primarily from the cellulose reducing end, resulting in 'sharpened' macrofibrils. In contrast, complexed cellulosomes contain a diverse array of carbohydrate binding modules and multiple catalytic specificities leading to delamination and physical peeling of the cellulose macrofibril structures. To investigate how cellulose structure contributes to recalcitrance, we compared the deconstruction of cellulose I, II, and III; using free and complexed enzyme systems. We also evaluated both systems on Clean Fractionation and alkaline pretreated biomass, which remove much of the lignin, to determine the impact on enzyme loading reduction. Free fungal enzymes demonstrated a swelling of the outer surface of the plant cell walls while removing localized disruptions, resulting in a smooth surface appearance. Cellulosomes produced cell wall surfaces with localized areas of disruption and little surface layer swelling. These studies contribute to the overall understanding of biomass recalcitrance and how combining different enzymatic paradigms may lead to the formulation of new enzyme cocktails to reduce the cost of producing sugars from plant cell wall carbohydrates.

  14. Optimization of pectinase enzyme production in Aspergillus fumigatus isolated from rotten fruits

    Directory of Open Access Journals (Sweden)

    2015-12-01

    Full Text Available Introduction: Pectinase is one of the most important industrial enzymes which was isolated from a wide variety of microorganisms such as bacteria and filamentous fungi. This enzyme has been usually used in the juice and textile industry. In this study, the isolation and optimization of pectinase-producing fungi on decaying rotten fruits were studied. Materials and methods: Isolation and screening of pectinase producing fungi have been done by plate culture on pectin medium and staining with Lugol's iodine solution. The best strain was identified by method of Pitt and Hocking as Aspergillus fumigates. The enzyme production was optimized by application of the factorial design which involves five factors, each at three levels. Five factors were carbon sources (whey, sugar, stevia and ammonium sulfate, manganese sulfate, temperature, and pH. Pectinase concentration was measured by the Miller method. Results: The results showed that the optimum condition for enzyme production was at 32 °C, PH = 6 , 3g / L manganese sulfate, 2.75g / L of ammonium sulfate, 10g / L of each carbon source (whey, stevia, and glucose. Optimum of enzyme production was observed in the presence of 1.328 mg / ml of glucose. Molecular weight of enzyme was obtained about 40 kDa by SDS-PAGE. Discussion and conclusion: The results demonstrated that this strain could grow in a wide range of carbon sources, PH and temperature. This study indicates that this strain is a good candidate for use in industrial application.

  15. Recombinant protein production facility for fungal biomass-degrading enzymes using the yeast Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Mireille eHaon

    2015-09-01

    Full Text Available Filamentous fungi are the predominant source of lignocellulolytic enzymes used in industry for the transformation of plant biomass into high-value molecules and biofuels. The rapidity with which new fungal genomic and post-genomic data are being produced is vastly outpacing functional studies. This underscores the critical need for developing platforms dedicated to the recombinant expression of enzymes lacking confident functional annotation, a prerequisite to their functional and structural study. In the last decade, the yeast Pichia pastoris has become increasingly popular as a host for the production of fungal biomass-degrading enzymes, and particularly carbohydrate-active enzymes (CAZymes. This study aimed at setting-up a platform to easily and quickly screen the extracellular expression of biomass-degrading enzymes in Pichia pastoris. We first used three fungal glycoside hydrolases that we previously expressed using the protocol devised by Invitrogen to try different modifications of the original protocol. Considering the gain in time and convenience provided by the new protocol, we used it as basis to set-up the facility and produce a suite of fungal CAZymes (glycoside hydrolases, carbohydrate esterases and auxiliary activity enzyme families out of which more than 70% were successfully expressed. The platform tasks range from gene cloning to automated protein purifications and activity tests, and is open to the CAZyme users’ community.

  16. Portable Enzyme-Paper Biosensors Based on Redox-Active CeO2 Nanoparticles.

    Science.gov (United States)

    Karimi, A; Othman, A; Andreescu, S

    2016-01-01

    Portable, nanoparticle (NP)-enhanced enzyme sensors have emerged as powerful devices for qualitative and quantitative analysis of a variety of analytes for biomedicine, environmental applications, and pharmaceutical fields. This chapter describes a method for the fabrication of a portable, paper-based, inexpensive, robust enzyme biosensor for the detection of substrates of oxidase enzymes. The method utilizes redox-active NPs of cerium oxide (CeO2) as a sensing platform which produces color in response to H2O2 generated by the action of oxidase enzymes on their corresponding substrates. This avoids the use of peroxidases which are routinely used in conjunction with glucose oxidase. The CeO2 particles serve dual roles, as high surface area supports to anchor high loadings of the enzyme as well as a color generation reagent, and the particles are recycled multiple times for the reuse of the biosensor. These sensors are small, light, disposable, inexpensive, and they can be mass produced by standard, low-cost printing methods. All reagents needed for the analysis are embedded within the paper matrix, and sensors stored over extended periods of time without performance loss. This novel sensor is a general platform for the in-field detection of analytes that are substrates for oxidase enzymes in clinical, food, and environmental samples. PMID:27112400

  17. Spatial distribution of enzyme activities along the root and in the rhizosphere of different plants

    Science.gov (United States)

    Razavi, Bahar S.; Zarebanadkouki, Mohsen; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    Extracellular enzymes are important for decomposition of many biological macromolecules abundant in soil such as cellulose, hemicelluloses and proteins. Activities of enzymes produced by both plant roots and microbes are the primary biological drivers of organic matter decomposition and nutrient cycling. So far acquisition of in situ data about local activity of different enzymes in soil has been challenged. That is why there is an urgent need in spatially explicit methods such as 2-D zymography to determine the variation of enzymes along the roots in different plants. Here, we developed further the zymography technique in order to quantitatively visualize the enzyme activities (Spohn and Kuzyakov, 2013), with a better spatial resolution We grew Maize (Zea mays L.) and Lentil (Lens culinaris) in rhizoboxes under optimum conditions for 21 days to study spatial distribution of enzyme activity in soil and along roots. We visualized the 2D distribution of the activity of three enzymes:β-glucosidase, leucine amino peptidase and phosphatase, using fluorogenically labelled substrates. Spatial resolution of fluorescent images was improved by direct application of a substrate saturated membrane to the soil-root system. The newly-developed direct zymography shows different pattern of spatial distribution of enzyme activity along roots and soil of different plants. We observed a uniform distribution of enzyme activities along the root system of Lentil. However, root system of Maize demonstrated inhomogeneity of enzyme activities. The apical part of an individual root (root tip) in maize showed the highest activity. The activity of all enzymes was the highest at vicinity of the roots and it decreased towards the bulk soil. Spatial patterns of enzyme activities as a function of distance from the root surface were enzyme specific, with highest extension for phosphatase. We conclude that improved zymography is promising in situ technique to analyze, visualize and quantify

  18. Talaromyces atroroseus, a new species efficiently producing industrially relevant red pigments

    DEFF Research Database (Denmark)

    Frisvad, Jens Christian; Yilmaz, Neriman; Thrane, Ulf;

    2013-01-01

    reported to be interesting industrially and they can produce extracellular enzymes and red pigments, but they can also produce mycotoxins such as rubratoxin A and B and luteoskyrin. Production of mycotoxins limits the use of isolates of a particular species in biotechnology. Talaromyces atroroseus sp. nov...

  19. Modeling amperometric biosensors based on allosteric enzymes

    Directory of Open Access Journals (Sweden)

    Liutauras Ričkus

    2013-09-01

    Full Text Available Computational modeling of a biosensor with allosteric enzyme layer was investigated in this study. The operation of the biosensor is modeled using non-stationary reaction-diffusion equations. The model involves three regions: the allosteric enzyme layer where the allosteric enzyme reactions as well as then mass transport by diffusion take place, the diffusion region where the mass transport by diffusion and non-enzymatic reactions take place and the convective region in which the analyte concentration is maintained constant. The biosensor response on dependency substrate concentration, cooperativity coefficient and the diffusion layer thickness on the same parameters have been studied.

  20. Dimeric assembly of enterocyte brush border enzymes

    DEFF Research Database (Denmark)

    Danielsen, E M

    1994-01-01

    The noncovalent, dimeric assembly of small intestinal brush border enzymes was studied by sedimentation analysis in density gradients of extracts of pulse-labeled pig jejunal mucosal explants. Like aminopeptidase N (EC 3.4.11.2), sucrase-isomaltase (EC 3.2.1.48-10), aminopeptidase A (EC 3...... appearance of the liposome-reconstituted enzyme [Norén et al. (1986) J. Biol. Chem. 261, 12306-12309], showing only the inner, membrane-anchored domains of the monomers to be in close contact with one another while the outer domains are far apart. In contrast to the other brush border enzymes studied...

  1. Process for preparing multilayer enzyme coating on a fiber

    Science.gov (United States)

    Kim, Jungbae; Kwak, Ja Hun; Grate, Jay W.

    2009-11-03

    A process for preparing high stability, high activity biocatalytic materials is disclosed and processes for using the same. The process involves coating of a material or fiber with enzymes and enzyme aggregate providing a material or fiber with high biocatalytic activity and stability useful in heterogeneous environments. In one illustrative approach, enzyme "seeds" are covalently attached to polymer nanofibers followed by treatment with a reagent that crosslinks additional enzyme molecules to the seed enzymes forming enzyme aggregates thereby improving biocatalytic activity due to increased enzyme loading and enzyme stability. This approach creates a useful new biocatalytic immobilized enzyme system with potential applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  2. Rice bran as a substrate for proteolytic enzyme production

    Directory of Open Access Journals (Sweden)

    Alagarsamy Sumantha

    2006-09-01

    Full Text Available Rice bran was used as the substrate for screening nine strains of Rhizopus sp. for neutral protease production by solid-state fermentation. The best producer, Rhizopus microsporus NRRL 3671, was used for optimizing the process parameters for enzyme production. Fermentation carried out with 44.44 % initial moisture content at a temperature of 30 C for 72 h was found to be the optimum for enzyme secretion by the fermenting organism. While most of the carbon supplements favored enzyme production, addition of casein resulted in a marginal increase in protease yield. Fermentation was then carried out under optimized conditions to obtain the crude extract of the enzyme, which was partially purified by precipitation and dialysis. A 3-fold increase in the enzyme purity was achieved in this manner. The enzyme was found to be a metalloprotease, being activated by Mn2+, with maximal activity at a temperature of 60 C and pH 7.0.Farelo de arroz foi utilizado como substrato para seleção de nove linhagens de Rhizopus sp. com vistas a produção de protease neutra. A linhagem que apresentou maior produtividade da enzima foi Rhizopus microsporus NRRL 3671, sendo utilizada na otimização dos parâmetros do processos e produção da enzima. As condições otimizadas para produção da enzima foram 44% de umidade inicial, temperatura de 30ºC e 72h de fermentação.A suplementação do farelo de arroz com uma fonte de carbono favoreceu a produção da enzima, porém a adição de caseína resultou em um aumento marginal do rendimento em protease. Condições otimizadas foram utilizadas para obtenção do extrato cru da enzima que foi parcialmente purificado por precipitação e diálise. A enzima purificada teve sua atividade incrementada 3 vezes. A enzima foi classificada como metalo-protease, sendo ativada pelo Mn2+ , sendo que sua atividade máxima foi obtida a temperatura de 60ºC e a pH 7.0.

  3. Enhancement of photoassimilate utilization by manipulation of starch regulatory enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Okita, Thomas W. [Washington State Univ., Pullman, WA (United States)

    2016-05-11

    ADPglucose pyrophosphorylase (AGPase) and the plastidial starch phosphorylase1 (Pho1) are two regulatory enzymes whose catalytic activities are essential for starch granule synthesis. Conversion of the pre-starch granule to the mature form is dependent on AGPase, which produces ADPglucose, the substrate used by starch synthases. The catalytic activity of AGPase is controlled by small effector molecules and a prime goal of this project was to decipher the role of the two subunit types that comprise the heterotetrameric enzyme structure. Extensive genetic and biochemical studies showed that catalysis was contributed mainly by the small subunit although the large subunit was required for maximum activity. Both subunits were needed for allosteric regulatory properties. We had also demonstrated that the AGPase catalyzed reaction limits the amount of starch accumulation in developing rice seeds and that carbon flux into rice seed starch can be increased by expression of a cytoplasmic-localized, up-regulated bacterial AGPase enzyme form. Results of subsequent physiological and metabolite studies showed that the AGPase reaction is no longer limiting in the AGPase transgenic rice lines and that one or more downstream processes prevent further increases in starch biosynthesis. Further studies showed that over-production of ADPglucose dramatically alters the gene program during rice seed development. Although the expression of nearly all of the genes are down-regulated, levels of a starch binding domain containing protein (SBDCP) are elevated. This SBDCP was found to bind to and inhibit the catalytic activity of starch synthase III and, thereby preventing maximum starch synthesis from occurring. Surprisingly, repression of SBDCP elevated expression of starch synthase III resulting in increasing rice grain weight. A second phase of this project examined the structure-function of Pho1, the enzyme required during the initial phase of pre-starch granule formation and its

  4. Reversible Immobilization of Lipases on Heterofunctional Octyl-Amino Agarose Beads Prevents Enzyme Desorption

    Directory of Open Access Journals (Sweden)

    Nazzoly Rueda

    2016-05-01

    Full Text Available Two different heterofunctional octyl-amino supports have been prepared using ethylenediamine and hexylendiamine (OCEDA and OCHDA and utilized to immobilize five lipases (lipases A (CALA and B (CALB from Candida antarctica, lipases from Thermomyces lanuginosus (TLL, from Rhizomucor miehei (RML and from Candida rugosa (CRL and the phospholipase Lecitase Ultra (LU. Using pH 5 and 50 mM sodium acetate, the immobilizations proceeded via interfacial activation on the octyl layer, after some ionic bridges were established. These supports did not release enzyme when incubated at Triton X-100 concentrations that released all enzyme molecules from the octyl support. The octyl support produced significant enzyme hyperactivation, except for CALB. However, the activities of the immobilized enzymes were usually slightly higher using the new supports than the octyl ones. Thermal and solvent stabilities of LU and TLL were significantly improved compared to the OC counterparts, while in the other enzymes the stability decreased in most cases (depending on the pH value. As a general rule, OCEDA had lower negative effects on the stability of the immobilized enzymes than OCHDA and while in solvent inactivation the enzyme molecules remained attached to the support using the new supports and were released using monofunctional octyl supports, in thermal inactivations this only occurred in certain cases.

  5. Partial purification and characterization of arginine decarboxylase from avocado fruit, a thermostable enzyme.

    Science.gov (United States)

    Winer, L; Vinkler, C; Apelbaum, A

    1984-09-01

    A partially purified preparation of arginine decarboxylase (EC 4.1.1.19), a key enzyme in polyamine metabolism in plants, was isolated from avocado (Persea americana Mill. cv Fuerte) fruit. The preparation obtained from the crude extract after ammonium sulfate precipitation, dialysis, and heat treatment, had maximal activity between pH 8.0 and 9.0 at 60 degrees C, in the presence of 1.2 millimolar MnCl(2), 2 millimolar dithiothreitol, and 0.06 millimolar pyridoxal phosphate. The K(m), of arginine for the decarboxylation reaction was determined for enzymes prepared from the seed coat of both 4-week-old avocado fruitlet and fully developed fruit, and was found to have a value of 1.85 and 2.84 millimolar, respectively. The value of V(app) (max) of these enzymes was 1613 and 68 nanomoles of CO(2) produced per milligram of protein per hour for the fruitlet and the fully developed fruit, respectively. Spermine, an end product of polyamine metabolism, caused less than 5% inhibition of the enzyme from fully developed fruit and 65% inhibition of the enzyme from the seed coat of 4-week-old fruitlets at 1 millimolar under similar conditions. The effect of different inhibitors on the enzyme and the change in the nature of the enzyme during fruit development are discussed.

  6. NADPH oxidase enzymes in skin fibrosis: molecular targets and therapeutic agents.

    Science.gov (United States)

    Babalola, Olubukola; Mamalis, Andrew; Lev-Tov, Hadar; Jagdeo, Jared

    2014-05-01

    Fibrosis is characterized by the excessive deposition of extracellular matrix components eventually resulting in organ dysfunction and failure. In dermatology, fibrosis is the hallmark component of many skin diseases, including systemic sclerosis, graft-versus-host disease, hypertrophic scars, keloids, nephrogenic systemic fibrosis, porphyria cutanea tarda, restrictive dermopathy and other conditions. Fibrotic skin disorders may be debilitating and impair quality of life. There are few FDA-approved anti-fibrotic drugs; thus, research in this area is crucial in addressing this deficiency. Recent investigations elucidating the pathogenesis of skin fibrosis have implicated endogenous reactive oxygen species produced by the multicomponent nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) enzyme complex. In this review, we discuss Nox enzymes and their role in skin fibrosis. An overview of the Nox enzyme family is presented and their role in the pathogenesis of skin fibrosis is discussed. The mechanisms by which Nox enzymes influence specific fibrotic skin disorders are also reviewed. Finally, we describe the therapeutic approaches to ameliorate skin fibrosis by directly targeting Nox enzymes with the use of statins, p47phox subunit modulators, or GKT137831, a competitive inhibitor of Nox enzymes. Nox enzymes can also be targeted indirectly via scavenging ROS with antioxidants. We believe that Nox modulators are worthy of further investigation and have the potential to transform the management of skin fibrosis by dermatologists.

  7. NADPH oxidase enzymes in skin fibrosis: molecular targets and therapeutic agents.

    Science.gov (United States)

    Babalola, Olubukola; Mamalis, Andrew; Lev-Tov, Hadar; Jagdeo, Jared

    2014-05-01

    Fibrosis is characterized by the excessive deposition of extracellular matrix components eventually resulting in organ dysfunction and failure. In dermatology, fibrosis is the hallmark component of many skin diseases, including systemic sclerosis, graft-versus-host disease, hypertrophic scars, keloids, nephrogenic systemic fibrosis, porphyria cutanea tarda, restrictive dermopathy and other conditions. Fibrotic skin disorders may be debilitating and impair quality of life. There are few FDA-approved anti-fibrotic drugs; thus, research in this area is crucial in addressing this deficiency. Recent investigations elucidating the pathogenesis of skin fibrosis have implicated endogenous reactive oxygen species produced by the multicomponent nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) enzyme complex. In this review, we discuss Nox enzymes and their role in skin fibrosis. An overview of the Nox enzyme family is presented and their role in the pathogenesis of skin fibrosis is discussed. The mechanisms by which Nox enzymes influence specific fibrotic skin disorders are also reviewed. Finally, we describe the therapeutic approaches to ameliorate skin fibrosis by directly targeting Nox enzymes with the use of statins, p47phox subunit modulators, or GKT137831, a competitive inhibitor of Nox enzymes. Nox enzymes can also be targeted indirectly via scavenging ROS with antioxidants. We believe that Nox modulators are worthy of further investigation and have the potential to transform the management of skin fibrosis by dermatologists. PMID:24155025

  8. LIPASES PRODUCED BY YEASTS: POWERFUL BIOCATALYSTS FOR INDUSTRIAL PURPOSES

    Directory of Open Access Journals (Sweden)

    Luiza Lux Lock

    2007-12-01

    Full Text Available The term “lipolytic enzymes” refers to the lipases and carboxylic ester hydrolases. Lipase production is widespread among yeasts, butfew are capable of producing lipases with interesting characteristics and in sufficient amounts to be industrially useful. The literatureconcerning lipases produced by Candida rugosa, Yarrowia (Candida lipolytica, Candida antarctica and other emerging lipaseproducingyeasts is reviewed. The use of recombinant lipases is discussed, with emphasis on the utilization of heterologous expressionsystems and design of chimeras. Finally, the three approaches that aim the improvement of lipase production or the modification of thesubstrate selectivity of the enzyme (medium engineering, biocatalyst engineering, and protein engineering are discussed.

  9. 21 CFR 864.7100 - Red blood cell enzyme assay.

    Science.gov (United States)

    2010-04-01

    ... enzyme assay. (a) Identification. Red blood cell enzyme assay is a device used to measure the activity in... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Red blood cell enzyme assay. 864.7100 Section 864... kinase or 2,3-diphosphoglycerate. A red blood cell enzyme assay is used to determine the enzyme...

  10. Potato Peroxidase for the Study of Enzyme Properties.

    Science.gov (United States)

    Shamaefsky, Brian R.

    1993-01-01

    Explains how the surface of a freshly sliced potato can be used for a variety of enzyme action experiments including the influence of pH on enzyme action, the enzyme denaturation potential of boiling water, the inhibition of enzymes by heavy metals, and the effects of salt concentration on enzyme effectiveness. (PR)

  11. An Improved Ultrasensitive Enzyme-Linked Immunosorbent Assay Using Hydrangea-Like Antibody-Enzyme-Inorganic Three-in-One Nanocomposites.

    Science.gov (United States)

    Wei, Tianxiang; Du, Dan; Zhu, Mei-Jun; Lin, Yuehe; Dai, Zhihui

    2016-03-01

    Protein-inorganic nanoflowers, composed of protein and copper(II) phosphate (Cu3(PO4)2), have recently grabbed people's attention. Because the synthetic method requires no organic solvent and because of the distinct hierarchical nanostructure, protein-inorganic nanoflowers display enhanced catalytic activity and stability and would be a promising tool in biocatalytical processes and biological and biomedical fields. In this work, we first coimmobilized the enzyme, antibody, and Cu3(PO4)2 into a three-in-one hybrid protein-inorganic nanoflower to enable it to possess dual functions: (1) the antibody portion retains the ability to specifically capture the corresponding antigen; (2) the nanoflower has enhanced enzymatic activity and stability to produce an amplified signal. The prepared antibody-enzyme-inorganic nanoflower was first applied in an enzyme-linked immunosorbent assay to serve as a novel enzyme-labeled antibody for Escherichia coli O157:H7 (E. coli O157:H7) determination. The detection limit is 60 CFU L(-1), which is far superior to commercial ELISA systems. The three-in-one antibody (anti-E. coli O157:H7 antibody)-enzyme (horseradish peroxidase)-inorganic (Cu3(PO4)2) nanoflower has some advantages over commercial enzyme-antibody conjugates. First, it is much easier to prepare and does not need any complex covalent modification. Second, it has fairly high capture capability and catalytic activity because it is presented as aggregates of abundant antibodies and enzymes. Third, it has enhanced enzymatic stability compared to the free form of enzyme due to the unique hierarchical nanostructure.

  12. Production of cellulase enzymes during the solid-state fermentation of empty palm fruit bunch fiber.

    Science.gov (United States)

    Kim, Seonghun; Kim, Chul Ho

    2012-01-01

    Penicillium verruculosum COKE4E is a fungal strain isolated from bituminous coal. The microorganism cultivated in a minimal medium supplemented with Avicel, carboxymethylcellulose, and oat spelt xylan produced cellulase enzymes as exhibiting carboxymethylcellulase (CMCase), Avicelase, xylanase, and cellobiosidase activities. In this study, the productivity of the extracellular enzymes in the strain was evaluated by using empty palm fruit bunch fiber (EPFBF), a lignocellulosic biomass, as a substrate for solid-state bioconversion. The highest cellulase activities were observed after 6 days of fermentation at pH 6.0 and 30 °C. The enzymes were secreted as cellulosomes for the degradation of EPFBF as a sole carbon source. Focused ion beam analysis showed that P. verruculosum COKE4E produced cellulolytic enzymes that were able to effectively biodegrade EPFBF during solid-state fermentation. In this process, 6.5 U of CMCase, 6.8 U of Avicelase, and 8.8 U of xylanase per gram of dry solid EPFBF were produced. These results demonstrate that EPFBF may be a potential raw material in solid-state fermentation for the production of cellulase enzymes to be used for biofuel production. PMID:22052232

  13. Generation of in vivo activating factors in the ischemic intestine by pancreatic enzymes

    Science.gov (United States)

    Mitsuoka, Hiroshi; Kistler, Erik B.; Schmid-Schönbein, Geert W.

    2000-02-01

    One of the early events in physiological shock is the generation of activators for leukocytes, endothelial cells, and other cells in the cardiovascular system. The mechanism by which these activators are produced has remained unresolved. We examine here the hypothesis that pancreatic digestive enzymes in the ischemic intestine may be involved in the generation of activators during intestinal ischemia. The lumen of the small intestine of rats was continuously perfused with saline containing a broadly acting pancreatic enzyme inhibitor (6-amidino-2-naphthyl p-guanidinobenzoate dimethanesulfate, 0.37 mM) before and during ischemia of the small intestine by splanchnic artery occlusion. This procedure inhibited activation of circulating leukocytes during occlusion and reperfusion. It also prevented the appearance of activators in portal venous and systemic artery plasma and attenuated initiating symptoms of multiple organ injury in shock. Intestinal tissue produces only low levels of activators in the absence of pancreatic enzymes, whereas in the presence of enzymes, activators are produced in a concentration- and time-dependent fashion. The results indicate that pancreatic digestive enzymes in the ischemic intestine serve as an important source for cell activation and inflammation, as well as multiple organ failure.

  14. ISOLATION AND SELECTION OF ALKALINE PROTEOLYTIC BACTERIA FROM LEATHER PR OCESSING WASTE AND ENZYME CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    MARITA ANGGARANi

    2004-01-01

    Full Text Available The aims of this experiment were to isolate alkaline protease producing bacteria from leather processing waste, and to study the biochemical properties of the enzyme produced by the selected bacteria. Nine bacterial isolates incubated at 37"C, revealed proteolytic activity on skim milk containing media. Four isolates were grown at pH 9 and another four isolates at pH 10 and only one isolate at pH 11. However, in further subculture, there were only three isolates that showed proteolytic activity, namely, D2, D7, and D l l . Among the three isolates, isolate D2 was the highest protease producer. The highest protease production (36.5U/L was reached after a 36-hr fermentation at pH 9. The optimum activity of D2 protease was observed at pH 8 and 60"C. The enzyme was stable at pH range of 7-10, and at temperature of 52-62"C. In the presence of 5mM EDTA or PMSF, the crude enzyme activity decreased to 7.04% and 23.29% respectively, which indicated that the enzyme might be a metal dependent serine protease. Zymogram analysis revealed the molecular weight of the enzyme was about 42.8kD.

  15. Something Old, Something New: Conserved Enzymes and the Evolution of Novelty in Plant Specialized Metabolism.

    Science.gov (United States)

    Moghe, Gaurav D; Last, Robert L

    2015-11-01

    Plants produce hundreds of thousands of small molecules known as specialized metabolites, many of which are of economic and ecological importance. This remarkable variety is a consequence of the diversity and rapid evolution of specialized metabolic pathways. These novel biosynthetic pathways originate via gene duplication or by functional divergence of existing genes, and they subsequently evolve through selection and/or drift. Studies over the past two decades revealed that diverse specialized metabolic pathways have resulted from the incorporation of primary metabolic enzymes. We discuss examples of enzyme recruitment from primary metabolism and the variety of paths taken by duplicated primary metabolic enzymes toward integration into specialized metabolism. These examples provide insight into processes by which plant specialized metabolic pathways evolve and suggest approaches to discover enzymes of previously uncharacterized metabolic networks.

  16. Expression of enzymes for the usage in food and feed industry with Pichia pastoris.

    Science.gov (United States)

    Spohner, Sebastian C; Müller, Hagen; Quitmann, Hendrich; Czermak, Peter

    2015-05-20

    The methylotrophic yeast Pichia pastoris is an established protein expression host for the production of industrial enzymes. This yeast can be grown to very high cell densities and produces high titers of recombinant protein, which can be expressed intercellularly or be secreted to the fermentation medium. P. pastoris offers some advantages over other established expression systems especially in protein maturation. In food and feed production many enzymatically catalyzed processes are reported and the demand for new enzymes grows continuously. For instance the unique catalytic properties of enzymes are used to improve resource efficiency, maintain quality, functionalize food, and to prevent off-flavors. This review aims to provide an overview on recent developments in heterologous production of enzymes with P. pastoris and their application within the food sector.

  17. Structure and function of enzymes involved in the anaerobic degradation of L-threonine to propionate

    Indian Academy of Sciences (India)

    Dhirendra K Simanshu; Sagar Chittori; H S Savithri; M R N Murthy

    2007-09-01

    In Escherichia coli and Salmonella typhimurium, L-threonine is cleaved non-oxidatively to propionate via 2-ketobutyrate by biodegradative threonine deaminase, 2-ketobutyrate formate-lyase (or pyruvate formate-lyase), phosphotransacetylase and propionate kinase. In the anaerobic condition, L-threonine is converted to the energy-rich keto acid and this is subsequently catabolised to produce ATP via substrate-level phosphorylation, providing a source of energy to the cells. Most of the enzymes involved in the degradation of L-threonine to propionate are encoded by the anaerobically regulated tdc operon. In the recent past, extensive structural and biochemical studies have been carried out on these enzymes by various groups. Besides detailed structural and functional insights, these studies have also shown the similarities and differences between the other related enzymes present in the metabolic network. In this paper, we review the structural and biochemical studies carried out on these enzymes.

  18. Improving the Production of L-Phenylalanine by Identifying Key Enzymes Through Multi-Enzyme Reaction System in Vitro.

    Science.gov (United States)

    Ding, Dongqin; Liu, Yongfei; Xu, Yiran; Zheng, Ping; Li, Haixing; Zhang, Dawei; Sun, Jibin

    2016-01-01

    L-Phenylalanine (L-Phe) is an important amino acid used in both food and medicinal applications. We developed an in vitro system that allowed a direct, quantitative investigation of phenylalanine biosynthesis in E. coli. Here, the absolute concentrations of six enzymes (AroK, AroL, AroA, AroC, PheA and TyrB) involved in the shikimate (SHIK) pathway were determined by a quantitative proteomics approach and in vitro enzyme titration experiments. The reconstitution of an in vitro reaction system for these six enzymes was established and their effects on the phenylalanine production were tested. The results showed that the yield of phenylalanine increased 3.0 and 2.1 times when the concentrations of shikimate kinase (AroL) and 5-enolpyruvoyl shikimate 3-phosphate (EPSP) synthase (AroA) were increased 2.5 times. Consistent results were obtained from in vivo via the overexpression of AroA in a phenylalanine-producing strain, and the titer of phenylalanine reached 62.47 g/l after 48 h cultivation in a 5-liter jar fermentor. Our quantitative findings provide a practical method to detect the potential bottleneck in a specific metabolic pathway to determine which gene products should be targeted to improve the yield of the desired product. PMID:27558633

  19. Improving the Production of L-Phenylalanine by Identifying Key Enzymes Through Multi-Enzyme Reaction System in Vitro.

    Science.gov (United States)

    Ding, Dongqin; Liu, Yongfei; Xu, Yiran; Zheng, Ping; Li, Haixing; Zhang, Dawei; Sun, Jibin

    2016-01-01

    L-Phenylalanine (L-Phe) is an important amino acid used in both food and medicinal applications. We developed an in vitro system that allowed a direct, quantitative investigation of phenylalanine biosynthesis in E. coli. Here, the absolute concentrations of six enzymes (AroK, AroL, AroA, AroC, PheA and TyrB) involved in the shikimate (SHIK) pathway were determined by a quantitative proteomics approach and in vitro enzyme titration experiments. The reconstitution of an in vitro reaction system for these six enzymes was established and their effects on the phenylalanine production were tested. The results showed that the yield of phenylalanine increased 3.0 and 2.1 times when the concentrations of shikimate kinase (AroL) and 5-enolpyruvoyl shikimate 3-phosphate (EPSP) synthase (AroA) were increased 2.5 times. Consistent results were obtained from in vivo via the overexpression of AroA in a phenylalanine-producing strain, and the titer of phenylalanine reached 62.47 g/l after 48 h cultivation in a 5-liter jar fermentor. Our quantitative findings provide a practical method to detect the potential bottleneck in a specific metabolic pathway to determine which gene products should be targeted to improve the yield of the desired product.

  20. ANTIMICROBIAL ACTIVITY AND BIODEGRADING ENZYMES OF ENDOPHYTIC FUNGI FROM EUCALYPTUS

    Directory of Open Access Journals (Sweden)

    K. Ananda et al

    2012-08-01

    Full Text Available A total of thirty endophytic fungi were isolated from leaves and twigs of Eucalyptus globulus and Eucalyptus citriodora. Among thirty endophytic fungal isolates, four (P3MT1, P3MT2, OP4MT2 and P7ML2 are consistently producing compounds which are inhibiting Pseudomonas aeroginosa, Mycobacterium smegmatis and Candida albicans even after 10 generations tested under dual culture, well diffusion and disc diffusion methods. P3MT1 and OP4MT2 are inhibiting even a filamentous fungi Penicillium chrysogenum. The fungal isolate OP4MT2 showed highest zone of inhibition (20 mm against Penicillium chrysogenum among two test fungi. The crude ethyl acetate extract of P3MT1 isolate showed highest zone of inhibition against Candida albicans (19 mm by both well and disc diffusion method when compared to other fungal isolates. Another four fungal isolates (P3ML1, P6MT1, P5MT1 and P2MT1 from the same set of thirty isolates showed positive for the secretion of amylase, protease and laccase enzymes in agar plate method. Two endophytic fungal isolates (P6MT1 & P2MT1 among thirty are able to oxidize guaiacol indicating the presence of Lignin degrading enzymes. Four fungal isolates indicated presence of laccase enzymes by qualitative test were able to decolorize both methylene blue and aniline blue (synthetic dyes in solid and liquid media. The quantitative estimation of percent decolorization of synthetic dyes by spectrophotometric method confirmed more than 90 % reduction in color is made possible by the endophytic fungi. All these fungal strains with good bioactivity are of worth studying in detail for the purification and characterization of the active compounds and enzymes.

  1. Sustainable bioreactor systems for producing hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Zaborsky, O.R.; Radway, J.C.; Yoza, B.A. [Univ. of Hawaii, Honolulu, HI (United States); Benemann, J.R. [Univ. of California, Berkeley, CA (United States). Dept. of Plant and Molecular Biology; Tredici, M.R. [Univ. of Florence (Italy). Dipt. di Scienze e Tecnologie Alimentari e Microbiogiche

    1998-08-01

    The overall goal of Hawaii`s BioHydrogen Program is to generate hydrogen from water using solar energy and microalgae under sustainable conditions. Specific bioprocess engineering objectives include the design, construction, testing and validation of a sustainable photobioreactor system. Specific objectives relating to biology include investigating and optimizing key physiological parameters of cyanobacteria of the genus Arthrospira (Spirulina), the organism selected for initial process development. Another objective is to disseminate the Mitsui-Miami cyanobacteria cultures, now part of the Hawaii Culture Collection (HCC), to other research groups. The approach is to use a single organisms for producing hydrogen gas from water. Key stages are the growth of the biomass, the dark induction of hydrogenase, and the subsequent generation of hydrogen in the light. The biomass production stage involves producing dense cultures of filamentous, non-heterocystous cyanobacteria and optimizing biomass productivity in innovative tubular photobioreactors. The hydrogen generation stages entail inducing the enzymes and metabolic pathways that enable both dark and light-driven hydrogen production. The focus of Year 1 has been on the construction and operation of the outdoor photobioreactor for the production of high-density mass cultures of Arthrospira. The strains in the Mitsui-Miami collection have been organized and distributed to other researchers who are beginning to report interesting results. The project is part of the International Energy Agency`s biohydrogen program.

  2. Highly efficient enzyme encapsulation in a protein nanocage: towards enzyme catalysis in a cellular nanocompartment mimic

    Science.gov (United States)

    Schoonen, Lise; Nolte, Roeland J. M.; van Hest, Jan C. M.

    2016-07-01

    The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions.The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions. Electronic supplementary information (ESI) available: Experimental procedures for the cloning, expression, and purification of all proteins, as well as supplementary figures and calculations. See DOI: 10.1039/c6nr04181g

  3. ZnO-Based Amperometric Enzyme Biosensors

    Directory of Open Access Journals (Sweden)

    Helong Jiang

    2010-02-01

    Full Text Available Nanostructured ZnO with its unique properties could provide a suitable microenvironment for immobilization of enzymes while retaining their biological activity, and thus lead to an expanded use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance. ZnO-based enzyme electrochemical biosensors are summarized in several tables for an easy overview according to the target biosensing analyte (glucose, hydrogen peroxide, phenol and cholesterol, respectively. Moreover, recent developments in enzyme electrochemical biosensors based on ZnO nanomaterials are reviewed with an emphasis on the fabrications and features of ZnO, approaches for biosensor construction (e.g., modified electrodes and enzyme immobilization and biosensor performances.

  4. Novel enzymes for the degradation of cellulose

    Directory of Open Access Journals (Sweden)

    Horn Svein

    2012-07-01

    Full Text Available Abstract The bulk terrestrial biomass resource in a future bio-economy will be lignocellulosic biomass, which is recalcitrant and challenging to process. Enzymatic conversion of polysaccharides in the lignocellulosic biomass will be a key technology in future biorefineries and this technology is currently the subject of intensive research. We describe recent developments in enzyme technology for conversion of cellulose, the most abundant, homogeneous and recalcitrant polysaccharide in lignocellulosic biomass. In particular, we focus on a recently discovered new type of enzymes currently classified as CBM33 and GH61 that catalyze oxidative cleavage of polysaccharides. These enzymes promote the efficiency of classical hydrolytic enzymes (cellulases by acting on the surfaces of the insoluble substrate, where they introduce chain breaks in the polysaccharide chains, without the need of first “extracting” these chains from their crystalline matrix.

  5. Enzymes: The possibility of production and applications

    Directory of Open Access Journals (Sweden)

    Petronijević Živomir B.

    2003-01-01

    Full Text Available Enzymes are biological catalysts with increasing application in the food pharmaceutical, cosmetic, textile and chemical industry. They are also important as reagents in chemical analysis, leather fabrications and as targets for the design of new drugs. Keeping in mind the growing need to replace classical chemical processes by alternative ones, because of ever growing environmental pollution, it is important that enzyme and other biotechnological processes are economical. Therefore, price decrease and stability and enzyme preparation efficiency increase are required more and more. This paper presents a short review of methods for yield increase and the improvement of the quality of enzyme products as commercial products, as well as a review of the possibilities of their application.

  6. Archaeal Enzymes and Applications in Industrial Biocatalysts.

    Science.gov (United States)

    Littlechild, Jennifer A

    2015-01-01

    Archaeal enzymes are playing an important role in industrial biotechnology. Many representatives of organisms living in "extreme" conditions, the so-called Extremophiles, belong to the archaeal kingdom of life. This paper will review studies carried by the Exeter group and others regarding archaeal enzymes that have important applications in commercial biocatalysis. Some of these biocatalysts are already being used in large scale industrial processes for the production of optically pure drug intermediates and amino acids and their analogues. Other enzymes have been characterised at laboratory scale regarding their substrate specificity and properties for potential industrial application. The increasing availability of DNA sequences from new archaeal species and metagenomes will provide a continuing resource to identify new enzymes of commercial interest using both bioinformatics and screening approaches.

  7. PURIFICATION OF CATALASE ENZYME FROM PLEUROTUS OSTREATUS

    Directory of Open Access Journals (Sweden)

    Susmitha.S

    2014-03-01

    Full Text Available The oyster mushroom Pleurotus ostreatus is the most commonly cultivated mushroom, and are effective for antitumor, antibacterial, anti viral and hematological agents and in immune modulating treatments. Several compounds from oyster mushrooms, potentially beneficial for human health have been isolated and studied. The aim of this research is to purify an enzyme catalase from Pleurotus ostreatus through Sephadox G-75 column, its molecular weight was determined by polyacrylamide gel electrophoresis and the catalase enzyme stability were observed at various temperature and different pH condition. Under denaturing conditions, polyacrylamide gel electrophoresis revealed dissociation of a major component of molecular weight 62,000 kDa, which constituted 90% of the total protein of the stained gel, suggesting that the native enzyme is tetrameric. The optimum temperature and pH for the purified enzyme catalase from Pleurotus ostreatus enzymatic reaction were 30°C and pH 7.5.

  8. Enzyme clustering can induce metabolic channeling

    Science.gov (United States)

    Castellana, Michele

    2015-03-01

    Direct channeling of intermediates via a physical tunnel between enzyme active sites is an established mechanism to improve metabolic efficiency. In this talk, I will present a theoretical model that demonstrates that coclustering multiple enzymes into proximity can yield the full efficiency benefits of direct channeling. The model predicts the separation and size of coclusters that maximize metabolic efficiency, and this prediction is in agreement with the spacing between coclusters in yeast and mammalian cells. The model also predicts that enzyme agglomerates can regulate steady-state flux division at metabolic branch points: we experimentally test this prediction for a fundamental branch point in Escherichia coli, and the results confirm that enzyme colocalization within an agglomerate can accelerate the processing of a shared intermediate by one branch. Our studies establish a quantitative framework to understand coclustering-mediated metabolic channeling and its application to both efficiency improvement and metabolic regulation.

  9. Archaeal Enzymes and Applications in Industrial Biocatalysts

    Directory of Open Access Journals (Sweden)

    Jennifer A. Littlechild

    2015-01-01

    Full Text Available Archaeal enzymes are playing an important role in industrial biotechnology. Many representatives of organisms living in “extreme” conditions, the so-called Extremophiles, belong to the archaeal kingdom of life. This paper will review studies carried by the Exeter group and others regarding archaeal enzymes that have important applications in commercial biocatalysis. Some of these biocatalysts are already being used in large scale industrial processes for the production of optically pure drug intermediates and amino acids and their analogues. Other enzymes have been characterised at laboratory scale regarding their substrate specificity and properties for potential industrial application. The increasing availability of DNA sequences from new archaeal species and metagenomes will provide a continuing resource to identify new enzymes of commercial interest using both bioinformatics and screening approaches.

  10. Supramolecular Tectonics for Enzyme-like Reagents

    Institute of Scientific and Technical Information of China (English)

    MAO; LuYuan

    2001-01-01

    The enzyme-likes and bioactive species were closely related with the life phenomena and served as the reagent of bioassy1,2. In present works, the flow cytometry (FCM) and rapid-scanning stopped-flow (RSSF) spectroscopy combine with the stopped-flow difference UV/Vis spectra, FT-IR and other methods of assay, being used to study the biomimetic reaction and enzyme mimic. Based on catalytic kinetics of enzyme reaction3,4, the reaction mechanisms of the enzyme-likes had been studied and some new methods of kinetic determination were proposed. The study and methods not only provided the basic theoretical models for the life science, but also widened the application fields of biomimetic and analytical chemistry. The main contents of our works and the supramolecular models can be described as follows:  ……

  11. Enzyme conductometric biosensor for maltose determination

    OpenAIRE

    Dzyadevych S. V.; Soldatkin O. O.; Saiapina O. Y.; Pyeshkova V. M.

    2009-01-01

    Aim. To develop enzyme conductometric biosensor for maltose determination. Methods. A conductometric transducer consisting of two gold pairs of electrodes was applied. Three-enzyme membrane (glucose oxidase, mutarotase, -glucosidase) immobilized on the surface of the conductometric transducer was used as a bioselective element. Results. A linear range of maltose conductometric biosensor was from 0,002 mM to 1 mM for glucose and maltose detection. The time of maltose analysis in solution was 1...

  12. ZnO-Based Amperometric Enzyme Biosensors

    OpenAIRE

    Helong Jiang; Baoping Wang; Xiaobing Zhang; Zhiwei Zhao; Wei Lei

    2010-01-01

    Nanostructured ZnO with its unique properties could provide a suitable microenvironment for immobilization of enzymes while retaining their biological activity, and thus lead to an expanded use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance. ZnO-based enzyme electrochemical biosensors are summarized in several tables for an easy overview according to the target biosensing analyte (glucose, hydrogen peroxide, phenol and cholesterol)...

  13. Enzymes improve ECF bleaching of pulp

    OpenAIRE

    Lachenal, D.; Bajpai, P. K.; S P Mishra; Sharma, N.; Anand, A; Bajpai, P.

    2006-01-01

    The delignification efficiency of different laccase enzymes was examined on the eucalyptus Kraft pulp. The laccase enzyme from Trametes versicolor showing the highest delignification efficiency was selected and used in the elemental chlorine-free bleaching sequence for improving the pulp bleachability. An appreciable reduction in chlorine dioxide consumption was also obtained. Further reduction in chlorine dioxide consumption was obtained when the same laccase treated pulp was subjected to an...

  14. Enzyme Scouring of Cotton Fabrics: A Review

    OpenAIRE

    Mojsov, Kiro

    2012-01-01

    Textile processing is a growing industry that traditionally has used a lot of water, energy and harsh chemicals. Due to the ever-growing costs for water and energy worldwide investigations are carriedout to substitute conventional chemical textile processes by environment-friendly andeconomically attractive bioprocesses using enzymes. Enzymes are used in a broad range of processes in the textileindustry: scouring, bleachclean-up, desizing, denim abrasion andpolishing. The conventional scourin...

  15. Enzymes in textile industry: a review

    OpenAIRE

    Mojsov, Kiro

    2014-01-01

    Textile processing is a growing industry that traditionally has used a lot of water, energy and harsh chemicals. Due to the ever-growing costs for water and energy worldwide investigations are carried out to substitute conventional chemical textile processes by environment-friendly and economically attractive bioprocesses using enzymes. The enzymes used in the textile field are amylases, catalase, and laccase which are used to removing the starch, degrading excess hydrogen peroxide, bleaching...

  16. Measuring enzyme activity in single cells

    OpenAIRE

    Kovarik, Michelle L.; Allbritton, Nancy L.

    2011-01-01

    Seemingly identical cells can differ in their biochemical state, function and fate, and this variability plays an increasingly recognized role in organism-level outcomes. Cellular heterogeneity arises in part from variation in enzyme activity, which results from interplay between biological noise and multiple cellular processes. As a result, single-cell assays of enzyme activity, particularly those that measure product formation directly, are crucial. Recent innovations have yielded a range o...

  17. Microbial Enzymes: Tools for Biotechnological Processes

    OpenAIRE

    Jose L. Adrio; Demain, Arnold L.

    2014-01-01

    Microbial enzymes are of great importance in the development of industrial bioprocesses. Current applications are focused on many different markets including pulp and paper, leather, detergents and textiles, pharmaceuticals, chemical, food and beverages, biofuels, animal feed and personal care, among others. Today there is a need for new, improved or/and more versatile enzymes in order to develop more novel, sustainable and economically competitive production processes. Microbial diversity an...

  18. Building proficient enzymes with foldamer prostheses.

    Science.gov (United States)

    Mayer, Clemens; Müller, Manuel M; Gellman, Samuel H; Hilvert, Donald

    2014-07-01

    Foldamers are non-natural oligomers that adopt stable conformations reminiscent of those found in proteins. To evaluate the potential of foldameric subunits for catalysis, semisynthetic enzymes containing foldamer fragments constructed from α- and β-amino acid residues were designed and characterized. Systematic variation of the α→β substitution pattern and types of β-residue afforded highly proficient hybrid catalysts, thus demonstrating the feasibility of expanding the enzyme-engineering toolkit with non-natural backbones.

  19. Controlling reaction specificity in pyridoxal phosphate enzymes

    OpenAIRE

    Michael D Toney

    2011-01-01

    Pyridoxal 5'-phosphate enzymes are ubiquitous in the nitrogen metabolism of all organisms. They catalyze a wide variety of reactions including racemization, transamination, decarboxylation, elimination, retro-aldol cleavage, Claisen condensation, and others on substrates containing an amino group, most commonly α-amino acids. The wide variety of reactions catalyzed by PLP enzymes is enabled by the ability of the covalent aldimine intermediate formed between substrate and PLP to stabilize carb...

  20. Semisupervised Gaussian Process for Automated Enzyme Search.

    Science.gov (United States)

    Mellor, Joseph; Grigoras, Ioana; Carbonell, Pablo; Faulon, Jean-Loup

    2016-06-17

    Synthetic biology is today harnessing the design of novel and greener biosynthesis routes for the production of added-value chemicals and natural products. The design of novel pathways often requires a detailed selection of enzyme sequences to import into the chassis at each of the reaction steps. To address such design requirements in an automated way, we present here a tool for exploring the space of enzymatic reactions. Given a reaction and an enzyme the tool provides a probability estimate that the enzyme catalyzes the reaction. Our tool first considers the similarity of a reaction to known biochemical reactions with respect to signatures around their reaction centers. Signatures are defined based on chemical transformation rules by using extended connectivity fingerprint descriptors. A semisupervised Gaussian process model associated with the similar known reactions then provides the probability estimate. The Gaussian process model uses information about both the reaction and the enzyme in providing the estimate. These estimates were validated experimentally by the application of the Gaussian process model to a newly identified metabolite in Escherichia coli in order to search for the enzymes catalyzing its associated reactions. Furthermore, we show with several pathway design examples how such ability to assign probability estimates to enzymatic reactions provides the potential to assist in bioengineering applications, providing experimental validation to our proposed approach. To the best of our knowledge, the proposed approach is the first application of Gaussian processes dealing with biological sequences and chemicals, the use of a semisupervised Gaussian process framework is also novel in the context of machine learning applied to bioinformatics. However, the ability of an enzyme to catalyze a reaction depends on the affinity between the substrates of the reaction and the enzyme. This affinity is generally quantified by the Michaelis constant KM