WorldWideScience

Sample records for atroviride enzymes produced

  1. Enzymatic hydrolysis of steam-pretreated lignocellulosic materials with Trichoderma atroviride enzymes produced in-house

    Directory of Open Access Journals (Sweden)

    Macrelli Stefano

    2009-07-01

    Full Text Available Abstract Background Improvement of the process of cellulase production and development of more efficient lignocellulose-degrading enzymes are necessary in order to reduce the cost of enzymes required in the biomass-to-bioethanol process. Results Lignocellulolytic enzyme complexes were produced by the mutant Trichoderma atroviride TUB F-1663 on three different steam-pretreated lignocellulosic substrates, namely spruce, wheat straw and sugarcane bagasse. Filter paper activities of the enzymes produced on the three materials were very similar, while β-glucosidase and hemicellulase activities were more dependent on the nature of the substrate. Hydrolysis of the enzyme preparations investigated produced similar glucose yields. However, the enzymes produced in-house proved to degrade the xylan and the xylose oligomers less efficiently than a commercial mixture of cellulase and β-glucosidase. Furthermore, accumulation of xylose oligomers was observed when the TUB F-1663 supernatants were applied to xylan-containing substrates, probably due to the low β-xylosidase activity of the enzymes. The efficiency of the enzymes produced in-house was enhanced by supplementation with extra commercial β-glucosidase and β-xylosidase. When the hydrolytic capacities of various mixtures of a commercial cellulase and a T. atroviride supernatant produced in the lab were investigated at the same enzyme loading, the glucose yield appeared to be correlated with the β-glucosidase activity, while the xylose yield seemed to be correlated with the β-xylosidase level in the mixtures. Conclusion Enzyme supernatants produced by the mutant T. atroviride TUB F-1663 on various pretreated lignocellulosic substrates have good filter paper activity values combined with high levels of β-glucosidase activities, leading to cellulose conversion in the enzymatic hydrolysis that is as efficient as with a commercial cellulase mixture. On the other hand, in order to achieve good xylan

  2. Enhancing rice resistance to fungal pathogens by transformation with cell wall degrading enzyme genes from Trichoderma atroviride

    Institute of Scientific and Technical Information of China (English)

    刘梅; 孙宗修; 朱洁; 徐同; HARMANGaryE; LORITOMatteo

    2004-01-01

    Three genes encoding for fungal cell wall degrading enzymes (CWDEs), ech42, nag70 and gluc78 from the biocontrol fungus Trichoderma atroviride were inserted into the binary vector pCAMBIA1305.2 singly and in all possible combinations and transformed to rice plants. More than 1800 independently regenerated plantlets in seven different populations (for each of the three genes and each of the four gene combinations) were obtained. The ech42 gene encoding for an endochitinase increased resistance to sheath blight caused by Rhizoctonia solani, while the exochitinase-encoding gene, nag70, had lesser effect. The expression level of endochitinase but exochitinase was correlated with disease resistance. Nevertheless, exochitinase enhanced the effect of endochitinase on disease resistance when the two genes co-expressed in transgenics. Resistance to Magnaporthe grisea was found in all kinds of regenerated plants including that with single gluc78. A few lines expressing either ech42 or nag70 gene were immune to the disease. Transgenic plants are being tested to further evaluate disease resistance at field level. This is the first report of multiple of expression of genes encoding CWDEs from Trichoderma atroviride that result in resistance to blast and sheath blight in rice.

  3. Camptothecin-producing endophytic fungus Trichoderma atroviride LY357: isolation, identification, and fermentation conditions optimization for camptothecin production.

    Science.gov (United States)

    Pu, Xiang; Qu, Xixing; Chen, Fei; Bao, Jinku; Zhang, Guolin; Luo, Yinggang

    2013-11-01

    Camptothecin (CPT), the third largest anticancer drug, is produced mainly by Camptotheca acuminata and Nothapodytes foetida. CPT itself is the starting material for clinical CPT-type drugs, but the plant-derived CPT cannot support the heavy demand from the global market. Research efforts have been made to identify novel sources for CPT. In this study, three CPT-producing endophytic fungi, Aspergillus sp. LY341, Aspergillus sp. LY355, and Trichoderma atroviride LY357, were isolated and identified from C. acuminata. Most CPT produced by these fungi was found in the fermentation broth, and their corresponding CPT yields were 7.93, 42.92, and 197.82 μg l(-1), respectively. The CPT-producing capability of LY341 and LY355 was completely lost after repeat subculturing. A substantial decrease of CPT production was also observed in the second generation of LY357. However, a stable and sustainable production of CPT was found from the second generation through the eighth generation of LY357. The fermentation medium, time, pH, temperature, and agitation rate were optimized for CPT production. Methyl jasmonate and XAD16 were proven to be an optimum elicitor and adsorbent resin, respectively, in view of that CPT yield was increased 3.4- and 11-fold through their use. A 50- to 75-fold increase of CPT yield was obtained when the optimized fermentation conditions, elicitor, and adsorbent resin were combined and applied to the culture of the seventh and eighth generations of LY357, and the highest CPT yield was 142.15 μg l(-1). The CPT-producing T. atroviride LY357 paves a potential to uncover the mysteries of CPT biosynthesis. PMID:23949997

  4. Disruption of the Eng18B ENGase gene in the fungal biocontrol agent Trichoderma atroviride affects growth, conidiation and antagonistic ability.

    Directory of Open Access Journals (Sweden)

    Mukesh K Dubey

    Full Text Available The recently identified phylogenetic subgroup B5 of fungal glycoside hydrolase family 18 genes encodes enzymes with mannosyl glycoprotein endo-N-acetyl-β-D-glucosaminidase (ENGase-type activity. Intracellular ENGase activity is associated with the endoplasmic reticulum associated protein degradation pathway (ERAD of misfolded glycoproteins, although the biological relevance in filamentous fungi is not known. Trichoderma atroviride is a mycoparasitic fungus that is used for biological control of plant pathogenic fungi. The present work is a functional study of the T. atroviride B5-group gene Eng18B, with emphasis on its role in fungal growth and antagonism. A homology model of T. atroviride Eng18B structure predicts a typical glycoside hydrolase family 18 (αβ(8 barrel architecture. Gene expression analysis shows that Eng18B is induced in dual cultures with the fungal plant pathogens Botrytis cinerea and Rhizoctonia solani, although a basal expression is observed in all growth conditions tested. Eng18B disruption strains had significantly reduced growth rates but higher conidiation rates compared to the wild-type strain. However, growth rates on abiotic stress media were significantly higher in Eng18B disruption strains compared to the wild-type strain. No difference in spore germination, germ-tube morphology or in hyphal branching was detected. Disruption strains produced less biomass in liquid cultures than the wild-type strain when grown with chitin as the sole carbon source. In addition, we determined that Eng18B is required for the antagonistic ability of T. atroviride against the grey mould fungus B. cinerea in dual cultures and that this reduction in antagonistic ability is partly connected to a secreted factor. The phenotypes were recovered by re-introduction of an intact Eng18B gene fragment in mutant strains. A putative role of Eng18B ENGase activity in the endoplasmic reticulum associated protein degradation pathway of endogenous

  5. Disruption of the Eng18B ENGase Gene in the Fungal Biocontrol Agent Trichoderma atroviride Affects Growth, Conidiation and Antagonistic Ability

    Science.gov (United States)

    Dubey, Mukesh K.; Ubhayasekera, Wimal; Sandgren, Mats; Funck Jensen, Dan; Karlsson, Magnus

    2012-01-01

    The recently identified phylogenetic subgroup B5 of fungal glycoside hydrolase family 18 genes encodes enzymes with mannosyl glycoprotein endo-N-acetyl-β-D-glucosaminidase (ENGase)-type activity. Intracellular ENGase activity is associated with the endoplasmic reticulum associated protein degradation pathway (ERAD) of misfolded glycoproteins, although the biological relevance in filamentous fungi is not known. Trichoderma atroviride is a mycoparasitic fungus that is used for biological control of plant pathogenic fungi. The present work is a functional study of the T. atroviride B5-group gene Eng18B, with emphasis on its role in fungal growth and antagonism. A homology model of T. atroviride Eng18B structure predicts a typical glycoside hydrolase family 18 (αβ)8 barrel architecture. Gene expression analysis shows that Eng18B is induced in dual cultures with the fungal plant pathogens Botrytis cinerea and Rhizoctonia solani, although a basal expression is observed in all growth conditions tested. Eng18B disruption strains had significantly reduced growth rates but higher conidiation rates compared to the wild-type strain. However, growth rates on abiotic stress media were significantly higher in Eng18B disruption strains compared to the wild-type strain. No difference in spore germination, germ-tube morphology or in hyphal branching was detected. Disruption strains produced less biomass in liquid cultures than the wild-type strain when grown with chitin as the sole carbon source. In addition, we determined that Eng18B is required for the antagonistic ability of T. atroviride against the grey mould fungus B. cinerea in dual cultures and that this reduction in antagonistic ability is partly connected to a secreted factor. The phenotypes were recovered by re-introduction of an intact Eng18B gene fragment in mutant strains. A putative role of Eng18B ENGase activity in the endoplasmic reticulum associated protein degradation pathway of endogenous glycoproteins in T

  6. Vision and development in Trichoderma atroviride

    Institute of Scientific and Technical Information of China (English)

    Casas S; Cortés C; Ríos M; Rosales T; Bibbins M; Olmedo V; Herrera-Estrella A

    2004-01-01

    @@ Phototropism, the induction of carotenogenesis and reproductive structures, and resetting of the circadian rhythm are controlled by blue light. Trichoderma is used as a photomorphogenetic model due to its ability to conidiate upon exposure to light. In total darkness, T. atroviride grows indefinitely as a mycelium provided that nutrients are not limiting. However, nutrient deprivation and light trigger the conidiation process. A pulse of blue light given to a radially growing colony induces synchronous sporulation. A ring of conidiophores bearing green conidia is produced at what had been the colony perimeter at the time of the light pulse. All known responses to blue light in N. crassa are initiated by a couple of transcription factors encoded by the white-collar genes (wc -1 and wc-2). WC-1 and WC-2 bind to the promoters of light regulated genes to rapidly activate transcription in response to light. In T. atroviride the photolyase encoding gene phr1 undergoes fast transcriptional activation in response to light. The presence of putative WCC binding boxes in the promoter of phr1 , suggested that light responses in Trichoderma could be under the control of white-collar homologues. We cloned two genes and demonstrated by gene replacement that both are essential for photoconidiation and photolyase gene expression. Therefore, they were named blue-light regulator one and two (blr1 and blr2 ). The BLR1 protein has all the characteristics of a blue-light photoreceptor. The generation of subtractive cDNA libraries allowed us to identify novel, BLR independent, light responses including the regulation of gene expression by blue-light. In addition, we recently initiated a Trichoderma ESTs sequencing project. Until now, we have sequenced above 3000 ESTs, from which we have obtained approximately 1800 unigenes. This unigene set was printed in microarrays and used to search for light induced genes. Twenty five clearly induced and around thirty repressed genes have been

  7. PURIFICATION OF GLUTAMINASE ENZYME PRODUCED FROM ERWINIA

    OpenAIRE

    PUSHPINDER PAUL

    2013-01-01

    The purpose of this study was to do Purification of the Glutaminase enzyme produced from free cells of Erwinia species at flask level. Glutaminase can be isolated from a number of sources such as plants, animals and microorganisms. Glutaminase is an important enzyme that serves many functions. It plays a key role in the energy and nitrogen metabolism of mammalian cells. Glutaminase is very important food enzyme used in food industries for flavor enhancement. Glutaminase, in combination with o...

  8. PURIFICATION OF GLUTAMINASE ENZYME PRODUCED FROM ERWINIA

    Directory of Open Access Journals (Sweden)

    PUSHPINDER PAUL

    2013-01-01

    Full Text Available The purpose of this study was to do Purification of the Glutaminase enzyme produced from free cells of Erwinia species at flask level. Glutaminase can be isolated from a number of sources such as plants, animals and microorganisms. Glutaminase is an important enzyme that serves many functions. It plays a key role in the energy and nitrogen metabolism of mammalian cells. Glutaminase is very important food enzyme used in food industries for flavor enhancement. Glutaminase, in combination with or as an alternative to asparaginase could be of great significance in enzyme therapy for cancer especially acute lymphocytic leukemia. Glutaminase enzyme was produced from free cells of Erwinia under optimized conditions such as Temperature, pH, Time, Inducer concentrations etc. After production of Glutaminase enzyme, Partial purification of enzyme was done with Ammonium Sulphate precipitation method. After isolation, the Glutaminase enzyme was purified with Gel filtration Chromatography & Ion Exchange chromatography. After purification by both methods, Purified samples were analyzed for enzyme activity & protein content. Enzyme activity was determined by Nessler's method & protein content was determined by Bradford method. It was found that after purification of crude sample by both methods, Gel Filtration chromatography shows maximum enzyme activity and specific activity than the samples purified with Ion Exchange Chromatography. Also %age recovery (97.59% & purification fold (1.70 obtained was found maximum from the samples purified with Gel Filtration Chromatography. From above results it was concluded that Gel filtration method is Better method for the purification of Glutaminase enzyme than Ion exchange Chromatography.

  9. Proteomic response of the biological control fungus Trichoderma atroviride to growth on the cell walls of Rhizoctonia solani.

    Science.gov (United States)

    Grinyer, Jasmine; Hunt, Sybille; McKay, Matthew; Herbert, Ben R; Nevalainen, Helena

    2005-06-01

    Trichoderma atroviride has a natural ability to parasitise phytopathogenic fungi such as Rhizoctonia solani and Botrytis cinerea, therefore providing an environmentally sound alternative to chemical fungicides in the management of these pathogens. Two-dimensional electrophoresis was used to display cellular protein patterns of T. atroviride (T. harzianum P1) grown on media containing either glucose or R. solani cell walls. Protein profiles were compared to identify T. atroviride proteins up-regulated in the presence of the R. solani cell walls. Twenty-four protein spots were identified using matrix-assisted laser desorption ionisation mass spectrometry, liquid chromatography mass spectrometry and N-terminal sequencing. Identified up-regulated proteins include known fungal cell wall-degrading enzymes such as N-acetyl-beta-D: -glucosaminidase and 42-kDa endochitinase. Three novel proteases of T. atroviride were identified, containing sequence similarity to vacuolar serine protease, vacuolar protease A and a trypsin-like protease from known fungal proteins. Eukaryotic initiation factor 4a, superoxide dismutase and a hypothetical protein from Neurospora crassa were also up-regulated as a response to R. solani cell walls. Several cell wall-degrading enzymes were identified from the T. atroviride culture supernatant, providing further evidence that a cellular response indicative of biological control had occurred. PMID:15856359

  10. Trametes suaveolens as ligninolytic enzyme producer

    Directory of Open Access Journals (Sweden)

    Knežević Aleksandar

    2013-01-01

    Full Text Available Species of the genus Trametes represent one of the most efficient lignin-degraders which can be attributed to a well developed ligninolytic enzyme system. Current trends are screening of ability of new species to produce these enzymes, as well as the optimization of conditions for their overproduction. Therefore, the aim of the study was to evaluate the potential of T. suaveolens to synthesize laccase and Mn-oxidizing peroxidases during fermentation of the selected plant raw materials. Level of enzyme activities was measured on 7, 10 and 14th day of submersion, as well as the solid-state fermentation of wheat straw and oak sawdust in the presence of NH4NO3 in previously determined optimal nitrogen concentration of 25 mM. The enzyme activity was determined spectrophotometrically using ABTS and phenol red as the substrates. The highest level of laccase activity (1087.1 U/L was noted after 7 days of wheat straw solid-state fermentation, while during the submerged cultivation the production of the enzyme was not noted. Submerged cultivation in oak sawdust-enriched medium was the optimal for activity of Mn-dependent peroxidase (1767.7 U/L on day 14 and Mn-independent peroxidase (1113.7 U/L on day 7. Introduction of T. suaveolens to produce ligninolytic enzyme represented the base for further study, as well as the determination of relation between enzyme activity and rate of lignin degradation. It could lead to greater possibility of fungal species selection with high delignification capacity, which could take participation in sustainable production of food, feed, fibres, and energy, environmentally friendly pollution prevention, and bioremediation.

  11. Human recombinant lysosomal enzymes produced in microorganisms.

    Science.gov (United States)

    Espejo-Mojica, Ángela J; Alméciga-Díaz, Carlos J; Rodríguez, Alexander; Mosquera, Ángela; Díaz, Dennis; Beltrán, Laura; Díaz, Sergio; Pimentel, Natalia; Moreno, Jefferson; Sánchez, Jhonnathan; Sánchez, Oscar F; Córdoba, Henry; Poutou-Piñales, Raúl A; Barrera, Luis A

    2015-01-01

    Lysosomal storage diseases (LSDs) are caused by accumulation of partially degraded substrates within the lysosome, as a result of a function loss of a lysosomal protein. Recombinant lysosomal proteins are usually produced in mammalian cells, based on their capacity to carry out post-translational modifications similar to those observed in human native proteins. However, during the last years, a growing number of studies have shown the possibility to produce active forms of lysosomal proteins in other expression systems, such as plants and microorganisms. In this paper, we review the production and characterization of human lysosomal proteins, deficient in several LSDs, which have been produced in microorganisms. For this purpose, Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris, Yarrowia lipolytica, and Ogataea minuta have been used as expression systems. The recombinant lysosomal proteins expressed in these hosts have shown similar substrate specificities, and temperature and pH stability profiles to those produced in mammalian cells. In addition, pre-clinical results have shown that recombinant lysosomal enzymes produced in microorganisms can be taken-up by cells and reduce the substrate accumulated within the lysosome. Recently, metabolic engineering in yeasts has allowed the production of lysosomal enzymes with tailored N-glycosylations, while progresses in E. coli N-glycosylations offer a potential platform to improve the production of these recombinant lysosomal enzymes. In summary, microorganisms represent convenient platform for the production of recombinant lysosomal proteins for biochemical and physicochemical characterization, as well as for the development of ERT for LSD. PMID:26071627

  12. Extracellular proteolytic enzymes produced by human pathogenic vibrio species

    OpenAIRE

    Miyoshi, Shin-Ichi

    2013-01-01

    Bacteria in the genus Vibrio produce extracellular proteolytic enzymes to obtain nutrients via digestion of various protein substrates. However, the enzymes secreted by human pathogenic species have been documented to modulate the bacterial virulence. Several species including Vibrio cholerae and V. vulnificus are known to produce thermolysin-like metalloproteases termed vibriolysin. The vibriolysin from V. vulnificus, a causative agent of serious systemic infection, is a major toxic factor e...

  13. Botryosphaeriales fungi produce extracellular enzymes with biotechnological potential.

    Science.gov (United States)

    Esteves, Ana Cristina; Saraiva, Márcia; Correia, António; Alves, Artur

    2014-05-01

    Phytopathogenic fungi are known for producing an arsenal of extracellular enzymes whose involvement in the infection mechanism has been suggested. However, these enzymes are largely unknown and their biotechnological potential also remains poorly understood. In this study, the production and thermostability of extracellular enzymes produced by phytopathogenic Botryosphaeriaceae was investigated. Hydrolytic and oxidative activities were detected and quantified at different temperatures. Most strains (70%; 37/53) were able to produce simultaneously cellulases, laccases, xylanases, pectinases, pectin lyases, amylases, lipases, and proteases. Surprisingly for mesophilic filamentous fungi, several enzymes proved to be thermostable: cellulases from Neofusicoccum mediterraneum CAA 001 and from Dothiorella prunicola CBS 124723, lipases from Diplodia pinea (CAA 015 and CBS 109726), and proteases from Melanops tulasnei CBS 116806 were more active at 70 °C than at any of the other temperatures tested. In addition, lipases produced by Diplodia pinea were found to be significantly more active than any other known lipase from Botryosphaeriales. The thermal activity profile and the wide array of activities secreted by these fungi make them optimal producers of biotechnologically relevant enzymes that may be applied in the food and the health industries (proteases), the pulp-and-paper and biofuel industries (cellulases), or even in the detergent industry (lipases, proteases, amylases, and cellulases). PMID:24802941

  14. Enzymes and bioproducts produced by the ascomycete fungus Paecilomyces variotii.

    Science.gov (United States)

    Herrera Bravo de Laguna, I; Toledo Marante, F J; Mioso, R

    2015-12-01

    Due its innate ability to produce extracellular enzymes which can provide eco-friendly solutions for a variety of biotechnological applications, Paecilomyces variotii is a potential source of industrial bioproducts. In this review, we report biotechnological records on the biochemistry of different enzymes produced by the fermentation of the P. variotii fungus, including tannases, phytases, cellulases, xylanases, chitinases, amylases and pectinases. Additionally, the main physicochemical properties which can affect the enzymatic reactions of the enzymes involved in the conversion of a huge number of substrates to high-value bioproducts are described. Despite all the background information compiled in this review, more research is required to consolidate the catalytic efficiency of P. variotii, which must be optimized so that it is more accurate and reproducible on a large scale. PMID:26274842

  15. In vitro sensitivity of antagonistic Trichoderma atroviride to herbicides

    Directory of Open Access Journals (Sweden)

    Patricia Helena Santoro

    2014-04-01

    Full Text Available Trichoderma atroviride was tested in vitro for its sensitivity to different herbicides. The dosages tested were recommended dosage (RD, half dosage (½RD, and double dosage (2RD. Germination, colony-forming units (CFU, radial growth, and spore production were evaluated. Carfentrazone-ethyl and sulfentrazone inhibited the germination at RD and 2RD. A reduction in the CFU was observed for glufosinate-ammonium, atrazine, carfentrazone-ethyl, diuron + paraquat dichloride, imazapyr, oxyfluorfen, and sulfentrazone at each of the tested dosages. Radial growth was influenced by ametryn, atrazine, carfentrazone-ethyl, oxyfluorfen, and sulfentrazone herbicides, with an 80% reduction of the colonial area. Spore production was affected by carfentrazone-ethyl, oxyfluorfen, and sulfentrazone with colonial area reductions of over 70%. It was concluded that 2,4 D, clomazone, and imazapyr herbicides showed the least toxicity to T. atroviride and should be used in the crops where the fungus has been applied for phytopathogen control.

  16. Screening and isolation of halophilic bacteria producing industrially important enzymes

    Directory of Open Access Journals (Sweden)

    Sumit Kumar

    2012-12-01

    Full Text Available Halophiles are excellent sources of enzymes that are not only salt stable but also can withstand and carry out reactions efficiently under extreme conditions. The aim of the study was to isolate and study the diversity among halophilic bacteria producing enzymes of industrial value. Screening of halophiles from various saline habitats of India led to isolation of 108 halophilic bacteria producing industrially important hydrolases (amylases, lipases and proteases. Characterization of 21 potential isolates by morphological, biochemical and 16S rRNA gene analysis found them related to Marinobacter, Virgibacillus, Halobacillus, Geomicrobium, Chromohalobacter, Oceanobacillus, Bacillus, Halomonas and Staphylococcus genera. They belonged to moderately halophilic group of bacteria exhibiting salt requirement in the range of 3-20%. There is significant diversity among halophiles from saline habitats of India. Preliminary characterization of crude hydrolases established them to be active and stable under more than one extreme condition of high salt, pH, temperature and presence of organic solvents. It is concluded that these halophilic isolates are not only diverse in phylogeny but also in their enzyme characteristics. Their enzymes may be potentially useful for catalysis under harsh operational conditions encountered in industrial processes. The solvent stability among halophilic enzymes seems a generic novel feature making them potentially useful in non-aqueous enzymology.

  17. In vitro sensitivity of antagonistic Trichoderma atroviride to herbicides

    OpenAIRE

    Patricia Helena Santoro; Silvia Akimi Cavaguchi; Talita Moretto Alexandre; Janaina Zorzetti; Pedro Manuel Oliveira Janeiro Neves

    2014-01-01

    Trichoderma atroviride was tested in vitro for its sensitivity to different herbicides. The dosages tested were recommended dosage (RD), half dosage (½RD), and double dosage (2RD). Germination, colony-forming units (CFU), radial growth, and spore production were evaluated. Carfentrazone-ethyl and sulfentrazone inhibited the germination at RD and 2RD. A reduction in the CFU was observed for glufosinate-ammonium, atrazine, carfentrazone-ethyl, diuron + paraquat dichloride, imazapyr, oxyfluorfen...

  18. Extracellular proteolytic enzymes produced by human pathogenic Vibrio species

    Directory of Open Access Journals (Sweden)

    Shin-IchiMiyoshi

    2013-11-01

    Full Text Available Bacteria in the genus Vibrio produce extracellular proteolytic enzymes to obtain nutrients via digestion of various protein substrates. However, the enzymes secreted by human pathogenic species have been documented to modulate the bacterial virulence. Several species including Vibrio cholerae and V. vulnificus are known to produce thermolysin-like metalloproteases termed vibriolysin. The vibriolysin from V. vulnificus, a causative agent of serious systemic infection, is a major toxic factor eliciting the secondary skin damage characterized by formation of the hemorrhagic brae. The vibriolysin from intestinal pathogens may play indirect roles in pathogenicity because it can activate protein toxins and hemagglutinin by the limited proteolysis and can affect the bacterial attachment to or detachment from the intestinal surface by degradation of the mucus layer. Two species causing wound infections, V. alginolyticus and V. parahaemolyticus, produce another metalloproteases so-called collagenases. Although the detailed pathological roles have not been studied, the collagenase is potent to accelerate the bacterial dissemination through digestion of the protein components of the extracellular matrix. Some species produce cymotrypsin-like serine proteases, which may also affect the bacterial virulence potential. The intestinal pathogens produce sufficient amounts of the metalloprotease at the small intestinal temperature; however, the metalloprotease production by extra-intestinal pathogens is much higher around the body surface temperature. On the other hand, the serine protease is expressed only in the absence of the metalloprotease.

  19. Cooperation between ligninolytic enzymes produced by superior mixed flora

    Institute of Scientific and Technical Information of China (English)

    WANG Hai-lei; LI Zong-yi; GUO Wei-yun; WANG Zhen-yu; PAN Feng

    2005-01-01

    Since the ability to degrade lignin with one kind of white-rot fungi or bacteria was very limited, superior mixed flora's ability to degrade lignin was investigated by an orthogonal experiment in this paper. The results showed that superior mixed flora reinforced the ability to degrade lignin, the degradation rates of both sample 9 and 10 were beyond 80% on the day 9. The cooperation between lignin peroxidase(LiP), Mn-dependent peroxidase(MnP) and laccase (Lac) for lignin degradation was also studied. By examining the activities of three enzymes produced by superior mixed flora, it was found that Lac was a key enzyme in the process of biological degradation of lignin but Lip was not; the enzyme activity ratios of Lac/MnP and Lac/LiP were significantly correlative with the degradation rate of lignin at the 0.01 level; and the ratio of MnP/LiP was an important factor affecting the degradation rate of lignin.

  20. Xenobiotic Compounds Degradation by Heterologous Expression of a Trametes sanguineus Laccase in Trichoderma atroviride.

    Directory of Open Access Journals (Sweden)

    Edgar Balcázar-López

    Full Text Available Fungal laccases are enzymes that have been studied because of their ability to decolorize and detoxify effluents; they are also used in paper bleaching, synthesis of polymers, bioremediation, etc. In this work we were able to express a laccase from Trametes (Pycnoporus sanguineus in the filamentous fungus Trichoderma atroviride. For this purpose, a transformation vector was designed to integrate the gene of interest in an intergenic locus near the blu17 terminator region. Although monosporic selection was still necessary, stable integration at the desired locus was achieved. The native signal peptide from T. sanguineus laccase was successful to secrete the recombinant protein into the culture medium. The purified, heterologously expressed laccase maintained similar properties to those observed in the native enzyme (Km and kcat and kcat/km values for ABTS, thermostability, substrate range, pH optimum, etc. To determine the bioremediation potential of this modified strain, the laccase-overexpressing Trichoderma strain was used to remove xenobiotic compounds. Phenolic compounds present in industrial wastewater and bisphenol A (an endocrine disruptor from the culture medium were more efficiently removed by this modified strain than with the wild type. In addition, the heterologously expressed laccase was able to decolorize different dyes as well as remove benzo[α]pyrene and phenanthrene in vitro, showing its potential for xenobiotic compound degradation.

  1. Xenobiotic Compounds Degradation by Heterologous Expression of a Trametes sanguineus Laccase in Trichoderma atroviride

    Science.gov (United States)

    Balcázar-López, Edgar; Méndez-Lorenzo, Luz Helena; Batista-García, Ramón Alberto; Esquivel-Naranjo, Ulises; Ayala, Marcela; Kumar, Vaidyanathan Vinoth; Savary, Olivier; Cabana, Hubert; Herrera-Estrella, Alfredo; Folch-Mallol, Jorge Luis

    2016-01-01

    Fungal laccases are enzymes that have been studied because of their ability to decolorize and detoxify effluents; they are also used in paper bleaching, synthesis of polymers, bioremediation, etc. In this work we were able to express a laccase from Trametes (Pycnoporus) sanguineus in the filamentous fungus Trichoderma atroviride. For this purpose, a transformation vector was designed to integrate the gene of interest in an intergenic locus near the blu17 terminator region. Although monosporic selection was still necessary, stable integration at the desired locus was achieved. The native signal peptide from T. sanguineus laccase was successful to secrete the recombinant protein into the culture medium. The purified, heterologously expressed laccase maintained similar properties to those observed in the native enzyme (Km and kcat and kcat/km values for ABTS, thermostability, substrate range, pH optimum, etc). To determine the bioremediation potential of this modified strain, the laccase-overexpressing Trichoderma strain was used to remove xenobiotic compounds. Phenolic compounds present in industrial wastewater and bisphenol A (an endocrine disruptor) from the culture medium were more efficiently removed by this modified strain than with the wild type. In addition, the heterologously expressed laccase was able to decolorize different dyes as well as remove benzo[α]pyrene and phenanthrene in vitro, showing its potential for xenobiotic compound degradation. PMID:26849129

  2. Screening genus Penicillium for producers of cellulolytic and xylanolytic enzymes

    DEFF Research Database (Denmark)

    Krogh, Kristian Bertel Rømer; Mørkeberg, Astrid; Frisvad, Jens Christian;

    2004-01-01

    For enzymatic hydrolysis of lignocellulosic material, cellulolytic enzymes from Trichoderma reesei are most commenly used, but, there is a need for more efficient enzyme cocktails. In this study, the production of cellulolytic and xylanolytic enzymes was investigated in 12 filamentous fungi from...

  3. Screening genus Penicillium for producers of cellulolytic and xylanolytic enzymes

    DEFF Research Database (Denmark)

    Krogh, Kristian Bertel Rømer; Mørkeberg, Astrid; Frisvad, Jens Christian; Olsson, Lisbeth

    2004-01-01

    For enzymatic hydrolysis of lignocellulosic material, cellulolytic enzymes from Trichoderma reesei are most commenly used, but, there is a need for more efficient enzyme cocktails. In this study, the production of cellulolytic and xylanolytic enzymes was investigated in 12 filamentous fungi from...... genus Penicillium and compared with that of T. reesei. Either Solka-Floc cellulose or oat spelt xylan was used as carbon source in shake flask cultivations. All the fungi investigated showed coinduction of cellulolytic and xylanolytic enzymes during growth on cellulose as well as on xylan. The highest...

  4. Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    DEFF Research Database (Denmark)

    Andersen, Mikael Rørdam; Salazar, Margarita Pena; Schaap, Peter J.;

    2011-01-01

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzym...

  5. The transcription factor Ste12 mediates the regulatory role of the Tmk1 MAP kinase in mycoparasitism and vegetative hyphal fusion in the filamentous fungus Trichoderma atroviride.

    Directory of Open Access Journals (Sweden)

    Sabine Gruber

    Full Text Available Mycoparasitic species of the fungal genus Trichoderma are potent antagonists able to combat plant pathogenic fungi by direct parasitism. An essential step in this mycoparasitic fungus-fungus interaction is the detection of the fungal host followed by activation of molecular weapons in the mycoparasite by host-derived signals. The Trichoderma atroviride MAP kinase Tmk1, a homolog of yeast Fus3/Kss1, plays an essential role in regulating the mycoparasitic host attack, aerial hyphae formation and conidiation. However, the transcription factors acting downstream of Tmk1 are hitherto unknown. Here we analyzed the functions of the T. atroviride Ste12 transcription factor whose orthologue in yeast is targeted by the Fus3 and Kss1 MAP kinases. Deletion of the ste12 gene in T. atroviride not only resulted in reduced mycoparasitic overgrowth and lysis of host fungi but also led to loss of hyphal avoidance in the colony periphery and a severe reduction in conidial anastomosis tube formation and vegetative hyphal fusion events. The transcription of several orthologues of Neurospora crassa hyphal fusion genes was reduced upon ste12 deletion; however, the Δste12 mutant showed enhanced expression of mycoparasitism-relevant chitinolytic and proteolytic enzymes and of the cell wall integrity MAP kinase Tmk2. Based on the comparative analyses of Δste12 and Δtmk1 mutants, an essential role of the Ste12 transcriptional regulator in mediating outcomes of the Tmk1 MAPK pathway such as regulation of the mycoparasitic activity, hyphal fusion and carbon source-dependent vegetative growth is suggested. Aerial hyphae formation and conidiation, in contrast, were found to be independent of Ste12.

  6. Screening of Strains Producing Alkaline Protease from Soil and Study on the Conditions for Enzyme Production

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to screen strains producing alkaline protease from soil and study the conditions for enzyme production.[Method] Eight strains producing alkaline protease were isolated from soil through plate isolation,and the ability of enzyme production was measured by filter paper and Folin-phenol method.The strain with the strongest ability of enzyme production was screened as a candidate strain,then the factors influencing the ability of enzyme production was studied,finally the conditions for e...

  7. Olive mill wastewaters treatment by enzymes producing microorganisms

    OpenAIRE

    Gonçalves, Cristiana; Oliveira, Felisbela Maria Araújo; Abrunhosa, Luís; Venâncio, Armando; Alves, M. M.; Belo, Isabel

    2010-01-01

    Olive mill industry is a traditional agricultural industry in Mediterranean countries. These countries produce almost all the olive oil sold worldwide. Olive oil production results on a large amount of wastewaters (OMW), which represents a major environmental problem. OMW is a dark liquid residue with high organic content composed mainly by sugars, tannins, polyphenols, polyalcohols, organic acids, proteins, pectins and lipids. Different treatments and disposal alternatives can be found in th...

  8. Tropical Soil Fungi Producing Cellulase and Related Enzymes in Biodegradation

    Directory of Open Access Journals (Sweden)

    Wattanachai Pathomsiriwong

    2012-01-01

    Full Text Available The objective of this study was to screen, identify and characterize of cellulolytic fungi from various soil management fields; organic, young organic, semi-chemical and chemical soil from Surin rice fields, Thailand. Fungi from various type of soils were isolated by dilution plating technique on Reese minimal medium supplemented with cellulose powder and rice straw then incubated at 25°C for 3-7 days. The isolated fungi were screened and identified using slide culture technique. The enzymatic activities were assessed by qualitative method for cellulase, xylanase, peroxidase and laccase activities. Two-hundred and fifty-eight fungi isolates found in Surin rice fields belonging to the genus Penicillium (5 species, Paecilomyces (4 species, Aspergillus (3 species, Acremonium (2 species, Chaetomium (2 species, Alternaria (1 species, Bipolaris (1 species, Curvularia (1 species, Fusarium (1 species, Humicola (1 species, Mucor (1 species, Nigrospora (1 species, Phoma (1 species, Pyrenochaeta (1 species, Pythium (1 species, Rhizopus (1 species, Sporotrichum (1 species and Trichoderma (1 species. Out of 29 fungal species clearly showed different in enzymatic activities. Most tropical soil fungi had ability to produce cellulase, xylanase, laccase and peroxidase, respectively. The highest capacity was found only in cellulase. Aspergillus niger, Aspergillus sp., Chaetomium murorum and Trichoderma sp. showed the highest potential to produce cellulase. Eleven species of soil fungi showed high capacity in xylanase activity. For laccase and peroxidase activity, there were found in 2 species. The results also revealed that only ten showed highest carboxymethyl cellulase, xylanase, peroxidase and laccase activities by qualitative screening method for enzymatic assay. They were identified as Aspergillus niger, Acremonium sp., Aspergillus sp., Chaetomium murorum, Humicola grisea, Mucor sp., Paecilomyces victoriae, Penicillium janthinellum, Penicillium lanosum and

  9. Ultrasound-assisted extraction and characterization of hydrolytic and oxidative enzymes produced by solid state fermentation.

    Science.gov (United States)

    Szabo, Orsolya Erzsebet; Csiszar, Emilia; Toth, Karolina; Szakacs, George; Koczka, Bela

    2015-01-01

    Ligninolytic and hydrolytic enzymes were produced with six selected fungi on flax substrate by solid state fermentation (SSF). The extracellular enzyme production of the organisms in two SSF media was evaluated by measuring the soluble protein concentration and the filter paper, endoxylanase, 1,4-β-d-glucosidase, 1,4-β-d-endoglucanase, polygalacturonase, lignin peroxidase, manganese peroxidase and laccase activities of the clear culture solutions produced by conventional extraction from the SSF materials. The SSF material of the best enzyme producer (Trichoderma virens TUB F-498) was further investigated to enhance the enzyme recovery by low frequency ultrasound treatment. Performance of both the original and ultrasound macerated crude enzyme mixtures was evaluated in degradation of the colored lignin-containing and waxy materials of raw linen fabric. Results proved that sonication (at 40%, 60% and 80% amplitudes, for 60min) did not result in reduction in the filter paper, lignin peroxidase and laccase activities of the crude enzyme solution, but has a significant positive effect on the efficiency of enzyme extraction from the SSF material. Depending on the parameters of sonication, the enzyme activities in the extracts obtained can be increased up to 129-413% of the original activities measured in the control extracts recovered by a common magnetic stirrer. Sonication also has an effect on both the enzymatic removal of the lignin-containing color materials and hydrophobic surface layer from the raw linen. PMID:25043555

  10. Isolation of moderately halophilic pseudoalteromonas producing extracellular hydrolytic enzymes from persian gulf.

    Science.gov (United States)

    Ardakani, M Roayaie; Poshtkouhian, A; Amoozegar, M A; Zolgharnein, H

    2012-03-01

    Extracellular hydrolytic enzymes such as amylases, proteases, lipases and DNases have quite diverse potential usages in different areas such as food industry, biomedical sciences and chemical industries, also it would be of great importance to have available enzymes showing optimal activities at different values of salt concentrations and temperature. Halophiles are the most likely source of such enzymes, because not only their enzymes are salt-tolerant, but many are also thermotolerant. The purpose of this study was isolation of hydrolytic extracellular enzyme producing halophilic bacteria from water and sediment of the Persian Gulf. Isolated bacteria from water and sediment were inoculated in media with concentration of 0-20% NaCl to determine the optimum salt concentration for growth, isolates were also inoculated in 4 types of solid medium containing substrates of 3 extracellular hydrolytic enzymes including amylase, Protease and Lipase, to determine the quantitative detection of enzyme production, selected strains after more accurate physiological and biochemical studies were identified regarding phylogeny and molecular characteristics using 16S rRNA technique. Isolated enzyme producing bacteria belong to Pseudoalteromonas genera. PMID:23450116

  11. [Diversity and enzyme-producing activity of culturable halophilic bacteria in Daishan Saltern of East China].

    Science.gov (United States)

    Yang, Dan-Dan; Li, Qian; Huang, Jing-Jing; Chen, Min

    2012-11-01

    Soil and saline water samples were collected from the Daishan Saltern of East China, and the halophilic bacteria were isolated and cultured by using selective media, aimed to investigate the diversity and enzyme-producing activity of culturable halophilic bacteria in saltern environment. A total of 181 strains were isolated by culture-dependent method. Specific primers were used to amplify the 16S rRNA gene of bacteria and archaea. The operation taxonomy units (OTUs) were determined by ARDRA method, and the representative strain of each OTU was sequenced. The phylogenetic position of all the isolated strains was determined by 16S rRNA sequencing. The results showed that the isolated 181 strains displayed 21 operational taxonomic units (OTUs), of which, 12 OTUs belonged to halophilic bacteria, and the others belonged to halophilic archaea. Phylogenetic analysis indicated that there were 7 genera presented among the halophilic bacteria group, and 4 genera presented among the halophilic archaea group. The dominant halophilic strains were of Halomonas and Haloarcula, with 46.8% in halophilic bacteria and 49.1% in halophilic archaea group, respectively. Enzyme-producing analysis indicated that most strains displayed enzyme-producing activity, including the activities of producing amylase, proteinase and lipase, and the dominant strains capable of enzyme-producing were of Haloarcula. Our results showed that in the environment of Daishan Saltern, there existed a higher diversity of halophilic bacteria, being a source sink for screening enzyme-producing bacterial strains. PMID:23431797

  12. Nematocidal activity of extracellular enzymes produced by the nematophagous fungus Duddingtonia flagrans on cyathostomin infective larvae.

    Science.gov (United States)

    Braga, Fabio Ribeiro; Soares, Filippe Elias Freitas; Giuberti, Thais Zanotti; Lopes, Aline Del Carmen Garcias; Lacerda, Tracy; Ayupe, Tiago de Hollanda; Queiroz, Paula Viana; Gouveia, Angélica de Souza; Pinheiro, Larissa; Araújo, Andreia Luíza; Queiroz, José Humberto; Araújo, Jackson Victor

    2015-09-15

    Duddingtonia flagrans produces chitinases, however, optimization of the production of these enzymes still needs to be explored, and its nematocidal activity should still be the subject of studies. The objective of the present study was to optimize chitinase production, and evaluate the nematocidal activity of extracellular enzymes produced by the nematophagous fungus D. flagrans on cyathostomin infective larvae. An isolate from D. flagrans (AC001) was used in this study. For the production of enzymes (protease and chitinase), two different culture media were inoculated with AC001 conidia. Both enzymes were purified. The statistical Plackett-Burman factorial design was used to investigate some variables and their effect on the production of chitinases by D. flagrans. After that, the design central composite (CCD) was used in order to determine the optimum levels and investigate the interactions of these variables previously observed. Only two variables (moisture and incubation time), in the evaluated levels, had a significant effect (pemployability for this chitinase. PMID:26319197

  13. Production of Enzymes from Agroindustrial Wastes by Biosurfactant-Producing Strains of Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Francisco Fábio Cavalcante Barros

    2013-01-01

    Full Text Available Bacteria in the genus Bacillus are the source of several enzymes of current industrial interest. Hydrolases, such as amylases, proteases, and lipases, are the main enzymes consumed worldwide and have applications in a wide range of products and industrial processes. Fermentation processes by Bacillus subtilis using cassava wastewater as a substrate are reported in the technical literature; however, the same combination of microorganisms and this culture medium is limited or nonexistent. In this paper, the amylase, protease, and lipase production of ten Bacillus subtilis strains previously identified as biosurfactant producers in cassava wastewater was evaluated. The LB1a and LB5a strains were selected for analysis using a synthetic medium and cassava wastewater and were identified as good enzyme producers, especially of amylases and proteases. In addition, the enzymatic activity results indicate that cassava wastewater was better than the synthetic medium for the induction of these enzymes.

  14. Production of Enzymes from Agroindustrial Wastes by Biosurfactant-Producing Strains of Bacillus subtilis.

    Science.gov (United States)

    Barros, Francisco Fábio Cavalcante; Simiqueli, Ana Paula Resende; de Andrade, Cristiano José; Pastore, Gláucia Maria

    2013-01-01

    Bacteria in the genus Bacillus are the source of several enzymes of current industrial interest. Hydrolases, such as amylases, proteases, and lipases, are the main enzymes consumed worldwide and have applications in a wide range of products and industrial processes. Fermentation processes by Bacillus subtilis using cassava wastewater as a substrate are reported in the technical literature; however, the same combination of microorganisms and this culture medium is limited or nonexistent. In this paper, the amylase, protease, and lipase production of ten Bacillus subtilis strains previously identified as biosurfactant producers in cassava wastewater was evaluated. The LB1a and LB5a strains were selected for analysis using a synthetic medium and cassava wastewater and were identified as good enzyme producers, especially of amylases and proteases. In addition, the enzymatic activity results indicate that cassava wastewater was better than the synthetic medium for the induction of these enzymes. PMID:23533780

  15. Host cell capable of producing enzymes useful for degradation of lignocellulosic material

    Science.gov (United States)

    Los, Alrik Pieter; Sagt, Cornelis Maria Jacobus; Schooneveld-Bergmans, Margot Elisabeth Francoise; Damveld, Robbertus Antonius

    2015-08-18

    The invention relates to a host cell comprising at least four different heterologous polynucleotides chosen from the group of polynucleotides encoding cellulases, hemicellulases and pectinases, wherein the host cell is capable of producing the at least four different enzymes chosen from the group of cellulases, hemicellulases and pectinases, wherein the host cell is a filamentous fungus and is capable of secretion of the at least four different enzymes. This host cell can suitably be used for the production of an enzyme composition that can be used in a process for the saccharification of cellulosic material.

  16. Cooperation, competition, and coalitions in enzyme-producing microbes: Social evolution and nutrient depolymerization rates

    Directory of Open Access Journals (Sweden)

    Henry Joseph Folse

    2012-09-01

    Full Text Available Extracellular enzymes represent a public good for microbial communities, as they break down complex molecules into simple molecules that microbes can take up. These communities are vulnerable to cheating by microbes that do not produce enzymes, but benefit from those produced by others. However, extracellular enzymes are ubiquitous and play an important role in the depolymerization of nutrients. We developed a multi-genotype, multi-nutrient model of a community of exoenzyme-producing microbes, in order to investigate the relationship between diversity, social interactions, and nutrient depolymerization. We focused on coalitions between complementary types of microbes and their implications for spatial pattern formation and nutrient depolymerization. The model included polymers containing carbon, nitrogen, or phosphorus, and eight genotypes of bacteria, which produced different subsets of the three enzymes responsible for hydrolyzing these polymers. We allowed social dynamics to emerge from a mechanistic model of enzyme production, action, and diffusion. We found that diversity was maximized at high rates of either diffusion or enzyme production (but not both. Conditions favoring cheating also favored the emergence of coalitions. We characterized the spatial patterns formed by different interactions, showing that same-type cooperation leads to aggregation, but between-type cooperation leads to an interwoven, filamentous pattern. Contrary to expectations based on niche complementarity, we found that nutrient depolymerization declined with increasing diversity due to a negative competitive effect of coalitions on generalist producers, leading to less overall enzyme production. This decline in depolymerization was stronger for non-limiting nutrients in the system. This study shows that social interactions among microbes foraging for complementary resources can influence microbial diversity, microbial spatial distributions, and rates of nutrient

  17. Screening of Alkaline Protease-Producing Streptomyces diastaticus and Optimization of Enzyme Production

    Directory of Open Access Journals (Sweden)

    Elham Dawoodi

    2014-12-01

    Full Text Available Background and Aim: Alkaline proteases are used in pharmaceutical, film and photography, silk production and food, leather and detergent industries. Actinomycetes are gram positive bacteria that produce different enzymes such as proteases. The aims of this research were isolation of native alkaline protease-producing Actinomycete spp. from different soil samples as well as optimizing the conditions for enzyme production. Materials and Methods: The different soil samples were collected from different locations of the provinces of Khouzestan, Chahar Mahalo Bakhtiari and Isfahan, Iran. After determining of the best alkaline protease producing species using Lowry method, the optimization of alkaline protease was performed. Results: The alkaline protease producing Actinomycete spp. was isolated from soil. The most enzyme activity was measured in S.diastaticus. The best concentration of sucrose as the carbon source for the highest production of alkaline protease was 10 g/l. The optimum pH and temperature for the alkaline protease production by S. diastaticus were 10 and 30°C respectively. The maximum activity of alkaline protease was measured at 200 rpm as the best aeration speed. Conclusions: This is the first report of alkaline protease production by Streptomyces diastaticus in Iran. The accomplished examinations in this research confirmed the previous theories of alkaline protease production by Actinomycetes relatively. Regarding the immense applications of alkaline proteases in several industries and isolation of a native alkaline protease producing Actinomycete, The production potential of this enzyme in our country could be accessible in the near future.

  18. Enzyme

    Science.gov (United States)

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  19. [Construction of Producers of Cellulolytic and Pectinolytic Enzymes Based on the Fungus Penicillium verruculosum].

    Science.gov (United States)

    Bushina, E V; Rubtsova, E A; Rozhkova, A M; Sinitsyna, O A; Koshelev, A V; Matys, V Yu; Nemashkalov, V A; Sinitsyn, A P

    2015-01-01

    Based on the fungus Penicillium verruculosum, we created strains with a complex of extracellular enzymes that contains both cellulolytic enzymes of the fungus and heterologous pectin lyase A from P. canescens and endo- 1,4-α-polygalacturonase from Aspergillus niger. The endopolygalacturonase and pectin lyase activities of enzyme preparations obtained from culture media of the producer strains reached 46-53 U/mg of protein and 1.3-2.3 U/mg of protein, respectively. The optimal temperature and pH values for recombinant pectin lyase and endopolygalacturonase corresponded to those described in the literature for these enzymes. The content of heterologous endopolygalacturonase and pectin lyase in the studied enzyme preparations was 4-5% and 23% of the total protein content, respectively. The yield of reducing sugars upon the hydrolysis of sugar beet and apple processing wastes with the most efficient preparation was 41 and 71 g/L, respectively, which corresponded to a polysaccharide conversion of 49% and 65%. Glucose was the main product of the hydrolysis of sugar beet and apple processing wastes. PMID:26353405

  20. Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey

    Energy Technology Data Exchange (ETDEWEB)

    Seidl, Verena; Song, Lifu; Lindquist, Erika; Gruber, Sabine; Koptchinskiy, Alexeji; Zeilinger, Susanne; Schmoll, Monika; Martinez, Pedro; Sun, Jibin; Grigoriev, Igor V.; Herrera-Estrella, Alfredo; Baker, Scott E.; Kubicek, Christian P.

    2009-11-30

    Background: Fungi of the genus Trichoderma are effective mycoparasites an for this reason used as biocontrol agents agents plant pathogenic fungi. The ability to recognize, combat and finally besiege and kill the prey are essential skills for this process. Only fragments of the biochemical processes related to this ability have been uncovered so far, however. This study aims at uncovering transcriptional responses occurring in the mycoparasite Trichoderma atroviride when being confronted with a potential prey. Results: T. atroviride was confronted with two fungal preys, Botrytis cinerea and Rhizoctonia solani, and cDNAs prepared from mycelia immediately before getting into physical contact with them (“onset of mycoparasitism”), and compared with such prepared from mycelial and conidiating cultures, respectively. About 3000 ESTs, representing about 900 genes each, were obtained from each of these three conditions. 65 genes, represented by 439 ESTs, were specifically and significantly overexpressed during onset of mycoparasitism, and the expression of a subset thereof verified by expression analysis. They comprised 18 KOG groups, but were most abundant from those including posttranslational processing (159 from 183 ESTs), and amino acid metabolism (70 of 84 ESTs), respectively. Several heat shock factors and tRNA synthases were particularly abundant. Metabolic network analysis confirmed the upregulation of the amino acid biosynthesic and the lipid catabolic capacity. Conclusion: Analysis of the genes overexpressed during the onset of mycoparasitism in T. atroviride has revealed that the fungus reacts to this condition with several previously undetected physiological reactions including strong stress response, sensing of nitrogen shortage and lipid catabolism. The data enable a new and more comprehensive interpretation of the physiology of mycoparasitism, and will aid in the selection of traits for breeding of biocontrol strains by recombinant techniques.

  1. PHAC SYNTHASES AND PHA DEPOLYMERASES: THE ENZYMES THAT PRODUCE AND DEGRADE PLASTIC

    OpenAIRE

    Amro A. Amara; and Hassan Moawad

    2011-01-01

    PHAs are a group of intracellular biodegradable polymer produced by (most) bacteria under unbalanced growth conditions. A series of enzymes are involved in different PHAs synthesis, however PhaC synthases are responsible for the polymerization step. PHAs are accumulated in bacterial cells from soluble to insoluble form as storage materials inside the inclusion bodies during unbalanced nutrition or to save organisms from reduces equivalents. PHAs are converted again to soluble components by an...

  2. Characterization of cellulase enzyme produced by Chaetomium sp. isolated from books and archives

    Directory of Open Access Journals (Sweden)

    Moza Mohammed AL-Kharousi

    2015-12-01

    Full Text Available Background: Cellulase is an important industrial enzyme used to degrade cellulosic biomass. The demand for cellulase enzyme is continuously increasing because of its applications in various industries. Hence, screening of cellulase producing microorganisms from different sources has gained significant importance. Material and Methods: In this study, fungi isolated from books and archives were screened for their cellulase producing abilities. Four different fungi were isolated from books and archives using potato dextrose agar. Screening of these isolates for cellulase production was carried out using carboxymethyl cellulose broth. The most efficient fungus was subjected to cellulase fermentation and enzymes produced were purified and partially characterized. Results: Four different fungi, Chaetomium sp., Aspergillus niger, Aspergillus nidulans and Penicillium sp., were isolated from books and archives. All the isolates were tested for their ability to producecellulase enzyme. During the primary screening Chaetomium sp. showed good growth and highercellulase activity (155.3±25.6 U/mL in carboxymethyl cellulose medium than the other fungi. The cellulase fermentation study was conducted with Chaetomium sp. using carboxymethyl cellulose asa substrate. During the stationary phase (144 h of the growth, the cellulase activity of Chaetomium sp. was significantly high. The maximum mycelial weight of this fungi was obtained at 168 h. Viscosity of the Chaetomium sp. inoculated fermentation medium continuously decreased until 144 h because of the degradation of carboxymethyl cellulose. During cellulase fermentation, pHincreased from the initial neutral pH to 8.5. Purified cellulase showed a specific activity of 7.3 U/mg. It exhibited maximum activity at 20°C and was stable between pH 5 and 9. Conclusions: Books and archives could be a good source for the isolation of cellulase producing fungi.

  3. Controlling growth and morphogenesis of the industrial enzyme producer Streptomyces lividans

    OpenAIRE

    Mangiameli, Giulia

    2014-01-01

    Streptomyces are Gram-positive, soil dwelling bacteria that raised interest in the last 50 years for their high potential in antibiotic and protein production. Thanks to their saprophytic nature, streptomycetes secrete a massive amount of industrial enzymes. They have a relatively low level of endogenous extracellular proteolytic activity when compared to other expression hosts (e.g. Bacillus), they are generally more suited to produce proteins encoded by high G+C actinomycete genes in their ...

  4. Heterologous overproduction of β-fructofuranosidase from yeast Xanthophyllomyces dendrorhous, an enzyme producing prebiotic sugars.

    Science.gov (United States)

    Gimeno-Pérez, María; Linde, Dolores; Fernández-Arrojo, Lucía; Plou, Francisco J; Fernández-Lobato, María

    2015-04-01

    The β-fructofuranosidase Xd-INV from the yeast Xanthophyllomyces dendrorhous is the largest microbial enzyme producing neo-fructooligosaccharides (neo-FOS) known to date. It mainly synthesizes neokestose and neonystose, oligosaccharides with potentially improved prebiotic properties. The Xd-INV gene comprises an open reading frame of 1995 bp, which encodes a 665-amino acid protein. Initial N-terminal sequencing of Xd-INV pointed to a majority extracellular protein of 595 amino acids lacking the first 70 residues (potential signal peptide). Functionality of the last 1785 bp of Xd-INV gene was previously proved in Saccharomyces cerevisiae but only weak β-fructofuranosidase activity was quantified. In this study, different strategies to improve this enzyme level in a heterologous system have been used. Curiously, best results were obtained by increasing the protein N-terminus sequence in 39 amino acids, protein of 634 residues. The higher β-fructofuranosidase activity detected in this study, about 15 U/mL, was obtained using Pichia pastoris and represents an improvement of about 1500 times the level previously obtained in a heterologous organism and doubles the best level of activity obtained by the natural producer. Heterologously expressed protein was purified and characterized biochemically and kinetically. Except by its glycosylation degree (10 % lower) and thermal stability (4-5 °C lower in the 60-85 °C range), the properties of the heterologous enzyme, including ability to produce neo-FOS, remained unchanged. Interestingly, besides the neo-FOS referred before blastose was also detected (8-22 g/L) in the reaction mixtures, making Xd-INV the first yeast enzyme producing this non-conventional disaccharide reported to date. PMID:25359470

  5. Mycolytic enzymes produced by Streptomyces violaceusniger and their role in antagonism towards wood-rotting fungi.

    Science.gov (United States)

    Nagpure, Anand; Choudhary, Bharti; Gupta, Rajinder K

    2014-05-01

    Extracellular mycolytic enzymes produced under submerged fermentation by the fungal antagonist Streptomyces violaceusniger MTCC 3959 were characterized. This streptomycete produced higher amounts of extracellular chitinase and protease during late exponential phase, whereas β-1,3-glucanase production was at peak in mid-stationary phase. Cell-free culture filtrate (CCF) exhibited a broad range of antifungal activity against both white rot and brown rot fungi. The inhibitory activity was completely lost after treatment with proteinase K and heat, indicating that extracellular antifungal metabolites are heat labile and proteinaceous in nature. Optimum pH and temperature for enzyme activity were: 9.0 and 60 °C for chitinase; 6.0 and 60 °C for β-1,3-glucanase; and 9.0 and 70 °C for protease. Mycolytic enzymes were moderately thermostable, and had a wide pH stability range extending from pH 5.0 to 10.0. The zymogram analysis of CCF revealed five chitinase isoenzymes with an apparent molecular weight of 20.8, 33.3, 45.6, 67.4, and 114.8 kDa, one β-1,3-glucanase appeared as a single band of ∼131.8 kDa and four protease isoenzymes with approximate molecular weights of 22.8, 62.52, 74.64, and 120.5 kDa. S. violaceusniger MTCC 3959 produced mycolytic enzymes that can be effectively used for suppression of phytopathogenic basidiomycetes. It has the potential to be an effective biofungicide. PMID:23686763

  6. 华山松疱锈病的重寄生真菌(深绿木霉)中几丁质酶基因cDNA片段的克隆%Cloning of cDNA Fragment of Chitinase Gene from the Mycoparasite Trichoderma atroviride on Armandii Pine Blister Rust

    Institute of Scientific and Technical Information of China (English)

    马长乐; 李靖; 陈玉惠; 刘小烛

    2008-01-01

    [Objective] The aim of this study was to isolate chitinase gene from Trichoderma atroviride strain SS003. [Method] With the aeciospore wall of armandii pine blister rust as inducer, chitinase gene was induced to express in Trichoderma atroviride cells. The cDNA fragment of chitinase gene was cloned by RT-PCR approach. [Result] The activity of chitinase induced reached 40.17 μg/10 min; and the specific fragment amplified was 834 bp in length and proved to be the fragment of chitinase gene by sequencing and sequence analysis. [Conclusion] The result showed the feasibility of isolating the full length of chitinase gene and its transformation, and further producing chitinase.

  7. Exploring omega-3 fatty acids, enzymes and biodiesel producing thraustochytrids from Australian and Indian marine biodiversity.

    Science.gov (United States)

    Gupta, Adarsha; Singh, Dilip; Byreddy, Avinesh R; Thyagarajan, Tamilselvi; Sonkar, Shailendra P; Mathur, Anshu S; Tuli, Deepak K; Barrow, Colin J; Puri, Munish

    2016-03-01

    The marine environment harbours a vast diversity of microorganisms, many of which are unique, and have potential to produce commercially useful materials. Therefore, marine biodiversity from Australian and Indian habitat has been explored to produce novel bioactives, and enzymes. Among these, thraustochytrids collected from Indian habitats were shown to be rich in saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs), together constituting 51-76% of total fatty acids (TFA). Indian and Australian thraustochytrids occupy separate positions in the dendrogram, showing significant differences exist in the fatty acid profiles in these two sets of thraustochytrid strains. In general, Australian strains had a higher docosahexaenoic acid (DHA) content than Indian strains with DHA at 17-31% of TFA. A range of enzyme activities were observed in the strains, with Australian strains showing overall higher levels of enzyme activity, with the exception of one Indian strain (DBTIOC-1). Comparative analysis of the fatty acid profile of 34 strains revealed that Indian thraustochytrids are more suitable for biodiesel production since these strains have higher fatty acids content for biodiesel (FAB, 76%) production than Australian thraustochytrids, while the Australian strains are more suitable for omega-3 (40%) production. PMID:26580151

  8. Cradle-to-Gate Environmental Assessment of Enzyme Products Produced Industrially in Denmark by Novozymes A/S

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Oxenbøll, Karen Margrethe; Wenzel, Henrik

    2007-01-01

    Enzymes are biological catalysts with an enormous capacity to increase the speed of a huge variety biochemical eactions. Industrially produced enzymes are used in a broad variety of sectors to increase quality, speed and yield of processes, and reduce energy consumption and use of hazardous...... chemicals. The present paper provides a methodological framework for analysing environmental impacts of enzyme products and environmental data for five characteristic enzyme products. Life cycle assessment is used as an analytical tool and modelling of enzyme production is facilitated in SimaPro 6.......0 software. Detailed data on enzyme production are derived from Novozymes' production facilities in Denmark. Data on ingredients are derived from the literature, publicly available databases and from Novozymes' suppliers. Cradle-to-gate environmental data for five representative enzyme products produced by...

  9. Characterization and identification of enzyme-producing microflora isolated from the gut of sea cucumber Apostichopus japonicus

    Science.gov (United States)

    Li, Fenghui; Gao, Fei; Tan, Jie; Fan, Chaojing; Sun, Huiling; Yan, Jingping; Chen, Siqing; Wang, Xiaojun

    2016-01-01

    Gut microorganisms play an important role in the digestion of their host animals. The purpose of this research was to isolate and assess the enzyme-producing microbes from the Apostichopus japonicus gut. Thirty-nine strains that can produce at least one of the three digestive enzymes (protease, amylase, and cellulase) were qualitatively screened based on their extracellular enzyme-producing abilities. The enzyme-producing strains clustered into eight groups at the genetic similarity level of 100% by analyzing the restriction patterns of 16S rDNA amplified with Mbo I. Phylogenetic analysis revealed that 37 strains belonged to the genus Bacillus and two were members of the genus Virgibacillus. Enzyme-producing capability results indicate that the main enzyme-producing microflora in the A. japonicus gut was Bacillus, which can produce protease, amylase, and cellulase. Virgibacillus, however, can only produce protease. The high enzyme-producing capability of the isolates suggests that the gut microbiota play an important role in the sea cucumber digestive process.

  10. Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei.

    Science.gov (United States)

    Bischof, Robert H; Ramoni, Jonas; Seiboth, Bernhard

    2016-01-01

    More than 70 years ago, the filamentous ascomycete Trichoderma reesei was isolated on the Solomon Islands due to its ability to degrade and thrive on cellulose containing fabrics. This trait that relies on its secreted cellulases is nowadays exploited by several industries. Most prominently in biorefineries which use T. reesei enzymes to saccharify lignocellulose from renewable plant biomass in order to produce biobased fuels and chemicals. In this review we summarize important milestones of the development of T. reesei as the leading production host for biorefinery enzymes, and discuss emerging trends in strain engineering. Trichoderma reesei has very recently also been proposed as a consolidated bioprocessing organism capable of direct conversion of biopolymeric substrates to desired products. We therefore cover this topic by reviewing novel approaches in metabolic engineering of T. reesei. PMID:27287427

  11. Comparative genomics of citric-acid producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.; Baker, Scott E.; Andersen, Mikael R.; Salazar, Margarita P.; Schaap, Peter J.; Vondervoot, Peter J.I. van de; Culley, David; Thykaer, Jette; Frisvad, Jens C.; Nielsen, Kristen F.; Albang, Richard; Albermann, Kaj; Berka, Randy M.; Braus, Gerhard H.; Braus-Stromeyer, Susanna A.; Corrochano, Luis M.; Dai, Ziyu; Dijck, Piet W.M. van; Hofmann, Gerald; Lasure, Linda L.; Magnusson, Jon K.; Meijer, Susan L.; Nielsen, Jakob B.; Nielsen, Michael L.; Ooyen, Albert J.J. van; Panther, Kathyrn S.; Pel, Herman J.; Poulsen, Lars; Samson, Rob A.; Stam, Hen; Tsang, Adrian; Brink, Johannes M. van den; Atkins, Alex; Aerts, Andrea; Shapiro, Harris; Pangilinan, Jasmyn; Salamov, Asaf; Lou, Yigong; Lindquist, Erika; Lucas, Susan; Grimwood, Jane; Kubicek, Christian P.; Martinez, Diego; Peij, Noel N.M.E. van; Roubos, Johannes A.; Nielsen, Jens

    2011-04-28

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compels additional exploration. We therefore undertook whole genome sequencing of the acidogenic A. niger wild type strain (ATCC 1015), and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was utilized to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 megabase of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis revealed up-regulation of the electron transport chain, specifically the alternative oxidative pathway in ATCC 1015, while CBS 513.88 showed significant up-regulation of genes relevant to glucoamylase A production, such as tRNA-synthases and protein transporters. Our results and datasets from this integrative systems biology analysis resulted in a snapshot of fungal evolution and will support further optimization of cell factories based on filamentous fungi.[Supplemental materials (10 figures, three text documents and 16 tables) have been made available

  12. PhaC Synthases and PHA Depolymerases: The Enzymes that Produce and Degrade Plastic

    Directory of Open Access Journals (Sweden)

    Amro A. Amara

    2011-12-01

    Full Text Available PHAs are a group of intracellular biodegradable polymer produced by (most bacteria under unbalanced growth conditions. A series of enzymes are involved in different PHAs synthesis, however PhaC synthases are responsible for the polymerization step. PHAs are accumulated in bacterial cells from soluble to insoluble form as storage materials inside the inclusion bodies during unbalanced nutrition or to save organisms from reduces equivalents. PHAs are converted again to soluble components by another pathways and enzymes for the degradation process. PHAs depolymerases are the responsible enzymes. This review is designed to give the non-specialists a condense background about PHAs especially for researcher and students in medicinal and pharmaceutical filled. ABSTRAK: PHAs (polyhydroxyalkanoate merupakan sekumpulan polimer terbiodegradasikan intrasel yang dihasilkan oleh (kebanyakan bakteria di bawah keadaan tumbesaran tak seimbang. Satu rangkaian enzim terlibat dalam sistesis PHAs yang berbeza, namun sintesis PhaC bertanggungjawab dalam peringkat pempolimeran. PHAs dikumpulkan dalam sel bakteria dari bentuk larut dan tak larut sebagai bahan simpan di dalam jasad terangkum semasa nutrisi tak seimbang atau untuk menyelamatkan organisma daripada pengurangan tak keseimbangan. PHAs ditukarkan sekali lagi kepada komponen larut dengan cara lain dan enzim lain untuk proses degradasi. PHAs depoly-merases (enzim yang memangkin penguraian makro molekul kepada molekul yang lebih mudah merupakan enzim yang bertanggunjawab. Kajian semula ini direka untuk memberi mereka yang bukan pakar, satu ringkasan tentang PHAs terutamanya penyelidik dan penuntut dalam bidang peubatan dan farmaseutikal.

  13. A NOVEL STRAIN OF Aspergillus niger PRODUCING A COCKTAIL OF HYDROLYTIC DEPOLYMERISING ENZYMES FOR THE PRODUCTION OF SECOND GENERATION BIOFUELS

    Directory of Open Access Journals (Sweden)

    Namita Bansal

    2011-02-01

    Full Text Available The screening and isolation of fungi producing a cocktail of hydrolytic enzymes was studied. Among the various isolates obtained from different soil samples, a strain NS-2 was selected. The phylogenetic analysis of this strain showed highest homology (99% with Aspergillus niger. It was capable of producing cellulolytic, hemicellulolytic, amylolytic, and pectinolytic enzymes in appreciable titers on wheat bran based liquid and solid state media. The mixture of enzymes produced by this organism could effectively hydrolyze various domestic waste residues, revealing conversion efficiencies of 89 to 92% and produced high reducing sugar yields of 0.48 to 0.66 g/g of dry residue. This enzyme cocktail could potentially find a significant application in the conversion of agricultural and other waste residues having cellulose, hemicellulose, starch, and pectin as carbohydrates to produce simpler sugars which can be fermented for the production of second generation biofuels.

  14. Isotopomeric characterization of nitrous oxide produced by reaction of enzymes extracted from nitrifying and denitrifying bacteria

    Science.gov (United States)

    Yamazaki, T.; Hozuki, T.; Arai, K.; Toyoda, S.; Koba, K.; Fujiwara, T.; Yoshida, N.

    2014-05-01

    Nitrous oxide (N2O) is a potent greenhouse gas and produced in denitrification and nitrification by various microorganisms. Site preference (SP) of 15N in N2O, which is defined as the difference in the natural abundance of isotopomers 14N15NO and 15N14NO relative to 14N14NO, has been reported to be a useful tool to quantitatively distinguish N2O production pathways. To determine representative SP values for each microbial process, we firstly measured SP of N2O produced in the enzyme reaction of hydroxylamine oxidoreductase (HAO) purified from two species of ammonia oxidizing bacteria (AOB), Nitrosomonas europaea and Nitrosococcus oceani, and that of nitric oxide reductase (NOR) from Paracoccus denitrificans. The SP value for NOR reaction (-5.9 ± 2.1‰) showed nearly the same value as that reported for N2O produced by P. denitrificans in pure culture. In contrast, SP value for HAO reaction (36.3 ± 2.3‰) was a little higher than the values reported for N2O produced by AOB in aerobic pure culture. Using the SP values obtained by HAO and NOR reactions, we calculated relative contribution of the nitrite (NO2-) reduction (which is followed by NO reduction) to N2O production by N. oceani incubated under different O2 availability. Our calculations revealed that previous in vivo studies might have underestimated the SP value for the NH2OH oxidation pathway possibly due to a small contribution of NO2- reduction pathway. Further evaluation of isotopomer signatures of N2O using common enzymes of other processes related to N2O would improve the isotopomer analysis of N2O in various environments.

  15. Isotopomeric characterization of nitrous oxide produced by reaction of enzymes extracted from nitrifying and denitrifying bacteria

    Directory of Open Access Journals (Sweden)

    T. Yamazaki

    2013-10-01

    Full Text Available Nitrous oxide (N2O is a potent greenhouse gas and produced in denitrification and nitrification in environmental nitrogen cycle by various microorganism. Site preference (SP of 15N in N2O, which is defined as the difference in the natural abundance of isotopomers 14N15NO and 15N14NO relative to 14N14NO, has been reported to be a useful tool to quantitatively distinguish N2O production pathway. To determine representative SP value for each microbial process, we firstly measured SP of N2O produced in the enzyme reaction of hydroxylamine oxidoreductase (HAO purified from two species of ammonia oxidizing bacteria (AOB, Nitrosomonas europaea and Nitrosococcus oceani, and that of nitric oxide reductase (NOR from Paracoccus denitrificans, respectively. The SP value for NOR reaction (−5.9 ± 2.1‰ showed nearly the same value as that reported for N2O produced by P. denitrificans in pure culture. In contrast, SP value for HAO reaction (36.3 ± 2.3‰ was a little higher than the values reported for N2O produced by AOB in aerobic pure culture. Using the SP values obtained by HAO and NOR reactions, we calculated relative contribution of the nitrite (NO2– reduction (which is followed by NO reduction to N2O production by N. oceani incubated under different O2 availability. Our calculations revealed that previous in vivo studies might have underestimated the SP value for NH2OH oxidation pathway possibly due to a small contribution of NO2– reduction pathway. Further evaluation of isotopomer signatures of N2O using common enzymes of other processes related to N2O would improve the isotopomer analysis of N2O in various environments.

  16. Endophytic Fungi from Frankincense Tree Improves Host Growth and Produces Extracellular Enzymes and Indole Acetic Acid.

    Directory of Open Access Journals (Sweden)

    Abdul Latif Khan

    Full Text Available Boswellia sacra, an economically important frankincense-producing tree found in the desert woodlands of Oman, is least known for its endophytic fungal diversity and the potential of these fungi to produce extracellular enzymes and auxins. We isolated various fungal endophytes belonging to Eurotiales (11.8%, Chaetomiaceae (17.6%, Incertae sadis (29.5%, Aureobasidiaceae (17.6%, Nectriaceae (5.9% and Sporomiaceae (17.6% from the phylloplane (leaf and caulosphere (stem of the tree. Endophytes were identified using genomic DNA extraction, PCR amplification and sequencing the internal transcribed spacer regions, whereas a detailed phylogenetic analysis of the same gene fragment was made with homologous sequences. The endophytic colonization rate was significantly higher in the leaf (5.33% than the stem (0.262%. The Shannon-Weiner diversity index was H' 0.8729, while Simpson index was higher in the leaf (0.583 than in the stem (0.416. Regarding the endophytic fungi's potential for extracellular enzyme production, fluorogenic 4-methylumbelliferone standards and substrates were used to determine the presence of cellulases, phosphatases and glucosidases in the pure culture. Among fungal strains, Penicillum citrinum BSL17 showed significantly higher amounts of glucosidases (62.15±1.8 μM-1min-1mL and cellulases (62.11±1.6 μM-1min-1mL, whereas Preussia sp. BSL10 showed significantly higher secretion of glucosidases (69.4±0.79 μM-1min-1mL and phosphatases (3.46±0.31μM-1min-1mL compared to other strains. Aureobasidium sp. BSS6 and Preussia sp. BSL10 showed significantly higher potential for indole acetic acid production (tryptophan-dependent and independent pathways. Preussia sp. BSL10 was applied to the host B. sacra tree saplings, which exhibited significant improvements in plant growth parameters and accumulation of photosynthetic pigments. The current study concluded that endophytic microbial resources producing extracellular enzymes and auxin

  17. Endophytic Fungi from Frankincense Tree Improves Host Growth and Produces Extracellular Enzymes and Indole Acetic Acid.

    Science.gov (United States)

    Khan, Abdul Latif; Al-Harrasi, Ahmed; Al-Rawahi, Ahmed; Al-Farsi, Zainab; Al-Mamari, Aza; Waqas, Muhammad; Asaf, Sajjad; Elyassi, Ali; Mabood, Fazal; Shin, Jae-Ho; Lee, In-Jung

    2016-01-01

    Boswellia sacra, an economically important frankincense-producing tree found in the desert woodlands of Oman, is least known for its endophytic fungal diversity and the potential of these fungi to produce extracellular enzymes and auxins. We isolated various fungal endophytes belonging to Eurotiales (11.8%), Chaetomiaceae (17.6%), Incertae sadis (29.5%), Aureobasidiaceae (17.6%), Nectriaceae (5.9%) and Sporomiaceae (17.6%) from the phylloplane (leaf) and caulosphere (stem) of the tree. Endophytes were identified using genomic DNA extraction, PCR amplification and sequencing the internal transcribed spacer regions, whereas a detailed phylogenetic analysis of the same gene fragment was made with homologous sequences. The endophytic colonization rate was significantly higher in the leaf (5.33%) than the stem (0.262%). The Shannon-Weiner diversity index was H' 0.8729, while Simpson index was higher in the leaf (0.583) than in the stem (0.416). Regarding the endophytic fungi's potential for extracellular enzyme production, fluorogenic 4-methylumbelliferone standards and substrates were used to determine the presence of cellulases, phosphatases and glucosidases in the pure culture. Among fungal strains, Penicillum citrinum BSL17 showed significantly higher amounts of glucosidases (62.15±1.8 μM-1min-1mL) and cellulases (62.11±1.6 μM-1min-1mL), whereas Preussia sp. BSL10 showed significantly higher secretion of glucosidases (69.4±0.79 μM-1min-1mL) and phosphatases (3.46±0.31μM-1min-1mL) compared to other strains. Aureobasidium sp. BSS6 and Preussia sp. BSL10 showed significantly higher potential for indole acetic acid production (tryptophan-dependent and independent pathways). Preussia sp. BSL10 was applied to the host B. sacra tree saplings, which exhibited significant improvements in plant growth parameters and accumulation of photosynthetic pigments. The current study concluded that endophytic microbial resources producing extracellular enzymes and auxin could

  18. Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey

    Energy Technology Data Exchange (ETDEWEB)

    Seidl, Verena; Song, Lifu; Lindquist, Erika; Gruber, Sabine; Koptchinskiy, Alexeji; Zeilinger, Susanne; Schmoll, Monika; Martinez, Pedro; Sun, Jibin; Grigoriev, Igor; Herrera-Estrella, Alfredo; Baker, Scott E; Kubicek, Christian P.

    2010-07-23

    BACKGROUND: Combating the action of plant pathogenic microorganisms by mycoparasitic fungi has been announced as an attractive biological alternative to the use of chemical fungicides since two decades. The fungal genus Trichoderma includes a high number of taxa which are able to recognize, combat and finally besiege and kill their prey. Only fragments of the biochemical processes related to this ability have been uncovered so far, however. RESULTS: We analyzed genome-wide gene expression changes during the begin of physical contact between Trichoderma atroviride and two plant pathogens Botrytis cinerea and Rhizoctonia solani, and compared with gene expression patterns of mycelial and conidiating cultures, respectively. About 3000 ESTs, representing about 900 genes, were obtained from each of these three growth conditions. 66 genes, represented by 442 ESTs, were specifically and significantly overexpressed during onset of mycoparasitism, and the expression of a subset thereof was verified by expression analysis. The upregulated genes comprised 18 KOG groups, but were most abundant from the groups representing posttranslational processing, and amino acid metabolism, and included components of the stress response, reaction to nitrogen shortage, signal transduction and lipid catabolism. Metabolic network analysis confirmed the upregulation of the genes for amino acid biosynthesis and of those involved in the catabolism of lipids and aminosugars. CONCLUSION: The analysis of the genes overexpressed during the onset of mycoparasitism in T. atroviride has revealed that the fungus reacts to this condition with several previously undetected physiological reactions. These data enable a new and more comprehensive interpretation of the physiology of mycoparasitism, and will aid in the selection of traits for improvement of biocontrol strains by recombinant techniques.

  19. Cradle-to-gate environmental assessment of enzyme products produced industrially in Denmark by Novozymes A/S

    DEFF Research Database (Denmark)

    Nielsen, Per H.; Oxenbøll, Karen; Wenzel, Henrik

    2007-01-01

    Goal, Scope and Background. Enzymes are biological catalysts with an enormous capacity to increase the speed of a huge variety biochemical reactions. Industrially produced enzymes are used in a broad variety of sectors to increase quality, speed and yield of processes, and reduce energy consumption...... and use of hazardous chemicals. The present paper provides a methodological framework for analysing environmental impacts of enzyme products and environmental data for five characteristic enzyme products. Methods. Life cycle assessment is used as an analytical tool and modelling of enzyme production...... is facilitated in SimaPro 6.0 software. Detailed data on enzyme production are derived from Novozymes' production facilities in Denmark. Data on ingredients are derived from the literature, publicly available databases and from Novozymes' suppliers. Results and Conclusions. Cradle...

  20. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Blennow, Per Gunnar Andreas; Jensen, Susanne Langgård;

    2012-01-01

    Background Starch is stored in higher plants as granules composed of semi-crystalline amylopectin and amorphous amylose. Starch granules provide energy for the plant during dark periods and for germination of seeds and tubers. Dietary starch is also a highly glycemic carbohydrate being degraded to...... glucose and rapidly absorbed in the small intestine. But a portion of dietary starch, termed "resistant starch" (RS) escapes digestion and reaches the large intestine, where it is fermented by colonic bacteria producing short chain fatty acids (SCFA) which are linked to several health benefits. The RS is...... preferentially derived from amylose, which can be increased by suppressing amylopectin synthesis by silencing of starch branching enzymes (SBEs). However all the previous works attempting the production of high RS crops resulted in only partly increased amylose-content and/or significant yield loss. Results In...

  1. Optimizing Immobilized Enzyme Performance in Cell-Free Environments to Produce Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Belfort, Georges [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Chemical and Biological Engineering; Grimaldi, Joseph J. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Chemical and Biological Engineering

    2015-01-27

    Limitations on biofuel production using cell culture (Escherichia coli, Clostridium, Saccharomyces cerevisiae, brown microalgae, blue-green algae and others) include low product (alcohol) concentrations (≤0.2 vol%) due to feedback inhibition, instability of cells, and lack of economical product recovery processes. To overcome these challenges, an alternate simplified biofuel production scheme was tested based on a cell-free immobilized enzyme system. Using this cell free system, we were able to obtain about 2.6 times higher concentrations of iso-butanol using our non-optimized system as compared with live cell systems. This process involved two steps: (i) converts acid to aldehyde using keto-acid decarboxylase (KdcA), and (ii) produces alcohol from aldehyde using alcohol dehydrogenase (ADH) with a cofactor (NADH) conversion from inexpensive formate using a third enzyme, formate dehydrogenase (FDH). To increase stability and conversion efficiency with easy separations, the first two enzymes were immobilized onto methacrylate resin. Fusion proteins of labile KdcA (fKdcA) were expressed to stabilize the covalently immobilized KdcA. Covalently immobilized ADH exhibited long-term stability and efficient conversion of aldehyde to alcohol over multiple batch cycles without fusions. High conversion rates and low protein leaching were achieved by covalent immobilization of enzymes on methacrylate resin. The complete reaction scheme was demonstrated by immobilizing both ADH and fKdcA and using FDH free in solution. The new system without in situ removal of isobutanol achieved a 55% conversion of ketoisovaleric acid to isobutanol at a concentration of 0.5 % (v/v). Further increases in titer will require continuous removal of the isobutanol using our novel brush membrane system that exhibits a 1.5 fold increase in the separation factor of isobutanol from water versus that obtained for commercial silicone rubber membranes. These bio-inspired brush membranes are based on the

  2. Purification and Physico-Chemical Properties of Milk Clotting Enzyme Produced by Mucor Lamprosporus Comparable with Calf Rennet

    International Nuclear Information System (INIS)

    Fractional precipitation of the crude enzyme produced by Mucor Lamprosporus fungus using 70% ammonium sulfate gave the highest MCA at 40 degree. Further purification of the partially purified enzyme was achieved by using Sephadex G-100 and rechromatographed on DEAE Sephadex A-50 and gave 22.5 fold then the crude enzyme with 301% enzyme recovery. Addition of NaCl to the skim milk caused pronounced decline in MCA of the enzyme while addition of 160 ppm of NaCl increased the MCA from 26.6 su/ml to 200 su/ml. The optimum temperature of the skin milk which induced the maximum activity of the purified enzyme in skim milk was found to be 40 degree while preheating the enzyme at 50 degree for 10 min caused a complete inhibition. Mild acidic condition did not affect the activity of the purified enzyme which remained almost stable till pH 6.0 while at pH 7.0 or more, the enzyme completely lost its clotting activity. The present data also showed that Mucor Lamprosporus rennin like enzyme exhibited higher activity than calf rennet

  3. Genetically engineered immunomodulatory Streptococcus thermophilus strains producing antioxidant enzymes exhibit enhanced anti-inflammatory activities.

    Science.gov (United States)

    Del Carmen, Silvina; de Moreno de LeBlanc, Alejandra; Martin, Rebeca; Chain, Florian; Langella, Philippe; Bermúdez-Humarán, Luis G; LeBlanc, Jean Guy

    2014-02-01

    The aims of this study were to develop strains of lactic acid bacteria (LAB) having both immunomodulatory and antioxidant properties and to evaluate their anti-inflammatory effects both in vitro, in different cellular models, and in vivo, in a mouse model of colitis. Different Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains were cocultured with primary cultures of mononuclear cells. Analysis of the pro- and anti-inflammatory cytokines secreted by these cells after coincubation with candidate bacteria revealed that L. delbrueckii subsp. bulgaricus CRL 864 and S. thermophilus CRL 807 display the highest anti-inflammatory profiles in vitro. Moreover, these results were confirmed in vivo by the determination of the cytokine profiles in large intestine samples of mice fed with these strains. S. thermophilus CRL 807 was then transformed with two different plasmids harboring the genes encoding catalase (CAT) or superoxide dismutase (SOD) antioxidant enzymes, and the anti-inflammatory effects of recombinant streptococci were evaluated in a mouse model of colitis induced by trinitrobenzenesulfonic acid (TNBS). Our results showed a decrease in weight loss, lower liver microbial translocation, lower macroscopic and microscopic damage scores, and modulation of the cytokine production in the large intestines of mice treated with either CAT- or SOD-producing streptococci compared to those in mice treated with the wild-type strain or control mice without any treatment. Furthermore, the greatest anti-inflammatory activity was observed in mice receiving a mixture of both CAT- and SOD-producing streptococci. The addition of L. delbrueckii subsp. bulgaricus CRL 864 to this mixture did not improve their beneficial effects. These findings show that genetically engineering a candidate bacterium (e.g., S. thermophilus CRL 807) with intrinsic immunomodulatory properties by introducing a gene expressing an antioxidant enzyme enhances its anti

  4. Isolation of Moderately Halophilic Pseudoalteromonas Producing Extracellular Hydrolytic Enzymes from Persian Gulf

    OpenAIRE

    Ardakani, M. Roayaie; Poshtkouhian, A.; Amoozegar, M. A.; H. Zolgharnein

    2011-01-01

    Extracellular hydrolytic enzymes such as amylases, proteases, lipases and DNases have quite diverse potential usages in different areas such as food industry, biomedical sciences and chemical industries, also it would be of great importance to have available enzymes showing optimal activities at different values of salt concentrations and temperature. Halophiles are the most likely source of such enzymes, because not only their enzymes are salt-tolerant, but many are also thermotolerant. The ...

  5. Improvement of the Fungal Biocontrol Agent Trichoderma atroviride To Enhance both Antagonism and Induction of Plant Systemic Disease Resistance

    OpenAIRE

    Brunner, Kurt; Zeilinger, Susanne; Ciliento, Rosalia; Woo, Sheridian L.; Lorito, Matteo; Kubicek, Christian P; Mach, Robert L.

    2005-01-01

    Biocontrol agents generally do not perform well enough under field conditions to compete with chemical fungicides. We determined whether transgenic strain SJ3-4 of Trichoderma atroviride, which expresses the Aspergillus niger glucose oxidase-encoding gene, goxA, under a homologous chitinase (nag1) promoter had increased capabilities as a fungal biocontrol agent. The transgenic strain differed only slightly from the wild-type in sporulation or the growth rate. goxA expression occurred immediat...

  6. The Putative Protein Methyltransferase LAE1 of Trichoderma atroviride Is a Key Regulator of Asexual Development and Mycoparasitism

    OpenAIRE

    Aghcheh, Razieh Karimi; Irina S. Druzhinina; Kubicek, Christian P

    2013-01-01

    In Ascomycota the protein methyltransferase LaeA is a global regulator that affects the expression of secondary metabolite gene clusters, and controls sexual and asexual development. The common mycoparasitic fungus Trichoderma atroviride is one of the most widely studied agents of biological control of plant-pathogenic fungi that also serves as a model for the research on regulation of asexual sporulation (conidiation) by environmental stimuli such as light and/or mechanical injury. In order ...

  7. An in vitro Study on the Adsorption, Absorption and Uptake Capacity of Zn by the Bioremediator Trichoderma atroviride

    Directory of Open Access Journals (Sweden)

    Mazyar Yazdani

    2010-01-01

    Full Text Available The concentrations of Zn in the sediment of a polluted river at the Serdang Industrial Area were determined. These polluted sediment samples revealed high level of Zn (219. 27 µg/g. Isolation of fungi from this polluted sediment was also carried out using Rose Bengal Agar (RBA. The isolated fungi were exposed to different concentrations of Zn (0-6000 mg/L on Potato Dextrose Agar (PDA to find the most tolerant isolate. Trichoderma atroviride was found to have the highest tolerance and it was studied for growth rate, Zn uptake capacity, its tolerance to Zn and also localization of Zn by using Potato Dextrose Broth (PDB as the liquid culture medium. In the present study the results found out that the uptake capacity of T. atroviride ranged from 18.1-26.7 mg/g in liquid media at Zn concentrations from 500 to 1000 mg/L. The isolate showed 47.6-64% adsorption and 30.4¬45.1% absorption for Zn. Based on the present study, 5.7-7.4% of Zn removal was observed due to biomass washing. The high adsorption, relatively low absorption and high uptake capacity of Zn suggest that T. atroviride is a potential bioremediator of Zn. However, further studies are needed to confirm its practical use as a bioremediating agent for Zn under field conditions.

  8. The Psychrotolerant Antarctic Fungus Lecanicillium muscarium CCFEE 5003: A Powerful Producer of Cold-Tolerant Chitinolytic Enzymes

    OpenAIRE

    Massimiliano Fenice

    2016-01-01

    Lecanicillium muscarium CCFEE 5003, isolated in Continental Antarctica, is a powerful producer of extracellular cold-tolerant enzymes. Chitin-hydrolyzing enzymes seems to be the principal extracellular catalytic activities of this psychrotolerant fungus. The production of chitinolytic activities is induced by chitin and other polysaccharides and is submitted to catabolite repression. The chitinolytic system of L. muscarium consists of a number of different proteins having various molecular we...

  9. Construction and screening of a functional metagenomic library to identify novel enzymes produced by Antarctic bacteria

    Institute of Scientific and Technical Information of China (English)

    Ignacio Ferrés; Vanesa Amarelle; Francisco Noya; Elena Fabiano

    2015-01-01

    A metagenomic fosmid library of approximately 52 000 clones was constructed to identify functional genes encoding cold-adapted enzymes. Metagenomic DNA was extracted from a sample of glacial meltwater, collected on the Antarctic Peninsula during the ANTARKOS XXIX Expedition during the austral summer of 2012–2013. Each clone contained an insert of about 35–40 kb, so the library represented almost 2 Gb of genetic information from metagenomic DNA. Activity-driven screening was used to detect the cold-adapted functions expressed by the library. Fifty lipase/esterase and two cellulase-producing clones were isolated, and two clones able to grow on Avicel® as the sole carbon source. Interestingly, three clones formed a brown precipitate in the presence of manganese (II). Accumulation of manganese oxides was determined with a leucoberbelin blue assay, indicating that these three clones had manganese-oxidizing activity. To the best of our knowledge, this is the first report of a manganese oxidase activity detected with a functional metagenomic strategy.

  10. Is the High Cu Tolerance of Trichoderma atroviride Isolated from the Cu-Polluted Sediment Due to Adaptation? An In Vitro Toxicological Study

    International Nuclear Information System (INIS)

    The tolerance of Cu by Trichoderma atroviride, a tolerant fungus isolated from the drainage surface sediment of the Serdang Industrial Area was investigated under in vitro conditions. Only this fungus species can tolerate up to 600 mg/ L of Cu on solid medium Potato Dextrose Agar based on the isolation of the most tolerant fungus from the polluted sediment. Toxicity test performed on T. atroviride, showed a maximum tolerance at 300 mg/L of Cu concentration when grown in liquid medium Potato Dextrose Broth (PDB). The EC50 value of the isolate was 287.73 mg/ L of Cu concentration in PDB. The Cu concentration in the drainage surface sediment, where the T. atroviride was isolated from, was 347.64 μg/ g while the geochemical distributions of the non-resistant and resistant fractions of Cu were 99.6 and 0.4 %, respectively. The sediment data indicated that the drainage had greatly received anthropogenic Cu from the nearby industries which are involved in the manufacturing of plastics and electronic products. The present findings indicate that the high Cu tolerance showed by T. atroviride could be due to the well adaptation of the fungus to the Cu polluted sediment. Therefore, T. atroviride could be a potential bioremediator of Cu pollution in the freshwater ecosystem. (author)

  11. Purification, crystallization and preliminary X-ray analysis of two hydrogen sulfide-producing enzymes from Fusobacterium nucleatum

    International Nuclear Information System (INIS)

    Two homologous hydrogen sulfide-producing enzymes, Fn1220 and Cdl, from F. nucleatum (which actively produces hydrogen sulfide) were overproduced, purified and crystallized. The crystals obtained were characterized by X-ray diffraction. Hydrogen sulfide produced by oral bacteria is responsible for oral malodour. Two homologous hydrogen sulfide-producing enzymes, Fn1220 and Cdl, from Fusobacterium nucleatum (which actively produces hydrogen sulfide) were overproduced, purified and crystallized. X-ray diffraction data were collected from the crystals using a synchrotron-radiation source. The Fn1220 crystal belonged to tetragonal space group P41212 or P43212 (unit-cell parameters a = b = 116.8, c = 99.2 Å) and the Cdl crystal belonged to monoclinic space group P21 (unit-cell parameters a = 84.9, b = 70.9, c = 87.6 Å, β = 90.3°)

  12. Hydrolysis of cefazolin by enzymes produced by Pseudomonas aeruginosa after exposure to ceftazidime in vitro

    Directory of Open Access Journals (Sweden)

    Papaioannidou Paraskevi

    2009-01-01

    Full Text Available Background/Aim. Sometimes resistance of Pseudomonas aeruginosa (Ps. aeruginosa is developed during antibiotic treatment, in spite of the initial susceptibility in vitro. The aim of this study was to use an in vitro model for the study of the development of resistant strains of Ps. aeruginosa after a short exposure to ceftazidime, and to study the hydrolysing capacity of β-lactamases produced by the resistant strains. Methods. Among 563 clinical strains of Ps. aeruginosa, 37 multisensitive strains were collected for the study. After being identified, strains with simultaneous sensitivity to 5 expanded spectrum cephalosporins were chosen. For each strain, the minimal inhibitory concentration (MIC of the 5 expanded spectrum cephalosporins was determined, and the production of extended spectrum β-lactamases (ESBL was excluded by the double-disc synergy diffusion test. Strains non producing ESBL were cultivated in concentrations of ceftazidime equal to MIC×2 and MIC×4. After 24 hours of culture, the development of resistant strains was estimated and the cephalosporinase activity of the produced β-lactamases was determined by their ability to hydrolyse cefazolin. Hydrolysis of cefazolin was studied by measuring the change of its absorbance on 272 nm using a Shimadzu 160A spectrophotometer. The hydrolyzing capacity of the enzymes was expressed as the percentage of the antibiotic, which was hydrolysed in 10 sec. Results. A total of 60% and 50% of strains developed resistant strains after exposure to ceftazidime in concentration MIC×2 and MIC×4, respectively. The hydrolyzing capacity of the original strains was 15-36% while the hydrolyzing capacity of the resistant strains was 10-73%. Totally 64% of the resistant strains expressed higher hydrolyzing capacity than the original strains. Conclusion. Regardless of the susceptibility test results, Ps. aeruginosa presented a high tendency to develop resistant strains after a short exposure to

  13. The Psychrotolerant Antarctic Fungus Lecanicillium muscarium CCFEE 5003: A Powerful Producer of Cold-Tolerant Chitinolytic Enzymes

    Directory of Open Access Journals (Sweden)

    Massimiliano Fenice

    2016-04-01

    Full Text Available Lecanicillium muscarium CCFEE 5003, isolated in Continental Antarctica, is a powerful producer of extracellular cold-tolerant enzymes. Chitin-hydrolyzing enzymes seems to be the principal extracellular catalytic activities of this psychrotolerant fungus. The production of chitinolytic activities is induced by chitin and other polysaccharides and is submitted to catabolite repression. The chitinolytic system of L. muscarium consists of a number of different proteins having various molecular weights and diverse biochemical characteristics, but their most significant trait is the marked cold-tolerance. L. muscarium and selected strains of the biocontrol agent of pathogenic fungi Trichoderma harzianum, have been compared for their ability to produce chitinolytic enzymes at different temperatures. At low temperatures the Antarctic strain was definitely much more efficient. Moreover, the fungus was able to exert a strong mycoparasitic action against various other fungi and oomycetes at low temperatures. The parasitic role of this organism appeared related to the production of cell wall degrading enzymes being the release of extracellular chitinolytic enzymes a key event in the mycoparasitic process. Due to the mentioned characteristics, L. muscarium could have an important role for potential applications such as the degradation of chitin-rich materials at low temperature and the biocontrol of pathogenic organisms in cold environments. For these reasons and in view of future industrial application, the production of chitinolytic enzymes by the Antarctic fungus has been up-scaled and optimised in bench-top bioreactor.

  14. The Psychrotolerant Antarctic Fungus Lecanicillium muscarium CCFEE 5003: A Powerful Producer of Cold-Tolerant Chitinolytic Enzymes.

    Science.gov (United States)

    Fenice, Massimiliano

    2016-01-01

    Lecanicillium muscarium CCFEE 5003, isolated in Continental Antarctica, is a powerful producer of extracellular cold-tolerant enzymes. Chitin-hydrolyzing enzymes seems to be the principal extracellular catalytic activities of this psychrotolerant fungus. The production of chitinolytic activities is induced by chitin and other polysaccharides and is submitted to catabolite repression. The chitinolytic system of L. muscarium consists of a number of different proteins having various molecular weights and diverse biochemical characteristics, but their most significant trait is the marked cold-tolerance. L. muscarium and selected strains of the biocontrol agent of pathogenic fungi Trichoderma harzianum, have been compared for their ability to produce chitinolytic enzymes at different temperatures. At low temperatures the Antarctic strain was definitely much more efficient. Moreover, the fungus was able to exert a strong mycoparasitic action against various other fungi and oomycetes at low temperatures. The parasitic role of this organism appeared related to the production of cell wall degrading enzymes being the release of extracellular chitinolytic enzymes a key event in the mycoparasitic process. Due to the mentioned characteristics, L. muscarium could have an important role for potential applications such as the degradation of chitin-rich materials at low temperature and the biocontrol of pathogenic organisms in cold environments. For these reasons and in view of future industrial application, the production of chitinolytic enzymes by the Antarctic fungus has been up-scaled and optimised in bench-top bioreactor. PMID:27058517

  15. A Trichoderma atroviride stress-activated MAPK pathway integrates stress and light signals.

    Science.gov (United States)

    Esquivel-Naranjo, Edgardo Ulises; García-Esquivel, Mónica; Medina-Castellanos, Elizabeth; Correa-Pérez, Víctor Alejandro; Parra-Arriaga, Jorge Luis; Landeros-Jaime, Fidel; Cervantes-Chávez, José Antonio; Herrera-Estrella, Alfredo

    2016-06-01

    Cells possess stress-activated protein kinase (SAPK) signalling pathways, which are activated practically in response to any cellular insult, regulating responses for survival and adaptation to harmful environmental changes. To understand the function of SAPK pathways in T. atroviride, mutants lacking the MAPKK Pbs2 and the MAPK Tmk3 were analysed under several cellular stresses, and in their response to light. All mutants were highly sensitive to cellular insults such as osmotic and oxidative stress, cell wall damage, high temperature, cadmium, and UV irradiation. Under oxidative stress, the Tmk3 pathway showed specific roles during development, which in conidia are essential for tolerance to oxidant agents and appear to play a minor role in mycelia. The function of this pathway was more evident in Δpbs2 and Δtmk3 mutant strains when combining oxidative stress or cell wall damage with light. Light stimulates tolerance to osmotic stress through Tmk3 independently of the photoreceptor Blr1. Strikingly, photoconidiation and expression of blue light regulated genes was severally affected in Δtmk3 and Δpbs2 strains, indicating that this pathway regulates light responses. Furthermore, Tmk3 was rapidly phosphorylated upon light exposure. Thus, our data indicate that Tmk3 signalling cooperates with the Blr photoreceptor complex in the activation of gene expression. PMID:26878111

  16. Characterization of poly(L-lactide)-degrading enzyme produced by thermophilic filamentous bacteria Laceyella sacchari LP175.

    Science.gov (United States)

    Hanphakphoom, Srisuda; Maneewong, Narisara; Sukkhum, Sukhumaporn; Tokuyama, Shinji; Kitpreechavanich, Vichien

    2014-01-01

    Eleven strains of poly(L-lactide) (PLLA)-degrading thermophilic bacteria were isolated from forest soils and selected based on clear zone formation on an emulsified PLLA agar plate at 50°C. Among the isolates, strain LP175 showed the highest PLLA-degrading ability. It was closely related to Laceyella sacchari, with 99.9% similarity based on the 16S rRNA gene sequence. The PLLA-degrading enzyme produced by the strain was purified to homogeneity by 48.1% yield and specific activity of 328 U·mg-protein-1 with a 15.3-fold purity increase. The purified enzyme was strongly active against specific substrates such as casein and gelatin and weakly active against Suc-(Ala)₃-pNA. Optimum enzyme activity was exhibited at a temperature of 60°C with thermal stability up to 50°C and a pH of 9.0 with pH stability in a range of 8.5-10.5. Molecular weight of the enzyme was approximately 28.0 kDa, as determined by gel filtration and SDS-PAGE. The inhibitors phenylmethylsulfonyl fluoride (PMSF), ethylenediaminetetraacetate (EDTA), and ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) strongly inhibited enzyme activity, but the activity was not inhibited by 1 mM 1,10-phenanthroline (1,10-phen). The N-terminal amino acid sequences had 100% homology with thermostable serine protease (thermitase) from Thermoactinomyces vulgaris. The results obtained suggest that the PLLA-degrading enzyme produced by L. sacchari strain LP175 is serine protease. PMID:24646757

  17. SYNERGISTIC ACTIVITY OF ENZYMES PRODUCED BY EUPENICILLIUM JAVANICUM AND ASPERGILLUS NIGER NRRL 337 ON PALM OIL FACTORY WASTES

    Directory of Open Access Journals (Sweden)

    TRESNAWATI PURWADARIA

    2003-01-01

    Full Text Available The use of palm kernel cake (PKC and palm oil mill effluent (POME, substances from palm oil factory wastes, for monogastric is limited by their high cellulose and mannan contents. Hydrolytic enzymes have been supplemented to increase the nutrient digestibility. The maximal digestibility was obtained in the synergistic action of all enzyme components including B-D-endoglucanase (CMCase, B-D-glucosidase, B-D-mannanase, p-D-mannosidase, and oc-D-galactosidase. Two kinds of enzymes produced by Eupenicillium javanicum and Aspergillus niger NRRL 337 on the submerged culture containing 3% coconut meal were selected to hydrolyze PKC or dry POME. Enzyme from E. javanicum contained higher CMCase, B-D-mannanase, and a-D- galactosidase activities, while that from A. niger NRRL 337 contained more p-D-glucosidase and p-D-mannosidase activities. Saccharification (hydrolytic activities of enzyme mixtures on PKC and POME were determined at pH 5.0, the optimal pH for p-D-mannanase from E. javanicum, and at 5.4 the optimal pH for a-D-galactosidase from E. javanicum and P-D-glucosidase from A. niger NRRL 337. The enzyme proportions of E. javanicum and A. niger NRRL 337 were 100 : 0, 80 : 20, 60 : 40, 40 : 60, and 0 : 100%. The highest Saccharification activity on both substrates was observed on the mixture of 80% A. niger NRRL 337. The pH levels did not significantly affect Saccharification activity. Fiber components in PKC were more digestable than in POME. Further analysis on the reducing sugar components using thin layer chromatography showed that more monomers were produced in the 60 or 80% of A. niger NRRL 337. The glycosidases of A. niger NRRL 337 played more important role in the Saccharification activity.

  18. Optimizing immobilized enzyme performance in cell-free environments to produce liquid fuels.

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sanat

    2015-02-05

    The overall goal of this project was to optimize enzyme performance for the production of bio-diesel fuel. Enzyme immobilization has attracted much attention as a means to increase productivity. Mesorporous silica materials have been known to be best suited for immobilizing enzymes. A major challenge is to ensure that the enzymatic activity is retained after immobilization. Two major factors which drive enzymatic deactivation are protein-surface and inter-protein interactions. Previously, we studied protein stability inside pores and how to optimize protein-surface interactions to minimize protein denaturation. In this work we studied eh effect of surface curvature and chemistry on inter-protein interactions. Our goal was to find suitable immobilization supports which minimize these inter-protein interactions. Our studies carried out in the frame work of Hydrophobic-Polar (HP) model showed that enzymes immobilized inside hydrophobic pores of optimal sizes are best suited to minimize these inter-protein interactions. Besides, this study is also of biological importance to understand the role of chaperonins in protein disaggregation. Both of these aspects profited immensely with collaborations with our experimental colleague, Prof. Georges Belfort (RPI), who performed the experimental analog of our theoretical works.

  19. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of chlorite dismutase: a detoxifying enzyme producing molecular oxygen

    International Nuclear Information System (INIS)

    Preliminary X-ray data collection and analysis for crystals of chlorite dismutase, a haem-based enzyme that very effectively reduces chlorite to chloride while producing molecular oxygen, is reported to 2.1 Å resolution. Chlorite dismutase, a homotetrameric haem-based protein, is one of the key enzymes of (per)chlorate-reducing bacteria. It is highly active (< 2 kU mg−1) in reducing the toxic compound chlorite to the innocuous chloride anion and molecular oxygen. Chlorite itself is produced as the intermediate product of (per)chlorate reduction. The chlorite dismutase gene in Azospira oryzae strain GR-1 employing degenerate primers has been identified and the active enzyme was subsequently overexpressed in Escherichia coli. Chlorite dismutase was purified, proven to be active and crystallized using sitting drops with PEG 2000 MME, KSCN and ammonium sulfate as precipitants. The crystals belonged to space group P21212 and were most likely to contain six subunits in the asymmetric unit. The refined unit-cell parameters were a = 164.46, b = 169.34, c = 60.79 Å. The crystals diffracted X-rays to 2.1 Å resolution on a synchrotron-radiation source and a three-wavelength MAD data set has been collected. Determination of the chlorite dismutase structure will provide insights into the active site of the enzyme, for which no structures are currently available

  20. Automated thermometric enzyme immunoassay of human proinsulin produced by Escherichia coli

    International Nuclear Information System (INIS)

    The authors have determined and monitored the production and release of human proinsulin by genetically engineered Escherichia coli cells. Several M9 media samples were analyzed sequentially after centrifugation with the aid of a rapid automated flow-through thermometric enzyme-linked immunosorbent assay (TELISA) system. The response time was 7 min after after sample injection and a single assay was complete after 13 min. Insulin concentrations in the range of 0.1-50 μg/ml could be determined. The TELISA method correlated well with conventional radioimmunoassay determinations. Standard curves were reproducible over a period of several days even when the immobilized antibody column was stored at 250C in the enzyme thermistor unit. Thus, immediate assay start up was possible

  1. Automated thermometric enzyme immunoassay of human proinsulin produced by Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Birnbaum, S.; Buelow, L.; Hardy, K.; Danielsson, B.; Mosbach, K.

    1986-10-01

    The authors have determined and monitored the production and release of human proinsulin by genetically engineered Escherichia coli cells. Several M9 media samples were analyzed sequentially after centrifugation with the aid of a rapid automated flow-through thermometric enzyme-linked immunosorbent assay (TELISA) system. The response time was 7 min after after sample injection and a single assay was complete after 13 min. Insulin concentrations in the range of 0.1-50 ..mu..g/ml could be determined. The TELISA method correlated well with conventional radioimmunoassay determinations. Standard curves were reproducible over a period of several days even when the immobilized antibody column was stored at 25/sup 0/C in the enzyme thermistor unit. Thus, immediate assay start up was possible.

  2. Angiotensin I-Converting Enzyme Inhibitory Peptides of Chia (Salvia hispanica) Produced by Enzymatic Hydrolysis

    OpenAIRE

    Maira Rubi Segura Campos; Fanny Peralta González; Luis Chel Guerrero; David Betancur Ancona

    2013-01-01

    Synthetic angiotensin I-converting enzyme (ACE-I) inhibitors can have undesirable side effects, while natural inhibitors have no side effects and are potential nutraceuticals. A protein-rich fraction from chia (Salvia hispanica L.) seed was hydrolyzed with an Alcalase-Flavourzyme sequential system and the hydrolysate ultrafiltered through four molecular weight cut-off membranes (1 kDa, 3 kDa, 5 kDa, and 10 kDa). ACE-I inhibitory activity was quantified in the hydrolysate and ultrafiltered fra...

  3. Isolation of Alpha-amylase Producing Thermophilic Bacillus Strains and Partial Characterization of the Enzymes

    OpenAIRE

    Celal Türker; Bahri Devrim Özcan

    2015-01-01

    In the present study, we isolated three thermophilic Bacillus strains from the soil samples collected from the coast sediments of the Burnaz Stream located in Erzin. The isolates were entitled as Bacillus sp. CT1, CT2, and CT3, respectively. The maximum α-amylase production was revealed at 60°C for CT1 strain, and at 80°C for CT2 and CT3 strains, respectively. The optimum enzyme activity was observed at 90°C for CT1 α-amylase, whereas at 60°C for CT2 and CT3 α-amylases. On the other hand, opt...

  4. Tricking Arthrinium malaysianum into Producing Industrially Important Enzymes Under 2-Deoxy D-Glucose Treatment

    Science.gov (United States)

    Mukherjee, Soumya; Chandrababunaidu, Mathu Malar; Panda, Arijit; Khowala, Suman; Tripathy, Sucheta

    2016-01-01

    This study catalogs production of industrially important enzymes and changes in transcript expression caused by 2-deoxy D-glucose (2-DG) treatment in Arthrinium malaysianum cultures. Carbon Catabolite Repression (CCR) induced by 2-DG in this species is cAMP independent unlike many other organisms. Higher levels of secreted endoglucanase (EG), β-glucosidase (BGL), β-xylosidase (BXL), and filter paper activity assay (FPase) enzymes under 2-DG treatment can be exploited for commercial purposes. An integrated RNA sequencing and quantitative proteomic analysis was performed to investigate the cellular response to 2-DG in A. malaysianum. Analysis of RNASeq data under 2-DG treated and control condition reveals that 56% of the unigenes do not have any known similarity to proteins in non-redundant database. Gene Ontology IDs were assigned to 36% of the transcripts (13260) and about 5207 (14%) were mapped to Kyoto Encyclopedia of Genes and Genomes pathway (KEGG). About 1711 genes encoding 2691 transcripts were differentially expressed in treated vs. control samples. Out of the 2691 differentially expressed transcripts, only 582 have any known function. The most up regulated genes belonged to Pentose Phosphate Pathways and carbohydrate degradation class as expected. In addition, genes involved in protein folding, binding, catalytic activity, DNA repair, and secondary metabolites were up-regulated under 2-DG treatment. Whereas genes encoding glycosylation pathways, growth, nutrient reservoir activity was repressed. Gene ontology analysis of the differentially expressed genes indicates metabolic process (35%) is the pre-dominant class followed by carbohydrate degradation (11%), protein folding, and trafficking (6.2%) and transport (5.3%) classes. Unlike other organisms, conventional unfolded protein response (UPR) was not activated in either control or treated conditions. Major enzymes secreted by A. malaysianum are those degrading plant polysaccharides, the most dominant

  5. Identification of Antarctic culturable bacteria able to produce diverse enzymes of potential biotechnological interest

    Institute of Scientific and Technical Information of China (English)

    Ignacio Ferrés; Vanesa Amarelle; Francisco Noya; Elena Fabiano

    2015-01-01

    It is estimated that more than three quarters of the Earth’s biosphere is in perennially cold environments. Despite the extreme environmental conditions of desiccation and freezing, microbes can colonize these habitats through the adaptation of metabolic functions and the synthesis of structurally adapted enzymes. Enzymes within psychrophilic microbes exhibit high specific activity at low and moderate temperature, with low thermostability. In this study we used a classic microbiological approach to isolate Antarctic bacteria with cellulolytic, lipolytic, and ligninolytic activities. From 15 different environmental samples, we generated a collection of approximately 800 bacterial isolates that could grow on R2A or Marine medium at 4°C. This collection was then screened for the presence of the three types of activity at 4°C. We found that 47.7% of the isolates displayed lipolytic activity, 10.2% had cellulase/xylanase activity, and 7.7% showed guaiacol oxidase activity. Of these, 10% displayed two different types of activity, while 0.25% displayed all three types of activity. Our results indicate that cold environments represent outstanding resources for bioprospecting and the study of enzymatic adaptation.

  6. Mechanism of Excretion of a Bacterial Proteinase: Demonstration of Two Proteolytic Enzymes Produced by a Sarcina Strain (Coccus P)

    Energy Technology Data Exchange (ETDEWEB)

    SARNER, NITZA Z; BISSELL, MINA J; GIROLAMO, MARIO Di; GORINI, LUIGI

    1970-06-29

    A Sarcina strain (Coccus P) produces two proteolytic enzymes. One is found only extracellularly, is far more prevalent, and is actively excreted during exponential growth. It is the enzyme responsible for the known strong proteolytic activity of the cultures of this strain. A second protease is, however, produced which remains associated with the intact cells but is released by the protoplasts. The two enzymes appear unrelated in their derivation. Calcium ions play an essential role in preventing autodigestion of the excreted enzyme. Bacterial proteins are found outside the cell boundary as a consequence either of passive processes such as leakage or lysis or of active excretion. Under conditions in which leakage and lysis do not occur, as during exponential growth, the cell boundary is a barrier causing a complete separation of the bulk of the intracellular proteins from the one or very few extracellular proteins, with no trace of either type being detectable on the wrong side of the boundary. Since in bacteria there is no evidence of protein being produced other than internally, the separation into intraand extracellular proteins should occur after peptide chain formation. The question arises as to whether the structure of the cell boundary or that of the excreted proteins themselves determines this separation. Coccus P, a Sarcina closely related to Micrococcus lysodeikticus (3), produces an extracellular proteinase during the exponential phase of growth so that the process appears to be active excretion. The organism grows exponentially in a defined synthetic medium (12) to relatively high cell density (10{sup 9} cells/ml); therefore the mechanism of excretion can be studied over an extended period of time without the difficulties of changing growth rates. Coagulation of reconstituted skim milk provides a simple and sensitive assay for enzyme activity (I 1). The extracellular proteinase has also been purified and partially characterized (6-8). It has been shown

  7. A homogeneous assay principle for universal substrate quantification via hydrogen peroxide producing enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Zscharnack, Kristin; Kreisig, Thomas; Prasse, Agneta A. [Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig (Germany); Zuchner, Thole, E-mail: Thole.Zuechner@octapharma.com [Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig (Germany); Center for Biotechnology and Biomedicine, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig (Germany)

    2015-01-07

    Highlights: • Application of the TRF-based PATb system for universal oxidase substrate detection. • H{sub 2}O{sub 2} generated by choline or glucose oxidase quenches the TRF signal of PATb. • The assay time is only limited by the oxidase catalysis rate. • Glucose is precisely detected in human serum consistent to a commercial assay. • A reliable quantification of choline in infant formula is shown. - Abstract: H{sub 2}O{sub 2} is a widely occurring molecule which is also a byproduct of a number of enzymatic reactions. It can therefore be used to quantify the corresponding enzymatic substrates. In this study, the time-resolved fluorescence emission of a previously described complex consisting of phthalic acid and terbium (III) ions (PATb) is used for H{sub 2}O{sub 2} detection. In detail, glucose oxidase and choline oxidase convert glucose and choline, respectively, to generate H{sub 2}O{sub 2} which acts as a quencher for the PATb complex. The response time of the PATb complex toward H{sub 2}O{sub 2} is immediate and the assay time only depends on the conversion rate of the enzymes involved. The PATb assay quantifies glucose in a linear range of 0.02–10 mmol L{sup −1}, and choline from 1.56 to 100 μmol L{sup −1} with a detection limit of 20 μmol L{sup −1} for glucose and 1.56 μmol L{sup −1} for choline. Both biomolecules glucose and choline could be detected without pretreatment with good precision and reproducibility in human serum samples and infant formula, respectively. Furthermore, it is shown that the detected glucose concentrations by the PATb system agree with the results of a commercially available assay. In principle, the PATb system is a universal and versatile tool for the quantification of any substrate and enzyme reaction where H{sub 2}O{sub 2} is involved.

  8. Mutant strain screening by 60Co γ-rays irradiation and its cellulase enzyme produce condition

    International Nuclear Information System (INIS)

    A mutant strain A50 with high cellulase activity was induced and isolated by using 60Co γ-rays irradiation from the initial Penicillium decumbens A10. The optimum fermentation conditions of A50 were investigated through orthogonal designing experiment, the major carbon resource 5%, the ratio between wheat bran and corn straw 1:1, the concentration of glucose as supplemental carbon 0.1%, the concentration of (NH4)2HPO4 as supplemental nitrogen resource 0.2%, the initial pH of liquid medium 5.0, the inoculated amount for fermentation 10% and the concentration of Tween-80 0.1%, 30 ml initial media filled in the 300 ml flask with culture condition of 32 degree C and 200 r/min. Under the optimum conditions mentioned above, the highest activities of cellulase and filter paper enzyme were 27.28 and 1.98IU/ml at 60 h fermentation, respectively, which was 33.2% and 45.59% higher than those of the initial strain. (authors)

  9. Isolation of Alpha-amylase Producing Thermophilic Bacillus Strains and Partial Characterization of the Enzymes

    Directory of Open Access Journals (Sweden)

    Celal Türker

    2015-03-01

    Full Text Available In the present study, we isolated three thermophilic Bacillus strains from the soil samples collected from the coast sediments of the Burnaz Stream located in Erzin. The isolates were entitled as Bacillus sp. CT1, CT2, and CT3, respectively. The maximum α-amylase production was revealed at 60°C for CT1 strain, and at 80°C for CT2 and CT3 strains, respectively. The optimum enzyme activity was observed at 90°C for CT1 α-amylase, whereas at 60°C for CT2 and CT3 α-amylases. On the other hand, optimum pH value for CT2 α-amylase was 7.0, whereas 8.0 for CT1 and CT3 α-amylases. The specific activities of CT1, CT2, and CT3 amylases were 317.6, 113.3 and 362.7 U/mg at 55°C, respectively. The estimated molecular weight of CT1 and CT3 α-amylase was 65 kDa, and for CT2 α-amylase was 38 kDa by zymogram analysis.

  10. Halophilic Bacteria of Lunsu Produce an Array of Industrially Important Enzymes with Salt Tolerant Activity

    Science.gov (United States)

    Gupta, Sonika; Sharma, Parul; Dev, Kamal; Sourirajan, Anuradha

    2016-01-01

    The halophilic bacterial isolates SS1, SS2, SS3, SS5, and SS8 were characterized for production of industrially important enzymes like amylase, protease, lipase, and glutaminase. Halophilic bacterial isolates SS1 and SS3 exhibited salt dependent extracellular amylase and protease activities. Both the halophilic isolates SS1 and SS3 exhibited maximum amylase and protease activities in the presence of 1.5 and 1.0 M NaCl, respectively, with the optimum pH 8 and temperature 40°C. SS2 showed maximum extracellular protease and lipase activities in the presence of 0.75 M NaCl, at optimum pH of 7, and temperature 37°C. The glutaminase activity of SS3 increased with increase in concentration of NaCl up to 2.5 M. The optimum pH and temperature for L-glutaminase activity of SS3 was 8 and 40°C, respectively. The combined hydrolytic activities of these halophilic bacterial isolates can be used for bioconversion of organic materials to useful products. PMID:26885394

  11. Angiotensin I-Converting Enzyme Inhibitory Peptides of Chia (Salvia hispanica Produced by Enzymatic Hydrolysis

    Directory of Open Access Journals (Sweden)

    Maira Rubi Segura Campos

    2013-01-01

    Full Text Available Synthetic angiotensin I-converting enzyme (ACE-I inhibitors can have undesirable side effects, while natural inhibitors have no side effects and are potential nutraceuticals. A protein-rich fraction from chia (Salvia hispanica L. seed was hydrolyzed with an Alcalase-Flavourzyme sequential system and the hydrolysate ultrafiltered through four molecular weight cut-off membranes (1 kDa, 3 kDa, 5 kDa, and 10 kDa. ACE-I inhibitory activity was quantified in the hydrolysate and ultrafiltered fractions. The hydrolysate was extensive (DH = 51.64% and had 58.46% ACE-inhibitory activity. Inhibition ranged from 53.84% to 69.31% in the five ultrafiltered fractions and was highest in the <1 kDa fraction (69.31%. This fraction’s amino acid composition was identified and then it was purified by gel filtration chromatography and ACE-I inhibition measured in the purified fractions. Amino acid composition suggested that hydrophobic residues contributed substantially to chia peptide ACE-I inhibitory strength, probably by blocking angiotensin II production. Inhibitory activity ranged from 48.41% to 62.58% in the purified fractions, but fraction F1 (1.5–2.5 kDa exhibited the highest inhibition (IC50 = 3.97 μg/mL; 427–455 mL elution volume. The results point out the possibility of obtaining bioactive peptides from chia proteins by means of a controlled protein hydrolysis using Alcalase-Flavourzyme sequentional system.

  12. l-Methioninase from some Streptomyces isolates I: Isolation, identification of best producers and some properties of the crude enzyme produced

    Directory of Open Access Journals (Sweden)

    M.H. Selim

    2015-12-01

    Full Text Available Among 60 isolates of Streptomyces tested; only 40 isolates were capable to utilize l-methionine as the only source of nitrogen in medium. In addition, 24 of these isolates could grow in medium amended with l-methionine as a source of nitrogen and carbon. Qualitative rapid plate assay test shows the ability of 18 of these isolates to grow with a pink color surrounding their colonial growth, while 6 of these isolates could grow and utilize l-methionine without any pink color around their colonial growth. Quantitative assay test shows the rate of l-methioninase production by all isolates tested. Permeabilization treatment including chemical and physical methods proved that l-methioninase was found to be extracellularly produced. The results also indicate that l-methioninase production was not correlated with growth rate or l-methionine consumption in medium. On the other hand, quantitative assay test shows that these six isolates were l-methioninase negative and failed to produce any amount of l-methioninase. In addition, results also show that isolates No. 4 and No. 60 were the most suitable for l-methioninase production, these two isolates were characterized and identified as Streptomyces sp. DMMMH 4 and Streptomyces sp. MDMMH 60 using 16S rRNA with accession No. in gene bank. Furthermore, optimal conditions for enzyme activity produced by the two isolates were established in relation to temperature, pH, reaction time and type of buffer used and its molarities.

  13. Lipase-catalyzed process in an anhydrous medium with enzyme reutilization to produce biodiesel with low acid value.

    Science.gov (United States)

    Azócar, Laura; Ciudad, Gustavo; Heipieper, Hermann J; Muñoz, Robinson; Navia, Rodrigo

    2011-12-01

    One major problem in the lipase-catalyzed production of biodiesel or fatty acid methyl esters (FAME) is the high acidity of the product, mainly caused by water presence, which produces parallel hydrolysis and esterification reactions instead of transesterification to FAME. Therefore, the use of reaction medium in absence of water (anhydrous medium) was investigated in a lipase-catalyzed process to improve FAME yield and final product quality. FAME production catalyzed by Novozym 435 was carried out using waste frying oil (WFO) as raw material, methanol as acyl acceptor, and 3Å molecular sieves to extract the water. The anhydrous conditions allowed the esterification of free fatty acids (FFA) from feedstock at the initial reaction time. However, after the initial esterification process, water absence avoided the consecutives reactions of hydrolysis and esterification, producing FAME mainly by transesterification. Using this anhydrous medium, a decreasing in both the acid value and the diglycerides content in the product were observed, simultaneously improving FAME yield. Enzyme reuse in the anhydrous medium was also studied. The use of the moderate polar solvent tert-butanol as a co-solvent led to a stable catalysis using Novozym 435 even after 17 successive cycles of FAME production under anhydrous conditions. These results indicate that a lipase-catalyzed process in an anhydrous medium coupled with enzyme reuse would be suitable for biodiesel production, promoting the use of oils of different origin as raw materials. PMID:21889401

  14. [Screening of acidic xylanase producing strain and studies on its enzyme production conditions].

    Science.gov (United States)

    Chen, H; Zhu, J; Liang, G; Yan, Z; Zhang, S

    1999-08-01

    From 150 fungal strains, the authors found 8 strains contained mainly of xylanase activity over 100 U/mL in which the No. 149 strain was the highest xylanase producer. Which tentatively identified as Aspergillas niger. The appropriate medium composition was as follows: wheat bran hemicellulose 4%; NaNO3 1%; wheat bran 1% prepared in Mandels nutritional solution without (NH4)2SO4 and urea. After cultivated in shake-flask at 28 degrees C-32 degrees C for 60 h, the activity reached the highest value of 357.2 U/mL. The optimum pH of xylanase was 4.6 and it was stable at pH3-11. The fermented broth of strain 149 contained in addition to xylanase (relative activity 100) also included amylase(1.8), mannanase(0.98), beta-xylosidase(0.94) and cellulase(0.17). PMID:12555575

  15. [Screening and Enzyme Production Characteristics of Thermophilic Cellulase-producing Strains].

    Science.gov (United States)

    Feng, Hong-mei; Qin, Yong-sheng; Li, Xiao-fan; Zhou, Jin-xing; Peng, Xia-wei

    2016-04-15

    A total of 6 thermophilic cellulase-producing strainswere isolated from organic garden waste mixed chicken composting at thermophilic period. These isolates were identified as Streptomyces thermoviolaceus, S. thermodiastaticus, S. thermocarboxydus, S. albidoflavus, S. thermovulgaris and Brevibacillus borstelensis through 16S rRNA gene sequence alignment and phylogenetic tree analysis. The cellulose-degrading microbial community has been investigated in few researches so far both at home and abroad. In this study, the mixed strains M-1 was made up of the 6 cellulose-decomposing microorganisms. The CMCase activity of the mixed strains M- 1 was stronger than any of the 6 single strains. Production of CMCase from mixed strains M-1 was studied by optimizing different physico-chemical parameters. The Maximum CMCase production (135.9 U · mL⁻¹) of strains M-1 was achieved at 45 °C in a liquid medium (pH 4) inoculated with 1% (volume fraction), containing a mixture of wheat bran and starch, corn flour and KNO₃. After optimization of separation conditions, CMCase production capacity was improved by 1.8 times. PMID:27548981

  16. Screening of physiologically active strain of the filamentous fungi - a producer of a complex of lytic enzymes

    International Nuclear Information System (INIS)

    Filamentous Aspergillus fungi were studied to obtain a producer of a complex of the enzymes specific to biodegradation of polymers of cellular walls of vegetable and microbic biomass. Strains were selected by the increased biosynthetic ability in relation to the beta-glucanase (BG), chitinase (CT), mannanase (MN), proteases and pectinases. It was estimated during deep cultivation in the environment containing wheat bran. The fullest complex of hydrolytic enzymes (glucanase, MN, CT, protease and a polygalacturonase (PG)), and also the level of enzymatic activities was in the culture liquid obtained as a result of biosynthesis of Aspergillus foetidus 37-4 (S 37-4) strain. For its cultivation the medium containing salts like potassium dihydrogen phosphate, magnesium sulfate and ammonium sulfate in optimum concentration, and also dioses (maltose, sucrose) and polysaccharides (starch, chitin, pectin) was chosen. The greatest zones of hydrolysis are traced during planting S 37-4 in agar medium containing maltose and low methoxyl citrus pectin. As the synthesis inductor of hemicellulase, MN and CT malt sprouts were used, and of PG - not clarified beet bin fibers. Cultivation was carried out on a thermostatically controlled shaker at 30 deg. C for 120 h. Increase of activity of synthesizable enzymes when using low methoxyl citrus pectin as a media part equaled for BG 5-19%, for PG - 25%, when using a maltose for CT - 100%, MN - 29%. To increase biosynthetic ability of S 37-4 as a mutagen 3-staged ultra-violet radiation (wavelength is 265 nanometers) was applied. The obtained 379-K-5 strain surpassed in activity level a parental strain BG - by 84.8%, CT - by 45.0%, MN - by 62.9%, PG - by 89.0%. The following (4th) stage of radiation led to death of the strain. In comparison with a parental S 37-4 the colony of a mutant strain possessed the bigger size and plentiful formation of an air mycelium, ability to sporogenesis was less expressed

  17. Conclusion on the peer review of the pesticide risk assessment of the active substance [Trichoderma atroviride strain I-1237

    Directory of Open Access Journals (Sweden)

    European Food Safety Authority

    2012-10-01

    Full Text Available

    The conclusions of the European Food Safety Authority (EFSA following the peer review of the initial risk assessments carried out by the competent authority of the rapporteur Member State France, for the pesticide active substance Trichoderma atroviride strain I-1237 are reported. The context of the peer review was that required by Commission Regulation (EU No 188/2011. The conclusions were reached on the basis of the evaluation of the representative uses of Trichoderma atroviride strain I-1237 as a fungicide in vineyards and grapevine nursery. The reliable endpoints concluded as being appropriate for use in regulatory risk assessment, derived from the available studies and literature in the dossier peer reviewed, are presented. Missing information identified as being required by the regulatory framework is listed.

  18. AI-2 Key Enzyme S-Ribosylhomocysteinase from Strain Klebsiella pneumoniae CICC 10011 Producing 2,3-Butanediol

    Institute of Scientific and Technical Information of China (English)

    DAI Jian-ying; ZHANG Li-fu; XIU Zhi-long

    2011-01-01

    S-Ribosylhomocysteinase(LuxS) is the key enzyme in the synthetic pathway of a quorum sensing autoin ducer AI-2. LuxS from a 2,3-butanediol produced strain Klebisella pneumoniae CICC 10011 was cloned and charac terized. The luxS gene is composed of 540 bp with 172 amino acids encoded. The Km value for S-ribosylhomo-cysteine(SRH) was (27+1) μmol/L, kcat was (0.112±0.004) s-1 and kcat/Km was 4.4×103 L.mol-1 s-1 at 25 ℃. LuxS was activated by divalent metal ions, the highest activity was detected with Co2+ form, followed by Mg2+, Ba2+, Mn2+,Fe2+ and Ca2+, and activation constant for Co2+ is (16±2) μmol/L.

  19. Use of a Mixture of Thermophilic Enzymes Produced by the Fungus Thermoascus aurantiacus to Enhance the Enzymatic Hydrolysis of the Sugarcane Bagasse Cellulose

    OpenAIRE

    Monte, J. R.; Carvalho, W.; A. M.F. Milagres

    2010-01-01

    Problem statement: The production of hydrolytic enzymes by T. aurantiacus has been performed under solid-state fermentations using lignocellulosic materials. The influences of the inoculum size and of the fermentation medium on the production of hemicellulases and cellulases were studied. Filtrates from the cultures were used to hydrolyze a pulp of sugarcane bagasse and the produced enzymes were shown to be candidates for use as co-adjuvants in plant saccharification. ...

  20. A spectrophotometric method for the quantification of an enzyme activity producing 4-substituted phenols: determination of toluene-4-monooxygenase activity.

    Science.gov (United States)

    Nolan, Louise C; O'Connor, Kevin E

    2005-09-15

    A spectrophotometric method for the quantitative determination of an enzyme activity resulting in the accumulation of 4-substituted phenols is described in this article. Toluene-4-monooxygenase (T4MO) activity in whole cells of Pseudomonas mendocina KR1 is used to demonstrate this method. This spectrophotometric assay is based on the coupling of T4MO activity with tyrosinase activity. The 4-substituted phenol, produced by the action of T4MO on the aromatic ring of a substituted arene, is a substrate for tyrosinase, which converts phenols to o-quinones. The latter react with the nucleophile 3-methyl-2-benzothiazolinone hydrazone (MBTH) to produce intensely colored products that absorb light maximally at different wavelengths, depending on the phenolic substrate used. The incubation of whole cells of P. mendocina KRI with fluorobenzene resulted in the accumulation of 4-fluorophenol. The coupling of T4MO activity with tyrosinase activity in the presence of fluorobenzene resulted in the formation of a colored product absorbing maximally at 480 nm. The molar absorptivity (epsilon) value for the o-quinone-MBTH adduct formed from 4-fluorophenol was determined experimentally to be 12,827 M(-1) cm(-1) with a linear range of quantification between 2.5 and 75 microM. The whole cell assay was run as a continuous indirect assay. The initial rates of T4MO activity toward fluorobenzene, as determined spectrophotometrically, were 61.8+/-4.4 nmol/min/mg P. mendocina KR1 protein (using mushroom tyrosinase), 64.9+/-4.6 nmol/min/mg P. mendocina KR1 protein (using cell extracts Pseudomonas putida F6), and, as determined by HPLC analysis, 62.6+/-1.4 nmol/min/mg P. mendocina KR1 protein. PMID:16061193

  1. Proteomic analysis of Trichoderma atroviride reveals independent roles for transcription factors BLR-1 and BLR-2 in light and darkness.

    Science.gov (United States)

    Sánchez-Arreguín, Alejandro; Pérez-Martínez, Ana Silvia; Herrera-Estrella, Alfredo

    2012-01-01

    The genus Trichoderma is one of the most widely used biological control agents of plant-pathogenic fungi. The main mechanism for survival and dispersal of Trichoderma is through the production of asexual spores (conidia). The transition from filamentous growth to conidiation can be triggered by light, nutrient deprivation, and mechanical damage of the mycelium. We conducted proteomic profiling analyses of Trichoderma atroviride after a blue light pulse. The use of two-dimensional electrophoresis (2-DE) and mass spectrometry (MS) analysis allowed us to identify 72 proteins whose expression was affected by blue light. Functional category analysis showed that the various proteins are involved in metabolism, cell rescue, and protein synthesis. We determined the relationship between mRNA levels of selected genes 30 min after a light pulse and protein expression levels at different times after the pulse and found this correlation to be very weak. The correlation was highest when protein and mRNA levels were compared for the same time point. The transcription factors BLR-1 and BLR-2 are vital to the photoconidiation process; here we demonstrate that both BLR proteins are active in darkness and affect several elements at both the transcript and protein levels. Unexpectedly, in darkness, downregulation of proteins prevailed in the Δblr-1 mutant, while upregulation of proteins predominated in the Δblr-2 mutant. Our data demonstrate that the BLR proteins play roles individually and as a complex. PMID:22058143

  2. Comparation of the Flavor of Different Cheese Flavouring Agents Produced by Using Surface Ripening Bacterium and/or Enzymes

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2013-10-01

    Full Text Available To accelerate cheese ripening, enhance its flavor types and intensity and make cheese flavoring agent in shorter time, surface ripening bacterium (Brevibacterium linens and Debaryomyces hansenii and/or enzymes (Flavorzyme 500 MG and Palatase 20000 L were used in cheese curd. In this study, aroma compounds generated by using ripening cultures and/or enzymes were analyzed. The control l was made by inoculating ripening cultures, while the control 2 was made through enzymes-modified only. Results showed that cheese flavoring agent made by using ripening strains in combination with enzymes had more volatile flavor compounds (at least 44 than that used just ripening bacterium (26 or just two enzymes (27. Then, through Solid-phase microextraction and Gas Chromatography-Mass Spectrometry analysis, we knew that sample 1, which was made through proteolysis first, next sprayed ripening cultures and last lipolysis, generated 54 flavor compounds. Sample 2, which enzymed cheese curd first, then incubated ripening cultures, had 44 aroma compounds. However, the controls 1, incubated ripening strains only, had 26 volatile compounds, while the control 2, enzymed only, had 27 volatile compounds. This study reveals that ripening bacterium could contribute more to the generation of acids, sulphur compounds, miscellaneous compounds and alcohols, it has a good potential to be used in cheese flavoring agents making. Besides, the combination of surface strains and enzymes, especially using Flavorzyme 500 MG first, then sprayed ripening cultures and at last Palatase 20000 L, could get more volatile compounds.

  3. The Epl1 and Sm1 proteins from Trichoderma atroviride and Trichoderma virens differentially modulate systemic disease resistance against different life style pathogens in Solanum lycopersicum

    Directory of Open Access Journals (Sweden)

    Miguel Angel eSalas-Marina

    2015-02-01

    Full Text Available Fungi belonging to the genus Trichoderma, commonly found in soil or colonizing plant roots, exert beneficial effects on plants, including the promotion of growth and the induction of resistance to disease. T. virens and T. atroviride secrete the proteins Sm1 and Epl1, respectively, which elicit local and systemic disease resistance in plants. In this work, we show that these fungi promote growth in tomato (Solanum lycopersicum plants. T. virens was more effective than T. atroviride in promoting biomass gain, and both fungi were capable of inducing systemic protection in tomato against Alternaria solani, Botrytis cinerea, and Pseudomonas syringae pv. tomato (Pst DC3000. Deletion (KO of epl1 in T. atroviride resulted in diminished systemic protection against A. solani and B. cinerea, whereas the T. virens sm1 KO strain was less effective in protecting tomato against Pst DC3000 and B. cinerea. Importantly, over-expression (OE of epl1 and sm1 led to an increase in disease resistance against all tested pathogens. Although the Trichoderma WT strains induced both systemic acquired resistance (SAR- and induced systemic resistance (ISR-related genes in tomato, inoculation of plants with OE and KO strains revealed that Epl1 and Sm1 play a minor role in the induction of these genes. However, we found that Epl1 and Sm1 induce the expression of a peroxidase and an α-dioxygenase encoding genes, respectively, which could be important for tomato protection by Trichoderma spp. Altogether, these observations indicate that colonization by beneficial and/or infection by pathogenic microorganisms dictates many of the outcomes in plants, which are more complex than previously thought.

  4. Molecular Characterization of Carbapenemases and Quinolone Resistance Determining Region Enzymes-Producing Isolates in an Outbreak at the University Hospital of Leipzig

    OpenAIRE

    Al Qasem, Hala

    2014-01-01

    Beta lactam resistance producing isolates of Enterobacteriacea and non-Enterobacteriacea have emerged since more than seventy years ago (Abraham and Chain, 1940). They are known to cause both community and hospital-acquired infections. Resistance against carbapenem is primarily mediated by the production of enzymes that destroy the beta lactam antimicrobials, which are produced by these isolates involving the expression of serine and metalobetalactamase genes KPC, IMP, VIM, NDM-1 and OXA-48. ...

  5. Enzyme-linked immunosorbent assay detection of trichothecenes produced by the Bioherbicide Myrothecium verrucaria in cell cultures, extracts, and plant tissues

    Science.gov (United States)

    Commercially available enzyme linked immunosorbent assay (ELISA) plates for trichothecene detection, possessing cross-reactivity with several trichothecene mycotoxins (e.g., verrucarin A, and J, roridin A, L-2, E, and H), were tested for their ability to detect trichothecenes produced by a strain of...

  6. Transgenic Plant-Produced Hydrolytic Enzymes and the Potential of Insect Gut-Derived Hydrolases for Biofuels

    Science.gov (United States)

    Willis, Jonathan D.; Mazarei, Mitra; Stewart, C. Neal

    2016-01-01

    Various perennial C4 grass species have tremendous potential for use as lignocellulosic biofuel feedstocks. Currently available grasses require costly pre-treatment and exogenous hydrolytic enzyme application to break down complex cell wall polymers into sugars that can then be fermented into ethanol. It has long been hypothesized that engineered feedstock production of cell wall degrading (CWD) enzymes would be an efficient production platform for of exogenous hydrolytic enzymes. Most research has focused on plant overexpression of CWD enzyme-coding genes from free-living bacteria and fungi that naturally break down plant cell walls. Recently, it has been found that insect digestive tracts harbor novel sources of lignocellulolytic biocatalysts that might be exploited for biofuel production. These CWD enzyme genes can be located in the insect genomes or in symbiotic microbes. When CWD genes are transformed into plants, negative pleiotropic effects are possible such as unintended cell wall digestion. The use of codon optimization along with organelle and tissue specific targeting improves CWD enzyme yields. The literature teaches several important lessons on strategic deployment of CWD genes in transgenic plants, which is the focus of this review. PMID:27303411

  7. Use of a Mixture of Thermophilic Enzymes Produced by the Fungus Thermoascus aurantiacus to Enhance the Enzymatic Hydrolysis of the Sugarcane Bagasse Cellulose

    Directory of Open Access Journals (Sweden)

    J. R. Monte

    2010-01-01

    Full Text Available Problem statement: The production of hydrolytic enzymes by T. aurantiacus has been performed under solid-state fermentations using lignocellulosic materials. The influences of the inoculum size and of the fermentation medium on the production of hemicellulases and cellulases were studied. Filtrates from the cultures were used to hydrolyze a pulp of sugarcane bagasse and the produced enzymes were shown to be candidates for use as co-adjuvants in plant saccharification. Aproach: The present study focuses on the effect of different culture conditions on production of cellulases and hemicellulases by T. aurantiacus. It is also provides a possible application of T. aurantiacus enzymes in the degradation of sugarcane bagasse pulp, considering that this thermophilic fungus is a potential source of thermostable enzymes. Results: T. aurantiacus was cultivated on four different agricultural residues: sugarcane bagasse, sugarcane straw, wheat straw and corn cob. Xylanase was produced with much more expressive activity than cellulases. The highest titre of xylanase was obtained on sugarcane straw at 9 days (1679.8 IU g−1; the same was observed for β- glucosidase (29.9 IU g−1 at 6 days. With an inoculum load of 108 spores g−1, the amount of exoglucanase produced by the fungus considerably exceeds that produced with 104 spores g−1. Xylanases and cellulases purified from filtrates of the cultures were investigated to hydrolyze a bagasse pulp prepared with alkaline peroxide. Xylanase or sulphuric acid were used as pretreatments for xylan removal, increasing the cellulase performance on pulp bagasse. However, results revealed that the removal of hemicellulose is not the only main factor limiting the cellulose hydrolysis. Conclusion: Results indicate that the xylanase action on alkaline-pretreated sugar cane bagasse enhances the cellulolytic effect promoted by a commercial cellulase. This study thus presents an evaluation of the

  8. 酱香型大曲酶系与大曲中微生物产酶关系的研究%The Relations between Enzyme System in Jiangxiang Daqu and Enzyme Produced by Microbial Metabolism

    Institute of Scientific and Technical Information of China (English)

    王晓丹; 胡宝东; 班世栋; 肖蓓; 邱树毅

    2015-01-01

    Jiangxiang Daqu, produced by wheat, is a block starter containing a variety of fungi and enzymes. With the deep exploration of Ji-angxiang Daqu, people know more about Jiangxiang Daqu gradually. The importance of Daqu enzyme system has been highlighted. A large amount of enzyme is produced by microbial metabolism in Daqu. Accordingly, there is surely a direct relation between Daqu enzyme system and microbes in Daqu. In this experiment, the activities of acidic protease, glucoamylase, cellulase, pectinase, lipase in enzyme system in Ji-angxiang Daqu were measured. Enzyme production test was carried with 48 bacteria strains and 35 fungus strains which were screened from Ji-angxiang Daqu, and the varieties and the activities of the produced enzyme were determined at the same time. The results suggested that, all the screened bacteria strains and fungi strains could produce enzyme, and strains with high-yield of enzyme could be used for the preparation of in-tensified Daqu. The physiochemical indexes of Jiangxiang Daqu could indirectly reflect the relation between Daqu enzyme system and the mi-crobes in Daqu. This study provided theoretical evidence for the optimization of Daqu-making techniques and the preparation of intensified Daqu.%酱香型大曲是以小麦为原料制成的含有多种菌类和酶类的曲块.随着对酱香型大曲研究的深入,人们对酱香型大曲的认识也在逐渐加深.酱香型大曲酶系的重要性也就凸显出来.酱香型大曲中微生物代谢产生大量的酶,酱香型大曲酶系和大曲中微生物必定存在着直接的关联性.本实验对酱香型大曲酶系中酸性蛋白酶、糖化酶、纤维素酶、果胶酶和脂肪酶进行活力测定,对从酱香型大曲中筛选出的48株细菌和35株霉菌进行产酶试验,并对产酶种类、酶活大小进行测定.筛选出的48株细菌和35株霉菌大都可以产酶,产酶量高的菌株可以用于强化大曲的制备.酱香型大曲的

  9. Application of Trichoderma harzianum (T22) and Trichoderma atroviride (P1) as plant growth promoters, and their compatibility with copper oxychloride

    Institute of Scientific and Technical Information of China (English)

    Francesco Vinale; Gaetano D' Ambrosio; Khalid Abadi; Felice Scala; Roberta Marra; David Turrà; Sheridan L Woo; Matteo Lorito

    2004-01-01

    @@ Trichoderma strains are used in agriculture because they provide to the plants the following benefits:i) are rhizosphere competence and establish stable rhizosphere microbial communities; ii) control plant disease caused by pathogenic and competitive microflora, by using a variety of mechanisms; iii)improve vegetative growth, root development and yield; iv) make nutrients more available to the plant. In this work we have investigated the ability of T. harzianum T22 and T. atroviride P1 to improve plant growth of locally important horticultural crops: lettuce, tomatoes and peppers and to prevent disease in the greenhouse and field. The effect of the Trichoderma treatment was evaluated by determining the weight of fresh and dry roots and above ground plant biomass, measuring plants height, counting the number of emerged leaves (lettuce, tomatoes and peppers) and quantifying production (tomatoes and peppers). No disease symptoms were found during production, although Fusarium sp. strains pathogenic to tomato were detected in the soil. Compounds containing copper oxychloride are frequently used for fungal disease control in agriculture. In order to investigate the compatibility of T. harzianum T22 and T. atroviride P1 with copper oxychloride applications, the effect on mycelia growth was monitored in both liquid and solid medium. In general, the tests indicated a high level of tolerance of the Trichoderma strains to concentrations of copper oxychloride varying from 0.1 to 5 mmol/L.

  10. Application of alkaline thermo-stable lipase(s) enzyme produced from irradiated microbial isolate in the field of detergent technology

    International Nuclear Information System (INIS)

    Due to continuous demand for manufacture of high quality, low coast industrial detergents containing lipolytic enzymes and due to continuous accumulation of enviro-agro-industrial wastes which are good and suitable conditions for growth and reproduction of pathogenic microorganisms, our study aims at isolating thermoalkalophilic lipase producer microorganisms from enviro-agro-industrial wastes and selection of the most potent isolate for studying physiological conditions controlling enzyme formation also purification characterization and some applications on purified and crude enzyme as bio-detergent. Some environmental and industrial wastes were collected from different places. The industrial wastes include, cotton seed, soyabean, sun flower, lin seed and olive oil wastes. Environmental wastes include poultry and fish wastes, all these wastes were dried at 70 degree C, grounded and used for isolation of microorganisms and lipase(s) production.Nine thermoalkalophilic bacterial isolates were isolated from enviro-agro-industrial wastes at ph 11.5 and 70 degree C. They were purified and screening for their ability of thermoalkalo-stable lipase(s) formation, this is followed by examining the effect of different nutritional media and exposure of bacterial isolates to different doses of gamma irradiation and the influence of these radiation on lipase(s) productivity by these isolates. From the results it was found that.1- The most potent lipase(s) forming bacterial isolates were isolates number B2 and B3 which cultivated on medium A amended with fish-wastes as being the best nutritional medium for enzyme formation. 2-Bacterial isolate B2 finally was selected as being the most potent lipase(s) forming bacterial isolate cultivated on fish-wastes and yeast extract (in tap water) and identified according to key's of Bergey Manual of Systematic Bacteriology (1984) as being Bacillus brevis B2.The optimum culture conditions for maximum biosynthesis of extracellular lipase

  11. Growth and enzyme production during continuous cultures of a high amylase-producing variant of Aspergillus oryzae

    DEFF Research Database (Denmark)

    Zangirolami, Teresa; Carlsen, M.; Nielsen, J.; Jørgensen, Sten Bay

    2002-01-01

    Growth and product formation by a selected variant of Aspergillus oryzae showing high alpha-amylase production was studied in continuous cultivations carried out at six different specific growth rates, using glucose as the growth-limiting nutrient. The analysis of the steady-state data revealed...... specific alpha-amylase production rate of 17 FAUgDW(-1)h(-1) at a dilution rate of 0.1 h(-1). Using a morphologically structured model originally proposed for the wild-type strain, it was possible to describe enzyme production, biomass formation and glucose consumption after modification of a few...... that the variant and wild-type strains were similar with respect to glucose uptake system and stoichiometric coefficients. However, the variant was capable of maintaining an enzyme production as high as 40 FAUgDW(-1)h(-1) at a dilution rate of 0.2 h(-1), while the wild-type strain reached a maximum...

  12. Chemical changes of kraft lignin and some enzymes produced by the white-rot fungus Coriolopsis Gallica

    OpenAIRE

    Gómez Alarcón, Gonzalo; Sáiz-Jiménez, Cesáreo; Lahoz, Rafael; O'Connor, A

    1987-01-01

    The excretion of extracellular enzymes and the degradation of indulin (pine kraft lignin) by the fungus Coriolopsis gallica were studied. By using a lignin-impregnated glass fibre disc which simulated natural conditions, the fungus excreted phenol oxidases during the log phase of growth and reached two activity maxima in the autolytic phase. However, in absence of indulin the fungus had a different behaviour with respect to phenol oxidases. It was concluded that in the ex...

  13. Expression of endo-1, 4-beta-xylanase from Trichoderma reesei in Pichia pastoris and functional characterization of the produced enzyme

    Directory of Open Access Journals (Sweden)

    He Jun

    2009-06-01

    Full Text Available Abstract Background In recent years, xylanases have attracted considerable research interest because of their potential in various industrial applications. The yeast Pichia pastoris can neither utilize nor degrade xylan, but it possesses many attributes that render it an attractive host for the expression and production of industrial enzymes. Results The Xyn2 gene, which encodes the main Trichoderma reesei Rut C-30 endo-β-1, 4-xylanase was cloned into the pPICZαA vector and expressed in Pichia pastoris. The selected P. pastoris strains produced as 4,350 nkat/ml β-xylanase under the control of the methanol inducible alcohol oxidase 1 (AOX1 promoter. The secreted recombinant Xyn2 was estimated by SDS-PAGE to be 21 kDa. The activity of the recombinant Xyn2 was highest at 60°C and it was active over a broad range of pH (3.0–8.0 with maximal activity at pH 6.0. The enzyme was quite stable at 50°C and retained more than 94% of its activity after 30 mins incubation at this temperature. Using Birchwood xylan, the determined apparent Km and kcat values were 2.1 mg/ml and 219.2 S-1, respectively. The enzyme was highly specific towards xylan and analysis of xylan hydrolysis products confirmed as expected that the enzyme functions as endo-xylanase with xylotriose as the main hydrolysis products. The produced xylanase was practically free of cellulolytic activity. Conclusion The P. pastoris expression system allows a high level expression of xylanases. Xylanase was the main protein species in the culture supernatant, and the functional tests indicated that even the non-purified enzyme shows highly specific xylanase activity that is free of cellulolytic side acitivities. Therefore, P pastoris is a very useful expression system when the goal is highly specific and large scale production of glycosyl hydrolases.

  14. Growth and enzyme production during continuous cultures of a high amylase-producing variant of Aspergillus oryzae

    DEFF Research Database (Denmark)

    Zangirolami, Teresa; Carlsen, M.; Nielsen, J.;

    2002-01-01

    Growth and product formation by a selected variant of Aspergillus oryzae showing high alpha-amylase production was studied in continuous cultivations carried out at six different specific growth rates, using glucose as the growth-limiting nutrient. The analysis of the steady-state data revealed...... specific alpha-amylase production rate of 17 FAUgDW(-1)h(-1) at a dilution rate of 0.1 h(-1). Using a morphologically structured model originally proposed for the wild-type strain, it was possible to describe enzyme production, biomass formation and glucose consumption after modification of a few...

  15. Verticase:a Fibrinolytic Enzyme Produced by Verticillium sp.Tj33,an Endophyte of Trachelospermum jasminoides

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Plant endophytes are among the most important resources of biologically active metabolites.Twenty-three endophyte strains residing in Trachelospermum jasminoides were cultivated In with the cultures assayed for the fibrinolytic substance production.As a result,the culture of Verticillium sp.Tj33 was shown to be the most active.A fibrinolytic enzyme designated as verticase was subsequently purified from the supernatant of Verticillium sp.culture broth by a combination of DEAE-52,Sephadex G-75 and hydrophobic column chromatographies.Verticase,with its molecular mass of 31 kDa and pl of 8.5,was demonstrated to be homogeneous by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectric focusing electrophoresis.Verticase is an enzyme that hydrolyzes fibrin directly without activation of plaminogen.It was stable in a broad pH range from 4 through to 11 with the optimal reaction pH value and temperature shown to be around 9-10 and 50-60℃,respectively.The fibrinolytic activity of verticase was severely inhibited by phenylmethylsulfony fluoride,Indicating that verticase was a serine protease.

  16. GROWTH AND ENZYME PRODUCTION DURING CONTINUOUS CULTURES OF A HIGH AMYLASE-PRODUCING VARIANT OF Aspergillus Oryzae

    Directory of Open Access Journals (Sweden)

    T.C. Zangirolami

    2002-03-01

    Full Text Available Growth and product formation by a selected variant of Aspergillus oryzae showing high alpha-amylase production was studied in continuous cultivations carried out at six different specific growth rates, using glucose as the growth-limiting nutrient. The analysis of the steady-state data revealed that the variant and wild-type strains were similar with respect to glucose uptake system and stoichiometric coefficients. However, the variant was capable of maintaining an enzyme production as high as 40 FAUgDW-1h-1 at a dilution rate of 0.2 h-1, while the wild-type strain reached a maximum specific alpha-amylase production rate of 17 FAUgDW-1h-1 at a dilution rate of 0.1 h-1. Using a morphologically structured model originally proposed for the wild-type strain, it was possible to describe enzyme production, biomass formation and glucose consumption after modification of a few parameters to adjust the model to the characteristics of the selected variant.

  17. Structure elucidation of A58365A and A58365B, angiotensin converting enzyme inhibitors produced by Streptomyces chromofuscus.

    Science.gov (United States)

    Hunt, A H; Mynderse, J S; Samlaska, S K; Fukuda, D S; Maciak, G M; Kirst, H A; Occolowitz, J L; Swartzendruber, J K; Jones, N D

    1988-06-01

    A58365A and A58365B, angiotensin converting enzyme inhibitors isolated from the culture filtrate of Streptomyces chromofuscus NRRL 15098, are homologous compounds of molecular formulas C12H13NO6 and C13H15NO6. The molecular similarities of the two inhibitors were established by comparison of their 1H NMR, 13C NMR, and UV spectra. Catalytic hydrogenation of A58365A led to a tetrahydro-deoxy derivative, C12H17NO5; extensive 1H NMR decoupling studies at 360 MHz allowed all the non-exchangeable protons of the derivative to be connected in a continuous substructure. This fragment was combined with information from other spectroscopic methods to suggest the structures for A58365A (1) and A58365B (2); the conclusions were confirmed by an X-ray crystallographic analysis of A58365A-dimethyl ester. PMID:3403371

  18. Identification of growth stage molecular markers in Trichoderma sp. 'atroviride type B' and their potential application in monitoring fungal growth and development in soil.

    Science.gov (United States)

    Mendoza-Mendoza, Artemio; Steyaert, Johanna; Nieto-Jacobo, Maria Fernanda; Holyoake, Andrew; Braithwaite, Mark; Stewart, Alison

    2015-11-01

    Several members of the genus Trichoderma are biocontrol agents of soil-borne fungal plant pathogens. The effectiveness of biocontrol agents depends heavily on how they perform in the complex field environment. Therefore, the ability to monitor and track Trichoderma within the environment is essential to understanding biocontrol efficacy. The objectives of this work were to: (a) identify key genes involved in Trichoderma sp. 'atroviride type B' morphogenesis; (b) develop a robust RNA isolation method from soil; and (c) develop molecular marker assays for characterizing morphogenesis whilst in the soil environment. Four cDNA libraries corresponding to conidia, germination, vegetative growth and conidiogenesis were created, and the genes identified by sequencing. Stage specificity of the different genes was confirmed by either Northern blot or quantitative reverse-transcriptase PCR (qRT-PCR) analysis using RNA from the four stages. con10, a conidial-specific gene, was observed in conidia, as well as one gene also involved in subsequent stages of germination (L-lactate/malate dehydrogenase encoding gene). The germination stage revealed high expression rates of genes involved in amino acid and protein biosynthesis, while in the vegetative-growth stage, genes involved in differentiation, including the mitogen-activated protein kinase kinase similar to Kpp7 from Ustilago maydis and the orthologue to stuA from Aspergillus nidulans, were preferentially expressed. Genes involved in cell-wall synthesis were expressed during conidiogenesis. We standardized total RNA isolation from Trichoderma sp. 'atroviride type B' growing in soil and then examined the expression profiles of selected genes using qRT-PCR. The results suggested that the relative expression patterns were cyclic and not accumulative. PMID:26341342

  19. Endophytic fungi found in association with Bacopa monnieri as potential producers of industrial enzymes and antimicrobial bioactive compounds

    Directory of Open Access Journals (Sweden)

    Meenu Katoch

    2014-10-01

    Full Text Available This study aimed to screen the endophytic fungal species of ethano-medicinal plant Bacopa monnieri (L. Pennell for their ability to produce antimicrobial substances against Bacillus subtilis, Pseudomonas aeroginosa, Salmonella typhimurium, Escherichia coli, Klebsiella pneumonia, Staphylococcus aureus, and Candida albicans. Endophytes were also screened for their ability to produce amylase, cellulase, protease and lipase to evaluate their ecological role within the host plant. Twenty-six endophytes were isolated and seventeen were identified. All the isolated endophytes exhibited amylolytic activity. Lipolytic, cellulolytic, proteolytic activity was shown by 98, 28 and 31% isolates, respectively. Similarly, all the endophytes (100% exhibited significant antimicrobial activity against K. pneumonia, while seventeen endophytes (89.5% were active against S. aureus. Fourteen endophytes (78.9% showed significant antimicrobial activity against B. subtilis and C. albicans. Eleven (57.8%, nine (50%, four (21% endophytes were active against S. typhimurium, E. coli and P. aeruginosa, respectively.

  20. Leucoagaricus gongylophorus Produces Diverse Enzymes for the Degradation of Recalcitrant Plant Polymers in Leaf-Cutter Ant Fungus Gardens

    Energy Technology Data Exchange (ETDEWEB)

    Aylward, Frank O. [Univ. of Wisconsin, Madison, WI (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burnum-Johnson, Kristin E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tringe, Susannah G. [Dept. of Energy Joint Genome Inst., Walnut Creek, CA (United States); Teiling, Clotilde [Roche Diagnostics, Indianapolis, IN (United States); Tremmel, Daniel [Univ. of Wisconsin, Madison, WI (United States); Moeller, Joseph [Univ. of Wisconsin, Madison, WI (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Scott, Jarrod J. [Univ. of Wisconsin, Madison, WI (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Barry, Kerrie W. [Dept. of Energy Joint Genome Inst., Walnut Creek, CA (United States); Piehowski, Paul D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nicora, Carrie D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Malfatti, Stephanie [Dept. of Energy Joint Genome Inst., Walnut Creek, CA (United States); Monroe, Matthew E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Purvine, Samuel O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Goodwin, Lynne A. [Dept. of Energy Joint Genome Inst., Walnut Creek, CA (United States); Smith, Richard D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weinstock, George [Washington Univ. School of Medicine, St. Louis, MS (United States); Gerardo, Nicole [Emory Univ., Atlanta, GA (United States); Suen, Garret [Dept. of Energy Joint Genome Inst., Walnut Creek, CA (United States); Lipton, Mary S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Currie, Cameron R. [Univ. of Wisconsin, Madison, WI (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smothsonian Tropical Research Inst., Balboa (Panama)

    2013-06-12

    Plants represent a large reservoir of organic carbon comprised largely of recalcitrant polymers that most metazoans are unable to deconstruct. Many herbivores gain access to nutrients in this material indirectly by associating with microbial symbionts, and leaf-cutter ants are a paradigmatic example. These ants use fresh foliar biomass as manure to cultivate fungus gardens composed primarily of Leucoagaricus gongylophorus, a basidiomycetous symbiont that produces specialized hyphal swellings that serve as a food source for the host ant colony. Although leaf-cutter ants are conspicuous herbivores that contribute substantially to carbon turnover in Neotropical ecosystems, the process through which plant biomass is degraded in their fungus gardens is not well understood. Here we present the first draft genome of L. gongylophorus, and using genomic, metaproteomic, and phylogenetic tools we investigate its role in lignocellulose degradation in the fungus gardens of both Atta cephalotes and Acromyrmex echinatior leaf-cutter ants. We show that L. gongylophorus produces a diversity of lignocellulases in fungus gardens, and is likely the primary driver of plant biomass degradation in these ecosystems. We also show that this fungus produces distinct sets of lignocellulases throughout the different stages of biomass degradation, including numerous cellulases and laccases that may be playing an important but previously uncharacterized role in lignocellulose degradation. Our study provides a comprehensive analysis of plant biomass degradation in leaf-cutter ant fungus gardens and provides insight into the molecular dynamics underlying the symbiosis between these dominant herbivores and their obligate fungal cultivar.

  1. Expression of steroidogenic enzymes and their transcription factors in cortisol-producing adrenocortical adenomas: immunohistochemical analysis and quantitative real-time polymerase chain reaction studies.

    Science.gov (United States)

    Kubota-Nakayama, Fumie; Nakamura, Yasuhiro; Konosu-Fukaya, Sachiko; Azmahani, Abdullah; Ise, Kazue; Yamazaki, Yuto; Kitawaki, Yuko; Felizola, Saulo J A; Ono, Yoshikiyo; Omata, Kei; Morimoto, Ryo; Iwama, Noriyuki; Satoh, Fumitoshi; Sasano, Hironobu

    2016-08-01

    Adrenal Cushing syndrome (CS) is caused by the overproduction of cortisol in adrenocortical tumors including adrenal cortisol-producing adenoma (CPA). In CS, steroidogenic enzymes such as 17α-hydroxylase/17, 20-lase (CYP17A1), 3β-hydroxysteroid dehydrogenase (HSD3B), and 11β-hydroxylase (CYP11B1) are abundantly expressed in tumor cells. In addition, several transcriptional factors have been reported to play pivotal roles in the regulation of these enzymes in CPA, but their correlations with those enzymes above have still remained largely unknown. Therefore, in this study, we examined the status of steroidogenic enzymes and their transcriptional factors in 78 and 15 CPA cases by using immunohistochemistry and quantitative real-time polymerase chain reaction (qPCR), respectively. Immunoreactivity of HSD3B2, CYP11B1, CYP17A1, steroidogenic factor-1 (SF1[NR5A1]), GATA6, and nerve growth factor induced-B (NGFIB[NR4A1]) was detected in tumor cells. Results of qPCR analysis revealed that expression of HSD3B2 mRNA was significantly higher than that of HSD3B1, and CYP11B1 mRNA was significantly higher than CYP11B2. In addition, the expression of CYP11B1 mRNA was positively correlated with those of NR5A1, GATA6, and NR4A1. These results all indicated that HSD3B2 but not HSD3B1 was mainly involved in cortisol overproduction in CPA. In addition, NR5A1, GATA6, and NR4A1 were all considered to play important roles in cortisol overproduction through regulating CYP11B1 gene transcription. PMID:27085553

  2. Enzymes produced by halotolerant spore-forming gram-positive bacterial strains isolated from a resting habitat (Restinga de Jurubatiba) in Rio de Janeiro, Brazil: focus on proteases.

    Science.gov (United States)

    D Santos, Anderson Fragoso; Pacheco, Clarissa Almeida; Valle, Roberta D Santos; Seldin, Lucy; D Santos, André Luis Souza

    2014-12-01

    The screening for hydrolases-producing, halotolerant, and spore-forming gram-positive bacteria from the root, rhizosphere, and non-rhizosphere soil of Blutaparon portulacoides, a plant found in the Restinga de Jurubatiba located at the northern region of Rio de Janeiro State, Brazil, resulted in the isolation of 22 strains. These strains were identified as Halobacillus blutaparonensis (n = 2), Oceanobacillus picturae (n = 5), and Oceanobacillus iheyensis (n = 15), and all showed the ability to produce different extracellular enzymes. A total of 20 isolates (90.9 %) showed activity for protease, 5 (22.7 %) for phytase, 3 (13.6 %) for cellulase, and 2 (9.1 %) for amylase. Some bacterial strains were capable of producing three (13.6 %) or two (9.1 %) distinct hydrolytic enzymes. However, no bacterial strain with ability to produce esterase and DNase was observed. The isolate designated M9, belonging to the species H. blutaparonensis, was the best producer of protease and also yielded amylase and phytase. This strain was chosen for further studies regarding its protease activity. The M9 strain produced similar amounts of protease when grown either without or with different NaCl concentrations (from 0.5 to 10 %). A simple inspection of the cell-free culture supernatant by gelatin-sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed the presence of three major alkaline proteases of 40, 50, and 70 kDa, which were fully inhibited by phenylmethylsulfonyl fluoride (PMSF) and tosyl-L-phenylalanine chloromethyl ketone (TPCK) (two classical serine protease inhibitors). The secreted proteases were detected in a wide range of temperature (from 4 to 45 °C) and their hydrolytic activities were stimulated by NaCl (up to 10 %). The serine proteases produced by the M9 strain cleaved gelatin, casein, albumin, and hemoglobin, however, in different extensions. Collectively, these results suggest the potential use of the M9 strain in biotechnological

  3. Effect of γ-Aminobutyric Acid-producing Lactobacillus Strain on Laying Performance, Egg Quality and Serum Enzyme Activity in Hy-Line Brown Hens under Heat Stress

    Science.gov (United States)

    Zhu, Y. Z.; Cheng, J. L.; Ren, M.; Yin, L.; Piao, X. S.

    2015-01-01

    Heat-stress remains a costly issue for animal production, especially for poultry as they lack sweat glands, and alleviating heat-stress is necessary for ensuring animal production in hot environment. A high γ-aminobutyric acid (GABA)-producer Lactobacillus strain was used to investigate the effect of dietary GABA-producer on laying performance and egg quality in heat-stressed Hy-line brown hens. Hy-Line brown hens (n = 1,164) at 280 days of age were randomly divided into 4 groups based on the amount of freeze-dried GABA-producer added to the basal diet as follows: i) 0 mg/kg, ii) 25 mg/kg, iii) 50 mg/kg, and iv) 100 mg/kg. All hens were subjected to heat-stress treatment through maintaining the temperature and the relative humidity at 28.83±3.85°C and 37% to 53.9%, respectively. During the experiment, laying rate, egg weight and feed intake of hens were recorded daily. At the 30th and 60th day after the start of the experiment, biochemical parameters, enzyme activity and immune activity in serum were measured. Egg production, average egg weight, average daily feed intake, feed conversion ratio and percentage of speckled egg, soft shell egg and misshaped egg were significantly improved (phens fed GABA-producing strain supplemented diet was significantly higher (phens fed the basal diet, whereas cholesterol level was decreased. Compared with the basal diet, GABA-producer strain supplementation increased serum level of glutathione peroxidase (p = 0.009) and superoxide dismutase. In conclusion, GABA-producer played an important role in alleviating heat-stress, the isolated GABA-producer strain might be a potential natural and safe probiotic to use to improve laying performance and egg quality in heat-stressed hens. PMID:26104406

  4. Efficacy of locally produced papain enzyme for the production of protein bait for bactrocera invadens (diptera: tephritidae) control in Ghana

    International Nuclear Information System (INIS)

    Autolysed brewery yeast waste is currently being used as cost effective protein bait for Bactrocera invadens control the world over to replace commercial protein hydrolysate bait formulations. However, significant reduction in production cost can be achieved when all the production materials are from local sources. This experiment was aimed at assessing the efficacy of locally produced papain extracted from 'Red lady' pawpaw fruit latex and skin peel to be used for protein bait production. Aqueous two-phase extraction of papain from pawpaw fruit latex with 15 % (NH4)2SO4 - 8 % PEG recovered 64.72 ± 2.08 % papain into the supernatant with 7.33 % proteolytic activity yield and a fold purification of 58.11 ± 1.67. Proteolytic activity and protein concentration measured for the aqueous two-phase extracts of pawpaw skin peel were significantly higher (p= 0.00) than crude extracts of skin peel. However, the aqueous two phase extraction of papain from skin peel needs to be optimised further since SDS-PAGE showed no visible bands in the different phase extracts. Gamma irradiation at 10 KGy increased the proteolytic activity of crude papain by 21.69 % of the non-irradiated papain and subsequently increased the specific activity by 18.51 % but the protein concentration was not affected. Protein baits prepared with crude papain extracted from the pawpaw fruit latex and skin peels were evaluated in laboratory bioassays with wild flies reared from field collected infested mangoes. The source of papain did not affect the protein bait recovery, the pH and protein concentration though colour of bait differed for crude fruit latex papain bait (dark brown) and skin peel papain bait (light brown). The bait preparations had equal attractance to male and female B. invadens. Mean attractance to protein baits produced with fruit latex and skin peel papain baits were between 25.00 ± 7.56 % and 47.50 ± 11.09 % respectively for males, 25.00 ± 13.13 % and 32.86 ± 8.23 % for

  5. Quality Of Cloudy Plum Juice Produced From Fresh Fruit Of Prunus Domestica L. – The Effect Of Cultivar And Enzyme Treatment

    Directory of Open Access Journals (Sweden)

    Zbrzeźniak Monika

    2015-12-01

    Full Text Available The quality of cloudy juices produced from two plum cultivars varied in chemical characteristics and native polyphenol oxidase (PPO activity, and was studied in relation to specific pectinolytic activity of enzyme preparations used for fresh fruit maceration before pressing. Process effectiveness expressed as juice yield, turbidity and the rate of transfer of anthocyanins and polyphenols were determined for five different enzyme preparations, whose activity was also analysed. Juice yields obtained after 1 hour mash maceration (50 ºC, 100 g·t−1 were between 86.6 and 95.4%. The anthocyanins content of the obtained juices strongly depended on the cultivar and ranged from 26 to 50 mg·L−1 for ‘Promis’, and from 269 to 289 mg·L−1 for ‘Čačanska Najbolja’, which could be related to the differences in the measured PPO activity (175.4 and 79.8 nkat·g−1, respectively. The type of enzyme preparation strongly affected the degradation rate of anthocyanins during juice processing. Peonidin-3-rutinoside proved to be the most stable during plum juice production in contrast to cyanidin-3-glucoside. Irrespectively of the cultivar, the juice prepared with the mixture of Rohapect PTE + Rohament PL (2 : 1 showed the highest turbidity among the investigated combinations. The results suggest that for the production of cloudy plum juice use of a preparation with low pectin methyl esterase and polygalacturonase activities and high pectin lyase activity could be recommended.

  6. The expression of a xylanase targeted to ER-protein bodies provides a simple strategy to produce active insoluble enzyme polymers in tobacco plants.

    Directory of Open Access Journals (Sweden)

    Immaculada Llop-Tous

    Full Text Available BACKGROUND: Xylanases deserve particular attention due to their potential application in the feed, pulp bleaching and paper industries. We have developed here an efficient system for the production of an active xylanase in tobacco plants fused to a proline-rich domain (Zera of the maize storage protein γ-zein. Zera is a self-assembling domain able to form protein aggregates in vivo packed in newly formed endoplasmic reticulum-derived organelles known as protein bodies (PBs. METHODOLOGY/PRINCIPAL FINDINGS: Tobacco leaves were transiently transformed with a binary vector containing the Zera-xylanase coding region, which was optimized for plant expression, under the control of the 35S CaMV promoter. The fusion protein was efficiently expressed and stored in dense PBs, resulting in yields of up to 9% of total protein. Zera-xylanase was post-translationally modified with high-mannose-type glycans. Xylanase fused to Zera was biologically active not only when solubilized from PBs but also in its insoluble form. The resistance of insoluble Zera-xylanase to trypsin digestion demonstrated that the correct folding of xylanase in PBs was not impaired by Zera oligomerization. The activity of insoluble Zera-xylanase was enhanced when substrate accessibility was facilitated by physical treatments such as ultrasound. Moreover, we found that the thermostability of the enzyme was improved when Zera was fused to the C-terminus of xylanase. CONCLUSION/SIGNIFICANCE: In the present work we have successfully produced an active insoluble aggregate of xylanase fused to Zera in plants. Zera-xylanase chimeric protein accumulates within ER-derived protein bodies as active aggregates that can easily be recovered by a simple density-based downstream process. The production of insoluble active Zera-xylanase protein in tobacco outlines the potential of Zera as a fusion partner for producing enzymes of biotechnological relevance. Zera-PBs could thus become efficient and low

  7. Enzyme and biochemical producing fungi

    DEFF Research Database (Denmark)

    Lübeck, Peter Stephensen; Lübeck, Mette; Nilsson, Lena;

    2010-01-01

    factories for sustainable production of important molecules. For developing fungi into efficient cell factories, the project includes identification of important factors that control the flux through the pathways using metabolic flux analysis and metabolic engineering of biochemical pathways....

  8. Expression of androgen-producing enzyme genes and testosterone concentration in Angus and Nellore heifers with high and low ovarian follicle count.

    Science.gov (United States)

    Loureiro, Bárbara; Ereno, Ronaldo L; Favoreto, Mauricio G; Barros, Ciro M

    2016-07-15

    Follicle population is important when animals are used in assisted reproductive programs. Bos indicus animals have more follicles per follicular wave than Bos taurus animals. On the other hand, B taurus animals present better fertility when compared with B indicus animals. Androgens are positively related with the number of antral follicles; moreover, they increase growth factor expression in granulose cells and oocytes. Experimentation was designed to compare testosterone concentration in plasma, and follicular fluid and androgen enzymes mRNA expression (CYP11A1, CYP17A1, 3BHSD, and 17BHSD) in follicles from Angus and Nellore heifers. Heifers were assigned into two groups according to the number of follicles: low and high follicle count groups. Increased testosterone concentration was measured in both plasma and follicular fluid of Angus heifers. However, there was no difference within groups. Expression of CYP11A1 gene was higher in follicles from Angus heifers; however, there was no difference within groups. Expression of CYP17A1, 3BHSD, and 17BHSD genes was higher in follicles from Nellore heifers, and expression of CYP17A1 and 3BHSD genes was also higher in HFC groups from both breeds. It was found that Nellore heifers have more antral follicles than Angus heifers. Testosterone concentration was higher in Angus heifers; this increase could be associated with the increased mRNA expression of CYP11A1. Increased expression of androgen-producing enzyme genes (CYP17A1, 3BHSD, and 17BHSD) was detected in Nellore heifers. It can be suggested that testosterone is acting through different mechanisms to increase follicle development in Nellore and improve fertility in Angus heifers. PMID:26948295

  9. The Trichoderma atroviride cryptochrome/photolyase genes regulate the expression of blr1-independent genes both in red and blue light.

    Science.gov (United States)

    García-Esquivel, Mónica; Esquivel-Naranjo, Edgardo U; Hernández-Oñate, Miguel A; Ibarra-Laclette, Enrique; Herrera-Estrella, Alfredo

    2016-04-01

    Quantitative transcriptome analysis led to the identification of 331 transcripts regulated by white light. Evaluation of the response to white light in mutants affected in the previously characterized blue-light receptor Blr1, demonstrated the existence of both Blr1-dependent and independent responses. Functional categorization of the light responsive genes indicated the effect of light on regulation of various transcription factors, regulators of chromatin structure, signaling pathways, genes related to different kinds of stress, metabolism, redox adjustment, and cell cycle among others. In order to establish the participation of other photoreceptors, gene expression was validated in response to different wavelengths. Gene regulation by blue and red light suggests the involvement of several photoreceptors in integrating light signals of different wavelengths in Trichoderma atroviride. Functional analysis of potential blue light photoreceptors suggests that several perception systems for different wavelengths are involved in the response to light. Deletion of cry1, one of the potential photoreceptors, resulted in severe reduction in the photoreactivation capacity of the fungus, as well as a change in gene expression under blue and red light. PMID:27020152

  10. Effects of Metabolites Produced from (-)-Epigallocatechin Gallate by Rat Intestinal Bacteria on Angiotensin I-Converting Enzyme Activity and Blood Pressure in Spontaneously Hypertensive Rats.

    Science.gov (United States)

    Takagaki, Akiko; Nanjo, Fumio

    2015-09-23

    Inhibitory activity of angiotensin I-converting enzyme (ACE) was examined with (-)-epigallocatechin gallate (EGCG) metabolites produced by intestinal bacteria, together with tea catechins. All of the metabolites showed ACE inhibitory activities and the order of IC50 was hydroxyphenyl valeric acids > 5-(3,4,5-trihydroxyphenyl)-γ-valerolactone (1) > trihydroxyphenyl 4-hydroxyvaleric acid ≫ dihydroxyphenyl 4-hydroxyvaleric acid ≫ 5-(3,5-dihydroxyphenyl)-γ-valerolactone (2). Among the catechins, galloylated catechins exhibited stronger ACE inhibitory activity than nongalloylated catechins. Furthermore, the effects of a single oral intake of metabolites 1 and 2 on systolic blood pressure (SBP) were examined with spontaneously hypertensive rats (SHR). Significant decreases in SBP were observed between 2 h after oral administration of 1 (150 mg/kg in SHR) and the control group (p = 0.002) and between 4 h after administration of 2 (200 mg/kg in SHR) and the control group (p = 0.044). These results suggest that the two metabolites have hypotensive effects in vivo. PMID:26323573

  11. Calcium-mediated perception and defense responses activated in plant cells by metabolite mixtures secreted by the biocontrol fungus Trichoderma atroviride

    Directory of Open Access Journals (Sweden)

    Mariani Paola

    2007-07-01

    Full Text Available Abstract Background Calcium is commonly involved as intracellular messenger in the transduction by plants of a wide range of biotic stimuli, including signals from pathogenic and symbiotic fungi. Trichoderma spp. are largely used in the biological control of plant diseases caused by fungal phytopathogens and are able to colonize plant roots. Early molecular events underlying their association with plants are relatively unknown. Results Here, we investigated the effects on plant cells of metabolite complexes secreted by Trichoderma atroviride wild type P1 and a deletion mutant of this strain on the level of cytosolic free Ca2+ and activation of defense responses. Trichoderma culture filtrates were obtained by growing the fungus alone or in direct antagonism with its fungal host, the necrotrophic pathogen Botrytis cinerea, and then separated in two fractions (>3 and Glycine max L. cell suspension cultures, Trichoderma and Botrytis metabolite mixtures were distinctively perceived and activated transient intracellular Ca2+ elevations with different kinetics, specific patterns of intracellular accumulation of reactive oxygen species and induction of cell death. Both Ca2+ signature and cellular effects were modified by the culture medium from the knock-out mutant of Trichoderma, defective for the production of the secreted 42 kDa endochitinase. Conclusion New insights are provided into the mechanism of interaction between Trichoderma and plants, indicating that secreted fungal molecules are sensed by plant cells through intracellular Ca2+ changes. Plant cells are able to discriminate signals originating in the single or two-fungal partner interaction and modulate defense responses.

  12. 产KPC酶肺炎克雷伯菌检测及耐药性研究%Detection of Klebsiella Pneumoniae Producing KPC Enzymes and Resistance Research

    Institute of Scientific and Technical Information of China (English)

    刘静; 邵冬华

    2012-01-01

    目的 探讨我院产肺炎克雷伯菌碳青霉烯酶( KPC)肺炎克雷伯菌对碳青霉烯类药物耐药率升高的原因.方法 对2009-2011年我院各类临床标本中分离的肺炎克雷伯菌进行统计及药敏结果分析.对2010年1月-2011年12月间分离的耐碳青霉烯类药物的肺炎克雷伯菌做改良Hodge试验和金属β-内酰胺酶检测,阳性菌株筛查KPC酶及耐药细菌(NDM-1)基因.结果 2009、2010年肺炎克雷伯菌对亚胺培南仍保持高敏感性,对2010年分离的8株耐亚胺培南的肺炎克雷伯菌做改良Hodge试验均为阴性(2009年菌株未保留).2011年肺炎克雷伯菌对碳青霉烯类药物的耐药性显著升高,47株耐碳青霉烯类药物的肺炎克雷伯菌改良Hodge试验阳性,KPC酶阳性;2株耐碳青霉烯类药物的肺炎克雷伯菌金属β-内酰胺酶阳性;所有菌株NDM-1基因检测均为阴性.结论 由KPC酶介导的耐碳青霉烯类药物的肺炎克雷伯菌在临床分离菌株中显著增加.KPC酶基因的出现是碳青霉烯类抗菌药物广泛应用引起的耐药基因突变,携带KPC酶的质粒存在不同种属细菌间进行转移的可能性,临床应加强监控,防止产碳青霉烯酶菌株在医院环境中暴发和流行.%Objective To explore the causes of increased resistance rate of klebsiella pneumoniae producing KPC enzymes to carbapenems. Methods Data of separated klebsiella pneumoniae in clinical collections from 2009 to December 2011 in our hospital were statistically analyzed for drug sensitivity. Separated anti-carbapenems klebsiella pneumoniae separated by our hospital during January 2010 and December 2011 underwent the modified Hodge test, metal bata lactamase detection, KPC enzyme of positive strains screening and NDM-1 encoding genes test. Results There was hypersensitivity of klebsiella pneumoniae to imipenem in 2009 and 2010, and in 2010, only 8 strains of anti-imipenem resistant klebsiella pneumoniae were found negative with the

  13. Screening for and Identification of Novel Glucarpidase Producing Bacteria : Cloning and molecular characterisation of novel enzymes involved in ADEPT for cancer treatment

    NARCIS (Netherlands)

    Alqahtani, Alanood; Alyafei, Afrah; Abdallah, Fatma; Latiff, Aishah; Groves, Matthew; Dömling, Alex; Goda, Sayed

    2014-01-01

    Antibody Directed Enzyme Prodrug Therapy (ADEPT) is a novel therapy which has already been implemented in cancer therapy to solve the problem of drug resistance and lack of tumor selectivity. Repeated cycles of (ADEPT) and the use of glucarpidase in detoxification of cytotoxic methotrexate (MTX) are

  14. A new model of Pde4d deficiency: Genetic knock-down of PDE4D enzyme in rats produces an antidepressant phenotype without cognitive effects

    OpenAIRE

    Schaefer, Tori L.; Braun, Amanda A.; Amos-Kroohs, Robyn M.; Williams, Michael T.; Ostertag, Eric; Vorhees, Charles V.

    2012-01-01

    Phosphodiesterases (PDEs) are a superfamily of intracellular second messenger cyclic nucleotide hydrolyzing enzymes composed of 12 families. The Pde4 family has been implicated in depression and cognition and PDE4 inhibitors have been evaluated as antidepressants and possible cognitive enhancers. Pde4d−/− mice show an antidepressant phenotype and learning enhancement on some tests, but not others as do mice treated with PDE4 inhibitors. Here we report for the first time the behavioral phenoty...

  15. Prorenin processing enzyme (PPE) produced by Baculovirus-infected Sf-9 insect cells: PPE is the cysteine protease encoded in the acMNPV gene.

    Science.gov (United States)

    Gotoh, Takeshi; Awa, Hirono; Kikuchi, Ken-Ichi; Nirasawa, Satoru; Takahashi, Saori

    2010-01-01

    In infection cultures of Spodoptera frugiperda (Sf-9) insect cells with a recombinant baculovirus, vhpR, carrying human preprorenin cDNA in the polyhedrin locus of Autographa californica multiple nuclear polyhedrosis virus (AcMNPV), the expressed inactive recombinant human (rh)-prorenin is reported to be proteolytically processed to yield active rh-renin in the very late phase of culture (Takahashi et al., Biosci. Biotechnol. Biochem., 71, 2610-2613 (2007)). To identify the enzyme that catalyzes the processing of rh-prorenin, referred to as prorenin processing enzyme (PPE), we purified potential PPE from virus-infected Sf-9 culture supernatant by the use of an internally quenched fluorescent (IQF) substrate for PPE. The 32-kDa protein band agreed well with PPE activity on the final Mono Q FPLC. By N-terminal amino acid sequence analysis, the protein was revealed to be a cysteine protease encoded by the AcMNPV gene. Enzyme activity was inhibited by cysteine protease inhibitors but not by other protease inhibitors. When the purified rh-prorenin was incubated with the 32-kDa protein, renin activity appeared concomitant with the disappearance of rh-prorenin. The N-terminal amino acid sequence of the activated product was identical to that of the rh-renin that had accumulated in the infection cultures. These results indicate that the 32-kDa cysteine protease derived from the AcMNPV gene is the enzyme PPE of virus-infected Sf-9 cells. PMID:20139610

  16. Molecular analysis of a Clostridium butyricum NCIMB 7423 gene encoding 4-alpha-glucanotransferase and characterization of the recombinant enzyme produced in Escherichia coli.

    Science.gov (United States)

    Goda, S K; Eissa, O; Akhtar, M; Minton, N P

    1997-10-01

    An Escherichia coli clone was detected in a Clostridium butyricum NCIMB 7423 plasmid library capable of degrading soluble amylose. Deletion subcloning of its recombinant plasmid indicated that the gene(s) responsible for amylose degradation was localized on a 1.8 kb NspHI-Scal fragment. This region was sequenced in its entirety and shown to encompass a large ORF capable of encoding a protein with a calculated molecular mass of 57,184 Da. Although the deduced amino acid sequence showed only weak similarity with known amylases, significant sequences identity was apparent with the 4-alpha-glucano-transferase enzymes of Streptococcus pneumoniae (46.9%), potato (42.9%) and E. coli (16.2%). The clostridial gene (designated maIQ) was followed by a second ORF which, through its homology to the equivalent enzymes of E. coli and S. pneumoniae, was deduced to encode maltodextrin phosphorylase (MaIP). The translation stop codon of MaIQ overlapped the translation start codon of the putative maIP gene, suggesting that the two genes may be both transcriptionally and translationally coupled. 4-alpha-Glucanotransferase catalyses a disproportionation reaction in which single or multiple glucose units from oligosaccharides are transferred to the 4-hydroxyl group of acceptor sugars. Characterization of the recombinant C. butyricum enzyme demonstrated that glucose, maltose and maltotriose could act as acceptor, whereas of the three only maltotriose could act as donor. The enzyme therefore shares properties with the E. coli MaIQ protein, but differs significantly from the glucanotransferase of Thermotoga maritima, which is unable to use maltotriose as donor or glucose as acceptor. Physiologically, the concerted action of 4-alpha-glucanotransferase and maltodextrin phosphorylase provides C. butyricum with a mechanism of utilizing amylose/maltodextrins with little drain on cellular ATP reserves. PMID:9353929

  17. Enhanced oxidation of benzo[a]pyrene by crude enzyme extracts produced during interspecific fungal interaction of Trametes versicolor and Phanerochaete chrysosporium

    Institute of Scientific and Technical Information of China (English)

    Linbo Qian; Baoliang Chen

    2012-01-01

    The effects of interspecific fungal interactions between Trametes versicolor and Phanerochaete chrysosporium on laccase activity and enzymatic oxidation of polycyclic aromatic hydrocarbons (PAHs) were investigated.A deadlock between the two mycelia rather than replacement of one fungus by another was observed on an agar medium.The laccase activity in crude enzyme extracts from interaction zones reached a maximum after a 5-day incubation,which was significantly higher than that from regions of T.versicolor or P.chrysosporium alone.The enhanced induction of laccase activity lasted longer in half nutrition than in normal nutrition.A higher potential to oxidize benzo[a]pyrene by a crude enzyme preparation extracted from the interaction zones was demonstrated.After a 48 hr incubation period,the oxidation of benzo[a]pyrene by crude enzyme extracts from interaction zones reached 26.2%,while only 9.5% of benzo[a]pyrene was oxidized by crude extracts from T.versicolor.The oxidation was promoted by the co-oxidant 2,2'-azinobis-3-ethylbenzthiazoline-6-sulphonate diammonium salt (ABTS).These findings indicate that the application of co-culturing of white-rot fungi in bioremediation is a potential ameliorating technique for the restoration of PAH-contaminated soil.

  18. Fusion of GFP to the M.EcoKI DNA methyltransferase produces a new probe of Type I DNA restriction and modification enzymes

    International Nuclear Information System (INIS)

    Research highlights: → Successful fusion of GFP to M.EcoKI DNA methyltransferase. → GFP located at C-terminal of sequence specificity subunit does not later enzyme activity. → FRET confirms structural model of M.EcoKI bound to DNA. -- Abstract: We describe the fusion of enhanced green fluorescent protein to the C-terminus of the HsdS DNA sequence-specificity subunit of the Type I DNA modification methyltransferase M.EcoKI. The fusion expresses well in vivo and assembles with the two HsdM modification subunits. The fusion protein functions as a sequence-specific DNA methyltransferase protecting DNA against digestion by the EcoKI restriction endonuclease. The purified enzyme shows Foerster resonance energy transfer to fluorescently-labelled DNA duplexes containing the target sequence and to fluorescently-labelled ocr protein, a DNA mimic that binds to the M.EcoKI enzyme. Distances determined from the energy transfer experiments corroborate the structural model of M.EcoKI.

  19. Retting and degumming of natural fibers by pectinolytic enzymes produced from Bacillus tequilensis SV11-UV37 using solid state fermentation.

    Science.gov (United States)

    Chiliveri, Swarupa Rani; Koti, Sravanthi; Linga, Venkateswar Rao

    2016-01-01

    The present study demonstrated the simultaneous production and optimization of pectinolytic enzymes (pectate lyase and polygalacturonase) under SSF from Bacillus tequilensis SV11-UV37 using wheat bran as a substrate, which is commercially viable and cost-effective. Optimization by one variable-at-a-time-approach showed a maximum yield of pectate lyase (1371.25 U/gds) and polygalacturonase (85.45 U/gds) with wheat bran using 80 % (v/w) moisture, 0.7 mm particle size, 20 % (v/w) inoculum, 1 % (w/w) pectin at 37 °C, pH 6 and 72 h of incubation. In addition, optimization using central composite design achieved 1.6-fold improvement in both pectate lyase (1828.13 U/gds) and polygalacturonase (105.55 U/gds) yield at optimum levels of pectin (3 %, w/w), inoculum size (20 %, v/w) and moisture level (80 %, v/w). Further, Retting studies concluded that the enzyme mixture was efficient in separating the whole fiber from kenaf and part (>75 %) from sunn hemp. In degumming of sunn hemp fibers, amount of galacturonic acid released and percentage weight loss was higher in successive alkali and enzymatic treatment than their independent treatments. The scanning electron microscopic analysis also confirmed that alkali followed by enzymatic treatment effectively removed non-cellulosic gummy material from the fiber; hence, this enzyme mixture may find feasible applications in the fiber and textile industry. PMID:27218009

  20. Analysis of Bacterial Community and Screening and Identification of Enzyme-Producing Bacteria in Intestine of Antheraea pernyi%柞蚕肠道菌群分析及产酶菌的筛选与鉴定

    Institute of Scientific and Technical Information of China (English)

    邹昌瑞; 魏国清; 刘朝良; 朱保建; 王在贵; 杨文静

    2011-01-01

    [目的]研究柞蚕肠道菌群结构及产酶菌,探寻具有新的生理功能的微生物,用于研制微生态制剂,以提高柞蚕生产的叶丝转化率及抗病能力.[方法]采用培养法分离柞树叶饲喂的5龄柞蚕幼虫肠道细菌,通过生理生化特性结合16S rDNA系统发育分析,对其肠道细菌群落类型进行鉴定,采用筛选培养基筛选产纤维素酶、蛋白酶、脂肪酶的菌株.[结果]获得的柞蚕肠道菌有芽孢杆菌、葡萄球菌、肠杆菌,其中以芽孢杆菌为主要菌群.芽孢杆菌是肠道菌中产纤维素酶、蛋白酶的主要菌群;葡萄球菌产蛋白酶能力较弱;肠杆菌不产酶.[结论]柞蚕肠道菌与家蚕肠道菌群结构相似,筛选出的产酶菌活性较高,可以制备微生态制剂用于蚕业生产.%[Objective] The objective of this study is to isolate and identify bacterial community and enzyme-producing bacteria in intestine of Antheraea pernyi larvae and to develop microecological agents for increasing leaf-silk conversation rate and disease resistance. [ Method ] Bacteria were isolated from intestine of fifth instars Antheraea pernyi larvae reared on oak leaves by isolated culture. Intestinal bacterial community was identified according to physiological and biochemical characteristics and phylogenetic analysis based on 16S rDNA sequences. Cellulase, protease, lipase-producing strains were screened on selective medium. [Result] The intestinal bacteria isolated from Antheraea pernyi larvae belong to Bacillus, Staphylococcus and Enterobacter. Among them, Bacillus is the main bacteria and the main enzyme-producing bacteria which could produce cellulase and protease, Staphylococcus could produce protease weakly, Enterobacter couldn't produce enzyme. [Conclusion] Intestinal bacteria community of Antheraea pernyi was similar to that of Bombyx mori, which could be developed as microecological agents in sericulture for the enzyme-producing strains exhibiting high activity.

  1. Kunstige Enzymer

    DEFF Research Database (Denmark)

    Bols, Mikael; Bjerre, Jeannette; Marinescu, Lavinia

    2007-01-01

    Enzymer har en enestående evne til at accelerere kemiske processer. Der forskes målrettet i at optimere enzymer baseret på cyclodextrin.......Enzymer har en enestående evne til at accelerere kemiske processer. Der forskes målrettet i at optimere enzymer baseret på cyclodextrin....

  2. Identification and characterization of CYP79D6v4, a cytochrome P450 enzyme producing aldoximes in black poplar (Populus nigra)

    OpenAIRE

    Irmisch, Sandra; Unsicker, Sybille B; Gershenzon, Jonathan; Köllner, Tobias G.

    2013-01-01

    After herbivore feeding, poplar trees produce complex volatile blends containing terpenes, green leaf volatiles, aromatics, and nitrogen-containing compounds such as aldoximes and nitriles. It has been shown recently that volatile aldoximes released from gypsy moth (Lymantria dispar) caterpillar-damaged black poplar (Populus nigra) trees attract parasitoids that are caterpillar enemies. In western balsam poplar (P. trichocarpa), volatile aldoximes are produced by 2 P450 monooxygenases, CYP79D...

  3. High incidence of enterotoxin D producing Staphylococcus spp. in Brazilian cow's raw milk and its relation with coagulase and thermonuclease enzymes.

    Science.gov (United States)

    Oliveira, Ana Maria; Padovani, Carlos Roberto; Miya, Norma Teruko Nagô; Sant'ana, Anderson S; Pereira, José Luiz

    2011-01-01

    In this study, the enterotoxigenic potential of Staphylococcus strains (n = 574) isolated from raw milk samples (n = 140) was determined for their capacity to produce staphylococcal enterotoxins. In addition, the relationship between the presence of enterotoxins, coagulase, and thermonuclease (Tnase) was assessed. The results showed that 19% of Staphylococcus was enterotoxigenic, being able to produce at least one of the staphylococcal enterotoxins (A, B, C, and D). Most of the strains were able to produce enterotoxin D (68.8%), whereas 12.8% of the Staphylococcus strains were able to produce staphylococcal enterotoxin A. Besides, the production of more than one type of enterotoxins by the same strain was observed. Tnase was considered the best marker for enterotoxigenic potential of isolates, although some of them were negative for coagulase and Tnase but positive for enterotoxin production. Therefore, either the use of Tnase to assess Staphylococcus enterotoxigenic potential or the use of simple and easy screening tests for enterotoxin production should receive more attention when evaluating the pathogenic potential of foodborne Staphylococcus strains. Due to the association of both coagulase positive Staphylococcus and coagulase negative Staphylococcus with foodborne disease outbreaks, regulators and industries should pay more attention to enterotoxigenic Staphylococcus rather than focusing only on S. aureus or coagulase positive Staphylococcus. Finally, data found here suggest a high risk of staphylococcal intoxication with the consumption of raw milk or dairy products made from raw milk. PMID:20807112

  4. Bacterial Type I Glutamine Synthetase of the Rifamycin SV Producing Actinomycete, Amycolatopsis mediterranei U32, is the Only Enzyme Responsible for Glutamine Synthesis under Physiological Conditions

    Institute of Scientific and Technical Information of China (English)

    Wen-Tao PENG; Jin WANG; Ting WU; Jian-Qiang HUANG; Jui-Shen CHIAO; Guo-Ping ZHAO

    2006-01-01

    The structural gene for glutamine synthetase, glnA, from Amycolatopsis mediterranei U32 was cloned via screening a genomic library using the analog gene from Streptomyces coelicolor. The clone was functionally verified by complementing for glutamine requirement of an Escherichia coli glnA null mutant under the control of a lac promoter. Sequence analysis showed an open reading frame encoding a protein of466 amino acid residues. The deduced amino acid sequence bears significant homologies to other bacterial type I glutamine synthetases, specifically, 71% and 72% identical to the enzymes of S. coelicolor and Mycobacterium tuberculosis, respectively. Disruption of this glnA gene in A. mediterranei U32 led to glutamine auxotrophy with no detectable glutamine synthetase activity in vivo. In contrast, the cloned glnA+ gene can complement for both phenotypes in trans. It thus suggested that in A. mediterranei U32, the glnA gene encoding glutamine synthetase is uniquely responsible for in vivo glutamine synthesis under our laboratory defined physiological conditions.

  5. Production of xylooligosaccharides in SSF by Bacillus subtilis KCX006 producing β-xylosidase-free endo-xylanase and multiple xylan debranching enzymes.

    Science.gov (United States)

    Reddy, Shyam Sunder; Krishnan, Chandraraj

    2016-01-01

    Xylanase and xylooligosaccharides (XOS) are employed in food and feed industries. Though xylanase production from lignocellulosic materials (LCMs) by solid-state fermentation (SSF) is well known, the XOS formed during growth is not recovered due to its conversion to xylose by β-xylosidase and subsequent bacterial metabolism. A new strain, Bacillus subtilis KCX006, was exceptionally found to synthesize β-xylosidase-free endo-xylanase and multiple xylan debranching enzymes constitutively in the presence of LCMs. Absence of β-xylosidase resulted in accumulation of XOS during growth of KCX006 on LCMs. Therefore, this strain was used for simultaneous production of xylanase and XOS from agro-residues in solid-state fermentation (SSF). Partial purification of XOS from culture supernatant using activated charcoal followed by high-performance liquid chromatography (HPLC) analysis showed xylobiose to xylotetraose formed as the major products. Among various LCM substrates, wheat bran and groundnut oil-cake supported highest xylanase and XOS production at 2158 IU/gdw and 24.92 mg/gdw, respectively. The levels of xylanase and XOS were improved by 1.5-fold (3102 IU/gdw) and 1.9-fold (48 mg/gdw), respectively, by optimization of culture conditions. PMID:25310011

  6. Production of some extracellular enzymes by a lignin peroxidase-producing brown rot fungus, Polyporus ostreiformis, and its comparative abilities for lignin degradation and dye decolorization.

    OpenAIRE

    Dey, S.; Maiti, T K; Bhattacharyya, B C

    1994-01-01

    Polyporus ostreiformis produced Mn peroxidase, acid protease, alpha-amylase, and lignin peroxidase, with maximum activities of 40, 8,300, and 4,200 U liter-1 and 50 nkat liter-1, respectively, in nitrogen-limited liquid media. The fungus removed only 18.6% lignin from rice straw in 3 weeks but effected 99% decolorization of Congo red dye in 9 days.

  7. Optimization of blood collection card method/enzyme-linked immunoassay for monitoring exposure of bottlenose dolphin to brevetoxin-producing red tides.

    Science.gov (United States)

    Maucher, Jennifer M; Briggs, Lyn; Podmore, Colleen; Ramsdell, John S

    2007-01-15

    Blood collection cards have been successfully used as a tool to monitor brevetoxin (PbTx) exposure in several species, including fish, mice, and rats. Previous methanolic methods used for extracting brevetoxin from blood collection cards have shown dolphin blood to have matrix difficulties in several biological assays. To better biomonitor protected marine mammal species in the Florida area, which is historically prone to unusual mortality events caused by brevetoxin exposure, we have modified the previous extraction method to consistently recover brevetoxin with a known efficiency from dolphin blood collection card samples with minimal matrix interference. A combination of phosphate-buffered saline (PBS) with 6% MeOH and 100% acetonitrile was used to elute blood from the cellulose card and precipitate proteins, respectively. Analysis was performed using a newly developed direct enzyme-linked immunoassay (ELISA), which yields a sample limit of quantification of 1 ng PbTx-3 equiv/mL. This extraction method allowed for linear recovery of PbTx-3 spiked into dolphin blood (1-30 ng/mL) with a consistent recovery rate of 58% and has subsequently been used to monitor brevetoxins in dolphins, as well as sea turtles and manatees, in regions endemic to red tides. In addition, two known metabolites of PbTx-2 were isolated and also found to be detectable using the ELISA. The cysteine conjugate (m/z 1018) and cysteine sulfoxide conjugate (m/z 1034) were found to have linear recoveries of 87% and 66%, respectively. In summary, this method of extracting brevetoxins and their metabolites from blood collection cards, in conjunction with the ELISA detection method, is a simple and reliable way to biomonitor physiologically relevant toxin levels in protected marine animals. PMID:17310722

  8. A new model of Pde4d deficiency: genetic knock-down of PDE4D enzyme in rats produces an antidepressant phenotype without spatial cognitive effects.

    Science.gov (United States)

    Schaefer, T L; Braun, A A; Amos-Kroohs, R M; Williams, M T; Ostertag, E; Vorhees, C V

    2012-07-01

    Phosphodiesterases (PDEs) are a superfamily of intracellular second messenger cyclic nucleotide hydrolyzing enzymes composed of 12 families. The Pde4 family has been implicated in depression and cognition, and PDE4 inhibitors have been evaluated as antidepressants and possible cognitive enhancers. Pde4d(-/-) mice show an antidepressant phenotype and learning enhancement on some tests, but not others as do mice treated with PDE4 inhibitors. Here, we report for the first time the behavioral phenotype of a new Pde4d knock-down (KD) rat model of PDE4D deficiency. Consistent with other data on PDE4D deficiency, Pde4d KD rats showed depression resistance in the Porsolt forced swim test and hyperreactivity of the acoustic startle response with no differential response on prepulse inhibition, suggesting no sensorimotor gating defect. Pde4d KD rats also exhibited a small exploratory activity reduction but no difference following habituation, and no enhanced spatial learning or reference memory in the Morris water maze. A selective improvement in route-based learning in the Cincinnati water maze was seen as well as enhanced contextual and cued fear conditioning and a more rapid rate of cued extinction from their higher freezing level that declined to wild-type (WT) levels only after ∼20 extinction trials. The rat model confirms Pde4d's role in depression but not in spatial learning or memory enhancement and shows for the first time higher fear conditioning and altered extinction compared with controls. The new model provides a tool by which to better understand the role of PDE4D in neuropsychiatric disorders and for the development of alternate treatment approaches. PMID:22487514

  9. 岱山盐场可培养嗜盐菌的多样性及其产酶活性筛选%Diversity and enzyme-producing activity of culturable halophilic bacteria in Daishan Saltern of East China

    Institute of Scientific and Technical Information of China (English)

    杨丹丹; 黎乾; 黄晶晶; 陈敏

    2012-01-01

    Soil and saline water samples were collected from the Daishan Saltern of East China, and the haiophilic bacteria were isolated and cultured by using selective media, aimed to investigate the diversity and enzyme-producing activity of culturable haiophilic bacteria in saltern environment. A total of 181 strains were isolated by culture-dependent method. Specific primers were used to amplify the 16S rRNA gene of bacteria and archaea. The operation taxonomy units (OTUs) were determined by ARDRA method, and the representative strain of each OTU was sequenced. The phyloge-netic position of all the isolated strains was determined by 16S rRNA sequencing. The results showed that the isolated 181 strains displayed 21 operational taxonomic units (OTUs) , of which, 12 OTUs belonged to haiophilic bacteria, and the others belonged to haiophilic archaea. Phyloge-netic analysis indicated that there were 7 genera presented among the haiophilic bacteria group, and 4 genera presented among the haiophilic archaea group. The dominant haiophilic strains were of Hahmonas and Haloarcida, with 46. 8% in haiophilic bacteria and 49. 1% in haiophilic archaea group, respectively. Enzyme-producing analysis indicated that most strains displayed enzyme-producing activity, including the activities of producing amylase, proteinase and lipase, and the dominant strains capable of enzyme-producing were of Haloarcula. Our results showed that in the environment of Daishan Saltern, there existed a higher diversity of haiophilic bacteria, being a source sink for screening enzyme-producing bacterial strains.%从岱山盐场采集样品,利用选择性培养基分离培养嗜盐菌,对盐田环境中可培养嗜盐菌的多样性及产酶活性进行研究.共分离得到181株嗜盐菌菌株,通过真细菌和古生菌两对通用引物扩增其16S rRNA基因,并采用限制性内切酶Hinf I进行ARDRA(amplified rDNA restriction analysis)多态性分析,共分为21个

  10. Identification and characterization of CYP79D6v4, a cytochrome P450 enzyme producing aldoximes in black poplar (Populus nigra).

    Science.gov (United States)

    Irmisch, Sandra; Unsicker, Sybille B; Gershenzon, Jonathan; Köllner, Tobias G

    2013-01-01

    After herbivore feeding, poplar trees produce complex volatile blends containing terpenes, green leaf volatiles, aromatics, and nitrogen-containing compounds such as aldoximes and nitriles. It has been shown recently that volatile aldoximes released from gypsy moth (Lymantria dispar) caterpillar-damaged black poplar (Populus nigra) trees attract parasitoids that are caterpillar enemies. In western balsam poplar (P. trichocarpa), volatile aldoximes are produced by 2 P450 monooxygenases, CYP79D6v3 and CYP79D7v2. A gene fragment with high similarity to CYP79D6/7 was recently shown to be upregulated in herbivore-damaged leaves of P. nigra. In the present study we report the cloning and characterization of this gene, designated as CYP79D6v4. Recombinant CYP79D6v4 was able to convert different amino acids into the corresponding aldoximes, which were also found in the volatile blend of P. nigra. Thus, CYP79D6v4 is most likely involved in herbivore-induced aldoxime formation in black poplar. PMID:24390071

  11. 产剑麻皂苷水解酶菌株的筛选与鉴定%Screening and Identiifcation of Sisalana Saponin Hydrolytic Enzyme Producing Strains

    Institute of Scientific and Technical Information of China (English)

    邓天发; 王京博; 谢庆武

    2013-01-01

    目的筛选能酶解剑麻皂苷并释放游离剑麻皂素的菌株。方法用薄层色谱法(TLC)初筛能酶解剑麻皂苷游离出剑麻皂素的菌株,再用酶活性比色测定和高效液相色谱法(HPLC)复筛目的菌株。通过形态学观察和ITS序列测定,初步鉴定菌种。结果筛选到31株目的菌株,其中丝状真菌13株,细菌18株。丝状真菌的酶活性高于细菌。鉴定其中酶活性较高的4株真菌:菌种T1为黑曲霉,T2、T3为链孢霉属,T4为青霉属。结论 TLC可快速筛选酶解剑麻皂苷并释放游离剑麻皂素的菌种。黑曲霉、链孢霉和青霉均有较强的酶解剑麻皂苷并释放游离剑麻皂素的能力。%Objective To screen the strains which can hydrolyze the agave sisalana saponin and release the tigogenin. Methods Using the TLC assay, the strains that can hydrolyze the agave sisalana saponin and release the tigogenin were first screened out, then the destination strains were screened out again, using the enzymatic colorimetric determination and HPLC determination. By morphological observation and ITS sequencing, the strains were preliminary identified. Results 31 destination strains were screened out, among which 13 strains were filamentous fungi and 18 were bacteria. The activity of the hydrolytic enzyme of the fungi was higher than that the bacteria. The 4 fungi strains T1, T2, T3 and T4 with higher enzymatic activity were identified as Aspergillus niger, Neurospora sitophila, and Penicillium, respectively. Conclusion Using the TLC assay, the screening of the strains that can hydrolyze the agave sisalana saponin and release the tigogenin was accelerated. Aspergillus niger, Neurospora sitophila, and Penicillium all have the capacity to hydrolyze the agave sisalana saponin and release the tigogenin.

  12. [Neutralization of toxic and enzyme activities of 4 venoms from snakes of Guatemala and Honduras by the polyvalent antivenin produced in Costa Rica].

    Science.gov (United States)

    Rojas, G; Gutiérrez, J M; Gené, J A; Gómez, M; Cerdas, L

    1987-06-01

    We studied the ability of the polyvalent antivenom produced in Costa Rica to neutralize lethal, hemorrhagic, edema-forming, proteolytic, hemolytic, hyaluronidase and fibrinolytic activities of the venoms of Bothrops asper and B. nummifer from Honduras, and of Agkistrodon bilineatus and Crotalus durissus durissus from Guatemala. Neutralizing ability of antivenom was expressed as ED50 (effective dose 50%), defined as the antivenom/venom ratio at which the activity of the venom is reduced 50%. Antivenom is highly effective in the neutralization of lethal, hemorrhagic, hemolytic, hyaluronidase, and caseinolytic activities of B. asper, B. nummifer, and C. d. durissus venoms. In the case of B. nummifer venom, neutralization of fibrinolytic effect was only partial, whereas this activity was adequately neutralized when studying the venoms of B. asper and C. d. durissus. The venom of A. bilineatus was adequately neutralized by the antivenom, with the only exception of hemolytic effect that was reduced only partially. However, in quantitative terms, a relatively large volume of antivenom was required to neutralize some effects induced by A. bilineatus venom. Regarding edema-forming activity, antivenom neutralized efficiently the venoms of B. asper and A. bilineatus, whereas that of B. nummifer was neutralized only partially; on the other hand, edema induced by the venom of C. d. durissus was not neutralized at all. Immunochemical results indicate a close immunological relationship between venoms of B. asper, B. nummifer and C. d. durissus collected in Honduras and Guatemala with those of the same species collected in Costa Rica. Interspecies comparison, however, showed variation between venoms obtained from different species.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3444924

  13. 淀粉分解菌的筛选及产酶条件的优化%Screening of amylase-producing bacteria and optimization of the condition for enzyme production

    Institute of Scientific and Technical Information of China (English)

    刘震; 张永根; 张微微; 王丽娟

    2012-01-01

    A amylase-producing bacteria was isolated from the potato pulp. Amylase production was increased by optimizing the conditions of enzyme production, and also determined the amylase characterization. The bacteria was identified as bacillus LZ-1 according to its physiological and biochemical analysis; The activity of amylase was assayed by the method of DNS, and the condition of enzyme production was optimized too. The results showed that the condition was potato starch 2%, peptone 1%, MgSO4 0.05%, CaCl2 0.05%, FeSO4 0.005%, NaCl 0.5%, KH2PO4 0.1%, pH 7.0. The enzyme production by this strain reached the maximum level of 58.63 U/ml after 48 h cultivation at 37 ℃, 180 r/min. The studies on amylase characterization demonstrated that optimum activity was at 70 t and pH 6.0. The enzyme was stable at pH 4.0~8.0. When the temperature below 75 ℃, the enzyme was heat stable. The higher activity of amylase was produced in the design of conditions and the enzyme was pH and heat stable.%研究旨在从马铃薯渣中筛选出一株酶活较高的淀粉分解菌,通过优化菌株的产酶条件来提高其淀粉酶产量,同时还测定了所产淀粉酶的酶学性质.根据菌体的形态和生化特征,初步鉴定为芽孢杆菌LZ-1;利用DNS法测定了淀粉酶的酶活,并优化了其产酶培养基.结果表明,最适培养基为:马铃薯淀粉2%、蛋白胨1%、硫酸镁0.05%、氯化钙0.05%、硫酸亚铁0.005%、氯化钠0.5%、磷酸二氢钾0.1%,pH值7.0.180 r/min,37℃摇床发酵48 h后,产酶量达到了58.63 U/ml通过酶学性质测定,表明酶反应最适温度和pH值分别为70℃和6.0,在pH值4.0~8.0范围内稳定,当温度低于75℃时,热稳定性良好.该淀粉分解菌在设计发酵条件下能够产生较高酶活的淀粉酶,且所产酶具有较好的热稳定性和pH值稳定性.

  14. Annual changes and enzyme-producing strains of heterotrophic bacteria and vibrio in oyster Crassostrea hongkongensis farmed%近江牡蛎Crassostrea hongkongensis体内细菌的周年变化及细菌产酶能力

    Institute of Scientific and Technical Information of China (English)

    王瑞旋; 冯玉婷; 冯娟; 王江勇

    2012-01-01

    对近江牡蛎体内异养细菌进行1周年的监测(2010年1月~ 2010年12月),分离得到的异养菌(180株)鉴定到属,并检测产生蛋白酶、淀粉酶和脂肪酶的能力.结果显示,正常贝体内异养菌和弧菌数分别为7.3×103~ 6.6 ×104CFU/g和8.0×10~ 8.2×103 CFU/g,随机分离的菌株分属肠杆菌科的部分属Enterbacteriaceae、弧菌属Vibrio、气单胞菌属Aeromonas、假单胞菌属Pseudomonas、葡萄球菌属Staphylococcus、发光杆菌属Photobacterium、无色杆菌属Achromobacter、芽孢杆菌属Bacillus 等.产酶试验结果表明,正常贝体分泌蛋白酶和纤维素酶的菌株数量最高出现于9月份,产酶菌株比例分别高达91.7%和63.9%,分泌淀粉酶和脂肪酶菌株数量高峰出现于7月份,产酶菌株比例均达81.8%,其中15株能同时分泌这4种酶.%The quantitative and qualitative studies on the bacterial population in fanned oyster Crassostrea hongkongensis were surveyed for one year. The strains ( about 180 ) from the body of oyster were purified and identified for their genus, and the enzyme-producing ( protease, amylase, lipase and cellulase ) of the strains was measured. The results showed that the the heterotrophic bacteria and vibrio were 7. 3 ×103 ~6. 6 x 104CFU/g and 8.0×10-8.2 ×103CFU/g in heathy oysters,respectively. The 180 strains were identified as Enterbacteriaceae,Vibrio,Aeromonas,Pseudomonas,Staphylococcus,Phdtobacterium,Achromobacte,Bacillus and so on. The zymogenic experiment results showed that the crest value of strains producing protease and cellulose appeared in Sep. , and the percentage reached 91. 7% and 63. 9% ,respectively,while the peak of strains producing amylase and lipase emerged in Jul. ,and the percentage reached 81.8%. The results also showed that there were 15 strains produced the 4 enzymes simultaneously.

  15. Isolation and Identification of Extracellular Enzyme-Producing Bacteria from the Intestinal Tract of Litopenaeus vannamei%具有多种胞外酶的对虾肠道黏附菌的分离和鉴定

    Institute of Scientific and Technical Information of China (English)

    刘慧玲; 罗鹏; 杨世平; 李广聪; 莫嘉文; 王蔚

    2012-01-01

    用对虾饲料培养基从健康凡纳滨对虾肠道分离出500株黏附细菌,以产淀粉酶、脂肪酶和蛋白酶能力为指标,筛选出产该3种消化酶的细菌90株,占总菌株的18%.对其中生长较快的69株进行16SrDNA基因测序,确定其分类地位.结果显示,69株菌分别属于不动杆菌属(Acinetobacter)、芽孢杆菌属(Bacillus)、葡萄球菌属(Staphylococcus)、假交替单胞菌属(Pseudoalteromonas)、气单胞菌属(Aeromonas)、嗜盐单胞菌属(Halomonas)、利斯顿氏菌属(Listonella)、莫拉氏菌属(Moraxella)等,其中数量最多是芽胞杆菌属,占鉴定细菌总数的53.62%,数量最少是气单胞菌属和嗜盐单胞菌属,均占鉴定细菌总数的2.90%.表明对虾肠道黏附菌群中具有较多能分泌多种消化酶的细菌,可进一步开发为促进对虾消化功能的益生菌.%500 strains adhesive bacteria were isolated from the intestinal tract of Litopenaeus vannamei by using shrimp-feed abstraction medium. All bacterial strains were screened for producing capability of protease, amylase and lipase. There were 90 strains that could produce three extracellular enzymes, 18.0% of the total intestinal adhesive bacterial populations. 69 strains with rapid growth were identified according to homology analysis of 16S rDNA sequences. They were grouped into eight genera as follows: Acinetobacter, Bacillus, Staphylococcus, Pseudoalteromonas, Aeromonas, Halomonas, Listonella, Moraxella, respectively. The dominant genus was Bacillus, which account for 53.62% of the total identified strains. There were least number strains belong to Aeromonas and Halomonas, which account for 2.90% of the total identified isolates, respectively. The results indicate that there are plentiful extracellular enzyme-producing bacterium adhered to intestine of shrimp with the potential to be promising probiotic of promoting digestion.

  16. Actinomycetes Strains Screening for Xanthan- degrading and Study on Ferment Conditions for Enzyme Producing%产黄原胶降解酶放线菌筛选及发酵工艺研究

    Institute of Scientific and Technical Information of China (English)

    古丽·艾合买提; 穆斯塔帕·克地尔; 唐娴

    2011-01-01

    [Objective] Xanthan is a kind of extracellular polysaccharose (EPS) produced by a plant pathogen of Xanthomonas campestris . It has a main chain structure similar to cellulose and is difficult to degrade, and can be -widely used for thickening agent, suspending agent, emulsifying agent and stabilizing agent as biogel with its special physical properties. However, it can also cause black rotten disease for crucifer. The purpose of this program is to obtain oligosaccharide produced by biodegradation of xanthan which used for biochemical to control black rotten disease by screening actinomycetes strains for xanthan - degrading. [ Method ] The program was carried out by screening actinomycetes strains from natural soil based on xanthan - degrading ability, identifying by 16S rRNA analysis, selecting mutants by ultraviolet mutation for higher enzyme activity, and studying on ferment conditions for enzyme producing by one factor and orthogonal tests. [Result]A strain of Streptomyces sp has been obtained, and the xanthan - degrading enzyme activity of its fermentation liquid reached 200 IU/L after culture medium and ferment conditions optimization.%[目的]黄原胶是植物致病菌野油菜黄单胞菌所分泌的胞外多糖,其主链类似纤维素很难降解,可作为生物胶用于增稠剂、悬浮剂、乳化剂和稳定剂,还能引起十字花科植物黑腐病.筛选分离对黄原胶有显著降解作用的放线菌,以生物方法降解黄原胶,降解产物黄原胶寡糖可有效防治黑腐病,具有开发为生物农药的潜力.[方法]从自然土壤样品中进行分离筛选、纯化、16S rRNA鉴定及诱变选育,获得高效降解黄原胶放线菌菌株,通过发酵工艺研究,确定最适产酶条件.[结果]优化产酶培养基配方为:蔗糖3%,( NH4 )2SO4 0.5%,KNO31%,酵母膏0.1%.菌株发酵产酶培养条件为:发酵温度28℃,pH7.5,500mL瓶装量为150 mL,底物浓度0.5%,接种量为5%.[结论]获得一株高效

  17. Enzymic hydrolysis of chlorella cells

    Energy Technology Data Exchange (ETDEWEB)

    Khraptsova, G.I.; Tsaplina, I.A.; Burdenko, L.G.; Khoreva, S.L.; Loginova, L.G.

    1981-01-01

    Treatment of C. ellipsoidea, C. pyrenoidosa, and C. vulgaris with cellulolytic enzymes (from Aspergillus terreus) and pectofoetidin p10x (from A. foetidus) resulted in the degradation and lysis of the algae cells. The cells were more sensitive to cellulase than to pectinase. The combination of both enzymes produced a synergistic effect on cell lysis.

  18. Modifying enzyme activity and selectivity by immobilization

    OpenAIRE

    Rodrigues, Rafael C.; Ortiz, Claudia; Berenguer Murcia, Ángel; Torres, Rodrigo; Fernández Lafuente, Roberto

    2013-01-01

    Immobilization of enzymes may produce alterations in their observed activity, specificity or selectivity. Although in many cases an impoverishment of the enzyme properties is observed upon immobilization (caused by the distortion of the enzyme due to the interaction with the support) in some instances such properties may be enhanced by this immobilization. These alterations in enzyme properties are sometimes associated with changes in the enzyme structure. Occasionally, these variations will ...

  19. Enzyme immunoassay

    DEFF Research Database (Denmark)

    Feldt-Rasmussen, B; Dinesen, B; Deckert, M

    1985-01-01

    An enzyme linked immunoadsorbent assay for urinary albumin using commercially available reagents is described. The assay range is 2.5-120 micrograms/l. When samples are analysed in two standard dilutions, the assayable albumin concentration range is 2.5-240 mg/l, covering the clinical range from...

  20. Food Enzymes

    Science.gov (United States)

    McBroom, Rachel; Oliver-Hoyo, Maria T.

    2007-01-01

    Many students view biology and chemistry as two unrelated, separate sciences; how these courses are generally taught in high schools may do little to change that impression. The study of enzymes provide a great opportunity for both biology and chemistry teachers to share with students the interdisciplinary nature of science. This article describes…

  1. Lignolytic Enzymes Production from Selected Mushrooms

    Directory of Open Access Journals (Sweden)

    H.M. Shantaveera Swamy

    2015-06-01

    Full Text Available In this paper, ligninase enzymes produced by selected mushrooms have been reported. We collected mushrooms from Western Ghats, most of them were edible food. Thirty samples isolated were tested using a plate assay through direct agar plate assay by using ABTS, decolourisation containing the fifteen isolates were able to decolourise the dye, indicating a lignin-degrading ability. Spectrophotometric enzyme assays from all selected isolates were carried out to examine the production of Ligninolytic enzymes (Laccase, lignin peroxidase and manganese peroxidase. Ten selected isolates produced all three kinds of enzymes tested. Lignolytic enzymes are groups of enzymes these are actively involved in bioremediation.

  2. Photoreactivating enzymes

    International Nuclear Information System (INIS)

    Photoreactivating enzymes (PRE) also called photolyases (EC 4.1.99.3) catalyze the light 300 to 600 nm)-dependent monomerization of cyclobutyl pyrimidine dimers, formed between adjacent pyrimidines on the same DNA strand, upon exposure to ultraviolet (uv) irradiation (220 to 320 nm). Although much is known about the substrate and product of these unusual enzymes, their identification required the development and synthesis of such fields as photochemistry, biochemistry, and microbiology. Photoreactivation was first known as a biological recovery phenomenon: cells exposed to visible light following uv irradiation showed higher survival than those kept in the dark. Early investigators examined the photoreactivability of an enormous range of cellular damage in both prokaryotes and eukaryotes. This review article discusses the purification and properties of PRE, the kinetics of photoreactivation and the biological role of this repair process

  3. Engineering enzymes

    OpenAIRE

    Dutton, P. Leslie; Moser, Christopher C.

    2011-01-01

    Fundamental research into bioinorganic catalysis of the kind presented at this Faraday Discussion has the potential to turn inspiration drawn from impressive natural energy and chemical transformations into artificial catalyst constructions useful to mankind. Creating bio-inspired artificial constructions requires a level of understanding well beyond simple description of structures and mechanisms of natural enzymes. To be useful, such description must be augmented by a practical sense of str...

  4. Microflora in digestive tract of Apostichopus japonicus and enzyme producing and hemolytic analysis%刺参肠道微生物组成分析及产酶、溶血性试验

    Institute of Scientific and Technical Information of China (English)

    张喜昌; 费世洲; 常亚青; 刘小林; 王高学

    2014-01-01

    Microflora in the intestinal tract and on the intestinal wall of both cultured and wild Apostichopus japonicus was studied in this paper. The screening for probiotics was performed based on enzyme producing and hemolytic analysis. The results showed that the number of bacteria in the intestinal wall and tract of wild Apostichopus japonicus was (3.30 ± 0.41) ×107 cfu/g and (6.39 ± 0.32) ×107 cfu/g, respectively. The number of bacteria in the intestinal wall and tract of cultured group was (2.83 ± 0.31) ×107 cfu/g and (5.67 ± 0.53) ×107 cfu/g, respectively. The dominant species in the intestinal tract of wild group was Vibrio and the Pseudomonas and Shewanella were the secondary dominant species. The dominant species in the cultured group was Vibrio and Pseudomonas. In 224 strains of bacteria, a total of 160 strains of bacteria produced enzyme with a ratio of 71.43%. Among these bacteria, 114 strains could produce protease, 114 strains could produce amylase, and 108 strains could produce lipase. The percentages were 50.89%, 50.89%, and 48.21%, respectively. A total of 23 strains of bacteria could produce hemolytic toxin in 99 strains of bacteria, which accounts for 23.23%of the total bacterial population. Through the comprehensive analysis of test data, we selected 6 strains of bacteria as intestinal potential probiotic strains of Apostichopus japonicus, which were HS1(Pseudomonas), HS5(Bacillus), HS7(Shewanella), HS8(Vibrio), HS10(Vibrio), and HS11(Vibrio) respectively.%对野生和人工养殖刺参的肠壁及内容物中的菌群数量、种类组成进行了研究;并结合产酶试验和溶血性试验,对刺参肠道益生菌做了初步的体外筛选。结果表明,野生刺参肠壁及内容物中的细菌数量分别为(3.30±0.41)×107 cfu/g、(6.39±0.32)×107 cfu/g,养殖刺参肠壁及内容物中的细菌数量分别为(2.83±0.31)×107 cfu/g、(5.67±0.53)×107 cfu/g。野生刺参肠道优势菌为弧菌属(Vibrio),次优势菌为假单

  5. Positron emitter labeled enzyme inhibitors

    International Nuclear Information System (INIS)

    This invention involves a new strategy for imagining and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography

  6. Isolation and identification of enzyme-producing bacteria from the digestive tract of Epinehelus moara in re-circulating aquaculture sys-tems%工厂化循环水养殖条件下云纹石斑鱼消化道产酶菌的分离鉴定

    Institute of Scientific and Technical Information of China (English)

    施兆鸿; 王建建; 高权新

    2015-01-01

    The purpose of this research was to study the bacterial community structure in digestive tract and en-zyme production capacity of enzyme-producing bacteria, and provide reference for selection and application of probiotics for carnivorous fish culture. In this experiment, samples of juvenile saladfish (Epinehelus moara) stomach, pyloric caeca, foregut, midgut, and hindgut were obtained in recirculating aquaculture systems. Bacterial community structure was analyzed using 16S rDNA-PCR. The enzyme-producing bacteria were isolated and iden-tified by isolating and screening enzyme-producing bacteria. Moreover, the enzyme activities were tested. Twenty-seven strains were isolated and cultured under experimental conditions, including 13 strains of Pseudo-monas, 5 strains of Exiguobacterium, 7 strains of Acinetobacter, 1 strain of Stenotrophomonas, and 1 strain of Staphylococcus, which accounted for 48.2%, 18.5%, 25.9%, 3.7%, and 3.7%, respectively, of the isolated bacteria. The sequence homology of corresponding genes was greater than 98%. Fifteen strains produced enzymes and ac-counted for 55.6%of all bacteria;these bacteria included 7 strains of Pseudomonas, 5 strains of Exiguobacterium, 2 strains of Acinetobacter and 1 strain of Stenotrophomonas. Among these bacteria, 13 strains can produce both protease and amylase, whereas 4 strains can produce protease, amylase, and lipase. Among the enzyme-producing bacteria, 5 strains can produce 3 enzymes and 9 strains can produce 2 enzymes. Moreover, the bacteria in the midgut and hindgut were most abundant, and those in the stomach, diverticulum pyloricum and foregut were less abundant; the bacteria that produce lipase were concentrated in the midgut. Protease and amylase were the main enzymes produced by these bacteria; these two enzymes were highly productive, with protease activity up to (87.732±1.134) U/mL and amylase activity between (77.176±0.599) U/mL and (73.458±0.574) U/mL. Only one strain produced cellulase, and

  7. Consumer attitudes to enzymes in food production

    DEFF Research Database (Denmark)

    Søndergaard, Helle Alsted; Grunert, Klaus G.; Scholderer, Joachim

    2005-01-01

    The use of enzymes in food production has potential benefits for both food manufacturers and consumers. A central question is how consumers react to new ways of producing foods with enzymes. This study investigates the formation of consumer attitudes to different enzyme production methods in three...... European countries. Results show that consumers are most positive towards non-GM enzyme production methods. The enzyme production method is by far the most important factor for the formation of buying intentions compared to price and benefits. Results also show that environmental concern and attitudes...

  8. Enzyme detection by microfluidics

    DEFF Research Database (Denmark)

    2013-01-01

    Microfluidic-implemented methods of detecting an enzyme, in particular a DNA-modifying enzyme, are provided, as well as methods for detecting a cell, or a microorganism expressing said enzyme. The enzyme is detected by providing a nucleic acid substrate, which is specifically targeted by that...... enzyme...

  9. Controlled enzyme catalyzed heteropolysaccharide degradation

    DEFF Research Database (Denmark)

    Rasmussen, Louise Enggaard

    The work presented in this PhD thesis has provided a better understanding of the enzyme kinetics and quantitative phenomena of the hydrolysis of xylan substrates by selected pure enzyme preparations. Furthermore, the options for producing specific substituted xylooligosaccharides from selected...... substrates by specific xylanase treatment have been examined. The kinetics of the enzymatic degradation of water-extractable wheat arabinoxylan (WE-AX) during designed treatments with selected monocomponent enzymes was investigated by monitoring the release of xylose and arabinose. The results of different...... effects between -xylosidase and the α-L-arabinofuranosidases on the xylose release were low as compared to the effect of xylanase addition with β-xylosidase, which increased the xylose release by ~25 times in 30 minutes. At equimolar addition levels of the four enzymes, the xylanase activity was thus rate...

  10. 21 CFR 173.150 - Milk-clotting enzymes, microbial.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Milk-clotting enzymes, microbial. 173.150 Section... HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.150 Milk-clotting enzymes, microbial. Milk-clotting enzyme produced by pure-culture fermentation process may be safely used in the...

  11. Enzyme immobilization: an update

    OpenAIRE

    Homaei, Ahmad Abolpour; Sariri, Reyhaneh; Vianello, Fabio; Stevanato, Roberto

    2013-01-01

    Compared to free enzymes in solution, immobilized enzymes are more robust and more resistant to environmental changes. More importantly, the heterogeneity of the immo-bilized enzyme systems allows an easy recovery of both enzymes and products, multiple re-use of enzymes, continuous operation of enzymatic processes, rapid termination of reactions, and greater variety of bioreactor designs. This paper is a review of the recent literatures on enzyme immobilization by various techniques, the need...

  12. 粗酶水解全脂豆粉提取油脂和蛋白%Oil and protein simultaneously extracted from soybean using crude enzyme produced by microbial fermentation

    Institute of Scientific and Technical Information of China (English)

    吴海波; 江连洲; 程建军; 姚刚

    2011-01-01

    Enzyme-assisted aqueous extraction processing (EAEP) is an environmentally friendly alternative technology to hexane extraction of soybean oil, EAEP has significant challenges, however, that must be overcome before becoming practical: the high price of enzyme, activity is influenced significantly by conditions, which has discouraged industrial adoption of EAEP. In this study Bacillus subtilis was inoculated into the optimal medium and fermented for 42 h, it was found that the broth contained alkaline and neutral protease. Extruded full fat soybean flour was hydrolyzed by the crude enzyme obtained from fermentation liquid after condensation at alkaline protease activity of (2 000±200) U/mL, neutral protease of (1 500±200) U/mL. The total off extraction yield reached the highest value of 94.2%, and 90.1% of total protein yield was obtained under conditions that were temperature 55 ℃, solid/liquid ratio 1:8 g/mL, the initial pH value 10, hydrolysis time 6 h. As compared to the commercial Alcalase protease, the total oil recovery enhanced by 1.9%, the protein recovery reduced by 2% with crude enzyme extraction, and the hydrolyzed protein molecular weights were smaller and distributed wider. The use of crude enzyme resulted in better oil quality as compared with solvent extraction, though no significant difference was observed between the treatments of crude enzyme and Alcalase protease.%水酶法提取大豆油和蛋白是一项可替代溶剂浸提制油工艺的绿色环保技术,但是商品酶的价格较高且酶活易受外界环境影响,使水酶法制油技术的应用受到限制.该试验在优化过的培养基中接种枯草芽孢杆菌发酵培养42 h,所得发酵液经测定含有碱性和中性两种蛋白酶,所得粗酶经透析浓缩后,在碱性蛋白酶活为(2 000±200)U/mL,中性蛋白酶活为(1 500±200)U/mL时,在酶液中接入挤压膨化豆粉水解.通过对酶解条件的优化,试验证实在温度55℃,料液比1∶8g

  13. Emergence and Dissemination of Enterobacteriaceae Isolates Producing CTX-M-1-Like Enzymes in Spain Are Associated with IncFII (CTX-M-15) and Broad-Host-Range (CTX-M-1, -3, and -32) Plasmids▿

    OpenAIRE

    Novais, Ângela; Cantón, Rafael; Moreira, Raquel; Peixe, Luísa; Baquero, Fernando; Coque, Teresa M.

    2006-01-01

    The spread of CTX-M-1-like enzymes in Spain is associated with particular plasmids of broad-host-range IncN (blaCTX-M-32, blaCTX-M-1), IncL/M (blaCTX-M-1), and IncA/C2 (blaCTX-M-3) or narrow-host-range IncFII (blaCTX-M-15). The identical genetic surroundings of blaCTX-M-32 and blaCTX-M-1 and their locations on related 40-kb IncN plasmids indicate the in vivo evolution of this element.

  14. Insolubilized enzymes for food synthesis

    Science.gov (United States)

    Marshall, D. L.

    1972-01-01

    Cellulose matrix with numerous enzyme-coated silica particles of colloidal size permanently bound at various sites within matrix was produced that has high activity and possesses requisite physical characteristics for filtration or column operations. Product also allows coupling step in synthesis of edible food to proceed under mild conditions.

  15. Enzyme technology: Key to selective biorefining

    DEFF Research Database (Denmark)

    Meyer, Anne S.

    2014-01-01

    Development of selective biomass upgrading processes is a crucial prerequisite for unfolding the potential of biomass in biorefinery processes. The biorefinery concept designates that different value-added compounds are produced from the same crop or biomass stream. Selectivity with respect to the...... reaction is a unique trait of enzyme catalysis. Since enzyme selectivity means that a specific reaction is catalysed between particular species to produce definite products, enzymes are particularly fit for converting specific compounds in mixed biomass streams. Since enzymes are protein molecules their...... rational use in biorefinery processes requires an understanding of the basic features of enzymes and reaction traits with respect to specificity, kinetics, reaction optima, stability and structure-function relations – we are now at a stage where it is possible to use nature’s enzyme structures as starting...

  16. The rhizobacterium Arthrobacter agilis produces dimethylhexadecylamine, a compound that inhibits growth of phytopathogenic fungi in vitro.

    Science.gov (United States)

    Velázquez-Becerra, Crisanto; Macías-Rodríguez, Lourdes I; López-Bucio, José; Flores-Cortez, Idolina; Santoyo, Gustavo; Hernández-Soberano, Christian; Valencia-Cantero, Eduardo

    2013-12-01

    Plant diseases caused by fungal pathogens such as Botrytis cinerea and the oomycete Phytophthora cinnamomi affect agricultural production worldwide. Control of these pests can be done by the use of fungicides such as captan, which may have deleterious effects on human health. This study demonstrates that the rhizobacterium Arthrobacter agilis UMCV2 produces volatile organic compounds that inhibit the growth of B. cinerea in vitro. A single compound from the volatile blends, namely dimethylhexadecylamine (DMHDA), could inhibit the growth of both B. cinerea and P. cinnamomi when supplied to the growth medium in low concentrations. DMHDA also inhibited the growth of beneficial fungi Trichoderma virens and Trichoderma atroviride but at much higher concentrations. DMHDA-related aminolipids containing 4, 8, 10, 12, and 14 carbons in the alkyl chain were tested for their inhibitory effect on the growth of the pathogens. The results show that the most active compound from those tested was dimethyldodecylamine. This effect correlates with a decrease in the number of membrane lipids present in the mycelium of the pathogen including eicosanoic acid, (Z)-9-hexadecenoic acid, methyl ester, and (Z)-9-octadecenoic acid, methyl ester. Strawberry leaflets treated with DMHDA were not injured by the compound. These data indicate that DMHDA and related compounds, which can be produced by microorganisms may effectively inhibit the proliferation of certain plant pathogens. PMID:23674267

  17. Engineering Cellulase Enzymes for Bioenergy

    Science.gov (United States)

    Atreya, Meera Elizabeth

    Sustainable energy sources, such as biofuels, offer increasingly important alternatives to fossil fuels that contribute less to global climate change. The energy contained within cellulosic biofuels derives from sunlight energy stored in the form of carbon-carbon bonds comprising sugars such as glucose. Second-generation biofuels are produced from lignocellulosic biomass feedstocks, including agricultural waste products and non-food crops like Miscanthus, that contain lignin and the polysaccharides hemicellulose and cellulose. Cellulose is the most abundant biological material on Earth; it is a polymer of glucose and a structural component of plant cell walls. Accessing the sugar is challenging, as the crystalline structure of cellulose resists degradation; biochemical and thermochemical means can be used to depolymerize cellulose. Cellulase enzymes catalyze the biochemical depolymerization of cellulose into glucose. Glucose can be used as a carbon source for growth of a biofuel-producing microorganism. When it converts glucose to a hydrocarbon fuel, this microbe completes the biofuels process of transforming sunlight energy into accessible, chemical energy capable of replacing non-renewable transportation fuels. Due to strong intermolecular interactions between polymer chains, cellulose is significantly more challenging to depolymerize than starch, a more accessible polymer of glucose utilized in first-generation biofuels processes (often derived from corn). While most mammals cannot digest cellulose (dietary fiber), certain fungi and bacteria produce cellulase enzymes capable of hydrolyzing it. These organisms secrete a wide variety of glycoside hydrolase and other classes of enzymes that work in concert. Because cellulase enzymes are slow-acting and expensive to produce, my aim has been to improve the properties of these enzymes as a means to make a cellulosic biofuels process possible that is more efficient and, consequently, more economical than current

  18. The ENZYME data bank.

    Science.gov (United States)

    Bairoch, A

    1994-01-01

    The ENZYME data bank is a repository of information relative to the nomenclature of enzymes. It is primarily based on the recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (IUBMB) and it contains the following data for each type of characterized enzyme for which an EC (Enzyme Commission) number has been provided: EC number Recommended name Alternative names (if any) Catalytic activity Cofactors (if any) Pointers to the SWISS-PROT protein sequence entrie(s) that correspond to the enzyme (if any) Pointers to human disease(s) associated with a deficiency of the enzyme (if any). PMID:7937072

  19. Therapeutic efficacy of amikacin combined with fosfomycin against bacteria producing KPC enzymes%阿米卡星与磷霉素治疗产KPC酶细菌的疗效观察

    Institute of Scientific and Technical Information of China (English)

    郑海岚; 华俊彦; 朱雅艳; 叶伟红

    2014-01-01

    目的:了解阿米卡星、磷霉素联合使用和单独使用对产K PC酶细菌的疗效,为临床治疗产K PC酶细菌感染提供依据。方法收集2011年1月-2012年12月检测出产K PC酶20例住院患者资料,采用阿米卡星和磷霉素单用或联用治疗,并对其临床疗效和细菌学清除率进行回顾性统计分析。结果阿米卡星联用磷霉素的临床有效率和细菌学清除率均为71.4%,单用阿米卡星的临床有效率和细菌学清除率分别为57.1和28.6%,单用磷霉素的临床有效率和细菌学清除率分别为33.3%和16.7%。结论阿米卡星、磷霉素单用治疗产K PC酶细菌疗效不佳,但联用后可获得较好的疗效。%OBJECTIVE To analyze clinical therapeutic efficacy of amikacin combined with fosfomycin or amikacin/fosfomycin only against KPC-producing bacteria ,in order to provide evidence for the clinical therapy of KPC-producing bacteria infections .METHODS Totally 20 patients with KPC-producing bacteria infections were collecte d and treated with amikacin combined with fosfomycin or amikacin/fosfomycin only ,and the therapeutic effect and bacteria clearance rate were analyzed retrospectively .RESULTS The effective rate and the bacteria clearance rate of amikacin combination with fosfomycin were both 71 .43% ,while those of the method of amikacin only were 57 .1% and 28 .6% respectively . And those of the method of fosfomycin only were 33 .3% and 16 .7%respectively .CONCLUSION Amikacin combined with fosfomycin against KPC-producing bacteria could obtain well therapeutic effect ,which was much better than using amikacin or fosfomycin only .

  20. Enzyme Therapy: Current Perspectives.

    Science.gov (United States)

    UmaMaheswari, Thiyagamoorthy; Hemalatha, Thiagarajan; Sankaranarayanan, Palavesam; Puvanakrishnan, Rengarajulu

    2016-01-01

    Enzymes control all metabolic processes in human system from simple digestion of food to highly complex immune response. Physiological reactions occuring in healthy individuals are disturbed when enzymes are deficient or absent. Enzymes are administered for normalizing biological function in certain pathologies. Initially, crude proteolytic enzymes were used for the treatment of gastrointestinal disorders. Recent advances have enabled enzyme therapy as a promising tool in the treatment of cardiovascular, oncological and hereditary diseases. Now, a spectrum of other diseases are also covered under enzyme therapy. But, the available information on the use of enzymes as therapeutic agents for different diseases is scanty. This review details the enzymes which have been used to treat various diseases/disorders. PMID:26891548

  1. Enzyme inhibition by iminosugars

    DEFF Research Database (Denmark)

    López, Óscar; Qing, Feng-Ling; Pedersen, Christian Marcus;

    2013-01-01

    Imino- and azasugar glycosidase inhibitors display pH dependant inhibition reflecting that both the inhibitor and the enzyme active site have groups that change protonation state with pH. With the enzyme having two acidic groups and the inhibitor one basic group, enzyme-inhibitor complexes with...

  2. Enzymes and wine – the enhanced quality and yield

    OpenAIRE

    Mojsov, Kiro; Andronikov, Darko; Janevski, Aco; Jordeva, Sonja; Zezova, Silvana

    2015-01-01

    Enzymes are a natural and fundamental element of the winemaking process. These enzymes originate from the grape, yeasts and other microbes associated with vineyards and wine cellars. Grape enzymes are however inactive under the pH and SO2 conditions associated with winemaking. Fungal pectinases are resistant to these winemaking conditions. The method used to produce wine enzymes for use in the EU is regulated by the Office International de la Vigne et du Vin (OIV). Nowadays, they are also a c...

  3. Assay Methods for H2S Biogenesis and Catabolism Enzymes

    OpenAIRE

    Banerjee, Ruma; Chiku, Taurai; Kabil, Omer; Libiad, Marouane; Motl, Nicole; Yadav, Pramod K.

    2015-01-01

    H2S is produced from sulfur-containing amino acids, cysteine and homocysteine, or a catabolite, 3-mercaptopyruvate, by three known enzymes: cystathionine β-synthase, γ-cystathionase, and 3-mercaptopyruvate sulfurtransferase. Of these, the first two enzymes reside in the cytoplasm and comprise the transsulfuration pathway, while the third enzyme is found both in the cytoplasm and in the mitochondrion. The following mitochondrial enzymes oxidize H2S: sulfide quinone oxidoreductase, sulfur dioxy...

  4. New applications for enzymes in oil and gas production

    Energy Technology Data Exchange (ETDEWEB)

    Harris, R.E.; McKay, I.D. [Cleansorb Ltd., Yateley (United Kingdom)

    1999-04-01

    Enzymes have been previously used as gel breakers. In these applications, the enzyme removes a chemical which is no longer required, such as biopolymers in filter cakes after drilling or in frac gels after the frac has occurred. Enzymes are now used to produce useful oilfield chemicals in-situ for acidizing, sand consolidation and water shutoff applications. Enzyme-based processes for generating other useful oil-field chemicals, including minerals, gels and resins, are being developed, and these applications are discussed.

  5. Enzymes for improved biomass conversion

    Energy Technology Data Exchange (ETDEWEB)

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  6. Enzymes and muscle diseases

    Directory of Open Access Journals (Sweden)

    M. Plebani

    2011-09-01

    Full Text Available Skeletal muscle disorders may result in release of muscle enzymes into the circulation and give increased serum enzyme activity. A variety of enzymes routinely determined in the clinical laboratory may be elevated, but creatine kinase is the enzyme present in the highest concentration in muscle, and in every variety of muscle disease is the serum enzyme which shows the greatest incidence and degree of elevation. Aspartate aminotransferase is the enzyme associated most significantly with inflammation. A diagnostic algorithm based on the combined measurement of creatine kinase, aspartate aminotransferase and aldolase has been found to discriminate muscular distrophies from polymyositis and other myopathies. This combination of laboratory tests has diagnostic application and thus allows the clinician to better select patients who need to have a skeletal muscle biopsy as a diagnostic procedure.

  7. Enzymes as catalysts in polymer chemistry

    OpenAIRE

    Sinigoi, Loris

    2011-01-01

    The use of enzymes in synthetic chemistry is attracting the interest of many researchers thanks to their extraordinary efficiency under mild conditions, high stereo- regio- and chemoselectivity and low environmental impact. Their application in the field of polymer chemistry has provided new synthetic strategies for useful polymers. The advantages coming from the use of enzymes are mainly: i) the possibility to synthesize polymers with novel properties and difficult to produce by conventional...

  8. Controlled enzyme catalyzed heteropolysaccharide degradation:Xylans

    OpenAIRE

    Rasmussen, Louise Enggaard; Meyer, Anne S.

    2011-01-01

    The work presented in this PhD thesis has provided a better understanding of the enzyme kinetics and quantitative phenomena of the hydrolysis of xylan substrates by selected pure enzyme preparations. Furthermore, the options for producing specific substituted xylooligosaccharides from selected substrates by specific xylanase treatment have been examined. The kinetics of the enzymatic degradation of water-extractable wheat arabinoxylan (WE-AX) during designed treatments with selected monocompo...

  9. Lignolytic Enzymes Production from Selected Mushrooms

    OpenAIRE

    H.M. Shantaveera Swamy; Ramalingappa

    2015-01-01

    In this paper, ligninase enzymes produced by selected mushrooms have been reported. We collected mushrooms from Western Ghats, most of them were edible food. Thirty samples isolated were tested using a plate assay through direct agar plate assay by using ABTS, decolourisation containing the fifteen isolates were able to decolourise the dye, indicating a lignin-degrading ability. Spectrophotometric enzyme assays from all selected isolates were carried out to examine the production of Ligninoly...

  10. Technometry - the assessment of technico-economic attainments. Enzymes, genetically produced drugs, solar cell arrays, lasers, sensors, industrial robots in the Federal Republic of Germany, Japan and in the USA. Technometrie - die Bemessung des technisch-wirtschaftlichen Leistungsstandes. Enzyme, gentechnisch hergestellte Arzneimittel, Solargeneratoren, Laser, Sensoren, Industrieroboter in der Bundesrepublik Deutschland, Japan und den Vereinigten Staaten

    Energy Technology Data Exchange (ETDEWEB)

    Grupp, H.; Hohmeyer, O.; Kollert, R.; Legler, H.

    1987-01-01

    The competitiveness of a given economic system can conveniently be assessed using analytical methods which at an early stage allow to recognize possible technical drawbacks (technological gaps). The study presents a promising analytical method (indicators, technometry). Details on the pioneer activities going on in Japan and details on the fundamentals of technometry and technological indicators are followed by a presentation of selected fields of technology, namely immobilized biocatalysts, genetically produced drugs, power engineering (solar cells and solar cell arrays), physical technologies (laser radiation sources), measurement techniques (sensors), production engineering (industrial robots, market and technology reports, technico-scientific evaluation). The study concludes with explaining a number of results applicable to all the fields discussed (technological indicators, macroeconomic indicators, technico-economic indicators for selected fields of technology. (HWJ).

  11. Isolation and optimization of pectinase enzyme production one of useful industrial enzyme in Aspergillus niger, Rhizopus oryzae, Penicilium chrysogenum

    OpenAIRE

    akram songol; mandana behbahani

    2016-01-01

    Introduction: Pectinase enzyme is one of the most important industrial enzymes which isolated from a wide variety of microorganisms such as bacteria and filamentous fungi. This enzyme has been usually used in the fruit and textile industry. In this study, the isolation and optimization of pectinase-producing fungi on decaying rotten fruits were studied. Materials and methods: Isolation and screening of pectinase producing fungi performed through plate culture on pectin medium and staining...

  12. Magnetically responsive enzyme powders

    International Nuclear Information System (INIS)

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (−20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties. - Highlights: • Cross-linked enzyme powders were prepared in various liquid media. • Insoluble enzymes were magnetized using iron oxides particles. • Magnetic iron oxides particles were prepared by microwave-assisted synthesis. • Magnetic modification was performed under low (freezing) temperature. • Cross-linked powdered trypsin and lipase can be used repeatedly for reaction

  13. HYDRATION AND ENZYME ACTIVITY

    OpenAIRE

    Poole, P.

    1984-01-01

    Hydration induced conformation and dynamic changes are followed using a variety of experimental techniques applied to hen egg white lysozyme. These changes are completed just before the onset of enzyme activity, which occurs before all polar groups are hydrated, and before monolayer coverage is attained. We suggest that these hydration induced changes are necessary for the return of enzyme activity.

  14. Directed Evolution of Enzymes

    OpenAIRE

    Doucet, Nicolas; Pelletier, Joelle,

    2004-01-01

    This brief technological report presents an overview of techniques and applications in the field of directed evolution of enzyme catalysts. These techniques allow for the creation of modified enzymes that are better adapted to many industrial contexts. Recent applications in organic synthesis as well as commercial, biomedical, and environmental usage of these modified catalysts will be presented.

  15. Magnetically responsive enzyme powders

    Energy Technology Data Exchange (ETDEWEB)

    Pospiskova, Kristyna, E-mail: kristyna.pospiskova@upol.cz [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Safarik, Ivo, E-mail: ivosaf@yahoo.com [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)

    2015-04-15

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (−20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties. - Highlights: • Cross-linked enzyme powders were prepared in various liquid media. • Insoluble enzymes were magnetized using iron oxides particles. • Magnetic iron oxides particles were prepared by microwave-assisted synthesis. • Magnetic modification was performed under low (freezing) temperature. • Cross-linked powdered trypsin and lipase can be used repeatedly for reaction.

  16. Artificial Enzymes, "Chemzymes"

    DEFF Research Database (Denmark)

    Bjerre, Jeannette; Rousseau, Cyril Andre Raphaël; Pedersen, Lavinia Georgeta M;

    2008-01-01

    Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models that...... successfully perform Michaelis-Menten catalysis under enzymatic conditions (i.e., aqueous medium, neutral pH, ambient temperature) and for those that do, very high rate accelerations are seldomly seen. This review will provide a brief summary of the recent developments in artificial enzymes, so called...... "Chemzymes", based on cyclodextrins and other molecules. Only the chemzymes that have shown enzyme-like activity that has been quantified by different methods will be mentioned. This review will summarize the work done in the field of artificial glycosidases, oxidases, epoxidases, and esterases, as well as...

  17. Cellulose and hemicelluloses-degrading enzymes produced by piptoporus betulinus

    Czech Academy of Sciences Publication Activity Database

    Baldrian, Petr; Valášková, V.; Merhautová, Věra

    Durban, 2004, s. 92-93. [International Conference on Biotechnology in the Pulp and Paper Industry /9./. Durban (ZA), 10.10.2004-14.10.2004] R&D Projects: GA ČR GP204/02/P100 Institutional research plan: CEZ:AV0Z5020903 Keywords : cmc * pnpx Subject RIV: EE - Microbiology, Virology

  18. NMR characterization of 2-substituted cyclohexanols produced by enzymic way

    Czech Academy of Sciences Publication Activity Database

    Šaman, David; Wimmer, Zdeněk; Skouridou, V.; Zarevúcka, Marie; Kolisis, F. N.; Kolehmainen, E.

    Tallinn : -, 2005. s. 115. [Conference on Knowledge-based Materials and Technologies for Sustainable Chemistry . 01.06.2005-05.06.2005, Tallinn] R&D Projects: GA MŠk(CZ) OC D29.001; GA MŠk(CZ) ME 692 Institutional research plan: CEZ:AV0Z40550506 Keywords : lipases * Mosher acid * NMR spectra Subject RIV: EI - Biotechnology ; Bionics

  19. Analysis of slow-binding enzyme inhibitors at elevated enzyme concentrations.

    Science.gov (United States)

    Perdicakis, Basil; Montgomery, Heather J; Guillemette, J Guy; Jervis, Eric

    2005-02-15

    The improvement in the characterization of slow-binding inhibitors achieved by performing experiments at elevated enzyme concentrations is presented. In particular, the characterization of slow-binding inhibitors conforming to a two-step mode of inhibition with a steady-state dissociation constant that is much lower than the initial dissociation constant with enzyme is discussed. For these systems, inhibition is rapid and low steady-state product concentrations are produced at saturating inhibitor concentrations. By working at elevated enzyme concentrations, improved signal-to-noise ratios are achieved and data may be collected at saturating inhibitor levels. Numerical simulations confirmed that improved parameter estimates are obtained and useful data to discern the mechanism of slow-binding inhibition are produced by working at elevated enzyme concentrations. The saturation kinetics that were unobservable in two previous studies of an enzyme inhibitor system were measured by performing experiments at an elevated enzyme concentration. These results indicate that consideration of the quality of the data acquired using a particular assay is an important factor when selecting the enzyme concentration at which to perform experiments used to characterize the class of enzyme inhibitors examined herein. PMID:15691501

  20. 一株产纤维素酶的甲醇利用细菌的鉴定及其纤维素降解条件优化%Identification and optimal degradation conditions for cellulase-degrading enzyme of a methanol-utilizing and cellulase-producing bacterium

    Institute of Scientific and Technical Information of China (English)

    高健; 肖丹青; 刘喜平; 王能强; 张大为

    2012-01-01

    采用刚果红染色法,从废弃矿山周边土壤中筛选出一株产纤维素酶的甲醇利用细菌,命名为xt - 04.形态特征、生理试验及16S rDNA序列和gyrB序列分析表明,该菌株属于Bacillus methylotrophicus.为提高该菌所产纤维素酶的降解能力,首先通过单因子实验考察了底物CMC -Na浓度、反应温度及缓冲液pH值对纤维素酶活力的影响;然后采用响应面分析法对影响纤维素酶活力的3个单因子进行了优化.结果表明,单因素实验得出的适宜反应温度、缓冲液pH和底物浓度分别为70℃、5.0和2% (20 mg/mL);响应面法得出的最高酶活力条件:反应温度、pH和底物浓度分别为66.1℃、4.81和19.01mg/mL.在最优条件下,酶活力达到17.85 U/mL,比优化前的酶活力12.84 U/mL提高了39.01%.因此,鉴于这种纤维素酶能耐受较高温度和酸性条件,该菌株所产纤维素酶可能在工业中具有良好的应用前景.%A methanol-utilizing and cellulase-producing bacteria, designated strain xt-04, was isolated from the soil of abandoned mine lands of Hunan Province by Congo red staining test. This strain was identified as the species Bacillus methylotrophicus based on the morphological, physiological characteristics and 16S rDNA and gyrB gene sequences analysis. In order to improve the catalytic ability of the cellulase produced by this strain, influences of the concentration of CMC-Na, temperature and pH on the activity of cellulose-decomposing enzyme were investigated by single factor experiment. Then, response surface analysis was used to optimize the influences of three factors on the cellulase activity. The results indicated that the appropriate concentrations of CMC-Na, temperature and pH, based on single-factor experiments, were 20 mg/mL, 70 ℃ , and 5.0, respectively. And the optimal concentrations of CMC-Na, temperature and pH of cellulase-producing, from response surface analysis, were 19.01 mg/mL, 66.1 ℃ and 4

  1. Sugarcane bagasse hydrolysis using yeast cellulolytic enzymes.

    Science.gov (United States)

    Souza, Angelica Cristina de; Carvalho, Fernanda Paula; Silva e Batista, Cristina Ferreira; Schwan, Rosane Freitas; Dias, Disney Ribeiro

    2013-10-28

    Ethanol fuel production from lignocellulosic biomass is emerging as one of the most important technologies for sustainable development. To use this biomass, it is necessary to circumvent the physical and chemical barriers presented by the cohesive combination of the main biomass components, which hinders the hydrolysis of cellulose and hemicellulose into fermentable sugars. This study evaluated the hydrolytic capacity of enzymes produced by yeasts, isolated from the soils of the Brazilian Cerrado biome (savannah) and the Amazon region, on sugarcane bagasse pre-treated with H2SO4. Among the 103 and 214 yeast isolates from the Minas Gerais Cerrado and the Amazon regions, 18 (17.47%) and 11 (5.14%) isolates, respectively, were cellulase-producing. Cryptococcus laurentii was prevalent and produced significant β- glucosidase levels, which were higher than the endo- and exoglucanase activities. In natura sugarcane bagasse was pre-treated with 2% H2SO4 for 30 min at 150oC. Subsequently, the obtained fibrous residue was subjected to hydrolysis using the Cryptococcus laurentii yeast enzyme extract for 72 h. This enzyme extract promoted the conversion of approximately 32% of the cellulose, of which 2.4% was glucose, after the enzymatic hydrolysis reaction, suggesting that C. laurentii is a good β-glucosidase producer. The results presented in this study highlight the importance of isolating microbial strains that produce enzymes of biotechnological interest, given their extensive application in biofuel production. PMID:23851270

  2. Enzyme immobilization by means of ultrafiltration techniques.

    Science.gov (United States)

    Scardi, V; Cantarella, M; Gianfreda, L; Palescandolo, R; Alfani, F; Greco, G

    1980-01-01

    Unstirred, plane membrane, ultrafiltration cells have been used as enzymatic reactor units. Because of the concentration polarization phenomena which take place in the system, at steady-state the enzyme is confined (dynamically immobilized) within an extremely narrow region upstream the ultrafiltration membrane. Correspondingly its concentration attains fairly high values. Kinetic studies have been therefore performed under quite unusual experimental conditions in order to better approximate local enzyme concentration levels in immobilized enzyme systems. Studies have been also carried out on the kinetics of enzyme deactivation in the continuous presence of substrate and reaction products. Once the enzyme concentration profile is completely developed, further injection into the system of suitable amounts of an inert proteic macromolecule (albumin polymers) gives rise to the formation of a gel layer onto the ultrafiltration membrane within which the enzyme is entrapped (statically immobilized). The effect of this immobilization technique has been studied as far as the kinetics of the main reaction, the substrate mass transfer resistances and the enzyme stability are concerned. The rejective properties of such gel layers towards enzymatic molecules have been exploited in producing multilayer, multi-enzymatic reactors. PMID:7417597

  3. Production of extremophilic bacterial cellulase enzymes in aspergillus niger.

    Energy Technology Data Exchange (ETDEWEB)

    Gladden, John Michael

    2013-09-01

    Enzymes can be used to catalyze a myriad of chemical reactions and are a cornerstone in the biotechnology industry. Enzymes have a wide range of uses, ranging from medicine with the production of pharmaceuticals to energy were they are applied to biofuel production. However, it is difficult to produce large quantities of enzymes, especially if they are non-native to the production host. Fortunately, filamentous fungi, such as Aspergillus niger, are broadly used in industry and show great potential for use a heterologous enzyme production hosts. Here, we present work outlining an effort to engineer A. niger to produce thermophilic bacterial cellulases relevant to lignocellulosic biofuel production.

  4. Microbial Enzymes: Tools for Biotechnological Processes

    Directory of Open Access Journals (Sweden)

    Jose L. Adrio

    2014-01-01

    Full Text Available Microbial enzymes are of great importance in the development of industrial bioprocesses. Current applications are focused on many different markets including pulp and paper, leather, detergents and textiles, pharmaceuticals, chemical, food and beverages, biofuels, animal feed and personal care, among others. Today there is a need for new, improved or/and more versatile enzymes in order to develop more novel, sustainable and economically competitive production processes. Microbial diversity and modern molecular techniques, such as metagenomics and genomics, are being used to discover new microbial enzymes whose catalytic properties can be improved/modified by different strategies based on rational, semi-rational and random directed evolution. Most industrial enzymes are recombinant forms produced in bacteria and fungi.

  5. Enzymes in Analytical Chemistry.

    Science.gov (United States)

    Fishman, Myer M.

    1980-01-01

    Presents tabular information concerning recent research in the field of enzymes in analytic chemistry, with methods, substrate or reaction catalyzed, assay, comments and references listed. The table refers to 128 references. Also listed are 13 general citations. (CS)

  6. Membrane Assisted Enzyme Fractionation

    DEFF Research Database (Denmark)

    Yuan, Linfeng

    difference. In this thesis, separations using crossflow elecro-membrane filtration (EMF) of amino acids, bovine serum albumin (BSA) and industrial enzymes from Novozymes were performed. The main objective of this study was to investigate the technological feasibility of EMF in the application of industrial...... enzyme fractionation, such as removal of a side activity from the main enzyme activity. As a proof-of-concept, amino acids were used as model solution to test the feasibility of EMF in the application of amphoteric molecule separation. A single amino acid was used to illustrate the effect of an electric...... TMP on the separation performance were very small in the investigated range. The mass transport of each enzyme can be well explained by the Extended-Nernst-Planck equation. Better separation was observed at lower feed concentration, higher solution pH in the investigated range and with a polysulfone...

  7. Enzyme with rhamnogalacturonase activity.

    OpenAIRE

    Kofod, L.V.; Andersen, L N; Dalboge, H; Kauppinen, M.S.; Christgau, S; Heldt-Hansen, H.P.; Christophersen, C.; Nielsen, P.M.; Voragen, A. G. J.; Schols, H.A.

    1998-01-01

    An enzyme exhibiting rhamnogalacturonase activity, capable of cleaving a rhamnogalacturonan backbone in such a manner that galacturonic acids are left as the non-reducing ends, and which exhibits activity on hairy regions from a soy bean material and/or on saponified hairy regions from a sugar beet material. The enzyme has the amino acid sequence of SEQ ID NO:2 and is encoded by the DNA sequence of SEQ ID NO:1

  8. Overproduction of ligninolytic enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Elisashvili, Vladimir; Kachlishvili, Eva; Torok, Tamas

    2014-06-17

    Methods, compositions, and systems for overproducing ligninolytic enzymes from the basidiomycetous fungus are described herein. As described, the method can include incubating a fungal strain of Cerrena unicolor IBB 303 in a fermentation system having growth medium which includes lignocellulosic material and then cultivating the fungal strain in the fermentation system under conditions wherein the fungus expresses the ligninolytic enzymes. In some cases, the lignocellulosic material is mandarin peel, ethanol production residue, walnut pericarp, wheat bran, wheat straw, or banana peel.

  9. Directing filtration to optimize enzyme immobilization in reactive membranes

    DEFF Research Database (Denmark)

    Luo, Jianquan; Marpani, Fauziah; Brites, Rita;

    2014-01-01

    In this work, fouling principles in force in ultrafiltration were deployed to understand the role of selected variables-applied pressure (1-3bar), enzyme concentration (0.05-0.2gL-1), pH (5-9) and membrane properties-on fouling-induced enzyme immobilization. The immobilization and subsequent....... High pH during immobilization produced increased permeate flux but declines in conversion rates, likely because of the weak immobilization resulting from strong electrostatic repulsion between enzymes and membrane. The results showed that pore blocking as a fouling mechanism permitted a higher enzyme...... loading but generated more permeability loss, while cake layer formation increased enzyme stability but resulted in low loading rate. Low pH (near isoelectric point) favored hydrophobic and electrostatic adsorption of enzymes on the membrane, which reduced the enzyme stability. Neutral pH, however...

  10. Screening and Identification of Lipase-producing Bacteria from Intestinal Canal of Dendrolimus kikuchii and Preliminary Studies on Its Enzyme Properties%思茅松毛虫肠道产脂肪酶菌株的筛选鉴定及酶学性质初步研究

    Institute of Scientific and Technical Information of China (English)

    孙佑赫; 周开艳; 熊智

    2012-01-01

    利用纯培养和筛选培养,从思茅松毛虫幼虫肠道中分离得到7株产脂肪酶的菌株.通过提取基因组DNA并进行16S rDNA序列测定,构建产酶菌株的系统发育树,初步鉴定结果显示:菌株D2、D12、D19属于假单胞菌属(Pseudomonas sp.),菌株D7、D17属于芽胞杆菌属(Bacillus sp.),菌株D9、D16属于克雷伯氏菌(Klebsiella sp.).初步研究所产脂肪酶的酶学性质,确定这些酶的最适作用温度30~40℃、最适作用pH值8.0~9.0,为中温碱性脂肪酶.%Seven lipase-producing bacterial strains (LPBS) were isolated from intestinal canal of larva of Kikuchi pine caterpillar (Dendrolimus kikuchii) using pure and screening culture. Through extraction of genomic DNA and measurement of 16S rDNA sequences, a phylogenetic tree of the LPBS was constructed. Initial characterization results showed that these strains belonged to Pseudomonas (D2, D12, D19), Bacillus (D7, D17), and Klebsiella (D9, D16). The enzyme properties of the produced lipase were preliminarily studied. And confirmed that the most suitable reaction conditions of the lipase was 30-40℃ and pH 8. 0 - 9. 0, they were mild alkaline lipase.

  11. Rice bran as a substrate for proteolytic enzyme production

    OpenAIRE

    Alagarsamy Sumantha; Paul Deepa; Chandran Sandhya; George Szakacs; Carlos Ricardo Soccol; Ashok Pandey

    2006-01-01

    Rice bran was used as the substrate for screening nine strains of Rhizopus sp. for neutral protease production by solid-state fermentation. The best producer, Rhizopus microsporus NRRL 3671, was used for optimizing the process parameters for enzyme production. Fermentation carried out with 44.44 % initial moisture content at a temperature of 30 C for 72 h was found to be the optimum for enzyme secretion by the fermenting organism. While most of the carbon supplements favored enzyme production...

  12. Survey of Microbial Enzymes in Soil, Water, and Plant Microenvironments

    OpenAIRE

    Alves, Priscila Divina Diniz; Siqueira, Flávia de Faria; Facchin, Susanne; Horta, Carolina Campolina Rebello; Victória, Júnia Maria Netto; Kalapothakis, Evanguedes

    2014-01-01

    Detection of microbial enzymes in natural environments is important to understand biochemical activities and to verify the biotechnological potential of the microorganisms. In the present report, 346 isolates from soil, water, and plants were screened for enzyme production (caseinase, gelatinase, amylase, carboxymethyl cellulase, and esterase). Our results showed that 89.6% of isolates produced at least one tested enzyme. A predominance of amylase in soil samples, carboxymethyl cellulase in p...

  13. Detection of Extracellular Enzyme Activities in Ganoderma neo-japonicum

    OpenAIRE

    Jo, Woo-Sik; Park, Ha-Na; Cho, Doo-Hyun; Yoo, Young-Bok; Park, Seung-Chun

    2011-01-01

    The ability of Ganoderma to produce extracellular enzymes, including β-glucosidase, cellulase, avicelase, pectinase, xylanase, protease, amylase, and ligninase was tested in chromogenic media. β-glucosidase showed the highest activity, among the eight tested enzymes. In particular, Ganoderma neo-japonicum showed significantly stronger activity for β-glucosidase than that of the other enzymes. Two Ganoderma lucidum isolates showed moderate activity for avicelase; however, Ganoderma neo-japonic...

  14. Data mining of enzymes using specific peptides

    Directory of Open Access Journals (Sweden)

    Lavi Yair

    2009-12-01

    Full Text Available Abstract Background Predicting the function of a protein from its sequence is a long-standing challenge of bioinformatic research, typically addressed using either sequence-similarity or sequence-motifs. We employ the novel motif method that consists of Specific Peptides (SPs that are unique to specific branches of the Enzyme Commission (EC functional classification. We devise the Data Mining of Enzymes (DME methodology that allows for searching SPs on arbitrary proteins, determining from its sequence whether a protein is an enzyme and what the enzyme's EC classification is. Results We extract novel SP sets from Swiss-Prot enzyme data. Using a training set of July 2006, and test sets of July 2008, we find that the predictive power of SPs, both for true-positives (enzymes and true-negatives (non-enzymes, depends on the coverage length of all SP matches (the number of amino-acids matched on the protein sequence. DME is quite different from BLAST. Comparing the two on an enzyme test set of July 2008, we find that DME has lower recall. On the other hand, DME can provide predictions for proteins regarded by BLAST as having low homologies with known enzymes, thus supplying complementary information. We test our method on a set of proteins belonging to 10 bacteria, dated July 2008, establishing the usefulness of the coverage-length cutoff to determine true-negatives. Moreover, sifting through our predictions we find that some of them have been substantiated by Swiss-Prot annotations by July 2009. Finally we extract, for production purposes, a novel SP set trained on all Swiss-Prot enzymes as of July 2009. This new set increases considerably the recall of DME. The new SP set is being applied to three metagenomes: Sargasso Sea with over 1,000,000 proteins, producing predictions of over 220,000 enzymes, and two human gut metagenomes. The outcome of these analyses can be characterized by the enzymatic profile of the metagenomes, describing the relative

  15. Perspectives of Solid State Fermentation for Production of Food Enzymes

    Directory of Open Access Journals (Sweden)

    Cristobal Noe Aguilar

    2008-01-01

    Full Text Available Food industry represents one of the economic sectors where microbial metabolites have found a wide variety of applications. This is the case of some enzymes, such as amylases, cellulases, pectinases and proteases which have played a very important role as food additives. Most of these enzymes have been produced by submerged cultures at industrial level. Many works in the literature present detailed aspects involved with those enzymes and their importance in the food industry. However, the production and application studies of those enzymes produced by solid state fermentations are scarce in comparison with submerged fermentation. This review involves production aspects of the seven enzymes: tannases, pectinases, caffeinases, mannanases, phytases, xylanases and proteases, which can be produced by solid state fermentation showing attractive advantages. Additionally, process characteristics of solid state fermentation are considered.

  16. Angiotensin-converting enzyme

    DEFF Research Database (Denmark)

    Sørensen, P G; Rømer, F K; Cortes, D

    1984-01-01

    In order to evaluate bleomycin-associated lung damage in humans, lung function parameters and serum levels of the endothelial-bound angiotensin-converting enzyme (ACE) were determined by serial measurements in 11 patients who were treated for testicular cancer. None developed clinical or radiolog......In order to evaluate bleomycin-associated lung damage in humans, lung function parameters and serum levels of the endothelial-bound angiotensin-converting enzyme (ACE) were determined by serial measurements in 11 patients who were treated for testicular cancer. None developed clinical or...

  17. Hyperthermophilic Enzymes with Industrial Applications

    OpenAIRE

    Mojsov, Kiro; Janevski, Aco; Andronikov, Darko; Zezova, Silvana

    2014-01-01

    Hyperthermophilic enzymes are typically thermostable and are optimally active at high temperatures. Hyperthermophilic enzymes are very similar to their mesophilic homologues. No single mechanism that is responsible for the remarkable stability of hyperthermophilic enzymes. Increased thermo stability must be found in a small number of highly specific alterations. In this review are described current uses and potential applications of thermophilic and hyperthermophilic enzymes as ...

  18. The ENZYME database in 2000.

    Science.gov (United States)

    Bairoch, A

    2000-01-01

    The ENZYME database is a repository of information related to the nomenclature of enzymes. In recent years it has became an indispensable resource for the development of metabolic databases. The current version contains information on 3705 enzymes. It is available through the ExPASy WWW server (http://www.expasy.ch/enzyme/ ). PMID:10592255

  19. Identification of a Novel Fungus, Leptosphaerulina chartarum SJTU59 and Characterization of Its Xylanolytic Enzymes

    OpenAIRE

    Wu, Qiong; Li, Yaqian; Li, Yingying; Gao, Shigang; Wang, Meng; Zhang, Tailong; Chen, Jie

    2013-01-01

    Xylanolytic enzymes are widely used in processing industries, e.g., pulp and paper, food, livestock feeds, and textile. Furthermore, certain xylanotic enzymes have demonstrated the capability to improve the resistance and immunity of plants. Screening of high-yield microbial xylanolytic enzyme producers is significant for improving large-scale cost-effective xylanolytic enzyme production. This study provided new evidence of high-level xylanolytic enzyme production by a novel fungus, designate...

  20. The surface science of enzymes

    DEFF Research Database (Denmark)

    Rod, Thomas Holm; Nørskov, Jens Kehlet

    2002-01-01

    One of the largest challenges to science in the coming years is to find the relation between enzyme structure and function. Can we predict which reactions an enzyme catalyzes from knowledge of its structure-or from its amino acid sequence? Can we use that knowledge to modify enzyme function? To...... solve these problems we must understand in some detail how enzymes interact with reactants from its surroundings. These interactions take place at the surface of the enzyme and the question of enzyme function can be viewed as the surface science of enzymes. In this article we discuss how to describe...... catalysis by enzymes, and in particular the analogies between enzyme catalyzed reactions and surface catalyzed reactions. We do this by discussing two concrete examples of reactions catalyzed both in nature (by enzymes) and in industrial reactors (by inorganic materials), and show that although analogies...

  1. Magnetically responsive enzyme powders

    Czech Academy of Sciences Publication Activity Database

    Pospišková, K.; Šafařík, Ivo

    2015-01-01

    Roč. 380, APR 2015 (2015), s. 197-200. ISSN 0304-8853 R&D Projects: GA MŠk(CZ) LD13021 Institutional support: RVO:67179843 Keywords : enzyme powders * cross-linking * magnetic modification * magnetic separation * magnetic iron oxides particles * microwave-assisted synthesis Subject RIV: CE - Biochemistry Impact factor: 1.970, year: 2014

  2. Enzymes in Forest Soils

    Czech Academy of Sciences Publication Activity Database

    Baldrian, Petr; Štursová, Martina

    Heidelberg, Dordrecht, NY: Springer, 2011 - (Shukla, G.; Varma, A.), s. 61-73 ISBN 978-3-642-14225-3 R&D Projects: GA ČR GA526/08/0751; GA MŠk OC08050 Institutional research plan: CEZ:AV0Z50200510 Keywords : forest soils * soil ecology * enzymes Subject RIV: EE - Microbiology, Virology

  3. Enzymes of Saprotrophic Basidiomycetes

    Czech Academy of Sciences Publication Activity Database

    Baldrian, Petr

    Amsterdam: Academic Press, 2007, s. 19-41. ISBN 978-0-12-374185-1 R&D Projects: GA AV ČR KJB600200516; GA ČR GA526/05/0168; GA MŠk LC06066 Institutional research plan: CEZ:AV0Z50200510 Keywords : saprotrophic basidiomycetes * extracellular enzymes * polymers Subject RIV: EE - Microbiology, Virology

  4. Computational enzyme design

    Science.gov (United States)

    Bolon, Daniel N.

    2002-08-01

    The long-term objective of computational enzyme design is the ability to generate efficient protein catalysts for any chemical reaction. This thesis develops and experimentally validates a general computational approach for the design of enzymes with novel function. In order to include catalytic mechanism in protein design, a high-energy state (HES) rotamer (side chain representation) was constructed. In this rotamer, substrate atoms are in a HES. In addition, at least one amino acid side chain is positioned to interact favorably with substrate atoms in their HES and facilitate the reaction. Including an amino acid side chain in the HES rotamer automatically positions substrate relative to a protein scaffold and allows protein design algorithms to search for sequences capable of interacting favorably with the substrate. Because chemical similarity exists between the transition state and the high-energy state, optimizing the protein sequence to interact favorably with the HES rotamer should lead to transition state stabilization. In addition, the HES rotamer model focuses the subsequent computational active site design on a relevant phase space where an amino acid is capable of interacting in a catalytically active geometry with substrate. Using a HES rotamer model of the histidine mediated nucleophilic hydrolysis of p-nitrophenyl acetate, the catalytically inert 108 residue E. coli thioredoxin as a scaffold, and the ORBIT protein design software to compute sequences, an active site scan identified two promising active site designs. Experimentally, both candidate ?protozymes? demonstrated catalytic activity significantly above background. In addition, the rate enhancement of one of these ?protozymes? was the same order of magnitude as the first catalytic antibodies. Because polar groups are frequently buried at enzyme-substrate interfaces, improved modeling of buried polar interactions may benefit enzyme design. By studying native protein structures, rules have been

  5. Visual Reading of Enzyme Immunofluorescence Assays for Human Cytomegalovirus Antibodies

    OpenAIRE

    Forghani, Bagher; Dennis, Juanita; Schmidt, Nathalie J.

    1980-01-01

    Enzyme immunofluorescence assays for cytomegalovirus antibodies could be read satisfactorily using a light box with ultraviolet illumination. Higher antibody titers were obtained with a fluorogenic substrate than with a color-producing substrate.

  6. Ethanologenic Enzymes of Zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Ingram, Lonnie O' Neal

    1999-03-01

    Zymomonas mobilis is a unique microorganism in being both obligately fermentative and utilizing a Entner-Doudoroff pathway for glycolysis. Glycolytic flux in this organism is readily measured as evolved carbon dioxide, ethanol, or glucose consumed and exceeds 1 {micro}mole glucose/min per mg cell protein. To support this rapid glycolysis, approximately 50% of cytoplasmic protein is devoted to the 13 glycolytic and fermentative enzymes which constitute this central catabolic pathway. Only 1 ATP (net) is produced from each glucose metabolized. During the past grant period, we have completed the characterization of 11 of the 13 glycolytic genes from Z. mobilis together with complementary but separate DOE-fimded research by a former post-dot and collaborator, Dr. Tyrrell Conway. Research funded in my lab by DOE, Division of Energy Biosciences can be divided into three sections: A. Fundamental studies; B. Applied studies and utility; and C. Miscellaneous investigations.

  7. Enzyme Computation - Computing the Way Proteins Do

    Directory of Open Access Journals (Sweden)

    Jaime-Alberto Parra-Plaza

    2013-08-01

    Full Text Available It is presented enzyme computation, a computational paradigm based on the molecular activity inside the biological cells, particularly in the capacity of proteins to represent information, of enzymes to transform that information, and of genes to produce both elements according to the dynamic requirements of a given system. The paradigm explodes the rich computational possibilities offered by metabolic pathways and genetic regulatory networks and translates those possibilities into a distributed computational space made up of active agents which communicate through the mechanism of message passing. Enzyme computation has been tested in diverse problems, such as image processing, species classification, symbolic regression, and constraints satisfaction. Also, given its distributed nature, an implementation in dynamical reconfigurable hardware has been possible.

  8. Deubiquitylating enzymes and disease

    OpenAIRE

    Baker Rohan T; Taylor Matthew C; Singhal Shweta

    2008-01-01

    Abstract Deubiquitylating enzymes (DUBs) can hydrolyze a peptide, amide, ester or thiolester bond at the C-terminus of UBIQ (ubiquitin), including the post-translationally formed branched peptide bonds in mono- or multi-ubiquitylated conjugates. DUBs thus have the potential to regulate any UBIQ-mediated cellular process, the two best characterized being proteolysis and protein trafficking. Mammals contain some 80–90 DUBs in five different subfamilies, only a handful of which have been charac...

  9. Quorum quenching enzymes.

    Science.gov (United States)

    Fetzner, Susanne

    2015-05-10

    Bacteria use cell-to-cell communication systems based on chemical signal molecules to coordinate their behavior within the population. These quorum sensing systems are potential targets for antivirulence therapies, because many bacterial pathogens control the expression of virulence factors via quorum sensing networks. Since biofilm maturation is also usually influenced by quorum sensing, quenching these systems may contribute to combat biofouling. One possibility to interfere with quorum sensing is signal inactivation by enzymatic degradation or modification. Such quorum quenching enzymes are wide-spread in the bacterial world and have also been found in eukaryotes. Lactonases and acylases that hydrolyze N-acyl homoserine lactone (AHL) signaling molecules have been investigated most intensively, however, different oxidoreductases active toward AHLs or 2-alkyl-4(1H)-quinolone signals as well as other signal-converting enzymes have been described. Several approaches have been assessed which aim at alleviating virulence, or biofilm formation, by reducing the signal concentration in the bacterial environment. These involve the application or stimulation of signal-degrading bacteria as biocontrol agents in the protection of crop plants against soft-rot disease, the use of signal-degrading bacteria as probiotics in aquaculture, and the immobilization or entrapment of quorum quenching enzymes or bacteria to control biofouling in membrane bioreactors. While most approaches to use quorum quenching as antivirulence strategy are still in the research phase, the growing number of organisms and enzymes known to interfere with quorum sensing opens up new perspectives for the development of innovative antibacterial strategies. PMID:25220028

  10. Structure/function relationships in cellulolytic enzymes

    Institute of Scientific and Technical Information of China (English)

    Marc Claeyssens

    2004-01-01

    @@ Cellulose and hemicellulose (mostly xylan), together with lignin, are the major polymeric constituents of plant cell walls and from the largest reservoir of fixed carbon in nature. The enzymatic hydrolysis of polymeric substances by extracellular enzymes, such as cellulases, hemicellulases and laccases, is preferred to chemical depolymerisation to avoid the production of toxic by-products and waste that are expensive to treat. The monosaccharides released through enzymatic hydrolysis can subsequently be microbially converted to commercial commodities, such as bio-ethanol (fuel extender) or microbial protein as feed supplements. The individual depolymerisering enzymes used, such as cellulases,xylanases and laccases, also have industrial application in (i) biobleaching in the paper and pulp industry, (ii) improvement of animal feed (poultry and ruminants) digestibility in feed industries, and (iii) dough rheology and bread volume in the baking process, and beer viscosity and filtration velocity during brewing. The cloning of the genes, coding for several xylan degrading enzymes, and their expression in Baker' s yeast (Saccharomyces cerevisiae) and filamentous fungi (Aspergillus species)opened the possibility to study the pure enzymes, without contaminating activity.Trichoderma reesei produces several of these enzymes and detailed information on their specificity,synergies and structure/activity relationships is known. An overview will be presented.

  11. Enzyme linked immunoassay with stabilized polymer saccharide enzyme conjugates

    Science.gov (United States)

    Callstrom, M.R.; Bednarski, M.D.; Gruber, P.R.

    1997-11-25

    An improvement in enzyme linked immunoassays is disclosed wherein the enzyme is in the form of a water soluble polymer saccharide conjugate which is stable in hostile environments. The conjugate comprises the enzyme which is linked to the polymer at multiple points through saccharide linker groups. 19 figs.

  12. Enzyme Molar Fractions: A Powerful Tool for Understanding Enzyme Kinetics.

    Science.gov (United States)

    Serra, Juan L.; And Others

    1986-01-01

    Deduces the relationship between reduced velocity and molar fractions for productive enzyme complexes; obtains the mathematical expression of molar fractions for an enzyme with two specific binding sites per molecule; and proposes a useful plot to follow the dependence of enzyme molar fractions with the concentration of one of its ligands. (JN)

  13. Linking hydrolysis performance to Trichoderma reesei cellulolytic enzyme profile.

    Science.gov (United States)

    Lehmann, Linda; Rønnest, Nanna P; Jørgensen, Christian I; Olsson, Lisbeth; Stocks, Stuart M; Jørgensen, Henrik S; Hobley, Timothy

    2016-05-01

    Trichoderma reesei expresses a large number of enzymes involved in lignocellulose hydrolysis and the mechanism of how these enzymes work together is too complex to study by traditional methods, for example, by spiking with single enzymes and monitoring hydrolysis performance. In this study, a multivariate approach, partial least squares regression, was used to see whether it could help explain the correlation between enzyme profile and hydrolysis performance. Diverse enzyme mixtures were produced by T. reesei Rut-C30 by exploiting various fermentation conditions and used for hydrolysis of washed pretreated corn stover as a measure of enzyme performance. In addition, the enzyme mixtures were analyzed by liquid chromatography-tandem mass spectrometry to identify and quantify the different proteins. A multivariate model was applied for the prediction of enzyme performance based on the combination of different proteins present in an enzyme mixture. The multivariate model was used for identification of candidate proteins that are correlated to enzyme performance on pretreated corn stover. A very large variation in hydrolysis performance was observed and this was clearly caused by the difference in fermentation conditions. Besides β-glucosidase, the multivariate model identified several xylanases, Cip1 and Cip2, as relevant proteins to study further. Biotechnol. Bioeng. 2016;113: 1001-1010. © 2015 Wiley Periodicals, Inc. PMID:26524197

  14. The role of protein synthesis and digestive enzymes in acinar cell injury

    OpenAIRE

    Logsdon, Craig D.; Ji, Baoan

    2013-01-01

    The exocrine pancreas is the organ with the highest level of protein synthesis in the adult—each day the pancreas produces litres of fluid filled with enzymes that are capable of breaking down nearly all organic substances. For optimal health, the pancreas must produce sufficient enzymes of the right character to match the dietary intake. Disruption of normal pancreatic function occurs primarily as a result of dysfunction of the acinar cells that produce these digestive enzymes, and can lead ...

  15. Treating Wastewater With Immobilized Enzymes

    Science.gov (United States)

    Jolly, Clifford D.

    1991-01-01

    Experiments show enzymes are immobilized on supporting materials to make biocatalyst beds for treatment of wastewater. With suitable combination of enzymes, concentrations of various inorganic and organic contaminants, including ammonia and urea, reduced significantly.

  16. Interfacial stabilization of enzymes in microemulsions

    OpenAIRE

    Martins, Madalena A.; Silva, Carla Manuela Pereira Marinho da; Paulo, Artur Cavaco

    2014-01-01

    One of the major constrains to the use of enzymes in industrial processes is their insufficient stability under processing conditions, namely high temperatures, presence of ultrasounds, among others. Herein, we investigated the use of oil-in-water proteinaceous (BSA) microemulsions as a novel methodology for the stabilization of laccase from ascomycete Micelliophthora thermophila. The immobilization of laccase onto the produced microemulsions benefitiated its stability under ultrasonic condit...

  17. Comparative characterization of commercially important xylanase enzymes

    OpenAIRE

    Arora, Neelima; Banerjee, Amit Kumar; Mutyala, Srilaxmi; Murty, Upadhyayula Suryanarayana

    2009-01-01

    Xylanase is an industrially important enzyme having wide range of applications especially in paper industry. It is crucial to gain an understanding about the structure and functional aspects of various xylanases produced from diverse sources. In this study, a bioinformatics and molecular modeling approach was adopted to explore properties and structure of xylanases. Physico-chemical properties were predicted and prediction of motifs, disulfide bridges and secondary structure was performed for...

  18. Modeled carbon respiration of microbial communities with explicit enzyme representation

    Science.gov (United States)

    Todd-Brown, K. E.; Allison, S. D.

    2009-12-01

    Most carbon cycling models do not represent microbial biomass and extracellular enzymes directly. We previously introduced a partial differential equation and agent-based model to investigate dynamics of microbial decomposers and carbon respiration. In this model we explored the respiration rate of a microbial community comprised of producers (microbes that secrete foraging enzymes) and cheaters (microbes that do not secrete enzymes but benefit from them) The inclusion of cheaters reduced the producer population, which in turn reduced the amount of enzyme in the system and slowed the conversion of substrate into product. This limited the overall biomass and reduced the amount of CO2 released by the system. Here we introduce an analogous ordinary differential equation model for well-mixed systems, such as chemostats and aquatic or marine environments. We tested this model against experimental data from communities of Pseudomonas bacteria that produce protease enzymes. We found that the new model matches the experimental data and hypothesize that diffusion would reduce the expected respiration rate in diffusion-limited systems, such as soils or agar plates,. Our models suggest that enzyme producers grow more slowly due to the added energetic burden of enzyme production. Furthermore, mixed cheater/producer communities are less efficient at mineralizing carbon substrates than pure producer populations. Diffusion of enzymes through the system plays a key role in reducing the overall respiration rate. These results have potential implications for soil and aquatic carbon models, suggesting that both microbial biomass and community composition should be explicitly represented. If community composition is ignored, then there could be a systematic overestimation of the carbon respired from the system. Our results emphasize that mechanistic modeling of microbial communities can improve prediction of carbon cycling under varying environmental conditions.

  19. Coproduction of detergent compatible bacterial enzymes and stain removal evaluation.

    Science.gov (United States)

    Niyonzima, Francois N; More, Sunil S

    2015-10-01

    Most of the detergents that are presently produced contain the detergent compatible enzymes to improve and accelerate the washing performance by removing tough stains. The process is environment friendly as the use of enzymes in the detergent formulation reduces the utilization of toxic detergent constituents. The current trend is to use the detergent compatible enzymes that are active at low and ambient temperature in order to save energy and maintain fabric quality. As the detergent compatible bacterial enzymes are used together in the detergent formulation, it is important to co-produce the detergent enzymes in a single fermentation medium as the enzyme stability is assured, and production cost gets reduced enormously. The review reports on the production, purification, characterization and application of detergent compatible amylases, lipases, and proteases are available. However, there is no specific review or minireview on the concomitant production of detergent compatible amylases, lipases, and proteases. In this minireview, the coproduction of detergent compatible enzymes by bacterial species, enzyme stability towards detergents and detergent components, and stain release analysis were discussed. PMID:26011283

  20. Studies on Ganoderma lucidum III. production of pectolytic enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, L.S.; Tseng, T.C.

    1986-07-01

    Pectolytic enzymes produced by Ganoderma lucidum B in culture and polypropylene bags were investigated. Two pectolytic enzymes, i.e., endo-polygalacturonase (endo-PG) and endo-pectic methyl trans-eliminase (endo-PMTE) were obtained from crude enzymes of G. lucidum B extract from mycelia polypropylene bags. The endo-PMTE has to optimal pH at 4.5 and 8.0. The enzyme stimulated by Ca/sup + +/ ion and preferred only pectin; the enzyme activity decreased at temperature above 50/sup 0/C. The endo-PMTE a and endo-PMTE b, obtained from polypropylene bag with mycelia of G. lucidum B, were purified by 60-80% ammonium sulfate fractionation, Sephadex G-100 gel filtration, DEAE-cellulose ion exchange column chromatography and isoelectric focusing, showing pI at 8.2 and 5.5. Disc gel electrophoresis confirmed two peaks corresponding to endo-PMTE a and b as isoenzymes. Pectolytic enzymes purified by 60-80% ammonium sulfate fraction macerated potato disc and it was more active than the crude enzyme. At pH 4.5, maceration of potato disc by pectolytic enzymes more effective than those at pH 8.0 or 7.0. At pH 8.0, Ca/sup + +/ ion stimulate pectolytic enzyme activities and accelerated maceration.

  1. Ethanol from wood. Cellulase enzyme production

    Energy Technology Data Exchange (ETDEWEB)

    Szengyel, Zsolt

    2000-03-01

    Conversion of biomass to liquid fuels, such as ethanol, has been investigated during the past decades. First due to the oil crisis of the 1970s and lately because of concerns about greenhouse effect, ethanol has been found to be a suitable substitute for gasoline in transportation. Although ethanol is produced in large quantities from corn starch, the conversion of lignocellulosic biomass to ethanol is rather problematic. However, cellulosic raw materials are important as they are available in large quantities from agriculture and forestry. One of the most extensively investigated processes is the enzymatic process, in which fungal cellulolytic enzymes are used to convert the cellulose content of the biomass to glucose, which is then fermented to ethanol. In order to make the raw material accessible to biological attack, it has to be pretreated first. The most successful method, which has been evaluated for various lignocellulosic materials, is the steam pretreatment. In this thesis the utilization of steam pretreated willow (hardwood) and spruce (softwood) was examined for enzyme production using a filamentous fungus T. reesei RUT C30. Various carbon sources originating from the steam pretreated materials have been investigated. The replacement of the solid carbon source with a liquid carbon source, as well as the effect of pH, was studied. The effect of toxic compounds generated during pretreatment was also examined. Comparative study of softwood and hardwood showed that steam pretreated hardwood is a better carbon source than softwood. The hydrolytic potential of enzyme solutions produced on wood derived carbon sources was better compared to commercial cellulases. Also enzyme solutions produced on steam pretreated spruce showed less sensitivity towards toxic compounds formed during steam pretreatment.

  2. Spatial distribution of enzyme activities in the rhizosphere

    Science.gov (United States)

    Razavi, Bahar S.; Zarebanadkouki, Mohsen; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    The rhizosphere, the tiny zone of soil surrounding roots, certainly represents one of the most dynamic habitat and interfaces on Earth. Activities of enzymes produced by both plant roots and microbes are the primary biological drivers of organic matter decomposition and nutrient cycling. That is why there is an urgent need in spatially explicit methods for the determination of the rhizosphere extension and enzyme distribution. Recently, zymography as a new technique based on diffusion of enzymes through the 1 mm gel plate for analysis has been introduced (Spohn & Kuzyakov, 2013). We developed the zymography technique to visualize the enzyme activities with a higher spatial resolution. For the first time, we aimed at quantitative imaging of enzyme activities as a function of distance from the root tip and the root surface in the soil. We visualized the two dimensional distribution of the activity of three enzymes: β-glucosidase, phosphatase and leucine amino peptidase in the rhizosphere of maize using fluorogenically labelled substrates. Spatial-resolution of fluorescent images was improved by direct application of a substrate saturated membrane to the soil-root system. The newly-developed direct zymography visualized heterogeneity of enzyme activities along the roots. The activity of all enzymes was the highest at the apical parts of individual roots. Across the roots, the enzyme activities were higher at immediate vicinity of the roots (1.5 mm) and gradually decreased towards the bulk soil. Spatial patterns of enzyme activities as a function of distance from the root surface were enzyme specific, with highest extension for phosphatase. We conclude that improved zymography is promising in situ technique to analyze, visualize and quantify spatial distribution of enzyme activities in the rhizosphere hotspots. References Spohn, M., Kuzyakov, Y., 2013. Phosphorus mineralization can be driven by microbial need for carbon. Soil Biology & Biochemistry 61: 69-75

  3. Corn Gluten Hydrolysis By Alcalase: Effects of Process Parameters on Hydrolysis, Solubilization and Enzyme Inactivation

    OpenAIRE

    Kilic-Apar, D.; Ozbek, B.

    2008-01-01

    The aim of this study was to investigate the influences of substrate concentration, enzyme concentration, temperature and pH on hydrolysis and solubilization of corn gluten as well as enzyme stability. The corn gluten was hydrolyzed by Alcalase enzyme (a bacterial protease produced by a selected strain of Bacillus Licheniformis) that was chosen among five commercial enzymes examined. The optimum process conditions for hydrolysis and solubilization were obtained as 30 g L-1 substrate mass conc...

  4. Effect of age and diet composition on activity of pancreatic enzymes in birds

    OpenAIRE

    Brzęk, Paweł; Ciminari, M. Eugenia; Kohl, Kevin D.; Lessner, Krista; Karasov, William H.; Caviedes-Vidal, Enrique

    2012-01-01

    Digestive enzymes produced by the pancreas and intestinal epithelium cooperate closely during food hydrolysis. Therefore, activities of pancreatic and intestinal enzymes processing the same substrate can be hypothesized to change together in unison, as well as to be adjusted to the concentration of their substrate in the diet. However, our knowledge of ontogenetic and diet-related changes in the digestive enzymes of birds is limited mainly to intestinal enzymes; it is largely unknown whether ...

  5. Optimization Conditions of Production Fibrinolytic Enzyme from Bacillus lichniformis B4 Local Isolate

    OpenAIRE

    Essam F. Al-Juamily; Bushra H. Al-Zaidy

    2012-01-01

    The study was conducted with the aim to found local isolate belongs to Bacillus lichniformis to produce fibrinolytic enzyme with highest activity under optimal conditions. Forty-five local isolates belongs to the genus Bacillus lichniformis were selected for production of fibrinolytic enzyme (E.C. 3.4.). The isolate Bacillus lichniformis B4 was selected due to its high productivity of fibrinolytic enzyme. The optimal conditions for fibrinolytic enzyme production were determined, using a solid...

  6. Applications of Enzymes in Oil and Oilseed Processing

    DEFF Research Database (Denmark)

    Xu, Xuebing

    Enzymes, through the last 20-30 years research and development, have been widely explored for the uses in oil and oilseed processing. Following the conventional processing technology from oilseeds, the oil can be produced through pressing or solvent extraction. The crude oil is then refined to meet...... edible requirements. The oil can be also modified to meet functional or even nutritional needs. In each of those steps, enzymes have been used in industry successfully. For the oil processing stage, enzymes have been used to destroy the cell structure so that makes the oil release easier, where...... conventionally high temperature conditioning or cooking is necessary. The good story in industry is the fish oil and olive oil processing. Good quality and higher oil yield have been achieved through the use of enzymes in the processing stages. For the refining stage, the use of enzymes for degumming has...

  7. Nitrilase enzymes and their role in plant–microbe interactions

    OpenAIRE

    Howden, Andrew J M; Preston, Gail M.

    2009-01-01

    Summary Nitrilase enzymes (nitrilases) catalyse the hydrolysis of nitrile compounds to the corresponding carboxylic acid and ammonia, and have a wide range of industrial and biotechnological applications, including the synthesis of industrially important carboxylic acids and bioremediation of cyanide and toxic nitriles. Nitrilases are produced by a wide range of organisms, including plants, bacteria and fungi, but despite their biotechnological importance, the role of these enzymes in living ...

  8. Microdiversity of extracellular enzyme genes among sequenced prokaryotic genomes

    OpenAIRE

    Zimmerman, Amy E; Martiny, Adam C.; Allison, Steven D.

    2013-01-01

    Understanding the relationship between prokaryotic traits and phylogeny is important for predicting and modeling ecological processes. Microbial extracellular enzymes have a pivotal role in nutrient cycling and the decomposition of organic matter, yet little is known about the phylogenetic distribution of genes encoding these enzymes. In this study, we analyzed 3058 annotated prokaryotic genomes to determine which taxa have the genetic potential to produce alkaline phosphatase, chitinase and ...

  9. Production of extracellular proteolytic enzymes by Beauveria bassiana

    OpenAIRE

    Józefa Chrzanowska; Maria Kołaczkowska

    2014-01-01

    The production of proteolytic enzymes by two strains of Beauveria bassiana 278, B. bassiana 446 and one strain of Ascosphera apis 496 was analysed. It was demonstrated that the strain of B. bassiana 278 proved to be the best producer of basic and acid proteases. The influence of different environmental factors such as nitrogen and carbon sources on the production of extracellular hydrolytic enzymes was assessed. In addition the acid protease from B. bassiana was partially characterized.

  10. Production of extracellular proteolytic enzymes by Beauveria bassiana

    Directory of Open Access Journals (Sweden)

    Józefa Chrzanowska

    2014-08-01

    Full Text Available The production of proteolytic enzymes by two strains of Beauveria bassiana 278, B. bassiana 446 and one strain of Ascosphera apis 496 was analysed. It was demonstrated that the strain of B. bassiana 278 proved to be the best producer of basic and acid proteases. The influence of different environmental factors such as nitrogen and carbon sources on the production of extracellular hydrolytic enzymes was assessed. In addition the acid protease from B. bassiana was partially characterized.

  11. Negative cooperativity in regulatory enzymes.

    Science.gov (United States)

    Levitzki, A; Koshland, D E

    1969-04-01

    Negative cooperativity has been observed in CTP synthetase, an allosteric enzyme which contains a regulatory site. Thus, the same enzyme exhibits negative cooperativity for GTP (an effector) and glutamine (a substrate) and positive cooperativity for ATP and UTP (both substrates). In the process of the delineation of these phenomena, diagnostic procedures for negative cooperativity were developed. Application of these procedures to other enzymes indicates that negative cooperativity is a characteristic of many of them. These findings add strong support for the sequential model of subunit interactions which postulates that ligand-induced conformational changes are responsible for regulatory and cooperative phenomena in enzymes. PMID:5256410

  12. ENZYME-BASED HYDROLYSIS PROCESSES FOR ETHANOL

    Directory of Open Access Journals (Sweden)

    Keikhosro Karimi

    2007-11-01

    Full Text Available This article reviews developments in the technology for ethanol produc-tion from lignocellulosic materials by “enzymatic” processes. Several methods of pretreatment of lignocelluloses are discussed, where the crystalline structure of lignocelluloses is opened up, making them more accessible to the cellulase enzymes. The characteristics of these enzymes and important factors in enzymatic hydrolysis of the cellulose and hemicellulose to cellobiose, glucose, and other sugars are discussed. Different strategies are then described for enzymatic hydrolysis and fermentation, including separate enzymatic hydrolysis and fermentation (SHF, simultaneous saccharification and fermentation (SSF, non-isothermal simultaneous saccharification and fermentation (NSSF, simultaneous saccharification and co-fermentation (SSCF, and consolidated bioprocessing (CBP. Furthermore, the by-products in ethanol from lignocellulosic materials, wastewater treatment, commercial status, and energy production and integration are reviewed.

  13. Directed evolution of an RNA enzyme

    Science.gov (United States)

    Beaudry, Amber A.; Joyce, Gerald F.

    1992-01-01

    An in vitro evolution procedures was used to obtain RNA enzymes with a particular catalytic function. A population of 10 exp 13 variants of the Tetrahymena ribozyme, a group I ribozyme that catalyzes sequence-specific cleavage of RNA via a phosphoester transfer mechanism, was generated. This enzyme has a limited ability to cleave DNA under conditions of high temperature or high MgCl2 concentration, or both. A selection constraint was imposed on the population of ribozyme variants such that only those individuals that carried out DNA cleavage under physiologic conditions were amplified to produce 'progeny' ribozymes. Mutations were introduced during amplification to maintain heterogeneity in the population. This process was repeated for ten successive generations, resulting in enhanced (100 times) DNA cleavage activity.

  14. Production of theabrownins using a crude fungal enzyme concentrate.

    Science.gov (United States)

    Wang, Qiuping; Gong, Jiashun; Chisti, Yusuf; Sirisansaneeyakul, Sarote

    2016-08-10

    Theabrownins were produced from infusions of sun-dried green tea leaves using a crude enzyme concentrate of Aspergillus tubingensis TISTR 3647. This fungus had been isolated from a solid state fermentation of Pu-erh type tea. The crude enzyme concentrate contained activities of peroxidase, catechol oxidase and laccase. The enzyme concentrate effectively oxidized the phenolic compounds in green tea infusion to theabrownins. A theabrownins concentration of 56.0g/L was obtained in 44h. The reaction mixture contained the green tea infusion and crude enzyme concentrate in the volume ratio of 1: 0.205. The tea infusion had been produced using 200g of tea leaves per liter of distilled water. The reaction was carried out in a stirred bioreactor at 37°C with an aeration rate of 1 vvm, an agitation speed of 250rpm and a controlled pH of 7.0. Peroxidase, catechol oxidase, and laccase acted synergistically to convert the phenolic compounds in green tea infusion to theabrownins. Previously, theabrownins had been produced from green tea infusions only by using live fungal cultures. Production using the microorganism-free enzyme concentrate was comparable to production using the fungus A. tubingensis TISTR 3647. The proposed novel production process using the fungal crude enzymes and green tea infusion, offers a more controlled, reproducible and highly productive option for commercial production of theabrownins. PMID:27318175

  15. Enzyme activities along a latitudinal transect in Western Siberia

    Science.gov (United States)

    Schnecker, Jörg; Wild, Birgit; Eloy Alves, Ricardo J.; Gentsch, Norman; Gittel, Antje; Knoltsch, Anna; Lashchinskiy, Nikolay; Mikutta, Robert; Takriti, Mounir; Richter, Andreas

    2014-05-01

    activities. Since microorganisms produce enzyme according to their nutrient demand, enzyme activities can enhance nutrient cycling differently in distinct soil horizons.

  16. Lignocellulolytic enzyme production of Pleurotus ostreatus growth in agroindustrial wastes

    Directory of Open Access Journals (Sweden)

    José Maria Rodrigues da Luz

    2012-12-01

    Full Text Available The mushroom Pleurotus ostreatus has nutritional and medicinal characteristics that depend on the growth substrate. In nature, this fungus grows on dead wood, but it can be artificially cultivated on agricultural wastes (coffee husks, eucalyptus sawdust, corncobs and sugar cane bagasse. The degradation of agricultural wastes involves some enzyme complexes made up of oxidative (laccase, manganese peroxidase and lignin peroxidase and hydrolytic enzymes (cellulases, xylanases and tanases. Understanding how these enzymes work will help to improve the productivity of mushroom cultures and decrease the potential pollution that can be caused by inadequate discharge of the agroindustrial residues. The objective of this work was to assess the activity of the lignocellulolytic enzymes produced by two P. ostreatus strains (PLO 2 and PLO 6. These strains were used to inoculate samples of coffee husks, eucalyptus sawdust or eucalyptus bark add with or without 20 % rice bran. Every five days after substrate inoculation, the enzyme activity and soluble protein concentration were evaluated. The maximum activity of oxidative enzymes was observed at day 10 after inoculation, and the activity of the hydrolytic enzymes increased during the entire period of the experiment. The results show that substrate composition and colonization time influenced the activity of the lignocellulolytic enzymes.

  17. Deubiquitylating enzymes and disease

    Directory of Open Access Journals (Sweden)

    Baker Rohan T

    2008-10-01

    Full Text Available Abstract Deubiquitylating enzymes (DUBs can hydrolyze a peptide, amide, ester or thiolester bond at the C-terminus of UBIQ (ubiquitin, including the post-translationally formed branched peptide bonds in mono- or multi-ubiquitylated conjugates. DUBs thus have the potential to regulate any UBIQ-mediated cellular process, the two best characterized being proteolysis and protein trafficking. Mammals contain some 80–90 DUBs in five different subfamilies, only a handful of which have been characterized with respect to the proteins that they interact with and deubiquitylate. Several other DUBs have been implicated in various disease processes in which they are changed by mutation, have altered expression levels, and/or form part of regulatory complexes. Specific examples of DUB involvement in various diseases are presented. While no specific drugs targeting DUBs have yet been described, sufficient functional and structural information has accumulated in some cases to allow their rapid development. Publication history Republished from Current BioData's Targeted Proteins database (TPdb; http://www.targetedproteinsdb.com.

  18. Phage lytic enzymes: a history

    Institute of Scientific and Technical Information of China (English)

    David; Trudil

    2015-01-01

    There are many recent studies regarding the efficacy of bacteriophage-related lytic enzymes: the enzymes of ‘bacteria-eaters’ or viruses that infect bacteria. By degrading the cell wall of the targeted bacteria, these lytic enzymes have been shown to efficiently lyse Gram-positive bacteria without affecting normal flora and non-related bacteria. Recent studies have suggested approaches for lysing Gram-negative bacteria as well(Briersa Y, et al., 2014). These enzymes include: phage-lysozyme, endolysin, lysozyme, lysin, phage lysin, phage lytic enzymes, phageassociated enzymes, enzybiotics, muralysin, muramidase, virolysin and designations such as Ply, PAE and others. Bacteriophages are viruses that kill bacteria, do not contribute to antimicrobial resistance, are easy to develop, inexpensive to manufacture and safe for humans, animals and the environment. The current focus on lytic enzymes has been on their use as anti-infectives in humans and more recently in agricultural research models. The initial translational application of lytic enzymes, however, was not associated with treating or preventing a specifi c disease but rather as an extraction method to be incorporated in a rapid bacterial detection assay(Bernstein D, 1997).The current review traces the translational history of phage lytic enzymes–from their initial discovery in 1986 for the rapid detection of group A streptococcus in clinical specimens to evolving applications in the detection and prevention of disease in humans and in agriculture.

  19. Enzyme catalysis: Evolution made easy

    Science.gov (United States)

    Wee, Eugene J. H.; Trau, Matt

    2014-09-01

    Directed evolution is a powerful tool for the development of improved enzyme catalysts. Now, a method that enables an enzyme, its encoding DNA and a fluorescent reaction product to be encapsulated in a gel bead enables the application of directed evolution in an ultra-high-throughput format.

  20. Enzyme immunoassay for human ferritin

    International Nuclear Information System (INIS)

    We described an enzyme immunoassay with use of β-D-galactosidase for quantitation of ferritin in human serum. The minimum detectable ferritin concentration is 0.25 μg/L of serum, which is comparable to results obtained by radioimmunoassay. The correlation coefficient between values determined by enzyme immunoassay and radioimmunoassay was 0.95

  1. Radiation inactivation of proteolytic enzymes

    International Nuclear Information System (INIS)

    The survey was devoted to generalization of protease inactivation mechanism for different conditions of irradiation and for different kinds of enzymes. The importance of radiation conformation changes and the possible use of radiolytic processes were considered especially. The serine-, SH-, acidic-and metal-contained enzymes were described

  2. Purification of a novel fructosyltransferase from Lactobacillus reuteri strain 121 and characterization of the levan produced

    OpenAIRE

    van Hijum, SAFT; Bonting, K.; van der Maarel, MJEC; Dijkhuizen, L.

    2001-01-01

    Fructosyltransferase (FTF) enzymes have been characterized from various Gram-positive bacteria, but not from Lactobacillus sp. In a screening of 182 lactobacilli for polysaccharide production only one strain, Lactobacillus reuteri strain 121, was found to produce a fructan being a levan. Here we report the first-time identification and biochemical characterization of a Lactobacillus FTF enzyme. When incubated with sucrose the enzyme produced a levan that is identical to that produced by Lb. r...

  3. Epigenetics of dominance for enzyme activity

    Indian Academy of Sciences (India)

    Kuldip S Trehan; Kulbir S Gill

    2002-03-01

    We have isolated and purified two parental homodimers and a unique heterodimer of acid phosphatase [coded by Acph-11.05() and Acph-10.95()] from isogenic homozygotes and heterozygotes of Drosophila malerkotliana. and produce qualitatively different allozymes and the two alleles are expressed equally within and across all three genotypes and and play an equal role in the epigenetics of dominance. Subunit interaction in the heterodimer over a wide range of H+ concentrations accounts for the epigenetics of dominance for enzyme activity.

  4. Chryseobacterium indologenes, novel mannanase-producing bacteria

    Directory of Open Access Journals (Sweden)

    Surachai Rattanasuk

    2009-10-01

    Full Text Available Mannanase is a mannan degrading enzyme which is produced by microorganisms, including bacteria. This enzyme can be used in many industrial processes as well as for improving the quality of animal feeds. The aim of the present study was toscreen and characterize the mannanase-producing bacteria. Two genera of bacteria were isolated from Thai soil samples,fermented coconut, and fertilizer. Screening was carried out on agar plates containing mannan stained with iodine solution.The bacteria were identified by partial 16S rRNA gene sequence, biochemical test and morphology, respectively. The mannanase activity was determined by zymogram and DNS method. Two strains of bacteria with mannanase activity were identified as Bacillus and Chryseobacterium. This is the first report of mannanase-producing Chryseobacterium.

  5. BAKERY ENZYMES IN CEREAL TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Václav Koman

    2012-10-01

    Full Text Available Normal 0 21 false false false SK X-NONE X-NONE Bread is the most common and traditional food in the world. For years, enzymes such as malt and fungal alpha-amylase have been used in bread making. Due to the changes in the baking industry and the ever-increasing demand for more natural products, enzymes have gained real importance in bread-making. If an enzyme is added, it is often destroyed by the heat during the baking process. For generations, enzymes have been used for the improvement of texture and appearance, enhancement of nutritional values and generation of appealing flavours and aromas. Enzymes used in bakery industry constitute nearly one third of the market. The bakery products have undergone radical improvements in quality over the past years in terms of flavour, texture and shelf-life. The the biggest contributor for these improvementsis the usage of enzymes. Present work seeks to systematically describe bakery enzymes, their classification, benefits, usage and chemical reactions in the bread making process.doi:10.5219/193

  6. The surface science of enzymes

    DEFF Research Database (Denmark)

    Rod, Thomas Holm; Nørskov, Jens Kehlet

    One of the largest challenges to science in the coming years is to find the relation between enzyme structure and function. Can we predict which reactions an enzyme catalyzes from knowledge of its structure-or from its amino acid sequence? Can we use that knowledge to modify enzyme function? To...... exist and the two kinds of catalyst can be described by similar tools, nature and human effort have come up with different solutions. This on the other hand implies that new and improved catalysts may be made by learning from nature....

  7. An enzyme with rhamnogalacturonase activity.

    OpenAIRE

    Kovod, L.V.; Dalboge, H; Andersen, L N; Kauppinen, M.; Christgan, S.; Heldt-Hansen, H.P.; Christophersen, C.; Nielsen, P.M.; Voragen, A. G. J.; Schols, H.A.

    1994-01-01

    An enzyme exhibiting rhamnogalacturonase activity, which enzyme: a) is encoded by the DNA sequence shown in SEQ ID No. 1 or a sequence homologous thereto encoding a polypeptide with RGase activity, b) has the amino acid sequence shown in SEQ ID No. 2 or an analogue thereof, c) is reactive with an antibody raised against the enzyme encoded by the DNA sequence shown in SEQ ID No. 1, d) has a pH optimum above pH 5, and/or e) has a relative activity of at least 30t a pH in the range of 5.5-6.5. T...

  8. Enzymes from Extreme Environments and their Industrial Applications

    Directory of Open Access Journals (Sweden)

    Jennifer Ann Littlechild

    2015-10-01

    Full Text Available This article will discuss the importance of specific extremophilic enzymes for applications in industrial biotechnology. It will specifically address those enzymes that have applications in the area of biocatalysis. Such enzymes now play an important role in catalysing a variety of chemical conversions that were previously carried out by traditional chemistry. The biocatalytic process is carried out under mild conditions and with greater specificity. The enzyme process does not result in the toxic waste that is usually produced in a chemical process that would require careful disposal. In this sense the biocatalytic process is referred to as carrying out ‘green chemistry’ which is considered to be environmentally friendly.Some of the extremophilic enzymes to be discussed have already been developed for industrial processes such as an L-aminoacylase and a γ- lactamase. The industrial applications of other extremophilic enzymes including transaminases, carbonic anhydrases, dehalogenases, specific esterases and epoxide hydrolases are currently being assessed. Specific examples of these industrially important enzymes which have been studied in the authors group will be presented in this review.

  9. Microbial Enzymes with Special Characteristics for Biotechnological Applications

    Directory of Open Access Journals (Sweden)

    Poonam Singh Nigam

    2013-08-01

    Full Text Available This article overviews the enzymes produced by microorganisms, which have been extensively studied worldwide for their isolation, purification and characterization of their specific properties. Researchers have isolated specific microorganisms from extreme sources under extreme culture conditions, with the objective that such isolated microbes would possess the capability to bio-synthesize special enzymes. Various Bio-industries require enzymes possessing special characteristics for their applications in processing of substrates and raw materials. The microbial enzymes act as bio-catalysts to perform reactions in bio-processes in an economical and environmentally-friendly way as opposed to the use of chemical catalysts. The special characteristics of enzymes are exploited for their commercial interest and industrial applications, which include: thermotolerance, thermophilic nature, tolerance to a varied range of pH, stability of enzyme activity over a range of temperature and pH, and other harsh reaction conditions. Such enzymes have proven their utility in bio-industries such as food, leather, textiles, animal feed, and in bio-conversions and bio-remediations.

  10. In vivo and in vitro olefin cyclopropanation catalyzed by heme enzymes

    Science.gov (United States)

    Coelho, Pedro S; Brustad, Eric M; Arnold, Frances H; Wang, Zhan; Lewis, Jared C

    2015-03-31

    The present invention provides methods for catalyzing the conversion of an olefin to any compound containing one or more cyclopropane functional groups using heme enzymes. In certain aspects, the present invention provides a method for producing a cyclopropanation product comprising providing an olefinic substrate, a diazo reagent, and a heme enzyme; and admixing the components in a reaction for a time sufficient to produce a cyclopropanation product. In other aspects, the present invention provides heme enzymes including variants and fragments thereof that are capable of carrying out in vivo and in vitro olefin cyclopropanation reactions. Expression vectors and host cells expressing the heme enzymes are also provided by the present invention.

  11. Radiation produced biomaterials

    International Nuclear Information System (INIS)

    radiation technique. Immobilization of biologically active species in hydrogel matrices, their use as drug delivery systems and enzyme traps as well as modification of material surfaces to improve their biocompatibility and ability to bond antigens and antibodies have been the main subject of their investigations. The rising interest in the field of application of radiation to bioengineering was also recognized by the International Atoimc Energy Agency, which has initiated the international programs relating to those studies. In these lectures some directions of investigations on the formation of hydrogels and their applications for biomedical purposes have been specified. Also, some examples of commercialized products being produced by means of radiation technique have been presented

  12. ORGANOPHOSPHATE DEGRADING ENZYMES - PHASE I

    Science.gov (United States)

    Agave BioSystems in collaboration with Carl A. Batt proposes to develop decon-nanoparticles, which will leverage ongoing opportunities in enzyme engineering and the fabrication of functionalized magnetic nanoparticles. Enhanced performance will be engineered into the system t...

  13. Halophilic Bacteria as a Source of Novel Hydrolytic Enzymes

    Directory of Open Access Journals (Sweden)

    Encarnación Mellado

    2013-01-01

    Full Text Available Hydrolases constitute a class of enzymes widely distributed in nature from bacteria to higher eukaryotes. The halotolerance of many enzymes derived from halophilic bacteria can be exploited wherever enzymatic transformations are required to function under physical and chemical conditions, such as in the presence of organic solvents and extremes in temperature and salt content. In recent years, different screening programs have been performed in saline habitats in order to isolate and characterize novel enzymatic activities with different properties to those of conventional enzymes. Several halophilic hydrolases have been described, including amylases, lipases and proteases, and then used for biotechnological applications. Moreover, the discovery of biopolymer-degrading enzymes offers a new solution for the treatment of oilfield waste, where high temperature and salinity are typically found, while providing valuable information about heterotrophic processes in saline environments. In this work, we describe the results obtained in different screening programs specially focused on the diversity of halophiles showing hydrolytic activities in saline and hypersaline habitats, including the description of enzymes with special biochemical properties. The intracellular lipolytic enzyme LipBL, produced by the moderately halophilic bacterium Marinobacter lipolyticus, showed advantages over other lipases, being an enzyme active over a wide range of pH values and temperatures. The immobilized LipBL derivatives obtained and tested in regio- and enantioselective reactions, showed an excellent behavior in the production of free polyunsaturated fatty acids (PUFAs. On the other hand, the extremely halophilic bacterium, Salicola marasensis sp. IC10 showing lipase and protease activities, was studied for its ability to produce promising enzymes in terms of its resistance to temperature and salinity.

  14. [The rise of enzyme engineering in China].

    Science.gov (United States)

    Li, Gaoxiang

    2015-06-01

    Enzyme engineering is an important part of the modern biotechnology. Industrial biocatalysis is considered the third wave of biotechnology following pharmaceutical and agricultural waves. In 25 years, China has made a mighty advances in enzyme engineering research. This review focuses on enzyme genomics, enzyme proteomics, biosynthesis, microbial conversion and biosensors in the Chinese enzyme engineering symposiums and advances in enzyme preparation industry in China. PMID:26672358

  15. Production Of Extracellular Enzymes By Some Soil Yeasts

    OpenAIRE

    Falih, A. M. [عبد الله مساعد خلف الفالح

    1997-01-01

    This study investigated the ability of soil yeasts, Geotrichum candidum, Geotrichum capitatum and Williopsis californica to produce extracellular enzymes (amylase, cellulase and protease) in vitro compared with that of a laboratory strain of Saccharomyces cerevisiae. It appears that the soil yeasts studied here were less amylolytic yeasts except the yeast G. candidum, which was highly effective at extracellular amylase production. The soil yeast W. californica was an average producer of cellu...

  16. Clinical utility of chitotriosidase enzyme activity in nephropathic cystinosis

    OpenAIRE

    Elmonem, M.A.; Makar, S.H.; Heuvel, L.P.W.J. van den; Abdelaziz, H.; Abdelrahman, S.M.; Bossuyt, X; Janssen, M.C.; Cornelissen, E.; Lefeber, D.J.; Joosten, L.; Nabhan, M.M.; Arcolino, F.O.; Hassan, F. A. [فكري حسن; Chevronnay, H.P. Gaide; Soliman, N.A.

    2014-01-01

    BackgroundNephropathic cystinosis is an inherited autosomal recessive lysosomal storage disorder characterized by the pathological accumulation and crystallization of cystine inside different cell types. WBC cystine determination forms the basis for the diagnosis and therapeutic monitoring with the cystine depleting drug (cysteamine). The chitotriosidase enzyme is a human chitinase, produced by activated macrophages. Its elevation is documented in several lysosomal storage disorders. Although...

  17. 响应面法优化Paenibacillus sp.JX426产黄原胶降解酶发酵培养基%Optimization of fermentation medium for xanthan gum degrading enzyme produced from Paenibacillus sp.JX426 by response surface methodology

    Institute of Scientific and Technical Information of China (English)

    庞倩婵; 纪凯华; 王燕森; 马挺; 高年发; 梁风来; 李国强

    2011-01-01

    A Paenibacillus sp. JX426 newly isolated from soil samples had high ability of xanthan gum degradation. To improve its activity of xanthan degrading enzyme, Plackett-Burman experimental design, steepest ascent experimental design and Box-Behnken(BBD)response surface experimental design were applied to optimize the fermentation condition of xanthan gum degrading enzyme by Paenibacillus sp. JX426. Firstly, Plackett-Burman experiment was used to select three significant factors (the content ofxanthan gum, yeast extract and CaCl2). The maximum content of enzyme activity was obtained by experimental design of steepest ascent. Three significant factors were then optimized by Box-Behnken (BBD) response surface. The results showed the optimal content of xanthan gum, yeast extract and CaCl2 were 0.39%, 0.042% and 0.02%, respectively. Under these optimal conditions, the xanthan-degrading enzyme activity was 4.20U/ml, which was increased by 37.7% compared with the value of 3.05U/ml before optimization.%从土壤中分离筛选出1株具有较强黄原胶降解能力的类芽孢杆菌(Paenibacillus sp.)JX426.为了获得高活力的黄原胶降解酶,研究借助Minimb15软件,采用Plackett-Burman试验设计方法、最陡爬坡试验设计方法和响应面分析方法对菌株JX426进行了液体发酵条件的优化.首先通过Plackett-Burman方法对7个相关影响因素的效应进行了评价,并筛选出有显著正效应的黄原胶、CaCl2添加量和有显著负效应的酵母粉添加量等3个因素,然后利用最陡爬坡试验设计方法和响应面分析方法确定了上述3个因素的最佳工艺参数,即黄原胶、CaCl2和酵母粉的添加量分别为0.39%、0.02%和0.042%.试验结果表明,在最佳浓度和组成条件下,黄原胶降解酶的酶活能达到4.20U/mL,较优化前的3.05U/mL提高了37.7%,为黄原胶降解菌的实际应用奠定了基础.

  18. The Kinetics of Enzyme Mixtures

    Directory of Open Access Journals (Sweden)

    Simon Brown

    2014-03-01

    Full Text Available Even purified enzyme preparations are often heterogeneous. For example, preparations of aspartate aminotransferase or cytochrome oxidase can consist of several different forms of the enzyme. For this reason we consider how different the kinetics of the reactions catalysed by a mixture of forms of an enzyme must be to provide some indication of the characteristics of the species present. Based on the standard Michaelis-Menten model, we show that if the Michaelis constants (Km of two isoforms differ by a factor of at least 20 the steady-state kinetics can be used to characterise the mixture. However, even if heterogeneity is reflected in the kinetic data, the proportions of the different forms of the enzyme cannot be estimated from the kinetic data alone. Consequently, the heterogeneity of enzyme preparations is rarely reflected in measurements of their steady-state kinetics unless the species present have significantly different kinetic properties. This has two implications: (1 it is difficult, but not impossible, to detect molecular heterogeneity using kinetic data and (2 even when it is possible, a considerable quantity of high quality data is required.

  19. Improving the performance of electrochemical microsensors based on enzymes entrapped in a redox hydrogel

    International Nuclear Information System (INIS)

    Microsensors based on carbon fiber microelectrodes coated with enzyme-entrapping redox hydrogels facilitate the in vivo detection of substances of interest within the central nervous system, including hydrogen peroxide, glucose, choline and glutamate. The hydrogel, formed by cross-linking a redox polymer, entraps the enzymes and mediates electron transfer between the enzymes and the electrode. It is important that the enzymes are entrapped in their enzymatically active state. Should entrapment cause enzyme denaturation, the sensitivity and the selectivity of the sensor may be compromised. Synthesis of the redox polymer according to published procedures may yield a product that precipitates when added to aqueous enzyme solutions. Casting hydrogels from solutions that contain the precipitate produces microsensors with low sensitivity and selectivity, suggesting that the precipitation disrupts the structure of the enzymes. Herein, we show that a surfactant, sodium dodecyl sulfate (SDS), can prevent the precipitation and improve the sensitivity and selectivity of the sensors

  20. Purification, characterization, and nucleotide sequence of an intracellular maltotriose-producing alpha-amylase from Streptococcus bovis 148.

    OpenAIRE

    Satoh, E; Uchimura, T; Kudo, T.; Komagata, K

    1997-01-01

    An intracellular alpha-amylase from Streptococcus bovis 148 was purified and characterized. The enzyme was induced by maltose and soluble starch and produced about 80% maltotriose from soluble starch. Maltopentaose was hydrolyzed to maltotriose and maltose and maltohexaose was hydrolyzed mainly to maltotriose by the enzyme. Maltotetraose, maltotriose, and maltose were not hydrolyzed. This intracellular enzyme was considered to be a maltotriose-producing enzyme. The enzymatic characteristics a...

  1. Lignocellulose degrading extremozymes produced by Pichia pastoris: current status and future prospects.

    Science.gov (United States)

    Ergün, Burcu Gündüz; Çalık, Pınar

    2016-01-01

    In this review article, extremophilic lignocellulosic enzymes with special interest on xylanases, β-mannanases, laccases and finally cellulases, namely, endoglucanases, exoglucanases and β-glucosidases produced by Pichia pastoris are reviewed for the first time. Recombinant lignocellulosic extremozymes are discussed from the perspectives of their potential application areas; characteristics of recombinant and native enzymes; the effects of P. pastoris expression system on recombinant extremozymes; and their expression levels and applied strategies to increase the enzyme expression yield. Further, effects of enzyme domains on activity and stability, protein engineering via molecular dynamics simulation and computational prediction, and site-directed mutagenesis and amino acid modifications done are also focused. Superior enzyme characteristics and improved stability due to the proper post-translational modifications and better protein folding performed by P. pastoris make this host favourable for extremozyme production. Especially, glycosylation contributes to the structure, function and stability of enzymes, as generally glycosylated enzymes produced by P. pastoris exhibit better thermostability than non-glycosylated enzymes. However, there has been limited study on enzyme engineering to improve catalytic efficiency and stability of lignocellulosic enzymes. Thus, in the future, studies should focus on protein engineering to improve stability and catalytic efficiency via computational modelling, mutations, domain replacements and fusion enzyme technology. Also metagenomic data need to be used more extensively to produce novel enzymes with extreme characteristics and stability. PMID:26497303

  2. The impact of molluscicides on enzyme activities in the hepatopancreas of Deroceras reticulatum (Müller)

    OpenAIRE

    Triebskorn, Rita

    1991-01-01

    The influence of three commercial molluscicide pellets, Cloethocarb, Mesurol, and Spiess Urania 2000, on the activities of six enzymes in the hepatopancreas of Deroceras reticulatum were investigated by light and electron microscope histochemisty as well as by photometric studies. In the digestive cells, enzymes catalyzing energy-producing digestive processes (non-specific esterases and acid phosphatases) are induced, while, in the crypt cells, enzymes related to energy-consuming metabolic pa...

  3. Increasing Nutrients Bioavailability by Using Fibrolytic Enzymes in Dairy Buffaloes Feeding

    OpenAIRE

    H. M. El-Sayed; Mansour, A. M.; Morsy, T. A.; A.M. Kholif; H.A. Murad; H.H. Azzaz

    2013-01-01

    Two experiments were carried out to evaluate the effects of fibrolytic enzymes supplementation on in vitro degradation of sugar beet pulp and in vivo nutrients digestibility, milk yield and its composition by mild-lactating buffaloes. In the in vitro experiment, dry matter and organic matter disappearance (IVDMD and IVOMD) were determined for sugar beet pulp supplemented separately with laboratory produced fibrolytic enzymes (Asperozym) and commercial fibrolytic enzymes source (Tomoko®) at 3 ...

  4. Studies on starch structure and the differential properties of starch branching enzymes

    OpenAIRE

    Andersson, Lena

    2001-01-01

    Starch is a staple food in human and animal diets, but also a raw material widely used for industrial purposes. By genetical modification of starch-synthesising enzymes in crop plants, starch yields could be increased and novel starches with particular qualities could be produced for industrial use. However, the process of starch biosynthesis and its regulation is still not completely understood. One of the major groups of enzymes in starch biosynthesis is the starch branching enzymes (SBEs),...

  5. Detection of Sulfatase Enzyme Activity with a CatalyCEST MRI Contrast Agent.

    Science.gov (United States)

    Sinharay, Sanhita; Fernández-Cuervo, Gabriela; Acfalle, Jasmine P; Pagel, Mark D

    2016-05-01

    A chemical exchange saturation transfer (CEST) MRI contrast agent has been developed that detects sulfatase enzyme activity. The agent produces a CEST signal at δ=5.0 ppm before enzyme activity, and a second CEST signal appears at δ=9.0 ppm after the enzyme cleaves a sulfate group from the agent. The comparison of the two signals improved detection of sulfatase activity. PMID:26956002

  6. High-throughput enzyme evolution in Saccharomyces cerevisiae using a synthetic RNA switch

    OpenAIRE

    Michener, Joshua K.; Smolke, Christina D.

    2012-01-01

    Metabolic engineering can produce a wide range of bulk and fine chemicals using renewable resources. These approaches frequently require high levels of activity from multiple heterologous enzymes. Directed evolution techniques have been used to improve the activity of a wide range of enzymes but can be difficult to apply when the enzyme is used in whole cells. To address this limitation, we developed generalizable in vivo biosensors using engineered RNA switches to link metabolite concentrati...

  7. The Effects of Macerating Enzyme Treat Treatments and Aging on Phenolic Content and Chromatic Characteristics in Vranec Wines

    OpenAIRE

    Mojsov, Kiro; Janevski, Aco; Andronikov, Darko; Jordeva, Sonja

    2014-01-01

    This study evaluates the effect of using of pectolytic enzyme preparations on the phenolic content and chromatic characteristics of young red wines produced from Vranec (Vitis vinifera L.), the important grape variety in Macedonia. Phenolic compounds and chromatic characteristics of young red wines were investigated by means of enzyme treatments with diverse enzyme preparations (Vinozym Vintage FCE, Rohapect), with urdoses and time of aging (6 months).Enzyme treatments and maceration time inf...

  8. A Study on Effect of different culture media on amylase enzyme production by a native strain of Bacillus subtilis

    OpenAIRE

    ziba Akbari; Hashem Nayeri; Keivan Beheshtimaal

    2015-01-01

    Introduction: Amylases are among the most important enzymes and have great significance in present-day biotechnology. Amylase with commercial applications is mainly derived from the genus Bacillus. The main purpose of this study is identification and isolatation amylase enzyme producer Bacillus, determining the amylase enzyme activity and affecting a number of culture medium on amylase enzyme production. Materials and methods: Soil, water and wastewater samples were collected from agricul...

  9. Structural analysis of pectin, polygalacturonic acid and pectinase enzyme iyophilysed

    International Nuclear Information System (INIS)

    Pectic substances are pectinic acid, pectic acid and their salts. Pectin is a polysaccharide found in plants like fruits and vegetables etc in high level. Substances which have no methyl group are pectic acid and polygalacturonic acid. Pectic substances are heteropolysaccharides with 30,000-300,000 molecular weight. Pectic enzymes are known as enzyme destroying chain. Pectic enzyme's produce monogalacturonates by attaking the nonreducing end of the high molecular weight pectic acids. These are produced by saprophytic fungi, bacteria and some yeasts. They are used in fruit and vegetable technologies. In this research, crystal structures of pectin, polygalacturonic acid and Iyophilysed bacterial pectinase samples were studied by scanning electron microskop. Homogenous crystal structure was observed from the images at SEM. Pectin, polygalacturonic acid and pectinase enzyme was packed so compact and tightly that no transition of beam was observed. Pectin crystals have bigger size than polygalacturonic acid crystals. The crystals of substrata molecules was determined to be smaller than pectinase enzymes. Ca++ and Na++ cations are known to stimulate enzymatic activity. In second step of study, the elements which are thought to be present in the crystal structure of pectinase were analysed. Analysis results showed that Na, Zn, and Ca elements were found at concentrations of 60 %, 29.296 % and 6.555 %, respectively

  10. Subcellular localization of pituitary enzymes

    Science.gov (United States)

    Smith, R. E.

    1970-01-01

    A cytochemical procedure is reported for identifying subcellular sites of enzymes hydrolyzing beta-naphthylamine substrates, and to study the sites of reaction product localization in cells of various tissues. Investigations using the substrate Leu 4-methoxy-8-naphthylamine, a capture with hexonium pararosaniline, and the final chelation of osmium have identified the hydrolyzing enzyme of rat liver cells; this enzyme localized on cell membranes with intense deposition in the areas of the parcanaliculi. The study of cells in the anterior pituitary of the rat showed the deposition of reaction product on cell membrane; and on the membranes of secretion granules contained within the cell. The deposition of reaction product on the cell membrane however showed no increase or decrease with changes in the physiological state of the gland and release of secretion granules from specific cells.

  11. Micromotors Powered by Enzyme Catalysis.

    Science.gov (United States)

    Dey, Krishna K; Zhao, Xi; Tansi, Benjamin M; Méndez-Ortiz, Wilfredo J; Córdova-Figueroa, Ubaldo M; Golestanian, Ramin; Sen, Ayusman

    2015-12-01

    Active biocompatible systems are of great current interest for their possible applications in drug or antidote delivery at specific locations. Herein, we report the synthesis and study of self-propelled microparticles powered by enzymatic reactions and their directed movement in substrate concentration gradient. Polystyrene microparticles were functionalized with the enzymes urease and catalase using a biotin-streptavidin linkage procedure. The motion of the enzyme-coated particles was studied in the presence of the respective substrates, using optical microscopy and dynamic light scattering analysis. The diffusion of the particles was found to increase in a substrate concentration dependent manner. The directed chemotactic movement of these enzyme-powered motors up the substrate gradient was studied using three-inlet microfluidic channel architecture. PMID:26587897

  12. 一株高产琼胶酶菌株MA-B22的分子鉴定与产酶条件优化%Isolation and identification of a bacterium MA-B22 producing agarase and the optimal cultivation of enzyme production

    Institute of Scientific and Technical Information of China (English)

    卢斌; 柯才焕; 杨明; 康康; 赵晶

    2009-01-01

    琼胶酶在多糖降解应用中的作用日益重要,而从海洋微生物中筛选琼胶酶高产菌株成为一个重要途径.本研究从养殖的杂色鲍体内分离到一株高产琼胶酶的菌株MA-B22.该菌为革兰氏阴性菌,经16S rRNA序列鉴定表明,与Tamlana agarivorans sp.nov.具有99%同源性,因此初步定为Tamlana sp..在2216E培养基中该菌株在培养时间60 h,温度25℃,起始pH为6.0条件下产酶活性最高.基于上述培养条件,通过单因素和正交实验确定了培养基的最佳基本组成:氮源为牛肉膏(其最适浓度为6.0‰),碳源为琼脂(其最适浓度为2.5‰),配制培养基的人工海水的最适盐度为25.经培养条件优化后,该菌胞外琼胶酶活力可达1021.79 U/mL,较优化前提高8.82倍.实验首次对Tamlana sp.属的琼胶酶活性进行确定并优化其产酶条件,为构建琼胶酶高产工程菌株提供了基础,并可能为今后鲍养殖提供潜在的益生菌.%Agarase plays a key role in degrading many complex polysaccharides. The screening of agar-degrading bacteria from marine environment and organisms becomes an important means. A gram-negative bacterial strain, MA-B22 with high agarase activity was isolated from small abalone Haliotis diversicolor. By 16S rRNA analysis, this strain has 99% homology to Tamlana agarivorans sp. Nov. , it was named Tamlana sp. In this report. Under 2216E medium, the optimal temperature, pH value and culture time are 25℃, 6.0 and 60h respectively. With one-factor-at-a-time method and orthogonal designed experiment, the optimal compositions of the ferment medium were confirmed. It contained 2.5‰ agar, 6.0‰ beef extract based on the salinity of 25. The highest enzyme activity of agarase was detected by DNS method at 1021.79 U/mL, which is 8.82 times higher than before. MA-B22 demonstrated high-performance characteristics of enzyme production. This is the first report on the agar-degrading Tamlana sp. And optimal cultivation to

  13. On-Site Enzyme Production by Trichoderma asperellum for the Degradation of Duckweed

    DEFF Research Database (Denmark)

    Bech, Lasse; Herbst, Florian-Alexander; Grell, Morten Nedergaard;

    2015-01-01

    The on-site production of cell wall degrading enzymes is an important strategy for the development of sustainable bio-refinery processes. This study concerns the optimization of production of plant cell wall-degrading enzymes produced by Trichoderma asperellum. A comparative secretome analysis was...

  14. Phospholipase A(2) - An enzyme that is sensitive to the physics of its substrate

    DEFF Research Database (Denmark)

    Høyrup, Lise Pernille Kristine; Jørgensen, Kent; Mouritsen, O.G.

    2002-01-01

    A simple statistical mechanical model of lipid bilayers is proposed to account for the non-equilibrium action of the enzyme phospholipase A(2). The enzyme hydrolyses lipid-bilayer substrates and produces product molecules that lead to local variations in the bilayer interfacial pressure. Computer...

  15. Screening for cellulose and hemicellulose degrading enzymes from the fungal genus Ulocladium

    DEFF Research Database (Denmark)

    Pedersen, Mads; Hollensted, Morten; Lange, L.;

    2009-01-01

    The fungal genus Ulocladium consists mostly of saprotrophic species and can readily be isolated from dead vegetation, rotten wood. paper, textiles and other cellulose containing materials. Thus, they must produce cellulolytic and hemicellulolytic enzymes. In this study fifty Ulocladium strains from...... results suggest that species identity as well as isolation source must be considered when screening microorganisms for enzymes....

  16. Expression of the Isoamylase Gene of Flavobacterium odoratum KU in Escherichia coli and Identification of Essential Residues of the Enzyme by Site-Directed Mutagenesis

    OpenAIRE

    Abe, Jun-ichi; Ushijima, Chiaki; HIZUKURI, Susumu

    1999-01-01

    The isoamylase gene from Flavobacterium odoratum KU was cloned into and expressed in Escherichia coli JM109. The promoter of the gene was successful in E. coli, and the enzyme produced was excreted into the culture medium, depending on the amount of the enzyme expressed. The enzyme found in the culture medium showed almost the same Mr, heat-inactivating constant, and N-terminal sequence as those of the enzyme accumulated in the periplasmic space. This result indicated that the enzyme accumula...

  17. Isolation and optimization of pectinase enzyme production one of useful industrial enzyme in Aspergillus niger, Rhizopus oryzae, Penicilium chrysogenum

    Directory of Open Access Journals (Sweden)

    akram songol

    2016-06-01

    Full Text Available Introduction: Pectinase enzyme is one of the most important industrial enzymes which isolated from a wide variety of microorganisms such as bacteria and filamentous fungi. This enzyme has been usually used in the fruit and textile industry. In this study, the isolation and optimization of pectinase-producing fungi on decaying rotten fruits were studied. Materials and methods: Isolation and screening of pectinase producing fungi performed through plate culture on pectin medium and staining with Lugol's iodine solution. The best strains were identified by ITS1, 4 sequencing as Aspergillus fumigatus, Rhizopus oryzae, Penicilium chrysogenum. The enzyme production was optimized by application of the five factorial design, each at three levels. These factors are carbon sources (whey, glucose and stevia, ammonium sulfate, manganese sulfate, temperature, and pH. Pectinase concentration was measured by the Miller method. Results: The results indicate that optimum condition for enzyme production for three fungi strains was obtained at 32 °C, pH = 6, 3g / L manganese sulfate, 2.75g / L of ammonium sulfate and 10g / L of each carbon source. The best experiment in obtaining the optimum enzyme contained 1.328 mg / ml of glucose for Aspergillus niger 1.284 and 1.039 mg / ml of whey for Rhizopus oryzae and Penicilium chrysogenum. Molecular weight of enzyme was about 40 and 37 kDa which was obtained by SDS- PAGE. Discussion and conclusion: The results indicate that three strains could grow in a wide range of carbon source, pH and temperature, which could be a good candidate for industrial application.

  18. Enzymes as Green Catalysts for Precision Macromolecular Synthesis.

    Science.gov (United States)

    Shoda, Shin-Ichiro; Uyama, Hiroshi; Kadokawa, Jun-Ichi; Kimura, Shunsaku; Kobayashi, Shiro

    2016-02-24

    The present article comprehensively reviews the macromolecular synthesis using enzymes as catalysts. Among the six main classes of enzymes, the three classes, oxidoreductases, transferases, and hydrolases, have been employed as catalysts for the in vitro macromolecular synthesis and modification reactions. Appropriate design of reaction including monomer and enzyme catalyst produces macromolecules with precisely controlled structure, similarly as in vivo enzymatic reactions. The reaction controls the product structure with respect to substrate selectivity, chemo-selectivity, regio-selectivity, stereoselectivity, and choro-selectivity. Oxidoreductases catalyze various oxidation polymerizations of aromatic compounds as well as vinyl polymerizations. Transferases are effective catalysts for producing polysaccharide having a variety of structure and polyesters. Hydrolases catalyzing the bond-cleaving of macromolecules in vivo, catalyze the reverse reaction for bond forming in vitro to give various polysaccharides and functionalized polyesters. The enzymatic polymerizations allowed the first in vitro synthesis of natural polysaccharides having complicated structures like cellulose, amylose, xylan, chitin, hyaluronan, and chondroitin. These polymerizations are "green" with several respects; nontoxicity of enzyme, high catalyst efficiency, selective reactions under mild conditions using green solvents and renewable starting materials, and producing minimal byproducts. Thus, the enzymatic polymerization is desirable for the environment and contributes to "green polymer chemistry" for maintaining sustainable society. PMID:26791937

  19. Effect of solar irradiation on extracellular enzymes of Aeromonas proteolytica

    Science.gov (United States)

    Foster, B. G.

    1973-01-01

    The bacterium Aeromonas proteolytica was selected for studying the effects of solar irradiation on extracellular enzymes because it produces an endopeptidase that is capable of degrading proteins and a hemolysin that is active in lysing human erythrocytes. Possible alterations in the rate of enzyme production in response to the test conditions are currently underway and are not available for this preliminary report. Completed viability studies are indicative that little difference exists among the survival curves derived for cells exposed to various components of ultraviolet irradiation in space.

  20. Alkaline thermostable pectinase enzyme from Aspergillus niger strain MCAS2 isolated from Manaslu Conservation Area, Gorkha, Nepal

    OpenAIRE

    Khatri, Bhim Prakash; Bhattarai, Tribikram; Shrestha, Sangita; Maharjan, Jyoti

    2015-01-01

    Pectinase enzymes are one of the commercially important enzymes having great potential in various industries especially in food industry. Pectinases accounts for 25 % of global food enzymes produced and their market is increasing day by day. Therefore, the exploration of microorganism with novel characteristics has always been the focus of the research. Microorganism dwelling in unique habitat may possess unique characteristics. As such, a pectinase producing fungus Aspergillus niger strain M...

  1. Thermodynamics of Enzyme-Catalyzed Reactions Database

    Science.gov (United States)

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  2. Udfordringer ved undervisning i enzymer

    DEFF Research Database (Denmark)

    Skriver, Karen; Dandanell, Gert; von Stemann, Jakob Hjorth;

    2015-01-01

    Enzymer er et centralt emne i biokemiundervisning. Det forudsætter og anvender grundlæggende viden inden for og kompetencer i kemi og matematik. Artiklen undersøger hvilke forståelsesvanskeligheder og udfordringer der er knyttet til dette område, såvel som virtuelle øvelsers potentiale i denne...

  3. The enzymes associated with denitrification

    Science.gov (United States)

    Hochstein, L. I.; Tomlinson, G. A.

    1988-01-01

    The enzymes involved in the reduction of nitrogenous oxides are thought to be intermediates in denitrification processes. This review examines the roles of nitrate reductase, nitrite reductases, nitric oxide reductase, mechanisms of N-N bond formation, and nitrous oxide reductases.

  4. Isolation of a lipase-producing Trichosporon spp and enzyme extraction by two-phase aqueous system Isolamento de Trichosporon spp produtor de lipase e extração enzimática pelo sistema bifásico aquoso

    OpenAIRE

    Juliana A. Santos; Marcel C.O. Amaral; Thiago A.S. Araújo; Késsia G.C. Fernandes; Adilson C. Chaves; Morais, Márcia M. C.

    2007-01-01

    A lipase-producing yeast strain isolated from crude cheese and identified as Trichosporon spp produced 7.3 U/mL (59.3 U/µg) after 72h of cultivation. Lipase showed optimum activity at pH 7.0-8.0 and 45-50ºC. Extraction by the two-phase aqueous system (PEG-phosphate salts) showed an elevated recuperation (99.8%) of enzymatic activity in the PEG phase.Uma levedura produtora de lipase isolada de queijo coalho e identificada como Trichosporon spp produziu 7,3 U/mL (59,3 U/µg) após 72h de cultivo....

  5. MICROBIAL ENZYME ACTIVITY FOR CHARACTERIZING NUTRIENT LOADING TO GREAT LAKES COASTAL WETLANDS

    Science.gov (United States)

    Energy and material flows in aquatic ecosystems are mediated by microbial carbon and nutrient cycling. Extracellular enzymes produced by the microbial community aid in the degradation of organic matter and the resultant acquisition of limiting nutrients. Organic carbon sequestrat...

  6. Effect of ionizing radiation on enzymes. VII

    International Nuclear Information System (INIS)

    The effect was examined of gamma radiation on the efficacy of cellulase irradiated with doses graded from 10 to 120 kGy. The results were statistically evaluated. The dose dependence of inactivation corresponds to the course of the decrease in efficacy of pancreatic proteolytic enzymes and pepsin investigated in previous communications. In the semilogarithmical arrangement of the graph this dependence is linear. It can be seen from the graph that a dose of 10 kGy, usually sufficient to achieve microbiological indefectibility, produces an approximately 7% loss in efficacy. With a dose of 25 kGy necessary to achieve sterility, cellulase already loses approximately 17% of its efficacy. With 120 kGy, the largest dose used, the efficacy was reduced to only 47.9%. (author) 3 figs., 1 tab., 13 refs

  7. 7 CFR 58.436 - Rennet, pepsin, other milk clotting enzymes and flavor enzymes.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Rennet, pepsin, other milk clotting enzymes and flavor enzymes. 58.436 Section 58.436 Agriculture Regulations of the Department of Agriculture (Continued... clotting enzymes and flavor enzymes. Enzyme preparations used in the manufacture of cheese shall be...

  8. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation.

    Science.gov (United States)

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-07-22

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. PMID:27302062

  9. Cost-effective lignocellulolytic enzyme production by Trichoderma reesei on a cane molasses medium

    OpenAIRE

    He, Jun; Wu, Ai-Min; Chen, Daiwen; Yu, Bing; Mao, Xiangbing; Zheng, Ping; Yu, Jie; Tian, Gang

    2014-01-01

    Background Cane molasses, an important residue of the sugar industry, have the potential as a cost-effective carbon source that could serve as nutrients for industrial enzyme-producing microorganisms, especially filamentous fungi. However, the enzyme mixtures produced in such a complex medium are poorly characterized. In this study, the secretome of Trichoderma reesei grown on a cane molasses medium (CMM) as well as on a lactose-based conventional medium (LCM) were compared and analyzed by us...

  10. Optimization of pectinase enzyme production in Aspergillus fumigatus isolated from rotten fruits

    OpenAIRE

    2015-01-01

    Introduction: Pectinase is one of the most important industrial enzymes which was isolated from a wide variety of microorganisms such as bacteria and filamentous fungi. This enzyme has been usually used in the juice and textile industry. In this study, the isolation and optimization of pectinase-producing fungi on decaying rotten fruits were studied. Materials and methods: Isolation and screening of pectinase producing fungi have been done by plate culture on pectin medium and staining wi...

  11. Boosting Farm Produce Supply

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In the wake of escalating inflation,securing farm produce supply and stablizing grain prices could help to alleviate economic pressure The Chinese Government has pledged to secure a stable supply of farm produce.According to a document released after the annual Central Rural Work Conference held on December 22-23 in Beijing,preventing short supplies of farm produce and avoiding"ex-

  12. Lithuanian biochemist builds enzyme empire

    Energy Technology Data Exchange (ETDEWEB)

    Dickman, S.

    1992-09-11

    Vidas Janulaitis is professor of biochemistry at the University of Vilnius, head of the Institute of Applied Enzymology - and creator of one of the world's largest collections of restriction enzymes, with more than 100 on offer. He also appears to be the first successful biotechnology entrepreneur to emerge from the former Soviet Union. This paper shows how Janulaitis managed to rise above the chaos that has accompanied the dismantlement of the Soviet Union to become one of the world's top suppliers of new restriction enzymes - especially given that the venture capitalists who rushed off to make deals with Moscow labs in the early days of perestroika mostly came back disappointed.

  13. Metrological aspects of enzyme production

    Science.gov (United States)

    Kerber, T. M.; Dellamora-Ortiz, G. M.; Pereira-Meirelles, F. V.

    2010-05-01

    Enzymes are frequently used in biotechnology to carry out specific biological reactions, either in industrial processes or for the production of bioproducts and drugs. Microbial lipases are an important group of biotechnologically valuable enzymes that present widely diversified applications. Lipase production by microorganisms is described in several published papers; however, none of them refer to metrological evaluation and the estimation of the uncertainty in measurement. Moreover, few of them refer to process optimization through experimental design. The objectives of this work were to enhance lipase production in shaken-flasks with Yarrowia lipolytica cells employing experimental design and to evaluate the uncertainty in measurement of lipase activity. The highest lipolytic activity obtained was about three- and fivefold higher than the reported activities of CRMs BCR-693 and BCR-694, respectively. Lipase production by Y. lipolytica cells aiming the classification as certified reference material is recommended after further purification and stability studies.

  14. Metrological aspects of enzyme production

    International Nuclear Information System (INIS)

    Enzymes are frequently used in biotechnology to carry out specific biological reactions, either in industrial processes or for the production of bioproducts and drugs. Microbial lipases are an important group of biotechnologically valuable enzymes that present widely diversified applications. Lipase production by microorganisms is described in several published papers; however, none of them refer to metrological evaluation and the estimation of the uncertainty in measurement. Moreover, few of them refer to process optimization through experimental design. The objectives of this work were to enhance lipase production in shaken-flasks with Yarrowia lipolytica cells employing experimental design and to evaluate the uncertainty in measurement of lipase activity. The highest lipolytic activity obtained was about three- and fivefold higher than the reported activities of CRMs BCR-693 and BCR-694, respectively. Lipase production by Y. lipolytica cells aiming the classification as certified reference material is recommended after further purification and stability studies

  15. Enzyme recovery using reversed micelles.

    OpenAIRE

    Dekker, M.

    1990-01-01

    The objective of this study was to develop a liquid-liquid extraction process for the recovery of extracellular enzymes. The potentials of reaching this goal by using reversed micelles in an organic solvent have been investigated.Reversed micelles are aggregates of surfactant molecules containing an inner core of water molecules, dispersed in a continuous organic solvent medium. The considerable biotechnological potential of these systems is derived principally from the ability of the water d...

  16. Immobilised enzymes in biorenewable production

    OpenAIRE

    Franssen, M.C.R.; Steunenberg, P.; Scott, E.L.; Zuilhof, H.; Sanders, J.P.M.

    2013-01-01

    Oils, fats, carbohydrates, lignin, and amino acids are all important raw materials for the production of biorenewables. These compounds already play an important role in everyday life in the form of wood, fabrics, starch, paper and rubber. Enzymatic reactions do, in principle, allow the transformation of these raw materials into biorenewables under mild and sustainable conditions. There are a few examples of processes using immobilised enzymes that are already applied on an industrial scale, ...

  17. Early-branching Gut Fungi Possess A Large, And Comprehensive Array Of Biomass-Degrading Enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, Kevin V.; Haitjema, Charles; Henske, John K.; Gilmore, Sean P.; Borges-Rivera, Diego; Lipzen, Anna; Brewer, Heather M.; Purvine, Samuel O.; Wright, Aaron T.; Theodorou, Michael K.; Grigoriev, Igor V.; Regev, Aviv; Thompson, Dawn; O' Malley, Michelle A.

    2016-03-11

    The fungal kingdom is the source of almost all industrial enzymes in use for lignocellulose bioprocessing. Its more primitive members, however, remain relatively unexploited. We developed a systems-level approach that integrates RNA-Seq, proteomics, phenotype and biochemical studies of relatively unexplored early-branching free-living fungi. Anaerobic gut fungi isolated from herbivores produce a large array of biomass-degrading enzymes that synergistically degrade crude, unpretreated plant biomass, and are competitive with optimized commercial preparations from Aspergillus and Trichoderma. Compared to these model platforms, gut fungal enzymes are unbiased in substrate preference due to a wealth of xylan-degrading enzymes. These enzymes are universally catabolite repressed, and are further regulated by a rich landscape of noncoding regulatory RNAs. Furthermore, we identified several promising sequence divergent enzyme candidates for lignocellulosic bioprocessing.

  18. Natural, Culinary Fruit Peels as a Potential substr ate for Pectinolytic Enzyme

    Directory of Open Access Journals (Sweden)

    PRAVEEN KUMAR. G

    2014-09-01

    Full Text Available Pectinases or Pectinolytic enzymes are the one which have broadest applications in the food processing, alcoholic beverages and textiles industries. These enzymes are chiefly produced from the plants and microorganisms. The fruit peels are regarded as waste by most of the industries. And the disposal of them becomes the serious problem, as it leads to the environmental pollution. On the other hand, it is of low-cost and it contains pectin, a natural substrate that contains selective chemical compound which is suitable for the production of pectinase enzyme. This review mainly concerned about the selection ofsubstrate as peels and the production of pectinolytic enzymes using different fruit peels, comparison of fermentation method that is suitable for enzyme production using peels as substrates, different enzyme assay methods, computer software controller for fermentation used and also applications of pectinase.

  19. Substrate mediated enzyme prodrug therapy.

    Directory of Open Access Journals (Sweden)

    Betina Fejerskov

    Full Text Available In this report, we detail Substrate Mediated Enzyme Prodrug Therapy (SMEPT as a novel approach in drug delivery which relies on enzyme-functionalized cell culture substrates to achieve a localized conversion of benign prodrug(s into active therapeutics with subsequent delivery to adhering cells or adjacent tissues. For proof-of-concept SMEPT, we use surface adhered micro-structured physical hydrogels based on poly(vinyl alcohol, β-glucuronidase enzyme and glucuronide prodrugs. We demonstrate enzymatic activity mediated by the assembled hydrogel samples and illustrate arms of control over rate of release of model fluorescent cargo. SMEPT was not impaired by adhering cells and afforded facile time - and dose - dependent uptake of the in situ generated fluorescent cargo by hepatic cells, HepG2. With the use of a glucuronide derivative of an anticancer drug, SN-38, SMEPT afforded a decrease in cell viability to a level similar to that achieved using parent drug. Finally, dose response was achieved using SMEPT and administration of judiciously chosen concentration of SN-38 glucuronide prodrug thus revealing external control over drug delivery using drug eluting surface. We believe that this highly adaptable concept will find use in diverse biomedical applications, specifically surface mediated drug delivery and tissue engineering.

  20. Lipid peroxidation and antioxidant enzymes in male infertility.

    Directory of Open Access Journals (Sweden)

    Dandekar S

    2002-07-01

    Full Text Available BACKGROUND AND AIM: Mammalian spermatozoa are rich in polyunsaturated fatty acids and are very susceptible to attack by reactive oxygen species (ROS and membrane lipid peroxide ion. Normally a balance is maintained between the amount of ROS produced and that scavenged. Cellular damage arises when this equilibrium is disturbed. A shift in the levels of ROS towards pro-oxidants in semen and vaginal secretions can induce an oxidative stress on spermatozoa. The aim was to study lipid peroxidation and antioxidant enzymes such as catalase, glutathione peroxidase and superoxide dismutase (SOD and to correlate the same, with the ′water test′, in male infertility. SETTINGS: Experimental study. SUBJECTS AND METHODS: Ejaculates from a total of 83 infertile and fertile healthy individuals were obtained. Lipid peroxidation and antioxidant enzyme levels were studied and correlated with water test. RESULTS: The results indicate that (i the antioxidant enzyme catalase showed no significant changes in the various pathological samples, (ii antioxidant enzymes SOD and glutathione peroxidase correlate positively with asthenozoospermic samples and (iii the degree of lipid peroxidation also correlates positively with the poorly swollen sperm tails. The increase in SOD and glutathione peroxidase values, in the pathological cases represents an attempt made to overcome the reactive oxygen species. CONCLUSION: Water test could be used as a preliminary marker test for sperm tail damage by reactive oxygen species, since it correlates very well with lipid peroxidation and antioxidant enzymes.

  1. Digestive enzymes from workers and soldiers of termite Nasutitermes corniger.

    Science.gov (United States)

    Lima, Thâmarah de Albuquerque; Pontual, Emmanuel Viana; Dornelles, Leonardo Prezzi; Amorim, Poliana Karla; Sá, Roberto Araújo; Coelho, Luana Cassandra Breitenbach Barroso; Napoleão, Thiago Henrique; Paiva, Patrícia Maria Guedes

    2014-10-01

    The digestive apparatus of termites may have several biotechnological applications, as well as being a target for pest control. This report discusses the detection of cellulases (endoglucanase, exoglucanase, and β-glucosidase), hemicellulases (β-xylosidase, α-l-arabinofuranosidase, and β-d-xylanase), α-amylase, and proteases (trypsin-like, chymotrypsin-like, and keratinase-type) in gut extracts from Nasutitermes corniger workers and soldiers. Additionally, the effects of pH (3.0-11.0) and temperature (30-100°C) on enzyme activities were evaluated. All enzymes investigated were detected in the gut extracts of worker and soldier termites. Endoglucanase and β-xylanase were the main cellulase and hemicellulase, respectively. Zymography for proteases of worker extracts revealed polypeptides of 22, 30, and 43kDa that hydrolyzed casein, and assays using protease inhibitors showed that serine proteases were the main proteases in worker and soldier guts. The determined enzyme activities and their response to different pH and temperature values revealed that workers and soldiers contained a distinct digestive apparatus. The ability of these termites to efficiently digest the main components of lignocellulosic materials stimulates the purification of gut enzymes. Further investigation into their biotechnological potential as well as whether the enzymes detected are produced by the termites or by their symbionts is needed. PMID:25026598

  2. Detoxification of azo dyes by bacterial oxidoreductase enzymes.

    Science.gov (United States)

    Mahmood, Shahid; Khalid, Azeem; Arshad, Muhammad; Mahmood, Tariq; Crowley, David E

    2016-08-01

    Azo dyes and their intermediate degradation products are common contaminants of soil and groundwater in developing countries where textile and leather dye products are produced. The toxicity of azo dyes is primarily associated with their molecular structure, substitution groups and reactivity. To avoid contamination of natural resources and to minimize risk to human health, this wastewater requires treatment in an environmentally safe manner. This manuscript critically reviews biological treatment systems and the role of bacterial reductive and oxidative enzymes/processes in the bioremediation of dye-polluted wastewaters. Many studies have shown that a variety of culturable bacteria have efficient enzymatic systems that can carry out complete mineralization of dye chemicals and their metabolites (aromatic compounds) over a wide range of environmental conditions. Complete mineralization of azo dyes generally involves a two-step process requiring initial anaerobic treatment for decolorization, followed by an oxidative process that results in degradation of the toxic intermediates that are formed during the first step. Molecular studies have revealed that the first reductive process can be carried out by two classes of enzymes involving flavin-dependent and flavin-free azoreductases under anaerobic or low oxygen conditions. The second step that is carried out by oxidative enzymes that primarily involves broad specificity peroxidases, laccases and tyrosinases. This review focuses, in particular, on the characterization of these enzymes with respect to their enzyme kinetics and the environmental conditions that are necessary for bioreactor systems to treat azo dyes contained in wastewater. PMID:25665634

  3. Biologically produced sulfur

    NARCIS (Netherlands)

    Kleinjan, W.E.; Keizer, de A.; Janssen, A.J.H.

    2003-01-01

    Sulfur compound oxidizing bacteria produce sulfur as an intermediate in the oxidation of hydrogen sulfide to sulfate. Sulfur produced by these microorganisms can be stored in sulfur globules, located either inside or outside the cell. Excreted sulfur globules are colloidal particles which are stabil

  4. Fabricating and imaging carbon-fiber immobilized enzyme ultramicroelectrodes with scanning electrochemical microscopy.

    Science.gov (United States)

    Ge, F; Tenent, R C; Wipf, D O

    2001-01-01

    The scanning electrochemical microscope (SECM) is used to image the activity of enzymes immobilized on the surfaces of disk-shaped carbon-fiber electrodes. SECM was used to map the concentration of enzymatically produced hydroquinone or hydrogen peroxide at the surface of a 33-microm diameter disk-shaped carbon-fiber electrode modified by an immobilized glucose-oxidase layer. Sub-monolayer coverage of the enzyme at the electrode surface could be detected with micrometer resolution. The SECM was also employed as a surface modification tool to produce microscopic regions of enzyme activity by using a variety of methods. One method is a gold-masking process in which microscopic gold patterns act as mask for producing patterns of chemical modification. The gold masks allow operation in both a positive or negative process for patterning enzyme activity. A second method uses the direct mode of the SECM to produce covalently attached amine groups on the carbon surface. The amine groups are anchors for attachment of glucose oxidase by use of a biotin/avidin process. The effect of non-uniform enzyme activity was investigated by using the SECM tip to temporarily damage an immobilized enzyme surface. SECM imaging can observe the spatial extent and time-course of the enzyme recovery process. PMID:11993673

  5. The rumen: a unique source of enzymes for enhancing livestock production.

    Science.gov (United States)

    Selinger, L B; Forsberg, C W; Cheng, K J

    1996-10-01

    Increasing competition in the livestock industry has forced producers to cut costs by adopting new technologies aimed at increasing production efficiency. One particularly promising technology is feeding enzymes as supplements for animal diets. Supplementation of diets for non-ruminants (e.g., swine and poultry) with fibrolytic enzymes, such as cellulases, xylanases and beta-glucanases, increases the feed conversion efficiency and growth rate of the animals. Enzymatic hydrolysis of plant cell wall polymers (e.g., cellulose, xylan, beta-glucans) releases glucose and xylose and eliminates the antinutritional effects of beta-glucans and arabinoxylans. Enzyme supplementation of diets for ruminants has also been shown to improve growth performance, even though the rumen itself represents the most potent fibrolytic fermentation system known. Implementation of this technology in the livestock industry has been limited largely because of the cost of development and production of enzymes. Over the last decade, however, developments in recombinant DNA technology have increased the efficiency of existing microbial production systems and facilitated exploitation of alternative sources of industrial enzymes. The ruminal ecosystem is among the novel enzyme sources currently being explored. Understanding the role of enzymes in feed digestion through characterization of the enzymology and genetics involved in digestion of feedstuffs by ruminants will provide insight required to improve the products currently available to producers. Characterization of genes encoding a variety of hydrolytic enzymes, such as cellulases, xylanases, beta-glucanases, amylases, pectinases, proteases, phytases and tannases, will foster the development of more efficacious enzyme supplements and enzyme expression systems for enhancing nutrient utilization by domestic animals. Characteristics of the original source organism need no longer restrict the production of a useful enzyme. Recent reports of

  6. Avaliação de métodos para manutenção e preservação de bactéria esporulada produtora da enzima CGTase - DOI: 10.4025/actascihealthsci.v31i2.6910 Evaluation of methods for maintenance and preservation of sporulating bacteria producer of CGTase enzyme- DOI: 10.4025/actascihealthsci.v31i2.6910

    Directory of Open Access Journals (Sweden)

    Cristiane Moriwaki

    2009-09-01

    Full Text Available A conservação de células sem mudanças morfológicas, fisiológicas ou genéticas é uma necessidade da biotecnologia. Bacillus firmus cepa 37 é uma bactéria esporulada produtora da enzima ciclodextrina glicosiltransferase (CGTase, que transforma o amido em ciclodextrinas (CDs. O objetivo deste estudo foi avaliar a manutenção e preservação de B. firmus cepa 37 estocada em meio de cultivo sólido, solo estéril e em glicerol a baixa temperatura (-70ºC. Para avaliação do melhor método de manutenção da bactéria foram utilizados procedimentos de imobilização das células em matrizes inorgânicas. As células imobilizadas foram submetidas ao teste do efeito da biomassa inicial e à microscopia eletrônica de varredura (MEV. O repique não foi um método adequado, pois a cepa diminuiu a produção de CGTase. A estocagem em solo estéril mostrou-se eficaz e a produção da enzima mantida constante. A conservação a baixas temperaturas também foi satisfatória, com contagem de células praticamente a mesma após 360 dias. A imobilização, avaliada por MEV, não mostrou diferença na adsorção das células conservadas pelos diferentes métodos. O mesmo ocorreu para o teste do efeito da biomassa inicial, que apresentou maior produção de beta-CD quando do uso de 1,5 g de células.The conservation of cells without morphologic, physiologic or genetic changes is a biotechnology necessity. Bacillus firmus strain 37 is a sporulating bacteria that produces the cyclodextrin glycosyltransferase (CGTase enzyme, which transforms starch into cyclodextrins (CDs. This study aimed to evaluate the maintenance and preservation of B. firmus strain 37 stored in a solid medium, sterile soil and in glycerol at low temperature (-70ºC. In order to evaluate the best bacteria maintenance method, cell immobilization procedures were used on inorganic matrices. The immobilized cells were submitted to the initial biomass effect test and scanning electron

  7. Extracellular enzyme kinetics scale with resource availability

    Science.gov (United States)

    Microbial community metabolism relies on external digestion, mediated by extracellular enzymes that break down complex organic matter into molecules small enough for cells to assimilate. We analyzed the kinetics of 40 extracellular enzymes that mediate the degradation and assimi...

  8. Engineered microorganisms capable of producing target compounds under anaerobic conditions

    Science.gov (United States)

    Buelter, Thomas; Meinhold, Peter; Feldman, Reid M. Renny; Hawkins, Andrew C.; Urano, Jun; Bastian, Sabine; Arnold, Frances

    2012-01-17

    The present invention is generally provides recombinant microorganisms comprising engineered metabolic pathways capable of producing C3-C5 alcohols under aerobic and anaerobic conditions. The invention further provides ketol-acid reductoisomerase enzymes which have been mutated or modified to increase their NADH-dependent activity or to switch the cofactor preference from NADPH to NADH and are expressed in the modified microorganisms. In addition, the invention provides isobutyraldehyde dehydrogenase enzymes expressed in modified microorganisms. Also provided are methods of producing beneficial metabolites under aerobic and anaerobic conditions by contacting a suitable substrate with the modified microorganisms of the present invention.

  9. Plants producing biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Papavinasam, S. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Materials Technology Lab

    2009-08-15

    Biofuels are currently produced primarily from five plants, namely corn, canola, sugar cane, palm oil, jatropha. However, research and development efforts are underway around the world produce biofuels from other sources, particularly from algae. This paper described the characteristics of the top 5 plants and their role in the production of biofuels. Countries where these plants are cultivated were also summarized. The article indicated that producing ethanol from corn, is not very efficient since growing corn requires more fertilizer and pesticides than most other crops, plus the corn kernels have to undergo energy-intensive distillation and chemical extraction processes. China is the world's largest producer of rapeseed oil, with an annual production of 12 million tons. The countries of the European Union collectively produce another 16 million tons, of which nearly 4 million tons were used in 2006 to produce biodiesel. Brazil is the world's largest producer of sugar cane, and accounts for about 45 per cent of global ethanol production. Malaysia and Indonesia are the key players in the palm oil market, accounting for 85 per cent of global production. India has identified more than 11 million hectares that would be suitable for growing jatropha, whose seeds contain up to 40 per cent oil that can be burned in a conventional diesel engine after extraction. 1 tab.

  10. The Application of Enzyme and Yeast

    OpenAIRE

    Zhao, Qing

    2012-01-01

    This bachelor’s thesis concerns the application of enzymes and yeasts for bio-industry. The purpose of this work is to understand the basic knowledge about enzyme and yeast, and meanwhile, to find out their different applications. Through comprehensive study, the knowledge was accumulated which brought a clear understanding for the enzyme structure and yeast microorganism, together with their working principles for the bioprocess. For wood-based industry, the different enzymes used in bi...

  11. METHOD OF PRODUCING NEUTRONS

    Science.gov (United States)

    Imhoff, D.H.; Harker, W.H.

    1964-01-14

    This patent relates to a method of producing neutrons in which there is produced a heated plasma containing heavy hydrogen isotope ions wherein heated ions are injected and confined in an elongated axially symmetric magnetic field having at least one magnetic field gradient region. In accordance with the method herein, the amplitude of the field and gradients are varied at an oscillatory periodic frequency to effect confinement by providing proper ratios of rotational to axial velocity components in the motion of said particles. The energetic neutrons may then be used as in a blanket zone containing a moderator and a source fissionable material to produce heat and thermal neutron fissionable materials. (AEC)

  12. Activation of interfacial enzymes at membrane surfaces

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Andresen, Thomas Lars; Halperin, Avi; Hansen, Per Lyngs; Jakobsen, Ask F.; Bernchou Jensen, Uffe; Jensen, Morten Ø.; Jørgensen, Kent; Kaasgaard, Thomas; Leidy, Chad; Simonsen, Adam Cohen; Peters, Günther H.J.; Weiss, Matthias

    2006-01-01

    A host of water-soluble enzymes are active at membrane surfaces and in association with membranes. Some of these enzymes are involved in signalling and in modification and remodelling of the membranes. A special class of enzymes, the phospholipases, and in particular secretory phospholipase A2 (s...

  13. 21 CFR 864.4400 - Enzyme preparations.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Enzyme preparations. 864.4400 Section 864.4400...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Specimen Preparation Reagents § 864.4400 Enzyme preparations. (a) Identification. Enzyme preparations are products that are used in the...

  14. Immobilization of Enzymes in Polymer Supports.

    Science.gov (United States)

    Conlon, Hugh D.; Walt, David R.

    1986-01-01

    Two experiments in which an enzyme is immobilized onto a polymeric support are described. The experiments (which also demonstrate two different polymer preparations) involve: (1) entrapping an enzyme in an acrylamide polymer; and (2) reacting the amino groups on the enzyme's (esterase) lysine residues with an activated polymer. (JN)

  15. The ENZYME data bank in 1999.

    Science.gov (United States)

    Bairoch, A

    1999-01-01

    The ENZYME data bank is a repository of information related to the nomenclature of enzymes. In recent years it has become an indispensable resource for the development of metabolic databases. The current version contains information on 3704 enzymes. It is available through the ExPASy WWW server (http://www.expasy.ch/). PMID:9847212

  16. The ENZYME data bank in 1995.

    Science.gov (United States)

    Bairoch, A

    1996-01-01

    The ENZYME data bank is a repository of information relative to the nomenclature of enzymes. The current version (October 1995) contains information relevant to 3594 enzymes. It is available from a variety of file and ftp servers as well as through the ExPASy World Wide Web server (http://expasy.hcuge.ch/). PMID:8594586

  17. Inhibition of existing denitrification enzyme activity by chloramphenicol.

    OpenAIRE

    Brooks, M H; Smith, R L; Macalady, D L

    1992-01-01

    Chloramphenicol completely inhibited the activity of existing denitrification enzymes in acetylene-block incubations with (i) sediments from a nitrate-contaminated aquifer and (ii) a continuous culture of denitrifying groundwater bacteria. Control flasks with no antibiotic produced significant amounts of nitrous oxide in the same time period. Amendment with chloramphenicol after nitrous oxide production had begun resulted in a significant decrease in the rate of nitrous oxide production. Chlo...

  18. Heterologous Expression of Xylanase Enzymes in Lipogenic Yeast Yarrowia lipolytica

    OpenAIRE

    Wang, Wei; Wei, Hui; Alahuhta, Markus; Chen, Xiaowen; Hyman, Deborah; Johnson, David K; Zhang, Min; Himmel, Michael E.

    2014-01-01

    To develop a direct microbial sugar conversion platform for the production of lipids, drop-in fuels and chemicals from cellulosic biomass substrate, we chose Yarrowia lipolytica as a viable demonstration strain. Y. lipolytica is known to accumulate lipids intracellularly and is capable of metabolizing sugars to produce lipids; however, it lacks the lignocellulose-degrading enzymes needed to break down biomass directly. While research is continuing on the development of a Y. lipolytica strain ...

  19. Detection of Extracellular enzymes Activities in Various Fusarium spp.

    OpenAIRE

    Kwon, Hyuk Woo; Yoon, Ji Hwan; Kim, Seong Hwan; Hong, Seung Beom; Cheon, Youngah; Ko, Seung Ju

    2007-01-01

    Thirty seven species of Fusarium were evaluated for their ability of producing extracellular enzymes using chromogenic medium containing substrates such as starch, cellobiose, CM-cellulose, xylan, and pectin. Among the tested species Fusarium mesoamericanum, F. graminearum, F. asiaticum, and F. acuminatum showed high β-glucosidase acitivity. Xylanase activity was strongly detected in F. proliferatum and F. oxysporum. Strong pectinase activity was also found in F. oxysporum and F. proliferatum...

  20. Structural basis for enzyme I inhibition by α-ketoglutarate

    OpenAIRE

    Venditti, Vincenzo; Ghirlando, Rodolfo; Clore, G. Marius

    2013-01-01

    Creating new bacterial strains in which carbon and nitrogen metabolism are uncoupled, is potentially very useful for optimizing yields of microbial produced chemicals from renewable carbon sources. The mechanisms, however, that balance carbon and nitrogen consumption in bacteria are poorly understood. Recently, α-ketoglutarate (αKG), the carbon substrate for ammonia assimilation, has been observed to inhibit Escherichia coli enzyme I (EI), the first component of the bacterial phosphotransfera...

  1. Studies on the gonococcal IgA1 protease II. Improved methods of enzyme purification and production of monoclonal antibodies to the enzyme.

    Science.gov (United States)

    Blake, M S; Eastby, C

    1991-11-22

    Two types of extremely active proteases that cleave human IgA1 are produced by pathogenic Neisseria in minute concentrations. To study the antigenicity of these enzymes, a simplified method is described to purify these enzymes from large batch cultures to obtain a sufficient quantity of these IgA1 proteases to study these characteristics. In addition, we describe the production of both rabbit polyclonal and mouse monoclonal antibodies to one of these enzymes. One such monoclonal antibody seemed directed toward the active site of the IgA1 protease and inhibited its enzymatic activity. PMID:1960418

  2. Agricultural Producer Certificates

    Data.gov (United States)

    Montgomery County of Maryland — A Certified Agricultural Producer, or representative thereof, is an individual who wishes to sell regionally-grown products in the public right-of-way. A Certified...

  3. Curious cases of the enzymes

    OpenAIRE

    Ulusu, Nuriye Nuray

    2015-01-01

    Life as we know it heavily relies on biological catalysis, in fact, in a very nonromantic version of it, life could be considered as a series of chemical reactions, regulated by the guarding principles of thermodynamics. In ancient times, a beating heart was a good sign of vitality, however, to me, it is actually the presence of active enzymes that counts. Though we do not usually pay attention, the history of enzymology is as old as humanity itself, and dates back to the ancient times. This ...

  4. Curious cases of the enzymes

    OpenAIRE

    Ulusu Nuriye Nuray

    2015-01-01

    J Med Biochem 2015; 34 (3) DOI: 10.2478/jomb-2014-0045 UDK 577. 1 : 61 ISSN 1452-8258 J Med Biochem 34: 271–281, 2015 Review article Pregledni ~lanak CURIOUS CASES OF THE ENZYMES NEOBI^NA ISTORIJA ENZIMA Nuriye Nuray Ulusu Koç University, School of Medicine, Sariyer-Istanbul, Turkey Address for correspondence: N. Nuray Ulusu, PhD Koç University School of Medicine Professor of Biochemistry Rumelifeneri Yolu Sarıyer-Istanbul – Turkey Phone: +90 (212)...

  5. Identification of a novel fungus, Leptosphaerulina chartarum SJTU59 and characterization of its xylanolytic enzymes.

    Directory of Open Access Journals (Sweden)

    Qiong Wu

    Full Text Available Xylanolytic enzymes are widely used in processing industries, e.g., pulp and paper, food, livestock feeds, and textile. Furthermore, certain xylanotic enzymes have demonstrated the capability to improve the resistance and immunity of plants. Screening of high-yield microbial xylanolytic enzyme producers is significant for improving large-scale cost-effective xylanolytic enzyme production. This study provided new evidence of high-level xylanolytic enzyme production by a novel fungus, designated Leptosphaerulina chartarum SJTU59. Under laboratory conditions, L. chartarum SJTU59 produced xylanolytic enzymes of up to 17.566 U/mL (i.e., 878.307 U/g substrate. The enzyme solution was relatively stable over a wide range of pH (pH 3.0 to pH 9.0 and temperature (40°C to 65°C while showing high resistance to the majority of metal ions tested. Composition analysis of the hydrolytic products of xylan showed sufficient degradation by xylanolytic enzymes from L. chartarum SJTU59, mainly the monosaccharide xylose, and a small amount of xylobiose were enzymatically produced; whereas in the presence of sufficient xylan substrates, mainly xylooligosaccharides, an emerging prebiotic used in food industry, were produced. In addition, the xylanolytic enzyme preparation from L. chartarum SJTU59 could initiate tissue necrosis and oxidative burst in tobacco leaves, which may be related to enhanced plant defense to adversity and disease. L. chartarum SJTU59 possessed a complex xylanolytic enzyme system, from which two novel endo-β-1,4-xylanases of the glycoside hydrolase (GH family 10, one novel endo-β-1,4-xylanase of the GH family 11, and one novel β-xylosidase of the GH family 43 were obtained via rapid amplification of complementary DNA ends. Given the high yield and stable properties of xylanolytic enzymes produced by L. chartarum SJTU59, future studies will be conducted to characterize the properties of individual xylanolytic enzymes from L. chartarum SJTU59

  6. Selection of lipase-producing microorganisms through submerged fermentation.

    Science.gov (United States)

    Colla, Luciane Maria; Primaz, Andreiza Lazzarotto; Benedetti, Silvia; Loss, Raquel Aparecida; de Lima, Marieli; Reinehr, Christian Oliveira; Bertolin, Telma Elita; Costa, Jorge Alberto Vieira

    2010-01-01

    Lipases are enzymes used in various industrial sectors such as food, pharmaceutical and chemical synthesis industries. The selection of microorganisms isolated from soil or wastewater is an alternative to the discovery of new species with high enzymes productivity and with different catalytic activities. In this study, the selection of lipolytic fungi was carried out by submerged fermentation. A total of 27 fungi were used, of which 20 were isolated from dairy effluent and 7 from soil contaminated with diesel oil. The largest producers were the fungi Penicillium E-3 with maximum lipolytic activity of 2.81 U, Trichoderma E-19 and Aspergillus O-8 with maximum activities of 2.34 and 2.03 U where U is the amount of enzyme that releases 1 micromol of fatty acid per min per mL of enzyme extract. The fungi had maximum lipolytic activities on the 4th day of fermentation. PMID:20737918

  7. Antibody directed enzyme prodrug therapy: Discovery of novel genes, isolation of novel gene variants and production of long acting drugs for efficient cancer treatment

    NARCIS (Netherlands)

    Goda, S.K.; AlQahtani, A.; Rashidi, F.A.; Dömling, A.

    2015-01-01

    Background: Cancer accounts for 13% of the mortality rate worldwide. Antibody-Directed Enzyme Prodrug Therapy (ADEPT) is a novel strategy to improve the selectivity of cancer treatment. The ADEPT uses the bacterial enzyme, glucarpidase to produce the antibody-enzyme complex. Also the glucarpidase is

  8. Evaluation of a Hypocrea jecorina Enzyme Preparation for Hydrolysis of Tifton 85 Bermudagrass

    Science.gov (United States)

    Ximenes, E. A.; Brandon, S. K.; Doran-Peterson, J.

    Tifton 85 bermudagrass, developed at the ARS-USDA in Tifton, GA, is grown on over ten million acres in the USA for hay and forage. Of the bermudagrass cultivars, Tifton 85 exhibits improved digestibility because the ratio of ether- to ester-linked phenolic acids has been lowered using traditional plant breeding techniques. A previously developed pressurized batch hot water (PBHW) method was used to treat Tifton 85 bermudagrass for enzymatic hydrolysis. Native grass (untreated) and PBHW-pretreated material were compared as substrates for fungal cultivation to produce enzymes. Cellulase activity, measured via the filter paper assay, was higher for fungi cultivated on PBHW-pretreated grass, whereas the other nine enzyme assays produced higher activities for the untreated grass. Ferulic acid and vanillin levels increased significantly for the enzyme preparations produced using PBHW-pretreated grass and the release of these phenolic compounds may have contributed to the observed reduction in enzyme activities. Culture supernatant from Tifton 85 bermudagrass-grown fungi were combined with two commercial enzyme preparations and the enzyme activity profiles are reported. The amount of reducing sugar liberated by the enzyme mixture from Hypocrea jecorina (after 192 h incubation with untreated bermudagrass) individually or in combination with feruloyl esterase was 72.1 and 84.8%, respectively, of the commercial cellulase preparation analyzed under the same conditions.

  9. DNA-Based Enzyme Reactors and Systems

    Directory of Open Access Journals (Sweden)

    Veikko Linko

    2016-07-01

    Full Text Available During recent years, the possibility to create custom biocompatible nanoshapes using DNA as a building material has rapidly emerged. Further, these rationally designed DNA structures could be exploited in positioning pivotal molecules, such as enzymes, with nanometer-level precision. This feature could be used in the fabrication of artificial biochemical machinery that is able to mimic the complex reactions found in living cells. Currently, DNA-enzyme hybrids can be used to control (multi-enzyme cascade reactions and to regulate the enzyme functions and the reaction pathways. Moreover, sophisticated DNA structures can be utilized in encapsulating active enzymes and delivering the molecular cargo into cells. In this review, we focus on the latest enzyme systems based on novel DNA nanostructures: enzyme reactors, regulatory devices and carriers that can find uses in various biotechnological and nanomedical applications.

  10. Enzyme extraction by ultrasound from sludge flocs

    Institute of Scientific and Technical Information of China (English)

    YU Guanghui; HE Pinjing; SHAO Liming; ZHU Yishu

    2009-01-01

    Enzymes play essential roles in the biological processes of sludge treatment. In this article, the ultrasound method to extract enzymes from sludge flocs was presented. Results showed that using ultrasound method at 20 kHz could extract more types of enzymes than that ultrasound at 40 kHz and ethylenediamine tetraacetic acid (EDTA) methods. The optimum parameters of ultrasound extraction at 20 kHz were duration of 10 min and power of 480 W. Under the condition, ultrasound could break the cells and extract both the extracellular and intercellular enzymes. Ultrasound power was apparently more susceptive to enzyme extraction than duration, suggesting that the control of power during ultrasound extraction was more important than that of duration. The Pearson correlation analysis between enzyme activities and cation contents revealed that the different types of enzymes had distinct cation binding characteristics.

  11. INDUCTION OF ENZYME COCKTAILS BY LOW COST CARBON SOURCES FOR PRODUCTION OF MONOSACCHARIDE-RICH SYRUPS FROM PLANT MATERIALS

    Directory of Open Access Journals (Sweden)

    Caroline T. Gilleran

    2010-05-01

    Full Text Available The production of cellulases, hemicellulases, and starch-degrading enzymes by the thermophilic aerobic fungus Talaromyces emersonii under liquid state culture on various food wastes was investigated. A comprehensive enzyme screening was conducted, which resulted in the identification of spent tea leaves as a potential substrate for hydrolytic enzyme production. The potent, polysaccharide-degrading enzyme-rich cocktail produced when tea leaves were utilised as sole carbon source was analysed at a protein and mRNA level and shown to exhibit high level production of key cellulose and hemicellulose degrading enzymes. As presented in this paper, the crude enzyme preparation produced after 120 h growth of Talaromyces emersonii on used tea leaves is capable of hydrolysing other lignocellulosic materials into their component monosaccharides, generating high value sugar syrups with a host of industrial applications including conversion to fuels and chemicals.

  12. Producing CD-ROMs.

    Science.gov (United States)

    Hyams, Peter, Ed.

    1992-01-01

    This issue presents 11 articles that address issues relating to the production of CD-ROMs. Highlights include current uses of CD-ROM; standards; steps involved in producing CD-ROMs, including data capture, conversion, and tagging, product design, and indexing; authoring; selecting indexing and retrieval software; costs; multimedia CD-ROMs; and…

  13. Producing superhydrophobic roof tiles

    Science.gov (United States)

    Carrascosa, Luis A. M.; Facio, Dario S.; Mosquera, Maria J.

    2016-03-01

    Superhydrophobic materials can find promising applications in the field of building. However, their application has been very limited because the synthesis routes involve tedious processes, preventing large-scale application. A second drawback is related to their short-term life under outdoor conditions. A simple and low-cost synthesis route for producing superhydrophobic surfaces on building materials is developed and their effectiveness and their durability on clay roof tiles are evaluated. Specifically, an organic-inorganic hybrid gel containing silica nanoparticles is produced. The nanoparticles create a densely packed coating on the roof tile surface in which air is trapped. This roughness produces a Cassie-Baxter regime, promoting superhydrophobicity. A surfactant, n-octylamine, was also added to the starting sol to catalyze the sol-gel process and to coarsen the pore structure of the gel network, preventing cracking. The application of ultrasound obviates the need to use volatile organic compounds in the synthesis, thereby making a ‘green’ product. It was also demonstrated that a co-condensation process effective between the organic and inorganic species is crucial to obtain durable and effective coatings. After an aging test, high hydrophobicity was maintained and water absorption was completely prevented for the roof tile samples under study. However, a transition from a Cassie-Baxter to a Wenzel state regime was observed as a consequence of the increase in the distance between the roughness pitches produced by the aging of the coating.

  14. Adenoviral Producer Cells

    Directory of Open Access Journals (Sweden)

    Imre Kovesdi

    2010-08-01

    Full Text Available Adenovirus (Ad vectors, in particular those of the serotype 5, are highly attractive for a wide range of gene therapy, vaccine and virotherapy applications (as discussed in further detail in this issue. Wild type Ad5 virus can replicate in numerous tissue types but to use Ad vectors for therapeutic purposes the viral genome requires modification. In particular, if the viral genome is modified in such a way that the viral life cycle is interfered with, a specific producer cell line is required to provide trans-complementation to overcome the modification and allow viral production. This can occur in two ways; use of a producer cell line that contains specific adenoviral sequences incorporated into the cell genome to trans-complement, or use of a producer cell line that naturally complements for the modified Ad vector genome. This review concentrates on producer cell lines that complement non-replicating adenoviral vectors, starting with the historical HEK293 cell line developed in 1977 for first generation Ad vectors. In addition the problem of replication-competent adenovirus (RCA contamination in viral preparations from HEK293 cells is addressed leading to the development of alternate cell lines. Furthermore novel cell lines for more complex Ad vectors and alternate serotype Ad vectors are discussed.

  15. Top Hispanic Degree Producers

    Science.gov (United States)

    Diverse: Issues in Higher Education, 2012

    2012-01-01

    This article presents a list of the top 100 producers of associate, bachelor's and graduate degrees awarded to minority students based on research conducted by Dr. Victor M.H. Borden, professor of educational leadership and policy students at the Indiana University Bloomington. For the year 2012, the listings focus on Hispanic students. Data for…

  16. Brassica juncea Produces a Phytochelatin-Cadmium-Sulfide Complex.

    Science.gov (United States)

    Speiser, D M; Abrahamson, S L; Banuelos, G; Ow, D W

    1992-07-01

    Phytochelatins (PCs) are enzymically synthesized peptides produced in higher plants and some fungi upon exposure to heavy metals. We have examined PC production in the Se-tolerant wild mustard Brassica juncea and found that it produces two types of PC-Cd complexes with the same characteristics as those from fission yeast Schizosaccharomyces pombe, including a high molecular weight PC-Cd-sulfide form. PMID:16669006

  17. Brassica juncea Produces a Phytochelatin-Cadmium-Sulfide Complex 1

    Science.gov (United States)

    Speiser, David M.; Abrahamson, Susan L.; Banuelos, Gary; Ow, David W.

    1992-01-01

    Phytochelatins (PCs) are enzymically synthesized peptides produced in higher plants and some fungi upon exposure to heavy metals. We have examined PC production in the Se-tolerant wild mustard Brassica juncea and found that it produces two types of PC-Cd complexes with the same characteristics as those from fission yeast Schizosaccharomyces pombe, including a high molecular weight PC-Cd-sulfide form. PMID:16669006

  18. Host cells and methods for producing isoprenyl alkanoates

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taek Soon; Fortman, Jeffrey L.; Keasling, Jay D.

    2015-12-01

    The invention provides for a method of producing an isoprenyl alkanoate in a genetically modified host cell. In one embodiment, the method comprises culturing a genetically modified host cell which expresses an enzyme capable of catalyzing the esterification of an isoprenol and a straight-chain fatty acid, such as an alcohol acetyltransferase (AAT), wax ester synthase/diacylglycerol acyltransferase (WS/DGAT) or lipase, under a suitable condition so that the isoprenyl alkanoate is produced.

  19. Marker enzyme phenotype ratios in agamospermous sugarbeet progenies as a demonstration of multidimensional encoding of inherited information in plants

    OpenAIRE

    Levites, Evgenii V.

    2007-01-01

    It has been demonstrated that the observed ratio of phenotypes of marker enzymes in some sugarbeet plants produced by mitotic agamospermy can be explained by different degrees of endoreduplication of chromosomes carrying different alleles of the enzyme loci. In these plants, different patterns of variability of the enzymes controlled by the linked loci suggest different degrees of endoreduplication of different chromosomal regions. A concept of multidimensional encoding of inherited informati...

  20. Modeling of Pharmacokinetics of Cocaine in Human Reveals the Feasibility for Development of Enzyme Therapies for Drugs of Abuse

    OpenAIRE

    Fang Zheng; Chang-Guo Zhan

    2012-01-01

    A promising strategy for drug abuse treatment is to accelerate the drug metabolism by administration of a drug-metabolizing enzyme. The question is how effectively an enzyme can actually prevent the drug from entering brain and producing physiological effects. In the present study, we have developed a pharmacokinetic model through a combined use of in vitro kinetic parameters and positron emission tomography data in human to examine the effects of a cocaine-metabolizing enzyme in plasma on th...

  1. Milk Lactose Hydrolysis In A Batch Reactor: Optimisation Of Process Parameters, Kinetics Of Hydrolysis And Enzyme Inactivation

    OpenAIRE

    Sener, N.; Kilic-Apar, D.; DEMIRHAN, E.; Ozbek, B.

    2008-01-01

    The present investigation describes the effects of the process quantities on enzymatic hydrolysis of milk lactose and enzyme stability. The lactose hydrolysis reactions were carried out in 250 mL of milk by using a commercial β-galactosidase produced from Kluyveromyces marxianus lactis. The residual lactose mass concentration (g L-1) and residual enzyme activity (%) against time were investigated vs. process variables such as temperature, impeller speed and enzyme concentration. Optimum condi...

  2. Allosteric regulation of glycerol kinase by enzyme IIIglc of the phosphotransferase system in Escherichia coli and Salmonella typhimurium.

    OpenAIRE

    Novotny, M J; Frederickson, W L; Waygood, E B; Saier, M H

    1985-01-01

    The mechanism by which enzyme IIIglc of the bacterial phosphotransferase system regulates the activity of crystalline glycerol kinase from Escherichia coli has been studied, and the inhibitory effects have been compared with those produced by fructose-1,6-diphosphate. It was shown that the free, but not the phosphorylated, form of enzyme IIIglc inhibits the kinase. Mutants of Salmonella typhimurium were isolated which were resistant to inhibition by either enzyme IIIglc (glpKr mutants) or fru...

  3. Multi-enzyme Process Modeling

    DEFF Research Database (Denmark)

    Andrade Santacoloma, Paloma de Gracia

    The subject of this thesis is to develop a methodological framework that can systematically guide mathematical model building for better understanding of multi-enzyme processes. In this way, opportunities for process improvements can be identified by analyzing simulations of either existing...... in the scientific literature. Reliable mathematical models of such multi-catalytic schemes can exploit the potential benefit of these processes. In this way, the best outcome of the process can be obtained understanding the types of modification that are required for process optimization. An effective evaluation...... of these processes is achieved by applying a methodological framework which provides a systematic way of modeling, a structure, guidance, documentation and support to the modeler. The methodological framework developed here brings many benefits to multienzyme process modeling. This framework identifies generic...

  4. Cellulose degradation by oxidative enzymes

    Directory of Open Access Journals (Sweden)

    Maria Dimarogona

    2012-09-01

    Full Text Available Enzymatic degradation of plant biomass has attracted intensive research interest for the production of economically viable biofuels. Here we present an overview of the recent findings on biocatalysts implicated in the oxidative cleavage of cellulose, including polysaccharide monooxygenases (PMOs or LPMOs which stands for lytic PMOs, cellobiose dehydrogenases (CDHs and members of carbohydrate-binding module family 33 (CBM33. PMOs, a novel class of enzymes previously termed GH61s, boost the efficiency of common cellulases resulting in increased hydrolysis yields while lowering the protein loading needed. They act on the crystalline part of cellulose by generating oxidized and non-oxidized chain ends. An external electron donor is required for boosting the activity of PMOs. We discuss recent findings concerning their mechanism of action and identify issues and questions to be addressed in the future.

  5. 7 CFR 1250.305 - Egg producer or producer.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Egg producer or producer. 1250.305 Section 1250.305... Research and Promotion Order Definitions § 1250.305 Egg producer or producer. Egg producer or producer... laying hens is in some other party to the contract. In the event the party to an oral contract...

  6. Metal organic frameworks for enzyme immobilization in biofuel cells

    Science.gov (United States)

    Bodell, JaDee

    Interest in biofuel cells has been rapidly expanding as an ever-growing segment of the population gains access to electronic devices. The largest areas of growth for new populations using electronic devices are often in communities without electrical infrastructure. This lack of infrastructure in remote environments is one of the key driving factors behind the development of biofuel cells. Biofuel cells employ biological catalysts such as enzymes to catalyze oxidation and reduction reactions of select fuels to generate power. There are several benefits to using enzymes to catalyze reactions as compared to traditional fuel cells which use metal catalysts. First, enzymes are able to catalyze reactions at or near room temperature, whereas traditional metal catalysts are only efficient at very high temperatures. Second, biofuel cells can operate under mild pH conditions which is important for the eventual design of safe, commercially viable devices. Also, biofuel cells allow for implantable and flexible technologies. Finally, enzymes exhibit high selectivity and can be combined to fully oxidize or reduce the fuel which can generate several electrons from a single molecule of fuel, increasing the overall device efficiency. One of the main challenges which persist in biofuel cells is the instability of enzymes over time which tend to denature after hours or days. For a viable commercial biofuel cell to be produced, the stability of enzymes must be extended to months or years. Enzymes have been shown to have improved stability after being immobilized. The focus of this research was to find a metal organic framework (MOF) structure which could successfully immobilize enzymes while still allowing for electron transport to occur between the catalytic center of the enzyme and the electrode surface within a biofuel cell for power generation. Four MOF structures were successfully synthesized and were subsequently tested to determine the MOF's ability to immobilize the following

  7. Molecular dynamics investigation of the ionic liquid/enzyme interface: application to engineering enzyme surface charge.

    Science.gov (United States)

    Burney, Patrick R; Nordwald, Erik M; Hickman, Katie; Kaar, Joel L; Pfaendtner, Jim

    2015-04-01

    Molecular simulations of the enzymes Candida rugosa lipase and Bos taurus α-chymotrypsin in aqueous ionic liquids 1-butyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium ethyl sulfate were used to study the change in enzyme-solvent interactions induced by modification of the enzyme surface charge. The enzymes were altered by randomly mutating lysine surface residues to glutamate, effectively decreasing the net surface charge by two for each mutation. These mutations resemble succinylation of the enzyme by chemical modification, which has been shown to enhance the stability of both enzymes in ILs. After establishing that the enzymes were stable on the simulated time scales, we focused the analysis on the organization of the ionic liquid substituents about the enzyme surface. Calculated solvent charge densities show that for both enzymes and in both solvents that changing positively charged residues to negative charge does indeed increase the charge density of the solvent near the enzyme surface. The radial distribution of IL constituents with respect to the enzyme reveals decreased interactions with the anion are prevalent in the modified systems when compared to the wild type, which is largely accompanied by an increase in cation contact. Additionally, the radial dependence of the charge density and ion distribution indicates that the effect of altering enzyme charge is confined to short range (≤1 nm) ordering of the IL. Ultimately, these results, which are consistent with that from prior experiments, provide molecular insight into the effect of enzyme surface charge on enzyme stability in ILs. PMID:25641162

  8. Cellulolytic Enzymes Production by Solid State Culture

    Directory of Open Access Journals (Sweden)

    Miguel A. Medina-Morales

    2011-01-01

    Full Text Available Problem statement: Great interest in the use of lignocellulosic biomass is increasing in order to diminish the accumulation of residues, such as pecan nut shells. One of the alternatives is the fungal degradation of these residues. Approach: The capacity of Trichoderma (coded as T1, T2 and T3 strains to produce cellulase and xylonite was evaluated. Results: Pecan nut shell fibers were used as sole carbon source. The fiber characterization study showed that cellulose levels were of 0.1% while hemicellulose was up to 25 %. Three Trichoderma strains were used on solid fungal cultures using the fibers as sole carbon and inductor source for the production of cellulolytic enzymes. The behavior of the sugars liberated by the fungi showed that the strain T2 is able to accumulate more monomeric reducing sugars than the other two strains, this could be attributed at this strain has a higher sugar liberation rate and slower sugar consumption rate. This strain also expressed more cellulase and xylanase activity. The low quantity of cellulose registered in the fibers can still be used to induce cellulase activity. Conclusion: The T2 strain had the highest level of enzymatic activity both cellulase and xylanase.

  9. Optimisation of nitrate reductase enzyme activity to synthesise silver nanoparticles.

    Science.gov (United States)

    Khodashenas, Bahareh; Ghorbani, Hamid Reza

    2016-06-01

    Today, the synthesis of silver nanoparticles (Ag NPs) is very common since it has many applications in different areas. The synthesis of these nanoparticles is done by means of physical, chemical, or biological methods. However, due to its inexpensive and environmentally friendly features, the biological method is more preferable. In the present study, using nitrate reductase enzyme available in the Escherichia coli (E. coli) bacterium, the biosynthesis of Ag NPs was investigated. In addition, the activity of the nitrate reductase enzyme was optimised by changing its cultural conditions, and the effects of silver nitrate (AgNO3) concentration and enzyme amount on nanoparticles synthesis were studied. Finally, the produced nanoparticles were studied using ultraviolet -visible (UV-Vis) spectrophotometer, dynamic light scattering technique, and transmission electron microscopy. UV-Visible spectrophotometric study showed the characteristic peak for Ag NPs at wavelength 405-420 nm for 1 mM metal precursor solution (AgNO3) with 1, 5, 10, and 20 cc supernatant and 435 nm for 0.01M AgNO3 with 20 cc supernatant. In this study, it was found that there is a direct relationship between the AgNO3 concentration and the size of produced Ag NPs. PMID:27256897

  10. Extracellular ligninolytic enzymes production by Pleurotus eryngii on agroindustrial wastes.

    Science.gov (United States)

    Akpinar, Merve; Urek, Raziye Ozturk

    2014-01-01

    Pleurotus eryngii (DC.) Gillet (MCC58) was investigated for its ligninolytic ability to produce laccase (Lac), manganese peroxidase (MnP), aryl alcohol oxidase (AAO), and lignin peroxidase (LiP) enzymes through solid-state fermentation using apricot and pomegranate agroindustrial wastes. The reducing sugar, protein, lignin, and cellulose levels in these were studied. Also, the production of these ligninolytic enzymes was researched over the growth of the microorganism throughout 20 days, and the reducing sugar, protein, and nitrogen levels were recorded during the stationary cultivation at 28 ± 0.5°C. The highest Lac activity was obtained as 1618.5 ± 25 U/L on day 12 of cultivation using apricot. The highest MnP activity was attained as 570.82 ± 15 U/L on day 17 in pomegranate culture and about the same as apricot culture. There were low LiP activities in both cultures. The maximum LiP value detected was 16.13 ± 0.8 U/L in apricot cultures. In addition, AAO activities in both cultures showed similar trends up to day 17 of cultivation, with the highest AAO activity determined as 105.99 ± 6.3 U/L on day 10 in apricot cultures. Decolorization of the azo dye methyl orange was also achieved with produced ligninolytic enzymes by P. eryngii using apricot and pomegranate wastes. PMID:24279903

  11. Nanoassembly of immobilized ligninolytic enzymes for biocatalysis, bioremediation, and biosensing

    Science.gov (United States)

    Kuila, Debasish; Tien, Ming; Lvov, Yuri M.; McShane, Michael J.; Aithal, Rajendra K.; Singh, Saurabh; Potluri, Avinash; Kaul, Swati; Patel, Devendra S.; Krishna, Gopal

    2004-12-01

    Extracellular enzymes, lignin peroxidase (LiP) and manganese peroxidase (MnP) from white rot fungus Phanerochaete chrysosoporium, have been shown to degrade various harmful organic compounds ranging from chlorinated compounds to polycyclic aromatic hydrocarbons (PAH) to polymeric dyes. The problems in using immobilized enzymes for biocatalysis/bioremediation are their loss of activity and long-term stability. To address these issues, adsorption by layer-by-layer assembly (LbL) using polyelectrolytes, entrapment using gelatin, and chmisorption using coupling reagents have been investigated. In order to increase surface area for catalysis, porous silicon, formed by electrochemical etching of silicon, has been considered. The efficacy of these extremely stable nanoassemblies towards degradation of model organic compounds-veratryl alcohol (VA and 2,6-dimethoxyphenol (DMP)-in aqueous and in a mixture of aqueous/acetone has already been demonstrated. In parallel, we are pursuing development of sensors using these immobilized enzymes. Experiments carried out in solution show that NO can reversibly bind Ferri-LiP to produce a diamagnetic complex with a distinct change in its optical spectrum. NO can be photolyzed off to produce the spectrum of native paramagnetic ferri-species. Preliminary data on the detection of NO by LiP, based on surface plasmon resonance (SPR) using fiber optic probe, are presented.

  12. Enzymes in Fish and Seafood Processing

    Science.gov (United States)

    Fernandes, Pedro

    2016-01-01

    Enzymes have been used for the production and processing of fish and seafood for several centuries in an empirical manner. In recent decades, a growing trend toward a rational and controlled application of enzymes for such goals has emerged. Underlying such pattern are, among others, the increasingly wider array of enzyme activities and enzyme sources, improved enzyme formulations, and enhanced requirements for cost-effective and environmentally friendly processes. The better use of enzyme action in fish- and seafood-related application has had a significant impact on fish-related industry. Thus, new products have surfaced, product quality has improved, more sustainable processes have been developed, and innovative and reliable analytical techniques have been implemented. Recent development in these fields are presented and discussed, and prospective developments are suggested. PMID:27458583

  13. Rhamnogalacturonan I modifying enzymes: an update

    DEFF Research Database (Denmark)

    Silva, Ines R.; Jers, Carsten; Meyer, Anne S.;

    2016-01-01

    Rhamnogalacturonan I (RGI) modifying enzymes catalyse the degradation of the RGI backbone and encompass enzymes specific for either the α1,2-bond linking galacturonic acid to rhamnose or the α1,4-bond linking rhamnose to galacturonic acid in the RGI backbone. The first microbial enzyme found to be...... able to catalyse the degradation of the RGI backbone, an endo-hydrolase (EC 3.2.1.171) derived from Aspergillus aculeatus, was discovered 25 years ago. Today the group of RGI modifying enzymes encompasses endo- and exo-hydrolases as well as lyases. The RGI hydrolases, EC 3.2.1.171–EC 3.2.1.174, have....... This review brings together the available knowledge of the RGI modifying enzymes and provides a detailed overview of biocatalytic reaction characteristics, classification, structure-function traits, and analyses the protein properties of these enzymes by multiple sequence alignments in neighbour...

  14. Maltose Metabolism in the Hyperthermophilic Archaeon Thermococcus litoralis: Purification and Characterization of Key Enzymes

    Science.gov (United States)

    Xavier, Karina B.; Peist, Ralf; Kossmann, Marina; Boos, Winfried; Santos, Helena

    1999-01-01

    Maltose metabolism was investigated in the hyperthermophilic archaeon Thermococcus litoralis. Maltose was degraded by the concerted action of 4-α-glucanotransferase and maltodextrin phosphorylase (MalP). The first enzyme produced glucose and a series of maltodextrins that could be acted upon by MalP when the chain length of glucose residues was equal or higher than four, to produce glucose-1-phosphate. Phosphoglucomutase activity was also detected in T. litoralis cell extracts. Glucose derived from the action of 4-α-glucanotransferase was subsequently metabolized via an Embden-Meyerhof pathway. The closely related organism Pyrococcus furiosus used a different metabolic strategy in which maltose was cleaved primarily by the action of an α-glucosidase, a p-nitrophenyl-α-d-glucopyranoside (PNPG)-hydrolyzing enzyme, producing glucose from maltose. A PNPG-hydrolyzing activity was also detected in T. litoralis, but maltose was not a substrate for this enzyme. The two key enzymes in the pathway for maltose catabolism in T. litoralis were purified to homogeneity and characterized; they were constitutively synthesized, although phosphorylase expression was twofold induced by maltodextrins or maltose. The gene encoding MalP was obtained by complementation in Escherichia coli and sequenced (calculated molecular mass, 96,622 Da). The enzyme purified from the organism had a specific activity for maltoheptaose, at the temperature for maximal activity (98°C), of 66 U/mg. A Km of 0.46 mM was determined with heptaose as the substrate at 60°C. The deduced amino acid sequence had a high degree of identity with that of the putative enzyme from the hyperthermophilic archaeon Pyrococcus horikoshii OT3 (66%) and with sequences of the enzymes from the hyperthermophilic bacterium Thermotoga maritima (60%) and Mycobacterium tuberculosis (31%) but not with that of the enzyme from E. coli (13%). The consensus binding site for pyridoxal 5′-phosphate is conserved in the T. litoralis

  15. Measurement of peroxisomal enzyme activities in the liver of brown trout (Salmo trutta, using spectrophotometric methods

    Directory of Open Access Journals (Sweden)

    Resende Albina D

    2003-03-01

    Full Text Available Abstract Background This study was aimed primarily at testing in the liver of brown trout (Salmo trutta spectrophotometric methods previously used to measure the activities of catalase and hydrogen peroxide producing oxidases in mammals. To evaluate the influence of temperature on the activities of those peroxisomal enzymes was the second objective. A third goal of this work was the study of enzyme distribution in crude cell fractions of brown trout liver. Results The assays revealed a linear increase in the activity of all peroxisomal enzymes as the temperature rose from 10° to 37°C. However, while the activities of hydrogen peroxide producing oxidases were strongly influenced by temperature, catalase activity was only slightly affected. A crude fraction enriched with peroxisomes was obtained by differential centrifugation of liver homogenates, and the contamination by other organelles was evaluated by the activities of marker enzymes for mitochondria (succinate dehydrogenase, lysosomes (aryl sulphatase and microsomes (NADPH cytochrome c reductase. For peroxisomal enzymes, the activities per mg of protein (specific activity in liver homogenates were strongly correlated with the activities per g of liver and with the total activities per liver. These correlations were not obtained with crude peroxisomal fractions. Conclusions The spectrophotometric protocols originally used to quantify the activity of mammalian peroxisomal enzymes can be successfully applied to the study of those enzymes in brown trout. Because the activity of all studied peroxisomal enzymes rose in a linear mode with temperature, their activities can be correctly measured between 10° and 37°C. Probably due to contamination by other organelles and losses of soluble matrix enzymes during homogenisation, enzyme activities in crude peroxisomal fractions do not correlate with the activities in liver homogenates. Thus, total homogenates will be used in future seasonal and

  16. Enzyme engineering reaches the boiling point

    OpenAIRE

    Arnold, Frances H.

    1998-01-01

    The boiled enzyme was toppled as a standard enzymology control when researchers in the 1970s started uncovering enzymes that loved the heat (1). Identification of a variety of intrinsically hyperstable enzymes from hyperthermophilic organisms, with optimal growth temperatures of 100°C and above, has piqued academic curiosity (e.g., how do these proteins withstand such ‘‘extreme’’ conditions?) and generated considerable interest for their possible applications in biotechnology (2, 3). The real...

  17. Ethylene-forming enzyme of plants

    Energy Technology Data Exchange (ETDEWEB)

    Serebryanyi, A.M.; Krasheninnikova, G.A.; Vakhnina, L.V. [Semenov Inst. of Chemical Physics, Moscow (Russian Federation)

    1995-07-01

    The properties of ethylene-forming enzyme (EFE) (or 1-amino-cyclopropane-1-carboxylic acid oxidase; ACC-oxidase), the terminal enzyme in the synthesis of one of the main plant phytohormones, are reviewed. The properties of the isolated enzyme differ from those in the cell. There are apparently two forms of EFE in cells, one localized in vacuoles and the other in the cytosol. In cells EFE appears to be associated with membranes. 73 refs.

  18. Recent advances in sulfotransferase enzyme activity assays

    OpenAIRE

    Paul, Priscilla; Suwan, Jiraporn; Liu, Jian; Dordick, Jonathan S.; Linhardt, Robert J.

    2012-01-01

    Sulfotransferases are enzymes that catalyze the transfer of sulfo groups from a donor, for example 3′-phosphoadenosine 5′-phosphosulfate, to an acceptor, for example the amino or hydroxyl groups of a small molecule, xenobiotic, carbohydrate, or peptide. These enzymes are important targets in the design of novel therapeutics for treatment of a variety of diseases. This review examines assays used for this important class of enzyme, paying particular attention to sulfotransferases acting on car...

  19. Highly Efficient Self-Replicating RNA Enzymes

    OpenAIRE

    Robertson, Michael P; Joyce, Gerald F.

    2014-01-01

    An RNA enzyme has been developed that catalyzes the joining of oligonucleotide substrates to form additional copies of itself, undergoing self-replication with exponential growth. The enzyme also can cross-replicate with a partner enzyme, resulting in their mutual exponential growth and enabling self-sustained Darwinian evolution. The opportunity for inventive evolution within this synthetic genetic system depends on the diversity of the evolving population, which is limited by the catalytic ...

  20. Protein Hydrolysis from Catfish Prepared by Papain Enzyme and Antioxidant Activity of Hydrolyzate

    OpenAIRE

    Ace Baehaki1); Shanti Dwita Lestari; Achmad Rizky Romadhoni

    2015-01-01

    The objective of this research was to make a protein hydrolysates from catfish (Pangasius pangasius) enzymatically using papain enzyme and analyzed the antioxidant activity of protein hydrolysates produced. The research used the method completely randomized design with two replications the treatment were the difference concentration of the papain enzyme (0%, 1%, 2%, 3%, 4%, 5%, and 6%). The parameters of research were antioxidative activity using DPPH (2,2-difenil-1–pikrilhidra...

  1. The Enterococcus hirae Mur-2 enzyme displays N-acetylglucosaminidase activity

    OpenAIRE

    Eckert, Catherine; Magnet, Sophie; Mesnage, Stéphane

    2007-01-01

    Enterococcus hirae produces two autolytic enzymes named Mur-1 and Mur-2, both previously described as N-acetylmuramidases. We used tandem mass spectrometry to show that Mur-2 in fact displays N-acetylglucosaminidase activity. This result reveals that Mur-2 and its counterparts studied to date, which are members of glycosyl hydrolase family 73 from the CAZy (Carbohydrate-Active enZyme) database, display the same catalytic activity.

  2. The Effects on Gluten Strength and Bread Volume of Adding Soybean Peroxidase Enzyme to Wheat Flour

    OpenAIRE

    Kirby, Ratia

    2007-01-01

    The Effects on Gluten Strength and Bread Volume of Adding Soybean Peroxidase Enzyme to Wheat Flour Ratia Kirby ABSTRACT Soy peroxidase enzyme obtained from isoelectic precipitation procedures was added to all-purpose flour (APF) to assess its effects on the rheological properties and consumer acceptability of yeast bread. A pH 4.8 isoelectrically precipitated fraction from soybeans was used because it produced the most precipitate and had about the same peroxidase activity as the...

  3. No Major Role for Insulin-Degrading Enzyme in Antigen Presentation by MHC Molecules

    OpenAIRE

    Culina, Slobodan; Mauvais, François-Xavier; Hsu, Hsiang-Ting; Burgevin, Anne; Guénette, Suzanne; Moser, Anna; van Endert, Peter

    2014-01-01

    Antigen presentation by MHC class I molecules requires degradation of epitope source proteins in the cytosol. Although the preeminent role of the proteasome is clearly established, evidence suggesting a significant role for proteasome-independent generation of class I ligands has been reported repeatedly. However, an enzyme responsible for such a role has not been identified. Recently insulin-degrading enzyme (IDE) was shown to produce an antigenic peptide derived from the tumor antigen MAGE-...

  4. Reaction of Mycobacterium tuberculosis Cytochrome P450 Enzymes with Nitric Oxide†

    OpenAIRE

    Ouellet, Hugues; Lang, Jérôme; Couture, Manon; Ortiz de Montellano, Paul R.

    2009-01-01

    During the initial growth infection stage of Mycobacterium tuberculosis (Mtb), •NO produced by host macrophages inhibits heme-containing terminal cytochrome oxidases, inactivates iron/sulfur proteins and promotes entry into latency. Here we evaluate the potential of •NO as an inhibitor of Mtb cytochrome P450 enzymes, as represented by CYP130, CYP51 and the two previously uncharacterized enzymes CYP125 and CYP142. Using UV-visible absorption, resonance Raman, and stopped-flow spectroscopy, we ...

  5. Recombinant protein production facility for fungal biomass-degrading enzymes using the yeast pichia pastoris

    OpenAIRE

    Haon, Mireille; Grisel, Sacha; Navarro, David; Gruet, Antoine; Berrin, Jean-Guy; Bignon, Christophe,

    2015-01-01

    Filamentous fungi are the predominant source of lignocellulolytic enzymes used in industry for the transformation of plant biomass into high-value molecules and biofuels. The rapidity with which new fungal genomic and post-genomic data are being produced is vastly outpacing functional studies. This underscores the critical need for developing platforms dedicated to the recombinant expression of enzymes lacking confident functional annotation, a prerequisite to their functional and structural ...

  6. The Enterococcus hirae Mur-2 enzyme displays N-acetylglucosaminidase activity.

    Science.gov (United States)

    Eckert, Catherine; Magnet, Sophie; Mesnage, Stéphane

    2007-02-20

    Enterococcus hirae produces two autolytic enzymes named Mur-1 and Mur-2, both previously described as N-acetylmuramidases. We used tandem mass spectrometry to show that Mur-2 in fact displays N-acetylglucosaminidase activity. This result reveals that Mur-2 and its counterparts studied to date, which are members of glycosyl hydrolase family 73 from the CAZy (Carbohydrate-Active enZyme) database, display the same catalytic activity. PMID:17258207

  7. Investigations of the efficiency of enzyme production technologies using modelling tools

    OpenAIRE

    Albæk, Mads Orla; Gernaey, Krist; Hansen, Morten Skov; Stocks, Stuart M.

    2011-01-01

    Growing markets and new innovative applications of industrial enzymes leads to increased interest in efficient production of these products. Most industrial enzymes are currently produced in traditional stirred tank reactors in submerged fed batch culture. The limiting parameter in such processes is often oxygen transfer from the gas to the liquid phase. In many systems there is a trade-off between productivity and efficiency. Often high productivity technologies and high productivity process...

  8. Simultaneous optimization of enzyme activity and quaternary structure by directed evolution

    OpenAIRE

    Vamvaca, Katherina; Butz, Maren; Walter, Kai U.; Taylor, Sean V.; Hilvert, Donald

    2005-01-01

    Natural evolution has produced efficient enzymes of enormous structural diversity. We imitated this natural process in the laboratory to augment the efficiency of an engineered chorismate mutase with low activity and an unusual hexameric topology. By applying two rounds of DNA shuffling and genetic selection, we obtained a 400-fold more efficient enzyme, containing three non-active-site mutations. Detailed biophysical characterization of the evolved variant suggests that it exists predominant...

  9. Gamma radiation induced alterations in the ultrastructure of pancreatic islet, metabolism and enzymes in wistar rat

    International Nuclear Information System (INIS)

    Effects of gamma irradiation (600 rads) on the ultrastructure of pancreatic islet, metabolism and some enzymes in wistar rat, are reported. Electron microscopic observations of endocrine pancreas revealed prominent changes in beta cells while alpha and delta cells were not much affected. Irradiation also inflicted hyperglycemia, increase in liver and muscle glycogen and decrease in insulin level. It has also increased the activity of enzymes but failed to produce significant changes in protein, lipid and mineral metabolism. (author)

  10. Sex hormones modulate circulating antioxidant enzymes: Impact of estrogen therapy ☆

    OpenAIRE

    Francesco Bellanti; Maria Matteo; Tiziana Rollo; Filomena De Rosario; Pantaleo Greco; Gianluigi Vendemiale; Gaetano Serviddio

    2013-01-01

    Objective: Ovarian senescence affects many tissues and produces a variety of symptoms and signs. We hypothesized that estrogens may also influence circulating redox balance by regulating activity of the cellular antioxidative enzyme system. We aimed to explore the impact of surgical estrogen deprivation and replacement (ERT) on the glutathione balance and antioxidant enzymes expression in fertile women. Study design: Nineteen healthy premenopausal women who underwent total hysterectomy wit...

  11. Identification of functional domains in Arabidopsis thaliana mRNA decapping enzyme (AtDcp2)

    OpenAIRE

    Gunawardana, Dilantha; Cheng, Heung-Chin; Gayler, Kenwyn R.

    2007-01-01

    The Arabidopsis thaliana decapping enzyme (AtDcp2) was characterized by bioinformatics analysis and by biochemical studies of the enzyme and mutants produced by recombinant expression. Three functionally significant regions were detected: (i) a highly disordered C-terminal region with a putative PSD-95, Discs-large, ZO-1 (PDZ) domain-binding motif, (ii) a conserved Nudix box constituting the putative active site and (iii) a putative RNA binding domain consisting of the conserved Box B and a p...

  12. The mechanisms of Excited states in enzymes

    DEFF Research Database (Denmark)

    Petersen, Frederic Nicolas Rønne; Bohr, Henrik

    2010-01-01

    Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes.......Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes....

  13. Modified kinetics of enzymes interacting with nanoparticles

    Science.gov (United States)

    Díaz, Sebastián. A.; Breger, Joyce C.; Malanoski, Anthony; Claussen, Jonathan C.; Walper, Scott A.; Ancona, Mario G.; Brown, Carl W.; Stewart, Michael H.; Oh, Eunkeu; Susumu, Kimihiro; Medintz, Igor L.

    2015-08-01

    Enzymes are important players in multiple applications, be it bioremediation, biosynthesis, or as reporters. The business of catalysis and inhibition of enzymes is a multibillion dollar industry and understanding the kinetics of commercial enzymes can have a large impact on how these systems are optimized. Recent advances in nanotechnology have opened up the field of nanoparticle (NP) and enzyme conjugates and two principal architectures for NP conjugate systems have been developed. In the first example the enzyme is bound to the NP in a persistent manner, here we find that key factors such as directed enzyme conjugation allow for enhanced kinetics. Through controlled comparative experiments we begin to tease out specific mechanisms that may account for the enhancement. The second system is based on dynamic interactions of the enzymes with the NP. The enzyme substrate is bound to the NP and the enzyme is free in solution. Here again we find that there are many variables , such as substrate positioning and NP selection, that modify the kinetics.

  14. Changes in the spectrum and rates of extracellular enzyme activities in seawater following aggregate formation

    Science.gov (United States)

    Ziervogel, K.; Steen, A. D.; Arnosti, C.

    2010-03-01

    lifetime using commercial enzymes suggest that hydrolytic cell-free enzymes may be active over timescales of days to weeks. Considering water residence times of up to 10 days in the investigation area (Apalachicola Bay), enzymes released from aggregates may be active over timescales long enough to affect carbon cycling in the Bay as well as in the adjacent Gulf of Mexico. Aggregate formation may thus be an important mechanism shaping the spectrum of enzymes active in the ocean, stimulating production of cell-free enzymes and leading to spatial and temporal decoupling of enzyme activity from the microorganisms that produced them.

  15. Changes in the spectrum and rates of extracellular enzyme activities in seawater following aggregate formation

    Directory of Open Access Journals (Sweden)

    K. Ziervogel

    2010-03-01

    of enzyme lifetime using commercial enzymes suggest that hydrolytic cell-free enzymes may be active over timescales of days to weeks. Considering water residence times of up to 10 days in the investigation area (Apalachicola Bay, enzymes released from aggregates may be active over timescales long enough to affect carbon cycling in the Bay as well as in the adjacent Gulf of Mexico. Aggregate formation may thus be an important mechanism shaping the spectrum of enzymes active in the ocean, stimulating production of cell-free enzymes and leading to spatial and temporal decoupling of enzyme activity from the microorganisms that produced them.

  16. Pectinases: aplicações industriais e perspectivas Pectinolytic enzymes: industrial applications and future perspectives

    Directory of Open Access Journals (Sweden)

    Mariana Uenojo

    2007-04-01

    Full Text Available Pectic substances are structural heteropolysaccharides that occur in the middle lamellae and primary cell walls of higher plants. They are composed of partially methyl-esterified galacturonic acid residues linked by alpha-1, 4-glycosidic bonds. Pectinolytic enzymes are complex enzymes that degrade pectic polymers and there are several classes of enzymes, which include pectin esterases, pectin and pectate lyases and polygalacturonases. Plants, filamentous fungi, bacteria and yeasts are able to produce pectinases. In the industrial world, pectinases are used in fruit juice clarification, in the production of wine, in the extraction of olive oil, fiber degumming and fermentation of tea, coffee and cocoa.

  17. Lysine acetylation can generate highly charged enzymes with increased resistance toward irreversible inactivation

    OpenAIRE

    Shaw, Bryan F; Schneider, Gregory F.; Bilgiçer, Başar; Kaufman, George K.; Neveu, John M.; Lane, William S.; Whitelegge, Julian P.; Whitesides, George M.

    2008-01-01

    This paper reports that the acetylation of lysine ε-NH3 + groups of α-amylase—one of the most important hydrolytic enzymes used in industry—produces highly negatively charged variants that are enzymatically active, thermostable, and more resistant than the wild-type enzyme to irreversible inactivation on exposure to denaturing conditions (e.g., 1 h at 90°C in solutions containing 100-mM sodium dodecyl sulfate). Acetylation also protected the enzyme against irreversible inactivation by the ...

  18. Extracellular enzymes of Legionella pneumophila.

    OpenAIRE

    Thorpe, T C; Miller, R. D.

    1981-01-01

    All strains of Legionella pneumophila tested produced detectable levels of extracellular protease, phosphatase, lipase, deoxyribonuclease, ribonuclease, and beta-lactamase activity. Weak starch hydrolysis was also demonstrated for all strains. Elastase, collagenase, phospholipase C, hyaluronidase, chondroitinase, neuraminidase, or coagulase were not detected in any of these laboratory-maintained strains.

  19. The Polyphenols Stability, Enzyme Activity and Physico-Chemical Parameters During Producing Wild Elderberry Concentrated Juice

    OpenAIRE

    Ante Galić; Verica Dragović-uzelac; Branka Levaj; Danijela Bursać Kovačević; Stjepan Pliestić; Sabina Arnautović

    2009-01-01

    The influence of processing wild elderberry into concentrated juice on polyphenols (total phenols, flavonoids, non-flavonoids, anthocyanins, flavan-3-ols, hydrolysed tannins) stability, activity of polyphenol oxidase (PPO) and peroxidase (POD), and changes of physico-chemical parameters (total and soluble dry matter, total acidity, pH, sugars) were investigated. The amounts of total phenols, flavonoids, non-flavonoids, falvan-3-ols and hydrolysed tannins were analyzed using Folin-Ciocalteu co...

  20. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Blennow, Andreas; Jensen, Susanne L;

    2012-01-01

    endosperm. This trait was segregating 3:1. Amylose-only starch granules were irregularly shaped and showed peculiar thermal properties and crystallinity. Transgenic lines retained high-yield possibly due to a pleiotropic upregualtion of other starch biosynthetic genes compensating the SBEs loss. For...

  1. Are bacteria the major producers of extracellular glycolytic enzymes in aquatic environments?

    Czech Academy of Sciences Publication Activity Database

    Vrba, Jaroslav; Callieri, C.; Bittl, T.; Šimek, Karel; Bertoni, R.; Filandr, P.; Hartman, Petr; Hejzlar, Josef; Macek, Miroslav; Nedoma, Jiří

    2004-01-01

    Roč. 89, č. 1 (2004), s. 102-117. ISSN 1434-2944 R&D Projects: GA AV ČR(CZ) IBS6017004; GA ČR(CZ) GA206/99/0028; GA ČR(CZ) GA206/00/0063 Institutional research plan: CEZ:AV0Z6017912 Keywords : ectoenzyme activity * diatoms * Daphnia longispina Subject RIV: DA - Hydrology ; Limnology Impact factor: 0.742, year: 2004

  2. Genetically Engineered Immunomodulatory Streptococcus thermophilus Strains Producing Antioxidant Enzymes Exhibit Enhanced Anti-Inflammatory Activities

    OpenAIRE

    del Carmen, Silvina; de Moreno de LeBlanc, Alejandra; Martin, Rebeca; Chain, Florian; Langella, Philippe; Bermúdez-Humarán, Luis G; LeBlanc, Jean Guy

    2014-01-01

    The aims of this study were to develop strains of lactic acid bacteria (LAB) having both immunomodulatory and antioxidant properties and to evaluate their anti-inflammatory effects both in vitro, in different cellular models, and in vivo, in a mouse model of colitis. Different Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains were cocultured with primary cultures of mononuclear cells. Analysis of the pro- and anti-inflammatory cytokines secreted by these cells...

  3. Degradation of polychlorinated biphenyls by extracellular enzymes of Phanerochaete chrysosporium produced in a perforated plate bioreactor

    Czech Academy of Sciences Publication Activity Database

    Krčmář, P.; Kubátová, Alena; Votruba, Jaroslav; Erbanová, Pavla; Novotný, Čeněk; Šašek, Václav

    1999-01-01

    Roč. 15, - (1999), s. 237-242. ISSN 0959-3993 R&D Projects: GA AV ČR IAA6301501; GA AV ČR KSK2020602 Grant ostatní: Agency for International Development(US) TA-MOU-95-C15-190 Institutional research plan: CEZ:A53/98:Z5-020-9ii Subject RIV: EE - Microbiology, Virology Impact factor: 0.570, year: 1999

  4. The Polyphenols Stability, Enzyme Activity and Physico-Chemical Parameters During Producing Wild Elderberry Concentrated Juice

    Directory of Open Access Journals (Sweden)

    Ante Galić

    2009-12-01

    Full Text Available The influence of processing wild elderberry into concentrated juice on polyphenols (total phenols, flavonoids, non-flavonoids, anthocyanins, flavan-3-ols, hydrolysed tannins stability, activity of polyphenol oxidase (PPO and peroxidase (POD, and changes of physico-chemical parameters (total and soluble dry matter, total acidity, pH, sugars were investigated. The amounts of total phenols, flavonoids, non-flavonoids, falvan-3-ols and hydrolysed tannins were analyzed using Folin-Ciocalteu colorimetric method, while the total anthocyanins were determined by bisulphite bleaching method. Total phenols ranged from 25.87 mg/g DM to 38.87 mg/g DM. Total anthocyanins were the most abundant polyphenols in all investigated samples (raw elderberries, elderberries after blanching, elderberry juice after disintegration and pressing, concentrated elderberry juice and their concentration ranged from 13.12 mg/g DM to 25.67 mg/g DM. Other polyphenols determined in high concentration were hydrolysed tannins, followed by fl avan-3-ols, flavonoids and nonfavonoids. After blanching, the concentration of all polyphenols did not decrease significantly. After disintegration of elderberries the concentration of all polyphenols increased, probably due to inactivation of PPO and POD and better isolation of polyphenols from homogenized puree. During processing of elderberry juice into concentrated juice most polyphenols were stable. Total acidity and pH value were not changed during processing, whereas the amounts of total and reducing sugar increased after pressing and additionally after concentration. The obtained results suggest that raw elderberries as well as elderberry concentrated juice are high potential source of polyphenols especially anthocyanins.

  5. Stable Colloidal Drug Aggregates Catch and Release Active Enzymes.

    Science.gov (United States)

    McLaughlin, Christopher K; Duan, Da; Ganesh, Ahil N; Torosyan, Hayarpi; Shoichet, Brian K; Shoichet, Molly S

    2016-04-15

    Small molecule aggregates are considered nuisance compounds in drug discovery, but their unusual properties as colloids could be exploited to form stable vehicles to preserve protein activity. We investigated the coaggregation of seven molecules chosen because they had been previously intensely studied as colloidal aggregators, coformulating them with bis-azo dyes. The coformulation reduced colloid sizes to sorafenib, tetraiodophenolphthalein (TIPT), or vemurafenib produced particles that are stable in solutions of high ionic strength and high protein concentrations. Like traditional, single compound colloidal aggregates, the stabilized colloids adsorbed and inhibited enzymes like β-lactamase, malate dehydrogenase, and trypsin. Unlike traditional aggregates, the coformulated colloid-protein particles could be centrifuged and resuspended multiple times, and from resuspended particles, active trypsin could be released up to 72 h after adsorption. Unexpectedly, the stable colloidal formulations can sequester, stabilize, and isolate enzymes by spin-down, resuspension, and release. PMID:26741163

  6. Modeling cutinase enzyme regulation in polyethylene terepthalate plastic biodegradation

    Science.gov (United States)

    Apri, M.; Silmi, M.; Heryanto, T. E.; Moeis, M. R.

    2016-04-01

    PET (Polyethylene terephthalate) is a plastic material that is commonly used in our daily life. The high production of PET and others plastics that can be up to three hundred million tons per year, is not matched by its degradation rate and hence leads to environmental pollution. To overcome this problem, we develop a biodegradation system. This system utilizes LC Cutinase enzyme produced by engineered escherichia coli bacteria to degrade PET. To make the system works efficaciously, it is important to understand the mechanism underlying its enzyme regulation. Therefore, we construct a mathematical model to describe the regulation of LC Cutinase production. The stability of the model is analyzed. We show that the designated biodegradation system can give an oscillatory behavior that is very important to control the amount of inclusion body (the miss-folded proteins that reduce the efficiency of the biodegradation system).

  7. Aberrant glycosylation associated with enzymes as cancer biomarkers

    Directory of Open Access Journals (Sweden)

    Meany Danni L

    2011-06-01

    Full Text Available Abstract Background One of the new roles for enzymes in personalized medicine builds on a rational approach to cancer biomarker discovery using enzyme-associated aberrant glycosylation. A hallmark of cancer, aberrant glycosylation is associated with differential expressions of enzymes such as glycosyltransferase and glycosidases. The aberrant expressions of the enzymes in turn cause cancer cells to produce glycoproteins with specific cancer-associated aberrations in glycan structures. Content In this review we provide examples of cancer biomarker discovery using aberrant glycosylation in three areas. First, changes in glycosylation machinery such as glycosyltransferases/glycosidases could be used as cancer biomarkers. Second, most of the clinically useful cancer biomarkers are glycoproteins. Discovery of specific cancer-associated aberrations in glycan structures of these existing biomarkers could improve their cancer specificity, such as the discovery of AFP-L3, fucosylated glycoforms of AFP. Third, cancer-associated aberrations in glycan structures provide a compelling rationale for discovering new biomarkers using glycomic and glycoproteomic technologies. Summary As a hallmark of cancer, aberrant glycosylation allows for the rational design of biomarker discovery efforts. But more important, we need to translate these biomarkers from discovery to clinical diagnostics using good strategies, such as the lessons learned from translating the biomarkers discovered using proteomic technologies to OVA 1, the first FDA-cleared In Vitro Diagnostic Multivariate Index Assay (IVDMIA. These lessons, providing important guidance in current efforts in biomarker discovery and translation, are applicable to the discovery of aberrant glycosylation associated with enzymes as cancer biomarkers as well.

  8. Novel method for immobilization of enzymes to magnetic nanoparticles

    International Nuclear Information System (INIS)

    The value of coupling biological molecules such as enzymes to solid materials has long been recognized. To date, protein immobilization onto such surfaces often involves covalent coupling, encapsulation, or non-specific adsorption techniques. Here we demonstrate the feasibility of specifically attaching a haloalkane dehalogenase enzyme to silica-coated or uncoated iron oxide superparamagnetic nanoparticles using affinity peptides. The enzyme was cloned from Xanthobacter autotrophicus strain GJ10 into Escherichia coli to produce fusion proteins containing dehalogenase sequences with C-terminal polypeptide repeats that have specific affinity for either silica or iron oxide. The fusion proteins serve dual functions, allowing for specific inorganic surface binding and for enzymatic activity. The degree of fusion protein adsorption to nanoparticle surfaces was found to exceed that of enzymes that had not been activated with affinity sequences, particularly for iron-oxide nanoparticles. The ability to specifically adsorb cloned affinity-tagged dehalogenase was further demonstrated by selectively adsorbing dehalogenase fusion proteins containing an iron-oxide affinity tripeptide directly from cell lysate. The retention of enzymatic activity was found to be dependent upon the surface chemistry of the nanoparticles. An increase in activity was observed after adsorption of fusion proteins onto the surface of nanoparticles modified by treatment with hydrophilic polyethylene glycol or 3-glycidoxypropyltrimethoxysilane molecules. As a result of this work, it is possible to tag an active enzyme with specific peptides that bind to inorganic nanoparticle surfaces. Because the conjugates self assemble, the novel surface-specific conjugate formation procedure is highly efficient and easily scalable for use in large-scale applications.

  9. Producer, customer and supplier

    Energy Technology Data Exchange (ETDEWEB)

    Stoops, B. [PanCanadian Petroleum Ltd., Calgary, AB (Canada)

    1998-07-01

    PanCanadian`s strategy for electricity use was discussed. PanCanadian is one of Canada`s largest oil producers. The company is growth oriented, has a strong asset base and is financially sound. With its growing power consumption and increased competition, the company needs to control costs, particularly in the changing regulatory climate. Reduction in emissions is also one of the challenges facing the company. Under these circumstances the company has the opportunity to play more than one role: as a proactive consumer actively managing its own consumption, as a generator of its own electric power, and as a supplier of electricity to the grid. 2 figs.

  10. Effects of frying oil and Houttuynia cordata thunb on xenobiotic-metabolizing enzyme system of rodents

    Institute of Scientific and Technical Information of China (English)

    Ya-Yen Chen; Chiao-Ming Chen; Pi-Yu Chao; Tsan-Ju Chang; Jen-Fang Liu

    2005-01-01

    AIM: To evaluate the effects of frying oil and Houttuynia cordata Thunb (H. cordata), a vegetable traditionally consumed in Taiwan, on the xenobiotic-metabolizing enzyme system of rodents.METHODS: Forty-eight Sprague-Dawley rats were fed with a diet containing 0%, 2% or 5% H. cordata powder and 15% fresh soybean oil or 24-h oxidized frying oil (OFO)for 28 d respectively. The level of microsomal protein, total cytochrome 450 content (CYP450) and enzyme activities including NADPH reductase, ethoxyresorufin O-deethylase (EROD), pentoxyresorufin O-dealkylase (PROD), aniline hydroxylase (ANH), aminopyrine demethylase (AMD), and quinone reductase (QR) were determined. QR represented phase Ⅱ enzymes, the rest of the enzymes tested represented phase Ⅰ enzymes.RESULTS: The oxidized frying oil feeding produced a significant increase in phase Ⅰ and Ⅱ enzyme systems,including the content of CYP450 and microsomal protein,and the activities of NADPH reductase, EROD, PROD, ANH,AMD and QR in rats (P<0.05). In addition, the activities of EROD, ANH and AMD decreased and QR increased after feeding with H. cordata in OFO-fed group (P<0.05). The feeding with 2% H. cordata diet showed the most significant effect.CONCLUSION: The OFO diet induces phases Ⅰ and Ⅱ enzyme activity, and the 2% H. cordata diet resulted in a better regulation of the xenobiotic-metabolizing enzyme system.

  11. Trehalase: a new pollen enzyme.

    Science.gov (United States)

    Gussin, A E; McCormack, J H; Waung, L Y; Gluckin, D S

    1969-08-01

    Pollen from 5 plant species (Lycopersicon pimpinellifolium Mill., Hermerocallis minor Mill., Galtonia condicans Decne., Camellia japonica L., and Lathyrus odoratus L.) representing 4 families germinated well in media containing trehalose as the sole carbon source. Data are presented indicating that pollen metabolized this disaccharide for germination and subsequent pollen-tube growth; the sugar was not merely an osmoregulator. An inhibitor of trehalase activity depressed germination in trehalose but not in sucrose. Phloridzin dihydrate, an inhibitor of glucose transport, depressed germination in both disaccharides. Biochemical tests demonstrated that a pollen extract was capable of hydrolyzing trehalose to its constituent glucose monomers. Heat inactivation experiments confirmed the presence of a distinct trehalase having a rigid specificity for its substrate. By this method, trehalase activity was completely distinguishable from the activities of other alpha- and beta-glucosidases and beta-galactosidases. Localization data indicated that the enzyme diffused from intact grains and was probably soluble. The presence of its substrate could not be demonstrated in pollen or in stigmatic or stylar tissues. PMID:5379538

  12. A Study on Effect of different culture media on amylase enzyme production by a native strain of Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    ziba Akbari

    2015-12-01

    Full Text Available Introduction: Amylases are among the most important enzymes and have great significance in present-day biotechnology. Amylase with commercial applications is mainly derived from the genus Bacillus. The main purpose of this study is identification and isolatation amylase enzyme producer Bacillus, determining the amylase enzyme activity and affecting a number of culture medium on amylase enzyme production. Materials and methods: Soil, water and wastewater samples were collected from agricultural area, choghakhor lake in chahar mahal e bakhtiari province and from food factory in Esfahan. Bacillus isolates were screened for amylolytic properties by starch hydrolysis test on starch agar plate. Amylase producing Bacillus were identified biochemical tests and molecular experiments. Amylase enzyme activity of isolates was measured using di-nitro salicylic acid (DNS method. Enzyme production was studied in variose medium culture TSB, NB, Yeast extract, molases and milk medium. Results: The enzyme amylase-producing strains, one sample showed was the highest amylase activity. The Bacillus has been detected as a member of Bacillus subtilis according to Bergey's Manual of Systematic Bacteriology and molecular recognition. The enzyme activity of Bacillus subtilis was measured 7/21 (U/ml in production media. Trough medium culture maximum amylase production for Bacillus subtilis was achieved in molases medium. Discussion and conclusion: In this study, Bacillus subtilis strains isolated from wastewater of a significant amount of enzyme producing 7/21 (U/ml as indicated. Among the medium-amylase from Bacillus subtilis highest enzyme activity was observed in beet molasses. According to this study, the use of Bacillus strains is an efficient way to achieve the amylase enzyme.

  13. Micropollutant degradation via extracted native enzymes from activated sludge.

    Science.gov (United States)

    Krah, Daniel; Ghattas, Ann-Kathrin; Wick, Arne; Bröder, Kathrin; Ternes, Thomas A

    2016-05-15

    A procedure was developed to assess the biodegradation of micropollutants in cell-free lysates produced from activated sludge of a municipal wastewater treatment plant (WWTP). This proof-of-principle provides the basis for further investigations of micropollutant biodegradation via native enzymes in a solution of reduced complexity, facilitating downstream protein analysis. Differently produced lysates, containing a variety of native enzymes, showed significant enzymatic activities of acid phosphatase, β-galactosidase and β-glucuronidase in conventional colorimetric enzyme assays, whereas heat-deactivated controls did not. To determine the enzymatic activity towards micropollutants, 20 compounds were spiked to the cell-free lysates under aerobic conditions and were monitored via LC-ESI-MS/MS. The micropollutants were selected to span a wide range of different biodegradabilities in conventional activated sludge treatment via distinct primary degradation reactions. Of the 20 spiked micropollutants, 18 could be degraded by intact sludge under assay conditions, while six showed reproducible degradation in the lysates compared to the heat-deactivated negative controls: acetaminophen, N-acetyl-sulfamethoxazole (acetyl-SMX), atenolol, bezafibrate, erythromycin and 10,11-dihydro-10-hydroxycarbamazepine (10-OH-CBZ). The primary biotransformation of the first four compounds can be attributed to amide hydrolysis. However, the observed biotransformations in the lysates were differently influenced by experimental parameters such as sludge pre-treatment and the addition of ammonium sulfate or peptidase inhibitors, suggesting that different hydrolase enzymes were involved in the primary degradation, among them possibly peptidases. Furthermore, the transformation of 10-OH-CBZ to 9-CA-ADIN was caused by a biologically-mediated oxidation, which indicates that in addition to hydrolases further enzyme classes (probably oxidoreductases) are present in the native lysates. Although the

  14. Endotoxin contamination of enzyme conjugates used in enzyme-linked immunosorbent assays.

    OpenAIRE

    Bryant, R. E.; Chamovitz, B N; Morse, S A; Apicella, M A; Morthland, V H

    1983-01-01

    The specificity of the enzyme-linked immunosorbent assay(s) is thought to depend on the specificity of the antibody used in the assay system. Therefore, the association of broadly reactive antigens like endotoxin with enzyme conjugates or other enzyme-linked immunosorbent assay reagents has the potential of altering the specificity of reactions in the enzyme-linked immunosorbent assay. Using the Limulus amoebocyte lysate assay, we demonstrated that commercially prepared conjugates of goat ant...

  15. Engineering Cellulase Enzymes for Bioenergy

    OpenAIRE

    Atreya, Meera Elizabeth

    2015-01-01

    Sustainable energy sources, such as biofuels, offer increasingly important alternatives to fossil fuels that contribute less to global climate change. The energy contained within cellulosic biofuels derives from sunlight energy stored in the form of carbon-carbon bonds comprising sugars such as glucose. Second-generation biofuels are produced from lignocellulosic biomass feedstocks, including agricultural waste products and non-food crops like Miscanthus, that contain lignin and the polysacch...

  16. Production of amylolytic enzymes by bacillus spp

    International Nuclear Information System (INIS)

    Sixty six bacteria and twenty fungi were isolated from various sources. These varied from rotten fruites to local drinks and soil samples from different parts of Sudan. On the basis of index of amylolytic activity, forty one bacteria and twelve fungi were found to hydrolyse strach. The best ten strach hydrolysing isolates were identified all as bacilli (Bacillus licheniformis SUD-K1, SUD-K2, SUD-K4, SUD-O, SUD-SRW, SUD-BRW, SUD-By, Bacillus subtilis SUD-K3, and Bacillus circulans SUD-D and SUD-K7). Their amylase productivity was studied with respect to temperature and time. Amylolytic activity was measured by spectrophotometer, the highest activity was produced in around 24 hours of growth in all; six of which gave the highest amylase activity at 50 deg C and the rest at 45C. Based on the thermal production six isolates were chosen for further investigation. These were Bacillus licheniformis SUD-K1, SUD-K2, SUD-K4, SUD-O, Bacillus subtilis SUD-K3 and Bacillus circulans SUD-K7. The inclusion of strach and Mg++ ions in the culture medium gave the highest enzyme yield. The Ph 9.0 was found to be the optimum for amylase production for all isolates except Bacillus subtilis SUD-K3 which had an optimum at pH 7.0. Three isolates (Bacillus licheniformis SUD-K1, SUD-K4 and SUD-O recorded highestamylase production in a medium supplemented with peptone while the rest (Bacillus licheniformis SUD-K2, Bacillus subtilis SUD-K3 and Bacillus circulans SUD-K7) gave highest amylase productivity in a medium supplemented with malt extract. Four isolates (Bacillus licheniformis SUD-K1 and Bacillus subtilis SUD-K3 gave maximum amylase production in a medium containing 0.5% soluble strach while the rest (gave maximum amylase production at 2%. Soluble strach was found to be best substrate among the different carbon sources tested. The maximum temperature for amylase activity ranged from 60-70 deg C and 1% strach concentration was optimum for all isolates. Addition of different metal ions

  17. Enzyme Activity Experiments Using a Simple Spectrophotometer

    Science.gov (United States)

    Hurlbut, Jeffrey A.; And Others

    1977-01-01

    Experimental procedures for studying enzyme activity using a Spectronic 20 spectrophotometer are described. The experiments demonstrate the effect of pH, temperature, and inhibitors on enzyme activity and allow the determination of Km, Vmax, and Kcat. These procedures are designed for teaching large lower-level biochemistry classes. (MR)

  18. Bacterial Enzymes and Antibiotic Resistance- Oral Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Maltz, Lauren [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-25

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β-lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes.

  19. Enzyme Reactions and Acceptability of Plant Foods.

    Science.gov (United States)

    Palmer, James K.

    1984-01-01

    Provides an overview of enzyme reactions which contribute to the character and acceptability of plant foods. A detailed discussion of polyphenoloxidase is also provided as an example of an enzyme which can markedly affect the character and acceptability of such foods. (JN)

  20. Immobilization to prevent enzyme incompatibility with proteases

    NARCIS (Netherlands)

    Vossenberg, P.; Beeftink, H.H.; Cohen Stuart, M.A.; Tramper, J.

    2011-01-01

    Enzyme incompatibility is a problem in multi-enzyme processes that involve a non-specific protease, such as Alcalase. An example is the one-pot enzymatic synthesis of peptides catalyzed by a lipase and a protease. The incompatibility between lipase B from Candida antarctica (CalB) and Alcalase was s

  1. Biocatalytic material comprising multilayer enzyme coated fiber

    Science.gov (United States)

    Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA

    2009-11-03

    The present invention relates generally to high stability, high activity biocatalytic materials and processes for using the same. The materials comprise enzyme aggregate coatings having high biocatalytic activity and stability useful in heterogeneous environment. These new materials provide a new biocatalytic immobilized enzyme system with applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  2. Cobalamin- and Corrinoid-Dependent Enzymes

    OpenAIRE

    Matthews, Rowena G.

    2009-01-01

    This chapter will review the literature on cobalamin- and corrinoid-containing enzymes. These enzymes fall into two broad classes, those using methylcobalamin or related methylcorrinoids as prosthetic groups and catalyzing methyltransfer reactions, and those using adenosylcobalamin as the prosthetic group and catalyzing the generation of substrate radicals that in turn undergo rearrangements and/or eliminations.

  3. Application of radiopolymerization for immobilization of enzymes

    International Nuclear Information System (INIS)

    Hydrophilic glass-forming monomers were used in an application of irradiation technology for the immobilization of cellulase and cellobiase. Experiments to observe the effect of additives such as silicates and polyethylene glycol in the enzyme entrapment are reported on. In all cases, enzymatic activity was maintained for more than fifteen batch enzyme reactions. (Author)

  4. A toy quantum analog of enzymes

    CERN Document Server

    Svetlichny, George

    2015-01-01

    We present a quantum system incorporating qualitative aspects of enzyme action in which the possibility of quantum superposition of several conformations of the enzyme-substrate complex is investigated. We present numerical results showing quantum effects that transcend the case of a statistical mixture of conformations.

  5. Illustrating Enzyme Inhibition Using Gibbs Energy Profiles

    Science.gov (United States)

    Bearne, Stephen L.

    2012-01-01

    Gibbs energy profiles have great utility as teaching and learning tools because they present students with a visual representation of the energy changes that occur during enzyme catalysis. Unfortunately, most textbooks divorce discussions of traditional kinetic topics, such as enzyme inhibition, from discussions of these same topics in terms of…

  6. Enzyme Catalysis and the Gibbs Energy

    Science.gov (United States)

    Ault, Addison

    2009-01-01

    Gibbs-energy profiles are often introduced during the first semester of organic chemistry, but are less often presented in connection with enzyme-catalyzed reactions. In this article I show how the Gibbs-energy profile corresponds to the characteristic kinetics of a simple enzyme-catalyzed reaction. (Contains 1 figure and 1 note.)

  7. Loop 7 of E2 enzymes

    DEFF Research Database (Denmark)

    Papaleo, Elena; Casiraghi, Nicola; Arrigoni, Alberto;

    2012-01-01

    The ubiquitin (Ub) system controls almost every aspect of eukaryotic cell biology. Protein ubiquitination depends on the sequential action of three classes of enzymes (E1, E2 and E3). E2 Ub-conjugating enzymes have a central role in the ubiquitination pathway, interacting with both E1 and E3, and...

  8. Prediction of Wild-type Enzyme Characteristics

    DEFF Research Database (Denmark)

    Geertz-Hansen, Henrik Marcus

    article presents a sequence-based approach to discovery of proteolytic enzymes in metagenomes obtained from the Polar oceans. We show that microorganisms living in these extreme environments of constant low temperature harbour genes encoding novel proteolytic enzymes with potential industrial relevance...

  9. Cytochrome P450 enzyme systems in fungi

    NARCIS (Netherlands)

    Brink, H.M. van den; Gorcom, R.F.M. van; Hondel, C.A.M.J.J. van den; Punt, P.J.

    1998-01-01

    The involvement of cytochrome P450 enzymes in many complex fungal bioconversion processes has been characterized in recent years. Accordingly, there is now considerable scientific interest in fungal cytochrome P450 enzyme systems. In contrast to S. cerevisiae, where surprisingly few P450 genes have

  10. Enzyme adsorption at solid-liquid interfaces.

    NARCIS (Netherlands)

    Duinhoven, S.

    1992-01-01

    Enzymes are proteins with the capacity of catalysing various reactions. Nowadays two types of enzymes, proteases and lipases, are available for use in detergent formulations for household and industrial laundry washing. Proteases are capable of catalysing the hydrolysis of proteins while lipases ena

  11. Enzyme Activity of Cenococcum geophilum Isolates on Enzyme-specific Solid Media

    OpenAIRE

    Obase, Keisuke; Lee, Sang Yong; Chun, Kun Woo; Lee, Jong Kyu

    2011-01-01

    Enzyme activities of Cenococcum geophilum isolates were examined on enzyme-specific solid media. Deoxyribonuclease, phosphatase, and urease were detected in all isolates, whereas cellulase was not detected in any of the isolates. Variations in enzyme activities of amylase, caseinolysis, gelatinase, lipase, and ribonuclease were observed among isolates.

  12. Changes in the spectrum and rates of extracellular enzyme activities in seawater following aggregate formation

    Directory of Open Access Journals (Sweden)

    K. Ziervogel

    2009-12-01

    of enzyme lifetime using commercial enzymes suggest that hydrolytic lifetimes of cell-free enzymes may be sufficiently long to affect carbon remineralization in areas far from their site of production. Aggregate formation may be an important mechanism shaping the spectrum of enzymes active in the ocean, stimulating production of cell-free enzymes and leading to spatial and temporal decoupling of enzyme activity from the microorganisms that produced them.

  13. Enzyme-Immobilized Microfluidic Process Reactors

    Directory of Open Access Journals (Sweden)

    Hideaki Maeda

    2011-07-01

    Full Text Available Microreaction technology, which is an interdisciplinary science and engineering area, has been the focus of different fields of research in the past few years. Several microreactors have been developed. Enzymes are a type of catalyst, which are useful in the production of substance in an environmentally friendly way, and they also have high potential for analytical applications. However, not many enzymatic processes have been commercialized, because of problems in stability of the enzymes, cost, and efficiency of the reactions. Thus, there have been demands for innovation in process engineering, particularly for enzymatic reactions, and microreaction devices represent important tools for the development of enzyme processes. In this review, we summarize the recent advances of microchannel reaction technologies especially for enzyme immobilized microreactors. We discuss the manufacturing process of microreaction devices and the advantages of microreactors compared to conventional reaction devices. Fundamental techniques for enzyme immobilized microreactors and important applications of this multidisciplinary technology are also included in our topics.

  14. Evaluation of pressure tuning of enzymes

    DEFF Research Database (Denmark)

    Naghshineh, Mahsa

    The current industrial technique of pectin production is based on relatively harsh chemical process,which does not allow pectin to be extracted entirely with no damage to its structure. It is also not an environmentally friendly method due to acid usage, production of large amounts of waste and...... high energy consumption. Therefore, searching for an environmentally friendly method of pectin extraction is a task for science and industry. Employment of hydrolytic enzymes may represent a green approach to obtain intact pectin polymer. However, the low stability/activity of enzymes, and low polymer...... yield of enzymatic extraction limits the application of enzyme in pectin production. There is evidence that emerging technology of high hydrostatic pressure processing can result in stabilization and activation of some enzymes. Therefore, the use of high hydrostatic pressure in combination with enzyme...

  15. Electro-ultrafiltration of industrial enzyme solutions

    DEFF Research Database (Denmark)

    Enevoldsen, Ann Dorrit; Hansen, Erik Børresen; Jonsson, Gunnar Eigil

    2007-01-01

    To reduce the problems with fouling and concentration polarization during crossflow ultrafiltration of industrial enzyme solutions an electric field is applied across the membrane. The filtration performance during electro-ultrafiltration (EUF) has been tested with several enzymes. Results show...... that EUF is an effective method to filter high concentrated solutions at low crossfiow. The flux improved 3-7 times for enzymes with a significant surface charge at an electric field strength of 1600V/m compared to conventional UF. The greatest improvement is observed at high concentration. Not all...... enzymes can be filtered with EUF, mainly due to a low surface charge and impurities in the feed solution. Using a pulsed electric field did not improve the flux compared to a constant field. Gel electrophoresis experiments of the enzymes appear to be a useful method for estimating the influence of the...

  16. Production of cellulolytic enzymes from ascomycetes

    DEFF Research Database (Denmark)

    Hansen, Gustav Hammerich; Lübeck, Mette; Frisvad, Jens Christian;

    2015-01-01

    Optimizing production of cellulose degrading enzymes is of great interest in order to increase the feasibility of constructing biorefinery facilities for a sustainable supply of energy and chemical products. The ascomycete phylum has a large potential for the production of cellulolytic enzymes....... Although numerous enzymatic profiles have already been unraveled, the research has been covering only a limited number of species and genera, thus leaving many ascomycetes to be analyzed. Such analysis requires choosing appropriate media and cultivation methods that ensure enzyme profiles with high...... specificities and activities. However, the choice of media, cultivation methods and enzyme assays highly affect the enzyme activity profile observed. This review provides an overview of enzymatic profiles for several ascomycetes covering phylogenetically distinct genera and species. The profiles of cellulose...

  17. Directed Evolution of Enzymes for Industrial Biocatalysis.

    Science.gov (United States)

    Porter, Joanne L; Rusli, Rukhairul A; Ollis, David L

    2016-02-01

    Enzymes have the potential to catalyse a wide variety of chemical reactions. They are increasingly being sought as environmentally friendly and cost-effective alternatives to conventional catalysts used in industries ranging from bioremediation to applications in medicine and pharmaceutics. Despite the benefits, they are not without their limitations. Many naturally occurring enzymes are not suitable for use outside of their native cellular environments. However, protein engineering can be used to generate enzymes tailored for specific industrial applications. Directed evolution is particularly useful and can be employed even when lack of structural information impedes the use of rational design. The aim of this review is to provide an overview of current industrial applications of enzyme technology and to show how directed evolution can be used to modify and to enhance enzyme properties. This includes a brief discussion on library generation and a more detailed focus on library screening methods, which are critical to any directed evolution experiment. PMID:26661585

  18. Evaluation of thermostable enzymes for bioethanol processing

    DEFF Research Database (Denmark)

    Skovgaard, Pernille Anastasia

    of fermentable sugars (glucose) as cellulose is tightly linked to hemicellulose and lignin. Lignocellulose is disrupted during pretreatment, but to degrade cellulose to single sugars, lignocellulolytic enzymes such as cellulases and hemicellulases are needed. Lignocellulolytic enzymes are costly for...... the ioethanol production, but the expenses can be reduced by using thermostable enzymes, which are known for their increased stability and inhibitor olerance. However, the advantage of using thermostable enzymes has not been studied thoroughly and more knowledge is needed for development of bioethanol...... processes. Enzymes are added to the bioethanol process after pretreatment. For an efficient sugar and ethanol yield, the solids content of biomass is normally increased, which results in highly viscous slurries that are difficult to mix. Therefore, the first enzymatic challenge is to ensure rapid reduction...

  19. Enzyme-based antifouling coatings: a review

    DEFF Research Database (Denmark)

    Olsen, Stefan Møller; Pedersen, Leif Toudal; Laursen, M.H.;

    2007-01-01

    A systematic overview is presented of the literature that reports the antifouling (AF) protection of underwater structures via the action of enzymes. The overall aim of this review is to assess the state of the art of enzymatic AF technology, and to highlight the obstacles that have to be overcome...... for successful development of enzymatic AF coatings. The approaches described in the literature are divided into direct and indirect enzymatic AF, depending on the intended action of the enzymes. Direct antifouling is used when the enzymes themselves are active antifoulants. Indirect antifouling...... refers to the use of enzymes to release an active biocide with AF activity. For direct AF, several patents have been granted, and a commercial product has been launched. However, the achievement of an efficient broad-spectrum AF coating based on a single or a few enzymes has not yet been achieved. An...

  20. Process for producing hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Doi, K.; Komatsu, A.; Moroe, M.; Moroe, T.

    1980-07-22

    A process is described for producing a hydrocarbon product consisting essentially of hydrocarbons having about 10 to 50 carbon atoms with 60% or more of said product consisting of hydrocarbons containing 25 to 32 carbon atoms which comprises subjecting a synthetic polyisoprene rubber having 92 to 97% cis-type double bods to a thermally destructive distillation at about 300 to 400/sup 0/ C for about 30 minutes under a reduced pressure of about 0.1 to 5 mm. Hg to obtain said hydrocarbon product consisting essentially of hydrocarbons having about 10 to 50 carbon atoms with 60% or more of said product consisting of hydrocarbons containing 25 to 35 carbon atoms, said hydrocarbon product not having a bad odor and containing scarcely any resinous material.

  1. Size product modulation by enzyme concentration reveals two distinct levan elongation mechanisms in Bacillus subtilis levansucrase.

    Science.gov (United States)

    Raga-Carbajal, Enrique; Carrillo-Nava, Ernesto; Costas, Miguel; Porras-Dominguez, Jaime; López-Munguía, Agustín; Olvera, Clarita

    2016-04-01

    Two levan distributions are produced typically by Bacillus subtilis levansucrase (SacB): a high-molecular weight (HMW) levan with an average molecular weight of 2300 kDa, and a low-molecular weight (LMW) levan with 7.2 kDa. Previous results have demonstrated how reaction conditions modulate levan molecular weight distribution. Here we demonstrate that the SacB enzyme is able to perform two mechanisms: a processive mechanism for the synthesis of HMW levan and a non-processive mechanism for the synthesis of LMW levan. Furthermore, the effect of enzyme and substrate concentration on the elongation mechanism was studied. While a negligible effect of substrate concentration was observed, we found that SacB elongation mechanism is determined by enzyme concentration. A high concentration of enzyme is required to synthesize LMW levan, involving the sequential formation of a wide variety of intermediate size levan oligosaccharides with a degree of polymerization (DP) up to ∼70. In contrast, an HMW levan distribution is synthesized through a processive mechanism producing oligosaccharides with DP <20, in reactions occurring at low enzyme concentration. Additionally, reactions where levansucrase concentration was varied while the total enzyme activity was kept constant (using a combination of active SacB and an inactive SacB E342A/D86A) allowed us to demonstrate that enzyme concentration and not enzyme activity affects the final levan molecular weight distribution. The effect of enzyme concentration on the elongation mechanism is discussed in detail, finding that protein-product interactions are responsible for the mechanism shift. PMID:26646447

  2. Highly efficient enzyme encapsulation in a protein nanocage: towards enzyme catalysis in a cellular nanocompartment mimic.

    Science.gov (United States)

    Schoonen, Lise; Nolte, Roeland J M; van Hest, Jan C M

    2016-08-14

    The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions. PMID:27407020

  3. Cellulose and hemicellulose-degrading enzymes in Fusarium commune transcriptome and functional characterization of three identified xylanases

    DEFF Research Database (Denmark)

    Yuhong, Huang; Busk, Peter Kamp; Lange, Lene

    2015-01-01

    Specific enzymes from plant-pathogenic microbes demonstrate high effectiveness for natural lignocellulosic biomass degradation and utilization. The secreted lignocellulolytic enzymes of Fusarium species have not been investigated comprehensively, however. In this study we compared cellulose...... and hemicellulose-degrading enzymes of classical fungal enzyme producers with those of Fusarium species. The results indicated that Fusarium species are robust cellulose and hemicellulose degraders. Wheat bran, carboxymethylcellulose and xylan-based growth media induced a broad spectrum of lignocellulolytic enzymes...... in Fusarium commune. Prediction of the cellulose and hemicellulose-degrading enzymes in the F. commune transcriptome using peptide pattern recognition revealed 147 genes encoding glycoside hydrolases and six genes encoding lytic polysaccharide monooxygenases (AA9 and AA11), including all relevant cellulose...

  4. Lung angiotensin converting enzyme activity in rats with pulmonary hypertension.

    OpenAIRE

    Keane, P. M.; Kay, J M; Suyama, K L; Gauthier, D.; Andrew, K

    1982-01-01

    We have studied serum and lung tissue angiotensin converting enzyme (ACE) activity in female Wistar rats with pulmonary hypertension induced by two different methods. Chronic pulmonary hypertension was produced in one group of 10 rats (CH) by confinement in a hypobaric chamber (380 mmHg) for three weeks, and in another group fo 10 rats (M) by a single subcutaneous injection of monocrotaline (60 mg/kg body weight). In these two groups of tests rats and in 20 untreated controls (C), we evaluate...

  5. Asymmetric Synthesis Using Enzymes in Supercritical CO2

    Institute of Scientific and Technical Information of China (English)

    T. Matsuda

    2005-01-01

    @@ 1Introduction Great efforts have been extended to catalysis in supercritical CO2 (scCO2) since the early 1990's due to the environmental friendliness, high diffusivity, high solubilizing power, easiness of the product separation,etc.. A combined process of scCO2 and enzymatic catalyst system would be a promising synthetic tool to produce optically active compounds because the enzyme has advantages of being natural and having high enantioselectivity in nature. Here we report asymmetric synthesis using lipase and alcohol dehydrogenase in scCO2[1,2].

  6. Microbial and biochemical studies on phytase enzyme in some microorganisms

    International Nuclear Information System (INIS)

    Mixed calcium and magnesium salts of phytic acid myoinositol hexa phosphoric acid are widely distributed in food stuffs of plant origin, they may bind essential proteins, phospholipids and microelements to form indigestible compounds. In this concern, destruction of phytic acid and its salts by different methods is very important, one of them is by using microbial phytase. This study aims to produce phytase enzyme from microorganisms and study the best conditions of production and purification and also the properties of the partially purified phytase. 22 figs., 29 tabs., 61 refs

  7. Fungal Inulinases as Potential Enzymes for Application in the Food Industry

    Directory of Open Access Journals (Sweden)

    Maria Rosa Vela Sebastiăo Fernandes

    2013-08-01

    Full Text Available Inulinase is a versatile enzyme used in many fields, especially in food industry, to produce high fructose syrups and Fructo-Oligosaccharides (FOS. In this review study, fungal inulinases were investigated with a particular emphasis on their production, properties and their potential applications in the food industry. The production of inulinases has been reported from various fungal and yeast strains such as Penicillium, Kluyveromyces and Aspergillus sp. Microorganisms are the best sources for inulinases production, as are easy to be cultivated and produce high enzymes yields.

  8. Bioethanol production by inherent enzymes from rye and wheat with addition of organic farming cheese whey

    DEFF Research Database (Denmark)

    Kádár, Zsófia; Christensen, Anne Deen; Thomsen, Mette Hedegaard;

    2011-01-01

    . Throughout our studies, wheat and rye grain was used as raw material in bioethanol production with the purpose of producing in situ enzymes (during germination) for the hydrolysis of starch in the grains and compared with commercial amylase enzyme preparations. Whey permeate was incorporated into the grain......In organic farming, there is a strong effort to minimize the share of non-renewable resources (e.g. fossil fuels) and use only (preferably on-farm produced) bio-based energy and renewable raw materials, with the aim of achieving sustainable production systems and to become self-sufficient in energy...

  9. Effect of ionizing radiation on enzymes. IX

    International Nuclear Information System (INIS)

    Both pancreatin produced by activation of the pancreas, extraction and precipitation of enzymes (sample 1), and pancreatin with highest lipolytic efficacy obtained by defatting, drying and grinding the pancreas (sample 2) were irradiated with doses ranging approximately from 9 to 120 kGy (precise data are shown in the tables). Lipolytic efficacy of each sample expressed in F.I.P. units, and the experiments were statistically evaluated. The dependence of efficacy on the dose of radiation shows that pancreatin with higher lipolytic efficacy (sample 2) rapidly loses its efficacy with increasing dose approximately to a dose of 50 kGy, and then a decrease takes place in a way similar to the course in sample 1. In the semilogarithmic arrangement of the chart a straight-line appears for sample 1; for sample 2 the decrease in efficacy is expressed by two clearly defined straight-line sections. A rapid decrease in efficacy seems to suggest that at first substances are formed which catalyze the decomposition of lipase. It is evident from the percentual decrease in efficacy that in the case of a possible use of ionizing irradiation for decontamination it is necessary, particularly in the preparation with higher efficacy, to proceed in very considerately as even a dose of 10 kGy leads to a decrease in efficacy by 15% (sample 1), or 29% (sample 2). With the highest dose used, approximately 120 kGy, the residual activity is 14% (in sample 1) and only 4.5% (in sample 2) of the original value. (author) 1 tab., 3 figs., 18 refs

  10. Enhanced hydrolysis of lignocellulosic biomass: Bi-functional enzyme complexes expressed in Pichia pastoris improve bioethanol production from Miscanthus sinensis.

    Science.gov (United States)

    Shin, Sang Kyu; Hyeon, Jeong Eun; Kim, Young In; Kang, Dea Hee; Kim, Seung Wook; Park, Chulhwan; Han, Sung Ok

    2015-12-01

    Lignocellulosic biomass is the most abundant utilizable natural resource. In the process of bioethanol production from lignocellulosic biomass, an efficient hydrolysis of cellulose and hemicellulose to release hexose and pentose is essential. We have developed a strain of Pichia pastoris that can produce ethanol via pentose and hexose using an assembly of enzyme complexes. The use of enzyme complexes is one of the strategies for effective lignocellulosic biomass hydrolysis. Xylanase XynB from Clostridium cellulovorans and a chimeric endoglucanase cCelE from Clostridium thermocellum were selected as enzyme subunits, and were bound to a recombinant scaffolding protein mini-CbpA from C. cellulovorans to assemble the enzyme complexes. These complexes efficiently degraded xylan and carboxymethylcellulose (CMC), producing approximately 1.18 and 1.07 g/L ethanol from each substrate, respectively, which is 2.3-fold and 2.7-fold higher than that of the free-enzyme expressing strain. Miscanthus sinensis was investigated as the lignocellulosic biomass for producing bioethanol, and 1.08 g/L ethanol was produced using our recombinant P. pastoris strain, which is approximately 1.9-fold higher than that of the wild-type strain. In future research, construction of enzyme complexes containing various hydrolysis enzymes could be used to develop biocatalysts that can completely degrade lignocellulosic biomass into valuable products such as biofuels. PMID:26479167

  11. Metagenomics as a Tool for Enzyme Discovery: Hydrolytic Enzymes from Marine-Related Metagenomes.

    Science.gov (United States)

    Popovic, Ana; Tchigvintsev, Anatoly; Tran, Hai; Chernikova, Tatyana N; Golyshina, Olga V; Yakimov, Michail M; Golyshin, Peter N; Yakunin, Alexander F

    2015-01-01

    This chapter discusses metagenomics and its application for enzyme discovery, with a focus on hydrolytic enzymes from marine metagenomic libraries. With less than one percent of culturable microorganisms in the environment, metagenomics, or the collective study of community genetics, has opened up a rich pool of uncharacterized metabolic pathways, enzymes, and adaptations. This great untapped pool of genes provides the particularly exciting potential to mine for new biochemical activities or novel enzymes with activities tailored to peculiar sets of environmental conditions. Metagenomes also represent a huge reservoir of novel enzymes for applications in biocatalysis, biofuels, and bioremediation. Here we present the results of enzyme discovery for four enzyme activities, of particular industrial or environmental interest, including esterase/lipase, glycosyl hydrolase, protease and dehalogenase. PMID:26621459

  12. Power Producer Production Valuation

    Directory of Open Access Journals (Sweden)

    M. Kněžek

    2008-01-01

    Full Text Available The ongoing developments in the electricity market, in particular the establishment of the Prague Energy Exchange (PXE and the associated transfer from campaign-driven sale to continuous trading, represent a significant change for power companies.  Power producing companies can now optimize the sale of their production capacities with the objective of maximizing profit from wholesale electricity and supporting services. The Trading Departments measure the success rate of trading activities by the gross margin (GM, calculated by subtracting the realized sales prices from the realized purchase prices and the production cost, and indicate the profit & loss (P&L to be subsequently calculated by the Control Department. The risk management process is set up on the basis of a business strategy defining the volumes of electricity that have to be sold one year and one month before the commencement of delivery. At the same time, this process defines the volume of electricity to remain available for spot trading (trading limits. 

  13. Cyclotron produced radiopharmaceuticals

    Science.gov (United States)

    Kopička, K.; Fišer, M.; Hradilek, P.; Hanč, P.; Lebeda, O.

    2003-01-01

    Some of the cyclotron-produced radionuclides may serve as important materials for the production of radiopharmaceuticals. This lecture deals with basic information relating to various aspects of these compounds. In comparison with radionuclides/compounds used for non-medical purposes, radiopharmaceuticals are subject to a broader scale of regulations, both from the safety and efficacy point of view; besides that, there are both radioactive and medical aspects that must be taken into account for any radiopharmaceutical. According to the regulations and in compliance with general rules of work with radioactivity, radiopharmaceuticals should only be prepared/manufactured under special conditions, using special areas and special equipment and applying special procedures (e.g. sterilisation, disinfection, aseptic work). Also, there are special procedures for cleaning and maintenance. Sometimes the requirements for the product safety clash with those for the safety of the personnel; several examples of solutions pertaining to these cases are given in the lecture. Also, the specific role of cyclotron radiopharmaceuticals is discussed.

  14. Expression of lignocellulolytic enzymes in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Mellitzer Andrea

    2012-05-01

    Full Text Available Abstract Background Sustainable utilization of plant biomass as renewable source for fuels and chemical building blocks requires a complex mixture of diverse enzymes, including hydrolases which comprise the largest class of lignocellulolytic enzymes. These enzymes need to be available in large amounts at a low price to allow sustainable and economic biotechnological processes. Over the past years Pichia pastoris has become an attractive host for the cost-efficient production and engineering of heterologous (eukaryotic proteins due to several advantages. Results In this paper codon optimized genes and synthetic alcohol oxidase 1 promoter variants were used to generate Pichia pastoris strains which individually expressed cellobiohydrolase 1, cellobiohydrolase 2 and beta-mannanase from Trichoderma reesei and xylanase A from Thermomyces lanuginosus. For three of these enzymes we could develop strains capable of secreting gram quantities of enzyme per liter in fed-batch cultivations. Additionally, we compared our achieved yields of secreted enzymes and the corresponding activities to literature data. Conclusion In our experiments we could clearly show the importance of gene optimization and strain characterization for successfully improving secretion levels. We also present a basic guideline how to correctly interpret the interplay of promoter strength and gene dosage for a successful improvement of the secretory production of lignocellulolytic enzymes in Pichia pastoris.

  15. Molecular mechanical properties of short-sequence peptide enzyme mimics.

    Science.gov (United States)

    Takahashi, Tsukasa; Vo Ngo, Bao C; Xiao, Leyang; Arya, Gaurav; Heller, Michael J

    2016-03-01

    While considerable attempts have been made to recreate the high turnover rates of enzymes using synthetic enzyme mimics, most have failed and only a few have produced minimal reaction rates that can barely be considered catalytic. One particular approach we have focused on is the use of short-sequence peptides that contain key catalytic groups in close proximity. In this study, we designed six different peptides and tested their ability to mimic the catalytic mechanism of the cysteine proteases. Acetylation and deacylation by Ellman's Reagent trapping experiments showed the importance of having phenylalanine groups surrounding the catalytic sites in order to provide greater proximity between the cysteine, histidine, and aspartate amino acid R-groups. We have also carried out all-atom molecular dynamics simulations to determine the distance between these catalytic groups and the overall mechanical flexibility of the peptides. We found strong correlations between the magnitude of fluctuations in the Cys-His distance, which determines the flexibility and interactions between the cysteine thiol and histidine imidazole groups, and the deacylation rate. We found that, in general, shorter Cys-His distance fluctuations led to a higher deacylation rate constant, implying that greater confinement of the two residues will allow a higher frequency of the acetyl exchange between the cysteine thiol and histidine imidazole R-groups. This may be the key to future design of peptide structures with molecular mechanical properties that lead to viable enzyme mimics. PMID:25921736

  16. Isolation and characterization of Schwanniomyces alluvius amylolytic enzymes.

    Science.gov (United States)

    Wilson, J J; Ingledew, W M

    1982-08-01

    The extracellular amylolytic enzymes of Schwanniomyces alluvius were studied to determine future optimization of this yeast for the production of industrial ethanol from starch. Both alpha-amylase and glucoamylase were isolated and purified. alpha-Amylase had an optimum pH of 6.3 and was stable from pH 4.5 to 7.5. The optimum temperature for the enzyme was 40 degrees C, but it was quickly inactivated at temperatures above 40 degrees C. The Km for soluble starch was 0.364 mg/ml. The molecular weight was calculated to be 61,900 +/- 700. alpha-Amylase was capable of releasing glucose from starch, but not from pullulan. Glucoamylase had an optimum pH of 5.0 and was stable from pH 4.0 to greater than 8.0. The optimum temperature for the enzyme was 50 degrees C, and although less heat sensitive than alpha-amylase, it was quickly inactivated at 60 degrees C. Km values were 12.67 mg/ml for soluble starch and 0.72 mM for maltose. The molecular weight was calculated to be 155,000 +/- 3,000. Glucoamylase released only glucose from both soluble starch and pullulan. S. alluvius is one of the very few yeasts to possess both alpha-amylase and glucoamylase as well as some fermentative capacity to produce ethanol. PMID:6181739

  17. Isolation and characterization of Schwanniomyces alluvius amylolytic enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, J.J.; Ingledew, W.M.

    1982-08-01

    The extracellular amylolytic enzymes of Schwanniomyces alluvius were studied to determine future optimization of this yeast for the production of industrial ethanol from starch. Both alpha-amylase and glucoamylase were isolated and purified. Alpha-amylase has an optimum pH of 6.3 and was stable from pH 4.5 to 7.5. The optimum temperature for the enzyme was 40 degrees C, but it was quickly inactivated at temperatures above 40 degrees C. The Km for soluble starch was 0.364 mg/ml. The molecular weight was calculated to be 61,900 + or - 700. Alpha-amylase was capable of releasing glucose from starch, but not from pullulan. Glucoamylase had an optimum pH of 5.0 and was stable from pH 4.0 to more than 8.0. The optimum temperature for the enzyme was 50 degrees C, and although less heat sensitive than alpha-amylase, it was quickly inactivated at 60 degrees C. Km values were 12.67 mg/ml for soluble starch and 0.72 mM for maltose. The molecular weight was calculated to be 155,000 + or - 3,000. Glucoamylase released only glucose from both soluble starch and pullulan. Schwanniomyces alluvius is one of the very few yeasts to possess both alpha-amylase and glucoamylase as well as some fermentative capacity to produce ethanol. (Refs. 9).

  18. Proglobulin processing enzyme in vacuoles isolated from developing pumpkin cotyledons

    International Nuclear Information System (INIS)

    The enzymic conversion of proglobulin to globulin catalyzed by the extracts of vacuoles isolated from developing pumpkin (Cucurbita sp. cv Kurokawa Amakuri Nankin) cotyledons was investigated. The endoplasmic reticulum fraction isolated from the developing cotyledons pulse-labeled with [35S]methionine was shown to contain mainly the radiolabeled proglobulin, which was used as a substrate for assaying the proteolytic processing in vitro. The vacuolar extracts catalyzed the proteolytic processing of the proglobulin molecule to produce globulin containing two kinds of polypeptide chains, γ and δ. The pH optimum for the vacuole-mediated conversion was at pH 5.0. The proteolytic processing of proglobulin by the vacuolar extracts was inhibited in the presence of various thiol reagents, e.g. p-chloromercuribenzoate, N-ethylmaleimide, iodoacetic acid, Hg2+, and Cu2+, but not phenylmethylsulfonyl fluoride, EDTA, o-phenanthroline, leupeptin, antipain, pepstatin, chymostatin, or pumpkin trypsin inhibitor, and was activated in the presence of dithiothreitol and cysteine, indicating that the processing enzyme is a thiol protease. The suborganellar fractionation of the vacuoles showed that the processing activity was localized in the matrix fraction, but not in the membrane or crystalloid fractions. During the seed development, the enzyme was shown to increase, exhibiting the maximal activity at the late developmental stage. The matrix fraction of the protein bodies isolated from the dry castor bean (Ricinus communis) exhibited the processing activity toward the pumpkin proglobulin molecules in the same manner as that by the matrix fraction of pumpkin vacuoles

  19. Extraction of Coconut Oil from Coconut Milk Foulants Using Enzyme

    Directory of Open Access Journals (Sweden)

    Saikhwan Phanida

    2016-01-01

    Full Text Available Coconut milk manufacturing process encounters problems with foulants formed during pasteurization process. For example, fouling layers reduce heat transfer efficiency of a heat exchanger. As the fouling layers are considered as waste, this research aimed at extracting coconut oil from the foulants to produce a product from the waste. A model coconut milk foulant was used to simulate foulants formed during batch pasteurization process and coconut oil was extracted from the foulant using celloulase enzyme. The extracted oil then was evaluated in terms of fatty acid composition and antioxidant properties (total phenolic and flavonoid contents. The antioxidant activities were evaluated using DPPH (1,1-diphenyl-2-picrylhydrazyl radical scavenging and FRAP (Ferric reducing antioxidant power methods. Results showed that the oil extracted from the foulants appeared similar to virgin coconut oil (VCO; the extracted oil appeared as clear viscous liquid with aroma associated with roasted coconut. The oil extracted using enzyme contained all fatty acids found in VCO in lower proportions but large extent of linoleic acid was found. Antioxidant capacity was similar to that of VCO. The foulants after the extraction of fat using enzyme were easier to clean suggesting the possibility to couple cleaning of coconut milk foulants and oil extraction in the same process.

  20. Specificity of antisera produced against mitomycin C.

    Science.gov (United States)

    Fujiwara, K; Saikusa, H; Kitagawa, T; Takahashi, S; Konishi, Y

    1983-12-01

    The specificity of antisera produced in rabbits for use in mitomycin C (MMC) enzyme immunoassay has been examined employing competitive experiments using several mitomycin analogs and the chemically or biologically degraded preparations of MMC. These studies demonstrate that the antiserum distinguished alterations in the chemical structure of the molecule, showing decreased immunoreactivity with mitomycin A (7.8%) and B (0.78%). On the other hand, porfiromycin and acetyl MMC (Ac-MMC), which commonly possess the substituted groups (methyl and acetyl groups, respectively) at the aziridine ring, showed enhanced reactivity with the antiserum (about two times and ten times as compared to the parent MMC, respectively), suggesting that the antigen used for antibody production was the MMC acylated at the imino group of the aziridine ring. The values of the chemically or biologically degraded preparations of MMC quantified by this enzyme immunoassay were in good agreement with those of the remaining nonreacted MMC measured spectrophotometrically, thus indicating that the anti-MMC antiserum hardly cross-reacted with these degradation products. PMID:6418380

  1. Spatial distribution of enzyme activities along the root and in the rhizosphere of different plants

    Science.gov (United States)

    Razavi, Bahar S.; Zarebanadkouki, Mohsen; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    Extracellular enzymes are important for decomposition of many biological macromolecules abundant in soil such as cellulose, hemicelluloses and proteins. Activities of enzymes produced by both plant roots and microbes are the primary biological drivers of organic matter decomposition and nutrient cycling. So far acquisition of in situ data about local activity of different enzymes in soil has been challenged. That is why there is an urgent need in spatially explicit methods such as 2-D zymography to determine the variation of enzymes along the roots in different plants. Here, we developed further the zymography technique in order to quantitatively visualize the enzyme activities (Spohn and Kuzyakov, 2013), with a better spatial resolution We grew Maize (Zea mays L.) and Lentil (Lens culinaris) in rhizoboxes under optimum conditions for 21 days to study spatial distribution of enzyme activity in soil and along roots. We visualized the 2D distribution of the activity of three enzymes:β-glucosidase, leucine amino peptidase and phosphatase, using fluorogenically labelled substrates. Spatial resolution of fluorescent images was improved by direct application of a substrate saturated membrane to the soil-root system. The newly-developed direct zymography shows different pattern of spatial distribution of enzyme activity along roots and soil of different plants. We observed a uniform distribution of enzyme activities along the root system of Lentil. However, root system of Maize demonstrated inhomogeneity of enzyme activities. The apical part of an individual root (root tip) in maize showed the highest activity. The activity of all enzymes was the highest at vicinity of the roots and it decreased towards the bulk soil. Spatial patterns of enzyme activities as a function of distance from the root surface were enzyme specific, with highest extension for phosphatase. We conclude that improved zymography is promising in situ technique to analyze, visualize and quantify

  2. Modeling amperometric biosensors based on allosteric enzymes

    Directory of Open Access Journals (Sweden)

    Liutauras Ričkus

    2013-09-01

    Full Text Available Computational modeling of a biosensor with allosteric enzyme layer was investigated in this study. The operation of the biosensor is modeled using non-stationary reaction-diffusion equations. The model involves three regions: the allosteric enzyme layer where the allosteric enzyme reactions as well as then mass transport by diffusion take place, the diffusion region where the mass transport by diffusion and non-enzymatic reactions take place and the convective region in which the analyte concentration is maintained constant. The biosensor response on dependency substrate concentration, cooperativity coefficient and the diffusion layer thickness on the same parameters have been studied.

  3. Activation of interfacial enzymes at membrane surfaces

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Andresen, Thomas Lars; Halperin, Avi;

    2006-01-01

    A host of water-soluble enzymes are active at membrane surfaces and in association with membranes. Some of these enzymes are involved in signalling and in modification and remodelling of the membranes. A special class of enzymes, the phospholipases, and in particular secretory phospholipase A2 (s......PLA2), are only activated at the interface between water and membrane surfaces, where they lead to a break-down of the lipid molecules into lysolipids and free fatty acids. The activation is critically dependent on the physical properties of the lipid-membrane substrate. A topical review is given of...

  4. Dimeric assembly of enterocyte brush border enzymes

    DEFF Research Database (Denmark)

    Danielsen, E M

    1994-01-01

    appearance of the liposome-reconstituted enzyme [Norén et al. (1986) J. Biol. Chem. 261, 12306-12309], showing only the inner, membrane-anchored domains of the monomers to be in close contact with one another while the outer domains are far apart. In contrast to the other brush border enzymes studied......The noncovalent, dimeric assembly of small intestinal brush border enzymes was studied by sedimentation analysis in density gradients of extracts of pulse-labeled pig jejunal mucosal explants. Like aminopeptidase N (EC 3.4.11.2), sucrase-isomaltase (EC 3.2.1.48-10), aminopeptidase A (EC 3...

  5. Process for preparing multilayer enzyme coating on a fiber

    Science.gov (United States)

    Kim, Jungbae; Kwak, Ja Hun; Grate, Jay W.

    2009-11-03

    A process for preparing high stability, high activity biocatalytic materials is disclosed and processes for using the same. The process involves coating of a material or fiber with enzymes and enzyme aggregate providing a material or fiber with high biocatalytic activity and stability useful in heterogeneous environments. In one illustrative approach, enzyme "seeds" are covalently attached to polymer nanofibers followed by treatment with a reagent that crosslinks additional enzyme molecules to the seed enzymes forming enzyme aggregates thereby improving biocatalytic activity due to increased enzyme loading and enzyme stability. This approach creates a useful new biocatalytic immobilized enzyme system with potential applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  6. Portable Enzyme-Paper Biosensors Based on Redox-Active CeO2 Nanoparticles.

    Science.gov (United States)

    Karimi, A; Othman, A; Andreescu, S

    2016-01-01

    Portable, nanoparticle (NP)-enhanced enzyme sensors have emerged as powerful devices for qualitative and quantitative analysis of a variety of analytes for biomedicine, environmental applications, and pharmaceutical fields. This chapter describes a method for the fabrication of a portable, paper-based, inexpensive, robust enzyme biosensor for the detection of substrates of oxidase enzymes. The method utilizes redox-active NPs of cerium oxide (CeO2) as a sensing platform which produces color in response to H2O2 generated by the action of oxidase enzymes on their corresponding substrates. This avoids the use of peroxidases which are routinely used in conjunction with glucose oxidase. The CeO2 particles serve dual roles, as high surface area supports to anchor high loadings of the enzyme as well as a color generation reagent, and the particles are recycled multiple times for the reuse of the biosensor. These sensors are small, light, disposable, inexpensive, and they can be mass produced by standard, low-cost printing methods. All reagents needed for the analysis are embedded within the paper matrix, and sensors stored over extended periods of time without performance loss. This novel sensor is a general platform for the in-field detection of analytes that are substrates for oxidase enzymes in clinical, food, and environmental samples. PMID:27112400

  7. Recombinant protein production facility for fungal biomass-degrading enzymes using the yeast Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Mireille eHaon

    2015-09-01

    Full Text Available Filamentous fungi are the predominant source of lignocellulolytic enzymes used in industry for the transformation of plant biomass into high-value molecules and biofuels. The rapidity with which new fungal genomic and post-genomic data are being produced is vastly outpacing functional studies. This underscores the critical need for developing platforms dedicated to the recombinant expression of enzymes lacking confident functional annotation, a prerequisite to their functional and structural study. In the last decade, the yeast Pichia pastoris has become increasingly popular as a host for the production of fungal biomass-degrading enzymes, and particularly carbohydrate-active enzymes (CAZymes. This study aimed at setting-up a platform to easily and quickly screen the extracellular expression of biomass-degrading enzymes in Pichia pastoris. We first used three fungal glycoside hydrolases that we previously expressed using the protocol devised by Invitrogen to try different modifications of the original protocol. Considering the gain in time and convenience provided by the new protocol, we used it as basis to set-up the facility and produce a suite of fungal CAZymes (glycoside hydrolases, carbohydrate esterases and auxiliary activity enzyme families out of which more than 70% were successfully expressed. The platform tasks range from gene cloning to automated protein purifications and activity tests, and is open to the CAZyme users’ community.

  8. Optimization of pectinase enzyme production in Aspergillus fumigatus isolated from rotten fruits

    Directory of Open Access Journals (Sweden)

    2015-12-01

    Full Text Available Introduction: Pectinase is one of the most important industrial enzymes which was isolated from a wide variety of microorganisms such as bacteria and filamentous fungi. This enzyme has been usually used in the juice and textile industry. In this study, the isolation and optimization of pectinase-producing fungi on decaying rotten fruits were studied. Materials and methods: Isolation and screening of pectinase producing fungi have been done by plate culture on pectin medium and staining with Lugol's iodine solution. The best strain was identified by method of Pitt and Hocking as Aspergillus fumigates. The enzyme production was optimized by application of the factorial design which involves five factors, each at three levels. Five factors were carbon sources (whey, sugar, stevia and ammonium sulfate, manganese sulfate, temperature, and pH. Pectinase concentration was measured by the Miller method. Results: The results showed that the optimum condition for enzyme production was at 32 °C, PH = 6 , 3g / L manganese sulfate, 2.75g / L of ammonium sulfate, 10g / L of each carbon source (whey, stevia, and glucose. Optimum of enzyme production was observed in the presence of 1.328 mg / ml of glucose. Molecular weight of enzyme was obtained about 40 kDa by SDS-PAGE. Discussion and conclusion: The results demonstrated that this strain could grow in a wide range of carbon sources, PH and temperature. This study indicates that this strain is a good candidate for use in industrial application.

  9. Understanding Free and Complexed Enzyme Mechanisms and Factors Contributing to Cell Wall Recalcitrance (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Resch, M.; Donohoe, B.; Katahira, R.; Ashutosh, M.; Beckham, G.; Himmel, M.; Decker, S.

    2014-04-01

    Fungal free enzymes and bacterial complexed cellulosomes deconstruct biomass using different physical mechanisms. Free enzymes, which typically contain a large proportion of GH7 cellobiohydrolase, diffuse throughout the substrate and hydrolyze primarily from the cellulose reducing end, resulting in 'sharpened' macrofibrils. In contrast, complexed cellulosomes contain a diverse array of carbohydrate binding modules and multiple catalytic specificities leading to delamination and physical peeling of the cellulose macrofibril structures. To investigate how cellulose structure contributes to recalcitrance, we compared the deconstruction of cellulose I, II, and III; using free and complexed enzyme systems. We also evaluated both systems on Clean Fractionation and alkaline pretreated biomass, which remove much of the lignin, to determine the impact on enzyme loading reduction. Free fungal enzymes demonstrated a swelling of the outer surface of the plant cell walls while removing localized disruptions, resulting in a smooth surface appearance. Cellulosomes produced cell wall surfaces with localized areas of disruption and little surface layer swelling. These studies contribute to the overall understanding of biomass recalcitrance and how combining different enzymatic paradigms may lead to the formulation of new enzyme cocktails to reduce the cost of producing sugars from plant cell wall carbohydrates.

  10. Identification and Characterization of Trichoderma Species Damaging Shiitake Mushroom Bed-Logs Infested by Camptomyia Pest.

    Science.gov (United States)

    Kim, Jun Young; Kwon, Hyuk Woo; Yun, Yeo Hong; Kim, Seong Hwan

    2016-05-28

    The shiitake mushroom industry has suffered from Camptomyia (gall midges) pest, which feeds on the mycelium of shiitake mushroom during its cultivation. It has been postulated that fungal damage of shiitake bed-logs is associated with infestation by the insect pest, but this is not well understood. To understand the fungal damage associated with Camptomyia pest, various Trichoderma species were isolated, identified, and characterized. In addition to two previously known Trichoderma species, T. citrinoviride and T. deliquescens, two other Trichoderma species, T. harzianum and T. atroviride, were newly identified from the pestinfested bed-log samples obtained at three mushroom farms in Cheonan, Korea. Among these four species, T. harzianum was the most evident. The results of a chromogenic media-based assay for extracellular enzymes showed that these four species have the ability to produce amylase, carboxyl-methyl cellulase, avicelase, pectinase, and β-glucosidase, thus indicating that they can degrade wood components. A dual culture assay on PDA indicated that T. harzianum, T. atroviride, and T. citrinoviride were antagonistic against the mycelial growth of a shiitake strain (Lentinula edodes). Inoculation tests on shiitake bed-logs revealed that all four species were able to damage the wood of bed-logs. Our results provide evidence that the four green mold species are the causal agents involved in fungal damage of shiitake bed-logs infested by Camptomyia pest. PMID:26930351

  11. 21 CFR 864.7100 - Red blood cell enzyme assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Red blood cell enzyme assay. 864.7100 Section 864... enzyme assay. (a) Identification. Red blood cell enzyme assay is a device used to measure the activity in... kinase or 2,3-diphosphoglycerate. A red blood cell enzyme assay is used to determine the enzyme...

  12. Potato Peroxidase for the Study of Enzyme Properties.

    Science.gov (United States)

    Shamaefsky, Brian R.

    1993-01-01

    Explains how the surface of a freshly sliced potato can be used for a variety of enzyme action experiments including the influence of pH on enzyme action, the enzyme denaturation potential of boiling water, the inhibition of enzymes by heavy metals, and the effects of salt concentration on enzyme effectiveness. (PR)

  13. Bacterial and fungal keratitis in Upper Egypt: In vitro screening of enzymes, toxins and antifungal activity

    Directory of Open Access Journals (Sweden)

    Abdullah A Gharamah

    2014-01-01

    Full Text Available Purpose: This work was conducted to study the ability of bacterial and fungal isolates from keratitis cases in Upper Egypt to produce enzymes, toxins, and to test the isolated fungal species sensitivity to some therapeutic agents. Materials and Methods: One hundred and fifteen patients clinically diagnosed to have microbial keratitis were investigated. From these cases, 37 bacterial isolates and 25 fungal isolates were screened for their ability to produce extra-cellular enzymes in solid media. In addition, the ability of fungal isolates to produce mycotoxins and their sensitivity to 4 antifungal agents were tested. Results: Protease, lipase, hemolysins, urease, phosphatase, and catalase were detected respectively in 48.65%, 37.84%, 59.46%, 43.24%, 67.57%, and 100% out of 37 bacterial isolates tested. Out of 25 fungal isolates tested during the present study, 80% were positive for protease, 84% for lipase and urease, 28% for blood hemolysis, and 100% for phosphatase and catalase enzymes. Thirteen fungal isolates were able to produce detectable amounts of 7 mycotoxins in culture medium (aflatoxins (B1, B2, G1, and G2, sterigmatocystin, fumagillin, diacetoxyscirpenol, zearalenone, T-2 toxin, and trichodermin. Among the antifungal agents tested in this study, terbinafine showed the highest effect against most isolates in vitro. Conclusion: In conclusion, the ability of bacterial and fungal isolates to produce extracellular enzymes and toxins may be aid in the invasion and destruction of eye tissues, which, in turn, lead to vision loss.

  14. The optimization of fermentation conditions and enzyme properties of Stenotrophomonas maltophilia for protease production.

    Science.gov (United States)

    Wang, Zaigui; Sun, Linghong; Cheng, Jia; Liu, Chaoliang; Tang, Xiangfang; Zhang, Hongfu; Liu, Ying

    2016-03-01

    Intestinal bacteria play a significant physiological role in silkworms. Proteases secreted by intestinal microbes can promote the digestion of the nutrient by Bombyx mori and the absorption of mulberry leaves. Intestinal bacteria from Jingsong × Haoyue in the fourth larvae were isolated and purified to obtain high activity protease-producing bacteria. The morphology of the identified bacterial colony was examined by microscopy combined with the 16S rDNA method. The results showed that this bacterium was Gram negative and that it belonged to Stenotrophomonas maltophilia, which produces the proteases. To improve the utilization rate of these proteases, we studied the proper culture conditions for producing proteases, and we further studied the properties of the proteases that were produced. The results showed that the optimal enzyme-producing conditions were as follows: pH of 7.0, culture temperature of 35 °C, incubation time of 36 H, and outfit fluid amount of 60 mL per 100 mL. Meanwhile, the properties of the preliminary enzyme purification indicated that the best pH of the enzymes was 9.0 and the optimal reaction temperature was 50 °C. The enzymes are alkaline proteases that show satisfactory stability at 30 °C and pH 9.0. Consequently, it is suitable for the proteases secreted by S. maltophilia to play a bioactive role in the silkworm gut. PMID:25656812

  15. Rice bran as a substrate for proteolytic enzyme production

    Directory of Open Access Journals (Sweden)

    Alagarsamy Sumantha

    2006-09-01

    Full Text Available Rice bran was used as the substrate for screening nine strains of Rhizopus sp. for neutral protease production by solid-state fermentation. The best producer, Rhizopus microsporus NRRL 3671, was used for optimizing the process parameters for enzyme production. Fermentation carried out with 44.44 % initial moisture content at a temperature of 30 C for 72 h was found to be the optimum for enzyme secretion by the fermenting organism. While most of the carbon supplements favored enzyme production, addition of casein resulted in a marginal increase in protease yield. Fermentation was then carried out under optimized conditions to obtain the crude extract of the enzyme, which was partially purified by precipitation and dialysis. A 3-fold increase in the enzyme purity was achieved in this manner. The enzyme was found to be a metalloprotease, being activated by Mn2+, with maximal activity at a temperature of 60 C and pH 7.0.Farelo de arroz foi utilizado como substrato para seleção de nove linhagens de Rhizopus sp. com vistas a produção de protease neutra. A linhagem que apresentou maior produtividade da enzima foi Rhizopus microsporus NRRL 3671, sendo utilizada na otimização dos parâmetros do processos e produção da enzima. As condições otimizadas para produção da enzima foram 44% de umidade inicial, temperatura de 30ºC e 72h de fermentação.A suplementação do farelo de arroz com uma fonte de carbono favoreceu a produção da enzima, porém a adição de caseína resultou em um aumento marginal do rendimento em protease. Condições otimizadas foram utilizadas para obtenção do extrato cru da enzima que foi parcialmente purificado por precipitação e diálise. A enzima purificada teve sua atividade incrementada 3 vezes. A enzima foi classificada como metalo-protease, sendo ativada pelo Mn2+ , sendo que sua atividade máxima foi obtida a temperatura de 60ºC e a pH 7.0.

  16. Enhancement of photoassimilate utilization by manipulation of starch regulatory enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Okita, Thomas W. [Washington State Univ., Pullman, WA (United States)

    2016-05-11

    ADPglucose pyrophosphorylase (AGPase) and the plastidial starch phosphorylase1 (Pho1) are two regulatory enzymes whose catalytic activities are essential for starch granule synthesis. Conversion of the pre-starch granule to the mature form is dependent on AGPase, which produces ADPglucose, the substrate used by starch synthases. The catalytic activity of AGPase is controlled by small effector molecules and a prime goal of this project was to decipher the role of the two subunit types that comprise the heterotetrameric enzyme structure. Extensive genetic and biochemical studies showed that catalysis was contributed mainly by the small subunit although the large subunit was required for maximum activity. Both subunits were needed for allosteric regulatory properties. We had also demonstrated that the AGPase catalyzed reaction limits the amount of starch accumulation in developing rice seeds and that carbon flux into rice seed starch can be increased by expression of a cytoplasmic-localized, up-regulated bacterial AGPase enzyme form. Results of subsequent physiological and metabolite studies showed that the AGPase reaction is no longer limiting in the AGPase transgenic rice lines and that one or more downstream processes prevent further increases in starch biosynthesis. Further studies showed that over-production of ADPglucose dramatically alters the gene program during rice seed development. Although the expression of nearly all of the genes are down-regulated, levels of a starch binding domain containing protein (SBDCP) are elevated. This SBDCP was found to bind to and inhibit the catalytic activity of starch synthase III and, thereby preventing maximum starch synthesis from occurring. Surprisingly, repression of SBDCP elevated expression of starch synthase III resulting in increasing rice grain weight. A second phase of this project examined the structure-function of Pho1, the enzyme required during the initial phase of pre-starch granule formation and its

  17. NADPH oxidase enzymes in skin fibrosis: molecular targets and therapeutic agents.

    Science.gov (United States)

    Babalola, Olubukola; Mamalis, Andrew; Lev-Tov, Hadar; Jagdeo, Jared

    2014-05-01

    Fibrosis is characterized by the excessive deposition of extracellular matrix components eventually resulting in organ dysfunction and failure. In dermatology, fibrosis is the hallmark component of many skin diseases, including systemic sclerosis, graft-versus-host disease, hypertrophic scars, keloids, nephrogenic systemic fibrosis, porphyria cutanea tarda, restrictive dermopathy and other conditions. Fibrotic skin disorders may be debilitating and impair quality of life. There are few FDA-approved anti-fibrotic drugs; thus, research in this area is crucial in addressing this deficiency. Recent investigations elucidating the pathogenesis of skin fibrosis have implicated endogenous reactive oxygen species produced by the multicomponent nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) enzyme complex. In this review, we discuss Nox enzymes and their role in skin fibrosis. An overview of the Nox enzyme family is presented and their role in the pathogenesis of skin fibrosis is discussed. The mechanisms by which Nox enzymes influence specific fibrotic skin disorders are also reviewed. Finally, we describe the therapeutic approaches to ameliorate skin fibrosis by directly targeting Nox enzymes with the use of statins, p47phox subunit modulators, or GKT137831, a competitive inhibitor of Nox enzymes. Nox enzymes can also be targeted indirectly via scavenging ROS with antioxidants. We believe that Nox modulators are worthy of further investigation and have the potential to transform the management of skin fibrosis by dermatologists. PMID:24155025

  18. Progress on implantable biofuel cell: Nano-carbon functionalization for enzyme immobilization enhancement.

    Science.gov (United States)

    Babadi, Arman Amani; Bagheri, Samira; Hamid, Sharifah Bee Abdul

    2016-05-15

    Biofuel cells are bio-electrochemical devices, which are suitable for the environmentally friendly generation of energy. Enzymatic biofuel cell (EBFC) operates at ambient temperature and pH. Biofuel cells utilize vegetable and animal fluids (e.g. glucose) as a biofuel to produce energy. Fundamental part of each Glucose biofuel cell (GBFC) is two bioelectrodes which their surface utilizes as an enzyme immobilized site. Glucose oxidase (GOx) or glucose dehydrogenase (GDH) were immobilized on bioanode and oxidize glucose while oxygen reduced in biocathode using immobilized laccase or bilirubin oxidase in order to generate sufficient power. Glucose biofuel cells are capable to generate sufficient power for implanted devices. The key step of manufacturing a bioelectrode is the effective enzyme immobilization on the electrode surface. Due to the thin diameter of carbon nanomaterials, which make them accessible to the enzyme active sites, they are applicable materials to establish electronic communication with redox enzymes. Carbon nanomaterials regenerate the biocatalysts either by direct electron transfer or redox mediators which serve as intermediated for the electron transfer. Nano-carbon functionalization is perfectly compatible with other chemical or biological approaches to enhance the enzyme functions in implantable biofuel cells. Efficient immobilization of enzyme using the functionalized nano-carbon materials is the key point that greatly increases the possibilities of success. Current review highlights the progress on implantable biofuel cell, with focus on the nano-carbon functionalization for enzyme immobilization enhancement in glucose/O2 biofuel cells. PMID:26785309

  19. Biosynthesis of the enzymes of the cellulase system by T. Reesei QM 9414 in the presence of sophorose

    Science.gov (United States)

    Gritzali, M.

    1982-12-01

    As conventional, nonrenewable energy sources are rapidly depleted and it was necessary to search for alternative sources of energy. It was increasingly apparent that biomass and waste are alternatives well worth exploring. The sources of biomass and wastes that considered for conversion to useful products are quite diverse, but the most abundant constituent of almost every type is cellulose. Cellulose is cleanly converted to soluble fermentable sugars enzymatically, and cellulose enzymes were isolated from a number of microbial sources. It is generally agreed that the most effective system of enzymes for the conversion of cellulose to glucose is produced by species of the imperfect fungus Trichoderma. The mutant organism Trichoderma reesei QM 9414 is among the best producers of high levels of enzymes; these are extracellular and have carbonhydrate covalently bound to the peptide. Trichoderma produces three types of enzymes which, in a sequential and cooperative manner, convert cellulose to soluble oligosaccharides and glucose.

  20. Improving the Production of L-Phenylalanine by Identifying Key Enzymes Through Multi-Enzyme Reaction System in Vitro.

    Science.gov (United States)

    Ding, Dongqin; Liu, Yongfei; Xu, Yiran; Zheng, Ping; Li, Haixing; Zhang, Dawei; Sun, Jibin

    2016-01-01

    L-Phenylalanine (L-Phe) is an important amino acid used in both food and medicinal applications. We developed an in vitro system that allowed a direct, quantitative investigation of phenylalanine biosynthesis in E. coli. Here, the absolute concentrations of six enzymes (AroK, AroL, AroA, AroC, PheA and TyrB) involved in the shikimate (SHIK) pathway were determined by a quantitative proteomics approach and in vitro enzyme titration experiments. The reconstitution of an in vitro reaction system for these six enzymes was established and their effects on the phenylalanine production were tested. The results showed that the yield of phenylalanine increased 3.0 and 2.1 times when the concentrations of shikimate kinase (AroL) and 5-enolpyruvoyl shikimate 3-phosphate (EPSP) synthase (AroA) were increased 2.5 times. Consistent results were obtained from in vivo via the overexpression of AroA in a phenylalanine-producing strain, and the titer of phenylalanine reached 62.47 g/l after 48 h cultivation in a 5-liter jar fermentor. Our quantitative findings provide a practical method to detect the potential bottleneck in a specific metabolic pathway to determine which gene products should be targeted to improve the yield of the desired product. PMID:27558633

  1. ANTIMICROBIAL ACTIVITY AND BIODEGRADING ENZYMES OF ENDOPHYTIC FUNGI FROM EUCALYPTUS

    Directory of Open Access Journals (Sweden)

    K. Ananda et al

    2012-08-01

    Full Text Available A total of thirty endophytic fungi were isolated from leaves and twigs of Eucalyptus globulus and Eucalyptus citriodora. Among thirty endophytic fungal isolates, four (P3MT1, P3MT2, OP4MT2 and P7ML2 are consistently producing compounds which are inhibiting Pseudomonas aeroginosa, Mycobacterium smegmatis and Candida albicans even after 10 generations tested under dual culture, well diffusion and disc diffusion methods. P3MT1 and OP4MT2 are inhibiting even a filamentous fungi Penicillium chrysogenum. The fungal isolate OP4MT2 showed highest zone of inhibition (20 mm against Penicillium chrysogenum among two test fungi. The crude ethyl acetate extract of P3MT1 isolate showed highest zone of inhibition against Candida albicans (19 mm by both well and disc diffusion method when compared to other fungal isolates. Another four fungal isolates (P3ML1, P6MT1, P5MT1 and P2MT1 from the same set of thirty isolates showed positive for the secretion of amylase, protease and laccase enzymes in agar plate method. Two endophytic fungal isolates (P6MT1 & P2MT1 among thirty are able to oxidize guaiacol indicating the presence of Lignin degrading enzymes. Four fungal isolates indicated presence of laccase enzymes by qualitative test were able to decolorize both methylene blue and aniline blue (synthetic dyes in solid and liquid media. The quantitative estimation of percent decolorization of synthetic dyes by spectrophotometric method confirmed more than 90 % reduction in color is made possible by the endophytic fungi. All these fungal strains with good bioactivity are of worth studying in detail for the purification and characterization of the active compounds and enzymes.

  2. Long-wave UV radiation-induced activation of enzymic conversion of 5-hydroxytriptophan to serotonin

    International Nuclear Information System (INIS)

    In experiments using yeast extracts longwave UV radiation (337 nm) was found to activate enzymic decarboxylation producing serotonin. The activation effect was investigated as a function of irradiation intensity and fluence, and pH. Decarboxylase was seen to be photoactivated at pH close to neutral values (low activity of enzyme in the dark); no photoactivation was observed at acidic pH (high enzymic activity). The data show that the effect of light is similar to a pH shift towards the acidic region, leading to a transition of the inactive enzyme to its active form. It is suggested that the role of photoactive chromophore of active decarboxylase is played by its cofactor, pyridoxal phosphate adduct, that absorbs at 330-340 nm

  3. Structure and function of enzymes involved in the anaerobic degradation of L-threonine to propionate

    Indian Academy of Sciences (India)

    Dhirendra K Simanshu; Sagar Chittori; H S Savithri; M R N Murthy

    2007-09-01

    In Escherichia coli and Salmonella typhimurium, L-threonine is cleaved non-oxidatively to propionate via 2-ketobutyrate by biodegradative threonine deaminase, 2-ketobutyrate formate-lyase (or pyruvate formate-lyase), phosphotransacetylase and propionate kinase. In the anaerobic condition, L-threonine is converted to the energy-rich keto acid and this is subsequently catabolised to produce ATP via substrate-level phosphorylation, providing a source of energy to the cells. Most of the enzymes involved in the degradation of L-threonine to propionate are encoded by the anaerobically regulated tdc operon. In the recent past, extensive structural and biochemical studies have been carried out on these enzymes by various groups. Besides detailed structural and functional insights, these studies have also shown the similarities and differences between the other related enzymes present in the metabolic network. In this paper, we review the structural and biochemical studies carried out on these enzymes.

  4. Cell wall degrading enzymes in Trichoderma asperellum grown on wheat bran

    DEFF Research Database (Denmark)

    Bech, Lasse; Busk, Peter Kamp; Lange, Lene

    2015-01-01

    Trichoderma asperellum is a filamentous fungus that is able to produce and secrete a wide range of extracellular hydrolytic enzymes used for plant cell wall degradation. The Trichoderma genus has attracted considerable attention from the biorefinery industry due to the production of cell wall...... degrading enzymes and strong secretion ability of this genus. Here we report extensive transcriptome analysis of plant cell wall degrading enzymes in T. asperellum. The production of cell wall degrading enzymes by T. asperellum was tested on a range of cellulosic materials under various conditions. When T...... the theory that the glycoside hydrolases have evolved from a common ancestor, followed by a specialization in which saprotrophic fungi such as T. reesei and T. longibrachiatum lost a significant number of genes including several glycoside hydrolases....

  5. [Effect of space flight on the Kosmos-1129 biosatellite on enzyme activity of the rat liver].

    Science.gov (United States)

    Nemeth, S; Tigranian, R A

    1983-01-01

    After the 18.5 day Cosmos-1129 flight the activity of 7 glucocorticoid-stimulated enzymes of the rat liver was measured. Immediately postflight the activity of tyrosine aminotransferase, tryptophan pyrolase and serine dehydrogenase increased. These enzymes rapidly (within several hours) react to increased glucocorticoids. The activity of aspartate and alanine aminotransferases also increased. These enzymes require many days of a continuous effect of glucocorticoids. The glycogen concentration in the rat liver also grew. At R + 6 the activity of tryptophan pyrolase and serine dehydrogenase decreased and that of the other enzymes returned to normal. The immobilization stress applied postflight led to an increased activity of tyrosine aminotransferase and tryptophan pyrolase. This study gives evidence that after space flight rats are in an acute stress state, evidently, produced by the biosatellite recovery. PMID:6620954

  6. Quantifying Synergy, Thermostability, and Targeting of Cellulolytic Enzymes and Cellulosomes with Polymerization-Based Amplification.

    Science.gov (United States)

    Malinowska, Klara H; Rind, Thomas; Verdorfer, Tobias; Gaub, Hermann E; Nash, Michael A

    2015-07-21

    We present a polymerization-based assay for determining the potency of cellulolytic enzyme formulations on pretreated biomass substrates. Our system relies on monitoring the autofluorescence of cellulose and measuring the attenuation of this fluorescent signal as a hydrogel consisting of poly(ethylene glycol) (PEG) polymerizes on top of the cellulose in response to glucose produced during saccharification. The one-pot method we present is label-free, rapid, highly sensitive, and requires only a single pipetting step. Using model enzyme formulations derived from Trichoderma reesei, Trichoderma longibrachiatum, Talaromyces emersonii and recombinant bacterial minicellulosomes from Clostridium thermocellum, we demonstrate the ability to differentiate enzyme performance based on differences in thermostability, cellulose-binding domain targeting, and endo/exoglucanase synergy. On the basis of its ease of use, we expect this cellulase assay platform to be applicable to enzyme screening for improved bioconversion of lignocellulosic biomass. PMID:26114625

  7. Determination of enzyme thermal parameters for rational enzyme engineering and environmental/evolutionary studies.

    Science.gov (United States)

    Lee, Charles K; Monk, Colin R; Daniel, Roy M

    2013-01-01

    Of the two independent processes by which enzymes lose activity with increasing temperature, irreversible thermal inactivation and rapid reversible equilibration with an inactive form, the latter is only describable by the Equilibrium Model. Any investigation of the effect of temperature upon enzymes, a mandatory step in rational enzyme engineering and study of enzyme temperature adaptation, thus requires determining the enzymes' thermodynamic parameters as defined by the Equilibrium Model. The necessary data for this procedure can be collected by carrying out multiple isothermal enzyme assays at 3-5°C intervals over a suitable temperature range. If the collected data meet requirements for V max determination (i.e., if the enzyme kinetics are "ideal"), then the enzyme's Equilibrium Model parameters (ΔH eq, T eq, ΔG (‡) cat, and ΔG (‡) inact) can be determined using a freely available iterative model-fitting software package designed for this purpose.Although "ideal" enzyme reactions are required for determination of all four Equilibrium Model parameters, ΔH eq, T eq, and ΔG (‡) cat can be determined from initial (zero-time) rates for most nonideal enzyme reactions, with substrate saturation being the only requirement. PMID:23504427

  8. Highly efficient enzyme encapsulation in a protein nanocage: towards enzyme catalysis in a cellular nanocompartment mimic

    Science.gov (United States)

    Schoonen, Lise; Nolte, Roeland J. M.; van Hest, Jan C. M.

    2016-07-01

    The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions.The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions. Electronic supplementary information (ESI) available: Experimental procedures for the cloning, expression, and purification of all proteins, as well as supplementary figures and calculations. See DOI: 10.1039/c6nr04181g

  9. Partial purification and characterization of Xylanase from Trichoderma viride produced under SSF

    Directory of Open Access Journals (Sweden)

    M Irfan

    2012-03-01

    Full Text Available Summary: In the present study xylanase enzyme was produced from Trichoderma viride in solid state fermentation using sugarcane bagasse as a substrate. The whole fermentation process was carried out in 250ml Erlenmeyer flask at 30oC for seven days of fermentation period. The enzyme was partially purified by ammonium sulphate (60% fractionation followed by dialysis. The partially purified enzyme was further characterized showing optimum pH and temperature of 5.0 and 50oC respectively. Metal profile of the enzyme showed that it was stimulated by FeSO4 (134%, CaCl2 (129%, BaCl2 (105%, MgSO4 (113%, MnCl2 (102% or AgCl (107% and it was strongly inhibited by EDTA (26% or HgSO4 (32%. Industrial Relevance: In the present study, xylanase enzyme was produced and characterized from Trichoderma viride in solid state fermentation using cheap substrate. This enzyme is very helpful in industrial sector especially in pulp and paper industry, food industry and also in bioethanol production. Pilot scale production of this enzyme in industries can reduce the import cost of the enzyme and make the whole process cost effective. Keywords: Partial purification; Characterization; Xylanase; Trichoderma viride; SSF

  10. Azine/hydrogel/nanotube composite-modified electrodes for NADH catalysis and enzyme immobilization

    International Nuclear Information System (INIS)

    The development of new, efficient bioelectrodes is important to the improvement of biosensor and biofuel cell technology. NAD-dependent dehydrogenase enzymes represent a diverse field of oxidoreductase enzymes that can be used to create unique biosensors and biofuel cells, but require electrocatalysts to oxidize NADH in order to harvest the electrons efficiently from fuel oxidation. This study presents a new methodology for the co-immobilization of dehydrogenase enzymes, azine-based NADH electrocatalysts, carbon nanotubes, and polymer hydrogels. The easy “one-pot” mixing and casting procedure is shown to produce electrodes that can electro-oxidize NADH at low potentials. In situ electropolymerization of the azine dyes within the composites is shown to improve NADH sensitivity, but harms enzyme activity. Biosensors and biofuel cells are constructed with a model enzyme, glucose dehydrogenase, to show the application of this system in a glucose biosensor and biofuel cell. Glucose biosensors produced limiting current densities of 400 μA/cm2 and glucose/air-breathing biofuel cells produced power densities slightly greater than 100 μW/cm2.

  11. Production of cellulase enzymes during the solid-state fermentation of empty palm fruit bunch fiber.

    Science.gov (United States)

    Kim, Seonghun; Kim, Chul Ho

    2012-01-01

    Penicillium verruculosum COKE4E is a fungal strain isolated from bituminous coal. The microorganism cultivated in a minimal medium supplemented with Avicel, carboxymethylcellulose, and oat spelt xylan produced cellulase enzymes as exhibiting carboxymethylcellulase (CMCase), Avicelase, xylanase, and cellobiosidase activities. In this study, the productivity of the extracellular enzymes in the strain was evaluated by using empty palm fruit bunch fiber (EPFBF), a lignocellulosic biomass, as a substrate for solid-state bioconversion. The highest cellulase activities were observed after 6 days of fermentation at pH 6.0 and 30 °C. The enzymes were secreted as cellulosomes for the degradation of EPFBF as a sole carbon source. Focused ion beam analysis showed that P. verruculosum COKE4E produced cellulolytic enzymes that were able to effectively biodegrade EPFBF during solid-state fermentation. In this process, 6.5 U of CMCase, 6.8 U of Avicelase, and 8.8 U of xylanase per gram of dry solid EPFBF were produced. These results demonstrate that EPFBF may be a potential raw material in solid-state fermentation for the production of cellulase enzymes to be used for biofuel production. PMID:22052232

  12. ISOLATION AND SELECTION OF ALKALINE PROTEOLYTIC BACTERIA FROM LEATHER PR OCESSING WASTE AND ENZYME CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    MARITA ANGGARANi

    2004-01-01

    Full Text Available The aims of this experiment were to isolate alkaline protease producing bacteria from leather processing waste, and to study the biochemical properties of the enzyme produced by the selected bacteria. Nine bacterial isolates incubated at 37"C, revealed proteolytic activity on skim milk containing media. Four isolates were grown at pH 9 and another four isolates at pH 10 and only one isolate at pH 11. However, in further subculture, there were only three isolates that showed proteolytic activity, namely, D2, D7, and D l l . Among the three isolates, isolate D2 was the highest protease producer. The highest protease production (36.5U/L was reached after a 36-hr fermentation at pH 9. The optimum activity of D2 protease was observed at pH 8 and 60"C. The enzyme was stable at pH range of 7-10, and at temperature of 52-62"C. In the presence of 5mM EDTA or PMSF, the crude enzyme activity decreased to 7.04% and 23.29% respectively, which indicated that the enzyme might be a metal dependent serine protease. Zymogram analysis revealed the molecular weight of the enzyme was about 42.8kD.

  13. Generation of in vivo activating factors in the ischemic intestine by pancreatic enzymes

    Science.gov (United States)

    Mitsuoka, Hiroshi; Kistler, Erik B.; Schmid-Schönbein, Geert W.

    2000-02-01

    One of the early events in physiological shock is the generation of activators for leukocytes, endothelial cells, and other cells in the cardiovascular system. The mechanism by which these activators are produced has remained unresolved. We examine here the hypothesis that pancreatic digestive enzymes in the ischemic intestine may be involved in the generation of activators during intestinal ischemia. The lumen of the small intestine of rats was continuously perfused with saline containing a broadly acting pancreatic enzyme inhibitor (6-amidino-2-naphthyl p-guanidinobenzoate dimethanesulfate, 0.37 mM) before and during ischemia of the small intestine by splanchnic artery occlusion. This procedure inhibited activation of circulating leukocytes during occlusion and reperfusion. It also prevented the appearance of activators in portal venous and systemic artery plasma and attenuated initiating symptoms of multiple organ injury in shock. Intestinal tissue produces only low levels of activators in the absence of pancreatic enzymes, whereas in the presence of enzymes, activators are produced in a concentration- and time-dependent fashion. The results indicate that pancreatic digestive enzymes in the ischemic intestine serve as an important source for cell activation and inflammation, as well as multiple organ failure.

  14. Enzyme Production by Industrially Relevant Fungi Cultured on Coproduct From Corn Dry Grind Ethanol Plants

    Science.gov (United States)

    Ximenes, Eduardo A.; Dien, Bruce S.; Ladisch, Michael R.; Mosier, Nathan; Cotta, Michael A.; Li, Xin-Liang

    Distillers dried grain with solubles (DDGS) is the major coproduct produced at a dry grind ethanol facility. Currently, it is sold primarily as a ruminant animal feed. DDGS is low cost and relatively high in protein and fiber contents. In this study, DDGS was investigated as carbon source for extracellular hydrolytic enzyme production. Two filamentous fungi, noted for their high cellulolytic and hemicellulolytic enzyme titers, were grown on DDGS: Trichoderma reesei Rut C-30 and Aspergillus niger NRRL 2001. DDGS was either used as delivered from the plant (untreated) or after being pretreated with hot water. Both microorganisms secreted a broad range of enzymes when grown on DDGS. Higher xylanase titers were obtained when cultured on hot water DDGS compared with growth on untreated DDGS. Maximum xylanase titers were produced in 4 d for A. niger and 8 d for T. reesei in shake flask cultures. Larger amounts of enzymes were produced in bioreactors (5L) either equipped with Rushton (for T. reesei) or updraft marine impellers (A. niger). Initial production titers were lower for bioreactor than for flask cultures, especially for T. reesei cultures. Improvement of enzyme titers were obtained using fed-batch feeding schemes.

  15. Enzymes: The possibility of production and applications

    Directory of Open Access Journals (Sweden)

    Petronijević Živomir B.

    2003-01-01

    Full Text Available Enzymes are biological catalysts with increasing application in the food pharmaceutical, cosmetic, textile and chemical industry. They are also important as reagents in chemical analysis, leather fabrications and as targets for the design of new drugs. Keeping in mind the growing need to replace classical chemical processes by alternative ones, because of ever growing environmental pollution, it is important that enzyme and other biotechnological processes are economical. Therefore, price decrease and stability and enzyme preparation efficiency increase are required more and more. This paper presents a short review of methods for yield increase and the improvement of the quality of enzyme products as commercial products, as well as a review of the possibilities of their application.

  16. Supramolecular Tectonics for Enzyme-like Reagents

    Institute of Scientific and Technical Information of China (English)

    MAO; LuYuan

    2001-01-01

    The enzyme-likes and bioactive species were closely related with the life phenomena and served as the reagent of bioassy1,2. In present works, the flow cytometry (FCM) and rapid-scanning stopped-flow (RSSF) spectroscopy combine with the stopped-flow difference UV/Vis spectra, FT-IR and other methods of assay, being used to study the biomimetic reaction and enzyme mimic. Based on catalytic kinetics of enzyme reaction3,4, the reaction mechanisms of the enzyme-likes had been studied and some new methods of kinetic determination were proposed. The study and methods not only provided the basic theoretical models for the life science, but also widened the application fields of biomimetic and analytical chemistry. The main contents of our works and the supramolecular models can be described as follows:  ……

  17. Archaeal Enzymes and Applications in Industrial Biocatalysts

    Directory of Open Access Journals (Sweden)

    Jennifer A. Littlechild

    2015-01-01

    Full Text Available Archaeal enzymes are playing an important role in industrial biotechnology. Many representatives of organisms living in “extreme” conditions, the so-called Extremophiles, belong to the archaeal kingdom of life. This paper will review studies carried by the Exeter group and others regarding archaeal enzymes that have important applications in commercial biocatalysis. Some of these biocatalysts are already being used in large scale industrial processes for the production of optically pure drug intermediates and amino acids and their analogues. Other enzymes have been characterised at laboratory scale regarding their substrate specificity and properties for potential industrial application. The increasing availability of DNA sequences from new archaeal species and metagenomes will provide a continuing resource to identify new enzymes of commercial interest using both bioinformatics and screening approaches.

  18. Practical Enzyme Kinetics: A Biochemical Laboratory Experiment.

    Science.gov (United States)

    Rowe, H. Alan; Brown, Morris

    1988-01-01

    Describes an experiment that provides a fundamental understanding of the kinetics of the enzyme papain. Discusses background, materials, procedures and results. Mentions analogous experiments that can be conducted with enzymatic contact-lens cleaning solutions. (CW)

  19. An enzyme immunoassay for plasma betamethasone

    International Nuclear Information System (INIS)

    A sensitive enzyme immunoassay for plasma betamethasone was developed using betamethasone-3-(O-carboxymethyl)oxime-beta-D-galactosidase conjugate as a labelled antigen and 4-methylumbelliferyl-beta-D-galactoside as a fluorescence substrate. The performances of the enzyme immunoassay were compared with that of a radioimmunoassay using 3H-betamethasone and the same antiserum. The minimal detectable level for the enzyme immunoassay was 0.15 pg/tube or 0.15 ng/ml of plasma, which was remarkably more sensitive than the radioimmunoassay level of 10 pg/tube or 2 ng/ml of plasma. The specificity was sufficient, in particular, the cross reactivity of cortisol as 0.008%. However, the precision of the enzyme immunoassay was inferior to that of the radioimmunoassay

  20. An enzyme immunoassay for plasma betamethasone

    Energy Technology Data Exchange (ETDEWEB)

    Kominami, G.; Yamauchi, A.; Ishihara, S.; Kono, M.

    1981-03-01

    A sensitive enzyme immunoassay for plasma betamethasone was developed using betamethasone-3-(O-carboxymethyl)oxime-beta-D-galactosidase conjugate as a labelled antigen and 4-methylumbelliferyl-beta-D-galactoside as a fluorescence substrate. The performances of the enzyme immunoassay were compared with that of a radioimmunoassay using /sup 3/H-betamethasone and the same antiserum. The minimal detectable level for the enzyme immunoassay was 0.15 pg/tube or 0.15 ng/ml of plasma, which was remarkably more sensitive than the radioimmunoassay level of 10 pg/tube or 2 ng/ml of plasma. The specificity was sufficient, in particular, the cross reactivity of cortisol as 0.008%. However, the precision of the enzyme immunoassay was inferior to that of the radioimmunoassay.