WorldWideScience

Sample records for atpase regulates surfactant

  1. Vacuolar ATPase regulates surfactant secretion in rat alveolar type II cells by modulating lamellar body calcium.

    Directory of Open Access Journals (Sweden)

    Narendranath Reddy Chintagari

    Full Text Available Lung surfactant reduces surface tension and maintains the stability of alveoli. How surfactant is released from alveolar epithelial type II cells is not fully understood. Vacuolar ATPase (V-ATPase is the enzyme responsible for pumping H(+ into lamellar bodies and is required for the processing of surfactant proteins and the packaging of surfactant lipids. However, its role in lung surfactant secretion is unknown. Proteomic analysis revealed that vacuolar ATPase (V-ATPase dominated the alveolar type II cell lipid raft proteome. Western blotting confirmed the association of V-ATPase a1 and B1/2 subunits with lipid rafts and their enrichment in lamellar bodies. The dissipation of lamellar body pH gradient by Bafilomycin A1 (Baf A1, an inhibitor of V-ATPase, increased surfactant secretion. Baf A1-stimulated secretion was blocked by the intracellular Ca(2+ chelator, BAPTA-AM, the protein kinase C (PKC inhibitor, staurosporine, and the Ca(2+/calmodulin-dependent protein kinase II (CaMKII, KN-62. Baf A1 induced Ca(2+ release from isolated lamellar bodies. Thapsigargin reduced the Baf A1-induced secretion, indicating cross-talk between lamellar body and endoplasmic reticulum Ca(2+ pools. Stimulation of type II cells with surfactant secretagogues dissipated the pH gradient across lamellar bodies and disassembled the V-ATPase complex, indicating the physiological relevance of the V-ATPase-mediated surfactant secretion. Finally, silencing of V-ATPase a1 and B2 subunits decreased stimulated surfactant secretion, indicating that these subunits were crucial for surfactant secretion. We conclude that V-ATPase regulates surfactant secretion via an increased Ca(2+ mobilization from lamellar bodies and endoplasmic reticulum, and the activation of PKC and CaMKII. Our finding revealed a previously unrealized role of V-ATPase in surfactant secretion.

  2. Vacuolar ATPase regulates surfactant secretion in rat alveolar type II cells by modulating lamellar body calcium.

    Science.gov (United States)

    Chintagari, Narendranath Reddy; Mishra, Amarjit; Su, Lijing; Wang, Yang; Ayalew, Sahlu; Hartson, Steven D; Liu, Lin

    2010-01-01

    Lung surfactant reduces surface tension and maintains the stability of alveoli. How surfactant is released from alveolar epithelial type II cells is not fully understood. Vacuolar ATPase (V-ATPase) is the enzyme responsible for pumping H(+) into lamellar bodies and is required for the processing of surfactant proteins and the packaging of surfactant lipids. However, its role in lung surfactant secretion is unknown. Proteomic analysis revealed that vacuolar ATPase (V-ATPase) dominated the alveolar type II cell lipid raft proteome. Western blotting confirmed the association of V-ATPase a1 and B1/2 subunits with lipid rafts and their enrichment in lamellar bodies. The dissipation of lamellar body pH gradient by Bafilomycin A1 (Baf A1), an inhibitor of V-ATPase, increased surfactant secretion. Baf A1-stimulated secretion was blocked by the intracellular Ca(2+) chelator, BAPTA-AM, the protein kinase C (PKC) inhibitor, staurosporine, and the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), KN-62. Baf A1 induced Ca(2+) release from isolated lamellar bodies. Thapsigargin reduced the Baf A1-induced secretion, indicating cross-talk between lamellar body and endoplasmic reticulum Ca(2+) pools. Stimulation of type II cells with surfactant secretagogues dissipated the pH gradient across lamellar bodies and disassembled the V-ATPase complex, indicating the physiological relevance of the V-ATPase-mediated surfactant secretion. Finally, silencing of V-ATPase a1 and B2 subunits decreased stimulated surfactant secretion, indicating that these subunits were crucial for surfactant secretion. We conclude that V-ATPase regulates surfactant secretion via an increased Ca(2+) mobilization from lamellar bodies and endoplasmic reticulum, and the activation of PKC and CaMKII. Our finding revealed a previously unrealized role of V-ATPase in surfactant secretion. PMID:20169059

  3. Vacuolar ATPase Regulates Surfactant Secretion in Rat Alveolar Type II Cells by Modulating Lamellar Body Calcium

    OpenAIRE

    Chintagari, Narendranath Reddy; Mishra, Amarjit; Su, Lijing; Wang, Yang; Ayalew, Sahlu; Hartson, Steven D; Liu, Lin

    2010-01-01

    Lung surfactant reduces surface tension and maintains the stability of alveoli. How surfactant is released from alveolar epithelial type II cells is not fully understood. Vacuolar ATPase (V-ATPase) is the enzyme responsible for pumping H+ into lamellar bodies and is required for the processing of surfactant proteins and the packaging of surfactant lipids. However, its role in lung surfactant secretion is unknown. Proteomic analysis revealed that vacuolar ATPase (V-ATPase) dominated the alveol...

  4. Kinase-Mediated Regulation of P4-ATPases

    DEFF Research Database (Denmark)

    Frøsig, Merethe Mørch

    Abstract Kinase-Mediated Regulation of P4-ATPases Understanding kinase-mediated regulation and designing novel tools to study regulatory proteins of P4-ATPases P4-ATPases play a critical role in the biogenesis of transport vesicles in the secretory and endocytic pathways, and P4-ATPase activity...

  5. Regulation of V-ATPase assembly and function of V-ATPases in tumor cell invasiveness.

    Science.gov (United States)

    McGuire, Christina; Cotter, Kristina; Stransky, Laura; Forgac, Michael

    2016-08-01

    V-ATPases are ATP-driven proton pumps that function within both intracellular compartments and the plasma membrane in a wide array of normal physiological and pathophysiological processes. V-ATPases are composed of a peripheral V1 domain that hydrolyzes ATP and an integral V0 domain that transports protons. Regulated assembly of the V-ATPase represents an important mechanism of regulating V-ATPase activity in response to a number of environmental cues. Our laboratory has demonstrated that glucose-dependent assembly of the V-ATPase complex in yeast is controlled by the Ras/cAMP/PKA pathway. By contrast, increased assembly of the V-ATPase during dendritic cell maturation involves the PI-3 kinase and mTORC1 pathways. Recently, we have shown that amino acids regulate V-ATPase assembly in mammalian cells, possibly as a means to maintain adequate levels of amino acids upon nutrient starvation. V-ATPases have also been implicated in cancer cell survival and invasion. V-ATPases are targeted to different cellular membranes by isoforms of subunit a, with a3 targeting V-ATPases to the plasma membrane of osteoclasts. We have shown that highly invasive human breast cancer cell lines express higher levels of the a3 isoform than poorly invasive lines and that knockdown of a3 reduces both expression of V-ATPases at the plasma membrane and in vitro invasion of breast tumor cells. Moreover, overexpression of a3 in a non-invasive breast epithelial line increases both plasma membrane V-ATPases and in vitro invasion. Finally, specific ablation of plasma membrane V-ATPases in highly invasive human breast cancer cells using either an antibody or small molecule approach inhibits both in vitro invasion and migration. These results suggest that plasma membrane and a3-containing V-ATPases represent a novel and important target in the development of therapeutics to limit breast cancer metastasis. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics

  6. Regulation of V-ATPase assembly and function of V-ATPases in tumor cell invasiveness.

    Science.gov (United States)

    McGuire, Christina; Cotter, Kristina; Stransky, Laura; Forgac, Michael

    2016-08-01

    V-ATPases are ATP-driven proton pumps that function within both intracellular compartments and the plasma membrane in a wide array of normal physiological and pathophysiological processes. V-ATPases are composed of a peripheral V(1) domain that hydrolyzes ATP and an integral V(0) domain that transports protons. Regulated assembly of the V-ATPase represents an important mechanism of regulating V-ATPase activity in response to a number of environmental cues. Our laboratory has demonstrated that glucose-dependent assembly of the V-ATPase complex in yeast is controlled by the Ras/cAMP/PKA pathway. By contrast, increased assembly of the V-ATPase during dendritic cell maturation involves the PI-3 kinase and mTORC1 pathways. Recently, we have shown that amino acids regulate V-ATPase assembly in mammalian cells, possibly as a means to maintain adequate levels of amino acids upon nutrient starvation. V-ATPases have also been implicated in cancer cell survival and invasion. V-ATPases are targeted to different cellular membranes by isoforms of subunit a, with a3 targeting V-ATPases to the plasma membrane of osteoclasts. We have shown that highly invasive human breast cancer cell lines express higher levels of the a3 isoform than poorly invasive lines and that knockdown of a3 reduces both expression of V-ATPases at the plasma membrane and in vitro invasion of breast tumor cells. Moreover, overexpression of a3 in a non-invasive breast epithelial line increases both plasma membrane V-ATPases and in vitro invasion. Finally, specific ablation of plasma membrane V-ATPases in highly invasive human breast cancer cells using either an antibody or small molecule approach inhibits both in vitro invasion and migration. These results suggest that plasma membrane and a3-containing V-ATPases represent a novel and important target in the development of therapeutics to limit breast cancer metastasis. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics

  7. Transcriptional regulators of Na, K-ATPase subunits

    Directory of Open Access Journals (Sweden)

    Zhiqin eLi

    2015-10-01

    Full Text Available The Na,K-ATPase classically serves as an ion pump creating an electrochemical gradient across the plasma membrane that is essential for transepithelial transport, nutrient uptake and membrane potential. In addition, Na,K-ATPase also functions as a receptor, a signal transducer and a cell adhesion molecule. With such diverse roles, it is understandable that the Na,K-ATPase subunits, the catalytic alpha-subunit, the beta-subunit and the FXYD proteins, are controlled extensively during development and to accommodate physiological needs. The spatial and temporal expression of Na,K-ATPase is partially regulated at the transcriptional level. Numerous transcription factors, hormones, growth factors, lipids and extracellular stimuli modulate the transcription of the Na,K-ATPase subunits. Moreover, epigenetic mechanisms also contribute to the regulation of Na,K-ATPase expression. With the ever growing knowledge about diseases associated with the malfunction of Na,K-ATPase, this review aims at summarizing the best-characterized transcription regulators that modulate Na,K-ATPase subunit levels. As abnormal expression of Na,K-ATPase subunits have been observed in many carcinoma, we will also discuss transcription factors that are associated with epithelial-to-mesenchymal transition, a crucial step in the progression of many tumors to malignant disease.

  8. Regulation of vacuolar H(+)-ATPase in microglia by RANKL.

    Science.gov (United States)

    Serrano, Eric M; Ricofort, Ryan D; Zuo, Jian; Ochotny, Noelle; Manolson, Morris F; Holliday, L Shannon

    2009-11-01

    Vacuolar H(+)-ATPases (V-ATPases) are large electrogenic proton pumps composed of numerous subunits that play vital housekeeping roles in the acidification of compartments of the endocytic pathway. Additionally, V-ATPases play specialized roles in certain cell types, a capacity that is linked to cell type selective expression of isoforms of some of the subunits. We detected low levels of the a3 isoform of the a-subunit in mouse brain extracts. Examination of various brain-derived cell types by immunoblotting showed a3 was expressed in the N9 microglia cell line and in primary microglia, but not in other cell types. The expression of a3 in osteoclasts requires stimulation by Receptor Activator of Nuclear Factor kappaB-ligand (RANKL). We found that Receptor Activator of Nuclear Factor kappaB (RANK) was expressed by microglia. Stimulation of microglia with RANKL triggered increased expression of a3. V-ATPases in microglia were shown to bind microfilaments, and stimulation with RANKL increased the proportion of V-ATPase associated with the detergent-insoluble cytoskeletal fraction and with actin. In summary, microglia express the a3-subunit of V-ATPase. The expression of a3 and the interaction between V-ATPases and microfilaments was modulated by RANKL. These data suggest a novel molecular pathway for regulating microglia.

  9. Regulation of Vacuolar H+-ATPase in Microglia by RANKL

    Science.gov (United States)

    Serrano, Eric M.; Ricofort, Ryan D.; Zuo, Jian; Ochotny, Noelle; Manolson, Morris F.; Holliday, L. Shannon

    2009-01-01

    Vacuolar H+-ATPases (V-ATPases) are large electrogenic proton pumps composed of numerous subunits that play vital housekeeping roles in the acidification of compartments of the endocytic pathway. Additionally, V-ATPase play specialized roles in certain cell types, a capacity that is linked to cell type selective expression of isoforms of some of the subunits. We detected low levels of the a3 isoform of the a-subunit in mouse brain extracts. Examination of various brain-derived cell types by immunoblotting showed a3 was expressed in the N9 microglia cell line and in primary microglia, but not in other cell types. The expression of a3 in osteoclasts requires stimulation by Receptor Activator of Nuclear Factor κ B -ligand (RANKL). We found that Receptor Activator of Nuclear Factor κ B (RANK) was expressed by microglia. Stimulation of microglia with RANKL triggered increased expression of a3. V-ATPases in microglia were shown to bind microfilaments, and stimulation with RANKL increased the proportion of V-ATPase associated with the detergent-insoluble cytoskeletal fraction and with actin. In summary, microglia express the a3-subunit of V-ATPase. The expression of a3 and the interaction between V-ATPases and microfilaments was modulated by RANKL. These data suggest a novel molecular pathway for regulating microglia. PMID:19715671

  10. Regulation of vacuolar H+-ATPase in microglia by RANKL

    International Nuclear Information System (INIS)

    Vacuolar H+-ATPases (V-ATPases) are large electrogenic proton pumps composed of numerous subunits that play vital housekeeping roles in the acidification of compartments of the endocytic pathway. Additionally, V-ATPases play specialized roles in certain cell types, a capacity that is linked to cell type selective expression of isoforms of some of the subunits. We detected low levels of the a3 isoform of the a-subunit in mouse brain extracts. Examination of various brain-derived cell types by immunoblotting showed a3 was expressed in the N9 microglia cell line and in primary microglia, but not in other cell types. The expression of a3 in osteoclasts requires stimulation by Receptor Activator of Nuclear Factor κB-ligand (RANKL). We found that Receptor Activator of Nuclear Factor κB (RANK) was expressed by microglia. Stimulation of microglia with RANKL triggered increased expression of a3. V-ATPases in microglia were shown to bind microfilaments, and stimulation with RANKL increased the proportion of V-ATPase associated with the detergent-insoluble cytoskeletal fraction and with actin. In summary, microglia express the a3-subunit of V-ATPase. The expression of a3 and the interaction between V-ATPases and microfilaments was modulated by RANKL. These data suggest a novel molecular pathway for regulating microglia.

  11. Autoinhibitory Regulation of Plasma Membrane H+-ATPases

    DEFF Research Database (Denmark)

    Pedersen, Jesper Torbøl

    Electrochemical gradients across cell membranes are essential for nutrient uptake. In plant and fungal cells the electrochemical gradient across the plasma membrane (PM) can build much higher than in mammalian cells. The protein responsible for this gradient is the essential PM H+-ATPase that uses...... of plant PM H+-ATPases developed with the first land plants and has remained conserved ever since. Beside phosphorylation in the terminal domains, lipid homeostasis also influences the autoinhibitory regulation. A group of lipids called lyso-phospholipids have been identified as signaling molecules...

  12. Heat-regulated foaming in surfactant solutions

    Energy Technology Data Exchange (ETDEWEB)

    Pletnev, M.Y.; Eremina, L.D.; Vlasenko, I.G.

    1984-01-01

    This article examines the mechanism of the foam-inhibiting action resulting from the use of propylene oxide derivatives in solutions both of anionic and of nonionic surfactants. The objective is the creation of a detergent composition with heat-regulated foaming, which would foam well at 30-50/sup 0/ and poorly at 80-90/sup 0/, which is the usual temperature of washing machines. It is demonstrated that foaming can be regulated by the variation of the cloud points of solutions with the aid of additions of polypropylene glycols and their alkyl derivatives or block copolymers in solutions of surfactants. Foaming and foam stability decrease sharply above the cloud points of the solutions due to the foam-inhibiting action of the coacervate phase on the coexisting foam-forming solution. The foam inhibition of polypropylene glycols increases and becomes apparent at lower concentrations with the increase of the average molecular weight of the hydrophobic blocks, the increase of their relative content (in block copolymers with oxyethylene groups), and upon the introduction of alkyl groups.

  13. Na,K-ATPase regulation in skeletal muscle.

    Science.gov (United States)

    Pirkmajer, Sergej; Chibalin, Alexander V

    2016-07-01

    Skeletal muscle contains one of the largest and the most dynamic pools of Na,K-ATPase (NKA) in the body. Under resting conditions, NKA in skeletal muscle operates at only a fraction of maximal pumping capacity, but it can be markedly activated when demands for ion transport increase, such as during exercise or following food intake. Given the size, capacity, and dynamic range of the NKA pool in skeletal muscle, its tight regulation is essential to maintain whole body homeostasis as well as muscle function. To reconcile functional needs of systemic homeostasis with those of skeletal muscle, NKA is regulated in a coordinated manner by extrinsic stimuli, such as hormones and nerve-derived factors, as well as by local stimuli arising in skeletal muscle fibers, such as contractions and muscle energy status. These stimuli regulate NKA acutely by controlling its enzymatic activity and/or its distribution between the plasma membrane and the intracellular storage compartment. They also regulate NKA chronically by controlling NKA gene expression, thus determining total NKA content in skeletal muscle and its maximal pumping capacity. This review focuses on molecular mechanisms that underlie regulation of NKA in skeletal muscle by major extrinsic and local stimuli. Special emphasis is given to stimuli and mechanisms linking regulation of NKA and energy metabolism in skeletal muscle, such as insulin and the energy-sensing AMP-activated protein kinase. Finally, the recently uncovered roles for glutathionylation, nitric oxide, and extracellular K(+) in the regulation of NKA in skeletal muscle are highlighted. PMID:27166285

  14. Saccharomyces cerevisiae vacuolar H+-ATPase regulation by disassembly and reassembly: one structure and multiple signals.

    Science.gov (United States)

    Parra, Karlett J; Chan, Chun-Yuan; Chen, Jun

    2014-06-01

    Vacuolar H(+)-ATPases (V-ATPases) are highly conserved ATP-driven proton pumps responsible for acidification of intracellular compartments. V-ATPase proton transport energizes secondary transport systems and is essential for lysosomal/vacuolar and endosomal functions. These dynamic molecular motors are composed of multiple subunits regulated in part by reversible disassembly, which reversibly inactivates them. Reversible disassembly is intertwined with glycolysis, the RAS/cyclic AMP (cAMP)/protein kinase A (PKA) pathway, and phosphoinositides, but the mechanisms involved are elusive. The atomic- and pseudo-atomic-resolution structures of the V-ATPases are shedding light on the molecular dynamics that regulate V-ATPase assembly. Although all eukaryotic V-ATPases may be built with an inherent capacity to reversibly disassemble, not all do so. V-ATPase subunit isoforms and their interactions with membrane lipids and a V-ATPase-exclusive chaperone influence V-ATPase assembly. This minireview reports on the mechanisms governing reversible disassembly in the yeast Saccharomyces cerevisiae, keeping in perspective our present understanding of the V-ATPase architecture and its alignment with the cellular processes and signals involved. PMID:24706019

  15. Saccharomyces cerevisiae Vacuolar H+-ATPase Regulation by Disassembly and Reassembly: One Structure and Multiple Signals

    OpenAIRE

    Parra, Karlett J.; Chan, Chun-Yuan; Chen, Jun

    2014-01-01

    Vacuolar H+-ATPases (V-ATPases) are highly conserved ATP-driven proton pumps responsible for acidification of intracellular compartments. V-ATPase proton transport energizes secondary transport systems and is essential for lysosomal/vacuolar and endosomal functions. These dynamic molecular motors are composed of multiple subunits regulated in part by reversible disassembly, which reversibly inactivates them. Reversible disassembly is intertwined with glycolysis, the RAS/cyclic AMP (cAMP)/prot...

  16. Lung surfactant levels are regulated by Ig-Hepta/GPR116 by monitoring surfactant protein D.

    Science.gov (United States)

    Fukuzawa, Taku; Ishida, Junji; Kato, Akira; Ichinose, Taro; Ariestanti, Donna Maretta; Takahashi, Tomoya; Ito, Kunitoshi; Abe, Jumpei; Suzuki, Tomohiro; Wakana, Shigeharu; Fukamizu, Akiyoshi; Nakamura, Nobuhiro; Hirose, Shigehisa

    2013-01-01

    Lung surfactant is a complex mixture of lipids and proteins, which is secreted from the alveolar type II epithelial cell and coats the surface of alveoli as a thin layer. It plays a crucial role in the prevention of alveolar collapse through its ability to reduce surface tension. Under normal conditions, surfactant homeostasis is maintained by balancing its release and the uptake by the type II cell for recycling and the internalization by alveolar macrophages for degradation. Little is known about how the surfactant pool is monitored and regulated. Here we show, by an analysis of gene-targeted mice exhibiting massive accumulation of surfactant, that Ig-Hepta/GPR116, an orphan receptor, is expressed on the type II cell and sensing the amount of surfactant by monitoring one of its protein components, surfactant protein D, and its deletion results in a pulmonary alveolar proteinosis and emphysema-like pathology. By a coexpression experiment with Sp-D and the extracellular region of Ig-Hepta/GPR116 followed by immunoprecipitation, we identified Sp-D as the ligand of Ig-Hepta/GPR116. Analyses of surfactant metabolism in Ig-Hepta(+/+) and Ig-Hepta(-/-) mice by using radioactive tracers indicated that the Ig-Hepta/GPR116 signaling system exerts attenuating effects on (i) balanced synthesis of surfactant lipids and proteins and (ii) surfactant secretion, and (iii) a stimulating effect on recycling (uptake) in response to elevated levels of Sp-D in alveolar space. PMID:23922714

  17. Lung surfactant levels are regulated by Ig-Hepta/GPR116 by monitoring surfactant protein D.

    Directory of Open Access Journals (Sweden)

    Taku Fukuzawa

    Full Text Available Lung surfactant is a complex mixture of lipids and proteins, which is secreted from the alveolar type II epithelial cell and coats the surface of alveoli as a thin layer. It plays a crucial role in the prevention of alveolar collapse through its ability to reduce surface tension. Under normal conditions, surfactant homeostasis is maintained by balancing its release and the uptake by the type II cell for recycling and the internalization by alveolar macrophages for degradation. Little is known about how the surfactant pool is monitored and regulated. Here we show, by an analysis of gene-targeted mice exhibiting massive accumulation of surfactant, that Ig-Hepta/GPR116, an orphan receptor, is expressed on the type II cell and sensing the amount of surfactant by monitoring one of its protein components, surfactant protein D, and its deletion results in a pulmonary alveolar proteinosis and emphysema-like pathology. By a coexpression experiment with Sp-D and the extracellular region of Ig-Hepta/GPR116 followed by immunoprecipitation, we identified Sp-D as the ligand of Ig-Hepta/GPR116. Analyses of surfactant metabolism in Ig-Hepta(+/+ and Ig-Hepta(-/- mice by using radioactive tracers indicated that the Ig-Hepta/GPR116 signaling system exerts attenuating effects on (i balanced synthesis of surfactant lipids and proteins and (ii surfactant secretion, and (iii a stimulating effect on recycling (uptake in response to elevated levels of Sp-D in alveolar space.

  18. The ATPases of cohesin interface with regulators to modulate cohesin-mediated DNA tethering.

    Science.gov (United States)

    Çamdere, Gamze; Guacci, Vincent; Stricklin, Jeremiah; Koshland, Douglas

    2015-11-19

    Cohesin tethers together regions of DNA, thereby mediating higher order chromatin organization that is critical for sister chromatid cohesion, DNA repair and transcriptional regulation. Cohesin contains a heterodimeric ATP-binding Cassette (ABC) ATPase comprised of Smc1 and Smc3 ATPase active sites. These ATPases are required for cohesin to bind DNA. Cohesin's DNA binding activity is also promoted by the Eco1 acetyltransferase and inhibited by Wpl1. Recently we showed that after cohesin stably binds DNA, a second step is required for DNA tethering. This second step is also controlled by Eco1 acetylation. Here, we use genetic and biochemical analyses to show that this second DNA tethering step is regulated by cohesin ATPase. Furthermore, our results also suggest that Eco1 promotes cohesion by modulating the ATPase cycle of DNA-bound cohesin in a state that is permissive for DNA tethering and refractory to Wpl1 inhibition.

  19. Na,K-ATPase activity in mouse muscle is regulated by AMPK and PGC-1α.

    Science.gov (United States)

    Ingwersen, Maria S; Kristensen, Michael; Pilegaard, Henriette; Wojtaszewski, Jørgen F P; Richter, Erik A; Juel, Carsten

    2011-07-01

    Na,K-ATPase activity, which is crucial for skeletal muscle function, undergoes acute and long-term regulation in response to muscle activity. The aim of the present study was to test the hypothesis that AMP kinase (AMPK) and the transcriptional coactivator PGC-1α are underlying factors in long-term regulation of Na,K-ATPase isoform (α,β and PLM) abundance and Na(+) affinity. Repeated treatment of mice with the AMPK activator AICAR decreased total PLM protein content but increased PLM phosphorylation, whereas the number of α- and β-subunits remained unchanged. The K(m) for Na(+) stimulation of Na,K-ATPase was reduced (higher affinity) after AICAR treatment. PLM abundance was increased in AMPK kinase-dead mice compared with control mice, but PLM phosphorylation and Na,K-ATPase Na(+) affinity remained unchanged. Na,K-ATPase activity and subunit distribution were also measured in mice with different degrees of PGC-1α expression. Protein abundances of α1 and α2 were reduced in PGC-1α +/- and -/- mice, and the β(1)/β(2) ratio was increased with PGC-1α overexpression (TG mice). PLM protein abundance was decreased in TG mice, but phosphorylation status was unchanged. Na,K-ATPase V (max) was decreased in PCG-1α TG and KO mice. Experimentally in vitro induced phosphorylation of PLM increased Na,K-ATPase Na(+) affinity, confirming that PLM phosphorylation is important for Na,K-ATPase function. In conclusion, both AMPK and PGC-1α regulate PLM abundance, AMPK regulates PLM phosphorylation and PGC-1α expression influences Na,K-ATPase α(1) and α(2) content and β(1)/β(2) isoform ratio. Phosphorylation of the Na,K-ATPase subunit PLM is an important regulatory mechanism.

  20. The Kdp-ATPase system and its regulation

    Indian Academy of Sciences (India)

    Anand Ballal; Bhakti Basu; Shree Kumar Apte

    2007-04-01

    K+, the dominant intracellular cation, is required for various physiological processes like turgor homeostasis, pH regulation etc. Bacterial cells have evolved many diverse K+ transporters to maintain the desired concentration of internal K+. In E. coli, the KdpATPase (comprising of the KdpFABC complex), encoded by the kdpFABC operon, is an inducible high-affinity K+ transporter that is synthesised under conditions of severe K+ limitation or osmotic upshift. The E. coli kdp expression is transcriptionally regulated by the KdpD and KdpE proteins, which together constitute a typical bacterial two-component signal transduction system. The Kdp system is widely dispersed among the different classes of bacteria including the cyanobacteria. The ordering of the kdpA, kdpB and kdpC is relatively fixed but the kdpD/E genes show different arrangements in distantly related bacteria. Our studies have shown that the cyanobacterium Anabaena sp. strain L-31 possesses two kdp operons, kdp1 and kdp2, of which, the later is expressed under K+ deficiency and desiccation. Among the regulatory genes, the kdpD ORF of Anabaena L-31 is truncated when compared to the kdpD of other bacteria, while a kdpE-like gene is absent. The extremely radio-resistant bacterium, Deinococcus radiodurans strain R1, also shows the presence of a naturally short kdpD ORF similar to Anabaena in its kdp operon. The review elaborates the expression of bacterial kdp operons in response to various environmental stress conditions, with special emphasis on Anabaena. The possible mechanism(s) of regulation of the unique kdp operons from Anabaena and Deinococcus are also discussed.

  1. How Phosphorylation and ATPase Activity Regulate Anion Flux though the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR).

    Science.gov (United States)

    Zwick, Matthias; Esposito, Cinzia; Hellstern, Manuel; Seelig, Anna

    2016-07-01

    The cystic fibrosis transmembrane conductance regulator (CFTR, ABCC7), mutations of which cause cystic fibrosis, belongs to the ATP-binding cassette (ABC) transporter family and works as a channel for small anions, such as chloride and bicarbonate. Anion channel activity is known to depend on phosphorylation by cAMP-dependent protein kinase A (PKA) and CFTR-ATPase activity. Whereas anion channel activity has been extensively investigated, phosphorylation and CFTR-ATPase activity are still poorly understood. Here, we show that the two processes can be measured in a label-free and non-invasive manner in real time in live cells, stably transfected with CFTR. This study reveals three key findings. (i) The major contribution (≥90%) to the total CFTR-related ATP hydrolysis rate is due to phosphorylation by PKA and the minor contribution (≤10%) to CFTR-ATPase activity. (ii) The mutant CFTR-E1371S that is still conductive, but defective in ATP hydrolysis, is not phosphorylated, suggesting that phosphorylation requires a functional nucleotide binding domain and occurs in the post-hydrolysis transition state. (iii) CFTR-ATPase activity is inversely related to CFTR anion flux. The present data are consistent with a model in which CFTR is in a closed conformation with two ATPs bound. The open conformation is induced by ATP hydrolysis and corresponds to the post-hydrolysis transition state that is stabilized by phosphorylation and binding of chloride channel potentiators. PMID:27226582

  2. Regulation of vacuolar H{sup +}-ATPase in microglia by RANKL

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, Eric M.; Ricofort, Ryan D.; Zuo, Jian [Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610 (United States); Ochotny, Noelle [Department of Pharmacology, University of Toronto, Toronto, Ont., Canada M5G 1G6 (Canada); Manolson, Morris F. [Faculty of Dentistry, University of Toronto, Toronto, Ont., Canada M5G 1G6 (Canada); Holliday, L. Shannon, E-mail: sholliday@dental.ufl.edu [Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610 (United States); Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610 (United States)

    2009-11-06

    Vacuolar H{sup +}-ATPases (V-ATPases) are large electrogenic proton pumps composed of numerous subunits that play vital housekeeping roles in the acidification of compartments of the endocytic pathway. Additionally, V-ATPases play specialized roles in certain cell types, a capacity that is linked to cell type selective expression of isoforms of some of the subunits. We detected low levels of the a3 isoform of the a-subunit in mouse brain extracts. Examination of various brain-derived cell types by immunoblotting showed a3 was expressed in the N9 microglia cell line and in primary microglia, but not in other cell types. The expression of a3 in osteoclasts requires stimulation by Receptor Activator of Nuclear Factor {kappa}B-ligand (RANKL). We found that Receptor Activator of Nuclear Factor {kappa}B (RANK) was expressed by microglia. Stimulation of microglia with RANKL triggered increased expression of a3. V-ATPases in microglia were shown to bind microfilaments, and stimulation with RANKL increased the proportion of V-ATPase associated with the detergent-insoluble cytoskeletal fraction and with actin. In summary, microglia express the a3-subunit of V-ATPase. The expression of a3 and the interaction between V-ATPases and microfilaments was modulated by RANKL. These data suggest a novel molecular pathway for regulating microglia.

  3. Regulation of lung surfactant phospholipid synthesis and metabolism.

    Science.gov (United States)

    Goss, Victoria; Hunt, Alan N; Postle, Anthony D

    2013-02-01

    The alveolar type II epithelial (ATII) cell is highly specialised for the synthesis and storage, in intracellular lamellar bodies, of phospholipid destined for secretion as pulmonary surfactant into the alveolus. Regulation of the enzymology of surfactant phospholipid synthesis and metabolism has been extensively characterised at both molecular and functional levels, but understanding of surfactant phospholipid metabolism in vivo in either healthy or, especially, diseased lungs is still relatively poorly understood. This review will integrate recent advances in the enzymology of surfactant phospholipid metabolism with metabolic studies in vivo in both experimental animals and human subjects. It will highlight developments in the application of stable isotope-labelled precursor substrates and mass spectrometry to probe lung phospholipid metabolism in terms of individual molecular lipid species and identify areas where a more comprehensive metabolic model would have considerable potential for direct application to disease states. PMID:23200861

  4. Regulation of the thermoalkaliphilic F1-ATPase from Caldalkalibacillus thermarum

    Science.gov (United States)

    Ferguson, Scott A.; Cook, Gregory M.; Montgomery, Martin G.; Leslie, Andrew G. W.

    2016-01-01

    The crystal structure has been determined of the F1-catalytic domain of the F-ATPase from Caldalkalibacillus thermarum, which hydrolyzes adenosine triphosphate (ATP) poorly. It is very similar to those of active mitochondrial and bacterial F1-ATPases. In the F-ATPase from Geobacillus stearothermophilus, conformational changes in the ε-subunit are influenced by intracellular ATP concentration and membrane potential. When ATP is plentiful, the ε-subunit assumes a “down” state, with an ATP molecule bound to its two C-terminal α-helices; when ATP is scarce, the α-helices are proposed to inhibit ATP hydrolysis by assuming an “up” state, where the α-helices, devoid of ATP, enter the α3β3-catalytic region. However, in the Escherichia coli enzyme, there is no evidence that such ATP binding to the ε-subunit is mechanistically important for modulating the enzyme’s hydrolytic activity. In the structure of the F1-ATPase from C. thermarum, ATP and a magnesium ion are bound to the α-helices in the down state. In a form with a mutated ε-subunit unable to bind ATP, the enzyme remains inactive and the ε-subunit is down. Therefore, neither the γ-subunit nor the regulatory ATP bound to the ε-subunit is involved in the inhibitory mechanism of this particular enzyme. The structure of the α3β3-catalytic domain is likewise closely similar to those of active F1-ATPases. However, although the βE-catalytic site is in the usual “open” conformation, it is occupied by the unique combination of an ADP molecule with no magnesium ion and a phosphate ion. These bound hydrolytic products are likely to be the basis of inhibition of ATP hydrolysis. PMID:27621435

  5. Physiological implications of the regulation of vacuolar H+-ATPase by chloride ions

    Directory of Open Access Journals (Sweden)

    L.R. Carraro-Lacroix

    2009-02-01

    Full Text Available Vacuolar H+-ATPase is a large multi-subunit protein that mediates ATP-driven vectorial H+ transport across the membranes. It is widely distributed and present in virtually all eukaryotic cells in intracellular membranes or in the plasma membrane of specialized cells. In subcellular organelles, ATPase is responsible for the acidification of the vesicular interior, which requires an intraorganellar acidic pH to maintain optimal enzyme activity. Control of vacuolar H+-ATPase depends on the potential difference across the membrane in which the proton ATPase is inserted. Since the transport performed by H+-ATPase is electrogenic, translocation of H+-ions across the membranes by the pump creates a lumen-positive voltage in the absence of a neutralizing current, generating an electrochemical potential gradient that limits the activity of H+-ATPase. In many intracellular organelles and cell plasma membranes, this potential difference established by the ATPase gradient is normally dissipated by a parallel and passive Cl- movement, which provides an electric shunt compensating for the positive charge transferred by the pump. The underlying mechanisms for the differences in the requirement for chloride by different tissues have not yet been adequately identified, and there is still some controversy as to the molecular identity of the associated Cl--conducting proteins. Several candidates have been identified: the ClC family members, which may or may not mediate nCl-/H+ exchange, and the cystic fibrosis transmembrane conductance regulator. In this review, we discuss some tissues where the association between H+-ATPase and chloride channels has been demonstrated and plays a relevant physiologic role.

  6. Regulation of Vacuolar H+-ATPase (V-ATPase) Reassembly by Glycolysis Flow in 6-Phosphofructo-1-kinase (PFK-1)-deficient Yeast Cells.

    Science.gov (United States)

    Chan, Chun-Yuan; Dominguez, Dennis; Parra, Karlett J

    2016-07-22

    Yeast 6-phosphofructo-1-kinase (PFK-1) has two subunits, Pfk1p and Pfk2p. Deletion of Pfk2p alters glucose-dependent V-ATPase reassembly and vacuolar acidification (Chan, C. Y., and Parra, K. J. (2014) Yeast phosphofructokinase-1 subunit Pfk2p is necessary for pH homeostasis and glucose-dependent vacuolar ATPase reassembly. J. Biol. Chem. 289, 19448-19457). This study capitalized on the mechanisms suppressing vacuolar H(+)-ATPase (V-ATPase) in pfk2Δ to gain new knowledge of the mechanisms underlying glucose-dependent V-ATPase regulation. Because V-ATPase is fully assembled in pfk2Δ, and glycolysis partially suppressed at steady state, we manipulated glycolysis and assessed its direct involvement on V-ATPase function. At steady state, the ratio of proton transport to ATP hydrolysis increased 24% after increasing the glucose concentration from 2% to 4% to enhance the glycolysis flow in pfk2Δ. Tighter coupling restored vacuolar pH when glucose was abundant and glycolysis operated below capacity. After readdition of glucose to glucose-deprived cells, glucose-dependent V1Vo reassembly was proportional to the glycolysis flow. Readdition of 2% glucose to pfk2Δ cells, which restored 62% of ethanol concentration, led to equivalent 60% V1Vo reassembly levels. Steady-state level of assembly (100% reassembly) was reached at 4% glucose when glycolysis reached a threshold in pfk2Δ (≥40% the wild-type flow). At 4% glucose, the level of Pfk1p co-immunoprecipitated with V-ATPase decreased 58% in pfk2Δ, suggesting that Pfk1p binding to V-ATPase may be inhibitory in the mutant. We concluded that V-ATPase activity at steady state and V-ATPase reassembly after readdition of glucose to glucose-deprived cells are controlled by the glycolysis flow. We propose a new mechanism by which glucose regulates V-ATPase catalytic activity that occurs at steady state without changing V1Vo assembly.

  7. Na,K-ATPase activity in mouse muscle is regulated by AMPK and PGC-1a

    DEFF Research Database (Denmark)

    Ingwersen, Maria S; Kristensen, Michael; Pilegaard, Henriette;

    2011-01-01

    Na,K-ATPase activity, which is crucial for skeletal muscle function, undergoes acute and long-term regulation in response to muscle activity. The aim of the present study was to test the hypothesis that AMP kinase (AMPK) and the transcriptional coactivator PGC-1a are underlying factors in long...

  8. A SNX10/V-ATPase pathway regulates ciliogenesis in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    Yanaun Chen; Shuo Lin; Xiaodong Shu; Duanqing Pei; Bin Wu; Liangliang Xu; Huapeng Li; Jianhong Xia; Wenguang Yin; Zhuo Li; Dawei Shi; Song Li

    2012-01-01

    Sorting nexins (SNXs) are phosphoinositide-binding proteins implicated in the sorting of various membrane proteins in vitro,but the in vivo functions of them remain largely unknown.We reported previously that SNX10 is a unique member of the SNX family genes in that it has vacuolation activity in cells.We investigate the biological function of SNX10 by loss-of-function assay in this study and demonstrate that SNX10 is required for the formation of primary cilia in cultured cells.In zebrafish,SNX10 is involved in ciliogenesis in the Kupffer's vesicle and essential for left-right patterning of visceral organs.Mechanistically,SNX10 interacts with V-ATPase complex and targets it to the centrosome where ciliogenesis is initiated.Like SNX10,V-ATPase regulates ciliogenesis in vitro and in vivo and does so synergistically with SNX10.We further discover that SNX10 and V-ATPase regulate the ciliary trafficking of Rab8a,which is a critical regulator of ciliary membrane extension.These results identify an SNX10/V-ATPaseregulated vesicular trafficking pathway that is crucial for ciliogenesis,and reveal that SNX10/V-ATPase,through the regulation of cilia formation in various organs,play an essential role during early embryonic development.

  9. Regulation of plant plasma membrane H+- and Ca2+-ATPases by terminal domains

    DEFF Research Database (Denmark)

    Bækgaard, Lone; Fuglsang, Anja Thoe; Palmgren, Michael Gjedde

    2005-01-01

    In the last few years, major progress has been made to elucidate the structure, function, and regulation of P-type plasma membrane H(+)-and Ca(2+)-ATPases. Even though a number of regulatory proteins have been identified, many pieces are still lacking in order to understand the complete regulatory...... mechanisms of these pumps. In plant plasma membrane H(+)- and Ca(2+)-ATPases, autoinhibitory domains are situated in the C- and N-terminal domains, respectively. A model for a common mechanism of autoinhibition is discussed....

  10. Orphan G Protein–Coupled Receptor GPR116 Regulates Pulmonary Surfactant Pool Size

    OpenAIRE

    James P Bridges; Ludwig, Marie-Gabrielle; Mueller, Matthias; Kinzel, Bernd; Sato, Atsuyasu; Xu, Yan; Whitsett, Jeffrey A.; Ikegami, Machiko

    2013-01-01

    Pulmonary surfactant levels within the alveoli are tightly regulated to maintain lung volumes and promote efficient gas exchange across the air/blood barrier. Quantitative and qualitative abnormalities in surfactant are associated with severe lung diseases in children and adults. Although the cellular and molecular mechanisms that control surfactant metabolism have been studied intensively, the critical molecular pathways that sense and regulate endogenous surfactant levels within the alveolu...

  11. Clusterin and COMMD1 Independently Regulate Degradation of the Mammalian Copper ATPases ATP7A and ATP7B

    NARCIS (Netherlands)

    Materia, Stephanie; Cater, Michael A.; Klomp, Leo W. J.; Mercer, Julian F. B.; La Fontaine, Sharon

    2012-01-01

    ATP7A and ATP7B are copper-transporting P-1B-type ATPases (Cu-ATPases) that are critical for regulating intracellular copper homeostasis. Mutations in the genes encoding ATP7A and ATP7B lead to copper deficiency and copper toxicity disorders, Menkes and Wilson diseases, respectively. Clusterin and C

  12. Oryza sativa H+-ATPase (OSA) is Involved in the Regulation of Dumbbell-Shaped Guard Cells of Rice.

    Science.gov (United States)

    Toda, Yosuke; Wang, Yin; Takahashi, Akira; Kawai, Yuya; Tada, Yasuomi; Yamaji, Naoki; Feng Ma, Jian; Ashikari, Motoyuki; Kinoshita, Toshinori

    2016-06-01

    The stomatal apparatus consists of a pair of guard cells and regulates gas exchange between the leaf and atmosphere. In guard cells, blue light (BL) activates H(+)-ATPase in the plasma membrane through the phosphorylation of its penultimate threonine, mediating stomatal opening. Although this regulation is thought to be widely adopted among kidney-shaped guard cells in dicots, the molecular basis underlying that of dumbbell-shaped guard cells in monocots remains unclear. Here, we show that H(+)-ATPases are involved in the regulation of dumbbell-shaped guard cells. Stomatal opening of rice was promoted by the H(+)-ATPase activator fusicoccin and by BL, and the latter was suppressed by the H(+)-ATPase inhibitor vanadate. Using H(+)-ATPase antibodies, we showed the presence of phosphoregulation of the penultimate threonine in Oryza sativa H(+)-ATPases (OSAs) and localization of OSAs in the plasma membrane of guard cells. Interestingly, we identified one H(+)-ATPase isoform, OSA7, that is preferentially expressed among the OSA genes in guard cells, and found that loss of function of OSA7 resulted in partial insensitivity to BL. We conclude that H(+)-ATPase is involved in BL-induced stomatal opening of dumbbell-shaped guard cells in monocotyledon species. PMID:27048369

  13. Oryza sativa H+-ATPase (OSA) is Involved in the Regulation of Dumbbell-Shaped Guard Cells of Rice.

    Science.gov (United States)

    Toda, Yosuke; Wang, Yin; Takahashi, Akira; Kawai, Yuya; Tada, Yasuomi; Yamaji, Naoki; Feng Ma, Jian; Ashikari, Motoyuki; Kinoshita, Toshinori

    2016-06-01

    The stomatal apparatus consists of a pair of guard cells and regulates gas exchange between the leaf and atmosphere. In guard cells, blue light (BL) activates H(+)-ATPase in the plasma membrane through the phosphorylation of its penultimate threonine, mediating stomatal opening. Although this regulation is thought to be widely adopted among kidney-shaped guard cells in dicots, the molecular basis underlying that of dumbbell-shaped guard cells in monocots remains unclear. Here, we show that H(+)-ATPases are involved in the regulation of dumbbell-shaped guard cells. Stomatal opening of rice was promoted by the H(+)-ATPase activator fusicoccin and by BL, and the latter was suppressed by the H(+)-ATPase inhibitor vanadate. Using H(+)-ATPase antibodies, we showed the presence of phosphoregulation of the penultimate threonine in Oryza sativa H(+)-ATPases (OSAs) and localization of OSAs in the plasma membrane of guard cells. Interestingly, we identified one H(+)-ATPase isoform, OSA7, that is preferentially expressed among the OSA genes in guard cells, and found that loss of function of OSA7 resulted in partial insensitivity to BL. We conclude that H(+)-ATPase is involved in BL-induced stomatal opening of dumbbell-shaped guard cells in monocotyledon species.

  14. Regulation of pulmonary surfactant apoprotein SP 28-36 gene in fetal human lung.

    OpenAIRE

    Ballard, P L; Hawgood, S; Liley, H; Wellenstein, G.; Gonzales, L W; Benson, B; Cordell, B.; White, R T

    1986-01-01

    Pulmonary surfactant stabilizes lung alveoli, preventing respiratory failure and hyaline membrane disease in premature infants. In addition to lipids, surfactant contains apoproteins that are thought to be critical for normal surfactant function. We have examined the ontogeny and regulation of the major surfactant-associated protein of molecular mass 28-36 kDa (SP 28-36) in human fetal lung. SP 28-36 was not detected in tissue from second trimester abortuses by either immunoblot analysis or e...

  15. Direct interaction of beta-amyloid with Na,K-ATPase as a putative regulator of the enzyme function

    Science.gov (United States)

    Petrushanko, Irina Yu.; Mitkevich, Vladimir A.; Anashkina, Anastasia A.; Adzhubei, Alexei A.; Burnysheva, Ksenia M.; Lakunina, Valentina A.; Kamanina, Yulia V.; Dergousova, Elena A.; Lopina, Olga D.; Ogunshola, Omolara O.; Bogdanova, Anna Yu.; Makarov, Alexander A.

    2016-01-01

    By maintaining the Na+ and K+ transmembrane gradient mammalian Na,K-ATPase acts as a key regulator of neuronal electrotonic properties. Na,K-ATPase has an important role in synaptic transmission and memory formation. Accumulation of beta-amyloid (Aβ) at the early stages of Alzheimer’s disease is accompanied by reduction of Na,K-ATPase functional activity. The molecular mechanism behind this phenomenon is not known. Here we show that the monomeric Aβ(1-42) forms a tight (Kd of 3 μM), enthalpy-driven equimolar complex with α1β1 Na,K-ATPase. The complex formation results in dose-dependent inhibition of the enzyme hydrolytic activity. The binding site of Aβ(1-42) is localized in the “gap” between the alpha- and beta-subunits of Na,K-ATPase, disrupting the enzyme functionality by preventing the subunits from shifting towards each other. Interaction of Na,K-ATPase with exogenous Aβ(1-42) leads to a pronounced decrease of the enzyme transport and hydrolytic activity and Src-kinase activation in neuroblastoma cells SH-SY5Y. This interaction allows regulation of Na,K-ATPase activity by short-term increase of the Aβ(1-42) level. However prolonged increase of Aβ(1-42) level under pathological conditions could lead to chronical inhibition of Na,K-ATPase and disruption of neuronal function. Taken together, our data suggest the role of beta-amyloid as a novel physiological regulator of Na,K-ATPase. PMID:27296892

  16. A universally conserved ATPase regulates the oxidative stress response in Escherichia coli.

    Science.gov (United States)

    Wenk, Meike; Ba, Qiaorui; Erichsen, Veronika; MacInnes, Katherine; Wiese, Heike; Warscheid, Bettina; Koch, Hans-Georg

    2012-12-21

    YchF is an evolutionarily conserved ATPase of unknown function. In humans, the YchF homologue hOla1 appears to influence cell proliferation and was found to be up-regulated in many tumors. A possible involvement in regulating the oxidative stress response was also suggested, but details on the underlying mechanism are lacking. For gaining insight into YchF function, we used Escherichia coli as a model organism and found that YchF overexpression resulted in H(2)O(2) hypersensitivity. This was not caused by transcriptional or translational down-regulation of H(2)O(2)-scavenging enzymes. Instead, we observed YchF-dependent inhibition of catalase activity and a direct interaction with the major E. coli catalase KatG. KatG inhibition was dependent on the ATPase activity of YchF and was regulated by post-translational modifications, most likely including an H(2)O(2)-dependent dephosphorylation. We furthermore showed that YchF expression is repressed by the transcription factor OxyR and further post-translationally modified in response to H(2)O(2). In summary, our data show that YchF functions as a novel negative regulator of the oxidative stress response in E. coli. Considering the available data on hOla1, YchF/Ola1 most likely execute similar functions in bacteria and humans, and their up-regulation inhibits the ability of the cells to scavenge damaging reactive oxygen species.

  17. Regulation of Cytoplasmic Dynein ATPase by Lis1

    Science.gov (United States)

    Mesngon, Mariano T.; Tarricone, Cataldo; Hebbar, Sachin; Guillotte, Aimee M.; Schmitt, E. William; Lanier, Lorene; Musacchio, Andrea; King, Stephen J.; Smith, Deanna S.

    2015-01-01

    Mutations in Lis1 cause classical lissencephaly, a developmental brain abnormality characterized by defects in neuronal positioning. Over the last decade, a clear link has been forged between Lis1 and the microtubule motor cytoplasmic dynein. Substantial evidence indicates that Lis1 functions in a highly conserved pathway with dynein to regulate neuronal migration and other motile events. Yeast two-hybrid studies predict that Lis1 binds directly to dynein heavy chains (Sasaki et al., 2000; Tai et al., 2002), but the mechanistic significance of this interaction is not well understood. We now report that recombinant Lis1 binds to native brain dynein and significantly increases the microtubule-stimulated enzymatic activity of dynein in vitro. Lis1 does this without increasing the proportion of dynein that binds to microtubules, indicating that Lis1 influences enzymatic activity rather than microtubule association. Dynein stimulation in vitro is not a generic feature of microtubule-associated proteins, because tau did not stimulate dynein. To our knowledge, this is the first indication that Lis1 or any other factor directly modulates the enzymatic activity of cytoplasmic dynein. Lis1 must be able to homodimerize to stimulate dynein, because a C-terminal fragment (containing the dynein interaction site but missing the self-association domain) was unable to stimulate dynein. Binding and colocalization studies indicate that Lis1 does not interact with all dynein complexes found in the brain. We propose a model in which Lis1 stimulates the activity of a subset of motors, which could be particularly important during neuronal migration and long-distance axonal transport. PMID:16481446

  18. Bacterial rotary export ATPases are allosterically regulated by the nucleotide second messenger cyclic-di-GMP.

    Science.gov (United States)

    Trampari, Eleftheria; Stevenson, Clare E M; Little, Richard H; Wilhelm, Thomas; Lawson, David M; Malone, Jacob G

    2015-10-01

    The widespread second messenger molecule cyclic di-GMP (cdG) regulates the transition from motile and virulent lifestyles to sessile, biofilm-forming ones in a wide range of bacteria. Many pathogenic and commensal bacterial-host interactions are known to be controlled by cdG signaling. Although the biochemistry of cyclic dinucleotide metabolism is well understood, much remains to be discovered about the downstream signaling pathways that induce bacterial responses upon cdG binding. As part of our ongoing research into the role of cdG signaling in plant-associated Pseudomonas species, we carried out an affinity capture screen for cdG binding proteins in the model organism Pseudomonas fluorescens SBW25. The flagella export AAA+ ATPase FliI was identified as a result of this screen and subsequently shown to bind specifically to the cdG molecule, with a KD in the low micromolar range. The interaction between FliI and cdG appears to be very widespread. In addition to FliI homologs from diverse bacterial species, high affinity binding was also observed for the type III secretion system homolog HrcN and the type VI ATPase ClpB2. The addition of cdG was shown to inhibit FliI and HrcN ATPase activity in vitro. Finally, a combination of site-specific mutagenesis, mass spectrometry, and in silico analysis was used to predict that cdG binds to FliI in a pocket of highly conserved residues at the interface between two FliI subunits. Our results suggest a novel, fundamental role for cdG in controlling the function of multiple important bacterial export pathways, through direct allosteric control of export ATPase proteins.

  19. Energy-sensitive regulation of Na+/K+-ATPase by Janus kinase 2.

    Science.gov (United States)

    Bhavsar, Shefalee K; Hosseinzadeh, Zohreh; Brenner, Dirk; Honisch, Sabina; Jilani, Kashif; Liu, Guoxing; Szteyn, Kalina; Sopjani, Mentor; Mak, Tak W; Shumilina, Ekaterina; Lang, Florian

    2014-02-15

    Janus kinase 2 (JAK2) contributes to intracellular signaling of leptin and erythropoietin, hormones protecting cells during energy depletion. The present study explores whether JAK2 is activated by energy depletion and regulates Na(+)/K(+)-ATPase, the major energy-consuming pump. In Jurkat cells, JAK2 activity was determined by radioactive kinase assay, phosphorylated JAK2 detected by Western blotting, ATP levels measured by luciferase assay, as well as Na(+)/K(+)-ATPase α1-subunit transcript and protein abundance determined by real-time PCR and Western blotting, respectively. Ouabain-sensitive K(+)-induced currents (Ipump) were measured by whole cell patch clamp. Ipump was further determined by dual-electrode voltage clamp in Xenopus oocytes injected with cRNA-encoding JAK2, active (V617F)JAK2, or inactive (K882E)JAK2. As a result, in Jurkat T cells, JAK2 activity significantly increased following energy depletion by sodium azide (NaN3) or 2,4- dinitro phenol (DNP). DNP- and NaN3-induced decrease of cellular ATP was significantly augmented by JAK2 inhibitor AG490 and blunted by Na(+)/K(+)-ATPase inhibitor ouabain. DNP decreased and AG490 enhanced Ipump as well as Na(+)/K(+)-ATPase α1-subunit transcript and protein abundance. The α1-subunit transcript levels were also enhanced by signal transducer and activator of transcription-5 inhibitor CAS 285986-31-4. In Xenopus oocytes, Ipump was significantly decreased by expression of JAK2 and (V617F)JAK2 but not of (K882E)JAK2, effects again reversed by AG490. In (V617F)JAK2-expressing Xenopus oocytes, neither DNP nor NaN3 resulted in further decline of Ipump. In Xenopus oocytes, the effect of (V617F)JAK2 on Ipump was not prevented by inhibition of transcription with actinomycin. In conclusion, JAK2 is a novel energy-sensing kinase that curtails energy consumption by downregulating Na(+)/K(+)-ATPase expression and activity. PMID:24304834

  20. Keeping Lung Surfactant Where It Belongs: Protein Regulation of Two-Dimensional Viscosity

    OpenAIRE

    Alonso, Coralie; Waring, Alan; Zasadzinski, Joseph A.

    2005-01-01

    Lung surfactant causes the surface tension, γ, in the alveoli to drop to nearly zero on exhalation; in the upper airways γ is ∼30 mN/m and constant. Hence, a surface tension gradient exists between alveoli and airways that should lead to surfactant flow out of the alveoli and elimination of the surface tension gradient. However, the lung surfactant specific protein SP-C enhances the resistance to surfactant flow by regulating the ratio of solid to fluid phase in the monolayer, leading to a ja...

  1. Regulation of the V-ATPase along the endocytic pathway occurs through reversible subunit association and membrane localization.

    Directory of Open Access Journals (Sweden)

    Céline Lafourcade

    Full Text Available The lumen of endosomal organelles becomes increasingly acidic when going from the cell surface to lysosomes. Luminal pH thereby regulates important processes such as the release of internalized ligands from their receptor or the activation of lysosomal enzymes. The main player in endosomal acidification is the vacuolar ATPase (V-ATPase, a multi-subunit transmembrane complex that pumps protons from the cytoplasm to the lumen of organelles, or to the outside of the cell. The active V-ATPase is composed of two multi-subunit domains, the transmembrane V(0 and the cytoplasmic V(1. Here we found that the ratio of membrane associated V(1/Vo varies along the endocytic pathway, the relative abundance of V(1 being higher on late endosomes than on early endosomes, providing an explanation for the higher acidity of late endosomes. We also found that all membrane-bound V-ATPase subunits were associated with detergent resistant membranes (DRM isolated from late endosomes, raising the possibility that association with lipid-raft like domains also plays a role in regulating the activity of the proton pump. In support of this, we found that treatment of cells with U18666A, a drug that leads to the accumulation of cholesterol in late endosomes, affected acidification of late endosome. Altogether our findings indicate that the activity of the vATPase in the endocytic pathway is regulated both by reversible association/dissociation and the interaction with specific lipid environments.

  2. Lung Surfactant Levels are Regulated by Ig-Hepta/GPR116 by Monitoring Surfactant Protein D

    OpenAIRE

    Fukuzawa, Taku; Ishida, Junji; Kato, Akira; Ichinose, Taro; Ariestanti, Donna Maretta; Takahashi, Tomoya; Ito, Kunitoshi; Abe, Jumpei; Suzuki, Tomohiro; Wakana, Shigeharu; Fukamizu, Akiyoshi; Nakamura, Nobuhiro; Hirose, Shigehisa

    2013-01-01

    Lung surfactant is a complex mixture of lipids and proteins, which is secreted from the alveolar type II epithelial cell and coats the surface of alveoli as a thin layer. It plays a crucial role in the prevention of alveolar collapse through its ability to reduce surface tension. Under normal conditions, surfactant homeostasis is maintained by balancing its release and the uptake by the type II cell for recycling and the internalization by alveolar macrophages for degradation. Little is known...

  3. The p97 ATPase associates with EEA1 to regulate the size of early endosomes

    Institute of Scientific and Technical Information of China (English)

    Harish N Ramanathan; Yihong Ye

    2012-01-01

    The AAA ((A)TPase-(a)ssociated with various cellular (a)ctivities) ATPase p97 acts on diverse substrate proteins to partake in various cellular processes such as membrane fusion and endoplasmic reticulum-associated degradation (ERAD).In membrane fusion,p97 is thought to function in analogy to the related ATPase NSF (N-ethylmaleimidesensitive fusion protein),which promotes membrane fusion by disassembling a SNARE complex.In ERAD,p97 dislocates misfolded proteins from the ER membrane to facilitate their turnover by the proteasome.Here,we identify a novel function of p97 in endocytic trafficking by establishing the early endosomal autoantigen 1 (EEA1) as a new p97 substrate.We demonstrate that a fraction of p97 is localized to the early endosome membrane,where it binds EEA1 via the N-terminal C2H2 zinc finger domain.Inhibition of p97 either by siRNA or a pharmacological inhibitor results in clustering and enlargement of early endosomes,which is associated with an altered trafficking pattern for an endocytic cargo.Mechanistically,we show that p97 inhibition causes increased EEA1 self-association at the endosome membrane.We propose that p97 may regulate the size of early endosomes by governing the oligomeric state of EEA1.

  4. MicroRNA-206 regulates surfactant secretion by targeting VAMP-2.

    Science.gov (United States)

    Zhang, Honghao; Guo, Yujie; Mishra, Amarjit; Gou, Deming; Chintagari, Narendranath Reddy; Liu, Lin

    2015-01-01

    Lung surfactant secretion is a highly regulated process. Our previous studies have shown that VAMP-2 is essential for surfactant secretion. In the present study we investigated the role of miR-206 in surfactant secretion through VAMP-2. VAMP-2 was confirmed to be a target of miR-206 by 3'-untranslational region (3'-UTR) luciferase assay. Mutations in the predicated miR-206 binding sites reduced the binding of miR-206 to the 3'-UTR of VAMP-2. miR-206 decreased the expression of VAMP-2 protein and decreased the lung surfactant secretion in alveolar type II cells. In conclusion, miR-206 regulates lung surfactant secretion by limiting the availability of VAMP-2 protein.

  5. Regulation of Na+/K+ ATPase transport velocity by RNA editing.

    Directory of Open Access Journals (Sweden)

    Claudia Colina

    Full Text Available Because firing properties and metabolic rates vary widely, neurons require different transport rates from their Na(+/K(+ pumps in order to maintain ion homeostasis. In this study we show that Na(+/K(+ pump activity is tightly regulated by a novel process, RNA editing. Three codons within the squid Na(+/K(+ ATPase gene can be recoded at the RNA level, and the efficiency of conversion for each varies dramatically, and independently, between tissues. At one site, a highly conserved isoleucine in the seventh transmembrane span can be converted to a valine, a change that shifts the pump's intrinsic voltage dependence. Mechanistically, the removal of a single methyl group specifically targets the process of Na(+ release to the extracellular solution, causing a higher turnover rate at the resting membrane potential.

  6. Orphan G protein-coupled receptor GPR116 regulates pulmonary surfactant pool size.

    Science.gov (United States)

    Bridges, James P; Ludwig, Marie-Gabrielle; Mueller, Matthias; Kinzel, Bernd; Sato, Atsuyasu; Xu, Yan; Whitsett, Jeffrey A; Ikegami, Machiko

    2013-09-01

    Pulmonary surfactant levels within the alveoli are tightly regulated to maintain lung volumes and promote efficient gas exchange across the air/blood barrier. Quantitative and qualitative abnormalities in surfactant are associated with severe lung diseases in children and adults. Although the cellular and molecular mechanisms that control surfactant metabolism have been studied intensively, the critical molecular pathways that sense and regulate endogenous surfactant levels within the alveolus have not been identified and constitute a fundamental knowledge gap in the field. In this study, we demonstrate that expression of an orphan G protein-coupled receptor, GPR116, in the murine lung is developmentally regulated, reaching maximal levels 1 day after birth, and is highly expressed on the apical surface of alveolar type I and type II epithelial cells. To define the physiological role of GPR116 in vivo, mice with a targeted mutation of the Gpr116 locus, Gpr116(Δexon17), were generated. Gpr116(Δexon17) mice developed a profound accumulation of alveolar surfactant phospholipids at 4 weeks of age (12-fold) that was further increased at 20 weeks of age (30-fold). Surfactant accumulation in Gpr116(Δexon17) mice was associated with increased saturated phosphatidylcholine synthesis at 4 weeks and the presence of enlarged, lipid-laden macrophages, neutrophilia, and alveolar destruction at 20 weeks. mRNA microarray analyses indicated that P2RY2, a purinergic receptor known to mediate surfactant secretion, was induced in Gpr116(Δexon17) type II cells. Collectively, these data support the concept that GPR116 functions as a molecular sensor of alveolar surfactant lipid pool sizes by regulating surfactant secretion. PMID:23590306

  7. Differential regulation of cystic fibrosis transmembrane conductance regulator and Na+,K+ -ATPase in gills of striped bass, Morone saxatilis: effect of salinity and hormones

    DEFF Research Database (Denmark)

    Madsen, Steffen; Jensen, Lars Nørholm; Tipsmark, Christian Kølbaek;

    2007-01-01

    -regulated kinase (ERK) 1/2 was stimulated by EGF but not affected by IGF-I. This study is the first to report a branchial EGF response and to demonstrate a functional ERK 1/2 pathway in the teleost gill. In conclusion, CFTR and Na(+),K(+) -ATPase are differentially regulated by salinity and hormones in gills...

  8. Genetic regulations of the biosynthesis of microbial surfactants: an overview.

    Science.gov (United States)

    Das, Palashpriya; Mukherjee, Soumen; Sen, Ramkrishna

    2008-01-01

    molecular genetics and gene regulation mechanisms behind the biosynthesis of various microbial surfactants of commercial importance. PMID:21412355

  9. Plasma membrane calcium ATPase proteins as novel regulators of signal transduction pathways

    Institute of Scientific and Technical Information of China (English)

    Mary; Louisa; Holton; Michael; Emerson; Ludwig; Neyses; Angel; L; Armesilla

    2010-01-01

    Emerging evidence suggests that plasma membrane calcium ATPases (PMCAs) play a key role as regulators of calcium-triggered signal transduction pathways via interaction with partner proteins. PMCAs regulate these pathways by targeting specific proteins to cellular sub-domains where the levels of intracellular freecalcium are kept low by the calcium ejection properties of PMCAs. According to this model, PMCAs have been shown to interact functionally with the calcium-sensitive proteins neuronal nitric oxide synthase, calmodulindependent serine protein kinase, calcineurin and endothelial nitric oxidase synthase. Transgenic animals with altered expression of PMCAs are being used to evaluate the physiological significance of these interactions. To date, PMCA interactions with calcium-dependent partner proteins have been demonstrated to play a crucial role in the pathophysiology of the cardiovascular system via regulation of the nitric oxide and calcineurin/nuclear factor of activated T cells pathways. This new evidence suggests that PMCAs play a more sophisticated role than the mere ejection of calcium from the cells, by acting as modulators of signaling transduction pathways.

  10. V-ATPase-mediated phagosomal acidification is impaired by Streptococcus pyogenes through Mga-regulated surface proteins.

    Science.gov (United States)

    Nordenfelt, Pontus; Grinstein, Sergio; Björck, Lars; Tapper, Hans

    2012-11-01

    Streptococcus pyogenes, a significant bacterial pathogen in humans, interferes with the membrane traffic of human neutrophils and survives following phagocytosis. The mechanism(s) behind this property is not known, but in contrast to wild-type bacteria, mutant bacteria lacking virulence factors regulated by the transcriptional regulator Mga, are phagocytosed and killed. In the present work we investigated whether differences in phagosomal acidification may contribute to this difference. Phagosomal pH in neutrophil-differentiated HL-60 cells was studied by fluorescence ratio imaging, and phagosomes containing wild-type S. pyogenes bacteria of the M1 serotype exhibited little or no acidification, whereas Mga mutant bacteria were found in more acidic phagosomes. With phagosomes containing these bacteria, proton delivery was inhibited by adding folimycin, a vacuolar-type adenosine triphosphatase (V-ATPase) inhibitor. This inhibitor had no effect on phagosomes containing wild-type bacteria, indicating either inactivation or removal of V-ATPases by the bacteria. Analysis of isolated bacteria-containing phagosomes confirmed the latter scenario and showed a more efficient delivery of V-ATPases to phagosomes containing Mga mutant bacteria. The results demonstrate that V-ATPase-mediated phagosomal proton delivery is reduced during phagocytosis of wild-type S. pyogenes, leading to impaired acidification, and that surface proteins of the mga regulon are responsible for this effect. PMID:22981599

  11. Coordinated regulation of cardiac Na(+)/Ca (2+) exchanger and Na (+)-K (+)-ATPase by phospholemman (FXYD1).

    Science.gov (United States)

    Cheung, Joseph Y; Zhang, Xue-Qian; Song, Jianliang; Gao, Erhe; Chan, Tung O; Rabinowitz, Joseph E; Koch, Walter J; Feldman, Arthur M; Wang, JuFang

    2013-01-01

    Phospholemman (PLM) is the founding member of the FXYD family of regulators of ion transport. PLM is a 72-amino acid protein consisting of the signature PFXYD motif in the extracellular N terminus, a single transmembrane (TM) domain, and a C-terminal cytoplasmic tail containing three phosphorylation sites. In the heart, PLM co-localizes and co-immunoprecipitates with Na(+)-K(+)-ATPase, Na(+)/Ca(2+) exchanger, and L-type Ca(2+) channel. The TM domain of PLM interacts with TM9 of the α-subunit of Na(+)-K(+)-ATPase, while its cytoplasmic tail interacts with two small regions (spanning residues 248-252 and 300-304) of the proximal intracellular loop of Na(+)/Ca(2+) exchanger. Under stress, catecholamine stimulation phosphorylates PLM at serine(68), resulting in relief of inhibition of Na(+)-K(+)-ATPase by decreasing K(m) for Na(+) and increasing V(max), and simultaneous inhibition of Na(+)/Ca(2+) exchanger. Enhanced Na(+)-K(+)-ATPase activity lowers intracellular Na(+), thereby minimizing Ca(2+) overload and risks of arrhythmias. Inhibition of Na(+)/Ca(2+) exchanger reduces Ca(2+) efflux, thereby preserving contractility. Thus, the coordinated actions of PLM during stress serve to minimize arrhythmogenesis and maintain inotropy. In acute cardiac ischemia and chronic heart failure, either expression or phosphorylation of PLM or both are altered. PLM regulates important ion transporters in the heart and offers a tempting target for development of drugs to treat heart failure.

  12. Aspects of gene structure and functional regulation of the isozymes of Na,K-ATPase

    DEFF Research Database (Denmark)

    Jorgensen, P.L.

    2001-01-01

    genomes, the genes of four alpha-subunit and at least three beta-subunit isoforms of Na,K-ATPase are identified and two gamma-subunits are expressed in kidney. The isoforms combine in a number of Na,K-ATPase isozymes that are expressed in a tissue and cell specific manner. Models of the molecular...

  13. Glucocorticoid Regulation of Human Pulmonary Surfactant Protein-B mRNA Stability Involves the 3′-Untranslated Region

    OpenAIRE

    Huang, Helen W.; Bi, Weizhen; Jenkins, Gaye N.; Alcorn, Joseph L.

    2007-01-01

    Expression of pulmonary surfactant, a complex mixture of lipids and proteins that acts to reduce alveolar surface tension, is developmentally regulated and restricted to lung alveolar type II cells. The hydrophobic protein surfactant protein-B (SP-B) is essential in surfactant function, and insufficient levels of SP-B result in severe respiratory dysfunction. Glucocorticoids accelerate fetal lung maturity and surfactant synthesis both experimentally and clinically. Glucocorticoids act transcr...

  14. Nitric oxide derived from L-arginine impairs cytoplasmic pH regulation by vacuolar-type H+ ATPases in peritoneal macrophages

    OpenAIRE

    1991-01-01

    The ability of macrophages (Mos) to function within an acidic environment has been shown to depend on cytoplasmic pH (pHi) regulation by vacuolar-type H+ ATPases. Mos metabolize L-arginine via an oxidative pathway that generates nitric oxide, nitrate, and nitrite. Since each of these products could potentially inhibit vacuolar-type H+ ATPases, we investigated the effect of L-arginine metabolism on Mo pHi regulation in thioglycolate-elicited murine peritoneal Mos. H+ ATPase- mediated pHi recov...

  15. Glycolytic control of vacuolar-type ATPase activity: A mechanism to regulate influenza viral infection

    Energy Technology Data Exchange (ETDEWEB)

    Kohio, Hinissan P.; Adamson, Amy L., E-mail: aladamso@uncg.edu

    2013-09-15

    As new influenza virus strains emerge, finding new mechanisms to control infection is imperative. In this study, we found that we could control influenza infection of mammalian cells by altering the level of glucose given to cells. Higher glucose concentrations induced a dose-specific increase in influenza infection. Linking influenza virus infection with glycolysis, we found that viral replication was significantly reduced after cells were treated with glycolytic inhibitors. Addition of extracellular ATP after glycolytic inhibition restored influenza infection. We also determined that higher levels of glucose promoted the assembly of the vacuolar-type ATPase within cells, and increased vacuolar-type ATPase proton-transport activity. The increase of viral infection via high glucose levels could be reversed by inhibition of the proton pump, linking glucose metabolism, vacuolar-type ATPase activity, and influenza viral infection. Taken together, we propose that altering glucose metabolism may be a potential new approach to inhibit influenza viral infection. - Highlights: • Increased glucose levels increase Influenza A viral infection of MDCK cells. • Inhibition of the glycolytic enzyme hexokinase inhibited Influenza A viral infection. • Inhibition of hexokinase induced disassembly the V-ATPase. • Disassembly of the V-ATPase and Influenza A infection was bypassed with ATP. • The state of V-ATPase assembly correlated with Influenza A infection of cells.

  16. Glycolytic control of vacuolar-type ATPase activity: A mechanism to regulate influenza viral infection

    International Nuclear Information System (INIS)

    As new influenza virus strains emerge, finding new mechanisms to control infection is imperative. In this study, we found that we could control influenza infection of mammalian cells by altering the level of glucose given to cells. Higher glucose concentrations induced a dose-specific increase in influenza infection. Linking influenza virus infection with glycolysis, we found that viral replication was significantly reduced after cells were treated with glycolytic inhibitors. Addition of extracellular ATP after glycolytic inhibition restored influenza infection. We also determined that higher levels of glucose promoted the assembly of the vacuolar-type ATPase within cells, and increased vacuolar-type ATPase proton-transport activity. The increase of viral infection via high glucose levels could be reversed by inhibition of the proton pump, linking glucose metabolism, vacuolar-type ATPase activity, and influenza viral infection. Taken together, we propose that altering glucose metabolism may be a potential new approach to inhibit influenza viral infection. - Highlights: • Increased glucose levels increase Influenza A viral infection of MDCK cells. • Inhibition of the glycolytic enzyme hexokinase inhibited Influenza A viral infection. • Inhibition of hexokinase induced disassembly the V-ATPase. • Disassembly of the V-ATPase and Influenza A infection was bypassed with ATP. • The state of V-ATPase assembly correlated with Influenza A infection of cells

  17. Regulation of Na,K-ATPase β1-subunit in TGF-β2-mediated epithelial-to-mesenchymal transition in human retinal pigmented epithelial cells.

    Science.gov (United States)

    Mony, Sridevi; Lee, Seung Joon; Harper, Jeffrey F; Barwe, Sonali P; Langhans, Sigrid A

    2013-10-01

    Proliferative vitreo retinopathy (PVR) is associated with extracellular matrix membrane (ECM) formation on the neural retina and disruption of the multilayered retinal architecture leading to distorted vision and blindness. During disease progression in PVR, retinal pigmented epithelial cells (RPE) lose cell-cell adhesion, undergo epithelial-to-mesenchymal transition (EMT), and deposit ECM leading to tissue fibrosis. The EMT process is mediated via exposure to vitreous cytokines and growth factors such as TGF-β2. Previous studies have shown that Na,K-ATPase is required for maintaining a normal polarized epithelial phenotype and that decreased Na,K-ATPase function and subunit levels are associated with TGF-β1-mediated EMT in kidney cells. In contrast to the basolateral localization of Na,K-ATPase in most epithelia, including kidney, Na,K-ATPase is found on the apical membrane in RPE cells. We now show that EMT is also associated with altered Na,K-ATPase expression in RPE cells. TGF-β2 treatment of ARPE-19 cells resulted in a time-dependent decrease in Na,K-ATPase β1 mRNA and protein levels while Na,K-ATPase α1 levels, Na,K-ATPase activity, and intracellular sodium levels remained largely unchanged. In TGF-β2-treated cells reduced Na,K-ATPase β1 mRNA inversely correlated with HIF-1α levels and analysis of the Na,K-ATPase β1 promoter revealed a putative hypoxia response element (HRE). HIF-1α bound to the Na,K-ATPase β1 promoter and inhibiting the activity of HIF-1α blocked the TGF-β2 mediated Na,K-ATPase β1 decrease suggesting that HIF-1α plays a potential role in Na,K-ATPase β1 regulation during EMT in RPE cells. Furthermore, knockdown of Na,K-ATPase β1 in ARPE-19 cells was associated with a change in cell morphology from epithelial to mesenchymal and induction of EMT markers such as α-smooth muscle actin and fibronectin, suggesting that loss of Na,K-ATPase β1 is a potential contributor to TGF-β2-mediated EMT in RPE cells.

  18. Physicochemical properties of nanoparticles regulate translocation across pulmonary surfactant monolayer and formation of lipoprotein corona.

    Science.gov (United States)

    Hu, Guoqing; Jiao, Bao; Shi, Xinghua; Valle, Russell P; Fan, Qihui; Zuo, Yi Y

    2013-12-23

    Interaction with the pulmonary surfactant film, being the first line of host defense, represents the initial bio-nano interaction in the lungs. Such interaction determines the fate of the inhaled nanoparticles and their potential therapeutic or toxicological effect. Despite considerable progress in optimizing physicochemical properties of nanoparticles for improved delivery and targeting, the mechanisms by which inhaled nanoparticles interact with the pulmonary surfactant film are still largely unknown. Here, using combined in vitro and in silico methods, we show how hydrophobicity and surface charge of nanoparticles differentially regulate the translocation and interaction with the pulmonary surfactant film. While hydrophilic nanoparticles generally translocate quickly across the pulmonary surfactant film, a significant portion of hydrophobic nanoparticles are trapped by the surfactant film and encapsulated in lipid protrusions upon film compression. Our results support a novel model of pulmonary surfactant lipoprotein corona associated with inhaled nanoparticles of different physicochemical properties. Our data suggest that the study of pulmonary nanotoxicology and nanoparticle-based pulmonary drug delivery should consider this lipoprotein corona.

  19. Detailed search for protein kinase(s) involved in plasma membrane H+-ATPase activity regulation of yeast cells.

    Science.gov (United States)

    Pereira, Renata R; Castanheira, Diogo; Teixeira, Janaina A; Bouillet, Leoneide E M; Ribeiro, Erica M C; Trópia, Maria M J; Alvarez, Florencia; Correa, Lygia F M; Mota, Bruno E F; Conceição, Luis Eduardo F R; Castro, Ieso M; Brandão, Rogelio L

    2015-03-01

    This study displays a screening using yeast strains deficient in protein kinases known to exist in Saccharomyces cerevisiae. From 95 viable single mutants, 20 mutants appear to be affected in the glucose-induced extracellular acidification. The mutants that are unaffected in calcium signaling were tested for their sensitivity to hygromycin B. Furthermore, we verified whether the remaining mutants produced enzymes that are appropriately incorporated at plasma membrane. Finally, we measure the kinetic properties of the enzyme in purified plasma membranes from glucose-starved as well as glucose-fermenting cells. We confirmed the kinase Ptk2 involvement in H(+)-ATPase regulation (increase of affinity for ATP). However, the identification of the kinase(s) responsible for phosphorylation that leads to an increase in Vmax appears to be more complex. Complementary experiments were performed to check how those protein kinases could be related to the control of the plasma membrane H(+)-ATPase and/or the potential membrane. In summary, our results did not permit us to identify the protein kinase(s) involved in regulating the catalytic efficiency of the plasma membrane H(+)-ATPase. Therefore, our results indicate that the current regulatory model based on the phosphorylation of two different sites located in the C-terminus tail of the enzyme could be inappropriate.

  20. FXYD1 negatively regulates Na(+)/K(+)-ATPase activity in lung alveolar epithelial cells.

    Science.gov (United States)

    Wujak, Łukasz A; Blume, Anna; Baloğlu, Emel; Wygrecka, Małgorzata; Wygowski, Jegor; Herold, Susanne; Mayer, Konstantin; Vadász, István; Besuch, Petra; Mairbäurl, Heimo; Seeger, Werner; Morty, Rory E

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is clinical syndrome characterized by decreased lung fluid reabsorption, causing alveolar edema. Defective alveolar ion transport undertaken in part by the Na(+)/K(+)-ATPase underlies this compromised fluid balance, although the molecular mechanisms at play are not understood. We describe here increased expression of FXYD1, FXYD3 and FXYD5, three regulatory subunits of the Na(+)/K(+)-ATPase, in the lungs of ARDS patients. Transforming growth factor (TGF)-β, a pathogenic mediator of ARDS, drove increased FXYD1 expression in A549 human lung alveolar epithelial cells, suggesting that pathogenic TGF-β signaling altered Na(+)/K(+)-ATPase activity in affected lungs. Lentivirus-mediated delivery of FXYD1 and FXYD3 allowed for overexpression of both regulatory subunits in polarized H441 cell monolayers on an air/liquid interface. FXYD1 but not FXYD3 overexpression inhibited amphotericin B-sensitive equivalent short-circuit current in Ussing chamber studies. Thus, we speculate that FXYD1 overexpression in ARDS patient lungs may limit Na(+)/K(+)-ATPase activity, and contribute to edema persistence. PMID:26410457

  1. A pivotal role of vacuolar H+-ATPase in regulation of lipid production in Phaeodactylum tricornutum

    Science.gov (United States)

    Zhang, Huiying; Zeng, Rensen; Chen, Daoyi; Liu, Jian

    2016-01-01

    Microalgal lipids have been considered as a promising source for biodiesel production. Alkaline pH can induce neutral lipid accumulation in microalgae cells. However, whether and how proton pumps, especially vacuolar H+-ATPase (V-ATPase), function in these processes is not well known. In this study, we treated Phaeodactylum tricornutum with V-ATPase specific inhibitor bafilomycin A1 (BFA1) to determine its role in lipid production. Firstly, V-ATPase activity was increased in the latter phase of microalgae growth. BFA1 treatment decreased the cell density and lipid contents. Further analysis showed that BFA1 treatment reduced the number and size of oil bodies. GC-MS analysis showed that lipid components were not affected by BFA1 treatment. Intracellular pH was decreased and nitrogen depletion was delayed after BFA1 treatment. RNA-Seq analysis showed that expression of genes involved in calcium signaling, sulfur metabolism, cell cycle, glycolysis, pentose phosphate pathway, porphyrin, chlorophyll metabolism and lipid catabolic metabolism were upregulated, while expression of genes involved in ion transmembrane transport, ubiquitin mediated proteolysis, SNARE interactions in vesicular transport, fatty acid biosynthesis were downregulated under BFA1 treatment. Our findings provided insights into the molecular mechanisms underlying lipid accumulation and the key genes involved in lipid metabolism in Phaeodactylum tricornutum in response to BFA1. PMID:27499168

  2. A pivotal role of vacuolar H(+)-ATPase in regulation of lipid production in Phaeodactylum tricornutum.

    Science.gov (United States)

    Zhang, Huiying; Zeng, Rensen; Chen, Daoyi; Liu, Jian

    2016-01-01

    Microalgal lipids have been considered as a promising source for biodiesel production. Alkaline pH can induce neutral lipid accumulation in microalgae cells. However, whether and how proton pumps, especially vacuolar H(+)-ATPase (V-ATPase), function in these processes is not well known. In this study, we treated Phaeodactylum tricornutum with V-ATPase specific inhibitor bafilomycin A1 (BFA1) to determine its role in lipid production. Firstly, V-ATPase activity was increased in the latter phase of microalgae growth. BFA1 treatment decreased the cell density and lipid contents. Further analysis showed that BFA1 treatment reduced the number and size of oil bodies. GC-MS analysis showed that lipid components were not affected by BFA1 treatment. Intracellular pH was decreased and nitrogen depletion was delayed after BFA1 treatment. RNA-Seq analysis showed that expression of genes involved in calcium signaling, sulfur metabolism, cell cycle, glycolysis, pentose phosphate pathway, porphyrin, chlorophyll metabolism and lipid catabolic metabolism were upregulated, while expression of genes involved in ion transmembrane transport, ubiquitin mediated proteolysis, SNARE interactions in vesicular transport, fatty acid biosynthesis were downregulated under BFA1 treatment. Our findings provided insights into the molecular mechanisms underlying lipid accumulation and the key genes involved in lipid metabolism in Phaeodactylum tricornutum in response to BFA1. PMID:27499168

  3. Volume regulation of intestinal cells of echinoderms: Putative role of ion transporters (Na(+)/K(+)-ATPase and NKCC).

    Science.gov (United States)

    Castellano, Giovanna C; Souza, Marta M; Freire, Carolina A

    2016-11-01

    Echinoderms are exclusively marine osmoconformer invertebrates. Some species occupy the challenging intertidal region. Upon salinity changes, the extracellular osmotic concentration of these animals also varies, exposing tissues and cells to osmotic challenges. Cells and tissues may then respond with volume regulation mechanisms, which involve transport of ions and water into and/or out of the cells, through ion transporters, such as the Na(+)/K(+)-ATPase and NKCC. The goal of this study was to relate the cell volume regulation capacity of echinoderm intestinal cells Na(+)/K(+)-ATPase and NKCC activities, in three echinoderm species: Holothuria grisea, Arbacia lixula, and Echinometra lucunter. Isolated cells of these species displayed some control of their cell volume upon exposure to anisosmotic media (isolated intestinal cells, calcein fluorescence as indicator of volume change), with a distinct higher capacity shown by H. grisea, which did not swell even upon 50% hyposmotic shock. The holothuroid cells showed indirect evidence (effect of furosemide) of the participation of NKCC in this process, with a secretory function, and of a secondary role by the NKA (effect of ouabain). Other mechanisms are probably responsible for this function in the urchins. Variable expression of these transporters, and others not examined here, may to some extent account for the variability in cell volume regulation capacity in echinoderm cells.

  4. P-type ATPases.

    Science.gov (United States)

    Palmgren, Michael G; Nissen, Poul

    2011-01-01

    P-type ATPases form a large superfamily of cation and lipid pumps. They are remarkably simple with only a single catalytic subunit and carry out large domain motions during transport. The atomic structure of P-type ATPases in different conformations, together with ample mutagenesis evidence, has provided detailed insights into the pumping mechanism by these biological nanomachines. Phylogenetically, P-type ATPases are divided into five subfamilies, P1-P5. These subfamilies differ with respect to transported ligands and the way they are regulated. PMID:21351879

  5. Vesicles from pH-regulated reversible gemini amino-acid surfactants as nanocapsules for delivery.

    Science.gov (United States)

    Lv, Jing; Qiao, Weihong; Li, Zongshi

    2016-10-01

    Reversible transition from micelles to vesicles by regulating pH were realized by gemini amino-acid surfactants N,N'-dialkyl-N,N'-diacetate ethylenediamine. Measurement results of ζ-potential at different pH and DLS at varying solvents revealed that the protonation between H(+) and double NCH2COO(-) groups (generating NH(+)CH2COO(-)), expressed as pKa1 and pKa2, is the key driving force to control the aggregation behaviors of gemini surfactant molecule. Effect of pH on the bilayer structure was studied in detail by using steady-state fluorescence spectroscopy of hydrophobic pyrene and Coumarin 153 (C153) respectively and fluorescence resonance energy transfer (FRET) from C153 to Rhodamine 6G (R6G). Various pH-regulated and pH-reversible self-assemblies were obtained in one surfactant system. Vitamin D3 was encapsulated in vesicle bilayers to form nano-VD3-capsules as VD3 supplement agent for health care products. By using the electrostatic attraction between Ca(2+) and double -COO(-) groups, nano-VD3-capsules with Ca(2+) coated outermost layers were prepared as a formulation for VD3 and calcium co-supplement agent. DLS and TEM were performed to check stability and morphology of the nano-capsules. It is concluded that the pH-regulated gemini amino-acid surfactants can be used to construct colloidal systems for delivering hydrophobic drugs or nutritions without lipids at human physiological pH level. PMID:27419647

  6. P4-ATPases

    DEFF Research Database (Denmark)

    Lopez Marques, Rosa Laura; Theorin, Lisa; Palmgren, Michael Broberg;

    2014-01-01

    Cellular membranes, notably eukaryotic plasma membranes, are equipped with special proteins that actively translocate lipids from one leaflet to the other and thereby help generate membrane lipid asymmetry. Among these ATP-driven transporters, the P4 subfamily of P-type ATPases (P4-ATPases......) comprises lipid flippases that catalyze the translocation of phospholipids from the exoplasmic to the cytosolic leaflet of cell membranes. While initially characterized as aminophospholipid translocases, recent studies of individual P4-ATPase family members from fungi, plants, and animals show that P4...... to include the regulation of membrane traffic, cytoskeletal dynamics, cell division, lipid metabolism, and lipid signaling. In this review, we will summarize the basic features of P4-ATPases and the physiological implications of their lipid transport activity in the cell. © 2013 The Author(s)....

  7. Hemolymph ion regulation and kinetic characteristics of the gill (Na⁺, K⁺)-ATPase in the hermit crab Clibanarius vittatus (Decapoda, Anomura) acclimated to high salinity.

    Science.gov (United States)

    Lucena, Malson N; Garçon, Daniela P; Mantelatto, Fernando L M; Pinto, Marcelo R; McNamara, John C; Leone, Francisco A

    2012-04-01

    We examine hemolymph ion regulation and the kinetic properties of a gill microsomal (Na(+), K(+))-ATPase from the intertidal hermit crab, Clibanarius vittatus, acclimated to 45‰ salinity for 10 days. Hemolymph osmolality is hypo-regulated (1102.5 ± 22.1 mOsm kg(-1) H(2)O) at 45‰ but elevated compared to fresh-caught crabs (801.0 ± 40.1 mOsm kg(-1) H(2)O). Hemolymph [Na(+)] (323.0 ± 2.5 mmol L(-1)) and [Mg(2+)] (34.6 ± 1.0 mmol L(-1)) are hypo-regulated while [Ca(2+)] (22.5 ± 0.7 mmol L(-1)) is hyper-regulated; [K(+)] is hyper-regulated in fresh-caught crabs (17.4 ± 0.5 mmol L(-1)) but hypo-regulated (6.2 ± 0.7 mmol L(-1)) at 45‰. Protein expression patterns are altered in the 45‰-acclimated crabs, although Western blot analyses reveal just a single immunoreactive band, suggesting a single (Na(+), K(+))-ATPase α-subunit isoform, distributed in different density membrane fractions. A high-affinity (Vm=46.5 ± 3.5 Umg(-1); K(0.5)=7.07 ± 0.01 μmol L(-1)) and a low-affinity ATP binding site (Vm=108.1 ± 2.5 U mg(-1); K(0.5)=0.11 ± 0.3 mmol L(-1)), both obeying cooperative kinetics, were disclosed. Modulation of (Na(+), K(+))-ATPase activity by Mg(2+), K(+) and NH(4)(+) also exhibits site-site interactions, but modulation by Na(+) shows Michaelis-Menten kinetics. (Na(+), K(+))-ATPase activity is synergistically stimulated up to 45% by NH(4)(+) plus K(+). Enzyme catalytic efficiency for variable [K(+)] and fixed [NH(4)(+)] is 10-fold greater than for variable [NH(4)(+)] and fixed [K(+)]. Ouabain inhibited ≈80% of total ATPase activity (K(I)=464.7 ± 23.2 μmol L(-1)), suggesting that ATPases other than (Na(+), K(+))-ATPase are present. While (Na(+), K(+))-ATPase activities are similar in fresh-caught (around 142 nmol Pi min(-1)mg(-1)) and 45‰-acclimated crabs (around 154 nmol Pi min(-1)mg(-1)), ATP affinity decreases 110-fold and Na(+) and K(+) affinities increase 2-3-fold in 45‰-acclimated crabs. PMID:22260788

  8. Glucose Regulation of Pre-steady State Kinetics of ATP Hydrolysis by Na,K-ATPase

    Institute of Scientific and Technical Information of China (English)

    Mohammad Mahfuzul HAQUE; Nikhat MANZOOR; Mohammad AMIN; Mohammad Ejaz HUSSAIN; Luqman Ahmad KHAN

    2007-01-01

    The effect of glucose and 2-deoxy-D-glucose on pre-steady state kinetics of ATP hydrolysis by Na,K-ATPase has been investigated by following pH transients in a stopped-flow spectrophotometer. A typical pre-steady state signal showed an initial decrease then subsequent increase in acidity. Under optimal Na+ (120 mM) and K+ (30 mM) concentrations, magnitudes of both H+ release and H+ absorption were found to be approximately 1.0/ATPase molecule. The presence of 1 mM glucose significantly decreased H+ absorption at high Na+ concentrations, whereas it was ineffective at low Na+. H+ release was decreased significantly in the presence of 1 mM glucose at Na+ concentrations ranging from 30 mM to 120 mM. Similar to the control,K+ did not show any effect on either H+ release or H+ absorption at all tested combinations of Na+ and K+ concentrations. Pre-steady state H+ signal obtained in the presence of 2-deoxy-D-glucose did not vary significantly as compared with glucose. Delayed addition of K+ (by 30 ms) to the mixture (enzyme+120 mM Na++ATP+glucose) showed that only small fractions of population absorb H+ in the absence of K+. No H+ absorption was observed in the absence of Na+. Delayed mixing of Na+ or K+ did not have any effect on H+ release. Effect of 2-deoxy-D-glucose on H+ absorption and release was almost the same as that of glucose at all combinations of Na+ and K+ concentrations. Results obtained have been discussed in terms of an extended kinetic scheme which shows that, in the presence of either glucose or 2-deoxy-D-glucose, significantly fewer enzyme molecules reache the E~P(3Na+) stage and that K+ plays an important role in the conversion of E1.ADP.P(3Na+) to H+.E1~(3Na+) complex.

  9. Auxin regulation of a proton translocating ATPase in pea root plasma membrane vesicles. [Pisum sativum. L

    Energy Technology Data Exchange (ETDEWEB)

    Gabathuler, R.; Cleland, R.E.

    1985-12-01

    Pea root microsomal vesicles have been fractionated on a Dextran step gradient to give three fractions, each of which carries out ATP-dependent proton accumulation as measured by fluorescence quenching of quinacrine. The fraction at the 4/6% Dextran interface is enriched in plasma membrane, as determined by UDPG sterol glucosyltransferase and vanadate-inhibited ATPase. The vanadate-sensitive phosphohydrolase is not specific for ATP, has a K/sub m/ of about 0.23 millimolar for MgATP, is only slightly affected by K/sup +/ or Cl/sup -/ and is insensitive to auxin. Proton transport, on the other hand, is more specific for ATP, enhanced by anions (NO/sub 3//sup -/ > Cl/sup -/) and has a K/sub m/ of about 0.7 millimolar. Auxins decrease the K/sub m/ to about 0.35 millimolar, with no significant effect on the V/sub max/, while antiauxins or weak acids have no such effect. It appears that auxin has the ability to alter the efficiency of the ATP-driven proton transport.

  10. The Multivesicular Bodies (MVBs)-Localized AAA ATPase LRD6-6 Inhibits Immunity and Cell Death Likely through Regulating MVBs-Mediated Vesicular Trafficking in Rice.

    Science.gov (United States)

    Zhu, Xiaobo; Yin, Junjie; Liang, Sihui; Liang, Ruihong; Zhou, Xiaogang; Chen, Zhixiong; Zhao, Wen; Wang, Jing; Li, Weitao; He, Min; Yuan, Can; Miyamoto, Koji; Ma, Bingtian; Wang, Jichun; Qin, Peng; Chen, Weilan; Wang, Yuping; Wang, Wenming; Wu, Xianjun; Yamane, Hisakazu; Zhu, Lihuang; Li, Shigui; Chen, Xuewei

    2016-09-01

    Previous studies have shown that multivesicular bodies (MVBs)/endosomes-mediated vesicular trafficking may play key roles in plant immunity and cell death. However, the molecular regulation is poorly understood in rice. Here we report the identification and characterization of a MVBs-localized AAA ATPase LRD6-6 in rice. Disruption of LRD6-6 leads to enhanced immunity and cell death in rice. The ATPase activity and homo-dimerization of LRD6-6 is essential for its regulation on plant immunity and cell death. An ATPase inactive mutation (LRD6-6E315Q) leads to dominant-negative inhibition in plants. The LRD6-6 protein co-localizes with the MVBs marker protein RabF1/ARA6 and interacts with ESCRT-III components OsSNF7 and OsVPS2. Further analysis reveals that LRD6-6 is required for MVBs-mediated vesicular trafficking and inhibits the biosynthesis of antimicrobial compounds. Collectively, our study shows that the AAA ATPase LRD6-6 inhibits plant immunity and cell death most likely through modulating MVBs-mediated vesicular trafficking in rice. PMID:27618555

  11. Hypoxia-inducible factor regulates expression of surfactant protein in alveolar type II cells in vitro.

    Science.gov (United States)

    Ito, Yoko; Ahmad, Aftab; Kewley, Emily; Mason, Robert J

    2011-11-01

    Alveolar type II (ATII) cells cultured at an air-liquid (A/L) interface maintain differentiation, but they lose these properties when they are submerged. Others showed that an oxygen tension gradient develops in the culture medium as ATII cells consume oxygen. Therefore, we wondered whether hypoxia inducible factor (HIF) signaling could explain differences in the phenotypes of ATII cells cultured under A/L interface or submerged conditions. ATII cells were isolated from male Sprague-Dawley rats and cultured on inserts coated with a mixture of rat-tail collagen and Matrigel, in medium including 5% rat serum and 10 ng/ml keratinocyte growth factor, with their apical surfaces either exposed to air or submerged. The A/L interface condition maintained the expression of surfactant proteins, whereas that expression was down-regulated under the submerged condition, and the effect was rapid and reversible. Under submerged conditions, there was an increase in HIF1α and HIF2α in nuclear extracts, mRNA levels of HIF inducible genes, vascular endothelial growth factor, glucose transporter-1 (GLUT1), and the protein level of pyruvate dehydrogenase kinase isozyme-1. The expression of surfactant proteins was suppressed and GLUT1 mRNA levels were induced when cells were cultured with 1 mM dimethyloxalyl glycine. The expression of surfactant proteins was restored under submerged conditions with supplemented 60% oxygen. HIF signaling and oxygen tension at the surface of cells appears to be important in regulating the phenotype of rat ATII cells. PMID:21454802

  12. Vacuolar H(+)-ATPase subunits Voa1 and Voa2 cooperatively regulate secretory vesicle acidification, transmitter uptake, and storage.

    Science.gov (United States)

    Saw, Ner Mu Nar; Kang, Soo-Young Ann; Parsaud, Leon; Han, Gayoung Anna; Jiang, Tiandan; Grzegorczyk, Krzysztof; Surkont, Michael; Sun-Wada, Ge-Hong; Wada, Yoh; Li, Lijun; Sugita, Shuzo

    2011-09-01

    The Vo sector of the vacuolar H(+)-ATPase is a multisubunit complex that forms a proteolipid pore. Among the four isoforms (a1-a4) of subunit Voa, the isoform(s) critical for secretory vesicle acidification have yet to be identified. An independent function of Voa1 in exocytosis has been suggested. Here we investigate the function of Voa isoforms in secretory vesicle acidification and exocytosis by using neurosecretory PC12 cells. Fluorescence-tagged and endogenous Voa1 are primarily localized on secretory vesicles, whereas fluorescence-tagged Voa2 and Voa3 are enriched on the Golgi and early endosomes, respectively. To elucidate the functional roles of Voa1 and Voa2, we engineered PC12 cells in which Voa1, Voa2, or both are stably down-regulated. Our results reveal significant reductions in the acidification and transmitter uptake/storage of dense-core vesicles by knockdown of Voa1 and more dramatically of Voa1/Voa2 but not of Voa2. Overexpressing knockdown-resistant Voa1 suppresses the acidification defect caused by the Voa1/Voa2 knockdown. Unexpectedly, Ca(2+)-dependent peptide secretion is largely unaffected in Voa1 or Voa1/Voa2 knockdown cells. Our data demonstrate that Voa1 and Voa2 cooperatively regulate the acidification and transmitter uptake/storage of dense-core vesicles, whereas they might not be as critical for exocytosis as recently proposed. PMID:21795392

  13. Renal proximal tubule Na,K-ATPase is controlled by CREB-regulated transcriptional coactivators as well as salt-inducible kinase 1.

    Science.gov (United States)

    Taub, Mary; Garimella, Sudha; Kim, Dongwook; Rajkhowa, Trivikram; Cutuli, Facundo

    2015-12-01

    Sodium reabsorption by the kidney is regulated by locally produced natriuretic and anti-natriuretic factors, including dopamine and norepinephrine, respectively. Previous studies indicated that signaling events initiated by these natriuretic and anti-natriuretic factors achieve their effects by altering the phosphorylation of Na,K-ATPase in the renal proximal tubule, and that protein kinase A (PKA) and calcium-mediated signaling pathways are involved. The same signaling pathways also control the transcription of the Na,K-ATPase β subunit gene atp1b1 in renal proximal tubule cells. In this report, evidence is presented that (1) both the recently discovered cAMP-regulated transcriptional coactivators (CRTCs) and salt-inducible kinase 1 (SIK1) contribute to the transcriptional regulation of atp1b1 in renal proximal tubule (RPT) cells and (2) renal effectors, including norepinephrine, dopamine, prostaglandins, and sodium, play a role. Exogenously expressed CRTCs stimulate atp1b1 transcription. Evidence for a role of endogenous CRTCs includes the loss of transcriptional regulation of atp1b1 by a dominant-negative CRTC, as well as by a CREB mutant, with an altered CRTC binding site. In a number of experimental systems, SIK phosphorylates CRTCs, which are then sequestered in the cytoplasm, preventing their nuclear effects. Consistent with such a role of SIK in primary RPT cells, atp1b1 transcription increased in the presence of a dominant-negative SIK1, and in addition, regulation by dopamine, norepinephrine, and monensin was disrupted by a dominant-negative SIK1. These latter observations can be explained if SIK1 is phosphorylated and inactivated in the presence of these renal effectors. Our results support the hypothesis that Na,K-ATPase in the renal proximal tubule is regulated at the transcriptional level via SIK1 and CRTCs by renal effectors, in addition to the previously reported control of the phosphorylation of Na,K-ATPase.

  14. Unaccustomed eccentric contractions impair plasma K+ regulation in the absence of changes in muscle Na+,K+-ATPase content.

    Directory of Open Access Journals (Sweden)

    Craig A Goodman

    Full Text Available The Na+,K+-ATPase (NKA plays a fundamental role in the regulation of skeletal muscle membrane Na+ and K+ gradients, excitability and fatigue during repeated intense contractions. Many studies have investigated the effects of acute concentric exercise on K+ regulation and skeletal muscle NKA, but almost nothing is known about the effects of repeated eccentric contractions. We therefore investigated the effects of unaccustomed maximal eccentric knee extensor contractions on K+ regulation during exercise, peak knee extensor muscle torque, and vastus lateralis muscle NKA content and 3-O-MFPase activity. Torque measurements, muscle biopsies, and venous blood samples were taken before, during and up to 7 days following the contractions in six healthy adults. Eccentric contractions reduced peak isometric muscle torque immediately post-exercise by 26±11% and serum creatine kinase concentration peaked 24 h post-exercise at 339±90 IU/L. During eccentric contractions, plasma [K+] rose during Set 1 and remained elevated at ∼4.9 mM during sets 4-10; this was despite a decline in work output by Set 4, which fell by 18.9% at set 10. The rise in plasma [K+] x work(-1 ratio was elevated over Set 2 from Set 4- Set 10. Eccentric contractions had no effect on muscle NKA content or maximal in-vitro 3-O-MFPase activity immediately post- or up to 7 d post-exercise. The sustained elevation in plasma [K+] despite a decrease in work performed by the knee extensor muscles suggests an impairment in K+ regulation during maximal eccentric contractions, possibly due to increased plasma membrane permeability or to excitation-contraction uncoupling.

  15. A Surfactant-Induced Functional Modulation of a Global Virulence Regulator from Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Sukhendu Mandal

    Full Text Available Triton X-100 (TX-100, a useful non-ionic surfactant, reduced the methicillin resistance in Staphylococcus aureus significantly. Many S. aureus proteins were expressed in the presence of TX-100. SarA, one of the TX-100-induced proteins, acts as a global virulence regulator in S. aureus. To understand the effects of TX-100 on the structure, and function of SarA, a recombinant S. aureus SarA (rSarA and its derivative (C9W have been investigated in the presence of varying concentrations of this surfactant using various probes. Our data have revealed that both rSarA and C9W bind to the cognate DNA with nearly similar affinity in the absence of TX-100. Interestingly, their DNA binding activities have been significantly increased in the presence of pre-micellar concentration of TX-100. The increase of TX-100 concentrations to micellar or post-micellar concentration did not greatly enhance their activities further. TX-100 molecules have altered the secondary and tertiary structures of both proteins to some extents. Size of the rSarA-TX-100 complex appears to be intermediate to those of rSarA and TX-100. Additional analyses show a relatively moderate interaction between C9W and TX-100. Binding of TX-100 to C9W has, however, occurred by a cooperative pathway particularly at micellar and higher concentrations of this surfactant. Taken together, TX-100-induced structural alteration of rSarA and C9W might be responsible for their increased DNA binding activity. As TX-100 has stabilized the somewhat weaker SarA-DNA complex effectively, it could be used to study its structure in the future.

  16. Regulation of lipid droplet dynamics in Saccharomyces cerevisiae depends on the Rab7-like Ypt7p, HOPS complex and V1-ATPase

    Directory of Open Access Journals (Sweden)

    Isabelle Bouchez

    2015-07-01

    Full Text Available It has now been clearly shown that lipid droplets (LDs play a dynamic role in the cell. This was reinforced by LD proteomics which suggest that a significant number of trafficking proteins are associated with this organelle. Using microscopy, we showed that LDs partly co-localize with the vacuole in S. cerevisiae. Immunoblot experiments confirmed the association of the vacuolar Rab GTPase Rab7-like Ypt7p with LDs. We observed an increase in fatty acid content and LD number in ypt7Δ mutant and also changes in LD morphology and intra LD fusions, revealing a direct role for Ypt7p in LD dynamics. Using co-immunoprecipitation, we isolated potential Ypt7p partners including, Vma13p, the H subunit of the V1 part of the vacuolar (H+ ATPase (V-ATPase. Deletion of the VMA13 gene, as well as deletion of three other subunits of the V1 part of the V-ATPase, also increased the cell fatty acid content and LD number. Mutants of the Homotypic fusion and vacuole protein sorting (HOPS complex showed similar phenotypes. Here, we demonstrated that LD dynamics and membrane trafficking between the vacuole and LDs are regulated by the Rab7-like Ypt7p and are impaired when the HOPS complex and the V1 domain of the V-ATPase are defective.

  17. The ATPase Inhibitory Factor 1 (IF1): A master regulator of energy metabolism and of cell survival.

    Science.gov (United States)

    García-Bermúdez, Javier; Cuezva, José M

    2016-08-01

    In this contribution we summarize most of the findings reported for the molecular and cellular biology of the physiological inhibitor of the mitochondrial H(+)-ATP synthase, the engine of oxidative phosphorylation (OXPHOS) and gate of cell death. We first describe the structure and major mechanisms and molecules that regulate the activity of the ATP synthase placing the ATPase Inhibitory Factor 1 (IF1) as a major determinant in the regulation of the activity of the ATP synthase and hence of OXPHOS. Next, we summarize the post-transcriptional mechanisms that regulate the expression of IF1 and emphasize, in addition to the regulation afforded by the protonation state of histidine residues, that the activity of IF1 as an inhibitor of the ATP synthase is also regulated by phosphorylation of a serine residue. Phosphorylation of S39 in IF1 by the action of a mitochondrial cAMP-dependent protein kinase A hampers its interaction with the ATP synthase, i.e., only dephosphorylated IF1 interacts with the enzyme. Upon IF1 interaction with the ATP synthase both the synthetic and hydrolytic activities of the engine of OXPHOS are inhibited. These findings are further placed into the physiological context to stress the emerging roles played by IF1 in metabolic reprogramming in cancer, in hypoxia and in cellular differentiation. We review also the implication of IF1 in other cellular situations that involve the malfunctioning of mitochondria. Special emphasis is given to the role of IF1 as driver of the generation of a reactive oxygen species signal that, emanating from mitochondria, is able to reprogram the nucleus of the cell to confer by various signaling pathways a cell-death resistant phenotype against oxidative stress. Overall, our intention is to highlight the urgent need of further investigations in the molecular and cellular biology of IF1 and of its target, the ATP synthase, to unveil new therapeutic strategies in human pathology. This article is part of a Special Issue

  18. Up-regulation and interaction of the plasma membrane H(+)-ATPase and the 14-3-3 protein are involved in the regulation of citrate exudation from the broad bean (Vicia faba L.) under Al stress.

    Science.gov (United States)

    Chen, Qi; Guo, Chuan-Long; Wang, Ping; Chen, Xuan-Qin; Wu, Kong-Huan; Li, Kui-Zhi; Yu, Yong-Xiong; Chen, Li-Mei

    2013-09-01

    Our previous study showed that citrate excretion coupled with a concomitant release of protons was involved in aluminum (Al) resistance in the broad bean. Furthermore, genes encoding plasma membrane (PM) H(+)-ATPase (vha2) and the 14-3-3 protein (vf14-3-3b) were up-regulated by Al in Al-resistant (YD) broad bean roots. In this study, the roles of PM H(+)-ATPase (E.C. 3.6.3.6) and the 14-3-3 protein in the regulation of citrate secretion were further investigated in Al-resistant (YD) and Al-sensitive (AD) broad bean cultivars under Al stress. The results showed that greater citrate exudation was positively correlated with higher activities of PM H(+)-ATPase in roots of YD than AD. Real-time RT-PCR analysis revealed that vha2 was clearly up-regulated by Al in YD but not in AD roots, whereas the transcription levels of vf14-3-3b were elevated in a time-dependent manner in both YD and AD roots. Immunoprecipitation and Western analysis suggested that phosphorylation and interaction with the vf14-3-3b protein of the VHA2 were enhanced in YD roots but not in AD roots with increasing Al treatment time. Fusicoccin or adenosine 5'-monophosphate increased or decreased the interaction between the phosphorylated VHA2 and the vf14-3-3b protein, followed by an enhancement or reduction of the PM H(+)-ATPase activity and citrate exudation in both cultivars under Al stress conditions, respectively. Taken together, these results suggested that Al enhanced the expression and interaction of the PM H(+)-ATPase and the 14-3-3 protein, which thereby led to higher activity of the PM H(+)-ATPase and more citrate exudation from YD plants.

  19. Endogenous sodium potassium ATPase inhibition related biochemical cascade and the acquired immunodeficiency syndrome -Neural regulation of viral replication and immune response to the virus

    Directory of Open Access Journals (Sweden)

    Ravikumar A

    2001-11-01

    Full Text Available The isoprenoid pathway and its metabolites - digoxin, dolichol and ubiquinone were assessed in acquired immunodeficiency syndrome. Digoxin is an endogenous regulator of membrane Na+-K+ ATPase secreted by the human hypothalamus. The HMG CoA reductase activity was increased with increased digoxin and dolichol levels and reduced ubiquinone levels in AIDS. Membrane Na+-K+ ATPase activity and serum magnesium levels were reduced. The tryptophan catabolites were increased and the tyrosine catabolites were reduced. The glycoconjugate metabolites were increased and lysosomal stability was reduced. There was reduced incorporation of glycoconjugates into membranes and increased membrane cholesterol: phospholipid ratio. Lipid peroxidation products and NO were increased while free radical scavenging enzymes and reduced glutathione were reduced. The role of the isoprenoid pathway related cascade in the pathogenesis of AIDS is discussed.

  20. Rotary ATPases

    Science.gov (United States)

    Stewart, Alastair G.; Sobti, Meghna; Harvey, Richard P.; Stock, Daniela

    2013-01-01

    Rotary ATPases are molecular rotary motors involved in biological energy conversion. They either synthesize or hydrolyze the universal biological energy carrier adenosine triphosphate. Recent work has elucidated the general architecture and subunit compositions of all three sub-types of rotary ATPases. Composite models of the intact F-, V- and A-type ATPases have been constructed by fitting high-resolution X-ray structures of individual subunits or sub-complexes into low-resolution electron densities of the intact enzymes derived from electron cryo-microscopy. Electron cryo-tomography has provided new insights into the supra-molecular arrangement of eukaryotic ATP synthases within mitochondria and mass-spectrometry has started to identify specifically bound lipids presumed to be essential for function. Taken together these molecular snapshots show that nano-scale rotary engines have much in common with basic design principles of man made machines from the function of individual “machine elements” to the requirement of the right “fuel” and “oil” for different types of motors. PMID:23369889

  1. BAP, a mammalian BiP-associated protein, is a nucleotide exchange factor that regulates the ATPase activity of BiP.

    Science.gov (United States)

    Chung, Kyung Tae; Shen, Ying; Hendershot, Linda M

    2002-12-01

    We identified a mammalian BiP-associated protein, BAP, using a yeast two-hybrid screen that shared low homology with yeast Sls1p/Sil1p and mammalian HspBP1, both of which regulate the ATPase activity of their Hsp70 partner. BAP encoded an approximately 54-kDa protein with an N-terminal endoplasmic reticulum (ER) targeting sequence, two sites of N-linked glycosylation, and a C-terminal ER retention sequence. Immunofluorescence staining demonstrated that BAP co-localized with GRP94 in the endoplasmic reticulum. BAP was ubiquitously expressed but showed the highest levels of expression in secretory organ tissues, a pattern similar to that observed with BiP. BAP binding was affected by the conformation of the ATPase domain of BiP based on in vivo binding studies with BiP mutants. BAP stimulated the ATPase activity of BiP when added alone or together with the ER DnaJ protein, ERdj4, by promoting the release of ADP from BiP. Together, these data demonstrate that BAP serves as a nucleotide exchange factor for BiP and provide insights into the mechanisms that control protein folding in the mammalian ER.

  2. Nitric oxide regulates cardiac intracellular Na⁺ and Ca²⁺ by modulating Na/K ATPase via PKCε and phospholemman-dependent mechanism.

    Science.gov (United States)

    Pavlovic, Davor; Hall, Andrew R; Kennington, Erika J; Aughton, Karen; Boguslavskyi, Andrii; Fuller, William; Despa, Sanda; Bers, Donald M; Shattock, Michael J

    2013-08-01

    In the heart, Na/K-ATPase regulates intracellular Na(+) and Ca(2+) (via NCX), thereby preventing Na(+) and Ca(2+) overload and arrhythmias. Here, we test the hypothesis that nitric oxide (NO) regulates cardiac intracellular Na(+) and Ca(2+) and investigate mechanisms and physiological consequences involved. Effects of both exogenous NO (via NO-donors) and endogenously synthesized NO (via field-stimulation of ventricular myocytes) were assessed in this study. Field stimulation of rat ventricular myocytes significantly increased endogenous NO (18 ± 2 μM), PKCε activation (82 ± 12%), phospholemman phosphorylation (at Ser-63 and Ser-68) and Na/K-ATPase activity (measured by DAF-FM dye, western-blotting and biochemical assay, respectively; pPLM(WT) but not PLM(KO) or PLM(3SA) myocytes (where phospholemman cannot be phosphorylated) as measured by whole-cell perforated-patch clamp. Field-stimulation with l-NAME or PKC-inhibitor (2 μM Bis) resulted in elevated intracellular Na(+) (22 ± 1.5 and 24 ± 2 respectively, vs. 14 ± 0.6mM in controls) in SBFI-AM-loaded rat myocytes. Arrhythmia incidence was significantly increased in rat hearts paced in the presence of l-NAME (and this was reversed by l-arginine), as well as in PLM(3SA) mouse hearts but not PLM(WT) and PLM(KO). We provide physiological and biochemical evidence for a novel regulatory pathway whereby NO activates Na/K-ATPase via phospholemman phosphorylation and thereby limits Na(+) and Ca(2+) overload and arrhythmias. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes".

  3. Sarco(endoplasmic Reticulum Ca2+-ATPase-2 Gene: Structure and Transcriptional Regulation of the Human Gene

    Directory of Open Access Journals (Sweden)

    Angel Zarain-Herzberg

    2002-01-01

    Full Text Available The sarco(endoplasmic reticulum Ca2+-ATPases (SERCAs belong to a family of active calcium transport enzymes encoded by the SERCA1, 2, and 3 genes. In this study, we describe the complete structure of the human SERCA2 gene and its 5’ -regulatory region. The hSERCA2 gene is located in chromosome 12 position q24.1 in Contig NT_009770.8, spans 70 kb, and is organized in 21 exons intervened by 20 introns. The last two exons of the pre-mRNA produce by alternatively splicing the cardiac/slow-twitch muscle-specific SERCA2a isoform and the ubiquitous SERCA2b isoform. The sequence of the proximal 225-bp regulatory region of the SERCA2 genes is 80% G+C-rich and is conserved among human, rabbit, rat, and mouse species. It contains a TATA-like-box, an E-box/USF sequence, a CAAT-box, four Sp1 binding sites, and a thyroid hormone responsive element (TRE. There are two other conserved regulatory regions located between positions -410 to -661 bp and from -919 to -1410 bp. Among the DNA cis-elements present in these two regulatory regions there are potential binding sites for: GATA-4, -5, -6, Nkx-2.5/Csx, OTF-1, USF, MEF-2, SRF, PPAR/RXR, AP-2, and TREs. Upstream from position -1.5 kb, there is no significant homology among the SERCA2 genes cloned. In addition, the human gene has several repeated sequences mainly of the Alu and L2 type located upstream from position -1.7 kb, spanning in a continuous fashion for more than 40 kb. In this study, we report the cloning of 2.4 kb of 5’-regulatory region and demonstrate that the proximal promoter region is sufficient for expression in cardiac myocytes, and the region from -225 to -1232 bp contains regulatory DNA elements which down-regulate the expression of the SERCA2 gene in neonatal cardiomyocytes.

  4. The Isy1p component of the NineTeen Complex interacts with the ATPase Prp16p to regulate the fidelity of pre-mRNA splicing

    OpenAIRE

    Villa, Tommaso; Guthrie, Christine

    2005-01-01

    Prp16p is a DEAH-box ATPase that transiently associates with the spliceosome to promote the structural transition required for the second chemical step. Yeast strains carrying the cold-sensitive allele prp16-302 stall the release of Prp16p at low temperatures, yet splice precursors with aberrant branchpoints at increased frequency. To identify new factors involved in the regulation of splicing fidelity, we sought suppressors of the prp16-302 growth phenotype. Deletion of the nonessential ISY1...

  5. LPCAT1 regulates surfactant phospholipid synthesis and is required for transitioning to air breathing in mice

    OpenAIRE

    Bridges, James P.; Ikegami, Machiko; Brilli, Lauren L.; Chen, Xueni; Mason, Robert J; Shannon, John M.

    2010-01-01

    Respiratory distress syndrome (RDS), which is the leading cause of death in premature infants, is caused by surfactant deficiency. The most critical and abundant phospholipid in pulmonary surfactant is saturated phosphatidylcholine (SatPC), which is synthesized in alveolar type II cells de novo or by the deacylation-reacylation of existing phosphatidylcholine species. We recently cloned and partially characterized a mouse enzyme with characteristics of a lung lysophosphatidylcholine acyltrans...

  6. Phospholemman-dependent regulation of the cardiac Na/K-ATPase activity is modulated by inhibitor-1 sensitive type-1 phosphatase.

    Science.gov (United States)

    El-Armouche, Ali; Wittköpper, Katrin; Fuller, William; Howie, Jacqueline; Shattock, Michael J; Pavlovic, Davor

    2011-12-01

    Cardiac Na/K-ATPase (NKA) is regulated by its accessory protein phospholemman (PLM). Whereas kinase-induced PLM phosphorylation has been shown to mediate NKA stimulation, the role of endogenous phosphatases is presently unknown. We investigated the role of protein phosphatase-1 (PP-1) on PLM phosphorylation and NKA activity in rat cardiomyocytes and failing human hearts. Incubation of rat cardiomyocytes with the chemical PP-1/PP-2A inhibitor okadaic acid or the specific PP-1-inhibitor peptide (I-1ct) identified PLM phosphorylation at Ser-68 as the main substrate for PP-1. Moreover, myocytes adenovirally overexpressing PP-1 inhibitor-1 protein (I-1,Ad-I-1/eGFP) showed a 70% increase in PLM Ser-68 phosphorylation and 65% increase in NKA current, compared with enhanced green fluorescence protein (eGFP)-infected controls (Ad-eGFP), using Western blotting and voltage clamping, respectively. Notably, in left ventricular myocardium from patients with heart failure, PLM Ser-68 phosphorylation was ≈ 50% lower (n=7) than in nonfailing controls (n=7). We provide the first physiological and biochemical evidence that PLM phosphorylation and cardiac Na/K-ATPase activity are negatively regulated by PP-1 and that this regulatory mechanism could be counteracted by I-1. This novel mechanism is markedly perturbed in failing hearts favoring PLM dephosphorylation and NKA deactivation and thus may contribute to maladaptive hypertrophy and arrhythmogenesis via chronically higher intracellular Na and Ca concentrations.

  7. Leptin and the Regulation of Renal Sodium Handling and Renal Na-Transporting ATPases: Role in the Pathogenesis of Arterial Hypertension.

    Science.gov (United States)

    Bełtowski, Jerzy

    2010-02-01

    Leptin, an adipose tissue hormone which regulates food intake, is also involved in the pathogenesis of arterial hypertension. Plasma leptin concentration is increased in obese individuals. Chronic leptin administration or transgenic overexpression increases blood pressure in experimental animals, and some studies indicate that plasma leptin is elevated in hypertensive subjects independently of body weight. Leptin has a dose- and time-dependent effect on urinary sodium excretion. High doses of leptin increase Na(+) excretion in the short run; partially by decreasing renal Na(+),K(+)-ATPase (sodium pump) activity. This effect is mediated by phosphatidylinositol 3-kinase (PI3K) and is impaired in animals with dietary-induced obesity. In contrast to acute, chronic elevation of plasma leptin to the level observed in patients with the metabolic syndrome impairs renal Na(+) excretion, which is associated with the increase in renal Na(+),K(+)-ATPase activity. This effect results from oxidative stress-induced deficiency of nitric oxide and/or transactivation of epidermal growth factor receptor and subsequent stimulation of extracellular signal-regulated kinases. Ameliorating "renal leptin resistance" or reducing leptin level and/or leptin signaling in states of chronic hyperleptinemia may be a novel strategy for the treatment of arterial hypertension associated with the metabolic syndrome. PMID:21286276

  8. The Listeria monocytogenes Fur-regulated virulence protein FrvA is an Fe(II) efflux P1B4 -type ATPase.

    Science.gov (United States)

    Pi, Hualiang; Patel, Sarju J; Argüello, José M; Helmann, John D

    2016-06-01

    Listeria monocytogenes FrvA (Lmo0641) is critical for virulence in the mouse model and is an ortholog of the Bacillus subtilis Fur- and PerR-regulated Fe(II) efflux P1B4 -type ATPase PfeT. Previously, FrvA was suggested to protect against heme toxicity. Here, we demonstrate that an frvA mutant is sensitive to iron intoxication, but not to other metals. Expression of frvA is induced by high iron and this induction requires Fur. FrvA functions in vitro as a divalent cation specific ATPase most strongly activated by ferrous iron. When expressed in B. subtilis, FrvA increases resistance to iron both in wild-type and in a pfeT null strain. FrvA is a high affinity Fe(II) exporter and its induction imposes severe iron limitation in B. subtilis resulting in derepression of both Fur- and PerR-regulated genes. FrvA also recognizes Co(II) and Zn(II) as substrates and can complement B. subtilis strains defective in the endogenous export systems for these cations. Building on these results, we conclude that FrvA functions in the efflux of Fe(II), and not heme during listerial infection. PMID:26946370

  9. Regulation of pulmonary surfactant secretion in the developing lizard, Pogona vitticeps.

    Science.gov (United States)

    Sullivan, Lucy C; Orgeig, Sandra; Daniels, Christopher B

    2002-11-01

    Pulmonary surfactant is a mixture of lipids and proteins that is secreted by alveolar type II cells in the lungs of all air-breathing vertebrates. Pulmonary surfactant functions to reduce the surface tension in the lungs and, therefore, reduce the work of breathing. In mammals, the embryonic maturation of the surfactant system is controlled by a host of factors, including glucocorticoids, thyroid hormones and autonomic neurotransmitters. We have used a co-culture system of embryonic type II cells and lung fibroblasts to investigate the ability of dexamethasone, tri-iodothyronine (T(3)), adrenaline and carbamylcholine (carbachol) to stimulate the cellular secretion of phosphatidylcholine in the bearded dragon (Pogona vitticeps) at day 55 (approx. 92%) of incubation and following hatching. Adrenaline stimulated surfactant secretion both before and after hatching, whereas carbachol stimulated secretion only at day 55. Glucocorticoids and triiodothyronine together stimulated secretion at day 55 but did not after hatching. Therefore, adrenaline, carbachol, dexamethasone and T(3), are all involved in the development of the surfactant system in the bearded dragon. However, the efficacy of the hormones is attenuated during the developmental process. These differences probably relate to the changes in the cellular environment during development and the specific biology of the bearded dragon. PMID:12443912

  10. Iron oxide nanoparticles to an Indian major carp, Labeo rohita: Impacts on hematology, iono regulation and gill Na+/K+ ATPase activity

    Directory of Open Access Journals (Sweden)

    Anand Sadanandan Remya

    2015-04-01

    Full Text Available In this study, the chronic toxicity effects of iron oxide (Fe2O3 nanoparticles (NPs (500 mg l−l on certain hematological, ionoregulatory and gill Na+/K+ ATPase activity of an Indian major carp, Labeo rohita were estimated for a period of 25 days under static bioassay. A significant increase in hemoglobin (Hb content, red blood cell (RBC count and hematocrit (Ht value was noticed throughout the study period when compared to control groups. In contrast, mean cellular volume (MCV, mean cellular hemoglobin (MCH (except on 5th day and mean cellular hemoglobin concentration (MCHC levels and white blood cell (WBC counts were found to be decreased during the above study period. Fe2O3 NPs also caused alterations in iono regulation resulting in hyponatremia (Na+, hypochloremia (Cl− (except on 5th day and hypokalemia (K+ (except up to 15th day. A biphasic trend in gill Na+/K+-ATPase activity was noticed during the above treatment period. Our results demonstrate that high Fe2O3 NP concentrations in the aquatic environment may have adverse physiological effects on fish. These data may be useful to assess the environmental risk posed by NPs. However the toxicity of various sizes of the nanoparticle could be evaluated using different aquatic organisms.

  11. Exercise-induced regulation of phospholemman (FXYD1) in rat skeletal muscle: implications for Na+/K+-ATPase activity

    DEFF Research Database (Denmark)

    Rasmussen, M K; Kristensen, M; Juel, C

    2008-01-01

    of phospholemman (PLM, FXYD1) protein in rat skeletal muscle and exercise-induced changes in V(max) and K(m) for Na(+) of the Na(+)/K(+)-ATPase. METHODS: Two membrane fractionation methods and immunoprecipitation were used. Results: Both fractionation methods revealed a 200-350% increase in PLM in the sarcolemma...... after 30 min of treadmill running, while the phosphorylation of Ser-68 of PLM appeared to be unchanged. Exercise did not change V(max) or K(m) for Na(+) of the Na(+)/K(+)-ATPase in muscle homogenate, but induced a 67% increase in V(max) in the sarcolemmal giant vesicle preparation; K(m) for Na......(+) remained constant. The main part of the increase in V(max) is related to a 36-53% increase in the level of alpha-subunits; the remainder may be related to increased PLM content. Similar results were obtained with another membrane purification method. In resting muscle, 29% and 32% of alpha(1)- and alpha(2...

  12. Role of the Na+/K+-ATPase in regulating the membrane potential in rat peritoneal mast cells.

    Science.gov (United States)

    Friis, U G; Praetorius, H A; Knudsen, T; Johansen, T

    1997-10-01

    1. The aim of this study was to investigate the effect of the Na+/K+-ATPase on the membrane potential of peritoneal mast cells isolated from male Sprague-Dawley SPF-rats. 2. Experiments were performed at 22-26 degrees C in the tight-seal whole-cell configuration of the patch-clamp technique by use of Sylgard-coated patch pipettes (3-6 M[omega]). High-resolution membrane currents were recorded with an EPC-9 patch-clamp amplifier controlled by the 'E9SCREEN' software. In addition, a charting programme on another computer synchronously recorded at low resolution (2 Hz) membrane potential and holding current (low-pass filtered at 500 Hz). 3. Na+/K+-ATPase activity was measured as the ouabain-sensitive change in the zero-current potential. The zero-current potential in rat peritoneal mast cells measured 2 min after obtaining whole-cell configuration amounted to 1.7 +/- 2.5 mV (n = 21). Ouabain (5 mM), a Na+/K+-ATPase-inhibitor, had only a very minor effect upon the membrane potential under resting conditions (n = 3). 4. When mast cells were superfused with nominal calcium-free external solution, the cells hyperpolarized (delta mV: 20.2 +/- 3.8 mV (n = 5)). In addition, when the mast cells were preincubated in nominal calcium-free external solution for 12 +/- 1.6 min before whole-cell configuration, the membrane potential amounted to -53.7 +/- 9.8 mV (n = 8). A subsequent superfusion with ouabain (5 mM) depolarized the membrane potential (ouabain-sensitive hyperpolarization (delta mV): 23.0 +/- 8.4 mV (n = 8)). 5. A high intracellular concentration of Na+ ([Na+]i) (26.6 mM) also resulted in hyperpolarization (delta mV: 20.2 +/- 9.1 mV (n = 7)), but only when ATP was present. A subsequent superfusion with ouabain (5 mM) repolarized these cells to -1.2 +/- 14 mV (ouabain-sensitive hyperpolarization (delta mV): 19.7 +/- 7.7 mV (n = 7)). 6. The size of the [Na+]i-dependent hyperpolarization was dose-dependent. Low [Na+]i (1 mM) had no effect on membrane potential and these

  13. Surfactant phospholipid metabolism

    OpenAIRE

    Agassandian, Marianna; Mallampalli, Rama K.

    2012-01-01

    Pulmonary surfactant is essential for life and is comprised of a complex lipoprotein-like mixture that lines the inner surface of the lung to prevent alveolar collapse at the end of expiration. The molecular composition of surfactant depends on highly integrated and regulated processes involving its biosynthesis, remodeling, degradation, and intracellular trafficking. Despite its multicomponent composition, the study of surfactant phospholipid metabolism has focused on two predominant compone...

  14. Plasma membrane Ca2+-ATPase isoforms composition regulates cellular pH homeostasis in differentiating PC12 cells in a manner dependent on cytosolic Ca2+ elevations

    DEFF Research Database (Denmark)

    Boczek, Tomasz; Lisek, Malwina; Ferenc, Bozena;

    2014-01-01

    Plasma membrane Ca2+-ATPase (PMCA) by extruding Ca2+ outside the cell, actively participates in the regulation of intracellular Ca2+ concentration. Acting as Ca2+/H+ counter-transporter, PMCA transports large quantities of protons which may affect organellar pH homeostasis. PMCA exists in four is...

  15. HNF-1B specifically regulates the transcription of the γa-subunit of the Na+/K+-ATPase

    International Nuclear Information System (INIS)

    Research highlights: → Defects in HNF-1B transcription factor affect Mg2+ handling in the distal kidney. → γa- and γb- subunits of the Na+/K+-ATPase colocalize in the distal convoluted tubule of the nephron. → HNF-1B specifically activates γa expression. → HNF-1B mutants have a dominant negative effect on wild type HNF-1B activity. → Defective transcription of γa may promote renal Mg2+ wasting. -- Abstract: Hepatocyte nuclear factor-1B (HNF-1B) is a transcription factor involved in embryonic development and tissue-specific gene expression in several organs, including the kidney. Recently heterozygous mutations in the HNF1B gene have been identified in patients with hypomagnesemia due to renal Mg2+ wasting. Interestingly, ChIP-chip data revealed HNF-1B binding sites in the FXYD2 gene, encoding the γ-subunit of the Na+/K+-ATPase. The γ-subunit has been described as one of the molecular players in the renal Mg2+ reabsorption in the distal convoluted tubule (DCT). Of note, the FXYD2 gene can be alternatively transcribed into two main variants, namely γa and γb. In the present study, we demonstrated via two different reporter gene assays that HNF-1B specifically acts as an activator of the γa-subunit, whereas the γb-subunit expression was not affected. Moreover, the HNF-1B mutations H69fsdelAC, H324S325fsdelCA, Y352finsA and K156E, previously identified in patients with hypomagnesemia, prevented transcription activation of γa-subunit via a dominant negative effect on wild type HNF1-B. By immunohistochemistry, it was shown that the γa- and γb-subunits colocalize at the basolateral membrane of the DCT segment of mouse kidney. On the basis of these data, we suggest that abnormalities involving the HNF-1B gene may impair the relative abundance of γa and γb, thus affecting the transcellular Mg2+ reabsorption in the DCT.

  16. Surfactant Protein A Suppresses Lung Cancer Progression by Regulating the Polarization of Tumor-Associated Macrophages

    OpenAIRE

    Mitsuhashi, Atsushi; Goto, Hisatsugu; Kuramoto, Takuya; Tabata, Sho; Yukishige, Sawaka; Abe, Shinji; Hanibuchi, Masaki; Kakiuchi, Soji; Saijo, Atsuro; Aono, Yoshinori; Uehara, Hisanori; Yano, Seiji; Ledford, Julie G.; Sone, Saburo; Nishioka, Yasuhiko

    2013-01-01

    Surfactant protein A (SP-A) is a large multimeric protein found in the lungs. In addition to its immunoregulatory function in infectious respiratory diseases, SP-A is also used as a marker of lung adenocarcinoma. Despite the finding that SP-A expression levels in cancer cells has a relationship with patient prognosis, the function of SP-A in lung cancer progression is unknown. We investigated the role of SP-A in lung cancer progression by introducing the SP-A gene into human lung adenocarcino...

  17. Regulation of the Na,K-ATPase gamma-subunit FXYD2 by Runx1 and Ret signaling in normal and injured non-peptidergic nociceptive sensory neurons.

    Directory of Open Access Journals (Sweden)

    Stéphanie Ventéo

    Full Text Available Dorsal root ganglia (DRGs contain the cell bodies of sensory neurons which relay nociceptive, thermoceptive, mechanoceptive and proprioceptive information from peripheral tissues toward the central nervous system. These neurons establish constant communication with their targets which insures correct maturation and functioning of the somato-sensory nervous system. Interfering with this two-way communication leads to cellular, electrophysiological and molecular modifications that can eventually cause neuropathic conditions. In this study we reveal that FXYD2, which encodes the gamma-subunit of the Na,K-ATPase reported so far to be mainly expressed in the kidney, is induced in the mouse DRGs at postnatal stages where it is restricted specifically to the TrkB-expressing mechanoceptive and Ret-positive/IB4-binding non-peptidergic nociceptive neurons. In non-peptidergic nociceptors, we show that the transcription factor Runx1 controls FXYD2 expression during the maturation of the somato-sensory system, partly through regulation of the tyrosine kinase receptor Ret. Moreover, Ret signaling maintains FXYD2 expression in adults as demonstrated by the axotomy-induced down-regulation of the gene that can be reverted by in vivo delivery of GDNF family ligands. Altogether, these results establish FXYD2 as a specific marker of defined sensory neuron subtypes and a new target of the Ret signaling pathway during normal maturation of the non-peptidergic nociceptive neurons and after sciatic nerve injury.

  18. A specific phospholipase C activity regulates phosphatidylinositol levels in lung surfactant of patients with acute respiratory distress syndrome.

    Science.gov (United States)

    Spyridakis, Spyros; Leondaritis, George; Nakos, George; Lekka, Marilena E; Galanopoulou, Dia

    2010-03-01

    Lung surfactant (LS) is a lipid-rich material lining the inside of the lungs. It reduces surface tension at the liquid/air interface and thus, it confers protection of the alveoli from collapsing. The surface-active component of LS is dipalmitoyl-phosphatidylcholine, while anionic phospholipids such as phosphatidylinositol (PtdIns) and primarily phosphatidylglycerol are involved in the stabilization of the LS monolayer. The exact role of PtdIns in this system is not well-understood; however, PtdIns levels change dramatically during the acute respiratory distress syndrome (ARDS) evolution. In this report we present evidence of a phosphoinositide-specific phospholipase C (PI-PLC) activity in bronchoalveolar lavage (BAL) fluid, which may regulate PtdIns levels. Characterization of this extracellular activity showed specificity for PtdIns and phosphatidylinositol 4,5-bisphosphate, sharing the typical substrate concentration-, pH-, and calcium-dependencies with mammalian PI-PLCs. Fractionation of BAL fluid showed that PI-PLC did not co-fractionate with large surfactant aggregates, but it was found mainly in the soluble fraction. Importantly, analysis of BAL samples from control subjects and from patients with ARDS showed that the PI-PLC specific activity was decreased by 4-fold in ARDS samples concurrently with the increase in BAL PtdIns levels. Thus, we have identified for the first time an extracellular PI-PLC enzyme activity that may be acutely involved in the regulation of PtdIns levels in LS. PMID:19491339

  19. Lung Surfactant Protein D (SP-D) Response and Regulation During Acute and Chronic Lung Injury

    DEFF Research Database (Denmark)

    Gaunsbaek, Maria Quisgaard; Rasmussen, Karina Juhl; Beers, Michael F.;

    2013-01-01

    lung injury, with a sustained increment during chronic inflammation compared with acute inflammation. A quick upregulation of SP-D in serum in response to acute airway inflammation supports the notion that SP-D translocates from the airways into the vascular system, in favor of being synthesized......BACKGROUND: Surfactant protein D (SP-D) is a collection that plays important roles in modulating host defense functions and maintaining phospholipid homeostasis in the lung. The aim of current study was to characterize comparatively the SP-D response in bronchoalveolar lavage (BAL) and serum in...... three murine models of lung injury, using a validated ELISA technology for estimation of SP-D levels. METHODS: Mice were exposed to lipopolysaccharide, bleomycin, or Pneumocystis carinii (Pc) and sacrificed at different time points. RESULTS: In lipopolysaccharide-challenged mice, the level of SP-D in...

  20. Sequences of a hairpin structure in the 3′-untranslated region mediate regulation of human pulmonary surfactant protein B mRNA stability

    OpenAIRE

    Huang, Helen W.; Payne, David E.; Bi, Weizhen; Pan, Su; Bruce, Shirley R.; Alcorn, Joseph L.

    2012-01-01

    The ability of pulmonary surfactant to reduce alveolar surface tension requires adequate expression of surfactant protein B (SP-B). Dexamethasone (DEX, 10−7 M) increases human SP-B mRNA stability by a mechanism that requires a 126-nt-long segment (the 7.6S region) of the 3′-untranslated region (3′-UTR). The objective of this study was to identify sequences in the 7.6S region that mediate regulation of SP-B mRNA stability. The 7.6S region was found to be sufficient for DEX-mediated stabilizati...

  1. Regulation of the Na+/K+-ATPase Ena1 Expression by Calcineurin/Crz1 under High pH Stress: A Quantitative Study

    Science.gov (United States)

    Petrezsélyová, Silvia; López-Malo, María; Canadell, David; Roque, Alicia; Serra-Cardona, Albert; Marqués, M. Carmen; Vilaprinyó, Ester; Alves, Rui; Yenush, Lynne

    2016-01-01

    Regulated expression of the Ena1 Na+-ATPase is a crucial event for adaptation to high salt and/or alkaline pH stress in the budding yeast Saccharomyces cerevisiae. ENA1 expression is under the control of diverse signaling pathways, including that mediated by the calcium-regulatable protein phosphatase calcineurin and its downstream transcription factor Crz1. We present here a quantitative study of the expression of Ena1 in response to alkalinization of the environment and we analyze the contribution of Crz1 to this response. Experimental data and mathematical models substantiate the existence of two stress-responsive Crz1-binding sites in the ENA1 promoter and estimate that the contribution of Crz1 to the early response of the ENA1 promoter is about 60%. The models suggest the existence of a second input with similar kinetics, which would be likely mediated by high pH-induced activation of the Snf1 kinase. PMID:27362362

  2. Diseases of Pulmonary Surfactant Homeostasis

    OpenAIRE

    Jeffrey A Whitsett; Wert, Susan E.; Weaver, Timothy E.

    2015-01-01

    Advances in physiology and biochemistry have provided fundamental insights into the role of pulmonary surfactant in the pathogenesis and treatment of preterm infants with respiratory distress syndrome. Identification of the surfactant proteins, lipid transporters, and transcriptional networks regulating their expression has provided the tools and insights needed to discern the molecular and cellular processes regulating the production and function of pulmonary surfactant prior to and after bi...

  3. Chromosomal Locus for Cadmium Resistance in Pseudomonas putida Consisting of a Cadmium-Transporting ATPase and a MerR Family Response Regulator

    OpenAIRE

    Lee, Seon-Woo; Glickmann, Eric; Cooksey, Donald A.

    2001-01-01

    Pseudomonads from environmental sources vary widely in their sensitivity to cadmium, but the basis for this resistance is largely uncharactarized. A chromosomal fragment encoding cadmium resistance was cloned from Pseudomonas putida 06909, a rhizosphere bacterium, and sequence analysis revealed two divergently transcribed genes, cadA and cadR. CadA was similar to cadmium-transporting ATPases known mostly from gram-positive bacteria, and to ZntA, a lead-, zinc-, and cadmium-transporting ATPase...

  4. RIN4 functions with plasma membrane H+-ATPases to regulate stomatal apertures during pathogen attack

    DEFF Research Database (Denmark)

    Liu, Jun; Elmore, James M.; Fuglsang, Anja Thoe;

    2009-01-01

    Abstract Pathogen perception by the plant innate immune system is of central importance to plant survival and productivity. The Arabidopsis protein RIN4 is a negative regulator of plant immunity. In order to identify additional proteins involved in RIN4- mediated immune signal transduction, we pu...

  5. The Ubiquitin Regulatory X (UBX) Domain-containing Protein TUG Regulates the p97 ATPase and Resides at the Endoplasmic Reticulum-Golgi Intermediate Compartment*

    Science.gov (United States)

    Orme, Charisse M.; Bogan, Jonathan S.

    2012-01-01

    p97/VCP is a hexameric ATPase that is coupled to diverse cellular processes, such as membrane fusion and proteolysis. How p97 activity is regulated is not fully understood. Here we studied the potential role of TUG, a widely expressed protein containing a UBX domain, to control mammalian p97. In HEK293 cells, the vast majority of TUG was bound to p97. Surprisingly, the TUG UBX domain was neither necessary nor sufficient for this interaction. Rather, an extended sequence, comprising three regions of TUG, bound to the p97 N-terminal domain. The TUG C terminus resembled the Arabidopsis protein PUX1. Similar to the previously described action of PUX1 on AtCDC48, TUG caused the conversion of p97 hexamers into monomers. Hexamer disassembly was stoichiometric rather than catalytic and was not greatly affected by the p97 ATP-binding state or by TUG N-terminal regions in vitro. In HeLa cells, TUG localized to the endoplasmic reticulum-to-Golgi intermediate compartment and endoplasmic reticulum exit sites. Although siRNA-mediated TUG depletion had no marked effect on total ubiquitylated proteins or p97 localization, TUG overexpression caused an accumulation of ubiquitylated substrates and targeted both TUG and p97 to the nucleus. A physiologic role of TUG was revealed by siRNA-mediated depletion, which showed that TUG is required for efficient reassembly of the Golgi complex after brefeldin A removal. Together, these data support a model in which TUG controls p97 oligomeric status at a particular location in the early secretory pathway and in which this process regulates membrane trafficking in various cell types. PMID:22207755

  6. Regulation of Na(+)/K(+)-ATPase by neuron-specific transcription factor Sp4: implication in the tight coupling of energy production, neuronal activity and energy consumption in neurons.

    Science.gov (United States)

    Johar, Kaid; Priya, Anusha; Wong-Riley, Margaret T T

    2014-02-01

    A major source of energy demand in neurons is the Na(+)/K(+)-ATPase pump that restores the ionic gradient across the plasma membrane subsequent to depolarizing neuronal activity. The energy comes primarily from mitochondrial oxidative metabolism, of which cytochrome c oxidase (COX) is a key enzyme. Recently, we found that all 13 subunits of COX are regulated by specificity (Sp) factors, and that the neuron-specific Sp4, but not Sp1 or Sp3, regulates the expression of key glutamatergic receptor subunits as well. The present study sought to test our hypothesis that Sp4 also regulates Na(+)/K(+)-ATPase subunit genes in neurons. By means of multiple approaches, including in silico analysis, electrophoretic mobility shift and supershift assays, chromatin immunoprecipitation, promoter mutational analysis, over-expression, and RNA interference studies, we found that Sp4, with minor contributions from Sp1 and Sp3, functionally regulate the Atp1a1, Atp1a3, and Atp1b1 subunit genes of Na(+)/K(+)-ATPase in neurons. Transcripts of all three genes were up-regulated by depolarizing KCl stimulation and down-regulated by the impulse blocker tetrodotoxin (TTX), indicating that their expression was activity-dependent. Silencing of Sp4 blocked the up-regulation of these genes induced by KCl, whereas over-expression of Sp4 rescued them from TTX-induced suppression. The effect of silencing or over-expressing Sp4 on primary neurons was much greater than those of Sp1 or Sp3. The binding sites of Sp factors on these genes are conserved among mice, rats and humans. Thus, Sp4 plays an important role in the transcriptional coupling of energy generation and energy consumption in neurons.

  7. HRG-1 enhances cancer cell invasive potential and couples glucose metabolism to cytosolic/extracellular pH gradient regulation by the vacuolar-H(+) ATPase.

    Science.gov (United States)

    Fogarty, F M; O'Keeffe, J; Zhadanov, A; Papkovsky, D; Ayllon, V; O'Connor, R

    2014-09-18

    Haeme-responsive gene (HRG)-1 encodes a 16-kDa transmembrane protein that is induced by insulin-like growth factor-1 (IGF-1) and associates with the vacuolar-(H(+)) ATPase (V-ATPase). We previously reported that HRG-1 is essential for V-ATPase activity in endosomal acidification and receptor trafficking. Here, we show that in highly invasive and migratory cancer cell lines, HRG-1 and the V-ATPase are co-expressed at the plasma membrane, whereas in less invasive cell lines and non-transformed cells HRG-1 over-expression remains confined to intracellular compartments. Stable suppression of HRG-1 in invasive breast cancer MDA-MB-231 cells decreases extracellular pH, cell growth, migration and invasion. Ectopic expression of HRG-1 in non-invasive MCF-7 cells enhances V-ATPase activity, lowers the extracellular pH and increases the pH-dependent activity of MMP2 and MMP9 matrix metalloproteinases. HRG-1 enhances trafficking of the glucose transporter-1 (GLUT-1) with a concomitant increase in glucose uptake and lactate production. HRG-1 also promotes trafficking of the insulin-like growth factor I receptor (IGF-1R), β1-integrin and IGF-1 signalling. Taken together, our findings indicate that HRG-1 expression at the plasma membrane enhances V-ATPase activity, drives glycolytic flux and facilitates cancer cell growth, migration and invasion. Thus, HRG-1 may represent a novel target for selectively disrupting V-ATPase activity and the metastatic potential of cancer cells.

  8. Rotating with the brakes on and other unresolved features of the vacuolar ATPase

    Science.gov (United States)

    Rawson, Shaun; Harrison, Michael A.; Muench, Stephen P.

    2016-01-01

    The rotary ATPase family comprises the ATP synthase (F-ATPase), vacuolar ATPase (V-ATPase) and archaeal ATPase (A-ATPase). These either predominantly utilize a proton gradient for ATP synthesis or use ATP to produce a proton gradient, driving secondary transport and acidifying organelles. With advances in EM has come a significant increase in our understanding of the rotary ATPase family. Following the sub nm resolution reconstructions of both the F- and V-ATPases, the secondary structure organization of the elusive subunit a has now been resolved, revealing a novel helical arrangement. Despite these significant developments in our understanding of the rotary ATPases, there are still a number of unresolved questions about the mechanism, regulation and overall architecture, which this mini-review aims to highlight and discuss. PMID:27284051

  9. Hailey-Hailey disease and tight junctions: Claudins 1 and 4 are regulated by ATP2C1 gene encoding Ca2+/Mn2+ ATPase SPCA1 in cultured keratinocytes

    OpenAIRE

    Raiko, Laura; Siljamäki, Elina; Mahoney, Mỹ G.; Putaala, Heli; Suominen, Erkki; Peltonen, Juha; Peltonen, Sirkku

    2012-01-01

    Mutations in the ATP2C1 gene encoding Ca2+/Mn2+ ATPase SPCA1 cause Hailey-Hailey disease (HHD, OMIM 16960). HHD is characterized by epidermal acantholysis. We attempted to model HHD using normal keratinocytes in which the SPCA1 mRNA was down-regulated with the small inhibitory RNA (siRNA) method. SiRNA inhibition significantly down-regulated the SPCA1 mRNA, as demonstrated by qPCR, and decreased the SPCA1 protein beyond detectable level, as shown by western analysis. The expression of selecte...

  10. Genetic Disorders of Surfactant Dysfunction

    OpenAIRE

    Wert, Susan E.; Whitsett, Jeffrey A.; Nogee, Lawrence M.

    2009-01-01

    Mutations in the genes encoding the surfactant proteins B and C (SP-B and SP-C) and the phospholipid transporter, ABCA3, are associated with respiratory distress and interstitial lung disease in the pediatric population. Expression of these proteins is regulated developmentally, increasing with gestational age, and is critical for pulmonary surfactant function at birth. Pulmonary surfactant is a unique mixture of lipids and proteins that reduces surface tension at the air-liquid interface, pr...

  11. Surfactant phospholipid metabolism.

    Science.gov (United States)

    Agassandian, Marianna; Mallampalli, Rama K

    2013-03-01

    Pulmonary surfactant is essential for life and is composed of a complex lipoprotein-like mixture that lines the inner surface of the lung to prevent alveolar collapse at the end of expiration. The molecular composition of surfactant depends on highly integrated and regulated processes involving its biosynthesis, remodeling, degradation, and intracellular trafficking. Despite its multicomponent composition, the study of surfactant phospholipid metabolism has focused on two predominant components, disaturated phosphatidylcholine that confers surface-tension lowering activities, and phosphatidylglycerol, recently implicated in innate immune defense. Future studies providing a better understanding of the molecular control and physiological relevance of minor surfactant lipid components are needed. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism. PMID:23026158

  12. Oleic and linoleic acids are active principles in Nigella sativa and stabilize an E2P conformation of the Na,K-ATPase. Fatty acids differentially regulate cardiac glycoside interaction with the pump

    DEFF Research Database (Denmark)

    Mahmmoud, Yasser Ahmed; Christensen, Søren Brøgger

    2011-01-01

    Nigella sativa seed oil was found to contain a modulator of Na,K-ATPase. Separation analyses combined with (1)H NMR and GCMS identified the inhibitory fraction as a mixture of oleic and linoleic acids. These two fatty acids are specifically concentrated in several medicinal plant oils, and have...... particularly been implicated in decreasing high blood pressure. The ouabain binding site on Na,K-ATPase has also been implicated in blood pressure regulation. Thus, we aimed to determine how these two molecules modify pig kidney Na,K-ATPase. Oleic and linoleic acids did not modify reactions involving the E(1......) (Na(+)) conformations of the Na,K-ATPase. In contrast, K(+) dependent reactions were strongly modified after treatment. Oleic and linoleic acids were found to stabilize a pump conformation that binds ouabain with high affinity, i.e., an ion free E(2)P form. Time-resolved binding assays using...

  13. The plant plasma membrane H+-ATPase

    DEFF Research Database (Denmark)

    Ekberg, Kira

      The very high mobility of protons in aqueous solutions demands special features of membrane proton transporters to sustain efficient yet regulated proton transport across biological membranes. By the use of the chemical energy of ATP, plasma-membrane-embedded H+-ATPases extrude protons from cells...... of plants and fungi to generate electrochemical proton gradients. A recently published crystal structure of a plasma membrane H(+)-ATPase contributes to our knowledge about the mechanism of these essential enzymes. Together with biochemical and structural data presented in this thesis we are now able...... to describe the basic molecular components that allow the plasma membrane proton H+-ATPase to carry out proton transport against large membrane potentials. Moreover, a completely new paradigm for post-translational activation of these proteins is presented. The talk will focus on the following themes...

  14. Photosynthetic control of the plasma membrane H+-ATPase in Vallisneria leaves. I. Regulation of activity during light-induced membrane hyperpolarization.

    Science.gov (United States)

    Harada, Akiko; Okazaki, Yoshiji; Takagi, Shingo

    2002-04-01

    In mesophyll cells of the aquatic angiosperm Vallisneria gigantea Graebner, red, blue, or blue plus far-red light induced a typical membrane hyperpolarization, whereas far-red light alone had little effect. Both N,N'-dicyclohexylcarbodiimide, a potent inhibitor of H+-ATPase, and carbonylcyanide m-chlorophenylhydrazone, an uncoupler, produced a considerable membrane depolarization in the dark-adapted cells and a complete suppression of the light-induced hyperpolarization. Although 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU), an inhibitor of photosynthetic electron transport, did not affect the membrane potential in darkness, it completely inhibited the light-induced membrane hyperpolarization. In vivo illumination of the leaves with red light caused a substantial decrease in the Km for ATP, not only of the vanadate-sensitive ATP-hydrolyzing activity in leaf homogenate, but also of the ATP-dependent H+-transporting activity in plasma membrane (PM) vesicles isolated from the leaves by aqueous polymer two-phase partitioning methods. The effects of red light were negated by the presence of DCMU during illumination. In vivo illumination with far-red light had no effect on the Km for ATP of H+-transporting activity. These results strongly suggest that an electrogenic component in the membrane potential of the mesophyll cell is generated by the PM H+-ATPase, and that photosynthesis-dependent modulation of the enzymatic activity of the PM H+-ATPase is involved in the light-induced membrane hyperpolarization. PMID:11941462

  15. Phosphorylation of the Na+,K+-ATPase and the H+,K+-ATPase

    DEFF Research Database (Denmark)

    Poulsen, Hanne; Morth, Jens Preben; Jensen, Jan Egebjerg;

    2010-01-01

    Phosphorylation is a widely used, reversible means of regulating enzymatic activity. Among the important phosphorylation targets are the Na(+),K(+)- and H(+),K(+)-ATPases that pump ions against their chemical gradients to uphold ionic concentration differences over the plasma membrane. The two...... pumps are very homologous, and at least one of the phosphorylation sites is conserved, namely a cAMP activated protein kinase (PKA) site, which is important for regulating pumping activity, either by changing the cellular distribution of the ATPases or by directly altering the kinetic properties...... as supported by electrophysiological results presented here. We further review the other proposed pump phosphorylations....

  16. Expression of ABCA3, a causative gene for fatal surfactant deficiency, is up-regulated by glucocorticoids in lung alveolar type II cells

    International Nuclear Information System (INIS)

    We have shown previously that the ATP-binding cassette transporter ABCA3 is expressed predominantly at the limiting membrane of the lamellar bodies in lung alveolar type II cells. Very recently, an ABCA3 gene mutation was reported in human newborns with fatal surfactant deficiency. In the present study, we have shown in rat lung that expression of the ABCA3 protein is dramatically increased after embryonic day (E) 20.5 just before birth. Expression was also markedly induced even at E18.5 when dexamethasone (Dex), which is known to accelerate surfactant formation, was administered to pregnant female rats for 3 days from E15.5. Since Dex increased the ABCA3 mRNA expression level in human alveolar type II cell line A549 cells 4-fold, we cloned and characterized the promoter region of the human ABCA3 gene. Promoter activity of the 5'-flanking region of the ABCA3 gene, which contains a potential glucocorticoid-responsive element (GRE), was up-regulated about 2-fold. Up-regulation by Dex was not observed when the GRE-containing region was deleted or when a point mutation was introduced into the GRE, and electrophoretic mobility shift assay using Dex-treated A549 nuclear extracts demonstrated specific binding of the glucocorticoid receptor to the GRE. These findings demonstrate that glucocorticoid-induced up-regulation of ABCA3 expression in vivo is mediated by transcriptional activation through the GRE in the promoter, and suggest that ABCA3 plays an important role in the formation of pulmonary surfactant, probably by transporting lipids such as cholesterol

  17. Phosphorylation and Interaction with the 14-3-3 Protein of the Plasma Membrane H+-ATPase are Involved in the Regulation of Magnesium-Mediated Increases in Aluminum-Induced Citrate Exudation in Broad Bean (Vicia faba. L).

    Science.gov (United States)

    Chen, Qi; Kan, Qi; Wang, Ping; Yu, Wenqian; Yu, Yuzhen; Zhao, Yan; Yu, Yongxiong; Li, Kunzhi; Chen, Limei

    2015-06-01

    Several studies have shown that external application of micromolar magnesium (Mg) can increase the resistance of legumes to aluminum (Al) stress by enhancing Al-induced citrate exudation. However, the exact mechanism underlying this regulation remains unknown. In this study, the physiological and molecular mechanisms by which Mg enhances Al-induced citrate exudation to alleviate Al toxicity were investigated in broad bean. Micromolar concentrations of Mg that alleviated Al toxicity paralleled the stimulation of Al-induced citrate exudation and increased the activity of the plasma membrane (PM) H(+)-ATPase. Northern blot analysis shows that a putative MATE-like gene (multidrug and toxic compound extrusion) was induced after treatment with Al for 4, 8 and 12 h, whereas the mRNA abundance of the MATE-like gene showed no significant difference between Al plus Mg and Al-only treatments during the entire treatment period. Real-time reverse transcription-PCR (RT-PCR) and Western blot analyses suggest that the transcription and translation of the PM H(+)-ATPase were induced by Al but not by Mg. In contrast, immunoprecipitation suggests that Mg enhanced the phosphorylation levels of VHA2 and its interaction with the vf14-3-3b protein under Al stress. Taken together, our results suggest that micromolar concentrations of Mg can alleviate the Al rhizotoxicity by increasing PM H(+)-ATPase activity and Al-induced citrate exudation in YD roots. This enhancement is likely to be attributable to Al-induced increases in the expression of the MATE-like gene and vha2 and Mg-induced changes in the phosphorylation levels of VHA2, thus changing its interaction with the vf14-3-3b protein.

  18. Genetic disorders of surfactant homeostasis.

    Science.gov (United States)

    Whitsett, Jeffrey A; Wert, Susan E; Xu, Yan

    2005-01-01

    Adaptation to air breathing at birth requires the precise orchestration of cellular processes to initiate fluid clearance, enhance pulmonary blood flow, and to synthesize and secrete pulmonary surfactant needed to reduce surface tension at the air-liquid interface in the alveoli. Genetic programs regulating the synthesis of the surfactant proteins and lipids required for the production and function of pulmonary surfactant are highly conserved across vertebrates, and include proteins that regulate the synthesis and packaging of pulmonary surfactant proteins and lipids. Surfactant proteins B and C (SP-B and -C) are small, uniquely hydrophobic proteins that play important roles in the stability and spreading of surfactant lipids in the alveolus. Deletion or mutations in SP-B and -C cause acute and chronic lung disease in neonates and infants. SP-B and -C are synthesized and packaged with surfactant phospholipids in lamellar bodies. Normal lamellar body formation requires SP-B and a member of the ATP-binding cassette (ABC) family of ATP-dependent membrane-associated transport proteins, ABCA3. Mutations in ABCA3 cause fatal respiratory disease in newborns and severe chronic lung disease in infancy. Expression of SP-B, -C, and ABCA3 are coregulated during late gestation by transcriptional programs influenced by thyroid transcription factor-1 and forkhead box a2, transcription factors that regulate both differentiation of the respiratory epithelium and transcription of genes required for perinatal adaptation to air breathing. PMID:15985750

  19. Surfactant adsorption and aggregate structure of silica nanoparticles: a versatile stratagem for the regulation of particle size and surface modification

    Science.gov (United States)

    Chaudhary, Savita; Rohilla, Deepak; Mehta, S. K.

    2014-03-01

    The area of silica nanoparticles is incredibly polygonal. Silica particles have aroused exceptional deliberation in bio-analysis due to great progress in particular arenas, for instance, biocompatibility, unique properties of modifiable pore size and organization, huge facade areas and pore volumes, manageable morphology and amendable surfaces, elevated chemical and thermal stability. Currently, silica nanoparticles participate in crucial utilities in daily trade rationales such as power storage, chemical and genetic sensors, groceries dispensation and catalysis. Herein, the size-dependent interfacial relation of anionic silica nanoparticles with twelve altered categories of cationic surfactants has been carried out in terms of the physical chemical facets of colloid and interface science. The current analysis endeavours to investigate the virtual consequences of different surfactants through the development of the objective composite materials. The nanoparticle size controls, the surface-to-volume ratio and surface bend relating to its interaction with surfactant will also be addressed in this work. More importantly, the simulated stratagem developed in this work can be lengthened to formulate core-shell nanostructures with functional nanoparticles encapsulated in silica particles, making this approach valuable and extensively pertinent for employing sophisticated materials for catalysis and drug delivery.

  20. Pulmonary Surfactant Surface Tension Influences Alveolar Capillary Shape and Oxygenation

    OpenAIRE

    Ikegami, Machiko; Weaver, Timothy E.; Grant, Shawn N.; Whitsett, Jeffrey A.

    2009-01-01

    Alveolar capillaries are located in close proximity to the alveolar epithelium and beneath the surfactant film. We hypothesized that the shape of alveolar capillaries and accompanying oxygenation are influenced by surfactant surface tension in the alveolus. To prove our hypothesis, surfactant surface tension was regulated by conditional expression of surfactant protein (SP)-B in Sftpb−/− mice, thereby inhibiting surface tension–lowering properties of surfactant in vivo within 24 hours after d...

  1. Photosynthesis Activates Plasma Membrane H+-ATPase via Sugar Accumulation.

    Science.gov (United States)

    Okumura, Masaki; Inoue, Shin-Ichiro; Kuwata, Keiko; Kinoshita, Toshinori

    2016-05-01

    Plant plasma membrane H(+)-ATPase acts as a primary transporter via proton pumping and regulates diverse physiological responses by controlling secondary solute transport, pH homeostasis, and membrane potential. Phosphorylation of the penultimate threonine and the subsequent binding of 14-3-3 proteins in the carboxyl terminus of the enzyme are required for H(+)-ATPase activation. We showed previously that photosynthesis induces phosphorylation of the penultimate threonine in the nonvascular bryophyte Marchantia polymorpha However, (1) whether this response is conserved in vascular plants and (2) the process by which photosynthesis regulates H(+)-ATPase phosphorylation at the plasma membrane remain unresolved issues. Here, we report that photosynthesis induced the phosphorylation and activation of H(+)-ATPase in Arabidopsis (Arabidopsis thaliana) leaves via sugar accumulation. Light reversibly phosphorylated leaf H(+)-ATPase, and this process was inhibited by pharmacological and genetic suppression of photosynthesis. Immunohistochemical and biochemical analyses indicated that light-induced phosphorylation of H(+)-ATPase occurred autonomously in mesophyll cells. We also show that the phosphorylation status of H(+)-ATPase and photosynthetic sugar accumulation in leaves were positively correlated and that sugar treatment promoted phosphorylation. Furthermore, light-induced phosphorylation of H(+)-ATPase was strongly suppressed in a double mutant defective in ADP-glucose pyrophosphorylase and triose phosphate/phosphate translocator (adg1-1 tpt-2); these mutations strongly inhibited endogenous sugar accumulation. Overall, we show that photosynthesis activated H(+)-ATPase via sugar production in the mesophyll cells of vascular plants. Our work provides new insight into signaling from chloroplasts to the plasma membrane ion transport mechanism. PMID:27016447

  2. The Role of the Plasma Membrane H+-ATPase in Plant-Microbe Interactions

    Institute of Scientific and Technical Information of China (English)

    James Mitch Elmore; Gitta Coaker

    2011-01-01

    T Plasma membrane (PM) H+-ATPases are the primary pumps responsible for the establishment of cellular membrane potential in plants. In addition to regulating basic aspects of plant cell function, these enzymes contribute to signaling events in response to diverse environmental stimuli. Here, we focus on the roles of the PM H+-ATPase during plantpathogen interactions. PM H+-ATPases are dynamically regulated during plant immune responses and recent quantitative proteomics studies suggest complex spatial and temporal modulation of PM H+-ATPase activity during early pathogen recognition events. Additional data indicate that PM H+-ATPases cooperate with the plant immune signaling protein RIN4 to regulate stomatal apertures during bacterial invasion of leaf tissue. Furthermore, pathogens have evolved mechanisms to manipulate PM H+-ATPase activity during infection. Thus, these ubiquitous plant enzymes contribute to plant immune responses and are targeted by pathogens to increase plant susceptibility.

  3. The detection of surfactant proteins A, B, C and D in the human brain and their regulation in cerebral infarction, autoimmune conditions and infections of the CNS.

    Directory of Open Access Journals (Sweden)

    Stefan Schob

    Full Text Available Surfactant proteins (SP have been studied intensively in the respiratory system. Surfactant protein A and surfactant protein D are proteins belonging to the family of collectins each playing a major role in the innate immune system. The ability of surfactant protein A and surfactant protein D to bind various pathogens and facilitate their elimination has been described in a vast number of studies. Surfactant proteins are very important in modulating the host's inflammatory response and participate in the clearance of apoptotic cells. Surfactant protein B and surfactant protein C are proteins responsible for lowering the surface tension in the lungs. The aim of this study was an investigation of expression of surfactant proteins in the central nervous system to assess their specific distribution patterns. The second aim was to quantify surfactant proteins in cerebrospinal fluid of healthy subjects compared to patients suffering from different neuropathologies. The expression of mRNA for the surfactant proteins was analyzed with RT-PCR done with samples from different parts of the human brain. The production of the surfactant proteins in the brain was verified using immunohistochemistry and Western blot. The concentrations of the surfactant proteins in cerebrospinal fluid from healthy subjects and patients suffering from neuropathologic conditions were quantified using ELISA. Our results revealed that surfactant proteins are present in the central nervous system and that the concentrations of one or more surfactant proteins in healthy subjects differed significantly from those of patients affected by central autoimmune processes, CNS infections or cerebral infarction. Based on the localization of the surfactant proteins in the brain, their different levels in normal versus pathologic samples of cerebrospinal fluid and their well-known functions in the lungs, it appears that the surfactant proteins may play roles in host defense of the brain

  4. Advances in targeting the vacuolar proton-translocating ATPase (V-ATPase for anti-fungal therapy

    Directory of Open Access Journals (Sweden)

    Summer R. Hayek

    2014-01-01

    Full Text Available Vacuolar proton-translocating ATPase (V-ATPase is a membrane-bound, multi-subunit enzyme that uses the energy of ATP hydrolysis to pump protons across membranes. V-ATPase activity is critical for pH homeostasis and organelle acidification as well as for generation of the membrane potential that drives secondary transporters and cellular metabolism. V-ATPase is highly conserved across species and is best characterized in the model fungus Saccharomyces cerevisiae (S. cerevisiae. However, recent studies in mammals have identified significant alterations from fungi, particularly in the isoform composition of the 14 subunits and in the regulation of complex disassembly. These differences could be exploited for selectivity between fungi and humans and highlight the potential for V-ATPase as an anti-fungal drug target. Candida albicans (C. albicans is a major human fungal pathogen and causes fatality in 35% of systemic infections, even with anti-fungal treatment. The pathogenicity of C. albicans correlates with environmental, vacuolar, and cytoplasmic pH regulation, and V-ATPase appears to play a fundamental role in each of these processes. Genetic loss of V-ATPase in pathogenic fungi leads to defective virulence, and a comprehensive picture of the mechanisms involved is emerging. Recent studies have explored the practical utility of V-ATPase as an anti-fungal drug target in C. albicans, including pharmacological inhibition, azole therapy, and targeting of downstream pathways. This overview will discuss these studies as well as hypothetical ways to target V-ATPase and novel high-throughput methods for use in future drug discovery screens.

  5. A structural overview of the plasma membrane Na+,K+-ATPase and H+-ATPase ion pumps

    DEFF Research Database (Denmark)

    Morth, Jens Preben; Pedersen, Bjørn Panella; Buch-Pedersen, Morten Jeppe;

    2011-01-01

    transport systems that are responsible for uptake and extrusion of metabolites and other ions. The ion gradients are also both directly and indirectly used to control pH homeostasis and to regulate cell volume. The plasma membrane H(+)-ATPase maintains a proton gradient in plants and fungi and the Na......(+),K(+)-ATPase maintains a Na(+) and K(+) gradient in animal cells. Structural information provides insight into the function of these two distinct but related P-type pumps....

  6. An H+ P-ATPase on the tonoplast determines vacuolar pH and flower colour

    NARCIS (Netherlands)

    W. Verweij; C. Spelt; G.-P. di Sansebastiano; J. Vermeer; L. Reale; F. Ferranti; R. Koes; F. Quattrocchio

    2008-01-01

    The regulation of pH in cellular compartments is crucial for intracellular trafficking of vesicles and proteins and the transport of small molecules, including hormones. In endomembrane compartments, pH is regulated by vacuolar H+-ATPase1 (V-ATPase), which, in plants, act together with H+-pyrophosph

  7. Sequences of a hairpin structure in the 3'-untranslated region mediate regulation of human pulmonary surfactant protein B mRNA stability.

    Science.gov (United States)

    Huang, Helen W; Payne, David E; Bi, Weizhen; Pan, Su; Bruce, Shirley R; Alcorn, Joseph L

    2012-05-15

    The ability of pulmonary surfactant to reduce alveolar surface tension requires adequate expression of surfactant protein B (SP-B). Dexamethasone (DEX, 10(-7) M) increases human SP-B mRNA stability by a mechanism that requires a 126-nt-long segment (the 7.6S region) of the 3'-untranslated region (3'-UTR). The objective of this study was to identify sequences in the 7.6S region that mediate regulation of SP-B mRNA stability. The 7.6S region was found to be sufficient for DEX-mediated stabilization of mRNA. Sequential substitution mutagenesis of the 7.6S region indicates that a 90-nt region is required for DEX-mediated stabilization and maintenance of intrinsic stability. In this region, one 30-nt-long element (002), predicted to form a stem-loop structure, is sufficient for DEX-mediated stabilization of mRNA and intrinsic mRNA stability. Cytosolic proteins specifically bind element 002, and binding activity is unaffected whether proteins are isolated from cells incubated in the absence or presence of DEX. While loop sequences of element 002 have no role in regulation of SP-B mRNA stability, the proximal stem sequences are required for DEX-mediated stabilization and specific binding of proteins. Mutation of the sequences that comprise the proximal or distal arm of the stem negates the destabilizing activity of element 002 on intrinsic SP-B mRNA stability. These results indicate that cytosolic proteins bind a single hairpin structure that mediates intrinsic and hormonal regulation of SP-B mRNA stability via mechanisms that involve sequences of the stems of the hairpin structure. PMID:22367784

  8. Conserved V-ATPase c subunit plays a role in plant growth by influencing V-ATPase-dependent endosomal trafficking.

    Science.gov (United States)

    Zhou, Aimin; Bu, Yuanyuan; Takano, Tetsuo; Zhang, Xinxin; Liu, Shenkui

    2016-01-01

    In plant cells, the vacuolar-type H(+)-ATPases (V-ATPase) are localized in the tonoplast, Golgi, trans-Golgi network and endosome. However, little is known about how V-ATPase influences plant growth, particularly with regard to the V-ATPase c subunit (VHA-c). Here, we characterized the function of a VHA-c gene from Puccinellia tenuiflora (PutVHA-c) in plant growth. Compared to the wild-type, transgenic plants overexpressing PutVHA-c in Arabidopsis thaliana exhibit better growth phenotypes in root length, fresh weight, plant height and silique number under the normal and salt stress conditions due to noticeably higher V-ATPase activity. Consistently, the Arabidopsis atvha-c5 mutant shows reduced V-ATPase activity and retarded plant growth. Furthermore, confocal and immunogold electron microscopy assays demonstrate that PutVHA-c is mainly localized to endosomal compartments. The treatment of concanamycin A (ConcA), a specific inhibitor of V-ATPases, leads to obvious aggregation of the endosomal compartments labelled with PutVHA-c-GFP. Moreover, ConcA treatment results in the abnormal localization of two plasma membrane (PM) marker proteins Pinformed 1 (AtPIN1) and regulator of G protein signalling-1 (AtRGS1). These findings suggest that the decrease in V-ATPase activity blocks endosomal trafficking. Taken together, our results strongly suggest that the PutVHA-c plays an important role in plant growth by influencing V-ATPase-dependent endosomal trafficking.

  9. HNF-1B specifically regulates the transcription of the {gamma}a-subunit of the Na{sup +}/K{sup +}-ATPase

    Energy Technology Data Exchange (ETDEWEB)

    Ferre, Silvia [Department of Physiology, Radboud University Nijmegen Medical Centre (Netherlands); Veenstra, Gert Jan C. [Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen (Netherlands); Bouwmeester, Rianne; Hoenderop, Joost G.J. [Department of Physiology, Radboud University Nijmegen Medical Centre (Netherlands); Bindels, Rene J.M., E-mail: r.bindels@fysiol.umcn.nl [Department of Physiology, Radboud University Nijmegen Medical Centre (Netherlands)

    2011-01-07

    Research highlights: {yields} Defects in HNF-1B transcription factor affect Mg{sup 2+} handling in the distal kidney. {yields} {gamma}a- and {gamma}b- subunits of the Na{sup +}/K{sup +}-ATPase colocalize in the distal convoluted tubule of the nephron. {yields} HNF-1B specifically activates {gamma}a expression. {yields} HNF-1B mutants have a dominant negative effect on wild type HNF-1B activity. {yields} Defective transcription of {gamma}a may promote renal Mg{sup 2+} wasting. -- Abstract: Hepatocyte nuclear factor-1B (HNF-1B) is a transcription factor involved in embryonic development and tissue-specific gene expression in several organs, including the kidney. Recently heterozygous mutations in the HNF1B gene have been identified in patients with hypomagnesemia due to renal Mg{sup 2+} wasting. Interestingly, ChIP-chip data revealed HNF-1B binding sites in the FXYD2 gene, encoding the {gamma}-subunit of the Na{sup +}/K{sup +}-ATPase. The {gamma}-subunit has been described as one of the molecular players in the renal Mg{sup 2+} reabsorption in the distal convoluted tubule (DCT). Of note, the FXYD2 gene can be alternatively transcribed into two main variants, namely {gamma}a and {gamma}b. In the present study, we demonstrated via two different reporter gene assays that HNF-1B specifically acts as an activator of the {gamma}a-subunit, whereas the {gamma}b-subunit expression was not affected. Moreover, the HNF-1B mutations H69fsdelAC, H324S325fsdelCA, Y352finsA and K156E, previously identified in patients with hypomagnesemia, prevented transcription activation of {gamma}a-subunit via a dominant negative effect on wild type HNF1-B. By immunohistochemistry, it was shown that the {gamma}a- and {gamma}b-subunits colocalize at the basolateral membrane of the DCT segment of mouse kidney. On the basis of these data, we suggest that abnormalities involving the HNF-1B gene may impair the relative abundance of {gamma}a and {gamma}b, thus affecting the transcellular Mg{sup 2

  10. Role of protein kinase C in phospholemman mediated regulation of α₂β₁ isozyme of Na⁺/K⁺-ATPase in caveolae of pulmonary artery smooth muscle cells.

    Science.gov (United States)

    Dey, Kuntal; Roy, Soumitra; Ghosh, Biswarup; Chakraborti, Sajal

    2012-04-01

    We have recently reported that α(2)β(1) and α(1)β(1) isozymes of Na(+)/K(+)-ATPase (NKA) are localized in the caveolae whereas only the α(1)β(1) isozyme of NKA is localized in the non-caveolae fraction of pulmonary artery smooth muscle cell membrane. It is well known that different isoforms of NKA are regulated differentially by PKA and PKC, but the mechanism is not known in the caveolae of pulmonary artery smooth muscle cells. Herein, we examined whether this regulation occurs through phospholemman (PLM) in the caveolae. Our results suggest that PKC mediated phosphorylation of PLM occurs only when it is associated with the α(2) isoform of NKA, whereas phosphorylation of PLM by PKA occurs when it is associated with the α(1) isoform of NKA. To investigate the mechanism of regulation of α(2) isoform of NKA by PKC-mediated phosphorylation of PLM, we have purified PLM from the caveolae and reconstituted into the liposomes. Our result revealed that (i) in the reconstituted liposomes phosphorylated PLM (PKC mediated) stimulate NKA activity, which appears to be due to an increase in the turnover number of the enzyme; (ii) phosphorylated PLM did not change the affinity of the pump for Na(+); and (iii) even after phosphorylation by PKC, PLM still remains associated with the α(2) isoform of NKA.

  11. Probing subunit-subunit interactions in the yeast vacuolar ATPase by peptide arrays.

    Directory of Open Access Journals (Sweden)

    Lee S Parsons

    Full Text Available BACKGROUND: Vacuolar (H(+-ATPase (V-ATPase; V(1V(o-ATPase is a large multisubunit enzyme complex found in the endomembrane system of all eukaryotic cells where its proton pumping action serves to acidify subcellular organelles. In the plasma membrane of certain specialized tissues, V-ATPase functions to pump protons from the cytoplasm into the extracellular space. The activity of the V-ATPase is regulated by a reversible dissociation mechanism that involves breaking and re-forming of protein-protein interactions in the V(1-ATPase - V(o-proton channel interface. The mechanism responsible for regulated V-ATPase dissociation is poorly understood, largely due to a lack of detailed knowledge of the molecular interactions that are responsible for the structural and functional link between the soluble ATPase and membrane bound proton channel domains. METHODOLOGY/PRINCIPAL FINDINGS: To gain insight into where some of the stator subunits of the V-ATPase associate with each other, we have developed peptide arrays from the primary sequences of V-ATPase subunits. By probing the peptide arrays with individually expressed V-ATPase subunits, we have identified several key interactions involving stator subunits E, G, C, H and the N-terminal domain of the membrane bound a subunit. CONCLUSIONS: The subunit-peptide interactions identified from the peptide arrays complement low resolution structural models of the eukaryotic vacuolar ATPase obtained from transmission electron microscopy. The subunit-subunit interaction data are discussed in context of our current model of reversible enzyme dissociation.

  12. Identification of a cell membrane protein that binds alveolar surfactant.

    OpenAIRE

    Strayer, D. S.

    1991-01-01

    Alveolar surfactants are complex mixtures of proteins and phospholipids produced by type II alveolar cells and responsible for lowering pulmonary surface tension. The process by which surfactant is produced and exported and by which its production by pulmonary cells is regulated are not well understood. This study was designed to identify a cellular receptor for surfactant constituents. To do so, monoclonal anti-idiotypic antibodies directed against antibodies to porcine and rabbit surfactant...

  13. The α2Na+/K+-ATPase is critical for skeletal and heart muscle function in zebrafish

    DEFF Research Database (Denmark)

    Doganli, Canan; Kjaer-Sørensen, Kasper; Knoeckel, Christopher;

    2012-01-01

    The Na+/K+-ATPase generates ion gradients across the plasma membrane, essential for multiple cellular functions. In mammals, four different Na+/K+-ATPase α-subunit isoforms are associated with characteristic cell-type expression profiles and kinetics. We found the zebrafish α2Na+/K+-ATPase associ......The Na+/K+-ATPase generates ion gradients across the plasma membrane, essential for multiple cellular functions. In mammals, four different Na+/K+-ATPase α-subunit isoforms are associated with characteristic cell-type expression profiles and kinetics. We found the zebrafish α2Na...... identified up- and down-regulation of specific phenotype-related proteins, such as parvalbumin, CaM, GFAP and multiple kinases, thus highlighting a potential proteome change associated with the dynamics of α2Na+/K+-ATPase. Taken together, our findings display that zebrafish α2Na+/K+-ATPase is important...

  14. pH-Regulated surface property and pH-reversible micelle transition of a tertiary amine-based gemini surfactant in aqueous solution.

    Science.gov (United States)

    Lu, Hongsheng; Xue, Miao; Wang, Baogang; Huang, Zhiyu

    2015-12-21

    A series of tertiary amide-based gemini surfactants, 2,2'-(1,4-phenylenebis(oxy))bis(N-(3-(dimethylamino)propyl)alkylamide), abbreviated as Cm-A-Cm (m = 8; 10; 12; 14), were synthesized. The surface property and aggregation behaviors of the Cm-A-Cm aqueous solutions were studied in detail. The Cm-A-Cm exhibited high and pH-regulated surface activity at the air/water interface; i.e., the critical micelle concentration was 5.6 × 10(-6) mol L(-1) at pH = 2.50 when m = 14 and was further regulated to 1.8 × 10(-6) mol L(-1) by altering the pH to 6.50. When the pH was tuned from 2.0 to 12.0, the appearance of the C12-A-C12 aqueous solution (35 mM) underwent 5 states: transparent water-like solution, viscous fluid, gel-like fluid, turbid liquid and dispersion system with white precipitate. The results of rheology, cryogenic transmission electron microscopy, and dynamic light scattering characterization revealed that the transition from water-like to viscous or gel-like liquid was actually due to aggregate microstructure transition from spherical to worm-like micelles. This transition was completely reversible between pH = 2.50 and 6.81, tuned by adding HCl and NaOH solutions for at least 4 cycles. Similar micellar transitions regulated by pH were also found for m = 8 and 10, whereas only worm-like micelles were formed for m = 14 at both acidic and nearly neutral conditions. Finally, a reasonable mechanism of aggregate behavior transition was proposed from the viewpoint of the molecular states, molecular structures, and the intra- and inter-molecular interactions. PMID:26411356

  15. The 14-3-3 protein interacts directly with the C-terminal region of the plant plasma membrane H(+)-ATPase

    DEFF Research Database (Denmark)

    Jahn, T.; Fuglsang, A.T.; Olsson, A.;

    1997-01-01

    Accumulating evidence suggests that 14-3-3 proteins are involved in the regulation of plant plasma membrane H(+)-ATPase activity. However, it is not known whether the 14-3-3 protein interacts directly or indirectly with the H(+)-ATPase. In this study, detergent-solubilized plasma membrane H(+)-AT...... plasma membrane H(+)-ATPase. We propose that the 14-3-3 protein is a natural ligand of the plasma membrane H(+)-ATPase, regulating proton pumping by displacing the C-terminal autoinhibitory domain of the H(+)-ATPase....

  16. Leptin and the Regulation of Renal Sodium Handling and Renal Na+-Transporting ATPases: Role in the Pathogenesis of Arterial Hypertension

    OpenAIRE

    Bełtowski, Jerzy

    2010-01-01

    Leptin, an adipose tissue hormone which regulates food intake, is also involved in the pathogenesis of arterial hypertension. Plasma leptin concentration is increased in obese individuals. Chronic leptin administration or transgenic overexpression increases blood pressure in experimental animals, and some studies indicate that plasma leptin is elevated in hypertensive subjects independently of body weight. Leptin has a dose- and time-dependent effect on urinary sodium excretion. High doses of...

  17. Thermally cleavable surfactants

    Science.gov (United States)

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2006-04-04

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments and the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  18. A structural overview of the plasma membrane Na+,K+-ATPase and H+-ATPase ion pumps

    DEFF Research Database (Denmark)

    Morth, Jens Preben; Pedersen, Bjørn Panella; Buch-Pedersen, Morten Jeppe;

    2011-01-01

    transport systems that are responsible for uptake and extrusion of metabolites and other ions. The ion gradients are also both directly and indirectly used to control pH homeostasis and to regulate cell volume. The plasma membrane H(+)-ATPase maintains a proton gradient in plants and fungi and the Na......(+),K(+)-ATPase maintains a Na(+) and K(+) gradient in animal cells. Structural information provides insight into the function of these two distinct but related P-type pumps....

  19. Regulation of Na+/K+-ATPase activity by nitric oxide in the kidney and gill of the brown trout (Salmo trutta)

    DEFF Research Database (Denmark)

    Tipsmark, Christian K; Madsen, Steffen S

    2003-01-01

    . These observations indicate that the effect on Na(+)/K(+)-ATPase is direct rather than due to a decrease in intracellular Na(+), its rate-limiting substrate. SNP elevated the level of cyclic GMP (cGMP) in both kidney and gill tissue. Dibutyryl cyclic GMP (db-cGMP; 1 mmol l(-1)) also inhibited Na......(+)/K(+)-ATPase activity in both tissues. Hence, a possible mechanism may involve the cGMP-activated kinase, even though other mechanisms cannot be excluded. Udgivelsesdato: 2003-May...

  20. V-ATPase, ScNhxlp and Yeast Vacuole Fusion

    Institute of Scientific and Technical Information of China (English)

    Quan-Sheng Qiu

    2012-01-01

    Membrane fusion is the last step in trafficking pathways during which membrane vesicles fuse with target organelles to deliver cargos.It is a central cellular reaction that plays important roles in signal transduction,protein sorting and subcellular compartmentation.Recent progress in understanding the roles of ion transporters in vacuole fusion in yeast is summanzed in this article.It is becoming increasingly evident that the vacuolar proton pump V-ATPase and vacuolar Na+/H+ antiporter ScNhxlp are key components of the vacuole fusion machinery in yeast.Yeast ScNhxlp regulates vacuole fusion by controlling the luminal pH.V-ATPases serve a dual role in vacuolar integrity in which they regulate both vacuole fusion and fission reactions in yeast.Fission defects are epistatic to fusion defects.Vacuole fission depends on the proton translocation activity of the V-ATPase; by contrast,the fusion reaction does not need the transport activity but requires the physical presence of the proton pump.Vo,the membrane-integral sector of the V-ATPase,forms trans-complexes between the opposing vacuoles in the terminal phase of vacuole fusion where the Vo trans-complexes build a continuous proteolipid channel at the fusion site to mediate the bilayer fusion.

  1. Glucocorticoid regulation of human pulmonary surfactant protein-B (SP-B) mRNA stability is independent of activated glucocorticoid receptor

    OpenAIRE

    Tillis, Ceá C.; Huang, Helen W.; Bi, Weizhen; Pan, Su; Bruce, Shirley R.; Alcorn, Joseph L.

    2011-01-01

    Adequate expression of surfactant protein-B (SP-B) is critical in the function of pulmonary surfactant to reduce alveolar surface tension. Expression of SP-B mRNA is restricted to specific lung-airway epithelial cells, and human SP-B mRNA stability is increased in the presence of the synthetic glucocorticoid dexamethasone (DEX). Although the mechanism of SP-B mRNA stabilization by DEX is unknown, studies suggest involvement of the glucocorticoid receptor (GR). We developed a dual-cistronic pl...

  2. Antioxidation and ATPase activity in the gill of mud crab Scylla serrata under cold stress

    Institute of Scientific and Technical Information of China (English)

    KONG Xianghui; WANG Guizhong; LI Shaojing

    2007-01-01

    Mud crab (Scylla serrata) is an important commercial crustacean in China. An experiment was designed to study the effect of cold stress on S. serrata. After a one-week adaptation at 28 ℃, the temperature is suddenly reduced to 4 ℃. The crabs were sampled every 2 h for 10 h and dissected immediately to measure the enzyme activity. The crabs at room temperature (28 ℃) were used as the control group. The activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX), the content of malondialdehyde (MDA) and the activity of 4 ATPases (Na+, K+-ATPase;Mg2+-ATPase; Ca2+-ATPase; Ca2+, Mg2+-ATPase) were measured biochemically. In contrast to the control group, the SOD activity increased significantly from 2 to 6 h after the cold stress, and then decreased. The CAT and GPX activities increased in 2 h, and then decreased gradually. The content of MDA increased gradually in 4 h. The activity ofNa+, K+-ATPase decreased in 2 h, increased up to the top value at Hour 6,then decreased again. The activities of Mg2+-ATPase, Ca2+-ATPase and Ca2+, Mg2+-ATPase increased significantly in 6 h, insignificantly in any other hours. Under cold stress, the activity of antioxidative enzymes in S. serrata was reduced at first then stabilized, ROS-scavenging weakened, and MDA accumulated gradually in the gill after 6 h. The activity of the 4 ATPases in the crab decreased after 6 h,suggesting that the ability to regulate ion concentration has been paralyzed. Therefore, the maximum period to sustain healthy meat in the crab under cold stress is 6 hours.

  3. Combined effects of EGFR tyrosine kinase inhibitors and vATPase inhibitors in NSCLC cells

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyeon-Ok [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Hong, Sung-Eun [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Kim, Chang Soon [Department of Microbiological Engineering, Kon-Kuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143–701 (Korea, Republic of); Park, Jin-Ah; Kim, Jin-Hee; Kim, Ji-Young; Kim, Bora [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Chang, Yoon Hwan; Hong, Seok-Il; Hong, Young Jun [Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Park, In-Chul, E-mail: parkic@kirams.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Lee, Jin Kyung, E-mail: jklee@kirams.re.kr [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of)

    2015-08-15

    Despite excellent initial clinical responses of non-small cell lung cancer (NSCLC) patients to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), many patients eventually develop resistance. According to a recent report, vacuolar H + ATPase (vATPase) is overexpressed and is associated with chemotherapy drug resistance in NSCLC. We investigated the combined effects of EGFR TKIs and vATPase inhibitors and their underlying mechanisms in the regulation of NSCLC cell death. We found that combined treatment with EGFR TKIs (erlotinib, gefitinib, or lapatinib) and vATPase inhibitors (bafilomycin A1 or concanamycin A) enhanced synergistic cell death compared to treatments with each drug alone. Treatment with bafilomycin A1 or concanamycin A led to the induction of Bnip3 expression in an Hif-1α dependent manner. Knock-down of Hif-1α or Bnip3 by siRNA further enhanced cell death induced by bafilomycin A1, suggesting that Hif-1α/Bnip3 induction promoted resistance to cell death induced by the vATPase inhibitors. EGFR TKIs suppressed Hif-1α and Bnip3 expression induced by the vATPase inhibitors, suggesting that they enhanced the sensitivity of the cells to these inhibitors by decreasing Hif-1α/Bnip3 expression. Taken together, we conclude that EGFR TKIs enhance the sensitivity of NSCLC cells to vATPase inhibitors by decreasing Hif-1α/Bnip3 expression. We suggest that combined treatment with EGFR TKIs and vATPase inhibitors is potentially effective for the treatment of NSCLC. - Highlights: • Co-treatment with EGFR TKIs and vATPase inhibitors induces synergistic cell death • EGFR TKIs enhance cell sensitivity to vATPase inhibitors via Hif-1α downregulation • Co-treatment of these inhibitors is potentially effective for the treatment of NSCLC.

  4. Altered expression and insulin-induced trafficking of Na+-K+-ATPase in rat skeletal muscle

    DEFF Research Database (Denmark)

    Galuska, Dana; Kotova, Olga; Barres, Romain;

    2009-01-01

    Skeletal muscle Na(+)-K(+)-ATPase plays a central role in the clearance of K(+) from the extracellular fluid, therefore maintaining blood [K(+)]. Na(+)-K(+)-ATPase activity in peripheral tissue is impaired in insulin resistant states. We determined effects of high-fat diet (HFD) and exercise...... function precede the development of skeletal muscle insulin resistance. Disturbances in skeletal muscle Na(+)-K(+)-ATPase regulation, particularly the alpha(2)-subunit, may contribute to impaired ion homeostasis in insulin-resistant states such as obesity and type 2 diabetes....

  5. Pulmonary surfactants and their role in pathophysiology of lung disorders.

    Science.gov (United States)

    Akella, Aparna; Deshpande, Shripad B

    2013-01-01

    Surfactant is an agent that decreases the surface tension between two media. The surface tension between gaseous-aqueous interphase in the lungs is decreased by the presence of a thin layer of fluid known as pulmonary surfactant. The pulmonary surfactant is produced by the alveolar type-II (AT-II) cells of the lungs. It is essential for efficient exchange of gases and for maintaining the structural integrity of alveoli. Surfactant is a secretory product, composed of lipids and proteins. Phosphatidylcholine and phosphatidylglycerol are the major lipid constituents and SP-A, SP-B, SP-C, SP-D are four types of surfactant associated proteins. The lipid and protein components are synthesized separately and are packaged into the lamellar bodies in the AT-II cells. Lamellar bodies are the main organelle for the synthesis and metabolism of surfactants. The synthesis, secretion and recycling of the surfactant lipids and proteins is regulated by complex genetic and metabolic mechanisms. The lipid-protein interaction is very important for the structural organization of surfactant monolayer and its functioning. Alterations in surfactant homeostasis or biophysical properties can result in surfactant insufficiency which may be responsible for diseases like respiratory distress syndrome, lung proteinosis, interstitial lung diseases and chronic lung diseases. The biochemical, physiological, developmental and clinical aspects of pulmonary surfactant are presented in this article to understand the pathophysiological mechanisms of these diseases. PMID:23441475

  6. Regulatory Mechanisms in the P4-ATPase Complex

    DEFF Research Database (Denmark)

    Costa, Sara

    of their activity and regulation remain to be elucidated. Therefore, these studies focus on the role of the catalytic and CDC50 β-subunit in the phospholipid translocation and the regulation processes behind it. Recent studies suggested that P4-ATPase complex functionality is highly dependent on the conformation...... of the CDC50 ectodomain. The ectodomain conformation relies on post-translational modifications, such as N-glycosylation and disulfide bonds. In this work, we have identified the main structural features in the CDC50 ectodomain that are essential for the functionality of a plant P4-ATPase complex....... Specifically, N-linked glycosylation is essential for trafficking of the complex while disulfide bond formation is neither essential for complex trafficking nor for flippase activity. Additionally, we suggest that the role of post-translational modifications varies between lower and higher eukaryotes...

  7. Surfactants in tribology

    CERN Document Server

    Biresaw, Girma

    2014-01-01

    Surface science and tribology play very critical roles in many industries. Manufacture and use of almost all consumer and industrial products rely on the application of advanced surface and tribological knowledge. The fourth in a series, Surfactants in Tribology, Volume 4 provides an update on research and development activities connecting surfactants and tribological phenomena. Written by renowned subject matter experts, the book demonstrates how improved design of surfactants can be harnessed to control tribological phenomena. Profusely illustrated and copiously referenced, the chapters also

  8. POLYMERIC SURFACTANT STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    P.M. Saville; J.W. White

    2001-01-01

    Polymeric surfactants are amongst the most widespread of all polymers. In nature, proteins and polysaccharides cause self organization as a result of this surfactancy; in industry, polymeric surfactants play key roles in the food, explosives and surface coatings sectors. The generation of useful nano- and micro-structures in films and emulsions as a result of polymer amphiphilicity and the application of mechanical stress is discussed. The use of X-ray and neutron small angle scattering and reflectivity to measure these structures and their dynamic properties will be described. New results on linear and dendritic polymer surfactants are presented.

  9. Dendrimer-surfactant interactions.

    Science.gov (United States)

    Cheng, Yiyun; Zhao, Libo; Li, Tianfu

    2014-04-28

    In this article, we reviewed the interactions between dendrimers and surfactants with particular focus on the interaction mechanisms and physicochemical properties of the yielding dendrimer-surfactant aggregates. In order to provide insight into the behavior of dendrimers in biological systems, the interactions of dendrimers with bio-surfactants such as phospholipids in bulk solutions, in solid-supported bilayers and at the interface of phases or solid-states were discussed. Applications of the dendrimer-surfactant aggregates as templates to guide the synthesis of nanoparticles and in drug or gene delivery were also mentioned.

  10. Surfactant Sector Needs Urgent Readjustment

    Institute of Scientific and Technical Information of China (English)

    Huang Hongzhou

    2007-01-01

    @@ Surfactant industrial system has been basically established After 50 years' development, China has already established a surfactant industrial system with a relatively complete product portfolio and can produce 4714 varieties of surfactants in cationic,anionic, nonionic and amphoteric categories.

  11. New aspects of the glucose activation of the H(+)-ATPase in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Souza, M A; Trópia, M J; Brandão, R L

    2001-10-01

    The glucose-induced activation of plasma membrane ATPase from Saccharomyces cerevisiae was first described by Serrano in 1983. Many aspects of this signal transduction pathway are still obscure. In this paper, evidence is presented for the involvement of Snf3p as the glucose sensor related to this activation process. It is shown that, in addition to glucose detection by Snf3p, sugar transport is also necessary for activation of the ATPase. The participation of the G protein, Gpa2p, in transducing the internal signal (phosphorylated sugars) is also demonstrated. Moreover, the involvement of protein kinase C in the regulation of ATPase activity is confirmed. Finally, a model pathway is presented for sensing and transmission of the glucose activation signal of the yeast H(+)-ATPase.

  12. Leishmania amazonensis: PKC-like protein kinase modulates the (Na++K+)ATPase activity.

    Science.gov (United States)

    Almeida-Amaral, Elmo Eduardo de; Caruso-Neves, Celso; Lara, Lucienne Silva; Pinheiro, Carla Mônica; Meyer-Fernandes, José Roberto

    2007-08-01

    The present study aimed to identify the presence of protein kinase C-like (PKC-like) in Leishmania amazonensis and to elucidate its possible role in the modulation of the (Na(+)+K(+))ATPase activity. Immunoblotting experiments using antibody against a consensus sequence (Ac 543-549) of rabbit protein kinase C (PKC) revealed the presence of a protein kinase of 80 kDa in L. amazonensis. Measurements of protein kinase activity showed the presence of both (Ca(2+)-dependent) and (Ca(2+)-independent) protein kinase activity in plasma membrane and cytosol. Phorbol ester (PMA) activation of the Ca(2+)-dependent protein kinase stimulated the (Na(+)+K(+))ATPase activity, while activation of the Ca(2+)-independent protein kinase was inhibitory. Both effects of protein kinase on the (Na(+)+K(+))ATPase of the plasma membrane were lower than that observed in intact cells. PMA induced the translocation of protein kinase from cytosol to plasma membrane, indicating that the maximal effect of protein kinase on the (Na(+)+K(+))ATPase activity depends on the synergistic action of protein kinases from both plasma membrane and cytosol. This is the first demonstration of a protein kinase activated by PMA in L. amazonensis and the first evidence for a possible role in the regulation of the (Na(+)+K(+))ATPase activity in this trypanosomatid. Modulation of the (Na(+)+K(+))ATPase by protein kinase in a trypanosomatid opens up new possibilities to understand the regulation of ion homeostasis in this parasite. PMID:17475255

  13. Dynamic covalent surfactants

    NARCIS (Netherlands)

    Minkenberg, C.B.

    2012-01-01

    In this thesis the development of surfactant aggregates with fast exchange dynamics between the aggregated and non-aggregated state is described. Dynamic surfactant exchange plays an important role in natural systems, for instance in cell signaling, cell division, and uptake and release of cargo. Re

  14. Feeding induces translocation of vacuolar proton ATPase and pendrin to the membrane of leopard shark (Triakis semifasciata) mitochondrion-rich gill cells

    OpenAIRE

    Roa, JN; Munévar, CL; Tresguerres, M.

    2014-01-01

    In this study we characterized mitochondrion-rich (MR) cells and regulation of acid/base (A/B) relevant ion-transporting proteins in leopard shark (Triakis semifasciata) gills. Immunohistochemistry revealed that leopard shark gills posses two separate cell populations that abundantly express either Na+/K+-ATPase (NKA) or V-H+-ATPase (VHA), but not both ATPases together. Co-immunolocalization with mitochondrial Complex IV demonstrated, for the first time in shark gills, that both NKA- and VHA-...

  15. The V-ATPase a2-subunit as a putative endosomal pH-sensor.

    Science.gov (United States)

    Marshansky, V

    2007-11-01

    V-ATPase (vesicular H(+)-ATPase)-driven intravesicular acidification is crucial for vesicular trafficking. Defects in vesicular acidification and trafficking have recently been recognized as essential determinants of various human diseases. An important role of endosomal acidification in receptor-ligand dissociation and in activation of lysosomal hydrolytic enzymes is well established. However, the molecular mechanisms by which luminal pH information is transmitted to the cytosolic small GTPases that control trafficking events such as budding, coat formation and fusion are unknown. Here, we discuss our recent discovery that endosomal V-ATPase is a pH-sensor regulating the degradative pathway. According to our model, V-ATPase is responsible for: (i) the generation of a pH gradient between vesicular membranes; (ii) sensing of intravesicular pH; and (iii) transmitting this information to the cytosolic side of the membrane. We also propose the hypothetical molecular mechanism involved in function of the V-ATPase a2-subunit as a putative pH-sensor. Based on extensive experimental evidence on the crucial role of histidine residues in the function of PSPs (pH-sensing proteins) in eukaryotic cells, we hypothesize that pH-sensitive histidine residues within the intra-endosomal loops and/or C-terminal luminal tail of the a2-subunit could also be involved in the pH-sensing function of V-ATPase. However, in order to identify putative pH-sensitive histidine residues and to test this hypothesis, it is absolutely essential that we increase our understanding of the folding and transmembrane topology of the a-subunit isoforms of V-ATPase. Thus the crucial role of intra-endosomal histidine residues in pH-dependent conformational changes of the V-ATPase a2-isoform, its interaction with cytosolic small GTPases and ultimately in its acidification-dependent regulation of the endosomal/lysosomal protein degradative pathway remain to be determined.

  16. Distinct α2 Na,K-ATPase membrane pools are differently involved in early skeletal muscle remodeling during disuse.

    Science.gov (United States)

    Kravtsova, Violetta V; Petrov, Alexey M; Matchkov, Vladimir V; Bouzinova, Elena V; Vasiliev, Alexander N; Benziane, Boubacar; Zefirov, Andrey L; Chibalin, Alexander V; Heiny, Judith A; Krivoi, Igor I

    2016-02-01

    The Na,K-ATPase is essential for the contractile function of skeletal muscle, which expresses the α1 and α2 subunit isoforms of Na,K-ATPase. The α2 isozyme is predominant in adult skeletal muscles and makes a greater contribution in working compared with noncontracting muscles. Hindlimb suspension (HS) is a widely used model of muscle disuse that leads to progressive atrophy of postural skeletal muscles. This study examines the consequences of acute (6-12 h) HS on the functioning of the Na,K-ATPase α1 and α2 isozymes in rat soleus (disused) and diaphragm (contracting) muscles. Acute disuse dynamically and isoform-specifically regulates the electrogenic activity, protein, and mRNA content of Na,K-ATPase α2 isozyme in rat soleus muscle. Earlier disuse-induced remodeling events also include phospholemman phosphorylation as well as its increased abundance and association with α2 Na,K-ATPase. The loss of α2 Na,K-ATPase activity results in reduced electrogenic pump transport and depolarized resting membrane potential. The decreased α2 Na,K-ATPase activity is caused by a decrease in enzyme activity rather than by altered protein and mRNA content, localization in the sarcolemma, or functional interaction with the nicotinic acetylcholine receptors. The loss of extrajunctional α2 Na,K-ATPase activity depends strongly on muscle use, and even the increased protein and mRNA content as well as enhanced α2 Na,K-ATPase abundance at this membrane region after 12 h of HS cannot counteract this sustained inhibition. In contrast, additional factors may regulate the subset of junctional α2 Na,K-ATPase pool that is able to recover during HS. Notably, acute, low-intensity muscle workload restores functioning of both α2 Na,K-ATPase pools. These results demonstrate that the α2 Na,K-ATPase in rat skeletal muscle is dynamically and acutely regulated by muscle use and provide the first evidence that the junctional and extrajunctional pools of the α2 Na,K-ATPase are regulated

  17. Distinct α2 Na,K-ATPase membrane pools are differently involved in early skeletal muscle remodeling during disuse

    Science.gov (United States)

    Kravtsova, Violetta V.; Petrov, Alexey M.; Matchkov, Vladimir V.; Bouzinova, Elena V.; Vasiliev, Alexander N.; Benziane, Boubacar; Zefirov, Andrey L.; Chibalin, Alexander V.; Heiny, Judith A.

    2016-01-01

    The Na,K-ATPase is essential for the contractile function of skeletal muscle, which expresses the α1 and α2 subunit isoforms of Na,K-ATPase. The α2 isozyme is predominant in adult skeletal muscles and makes a greater contribution in working compared with noncontracting muscles. Hindlimb suspension (HS) is a widely used model of muscle disuse that leads to progressive atrophy of postural skeletal muscles. This study examines the consequences of acute (6–12 h) HS on the functioning of the Na,K-ATPase α1 and α2 isozymes in rat soleus (disused) and diaphragm (contracting) muscles. Acute disuse dynamically and isoform-specifically regulates the electrogenic activity, protein, and mRNA content of Na,K-ATPase α2 isozyme in rat soleus muscle. Earlier disuse-induced remodeling events also include phospholemman phosphorylation as well as its increased abundance and association with α2 Na,K-ATPase. The loss of α2 Na,K-ATPase activity results in reduced electrogenic pump transport and depolarized resting membrane potential. The decreased α2 Na,K-ATPase activity is caused by a decrease in enzyme activity rather than by altered protein and mRNA content, localization in the sarcolemma, or functional interaction with the nicotinic acetylcholine receptors. The loss of extrajunctional α2 Na,K-ATPase activity depends strongly on muscle use, and even the increased protein and mRNA content as well as enhanced α2 Na,K-ATPase abundance at this membrane region after 12 h of HS cannot counteract this sustained inhibition. In contrast, additional factors may regulate the subset of junctional α2 Na,K-ATPase pool that is able to recover during HS. Notably, acute, low-intensity muscle workload restores functioning of both α2 Na,K-ATPase pools. These results demonstrate that the α2 Na,K-ATPase in rat skeletal muscle is dynamically and acutely regulated by muscle use and provide the first evidence that the junctional and extrajunctional pools of the α2 Na,K-ATPase are regulated

  18. The NA+/K+-ATPase controls gap junctions via membrane microdomain interactions in rat smooth muscles.

    DEFF Research Database (Denmark)

    Matchkov, Vladimir; Nilsson, Holger; Aalkjær, Christian

    The Na+/K+-ATPase is known to interact with many membrane and cytosolic proteins by organizing various signaling complexes. These interactions were suggested to be important in regulation of various cellular responses. Pumping activity of the Na+/K+-ATPase is suggested to be essential for some...... in rat mesenteric small arteries. Paired cultured rat smooth muscle cells (A7r5) were used as a model for electrical coupling of SMC by measuring membrane capacitance (Cm). PCR, Western blotting and immunohistochemistry were used to identify the membrane transporters. SMCs were uncoupled (evaluated...... in regulation of the intercellular communication. We have here shown that gap junctions between SMCs are regulated through an interaction between the Na+/K+-ATPase and the Na+/Ca2+-exchanger leading to an increase in [Ca2+]i in discrete areas near the plasma membrane. We have also suggested that this Na...

  19. Research Progress on Using Surfactants to Regulating Rumen Function%表面活性剂调控瘤胃营养功能研究进展

    Institute of Scientific and Technical Information of China (English)

    刘勇; 汤少勋; 谭支良

    2012-01-01

    The surfactants are divided into chemical surface active agent and biosurfactants. The nonionic surfactants and biosurfactants are accepted as the new type additives in the feed of ruminants. Through altering the emulsification of ruminal fluid, the number of ruminal microorganisms, the activity and adhesive ability of ruminal endogenous enzymes secreted by ruminal microbes, and fermentation pattern, they can effectively improve the degradability of roughages in the rumen and the productivity of ruminants. The preparation, purification, industrial production and nutritional mechanism of biosurfactants will be the focuses in the filed of ruminant nutrition.%表面活性剂分为化学表面活性剂和生物表面活性剂两大类,非离子表面活性剂和生物表面活性剂作为新型反刍动物饲料添加剂,可通过改变瘤胃液乳化特性、瘤胃微生物种群数量、分泌酶活性、酶吸附能力和瘤胃发酵模式,来增强瘤胃微生物对粗饲料的降解能力,进而提高反刍动物生产性能.综述提出了表面活性剂在反刍动物瘤胃营养调控领域的研究重点.

  20. Changes of Plasma Membrane H+-ATPase Activities of Glycine max Seeds by PEG Treatment

    Institute of Scientific and Technical Information of China (English)

    Yang Yong-qing; Wang Xiao-feng

    2005-01-01

    The soybean (Glycine max) Heihe No. 23 is sensitive to imbibitional chilling injury. Polyethylene glycol (PEG)treatment can improve chilling tolerance of soybean seeds to a certain extent. The changes of hydrolytic ATPase in plasma membranes and H+-pumping responses in soybean seeds were investigated during PEG treatments. Effects of exogenous calcium and exogenous ABA on the hydrolytic ATPase were also examined in order to understand the mechanism of chilling resistance. Highly purified plasma membranes were isolated by 6.0% aqueous two-phase partitioning from soybean seeds, as judged by the sensitivity of hydrolytic ATPase to sodium vanadate. PEG treatment resulted in a slight increase of the hydrolytic ATPase activity in 12 h. Then the activity decreased gradually, but still higher than the control. The H+-pumping activity increased steadily during PEG treatment.Exogenous calcium had both activating and inhibiting effects on the hydrolytic ATPase, but the activity was inhibited in soybean seeds treated with exogenous ABA. Results suggested that PEG treatment, not the exogenous calcium and ABA, up-regulated H+-ATPase activities in soybean seeds.

  1. Metathesis depolymerizable surfactants

    Science.gov (United States)

    Jamison, Gregory M.; Wheeler, David R.; Loy, Douglas A.; Simmons, Blake A.; Long, Timothy M.; McElhanon, James R.; Rahimian, Kamyar; Staiger, Chad L.

    2008-04-15

    A class of surfactant molecules whose structure includes regularly spaced unsaturation in the tail group and thus, can be readily decomposed by ring-closing metathesis, and particularly by the action of a transition metal catalyst, to form small molecule products. These small molecules are designed to have increased volatility and/or enhanced solubility as compared to the original surfactant molecule and are thus easily removed by solvent extraction or vacuum extraction at low temperature. By producing easily removable decomposition products, the surfactant molecules become particularly desirable as template structures for preparing meso- and microstructural materials with tailored properties.

  2. The role of Na(+), K(+)-ATPase in the hypoxic vasoconstriction in isolated rat basilar artery.

    Science.gov (United States)

    Shen, Haitao; Liang, Peng; Qiu, Suhua; Zhang, Bo; Wang, Yongli; Lv, Ping

    2016-06-01

    Hypoxia-induced cerebrovascular dysfunction is a key factor in the occurrence and the development of cerebral ischemia. Na(+), K(+)-ATPase affects the regulation of intracellular Ca(2+) concentration and plays an important role in vascular smooth muscle function. However, the potential role of Na(+), K(+)-ATPase in hypoxia-induced cerebrovascular dysfunction is unknown. In this study, we found that the KCl-induced contraction under hypoxia in rat endothelium-intact basilar arteries is similar to that of denuded arteries, suggesting that hypoxia may cause smooth muscle cell (SMC)-dependent vasoconstriction in the basilar artery. The Na(+), K(+)-ATPase activity of the isolated basilar artery with or without endothelium significantly reduced with prolonged hypoxia. Blocking the Na(+)-Ca(2+) exchanger with Ni(2+) (10(-3)M) or the L-type Ca(2+) channel with nimodipine (10(-8)M) dramatically attenuated KCl-induced contraction under hypoxia. Furthermore, prolonged hypoxia significantly reduced Na(+), K(+)-ATPase activity and increased [Ca(2+)]i in cultured rat basilar artery SMCs. Hypoxia reduced the protein and mRNA expression of the α2 isoform of Na(+), K(+)-ATPase in SMCs in vitro. We used a low concentration of the Na(+), K(+)-ATPase inhibitor ouabain, which possesses a high affinity for the α2 isoform. The contractile response in the rat basilar artery under hypoxia was partly inhibited by ouabain pretreatment. The decreased Na(+), K(+)-ATPase activity in isolated basilar artery and the increased [Ca(2+)]i in SMCs induced by hypoxia were partly inhibited by pretreatment with a low concentration of ouabain. These results suggest that hypoxia may educe Na(+), K(+)-ATPase activity in SMCs through the α2 isoform contributing to vasoconstriction in the rat basilar artery.

  3. The V-ATPase accessory protein Atp6ap1b mediates dorsal forerunner cell proliferation and left-right asymmetry in zebrafish.

    Science.gov (United States)

    Gokey, Jason J; Dasgupta, Agnik; Amack, Jeffrey D

    2015-11-01

    Asymmetric fluid flows generated by motile cilia in a transient 'organ of asymmetry' are involved in establishing the left-right (LR) body axis during embryonic development. The vacuolar-type H(+)-ATPase (V-ATPase) proton pump has been identified as an early factor in the LR pathway that functions prior to cilia, but the role(s) for V-ATPase activity are not fully understood. In the zebrafish embryo, the V-ATPase accessory protein Atp6ap1b is maternally supplied and expressed in dorsal forerunner cells (DFCs) that give rise to the ciliated organ of asymmetry called Kupffer's vesicle (KV). V-ATPase accessory proteins modulate V-ATPase activity, but little is known about their functions in development. We investigated Atp6ap1b and V-ATPase in KV development using morpholinos, mutants and pharmacological inhibitors. Depletion of both maternal and zygotic atp6ap1b expression reduced KV organ size, altered cilia length and disrupted LR patterning of the embryo. Defects in other ciliated structures-neuromasts and olfactory placodes-suggested a broad role for Atp6ap1b during development of ciliated organs. V-ATPase inhibitor treatments reduced KV size and identified a window of development in which V-ATPase activity is required for proper LR asymmetry. Interfering with Atp6ap1b or V-ATPase function reduced the rate of DFC proliferation, which resulted in fewer ciliated cells incorporating into the KV organ. Analyses of pH and subcellular V-ATPase localizations suggested Atp6ap1b functions to localize the V-ATPase to the plasma membrane where it regulates proton flux and cytoplasmic pH. These results uncover a new role for the V-ATPase accessory protein Atp6ap1b in early development to maintain the proliferation rate of precursor cells needed to construct a ciliated KV organ capable of generating LR asymmetry.

  4. Pulmonary surfactant and lung transplantation

    OpenAIRE

    Erasmus, Michiel Elardus

    1997-01-01

    Pulmonary surfactant lowers the surface tension at the air-water interface inside the alveolus. This is achieved by adsorption of surfactant phospholipids at the air-water interface, a process controlled by surfactant-associated proteins, such as SP-A. In this way, surfactant prevents collapse of the alveolus at end expiration, prevents formation of alveolar edema and increases the compliance of the lung. In chapter 1a an overview is given how the normal function of surfactant can be affected...

  5. The emerging structure of vacuolar ATPases.

    Science.gov (United States)

    Drory, Omri; Nelson, Nathan

    2006-10-01

    Bioenergetics and physiology of primary pumps have been revitalized by new insights into the mechanism of energizing biomembranes. Structural information is becoming available, and the three-dimensional structure of F-ATPase is being resolved. The growing understanding of the fundamental mechanism of energy coupling may revolutionize our view of biological processes. The F- and V-ATPases (vacuolar-type ATPase) exhibit a common mechanical design in which nucleotide-binding on the catalytic sector, through a cycle of conformation changes, drives the transmembrane passage of protons by turning a membrane-embedded rotor. This motor can run in forward or reverse directions, hydrolyzing ATP as it pumps protons uphill or creating ATP as protons flow downhill. In contrast to F-ATPases, whose primary function in eukaryotic cells is to form ATP at the expense of the proton-motive force (pmf), V-ATPases function exclusively as an ATP-dependent proton pump. The pmf generated by V-ATPases in organelles and membranes of eukaryotic cells is utilized as a driving force for numerous secondary transport processes. V- and F-ATPases have similar structure and mechanism of action, and several of their subunits evolved from common ancestors. Electron microscopy studies of V-ATPase revealed its general structure at low resolution. Recently, several structures of V-ATPase subunits, solved by X-ray crystallography with atomic resolution, were published. This, together with electron microscopy low-resolution maps of the whole complex, and biochemistry cross-linking experiments, allows construction of a structural model for a part of the complex that may be used as a working hypothesis for future research. PMID:16990452

  6. Phosphine oxide surfactants revisited.

    Science.gov (United States)

    Stubenrauch, Cosima; Preisig, Natalie; Laughlin, Robert G

    2016-04-01

    This review summarizes everything we currently know about the nonionic surfactants alkyl dimethyl (C(n)DMPO) and alkyl diethyl (C(n)DEPO) phosphine oxide (PO surfactants). The review starts with the synthesis and the general properties (Section 2) of these compounds and continues with their interfacial properties (Section 3) such as surface tension, surface rheology, interfacial tension and adsorption at solid surfaces. We discuss studies on thin liquid films and foams stabilized by PO surfactants (Section 4) as well as studies on their self-assembly into lyotropic liquid crystals and microemulsions, respectively (Section 5). We aim at encouraging colleagues from both academia and industry to take on board PO surfactants whenever possible and feasible because of their broad variety of excellent properties. PMID:26869216

  7. Clusterin (Apolipoprotein J), a Molecular Chaperone That Facilitates Degradation of the Copper-ATPases ATP7A and ATP7B

    NARCIS (Netherlands)

    Materia, Stephanie; Cater, Michael A.; Klomp, Leo W. J.; Mercer, Julian F. B.; La Fontaine, Sharon

    2011-01-01

    The copper-transporting P1B-type ATPases (Cu-ATPases) ATP7A and ATP7B are key regulators of physiological copper levels. They function to maintain intracellular copper homeostasis by delivering copper to secretory compartments and by trafficking toward the cell periphery to export excess copper. Mut

  8. Sodium, potassium-atpases in algae and oomycetes.

    Science.gov (United States)

    Barrero-Gil, Javier; Garciadeblás, Blanca; Benito, Begoña

    2005-08-01

    We have investigated the presence of K(+)-transporting ATPases that belong to the phylogenetic group of animal Na(+),K(+)-ATPases in the Pythium aphanidermatum Stramenopile oomycete, the Porphyra yezoensis red alga, and the Udotea petiolata green alga, by molecular cloning and expression in heterologous systems. PCR amplification and search in EST databases allowed one gene to be identified in each species that could encode ATPases of this type. Phylogenetic analysis of the sequences of these ATPases revealed that they cluster with ATPases of animal origin, and that the algal ATPases are closer to animal ATPases than the oomycete ATPase is. The P. yezoensis and P. aphanidermatum ATPases were functionally expressed in Saccharomyces cerevisiae and Escherichia coli alkali cation transport mutants. The aforementioned cloning and complementary searches in silicio for H(+)- and Na(+),K(+)-ATPases revealed a great diversity of strategies for plasma membrane energization in eukaryotic cells different from typical animal, plant, and fungal cells.

  9. Non Invasive Surfactant Application

    OpenAIRE

    Hacer Yapicioglu; Eren Kale Cekinmez; Ferda Ozlu

    2013-01-01

    Surfactant replacement therapy has been the mainstay of treatment for preterm infants with respiratory distress syndrome for more than twenty years. In recent years, the growing interest in noninvasive ventilation has led to novel approaches of administration. Non-invasive techniques of respiratory support were developed in order to reduce the adverse effects associated with ventilation via an endotracheal tube. Noninvasive surfactant administration technique during spontaneous breathing alon...

  10. Other indications for surfactant].

    OpenAIRE

    PROENÇA FERNANDES, E.; Carvalho, C; Silva, A.; Ferreira, P.; Alegria, A.; Lopes, L.; AREIAS, M.A.

    2002-01-01

    An Esp Pediatr. 2002 Jan;56(1):45-8. [Other indications for surfactant] [Article in Spanish] Proença Fernandes E, Carvalho C, Silva A, Ferreira P, Alegria A, Lopes L, Areias MA. Unidades de Cuidados Intensivos Neonatales y Pediátricos, Hospital Maria Pia, Spain. Abstract OBJECTIVE: The introduction of surfactant replacement therapy in the management of respiratory distress syndrome in the premature infant was a remarkable advance in neonatal intensive care. In the last few y...

  11. Pharmacoeconomics of Surfactant Therapy

    OpenAIRE

    Barbarello-Andrews, Liza; Marsh, Wallace

    2006-01-01

    Surfactant therapy has become an integral part of the standard of care for treating premature infants with respiratory distress syndrome (RDS). Institutions that routinely treat this patient population have to select a surfactant based upon clinical and pharmacoeconomic considerations. Pharmacoeconomic studies have established the cost-effectiveness of individual agents based on a variety of factors, including length of hospitalization, mortality odds ratio, and other direct medical costs. Th...

  12. Glucocorticoid regulation of human pulmonary surfactant protein-B (SP-B) mRNA stability is independent of activated glucocorticoid receptor.

    Science.gov (United States)

    Tillis, Ceá C; Huang, Helen W; Bi, Weizhen; Pan, Su; Bruce, Shirley R; Alcorn, Joseph L

    2011-06-01

    Adequate expression of surfactant protein-B (SP-B) is critical in the function of pulmonary surfactant to reduce alveolar surface tension. Expression of SP-B mRNA is restricted to specific lung-airway epithelial cells, and human SP-B mRNA stability is increased in the presence of the synthetic glucocorticoid dexamethasone (DEX). Although the mechanism of SP-B mRNA stabilization by DEX is unknown, studies suggest involvement of the glucocorticoid receptor (GR). We developed a dual-cistronic plasmid-based expression assay in which steady-state levels of SP-B mRNA, determined by Northern analysis, reproducibly reflect changes in SP-B mRNA stability. Using this assay, we found that steady-state levels of SP-B mRNA increased greater than twofold in transfected human-airway epithelial cells (A549) incubated with DEX (10(-7) M). DEX-mediated changes in SP-B mRNA levels required the presence of the SP-B mRNA 3'-untranslated region but did not require ongoing protein synthesis. The effect of DEX on SP-B mRNA levels was dose dependent, with maximal effect at 10(-7) M. DEX increased levels of SP-B mRNA in cells lacking GR, and the presence of the GR antagonist RU486 did not interfere with the effect of DEX. Surprisingly, other steroid hormones (progesterone, estradiol, and vitamin D; 10(-7) M) significantly increased SP-B mRNA levels, suggesting a common pathway of steroid hormone action on SP-B mRNA stability. These results indicate that the effect of DEX to increase SP-B mRNA stability is independent of activated GR and suggests that the mechanism is mediated by posttranscriptional or nongenomic effects of glucocorticoids. PMID:21398497

  13. The basidiomycete Ustilago maydis has two plasma membrane H⁺-ATPases related to fungi and plants.

    Science.gov (United States)

    Robles-Martínez, Leobarda; Pardo, Juan Pablo; Miranda, Manuel; Mendez, Tavis L; Matus-Ortega, Macario Genaro; Mendoza-Hernández, Guillermo; Guerra-Sánchez, Guadalupe

    2013-10-01

    The fungal and plant plasma membrane H⁺-ATPases play critical roles in the physiology of yeast, plant and protozoa cells. We identified two genes encoding two plasma membrane H⁺-ATPases in the basidiomycete Ustilago maydis, one protein with higher identity to fungal (um02581) and the other to plant (um01205) H⁺-ATPases. Proton pumping activity was 5-fold higher when cells were grown in minimal medium with ethanol compared to cells cultured in rich YPD medium, but total vanadate-sensitive ATPase activity was the same in both conditions. In contrast, the activity in cells cultured in minimal medium with glucose was 2-fold higher than in YPD or ethanol, implicating mechanisms for the regulation of the plasma membrane ATPase activity in U. maydis. Analysis of gene expression of the H⁺-ATPases from cells grown under different conditions, showed that the transcript expression of um01205 (plant-type) was higher than that of um02581 (fungal-type). The translation of the two proteins was confirmed by mass spectrometry analysis. Unlike baker's yeast and plant H⁺-ATPases, where the activity is increased by a short incubation with glucose or sucrose, respectively, U. maydis H⁺-ATPase activity did not change in response to these sugars. Sequence analysis of the two U. maydis H⁺-ATPases revealed the lack of canonical threonine and serine residues which are targets of protein kinases in Saccharomyces cerevisiae and Arabidopsis thaliana plasma membrane H⁺-ATPases, suggesting that phosphorylation of the U. maydis enzymes occurs at different amino acid residues.

  14. Neurological disease mutations compromise a C-terminal ion pathway in the Na(+)/K(+)-ATPase

    DEFF Research Database (Denmark)

    Poulsen, Hanne; Khandelia, Himanshu; Morth, J Preben;

    2010-01-01

    The Na(+)/K(+)-ATPase pumps three sodium ions out of and two potassium ions into the cell for each ATP molecule that is split, thereby generating the chemical and electrical gradients across the plasma membrane that are essential in, for example, signalling, secondary transport and volume...... regulation in animal cells. Crystal structures of the potassium-bound form of the pump revealed an intimate docking of the alpha-subunit carboxy terminus at the transmembrane domain. Here we show that this element is a key regulator of a previously unrecognized ion pathway. Current models of P-type ATPases...... operate with a single ion conduit through the pump, but our data suggest an additional pathway in the Na(+)/K(+)-ATPase between the ion-binding sites and the cytoplasm. The C-terminal pathway allows a cytoplasmic proton to enter and stabilize site III when empty in the potassium-bound state, and when...

  15. [ATPase and phosphatase activity of drone brood].

    Science.gov (United States)

    Bodnarchuk, L I; Stakhman, O S

    2004-01-01

    Most researches on insect enzymes concern carbohydrate and nitrogenous exchange. Data on ATPase activity for larval material of drone brood are absent in the available literature. The drone brood is one of the least investigated apiproducts. Allowing for the important role of ATPase in the vital functions of the insect cells our work was aimed at the study of ATPase of the drone blood activity and that of alkaline and acid phosphatases. When studying liophylised preparations of the drone brood homogenate we have found out high activity of Mg2+, Na+, K+-, Ca2+- and Mg2+-ATPase and of alkaline and acid phosphatase, that is the possible explanation of the high-intensity power and plastic processes proceeding during growth and development of larvae. PMID:16350755

  16. Effects of Na/K-ATPase and its ligands on bone marrow stromal cell differentiation

    Directory of Open Access Journals (Sweden)

    Moustafa Sayed

    2014-07-01

    Full Text Available Endogenous ligands of Na/K-ATPase have been demonstrated to increase in kidney dysfunction and heart failure. It is also reported that Na/K-ATPase signaling function effects stem cell differentiation. This study evaluated whether Na/K-ATPase activation through its ligands and associated signaling functions affect bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells differentiation capacity. BMSCs were isolated from male Sprague–Dawley rats and cultured in minimal essential medium alpha (MEM-α supplemented with 15% Fetal Bovine serum (FBS. The results showed that marinobufagenin (MBG, a specific Na/K-ATPase ligand, potentiated rosiglitazone-induced adipogenesis in these BMSCs. Meanwhile, it attenuated BMSC osteogenesis. Mechanistically, MBG increased CCAAT/enhancer binding protein alpha (C/EBPα protein expression through activation of an extracellular regulated kinase (ERK signaling pathway, which leads to enhanced rosiglitazone-induced adipogenesis. Inhibition of ERK activation by U0126 blocks the effect of MBG on C/EBPα expression and on rosiglitazone-induced adipogenesis. Reciprocally, MBG reduced runt-related transcription factor 2 (RunX2 expression, which resulted in the inhibition of osteogenesis induced by β-glycerophosphate/ascorbic acid. MBG also potentiated rosiglitazone-induced adipogenesis in 3T3-L1 cells and in mouse BMSCs. These results suggest that Na/K-ATPase and its signaling functions are involved in the regulation of BMSCs differentiation.

  17. The F-ATPase operon from the oral streptococci S. mutans and S. sanguis: How structure relates to function

    Science.gov (United States)

    Kuhnert, Wendi Lee

    1999-10-01

    The oral microbe, Streptococcus mutans is known to be a primary contributor to the most common infection in humans, dental caries. In the plaque environment, resident bacteria metabolize dietary sucrose which results in the production of organic acids and a decrease in plaque pH. The proton-translocating ATPase (F-ATPase) protects the bacteria from acidification by extruding protons, at the expense of ATP, to maintain an internal pH which is more neutral than the external environment. Examination of this enzyme will help us to gain insight regarding its contribution to the aciduricity characteristics of oral bacteria. In this work, our goal was to begin the molecular dissection of the mechanism by which streptococcal ATPases are regulated and function enzymatically. Sequence analysis of the F-ATPase from the non-pathogenic S. sanguis revealed that the structural genes are homologous to S. mutans as well as other sequenced F-ATPases. Cloned subunits were functionally similar as shown by complementing E. coli ATPase mutants. S. sanguis/E. coli hybrid enzymes hydrolyzed ATP, but proton conduction was uncoupled as demonstrated with inhibition studies. Transcriptional regulation of the F-ATPase operon from S. mutans was examined using chloramphenicol acetyltransferase gene fusions. Fusions containing 136 bp of DNA upstream of the promoter showed higher levels of expression as compared to those with only 16 bp. Similar to ATPase enzymatic activity, CAT expression also increased during growth at low pH. Analysis of RNA demonstrated that ATPase mRNA levels were higher at low pH, which supported the CAT activity data. Therefore, the F-ATPase from S. mutans was regulated, at least partially, by both the DNA located upstream of the promoter as well as by pH. Examination of structural models of the F-ATPase from the pathogenic oral organisms S. mutans and Lactobacillus casei and the non- pathogenic S. sanguis showed that the differences noted in the sequence of the catalytic

  18. A systems approach to mapping transcriptional networks controlling surfactant homeostasis

    Directory of Open Access Journals (Sweden)

    Dave Vrushank

    2010-07-01

    Full Text Available Abstract Background Pulmonary surfactant is required for lung function at birth and throughout life. Lung lipid and surfactant homeostasis requires regulation among multi-tiered processes, coordinating the synthesis of surfactant proteins and lipids, their assembly, trafficking, and storage in type II cells of the lung. The mechanisms regulating these interrelated processes are largely unknown. Results We integrated mRNA microarray data with array independent knowledge using Gene Ontology (GO similarity analysis, promoter motif searching, protein interaction and literature mining to elucidate genetic networks regulating lipid related biological processes in lung. A Transcription factor (TF - target gene (TG similarity matrix was generated by integrating data from different analytic methods. A scoring function was built to rank the likely TF-TG pairs. Using this strategy, we identified and verified critical components of a transcriptional network directing lipogenesis, lipid trafficking and surfactant homeostasis in the mouse lung. Conclusions Within the transcriptional network, SREBP, CEBPA, FOXA2, ETSF, GATA6 and IRF1 were identified as regulatory hubs displaying high connectivity. SREBP, FOXA2 and CEBPA together form a common core regulatory module that controls surfactant lipid homeostasis. The core module cooperates with other factors to regulate lipid metabolism and transport, cell growth and development, cell death and cell mediated immune response. Coordinated interactions of the TFs influence surfactant homeostasis and regulate lung function at birth.

  19. DNA binding to SMC ATPases-trapped for release.

    Science.gov (United States)

    Schüler, Herwig; Sjögren, Camilla

    2016-04-01

    The SMC/Rad50/RecN proteins are universal DNA‐associated ABC‐type ATPases with crucial functions in genome maintenance. New insights into Rad50-DNA complex structure and cohesin regulation inspire a speculative look at the entire superfamily. Identification of a continuous DNA binding site across the Rad50 dimer interface (Liu et al, 2016; Seifert et al, 2016) suggests a similar site in cohesin. The localization of this site hints a DNA-activated mechanism for cohesin removal from chromosomes.

  20. Study of surfactant-skin interactions by skin impedance measurements.

    Science.gov (United States)

    Lu, Guojin; Moore, David J

    2012-02-01

    The stratum corneum (SC) plays a very critical physiological role as skin barrier in regulating water loss through the skin and protects the body from a wide range of physical and chemical exogenous insults. Surfactant-containing formulations can induce skin damage and irritation owing to surfactant absorption and penetration. It is generally accepted that reduction in skin barrier properties occurs only after surfactants have penetrated/permeated into the skin barrier. To mitigate the harshness of surfactant-based cleansing products, penetration/permeation of surfactants should be reduced. Skin impedance measurements have been taken in vitro on porcine skin using vertical Franz diffusion cells to investigate the impact of surfactants, temperature and pH on skin barrier integrity. These skin impedance results demonstrate excellent correlation with other published methods for assessing skin damage and irritation from different surfactant chemistry, concentration, pH, time of exposure and temperature. This study demonstrates that skin impedance can be utilized as a routine approach to screen surfactant-containing formulations for their propensity to compromise the skin barrier and hence likely lead to skin irritation. PMID:21923733

  1. Study of surfactant-skin interactions by skin impedance measurements.

    Science.gov (United States)

    Lu, Guojin; Moore, David J

    2012-02-01

    The stratum corneum (SC) plays a very critical physiological role as skin barrier in regulating water loss through the skin and protects the body from a wide range of physical and chemical exogenous insults. Surfactant-containing formulations can induce skin damage and irritation owing to surfactant absorption and penetration. It is generally accepted that reduction in skin barrier properties occurs only after surfactants have penetrated/permeated into the skin barrier. To mitigate the harshness of surfactant-based cleansing products, penetration/permeation of surfactants should be reduced. Skin impedance measurements have been taken in vitro on porcine skin using vertical Franz diffusion cells to investigate the impact of surfactants, temperature and pH on skin barrier integrity. These skin impedance results demonstrate excellent correlation with other published methods for assessing skin damage and irritation from different surfactant chemistry, concentration, pH, time of exposure and temperature. This study demonstrates that skin impedance can be utilized as a routine approach to screen surfactant-containing formulations for their propensity to compromise the skin barrier and hence likely lead to skin irritation.

  2. Surfactant Proteins in Smoking-Related Lung Disease.

    Science.gov (United States)

    Papaioannou, Andriana I; Papiris, Spyridon; Papadaki, Georgia; Manali, Effrosyni D; Roussou, Aneza; Spathis, Aris; Karakitsos, Petros; Kostikas, Konstantinos

    2016-01-01

    Pulmonary surfactant is a highly surface-active mixture of proteins and lipids that is synthesized and secreted in the alveoli by type II epithelial cells and is found in the fluid lining the alveolar surface. The protein part of surfactant constitutes two hydrophilic proteins (SP-A and SP-D) that regulate surfactant metabolism and have immunologic functions, and two hydrophobic proteins (SP-B and SP-C), which play a direct role in the organization of the surfactant structure in the interphase and in the stabilization of the lipid layers during the respiratory cycle. Several studies have shown that cigarette smoke seems to affect, in several ways, both surfactant homeostasis and function. The alterations in surfactants' biophysical properties caused by cigarette smoking, contribute to the development of several smoking related lung diseases. In this review we provide information on biochemical and physiological aspects of the pulmonary surfactant and on its possible association with the development of two major chronic diseases of the lung known to be related to smoking, i.e. chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Additional information on the possible role of surfactant protein alterations and/or dysfunction in the combination of these two conditions, recently described as combined pulmonary fibrosis and emphysema (CPFE) are also provided. PMID:26420367

  3. Effect of TGFβ on Na{sup +}/K{sup +} ATPase activity in megakaryocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinzadeh, Zohreh; Schmid, Evi; Shumilina, Ekaterina [Department of Physiology, University of Tübingen (Germany); Laufer, Stefan [Pharmaceutical Chemistry, University of Tübingen (Germany); Borst, Oliver; Gawaz, Meinrad [Cardiology and Cardiovascular Medicine, University of Tübingen (Germany); Lang, Florian, E-mail: florian.lang@uni-tuebingen.de [Department of Physiology, University of Tübingen (Germany)

    2014-09-26

    Highlights: • TGFß1 markedly up-regulates Na{sup +}/K{sup +} ATPase in megakaryocytes. • The effect is abrogated by p38-MAP kinase inhibitor skepinone. • The effect is abrogated by SGK inhibitor EMD638683. • The effect is abrogated by NF-κB inhibitor wogonin. - Abstract: The Na{sup +}/K{sup +} ATPase generates the Na{sup +} and K{sup +} concentration gradients across the plasma membrane and is thus essential for cellular electrolyte homeostasis, cell membrane potential and cell volume maintenance. A powerful regulator of Na{sup +}/K{sup +} ATPase is the serum- and glucocorticoid-inducible kinase 1 (SGK1). The most powerful known regulator of SGK1 expression is TGFß1, which is pivotal in the regulation of megakaryocyte maturation and platelet formation. Signaling involved in the upregulation of SGK1 by TGFß1 includes p38 mitogen activated protein (MAP) kinase. SGK1 in turn phosphorylates the IκB kinase (IKKα/β), which phosphorylates the inhibitor protein IκBα thus triggering nuclear translocation of nuclear factor kappa B (NF-κB). The present study explored whether TGFβ influences Na{sup +}/K{sup +} ATPase activity in megakaryocytes, and if so, whether the effect of TGß1 requires p38 MAP kinase, SGK1 and/or NF-κB. To this end, murine megakaryocytes were treated with TGFß1 and Na{sup +}/K{sup +} ATPase activity determined from K{sup +} induced current utilizing whole cell patch clamp. The pump current (I{sub pump}) was determined in the absence and presence of Na{sup +}/K{sup +} ATPase inhibitor ouabain (100 μM). TGFß1 (60 ng/ml) was added in the absence or presence of p38 MAP kinase inhibitor skepinone-L (1 μM), SGK1 inhibitor EMD638683 (50 μM) or NF-κB inhibitor wogonin (50 nM). As a result, the I{sub pump} was significantly increased by pretreatment of the megakaryocytes with TGFß1, an effect reaching statistical significance within 16 and 24 h and virtually abrogated in the presence of skepinone-L, EMD638683 or wogonin. In conclusion

  4. Surfactant-Amino Acid and Surfactant-Surfactant Interactions in Aqueous Medium: a Review.

    Science.gov (United States)

    Malik, Nisar Ahmad

    2015-08-01

    An overview of surfactant-amino acid interactions mainly in aqueous medium has been discussed. Main emphasis has been on the solution thermodynamics and solute-solvent interactions. Almost all available data on the topic has been presented in a lucid and simple way. Conventional surfactants have been discussed as amphiphiles forming micelles and amino acids as additives and their effect on the various physicochemical properties of these conventional surfactants. Surfactant-surfactant interactions in aqueous medium, various mixed surfactant models, are also highlighted to assess their interactions in aqueous medium. Finally, their applied part has been taken into consideration to interpret their possible uses.

  5. Capsazepine, a synthetic vanilloid that converts the Na,K-ATPase to Na-ATPase

    DEFF Research Database (Denmark)

    Mahmmoud, Yasser Ahmed

    2008-01-01

    . Drawing on previous homology modeling studies of Na,K-ATPase to atomic models of sarcoplasmic reticulum Ca-ATPase and on kinetic data, we propose that CPZ uncouples an Na+ cycle from an Na+/K+ cycle in the pump. The Na+ cycle possibly involves transport through the recently characterized Na+-specific site...

  6. Regulation of growth hormone secretion by (pro)renin receptor

    OpenAIRE

    Tani, Yuji; Yamada, Shozo; Inoshita, Naoko; Hirata, Yukio; SHICHIRI, MASAYOSHI

    2015-01-01

    (Pro)renin receptor (PRR) has a single transmembrane domain that co-purifies with the vacuolar H+-ATPase (V-ATPase). In addition to its role in cellular acidification, V-ATPase has been implicated in membrane fusion and exocytosis via its Vo domain. Results from the present study show that PRR is expressed in pituitary adenoma cells and regulates growth hormone (GH) release via V-ATPase-induced cellular acidification. Positive PRR immunoreactivity was detected more often in surgically resecte...

  7. Non Invasive Surfactant Application

    Directory of Open Access Journals (Sweden)

    Hacer Yapicioglu

    2013-08-01

    Full Text Available Surfactant replacement therapy has been the mainstay of treatment for preterm infants with respiratory distress syndrome for more than twenty years. In recent years, the growing interest in noninvasive ventilation has led to novel approaches of administration. Non-invasive techniques of respiratory support were developed in order to reduce the adverse effects associated with ventilation via an endotracheal tube. Noninvasive surfactant administration technique during spontaneous breathing along with nasal continous positive airway pressure support successfully reduces the need for further respiratory support and bronchopulmonary dysplasia rate in very low birth weight infants. Here we reviewed the new approches ton surfactant administration. [Archives Medical Review Journal 2013; 22(4.000: 634-644

  8. Distribution of Na,K-ATPase α subunits in rat vestibular sensory epithelia

    NARCIS (Netherlands)

    Schuth, Olga; McLean, Will J; Eatock, Ruth Anne; Pyott, Sonja J

    2014-01-01

    The afferent encoding of vestibular stimuli depends on molecular mechanisms that regulate membrane potential, concentration gradients, and ion and neurotransmitter clearance at both afferent and efferent relays. In many cell types, the Na,K-ATPase (NKA) is essential for establishing hyperpolarized m

  9. Copper-transporting P-type ATPases use a unique ion-release pathway

    DEFF Research Database (Denmark)

    Andersson, Magnus; Mattle, Daniel; Sitsel, Oleg;

    2014-01-01

    Heavy metals in cells are typically regulated by PIB-type ATPases. The first structure of the class, a Cu(+)-ATPase from Legionella pneumophila (LpCopA), outlined a copper transport pathway across the membrane, which was inferred to be occluded. Here we show by molecular dynamics simulations...... that extracellular water solvated the transmembrane (TM) domain, results indicative of a Cu(+)-release pathway. Furthermore, a new LpCopA crystal structure determined at 2.8-Å resolution, trapped in the preceding E2P state, delineated the same passage, and site-directed-mutagenesis activity assays support...

  10. Nucleotide and amino acid sequences of pulmonary surfactant protein SP 18 and evidence for cooperation between SP 18 and SP 28-36 in surfactant lipid adsorption.

    OpenAIRE

    Hawgood, S; Benson, B J; Schilling, J; Damm, D; Clements, J. A.; White, R T

    1987-01-01

    Pulmonary surfactant is a lipid-rich material that promotes alveolar stability by lowering the surface tension at the air-fluid interface in the peripheral air spaces. The turnover of surfactant phospholipids in the alveolar space is fast, and several lines of evidence suggest there is rapid formation and replenishment of the phospholipid surface film during normal respiration. Specific proteins may regulate these dynamic surface properties. The predominant surfactant protein is a well-charac...

  11. BINDING ISOTHERMS SURFACTANT-PROTEINS

    OpenAIRE

    Elena Irina Moater; Cristiana Radulescu; Ionica Ionita

    2011-01-01

    The interactions between surfactants and proteins shows some similarities with interactions between surfactants and polymers, but the hydrophobic amphoteric nature of proteins and their secondary and tertiary structure components make them different from conventional polymer systems. Many studies from the past about surfactant - proteins bonding used the dialysis techniques. Other techniques used to determine the binding isotherm, included ultrafiltration, ultracentrifugation, potentiometry, ...

  12. [The ocular surfactant system and its relevance in the dry eye].

    Science.gov (United States)

    Schicht, M; Posa, A; Paulsen, F; Bräuer, L

    2010-11-01

    The amphiphilic surfactant proteins B (SP-B) and C (SP-C) are tightly bound to phospholipids. These proteins play important roles in maintaining the surface tension-lowering properties of pulmonary surfactant. Surfactant protein A (SP-A) and D (SP-D) are hydrophilic and are thought to have a role in recycling surfactant and, especially, in improving host defense in the lung. Moreover, SP-A supports the hydrophobic surfactant proteins B and during surfactant subtype assembly and inhibits the secretion of lamellar bodies into the alveolar space. During recent years surfactant proteins have also been detected at locations outside the lung such as the lacrimal apparatus. In this review, the latest information regarding SP function and regulation in the human lacrimal system, the tear film and the ocular surface is summarised with regard to dry eye, rheological and antimicrobial properties of the tear film, tear outflow, certain disease states and possible therapeutic perspectives. PMID:21077020

  13. Sizing up surfactant synthesis.

    Science.gov (United States)

    Han, SeungHye; Mallampalli, Rama K

    2014-08-01

    Phosphatidylcholine is generated through de novo synthesis and remodeling involving a lysophospholipid. In this issue of Cell Metabolism, research from the Shimizu lab (Harayama et al., 2014) demonstrates the highly selective enzymatic behavior of lysophospholipid acyltransferases. The authors present an enzymatic model for phosphatidylcholine molecular species diversification that impacts surfactant formation.

  14. Alteration in expression of the rat mitochondrial ATPase 6 gene during Pneumocystis carinii infection

    Directory of Open Access Journals (Sweden)

    Bartlett Marilyn S

    2001-06-01

    Full Text Available Abstract Background Pneumocystis carinii causes pneumonia in immunocompromised patients with a high morbidity and mortality rate, but the interaction between this organism and the host cell is not well understood. The purpose of this research was to study the response of host cells to P. carinii infection on a molecular level. Results The technique of mRNA differential display was used to detect genes whose expression may be affected by P. carinii infection. The nucleotide sequence of one differentially displayed DNA fragment was found to be identical to that of the rat mitochondrial ATPase 6 gene, which is a subunit of the F0F1-ATP synthase complex. A four-fold increase in expression of this gene was verified by Northern blot analysis of total RNA extracted from P. carinii-infected rat lung versus that from mock-infected rat lung. Localization of the cells containing ATPase 6 mRNA was accomplished by in situ hybridization. In sections of non-infected rat lung, these cells were found lining the distal parts of the respiratory tree and in apical areas of the alveoli. Histological location of these cells suggested that they were Clara cells and type II pneumocytes. This hypothesis was confirmed by co-localizing the mRNAs for ATPase 6 and surfactant protein B (SP-B to the same cells by two-color fluorescent in situ hybridization. Conclusions The ATPase 6 gene is over expressed during P. carinii infection, and type II pneumocytes and Clara cells are the cell types responsible for this over-expression.

  15. Rhamnolipids--next generation surfactants?

    Science.gov (United States)

    Müller, Markus Michael; Kügler, Johannes H; Henkel, Marius; Gerlitzki, Melanie; Hörmann, Barbara; Pöhnlein, Martin; Syldatk, Christoph; Hausmann, Rudolf

    2012-12-31

    The demand for bio-based processes and materials in the petrochemical industry has significantly increased during the last decade because of the expected running out of petroleum. This trend can be ascribed to three main causes: (1) the increased use of renewable resources for chemical synthesis of already established product classes, (2) the replacement of chemical synthesis of already established product classes by new biotechnological processes based on renewable resources, and (3) the biotechnological production of new molecules with new features or better performances than already established comparable chemically synthesized products. All three approaches are currently being pursued for surfactant production. Biosurfactants are a very promising and interesting substance class because they are based on renewable resources, sustainable, and biologically degradable. Alkyl polyglycosides are chemically synthesized biosurfactants established on the surfactant market. The first microbiological biosurfactants on the market were sophorolipids. Of all currently known biosurfactants, rhamnolipids have the highest potential for becoming the next generation of biosurfactants introduced on the market. Although the metabolic pathways and genetic regulation of biosynthesis are known qualitatively, the quantitative understanding relevant for bioreactor cultivation is still missing. Additionally, high product titers have been exclusively described with vegetable oil as sole carbon source in combination with Pseudomonas aeruginosa strains. Competitive productivity is still out of reach for heterologous hosts or non-pathogenic natural producer strains. Thus, on the one hand there is a need to gain a deeper understanding of the regulation of rhamnolipid production on process and cellular level during bioreactor cultivations. On the other hand, there is a need for metabolizable renewable substrates, which do not compete with food and feed. A sustainable bioeconomy approach should

  16. Roles of transmembrane segment M1 of Na(+),K (+)-ATPase and Ca (2+)-ATPase, the gatekeeper and the pivot

    DEFF Research Database (Denmark)

    Einholm, Anja P.; Andersen, Jens Peter; Vilsen, Bente

    2007-01-01

    In this review we summarize mutagenesis work on the structure-function relationship of transmembrane segment M1 in the Na(+),K(+)-ATPase and the sarco(endo)plasmic reticulum Ca(2+)-ATPase. The original hypothesis that charged residues in the N-terminal part of M1 interact with the transported...... cations can be rejected. On the other hand hydrophobic residues in the middle part of M1 turned out to play crucial roles in Ca(2+) interaction/occlusion in Ca(2+)-ATPase and K(+) interaction/occlusion in Na(+),K(+)-ATPase. Leu(65) of the Ca(2+)-ATPase and Leu(99) of the Na(+),K(+)-ATPase, located...... of the extracytoplasmic gate in both the Ca(2+)-ATPase and the Na(+),K(+)-ATPase. Udgivelsesdato: 2007-Dec...

  17. More Than a Monolayer: Relating Lung Surfactant Structure and Mechanics to Composition

    OpenAIRE

    Alonso, Coralie; Alig, Tim; Yoon, Joonsung; Bringezu, Frank; Warriner, Heidi; Zasadzinski, Joseph A.

    2004-01-01

    Survanta, a clinically used bovine lung surfactant extract, in contact with surfactant in the subphase, shows a coexistence of discrete monolayer islands of solid phase coexisting with continuous multilayer “reservoirs” of fluid phase adjacent to the air-water interface. Exchange between the monolayer, the multilayer reservoir, and the subphase determines surfactant mechanical properties such as the monolayer collapse pressure and surface viscosity by regulating solid-fluid coexistence. Grazi...

  18. Obstacle Effects on One-Dimensional Translocation of ATPase

    Institute of Scientific and Technical Information of China (English)

    WANG Xian-Ju; AI Bao-Quan; LIU Liang-Gang

    2002-01-01

    We apply a general random walk model to the study of the ATPase's one-dimensional translocation along obstacle biological environment, and show the effects of random obstacles on the ATPase translocation along single stranded DNA. We find that the obstacle environment can reduce the lifetime of ATPase lattice-bound state which results in the inhibition of ATPase activity. We also carry out the ranges of rate constant of ATPase unidirectonal translocation and bidirectional translocation. Our results are consistent with the experiments and relevant theoretical consideration, and can be used to explain some physiological phenomena.

  19. Molecular determinants of ATP-sensitive potassium channel MgATPase activity: diabetes risk variants and diazoxide sensitivity.

    Science.gov (United States)

    Fatehi, Mohammad; Carter, Chris R J; Youssef, Nermeen; Hunter, Beth E; Holt, Andrew; Light, Peter E

    2015-01-01

    ATP-sensitive K(+) (KATP) channels play an important role in insulin secretion. KATP channels possess intrinsic MgATPase activity that is important in regulating channel activity in response to metabolic changes, although the precise structural determinants are not clearly understood. Furthermore, the sulfonylurea receptor 1 (SUR1) S1369A diabetes risk variant increases MgATPase activity, but the molecular mechanisms remain to be determined. Therefore, we hypothesized that residue-residue interactions between 1369 and 1372, predicted from in silico modelling, influence MgATPase activity, as well as sensitivity to the clinically used drug diazoxide that is known to increase MgATPase activity. We employed a point mutagenic approach with patch-clamp and direct biochemical assays to determine interaction between residues 1369 and 1372. Mutations in residues 1369 and 1372 predicted to decrease the residue interaction elicited a significant increase in MgATPase activity, whereas mutations predicted to possess similar residue interactions to wild-type (WT) channels elicited no alterations in MgATPase activity. In contrast, mutations that were predicted to increase residue interactions resulted in significant decreases in MgATPase activity. We also determined that a single S1369K substitution in SUR1 caused MgATPase activity and diazoxide pharmacological profiles to resemble those of channels containing the SUR2A subunit isoform. Our results provide evidence, at the single residue level, for a molecular mechanism that may underlie the association of the S1369A variant with type 2 diabetes. We also show a single amino acid difference can account for the markedly different diazoxide sensitivities between channels containing either the SUR1 or SUR2A subunit isoforms. PMID:26181369

  20. Clouding behaviour in surfactant systems.

    Science.gov (United States)

    Mukherjee, Partha; Padhan, Susanta K; Dash, Sukalyan; Patel, Sabita; Mishra, Bijay K

    2011-02-17

    A study on the phenomenon of clouding and the applications of cloud point technology has been thoroughly discussed. The phase behaviour of clouding and various methods adopted for the determination of cloud point of various surfactant systems have been elucidated. The systems containing anionic, cationic, nonionic surfactants as well as microemulsions have been reviewed with respect to their clouding phenomena and the effects of structural variation in the surfactant systems have been incorporated. Additives of various natures control the clouding of surfactants. Electrolytes, nonelectrolytes, organic substances as well as ionic surfactants, when present in the surfactant solutions, play a major role in the clouding phenomena. The review includes the morphological study of clouds and their applications in the extraction of trace inorganic, organic materials as well as pesticides and protein substrates from different sources. PMID:21296314

  1. Epigenetic Regulation of Surfactant Protein A Gene (SP-A) Expression in Fetal Lung Reveals a Critical Role for Suv39h Methyltransferases during Development and Hypoxia ▿

    OpenAIRE

    Benlhabib, Houda; Mendelson, Carole R.

    2011-01-01

    SP-A gene expression is developmentally regulated in fetal lung. Cyclic AMP (cAMP) induction of SP-A expression in human fetal lung type II cells is O2 dependent and is mediated by increased binding of TTF-1/Nkx2.1 and NF-κB to a critical response element (TBE). This is associated with increased acetylation and decreased methylation of H3K9 at the TBE. Using chromatin immunoprecipitation analysis of fetal lung between 15.5 and 19.0 days of gestation, we observed that the developmental inducti...

  2. Pulmonary Surfactant: An Immunological Perspective

    OpenAIRE

    Chroneos, Zissis C.; Sever-Chroneos, Zvjezdana; Shepherd, Virginia L.

    2009-01-01

    Pulmonary surfactant has two crucial roles in respiratory function; first, as a biophysical entity it reduces surface tension at the air water interface, facilitating gas exchange and alveolar stability during breathing, and, second, as an innate component of the lung's immune system it helps maintain sterility and balance immune reactions in the distal airways. Pulmonary surfactant consists of 90% lipids and 10% protein. There are four surfactant proteins named SP-A, SP-B, SP-C, and SP-D; th...

  3. Adsorption of polyhydroxyl based surfactants

    OpenAIRE

    Matsson, Maria

    2005-01-01

    Adsorption on solid surfaces from solution is a fundamental property of a surfactant. It might even be the most important aspect of surfactant behavior, since it influences many applications, such as cleaning, detergency, dispersion, separation, flotation, and lubrication. Consequently, fundamental investigations of surfactant adsorption are relevant to many areas. The main aim of this thesis has been to elucidate the adsorption properties, primarily on the solid/water interface, of a particu...

  4. Gemini surfactants as gene carriers

    Directory of Open Access Journals (Sweden)

    Teresa Piskorska

    2010-03-01

    Full Text Available Gemini surfactants are a new class of amphiphilic compounds built from two classic surfactant moieties bound together by a special spacer group. These compounds appear to be excellent for creating complexes with DNA and are effective in mediating transfection. Thanks to their construction, DNA carrier molecules built from gemini surfactants are able to deliver genes to cells of almost any DNA molecule size, unattainable when using viral gene delivery systems. Moreover, they are much safer for living organisms.

  5. Proton Pumping and Slippage Dynamics of a Eukaryotic P-Type ATPase Studied at the Single-Molecule Level

    DEFF Research Database (Denmark)

    Veshaguri, Salome

    In all eukaryotes the plasma membrane potential and secondary transport systems are energized by P-type ATPases whose regulation however remains poorly understood. Here we monitored at the single-molecule level the activity of the prototypic proton pumping P-type ATPase Arabidopsis thaliana isoform......-intuitively increased the time spent pumping. Allosteric regulation by pH gradients affected the time spent pumping and the leakage probability but surprisingly not the intrinsic pumping rate. Interestingly, ATP dilution decreased the ATP hydrolysis rates in bulk while single molecule data revealed that intrinsic...

  6. The effect of exercise and beta2-adrenergic stimulation on glutathionylation and function of the Na,K-ATPase in human skeletal muscle

    DEFF Research Database (Denmark)

    Juel, Carsten; Hostrup, Morten; Bangsbo, Jens

    2015-01-01

    Potassium and sodium displacements across the skeletal muscle membrane during exercise may cause fatigue and are in part controlled by the Na,K-ATPase. Regulation of the Na,K-ATPase is therefore important for muscle functioning. We investigated the effect of oxidative stress (glutathionylation......) on Na,K-ATPase activity. Ten male subjects performed three bouts of 4-min submaximal exercise followed by intense exercise to exhaustion with and without beta2-adrenergic stimulation with terbutaline. Muscle biopsies were obtained from m. vastus lateralis at rest (Control samples) and at exhaustion....... In vitro glutathionylation reduced (P beta...

  7. Surfactant phosphatidylcholine metabolism and surfactant function in preterm, ventilated lambs

    Energy Technology Data Exchange (ETDEWEB)

    Jobe, A.H.; Ikegami, M.; Seidner, S.R.; Pettenazzo, A.; Ruffini, L.

    1989-02-01

    Preterm lambs were delivered at 138 days gestational age and ventilated for periods up to 24 h in order to study surfactant metabolism and surfactant function. The surfactant-saturated phosphatidylcholine pool in the alveolar wash was 13 +/- 4 mumol/kg and did not change from 10 min to 24 h after birth. Trace amounts of labeled natural sheep surfactant were mixed with fetal lung fluid at birth. By 24 h, 80% of the label had become lung-tissue-associated, yet there was no loss of label from phosphatidylcholine in the lungs when calculated as the sum of the lung tissue plus alveolar wash. De novo synthesized phosphatidylcholine was labeled with choline given by intravascular injection at 1 h of age. Labeled phosphatidylcholine accumulated in the lung tissue linearly to 24 h, and the labeled phosphatidylcholine moved through lamellar body to alveolar pools. The turnover time for alveolar phosphatidylcholine was estimated to be about 13 h, indicating an active metabolic pool. A less surface-active surfactant fraction recovered as a supernatant after centrifugation of the alveolar washes at 40,000 x g increased from birth to 10 min of ventilation, but no subsequent changes in the distribution of surfactant phosphatidylcholine in surfactant fractions occurred. The results were consistent with recycling pathway(s) that maintained surface-active surfactant pools in preterm ventilated lambs.

  8. Surfactant phosphatidylcholine metabolism and surfactant function in preterm, ventilated lambs

    International Nuclear Information System (INIS)

    Preterm lambs were delivered at 138 days gestational age and ventilated for periods up to 24 h in order to study surfactant metabolism and surfactant function. The surfactant-saturated phosphatidylcholine pool in the alveolar wash was 13 +/- 4 mumol/kg and did not change from 10 min to 24 h after birth. Trace amounts of labeled natural sheep surfactant were mixed with fetal lung fluid at birth. By 24 h, 80% of the label had become lung-tissue-associated, yet there was no loss of label from phosphatidylcholine in the lungs when calculated as the sum of the lung tissue plus alveolar wash. De novo synthesized phosphatidylcholine was labeled with choline given by intravascular injection at 1 h of age. Labeled phosphatidylcholine accumulated in the lung tissue linearly to 24 h, and the labeled phosphatidylcholine moved through lamellar body to alveolar pools. The turnover time for alveolar phosphatidylcholine was estimated to be about 13 h, indicating an active metabolic pool. A less surface-active surfactant fraction recovered as a supernatant after centrifugation of the alveolar washes at 40,000 x g increased from birth to 10 min of ventilation, but no subsequent changes in the distribution of surfactant phosphatidylcholine in surfactant fractions occurred. The results were consistent with recycling pathway(s) that maintained surface-active surfactant pools in preterm ventilated lambs

  9. Maintained inspiratory activity during proportional assist ventilation in surfactant-depleted cats early after surfactant instillation: phrenic nerve and pulmonary stretch receptor activity

    Directory of Open Access Journals (Sweden)

    Schaller Peter

    2006-03-01

    Full Text Available Abstract Background Inspiratory activity is a prerequisite for successful application of patient triggered ventilation such as proportional assist ventilation (PAV. It has recently been reported that surfactant instillation increases the activity of slowly adapting pulmonary stretch receptors (PSRs followed by a shorter inspiratory time (Sindelar et al, J Appl Physiol, 2005 [Epub ahead of print]. Changes in lung mechanics, as observed in preterm infants with respiratory distress syndrome and after surfactant treatment, might therefore influence the inspiratory activity when applying PAV early after surfactant treatment. Objective To investigate the regulation of breathing and ventilatory response in surfactant-depleted young cats during PAV and during continuous positive airway pressure (CPAP early after surfactant instillation in relation to phrenic nerve activity (PNA and the activity of PSRs. Methods Seven anesthetized, endotracheally intubated young cats were exposed to periods of CPAP and PAV with the same end-expiratory pressure (0.2–0.5 kPa before and after lung lavage and after surfactant instillation. PAV was set to compensate for 75% of the lung elastic recoil. Results Tidal volume and respiratory rate were higher with lower PaCO2 and higher PaO2 during PAV than during CPAP both before and after surfactant instillation (p Conclusion PSR activity and the control of breathing are maintained during PAV in surfactant-depleted cats early after surfactant instillation, with a higher ventilatory response and a lower breathing effort than during CPAP.

  10. Surfactant Protein-D Inhibits Lung Inflammation Caused by Ventilation in Premature Newborn Lambs

    OpenAIRE

    Sato, Atsuyasu; Jeffrey A Whitsett; Scheule, Ronald K.; Ikegami, Machiko

    2010-01-01

    Rationale: Premature newborns frequently require manual ventilation for resuscitation during which lung injury occurs. Although surfactant protein (SP)-D regulates pulmonary inflammation, SP-D levels are low in the preterm lung. Commercial surfactants for treatment of respiratory distress syndrome do not contain SP-D.

  11. Interaction of nonionic surfactant AEO9 with ionic surfactants

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-guo; YIN Hong

    2005-01-01

    The interaction in two mixtures of a nonionic surfactant AEO9 (C12H25O(CH2CH2O)9H) and different ionic surfactants was investigated. The two mixtures were AEO9/sodium dodecyl sulfate (SDS) and AEO9/cetyltrimethylammonium bromide (CTAB) at molar fraction of AEO9, αAEO9 =0.5. The surface properties of the surfactants, critical micelle concentration (CMC),effectiveness of surface tension reduction (γCMC), maximum surface excess concentration (Гmax) and minimum area per molecule at the air/solution interface (Amin) were determined for both individual surfactants and their mixtures. The significant deviations from ideal behavior (attractive interactions) of the nonionic/ionic surfactant mixtures were determined. Mixtures of both AEO9/SDS and AEO9/CTAB exhibited synergism in surface tension reduction efficiency and mixed micelle formation, but neither exhibited synergism in surface tension reduction effectiveness.

  12. Inhibition of K+ Transport through Na+, K+-ATPase by Capsazepine: Role of Membrane Span 10 of the α-Subunit in the Modulation of Ion Gating

    Science.gov (United States)

    Mahmmoud, Yasser A.; Shattock, Michael; Cornelius, Flemming; Pavlovic, Davor

    2014-01-01

    Capsazepine (CPZ) inhibits Na+,K+-ATPase-mediated K+-dependent ATP hydrolysis with no effect on Na+-ATPase activity. In this study we have investigated the functional effects of CPZ on Na+,K+-ATPase in intact cells. We have also used well established biochemical and biophysical techniques to understand how CPZ modifies the catalytic subunit of Na+,K+-ATPase. In isolated rat cardiomyocytes, CPZ abolished Na+,K+-ATPase current in the presence of extracellular K+. In contrast, CPZ stimulated pump current in the absence of extracellular K+. Similar conclusions were attained using HEK293 cells loaded with the Na+ sensitive dye Asante NaTRIUM green. Proteolytic cleavage of pig kidney Na+,K+-ATPase indicated that CPZ stabilizes ion interaction with the K+ sites. The distal part of membrane span 10 (M10) of the α-subunit was exposed to trypsin cleavage in the presence of guanidinum ions, which function as Na+ congener at the Na+ specific site. This effect of guanidinium was amplified by treatment with CPZ. Fluorescence of the membrane potential sensitive dye, oxonol VI, was measured following addition of substrates to reconstituted inside-out Na+,K+-ATPase. CPZ increased oxonol VI fluorescence in the absence of K+, reflecting increased Na+ efflux through the pump. Surprisingly, CPZ induced an ATP-independent increase in fluorescence in the presence of high extravesicular K+, likely indicating opening of an intracellular pathway selective for K+. As revealed by the recent crystal structure of the E1.AlF4-.ADP.3Na+ form of the pig kidney Na+,K+-ATPase, movements of M5 of the α-subunit, which regulate ion selectivity, are controlled by the C-terminal tail that extends from M10. We propose that movements of M10 and its cytoplasmic extension is affected by CPZ, thereby regulating ion selectivity and transport through the K+ sites in Na+,K+-ATPase. PMID:24816799

  13. Genetics Home Reference: surfactant dysfunction

    Science.gov (United States)

    ... and decreased surfactant function. The loss of functional surfactant raises surface tension in the alveoli, causing severe breathing problems. The combination of SP-B and SP-C dysfunction may explain why the signs and symptoms of SP-B deficiency ... dysfunction sometimes called SP-C dysfunction. These mutations ...

  14. Novel Approaches to Surfactant Administration

    OpenAIRE

    Samir Gupta; Donn, Steven M.

    2012-01-01

    Surfactant replacement therapy has been the mainstay of treatment for preterm infants with respiratory distress syndrome for more than twenty years. For the most part, surfactant is administered intratracheally, followed by mechanical ventilation. In recent years, the growing interest in noninvasive ventilation has led to novel approaches of administration. This paper will review these techniques and the associated clinical evidence.

  15. Fingerprinting differential active site constraints of ATPases

    OpenAIRE

    Hacker, Stephan M.; Hardt, Norman; Buntru, Alexander; Pagliarini, Dana; Möckel, Martin; Mayer, Thomas U; Scheffner, Martin; Hauck, Christof R.; Marx, Andreas

    2013-01-01

    The free energy provided by adenosine triphosphate (ATP) hydrolysis is central to many cellular processes and, therefore, the number of enzymes utilizing ATP as a substrate is almost innumerable. Modified analogues of ATP are a valuable means to understand the biological function of ATPases. Although these enzymes have evolved towards binding to ATP, large differences in active site architectures were found. In order to systematically access the specific active site constraints of different A...

  16. Evolution of Plant P-Type ATPases

    OpenAIRE

    Pedersen, Christian N. S.; Kristian B. Axelsen; Harper, Jeffrey F.; Palmgren, Michael G.

    2012-01-01

    Five organisms having completely sequenced genomes and belonging to all major branches of green plants (Viridiplantae) were analyzed with respect to their content of P-type ATPases encoding genes. These were the chlorophytes Ostreococcus tauri and Chlamydomonas reinhardtii, and the streptophytes Physcomitrella patens (a non-vascular moss), Selaginella moellendorffii (a primitive vascular plant), and Arabidopsis thaliana (a model flowering plant). Each organism contained sequences for all five...

  17. Vacuolar-ATPase (V-ATPase) Mediates Progesterone-Induced Uterine Fluid Acidification in Rats.

    Science.gov (United States)

    Karim, Kamarulzaman; Giribabu, Nelli; Muniandy, Sekaran; Salleh, Naguib

    2016-04-01

    We hypothesized that progesterone-induced decrease in uterine fluid pH involves V-ATPase. In this study, expression and functional activity of V-ATPase in uterus were investigated under progesterone influence. Ovariectomized adult female rats received subcutaneous injection of estradiol-17β (1 µg/kg/day) or progesterone (20 mg/kg/day) for 3 days or 3 days estradiol-17β followed by 3 days vehicle, progesterone, or estradiol-17β plus progesterone. Mifepristone, a progesterone receptor blocker, was concomitantly given to the rats which received progesterone. A day after last injection, rate of uterine fluid secretion, its HCO3 (-) concentration, and pH were determined via in vivo uterine perfusion in rats under anesthesia. V-ATPase inhibitor, bafilomycin, was introduced into the perfusion buffer, and changes in these parameters were observed. Expression of V-ATPase A1 and B1/2 proteins and mRNAs in uterus were quantified by Western blotting and real-time PCR, respectively. Distribution of these proteins was observed by immunohistochemistry. Our findings showed that under progesterone influence, uterine fluid secretion rate, HCO3 (-) concentration, and pH were significantly reduced. Administration of bafilomycin did not cause significant changes in fluid secretion rate; however, HCO3 (-) concentration and pH were significantly elevated. In parallel with these changes, expression of V-ATPase A1 and B1/2 proteins and mRNAs were significantly increased with these proteins highly distributed in uterine luminal and glandular epithelia. In conclusion, increased expression and functional activity of V-ATPase were most likely responsible for the decreased in uterine fluid pH observed under progesterone influence. PMID:26403527

  18. Vacuolar-ATPase (V-ATPase) Mediates Progesterone-Induced Uterine Fluid Acidification in Rats.

    Science.gov (United States)

    Karim, Kamarulzaman; Giribabu, Nelli; Muniandy, Sekaran; Salleh, Naguib

    2016-04-01

    We hypothesized that progesterone-induced decrease in uterine fluid pH involves V-ATPase. In this study, expression and functional activity of V-ATPase in uterus were investigated under progesterone influence. Ovariectomized adult female rats received subcutaneous injection of estradiol-17β (1 µg/kg/day) or progesterone (20 mg/kg/day) for 3 days or 3 days estradiol-17β followed by 3 days vehicle, progesterone, or estradiol-17β plus progesterone. Mifepristone, a progesterone receptor blocker, was concomitantly given to the rats which received progesterone. A day after last injection, rate of uterine fluid secretion, its HCO3 (-) concentration, and pH were determined via in vivo uterine perfusion in rats under anesthesia. V-ATPase inhibitor, bafilomycin, was introduced into the perfusion buffer, and changes in these parameters were observed. Expression of V-ATPase A1 and B1/2 proteins and mRNAs in uterus were quantified by Western blotting and real-time PCR, respectively. Distribution of these proteins was observed by immunohistochemistry. Our findings showed that under progesterone influence, uterine fluid secretion rate, HCO3 (-) concentration, and pH were significantly reduced. Administration of bafilomycin did not cause significant changes in fluid secretion rate; however, HCO3 (-) concentration and pH were significantly elevated. In parallel with these changes, expression of V-ATPase A1 and B1/2 proteins and mRNAs were significantly increased with these proteins highly distributed in uterine luminal and glandular epithelia. In conclusion, increased expression and functional activity of V-ATPase were most likely responsible for the decreased in uterine fluid pH observed under progesterone influence.

  19. Proton pump inhibitors as anti vacuolar-ATPases drugs: a novel anticancer strategy

    OpenAIRE

    Fais Stefano; Citro Gennaro; Spugnini Enrico P

    2010-01-01

    Abstract The vacuolar ATPases are ATP-dependent proton pumps whose functions include the acidification of intracellular compartments and the extrusion of protons through the cell cytoplasmic membrane. These pumps play a pivotal role in the regulation of cell pH in normal cells and, to a much greater extent, in tumor cells. In fact, the glucose metabolism in hypoxic conditions by the neoplasms leads to an intercellular pH drift towards acidity. The acid microenvironment is modulated through th...

  20. Carnosine prevents necrotic and apoptotic death of rat thymocytes via ouabain sensitive Na/K-ATPase

    OpenAIRE

    Smolyaninova, Larisa V.; Dergalev, Alexander A.; Kulebyakin, Konstantin Y.; Carpenter, David O.; Boldyrev, Alexander A.

    2012-01-01

    It is known that ouabain, a selective inhibitor of Na/K-ATPase, can cause not only activation of signal cascades, which regulate the cell viability, but also can cause free radical accumulation, which can evoke the oxidative stress. We have shown that nanomolar concentrations of ouabain result in the temporary increase in the level of intracellular free radicals but the millimolar concentration of ouabain induces a stable intracellular accumulation of free radicals in rat thymocytes. The incr...

  1. The Leishmania donovani lipophosphoglycan excludes the vesicular proton-ATPase from phagosomes by impairing the recruitment of synaptotagmin V.

    OpenAIRE

    Vinet, Adrien F.; Mitsunori Fukuda; Turco, Salvatore J.; Albert Descoteaux

    2009-01-01

    We recently showed that the exocytosis regulator Synaptotagmin (Syt) V is recruited to the nascent phagosome and remains associated throughout the maturation process. In this study, we investigated the possibility that Syt V plays a role in regulating interactions between the phagosome and the endocytic organelles. Silencing of Syt V by RNA interference revealed that Syt V contributes to phagolysosome biogenesis by regulating the acquisition of cathepsin D and the vesicular proton-ATPase. In ...

  2. Extracellular galectin-3 programs multidrug resistance through Na+/K+-ATPase and P-glycoprotein signaling.

    Science.gov (United States)

    Harazono, Yosuke; Kho, Dhong Hyo; Balan, Vitaly; Nakajima, Kosei; Hogan, Victor; Raz, Avraham

    2015-08-14

    Galectin-3 (Gal-3, LGALS3) is a pleotropic versatile, 29-35 kDa chimeric gene product, and involved in diverse physiological and pathological processes, including cell growth, homeostasis, apoptosis, pre-mRNA splicing, cell-cell and cell-matrix adhesion, cellular polarity, motility, adhesion, activation, differentiation, transformation, signaling, regulation of innate/adaptive immunity, and angiogenesis. In multiple diseases, it was found that the level of circulating Gal-3 is markedly elevated, suggesting that Gal-3-dependent function is mediated by specific interaction with yet an unknown ubiquitous cell-surface protein. Recently, we showed that Gal-3 attenuated drug-induced apoptosis, which is one of the mechanisms underlying multidrug resistance (MDR). Here, we document that MDR could be mediated by Gal-3 interaction with the house-keeping gene product e.g., Na+/K+-ATPase, and P-glycoprotein (P-gp). Gal-3 interacts with Na+/K+-ATPase and induces the phosphorylation of P-gp. We also find that Gal-3 binds P-gp and enhances its ATPase activity. Furthermore Gal-3 antagonist suppresses this interaction and results in a decrease of the phosphorylation and the ATPase activity of P-gp, leading to an increased sensitivity to doxorubicin-mediated cell death. Taken together, these findings may explain the reported roles of Gal-3 in diverse diseases and suggest that a combined therapy of inhibitors of Na+/K+-ATPase and Gal-3, and a disease specific drug(s) might be superior to a single therapeutic modality.

  3. Surfactant enhanced volumetric sweep efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Harwell, J.H.; Scamehorn, J.F.

    1989-10-01

    Surfactant-enhanced waterflooding is a novel EOR method aimed to improve the volumetric sweep efficiencies in reservoirs. The technique depends upon the ability to induce phase changes in surfactant solutions by mixing with surfactants of opposite charge or with salts of appropriate type. One surfactant or salt solution is injected into the reservoir. It is followed later by injection of another surfactant or salt solution. The sequence of injections is arranged so that the two solutions do not mix until they are into the permeable regions well away from the well bore. When they mix at this point, by design they form a precipitate or gel-like coacervate phase, plugging this permeable region, forcing flow through less permeable regions of the reservoir, improving sweep efficiency. The selectivity of the plugging process is demonstrated by achieving permeability reductions in the high permeable regions of Berea sandstone cores. Strategies were set to obtain a better control over the plug placement and the stability of plugs. A numerical simulator has been developed to investigate the potential increases in oil production of model systems. Furthermore, the hardness tolerance of anionic surfactant solutions is shown to be enhanced by addition of monovalent electrolyte or nonionic surfactants. 34 refs., 32 figs., 8 tabs.

  4. MICROBIAL SURFACTANTS IN ENVIRONMENTAL TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    T. P. Pirog

    2015-08-01

    Full Text Available It was shown literature and own experimental data concerning the use of microbial surface active glycolipids (rhamno-, sophoro- and trehalose lipids and lipopeptides for water and soil purification from oil and other hydrocarbons, removing toxic heavy metals (Cu2+, Cd2+, Ni2+, Pb2+, degradation of complex pollution (oil and other hydrocarbons with heavy metals, and the role of microbial surfactants in phytoremediation processes. The factors that limit the use of microbial surfactants in environmental technologies are discussed. Thus, at certain concentrations biosurfactant can exhibit antimicrobial properties and inhibit microorganisms destructing xenobiotics. Microbial biodegradability of surfactants may also reduce the effectiveness of bioremediation. Development of effective technologies using microbial surfactants should include the following steps: monitoring of contaminated sites to determine the nature of pollution and analysis of the autochthonous microbiota; determining the mode of surfactant introduction (exogenous addition of stimulation of surfactant synthesis by autochthonous microbiota; establishing an optimal concentration of surfactant to prevent exhibition of antimicrobial properties and rapid biodegradation; research both in laboratory and field conditions.

  5. INFLUENCE OF CULTIVATION CONDITIONS ON ANTIMICROBIAL PROPERTIES OF Nocardia vaccinii ІMV B-7405 SURFACTANTS

    Directory of Open Access Journals (Sweden)

    Т. P.

    2016-02-01

    Full Text Available The aim of the work was investigation of antimicrobial effect of Nocardia vaccinii ІMV B-7405 surfactants, synthesized in various culture conditions, against phytopathogenic bacteria of genera Pseudomonas, Xanthomonas, and Pectobacterium. The antimicrobial properties of surfactant were determined in suspension culture by Koch method and also by index of the minimum inhibitory concentration. Surfactants were extracted from supernatant of cultural liquid using mixture of chloroform and methanol (2: 1. It has been established that antimicrobial properties of surfactants depend on the nature of the carbon source in the medium (refined vegetable oil, as well as waste oil after frying potatoes and meat, glycerol, the duration of the cultivation (5 and 7 days, the degree of purification of the surfactants (the supernatant of cultural liquid, purified surfactants solution and the test culture type. The highest antimicrobial activity was exhibited by purified surfactants solutions synthesized by microorganisms on the waste oil after potato frying (decreased survival of pathogenic bacteria by 50–95%, and surfactants formed within 7 days of strain B-7405 ІMV cultivation on all test substrates (minimum inhibitory concentration 7–40 µg/mL, which is several times lower than the surfactant, synthesized for 5 days. These data are promising for the development of ecologically friendly biopreparations for the regulation of the number of phytopathogenic bacteria.

  6. Isolation and characterization of a specific endogenous Na/sup +/, K/sup +/-ATPase inhibitor from bovine adrenal

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, M.; Lam, T.T.; Inagami, T.

    1988-06-14

    In order to identify a specific endogenous Na/sup +/,K/sup +/-ATPase inhibitor which could possibly be related to salt-dependent hypertension, the authors looked for substances in the methanol extract of bovine whole adrenal which show all of the following properties: (i) inhibitory activity for Na/sup +/,K/sup +/-ATPase; (ii) competitive displacing activity against (/sup 3/H)ouabain binding to the enzyme; (iii) inhibitory activity for /sup 86/Rb uptake into intact human erythrocytes; and (iv) cross-reactivity with sheep anti-digoxin-specific antibody. After stepwise fractionation of the methanol extract of bovine adrenal glands by chromatography on a C/sub 18/ open column, a 0-15% acetonitrile fraction was fractionated by high-performance liquid chromatography on a Zorbax octadecylsilane column. One of the most active fractions in 0-15% acetonitrile was found to exhibit all of the four types of the activities. It was soluble in water and was distinct from various substances which have been known to inhibit Na/sup +/,K/sup +/-ATPase. These results strongly suggest that this water-soluble nonpeptidic Na/sup +/,K/sup +/-ATPase inhibitor may be a specific endogenous regulator for the ATPase.

  7. Structural studies of the vacuolar membrane ATPase from Neurospora crassa and comparison with the tonoplast membrane ATPase and Zea mays

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, E.J.; Mandala, S.; Taiz, L.; Bowman, B.J.

    1986-01-01

    The H translocating ATPase located on vacuolar membranes of Neurospora crassa was partially purified by solubilization in two detergents, Triton X-100 and N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate, followed by centrifugation on sucrose density gradients. Two polypeptides of M/sub r/ approx. = 70,000 and approx. = 62,000 consistently migrated with activity, along with several minor bands of lower molecular weight. Radioactively labeled inhibitors of ATPase activity, N-( UC)ethylmaleimide and 7-chloro-4-nitro( UC)benzo-2-oxa-1,3-diazole, labeled the M/sub r/ approx. = 70,000 polypeptide; this labeling was reduced in the presence of ATP. N,N'-( UC)dicyclohexylcarbodiimide labeled a polypeptide of M/sub r/ approx. = 15,000. Estimation of the functional size of the vacuolar membrane ATPase by radiation inactivation gave a value of M/sub r/ 5.2 x 10V, 10-15% larger than the mitochondrial ATPase. The Neurospora vacuolar ATPase showed no crossreactivity with antiserum to plasma membrane or mitochrondrial ATPase but stongly crossreacted with antiserum against a polypeptide of M/sub r/ approx. = 70,000 associated with the tonoplast ATPase of corn coleoptiles. These results suggest that fungal and plant vacuolar ATPases may be large multisubunit complexes, somewhat similar to, but immunologically distinct from, known F0F1 ATPases.

  8. Effects of type 1 diabetes, sprint training and sex on skeletal muscle sarcoplasmic reticulum Ca2+ uptake and Ca2+-ATPase activity.

    Science.gov (United States)

    Harmer, A R; Ruell, P A; Hunter, S K; McKenna, M J; Thom, J M; Chisholm, D J; Flack, J R

    2014-02-01

    Calcium cycling is integral to muscle performance during the rapid muscle contraction and relaxation of high-intensity exercise. Ca(2+) handling is altered by diabetes mellitus, but has not previously been investigated in human skeletal muscle. We investigated effects of high-intensity exercise and sprint training on skeletal muscle Ca(2+) regulation among men and women with type 1 diabetes (T1D, n = 8, 3F, 5M) and matched non-diabetic controls (CON, n = 8, 3F, 5M). Secondarily, we examined sex differences in Ca(2+) regulation. Subjects undertook 7 weeks of three times-weekly cycle sprint training. Before and after training, performance was measured, and blood and muscle were sampled at rest and after high-intensity exercise. In T1D, higher Ca(2+)-ATPase activity (+28%) and Ca(2+) uptake (+21%) than in CON were evident across both times and days (P women across both times and days. Intense exercise did not alter Ca(2+)-ATPase activity in T1D or CON. However, sex differences were evident: Ca(2+)-ATPase was reduced with exercise among men but increased among women across both days (time × sex interaction, P Sprint training reduced Ca(2+)-ATPase (-8%, P Sprint training reduced Ca(2+)-ATPase in T1D and CON. Sex differences in Ca(2+)-ATPase activity were evident and may be linked with fibre type proportion differences.

  9. Treatment with exogenous surfactant stimulates endogenous surfactant synthesis in premature infants with respiratory distress syndrome

    NARCIS (Netherlands)

    Bunt, JEH; Carnielli, VP; Janssen, DJ; Wattimena, JLD; Hop, WC; Sauer, PJ; Zimmermann, LJI

    2000-01-01

    Objective: Treatment of preterm infants with respiratory distress syndrome (RDS) with exogenous surfactant has greatly improved clinical outcome. Some infants require multiple doses, and it has not been studied whether these large amounts of exogenous surfactant disturb endogenous surfactant metabol

  10. Biodegradation of surfactant bearing wastes

    International Nuclear Information System (INIS)

    In nuclear industry, during decontamination of protective wears and contaminated materials, detergents are employed to bring down the level of radioactive contamination within safe limits. However, the surfactant present in these wastes interferes in the chemical treatment process, reducing the decontamination factor. Biodegradation is an efficient and ecologically safe method for surfactant removal. A surfactant degrading culture was isolated and inoculated separately into simulated effluents containing 1% yeast extract and 5-100 ppm sodium lauryl sulphate (SLS) and 1% yeast extract and 5-100 ppm of commercial detergent respectively. The growth of the bacterial culture and the degradation characteristics of the surfactant in the above effluents were monitored under both dynamic and static conditions. (author). 6 refs., 6 figs., 1 tab

  11. Electrochemical Oscillations Induced by Surfactants

    Institute of Scientific and Technical Information of China (English)

    翟俊红; 贺占博

    2003-01-01

    A new type of electrochemical oscillation induced by surfactant was observed in experiments. The electrochemical system is a Daniell cell with a copper rod in CuSO4 aqueous and an aluminum rod in Al(NO3)3 aqueous as electrodes. The surfactants are CTAB, TX-100, SLS. The addition of trace surfactant solution by a micro-syringe made the original monotonously changing electrochemical system produce obvious periodic phenomena. At the mean time, the copper ion selective electrode and Hg2SO4 reference electrode were used to monitor the copper electrode reaction and determine its rate constant k of first order reaction. According to the experimental results of electrode reaction kinetics, the possible mechanism was found to be the polarization induced from the directional adsorption of trace surfactant on the electrode surface. That is the electrochemical oscillations.

  12. Cell-specific modulation of surfactant proteins by ambroxol treatment.

    Science.gov (United States)

    Seifart, Carola; Clostermann, Ursula; Seifart, Ulf; Müller, Bernd; Vogelmeier, Claus; von Wichert, Peter; Fehrenbach, Heinz

    2005-02-15

    Ambroxol [trans-4-(2-amino-3,5-dibromobenzylamino)-cyclohexanole hydrochloride], a mucolytic agent, was postulated to provide surfactant stimulatory properties and was previously used to prevent surfactant deficiency. Currently, the underlying mechanisms are not exactly clear. Because surfactant homeostasis is regulated by surfactant-specific proteins (SP), we analyzed protein amount and mRNA expression in whole lung tissue, isolated type II pneumocytes and bronchoalveolar lavage of Sprague-Dawley rats treated with ambroxol i.p. (75 mg/kg body weight, twice a day [every 12 h]). The methods used included competitive polymerase chain reaction (RT-PCR), Northern blotting, Western immunoblotting, and immunohistochemistry. In isolated type II pneumocytes of ambroxol-treated animals, SP-C protein and mRNA content were increased, whereas SP-A, -B and -D protein, mRNA, and immunoreactivity remained unaffected. However, ambroxol treatment resulted in a significant increase of SP-B and in a decrease of SP-D in whole lung tissue with enhanced immunostaining for SP-B in Clara Cells. SP-A and SP-D were significantly decreased in BAL fluid of ambroxol-treated animals. The data suggest that surfactant protein expression is modulated in a cell-specific manner by ambroxol, as type II pneumocytes exhibited an increase in SP-C, whereas Clara cells exhibited an increase in the immunoreactivity for SP-B accounting for the increased SP-B content of whole lung tissue. The results indicate that ambroxol may exert its positive effects, observed in the treatment of diseases related to surfactant deficiency, via modulation of surfactant protein expression.

  13. Cell-specific modulation of surfactant proteins by ambroxol treatment

    International Nuclear Information System (INIS)

    Ambroxol [trans-4-(2-amino-3,5-dibromobenzylamino)-cyclohexanole hydrochloride], a mucolytic agent, was postulated to provide surfactant stimulatory properties and was previously used to prevent surfactant deficiency. Currently, the underlying mechanisms are not exactly clear. Because surfactant homeostasis is regulated by surfactant-specific proteins (SP), we analyzed protein amount and mRNA expression in whole lung tissue, isolated type II pneumocytes and bronchoalveolar lavage of Sprague-Dawley rats treated with ambroxol i.p. (75 mg/kg body weight, twice a day [every 12 h]). The methods used included competitive polymerase chain reaction (RT-PCR), Northern blotting, Western immunoblotting, and immunohistochemistry. In isolated type II pneumocytes of ambroxol-treated animals, SP-C protein and mRNA content were increased, whereas SP-A, -B and -D protein, mRNA, and immunoreactivity remained unaffected. However, ambroxol treatment resulted in a significant increase of SP-B and in a decrease of SP-D in whole lung tissue with enhanced immunostaining for SP-B in Clara Cells. SP-A and SP-D were significantly decreased in BAL fluid of ambroxol-treated animals. The data suggest that surfactant protein expression is modulated in a cell-specific manner by ambroxol, as type II pneumocytes exhibited an increase in SP-C, whereas Clara cells exhibited an increase in the immunoreactivity for SP-B accounting for the increased SP-B content of whole lung tissue. The results indicate that ambroxol may exert its positive effects, observed in the treatment of diseases related to surfactant deficiency, via modulation of surfactant protein expression

  14. Persurf, a New Method to Improve Surfactant Delivery: A Study in Surfactant Depleted Rats

    OpenAIRE

    Burkhardt, Wolfram; Kraft, Stephan; Ochs, Matthias; Proquitté, Hans; Mense, Lars; Rüdiger, Mario

    2012-01-01

    Purpose Exogenous surfactant is not very effective in adults with ARDS, since surfactant does not reach atelectatic alveoli. Perfluorocarbons (PFC) can recruit atelectatic areas but do not replace impaired endogenous surfactant. A surfactant-PFC-mixture could combine benefits of both therapies. The aim of the proof-of-principal-study was to produce a PFC-in-surfactant emulsion (Persurf) and to test in surfactant depleted Wistar rats whether Persurf achieves I.) a more homogenous pulmonary dis...

  15. Trypsin-induced ATPase activity in potato mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Jung, D.W.; Laties, G.G.

    1976-04-01

    Potato mitochondria (Solanum tuberosum var. Russet Burbank), which readily phosphorylate ADP in oxidative phosphorylation, show low levels of ATPase activity which is stimulated neither by Mg/sup 2 +/, 2,4-dinitrophenol, incubation with respiratory substrates, nor disruption by sonication or treatment with Triton X-100, individually or in concert. Treatment of disrupted potato mitochondria with trypsin stimulates Mg/sup 2 +/-dependent, oligomycin-sensitive ATPase activity 10- to 15-fold, suggesting the presence of an ATPase inhibitor protein. Trypsin-induced ATPase activity was unaffected by uncoupler. Oligomycin-sensitive ATPase activity decreases as exposure to trypsin is increased. Incubation at alkaline pH or heating at 60/sup 0/C for 2 minutes also activates ATPase of sonicated potato mitochondria. Disruption of cauliflower (Brassica oleracea), red sweet potato (Ipomoea batatas), and carrot (Daucus carota) mitochondria increases ATPase activity, which is further enhanced by treatment with trypsin. The significance of the tight association of the inhibitor protein and ATPase in potato mitochondria is not clear.

  16. Purification and Properties of an ATPase from Sulfolobus solfataricus

    Science.gov (United States)

    Hochstein, Lawrence I.; Stan-Lotter, Helga

    1992-01-01

    A sulfite-activated ATPase isolated from Sulfolobus solfataricus had a relative molecular mass of 370,000. It was composed of three subunits whose relative molecular masses were 63,000, 48,000, and 24,000. The enzyme was inhibited by the vacuolar ATPase inhibitors nitrate and N-ethylmaleimide; 4-chloro-7-nitrobenzo-furazan (NBD-Cl) was also inhibitory. N-Ethylmaleimide was predominately bound to the largest subunit while NBD-CL was bound to both subunits. ATPase activity was inhibited by low concentrations of p-chloromercuri-phenyl sulfonate and the inhibition was reversed by cysteine which suggested that thiol groups were essential for activity. While the ATPase from S. solfataricus shared several properties with the ATPase from S. acidocaldarius there were significant differences. The latter enzyme was activated by sulfate and chloride and was unaffected by N-ethylmaleimide, whereas the S. solfataricus ATPase was inhibited by these anions as well as N-ethyimaleimide. These differences as well as differences that occur in other vacuolar-like ATPases isolated from the methanogenic and the extremely halophilic bacteria suggest the existence of several types of archaeal ATPases, none of which have been demonstrated to synthesize ATP.

  17. Stimulation of Na+/K+ ATPase activity and Na+ coupled glucose transport by β-catenin

    International Nuclear Information System (INIS)

    Research highlights: → The oncogenic transcription factor β-catenin stimulates the Na+/K+-ATPase. → β-Catenin stimulates SGLT1 dependent Na+, glucose cotransport. → The effects are independent of transcription. → β-Catenin sensitive transport may contribute to properties of proliferating cells. -- Abstract: β-Catenin is a multifunctional protein stimulating as oncogenic transcription factor several genes important for cell proliferation. β-Catenin-regulated genes include the serum- and glucocorticoid-inducible kinase SGK1, which is known to stimulate a variety of transport systems. The present study explored the possibility that β-catenin influences membrane transport. To this end, β-catenin was expressed in Xenopus oocytes with or without SGLT1 and electrogenic transport determined by dual electrode voltage clamp. As a result, expression of β-catenin significantly enhanced the ouabain-sensitive current of the endogeneous Na+/K+-ATPase. Inhibition of vesicle trafficking by brefeldin A revealed that the stimulatory effect of β-catenin on the endogenous Na+/K+-ATPase was not due to enhanced stability of the pump protein in the cell membrane. Expression of β-catenin further enhanced glucose-induced current (Ig) in SGLT1-expressing oocytes. In the absence of SGLT1 Ig was negligible irrespective of β-catenin expression. The stimulating effect of β-catenin on both Na+/K+ ATPase and SGLT1 activity was observed even in the presence of actinomycin D, an inhibitor of transcription. The experiments disclose a completely novel function of β-catenin, i.e. the regulation of transport.

  18. Engineering a prototypic P-type ATPase Listeria Monocytogenes Ca(2+)-ATPase 1 for single-molecule FRET studies

    DEFF Research Database (Denmark)

    Dyla, Mateusz; Andersen, Jacob; Kjaergaard, Magnus;

    2016-01-01

    Approximately 30% of the ATP generated in the living cell is utilized by P-type ATPase primary active transporters to generate and maintain electrochemical gradients across biological membranes. P-type ATPases undergo large conformational changes during their functional cycle to couple ATP hydrol...

  19. Ecto-F_1-ATPase: A moonlighting protein complex and an unexpected apoA-I receptor

    Institute of Scientific and Technical Information of China (English)

    Pierre; Vantourout; Claudia; Radojkovic; Laeticia; Lichtenstein; Véronique; Pons; Eric; Champagne; Laurent; O; Martinez

    2010-01-01

    Mitochondrial ATP synthase has been recently detected at the surface of different cell types, where it is a high affinity receptor for apoA-I, the major protein component in high density lipoproteins (HDL). Cell surface ATP synthase (namely ecto-F1-ATPase) expression is related to different biological effects, such as regulation of HDL uptake by hepatocytes, endothelial cell proliferation or antitumor activity of Vγ9/Vδ2 T lymphocytes. This paper reviews the recently discovered functions and regulations of ...

  20. Influence of the surfactant nature on the calcium carbonate synthesis in water-in-oil emulsion

    Science.gov (United States)

    Szcześ, Aleksandra

    2009-02-01

    Calcium carbonate has been precipitated from water-in-oil emulsions consisting of n-hexane/nonionic surfactant (Brij 30) and its mixture with cationic (DTAB) or anionic surfactant (SDS) to which calcium chloride and sodium carbonate were added. It was found that the surfactant kind and its amount can regulate the size, form and morphology of the precipitated particles. In case of nonionic surfactant the water/surfactant ratio is the most important parameter that allows to obtain small and regular calcium carbonate crystals. Addition of the DTAB results in different morphology of particles having the same crystal form, whereas addition of SDS changes the kind of emulsion from water-in-oil to oil-in-water. Moreover, light transmittance and backscattering light measurements have been used as a method to study the kinetics of calcium carbonate precipitation in emulsion systems.

  1. Over-expression of Arabidopsis AtCHR23 chromatin remodeling ATPase results in increased variability of growth and gene expression

    NARCIS (Netherlands)

    Folta, A.; Severing, E.I.; Krauskopf, J.; Geest, van de H.C.; Verver, J.; Nap, J.P.H.; Mlynarova, L.

    2014-01-01

    Background Plants are sessile organisms that deal with their -sometimes adverse- environment in well-regulated ways. Chromatin remodeling involving SWI/SNF2-type ATPases is thought to be an important epigenetic mechanism for the regulation of gene expression in different developmental programs and f

  2. Immunolocalization of Na+,K(+)-ATPase in the organs of the branchial cavity of the European lobster Homarus gammarus (Crustacea, Decapoda).

    Science.gov (United States)

    Lignot, J H; Charmantier-Daures, M; Charmantier, G

    1999-05-01

    The localization of Na+,K(+)-ATPase in epithelia of the organs of the branchial cavity of Homarus gammarus exposed to seawater and dilute seawater was examined by immunofluorescence microscopy and immunogold electron microscopy with a monoclonal antibody IgG alpha 5 raised against the avian alpha-subunit of the Na-,K(+)-ATPase. In juveniles held in seawater, fluorescent staining was observed only in the epithelial cells of epipodites. In juveniles held in dilute seawater, heavier immunoreactivity was observed in the epithelial cells of epipodites, and positive immunostaining was also observed along the inner-side epithelial layer of the branchiostegites. No fluorescent staining was observed in the gill epithelia. At the ultrastructural level, the Na+,K(+)-ATPase was localized in the basolateral infolding systems of the epipodite and inner-side branchiostegite epithelia of juveniles held in dilute seawater, mostly along the basal lamina. The expression of Na+,K(+)-ATPase therefore differs within tissues of the branchial cavity and according to the external salinity. These and previous ultrastructural observations suggest that the epipodites, and to a lesser extent the inner-side epithelium of the branchiostegites, are involved in the slight hyper-regulation displayed by lobsters at low salinity. Enhanced Na+,K(+)-ATPase activity and de novo synthesis of Na+,K(+)-ATPase within the epipodite and branchiostegite epithelia may be key points enabling lobsters to adapt to low salinity environments. PMID:10382282

  3. Capsazepine, a synthetic vanilloid that converts the Na,K-ATPase to Na-ATPase

    OpenAIRE

    Mahmmoud, Yasser A.

    2008-01-01

    Capsazepine (CPZ), a synthetic capsaicin analogue, inhibits ATP hydrolysis by Na,K-ATPase in the presence but not in the absence of K+. Studies with purified membranes revealed that CPZ reduced Na+-dependent phosphorylation by interference with Na+ binding from the intracellular side of the membrane. Kinetic analyses showed that CPZ stabilized an enzyme species that constitutively occluded K+. Low-affinity ATP interaction with the enzyme was strongly reduced after CPZ treatment; in contrast, ...

  4. Capsazepine, a synthetic vanilloid that converts the Na,K-ATPase to Na-ATPase.

    Science.gov (United States)

    Mahmmoud, Yasser A

    2008-02-01

    Capsazepine (CPZ), a synthetic capsaicin analogue, inhibits ATP hydrolysis by Na,K-ATPase in the presence but not in the absence of K(+). Studies with purified membranes revealed that CPZ reduced Na(+)-dependent phosphorylation by interference with Na(+) binding from the intracellular side of the membrane. Kinetic analyses showed that CPZ stabilized an enzyme species that constitutively occluded K(+). Low-affinity ATP interaction with the enzyme was strongly reduced after CPZ treatment; in contrast, indirectly measured interaction with ADP was much increased, which suggests that composite regulatory communication with nucleotides takes place during turnover. Studies with lipid vesicles revealed that CPZ reduced ATP-dependent digitoxigenin-sensitive (22)Na(+) influx into K(+)-loaded vesicles only at saturating ATP concentrations. The drug apparently abolishes the regulatory effect of ATP on the pump. Drawing on previous homology modeling studies of Na,K-ATPase to atomic models of sarcoplasmic reticulum Ca-ATPase and on kinetic data, we propose that CPZ uncouples an Na(+) cycle from an Na(+)/K(+) cycle in the pump. The Na(+) cycle possibly involves transport through the recently characterized Na(+)-specific site. A shift to such an uncoupled mode is believed to produce pumps mediating uncoupled Na(+) efflux by modifying the transport stoichiometry of single pump units. PMID:18230728

  5. Mammalian P4-ATPases and ABC transporters and their role in phospholipid transport.

    Science.gov (United States)

    Coleman, Jonathan A; Quazi, Faraz; Molday, Robert S

    2013-03-01

    Transport of phospholipids across cell membranes plays a key role in a wide variety of biological processes. These include membrane biosynthesis, generation and maintenance of membrane asymmetry, cell and organelle shape determination, phagocytosis, vesicle trafficking, blood coagulation, lipid homeostasis, regulation of membrane protein function, apoptosis, etc. P(4)-ATPases and ATP binding cassette (ABC) transporters are the two principal classes of membrane proteins that actively transport phospholipids across cellular membranes. P(4)-ATPases utilize the energy from ATP hydrolysis to flip aminophospholipids from the exocytoplasmic (extracellular/lumen) to the cytoplasmic leaflet of cell membranes generating membrane lipid asymmetry and lipid imbalance which can induce membrane curvature. Many ABC transporters play crucial roles in lipid homeostasis by actively transporting phospholipids from the cytoplasmic to the exocytoplasmic leaflet of cell membranes or exporting phospholipids to protein acceptors or micelles. Recent studies indicate that some ABC proteins can also transport phospholipids in the opposite direction. The importance of P(4)-ATPases and ABC transporters is evident from the findings that mutations in many of these transporters are responsible for severe human genetic diseases linked to defective phospholipid transport. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.

  6. Radioprotector modifying influence upon the ion transport ATPase activities

    International Nuclear Information System (INIS)

    The effects of aminothiol and biogenic amine radioprotectors (β-mercaptoethylamine, AET, serotonin, dopamine, histamine) on the basic ion transport enzymes, such as Na, K-ATP ase and Mg, Ca-ATPase activities were investigated in the tissues of numerous organs, with different radiosensitivity in the wistar rats. Experimental results showed that intraperitoneal injection of the used radioprotectors caused preliminary inhibition of the Na, K-ATPase activity in tissues from organs with different radioresistance, but had no influence on the Mg, Ca-ATPase activity in membranes of erythrocytes and rat brain cells. (2 tabs.)

  7. Structural divergence between the two subgroups of P5 ATPases

    DEFF Research Database (Denmark)

    Sørensen, Danny Mollerup; Buch-Pedersen, Morten Jeppe; Palmgren, Michael Broberg

    2010-01-01

    differences in the primary sequences between the two subgroups. P5A and P5B ATPases appear have a very different membrane topology from other P-type ATPases with two and one, respectively, additional transmembrane segments inserted in the N-terminal end. Based on conservation of residues in the transmembrane...... region, the two P5 subgroups most likely have different substrate specificities although these cannot be predicted from their sequences. Furthermore, sequence differences between P5A and P5B ATPases are identified in the catalytic domains that could influence key kinetic properties differentially...

  8. Experimental determination of control by the H+-ATPase in Escherichia coli

    DEFF Research Database (Denmark)

    Jensen, Peter Ruhdal; Michelsen, Ole; Westerhoff, H. V.

    1995-01-01

    coefficient by the H+-ATPase with respect to growth rate and catabolic fluxes was measured. Control on growth rate was absent at the wildtype concentration of H+-ATPase, independent of whether the substrate for growth was glucose or succinate. Control by the H+-ATPase on the catabolic fluxes, including...... respiration, was negative at the wild-type H+-ATPase level. Moreover, the turnover number of the individual H+-ATPase enzymes increased as the H+-ATPase concentration was lowered. The negative control by the H+-ATPase on catabolism may thus be involved in a homeostatic control of ATP synthesis and, to some...

  9. Effects of Concentration and Conformation of Surfactants on Phase Separation of Surfactant-Water-Oil Systems

    Institute of Scientific and Technical Information of China (English)

    袁银权; 邹宪武; 刘昊阳

    2004-01-01

    The effects of surfactants on the phase separation of surfactant-water-oil systems have been investigated by using discontinuous molecular dynamic simulations. The phase separation speed and equilibrium configuration are dependent on the surfactant concentration and conformation. The equilibrium concentration of surfactants at the interface remains constant. With the increasing surfactant concentration, the equilibrium configuration crosses over from the disperse phase to the bicontinuous one. The crossover concentration is estimated. The conformation of the surfactant has little effect on the equilibrium concentration of surfactants at the interface,while it affects the equilibrium configuration after phase separation.

  10. Inactivation of pulmonary surfactant and its prevention

    OpenAIRE

    Stichtenoth, Guido

    2009-01-01

    Pulmonary surfactant is a lipoprotein complex coating the conducting airways down to the terminal airspaces. Its main function is to lower surface tension at the air liquid interface thus preventing alveolar collapse at end expiration. Primary surfactant deficiency is the main cause of neonatal respiratory distress syndrome (RDS) and treatment with exogenous pulmonary surfactant improves the course of the disease significantly. Furthermore, secondary surfactant deficiency ca...

  11. Antigenicity of low molecular weight surfactant species.

    OpenAIRE

    Strayer, D. S.; Merritt, T A; Makunike, C.; Hallman, M

    1989-01-01

    The authors tested the antigenicity of human lung surfactant isolated from amniotic fluid. Mice and rabbits were immunized. Rabbit polyclonal antisera to these surfactant preparations were absorbed with normal human plasma proteins. Polyclonal antisera reacted with both high molecular weight (35 kd) surfactant apoprotein and to lower molecular weight species, both 18 kd and 9 kd. Mice were used to generate monoclonal antibodies to surfactant. Enzyme-linked immunosorbant assay was used to iden...

  12. Thin film dynamics with surfactant phase transition

    OpenAIRE

    Köpf, M. H.; Gurevich, S. V.; Friedrich, R.

    2009-01-01

    A thin liquid film covered with an insoluble surfactant in the vicinity of a first-order phase transition is discussed. Within the lubrication approximation we derive two coupled equations to describe the height profile of the film and the surfactant density. Thermodynamics of the surfactant is incorporated via a Cahn-Hilliard type free-energy functional which can be chosen to describe a transition between two stable phases of different surfactant density. Within this model, a linear stabilit...

  13. Surfactant Therapy of ALI and ARDS

    OpenAIRE

    Raghavendran, K; Willson, D; Notter, RH

    2011-01-01

    This article examines exogenous lung surfactant replacement therapy and its utility in mitigating clinical acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS). Biophysical research has documented that lung surfactant dysfunction can be reversed or mitigated by increasing surfactant concentration, and multiple studies in animals with ALI/ARDS have shown that respiratory function and pulmonary mechanics in vivo can be improved by exogenous surfactant administration. Exoge...

  14. Aerosol delivery of synthetic lung surfactant

    OpenAIRE

    Walther, Frans J.; José M. Hernández-Juviel; Waring, Alan J.

    2014-01-01

    Background. Nasal continuous positive airway pressure (nCPAP) is a widely accepted technique of non-invasive respiratory support in premature infants with respiratory distress syndrome due to lack of lung surfactant. If this approach fails, the next step is often intubation, mechanical ventilation (MV) and intratracheal instillation of clinical lung surfactant. Objective. To investigate whether aerosol delivery of advanced synthetic lung surfactant, consisting of peptide mimics of surfact...

  15. Binding of cationic surfactants to humic substances

    NARCIS (Netherlands)

    Ishiguro, M.; Tan, W.; Koopal, L.K.

    2007-01-01

    Commercial surfactants are introduced into the environment either through waste products or site-specific contamination. The amphiphilic nature of both surfactants and humic substances (HS) leads to their mutual attraction especially when surfactant and HS are oppositely charged. Binding of the cati

  16. Surfactant analysis in oil-containing fluids

    Energy Technology Data Exchange (ETDEWEB)

    Gronsveld, J.; Faber, M.J. (Koninklijke Shell Exploratie en Produktie Laboratorium, Rijswijk (Netherlands))

    The total surfactant concentration in aqueous phase samples can be analysed with a potentiometric titration. In enhanced oil recovery research, however, the surfactant is produced not only in aqueous phase samples but also in oleic phase samples. The oleic constituents in the oliec phase samples interfere in the surfactant analysis and, therefore, the titration method has been adapted. (orig.).

  17. Surfactant adsorption to soil components and soils

    NARCIS (Netherlands)

    Ishiguro, Munehide; Koopal, Luuk K.

    2016-01-01

    Soils are complex and widely varying mixtures of organic matter and inorganic materials; adsorption of surfactants to soils is therefore related to the soil composition. We first discuss the properties of surfactants, including the critical micelle concentration (CMC) and surfactant adsorption on

  18. Glucocorticoids both stimulate and inhibit production of pulmonary surfactant protein A in fetal human lung.

    OpenAIRE

    Liley, H G; White, R T; Benson, B J; Ballard, P L

    1988-01-01

    Pulmonary surfactant is a mixture of phospholipids and proteins which stabilizes lung alveoli and prevents respiratory failure. The surfactant-associated protein of Mr = 28,000-36,000 (SP-A) influences the structure, function (film formation), and metabolism of surfactant. We have characterized glucocorticoid regulation of SP-A and SP-A mRNA in explants of fetal human lung. The time course of response to dexamethasone was biphasic, with early stimulation and later inhibition of SP-A accumulat...

  19. Review: Structure and mechanism of the dynein motor ATPase.

    Science.gov (United States)

    Schmidt, Helgo; Carter, Andrew P

    2016-08-01

    Dyneins are multiprotein complexes that move cargo along microtubules in the minus end direction. The largest individual component of the dynein complex is the heavy chain. Its C-terminal 3500 amino-acid residues form the motor domain, which hydrolyses ATP in its ring of AAA+ (ATPases associated with diverse cellular activities) domains to generate the force for movement. The production of force is synchronized with cycles of microtubule binding and release, another important prerequisite for efficient motility along the microtubule. Although the large scale conformational changes that lead to force production and microtubule affinity regulation are well established, it has been largely enigmatic how ATP-hydrolysis in the AAA+ ring causes these rearrangements. The past five years have seen a surge of high resolution information on the dynein motor domain that finally allowed unprecedented insights into this important open question. This review, part of the "ATP and GTP hydrolysis in Biology" special issue, will summarize our current understanding of the dynein motor mechanism with a special emphasis on the recently obtained crystal and EM structures. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 557-567, 2016. PMID:27062277

  20. Persurf, a new method to improve surfactant delivery: a study in surfactant depleted rats.

    Directory of Open Access Journals (Sweden)

    Wolfram Burkhardt

    Full Text Available PURPOSE: Exogenous surfactant is not very effective in adults with ARDS, since surfactant does not reach atelectatic alveoli. Perfluorocarbons (PFC can recruit atelectatic areas but do not replace impaired endogenous surfactant. A surfactant-PFC-mixture could combine benefits of both therapies. The aim of the proof-of-principal-study was to produce a PFC-in-surfactant emulsion (Persurf and to test in surfactant depleted Wistar rats whether Persurf achieves I. a more homogenous pulmonary distribution and II. a more homogenous recruitment of alveoli when compared with surfactant or PFC alone. METHODS: Three different PFC were mixed with surfactant and phospholipid concentration in the emulsion was measured. After surfactant depletion, animals either received 30 ml/kg of PF5080, 100 mg/kg of stained (green dye Curosurf™ or 30 ml/kg of Persurf. Lungs were fixated after 1 hour of ventilation and alveolar aeration and surfactant distribution was estimated by a stereological approach. RESULTS: Persurf contained 3 mg/ml phospholipids and was stable for more than 48 hours. Persurf-administration improved oxygenation. Histological evaluation revealed a more homogenous surfactant distribution and alveolar inflation when compared with surfactant treated animals. CONCLUSIONS: In surfactant depleted rats administration of PFC-in-surfactant emulsion leads to a more homogenous distribution and aeration of the lung than surfactant alone.

  1. Evolution, Development, and Function of the Pulmonary Surfactant System in Normal and Perturbed Environments.

    Science.gov (United States)

    Orgeig, Sandra; Morrison, Janna L; Daniels, Christopher B

    2015-01-01

    Surfactant lipids and proteins form a surface active film at the air-liquid interface of internal gas exchange organs, including swim bladders and lungs. The system is uniquely positioned to meet both the physical challenges associated with a dynamically changing internal air-liquid interface, and the environmental challenges associated with the foreign pathogens and particles to which the internal surface is exposed. Lungs range from simple, transparent, bag-like units to complex, multilobed, compartmentalized structures. Despite this anatomical variability, the surfactant system is remarkably conserved. Here, we discuss the evolutionary origin of the surfactant system, which likely predates lungs. We describe the evolution of surfactant structure and function in invertebrates and vertebrates. We focus on changes in lipid and protein composition and surfactant function from its antiadhesive and innate immune to its alveolar stability and structural integrity functions. We discuss the biochemical, hormonal, autonomic, and mechanical factors that regulate normal surfactant secretion in mature animals. We present an analysis of the ontogeny of surfactant development among the vertebrates and the contribution of different regulatory mechanisms that control this development. We also discuss environmental (oxygen), hormonal and biochemical (glucocorticoids and glucose) and pollutant (maternal smoking, alcohol, and common "recreational" drugs) effects that impact surfactant development. On the adult surfactant system, we focus on environmental variables including temperature, pressure, and hypoxia that have shaped its evolution and we discuss the resultant biochemical, biophysical, and cellular adaptations. Finally, we discuss the effect of major modern gaseous and particulate pollutants on the lung and surfactant system. PMID:26756637

  2. Evolution of Copper Transporting ATPases in Eukaryotic Organisms

    OpenAIRE

    Gupta, Arnab; Lutsenko, Svetlana

    2012-01-01

    Copper is an essential nutrient for most life forms, however in excess it can be harmful. The ATP-driven copper pumps (Copper-ATPases) play critical role in living organisms by maintaining appropriate copper levels in cells and tissues. These evolutionary conserved polytopic membrane proteins are present in all phyla from simplest life forms (bacteria) to highly evolved eukaryotes (Homo sapiens). The presumed early function in metal detoxification remains the main function of Copper-ATPases i...

  3. The Influence of Gasotransmitters on Membrane Permeability and Activity of Tonoplast H+-ATPase Under Oxidative Stress

    Directory of Open Access Journals (Sweden)

    E.V. Spiridonova

    2016-05-01

    Full Text Available The investigation of the influence of gasotransmitters – a new class of signaling molecules – on the root tissues of red beet (Beta vulgaris L. was conducted. It was found, that hydrogen sulfide (H2S had some stabilizing effect on cellular membranes, reducing their permeability detected with the aid of conductometric technique. The reliable influence of carbon monoxide (CO and nitrogen oxide (NO in our experiments was not observed. A significant increase in efflux of electrolytes from beet tissue under oxidative stress was observed. The addition of gasotransmitters failed to reduce it reliably. Under normal conditions, no appreciable effect of gasotransmitters on tonoplast H+-ATPase transport activity was found. Under oxidative stress, NO and H2S increased the H+-ATPase activity, reduced significantly by the impact of hydrogen peroxide, but did not recover it completely. CO enhanced the negative impact of oxidative stress, and reduced H+-ATPase transport activity. The results obtained suggest a possible conclusion that the gaseous signaling molecules take part in the regulation of transport processes in plant cell through the control of H+-ATPase activity under oxidative stress.

  4. Surfactant gene polymorphisms and interstitial lung diseases

    Directory of Open Access Journals (Sweden)

    Pantelidis Panagiotis

    2001-11-01

    Full Text Available Abstract Pulmonary surfactant is a complex mixture of phospholipids and proteins, which is present in the alveolar lining fluid and is essential for normal lung function. Alterations in surfactant composition have been reported in several interstitial lung diseases (ILDs. Furthermore, a mutation in the surfactant protein C gene that results in complete absence of the protein has been shown to be associated with familial ILD. The role of surfactant in lung disease is therefore drawing increasing attention following the elucidation of the genetic basis underlying its surface expression and the proof of surfactant abnormalities in ILD.

  5. Aerosol delivery of synthetic lung surfactant

    Directory of Open Access Journals (Sweden)

    Frans J. Walther

    2014-05-01

    Full Text Available Background. Nasal continuous positive airway pressure (nCPAP is a widely accepted technique of non-invasive respiratory support in premature infants with respiratory distress syndrome due to lack of lung surfactant. If this approach fails, the next step is often intubation, mechanical ventilation (MV and intratracheal instillation of clinical lung surfactant. Objective. To investigate whether aerosol delivery of advanced synthetic lung surfactant, consisting of peptide mimics of surfactant proteins B and C (SP-B and SP-C and synthetic lipids, during nCPAP improves lung function in surfactant-deficient rabbits. Methods. Experimental synthetic lung surfactants were produced by formulating 3% Super Mini-B peptide (SMB surfactant, a highly surface active SP-B mimic, and a combination of 1.5% SMB and 1.5% of the SP-C mimic SP-Css ion-lock 1 (BC surfactant, with a synthetic lipid mixture. After testing aerosol generation using a vibrating membrane nebulizer and aerosol conditioning (particle size, surfactant composition and surface activity, we investigated the effects of aerosol delivery of synthetic SMB and BC surfactant preparations on oxygenation and lung compliance in saline-lavaged, surfactant-deficient rabbits, supported with either nCPAP or MV. Results. Particle size distribution of the surfactant aerosols was within the 1–3 µm distribution range and surfactant activity was not affected by aerosolization. At a dose equivalent to clinical surfactant therapy in premature infants (100 mg/kg, aerosol delivery of both synthetic surfactant preparations led to a quick and clinically relevant improvement in oxygenation and lung compliance in the rabbits. Lung function recovered to a greater extent in rabbits supported with MV than with nCPAP. BC surfactant outperformed SMB surfactant in improving lung function and was associated with higher phospholipid values in bronchoalveolar lavage fluid; these findings were irrespective of the type of

  6. Interactions of Ovalbumin with Ionic Surfactants

    Institute of Scientific and Technical Information of China (English)

    GUO Xia; YAN Hui; GUO Rong

    2008-01-01

    The interactions of ovalbumin (OVA) with one anionic surfactant,sodium dodecyl sulfate (SDS),and two cationic surfactants,dodecyl trimethylammonium bromide (DTAB) and cetyl trimethylammonium bromide (CTAB),in water have been studied through fluorescence and UV-Vis spectroscopies and transmission electronic microscopy,combined with the measurement of conductivity.OVA can increase the critical micelle concentrations (cmc) of SDS and CTAB but has little effect on that of DTAB.The interaction between surfactant monomer and OVA is greater than that between surfactant micelles and OVA.Moreover,SDS can make OVA unfolded while cationic surfactants cannot.

  7. Surfactant and allergic airway inflammation.

    Science.gov (United States)

    Winkler, Carla; Hohlfeld, Jens M

    2013-01-01

    Pulmonary surfactant is a complex mixture of unique proteins and lipids that covers the airway lumen. Surfactant prevents alveolar collapse and maintains airway patency by reducing surface tension at the air-liquid interface. Furthermore, it provides a defence against antigen uptake by binding foreign particles and enhancing cellular immune responses. Allergic asthma is associated with chronic airway inflammation and presents with episodes of airway narrowing. The pulmonary inflammation and bronchoconstriction can be triggered by exposure to allergens or pathogens present in the inhaled air. Pulmonary surfactant has the potential to interact with various immune cells which orchestrate allergen- or pathogen-driven episodes of airway inflammation. The complex nature of surfactant allows multiple sites of interaction, but also makes it susceptible to external alterations, which potentially impair its function. This duality of modulating airway physiology and immunology during inflammatory conditions, while at the same time being prone to alterations accompanied by restricted function, has stimulated numerous studies in recent decades, which are reviewed in this article. PMID:23896983

  8. Review: The intersection of surfactant homeostasis and innate host defense of the lung: lessons from newborn infants.

    Science.gov (United States)

    Whitsett, Jeffrey A

    2010-06-01

    The study of pulmonary surfactant, directed towards prevention and treatment of respiratory distress syndrome in preterm infants, led to the identification of novel proteins/genes that determine the synthesis, packaging, secretion, function, and catabolism of alveolar surfactant. The surfactant proteins, SP-A, SP-B, SP-C, and SP-D, and the surfactant lipid associated transporter, ABCA3, play critical roles in surfactant homeostasis. The study of their structure and function provided insight into a system that integrates the biophysical need to reduce surface tension in the alveoli and the innate host defenses required to maintain pulmonary structure and function after birth. Alveolar homeostasis depends on the intrinsic, multifunctional structures of the surfactant-associated proteins and the shared transcriptional regulatory modules that determine both the expression of genes involved in surfactant production as well as those critical for host defense. Identification of the surfactant proteins and the elucidation of the genetic networks regulating alveolar homeostasis have provided the basis for understanding and diagnosing rare and common pulmonary disorders, including respiratory distress syndrome, inherited disorders of surfactant homeostasis, and pulmonary alveolar proteinosis. PMID:20351134

  9. AMP-activated protein kinase inhibits alkaline pH- and PKA-induced apical vacuolar H+-ATPase accumulation in epididymal clear cells.

    Science.gov (United States)

    Hallows, Kenneth R; Alzamora, Rodrigo; Li, Hui; Gong, Fan; Smolak, Christy; Neumann, Dietbert; Pastor-Soler, Núria M

    2009-04-01

    Acidic luminal pH and low [HCO(3)(-)] maintain sperm quiescent during maturation in the epididymis. The vacuolar H(+)-ATPase (V-ATPase) in clear cells is a major contributor to epididymal luminal acidification. We have shown previously that protein kinase A (PKA), acting downstream of soluble adenylyl cyclase stimulation by alkaline luminal pH or HCO(3)(-), induces V-ATPase apical membrane accumulation in clear cells. Here we examined whether the metabolic sensor AMP-activated protein kinase (AMPK) regulates this PKA-induced V-ATPase apical membrane accumulation. Immunofluorescence labeling of rat and non-human primate epididymides revealed specific AMPK expression in epithelial cells. Immunofluorescence labeling of rat epididymis showed that perfusion in vivo with the AMPK activators 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) or A-769662 induced a redistribution of the V-ATPase into subapical vesicles, even in the presence of a luminal alkaline (pH 7.8) buffer compared with that of controls perfused without drug. Moreover, preperfusion with AICAR blocked the PKA-mediated V-ATPase translocation to clear cell apical membranes induced by N(6)-monobutyryl-cAMP (6-MB-cAMP). Purified PKA and AMPK both phosphorylated V-ATPase A subunit in vitro. In HEK-293 cells [(32)P]orthophosphate in vivo labeling of the A subunit increased following PKA stimulation and decreased following RNA interference-mediated knockdown of AMPK. Finally, the extent of PKA-dependent in vivo phosphorylation of the A subunit increased with AMPK knockdown. In summary, our findings suggest that AMPK inhibits PKA-mediated V-ATPase apical accumulation in epididymal clear cells, that both kinases directly phosphorylate the V-ATPase A subunit in vitro and in vivo, and that AMPK inhibits PKA-dependent phosphorylation of this subunit. V-ATPase activity may be coupled to the sensing of acid-base status via PKA and to metabolic status via AMPK. PMID:19211918

  10. Alkaline pH- and cAMP-induced V-ATPase membrane accumulation is mediated by protein kinase A in epididymal clear cells.

    Science.gov (United States)

    Pastor-Soler, Núria M; Hallows, Kenneth R; Smolak, Christy; Gong, Fan; Brown, Dennis; Breton, Sylvie

    2008-02-01

    In the epididymis, low luminal bicarbonate and acidic pH maintain sperm quiescent during maturation and storage. The vacuolar H(+)-ATPase (V-ATPase) in epididymal clear cells plays a major role in luminal acidification. We have shown previously that cAMP, luminal alkaline pH, and activation of the bicarbonate-regulated soluble adenylyl cyclase (sAC) induce V-ATPase apical accumulation in these cells, thereby stimulating proton secretion into the epididymal lumen. Here we examined whether protein kinase A (PKA) is involved in this response. Confocal immunofluorescence labeling on rat epididymis perfused in vivo showed that at luminal acidic pH (6.5), V-ATPase was distributed between short apical microvilli and subapical endosomes. The specific PKA activator N(6)-monobutyryl-3'-5'-cyclic monophosphate (6-MB-cAMP, 1 mM) induced elongation of apical microvilli and accumulation of V-ATPase in these structures. The PKA inhibitor myristoylated-PKI (mPKI, 10 microM) inhibited the apical accumulation of V-ATPase induced by 6-MB-cAMP. Perfusion at pH 6.5 with 8-(4-chlorophenylthio)-2-O-methyl-cAMP (8CPT-2-O-Me-cAMP; 10 microM), an activator of the exchange protein activated by cAMP (Epac), did not induce V-ATPase apical accumulation. When applied at a higher concentration (100 microM), 8CPT-2-O-Me-cAMP induced V-ATPase apical accumulation, but this effect was completely inhibited by mPKI, suggesting crossover effects on the PKA pathway with this compound at high concentrations. Importantly, the physiologically relevant alkaline pH-induced apical V-ATPase accumulation was completely inhibited by pretreatment with mPKI. We conclude that direct stimulation of PKA activity by cAMP is necessary and sufficient for the alkaline pH-induced accumulation of V-ATPase in clear cell apical microvilli. PMID:18160485

  11. C-peptide increases Na,K-ATPase expression via PKC- and MAP kinase-dependent activation of transcription factor ZEB in human renal tubular cells.

    Directory of Open Access Journals (Sweden)

    Dana Galuska

    Full Text Available BACKGROUND: Replacement of proinsulin C-peptide in type 1 diabetes ameliorates nerve and kidney dysfunction, conditions which are associated with a decrease in Na,K-ATPase activity. We determined the molecular mechanism by which long term exposure to C-peptide stimulates Na,K-ATPase expression and activity in primary human renal tubular cells (HRTC in control and hyperglycemic conditions. METHODOLOGY/PRINCIPAL FINDINGS: HRTC were cultured from the outer cortex obtained from patients undergoing elective nephrectomy. Ouabain-sensitive rubidium ((86Rb(+ uptake and Na,K-ATPase activity were determined. Abundance of Na,K-ATPase was determined by Western blotting in intact cells or isolated basolateral membranes (BLM. DNA binding activity was determined by electrical mobility shift assay (EMSA. Culturing of HRTCs for 5 days with 1 nM, but not 10 nM of human C-peptide leads to increase in Na,K-ATPase α(1-subunit protein expression, accompanied with increase in (86Rb(+ uptake, both in normal- and hyperglycemic conditions. Na,K-ATPase α(1-subunit expression and Na,K-ATPase activity were reduced in BLM isolated from cells cultured in presence of high glucose. Exposure to1 nM, but not 10 nM of C-peptide increased PKCε phosphorylation as well as phosphorylation and abundance of nuclear ERK1/2 regardless of glucose concentration. Exposure to 1 nM of C-peptide increased DNA binding activity of transcription factor ZEB (AREB6, concomitant with Na,K-ATPase α(1-subunit mRNA expression. Effects of 1 nM C-peptide on Na,K-ATPase α(1-subunit expression and/or ZEB DNA binding activity in HRTC were abolished by incubation with PKC or MEK1/2 inhibitors and ZEB siRNA silencing. CONCLUSIONS/SIGNIFICANCE: Despite activation of ERK1/2 and PKC by hyperglycemia, a distinct pool of PKCs and ERK1/2 is involved in regulation of Na,K-ATPase expression and activity by C-peptide. Most likely C-peptide stimulates sodium pump expression via activation of ZEB, a transcription

  12. Crystallization and preliminary X-ray analysis of the ATPase domain of the σ(54)-dependent transcription activator NtrC1 from Aquifex aeolicus bound to the ATP analog ADP-BeFx.

    Science.gov (United States)

    Sysoeva, Tatyana A; Yennawar, Neela; Allaire, Marc; Nixon, B Tracy

    2013-12-01

    One way that bacteria regulate the transcription of specific genes to adapt to environmental challenges is to use different σ factors that direct the RNA polymerase holoenzyme to distinct promoters. Unlike σ(70) RNA polymerase (RNAP), σ(54) RNAP is unable to initiate transcription without an activator: enhancer-binding protein (EBP). All EBPs contain one ATPase domain that belongs to the family of ATPases associated with various cellular activities (AAA+ ATPases). AAA+ ATPases use the energy of ATP hydrolysis to remodel different target macromolecules to perform distinct functions. These mechanochemical enzymes are known to form ring-shaped oligomers whose conformations strongly depend upon nucleotide status. Here, the crystallization of the AAA+ ATPase domain of an EBP from Aquifex aeolicus, NtrC1, in the presence of the non-hydrolyzable ATP analog ADP-BeFx is reported. X-ray diffraction data were collected from two crystals from two different protein fractions of the NtrC1 ATPase domain. Previously, this domain was co-crystallized with ADP and ATP, but the latter crystals were grown from the Walker B substitution variant E239A. Therefore, the new data sets are the first for a wild-type EBP ATPase domain co-crystallized with an ATP analog and they reveal a new crystal form. The resulting structure(s) will shed light on the mechanism of EBP-type transcription activators. PMID:24316836

  13. Understanding the mechanisms of ATPase beta family genes for cellular thermotolerance in crossbred bulls

    Science.gov (United States)

    Deb, Rajib; Sajjanar, Basavaraj; Singh, Umesh; Alex, Rani; Raja, T. V.; Alyethodi, Rafeeque R.; Kumar, Sushil; Sengar, Gyanendra; Sharma, Sheetal; Singh, Rani; Prakash, B.

    2015-12-01

    Na+/K+-ATPase is an integral membrane protein composed of a large catalytic subunit (alpha), a smaller glycoprotein subunit (beta), and gamma subunit. The beta subunit is essential for ion recognition as well as maintenance of the membrane integrity. Present study was aimed to analyze the expression pattern of ATPase beta subunit genes (ATPase B1, ATPase B2, and ATPase B3) among the crossbred bulls under different ambient temperatures (20-44 °C). The present study was also aimed to look into the relationship of HSP70 with the ATPase beta family genes. Our results demonstrated that among beta family genes, transcript abundance of ATPase B1 and ATPase B2 is significantly ( P P < 0.01) with HSP70, representing that the change in the expression pattern of these genes is positive and synergistic. These may provide a foundation for understanding the mechanisms of ATPase beta family genes for cellular thermotolerance in cattle.

  14. V-type ATPase proton pump expression during enamel formation.

    Science.gov (United States)

    Sarkar, Juni; Wen, Xin; Simanian, Emil J; Paine, Michael L

    2016-01-01

    Several diseases such as proximal and distal renal tubular acidosis and osteoporosis are related to intracellular pH dysregulation resulting from mutations in genes coding for ion channels, including proteins comprising the proton-pumping V-type ATPase. V-type ATPase is a multi-subunit protein complex expressed in enamel forming cells. V-type ATPase plays a key role in enamel development, specifically lysosomal acidification, yet our understanding of the relationship between the endocytotic activities and dental health and disease is limited. The objective of this study is to better understand the ameloblast-associated pH regulatory networks essential for amelogenesis. Quantitative RT-PCR was performed on tissues from secretory-stage and maturation-stage enamel organs to determine which of the V-type ATPase subunits are most highly upregulated during maturation-stage amelogenesis: a time when ameloblast endocytotic activity is highest. Western blot analyses, using specific antibodies to four of the V-type ATPase subunits (Atp6v0d2, Atp6v1b2, Atp6v1c1 and Atp6v1e1), were then applied to validate much of the qPCR data. Immunohistochemistry using these same four antibodies was also performed to identify the spatiotemporal expression profiles of individual V-type ATPase subunits. Our data show that cytoplasmic V-type ATPase is significantly upregulated in enamel organ cells during maturation-stage when compared to secretory-stage. These data likely relate to the higher endocytotic activities, and the greater need for lysosomal acidification, during maturation-stage amelogenesis. It is also apparent from our immunolocalization data, using antibodies against two of the V-type ATPase subunits (Atp6v1c1 and Atp6v1e1), that significant expression is seen at the apical membrane of maturation-stage ameloblasts. Others have also identified this V-type ATPase expression profile at the apical membrane of maturation ameloblasts. Collectively, these data better define the

  15. Beneficial Renal and Pancreatic Phenotypes in a Mouse Deficient in FXYD2 Regulatory Subunit of Na,K-ATPase

    OpenAIRE

    Arystarkhova, Elena

    2016-01-01

    The fundamental role of Na,K-ATPase in eukaryotic cells calls for complex and efficient regulation of its activity. Besides alterations in gene expression and trafficking, kinetic properties of the pump are modulated by reversible association with single span membrane proteins, the FXYDs. Seven members of the family are expressed in a tissue-specific manner, affecting pump kinetics in all possible permutations. This mini-review focuses on functional properties of FXYD2 studied in transfected ...

  16. Effect of ionizing radiation on catalytic properties of Ca2+-ATP-ase from sarcoplasmic reticulum of skeletal muscle

    International Nuclear Information System (INIS)

    It was studied kinetic and thermodynamic characteristics of Ca2+-ATP-ase of rat skeletal muscle (membranes of sarcoplasmic reticulum) after irradiation in doses 0,5, 4,0 and 8,0 Gy. It was shown that external gamma-irradiation at different doses changed kinetic and thermodynamic characteristics of the enzyme of sarcoplasmic reticulum membranes of skeletal muscle. These alterations probably correlate with disbalance of hormonal regulation of intracellular calcium metabolism and changes in membrane structure and functions

  17. Effect of ionizing radiation on catalytic properties of Ca2+-ATPase from sarcoplasmic reticulum of skeletal muscle

    International Nuclear Information System (INIS)

    It was studied kinetic and thermodynamic characteristics of Ca2+-ATPase of rat skeletal muscle (membranes of sarcoplasmic reticulum) after irradiation in doses 0,5, 4,0 and 8,0 Gy. It was shown that external gamma-irradiation at different doses changed kinetic and thermodynamic characteristics of the enzyme of sarcoplasmic reticulum membranes of skeletal muscle. These alterations probably correlate with dis balance of hormonal regulation of intracellular calcium metabolism and changes in membrane structure and functions

  18. Temperature-Induced Aggregate Transitions in Mixtures of Cationic Ammonium Gemini Surfactant with Anionic Glutamic Acid Surfactant in Aqueous Solution.

    Science.gov (United States)

    Ji, Xiuling; Tian, Maozhang; Wang, Yilin

    2016-02-01

    The aggregation behaviors of the mixtures of cationic gemini surfactant 1,4-bis(dodecyl-N,N-dimethylammonium bromide)-2,3-butanediol (C12C4(OH)2C12Br2) and anionic amino acid surfactant N-dodecanoylglutamic acid (C12Glu) in aqueous solution of pH = 10.0 have been studied. The mixture forms spherical micelles, vesicles, and wormlike micelles at 25 °C by changing mixing ratios and/or total surfactant concentration. Then these aggregates undergo a series of transitions upon increasing the temperature. Smaller spherical micelles transfer into larger vesicles, vesicles transfer into solid spherical aggregates and then into larger irregular aggregates, and entangled wormlike micelles transfer into branched wormlike micelles. Moreover, the larger irregular aggregates and branched micelles finally lead to precipitation and clouding phenomenon, respectively. All these transitions are thermally reversible, and the transition temperatures can be tuned by varying the mixing ratios and/or total concentration. These temperature-dependent aggregate transitions can be elucidated on the basis of the temperature-induced variations in the dehydration, electrostatic interaction, and hydrogen bonds of the headgroup area and in the hydrophobic interaction between the hydrocarbon chains. The results suggest that the surfactants carrying multiple binding sites will greatly improve the regulation ability and temperature sensitivity. PMID:26750978

  19. Antibodies to mammalian and plant V-ATPases cross react with the V-ATPase of insect cation-transporting plasma membranes.

    Science.gov (United States)

    Russell, V E; Klein, U; Reuveni, M; Spaeth, D D; Wolfersberger, M G; Harvey, W R

    1992-05-01

    In immunobiochemical blots, polyclonal antibodies against subunits of plant and mammalian vacuolar-type ATPases (V-ATPases) cross-react strongly with corresponding subunits of larval Manduca sexta midgut plasma membrane V-ATPase. Thus, rabbit antiserum against Kalanchoe daigremontiana tonoplast V-ATPase holoenzyme cross-reacts with the 67, 56, 40, 28 and 20 kDa subunits of midgut V-ATPase separated by SDS-PAGE. Antisera against bovine chromaffin granule 72 and 39 kDa V-ATPase subunits cross-react with the corresponding 67 and 43 kDa subunits of midgut V-ATPase. Antisera against the 57 kDa subunit of both beet root and oat root V-ATPase cross-react strongly with the midgut 56 kDa V-ATPase subunit. In immunocytochemical light micrographs, antiserum against the beet root 57 kDa V-ATPase subunit labels the goblet cell apical membrane of both posterior and anterior midgut in freeze-substituted and fixed sections. The plant antiserum also labels the apical brush-border plasma membrane of Malpighian tubules. The ability of antibodies against plant V-ATPase to label these insect membranes suggests a high sequence homology between V-ATPases from plants and insects. Both of the antibody-labelled insect membranes transport K+ and both membranes possess F1-like particles, portasomes, on their cytoplasmic surfaces. This immunolabelling by xenic V-ATPase antisera of two insect cation-transporting membranes suggests that the portasomes on these membranes may be V-ATPase particles, similar to those reported on V-ATPase-containing vacuolar membranes from various sources. PMID:1534830

  20. Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+ -ATPase by preventing interaction with 14-3-3 protein

    DEFF Research Database (Denmark)

    Fuglsang, Anja Thoe; Guo, Yan; Cuin, Tracey A.;

    2007-01-01

    Regulation of the trans-plasma membrane pH gradient is an important part of plant responses to several hormonal and environmental cues, including auxin, blue light, and fungal elicitors. However, little is known about the signaling components that mediate this regulation. Here, we report that an ...... an increase in the concentration of cytosolic-free calcium. These results suggest that PKS5 is part of a calcium-signaling pathway mediating PM Hþ-ATPase regulation....

  1. Archazolid and apicularen: Novel specific V-ATPase inhibitors

    Directory of Open Access Journals (Sweden)

    Zeeck Axel

    2005-08-01

    Full Text Available Abstract Background V-ATPases constitute a ubiquitous family of heteromultimeric, proton translocating proteins. According to their localization in a multitude of eukaryotic membranes, they energize many different transport processes. Since their malfunction is correlated with various diseases in humans, the elucidation of the properties of this enzyme for the development of selective inhibitors and drugs is one of the challenges in V-ATPase research. Results Archazolid A and B, two recently discovered cytotoxic macrolactones produced by the myxobacterium Archangium gephyra, and apicularen A and B, two novel benzolactone enamides produced by different species of the myxobacterium Chondromyces, exerted a similar inhibitory efficacy on a wide range of mammalian cell lines as the well established plecomacrolidic type V-ATPase inhibitors concanamycin and bafilomycin. Like the plecomacrolides both new macrolides also prevented the lysosomal acidification in cells and inhibited the V-ATPase purified from the midgut of the tobacco hornworm, Manduca sexta, with IC50 values of 20–60 nM. However, they did not influence the activity of mitochondrial F-ATPase or that of the Na+/K+-ATPase. To define the binding sites of these new inhibitors we used a semi-synthetic radioactively labelled derivative of concanamycin which exclusively binds to the membrane Vo subunit c. Whereas archazolid A prevented, like the plecomacrolides concanamycin A, bafilomycin A1 and B1, labelling of subunit c by the radioactive I-concanolide A, the benzolactone enamide apicularen A did not compete with the plecomacrolide derivative. Conclusion The myxobacterial antibiotics archazolid and apicularen are highly efficient and specific novel inhibitors of V-ATPases. While archazolid at least partly shares a common binding site with the plecomacrolides bafilomycin and concanamycin, apicularen adheres to an independent binding site.

  2. Surfactants in the management of rhinopathologies

    Science.gov (United States)

    Rosen, Philip L.; Palmer, James N.; O'Malley, Bert W.

    2013-01-01

    Background: Surfactants are a class of amphiphilic surface active compounds that show several unique physical properties at liquid–liquid or liquid–solid surface interfaces including the ability to increase the solubility of substances, lower the surface tension of a liquid, and decrease friction between two mediums. Because of these unique physical properties several in vitro, ex vivo, and human trials have examined the role of surfactants as stand-alone or adjunct therapy in recalcitrant chronic rhinosinusitis (CRS). Methods: A review of the literature was performed. Results: The data from three different surfactants have been examined in this review: citric acid zwitterionic surfactant (CAZS; Medtronic ENT, Jacksonville FL), Johnson's Baby Shampoo (Johnson & Johnson, New Brunswick NJ), and SinuSurf (NeilMed Pharmaceuticals, Santa Rosa, CA). Dilute surfactant therapy shows in vitro antimicrobial effects with modest inhibition of bacterial biofilm formation. In patients with CRS, surfactants may improve symptoms, most likely through its mucolytic effects. In addition, surfactants have several distinct potential benefits including their ability to improve an irrigant's penetration of the nonoperated sinus and their synergistic effects with antibiotics. However, surfactants potential for nasal irritation and possible transient ciliotoxicity may limit their use. Conclusion: Recent data suggest a possible therapeutic role of surfactants in treating rhinopathologies associated with mucostasis. Further investigation, including a standardization of surfactant formulations, is warranted to further elucidate the potential benefits and drawbacks of this therapy. PMID:23710951

  3. Modulation of vH+-ATPase is part of the functional adaptation of sheep rumen epithelium to high-energy diet.

    Science.gov (United States)

    Kuzinski, Judith; Zitnan, Rudolf; Albrecht, Elke; Viergutz, Torsten; Schweigel-Röntgen, Monika

    2012-11-01

    Ruminal vacuolar H(+)-ATPase (vH(+)-ATPase) activity is regulated by metabolic signals. Thus, we tested whether its localization, expression, and activity were changed by different feeding. Young male sheep (n = 12) were either fed hay ad libitum (h) or hay ad libitum plus additional concentrate (h/c) for 2 wk. The vH(+)-ATPase B subunit signal was predominantly found in the cell membrane and cytosol of rumen epithelial cells (REC) with basal/parabasal phenotype. The elevated number (threefold) of these cells in rumen mucosa of h/c-fed sheep reflects a high proliferative capacity and, explains the 2.3-fold increase of the total number of vH(+)-ATPase-expressing REC. However, in accordance with a 58% reduction of the vH(+)-ATPase B subunit mRNA expression in h/c-fed sheep, its protein amount per single REC was decreased. Using the fluorescent probe BCECF and selective inhibitors (foliomycin, amiloride), the contribution of vH(+)-ATPase and Na(+)/H(+) exchanger to intracellular pH (pH(i)) regulation was investigated. REC isolated from h/c-fed sheep keep their pH(i) at a significantly higher level (6.91 ± 0.03 vs. 6.74 ± 0.05 in h-fed sheep). Foliomycin or amiloride decreased pH(i) by 0.16 ± 0.02 and 0.57 ± 0.04 pH units when applied to REC from h-fed sheep, but the effects were markedly reduced (-88 and -33%) after concentrate feeding. Nevertheless, we found that REC proliferation rate and [cAMP](i) were reduced after foliomycin-induced vH(+)-ATPase inhibition. Our results provide the first evidence for a role of vH(+)-ATPase in regulation of REC proliferation, most probably by linking metabolically induced pH(i) changes to signaling pathways regulating this process.

  4. Crystallization and preliminary X-ray analysis of the ATPase domain of the σ54-dependent transcription activator NtrC1 from Aquifex aeolicus bound to the ATP analog ADP–BeFx

    International Nuclear Information System (INIS)

    This study reports the crystallization of a new nucleotide state of the ATPase domain of a bacterial transcription activator NtrC1 from the hyperthermophilic bacterium Aquifex aeolicus. Wild-type NtrC1 ATPase domain was crystallized in the presence of the ATP analog ADP–BeFx–Mg and the crystals diffracted anisotropically to at best 3.2, 5.2 and 3.2 Å resolution in the a*, b* and c* directions, respectively. One way that bacteria regulate the transcription of specific genes to adapt to environmental challenges is to use different σ factors that direct the RNA polymerase holoenzyme to distinct promoters. Unlike σ70 RNA polymerase (RNAP), σ54 RNAP is unable to initiate transcription without an activator: enhancer-binding protein (EBP). All EBPs contain one ATPase domain that belongs to the family of ATPases associated with various cellular activities (AAA+ ATPases). AAA+ ATPases use the energy of ATP hydrolysis to remodel different target macromolecules to perform distinct functions. These mechanochemical enzymes are known to form ring-shaped oligomers whose conformations strongly depend upon nucleotide status. Here, the crystallization of the AAA+ ATPase domain of an EBP from Aquifex aeolicus, NtrC1, in the presence of the non-hydrolyzable ATP analog ADP–BeFx is reported. X-ray diffraction data were collected from two crystals from two different protein fractions of the NtrC1 ATPase domain. Previously, this domain was co-crystallized with ADP and ATP, but the latter crystals were grown from the Walker B substitution variant E239A. Therefore, the new data sets are the first for a wild-type EBP ATPase domain co-crystallized with an ATP analog and they reveal a new crystal form. The resulting structure(s) will shed light on the mechanism of EBP-type transcription activators

  5. Dimeric Surfactants: Promising Ingredients of Cosmetics and Toiletries

    OpenAIRE

    Naveen Kumar; Rashmi Tyagi

    2013-01-01

    Surfactants are an essential ingredient for cosmetic, toiletries and personal care products for enhancing their performance. Dimeric surfactants demonstrate superiority compared to conventional surfactants in all areas of application. Dimeric surfactants are extremely promising for utilization in various cosmetic formulations viz. shampoo, lotions, creams, conditioners etc. These surfactants possess extremely unique surface properties viz. lower surface tension, unique micellization, low crit...

  6. Surfactants in tribology, v.3

    CERN Document Server

    Biresaw, Girma

    2013-01-01

    The manufacture and use of almost every consumer and industrial product rely on application of advanced knowledge in surface science and tribology. These two disciplines are of critical importance in major economic sectors, such as mining, agriculture, manufacturing (including metals, plastics, wood, computers, MEMS, NEMS, appliances), construction, transportation, and medical instruments, transplants, and diagnostic devices. An up-to-date reference with contributions by experts in surface science and tribology, Surfactants in Tribology, Volume 3 discusses some of the underlying tribological a

  7. Elevated expression of the V-ATPase C subunit triggers JNK-dependent cell invasion and overgrowth in a Drosophila epithelium

    Directory of Open Access Journals (Sweden)

    Astrid G. Petzoldt

    2013-05-01

    The C subunit of the vacuolar H+-ATPase or V-ATPase regulates the activity and assembly of the proton pump at cellular membranes. It has been shown to be strongly upregulated in oral squamous cell carcinoma, a highly metastatic epithelial cancer. In addition, increased V-ATPase activity appears to correlate with invasiveness of cancer cells, but the underlying mechanism is largely unknown. Using the Drosophila wing imaginal epithelium as an in vivo model system, we demonstrate that overexpression of Vha44, the Drosophila orthologue of the C subunit, causes a tumor-like tissue transformation in cells of the wing epithelium. Overexpressing cells are excluded from the epithelium and acquire invasive properties while displaying high apoptotic rates. Blocking apoptosis in these cells unmasks a strong proliferation stimulus, leading to overgrowth. Furthermore, we show that excess Vha44 greatly increases acidification of endocytic compartments and interferes with endosomal trafficking. As a result, cargoes such as GFP-Lamp1 and Notch accumulate in highly acidified enlarged endolysosomal compartments. Consistent with previous reports on the endocytic activation of Eiger/JNK signaling, we find that V-ATPase stimulation by Vha44 causes JNK signaling activation whereas downmodulation of JNK signaling rescues the invasive phenotypes. In summary, our in vivo-findings demonstrate that increased levels of V-ATPase C subunit induce a Eiger/JNK-dependent cell transformation within an epithelial organ that recapitulates early carcinoma stages.

  8. Immunolocalization of NA(+),K(+)-ATPase in the branchial cavity during the early development of the European lobster Homarus gammarus (Crustacea, Decapoda).

    Science.gov (United States)

    Lignot, J H; Charmantier, G

    2001-08-01

    We examined the ontogeny of the osmoregulatory sites of the branchial cavity in embryonic and early postembryonic stages of the European lobster Homarus gammarus through transmission electron microscopy, immunofluorescence microscopy, and immunogold electron microscopy using a monoclonal antibody IgGalpha(5) raised against the avian alpha-subunit of the Na(+),K(+)-ATPase. In mid-late embryos, Na(+),K(+)-ATPase was located along the pleurites and within the epipodite buds. In late embryos just before hatching, the enzyme was confined to the epipodite epithelia. After hatching, slight differentiations of ionocytes occured in the epipodites of larval stages. Na(+),K(+)-ATPase was also located in the ionocytes of the epipodites of larvae exposed to seawater (35.%o) and to dilute seawater (22.1 %o). After metamorphosis, the inner-side branchiostegite epithelium appeared as an additional site of enzyme location in postlarvae held in dilute seawater. Within the ionocytes, Na(+),K(+)-ATPase was mostly located along the basolateral infoldings. These observations are discussed in relation to the physiological shift from osmoconforming larvae to slightly hyper-regulating (in dilute seawater) postmetamorphic stages. The acquisition of the ability to hyper-osmoregulate probably originates from the differentiation, on the epipodites and mainly along the branchiostegites, of ionocytes that are the site of ion pumping as evidenced by the location of Na(+),K(+)-ATPase. PMID:11457929

  9. Modulation by K+ Plus NH4+ of microsomal (Na+, K+-ATPase activity in selected ontogenetic stages of the diadromous river shrimp Macrobrachium amazonicum (Decapoda, Palaemonidae.

    Directory of Open Access Journals (Sweden)

    Francisco A Leone

    Full Text Available We investigate the synergistic stimulation by K(+ plus NH4 (+ of (Na(+, K(+-ATPase activity in microsomal preparations of whole zoea I and decapodid III, and in juvenile and adult river shrimp gills. Modulation of (Na(+, K(+-ATPase activity is ontogenetic stage-specific, and particularly distinct between juveniles and adults. Although both gill enzymes exhibit two different sites for K(+ and NH4 (+ binding, in the juvenile enzyme, these two sites are equivalent: binding by both ions results in slightly stimulated activity compared to that of a single ionic species. In the adult enzyme, the sites are not equivalent: when one ion occupies its specific binding site, (Na(+, K(+-ATPase activity is stimulated synergistically by ≈ 50% on binding of the complementary ion. Immunolocalization reveals the enzyme to be distributed predominantly throughout the intralamellar septum in the gill lamellae of juveniles and adults. Western blot analyses demonstrate a single immunoreactive band, suggesting a single (Na(+, K(+-ATPase α-subunit isoform that is distributed into different density membrane fractions, independently of ontogenetic stage. We propose a model for the modulation by K(+ and NH4 (+ of gill (Na(+, K(+-ATPase activity. These findings suggest that the gill enzyme may be regulated by NH4 (+ during ontogenetic development in M. amazonicum.

  10. A method to measure hydrolytic activity of adenosinetriphosphatases (ATPases.

    Directory of Open Access Journals (Sweden)

    Gianluca Bartolommei

    Full Text Available The detection of small amounts (nanomoles of inorganic phosphate has a great interest in biochemistry. In particular, phosphate detection is useful to evaluate the rate of hydrolysis of phosphatases, that are enzymes able to remove phosphate from their substrate by hydrolytic cleavage. The hydrolysis rate is correlated to enzyme activity, an extremely important functional parameter. Among phosphatases there are the cation transporting adenosinetriphosphatases (ATPases, that produce inorganic phosphate by cleavage of the γ-phosphate of ATP. These membrane transporters have many fundamental physiological roles and are emerging as potential drug targets. ATPase hydrolytic activity is measured to test enzyme functionality, but it also provides useful information on possible inhibitory effects of molecules that interfere with the hydrolytic process. We have optimized a molybdenum-based protocol that makes use of potassium antimony (III oxide tartrate (originally employed for phosphate detection in environmental analysis to allow its use with phosphatase enzymes. In particular, the method was successfully applied to native and recombinant ATPases to demonstrate its reliability, validity, sensitivity and versatility. Our method introduces significant improvements to well-established experimental assays, which are currently employed for ATPase activity measurements. Therefore, it may be valuable in biochemical and biomedical investigations of ATPase enzymes, in combination with more specific tests, as well as in high throughput drug screening.

  11. Measuring In Vitro ATPase Activity for Enzymatic Characterization.

    Science.gov (United States)

    Rule, Chelsea S; Patrick, Marcella; Sandkvist, Maria

    2016-01-01

    Adenosine triphosphate-hydrolyzing enzymes, or ATPases, play a critical role in a diverse array of cellular functions. These dynamic proteins can generate energy for mechanical work, such as protein trafficking and degradation, solute transport, and cellular movements. The protocol described here is a basic assay for measuring the in vitro activity of purified ATPases for functional characterization. Proteins hydrolyze ATP in a reaction that results in inorganic phosphate release, and the amount of phosphate liberated is then quantitated using a colorimetric assay. This highly adaptable protocol can be adjusted to measure ATPase activity in kinetic or endpoint assays. A representative protocol is provided here based on the activity and requirements of EpsE, the AAA+ ATPase involved in Type II Secretion in the bacterium Vibrio cholerae. The amount of purified protein needed to measure activity, length of the assay and the timing and number of sampling intervals, buffer and salt composition, temperature, co-factors, stimulants (if any), etc. may vary from those described here, and thus some optimization may be necessary. This protocol provides a basic framework for characterizing ATPases and can be performed quickly and easily adjusted as necessary. PMID:27584824

  12. Alteration of Na,K-ATPase subunit mRNA and protein levels in hypertrophied rat heart.

    Science.gov (United States)

    Charlemagne, D; Orlowski, J; Oliviero, P; Rannou, F; Sainte Beuve, C; Swynghedauw, B; Lane, L K

    1994-01-14

    To determine if an altered expression of the Na,K-ATPase alpha isoform genes is responsible for an observed increase in cardiac glycoside sensitivity in compensatory hypertrophy, we performed Northern and slot blot analyses of RNA and specific immunological detection of Na,K-ATPase isoforms in rat hearts from normal and pressure overload-treated animals induced by abdominal aortic constriction. During the early phase of hypertrophy, the only alteration is a decrease in the alpha 2 mRNA isoform. In the compensated hypertrophied heart, the levels of the predominant alpha 1 isoform (mRNA and protein) and the beta 1 subunit mRNA are unchanged. In contrast, the alpha 2 isoform (mRNA and protein) is decreased by 35% and up to 61-64% in mild ( 55%) hypertrophy, respectively. The alpha 3 isoform (mRNA and protein), which is extremely low in adult heart, is increased up to 2-fold during hypertrophy but accounts for only approximately equal to 5% of the total alpha isoform mRNA. These findings demonstrate that, in cardiac hypertrophy, the three alpha isoforms of the Na,K-ATPase are independently regulated and that regulation occurs at a pretranslational level. The pattern of expression in hypertrophied adult heart is similar to that of the neonatal heart where the inverse regulation between the alpha 2 and alpha 3 ouabain high affinity isoforms has been reported. This suggests that distinct regulatory mechanisms controlling Na,K-ATPase isoform expression may, at least in part, be involved in the sensitivity to cardiac glycosides. PMID:8288620

  13. Enhanced Oil Recovery with Surfactant Flooding

    DEFF Research Database (Denmark)

    Sandersen, Sara Bülow

    Enhanced oil recovery (EOR) is being increasingly applied in the oil industry and several different technologies have emerged during, the last decades in order to optimize oil recovery after conventional recovery methods have been applied. Surfactant flooding is an EOR technique in which the phase...... behavior inside the reservoir can be manipulated by the injection of surfactants and co-surfactants, creating advantageous conditions in order to mobilize trapped oil. Correctly designed surfactant systems together with the crude oil can create microemulsions at the interface between crude oil and water......, thus reducing the interfacial tension (IFT) to ultra low (0.001 mN/m), which consequently will mobilize the residual oil and result in improved oil recovery. This EOR technology is, however, made challenging by a number of factors, such as the adsorption of surfactant and co-surfactant to the rock...

  14. Exogenous pulmonary surfactant as a drug delivering agent: influence of antibiotics on surfactant activity.

    OpenAIRE

    van 't Veen, A; Gommers, D.; Mouton, J. W.; Kluytmans, J.A.; Krijt, E. J.; Lachmann, B.

    1996-01-01

    1. It has been proposed to use exogenous pulmonary surfactant as a drug delivery system for antibiotics to the alveolar compartment of the lung. Little, however, is known about interactions between pulmonary surfactant and antimicrobial agents. This study investigated the activity of a bovine pulmonary surfactant after mixture with amphotericin B, amoxicillin, ceftazidime, pentamidine or tobramycin. 2. Surfactant (1 mg ml-1 in vitro and 40 mg ml-1 in vivo) was mixed with 0.375 mg ml-1 amphote...

  15. Synthetic pulmonary surfactant : Effects of surfactant proteins B and C and their analogues

    OpenAIRE

    Almlén, Andreas

    2010-01-01

    Pulmonary surfactant is a lipid/protein mixture lining the air-liquid interface in the alveoli. Its main function is to lower surface tension during respiration and thereby prevent alveolar collapse at end-expiration. Surfactant deficiency, especially common in prematurely born babies, is the main cause of respiratory distress syndrome (RDS). This disease is treated with exogenous surfactant replacement using animal-derived modified natural surfactants. Production of these i...

  16. Cationic versus anionic surfactant in tuning the structure and interaction of nanoparticle, protein, and surfactant complexes.

    Science.gov (United States)

    Mehan, Sumit; Aswal, Vinod K; Kohlbrecher, Joachim

    2014-08-26

    The structure and interaction in complexes of anionic Ludox HS40 silica nanoparticle, anionic bovine serum albumin (BSA) protein, and cationic dodecyl trimethylammonium bromide (DTAB) surfactant have been studied using small-angle neutron scattering (SANS). The results are compared with similar complexes having anionic sodium dodecyl sulfate (SDS) surfactant (Mehan, S; Chinchalikar, A. J.; Kumar, S.; Aswal, V. K.; Schweins, R. Langmuir 2013, 29, 11290). In both cases (DTAB and SDS), the structure in nanoparticle-protein-surfactant complexes is predominantly determined by the interactions of the individual two-component systems. The nanoparticle-surfactant (mediated through protein-surfactant complex) and protein-surfactant interactions for DTAB, but nanoparticle-protein (mediated through protein-surfactant complex) and protein-surfactant interactions for SDS, are found to be responsible for the resultant structure of nanoparticle-protein-surfactant complexes. Irrespective of the charge on the surfactant, the cooperative binding of surfactant with protein leads to micellelike clusters of surfactant formed along the unfolded protein chain. The adsorption of these protein-surfactant complexes for DTAB on oppositely charged nanoparticles gives rise to the protein-surfactant complex-mediated aggregation of nanoparticles (similar to that of DTAB surfactant). It is unlike that of depletion-induced aggregation of nanoparticles with nonadsorption of protein-surfactant complexes for SDS in similarly charged nanoparticle systems (similar to that of protein alone). The modifications in nanoparticle aggregation as well as unfolding of protein in these systems as compared to the corresponding two-component systems have also been examined by selectively contrast matching the constituents.

  17. Surfactant inhibition in acute respiratory failure : consequences for exogenous surfactant therapy

    OpenAIRE

    Eijking, Eric

    1993-01-01

    textabstractThe neonatal respiratory distress syndrome (RDS) is characterized by immaturity of the lung, resulting in relative or absolute absence of pulmonary surfactant. Worldwide, neonates suffering from RDS have been treated successfully with exogenous surfactant preparations. Currently, exogenous surfactant administration has been accepted as a valuable treatment for this syndrome. Nevertheless, many questions on exogenous surfactant treatment remain unanswered. It has been observed that...

  18. The Biophysical Function of Pulmonary Surfactant

    OpenAIRE

    Rugonyi, Sandra; Biswas, Samares C.; Hall, Stephen B.

    2008-01-01

    Pulmonary surfactant lowers surface tension in the lungs. Physiological studies indicate two key aspects of this function: that the surfactant film forms rapidly; and that when compressed by the shrinking alveolar area during exhalation, the film reduces surface tension to very low values. These observations suggest that surfactant vesicles adsorb quickly, and that during compression, the adsorbed film resists the tendency to collapse from the interface to form a three-dimensional bulk phase....

  19. Surfactant adsorption to soil components and soils.

    Science.gov (United States)

    Ishiguro, Munehide; Koopal, Luuk K

    2016-05-01

    Soils are complex and widely varying mixtures of organic matter and inorganic materials; adsorption of surfactants to soils is therefore related to the soil composition. We first discuss the properties of surfactants, including the critical micelle concentration (CMC) and surfactant adsorption on water/air interfaces, the latter gives an impression of surfactant adsorption to a hydrophobic surface and illustrates the importance of the CMC for the adsorption process. Then attention is paid to the most important types of soil particles: humic and fulvic acids, silica, metal oxides and layered aluminosilicates. Information is provided on their structure, surface properties and primary (proton) charge characteristics, which are all important for surfactant binding. Subsequently, the adsorption of different types of surfactants on these individual soil components is discussed in detail, based on mainly experimental results and considering the specific (chemical) and electrostatic interactions, with hydrophobic attraction as an important component of the specific interactions. Adsorption models that can describe the features semi-quantitatively are briefly discussed. In the last part of the paper some trends of surfactant adsorption on soils are briefly discussed together with some complications that may occur and finally the consequences of surfactant adsorption for soil colloidal stability and permeability are considered. When we seek to understand the fate of surfactants in soil and aqueous environments, the hydrophobicity and charge density of the soil or soil particles, must be considered together with the structure, hydrophobicity and charge of the surfactants, because these factors affect the adsorption. The pH and ionic strength are important parameters with respect to the charge density of the particles. As surfactant adsorption influences soil structure and permeability, insight in surfactant adsorption to soil particles is useful for good soil management. PMID

  20. A route to simple nonionic surfactants

    Directory of Open Access Journals (Sweden)

    Sindija Brica

    2016-12-01

    Full Text Available A method for the synthesis of nonionic surfactants – N-alkyl-O-(2-hydroxyethyl carbamates is proposed by acylation of fatty amines with ethylene carbonate without any solvent or catalyst. The surface tension of the prepared surfactants was measured, toxicity and biodegradability were determined for the surfactant with n-dodecyl as a hydrophobic group and N-monosubstituted amide and hydroxyl groups for their hydrophilic part.

  1. Nonionic and ionic surfactants at an interface

    OpenAIRE

    Onuki, Akira

    2008-01-01

    A Ginzburg-Landau theory is presented on surfactants in polar binary mixtures, which aggregate at an interface due to the amphiphilic interaction. They can be ionic surfactants coexisting with counterions. Including the solvation and image interactions and accounting for a finite volume fraction of the surfactant, we obtain their distributions and the electric potential around an interface in equilibrium. The surface tension is also calculated. The distribution of the adsorbed ionic surfactan...

  2. Surfactant-Templated Mesoporous Metal Oxide Nanowires

    OpenAIRE

    Hongmei Luo; Qianglu Lin; Stacy Baber; Mahesh Naalla

    2010-01-01

    We demonstrate two approaches to prepare mesoporous metal oxide nanowires by surfactant assembly and nanoconfinement via sol-gel or electrochemical deposition. For example, mesoporous Ta2O5 and zeolite nanowires are prepared by block copolymer Pluronic 123-templated sol-gel method, and mesoporous ZnO nanowires are prepared by electrodeposition in presence of anionic surfactant sodium dodecyl sulfate (SDS) surfactant, in porous membranes. The morphologies of porous nanowires are studied by sca...

  3. The Molecular Era of Surfactant Biology

    OpenAIRE

    Jeffrey A Whitsett

    2014-01-01

    Advances in the physiology, biochemistry, molecular and cell biology of the pulmonary surfactant system transformed the clinical care and outcome of preterm infants with respiratory distress syndrome. The molecular era of surfactant biology provided genetic insights into the pathogenesis of pulmonary disorders, previously termed “idiopathic” that affect newborn infants, children and adults. Knowledge related to the structure and function of the surfactant proteins and their roles in alveolar ...

  4. Surfactant use outside the tertiary care centre

    OpenAIRE

    Stuart, Shelagh; McMillan, Doug

    2005-01-01

    Early administration of surfactant to preterm babies with respiratory distress syndrome saves lives and decreases morbidity such as pneumothorax. Surfactant administration shortly after birth to intubated babies less than 30 weeks gestation decreases pulmonary air leak, chronic lung disease and mortality. Some preterm babies may be born in hospitals with a transport team hours away. Surfactant administration may cause transient bradycardia or hypoxemia and may rapidly improve lung function. A...

  5. Using dissipative particle dynamics for modeling surfactants

    OpenAIRE

    ZHANG, YUCHEN; Ardekani, Arezoo M.

    2015-01-01

    Oil recovery is an industrial process that injects aqueous solutions into an oil reservoir to pump out crude oil and promote the oil production. The aqueous solution contains surfactants for reducing the interfacial tension (IFT) between aqueous phase and oil. The critical micelle concentration (CMC) is the concentration of surfactant above which micelles form and the interfacial tension reaches a plateau. Our research seeks to measure IFT and CMC for surfactants using dissipative particle dy...

  6. Surfactant-enhanced cellulose nanocrystal Pickering emulsions.

    Science.gov (United States)

    Hu, Zhen; Ballinger, Sarah; Pelton, Robert; Cranston, Emily D

    2015-02-01

    The effect of surfactants on the properties of Pickering emulsions stabilized by cellulose nanocrystals (CNCs) was investigated. Electrophoretic mobility, interfacial tension, confocal microscopy and three-phase contact angle measurements were used to elucidate the interactions between anionic CNCs and cationic alkyl ammonium surfactants didecyldimethylammonium bromide (DMAB) and cetyltrimethylammonium bromide (CTAB). Both surfactants were found to adsorb onto CNCs with concentration-dependent morphology. At low concentrations, individual surfactant molecules adsorbed with alkyl tails pointing outward leading to hydrophobic CNCs. At higher concentrations, above the surfactant's apparent critical micelle concentration, surfactant aggregate morphologies on CNCs were inferred and the hydrophobicity of CNCs decreased. DMAB, which has two alkyl tails, rendered the CNCs more hydrophobic than CTAB which has only a single alkyl tail, at all surfactant concentrations. The change in CNC wettability from surfactant adsorption was directly linked to emulsion properties; adding surfactant increased the emulsion stability, decreased the droplet size, and controlled the internal phase of CNC Pickering emulsions. More specifically, a double transitional phase inversion, from oil-in-water to water-in-oil and back to oil-in-water, was observed for emulsions with CNCs and increasing amounts of DMAB (the more hydrophobic surfactant). With CNCs and CTAB, no phase inversion was induced. This work represents the first report of CNC Pickering emulsions with surfactants as well as the first CNC Pickering emulsions that can be phase inverted. The ability to surface modify CNCs in situ and tailor emulsions by adding surfactants may extend the potential of CNCs to new liquid formulations and extruded/spray-dried materials.

  7. Lung surfactant in subacute pulmonary disease

    OpenAIRE

    Spragg Roger G; Devendra Gehan

    2002-01-01

    Abstract Pulmonary surfactant is a surface active material composed of both lipids and proteins that is produced by alveolar type II pneumocytes. Abnormalities of surfactant in the immature lung or in the acutely inflamed mature lung are well described. However, in a variety of subacute diseases of the mature lung, abnormalities of lung surfactant may also be of importance. These diseases include chronic obstructive pulmonary disease, asthma, cystic fibrosis, interstitial lung disease, pneumo...

  8. Cholesterol-mediated surfactant dysfunction is mitigated by surfactant protein A.

    Science.gov (United States)

    Hiansen, Joshua Qua; Keating, Eleonora; Aspros, Alex; Yao, Li-Juan; Bosma, Karen J; Yamashita, Cory M; Lewis, James F; Veldhuizen, Ruud A W

    2015-03-01

    The ability of pulmonary surfactant to reduce surface tension at the alveolar surface is impaired in various lung diseases. Recent animal studies indicate that elevated levels of cholesterol within surfactant may contribute to its inhibition. It was hypothesized that elevated cholesterol levels within surfactant inhibit human surfactant biophysical function and that these effects can be reversed by surfactant protein A (SP-A). The initial experiment examined the function of surfactant from mechanically ventilated trauma patients in the presence and absence of a cholesterol sequestering agent, methyl-β-cyclodextrin. The results demonstrated improved surface activity when cholesterol was sequestered in vitro using a captive bubble surfactometer (CBS). These results were explored further by reconstitution of surfactant with various concentrations of cholesterol with and without SP-A, and testing of the functionality of these samples in vitro with the CBS and in vivo using surfactant depleted rats. Overall, the results consistently demonstrated that surfactant function was inhibited by levels of cholesterol of 10% (w/w phospholipid) but this inhibition was mitigated by the presence of SP-A. It is concluded that cholesterol-induced surfactant inhibition can actively contribute to physiological impairment of the lungs in mechanically ventilated patients and that SP-A levels may be important to maintain surfactant function in the presence of high cholesterol within surfactant. PMID:25522687

  9. Surfactant nebulisation : lung function, surfactant distribution and pulmonary blood flow distribution in lung lavaged rabbits

    NARCIS (Netherlands)

    Dijk, PH; Heikamp, A; Oetomo, SB

    1997-01-01

    Objective: Surfactant nebulisation is a promising alternative to surfactant instillation in newborns with the respiratory distress syndrome. Although less surfactant is deposited in the lung, it improves gas exchange, probably due to a superior distribution. We hypothesize that a more uniform distri

  10. Biophysical inhibition of pulmonary surfactant function by polymeric nanoparticles: role of surfactant protein B and C.

    Science.gov (United States)

    Beck-Broichsitter, Moritz; Ruppert, Clemens; Schmehl, Thomas; Günther, Andreas; Seeger, Werner

    2014-11-01

    The current study investigated the mechanisms involved in the process of biophysical inhibition of pulmonary surfactant by polymeric nanoparticles (NP). The minimal surface tension of diverse synthetic surfactants was monitored in the presence of bare and surface-decorated (i.e. poloxamer 407) sub-100 nm poly(lactide) NP. Moreover, the influence of NP on surfactant composition (i.e. surfactant protein (SP) content) was studied. Dose-elevations of SP advanced the biophysical activity of the tested surfactant preparation. Surfactant-associated protein C supplemented phospholipid mixtures (PLM-C) were shown to be more susceptible to biophysical inactivation by bare NP than phospholipid mixture supplemented with surfactant protein B (PLM-B) and PLM-B/C. Surfactant function was hindered owing to a drastic depletion of the SP content upon contact with bare NP. By contrast, surface-modified NP were capable of circumventing unwanted surfactant inhibition. Surfactant constitution influences the extent of biophysical inhibition by polymeric NP. Steric shielding of the NP surface minimizes unwanted NP-surfactant interactions, which represents an option for the development of surfactant-compatible nanomedicines.

  11. Solubilization of Hydrophobic Dyes in Surfactant Solutions

    Directory of Open Access Journals (Sweden)

    Ali Reza Tehrani-Bagha

    2013-02-01

    Full Text Available In this paper, the use of surfactants for solubilization of hydrophobic organic dyes (mainly solvent and disperse dyes has been reviewed. The effect of parameters such as the chemical structures of the surfactant and the dye, addition of salt and of polyelectrolytes, pH, and temperature on dye solubilization has been discussed. Surfactant self-assemble into micelles in aqueous solution and below the concentration where this occurs—the critical micelle concentration (CMC—there is no solubilization. Above the CMC, the amount of solubilized dye increases linearly with the increase in surfactant concentration. It is demonstrated that different surfactants work best for different dyes. In general, nonionic surfactants have higher solubilization power than anionic and cationic surfactants. It is likely that the reason for the good performance of nonionic surfactants is that they allow dyes to be accommodated not only in the inner, hydrocarbon part of the micelle but also in the headgroup shell. It is demonstrated that the location of a dye in a surfactant micelle can be assessed from the absorption spectrum of the dye-containing micellar solution.

  12. Lung surfactant in subacute pulmonary disease

    Directory of Open Access Journals (Sweden)

    Spragg Roger G

    2002-04-01

    Full Text Available Abstract Pulmonary surfactant is a surface active material composed of both lipids and proteins that is produced by alveolar type II pneumocytes. Abnormalities of surfactant in the immature lung or in the acutely inflamed mature lung are well described. However, in a variety of subacute diseases of the mature lung, abnormalities of lung surfactant may also be of importance. These diseases include chronic obstructive pulmonary disease, asthma, cystic fibrosis, interstitial lung disease, pneumonia, and alveolar proteinosis. Understanding of the mechanisms that disturb the lung surfactant system may lead to novel rational therapies for these diseases.

  13. Using biologically soft surfactants for dust suppression

    Energy Technology Data Exchange (ETDEWEB)

    Tkachenko, N.G.; Kolodiichak, V.K.; Motrii, A.E.; Severin, V.D.

    1982-07-01

    This article discusses environmental aspects of using surfactants in coal mines for dust suppression. Surfactants for underground black coal mines in the USSR are divided into three classes: so-called soft surfactants with a decomposition period from 1 to 3 days, hard surfactants with decomposition exceeding a month and an intermediary group. The decomposition process is analyzed; the role played by fermentation is stressed. Environmental effects of surfactant decomposition are evaluated. Selected surfactants tested in Soviet laboratories are described. The results of experimental use of diethanolamide as a surfactant for water injection in coal seams are evaluated. Wetting time amounts to 1 s when a 0.2% concentration is used. When surfactant concentration in water is reduced to 0.05% wetting time does not change; when concentration decreases to 0.025% wetting time increases to 3 s. Surfactant efficiency is investigated under operational conditions in a Donbass mine. Specifications of the working face, mining system and air pollution caused by a shearer loader are discussed. When diethanolamide is used dust suppression efficiency ranges from 86.4 to 90.4%. During the tests diethanolamide concentration in water was 0.05%.

  14. Characterization of ATPase Activity of Recombinant Human Pif1

    Institute of Scientific and Technical Information of China (English)

    Yu HUANG; Deng-Hong ZHANG; Jin-Qiu ZHOU

    2006-01-01

    Saccharomyces cerevisiae Pif1p helicase is the founding member of the Pif1 subfamily that is conserved from yeast to human. The potential human homolog of the yeast PIF1 gene has been cloned from the cDNA library of the Hek293 cell line. Here, we described a purification procedure of glutathione Stransferase (GST)-fused N terminal truncated human Pif1 protein (hPif1△N) from yeast and characterized the enzymatic kinetics of its ATP hydrolysis activity. The ATPase activity of human Pif1 is dependent on divalent cation, such as Mg2+, Ca2+ and single-stranded DNA. Km for ATP for the ATPase activity is approximately 200 μM. As the ATPase activity is essential for hPif1's helicase activity, these results will facilitate the further investigation on hPif1.

  15. Ganglioside GM3 modulates conformation of reconstituted Ca2+ -ATPase

    Institute of Scientific and Technical Information of China (English)

    王丽华; 杨小毅; 屠亚平; 催肇春; 杨福愉

    1997-01-01

    Using steady-state fluorescence and nanosecond time-resolved fluorescence techniques, the Ca 2+-ATPase conformational changes induced by ganglioside GM3 were studied with different quenchers. The results showed that GM3 could significantly increase the lifetime of intrinsic fluorescence of Ca2 + -ATPase reconstituted into proteoliposomes, and could also weaken the intrinsic fluorescence quenching by KI or hypocrellin B, HB. Further-more, by using quenching kinetic analysis of the time-resolved fluorescence, in the presence of GM3, the quenching constant (Ksv) and quenching efficiency were significantly lowered. The obtained results suggest that the oligosaccha-ride chain and the ceramide moieties of the GM3 molecule could interact with its counterparts of the Ca2+ -ATPase re-spectively, thus change the conformation of the hydrophobic domain of the enzyme, making the tryptophan residues in different regions shift towards the hydrophilic-hydrophobic interface, and hence shorten the distance between the hy

  16. Ultracytochemical Localization and Functional Analysis of ATPase During the Endosperm Development in Oryza sativa L.

    Institute of Scientific and Technical Information of China (English)

    WEI Cun-xu; LAN Sheng-yin; XU Zhen-xiu

    2003-01-01

    Ultracytochemical localization of ATPase during development of rice endosperm was performed using a lead phosphate precipitation technique. The results indicated that, at the coenocyte and ceilularization stages, active ATPase was mainly distributed in an embryo sac wall, nucleus, and plasma membrane. At the early stage of development and differentiation, active ATPase was observed in the plasma membrane. At the grain filling stage, ATPase was highly active in the plasma membrane, intercellular space, and plasmodesmata in aleurone, moderately active on the plasma membrane in subaleurone. In starchy endosperm, ATPase was localized in the plasma membrane and degenerated nucleus. ATPase activity also appeared around vacuole and protein body in endosperm cell. The relationships between the ultracytochemical localization of ATPase and its function during the development of rice endosperm were discussed. Overall, ATPase was involved in the process of nutrition absorption and protein synthesis.

  17. The Physiological Significance of the Cardiotonic Steroid/Ouabain-Binding Site of the Na,K-ATPase

    Science.gov (United States)

    Lingrel, Jerry B

    2011-01-01

    The Na,K-ATPase is the membrane “pump” that generates the Na+ and K+ gradients across the plasma membrane that drives many physiological processes. This enzyme is highly sensitive to inhibition by cardiotonic steroids, most notably the digitalis/ouabain class of compounds, which have been used for centuries to treat congestive heart failure and arrhythmias. The amino acids that constitute the ouabain-binding site are highly conserved across the evolutionary spectrum. This could be fortuitous or could result from this site being conserved because it has an important biological function. New physiological approaches using genetically engineered mice are being used to define the biological significance of the “receptor function” of the Na,K-ATPase and its regulation by potential endogenous cardiotonic steroid-like compounds. These studies extend the reach of earlier studies involving the biochemical purification of endogenous regulatory ligands. PMID:20148682

  18. F F1-ATPase as biosensor to detect single virus

    International Nuclear Information System (INIS)

    F F1-ATPase within chromatophore was constructed as a biosensor (immuno-rotary biosensor) for the purpose of capturing single virus. Capture of virus was based on antibody-antigen reaction. The detection of virus based on proton flux change driven by ATP-synthesis of F F1-ATPase, which was indicated by F1300, was directly observed by a fluorescence microscope. The results demonstrate that the biosensor loading of virus particles has remarkable signal-to-noise ratio (3.8:1) compared to its control at single molecular level, and will be convenient, quick, and even super-sensitive for detecting virus particles

  19. Surfactant phosphatidylcholine metabolism in preterm infants studied with stable isotopes

    OpenAIRE

    Bunt, Jan Erik

    2000-01-01

    textabstractAIM OF THE STUDIES 1. To develop and use a novel method to study surfactant metabolism in preterm and older infants. (chapters 3 and 4). 2. To study endogenous surfactant synthesis in relation to prenatal glucocorticosteroids. (chapters 5 and 6). 3. To study the influence of surfactant therapy on endogenous surfactant metabolism. (chapters 7 and 8). 4. To study surfactant composition and concentration after surfactant therapy. (chapter 8).

  20. Disaturated-phosphatidylcholine and Surfactant protein-B turnover in human acute lung injury and in control patients

    Directory of Open Access Journals (Sweden)

    Rizzi Sabina

    2011-03-01

    Full Text Available Abstract Background Patients with Adult Respiratory Distress Syndrome (ARDS and Acute Lung Injury (ALI have low concentrations of disaturated-phosphatidylcholine and surfactant protein-B in bronchoalveolar lavage fluid. No information is available on their turnover. Objectives To analyze disaturated-phosphatidylcholine and surfactant protein-B turnover in patients with ARDS/ALI and in human adults with normal lungs (controls. Methods 2H2O as precursor of disaturated-phosphatidylcholine-palmitate and 113C-Leucine as precursor of surfactant protein-B were administered intravenously to 12 patients with ARDS/ALI and to 8 controls. Disaturated-phosphatidylcholine and surfactant protein-B were isolated from serial tracheal aspirates, and their fractional synthetic rate was derived from the 2H and 13C enrichment curves, obtained by gas chromatography mass spectrometry. Disaturated-phosphatidylcholine, surfactant protein-B, and protein concentrations in tracheal aspirates were also measured. Results 1 Surfactant protein-B turned over at faster rate than disaturated-phosphatidylcholine both in ARDS/ALI patients and in controls. 2 In patients with ARDS/ALI the fractional synthesis rate of disaturated-phosphatidylcholine was 3.1 times higher than in controls (p Conclusions 1 Disaturated-phosphatidylcholine and surfactant protein-B have a different turnover both in healthy and diseased lungs. 2 In ARDS/ALI the synthesis of these two surfactant components may be differently regulated.

  1. Transient in utero disruption of Cystic Fibrosis Transmembrane Conductance Regulator causes phenotypic changes in Alveolar Type II cells in adult rats

    Directory of Open Access Journals (Sweden)

    Larson Janet E

    2009-03-01

    Full Text Available Abstract Background Mechanicosensory mechanisms regulate cell differentiation during lung organogenesis. We have previously demonstrated that cystic fibrosis transmembrane conductance regulator (CFTR was integral to stretch-induced growth and development and that transient expression of antisense-CFTR (ASCFTR had negative effects on lung structure and function. In this study, we examined adult alveolar type II (ATII cell phenotype after transient knock down of CFTR by adenovirus-directed in utero expression of ASCFTR in the fetal lung. Results In comparison to (reporter gene-treated Controls, ASCFTR-treated adult rat lungs showed elevated phosphatidylcholine (PC levels in the large but not in the small aggregates of alveolar surfactant. The lung mRNA levels for SP-A and SP-B were lower in the ASCFTR rats. The basal PC secretion in ATII cells was similar in the two groups. However, compared to Control ATII cells, the cells in ASCFTR group showed higher PC secretion with ATP or phorbol myristate acetate. The cell PC pool was also larger in the ASCFTR group. Thus, the increased surfactant secretion in ATII cells could cause higher PC levels in large aggregates of surfactant. In freshly isolated ATII cells, the expression of surfactant proteins was unchanged, suggesting that the lungs of ASCFTR rats contained fewer ATII cells. Gene array analysis of RNA of freshly isolated ATII cells from these lungs showed altered expression of several genes including elevated expression of two calcium-related genes, Ca2+-ATPase and calcium-calmodulin kinase kinase1 (CaMkk1, which was confirmed by real-time PCR. Western blot analysis showed increased expression of calmodulin kinase I, which is activated following phosphorylation by CaMkk1. Although increased expression of calcium regulating genes would argue in favor of Ca2+-dependent mechanisms increasing surfactant secretion, we cannot exclude contribution of alternate mechanisms because of other phenotypic

  2. Excess capacity of H+ ATPase and inverse respiratory control in Escherichia coli

    DEFF Research Database (Denmark)

    Jensen, Peter Ruhdal; Westerhoff, Hans V.; Michelsen, Ole

    1993-01-01

    the growth rate much less than proportionally; the H+-ATPase controlled growth rate by lt 10%. This lack of control reflected excess capacity: the rate of ATP synthesis per H+-ATPase (the turnover number) increased by 60% when the number of enzymes was decreased by 40%. At 15% H+-ATPase, the enzyme...

  3. Structural and functional studies of a Cu+-ATPase from Legionella pneumophila

    DEFF Research Database (Denmark)

    Mattle, Daniel

    During his studies, Daniel Mattle explored the copper(I) export mechanism of a P-type Cu+ ATPase from Legionella pneumophila – a homologue to the human Cu+ ATPases. Cu+ ATPases are responsible for the homeostatic control of the physiological relevant – but toxic – copper(I) cations. To assess...

  4. Beneficial renal and pancreatic phenotypes in a mouse deficient in FXYD2 regulatory subunit of Na,K-ATPase

    Directory of Open Access Journals (Sweden)

    Elena eArystarkhova

    2016-03-01

    Full Text Available The fundamental role of Na,K-ATPase in eukaryotic cells calls for complex and efficient regulation of its activity. Besides alterations in gene expression and trafficking, kinetic properties of the pump are modulated by reversible association with single span membrane proteins, the FXYDs. Seven members of the family are expressed in a tissue-specific manner, affecting pump kinetics in all possible permutations. This mini-review focuses on functional properties of FXYD2 studied in transfected cells, and on noteworthy and unexpected phenotypes discovered in a Fxyd2-/- mouse. FXYD2, the gamma subunit, reduces activity of Na,K-ATPase either by decreasing affinity for Na+, or reducing Vmax. FXYD2 mRNA splicing and editing provide another layer for regulation of Na,K-ATPase. In kidney of knockouts, there was elevated activity for Na,K-ATPase and for NCC and NKCC2 apical sodium transporters. That should lead to sodium retention and hypertension, however, the mice were in sodium balance and normotensive. Adult Fxyd2-/- mice also exhibited a mild pancreatic phenotype with enhanced glucose tolerance, elevation of circulating insulin, but no insulin resistance. There was an increase in beta cell proliferation and beta cell mass that correlated with activation of the PI3K-Akt pathway. The Fxyd2-/- mice are thus in a highly desirable state: the animals are resistant to Na+ retention, and showed improved glucose control, i.e. they display favorable metabolic adaptations to protect against development of salt-sensitive hypertension and diabetes. Investigation of the mechanisms of these adaptations in the mouse has the potential to unveil a novel therapeutic FXYD2-dependent strategy.

  5. Structured fluids polymers, colloids, surfactants

    CERN Document Server

    Witten, Thomas A

    2010-01-01

    Over the last thirty years, the study of liquids containing polymers, surfactants, or colloidal particles has developed from a loose assembly of facts into a coherent discipline with substantial predictive power. These liquids expand our conception of what condensed matter can do. Such structured-fluid phenomena dominate the physical environment within living cells. This book teaches how to think of these fluids from a unified point of view showing the far-reaching effects ofthermal fluctuations in producing forces and motions. Keeping mathematics to a minimum, the book seeks the simplest expl

  6. Pulmonary surfactant in the airway physiology: a direct relaxing effect on the smooth muscle.

    Science.gov (United States)

    Calkovska, A; Uhliarova, B; Joskova, M; Franova, S; Kolomaznik, M; Calkovsky, V; Smolarova, S

    2015-04-01

    Beside alveoli, surface active material plays an important role in the airway physiology. In the upper airways it primarily serves in local defense. Lower airway surfactant stabilizes peripheral airways, provides the transport and defense, has barrier and anti-edematous functions, and possesses direct relaxant effect on the smooth muscle. We tested in vitro the effect of two surfactant preparations Curosurf® and Alveofact® on the precontracted smooth muscle of intra- and extra-pulmonary airways. Relaxation was more pronounced for lung tissue strip containing bronchial smooth muscle as the primary site of surfactant effect. The study does not confirm the participation of ATP-dependent potassium channels and cAMP-regulated epithelial chloride channels known as CFTR chloride channels, or nitric oxide involvement in contractile response of smooth muscle to surfactant.By controlling wall thickness and airway diameter, pulmonary surfactant is an important component of airway physiology. Thus, surfactant dysfunction may be included in pathophysiology of asthma, COPD, or other diseases with bronchial obstruction. PMID:25583659

  7. Surfactant Adsorption: A Revised Physical Chemistry Lab

    Science.gov (United States)

    Bresler, Marc R.; Hagen, John P.

    2008-01-01

    Many physical chemistry lab courses include an experiment in which students measure surface tension as a function of surfactant concentration. In the traditional experiment, the data are fit to the Gibbs isotherm to determine the molar area for the surfactant, and the critical micelle concentration is used to calculate the Gibbs energy of micelle…

  8. Role of Na + -K + ATPase enzyme in vascular response of goat ruminal artery

    Directory of Open Access Journals (Sweden)

    Kathirvel K

    2009-01-01

    Full Text Available Objective: To study the role of Na + , K + - ATPase enzyme in the vascular response of goat ruminal artery. Materials and Methods: Ruminal artery was obtained in chilled aerated modified Krebs-Henseleit solution (KHS from a local slaughterhouse and transported in ice for further processing. The endothelium intact arterial ring was mounted in a thermostatically controlled (37 ± 0.5°C organ bath containing 20 ml of modified KHS (pH 7.4 bubbled with oxygen (95% and CO 2 (5% under 2g tension. An equilibration of 90 min was allowed before addition of drugs into the bath. The responses were recorded isometrically in an automatic organ bath connected to PowerLab data acquisition system. In order to examine intact functional endothelium, ACh (10µM was added on the 5-HT (1.0µM - induced sustained contractile response. Similarly, functional characterization of Na + , K + -ATPase activity was done by K + -induced relaxation (10µM-10mM in the absence and presence of ouabain (0.1µM/ 0.1mM, digoxin (0.1µM and barium (30µM. Results: ACh (10-5 M did not produce any relaxing effect on 5-HT-induced sustained contractile response suggesting that vascular endothelium has no significant influence on the activation of sodium pump by extracellular K + in ruminal artery. Low concentration of Ba 2+ (30 µM (IC 50 : 0.479mM inhibited K + -induced relaxation suggesting K ir (inward rectifier channel in part had role in K + -induced vasodilatation in ruminal artery. Vasorelaxant effect of KCl (10µM-10mM in K + -free medium is also blocked by ouabain (0.1µM and 0.1mM (IC 50 :0.398mM and IC 35 : 1.36mM, but not by digoxin (0.1µM (IC 50 0.234mM suggesting that ouabain sensitive Na + , K + -ATPase isoform is present in the ruminal artery. Conclusion: In the goat ruminal artery functional regulation of sodium pump is partly mediated by K + channel and ouabain sensitive Na + , K + ATPase.

  9. Calcium-ATPases: Gene disorders and dysregulation in cancer.

    Science.gov (United States)

    Dang, Donna; Rao, Rajini

    2016-06-01

    Ca(2+)-ATPases belonging to the superfamily of P-type pumps play an important role in maintaining low, nanomolar cytoplasmic Ca(2+) levels at rest and priming organellar stores, including the endoplasmic reticulum, Golgi, and secretory vesicles with high levels of Ca(2+) for a wide range of signaling functions. In this review, we introduce the distinct subtypes of Ca(2+)-ATPases and their isoforms and splice variants and provide an overview of their specific cellular roles as they relate to genetic disorders and cancer, with a particular emphasis on recent findings on the secretory pathway Ca(2+)-ATPases (SPCA). Mutations in human ATP2A2, ATP2C1 genes, encoding housekeeping isoforms of the endoplasmic reticulum (SERCA2) and secretory pathway (SPCA1) pumps, respectively, confer autosomal dominant disorders of the skin, whereas mutations in other isoforms underlie various muscular, neurological, or developmental disorders. Emerging evidence points to an important function of dysregulated Ca(2+)-ATPase expression in cancers of the colon, lung, and breast where they may serve as markers of differentiation or novel targets for therapeutic intervention. We review the mechanisms underlying the link between calcium homeostasis and cancer and discuss the potential clinical relevance of these observations. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen. PMID:26608610

  10. Roles and mechanisms of copper transporting ATPases in cancer pathogenesis.

    Science.gov (United States)

    Zhang, Yuqing; Li, Min; Yao, Qizhi; Chen, Changyi

    2009-01-01

    Copper (Cu) is an essential trace element for cell metabolism as a cofactor to many key metabolic enzymes. Numerous physiological processes rely on the adequate and timely transport of copper ions mediated by copper-transporting ATPases (Cu-ATPases), which are essential for human cell growth and development. Inherited gene mutations of ATP7A and ATP7B result in clinical diseases related to damage in the multiple organ systems. Increased expression of these genes has been recently observed in some human cancer specimens, and may be associated with tumorigenesis and chemotherapy resistance. However, underlying mechanisms of Cu-ATPases in human cancer progression and treatment are largely unknown. In this review, we summarize current progress on the copper transport system, the structural and functional properties of the Cu-ATPases, ATP7A and ATP7B, in copper homeostasis, and their roles in anti-tumor drug resistance and cancer metastasis. This review provides valuable information for clinicians and researchers who want to recognize the newest advances in this new field and identify possible lines of investigation in copper transport as important mediators in human physiology and cancer.

  11. Crystal Structure of the Vanadate-Inhibited Ca(2+)-ATPase.

    Science.gov (United States)

    Clausen, Johannes D; Bublitz, Maike; Arnou, Bertrand; Olesen, Claus; Andersen, Jens Peter; Møller, Jesper Vuust; Nissen, Poul

    2016-04-01

    Vanadate is the hallmark inhibitor of the P-type ATPase family; however, structural details of its inhibitory mechanism have remained unresolved. We have determined the crystal structure of sarcoplasmic reticulum Ca(2+)-ATPase with bound vanadate in the absence of Ca(2+). Vanadate is bound at the catalytic site as a planar VO3(-) in complex with water and Mg(2+) in a dephosphorylation transition-state-like conformation. Validating bound VO3(-) by anomalous difference Fourier maps using long-wavelength data we also identify a hitherto undescribed Cl(-) site near the dephosphorylation site. Crystallization was facilitated by trinitrophenyl (TNP)-derivatized nucleotides that bind with the TNP moiety occupying the binding pocket that normally accommodates the adenine of ATP, rationalizing their remarkably high affinity for E2P-like conformations of the Ca(2+)-ATPase. A comparison of the configurations of bound nucleotide analogs in the E2·VO3(-) structure with that in E2·BeF3(-) (E2P ground state analog) reveals multiple binding modes to the Ca(2+)-ATPase.

  12. Elucidating Functional Aspects of P-type ATPases

    DEFF Research Database (Denmark)

    Autzen, Henriette Elisabeth

    2015-01-01

    P-type ATPases are proteins that act to maintain ion homeostasis and electrochemical gradients through the translocation of cations across cell membranes. Underscoring their significance in humans, dysfunction of the ATPases can lead to crucial diseases. Dysfunction of the sarco(endo)plasmic reti......P-type ATPases are proteins that act to maintain ion homeostasis and electrochemical gradients through the translocation of cations across cell membranes. Underscoring their significance in humans, dysfunction of the ATPases can lead to crucial diseases. Dysfunction of the sarco...... cancer and pathogenic microbes. The goal of this Ph.D. dissertation was to functionally characterize SERCA1a and CopA from Legionella pneumophila (LpCopA) through a range of different methods within structural biology. Crystallographic studies of SERCA1a led to a newly determined crystal structure...... that the bacterial, anionic phospholipids, phosphatidylglycerol (PG) and cardiolipin (CL), have an increased propensity to bind to certain areas of the transmembrane domain. Further studies are required to infer whether these observations support specific lipid-protein interactions and what their significance...

  13. Inhibition of Na(+),K(+)-ATPase in the hypothalamus, pons and cerebellum of the offspring rat due to experimentally-induced maternal hypothyroidism.

    Science.gov (United States)

    Koromilas, Christos; Liapi, Charis; Zarros, Apostolos; Tsela, Smaragda; Zissis, Konstantinos M; Kalafatakis, Konstantinos; Skandali, Nikolina; Voumvourakis, Konstantinos; Carageorgiou, Haris; Tsakiris, Stylianos

    2015-08-01

    Neurodevelopment is known to be particularly susceptible to thyroid hormone insufficiency and can result in extensive structural and functional deficits within the central nervous system (CNS), subsequently leading to the establishment of cognitive impairment and neuropsychiatric symptomatology. The current study evaluated the effects of gestational and/or lactational maternal exposure to propylthiouracil (PTU)-induced hypothyroidism (as a suggestive multilevel experimental approach to the study of hypothyroidism-induced changes that has been developed and characterized by the authors) on crucial brain enzyme activities of 21-day-old Wistar rat offspring in a CNS region-specific manner. The activities of acetylcholinesterase (AChE), Na(+),K(+)-ATPase and Mg(2+)-ATPase in the offspring hypothalamus, cerebellum and pons were assessed. The study demonstrated that maternal exposure to PTU (0.05% w/v in the drinking water) during the critical periods of neurodevelopment can result in an inhibition of hypothalamic, pontine and cerebellar Na(+),K(+)-ATPase; a major marker of neuronal excitability and metabolic energy production as well as an important regulator of important systems of neurotransmission. On the other hand, no significant changes in the activities of the herein offspring CNS regions' AChE and Mg(2+)-ATPase were recorded. The observed Na(+),K(+)-ATPase inhibition: (i) is region-specific (and non-detectable in whole brain homogenetes), (ii) could constitute a central event in the pathophysiology of clinically-relevant hypothyroidism-associated developmental neurotoxicity, (iii) occurs under all examined experimental schemes, and (iv) certainly deserves further clarification at a molecular and histopathological level. As these findings are analyzed and compared to the available literature, they also underline the need for the adoption and further study of Na(+),K(+)-ATPase activity as a consistent neurochemical marker within the context of a systematic

  14. Na+, K+-ATPase Subunit Composition in a Human Chondrocyte Cell Line; Evidence for the Presence of α1, α3, β1, β2 and β3 Isoforms

    Directory of Open Access Journals (Sweden)

    Ali Mobasheri

    2012-04-01

    Full Text Available Membrane transport systems participate in fundamental activities such as cell cycle control, proliferation, survival, volume regulation, pH maintenance and regulation of extracellular matrix synthesis. Multiple isoforms of Na+, K+-ATPase are expressed in primary chondrocytes. Some of these isoforms have previously been reported to be expressed exclusively in electrically excitable cells (i.e., cardiomyocytes and neurons. Studying the distribution of Na+, K+-ATPase isoforms in chondrocytes makes it possible to document the diversity of isozyme pairing and to clarify issues concerning Na+, K+-ATPase isoform abundance and the physiological relevance of their expression. In this study, we investigated the expression of Na+, K+-ATPase in a human chondrocyte cell line (C-20/A4 using a combination of immunological and biochemical techniques. A panel of well-characterized antibodies revealed abundant expression of the α1, β1 and β2 isoforms. Western blot analysis of plasma membranes confirmed the above findings. Na+, K+-ATPase consists of multiple isozyme variants that endow chondrocytes with additional homeostatic control capabilities. In terms of Na+, K+-ATPase expression, the C-20/A4 cell line is phenotypically similar to primary and in situ chondrocytes. However, unlike freshly isolated chondrocytes, C-20/A4 cells are an easily accessible and convenient in vitro model for the study of Na+, K+-ATPase expression and regulation in chondrocytes.

  15. Fibrinogen stability under surfactant interaction.

    Science.gov (United States)

    Hassan, Natalia; Barbosa, Leandro R S; Itri, Rosangela; Ruso, Juan M

    2011-10-01

    Differential scanning calorimetry (DSC), circular dichroism (CD), difference spectroscopy (UV-vis), Raman spectroscopy, and small-angle X-ray scattering (SAXS) measurements have been performed in the present work to provide a quantitatively comprehensive physicochemical description of the complexation between bovine fibrinogen and the sodium perfluorooctanoate, sodium octanoate, and sodium dodecanoate in glycine buffer (pH 8.5). It has been found that sodium octanoate and dodecanoate act as fibrinogen destabilizer. Meanwhile, sodium perfluorooctanoate acts as a structure stabilizer at low molar concentration and as a destabilizer at high molar concentration. Fibrinogen's secondary structure is affected by all three studied surfactants (decrease in α-helix and an increase in β-sheet content) to a different extent. DSC and UV-vis revealed the existence of intermediate states in the thermal unfolding process of fibrinogen. In addition, SAXS data analysis showed that pure fibrinogen adopts a paired-dimer structure in solution. Such a structure is unaltered by sodium octanoate and perfluoroctanoate. However, interaction of sodium dodecanoate with the fibrinogen affects the protein conformation leading to a complex formation. Taken together, all results evidence that both surfactant hydrophobicity and tail length mediate the fibrinogen stability upon interaction.

  16. Transporters, chaperones, and P-type ATPases controlling grapevine copper homeostasis.

    Science.gov (United States)

    Leng, Xiangpeng; Mu, Qian; Wang, Xiaomin; Li, Xiaopeng; Zhu, Xudong; Shangguan, Lingfei; Fang, Jinggui

    2015-11-01

    With more copper and copper-containing compounds used as bactericides and fungicides in viticulture, copper homeostasis in grapevine (Vitis) has become one of the serious environmental crises with great risk. To better understand the regulation of Cu homeostasis in grapevine, grapevine seedlings cultured in vitro with different levels of Cu were utilized to investigate the tolerance mechanisms of grapevine responding to copper availability at physiological and molecular levels. The results indicated that Cu contents in roots and leaves arose with increasing levels of Cu application. With copper concentration increasing, malondialdehyde (MDA) content increased in roots and leaves and the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) increased to protect the plant itself from damage. The expression patterns of 19 genes, encoding transporters, chaperones, and P-type ATPases involved in copper homeostasis in root and leaf of grapevine seedling under various levels of Cu(2+) were further analyzed. The expression patterns indicated that CTr1, CTr2, and CTr8 transporters were significantly upregulated in response both to Cu excess and deficiency. ZIP2 was downregulated in response to Cu excess and upregulated under Cu-deficient conditions, while ZIP4 had an opposite expression pattern under similar conditions. The expression of chaperones and P-type ATPases in response to Cu availability in grapevine were also briefly studied.

  17. Development of the pulmonary surfactant system in two oviparous vertebrates.

    Science.gov (United States)

    Johnston, S D; Orgeig, S; Lopatko, O V; Daniels, C B

    2000-02-01

    In birds and oviparous reptiles, hatching is often a lengthy and exhausting process, which commences with pipping followed by lung clearance and pulmonary ventilation. We examined the composition of pulmonary surfactant in the developing lungs of the chicken, Gallus gallus, and of the bearded dragon, Pogona vitticeps. Lung tissue was collected from chicken embryos at days 14, 16, 18 (prepipped), and 20 (postpipped) of incubation and from 1 day and 3 wk posthatch and adult animals. In chickens, surfactant protein A mRNA was detected using Northern blot analysis in lung tissue at all stages sampled, appearing relatively earlier in development compared with placental mammals. Chickens were lavaged at days 16, 18, and 20 of incubation and 1 day posthatch, whereas bearded dragons were lavaged at day 55, days 57-60 (postpipped), and days 58-61 (posthatched). In both species, total phospholipid (PL) from the lavage increased throughout incubation. Disaturated PL (DSP) was not measurable before 16 days of incubation in the chick embryo nor before 55 days in bearded dragons. However, the percentage of DSP/PL increased markedly throughout late development in both species. Because cholesterol (Chol) remained unchanged, the Chol/PL and Chol/DSP ratios decreased in both species. Thus the Chol and PL components are differentially regulated. The lizard surfactant system develops and matures over a relatively shorter time than that of birds and mammals. This probably reflects the highly precocial nature of hatchling reptiles. PMID:10666151

  18. Controlled synthesis of gold nanostars by using a zwitterionic surfactant.

    Science.gov (United States)

    Casu, Alberto; Cabrini, Elisa; Donà, Alice; Falqui, Andrea; Diaz-Fernandez, Yuri; Milanese, Chiara; Taglietti, Angelo; Pallavicini, Piersandro

    2012-07-23

    By replacing cetyltrimethylammonium bromide (CTAB) with the zwitterionic lauryl sulfobetaine (LSB) surfactant in the classical seed-growth synthesis, monocrystalline gold nanostars (m-NS) and pentatwinned gold asymmetric nanostars (a-NS) were obtained instead of nanorods. The main product under all synthetic conditions was a-NS, which have branches with high aspect ratios (AR), thus leading to LSPR absorptions in the 750-1150 nm range. The percentage of m-NS versus a-NS, the aspect ratio of the a-NS branches, and consequently the position of their LSPR absorption can be finely tuned simply by regulating the concentration of reductant, the concentration of surfactant, or the concentration of the "catalytic" Ag(+) cation. The m-NS have instead shorter and larger branches, the AR of which is poorly influenced by synthetic conditions and displays an LSPR positioned around 700 nm. A growth mechanism that involves the direct contact of the sulfate moiety of LSB on the surface of the nano-object is proposed, thereby implying preferential coating of the {111} Au faces with weak interactions. Consistent with this, we also observed the straightforward complete displacement of the LSB surfactant from the surface of the nanostars. This was obtained by the simple addition of thiols in aqueous solution to yield extremely stable coated a-NS and m-NS that are resistant to highly acidic, basic, and in similar to in vivo conditions. PMID:22736477

  19. Influence of salinity on the localization of Na+/K +-ATPase, Na+/K+/2Cl- cotransporter (NKCC) and CFTR anion channel in chloride cells of the Hawaiian goby (Stenogobius hawaiiensis)

    Science.gov (United States)

    McCormick, S.D.; Sundell, K.; Bjornsson, Bjorn Thrandur; Brown, C.L.; Hiroi, J.

    2003-01-01

    Na+/K+-ATPase, Na+/K+/2Cl- cotransporter (NKCC) and cystic fibrosis transmembrane conductance regulator (CFTR) are the three major transport proteins thought to be involved in chloride secretion in teleost fish. If this is the case, the levels of these transporters should be high in chloride cells of seawater-acclimated fish. We therefore examined the influence of salinity on immunolocalization of Na +/K+-ATPase, NKCC and CFTR in the gills of the Hawaiian goby (Stenogobius hawaiiensis). Fish were acclimated to freshwater and 20??? and 30??? seawater for 10 days. Na+/K +-ATPase and NKCC were localized specifically to chloride cells and stained throughout most of the cell except for the nucleus and the most apical region, indicating a basolateral/tubular distribution. All Na+/K +-ATPase-positive chloride cells were also positive for NKCC in all salinities. Salinity caused a slight increase in chloride cell number and size and a slight decrease in staining intensity for Na+/K +-ATPase and NKCC, but the basic pattern of localization was not altered. Gill Na+/K+-ATPase activity was also not affected by salinity. CFTR was localized to the apical surface of chloride cells, and only cells staining positive for Na+/K+-ATPase were CFTR-positive. CFTR-positive cells greatly increased in number (5-fold), area stained (53%) and intensity (29%) after seawater acclimation. In freshwater, CFTR immunoreactivity was light and occurred over a broad apical surface on chloride cells, whereas in seawater there was intense immunoreactivity around the apical pit (which was often punctate in appearance) and a light subapical staining. The results indicate that Na+/K +-ATPase, NKCC and CFTR are all present in chloride cells and support current models that all three are responsible for chloride secretion by chloride cells of teleost fish.

  20. Models for the a subunits of the Thermus thermophilus V/A-ATPase and Saccharomyces cerevisiae V-ATPase enzymes by cryo-EM and evolutionary covariance.

    Science.gov (United States)

    Schep, Daniel G; Zhao, Jianhua; Rubinstein, John L

    2016-03-22

    Rotary ATPases couple ATP synthesis or hydrolysis to proton translocation across a membrane. However, understanding proton translocation has been hampered by a lack of structural information for the membrane-embedded a subunit. The V/A-ATPase from the eubacterium Thermus thermophilus is similar in structure to the eukaryotic V-ATPase but has a simpler subunit composition and functions in vivo to synthesize ATP rather than pump protons. We determined the T. thermophilus V/A-ATPase structure by cryo-EM at 6.4 Å resolution. Evolutionary covariance analysis allowed tracing of the a subunit sequence within the map, providing a complete model of the rotary ATPase. Comparing the membrane-embedded regions of the T. thermophilus V/A-ATPase and eukaryotic V-ATPase from Saccharomyces cerevisiae allowed identification of the α-helices that belong to the a subunit and revealed the existence of previously unknown subunits in the eukaryotic enzyme. Subsequent evolutionary covariance analysis enabled construction of a model of the a subunit in the S. cerevisae V-ATPase that explains numerous biochemical studies of that enzyme. Comparing the two a subunit structures determined here with a structure of the distantly related a subunit from the bovine F-type ATP synthase revealed a conserved pattern of residues, suggesting a common mechanism for proton transport in all rotary ATPases.

  1. Epigallocatechin-3-Gallate Protects Erythrocyte Ca2+-ATPase and Na+/K+-ATPase Against Oxidative Induced Damage During Aging in Humans

    Directory of Open Access Journals (Sweden)

    Prabhanshu Kumar

    2014-10-01

    Full Text Available Purpose: The main purpose of this study was to investigate the protective role of epigallocatechin-3-gallate on tertiary butyl hydroperoxide induced oxidative damage in erythrocyte during aging in humans. Methods: Human erythrocyte membrane bound Ca2+-ATPase and Na+/K+-ATPase activities were determined as a function of human age. Protective role of epigallocatechin-3-gallate was evaluated by in vitro experiments by adding epigallocatechin-3-gallate in concentration dependent manner (final concentration range 10-7M to 10-4M to the enzyme assay medium. Oxidative stress was induced in vitro by incubating washed erythrocyte ghosts with tertiary butyl hydroperoxide (10-5 M final concentration. Results: We have reported concentration dependent effect of epigallocatechin-3-gallate on tertiary butyl hydroperoxide induced damage on activities of Ca2+-ATPase and Na+/K+-ATPase during aging in humans. We have detected a significant (p < 0.001 decreased activity of Ca2+-ATPase and Na+/K+ -ATPase as a function of human age. Epigallocatechin-3-gallate protected ATPases against tertiary butyl hydroperoxide induced damage in concentration dependent manner during aging in humans. Conclusion: Epigallocatechin-3-gallate is a powerful antioxidant that is capable of protecting erythrocyte Ca2+-ATPase and Na+/K+ -ATPase against oxidative stress during aging in humans. We may propose hypothesis that a high intake of catechin rich diet may provide some protection against development of aging and age related diseases.

  2. Demethoxycurcumin is a potent inhibitor of P-type ATPases from diverse kingdoms of life

    DEFF Research Database (Denmark)

    Dao, Trong Tuan; Sehgal, Pankaj; Thanh Tung, Truong;

    2016-01-01

    the curcuminoids, demethoxycurcumin was the most potent inhibitor of all tested P-type ATPases from fungal (Pma1p; H+-ATPase), plant (AHA2; H+-ATPase) and animal (SERCA; Ca2+-ATPase) cells. All three curcuminoids acted as non-competitive antagonist to ATP and hence may bind to a highly conserved allosteric site......P-type ATPases catalyze the active transport of cations and phospholipids across biological membranes. Members of this large family are involved in a range of fundamental cellular processes. To date, a substantial number of P-type ATPase inhibitors have been characterized, some of which are used...... as drugs. In this work a library of natural compounds was screened and we first identified curcuminoids as plasma membrane H+-ATPases inhibitors in plant and fungal cells. We also found that some of the commercial curcumins contain several curcuminoids. Three of these were purified and, among...

  3. Surfactant replacement therapy--economic impact.

    Science.gov (United States)

    Pejaver, R K; al Hifzi, I; Aldussari, S

    2001-06-01

    Surfactant replacement is an effective treatment for neonatal respiratory distress syndrome. (RDS). As widespread use of surfactant is becoming a reality, it is important to assess the economic implications of this new form of therapy. A comparison study was carried out at the Neonatal Intensive Care Unit (NICU) of Northwest Armed Forces Hospital, Saudi Arabia. Among 75 infants who received surfactant for RDS and similar number who were managed during time period just before the surfactant was available, but by set criteria would have made them eligible for surfactant. All other management modalities except surfactant were the same for all these babies. Based on the intensity of monitoring and nursing care required by the baby, the level of care was divided as: Level IIIA, IIIB, Level II, Level I. The cost per day per bed for each level was calculated, taking into account the use of hospital immovable equipment, personal salaries of nursing, medical, ancillary staff, overheads and maintenance, depreciation and replacement costs. Medications used, procedures done, TPN, oxygen, were all added to individual patient's total expenditure. 75 infants in the Surfactant group had 62 survivors. They spent a total of 4300 days in hospital. (av 69.35) Out of which 970 d (av 15.65 per patient) were ventilated days. There were 56 survivors in the non-surfactant group of 75. They had spent a total of 5023 days in the hospital (av 89.69/patient) out of which 1490 were ventilated days (av 26.60 d). Including the cost of surfactant (two doses), cost of hospital stay for each infant taking the average figures of stay would be SR 118, 009.75 per surfactant treated baby and SR 164, 070.70 per non-surfactant treated baby. The difference of 46,061 SR is 39.03% more in non-surfactant group. One Saudi rial = 8 Rs (approx at the time study was carried out.) Medical care cost varies from place to place. However, it is definitely cost-effective where surfactant is concerned. Quality adjusted

  4. Mouse MORC3 is a GHKL ATPase that localizes to H3K4me3 marked chromatin.

    Science.gov (United States)

    Li, Sisi; Yen, Linda; Pastor, William A; Johnston, Jonathan B; Du, Jiamu; Shew, Colin J; Liu, Wanlu; Ho, Jamie; Stender, Bryan; Clark, Amander T; Burlingame, Alma L; Daxinger, Lucia; Patel, Dinshaw J; Jacobsen, Steven E

    2016-08-30

    Microrchidia (MORC) proteins are GHKL (gyrase, heat-shock protein 90, histidine kinase, MutL) ATPases that function in gene regulation in multiple organisms. Animal MORCs also contain CW-type zinc finger domains, which are known to bind to modified histones. We solved the crystal structure of the murine MORC3 ATPase-CW domain bound to the nucleotide analog AMPPNP (phosphoaminophosphonic acid-adenylate ester) and in complex with a trimethylated histone H3 lysine 4 (H3K4) peptide (H3K4me3). We observed that the MORC3 N-terminal ATPase domain forms a dimer when bound to AMPPNP. We used native mass spectrometry to show that dimerization is ATP-dependent, and that dimer formation is enhanced in the presence of nonhydrolyzable ATP analogs. The CW domain uses an aromatic cage to bind trimethylated Lys4 and forms extensive hydrogen bonds with the H3 tail. We found that MORC3 localizes to promoters marked by H3K4me3 throughout the genome, consistent with its binding to H3K4me3 in vitro. Our work sheds light on aspects of the molecular dynamics and function of MORC3. PMID:27528681

  5. Na(+)-K(+)-ATPase alpha(2)-isoform expression in guinea pig hearts during transition from compensation to decompensation.

    Science.gov (United States)

    Trouve, P; Carre, F; Belikova, I; Leclercq, C; Dakhli, T; Soufir, L; Coquard, I; Ramirez-Gil, J; Charlemagne, D

    2000-10-01

    Disturbance in ionic gradient across sarcolemma may lead to arrhythmias. Because Na(+)-K(+)-ATPase regulates intracellular Na(+) and K(+) concentrations, and therefore intracellular Ca(2+) concentration homeostasis, our aim was to determine whether changes in the Na(+)-K(+)-ATPase alpha-isoforms in guinea pigs during transition from compensated (CLVH) to decompensated left ventricular hypertrophy (DLVH) were concomitant with arrhythmias. After 12- and 20-mo aortic stenosis, CLVH and DLVH were characterized by increased mean arterial pressure (30% and 52.7%, respectively). DLVH differed from CLVH by significantly increased end-diastolic pressure (34%), decreased sarco(endo)plasmic reticulum Ca(2+)-ATPase (-75%), and increased Na(+)/Ca(2+) exchanger (25%) mRNA levels and by the occurrence of ventricular arrhythmias. The alpha-isoform (mRNA and protein levels) was significantly lower in DLVH (2.2 +/- 0.2- and 1. 4 +/- 0.15-fold, respectively, vs. control) than in CLVH (3.5 +/- 0. 4- and 2.2 +/- 0.13-fold, respectively) and was present in sarcolemma and T tubules. Changes in the levels of alpha(1)- and alpha(3)-isoform in CLVH and DLVH appear physiologically irrelevant. We suggest that the increased level of alpha(2)-isoform in CLVH may participate in compensation, whereas its relative decrease in DLVH may enhance decompensation and arrhythmias. PMID:11009487

  6. Exogenous Pulmonary Surfactant as a Vehicle for Antimicrobials: Assessment of Surfactant-Antibacterial Interactions In Vitro

    Directory of Open Access Journals (Sweden)

    Alexei Birkun

    2014-01-01

    Full Text Available Owing to its unique surface-active properties, an exogenous pulmonary surfactant may become a promising drug delivery agent, in particular, acting as a vehicle for antibiotics in topical treatment of pneumonia. The purpose of this study was to assess a mutual influence of natural surfactant preparation and three antibiotics (amikacin, cefepime, and colistimethate sodium in vitro and to identify appropriate combination(s for subsequent in vivo investigations of experimental surfactant/antibiotic mixtures. Influence of antibiotics on surface-active properties of exogenous surfactant was assessed using the modified Pattle method. Effects of exogenous surfactant on antibacterial activity of antimicrobials against Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa were evaluated using conventional microbiologic procedures. Addition of amikacin or cefepime to surfactant had no significant influence on surface-active properties of the latter. Obvious reduction of surface-active properties was confirmed for surfactant/colistimethate composition. When suspended with antibiotics, surfactant either had no impact on their antimicrobial activity (amikacin or exerted mild to moderate influence (reduction of cefepime bactericidal activity and increase of colistimethate bacteriostatic activity against S. aureus and P. aeruginosa. Considering favorable compatibility profile, the surfactant/amikacin combination is advisable for subsequent investigation of joint surfactant/antibacterial therapy in animals with bacterial pneumonia.

  7. Characterization of VAMP-2 in the lung: implication in lung surfactant secretion.

    Science.gov (United States)

    Wang, Pengcheng; Howard, Marcia D; Zhang, Honghao; Chintagari, Narendranath Reddy; Bell, Anna; Jin, Nili; Mishra, Amarjit; Liu, Lin

    2012-09-01

    Lung surfactant is crucial for reducing the surface tension of alveolar space, thus preventing the alveoli from collapse. Lung surfactant is synthesized in alveolar epithelial type II cells and stored in lamellar bodies before being released via the fusion of lamellar bodies with the apical plasma membrane. SNAREs (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptors) play an essential role in membrane fusion. We have previously demonstrated the requirement of t-SNARE (target SNARE) proteins, syntaxin 2 and SNAP-23 (N-ethylmaleimide-sensitive factor-attachment protein 23), in regulated surfactant secretion. Here, we characterized the distribution of VAMPs (vesicle-associated membrane proteins) in rat lung and alveolar type II cells. VAMP-2, -3 and -8 are shown in type II cells at both mRNA and protein levels. VAMP-2 and -8 were enriched in LB (lamellar body) fraction. Immunochemistry studies indicated that VAMP-2 was co-localized with the LB marker protein, LB-180. Functionally, the cytoplasmic domain of VAMP-2, but not VAMP-8 inhibited surfactant secretion in type II cells. We suggest that VAMP-2 is the v-SNARE (vesicle SNARE) involved in regulated surfactant secretion. PMID:22571236

  8. Characterization of VAMP-2 in the lung: implication in lung surfactant secretion.

    Science.gov (United States)

    Wang, Pengcheng; Howard, Marcia D; Zhang, Honghao; Chintagari, Narendranath Reddy; Bell, Anna; Jin, Nili; Mishra, Amarjit; Liu, Lin

    2012-09-01

    Lung surfactant is crucial for reducing the surface tension of alveolar space, thus preventing the alveoli from collapse. Lung surfactant is synthesized in alveolar epithelial type II cells and stored in lamellar bodies before being released via the fusion of lamellar bodies with the apical plasma membrane. SNAREs (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptors) play an essential role in membrane fusion. We have previously demonstrated the requirement of t-SNARE (target SNARE) proteins, syntaxin 2 and SNAP-23 (N-ethylmaleimide-sensitive factor-attachment protein 23), in regulated surfactant secretion. Here, we characterized the distribution of VAMPs (vesicle-associated membrane proteins) in rat lung and alveolar type II cells. VAMP-2, -3 and -8 are shown in type II cells at both mRNA and protein levels. VAMP-2 and -8 were enriched in LB (lamellar body) fraction. Immunochemistry studies indicated that VAMP-2 was co-localized with the LB marker protein, LB-180. Functionally, the cytoplasmic domain of VAMP-2, but not VAMP-8 inhibited surfactant secretion in type II cells. We suggest that VAMP-2 is the v-SNARE (vesicle SNARE) involved in regulated surfactant secretion.

  9. Do Src Kinase and Caveolin Interact Directly with Na,K-ATPase?

    Science.gov (United States)

    Yosef, Eliyahu; Katz, Adriana; Peleg, Yoav; Mehlman, Tevie; Karlish, Steven J D

    2016-05-27

    Much evidence points to a role of Na,K-ATPase in ouabain-dependent signal transduction. Based on experiments with different cell lines and native tissue membranes, a current hypothesis postulates direct interactions between the Na,K-ATPase and Src kinase (non-receptor tyrosine kinase). Na,K-ATPase is proposed to bind Src kinase and inhibit its activity, whereas ouabain, the specific Na,K-ATPase inhibitor, binds and stabilizes the E2 conformation, thus exposing the Src kinase domain and its active site Tyr-418 for activation. Ouabain-dependent signaling is thought to be mediated within caveolae by a complex consisting of Na,K-ATPase, caveolin, and Src kinase. In the current work, we have looked for direct interactions utilizing purified recombinant Na,K-ATPase (human α1β1FXYD1 or porcine α1D369Nβ1FXYD1) and purified human Src kinase and human caveolin 1 or interactions between these proteins in native membrane vesicles isolated from rabbit kidney. By several independent criteria and techniques, no stable interactions were detected between Na,K-ATPase and purified Src kinase. Na,K-ATPase was found to be a substrate for Src kinase phosphorylation at Tyr-144. Clear evidence for a direct interaction between purified human Na,K-ATPase and human caveolin was obtained, albeit with a low molar stoichiometry (1:15-30 caveolin 1/Na,K-ATPase). In native renal membranes, a specific caveolin 14-5 oligomer (95 kDa) was found to be in direct interaction with Na,K-ATPase. We inferred that a small fraction of the renal Na,K-ATPase molecules is in a ∼1:1 complex with a caveolin 14-5 oligomer. Thus, overall, whereas a direct caveolin 1/Na,K-ATPase interaction is confirmed, the lack of direct Src kinase/Na,K-ATPase binding requires reassessment of the mechanism of ouabain-dependent signaling.

  10. hCINAP is an atypical mammalian nuclear adenylate kinase with an ATPase motif: structural and functional studies.

    Science.gov (United States)

    Drakou, Christina E; Malekkou, Anna; Hayes, Joseph M; Lederer, Carsten W; Leonidas, Demetres D; Oikonomakos, Nikos G; Lamond, Angus I; Santama, Niovi; Zographos, Spyros E

    2012-01-01

    Human coilin interacting nuclear ATPase protein (hCINAP) directly interacts with coilin, a marker protein of Cajal Bodies (CBs), nuclear organelles involved in the maturation of small nuclear ribonucleoproteins UsnRNPs and snoRNPs. hCINAP has previously been designated as an adenylate kinase (AK6), but is very atypical as it exhibits unusually broad substrate specificity, structural features characteristic of ATPase/GTPase proteins (Walker motifs A and B) and also intrinsic ATPase activity. Despite its intriguing structure, unique properties and cellular localization, the enzymatic mechanism and biological function of hCINAP have remained poorly characterized. Here, we offer the first high-resolution structure of hCINAP in complex with the substrate ADP (and dADP), the structure of hCINAP with a sulfate ion bound at the AMP binding site, and the structure of the ternary complex hCINAP-Mg(2+) ADP-Pi. Induced fit docking calculations are used to predict the structure of the hCINAP-Mg(2+) ATP-AMP ternary complex. Structural analysis suggested a functional role for His79 in the Walker B motif. Kinetic analysis of mutant hCINAP-H79G indicates that His79 affects both AK and ATPase catalytic efficiency and induces homodimer formation. Finally, we show that in vivo expression of hCINAP-H79G in human cells is toxic and drastically deregulates the number and appearance of CBs in the cell nucleus. Our findings suggest that hCINAP may not simply regulate nucleotide homeostasis, but may have broader functionality, including control of CB assembly and disassembly in the nucleus of human cells. PMID:22038794

  11. Tunable, antibacterial activity of silicone polyether surfactants.

    Science.gov (United States)

    Khan, Madiha F; Zepeda-Velazquez, Laura; Brook, Michael A

    2015-08-01

    Silicone surfactants are used in a variety of applications, however, limited data is available on the relationship between surfactant structure and biological activity. A series of seven nonionic, silicone polyether surfactants with known structures was tested for in vitro antibacterial activity against Escherichia coli BL21. The compounds varied in their hydrophobic head, comprised of branched silicone structures with 3-10 siloxane linkages and, in two cases, phenyl substitution, and hydrophilic tail of 8-44 poly(ethylene glycol) units. The surfactants were tested at three concentrations: below, at, and above their Critical Micelle Concentrations (CMC) against 5 concentrations of E. coli BL21 in a three-step assay comprised of a 14-24h turbidometric screen, a live-dead stain and viable colony counts. The bacterial concentration had little effect on antibacterial activity. For most of the surfactants, antibacterial activity was higher at concentrations above the CMC. Surfactants with smaller silicone head groups had as much as 4 times the bioactivity of surfactants with larger groups, with the smallest hydrophobe exhibiting potency equivalent to sodium dodecyl sulfate (SDS). Smaller PEG chains were similarly associated with higher potency. These data link lower micelle stability and enhanced permeability of smaller silicone head groups to antibacterial activity. The results demonstrate that simple manipulation of nonionic silicone polyether structure leads to significant changes in antibacterial activity. PMID:26057244

  12. A study of surfactant-assisted waterflooding

    Energy Technology Data Exchange (ETDEWEB)

    Scamehorn, J F; Harwell, J H

    1990-09-01

    In surfactant-assisted waterflooding, a surfactant slug is injected into a reservoir, followed by a brine spacer, followed by second surfactant slug. The charge on the surfactant in the first slug has opposite sign to that in the second slug. When the two slugs mix in the reservoir, a precipitate or coacervate is formed which plugs the permeable region of the reservoir. Subsequently injected water or brine is forced through the low permeability region of the reservoir, increasing sweep efficiency of the waterflood, compared to a waterflood not using surfactants. In this part of the work, two major tasks are performed. First, core floods are performed with oil present to demonstrate the improvement in incremental oil production, as well as permeability modification. Second, a reservoir simulation model will be proposed to further delineate the optimum strategy for implementation of the surfactant-assisted waterflooding, as well as indicate the reservoir types for which it would be most effective. Surfactants utilized were sodium dodecyl sulfate and dodecyl pyridinium chloride. 44 refs., 17 figs., 3 tabs.

  13. Aqueous Foam Stabilized by Tricationic Amphiphilic Surfactants

    Science.gov (United States)

    Heerschap, Seth; Marafino, John; McKenna, Kristin; Caran, Kevin; Feitosa, Klebert; Kevin Caran's Research Group Collaboration

    2015-03-01

    The unique surface properties of amphiphilic molecules have made them widely used in applications where foaming, emulsifying or coating processes are needed. The development of novel architectures with multi-cephalic/tailed molecules have enhanced their anti-bacterial activity in connection with tail length and the nature of the head group. Here we report on the foamability of two triple head double, tail cationic surfactants (M-1,14,14, M-P, 14,14) and a triple head single tail cationic surfactant (M-1,1,14) and compare them with commercially available single headed, single tailed anionic and cationic surfactants (SDS,CTAB and DTAB). The results show that bubble rupture rate decrease with the length of the carbon chain irrespective of head structure. The growth rate of bubbles with short tailed surfactants (SDS) and longer, single tailed tricationic surfactants (M-1,1,14) was shown to be twice as high as those with longer tailed surfactants (CTAB, M-P,14,14, M-1,14,14). This fact was related to the size variation of bubbles, where the foams made with short tail surfactants exhibited higher polydispersivity than those with short tails. This suggests that foams with tricationic amphiphilics are closed linked to their tail length and generally insensitive to their head structure.

  14. Surfactants tailored by the class Actinobacteria

    Directory of Open Access Journals (Sweden)

    Johannes H Kügler

    2015-03-01

    Full Text Available Gloablly, the drive towards the establishment of a bio-based economy has resulted in an increased need for bio-based applications. This, in turn, has served as a driving force for the discovery and application of novel biosurfactants. The class Actinobacteria represents a vast group of microorganisms with the ability to produce a diverse range of secondary metabolites, including surfactants. Understanding the extensive nature of the biosurfactants produced by actinobacterial strains can assist in finding novel biosurfactants with new potential applications. This review therefore presents a comprehensive overview of the knowledge available on actinobacterial surfactants, the chemical structures that have been completely or partly elucidated, as well as the identity of the biosurfactant-producing strains. Producer strains of not yet elucidated compounds are discussed, as well as the original habitats of all the producer strains, which seems to indicate that biosurfactant production is environmentally driven. Methodology applied in the isolation, purification and structural elucidation of the different types of surface active compounds, as well as surfactant activity tests, are also discussed. Overall, actinobacterial surfactants can be summarized to include the dominantly occurring trehalose-comprising surfactants, other non-trehalose containing glycolipids, lipopeptides and the more rare actinobacterial surfactants. The lack of structural information on a large proportion of actinobacterial surfactants should be considered as a driving force to further explore the abundance and diversity of these compounds. This would allow for a better understanding of actinobacterial surface active compounds and their potential for biotechnological application.

  15. The role of extrinsic and intrinsic factors in the evolution of the control of pulmonary surfactant maturation during development in the amniotes.

    Science.gov (United States)

    Sullivan, Lucy C; Orgeig, Sandra; Daniels, Christopher B

    2003-01-01

    Pulmonary surfactant is a mixture of lipids and proteins that is secreted by alveolar Type II cells. It reduces alveolar surface tension and hence the work of breathing. Despite the tremendous diversity of lung structures amongst the vertebrates, the composition of surfactant is highly conserved. Conserved elements of the surfactant system amongst distantly related species are likely to be crucial factors for successful lung development. Understanding the mechanisms by which the surfactant system becomes operational in animals with dramatically different birthing strategies and in distantly related species will provide important information about the role of the surfactant system in the commencement of air breathing and the processes regulating surfactant maturation and secretion. In mammals, the embryonic maturation of the surfactant system is controlled by a host of factors, including glucocorticoids, thyroid hormones, and autonomic neurotransmitters. Here we review the mechanisms controlling the maturation of surfactant production, including birthing strategy, phylogeny, lung structure, and posthatching environment. Using four species of egg-laying amniote (chicken, dragon lizard, sea turtle, and crocodile) previously described in detail and the large amount of information available for mammals, we examine the hypothesis that the control of surfactant production is dependent on glucocorticoids (dexamethasone [Dex]), thyroid hormones (T3), and autonomic neurotransmitters (epinephrine and carbachol). We also examine whether the overall intrinsic pattern of the control of surfactant maturation is conserved throughout the vertebrate radiation and then how the environment (extrinsic factors) may account for the observed differences in the patterns of development. We also discuss the utility of a coculture system of embryonic Type II cells and fibroblasts to determine the evolutionary pattern behind the control of surfactant and to demonstrate that the surfactant

  16. Reproductive organ and vascular specific promoter of the rice plasma membrane Ca2+ATPase mediates environmental stress responses in plants.

    Directory of Open Access Journals (Sweden)

    Kazi Md Kamrul Huda

    Full Text Available BACKGROUND: Plasma membrane Ca(2+ATPase is a transport protein in the plasma membrane of cells and helps in removal of calcium (Ca(2+ from the cell, hence regulating Ca(2+ level within cells. Though plant Ca(2+ATPases have been shown to be involved in plant stress responses but their promoter regions have not been well studied. RESULTS: The 1478 bp promoter sequence of rice plasma membrane Ca(2+ATPase contains cis-acting elements responsive to stresses and plant hormones. To identify the functional region, serial deletions of the promoter were fused with the GUS sequence and four constructs were obtained. These were differentially activated under NaCl, PEG cold, methyl viologen, abscisic acid and methyl jasmonate treatments. We demonstrated that the rice plasma membrane Ca(2+ATPase promoter is responsible for vascular-specific and multiple stress-inducible gene expression. Only full-length promoter showed specific GUS expression under stress conditions in floral parts. High GUS activity was observed in roots with all the promoter constructs. The -1478 to -886 bp flanking region responded well upon treatment with salt and drought. Only the full-length promoter presented cold-induced GUS expression in leaves, while in shoots slight expression was observed for -1210 and -886 bp flanking region. The -1210 bp deletion significantly responded to exogenous methyl viologen and abscisic acid induction. The -1210 and -886 bp flanking region resulted in increased GUS activity in leaves under methyl jasmonate treatments, whereas in shoots the -886 bp and -519 bp deletion gave higher expression. Salicylic acid failed to induce GUS activities in leaves for all the constructs. CONCLUSIONS: The rice plasma membrane Ca(2+ATPase promoter is a reproductive organ-specific as well as vascular-specific. This promoter contains drought, salt, cold, methyl viologen, abscisic acid and methyl jasmonate related cis-elements, which regulated gene expression. Overall, the

  17. Liquid-liquid extraction for surfactant-contaminant separation and surfactant reuse

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, M.A. [Surbec Environmental, Norman, OK (United States); Sabatini, D.A.; Harwell, J.H. [Univ. of Oklahoma, Norman, OK (United States)

    1997-07-01

    Liquid-liquid extraction was investigated for use with surfactant enhanced subsurface remediation. A surfactant liquid-liquid extraction model (SLLEM) was developed for batch equilibrium conditions based on contaminant partitioning between micellar, water, and solvent phases. The accuracy of this fundamental model was corroborated with experimental results (using naphthalene and phenanthrene as contaminants and squalane as the extracting solvent). The SLLEM model was then expanded to nonequilibrium conditions. The effectiveness of this nonequilibrium model was corroborated with experimental results from continuous flow hollow fiber membrane systems. The validated models were used to conduct a sensitivity analysis evaluating the effects of surfactants on the removal of the contaminants in liquid-liquid extraction systems. In addition, liquid-liquid extraction is compared to air stripping for surfactant-contaminant separation. Finally, conclusions are drawn as to the impact of surfactants on liquid-liquid extraction processes, and the significance of these impacts on the optimization of surfactant-enhanced subsurface remediation.

  18. Synthesis and Characterization of Zirconia Nanocrystallites by Cationic Surfactant and Anionic Surfactant

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Study on nanomaterials has attracted great interests in recent years. In this article,zirconia nanocrystallites of different structures have been successfully synthesized via hydrothermal methods with cationic surfactant (CTAB) and anionic surfactant (SDS), respectively. Differential Scanning Calorimeter (DSC-TG), X-ray Diffractometer (XRD), Transmission Electron Microscope (TEM), Ultraviolet-Visible (UV-vis) and N2 adsorption-desorption analyses are used for their structure characteristics. The results show that the cationic surfactant has a distinctive direction effect on the formation of zirconia nanocrystallites, while the anionic surfactant has a self-assembly synergistic effect on them. The sample synthesized with the cationic surfactant presents good dispersion with the main phase of tetragonal zirconia, and the average nanocryst al size is around 15nm after calcination at 500 ℃. While the sample synthesized with the anionic surfactant exhibits a worm-like mesoporous structure with pure tetragonal phase after calcination at 500 ℃ and with good thermal stability.

  19. Surfactant-Templated Mesoporous Metal Oxide Nanowires

    Directory of Open Access Journals (Sweden)

    Hongmei Luo

    2010-01-01

    Full Text Available We demonstrate two approaches to prepare mesoporous metal oxide nanowires by surfactant assembly and nanoconfinement via sol-gel or electrochemical deposition. For example, mesoporous Ta2O5 and zeolite nanowires are prepared by block copolymer Pluronic 123-templated sol-gel method, and mesoporous ZnO nanowires are prepared by electrodeposition in presence of anionic surfactant sodium dodecyl sulfate (SDS surfactant, in porous membranes. The morphologies of porous nanowires are studied by scanning electron microscopy (SEM and transmission electron microscopy (TEM analyses.

  20. Retinopathy of prematurity in surfactant treated infants.

    OpenAIRE

    Rankin, S. J.; Tubman, T. R.; Halliday, H. L.; Johnston, S S

    1992-01-01

    Seventy six babies of less than 1500 g birth weight who had surfactant replacement therapy for severe respiratory distress syndrome were studied to assess the presence and stage of subsequent retinopathy of prematurity (ROP). A control group of 90 babies, matched for birth weight and gestational age, who did not have surfactant therapy were also studied. Threshold ROP or greater was found in 1.7% of the surfactant group and 7.8% of the controls. For the babies of less than 1000 g birth weight...

  1. "Oxygen Sensing" by Na,K-ATPase: These Miraculous Thiols.

    Science.gov (United States)

    Bogdanova, Anna; Petrushanko, Irina Y; Hernansanz-Agustín, Pablo; Martínez-Ruiz, Antonio

    2016-01-01

    Control over the Na,K-ATPase function plays a central role in adaptation of the organisms to hypoxic and anoxic conditions. As the enzyme itself does not possess O2 binding sites its "oxygen-sensitivity" is mediated by a variety of redox-sensitive modifications including S-glutathionylation, S-nitrosylation, and redox-sensitive phosphorylation. This is an overview of the current knowledge on the plethora of molecular mechanisms tuning the activity of the ATP-consuming Na,K-ATPase to the cellular metabolic activity. Recent findings suggest that oxygen-derived free radicals and H2O2, NO, and oxidized glutathione are the signaling messengers that make the Na,K-ATPase "oxygen-sensitive." This very ancient signaling pathway targeting thiols of all three subunits of the Na,K-ATPase as well as redox-sensitive kinases sustains the enzyme activity at the "optimal" level avoiding terminal ATP depletion and maintaining the transmembrane ion gradients in cells of anoxia-tolerant species. We acknowledge the complexity of the underlying processes as we characterize the sources of reactive oxygen and nitrogen species production in hypoxic cells, and identify their targets, the reactive thiol groups which, upon modification, impact the enzyme activity. Structured accordingly, this review presents a summary on (i) the sources of free radical production in hypoxic cells, (ii) localization of regulatory thiols within the Na,K-ATPase and the role reversible thiol modifications play in responses of the enzyme to a variety of stimuli (hypoxia, receptors' activation) (iii) redox-sensitive regulatory phosphorylation, and (iv) the role of fine modulation of the Na,K-ATPase function in survival success under hypoxic conditions. The co-authors attempted to cover all the contradictions and standing hypotheses in the field and propose the possible future developments in this dynamic area of research, the importance of which is hard to overestimate. Better understanding of the processes

  2. Investigation of loss of surfactants during enhanced oil recovery applications - adsorption of surfactants onto clay materials

    OpenAIRE

    Behrens, Eivind Joo

    2013-01-01

    Chemical flooding, or surfactant flooding, is a well known EOR technique which has been used worldwide for decades. For this method to be economically feasible, it is crucial to minimize the loss of surfactant to the reservoir. Currently the industry is considering combining chemical flooding with the newer technique of low salinity waterflooding which also has proved to be an efficient method for increasing oil recovery from reservoirs. In this study the adsorption of the anionic surfactant ...

  3. Late administration of surfactant replacement therapy increases surfactant protein-B content: a randomized pilot study

    OpenAIRE

    Keller, Roberta L; MERRILL, JEFFREY D.; Black, Dennis M.; Steinhorn, Robin H.; Eichenwald, Eric C.; Durand, David J.; RYAN, RITA M.; Truog, William E; Courtney, Sherry E.; Ballard, Philip L.; Ballard, Roberta A.

    2012-01-01

    Background: Surfactant dysfunction may contribute to the development of bronchopulmonary dysplasia (BPD) in persistently ventilated preterm infants. We conducted a multicenter randomized, blinded, pilot study to assess the safety and efficacy of late administration of doses of a surfactant protein-B (SP-B)-containing surfactant (calfactant) in combination with prolonged inhaled nitric oxide (iNO) in infants ≤1,000 g birth weight (BW). Methods: We randomized 85 preterm infants ventilated at 7–...

  4. Artificial surfactant and natural surfactant. Comparative study of the effects on premature rabbit lungs.

    OpenAIRE

    Morley, C.; Robertson, B.; Lachmann, B; Nilsson, R.; Bangham, A; Grossmann, G.; Miller, N.

    1980-01-01

    Premature newborn rabbits, delivered on day 27 of gestation, were treated with tracheal deposition of dry artificial surfactant containing dipalmitoyl phosphatidylcholine and unsaturated phosphatidylglycerol (7:3), or crude natural surfactant prepared by centrifugation of lung wash from adult rabbits. Before receiving surfactant, the animals were allowed to breathe for 7--27 min; they were then subjected to artificial ventilation under standardised conditions. In comparison with littermate co...

  5. Surfactant modified clays’ consistency limits and contact angles

    OpenAIRE

    Akbulut, S.; Nese, Z; Arasan, S

    2012-01-01

    This study was aimed at preparing a surfactant modified clay (SMC) and researching the effect of surfactants on clays' contact angles and consistency limits; clay was thus modified by surfactants formodifying their engineering properties. Seven surfactants (trimethylglycine, hydroxyethylcellulose  octyl phenol ethoxylate, linear alkylbenzene sulfonic acid, sodium lauryl ether sulfate, cetyl trimethylammonium chloride and quaternised ethoxylated fatty amine) were used as surfactants in this st...

  6. Stable isotope tracers to estimate lung surfactant metabolism in vivo

    OpenAIRE

    Lamonica, Giulia

    2013-01-01

    Aim of this thesis was to apply the stable isotopes technique to study pulmonary surfactant kinetics. Lung surfactant is essential to live, because it prevents the alveoli to collapse during normal breathing. Lung surfactant is composed of lipids and specific proteins, and nowadays it is well known that alterations on the composition and amount of surfactant are involved in acute and chronic lung diseases. This work presents two studies about lung surfactant kinetics. The first one i...

  7. Effects of Interactions Among Surfactants,Water and Oil on Equilibrium Configuration of Surfactant-Water-Oil Systems

    Institute of Scientific and Technical Information of China (English)

    YUAN Yin-quan; SUN Zhi-bo; XIE Yun; ZOU Xian-wu

    2004-01-01

    The distribution and configuration of surfactants at interface in surfactant-water-oil systems have been investigated using discontinuous molecular dynamic simulations. There exists a certain equilibrium concentration of surfactants at interface for the systems with certain interactions among surfactant, water and oil. The interface length and equilibrium morphology of the systems are dependent on the equilibrium concentration of surfactants at interface and the total amount of surfactants. The interaction strengths among surfactant, water and oil determine the equilibrium concentration of surfactants at interface. Three typical configurations of surfactants at interface have been observed: ① surfactant molecules are perpendicular to the interface and arranged closely; ② perpendicular to the interface and arranged at interval of two particles; ③ lie down in the interface partly.

  8. Oscillations in glycolysis in Saccharomyces cerevisiae: the role of autocatalysis and intracellular ATPase activity.

    Science.gov (United States)

    Kloster, Antonina; Olsen, Lars Folke

    2012-05-01

    We have investigated the glycolytic oscillations, measured as NADH autofluorescence, in the yeast Saccharomyces cerevisiae in a batch reactor. Specifically, we have tested the effect of cell density and a number of inhibitors or activators of ATPase activity on the amplitude of the oscillations. The amplitude dependence on cell density shows the same behavior as that observed in cells in a CSTR. Furthermore, the amplitude decreases with increasing inhibition of the three ATPases (i) F(0)F(1) ATPase, (ii) plasma membrane ATPase (Pma1p) and (iii) vacuolar ATPase (V-ATPase). The amplitude of the oscillations also decreases by stimulating the ATPase activity, e.g. by FCCP or Amphotericin B. Thus, ATPase activity strongly affects the glycolytic oscillations. We discuss these data in relation to a simple autocatalytic model of glycolysis which can reproduce the experimental data and explain the role of membrane-bound ATPases . In addition we also studied a recent detailed model of glycolysis and found that, although this model faithfully reproduces the oscillations of glycolytic intermediates observed experimentally, it is not able to explain the role of ATPase activity on the oscillations.

  9. Supercritical or compressed CO2 as a stimulus for tuning surfactant aggregations.

    Science.gov (United States)

    Zhang, Jianling; Han, Buxing

    2013-02-19

    Surfactant assemblies have a wide range of applications in areas such as the chemical industry, material science, biology, and enhanced oil recovery. From both theoretical and practical perspectives, researchers have focused on tuning the aggregation behaviors of surfactants. Researchers commonly use solid and liquid compounds such as cosurfactants, acids, salts, and alcohols as stimuli for tuning the aggregation behaviors. However, these additives can present economic and environmental costs and can contaminate or modify the product. Therefore researchers would like to develop effective methods for tuning surfactant aggregation with easily removable, economical, and environmentally benign stimuli. Supercritical or compressed CO(2) is abundant, nontoxic, and nonflammable and can be recycled easily after use. Compressed CO(2) is quite soluble in many liquids, and the solubility depends on pressure and temperature. Therefore researchers can continuously influence the properties of liquid solvents by controlling the pressure or temperature of CO(2). In this Account, we briefly review our recent studies on tuning the aggregation behaviors of surfactants in different media using supercritical or compressed CO(2). Supercritical or compressed CO(2) serves as a versatile regulator of a variety of properties of surfactant assemblies. Using CO(2), we can switch the micellization of surfactants in water, adjust the properties of reverse micelles, enhance the stability of vesicles, and modify the switching transition between different surfactant assemblies. We can also tune the properties of emulsions, induce the formation of nanoemulsions, and construct novel microemulsions. With these CO(2)-responsive surfactant assemblies, we have synthesized functional materials, optimized chemical reaction conditions, and enhanced extraction and separation efficiencies. Compared with the conventional solid or liquid additives, CO(2) shows some obvious advantages as an agent for modifying

  10. Dietary selenium increases the antioxidant levels and ATPase activity in the arteries and veins of poultry.

    Science.gov (United States)

    Cao, Changyu; Zhao, Xia; Fan, Ruifeng; Zhao, Jinxin; Luan, Yilin; Zhang, Ziwei; Xu, Shiwen

    2016-07-01

    Selenium (Se) deficiency is associated with the pathogenesis of vascular diseases. It has been shown that oxidative levels and ATPase activity were involved in Se deficiency diseases in humans and mammals; however, the mechanism by how Se influences the oxidative levels and ATPase activity in the poultry vasculature is unclear. We assessed the effects of dietary Se deficiency on the oxidative stress parameters (superoxide dismutase, catalase, and hydroxyl radical) and ATPase (Na(+)K(+)-ATPase, Ca(++)-ATPase, Mg(++)-ATPase, and Ca(++)Mg(++)-ATPase) activity in broiler poultry. A total of 40 broilers (1-day old) were randomly divided into a Se-deficient group (L group, fed a Se-deficient diet containing 0.08 mg/kg Se) and a control group (C group, fed a diet containing sodium selenite at 0.20 mg/kg Se). Then, arteries and veins were collected following euthanasia when typical symptoms of Se deficiency appeared. Antioxidant indexes and ATPase activity were evaluated using standard assays in arteries and veins. The results indicated that superoxide dismutase activity in the artery according to dietary Se deficiency was significantly lower (p < 0.05) compared with the C group. The catalase activity in the veins and hydroxyl radical inhibition in the arteries and veins by dietary Se deficiency were significantly higher (p < 0.05) compared with the C group. The Se-deficient group showed a significantly lower (p < 0.05) tendency in Na(+)K(+)-ATPase activity, Ca(++)-ATPase activity, and Ca(++)Mg(++)-ATPase activity. There were strong correlations between antioxidant indexes and Ca(++)-ATPase activity. Thus, these results indicate that antioxidant indexes and ATPases may have special roles in broiler artery and vein injuries under Se deficiency. PMID:26637493

  11. Novel ATPase activity of the polyprotein intermediate, Viral Protein genome-linked-Nuclear Inclusion-a protease, of Pepper vein banding potyvirus

    International Nuclear Information System (INIS)

    Highlights: ► Pepper vein banding potyvirus VPg harbors Walker motifs. ► VPg exhibits ATPase activity in the presence of NIa-Pro. ► Plausible structural and functional interplay between VPg and NIa-Pro. ► Functional relevance of prolonged presence of VPg-Pro during infection. -- Abstract: Potyviruses temporally regulate their protein function by polyprotein processing. Previous studies have shown that VPg (Viral Protein genome-linked) of Pepper vein banding virus interacts with the NIa-Pro (Nuclear Inclusion-a protease) domain, and modulates the kinetics of the protease. In the present study, we report for the first time that VPg harbors the Walker motifs A and B, and the presence of NIa-Pro, especially in cis (cleavage site (E191A) VPg-Pro mutant), is essential for manifestation of the ATPase activity. Mutation of Lys47 (Walker motif A) and Asp88:Glu89 (Walker motif B) to alanine in E191A VPg-Pro lead to reduced ATPase activity, confirming that this activity was inherent to VPg. We propose that potyviral VPg, established as an intrinsically disordered domain, undergoes plausible structural alterations upon interaction with globular NIa-Pro which induces the ATPase activity.

  12. On the significance of Surfactant Protein-A within the human lungs

    OpenAIRE

    Lang Dagmar S; Abdullah Mahdi; Schultz Holger; Kähler Daniel; Goldmann Torsten; Stellmacher Florian; Vollmer Ekkehard

    2009-01-01

    Abstract Surfactant Protein-A (SP-A) is the most prominent among four proteins in the pulmonary surfactant-system. SP-A is expressed by alveolar epithelial cells type II as well as by a portion of non small cell lung carcinomas (NSCLC). The expression of SP-A is complexly regulated on the transcriptional and the chromosomal level. SP-A is a major player in the pulmonary cytokine-network and moreover has been described to act in the pulmonary host defense. By the use of cell culture or animal ...

  13. Mitochondrial ATPase: a target for paracetamol-induced hepatotoxicity.

    Science.gov (United States)

    Parmar, D V; Ahmed, G; Khandkar, M A; Katyare, S S

    1995-10-01

    We examined the effect of paracetamol treatment (650 mg/kg) on the function of ATPase from rat hepatic mitochondria. The drug treatment caused an overall 35% decrease in ATPase activity, with a complete loss of the high affinity component as determined by substrate kinetic studies. The Km for the intermediate and low affinity components decreased by about 30% without change in Vmax, which may represent a compensatory mechanism. The drug treatment also resulted in a dramatic decrease in the phase transition temperature by about 19 degrees C without affecting the energies of activation of the enzyme. Mitochondrial total phospholipid content increased significantly with a reciprocal decrease in the cholesterol content. The total phospholipid/cholesterol molar ration increased by 50% after paracetamol treatment. However, phospholipid composition (as % of total) of the mitochondria was unaltered. PMID:8666039

  14. Functionalized lipids and surfactants for specific applications.

    Science.gov (United States)

    Kepczynski, Mariusz; Róg, Tomasz

    2016-10-01

    Synthetic lipids and surfactants that do not exist in biological systems have been used for the last few decades in both basic and applied science. The most notable applications for synthetic lipids and surfactants are drug delivery, gene transfection, as reporting molecules, and as support for structural lipid biology. In this review, we describe the potential of the synergistic combination of computational and experimental methodologies to study the behavior of synthetic lipids and surfactants embedded in lipid membranes and liposomes. We focused on select cases in which molecular dynamics simulations were used to complement experimental studies aiming to understand the structure and properties of new compounds at the atomistic level. We also describe cases in which molecular dynamics simulations were used to design new synthetic lipids and surfactants, as well as emerging fields for the application of these compounds. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. PMID:26946243

  15. Aggregation of sulfosuccinate surfactants in water

    Energy Technology Data Exchange (ETDEWEB)

    Magid, L.J.; Daus, K.A.; Butler, P.D.; Quincy, R.B.

    1983-12-22

    The aggregation of sodium di-n-alkyl sulfosuccinates in water (H/sub 2/O and D/sub 2/O at 45/sup 0/C) has been investigated. A self-consistent picture of the dependence of sodium ion binding on surfactant concentration is obtained from emf measurements, conductimetry, and small-angle neutron scattering (SANS) measurements. The concentration dependence of the micellar agregation number for the sulfosuccinates and related double-tailed surfactants depends markedly on surfactant solubility. A sphere-to-disk transition in micellar shape, which might have been expected as a precursor to formation of a lamellar mesophase, was not observed as the surfactant concentration was increased. 8 figures, 2 tables.

  16. The Leishmania donovani lipophosphoglycan excludes the vesicular proton-ATPase from phagosomes by impairing the recruitment of synaptotagmin V.

    Science.gov (United States)

    Vinet, Adrien F; Fukuda, Mitsunori; Turco, Salvatore J; Descoteaux, Albert

    2009-10-01

    We recently showed that the exocytosis regulator Synaptotagmin (Syt) V is recruited to the nascent phagosome and remains associated throughout the maturation process. In this study, we investigated the possibility that Syt V plays a role in regulating interactions between the phagosome and the endocytic organelles. Silencing of Syt V by RNA interference revealed that Syt V contributes to phagolysosome biogenesis by regulating the acquisition of cathepsin D and the vesicular proton-ATPase. In contrast, recruitment of cathepsin B, the early endosomal marker EEA1 and the lysosomal marker LAMP1 to phagosomes was normal in the absence of Syt V. As Leishmania donovani promastigotes inhibit phagosome maturation, we investigated their potential impact on the phagosomal association of Syt V. This inhibition of phagolysosome biogenesis is mediated by the virulence glycolipid lipophosphoglycan, a polymer of the repeating Galbeta1,4Manalpha1-PO(4) units attached to the promastigote surface via an unusual glycosylphosphatidylinositol anchor. Our results showed that insertion of lipophosphoglycan into ganglioside GM1-containing microdomains excluded or caused dissociation of Syt V from phagosome membranes. As a consequence, L. donovani promatigotes established infection in a phagosome from which the vesicular proton-ATPase was excluded and which failed to acidify. Collectively, these results reveal a novel function for Syt V in phagolysosome biogenesis and provide novel insight into the mechanism of vesicular proton-ATPase recruitment to maturing phagosomes. We also provide novel findings into the mechanism of Leishmania pathogenesis, whereby targeting of Syt V is part of the strategy used by L. donovani promastigotes to prevent phagosome acidification. PMID:19834555

  17. The Leishmania donovani lipophosphoglycan excludes the vesicular proton-ATPase from phagosomes by impairing the recruitment of synaptotagmin V.

    Directory of Open Access Journals (Sweden)

    Adrien F Vinet

    2009-10-01

    Full Text Available We recently showed that the exocytosis regulator Synaptotagmin (Syt V is recruited to the nascent phagosome and remains associated throughout the maturation process. In this study, we investigated the possibility that Syt V plays a role in regulating interactions between the phagosome and the endocytic organelles. Silencing of Syt V by RNA interference revealed that Syt V contributes to phagolysosome biogenesis by regulating the acquisition of cathepsin D and the vesicular proton-ATPase. In contrast, recruitment of cathepsin B, the early endosomal marker EEA1 and the lysosomal marker LAMP1 to phagosomes was normal in the absence of Syt V. As Leishmania donovani promastigotes inhibit phagosome maturation, we investigated their potential impact on the phagosomal association of Syt V. This inhibition of phagolysosome biogenesis is mediated by the virulence glycolipid lipophosphoglycan, a polymer of the repeating Galbeta1,4Manalpha1-PO(4 units attached to the promastigote surface via an unusual glycosylphosphatidylinositol anchor. Our results showed that insertion of lipophosphoglycan into ganglioside GM1-containing microdomains excluded or caused dissociation of Syt V from phagosome membranes. As a consequence, L. donovani promatigotes established infection in a phagosome from which the vesicular proton-ATPase was excluded and which failed to acidify. Collectively, these results reveal a novel function for Syt V in phagolysosome biogenesis and provide novel insight into the mechanism of vesicular proton-ATPase recruitment to maturing phagosomes. We also provide novel findings into the mechanism of Leishmania pathogenesis, whereby targeting of Syt V is part of the strategy used by L. donovani promastigotes to prevent phagosome acidification.

  18. Hydrophobic surfactant proteins and their analogues.

    Science.gov (United States)

    Walther, Frans J; Waring, Alan J; Sherman, Mark A; Zasadzinski, Joseph A; Gordon, Larry M

    2007-01-01

    Lung surfactant is a complex mixture of phospholipids and four surfactant-associated proteins (SP-A, SP-B, SP-C and SP-D). Its major function in the lung alveolus is to reduce surface tension at the air-water interface in the terminal airways by the formation of a surface-active film enriched in surfactant lipids, hence preventing cellular collapse during respiration. Surfactant therapy using bovine or porcine lung surfactant extracts, which contain only polar lipids and native SP-B and SP-C, has dramatically improved the therapeutic outcomes of preterm infants with respiratory distress syndrome (RDS). One important goal of surfactant researchers is to replace animal-derived therapies with fully synthetic preparations based on SP-B and SP-C, produced by recombinant technology or peptide synthesis, and reconstituted with selected synthetic lipids. Here, we review recent research developments with peptide analogues of SP-B and SP-C, designed using either the known primary sequence and three-dimensional (3D) structure of the native proteins or, alternatively, the known 3D structures of closely homologous proteins. Such SP-B and SP-C mimics offer the possibility of studying the mechanisms of action of the respective native proteins, and may allow the design of optimized surfactant formulations for specific pulmonary diseases (e.g., acute lung injury (ALI) or acute respiratory distress syndrome (ARDS)). These synthetic surfactant preparations may also be a cost-saving therapeutic approach, with better quality control than may be obtained with animal-based treatments. PMID:17575474

  19. Surfactants in the management of rhinopathologies

    OpenAIRE

    Rosen, Philip L.; Palmer, James N.; O'Malley, Bert W.; Cohen, Noam A.

    2013-01-01

    Background: Surfactants are a class of amphiphilic surface active compounds that show several unique physical properties at liquid–liquid or liquid–solid surface interfaces including the ability to increase the solubility of substances, lower the surface tension of a liquid, and decrease friction between two mediums. Because of these unique physical properties several in vitro, ex vivo, and human trials have examined the role of surfactants as stand-alone or adjunct therapy in recalcitrant ch...

  20. Poly(ethylene oxide) surfactant polymers

    OpenAIRE

    VACHEETHASANEE, KATANCHALEE; WANG, SHUWU; QIU, YONGXING; Marchant, Roger E.

    2004-01-01

    We report on a series of structurally well-defined surfactant polymers that undergo surface-induced self-assembly on hydrophobic biomaterial surfaces. The surfactant polymers consist of a poly(vinyl amine) backbone with poly(ethylene oxide) and hexanal pendant groups. The poly(vinyl amine) (PVAm) was synthesized by hydrolysis of poly(N-vinyl formamide) following free radical polymerization of N-vinyl formamide. Hexanal and aldehyde-terminated poly (ethyleneoxide) (PEO) were simultaneously att...

  1. Surfactant apoprotein in nonmalignant pulmonary disorders.

    OpenAIRE

    Singh, G.; Katyal, S. L.

    1980-01-01

    Formalin-fixed, paraffin-embedded lungs exhibiting a variety of nonmalignant disorders were studied by immunoperoxidase staining using antibodies specific for surfactant apoprotein, IgG, IgM, IgA, albumin, fibrinogen, and lysozyme. Normal Type II pneumocytes showed staining for surfactant apoprotein in the perinuclear region only. The extent and intensity of staining for apoprotein was markedly increased in reactive Type II pneumocytes. This increase appeared to be a nonspecific reaction to l...

  2. Rotary ATPases: models, machine elements and technical specifications.

    Science.gov (United States)

    Stewart, Alastair G; Sobti, Meghna; Harvey, Richard P; Stock, Daniela

    2013-01-01

    Rotary ATPases are molecular rotary motors involved in biological energy conversion. They either synthesize or hydrolyze the universal biological energy carrier adenosine triphosphate. Recent work has elucidated the general architecture and subunit compositions of all three sub-types of rotary ATPases. Composite models of the intact F-, V- and A-type ATPases have been constructed by fitting high-resolution X-ray structures of individual subunits or sub-complexes into low-resolution electron densities of the intact enzymes derived from electron cryo-microscopy. Electron cryo-tomography has provided new insights into the supra-molecular arrangement of eukaryotic ATP synthases within mitochondria and mass-spectrometry has started to identify specifically bound lipids presumed to be essential for function. Taken together these molecular snapshots show that nano-scale rotary engines have much in common with basic design principles of man made machines from the function of individual "machine elements" to the requirement of the right "fuel" and "oil" for different types of motors.

  3. V-ATPase as an effective therapeutic target for sarcomas

    International Nuclear Information System (INIS)

    Malignant tumors show intense glycolysis and, as a consequence, high lactate production and proton efflux activity. We investigated proton dynamics in osteosarcoma, rhabdomyosarcoma, and chondrosarcoma, and evaluated the effects of esomeprazole as a therapeutic agent interfering with tumor acidic microenvironment. All sarcomas were able to survive in an acidic microenvironment (up to 5.9–6.0 pH) and abundant acidic lysosomes were found in all sarcoma subtypes. V-ATPase, a proton pump that acidifies intracellular compartments and transports protons across the plasma membrane, was detected in all cell types with a histotype-specific expression pattern. Esomeprazole administration interfered with proton compartmentalization in acidic organelles and induced a significant dose-dependent toxicity. Among the different histotypes, rhabdomyosarcoma, expressing the highest levels of V-ATPase and whose lysosomes are most acidic, was mostly susceptible to ESOM treatment. - Highlights: • Osteosarcoma, rhabdomyosarcoma, and chondrosarcoma survive in acidic microenvironment. • At acidic extracellular pH, sarcoma survival is dependent on V-ATPase expression. • Esomeprazole administration induce a significant dose-dependent toxicity

  4. V-ATPase as an effective therapeutic target for sarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Perut, Francesca, E-mail: francesca.perut@ior.it [Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna (Italy); Avnet, Sofia; Fotia, Caterina; Baglìo, Serena Rubina; Salerno, Manuela [Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna (Italy); Hosogi, Shigekuni [Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna (Italy); Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto (Japan); Kusuzaki, Katsuyuki [Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto (Japan); Baldini, Nicola [Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna (Italy); Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna (Italy)

    2014-01-01

    Malignant tumors show intense glycolysis and, as a consequence, high lactate production and proton efflux activity. We investigated proton dynamics in osteosarcoma, rhabdomyosarcoma, and chondrosarcoma, and evaluated the effects of esomeprazole as a therapeutic agent interfering with tumor acidic microenvironment. All sarcomas were able to survive in an acidic microenvironment (up to 5.9–6.0 pH) and abundant acidic lysosomes were found in all sarcoma subtypes. V-ATPase, a proton pump that acidifies intracellular compartments and transports protons across the plasma membrane, was detected in all cell types with a histotype-specific expression pattern. Esomeprazole administration interfered with proton compartmentalization in acidic organelles and induced a significant dose-dependent toxicity. Among the different histotypes, rhabdomyosarcoma, expressing the highest levels of V-ATPase and whose lysosomes are most acidic, was mostly susceptible to ESOM treatment. - Highlights: • Osteosarcoma, rhabdomyosarcoma, and chondrosarcoma survive in acidic microenvironment. • At acidic extracellular pH, sarcoma survival is dependent on V-ATPase expression. • Esomeprazole administration induce a significant dose-dependent toxicity.

  5. Performance of some surfactants as wetting agents

    Energy Technology Data Exchange (ETDEWEB)

    Shalaby, M.N.; El-Shanny, O.A.A. [Egyptian Petroleum Research Institute (EPRI), Cairo (Egypt). Evaluation and Analysis Dept.

    2005-12-01

    The wetting power of anionic surfactant: sodium dodecyl sulfate (SDS), and nonionic surfactants: polyoxyethelene(14)monolaurate [La(EO){sub 14}] and polyoxyethelene(14)monoeleate [OI(EO){sub 14}] has been studied to determine their performance as wetting agents. The study reveals that the nonionic compound with a long hydrophobic chain exhibits higher wettability than the shorter one when used at very low cocentrations (below CMC) and the reverse is shown with high concentrations (above CMC). the wetting power of the investigated surfactants increases as the CMC values increases. In case of the nonionic compounds and at surfactant concentrations equal their CMC values, OI(EO){sub 14} shows a higher wetting power than La(EO){sub 14} while is possesses a lower HLB value. The anionic surfactant shows an optimum wetting in comparison with the tested nonionic one. The wettability of all the investigated samples increases as the surface tension of their solutions increases to the allowed limit that can be reached in the presence of surfactant. (orig.)

  6. SURFACTANT - POLYMER INTERACTION FOR IMPROVED OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1998-10-01

    The goal of this research is to use the interaction between a surfactant and a polymer for efficient displacement of tertiary oil by improving slug integrity, adsorption and mobility control. Surfactant--polymer flooding has been shown to be highly effective in laboratory-scale linear floods. The focus of this proposal is to design an inexpensive surfactant-polymer mixture that can efficiently recover tertiary oil by avoiding surfactant slug degradation high adsorption and viscous/heterogeneity fingering. A mixture comprising a ''pseudo oil'' with appropriate surfactant and polymer has been selected to study micellar-polymer chemical flooding. The physical properties and phase behavior of this system have been determined. A surfactant-polymer slug has been designed to achieve high efficiency recovery by improving phase behavior and mobility control. Recovery experiments have been performed on linear cores and a quarter 5-spot. The same recovery experiments have been simulated using a commercially available simulator (UTCHEM). Good agreement between experimental data and simulation results has been achieved.

  7. Thermodynamics of non-ionic surfactant Triton X-100-cationic surfactants mixtures at the cloud point

    International Nuclear Information System (INIS)

    Highlights: → Non-ionic surfactants are used as emulsifier and solubilizate in such as textile, detergent and cosmetic. → Non-ionic surfactants occur phase separation at temperature as named the cloud point in solution. → Dimeric surfactants have attracted increasing attention due to their superior surface activity. → The positive values of ΔGcp0 indicate that the process proceeds nonspontaneous. - Abstract: This study investigates the effects of gemini and conventional cationic surfactants on the cloud point (CP) of the non-ionic surfactant Triton X-100 (TX-100) in aqueous solutions. Instead of visual observation, a spectrophotometer was used for measurement of the cloud point temperatures. The thermodynamic parameters of these mixtures were calculated at different cationic surfactant concentrations. The gemini surfactants of the alkanediyl-α-ω-bis (alkyldimethylammonium) dibromide type, on the one hand, with different alkyl groups containing m carbon atoms and an ethanediyl spacer, referred to as 'm-2-m' (m = 10, 12, and 16) and, on the other hand, with -C16 alkyl groups and different spacers containing s carbon atoms, referred to as '16-s-16' (s = 6 and 10) were synthesized, purified and characterized. Additions of the cationic surfactants to the TX-100 solution increased the cloud point temperature of the TX-100 solution. It was accepted that the solubility of non-ionic surfactant containing polyoxyethylene (POE) hydrophilic chain was a maximum at the cloud point so that the thermodynamic parameters were calculated at this temperature. The results showed that the standard Gibbs free energy (ΔGcp0), the enthalpy (ΔHcp0) and the entropy (ΔScp0) of the clouding phenomenon were found positive in all cases. The standard free energy (ΔGcp0) increased with increasing hydrophobic alkyl chain for both gemini and conventional cationic surfactants; however, it decreased with increasing surfactant concentration.

  8. Nitric oxide and Na,K-ATPase activity in rat skeletal muscle

    DEFF Research Database (Denmark)

    Juel, Carsten

    2016-01-01

    Aim: It has been suggested that nitric oxide (NO) stimulates the Na,K-ATPase in cardiac myocytes. Therefore, the aims of this study were to investigate whether NO increases Na,K-ATPase activity in skeletal muscle and, if that is the case, to identify the underlying mechanism. Method: The study used......, but had no effect in oxidative muscles. Spermine NONOate increased the maximal Na,K-ATPase activity by 58% (P oxidative muscle. The stimulatory effect of NONOate was not related to one specific Na,K-ATPase α-isoform. Incubation with c......GMP (1 mm) increased the maximal Na,K-ATPase activity in homogenates from glycolytic muscle by 16% (P oxidative muscle. cGMP had no effect on phospholemman phosphorylation at serine 68. Spermine NONOate had no effect in muscle membranes in which the ATPase...

  9. Influence of activating hormones on human platelet membrane Ca/sup 2 +/-ATPase activity

    Energy Technology Data Exchange (ETDEWEB)

    Resink, T.J.; Dimitrov, D.; Stucki, S.; Buehler, F.R.

    1986-07-16

    Intact platelets were pretreated with hormones and thereafter membranes were prepared and Ca/sup 2 +/-ATPase activity determined. Thrombin decreased the V/sub max/ of Ca/sup 2 +/-ATPase after pretreatment of intact platelets. Platelet activating factor, vasopressin and ADP also decreased Ca/sup 2 +/-ATPase activity. 12-O-tetradecanoylphorbol-13-acetate (TPA) or A23187 or ionomycin alone had no effect, while the simultaneous pretreatment with TPA and Ca/sup 2 +/-ionophore decreased Ca/sup 2 +/-ATPase activity. cAMP elevating agents prostaglandin E/sub 1/ (PGE/sub 1/) and forskolin had no influence per se on Ca/sup 2 +/-ATPase, but antagonized the inhibitory effect of thrombin. The data suggest a close connection between phosphoinositide metabolism and the Ca/sup 2 +/-ATPase system.

  10. Excess capacity of H+ ATPase and inverse respiratory control in Escherichia coli

    DEFF Research Database (Denmark)

    Jensen, Peter Ruhdal; Westerhoff, Hans V.; Michelsen, Ole

    1993-01-01

    With succinate as free-energy source, Escherichia coli generating virtually all ATP by oxidative phosphorylation might be expected heavily to tax its ATP generating capacity. To examine this the H+-ATPase (ATP synthase) was modulated over a 30-fold range. Decreasing the amount of H+-ATPase reduced...... the growth rate much less than proportionally; the H+-ATPase controlled growth rate by lt 10%. This lack of control reflected excess capacity: the rate of ATP synthesis per H+-ATPase (the turnover number) increased by 60% when the number of enzymes was decreased by 40%. At 15% H+-ATPase, the enzyme became...... limiting and its turnover was increased even further, due to an increased driving force caused by a reduction in the total flux through the enzymes. At smaller reductions of (H+-ATPase) the total flux was not reduced, revealing a second cause for increased turnover number through increased membrane...

  11. A new role for P2X4 receptors as modulators of lung surfactant secretion

    OpenAIRE

    Miklavc, Pika; Thompson, Kristin E.; Frick, Manfred

    2013-01-01

    In recent years, P2X receptors have attracted increasing attention as regulators of exocytosis and cellular secretion. In various cell types, P2X receptors have been found to stimulate vesicle exocytosis directly via Ca2+ influx and elevation of the intracellular Ca2+ concentration. Recently, a new role for P2X4 receptors as regulators of secretion emerged. Exocytosis of lamellar bodies (LBs), large storage organelles for lung surfactant, results in a local, fusion-activated Ca2+ entry (FACE)...

  12. Interactions of organic contaminants with mineral-adsorbed surfactants

    Science.gov (United States)

    Zhu, L.; Chen, B.; Tao, S.; Chiou, C.T.

    2003-01-01

    Sorption of organic contaminants (phenol, p-nitrophenol, and naphthalene) to natural solids (soils and bentonite) with and without myristylpyridinium bromide (MPB) cationic surfactant was studied to provide novel insight to interactions of contaminants with the mineral-adsorbed surfactant. Contaminant sorption coefficients with mineral-adsorbed surfactants, Kss, show a strong dependence on surfactant loading in the solid. At low surfactant levels, the Kss values increased with increasing sorbed surfactant mass, reached a maximum, and then decreased with increasing surfactant loading. The Kss values for contaminants were always higher than respective partition coefficients with surfactant micelles (Kmc) and natural organic matter (Koc). At examined MPB concentrations in water the three organic contaminants showed little solubility enhancement by MPB. At low sorbed-surfactant levels, the resulting mineral-adsorbed surfactant via the cation-exchange process appears to form a thin organic film, which effectively "adsorbs" the contaminants, resulting in very high Kss values. At high surfactant levels, the sorbed surfactant on minerals appears to form a bulklike medium that behaves essentially as a partition phase (rather than an adsorptive surface), with the resulting Kss being significantly decreased and less dependent on the MPB loading. The results provide a reference to the use of surfactants for remediation of contaminated soils/sediments or groundwater in engineered surfactant-enhanced washing.

  13. In vitro effect of isoschaftoside isolated from Syngonium podophyllum on pig kidney Na+, K+-ATPase

    OpenAIRE

    Anne Caroline Candido Gomes; Luzia da Silva Sampaio; Paulo André da Silva; Marcelo Einicker Lamas; Cassia Mônica Sakuragui; Cleber Bomfim Barreto Junior; Naomi Kato Simas; Ricardo Machado Kuster

    2014-01-01

    The present study aimed to investigate the in vitro effects of isoschaftoside isolated from Syngonium podophyllum on pig kidney Na+,K+-ATPase. The Na+, K+-ATPase activity was determined by colorimetric measurement of inorganic phosphate (Pi), resulting from ATP hydrolysis. Isoschaftoside significantly decreased the renal Na+, K+-ATPase activity at the highest concentration as well as at a lower concentration. Our work suggests that isoschaftoside is a promising compound for the treatment of h...

  14. TOWARD UNDERSTANDING ALLOSTERIC SIGNALING MECHANISMS IN THE ATPASE DOMAIN OF MOLECULAR CHAPERONES

    OpenAIRE

    Liu, Ying; Bahar, Ivet

    2010-01-01

    The ATPase cycle of the heat shock protein 70 (HSP70) is largely dependent on the ability of its nucleotide binding domain (NBD), also called ATPase domain, to undergo structural changes between its open and closed conformations. We present here a combined study of the Hsp70 NBD sequence, structure and dynamic features to identify the residues that play a crucial role in mediating the allosteric signaling properties of the ATPase domain. Specifically, we identify the residues involved in the ...

  15. Open lung ventilation preserves the response to delayed surfactant treatment in surfactant-deficient newborn piglets

    NARCIS (Netherlands)

    M.B. van Veenendaal; A.H. van Kaam; J.J. Haitsma; R. Lutter; B. Lachmann

    2006-01-01

    Objective: Delayed surfactant treatment (>2 hrs after birth) is less effective than early treatment in conventionally ventilated preterm infants with respiratory distress syndrome. The objective of this study was to evaluate if this time-dependent efficacy of surfactant treatment is also present dur

  16. Surfactant nebulization versus instillation during high frequency ventilation in surfactant-deficient rabbits

    NARCIS (Netherlands)

    Dijk, PH; Heikamp, A; Oetomo, SB

    1998-01-01

    Surfactant nebulization improves lung function at low alveolar doses of surfactant. However, efficiency of nebulization is low, and lung deposition seems to depend on lung aeration. High frequency ventilation (HFV) has been shown to improve lung aeration. We hypothesize that the combination of HFV a

  17. Anionic surfactant - Biogenic amine interactions: The role of surfactant headgroup geometry.

    Science.gov (United States)

    Penfold, Jeffrey; Thomas, Robert K; Li, Peixun

    2016-03-15

    Oligoamines and biogenic amines (naturally occurring oligoamines) are small flexible polycations. They interact strongly with anionic surfactants such as sodium dodecyl sulfate, SDS. This results in enhanced adsorption and the formation of layered structures and the formation of layered structures at the air-water interface which depends on surfactant concentration and solution pH. The effect of changing the surfactant headgroup geometry on that interaction and subsequent adsorption is reported here. Neutron reflectivity, NR, results for the surface adsorption of the anionic surfactant sodium diethylene glycol monododecyl ether sulfate, SLES, with the biogenic amine, spermine, are presented, and contrasted with previous data for SDS/spermine mixtures. The enhancement in the adsorption of the surfactant at the air-water interface where monolayer adsorption occurs is similar for both surfactants. However the regions of surfactant concentration and solution pH where surface multilayer adsorption occurs is less extensive for the SLES/spermine mixtures, and occurs only at low pH. The results show how changing the headgroup geometry by the introduction of the ethylene oxide linker group between the alkyl chain and sulfate headgroup modifies the polyamine - surfactant interaction. The increased steric constraint from the polyethylene oxide group disrupts the conditions for surface multilayer formation at the higher pH values. This has important consequences for applications where the modification or manipulation of the surface properties are required. PMID:26724704

  18. Surfactantlipid biosynthesis: Regulation of transmembrane transport of palmitate

    OpenAIRE

    Guthmann, Florian

    2010-01-01

    Considering the mechanisms by which antenatal maturation of lung can be induced, the role of long chain fatty acids as precursors of surfactant lipid synthesis has not been thoroughly investigated. To specifically increase surfactant synthesis during the fetal and/or neonatal period we studied the regulation of de novo phosphatidyl synthesis in type II pneumocytes. First, we characterised the transmembrane transport of palmitate, a long chain fatty acid prevalent in surfactant lipids, with...

  19. Surfactant Enhanced Electroremediation of Phenanthrene

    Institute of Scientific and Technical Information of China (English)

    佘鹏; 杨建刚; 等

    2003-01-01

    Removal of hydrophobic organic contaminants(HOCs) form soil of low permeability by electroremediation was investigated by using phenanthrene and kaolinite as a model system.Tween 80 was added into the purging solution in order to enhance the solubility of phenanthrene.The effects of pH on the adsorption of phenanthrene and Tween 80 on kaolinite and the magnitude of ζ-potential of kaolinite were examined,respectively.The effects of electric field strength indicated by electric current on the electroremediation behavior,including the pH of purging solution,the conductivity,phenanthrene concentration and flow rate of effluent,were experimentally investigated,repectively,In case of an electric field of 25mA applied for 72 hours,over 90% of phenanthrene was removed from 424g(dry mass)of kaolinite at an energy consumption of 0.148kW.h.The experimental results described in present study show that the addition of surfactant into purging solution greatly enhances the removel of HOCs by electroremediation.

  20. Dilute Surfactant Methods for Carbonate Formations

    Energy Technology Data Exchange (ETDEWEB)

    Kishore K. Mohanty

    2006-02-01

    There are many fractured carbonate reservoirs in US (and the world) with light oil. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). The process of using dilute anionic surfactants in alkaline solutions has been investigated in this work for oil recovery from fractured oil-wet carbonate reservoirs both experimentally and numerically. This process is a surfactant-aided gravity drainage where surfactant diffuses into the matrix, lowers IFT and contact angle, which decrease capillary pressure and increase oil relative permeability enabling gravity to drain the oil up. Anionic surfactants have been identified which at dilute concentration of 0.05 wt% and optimal salinity can lower the interfacial tension and change the wettability of the calcite surface to intermediate/water-wet condition as well or better than the cationic surfactant DTAB with a West Texas crude oil. The force of adhesion in AFM of oil-wet regions changes after anionic surfactant treatment to values similar to those of water-wet regions. The AFM topography images showed that the oil-wetting material was removed from the surface by the anionic surfactant treatment. Adsorption studies indicate that the extent of adsorption for anionic surfactants on calcite minerals decreases with increase in pH and with decrease in salinity. Surfactant adsorption can be minimized in the presence of Na{sub 2}CO{sub 3}. Laboratory-scale surfactant brine imbibition experiments give high oil recovery (20-42% OOIP in 50 days; up to 60% in 200 days) for initially oil-wet cores through wettability alteration and IFT reduction. Small (<10%) initial gas saturation does not affect significantly the rate of oil recovery in the imbibition process, but larger gas saturation decreases the oil recovery rate. As the core permeability decreases, the rate of oil recovery reduces

  1. Microemulsion-based lycopene extraction: Effect of surfactants, co-surfactants and pretreatments.

    Science.gov (United States)

    Amiri-Rigi, Atefeh; Abbasi, Soleiman

    2016-04-15

    Lycopene is a potent antioxidant that has received extensive attention recently. Due to the challenges encountered with current methods of lycopene extraction using hazardous solvents, industry calls for a greener, safer and more efficient process. The main purpose of present study was application of microemulsion technique to extract lycopene from tomato pomace. In this respect, the effect of eight different surfactants, four different co-surfactants, and ultrasound and enzyme pretreatments on lycopene extraction efficiency was examined. Experimental results revealed that application of combined ultrasound and enzyme pretreatments, saponin as a natural surfactant, and glycerol as a co-surfactant, in the bicontinuous region of microemulsion was the optimal experimental conditions resulting in a microemulsion containing 409.68±0.68 μg/glycopene. The high lycopene concentration achieved, indicates that microemulsion technique, using a low-cost natural surfactant could be promising for a simple and safe separation of lycopene from tomato pomace and possibly from tomato industrial wastes.

  2. The effects of alkylammonium counterions on the aggregation of fluorinated surfactants and surfactant ionic liquids.

    Science.gov (United States)

    Pottage, Matthew J; Greaves, Tamar L; Garvey, Christopher J; Tabor, Rico F

    2016-08-01

    The effects of organic counterions with varying carbon number on surfactant aggregation have been analysed by coupling perfluorooctanoate surfactant anions with various alkylammonium counterions. Both the degree of substitution (primary to tertiary) and alkyl chain length (0-3 carbons) of the counterions were varied to provide a comprehensive matrix of geometries and lipophilicities. Surface activity was measured using pendant drop tensiometry, while temperature-controlled small-angle neutron scattering was used to probe changes in aggregation morphology. It was found that the use of such alkylammonium counterions resulted in a strong preference for bilayer formation even at low surfactant concentration (separation wherein a surfactant-rich lamellar phase coexists with a dilute micellar phase. The results indicate that aggregation is controlled by a delicate balance of counterion size, hydrophilicity and diffuseness of charge, providing new methods for the subtle control of surfactant solutions. PMID:27156087

  3. Towards defining the substrate of orphan P5A-ATPases

    DEFF Research Database (Denmark)

    Sørensen, Danny Mollerup; Holen, Henrik Waldal; Holemans, Tine;

    2015-01-01

    Background P-type ATPases are ubiquitous ion and lipid pumps found in cellular membranes. P5A-ATPases constitute a poorly characterized subfamily of P-type ATPases present in all eukaryotic organisms but for which a transported substrate remains to be identified. Scope of review This review aims ...... significance Identification of the substrate of P5A-ATPases would throw light on an important general process in the ER that is still not fully understood. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins....

  4. Sub-chronic effect of neem based pesticide (Vepacide) on acetylcholinesterase and ATPases in rat.

    Science.gov (United States)

    Rahman, M F; Siddiqui, M K; Jamil, K

    1999-09-01

    Acetylcholinesterases (AChE), Na(+)-K+, Mg2+ and Ca(2+)-ATPases were monitored in rat brain when treated orally with 80, 160 and 320 mg/kg of Vepacide, an active ingredient from neem seed oil, daily for 90 days. Brain AChE, Na(+)-K+ and Ca(2+)-ATPases were inhibited whereas Mg(2+)-ATPase levels were enhanced in both the sexes after 45 and 90 days of treatment. The relative sensitivities of these ATPases to Vepacide indicated that Ca(2+)-ATPase being more sensitive than Na(+)-K(+)-ATPase in both the sexes. The magnitude of Ca(2+)-ATPase inhibited by this compound was higher than that of brain AChE. It appears to be sexual dimorphism in the alterations of brain AChE, Na(+)-K+ and Mg(2+)-ATPases by Vepacide with females being significant when compared with males. After 28 days of post treatment the alterations observed were approached to those of controls both in male and female rats showing reversal of the toxicity. These results indicated that the ATPases were potently inhibited by Vepacide and seemed to be its precise target among the enzyme studied. This can be used as biochemical marker of exposure to this neem derived product. PMID:10466107

  5. Dominant Rio1 kinase/ATPase catalytic mutant induces trapping of late pre-40S biogenesis factors in 80S-like ribosomes.

    Science.gov (United States)

    Ferreira-Cerca, Sébastien; Kiburu, Irene; Thomson, Emma; LaRonde, Nicole; Hurt, Ed

    2014-07-01

    During eukaryotic ribosome biogenesis, members of the conserved atypical serine/threonine protein kinase family, the RIO kinases (Rio1, Rio2 and Rio3) function in small ribosomal subunit biogenesis. Structural analysis of Rio2 indicated a role as a conformation-sensing ATPase rather than a kinase to regulate its dynamic association with the pre-40S subunit. However, it remained elusive at which step and by which mechanism the other RIO kinase members act. Here, we have determined the crystal structure of the human Rio1-ATP-Mg(2+) complex carrying a phosphoaspartate in the active site indicative of ATPase activity. Structure-based mutations in yeast showed that Rio1's catalytic activity regulates its pre-40S association. Furthermore, we provide evidence that Rio1 associates with a very late pre-40S via its conserved C-terminal domain. Moreover, a rio1 dominant-negative mutant defective in ATP hydrolysis induced trapping of late biogenesis factors in pre-ribosomal particles, which turned out not to be pre-40S but 80S-like ribosomes. Thus, the RIO kinase fold generates a versatile ATPase enzyme, which in the case of Rio1 is activated following the Rio2 step to regulate one of the final 40S maturation events, at which time the 60S subunit is recruited for final quality control check.

  6. Effects of Ouabain on Proliferation of Human Endothelial Cells Correlate with Na+,K+-ATPase Activity and Intracellular Ratio of Na+ and K.

    Science.gov (United States)

    Tverskoi, A M; Sidorenko, S V; Klimanova, E A; Akimova, O A; Smolyaninova, L V; Lopina, O D; Orlov, S N

    2016-08-01

    Side-by-side with inhibition of the Na+,K+-ATPase ouabain and other cardiotonic steroids (CTS) can affect cell functions by mechanisms other than regulation of the intracellular Na+ and K+ ratio ([Na+]i/[K+]i). Thus, we compared the dose- and time-dependences of the effect of ouabain on intracellular [Na+]i/[K+]i ratio, Na+,K+-ATPase activity, and proliferation of human umbilical vein endothelial cells (HUVEC). Treatment of the cells with 1-3 nM ouabain for 24-72 h decreased the [Na+]i/[K+]i ratio and increased cell proliferation by 20-50%. We discovered that the same ouabain concentrations increased Na+,K+-ATPase activity by 25-30%, as measured by the rate of (86)Rb(+) influx. Higher ouabain concentrations inhibited Na+,K+-ATPase, increased [Na+]i/[K+]i ratio, suppressed cell growth, and caused cell death. When cells were treated with low ouabain concentrations for 48 or 72 h, a negative correlation between [Na+]i/[K+]i ratio and cell growth activation was observed. In cells treated with high ouabain concentrations for 24 h, the [Na+]i/[K+]i ratio correlated positively with proliferation inhibition. These data demonstrate that inhibition of HUVEC proliferation at high CTS concentrations correlates with dissipation of the Na+ and K+ concentration gradients, whereas cell growth stimulation by low CTS doses results from activation of Na+,K+-ATPase and decrease in the [Na+]i/[K+]i ratio.

  7. The AAA-ATPase NVL2 is a telomerase component essential for holoenzyme assembly

    Energy Technology Data Exchange (ETDEWEB)

    Her, Joonyoung [Departments of Biology and Integrated Omics for Biomedical Science, Yonsei University, Seoul 120-749 (Korea, Republic of); Chung, In Kwon, E-mail: topoviro@yonsei.ac.kr [Departments of Biology and Integrated Omics for Biomedical Science, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer Identification of the AAA-ATPase NVL2 as a novel hTERT-interacting protein. Black-Right-Pointing-Pointer NVL2 associates with catalytically active telomerase via an interaction with hTERT. Black-Right-Pointing-Pointer NVL2 is a telomerase component essential for holoenzyme assembly. Black-Right-Pointing-Pointer ATP-binding activity of NVL2 is required for hTERT binding and telomerase assembly. -- Abstract: Continued cell proliferation requires telomerase to maintain functional telomeres that are essential for chromosome integrity. Although the core enzyme includes a telomerase reverse transcriptase (TERT) and a telomerase RNA component (TERC), a number of auxiliary proteins have been identified to regulate telomerase assembly, localization, and enzymatic activity. Here we describe the characterization of the AAA-ATPase NVL2 as a novel hTERT-interacting protein. NVL2 interacts and co-localizes with hTERT in the nucleolus. NLV2 is also found in association with catalytically competent telomerase in cell lysates through an interaction with hTERT. Depletion of endogenous NVL2 by small interfering RNA led to a decrease in hTERT without affecting the steady-state levels of hTERT mRNA, thereby reducing telomerase activity, suggesting that NVL2 is an essential component of the telomerase holoenzyme. We also found that ATP-binding activity of NVL2 is required for hTERT binding as well as telomerase assembly. Our findings suggest that NVL2, in addition to its role in ribosome biosynthesis, is essential for telomerase biogenesis and provides an alternative approach for inhibiting telomerase activity in cancer.

  8. Structure of Na+,K+-ATPase at 11-A resolution: comparison with Ca2+-ATPase in E1 and E2 states.

    OpenAIRE

    Rice, W J; Young, H S; Martin, D W; Sachs, J R; Stokes, D.L.

    2001-01-01

    Na+,K+-ATPase is a heterodimer of alpha and beta subunits and a member of the P-type ATPase family of ion pumps. Here we present an 11-A structure of the heterodimer determined from electron micrographs of unstained frozen-hydrated tubular crystals. For this reconstruction, the enzyme was isolated from supraorbital glands of salt-adapted ducks and was crystallized within the native membranes. Crystallization conditions fixed Na+,K+-ATPase in the vanadate-inhibited E2 conformation, and the cry...

  9. Recovering hydrocarbons with surfactants from lignin

    Energy Technology Data Exchange (ETDEWEB)

    Naae, D.G.; Whittington, L.E.; Ledoux, W.A.; Debons, F.E.

    1988-11-29

    This patent describes a method of recovering hydrocarbons from an underground hydrocarbon formation penetrated by at least one injection well and at least one production well, which comprises: injecting into the formation through an injection well a surfactant slug comprising about 0.1% to about 10% by weight of surfactants produced from lignin, the surfactants produced by placing lignin in contact with water, converting the lignin into low molecular weight lignin phenols by reducing the lignin in the presence of a reducing agent of carbon monoxide or hydrogen creating a reduction reaction mixture comprising oil soluble lignin phenols, the reduction occurring at a temperature greater than about 200/sup 0/C and a pressure greater than about 100 psi, recovering the oil soluble lignin phenols from the reduction mixture, and converting the lignin phenols into lignin surfactants by a reaction selected from the group consisting of alkoxylation, sulfonation, sulfation, aklylation, sulfomethylation, and alkoxysulfation; injecting into the formation through the injection well a drive fluid to push the surfactant slug towards a production well; and recovering hydrocarbons at the production well.

  10. History of surfactant up to 1980.

    Science.gov (United States)

    Obladen, Michael

    2005-01-01

    Remarkable insight into disturbed lung mechanics of preterm infants was gained in the 18th and 19th century by the founders of obstetrics and neonatology who not only observed respiratory failure but also designed devices to treat it. Surfactant research followed a splendid and largely logical growth curve. Pathological changes in the immature lung were characterized in Germany by Virchow in 1854 and by Hochheim in 1903. The Swiss physiologist von Neergard fully understood surfactant function in 1929, but his paper was ignored for 25 years. The physical properties of surfactant were recognized in the early 1950s from research on warfare chemicals by Pattle in Britain and by Radford and Clements in the United States. The causal relationship of respiratory distress syndrome (RDS) and surfactant deficiency was established in the USA by Avery and Mead in 1959. The Australian obstetrician Liggins induced lung maturity with glucocorticoids in 1972, but his discovery was not fully believed for another 20 years. A century of basic research was rewarded when Fujiwara introduced surfactant substitution in Japan in 1980 for treatment and prevention of RDS.

  11. Rheology of Natural Lung Surfactant Films

    Science.gov (United States)

    Alonso, Coralie; Waring, Alan; Zsadzinski, Joseph

    2004-03-01

    The lung surfactant (LS) is a lipoprotein mixture lining the inside of the pulmonary alveoli which has the ability to lower the surface tension of the air-liquid hypophase interface to value near zero thus reducing the work of breathing and which also prevents the alveolar collapse. A lack or malfunction of lung surfactant, as it is often the case for premature infants, leads to respiratory distress syndrome. RDS can be treated by supplying replacement LS to the infants and several medications derived from natural sources, are now widely used. The lung surfactant is adsorbed at the air-liquid interface and is subjected to incessant compression expansion cycles therefore Langmuir monolayers provide a suitable model to investigate the physical properties of lung surfactant films. Using a magnetic needle rheometer, we measured the shear viscosity of natural lung surfactant spread at the air-liquid interface upon compression and expansion cycles for three different formulations. The shear viscosity of Survanta changes by orders of magnitude along one cycle while for Curosurf samples it changes only slightly and for Infasurf films it remains constant. These different behaviors can be explained by differences in composition between the three formulations leading to different organizations on the molecular scale.

  12. Foaming behaviour of polymer-surfactant solutions

    International Nuclear Information System (INIS)

    We study the effect of a non-ionic amphiphilic polymer (PEG-100 stearate also called Myrj 59) on the foaming behaviour of aqueous solutions of an anionic surfactant (sodium dodecyl sulfate or SDS). The SDS concentration was kept fixed while the Myrj 59 concentration was varied. Measurements of foamability, surface tension and electrical conductivity were carried out. The results show two opposite effects depending on the polymer concentration: foamability is higher when the Myrj 59 concentration is low; however, it decreases considerably when the polymer concentration is increased. This behaviour is due to the polymer adsorption at the air/liquid interface at lower polymer concentrations, and to the formation of a polymer-surfactant complex in the bulk at higher concentrations. The results are confirmed by surface tension and electrical conductivity measurements, which are interpreted in terms of the microstructure of the polymer-surfactant solutions. The observed behaviour is due to the amphiphilic nature of the studied polymer. The increased hydrophobicity of Myrj 59, compared to that of water-soluble polymers like PEG or PEO, increases its 'reactivity' towards SDS, i.e. the strength of its interaction with this anionic surfactant. Our results show that hydrophobically modified polymers have potential applications as additives in order to control the foaming properties of surfactant solutions

  13. Syntheses of surfactants from oleochemical epoxides

    Directory of Open Access Journals (Sweden)

    Warwel Siegfried

    2001-01-01

    Full Text Available Sugar-based surfactants were obtained in good yields (up to 100% under mild conditions (70°C, methanol or mixtures of methanol and water by ring-opening of terminal epoxides with aminopolyols, derived from glucose. Reaction of N-methyl glucamine with epoxides from even-numbered C4-C18 alpha-olefins or from terminal unsaturated fatty acid methyl esters leads to linear products, while corresponding reactions with N-dodecyl glucamine or glucamine yield surfactants with different Y-structures. Products obtained by conversion of omega-epoxy fatty acid methyl esters were saponificated with NaOH or hydrolyzed enzymatically to sodium salts or free acids respectively, which are amphoteric surfactants. Studies of the surfactants at different pH-values demonstrate different surface active properties in aqueous solutions. Critical micelle concentrations (c.m.c. in a range between 2 and 500mg/l and surface tensions of 25-40mN/m were measured for several of the synthesized sugar-based surfactants. The ring-opening products are rather poor foamers, whereas some of the corresponding hydrobromides show good foaming properties.

  14. Analysis of supercooling activities of surfactants.

    Science.gov (United States)

    Kuwabara, Chikako; Terauchi, Ryuji; Tochigi, Hiroshi; Takaoka, Hisao; Arakawa, Keita; Fujikawa, Seizo

    2014-08-01

    Supercooling-promoting activities (SCAs) of 25 kinds of surfactants including non-ionic, anionic, cationic and amphoteric types were examined in solutions (buffered Milli-Q water, BMQW) containing the ice nucleation bacterium (INB) Erwinia ananas, silver iodide (AgI) or BMQW alone, which unintentionally contained unidentified ice nucleators, by a droplet freezing assay. Most of the surfactants exhibited SCA in solutions containing AgI but not in solutions containing the INB E. ananas or BMQW alone. SCAs of many surfactants in solutions containing AgI were very high compared with those of previously reported supercooling-promoting substances. Cationic surfactants, hexadecyltrimethylammonium bromide (C16TAB) and hexadecyltrimethylammonium chloride (C16TAC), at concentrations of 0.01% (w/v) exhibited SCA of 11.8 °C, which is the highest SCA so far reported. These surfactants also showed high SCAs at very low concentrations in solutions containing AgI. C16TAB exhibited SCA of 5.7 °C at a concentration of 0.0005% (w/v). PMID:24792543

  15. Effects of phenol on ATPase activities in crude gill homogenates of rainbow trout (Salmo gairdneri Richardson)

    Energy Technology Data Exchange (ETDEWEB)

    Poston, T.M.

    1979-01-01

    The ATPase specific activities from crude gill homogenates of rainbow trout were lower than those from microsomal preparations reported in the literature. Sodium pump activity (ouabain sensitive NaK-ATPase) was demonstrable at 37/sup 0/C. An ouabain insensitive NaK-ATPase was demonstrable at temperatures below 30/sup 0/C and may represent a Na-ATPase activity reported by others. Energy of activation at 25/sup 0/C for total NaK-ATPase ws 10,500 cal.mole/sup -1/. Mg-baseline activity had an energy of activation at 25/sup 0/C of 15,600 cal.mole/sup -1/. Mg-baseline activity was thermally labile at temperatures in excess of 30/sup 0/C. Concentrations of Mg/sup +2/ in excess of 5 mM appeared to inhibit total NaK-ATPase activity. At 37/sup 0/C, Na/sup +/ and K/sup +/ exerted little, if any, stimulatory effect on ATPase activities, in spite of the fact that 37/sup 0/C was the only temperature at which sodium pump activity was demonstrable. MS-222 failed to produce any discernible changes in any of the demonstrable ATPase activities in crude gill homogenates. Total NaK-ATPase activities were more sensitive than Mg-baseline activities to in vitro inhibition by phenol. Concentrations of phenol which produce 50% inhibition in total NaK-ATPase produced only 35% inhibition in Mg-baseline activity. The nature of in vitro inhibition was uncompetitive. Sodium pump activity was unaffected by phenol at concentrations as high as 25 mM. An effort was made to demonstrate an in vivo effects of phenol on rainbow trout gill ATPase activites. An infestation of a parasite (Gyrodactilus) on the experimental fish precludes any definative assessment of in vivo effects.

  16. Polyelectrolyte surfactant aggregates and their deposition on macroscopic surfaces

    CERN Document Server

    Voisin, D

    2002-01-01

    Oppositely charged surfactant and polyelectrolyte are present in hair shampoos and conditioners, together with particles (e.g. anti-dandruff agents for scalp) and droplets (e.g. silicone oil for the hair). These are normally formulated at high surfactant concentrations, beyond the flocculation region for the polyelectrolyte concentration used. However, on dilution with water, during application, flocs are formed which carry the particles and droplets to the scalp and hair. The addition of an anionic surfactant to an aqueous solution of cationic polyelectrolyte, at a given concentration, can lead to the formation of polyelectrolyte-surfactant 'particles', in which the surfactant 'binds' to the polyelectrolyte. This occurs from the critical association concentration (CAC), up to the surfactant concentration corresponding to maximum binding. Within this range of surfactant concentrations, the surfactant bound to the polyelectrolyte is thought to associate to form what might be termed 'internal micelles'. Each po...

  17. Interaction of Fluorocarbon Containing Hydrophobically Modified Polyelectrolyte with Nonionic Surfactants

    Institute of Scientific and Technical Information of China (English)

    GUO,Jin-Feng(郭金峰); ZHUANG,Dong-Qing(庄东青); ZHOU,Hui(周晖); ZHANG,Yun-Xiang(章云祥)

    2002-01-01

    The interaction of fluorocarbon containing hydrophobically modified polyelectrolyte (FMPAANa) with two kinds of nonionic surfactants (hydrogenated and fluorinated) in a semidilute (0.5 wt% ) aqueous solution had been studied by rheological measurements. Association behavior was found in both systems. The hydrophobic interaction of FMPAANa with fluorinated surfactant (FC171) is much stronger than that with hydrogenated surfactant (NP7.5) at low surfactant concentrations. The interaction is strengthened by surfactants being added for the density of active junctions increased. Whereas distinct phenomena for FC171 and NP7. 5 start to be found as the surfactants added over their respective certain concentration. The interaction of polyelectrolyte with fluorinated surfactant increases dramatical ly while that with hydrogenated surfactant decreases.

  18. Fullerene surfactants and their use in polymer solar cells

    Science.gov (United States)

    Jen, Kwan-Yue; Yip, Hin-Lap; Li, Chang-Zhi

    2015-12-15

    Fullerene surfactant compounds useful as interfacial layer in polymer solar cells to enhance solar cell efficiency. Polymer solar cell including a fullerene surfactant-containing interfacial layer intermediate cathode and active layer.

  19. Substrate independent ATPase activity may complicate high throughput screening.

    Science.gov (United States)

    Tuntland, Micheal L; Fung, L W-M

    2016-10-01

    Inorganic phosphate release, [Pi], is often measured in an enzymatic reaction in a high throughput setting. Based on the published mechanism, we designed a protocol for our screening for inhibitors of SAICAR synthetase (PurC), and we found a gradual increase in [Pi] in positive control samples over the course of the day. Further investigation indicated that hydrolysis of ATP catalyzed by PurC, rather than substrate-related phosphate release, was responsible for a partial contribution to the signals in the control samples. Thus substrate-independent ATPase activity may complicate high throughput screening. PMID:27430931

  20. Natural surfactants used in cosmetics: glycolipids.

    Science.gov (United States)

    Lourith, N; Kanlayavattanakul, M

    2009-08-01

    Cosmetic surfactant performs detergency, wetting, emulsifying, solubilizing, dispersing and foaming effects. Adverse reactions of chemical synthesis surfactant have an effect on environment and humans, particularly severe in long term. Biodegradability, low toxicity and ecological acceptability which are the benefits of naturally derived surfactant that promises cosmetic safety are, therefore, highly on demand. Biosurfactant producible from microorganisms exhibiting potential surface properties suitable for cosmetic applications especially incorporate with their biological activities. Sophorolipids, rhamnolipids and mannosylerythritol lipids are the most widely used glycolipids biosurfactant in cosmetics. Literatures and patents relevant to these three glycolipids reviewed were emphasizing on the cosmetic applications including personal care products presenting the cosmetic efficiency, efficacy and economy benefits of glycolipids biosurfactant. PMID:19496839

  1. When do water-insoluble polyion-surfactant ion complex salts "redissolve" by added excess surfactant?

    Science.gov (United States)

    dos Santos, Salomé; Gustavsson, Charlotte; Gudmundsson, Christian; Linse, Per; Piculell, Lennart

    2011-01-18

    The redissolution of water-insoluble polyion-surfactant ion complexes by added excess of surfactant has systematically been investigated in experimental and theoretical phase equilibrium studies. A number of stoichiometric polyion-surfactant ion "complex salts" were synthesized and they consisted of akyltrimethylammonium surfactant ions of two different alkyl chain lengths (C(12)TA(+) and C(16)TA(+)) combined with homopolyions of polyacrylate of two different lengths (PA(-)(25) and PA(-)(6000)) or copolyions of acrylate and the slightly hydrophobic nonionic comonomers N-isopropylacrylamide (PA(-)-co-NIPAM) or N,N-dimethylacrylamide (PA(-)-co-DAM). The complex salts were mixed with water and excess alkyltrimethylammonium surfactant with either bromide or acetate counterions (C(n)TABr or C(n)TAAc). Factors promoting efficient redissolution were (i) very short polyions, (ii) a large fraction of NIPAM or DAM comonomers, and (iii) acetate, rather than bromide, as the surfactant counterion. Added C(12)TAAc gave an efficient redissolution of C(12)TAPA(25) but virtually no redissolution of C(12)TAPA(6000). A very efficient redissolution by added C(12)TAAc was obtained for PA(-)-co-NIPAM with 82 mol % of NIPAM. The C(12)TAPA-co-NIPAM/C(12)TAAc/H(2)O ternary phase diagram closely resembled the corresponding diagram for the much-studied pair cationic hydroxyethyl cellulose-(sodium) dodecyl sulfate. The simple Flory-Huggins theory adopted for polyelectrolyte systems successfully reproduced the main features of the experimental phase diagrams for the homopolyion systems, including the effect of the surfactant counterion. The efficient redissolution found for certain copolyion systems was explained by the formation of soluble polyion-surfactant ion complexes carrying an excess of surfactant ions through an additional hydrophobic attraction. PMID:21166446

  2. Surfactant-Polymer Interaction for Improved Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Gabitto, Jorge; Mohanty, Kishore K.

    2002-01-07

    The goal of this research was to use the interaction between a surfactant and a polymer for efficient displacement of tertiary oil by improving slug integrity, oil solubility in the displacing fluid and mobility control. Surfactant-polymer flooding has been shown to be highly effective in laboratory-scale linear floods. The focus of this proposal is to design an inexpensive surfactant-polymer mixture that can efficiently recover tertiary oil by avoiding surfactant slug degradation and viscous/heterogeneity fingering.

  3. A simplified treatment of surfactant effects on cloud drop activation

    OpenAIRE

    T. Raatikainen; Laaksonen, A.

    2011-01-01

    Dissolved surface active species, or surfactants, have a tendency to partition to solution surface and thereby decrease solution surface tension. Activating cloud droplets have large surface-to-volume ratios, and the amount of surfactant molecules in them is limited. Therefore, unlike with macroscopic solutions, partitioning to the surface can effectively deplete the droplet interior of surfactant molecules.

    Surfactant partitioning equilibrium for activating cloud droplet...

  4. Surfactant abnormalities in infants with severe viral bronchiolitis.

    OpenAIRE

    Dargaville, P A; South, M; McDougall, P N

    1996-01-01

    To determine whether abnormalities of pulmonary surfactant occur in infants with acute viral bronchiolitis, surfactant indices were measured in lung lavage fluid from 12 infants with severe bronchiolitis and eight infants without lung disease. Compared with controls, the bronchiolitis group showed deficiency of surfactant protein A (1.02 v 14.4 micrograms/ml) and disaturated phosphatidylcholine (35 v 1060 micrograms/ml) which resolved as the disease improved. Surfactant functional activity wa...

  5. A simplified treatment of surfactant effects on cloud drop activation

    OpenAIRE

    T. Raatikainen; Laaksonen, A.

    2010-01-01

    Dissolved surface active species, or surfactants, have a tendency to partition to solution surface and thereby decrease solution surface tension. Activating cloud droplets have large surface-to-volume ratios, and the amount of surfactant molecules in them is limited. Therefore, unlike with macroscopic solutions, partitioning to the surface can effectively deplete the droplet interior of surfactant molecules.

    Surfactant partitioning equilibrium for activating cloud droplet...

  6. Diluted porcine surfactant lung lavages in children with severe ARDS

    OpenAIRE

    2009-01-01

    Acute respiratory distress syndrome (ARDS) is characterized by damage to the arteriolar-capillary endothelium and alveolar epithelium that leads to surfactant deficiency and atelectasis. Alveolar collapse and pulmonary edema will further induce surfactant inactivation. Surfactant supplementation has been suggested but results are unpredictable. Poor response may be due to inhibition of administered surfactant by plasma components filling the alveolar space, severity of lung injury, time of su...

  7. A Review on Progress in QSPR Studies for Surfactants

    OpenAIRE

    Zhengwu Wang; Xiaoyi Zhang; Jiwei Hu

    2010-01-01

    This paper presents a review on recent progress in quantitative structure-property relationship (QSPR) studies of surfactants and applications of various molecular descriptors. QSPR studies on critical micelle concentration (cmc) and surface tension (γ) of surfactants are introduced. Studies on charge distribution in ionic surfactants by quantum chemical calculations and its effects on the structures and properties of the colloids of surfactants are also reviewed. The trends of QSPR studies o...

  8. Expression of a prokaryotic P-type ATPase in E. coli Plasma Membranes and Purification by Ni2+-affinity chromatography

    Directory of Open Access Journals (Sweden)

    Geisler Markus

    1998-01-01

    Full Text Available In order to characterize the P-type ATPase from Synechocystis 6803 [Geisler (1993 et al. J. Mol. Biol. 234, 1284] and to facilitate its purification, we expressed an N-terminal 6xHis-tagged version of the ATPase in an ATPase deficient E. coli strain. The expressed ATPase was immunodetected as a dominant band of about 97 kDa localized to the E. coli plasma membranes representing about 20-25% of the membrane protein. The purification of the Synecho-cystis 6xHis-ATPase by single-step Ni-affinity chromatography under native and denaturating conditions is described. ATPase activity and the formation of phosphointermediates verify the full function of the enzyme: the ATPase is inhibited by vanadate (IC50= 119 &mgr;M and the formation of phosphorylated enzyme intermediates shown by acidic PAGE depends on calcium, indicating that the Synechocystis P-ATPase functions as a calcium pump.

  9. Sequential treatments of premature lambs with an artificial surfactant and natural surfactant.

    OpenAIRE

    Ikegami, M; Jobe, A; Jacobs, H.; Jones, S. J.

    1981-01-01

    To test an artificial surfactant in vivo, six 120-d gestational age lambs were treated at birth with a mixture of a 9:1 M ratio of [14C]dipalmitoyl phosphatidylcholine (DPC) and phosphatidylglycerol at a dose of 100 mg DPC/kg. Nine other lambs were not treated. The mean PO2 values of the lambs treated with artificial surfactant were 65.7 +/- 11 mm Hg vs. 24.8 +/- 1.6 mm Hg for the untreated lambs (P less than 0.001). All lambs then were treated with 50 mg/natural surfactant lipid per kg, whic...

  10. Dynamic Study of Gemini Surfactant and Single-chain Surfactant at Air/Water Interface

    Institute of Scientific and Technical Information of China (English)

    Yi Jian CHEN; Gui Ying XU; Shi Ling YUAN; Hai Ying SUN

    2005-01-01

    Molecular dynamics (MD) simulation are used to study the properties of gemini surfactant of ethyl-α,ω-bis(dodecyldimethylammonium bromide) (C12C2C12) and dodecyltrimethylammonium bromide (DTAB) at the air/water interface, respectively. In the two systems,the surfactant concentrations are both 28 wt. %, and other conditions are also the same. After reaching the thermodynamic equilibrium, the concentration profiles, the radial distributions functions (RDF) and the mean squared displacement (MSD) are investigated. Theresults reveal that the surface activity of C12C2C12 suffactant is higher than DTAB surfactant.

  11. Feeding induces translocation of vacuolar proton ATPase and pendrin to the membrane of leopard shark (Triakis semifasciata) mitochondrion-rich gill cells.

    Science.gov (United States)

    Roa, Jinae N; Munévar, Christian L; Tresguerres, Martin

    2014-08-01

    In this study we characterized mitochondrion-rich (MR) cells and regulation of acid/base (A/B) relevant ion-transporting proteins in leopard shark (Triakis semifasciata) gills. Immunohistochemistry revealed that leopard shark gills posses two separate cell populations that abundantly express either Na⁺/K⁺-ATPase (NKA) or V-H⁺-ATPase (VHA), but not both ATPases together. Co-immunolocalization with mitochondrial Complex IV demonstrated, for the first time in shark gills, that both NKA- and VHA-rich cells are also MR cells, and that all MR cells are either NKA- or VHA-rich cells. Additionally we localized the anion exchanger pendrin to VHA-rich cells, but not NKA-rich cells. In starved sharks, VHA was localized throughout the cell cytoplasm and pendrin was present at the apical pole (but not in the membrane). However, in a significant number of gill cells from fed leopard sharks, VHA translocated to the basolateral membrane (as previously described in dogfish), and pendrin translocated to the apical membrane. Our results highlight the importance of translocation of ion-transporting proteins to the cell membrane as a regulatory mechanism for A/B regulation. PMID:24746982

  12. Surfactant therapy in late preterm infants

    Directory of Open Access Journals (Sweden)

    Murat Yurdakök

    2013-06-01

    Full Text Available Late preterm (LPT neonates are at a high risk for respiratory distress soon after birth due to respiratory distress syndrome (RDS, transient tachypnea of the newborn, persistent pulmonary hypertension, and pneumonia along with an increased need for surfactant replacement therapy, continuous positive airway pressure, and ventilator support when compared with the term neonates. In the past, studies on outcomes of infants with respiratory distress have primarily focused on extremely premature infants, leading to a gap in knowledge and understanding of the developmental biology and mechanism of pulmonary diseases in LPT neonates. Surfactant deficiency is the most frequent etiology of RDS in very preterm and moderately preterm infants, while cesarean section and lung infection play major roles in RDS development in LPT infants. The clinical presentation and the response to surfactant therapy in LPT infants may be different than that seen in very preterm infants. Incidence of pneumonia and occurrence of pneumothorax are significantly higher in LPT and term infants. High rates of pneumonia in these infants may result in direct injury to the type II alveolar cells of the lung with decreasing synthesis, release, and processing of surfactant. Increased permeability of the alveolar capillary membrane to both fluid and solutes is known to result in entry of plasma proteins into the alveolar hypophase, further inhibiting the surface properties of surfactant. However, the oxygenation index value do not change dramatically after ventilation or surfactant administration in LPT infants with RDS compared to very preterm infants. These finding may indicate a different pathogenesis of RDS in late preterm and term infants. In conclusion, surfactant therapy may be of significant benefit in LPT infants with serious respiratory failure secondary to a number of insults. However, optimal timing and dose of administration are not so clear in this group. Additional

  13. Influence of surfactant concentration on nanohydroxyapatite growth

    Indian Academy of Sciences (India)

    D Gopi; J Indira; S Nithiya; L Kavitha; U Kamachi Mudali; K Kanimozhi

    2013-10-01

    Nanohydroxyapatite particles with different morphologies were synthesized through a microwave coupled hydrothermal method using CTAB as a template. A successful synthesis of nanosized HAP spheres, rods and fibres is achieved through this method by controlling the concentration of the surfactant. The concentration of the surfactant was tuned in such a way that the desired HAP nanostructures were obtained. The resultant powders were sintered at 900 °C in order to obtain phase pure HAP particles. The results obtained by Fourier transform infrared spectroscopy (FT–IR), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques have substantiated the formation of nanosized HAP spheres and fibres.

  14. Membrane-bound ATPase contributes to hop resistance of Lactobacillus brevis

    NARCIS (Netherlands)

    Sakamoto, K; van Veen, HW; Saito, H; Kobayashi, H; Konings, WN

    2002-01-01

    The activity of the membrane-bound H+-ATPase of the beer spoilage bacterium Lactobacillus brevis ABBC45 increased upon adaptation to bacteriostatic hop compounds. The ATPase activity was optimal around pH 5.6 and increased up to fourfold when L. brevis was exposed to 666 muM hop compounds. The exten

  15. Phosphorylation of plant plasma membrane H+-ATPase by the heterologous host S.cerevisiae

    DEFF Research Database (Denmark)

    L. Rudashevskaya, Elena; Ye, Juanying; Jensen, Ole Nørregaard;

     It is known, that phosphorylation of both plant and yeast plasma membrane H+-ATPase results in enzyme activation or inhibition. Several sites at the regulatory C-terminus of the enzyme have been found to undergo phosphorylation in vivo in both plant and yeast. The C-termini of plant H+-ATPases are...

  16. Cation Transport Coupled to ATP Hydrolysis by the (Na, K)-ATPase: An Integrated, Animated Model

    Science.gov (United States)

    Leone, Francisco A.; Furriel, Rosa P. M.; McNamara, John C.; Horisberger, Jean D.; Borin, Ivana A.

    2010-01-01

    An Adobe[R] animation is presented for use in undergraduate Biochemistry courses, illustrating the mechanism of Na[superscript +] and K[superscript +] translocation coupled to ATP hydrolysis by the (Na, K)-ATPase, a P[subscript 2c]-type ATPase, or ATP-powered ion pump that actively translocates cations across plasma membranes. The enzyme is also…

  17. VESICLE-SURFACTANT INTERACTIONS - EFFECTS OF ADDED SURFACTANTS ON THE GEL TO LIQUID-CRYSTAL TRANSITION FOR 2 VESICULAR SYSTEMS

    NARCIS (Netherlands)

    Blandamer, M.J; Briggs, B.; Cullis, P.M.; Engberts, J.B.F.N.; Kacperska, A.

    1995-01-01

    Interactions of both cationic and anionic surfactants with vesicles formed by dimethyldioctadecylammonium bromide (DOAB) and by sodium didodecylphosphate (DDP) have been probed using differential scanning microcalorimetry. The scans show that the surfactants are incorporated into the vesicle bilayer

  18. Vesicle-Surfactant Interactions : Effects of Added Surfactants on the Gel to Liquid-crystal Transition for Two Vesicular Systems

    NARCIS (Netherlands)

    Blandamer, Michael J.; Briggs, Barbara; Cullis, Paul M.; Engberts, Jan B.F.N.; Kacperska, Anna

    1995-01-01

    Interactions of both cationic and anionic surfactants with vesicles formed by dimethyldioctadecylammonium bromide (DOAB) and by sodium didodecylphosphate (DDP) have been probed using differential scanning microcalorimetry. The scans show that the surfactants are incorporated into the vesicle bilayer

  19. Surfactant phosphatidylcholine metabolism in preterm infants studied with stable isotopes

    NARCIS (Netherlands)

    J.E.H. Bunt (Jan Erik)

    2000-01-01

    textabstractAIM OF THE STUDIES 1. To develop and use a novel method to study surfactant metabolism in preterm and older infants. (chapters 3 and 4). 2. To study endogenous surfactant synthesis in relation to prenatal glucocorticosteroids. (chapters 5 and 6). 3. To study the influence of surfactant t

  20. Secondary oil recovery process. [two separate surfactant slugs

    Energy Technology Data Exchange (ETDEWEB)

    Fallgatter, W.S.

    1969-01-14

    Oil recovery by two separate surfactant slugs is greater than for either one alone. One slug contains a surfactant(s) in either oil or water. The other slug contains surfactant(s) in thickened water. The surfactants are sodium petroleum sulfonate (Promor SS20), polyoxyethylene sorbitan trioleate (Tween 85), lauric acid diethanolamide (Trepoline L), and sodium tridecyl sulfate polyglycol ether (Trepenol S30T). The thickener is carboxymethyl cellulose (Hercules CMC 70-S Medium thickener) or polyvinyl alcohol (Du Pont Elvanol 50-42). Consolidated sandstone cores were flooded with water, followed with Hawes crude, and finally salt water (5 percent sodium chloride) which recovered about 67 percent of the crude. A maximum of 27.5 percent of the residual oil was recovered by surfactant(s) in oil or water followed by fresh water, then surfactant(s) plus thickener in water followed by fresh water. Either surfactant slug may be injected first. Individually, each of the surfactant slugs can recover from about 3 to 11 percent less residual oil than their total recovery when used consecutively.

  1. 家鸽mtDNA ATPase8和ATPase6基因的分子克隆及序列分析%Molecular cloning and sequence analyzing of mtDNA ATPase8 and ATPase6 gene in pigeon

    Institute of Scientific and Technical Information of China (English)

    张慧霞; 吴建平; 张利平; 宗卉

    2007-01-01

    利用特异引物,通过聚合酶链式反应(polymerase chain reaction,PCR)技术,从家鸽(Columba livia)肝脏组织的总DNA中扩增到目的片段,并将扩增产物克隆到pMD18-T载体中,经菌落PCR与酶切鉴定、序列测定及序列分析.结果表明:克隆得到了家鸽ATPase8-ATPase6基因842 bp及COⅡ的部分序列共861 bp.用DNA分析软件对家鸽ATPase8和ATPase6基因与Genbank中的5种鸟类的ATPase8和ATPase6基因序列进行比较分析,表明家鸽与其他5种鸟类的ATPase8和ATPase6基因具有较高的同源性(88.1 %~75.0 %),其中与山斑鸠(Streptopelia orientalis)的同源性最高,分别为88.1%和86.5%.家鸽ATPase8和ATPase6基因核苷酸序列的组成中,(A+T)含量分别为55.95%和54.68%,与其它5种鸟类的(A+T)含量(53.5%~60.12%)和(51.9%~54.24%)相近,说明鸟类ATPase8和ATPase6基因序列组成对A+T核苷酸的偏倚程度比较低;而且家鸽该片段的基因组织结构与其他鸟类的基本一致,显示鸟类线粒体基因排列的保守性.家鸽与其他5种鸟类的ATPase8和ATPase6基因序列同源性的分子进化树聚类结果表明家鸽与山斑鸠亲缘关系最近.

  2. Surfactant Dynamics: Spreading and Wave Induced Dynamics of a Monolayer

    Science.gov (United States)

    Strickland, Stephen Lee

    Material adsorbed to the surface of a fluid - for instance crude oil in the ocean, biological surfactant on ocular or pulmonary mucous, or emulsions - can form a 2-dimensional mono-molecular layer. These materials, called surfactants, can behave like a compressible viscous 2-dimensional fluid, and can generate surface stresses that influence the sub-fluid's bulk flow. Additionally, the sub-fluid's flow can advect the surfactant and generate gradients in the surfactant distribution and thereby generate gradients in the interfacial properties. Due to the difficulty of non-invasive measurements of the spatial distribution of a molecular monolayer at the surface, little is known about the dynamics that couple the surface motion and the evolving density field. In this dissertation, I will present a novel method for measuring the spatiotemporal dynamics of the surfactant surface density through the fluorescence emission of NBD-tagged phosphatidylcholine, a lipid, and we will compare the surfactant dynamics to the dynamics of the surface morphology.With this method, we will consider the inward and outward spreading of a surfactant on a thin fluid film as well as the advection of a surfactant by linear and non-linear gravity-capillary waves. These two types of surfactant coupled fluid flows will allow us to probe well-accepted assumptions about the coupled fluid-surfactant dynamics. In chapter 1, we review the models used for understanding the spreading of a surfactant on a thin fluid film and the motion of surfactant on a linear gravity-capillary wave. In chapter 2, we will present the experimental methods used in this dissertation. In chapter 3, we will study the outward spreading of a localized region of surfactant and show that the spreading of a monolayer is considerably different from the spreading of thicker-layered surfactant. In chapter 4, we will investigate the inward spreading of a surfactant into a circular surfactant-free region and show that hole closure and

  3. Identification of calcium-transporting ATPases of Entamoeba histolytica and cellular localization of the putative SERCA.

    Science.gov (United States)

    Martinez-Higuera, Aarón; Salas-Casas, Andrés; Calixto-Gálvez, Mercedes; Chávez-Munguía, Bibiana; Pérez-Ishiwara, D Guillermo; Ximénez, Cecilia; Rodríguez, Mario A

    2013-09-01

    Calcium has an important role on signaling of different cellular processes in the protozoa parasite Entamoeba histolytica, including development and pathogenesis. However, the systems that control calcium responses in this parasite are incompletely understood. Calcium-ATPases (Ca(2+)-ATPases) are proteins that play an important role in calcium homeostasis by catalyzing the active efflux of this ion from cytoplasm and are essential to the correct functioning of the cell machinery. Here, we reported the identification of five E. histolytica genes encoding putative Ca(2+)-ATPases, three related to PMCA, and two related to organellar ATPases. RT-PCR assays showed that all those genes are expressed in trophozoites and specific antibodies against the SERCA-like member located this protein in a continuous cytoplasmic network, supporting the hypothesis that it corresponds to the Ca(2+)-ATPase responsible to sequester calcium in the endoplasmic reticulum of this parasite.

  4. Role of platelet plasma membrane Ca2+-ATPase in health and disease

    Institute of Scientific and Technical Information of China (English)

    William; L; Dean

    2010-01-01

    Platelets have essential roles in both health and disease. Normal platelet function is required for hemostasis.Inhibition of platelet function in disease or by pharmacological treatment results in bleeding disorders.On the other hand,hyperactive platelets lead to heart attack and stroke.Calcium is a major second messenger in platelet activation,and elevated intracellular calcium leads to hyperactive platelets.Elevated platelet calcium has been documented in hypertension and diabetes;both conditions increase the likelihood of heart attack and stroke. Thus,proper regulation of calcium metabolism in the platelet is extremely important.Plasma membrane Ca2+-ATPase(PMCA)is a major player in platelet calcium metabolism since it provides the only significant route for calcium efflux.In keeping with the important role of calcium in platelet function,PMCA is a highly regulated transporter.In human platelets,PMCA is activated by Ca2+/calmodulin,by cAMP-dependent phosphorylation and by calpain-dependent removal of the inhibitory peptide.It is inhibited by tyrosine phosphorylation and calpain-dependent proteolysis.In addition,the cellular location of PMCA is regulated by a PDZ-domain-dependent interaction with the cytoskeleton during platelet activation.Rapid regulation by phosphorylation results in changes in the rate of platelet activation,whereas calpain-dependent proteolysis and interaction with the cytoskeleton appears to regulate later events such as clot retraction.In hypertension and diabetes,PMCA expression is upregulated while activity is decreased, presumably due to tyrosine phosphorylation.Clearly,a more complete understanding of PMCA function in human platelets could result in the identification of new ways to control platelet function in disease states.

  5. Stimulation of Na{sup +}/K{sup +} ATPase activity and Na{sup +} coupled glucose transport by {beta}-catenin

    Energy Technology Data Exchange (ETDEWEB)

    Sopjani, Mentor [Department of Physiology, University of Tuebingen (Germany); Department of Chemistry, University of Prishtina, Kosovo (Country Unknown); Alesutan, Ioana; Wilmes, Jan [Department of Physiology, University of Tuebingen (Germany); Dermaku-Sopjani, Miribane [Department of Physiology, University of Tuebingen (Germany); Faculty of Medicine, University of Prishtina, Kosovo (Country Unknown); Lam, Rebecca S. [Department of Physiology, University of Tuebingen (Germany); Department of Molecular Neurogenetics, Max Planck Institute of Biophysics, Frankfurt/Main (Germany); Koutsouki, Evgenia [Department of Physiology, University of Tuebingen (Germany); Jakupi, Muharrem [Faculty of Medicine, University of Prishtina, Kosovo (Country Unknown); Foeller, Michael [Department of Physiology, University of Tuebingen (Germany); Lang, Florian, E-mail: florian.lang@uni-tuebingen.de [Department of Physiology, University of Tuebingen (Germany)

    2010-11-19

    Research highlights: {yields} The oncogenic transcription factor {beta}-catenin stimulates the Na{sup +}/K{sup +}-ATPase. {yields} {beta}-Catenin stimulates SGLT1 dependent Na{sup +}, glucose cotransport. {yields} The effects are independent of transcription. {yields} {beta}-Catenin sensitive transport may contribute to properties of proliferating cells. -- Abstract: {beta}-Catenin is a multifunctional protein stimulating as oncogenic transcription factor several genes important for cell proliferation. {beta}-Catenin-regulated genes include the serum- and glucocorticoid-inducible kinase SGK1, which is known to stimulate a variety of transport systems. The present study explored the possibility that {beta}-catenin influences membrane transport. To this end, {beta}-catenin was expressed in Xenopus oocytes with or without SGLT1 and electrogenic transport determined by dual electrode voltage clamp. As a result, expression of {beta}-catenin significantly enhanced the ouabain-sensitive current of the endogeneous Na{sup +}/K{sup +}-ATPase. Inhibition of vesicle trafficking by brefeldin A revealed that the stimulatory effect of {beta}-catenin on the endogenous Na{sup +}/K{sup +}-ATPase was not due to enhanced stability of the pump protein in the cell membrane. Expression of {beta}-catenin further enhanced glucose-induced current (Ig) in SGLT1-expressing oocytes. In the absence of SGLT1 Ig was negligible irrespective of {beta}-catenin expression. The stimulating effect of {beta}-catenin on both Na{sup +}/K{sup +} ATPase and SGLT1 activity was observed even in the presence of actinomycin D, an inhibitor of transcription. The experiments disclose a completely novel function of {beta}-catenin, i.e. the regulation of transport.

  6. Photosynthetic control of the plasma membrane H+-ATPase in Vallisneria leaves. II. Presence of putative isogenes and a protein equipped with a C-terminal autoinhibitory domain.

    Science.gov (United States)

    Harada, Akiko; Fukuhara, Toshiyuki; Takagi, Shingo

    2002-04-01

    In vitro treatment with trypsin of plasma membrane (PM) vesicles isolated from the leaves of Vallisneria gigantea Graebner, an aquatic monocot, produced a marked decrease in the Km for ATP and an increase in the Vmax of H+-transporting activity. Concomitantly, the removal of 8 kDa of the C-terminal domain from the 94-kDa PM H+-ATPase was confirmed by immunoblotting using different kinds of polyclonal antibody. Three partial clones of putative PM H+-ATPase genes (Vga1, 2, and 3) were isolated from leaves by reverse transcription polymerase chain reaction. Northern blotting analysis revealed that the expression level of Vga3 was high and that of the other two genes was much lower. The H+-transporting activity of PM vesicles was substantially suppressed in the presence of inorganic phosphate (Pi), which has been supposed to be a noncompetitive inhibitor of the PM H+-ATPase, coincident with an increase in the Km for ATP and a decrease in the Vmax. After treatment of the isolated PM vesicles with trypsin, the inhibitory effect of Pi was no longer evident. This result indicates that Pi inhibited the activity through the C-terminal autoinhibitory domain of the PM H+-ATPase. Furthermore, Pi increased the Km for ATP of the H+-transporting activity in the PM vesicles isolated from both dark-adapted and red-light-irradiated leaves. The results suggest that regulation of the Km for ATP through the operation of photosynthesis is independent of regulation through the cytoplasmic level of Pi. PMID:11941463

  7. Association of syntaxin 3 and vesicle-associated membrane protein (VAMP) with H+/K(+)-ATPase-containing tubulovesicles in gastric parietal cells.

    Science.gov (United States)

    Peng, X R; Yao, X; Chow, D C; Forte, J G; Bennett, M K

    1997-01-01

    H+/K(+)-ATPase is the proton pump in the gastric parietal cell that is responsible for gastric acid secretion. Stimulation of acid secretion is associated with a reorganization of the parietal cells resulting in the incorporation of H+/K(+)-ATPase from a cytoplasmic membrane pool, the tubulovesicle compartment, into the apical canalicular membrane. To better characterize the role of membrane trafficking events in the morphological and physiological changes associated with acid secretion from parietal cells, we have characterized the expression and localization of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) in these cells. Each of the six different SNARE proteins examined [syntaxins 1 through 4 of 25-kDa synaptosome-associated protein, and vesicle-associated membrane protein] were found to be expressed in parietal cells. Furthermore, two of these SNAREs, vesicle-associated membrane protein and syntaxin 3, were associated with H+/K(+)-ATPase-containing tubulovesicles while the remainder were excluded from this compartment. The expression of syntaxin 1 and synaptosome-associated protein of 25 kDa in parietal cells, two SNAREs previously thought to be restricted to neuroendocrine tissues, suggests that parietal cells may utilize membrane trafficking machinery that is similar to that utilized for regulated exocytosis in neurons. Furthermore, the localization of syntaxin 3, a putative target membrane SNARE, to the tubulovesicle compartment indicates that syntaxin 3 may have an alternative function. These observations support a role for intracellular membrane trafficking events in the regulated recruitment of H+/K(+)-ATPase to the plasma membrane after parietal cell stimulation. Images PMID:9188093

  8. Ivermectin is a nonselective inhibitor of mammalian P-type ATPases.

    Science.gov (United States)

    Pimenta, Paulo Henrique Cotrim; Silva, Claudia Lucia Martins; Noël, François

    2010-02-01

    Ivermectin is a large spectrum antiparasitic drug that is very safe at the doses actually used. However, as it is being studied for new applications that would require higher doses, we should pay attention to its effects at high concentrations. As micromolar concentrations of ivermectin have been reported to inhibit the sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA), we decided to investigate its putative inhibitory effect on other two important P-type ATPases, namely the Na(+) , K(+)-ATPase and H(+)/K(+)-ATPase. We first extended the data on SERCA, using preparations from rat enriched in SERCA1a (extensor digitorum longus) and 1b (heart) isoforms. Secondly, we tested the effect of ivermectin in two preparations of rat Na(+), K(+)-ATPase in order to appreciate its putative selectivity towards the alpha(1) isoform (kidney) and the alpha(2)/alpha(3) isoforms (brain), and in an H(+)/K(+)-ATPase preparation from rat stomach. Ivermectin inhibited all these ATPases with similar IC(50) values (6-17 microM). With respect to the inhibition of the Na(+), K(+)-ATPase, ivermectin acts by a mechanism different from the classical cardiac glycosides, based on selectivity towards the isoforms, sensibility to the antagonistic effect of K(+) and to ionic conditions favoring different conformations of the enzyme. We conclude that ivermectin is a nonselective inhibitor of three important mammalian P-type ATPases, which is indicative of putative important adverse effects if this drug were used at high doses. As a consequence, we propose that novel analogs of ivermectin should be developed and tested both for their parasitic activity and in vitro effects on P-type ATPases.

  9. Retrieval of the vacuolar H-ATPase from phagosomes revealed by live cell imaging.

    Directory of Open Access Journals (Sweden)

    Margaret Clarke

    Full Text Available BACKGROUND: The vacuolar H+-ATPase, or V-ATPase, is a highly-conserved multi-subunit enzyme that transports protons across membranes at the expense of ATP. The resulting proton gradient serves many essential functions, among them energizing transport of small molecules such as neurotransmitters, and acidifying organelles such as endosomes. The enzyme is not present in the plasma membrane from which a phagosome is formed, but is rapidly delivered by fusion with endosomes that already bear the V-ATPase in their membranes. Similarly, the enzyme is thought to be retrieved from phagosome membranes prior to exocytosis of indigestible material, although that process has not been directly visualized. METHODOLOGY: To monitor trafficking of the V-ATPase in the phagocytic pathway of Dictyostelium discoideum, we fed the cells yeast, large particles that maintain their shape during trafficking. To track pH changes, we conjugated the yeast with fluorescein isothiocyanate. Cells were labeled with VatM-GFP, a fluorescently-tagged transmembrane subunit of the V-ATPase, in parallel with stage-specific endosomal markers or in combination with mRFP-tagged cytoskeletal proteins. PRINCIPAL FINDINGS: We find that the V-ATPase is commonly retrieved from the phagosome membrane by vesiculation shortly before exocytosis. However, if the cells are kept in confined spaces, a bulky phagosome may be exocytosed prematurely. In this event, a large V-ATPase-rich vacuole coated with actin typically separates from the acidic phagosome shortly before exocytosis. This vacuole is propelled by an actin tail and soon acquires the properties of an early endosome, revealing an unexpected mechanism for rapid recycling of the V-ATPase. Any V-ATPase that reaches the plasma membrane is also promptly retrieved. CONCLUSIONS/SIGNIFICANCE: Thus, live cell microscopy has revealed both a usual route and alternative means of recycling the V-ATPase in the endocytic pathway.

  10. Human Decidua-Derived Mesenchymal Stem Cells Differentiate into Functional Alveolar Type II-Like Cells that Synthesize and Secrete Pulmonary Surfactant Complexes

    OpenAIRE

    Cerrada, Alejandro; de la Torre, Paz; Grande, Jesús; Haller, Thomas; Flores, Ana I.; Pérez-Gil, Jesús

    2014-01-01

    Lung alveolar type II (ATII) cells are specialized in the synthesis and secretion of pulmonary surfactant, a lipid-protein complex that reduces surface tension to minimize the work of breathing. Surfactant synthesis, assembly and secretion are closely regulated and its impairment is associated with severe respiratory disorders. At present, well-established ATII cell culture models are not available. In this work, Decidua-derived Mesenchymal Stem Cells (DMSCs) have been differentiated into Alv...

  11. HIF1α Is Essential for Normal Intrauterine Differentiation of Alveolar Epithelium and Surfactant Production in the Newborn Lung of Mice*S⃞

    OpenAIRE

    Saini, Yogesh; Harkema, Jack R; LaPres, John J.

    2008-01-01

    Neonatal respiratory distress syndrome (RDS) is mainly the result of perturbation in surfactant production and is a common complication seen in premature infants. Normal fetal lung development and alveolar cell differentiation is regulated by a network of transcription factors. Functional loss of any of these factors will alter the developmental program and impact surfactant production and normal gas exchange. During development, the fetus is exposed to varying oxygen ...

  12. Thermodynamics of non-ionic surfactant Triton X-100-cationic surfactants mixtures at the cloud point

    Energy Technology Data Exchange (ETDEWEB)

    Batigoec, Cigdem [Department of Chemistry, Faculty of Sciences, Trakya University, 22030 Edirne (Turkey); Akbas, Halide, E-mail: hakbas34@yahoo.com [Department of Chemistry, Faculty of Sciences, Trakya University, 22030 Edirne (Turkey); Boz, Mesut [Department of Chemistry, Faculty of Sciences, Trakya University, 22030 Edirne (Turkey)

    2011-12-15

    Highlights: > Non-ionic surfactants are used as emulsifier and solubilizate in such as textile, detergent and cosmetic. > Non-ionic surfactants occur phase separation at temperature as named the cloud point in solution. > Dimeric surfactants have attracted increasing attention due to their superior surface activity. > The positive values of {Delta}G{sub cp}{sup 0} indicate that the process proceeds nonspontaneous. - Abstract: This study investigates the effects of gemini and conventional cationic surfactants on the cloud point (CP) of the non-ionic surfactant Triton X-100 (TX-100) in aqueous solutions. Instead of visual observation, a spectrophotometer was used for measurement of the cloud point temperatures. The thermodynamic parameters of these mixtures were calculated at different cationic surfactant concentrations. The gemini surfactants of the alkanediyl-{alpha}-{omega}-bis (alkyldimethylammonium) dibromide type, on the one hand, with different alkyl groups containing m carbon atoms and an ethanediyl spacer, referred to as 'm-2-m' (m = 10, 12, and 16) and, on the other hand, with -C{sub 16} alkyl groups and different spacers containing s carbon atoms, referred to as '16-s-16' (s = 6 and 10) were synthesized, purified and characterized. Additions of the cationic surfactants to the TX-100 solution increased the cloud point temperature of the TX-100 solution. It was accepted that the solubility of non-ionic surfactant containing polyoxyethylene (POE) hydrophilic chain was a maximum at the cloud point so that the thermodynamic parameters were calculated at this temperature. The results showed that the standard Gibbs free energy ({Delta}G{sub cp}{sup 0}), the enthalpy ({Delta}H{sub cp}{sup 0}) and the entropy ({Delta}S{sub cp}{sup 0}) of the clouding phenomenon were found positive in all cases. The standard free energy ({Delta}G{sub cp}{sup 0}) increased with increasing hydrophobic alkyl chain for both gemini and conventional cationic

  13. Surfactant deficiency in rats without a decreased amount of extracellular surfactant.

    OpenAIRE

    Massaro, D; Clerch, L; Temple, D.; Baier, H.

    1983-01-01

    Low volume ventilation without periodic large inflations leads to diminished alveolar stability and to the accumulation of increased amounts of airway disaturated phosphatidylcholine (DSPC) in large aggregates that sediment at 1,000 g; surfactant in this form lowers surface tension less rapidly than surfactant present in the 1,000-g supernatant fraction. These observations led to the present work in which we tested the notion that alveolar instability may develop in the presence of an undimin...

  14. Thermodynamic effects of the hydrophobic surfactant proteins on the early adsorption of pulmonary surfactant.

    OpenAIRE

    Schram, V.; Hall, S B

    2001-01-01

    We determined the influence of the two hydrophobic proteins, SP-B and SP-C, on the thermodynamic barriers that limit adsorption of pulmonary surfactant to the air-water interface. We compared the temperature and concentration dependence of adsorption, measured by monitoring surface tension, between calf lung surfactant extract (CLSE) and the complete set of neutral and phospholipids (N&PL) without the proteins. Three stages generally characterized the various adsorption isotherms: an initial ...

  15. Surfactant-anti-surfactant immune complexes in infants with respiratory distress syndrome.

    OpenAIRE

    Strayer, D. S.; Merritt, T. A.; Lwebuga-Mukasa, J.; Hallman, M

    1986-01-01

    The authors sought to determine whether treatment of respiratory distress syndrome (RDS) with human surfactant resulted in the formation of detectable circulating immune complexes. Preterm infants with severe RDS were divided into two groups: one group received human surfactant by intratracheal instillation and the other group did not. Both groups received ventilatory management involving intermittent mandatory ventilation. Plasma samples were drawn from these babies prior to treatment and at...

  16. Surfactant and pulmonary blood flow distributions following treatment of premature lambs with natural surfactant.

    OpenAIRE

    Jobe, A; Ikegami, M; Jacobs, H.; Jones, S

    1984-01-01

    Prematurely delivered lambs were treated with radiolabeled natural surfactant by either tracheal instillation at birth and before the onset of mechanical ventilation, or after 23 +/- 1 (+/- SE) min of mechanical ventilation. Right ventricular blood flow distributions, left ventricular outputs, and left-to-right ductal shunts were measured with radiolabeled microspheres. After sacrifice, the lungs of lambs receiving surfactant at birth inflated uniformly with constant distending pressure while...

  17. Pulmonary surfactant proteins and polymer combinations reduce surfactant inhibition by serum

    OpenAIRE

    Lu, Karen W.; Pérez-Gil, Jesús; Echaide, Mercedes; Taeusch, H. William

    2011-01-01

    Acute respiratory distress syndrome (ARDS) is an inflammatory condition that can be associated with capillary leak of serum into alveoli causing inactivation of surfactant. Resistance to inactivation is affected by types and concentrations of surfactant proteins, lipids, and polymers. Our aim was to investigate the effects of different combinations of these three components. A simple lipid mixture (DPPC/POPG) or a more complex lipid mixture (DPPC/POPC/POPG/cholesterol) was used. Native surfac...

  18. Structural study of surfactant-dependent interaction with protein

    Energy Technology Data Exchange (ETDEWEB)

    Mehan, Sumit; Aswal, Vinod K., E-mail: vkaswal@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kohlbrecher, Joachim [Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 PSI Villigen (Switzerland)

    2015-06-24

    Small-angle neutron scattering (SANS) has been used to study the complex structure of anionic BSA protein with three different (cationic DTAB, anionic SDS and non-ionic C12E10) surfactants. These systems form very different surfactant-dependent complexes. We show that the structure of protein-surfactant complex is initiated by the site-specific electrostatic interaction between the components, followed by the hydrophobic interaction at high surfactant concentrations. It is also found that hydrophobic interaction is preferred over the electrostatic interaction in deciding the resultant structure of protein-surfactant complexes.

  19. Physicochemical characteristics of PFC surfactants for dry decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Jin; Lee, Chi Woo [Korea University, Seoul (Korea)

    2001-04-01

    Even the trace amount of the used nuclear fuels of high radioactivity are hazardous to the earth and humans. Perfluorocarbons and perfluorocarbon surfactants are emerging to be efficient chemicals in the dry decontamination process of the used fuels of high radioactivity. The theme was undertaken to increase the knowledge on perfluorocarbon surfactants to develop the perfluorocarbon system in the dry decontamination process in Korea. Several cationic and anionic pfc surfactants were synthesized. Effects of pfc surfactants on electrochemical etching of silicon were investigated to form porous silicons. Forces were measured between silicon surfaces and AFM tip in the absence and presence of pfc surfactants. 7 refs., 10 figs. (Author)

  20. Thermally stable surfactants and compositions and methods of use thereof

    Science.gov (United States)

    Chaiko, David J.

    2008-09-02

    There are provided novel thermally stable surfactants for use with fillers in the preparation of polymer composites and nanocomposites. Typically, surfactants of the invention are urethanes, ureas or esters of thiocarbamic acid having a hydrocarbyl group of from 10 to 50 carbons and optionally including an ionizable or charged group (e.g., carboxyl group or quaternary amine). Thus, there are provided surfactants having Formula I: ##STR00001## wherein the variables are as defined herein. Further provided are methods of making thermally stable surfactants and compositions, including composites and nanocomposites, using fillers coated with the surfactants.

  1. Dimeric Surfactants: Promising Ingredients of Cosmetics and Toiletries

    Directory of Open Access Journals (Sweden)

    Naveen Kumar

    2013-11-01

    Full Text Available Surfactants are an essential ingredient for cosmetic, toiletries and personal care products for enhancing their performance. Dimeric surfactants demonstrate superiority compared to conventional surfactants in all areas of application. Dimeric surfactants are extremely promising for utilization in various cosmetic formulations viz. shampoo, lotions, creams, conditioners etc. These surfactants possess extremely unique surface properties viz. lower surface tension, unique micellization, low critical micelle concentration (CMC and antimicrobial activity, higher solubilization etc. Dimerics enhance the performances of cosmetics in an extraordinary manner and provide eco-friendly preparations for human epidermis.

  2. Structural study of surfactant-dependent interaction with protein

    International Nuclear Information System (INIS)

    Small-angle neutron scattering (SANS) has been used to study the complex structure of anionic BSA protein with three different (cationic DTAB, anionic SDS and non-ionic C12E10) surfactants. These systems form very different surfactant-dependent complexes. We show that the structure of protein-surfactant complex is initiated by the site-specific electrostatic interaction between the components, followed by the hydrophobic interaction at high surfactant concentrations. It is also found that hydrophobic interaction is preferred over the electrostatic interaction in deciding the resultant structure of protein-surfactant complexes

  3. Titration procedure for low ethoxylated nonionic surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Buschmann, N. [Anorganisch-Chemisches Inst., Lehrstuhl fuer Analytische Chemie, Muenster Univ. (Germany); Huelskoetter, F. [Anorganisch-Chemisches Inst., Lehrstuhl fuer Analytische Chemie, Muenster Univ. (Germany)

    1997-01-01

    Highly lipophilic surfactants are frequently used as emulsifiers for preparing oil-in-water emulsions (e.g. coolants lubricants). Typical surfactants used for this purpose are low ethoxylated alcohols and ethoxylated alkylphenols. Due to the low degree of ethoxylation they cannot be analysed by conventional methods. The method described in this article is based on the introduction of an anionic group into the molecule by a derivatization reaction. The reaction product can be determined by conventional titration methods for anionic surfactants without any modification. The use of the new method for other nonionic surfactants like sorbitan esters, (ethoxylated) fatty acid amides or glycerol fatty acid partial esters is also described as well as the sample preparation for coolants lubricants. (orig.) [Deutsch] Lipophile Tenside werden haeufig zur Herstellung von Oel-in-Wasser-Emulsionen verwandt, wie sie beispielsweise in Kuehlschmiermitteln eingesetzt werden. Typische Vertreter dieser Tenside sind niedrig ethoxylierte Fettalkohole und Alkylphenole. Wegen ihres geringen Ethoxylierungsgrades koennen sie mit den konventionellen Methoden nicht analytisch bestimmt werden. Die hier beschriebene Analysenmethode beruht auf der Derivatisierung der Ethoxylate zu entsprechenden anionischen Tensiden (Ethersulfate). Diese koennen ohne weiteres mit den etablierten Titrationsverfahren bestimmt werden. Die Anwendung dieses neuen Verfahrens auf die Bestimmung anderer nichtionischer Tenside - Sorbitanester, (ethoxylierte) Fettsaeureamide und Partialglyceride - wird ebenso beschrieben wie die Probenvorbereitung fuer die Analyse von Kuehlschmiermitteln. (orig.)

  4. A facile surfactant critical micelle concentration determination

    OpenAIRE

    Cai, Lifeng; Gochin, Miriam; Liu, Keliang

    2011-01-01

    Liquid surface curvature variations in microplate wells due to different liquid surface tension cause significant signal change in spectroscopic measurement using a plate reader with a vertical detecting light beam. The signals have been quantitated and used to develop a method for facile surfactant critical micelle concentration determination.

  5. Surfactant protein D is proatherogenic in mice

    DEFF Research Database (Denmark)

    Sorensen, Grith L; Madsen, Jens; Kejling, Karin;

    2006-01-01

    Surfactant protein D (SP-D) is an important innate immune defense molecule that mediates clearance of pathogens and modulates the inflammatory response. Moreover, SP-D is involved in lipid homeostasis, and pulmonary accumulation of phospholipids has previously been observed in SP-D-deficient (Spd...

  6. Surfactants, interfaces and pores: a theoretical study.

    NARCIS (Netherlands)

    Huinink, H.P.

    1998-01-01

    The aim of this study was to investigate the behavior of surfactants in porous media by theoretical means. The influence of curvature of a surface on the adsorption has been studied with a mean field lattice (MFL) model, as developed by Scheutjens and Fleer. An analytical theory has been developed t

  7. Porcine lung surfactant protein B gene (SFTPB)

    DEFF Research Database (Denmark)

    Cirera Salicio, Susanna; Fredholm, Merete

    2008-01-01

    The porcine surfactant protein B (SFTPB) is a single copy gene on chromosome 3. Three different cDNAs for the SFTPB have been isolated and sequenced. Nucleotide sequence comparison revealed six nonsynonymous single nucleotide polymorphisms (SNPs), four synonymous SNPs and an in-frame deletion of 69...

  8. Mitoxantrone-Surfactant Interactions: A Physicochemical Overview

    Directory of Open Access Journals (Sweden)

    Mirela Enache

    2016-10-01

    Full Text Available Mitoxantrone is a synthetic anticancer drug used clinically in the treatment of different types of cancer. It was developed as a doxorubicin analogue in a program to find drugs with improved antitumor activity and decreased cardiotoxicity compared with the anthracyclines. As the cell membrane is the first barrier encountered by anticancer drugs before reaching the DNA sites inside the cells and as surfactant micelles are known as simple model systems for biological membranes, the drugs-surfactant interaction has been the subject of great research interest. Further, quantitative understanding of the interactions of drugs with biomimicking structures like surfactant micelles may provide helpful information for the control of physicochemical properties and bioactivities of encapsulated drugs in order to design better delivery systems with possible biomedical applications. The present review describes the physicochemical aspects of the interactions between the anticancer drug mitoxantrone and different surfactants. Mitoxantrone-micelle binding constants, partitions coefficient of the drug between aqueous and micellar phases and the corresponding Gibbs free energy for the above processes, and the probable location of drug molecules in the micelles are discussed.

  9. Phase diagrams of DNA-photosensitive surfactant complexes: effect of ionic strength and surfactant structure.

    Science.gov (United States)

    Zakrevskyy, Yuriy; Titov, Evgenii; Lomadze, Nino; Santer, Svetlana

    2014-10-28

    Realization of all-optically controlled and efficient DNA compaction is the major motivation in the study of interactions between DNA and photosensitive surfactants. In this article, using recently published approach of phase diagram construction [Y. Zakrevskyy, P. Cywinski, M. Cywinska, J. Paasche, N. Lomadze, O. Reich, H.-G. Löhmannsroben, and S. Santer, J. Chem. Phys. 140, 044907 (2014)], a strategy for substantial reduction of compaction agent concentration and simultaneous maintaining the light-induced decompaction efficiency is proposed. The role of ionic strength (NaCl concentration), as a very important environmental parameter, and surfactant structure (spacer length) on the changes of positions of phase transitions is investigated. Increase of ionic strength leads to increase of the surfactant concentration needed to compact DNA molecule. However, elongation of the spacer results to substantial reduction of this concentration. DNA compaction by surfactants with longer tails starts to take place in diluted solutions at charge ratios Z surfactant systems allowed explanation and proposal of a strategy to overcome previously reported limitations of the light-induced decompaction for complexes with increasing surfactant hydrophobicity.

  10. Degradation of pulmonary surfactant disaturated phosphatidylcholines by alveolar macrophages

    International Nuclear Information System (INIS)

    Experiments were performed to determine whether rat pulmonary surfactant disaturated phosphatidylcholines (DSPC) are degraded by alveolar macrophages in vitro. When [3H]choline-labeled surfactant materials are incubated with unlabeled alveolar macrophages, approximately 40% of the labeled DSPC is broken down in 6 h. There is just a slight decrease in the specific activity of DSPC, which suggests that most products of degradation are not reincorporated into DSPC, at least during the 6-h incubation period. There is a time- and temperature-dependent association of surfactant DSPC with alveolar macrophages, and some of the cell-associated materials are released from the cell fragments after sonication. Association of surfactant with the cells precedes degradation. The breakdown of surfactant DSPC by intact alveolar macrophages lags behind that produced by sonicated cell preparations with disrupted cell membranes. These data and other information suggest that the surfactant materials are internalized by the cells, before the breakdown. The products of degradation probably include free choline and fatty acids, most of which appear in the extracellular fluid. The breakdown processes do not seem to depend on the physical form of the surfactant or on the presence of surfactant apoproteins. Incubation of the cells alone also results in disappearance of intracellular DSPC, some of which may be surfactant phospholipid taken up by the cells in vivo. These results indicate that alveolar macrophages can degrade surfactant DSPC and suggest that these cells may be involved in catabolism of pulmonary surfactant materials

  11. Lung surfactants and different contributions to thin film stability.

    Science.gov (United States)

    Hermans, Eline; Bhamla, M Saad; Kao, Peter; Fuller, Gerald G; Vermant, Jan

    2015-11-01

    The surfactant lining the walls of the alveoli in the lungs increases pulmonary compliance and prevents collapse of the lung at the end of expiration. In premature born infants, surfactant deficiency causes problems, and lung surfactant replacements are instilled to facilitate breathing. These pulmonary surfactants, which form complex structured fluid-fluid interfaces, need to spread with great efficiency and once in the alveolus they have to form a thin stable film. In the present work, we investigate the mechanisms affecting the stability of surfactant-laden thin films during spreading, using drainage flows from a hemispherical dome. Three commercial lung surfactant replacements Survanta, Curosurf and Infasurf, along with the phospholipid dipalmitoylphosphatidylcholine (DPPC), are used. The surface of the dome can be covered with human alveolar epithelial cells and experiments are conducted at the physiological temperature. Drainage is slowed down due to the presence of all the different lung surfactant replacements and therefore the thin films show enhanced stability. However, a scaling analysis combined with visualization experiments demonstrates that different mechanisms are involved. For Curosurf and Infasurf, Marangoni stresses are essential to impart stability and interfacial shear rheology does not play a role, in agreement with what is observed for simple surfactants. Survanta, which was historically the first natural surfactant used, is rheologically active. For DPPC the dilatational properties play a role. Understanding these different modes of stabilization for natural surfactants can benefit the design of effective synthetic surfactant replacements for treating infant and adult respiratory disorders. PMID:26307946

  12. Atomic force microscopy analysis of rat pulmonary surfactant films.

    Science.gov (United States)

    Jiao, Xiujun; Keating, Eleonora; Tadayyon, Seyed; Possmayer, Fred; Zuo, Yi Y; Veldhuizen, Ruud A W

    2011-10-01

    Pulmonary surfactant facilitates breathing by forming a surface tension reducing film at the air-liquid interface of the alveoli. The objective was to characterize the structure of surfactant films using endogenous rat surfactant. Solid-support surfactant films, at different surface pressures, were obtained using a Langmuir balance and were analyzed using atomic force microscopy. The results showed a lipid film structure with three distinct phases: liquid expanded, liquid ordered and liquid condensed. The area covered by the liquid condensed domains increased as surface pressure increased. The presence of liquid ordered phase within these structures correlated with the cholesterol content. At a surface pressure of 50 mN/m, stacks of bilayers appeared. Several structural details of these films differ from previous observations made with goat and exogenous surfactants. Overall, the data indicate that surfactant films demonstrate phase separation at low surface pressures and multilayer formation at higher pressure, features likely important for normal surfactant function. PMID:21704443

  13. Status of surfactants as penetration enhancers in transdermal drug delivery

    Directory of Open Access Journals (Sweden)

    Iti Som

    2012-01-01

    Full Text Available Surfactants are found in many existing therapeutic, cosmetic, and agro-chemical preparations. In recent years, surfactants have been employed to enhance the permeation rates of several drugs via transdermal route. The application of transdermal route to a wider range of drugs is limited due to significant barrier to penetration across the skin which is associated with the outermost stratum corneum layer. Surfactants have effects on the permeability characteristics of several biological membranes including skin. They have the potential to solubilize lipids within the stratum corneum. The penetration of the surfactant molecule into the lipid lamellae of the stratum corneum is strongly dependent on the partitioning behavior and solubility of surfactant. Surfactants ranging from hydrophobic agents such as oleic acid to hydrophilic sodium lauryl sulfate have been tested as permeation enhancer to improve drug delivery. This article reviews the status of surfactants as permeation enhancer in transdermal drug delivery of various drugs.

  14. SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope; Richard E. Jackson

    2004-02-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. Also, the addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine.

  15. Synthesis of nanocrystalline hydroxyapatite using surfactant template systems: Role of templates in controlling morphology

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Susanta Kumar; Banerjee, Ashis; Banerjee, Shashwat [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920 (United States); Bose, Susmita, E-mail: sbose@wsu.edu [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920 (United States)

    2009-08-31

    Hydroxyapatite (HA) nanopowder was synthesized by reverse microemulsion technique using calcium nitrate and phosphoric acid as starting materials in aqueous phase. Cyclohexane, hexane, and isooctane were used as organic solvents, and Dioctyl sulfosuccinate sodium salt (AOT), dodecyl phosphate (DP), NP5 (poly(oxyethylene){sub 5} nonylphenol ether), and NP12 (poly(oxyethylene){sub 12} nonylphenol ether) as surfactants to make the emulsion. Effect of synthesis parameters, such as type of surfactant, aqueous to organic ratio (A/O), pH and temperature on powder characteristics were studied. It was found that the surfactant templates played a significant role in regulating the morphology of the nanoparticle. Hydroxyapatite nanoparticle of different morphologies such as spherical, needle shape or rod-like were obtained by adjusting the conditions of the emulsion system. Synthesized powder was characterized using X-ray diffraction (XRD), BET surface area and transmission electron microscopy (TEM). Phase pure HA nanopowder with highest surface area of 121 m{sup 2}/g were prepared by this technique using NP5 as a surfactant. Densification studies showed that this nanoparticle can give about 98% of their theoretical density. In vitro bioactivity of the dense HA compacts was confirmed by excellent apatite layer formation after 21 days in SBF solution. Cell material interaction study showed good cell attachment and after 5 days cells were proliferated on HA compacts in OPC1 cell culture medium. The results imply this to be a versatile approach for making hydroxyapatite nanocrystals with controlled morphology and excellent biocompatibility.

  16. The oscillatory motion of a surfactant-laden liquid plug in a 2D-channel

    Science.gov (United States)

    Fujioka, Hideki; Grotberg, James B.

    2004-11-01

    Liquid plugs can form in the lung's small airways near the end of expiration. This happens more frequently when the amount of pulmonary surfactant is reduced. In medical treatments such as surfactant replacement therapy, partial liquid ventilation, and drug delivery, the formation of plugs in an airway is important to deliver the instilled liquid uniformly throughout the lung. In this study, we investigate numerically the oscillatory motion of a surfactant-laden liquid plug within a two-dimensional channel lined by a thin liquid film. The viscosity of both the left and right air phases is assumed to be negligible, so that the only fluid dynamics of the liquid phase is considered. The plug motion is regulated by the flow rate in the left air phase, which is prescribed as a sinusoidal function of time. The pressure drop between the left and right air phases varies for time with a different phase of the flow rate. The plug length and the film thickness oscillate with an average value during a cycle. These behaviors changes by system parameters, Reynolds number, Womersley number, Capillary number, and surfactant properties. The significance of this study on mechanical stresses acting on airway epithelial cells caused by the motion of a liquid plug during normal breath, conventional or high-frequency ventilation is discussed. Supported by NIH grant HL41126, NASA grant NAG3-2740.

  17. The Pch2 AAA+ ATPase promotes phosphorylation of the Hop1 meiotic checkpoint adaptor in response to synaptonemal complex defects

    Science.gov (United States)

    Herruzo, Esther; Ontoso, David; González-Arranz, Sara; Cavero, Santiago; Lechuga, Ana; San-Segundo, Pedro A.

    2016-01-01

    Meiotic cells possess surveillance mechanisms that monitor critical events such as recombination and chromosome synapsis. Meiotic defects resulting from the absence of the synaptonemal complex component Zip1 activate a meiosis-specific checkpoint network resulting in delayed or arrested meiotic progression. Pch2 is an evolutionarily conserved AAA+ ATPase required for the checkpoint-induced meiotic block in the zip1 mutant, where Pch2 is only detectable at the ribosomal DNA array (nucleolus). We describe here that high levels of the Hop1 protein, a checkpoint adaptor that localizes to chromosome axes, suppress the checkpoint defect of a zip1 pch2 mutant restoring Mek1 activity and meiotic cell cycle delay. We demonstrate that the critical role of Pch2 in this synapsis checkpoint is to sustain Mec1-dependent phosphorylation of Hop1 at threonine 318. We also show that the ATPase activity of Pch2 is essential for its checkpoint function and that ATP binding to Pch2 is required for its localization. Previous work has shown that Pch2 negatively regulates Hop1 chromosome abundance during unchallenged meiosis. Based on our results, we propose that, under checkpoint-inducing conditions, Pch2 also possesses a positive action on Hop1 promoting its phosphorylation and its proper distribution on unsynapsed chromosome axes. PMID:27257060

  18. Yurt, Coracle, Neurexin IV and the Na(+),K(+)-ATPase form a novel group of epithelial polarity proteins.

    Science.gov (United States)

    Laprise, Patrick; Lau, Kimberly M; Harris, Kathryn P; Silva-Gagliardi, Nancy F; Paul, Sarah M; Beronja, Slobodan; Beitel, Greg J; McGlade, C Jane; Tepass, Ulrich

    2009-06-25

    The integrity of polarized epithelia is critical for development and human health. Many questions remain concerning the full complement and the function of the proteins that regulate cell polarity. Here we report that the Drosophila FERM proteins Yurt (Yrt) and Coracle (Cora) and the membrane proteins Neurexin IV (Nrx-IV) and Na(+),K(+)-ATPase are a new group of functionally cooperating epithelial polarity proteins. This 'Yrt/Cora group' promotes basolateral membrane stability and shows negative regulatory interactions with the apical determinant Crumbs (Crb). Genetic analyses indicate that Nrx-IV and Na(+),K(+)-ATPase act together with Cora in one pathway, whereas Yrt acts in a second redundant pathway. Moreover, we show that the Yrt/Cora group is essential for epithelial polarity during organogenesis but not when epithelial polarity is first established or during terminal differentiation. This property of Yrt/Cora group proteins explains the recovery of polarity in embryos lacking the function of the Lethal giant larvae (Lgl) group of basolateral polarity proteins. We also find that the mammalian Yrt orthologue EPB41L5 (also known as YMO1 and Limulus) is required for lateral membrane formation, indicating a conserved function of Yrt proteins in epithelial polarity. PMID:19553998

  19. Tight coupling of Na+/K+-ATPase with glycolysis demonstrated in permeabilized rat cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Mervi Sepp

    Full Text Available The effective integrated organization of processes in cardiac cells is achieved, in part, by the functional compartmentation of energy transfer processes. Earlier, using permeabilized cardiomyocytes, we demonstrated the existence of tight coupling between some of cardiomyocyte ATPases and glycolysis in rat. In this work, we studied contribution of two membrane ATPases and whether they are coupled to glycolysis--sarcoplasmic reticulum Ca2+ ATPase (SERCA and plasmalemma Na+/K+-ATPase (NKA. While SERCA activity was minor in this preparation in the absence of calcium, major role of NKA was revealed accounting to ∼30% of the total ATPase activity which demonstrates that permeabilized cell preparation can be used to study this pump. To elucidate the contribution of NKA in the pool of ATPases, a series of kinetic measurements was performed in cells where NKA had been inhibited by 2 mM ouabain. In these cells, we recorded: ADP- and ATP-kinetics of respiration, competition for ADP between mitochondria and pyruvate kinase (PK, ADP-kinetics of endogenous PK, and ATP-kinetics of total ATPases. The experimental data was analyzed using a series of mathematical models with varying compartmentation levels. The results show that NKA is tightly coupled to glycolysis with undetectable flux of ATP between mitochondria and NKA. Such tight coupling of NKA to PK is in line with its increased importance in the pathological states of the heart when the substrate preference shifts to glucose.

  20. Specialized functional diversity and interactions of the Na,K-ATPase

    Directory of Open Access Journals (Sweden)

    Igor I. Krivoi

    2016-05-01

    Full Text Available Na,K-ATPase is a protein ubiquitously expressed in the plasma membrane of all animal cells and vitally essential for their functions. A specialized functional diversity of the Na,K-ATPase isozymes is provided by molecular heterogeneity, distinct subcellular localizations and functional interactions with molecular environment. Studies over the last decades clearly demonstrated complex and isoform-specific reciprocal functional interactions between the Na,K-ATPase and neighboring proteins and lipids. These interactions are enabled by a spatially restricted ion homeostasis, direct protein-protein/lipid interactions and protein kinase signaling pathways. In addition to its ‘classical’ function in ion translocation, the Na,K-ATPase is now considered as one of the most important signaling molecules in neuronal, epithelial, skeletal, cardiac and vascular tissues. Accordingly, the Na,K-ATPase forms specialized sub-cellular multimolecular microdomains which act as receptors to circulating endogenous cardiotonic steroids triggering a number of signaling pathways. Changes in these endogenous cardiotonic steroid levels and initiated signaling responses have significant adaptive values for tissues and whole organisms under numerous physiological and pathophysiological conditions. This review discusses recent progress in the studies of functional interactions between the Na,K-ATPase and molecular microenvironment, the Na,K-ATPase-dependent signaling pathways and their significance for diversity of cell function.

  1. An extended nomenclature for mammalian V-ATPase subunit genes and splice variants.

    Directory of Open Access Journals (Sweden)

    Kevin C Miranda

    Full Text Available The vacuolar-type H(+-ATPase (V-ATPase is a multisubunit proton pump that is involved in both intra- and extracellular acidification processes throughout the body. Multiple homologs and splice variants of V-ATPase subunits are thought to explain its varied spatial and temporal expression pattern in different cell types. Recently subunit nomenclature was standardized with a total of 22 subunit variants identified. However this standardization did not accommodate the existence of splice variants and is therefore incomplete. Thus, we propose here an extension of subunit nomenclature along with a literature and sequence database scan for additional V-ATPase subunits. An additional 17 variants were pulled from a literature search while 4 uncharacterized potential subunit variants were found in sequence databases. These findings have been integrated with the current V-ATPase knowledge base to create a new V-ATPase subunit catalogue. It is envisioned this catalogue will form a new platform on which future studies into tissue- and organelle-specific V-ATPase expression, localization and function can be based.

  2. Demethoxycurcumin Is A Potent Inhibitor of P-Type ATPases from Diverse Kingdoms of Life

    Science.gov (United States)

    Dao, Trong Tuan; Sehgal, Pankaj; Tung, Truong Thanh; Møller, Jesper Vuust; Nielsen, John; Palmgren, Michael; Christensen, Søren Brøgger

    2016-01-01

    P-type ATPases catalyze the active transport of cations and phospholipids across biological membranes. Members of this large family are involved in a range of fundamental cellular processes. To date, a substantial number of P-type ATPase inhibitors have been characterized, some of which are used as drugs. In this work a library of natural compounds was screened and we first identified curcuminoids as plasma membrane H+-ATPases inhibitors in plant and fungal cells. We also found that some of the commercial curcumins contain several curcuminoids. Three of these were purified and, among the curcuminoids, demethoxycurcumin was the most potent inhibitor of all tested P-type ATPases from fungal (Pma1p; H+-ATPase), plant (AHA2; H+-ATPase) and animal (SERCA; Ca2+-ATPase) cells. All three curcuminoids acted as non-competitive antagonist to ATP and hence may bind to a highly conserved allosteric site of these pumps. Future research on biological effects of commercial preparations of curcumin should consider the heterogeneity of the material. PMID:27644036

  3. An overview of pulmonary surfactant in the neonate: genetics, metabolism, and the role of surfactant in health and disease.

    Science.gov (United States)

    Nkadi, Paul O; Merritt, T Allen; Pillers, De-Ann M

    2009-06-01

    Pulmonary surfactant is a complex mixture of phospholipids (PL) and proteins (SP) that reduce surface tension at the air-liquid interface of the alveolus. It is made up of about 70-80% PL, mainly dipalmitoylphosphatidylcholine (DPPC), 10% SP-A, B, C and D, and 10% neutral lipids, mainly cholesterol. Surfactant is synthesized, assembled, transported and secreted into the alveolus where it is degraded and then recycled. Metabolism of surfactant is slower in newborns, especially preterm, than in adults. Defective pulmonary surfactant metabolism results in respiratory distress with attendant morbidity and mortality. This occurs due to accelerated breakdown by oxidation, proteolytic degradation, inhibition or inherited defects of surfactant metabolism. Prenatal corticosteroids, surfactant replacement, whole lung lavage and lung transplantation have yielded results in managing some of these defects. Gene therapy could prove valuable in treating inherited defects of surfactant metabolism. PMID:19299177

  4. Structure and Conformational Dynamics of DMPC/Dicationic Surfactant and DMPC/Dicationic Surfactant/DNA Systems

    Science.gov (United States)

    Pietralik, Zuzanna; Krzysztoń, Rafał; Kida, Wojciech; Andrzejewska, Weronika; Kozak, Maciej

    2013-01-01

    Amphiphilic dicationic surfactants, known as gemini surfactants, are currently studied for gene delivery purposes. The gemini surfactant molecule is composed of two hydrophilic “head” groups attached to hydrophobic chains and connected via molecular linker between them. The influence of different concentrations of 1,5-bis (1-imidazolilo-3- decyloxymethyl) pentane chloride (gemini surfactant) on the thermotropic phase behaviour of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayers with and without the presence of DNA was investigated using Fourier transformed infrared (FTIR) and circular dichroism (CD) spectroscopies, small angle scattering of synchrotron radiation and differential scanning calorimetry. With increasing concentration of surfactant in DMPC/DNA systems, a disappearance of pretransition and a decrease in the main phase transition enthalpy and temperature were observed. The increasing intensity of diffraction peaks as a function of surfactant concentration also clearly shows the ability of the surfactant to promote the organisation of lipid bilayers in the multilayer lamellar phase. PMID:23571492

  5. Human decidua-derived mesenchymal stem cells differentiate into functional alveolar type II-like cells that synthesize and secrete pulmonary surfactant complexes.

    Directory of Open Access Journals (Sweden)

    Alejandro Cerrada

    Full Text Available Lung alveolar type II (ATII cells are specialized in the synthesis and secretion of pulmonary surfactant, a lipid-protein complex that reduces surface tension to minimize the work of breathing. Surfactant synthesis, assembly and secretion are closely regulated and its impairment is associated with severe respiratory disorders. At present, well-established ATII cell culture models are not available. In this work, Decidua-derived Mesenchymal Stem Cells (DMSCs have been differentiated into Alveolar Type II- Like Cells (ATII-LCs, which display membranous cytoplasmic organelles resembling lamellar bodies, the organelles involved in surfactant storage and secretion by native ATII cells, and accumulate disaturated phospholipid species, a surfactant hallmark. Expression of characteristic ATII cells markers was demonstrated in ATII-LCs at gene and protein level. Mimicking the response of ATII cells to secretagogues, ATII-LCs were able to exocytose lipid-rich assemblies, which displayed highly surface active capabilities, including faster interfacial adsorption kinetics than standard native surfactant, even in the presence of inhibitory agents. ATII-LCs could constitute a highly useful ex vivo model for the study of surfactant biogenesis and the mechanisms involved in protein processing and lipid trafficking, as well as the packing and storage of surfactant complexes.

  6. Human decidua-derived mesenchymal stem cells differentiate into functional alveolar type II-like cells that synthesize and secrete pulmonary surfactant complexes.

    Science.gov (United States)

    Cerrada, Alejandro; de la Torre, Paz; Grande, Jesús; Haller, Thomas; Flores, Ana I; Pérez-Gil, Jesús

    2014-01-01

    Lung alveolar type II (ATII) cells are specialized in the synthesis and secretion of pulmonary surfactant, a lipid-protein complex that reduces surface tension to minimize the work of breathing. Surfactant synthesis, assembly and secretion are closely regulated and its impairment is associated with severe respiratory disorders. At present, well-established ATII cell culture models are not available. In this work, Decidua-derived Mesenchymal Stem Cells (DMSCs) have been differentiated into Alveolar Type II- Like Cells (ATII-LCs), which display membranous cytoplasmic organelles resembling lamellar bodies, the organelles involved in surfactant storage and secretion by native ATII cells, and accumulate disaturated phospholipid species, a surfactant hallmark. Expression of characteristic ATII cells markers was demonstrated in ATII-LCs at gene and protein level. Mimicking the response of ATII cells to secretagogues, ATII-LCs were able to exocytose lipid-rich assemblies, which displayed highly surface active capabilities, including faster interfacial adsorption kinetics than standard native surfactant, even in the presence of inhibitory agents. ATII-LCs could constitute a highly useful ex vivo model for the study of surfactant biogenesis and the mechanisms involved in protein processing and lipid trafficking, as well as the packing and storage of surfactant complexes. PMID:25333871

  7. A new role for P2X4 receptors as modulators of lung surfactant secretion

    Directory of Open Access Journals (Sweden)

    Pika eMiklavc

    2013-10-01

    Full Text Available In recent years P2X receptors have attracted increasing attention as regulators of exocytosis and cellular secretion. In various cell types P2X receptors have been found to stimulate vesicle exocytosis directly via Ca2+ influx and elevation of the intracellular Ca2+ concentration. Recently, a new role for P2X4 receptors as regulators of secretion emerged. Exocytosis of lamellar bodies (LBs, large storage organelles for lung surfactant, results in a local, fusion-activated Ca2+ entry (FACE in alveolar type II epithelial cells. FACE is mediated via P2X4 receptors that are located on the limiting membrane of LBs and inserted into the plasma membrane upon exocytosis of LBs. The localized Ca2+ influx at the site of vesicle fusion promotes fusion pore expansion and facilitates surfactant release. In addition, this inward-rectifying cation current across P2X4 receptors mediates fluid resorption from lung alveoli. It is hypothesized that the concomitant reduction in the alveolar lining fluid facilitates insertion of surfactant into the air-liquid interphase thereby activating it. These findings constitute a novel role for P2X4 receptors in regulating vesicle content secretion as modulators of the secretory output during the exocytic post-fusion phase.

  8. Alteration of complex sphingolipid composition and its physiological significance in yeast Saccharomyces cerevisiae lacking vacuolar ATPase.

    Science.gov (United States)

    Tani, Motohiro; Toume, Moeko

    2015-12-01

    In the yeast Saccharomyces cerevisiae, complex sphingolipids have three types of polar head group and five types of ceramide; however, the physiological significance of the structural diversity is not fully understood. Here, we report that deletion of vacuolar H+-ATPase (V-ATPase) in yeast causes dramatic alteration of the complex sphingolipid composition, which includes decreases in hydroxylation at the C-4 position of long-chain bases and the C-2 position of fatty acids in the ceramide moiety, decreases in inositol phosphorylceramide (IPC) levels, and increases in mannosylinositol phosphorylceramide (MIPC) and mannosyldiinositol phosphorylceramide [M(IP)2C] levels. V-ATPase-deleted cells exhibited slow growth at pH 7.2, whereas the increase in MIPC levels was significantly enhanced when V-ATPase-deleted cells were incubated at pH 7.2. The protein expression levels of MIPC and M(IP)2C synthases were significantly increased in V-ATPase-deleted cells incubated at pH 7.2. Loss of MIPC synthesis or an increase in the hydroxylation level of the ceramide moiety of sphingolipids on overexpression of Scs7 and Sur2 sphingolipid hydroxylases enhanced the growth defect of V-ATPase-deleted cells at pH 7.2. On the contrary, the growth rate of V-ATPase-deleted cells was moderately increased on the deletion of SCS7 and SUR2. In addition, supersensitivities to Ca2+, Zn2+ and H2O2, which are typical phenotypes of V-ATPase-deleted cells, were enhanced by the loss of MIPC synthesis. These results indicate the possibility that alteration of the complex sphingolipid composition is an adaptation mechanism for a defect of V-ATPase.

  9. Alteration of aluminium inhibition of synaptosomal (Na(+)/K(+))ATPase by colestipol administration.

    Science.gov (United States)

    Silva, V S; Oliveira, L; Gonçalves, P P

    2013-11-01

    The ability of aluminium to inhibit the (Na(+)/K(+))ATPase activity has been observed by several authors. During chronic dietary exposure to AlCl3, brain (Na(+)/K(+))ATPase activity drops, even if no alterations of catalytic subunit protein expression and of energy charge potential are observed. The aluminium effect on (Na(+)/K(+))ATPase activity seems to implicate the reduction of interacting protomers within the oligomeric ensemble of the membrane-bound (Na(+)/K(+))ATPase. The activity of (Na(+)/K(+))ATPase is altered by the microviscosity of lipid environment. We studied if aluminium inhibitory effect on (Na(+)/K(+))ATPase is modified by alterations in synaptosomal membrane cholesterol content. Adult male Wistar rats were submitted to chronic dietary AlCl3 exposure (0.03 g/day of AlCl3) and/or to colestipol, a hypolidaemic drug (0.31 g/day) during 4 months. The activity of (Na(+)/K(+))ATPase was studied in brain cortex synaptosomes with different cholesterol contents. Additionally, we incubate synaptosomes with methyl-β-cyclodextrin for both enrichment and depletion of membrane cholesterol content, with or without 300 μM AlCl3. This enzyme activity was significantly reduced by micromolar AlCl3 added in vitro and when aluminium was orally administered to rats. The oral administration of colestipol reduced the cholesterol content and concomitantly inhibited the (Na(+)/K(+))ATPase. The aluminium inhibitory effect on synaptosomal (Na(+)/K(+))ATPase was reduced by cholesterol depletion both in vitro and in vivo.

  10. Computational approaches for classification and prediction of P-type ATPase substrate specificity in Arabidopsis.

    Science.gov (United States)

    Zinati, Zahra; Alemzadeh, Abbas; KayvanJoo, Amir Hossein

    2016-01-01

    As an extended gamut of integral membrane (extrinsic) proteins, and based on their transporting specificities, P-type ATPases include five subfamilies in Arabidopsis, inter alia, P4ATPases (phospholipid-transporting ATPase), P3AATPases (plasma membrane H(+) pumps), P2A and P2BATPases (Ca(2+) pumps) and P1B ATPases (heavy metal pumps). Although, many different computational methods have been developed to predict substrate specificity of unknown proteins, further investigation needs to improve the efficiency and performance of the predicators. In this study, various attribute weighting and supervised clustering algorithms were employed to identify the main amino acid composition attributes, which can influence the substrate specificity of ATPase pumps, classify protein pumps and predict the substrate specificity of uncharacterized ATPase pumps. The results of this study indicate that both non-reduced coefficients pertaining to absorption and Cys extinction within 280 nm, the frequencies of hydrogen, Ala, Val, carbon, hydrophilic residues, the counts of Val, Asn, Ser, Arg, Phe, Tyr, hydrophilic residues, Phe-Phe, Ala-Ile, Phe-Leu, Val-Ala and length are specified as the most important amino acid attributes through applying the whole attribute weighting models. Here, learning algorithms engineered in a predictive machine (Naive Bays) is proposed to foresee the Q9LVV1 and O22180 substrate specificities (P-type ATPase like proteins) with 100 % prediction confidence. For the first time, our analysis demonstrated promising application of bioinformatics algorithms in classifying ATPases pumps. Moreover, we suggest the predictive systems that can assist towards the prediction of the substrate specificity of any new ATPase pumps with the maximum possible prediction confidence. PMID:27186030

  11. Structural studies of Ca2+-ATPase ligand and regulatory complexes

    DEFF Research Database (Denmark)

    Drachmann, Nikolaj Düring

    2015-01-01

    against their concentration gradient upon ATP hydrolysis. The ion gradients are used to drive several key cellular processes, like the action potential in nerve tissue, acidification of the gastric juice, cell signalling and muscle contraction. The Ca2+-ATPase is an important part of mammalian cells...... choline lipids with different aliphatic chain length and saturation show three specific lipid binding sites. The four different lipids analysed bind to the same binding sites with varying degrees of disorder. The study contributes to understanding the complex interplay between the surrounding membrane......-of-concept Ca2+ bound crystal form, indicated that the information content of SFX data is higher than synchrotron data, and ligands and ions can be detected with low redundant data. The data of the E2 stabilised form was processed to 5 Å resolution, and it was possible to extract useful anomalous data showing...

  12. Modulation of P-glycoprotein ATPase activity by some phytoconstituents.

    Science.gov (United States)

    Najar, I A; Sachin, B S; Sharma, S C; Satti, N K; Suri, K A; Johri, R K

    2010-03-01

    In the present investigation 16 phytoconstituents, which are active moieties found in several medicinal herbs, have been evaluated for their P-glycoprotein (P-gp) stimulation/inhibition profiles using a P-gp-dependent ATPase assay in rat jejunal membrane (in vitro). Acteoside, agnuside, catechin, chlorogenic acid, picroside -II and santonin showed an inhibitory effect. Negundoside, picroside -I and oleanolic acid caused a stimulatory effect. Andrographolide, apocyanin, berberine, glycyrrhizin, magniferin and piperine produced a biphasic response (stimulation at low concentration and inhibition at high concentration). The results suggested that a possible interaction of these phytoconstituents at the level of P-gp, could be an important parameter in determining their role in several key pharmacodynamic events. PMID:19653312

  13. A novel C-terminal homologue of Aha1 co-chaperone binds to heat shock protein 90 and stimulates its ATPase activity in Entamoeba histolytica.

    Science.gov (United States)

    Singh, Meetali; Shah, Varun; Tatu, Utpal

    2014-04-17

    Cytosolic heat shock protein 90 (Hsp90) has been shown to be essential for many infectious pathogens and is considered a potential target for drug development. In this study, we have carried out biochemical characterization of Hsp90 from a poorly studied protozoan parasite of clinical importance, Entamoeba histolytica. We have shown that Entamoeba Hsp90 can bind to both ATP and its pharmacological inhibitor, 17-AAG (17-allylamino-17-demethoxygeldanamycin), with Kd values of 365.2 and 10.77 μM, respectively, and it has a weak ATPase activity with a catalytic efficiency of 4.12×10(-4) min(-1) μM(-1). Using inhibitor 17-AAG, we have shown dependence of Entamoeba on Hsp90 for its growth and survival. Hsp90 function is regulated by various co-chaperones. Previous studies suggest a lack of several important co-chaperones in E. histolytica. In this study, we describe the presence of a novel homologue of co-chaperone Aha1 (activator of Hsp90 ATPase), EhAha1c, lacking a canonical Aha1 N-terminal domain. We also show that EhAha1c is capable of binding and stimulating ATPase activity of EhHsp90. In addition to highlighting the potential of Hsp90 inhibitors as drugs against amoebiasis, our study highlights the importance of E. histolytica in understanding the evolution of Hsp90 and its co-chaperone repertoire.

  14. Phosphorylation of ATPase subunits of the 26S proteasome.

    Science.gov (United States)

    Mason, G G; Murray, R Z; Pappin, D; Rivett, A J

    1998-07-01

    The 26S proteasome complex plays a major role in the non-lysosomal degradation of intracellular proteins. Purified 26S proteasomes give a pattern of more than 40 spots on 2D-PAGE gels. The positions of subunits have been identified by mass spectrometry of tryptic peptides and by immunoblotting with subunit-specific antipeptide antibodies. Two-dimensional polyacrylamide gel electrophoresis of proteasomes immunoprecipitated from [32P]phosphate-labelled human embryo lung L-132 cells revealed the presence of at least three major phosphorylated polypeptides among the regulatory subunits as well as the C8 and C9 components of the core 20S proteasome. Comparison with the positions of the regulatory polypeptides revealed a minor phosphorylated form to be S7 (MSS1). Antibodies against S4, S6 (TBP7) and S12 (MOV34) all cross-reacted at the position of major phosphorylated polypeptides suggesting that several of the ATPase subunits may be phosphorylated. The phosphorylation of S4 was confirmed by double immunoprecipitation experiments in which 26S proteasomes were immunoprecipitated as above and dissociated and then S4 was immunoprecipitated with subunit-specific antibodies. Antibodies against the non-ATPase subunit S10, which has been suggested by others to be phosphorylated, did not coincide with the position of a phosphorylated polypeptide. Some differences were observed in the 2D-PAGE pattern of proteasomes immunoprecipitated from cultured cells compared to purified rat liver 26S proteasomes suggesting possible differences in subunit compositions of 26S proteasomes.

  15. The evolutionary history of sarco(endoplasmic calcium ATPase (SERCA.

    Directory of Open Access Journals (Sweden)

    Ianina Altshuler

    Full Text Available Investigating the phylogenetic relationships within physiologically essential gene families across a broad range of taxa can reveal the key gene duplication events underlying their family expansion and is thus important to functional genomics studies. P-Type II ATPases represent a large family of ATP powered transporters that move ions across cellular membranes and includes Na(+/K(+ transporters, H(+/K(+ transporters, and plasma membrane Ca(2+ pumps. Here, we examine the evolutionary history of one such transporter, the Sarco(endoplasmic reticulum calcium ATPase (SERCA, which maintains calcium homeostasis in the cell by actively pumping Ca(2+ into the sarco(endoplasmic reticulum. Our protein-based phylogenetic analyses across Eukaryotes revealed two monophyletic clades of SERCA proteins, one containing animals, fungi, and plants, and the other consisting of plants and protists. Our analyses suggest that the three known SERCA proteins in vertebrates arose through two major gene duplication events after the divergence from tunicates, but before the separation of fishes and tetrapods. In plants, we recovered two SERCA clades, one being the sister group to Metazoa and the other to Apicomplexa clade, suggesting an ancient duplication in an early eukaryotic ancestor, followed by subsequent loss of one copy in Opisthokonta, the other in protists, and retention of both in plants. We also report relatively recent and independent gene duplication events within invertebrate taxa including tunicates and the leech Helobdella robusta. Thus, it appears that both ancient and recent gene duplication events have played an important role in the evolution of this ubiquitous gene family across the eukaryotic domain.

  16. Isolation of H(+),K(+)-ATPase-enriched Membrane Fraction from Pig Stomachs.

    Science.gov (United States)

    Abe, Kazuhiro; Olesen, Claus

    2016-01-01

    Gastric H(+),K(+)-ATPase is an ATP-driven proton pump responsible for the acid secretion. Here, we describe the procedure for the isolation of H(+),K(+)-ATPase-enriched membrane vesicle fractions by Ficoll/sucrose density gradient centrifugation. Further purification by SDS treatment of membrane fractions is also introduced. These procedures allow us to obtain purified protein preparations in a quantity of several tens of milligrams, with the specific activity of ~480 μmol/mg/h. High purity and stability of H(+),K(+)-ATPase in the membrane preparation enable us to evaluate its detailed biochemical properties, and also to obtain 2D crystals for structural analysis.

  17. Crystal structure of a copper-transporting PIB-type ATPase

    DEFF Research Database (Denmark)

    Gourdon, Pontus Emanuel; Liu, Xiang-Yu; Skjørringe, Tina;

    2011-01-01

    (+)-ATPase, in a copper-free form, as determined by X-ray crystallography at 3.2 Å resolution. The structure indicates a three-stage copper transport pathway involving several conserved residues. A PIB-specific transmembrane helix kinks at a double-glycine motif displaying an amphipathic helix that lines a putative...... copper entry point at the intracellular interface. Comparisons to Ca(2+)-ATPase suggest an ATPase-coupled copper release mechanism from the binding sites in the membrane via an extracellular exit site. The structure also provides a framework to analyse missense mutations in the human ATP7A and ATP7B...

  18. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    Energy Technology Data Exchange (ETDEWEB)

    George J. Hirasaki; Clarence A. Miller

    2006-09-09

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A mixture of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. The mixture is single phase for higher salinity or calcium concentrations than that for either surfactant used alone. This makes it possible to inject the surfactant slug with polymer close to optimal conditions and yet be single phase. A formulation has been designed for a particular field application. It uses partially hydrolyzed polyacrylamide for mobility control. The addition of an alkali such as sodium carbonate makes possible in situ generation of naphthenic soap and significant reduction of synthetic surfactant adsorption. The design of the process to maximize the region of ultra-low IFT takes advantage of the observation that the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Even for a fixed ratio of soap to surfactant, the range of salinity for low IFT was wider than that reported for surfactant systems in the literature. Low temperature, forced displacement experiments in dolomite and silica sandpacks demonstrate that greater than 95% recovery of the waterflood remaining oil is possible with 0.2% surfactant concentration, 0.5 PV surfactant slug, with no alcohol. Compositional simulation of the displacement process demonstrates the role of soap/surfactant ratio on passage of the profile through the ultralow IFT region, the importance of a wide salinity range of low IFT, and the importance of the viscosity of the surfactant slug. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs as well as a

  19. Ontogeny of osmoregulation in the Pacific blue shrimp, Litopenaeus stylirostris (Decapoda, Penaeidae): Deciphering the role of the Na(+)/K(+)-ATPase.

    Science.gov (United States)

    Pham, Dominique; Charmantier, Guy; Boulo, Viviane; Wabete, Nelly; Ansquer, Dominique; Dauga, Clément; Grousset, Evelyse; Labreuche, Yannick; Charmantier-Daures, Mireille

    2016-01-01

    The role of the main ion transporting enzyme Na+/K+-ATPase in osmoregulation processes was investigated in Litopenaeus stylirostris. The development and localization of the osmoregulation sites were studied during ontogenesis by immunodetection of Na(+)K(+)-ATPase using monoclonal antibodies and transmission electron microscopy (TEM). Osmoregulation sites were identified as the pleurae and branchiostegites in the zoeae and mysis stages. In the subsequent post-metamorphic stages the osmoregulatory function was mainly located in the epipodites and branchiostegites and osmotic regulation was later detected in the gills. The presence of ionocytes and microvilli in these tissues confirmed their role in ionic processes. The complete open reading frame of the mRNA coding for the α-subunit of Na+K+-ATPase was characterized in L. stylirostris. The resulting 3092-bp cDNA (LsNKA) encodes a putative 1011-amino-acid protein with a predicted molecular mass of 112.3kDa. The inferred amino acid sequence revealed that the putative protein possesses the main structural characteristics of the Na+K+-ATPase α-subunits. Quantitative RT-PCR analyses indicated that LsNKA transcripts did not significantly vary between the different developmental stages. The number of transcripts was about 2.5-fold higher in the epipodites and gills than in any other tissues tested in juveniles. A reverse genetic approach was finally implemented to study the role of LsNKA in vivo. Knockdown of LsNKA expression by gene-specific dsRNA injection led to an increase of shrimp mortality following an abrupt salinity change compared to control animals. These data strongly suggest that LsNKA plays an important role in osmoregulation when the shrimp are challenged by changing salinities. PMID:26827851

  20. Cycle-Induced Flow and Surfactant Transport in an Alveolus

    Science.gov (United States)

    Wei, H. H.

    2002-11-01

    The flow and transport in an alveolus are of fundamental importance to partial liquid ventilation, surfactant transport, pulmonary drug administration, cell-cell signaling pathways and gene therapy. We model the system in which an alveolus is partially filled with liquid in the presence of surfactants. Assuming a circular interface due to sufficiently strong surface tension, we can apply two-dimensional bipolar coordinates to describe the system. We then combine analytical and numerical techniques to solve the Stokes flow and the surfactant concentration. In the absence of surfactants, there is no steady streaming because of reversibility of the Stokes flow. The presence of surfactants however induces a non-trivial cycle-averaged surfactant concentration gradient along the interface that generates steady streaming. The steady streaming patterns (e.g., number of vortices) depend on the parameters, especially on the ratio of inspiration to expiration periods (I:E ratio). Either smaller or larger I:E ratio exhibits two primary vortices but the direction of primary vortices for small I:E is opposite to large I:E. Extension to soluble surfactants is also discussed. For sufficiently high surfactant bulk concentration, the surfactant transport is sorption-controlled and soluble surfactants diminish the size of steady vortices near the alveolar opening. For the estimated steady velocity u 10-5 cm/s, the corresponding Peclet number is 10-7/ D_m. Therefore, for Dm <= 10-7 cm^2/s, the convective transport dominates.