WorldWideScience

Sample records for atpase a4 subunit

  1. Transcriptional regulators of Na, K-ATPase subunits

    Directory of Open Access Journals (Sweden)

    Zhiqin eLi

    2015-10-01

    Full Text Available The Na,K-ATPase classically serves as an ion pump creating an electrochemical gradient across the plasma membrane that is essential for transepithelial transport, nutrient uptake and membrane potential. In addition, Na,K-ATPase also functions as a receptor, a signal transducer and a cell adhesion molecule. With such diverse roles, it is understandable that the Na,K-ATPase subunits, the catalytic alpha-subunit, the beta-subunit and the FXYD proteins, are controlled extensively during development and to accommodate physiological needs. The spatial and temporal expression of Na,K-ATPase is partially regulated at the transcriptional level. Numerous transcription factors, hormones, growth factors, lipids and extracellular stimuli modulate the transcription of the Na,K-ATPase subunits. Moreover, epigenetic mechanisms also contribute to the regulation of Na,K-ATPase expression. With the ever growing knowledge about diseases associated with the malfunction of Na,K-ATPase, this review aims at summarizing the best-characterized transcription regulators that modulate Na,K-ATPase subunit levels. As abnormal expression of Na,K-ATPase subunits have been observed in many carcinoma, we will also discuss transcription factors that are associated with epithelial-to-mesenchymal transition, a crucial step in the progression of many tumors to malignant disease.

  2. Probing subunit-subunit interactions in the yeast vacuolar ATPase by peptide arrays.

    Directory of Open Access Journals (Sweden)

    Lee S Parsons

    Full Text Available BACKGROUND: Vacuolar (H(+-ATPase (V-ATPase; V(1V(o-ATPase is a large multisubunit enzyme complex found in the endomembrane system of all eukaryotic cells where its proton pumping action serves to acidify subcellular organelles. In the plasma membrane of certain specialized tissues, V-ATPase functions to pump protons from the cytoplasm into the extracellular space. The activity of the V-ATPase is regulated by a reversible dissociation mechanism that involves breaking and re-forming of protein-protein interactions in the V(1-ATPase - V(o-proton channel interface. The mechanism responsible for regulated V-ATPase dissociation is poorly understood, largely due to a lack of detailed knowledge of the molecular interactions that are responsible for the structural and functional link between the soluble ATPase and membrane bound proton channel domains. METHODOLOGY/PRINCIPAL FINDINGS: To gain insight into where some of the stator subunits of the V-ATPase associate with each other, we have developed peptide arrays from the primary sequences of V-ATPase subunits. By probing the peptide arrays with individually expressed V-ATPase subunits, we have identified several key interactions involving stator subunits E, G, C, H and the N-terminal domain of the membrane bound a subunit. CONCLUSIONS: The subunit-peptide interactions identified from the peptide arrays complement low resolution structural models of the eukaryotic vacuolar ATPase obtained from transmission electron microscopy. The subunit-subunit interaction data are discussed in context of our current model of reversible enzyme dissociation.

  3. Structural features of the γ subunit of the Escherichia coli F1 ATPase revealed by a 4.4-Å resolution map obtained by x-ray crystallography

    OpenAIRE

    1999-01-01

    The F1 part of the F1FO ATP synthase from Escherichia coli has been crystallized and its structure determined to 4.4-Å resolution by using molecular replacement based on the structure of the beef-heart mitochondrial enzyme. The bacterial F1 consists of five subunits with stoichiometry α3, β3, γ, δ, and ɛ. δ was removed before crystallization. In agreement with the structure of the beef-heart mitochondrial enzyme, although not that from rat liver, the present study suggests that the α and β su...

  4. Phosphorylation of ATPase subunits of the 26S proteasome.

    Science.gov (United States)

    Mason, G G; Murray, R Z; Pappin, D; Rivett, A J

    1998-07-01

    The 26S proteasome complex plays a major role in the non-lysosomal degradation of intracellular proteins. Purified 26S proteasomes give a pattern of more than 40 spots on 2D-PAGE gels. The positions of subunits have been identified by mass spectrometry of tryptic peptides and by immunoblotting with subunit-specific antipeptide antibodies. Two-dimensional polyacrylamide gel electrophoresis of proteasomes immunoprecipitated from [32P]phosphate-labelled human embryo lung L-132 cells revealed the presence of at least three major phosphorylated polypeptides among the regulatory subunits as well as the C8 and C9 components of the core 20S proteasome. Comparison with the positions of the regulatory polypeptides revealed a minor phosphorylated form to be S7 (MSS1). Antibodies against S4, S6 (TBP7) and S12 (MOV34) all cross-reacted at the position of major phosphorylated polypeptides suggesting that several of the ATPase subunits may be phosphorylated. The phosphorylation of S4 was confirmed by double immunoprecipitation experiments in which 26S proteasomes were immunoprecipitated as above and dissociated and then S4 was immunoprecipitated with subunit-specific antibodies. Antibodies against the non-ATPase subunit S10, which has been suggested by others to be phosphorylated, did not coincide with the position of a phosphorylated polypeptide. Some differences were observed in the 2D-PAGE pattern of proteasomes immunoprecipitated from cultured cells compared to purified rat liver 26S proteasomes suggesting possible differences in subunit compositions of 26S proteasomes.

  5. Models for the a subunits of the Thermus thermophilus V/A-ATPase and Saccharomyces cerevisiae V-ATPase enzymes by cryo-EM and evolutionary covariance.

    Science.gov (United States)

    Schep, Daniel G; Zhao, Jianhua; Rubinstein, John L

    2016-03-22

    Rotary ATPases couple ATP synthesis or hydrolysis to proton translocation across a membrane. However, understanding proton translocation has been hampered by a lack of structural information for the membrane-embedded a subunit. The V/A-ATPase from the eubacterium Thermus thermophilus is similar in structure to the eukaryotic V-ATPase but has a simpler subunit composition and functions in vivo to synthesize ATP rather than pump protons. We determined the T. thermophilus V/A-ATPase structure by cryo-EM at 6.4 Å resolution. Evolutionary covariance analysis allowed tracing of the a subunit sequence within the map, providing a complete model of the rotary ATPase. Comparing the membrane-embedded regions of the T. thermophilus V/A-ATPase and eukaryotic V-ATPase from Saccharomyces cerevisiae allowed identification of the α-helices that belong to the a subunit and revealed the existence of previously unknown subunits in the eukaryotic enzyme. Subsequent evolutionary covariance analysis enabled construction of a model of the a subunit in the S. cerevisae V-ATPase that explains numerous biochemical studies of that enzyme. Comparing the two a subunit structures determined here with a structure of the distantly related a subunit from the bovine F-type ATP synthase revealed a conserved pattern of residues, suggesting a common mechanism for proton transport in all rotary ATPases.

  6. Molecular Characterization of Subunit G of the Vacuolar ATPase in Pathogen Dermatophyte Trichophyton rubrum

    Directory of Open Access Journals (Sweden)

    S Rezaie

    2006-06-01

    Full Text Available Trichophyton rubrum is an anthropophilic fungus causing up to 90% of chronic cases of dermatophytosis. Several properties of this fungus have been investigated so far. However, a few studies were carried out in the field of molecular biology of this fungus. In the present study, we tried to identify the subunit G of its vacuolar ATPase (V-ATPase. Pairs of 21 nt primers were designed from highly conserved regions of the V-ATPase subunit G genes in other fungi. Mentioned primers were utilized in PCR using isolated genomic DNA template as well as cytoplasmic RNA of T.rubrum and the PCR and RT-PCR fragments were then sequenced. About 469 nucleotides were sequenced which encoded a polypeptide with 119 amino acids. Nucleotide sequence comparison in gene data banks (NCBI, NIH for both the DNA and its deduced amino acid sequence revealed significant homology with V-ATPase subunit G genes and proteins of other eukaryotic cells. The amino acid sequence of the encoded protein was about 84% identical to the sequence of V-ATPase subunit G from other fungi. In summary, we have cloned the first V-ATPase subunit G of dermatophytes and characterized it as a member of this gene family in other eukaryotic cells.

  7. Conserved V-ATPase c subunit plays a role in plant growth by influencing V-ATPase-dependent endosomal trafficking.

    Science.gov (United States)

    Zhou, Aimin; Bu, Yuanyuan; Takano, Tetsuo; Zhang, Xinxin; Liu, Shenkui

    2016-01-01

    In plant cells, the vacuolar-type H(+)-ATPases (V-ATPase) are localized in the tonoplast, Golgi, trans-Golgi network and endosome. However, little is known about how V-ATPase influences plant growth, particularly with regard to the V-ATPase c subunit (VHA-c). Here, we characterized the function of a VHA-c gene from Puccinellia tenuiflora (PutVHA-c) in plant growth. Compared to the wild-type, transgenic plants overexpressing PutVHA-c in Arabidopsis thaliana exhibit better growth phenotypes in root length, fresh weight, plant height and silique number under the normal and salt stress conditions due to noticeably higher V-ATPase activity. Consistently, the Arabidopsis atvha-c5 mutant shows reduced V-ATPase activity and retarded plant growth. Furthermore, confocal and immunogold electron microscopy assays demonstrate that PutVHA-c is mainly localized to endosomal compartments. The treatment of concanamycin A (ConcA), a specific inhibitor of V-ATPases, leads to obvious aggregation of the endosomal compartments labelled with PutVHA-c-GFP. Moreover, ConcA treatment results in the abnormal localization of two plasma membrane (PM) marker proteins Pinformed 1 (AtPIN1) and regulator of G protein signalling-1 (AtRGS1). These findings suggest that the decrease in V-ATPase activity blocks endosomal trafficking. Taken together, our results strongly suggest that the PutVHA-c plays an important role in plant growth by influencing V-ATPase-dependent endosomal trafficking.

  8. Complementation of Escherichia coli unc mutant strains by chloroplast and cyanobacterial F1-ATPase subunits.

    Science.gov (United States)

    Lill, H; Burkovski, A; Altendorf, K; Junge, W; Engelbrecht, S

    1993-10-04

    The genes encoding the five subunits of the F1 portion of the ATPases from both spinach chloroplasts and the cyanobacterium Synechocystis sp. PCC 6803 were cloned into expression vectors and expressed in Escherichia coli. The recombinant subunits formed inclusion bodies within the cells. Each particular subunit was expressed in the respective unc mutant, each unable to grow on non-fermentable carbon sources. The following subunits restored growth under conditions of oxidative phosphorylation: alpha (both sources, cyanobacterial subunit more than spinach subunit), beta (cyanobacterial subunit only), delta (both spinach and Synechocystis), and epsilon (both sources), whereas no growth was achieved with the gamma subunits from both sources. Despite a high degree of sequence homology the large subunits alpha and beta of spinach and cyanobacterial F1 were not as effective in the substitution of their E. coli counterparts. On the other hand, the two smallest subunits of the E. coli ATPase could be more effectively replaced by their cyanobacterial or chloroplast counterparts, although the sequence identity or even similarity is very low. We attribute these findings to the different roles of these subunits in F1: The large alpha and beta subunits contribute to the catalytic centers of the enzyme, a function rendering them very sensitive to even minor changes. For the smaller delta and epsilon subunits it was sufficient to maintain a certain tertiary structure during evolution, with little emphasis on the conservation of particular amino acids.

  9. Function and Subunit Interactions of the N-terminal Domain of Subunit a (Vph1p) of the Yeast V-ATPase*

    OpenAIRE

    Qi, Jie; Forgac, Michael

    2008-01-01

    The vacuolar (H+)-ATPases (V-ATPases) are ATP-dependent proton pumps that operate by a rotary mechanism in which ATP hydrolysis drives rotation of a ring of proteolipid subunits relative to subunit a within the integral V0 domain. In vivo dissociation of the V-ATPase (an important regulatory mechanism) generates a V0 domain that does not passively conduct protons. EM analysis indicates that the N-terminal domain of subunit a approaches the rotary subunits in free V0, ...

  10. The V-ATPase a2-subunit as a putative endosomal pH-sensor.

    Science.gov (United States)

    Marshansky, V

    2007-11-01

    V-ATPase (vesicular H(+)-ATPase)-driven intravesicular acidification is crucial for vesicular trafficking. Defects in vesicular acidification and trafficking have recently been recognized as essential determinants of various human diseases. An important role of endosomal acidification in receptor-ligand dissociation and in activation of lysosomal hydrolytic enzymes is well established. However, the molecular mechanisms by which luminal pH information is transmitted to the cytosolic small GTPases that control trafficking events such as budding, coat formation and fusion are unknown. Here, we discuss our recent discovery that endosomal V-ATPase is a pH-sensor regulating the degradative pathway. According to our model, V-ATPase is responsible for: (i) the generation of a pH gradient between vesicular membranes; (ii) sensing of intravesicular pH; and (iii) transmitting this information to the cytosolic side of the membrane. We also propose the hypothetical molecular mechanism involved in function of the V-ATPase a2-subunit as a putative pH-sensor. Based on extensive experimental evidence on the crucial role of histidine residues in the function of PSPs (pH-sensing proteins) in eukaryotic cells, we hypothesize that pH-sensitive histidine residues within the intra-endosomal loops and/or C-terminal luminal tail of the a2-subunit could also be involved in the pH-sensing function of V-ATPase. However, in order to identify putative pH-sensitive histidine residues and to test this hypothesis, it is absolutely essential that we increase our understanding of the folding and transmembrane topology of the a-subunit isoforms of V-ATPase. Thus the crucial role of intra-endosomal histidine residues in pH-dependent conformational changes of the V-ATPase a2-isoform, its interaction with cytosolic small GTPases and ultimately in its acidification-dependent regulation of the endosomal/lysosomal protein degradative pathway remain to be determined.

  11. Identification of Na(+)-K(+)-ATPase beta-subunit in alveolar epithelial cells.

    Science.gov (United States)

    Zhang, X L; Danto, S I; Borok, Z; Eber, J T; Martín-Vasallo, P; Lubman, R L

    1997-01-01

    The Na(+)-K(+)-ATPase is a heterodimeric plasma membrane protein that consists of a catalytic alpha-subunit and a smaller glycosylated beta-subunit that has not been fully characterized in alveolar epithelial cells (AEC) to date. In this study, we identified the Na(+)-K(+)-ATPase beta-subunit protein in rat AEC and lung membranes using immunochemical techniques. Rat AEC grown in primary culture and rat lung, brain, and kidney membranes were solubilized in either 2% sodium dodecyl sulfate (SDS) sample buffer for SDS-polyacrylamide gel electrophoresis or in 1% Nonidet P-40 lysis buffer for immunoprecipitation studies. Na(+)-K(+)-ATPase beta-subunit was not detected in either AEC or lung membranes on Western blots when probed with a panel of antibodies (Ab) against beta-subunit isoforms, whereas brain and kidney beta-subunit were recognized as broad approximately 50-kDa bands. AEC, lung, and kidney membranes were immunoprecipitated with anti-beta Ab IEC 1/48, a monoclonal Ab that recognizes beta-subunit protein only in its undenatured state. The beta-subunit was detected in the immunoprecipitate (IP) from kidney membranes by several different anti-beta-subunit Ab. The beta-subunit was faintly detectable from AEC and lung IP as a broad approximately 50-kDa band when blotted with the polyclonal anti-beta 1-subunit Ab SpET but could not be detected by blotting with other anti-beta Ab. Treatment of the IP from kidney, lung, and AEC with N-glycosidase F for 2 h at 37 degrees C resulted in immunodetection of identical approximately 35 kDa bands when probed with all anti-beta 1 Ab on Western blots. From these results, we conclude that rat lung and AEC possess immunoreactive beta-subunit protein that is only readily detectable after deglycosylation. Because anti-beta Ab fail to detect the Na(+)-K(+)-ATPase beta-subunit in rat lung or AEC by standard Western blotting techniques under the conditions of these experiments, our results suggest that lung beta-subunit may be

  12. Vacuolar ATPase subunit H is essential for the survival and moulting of Locusta migratoria manilensis.

    Science.gov (United States)

    Li, C; Xia, Y

    2012-08-01

    Vacuolar (H(+) )-ATPase (V-ATPase) functions as an electrogenic pump, transporting protons from the cytoplasm to the extracellular fluid to generate cell-negative membrane voltage. The V-ATPase subunit H, encoded by Vhasfd, is required for V-ATPase activity. In this study, the gene encoding V-ATPase subunit H from Locusta migratoria manilensis was cloned, and designated as Lm-Vhasfd. The complete cDNA sequence is 2018 bp, with an open reading frame encoding 515 amino acid residues. Semi-quantitative reverse transcription PCR (RT-PCR) showed that Lm-Vhasfd transcription is high in the haemolymph, midgut, trunk and leg, but relatively low in the fat body and head tissues. Injection with a specific double-strand RNA (dsRNA) led to a significant decrease in Lm-Vhasfd mRNA, V-ATPase enzyme activity and ATP concentration. Bioassays showed that silencing Lm-Vhasfd led to the death of individuals and various moulting defects. The accumulative mortality of the RNA interference (RNAi) mutant 11 days post-injection was 96.7%, which was conspicuously higher than that seen in wild type locusts. These RNAi phenotypes demonstrate that Lm-Vhasfd is essential for the growth and moulting of L. migratoria manilensis.

  13. Changes in Na+, K+-ATPase activity and alpha 3 subunit expression in CNS after administration of Na+, K+-ATPase inhibitors.

    Science.gov (United States)

    Bersier, María Geraldina; Peña, Clara; Arnaiz, Georgina Rodríguez de Lores

    2011-02-01

    The expression of Na(+), K(+)-ATPase α3 subunit and synaptosomal membrane Na(+), K(+)-ATPase activity were analyzed after administration of ouabain and endobain E, respectively commercial and endogenous Na(+), K(+)-ATPase inhibitors. Wistar rats received intracerebroventricularly ouabain or endobain E dissolved in saline solution or Tris-HCl, respectively or the vehicles (controls). Two days later, animals were decapitated, cerebral cortex and hippocampus removed and crude and synaptosomal membrane fractions were isolated. Western blot analysis showed that Na(+), K(+)-ATPase α3 subunit expression increased roughly 40% after administration of 10 or 100 nmoles ouabain in cerebral cortex but remained unaltered in hippocampus. After administration of 10 μl endobain E (1 μl = 28 mg tissue) Na(+), K(+)-ATPase α3 subunit enhanced 130% in cerebral cortex and 103% in hippocampus. The activity of Na(+), K(+)-ATPase in cortical synaptosomal membranes diminished or increased after administration of ouabain or endobain E, respectively. It is concluded that Na(+), K(+)-ATPase inhibitors modify differentially the expression of Na(+), K(+)-ATPase α3 subunit and enzyme activity, most likely involving compensatory mechanisms.

  14. Activation and inhibition of the Escherichia coli F1-ATPase by monoclonal antibodies which recognize the epsilon subunit.

    Science.gov (United States)

    Dunn, S D; Tozer, R G

    1987-02-15

    The properties of two monoclonal antibodies which recognize the epsilon subunit of Escherichia coli F1-ATPase were studied in detail. The epsilon subunit is a tightly bound but dissociable inhibitor of the ATPase activity of soluble F1-ATPase. Antibody epsilon-1 binds free epsilon with a dissociation constant of 2.4 nM but cannot bind epsilon when it is associated with F1-ATPase. Likewise epsilon cannot associate with F1-ATPase in the presence of high concentrations of epsilon-1. Thus epsilon-1 activates F1-ATPase which contains the epsilon subunit, and prevents added epsilon from inhibiting the enzyme. Epsilon-1 cannot bind to membrane-bound F1-ATPase. The epsilon-4 antibody binds free epsilon with a dissociation constant of 26 nM. Epsilon-4 can bind to the F1-ATPase complex, but, like epsilon-1, it reverses the inhibition of F1-ATPase by the epsilon subunit. The epsilon subunit remains crosslinkable to both the beta and gamma subunits in the presence of epsilon-4, indicating that it is not grossly displaced from its normal position by the antibody. Presumably the activation arises from more subtle conformational effects. Antibodies epsilon-4 and delta-2, which recognizes the delta subunit, both bind to F1F0 in E. coli membrane vesicles, indicating that these subunits are substantially exposed in the membrane-bound complex. Epsilon-4 inhibits the ATPase activity of the membrane-bound enzyme by about 50%, and Fab prepared from epsilon-4 inhibits by about 40%. This inhibition is not associated with any substantial change in the major apparent Km for ATP. These results suggest that inhibition of membrane-bound F1-ATPase arises from steric effects of the antibody.

  15. Exchangeability of the b subunit of the Cl(-)-translocating ATPase of Acetabularia acetabulum with the beta subunit of E. coli F1-ATPase: construction of the chimeric beta subunits and complementation studies.

    Science.gov (United States)

    Ikeda, M; Kadowaki, H; Ikeda, H; Moritani, C; Kanazawa, H

    1997-11-10

    The gene encoding the b subunit of the Cl(-)-translocating ATPase (aclB) was isolated from total RNA and poly(A)+ RNA of Acetabularia acetabulum and sequenced (total nucleotides of 3038 bp and an open reading frame with 478 amino acids). The deduced amino acid sequence showed high similarity to the beta subunit of the F type ATPases, but was different in the N-terminal 120 amino acids. The role of the N-terminal region was investigated using an F -ATPase beta-less mutant of E. coli, JP17. The JP17 strain expressing the aclB could not grow under conditions permitting oxidative phosphorylation, although ACLB was detected in the membrane fraction. The beta subunit was divided into three portions: amino acid position from 1 to 95 (portion A), 96 to 161 (portion B) and 162 to the C-terminus (portion C). The corresponding regions of ACLB were designated as portions A' (from 1 to 106), B' (from 107 to 172) and C' (from 173 to 478). Chimeric proteins with combinations of A-B'-C', A-B-C' and A'-B-C restored the function as the beta subunit in E. coli F0F1-complex, but those with combinations of A'-B'-C and A-B'-C had no function as the beta subunit. These findings suggested that portion B plays an important role in the assembly and function of the beta subunit in the F0F1-complex, while portion B' of ACLB exhibited inhibitory effects on assembly and function. In addition, portion A was also important for interaction of the beta subunit with the alpha subunit in E. coli F0F1-complex. These findings also suggested that the b subunit of the Cl(-)-translocating ATPase of A. acetabulum has a different function in the Cl(-)-translocating ATPase complex, although the primary structure resembled to the beta subunit of the F1-ATPase.

  16. Further examination of seventeen mutations in Escherichia coli F1-ATPase beta-subunit.

    Science.gov (United States)

    Senior, A E; al-Shawi, M K

    1992-10-25

    Seventeen mutations in beta-subunit of Escherichia coli F1-ATPase which had previously been characterized in strain AN1272 (Mu-induced mutant) were expressed in strain JP17 (beta-subunit gene deletion). Six showed unchanged behavior, namely: C137Y; G142D; G146S; G207D; Y297F; and Y354F. Five failed to assemble F1F0 correctly, namely: G149I; G154I; G149I,G154I; G223D; and P403S,G415D. Six assembled F1F0 correctly, but with membrane ATPase lower than in AN1272, namely: K155Q; K155E; E181Q; E192Q; D242N; and D242V. AN1272 was shown to unexpectedly produce a small amount of wild-type beta-subunit; F1-ATPase activities reported previously in AN1272 were referable to hybrid enzymes containing both mutant and wild-type beta-subunits. Purified F1 was obtained from K155Q; K155E; E181Q; E192Q; and D242N mutants in JP17. Vmax ATPase values were lower, and unisite catalysis rate and equilibrium constants were perturbed to greater extent, than in AN1272. However, general patterns of perturbation revealed by difference energy diagrams were similar to those seen previously, and the new data correlated well in linear free energy relationships for reaction steps of unisite catalysis. Correlation between multisite and unisite ATPase activity was seen in the new enzymes. Overall, the data give strong support to previously proposed mechanisms of unisite catalysis, steady-state catalysis, and energy coupling in F1-ATPases (Al-Shawi, M. K., Parsonage, D. and Senior, A. E. (1990) J. Biol. Chem. 265, 4402-4410). The K155Q, K155E, D242N, and E181Q mutations caused 5000-fold, 4000-fold, 1800-fold, and 700-fold decrease, respectively, in Vmax ATPase, implying possibly direct roles for these residues in catalysis. Experiments with the D242N mutant suggested a role for residue beta D242 in catalytic site Mg2+ binding.

  17. Versatile roles of V-ATPases accessory subunit Ac45 in osteoclast formation and function.

    Directory of Open Access Journals (Sweden)

    An Qin

    Full Text Available Vacuolar-type H(+-ATPases (V-ATPases are macromolecular proton pumps that acidify intracellular cargos and deliver protons across the plasma membrane of a variety of specialized cells, including bone-resorbing osteoclasts. Extracellular acidification is crucial for osteoclastic bone resorption, a process that initiates the dissolution of mineralized bone matrix. While the importance of V-ATPases in osteoclastic resorptive function is well-defined, whether V-ATPases facilitate additional aspects of osteoclast function and/or formation remains largely obscure. Here we report that the V-ATPase accessory subunit Ac45 participates in both osteoclast formation and function. Using a siRNA-based approach, we show that targeted suppression of Ac45 impairs intracellular acidification and endocytosis, both are prerequisite for osteoclastic bone resorptive function in vitro. Interestingly, we find that knockdown of Ac45 also attenuates osteoclastogenesis owing to a reduced fusion capacity of osteoclastic precursor cells. Finally, in an effort to gain more detailed insights into the functional role of Ac45 in osteoclasts, we attempted to generate osteoclast-specific Ac45 conditional knockout mice using a Cathepsin K-Cre-LoxP system. Surprisingly, however, insertion of the neomycin cassette in the Ac45-Flox(Neo mice resulted in marked disturbances in CNS development and ensuing embryonic lethality thus precluding functional assessment of Ac45 in osteoclasts and peripheral bone tissues. Based on these unexpected findings we propose that, in addition to its canonical function in V-ATPase-mediated acidification, Ac45 plays versatile roles during osteoclast formation and function.

  18. [The role of ATPase subunits from E. coli in hydrogen-potassium exchange].

    Science.gov (United States)

    Martirosov, S M; Trchunian, A A

    1984-01-01

    A hypothesis was developed that in membranes of glycolysing bacteria functioned supercomplexes (F1 X F0-TrkA) and (F0-TrkA) which operated as H+-K+-pump exchanging 2H+ for one K+ and as H+-K+-antiport respectively. The mutants with defects in alpha, beta and gamma subunits of ATPase F1 manifested the alteration only in the work of (F1 X F0-TrkA). Defect in epsilon subunit of F1 broke the regulation of pump operation on the part of a cell turgor. In mutants with defects in F0 the changes in both supercomplexes were observed. The only mutation in unc- cluster producing the complete blocking of both systems operation was related to a defect in h3-subunit of F0 which was the dicyclohexylcarbodiimide-sensitive and apparently "gate" component of F0.

  19. Construction of Recombinant Plasmid Containing S. Mutans F-ATPase β Subunit Gene

    Institute of Scientific and Technical Information of China (English)

    YU Dan-ni; JIANG Li

    2005-01-01

    objective: construct a homologous recombinant plasmid which was expected to be transformed into S. mutans Methods: a region at the 5' terminus of the S. mutans F-ATPase β subunit gene was amplified by PCR, the PCR product was inserted into vector pVA891, yielding recombinant plasmid. Results: the DNA sequence of the recombinant plasmid was identified correct in whole by restriction endonuclease and DNA sequence techniques. Conclusion: the recombinant plasmid of S. mutans DNA was cloned in effect ,it may assist in construction of homologues recombinant mutant.

  20. Oxidative phosphorylation in Escherichia coli. Characterization of mutant strains in which F1-ATPase contains abnormal beta-subunits.

    Science.gov (United States)

    Senior, A E; Langman, L; Cox, G B; Gibson, F

    1983-02-15

    To facilitate study of the role of the beta-subunit in the membrane-bound proton-translocating ATPase of Escherichia coli, we identified mutant strains from which an F1-ATPase containing abnormal beta-subunits can be purified. Seventeen strains of E. coli, characterized by genetic complementation tests as carrying mutations in the uncD gene (which codes for the beta-subunit), were studied. The majority of these strains (11) were judged to be not useful, as their membranes lacked ATPase activity, and were either proton-permeable as prepared or remained proton-impermeable after washing with buffer of low ionic strength. A further two strains were of a type not hitherto reported, in that their membranes had ATPase activity, were proton-impermeable as prepared, and were not rendered proton-permeable by washing in buffer of low ionic strength. Presumably in these two strains F1-ATPase is not released in soluble form by this procedure. F1-ATPase of normal molecular size were purified from strains AN1340 (uncD478), AN937 (uncD430), AN938 (uncD431) and AN1543 (uncD484). F1-ATPase from strain AN1340 (uncD478) had 15% of normal specific Mg-dependent ATPase activity and 22% of normal ATP-synthesis activity. The F1-ATPase preparations from strains AN937, AN938 and AN1543 had respectively 1.7%, 1.8% and 0.2% of normal specific Mg-dependent ATPase activity, and each of these preparations had very low ATP-synthesis activity. The yield of F1-ATPase from the four strains described was almost twice that obtained from a normal haploid strain. The kinetics of Ca-dependent ATPase activity were unusual in each of the four F1-ATPase preparations. It is likely that these four mutant uncD F1-ATPase preparations will prove valuable for further experimental study of the F1-ATPase catalytic mechanism.

  1. Tuning of the Na,K-ATPase by the beta subunit

    DEFF Research Database (Denmark)

    Hilbers, Florian; Kopec, Wojciech; Isaksen, Toke Jost;

    2016-01-01

    The vital gradients of Na(+) and K(+) across the plasma membrane of animal cells are maintained by the Na,K-ATPase, an αβ enzyme complex, whose α subunit carries out the ion transport and ATP hydrolysis. The specific roles of the β subunit isoforms are less clear, though β2 is essential for motor...... physiology in mammals. Here, we show that compared to β1 and β3, β2 stabilizes the Na(+)-occluded E1P state relative to the outward-open E2P state, and that the effect is mediated by its transmembrane domain. Molecular dynamics simulations further demonstrate that the tilt angle of the β transmembrane helix...

  2. Fragment-based discovery of DNA gyrase inhibitors targeting the ATPase subunit of GyrB.

    Science.gov (United States)

    Mesleh, Michael F; Cross, Jason B; Zhang, Jing; Kahmann, Jan; Andersen, Ole A; Barker, John; Cheng, Robert K; Felicetti, Brunella; Wood, Michael; Hadfield, Andrea T; Scheich, Christoph; Moy, Terence I; Yang, Qingyi; Shotwell, Joseph; Nguyen, Kien; Lippa, Blaise; Dolle, Roland; Ryan, M Dominic

    2016-02-15

    Inhibitors of the ATPase function of bacterial DNA gyrase, located in the GyrB subunit and its related ParE subunit in topoisomerase IV, have demonstrated antibacterial activity. In this study we describe an NMR fragment-based screening effort targeting Staphylococcus aureus GyrB that identified several attractive and novel starting points with good ligand efficiency. Fragment hits were further characterized using NMR binding studies against full-length S. aureus GyrB and Escherichia coli ParE. X-ray co-crystal structures of select fragment hits confirmed binding and suggested a path for medicinal chemistry optimization. The identification, characterization, and elaboration of one of these fragment series to a 0.265 μM inhibitor is described herein.

  3. Cloning and sequencing of the genes coding for the A and B subunits of vacuolar-type Na(+)-ATPase from Enterococcus hirae. Coexistence of vacuolar- and F0F1-type ATPases in one bacterial cell.

    Science.gov (United States)

    Takase, K; Yamato, I; Kakinuma, Y

    1993-06-05

    The eubacterium Enterococcus hirae ATCC 9790 possesses a H(+)-translocating ATPase, and the deduced amino acid sequences of the genes coding for this enzyme have indicated that it is a typical F0F1-type ATPase (Shibata, C., Ehara, T., Tomura, K., Igarashi, K., and Kobayashi, H. (1992) J. Bacteriol. 174, 6117-6124). We cloned the ntpA and ntpB genes coding for the A and B subunits, respectively, of Na(+)-translocating ATPase from the same bacterium, and the full amino acid sequences of the two subunits were deduced from the nucleotide sequence. The A (593 amino acid residues) and B (458 amino acid residues) subunits were highly homologous (48-60% identical) to the A (large or alpha) and the B (small or beta) subunits, respectively, of vacuolar-type H(+)-ATPases which have been found in eukaryotic endomembrane systems (Neurospora crassa, Saccharomyces cerevisiae, Arabidopsis thaliana, and carrot) and archaebacterial cell membranes (Sulfolobus acidocaldarius and Methanosarcina barkeri). The A and B subunits of Na(+)-ATPase showed about 23-28% identities with the beta and alpha subunits of E. hirae F1-ATPase and of Escherichia coli F1-ATPase, respectively. These results indicate that E. hirae Na(+)-ATPase belongs to the vacuolar-type ATPase. This is the first demonstration that both genes for V- and F-type ATPases are functionally expressed in one bacterial cell.

  4. Functions of nucleotide binding subunits in the tonoplast ATPase from Beta vulgaris L

    Energy Technology Data Exchange (ETDEWEB)

    Manolson, M.F.; Poole, R.J.

    1986-04-01

    Partial purification of NO/sub 3/ sensitive H/sup +/-ATPases from the vacuolar membranes of high plants reveal two prominent polypeptides of approximately 60 and 70 kDa. Both polypeptides appear to contain nucleotide binding sites. The photoactive affinity analog of ATP, BzATP, cannot be hydrolyzed by the tonoplast ATPase but is a potential inhibitor (apparent K/sub I/ = 11 ..mu..M). /sup 32/P-BzATP was shown to specifically photolabel the 60 kDa polypeptide. In contrast, Mandala and Taiz have shown the photoincorporation of /sup 32/P-azidoATP to the 70 kDa polypeptide. This sterically different photoaffinity probe can be hydrolyzed although with a low affinity. Azido and benzophenone derivatives of the product, ADP, are currently being examined with respect to their inhibition kinetics of, and their photoincorporation into, the tonoplast ATPase from Beta vulgaris L. Kinetic data will be integrated with patterns of photoincorporation using analogs of both substrate and product, in order to illuminate the functions of the two nucleotide binding subunits.

  5. E. coli F1-ATPase: site-directed mutagenesis of the beta-subunit.

    Science.gov (United States)

    Parsonage, D; Wilke-Mounts, S; Senior, A E

    1988-05-09

    Residues beta Glu-181 and beta Glu-192 of E. coli F1-ATPase (the DCCD-reactive residues) were mutated to Gln. Purified beta Gln-181 F1 showed 7-fold impairment of 'unisite' Pi formation from ATP and a large decrease in affinity for ATP. Thus the beta-181 carboxyl group in normal F1 significantly contributes to catalytic site properties. Also, positive catalytic site cooperativity was attenuated from 5 X 10(4)- to 548-fold in beta Gln-181 F1. In contrast, purified beta Gln-192 F1 showed only 6-fold reduction in 'multisite' ATPase activity. Residues beta Gly-149 and beta Gly-154 were mutated to Ile singly and in combination. These mutations, affecting residues which are strongly conserved in nucleotide-binding proteins, were chosen to hinder conformational motion in a putative 'flexible loop' in beta-subunit. Impairment of purified F1-ATPase ranged from 5 to 61%, with the double mutant F1 less impaired than either single mutant. F1 preparations containing beta Ile-154 showed 2-fold activation after release from membranes, suggesting association with F0 restrained turnover on F1 in these mutants.

  6. Directed mutagenesis of the dicyclohexylcarbodiimide-reactive carboxyl residues in beta-subunit of F1-ATPase of Escherichia coli.

    Science.gov (United States)

    Parsonage, D; Wilke-Mounts, S; Senior, A E

    1988-02-15

    Previous studies in which dicyclohexylcarbodiimide (DCCD) was used to inactivate F1-ATPase enzymes have suggested that two glutamate residues in the beta-subunit are essential for catalysis. In the Escherichia coli F1-ATPase, these are residues beta-Glu-181 and beta-Glu-192. Oligonucleotide-directed mutagenesis was used to change these residues to beta-Gln-181 and beta-Gln-192. The beta-Gln-181 mutation produced strong impairment of oxidative phosphorylation in vivo and also of ATPase and ATP-driven proton-pumping activities in membranes assayed in vitro. A low level of each activity was detected and an F1-ATPase appeared to be assembled normally on the membranes. Therefore, it is suggested that the carboxyl side chain at residue beta-181 is important, although not absolutely required, for catalysis in both directions on E. coli F1-ATPase. The beta-Gln-192 mutation produced partial inhibition of oxidative phosphorylation in vivo and membrane ATPase activity was reduced by 78%. These results contrast with the complete or near-complete inactivation seen when E. coli F1-ATPase is reacted with DCCD and imply that DCCD-inactivation is attributable more to the attachment of the bulky DCCD molecule than to the derivatization of the carboxyl side chain of residue beta-Glu-192. M. Ohtsubo and colleagues (Biochem. Biophys. Res. Commun. (1987) 146, 705-710) described mutagenesis of the F1-beta-subunit of thermophilic bacterium PS3. Mutations (Glu----Gln) of the residues homologous to Glu-181 and Glu-192 of E. coli F1-beta-subunit both caused total inhibition of ATPase activity. Therefore, there was a marked difference in results obtained when the same residues were modified in the PS3 and E. coli F1-beta-subunits.

  7. The intein of the Thermoplasma A-ATPase A subunit: Structure, evolution and expression in E. coli

    Directory of Open Access Journals (Sweden)

    Gogarten J Peter

    2001-11-01

    Full Text Available Abstract Background Inteins are selfish genetic elements that excise themselves from the host protein during post translational processing, and religate the host protein with a peptide bond. In addition to this splicing activity, most reported inteins also contain an endonuclease domain that is important in intein propagation. Results The gene encoding the Thermoplasma acidophilum A-ATPase catalytic subunit A is the only one in the entire T. acidophilum genome that has been identified to contain an intein. This intein is inserted in the same position as the inteins found in the ATPase A-subunits encoding gene in Pyrococcus abyssi, P. furiosus and P. horikoshii and is found 20 amino acids upstream of the intein in the homologous vma-1 gene in Saccharomyces cerevisiae. In contrast to the other inteins in catalytic ATPase subunits, the T. acidophilum intein does not contain an endonuclease domain. T. acidophilum has different codon usage frequencies as compared to Escherichia coli. Initially, the low abundance of rare tRNAs prevented expression of the T. acidophilum A-ATPase A subunit in E. coli. Using a strain of E. coli that expresses additional tRNAs for rare codons, the T. acidophilum A-ATPase A subunit was successfully expressed in E. coli. Conclusions Despite differences in pH and temperature between the E. coli and the T. acidophilum cytoplasms, the T. acidophilum intein retains efficient self-splicing activity when expressed in E. coli. The small intein in the Thermoplasma A-ATPase is closely related to the endonuclease containing intein in the Pyrococcus A-ATPase. Phylogenetic analyses suggest that this intein was horizontally transferred between Pyrococcus and Thermoplasma, and that the small intein has persisted in Thermoplasma apparently without homing.

  8. Cloning and expression of vacuolar proton-pumping ATPase subunits in the follicular epithelium of the bullfrog endolymphatic sac

    OpenAIRE

    Yajima, Shinya; Kubota, Makoto; Nakakura, Takashi; Hasegawa, Takahiro; Katagiri, Nobuto; Tomura, Hideaki; Sasayama, Yuichi; Suzuki, Masakazu; Tanaka, Shigeyasu

    2007-01-01

    In an investigation aimed at clarifying the mechanism of crystal dissolution of the calcium carbonate lattice in otoconia (the mineral particles embedded in the otolithic membrane) of the endolymphatic sac (ELS) of the bullfrog, cDNAs encoding the A- and E-subunits of bullfrog vacuolar proton-pumping ATPase (V-ATPase) were cloned and sequenced. The cDNA of the A-subunit consisted of an 11-bp 5′-untranslated region (UTR), a 1,854-bp open reading frame (ORF) encoding a protein comprising 617 am...

  9. Role of post-translational modifications at the β-subunit ectodomain in complex association with a promiscuous plant P4-ATPase

    DEFF Research Database (Denmark)

    Costa, Sara; Marek, Magdalena; Axelsen, Kristian Buhl

    2016-01-01

    P-type ATPases of subfamily IV (P4-ATPases) constitute a major group of phospholipid flippases that form heteromeric complexes with members of the Cdc50 (cell division control 50) protein family. Some P4-ATPases interact specifically with only one β-subunit isoform, whereas others are promiscuous...

  10. Optic nerve compression and retinal degeneration in Tcirg1 mutant mice lacking the vacuolar-type H-ATPase a3 subunit.

    Directory of Open Access Journals (Sweden)

    Nobuyuki Kawamura

    Full Text Available BACKGROUND: Vacuolar-type proton transporting ATPase (V-ATPase is involved in the proper development of visual function. Mutations in the Tcirg1 (also known as Atp6V0a3 locus, which encodes the a3 subunit of V-ATPase, cause severe autosomal recessive osteopetrosis (ARO in humans. ARO is often associated with impaired vision most likely because of nerve compression at the optic canal. We examined the ocular phenotype of mice deficient in Tcirg1 function. METHODOLOGY/PRINCIPAL FINDINGS: X-ray microtomography showed narrowed foramina in the skull, suggesting that optic nerve compression occurred in the a3-deficient (Tcirg1-/- mice. The retina of the mutant mice had normal architecture, but the number of apoptotic cells was increased at 2-3 wks after birth. In the ocular system, the a3 subunit accumulated in the choriocapillary meshwork in uveal tissues. Two other subunit isoforms a1 and a2 accumulated in the retinal photoreceptor layer. We found that the a4 subunit, whose expression has previously been shown to be restricted to several transporting epithelia, was enriched in pigmented epithelial cells of the retina and ciliary bodies. The expression of a4 in the uveal tissue was below the level of detection in wild-type mice, but it was increased in the mutant choriocapillary meshwork, suggesting that compensation may have occurred among the a subunit isoforms in the mutant tissues. CONCLUSIONS: Our findings suggest that a similar etiology of visual impairment is involved in both humans and mice; thus, a3-deficient mice may provide a suitable model for clinical and diagnostic purposes in cases of ARO.

  11. Cloning, Expression and Purification of Subunit H of Vacuolar H+-ATPase from Mythimna separata Walker (Lepidoptera: Noctuidae

    Directory of Open Access Journals (Sweden)

    Lina Lu

    2014-09-01

    Full Text Available The vacuolar (H+-ATPase (V-ATPase of insect, which is composed of membrane-bound V0 complex and peripheral V1 complex, participates in lots of important physiological process. Subunit H, as a subunit of V1 complex, plays a vital role in bridging the communication between V1 and V0 complexes and interaction with other proteins. Yeast subunit H has been successfully crystallized through expression in E. coli, but little is known about the structure of insect subunit H. In this study, we cloned, expressed and purified the subunit H from midgut of Mythimna separata Walker. Through RACE (rapidly amplification of cDNA ends technique, we got 1807 bp full length of subunit H, and to keep the nature structure of subunit H, we constructed Baculovirus expression vector with His-tag in the C-terminal and expressed the recombinant protein in insect sf9 cells, thereafter, purified the recombinant protein by Ni-NTA columns. Results of SDS-PAGE, western blotting and mass spectrometry showed that the recombinant protein was successfully expressed. The method of expressing and purifying M. separata subunit H will provide a foundation for obtaining the crystal of subunit H and further study of the design of novel insecticides based on its structure and function.

  12. Regulation of the V-ATPase along the endocytic pathway occurs through reversible subunit association and membrane localization.

    Directory of Open Access Journals (Sweden)

    Céline Lafourcade

    Full Text Available The lumen of endosomal organelles becomes increasingly acidic when going from the cell surface to lysosomes. Luminal pH thereby regulates important processes such as the release of internalized ligands from their receptor or the activation of lysosomal enzymes. The main player in endosomal acidification is the vacuolar ATPase (V-ATPase, a multi-subunit transmembrane complex that pumps protons from the cytoplasm to the lumen of organelles, or to the outside of the cell. The active V-ATPase is composed of two multi-subunit domains, the transmembrane V(0 and the cytoplasmic V(1. Here we found that the ratio of membrane associated V(1/Vo varies along the endocytic pathway, the relative abundance of V(1 being higher on late endosomes than on early endosomes, providing an explanation for the higher acidity of late endosomes. We also found that all membrane-bound V-ATPase subunits were associated with detergent resistant membranes (DRM isolated from late endosomes, raising the possibility that association with lipid-raft like domains also plays a role in regulating the activity of the proton pump. In support of this, we found that treatment of cells with U18666A, a drug that leads to the accumulation of cholesterol in late endosomes, affected acidification of late endosome. Altogether our findings indicate that the activity of the vATPase in the endocytic pathway is regulated both by reversible association/dissociation and the interaction with specific lipid environments.

  13. Apoptosis Gene Hunting Using Retroviral Expression Cloning: Identification of Vacuolar ATPase Subunit E

    Directory of Open Access Journals (Sweden)

    Claire L. Anderson

    2003-01-01

    Full Text Available Over the past 10-15 years there has been an explosion of interest in apoptosis. The delayed realisation that cell death is an essential part of life for any multicellular organism has meant that, despite the recent and rapid developments of the last decade, the precise biochemical pathways involved in apoptosis remain incomplete and potentially novel genes may, as yet, remain undiscovered. The hunt is therefore on to bridge the remaining gaps in our knowledge. Our contribution to this research effort utilises a functional cloning approach to isolate important regulatory genes involved in apoptosis. This mini-review focuses on the use and advantages of a retroviral expression cloning strategy and describes the isolation and identification of one such potential apoptosis regulatory gene, namely that encoding vacuolar ATPase subunit E.

  14. Reconstitution of F1-ATPase activity from Escherichia coli subunits alpha, beta and subunit gamma tagged with six histidine residues at the C-terminus.

    Science.gov (United States)

    Ekuni, A; Watanabe, H; Kuroda, N; Sawada, K; Murakami, H; Kanazawa, H

    1998-05-01

    An engineered gamma subunit of Escherichia coli F1-ATPase with extra 14 and 20 amino acid residues at the N- and C-termini (His-tag gamma), respectively, was overproduced in E. coli and purified. Six histidines are included in the C-terminal extension. The reconstituted F1 containing alpha, beta, and His-tagged gamma exhibited sixty percent of the wild-type ATPase activity. The reconstituted alphabeta His-tag gamma complex was subjected to affinity chromatography with nickel-nitrilotriacetic acid (Ni-NTA) agarose resin. ATPase activity was eluted specifically with imidazole. These results implied that the tag sequence protruded to the surface of the complex and did not seriously impair the activity. The reconstituted alphabeta His-tag gamma complex, even after its binding to the resin, exhibited ATPase activity suggesting that the gamma subunit, when fixed to a solid phase, may rotate the alphabeta complex. This system may provide a new approach for analysis of the rotation mechanisms in F1-ATPase.

  15. Identification of domains within the V-ATPase accessory subunit Ac45 involved in V-ATPase transport and Ca2+-dependent exocytosis.

    Science.gov (United States)

    Jansen, Eric J R; van Bakel, Nick H M; Olde Loohuis, Nikkie F M; Hafmans, Theo G M; Arentsen, Tim; Coenen, Anthon J M; Scheenen, Wim J J M; Martens, Gerard J M

    2012-08-10

    The vacuolar (H(+))-ATPase (V-ATPase) is crucial for maintenance of the acidic microenvironment in intracellular organelles, whereas its membrane-bound V(0)-sector is involved in Ca(2+)-dependent membrane fusion. In the secretory pathway, the V-ATPase is regulated by its type I transmembrane and V(0)-associated accessory subunit Ac45. To execute its function, the intact-Ac45 protein is proteolytically processed to cleaved-Ac45 thereby releasing its N-terminal domain. Here, we searched for the functional domains within Ac45 by analyzing a set of deletion mutants close to the in vivo situation, namely in transgenic Xenopus intermediate pituitary melanotrope cells. Intact-Ac45 was poorly processed and accumulated in the endoplasmic reticulum of the transgenic melanotrope cells. In contrast, cleaved-Ac45 was efficiently transported through the secretory pathway, caused an accumulation of the V-ATPase at the plasma membrane and reduced dopaminergic inhibition of Ca(2+)-dependent peptide secretion. Surprisingly, removal of the C-tail from intact-Ac45 caused cellular phenotypes also found for cleaved-Ac45, whereas C-tail removal from cleaved-Ac45 still allowed its transport to the plasma membrane, but abolished V-ATPase recruitment into the secretory pathway and left dopaminergic inhibition of the cells unaffected. We conclude that domains located in the N- and C-terminal portions of the Ac45 protein direct its trafficking, V-ATPase recruitment and Ca(2+)-dependent-regulated exocytosis.

  16. Directed mutagenesis of the strongly conserved aspartate 242 in the beta-subunit of Escherichia coli proton-ATPase.

    Science.gov (United States)

    Al-Shawi, M K; Parsonage, D; Senior, A E

    1988-12-25

    Oligonucleotide-directed mutagenesis was used to substitute Asn or Val for residue Asp-242 in the beta-subunit of Escherichia coli F1-ATPase. Asp-242 is strongly conserved in beta-subunits of F1-ATPase enzymes, in a region of sequence which shows homology with numerous nucleotide-binding proteins. By analogy with adenylate kinase (Fry, D.C., Kuby, S.A., and Mildvan, A.S. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 907-911), beta-Asp-242 of F1-ATPase might participate in catalysis through electrostatic effects on the substrate Mg2+ or through hydrogen bonding to the substrate(s); an acid-base catalytic role is also plausible. The substitutions Asn and Val were chosen to affect the charge, hydrogen-bonding ability, and hydrophobicity of residue beta-Asp-242. Both mutations significantly impaired oxidative phosphorylation rates in vivo and membrane ATPase and ATP-driven proton-pumping activities in vitro. Asn-242 was more detrimental than Val-242. Purified soluble mutant F1-ATPases had normal molecular size and subunit composition, and displayed 7% (beta-Asn-242) and 17% (beta-Val-242) of normal specific Mg-ATPase activity. The relative MgATPase activities of both mutant enzymes showed similar pH dependence to normal. Relative MgATPase and CaATPase activities of normal and mutant enzymes were compared at widely varied pMg and pCa. The mutations had little effect on KM MgATP, but KM CaATP was reduced. The data showed that the carboxyl side-chain of beta-Asp-242 is not involved in catalysis either as a general acid-base catalyst or through direct involvement in any protonation/deprotonation-linked mechanism, nor is it likely to be directly involved in liganding to substrate Mg2+ during the reaction. Specificity constants (kcat/KM) for MgATP and CaATP were reduced in both mutant enzymes, showing that the mutations destabilized interactions between the catalytic nucleotide-binding domain and the transition state.

  17. Genetic Analysis of the Mode of Interplay between an ATPase Subunit and Membrane Subunits of the Lipoprotein-Releasing ATP-Binding Cassette Transporter LolCDE†

    OpenAIRE

    Ito, Yasuko; Matsuzawa, Hitomi; Matsuyama, Shin-ichi; Narita, Shin-ichiro; Tokuda, Hajime

    2006-01-01

    The LolCDE complex, an ATP-binding cassette (ABC) transporter, releases lipoproteins from the inner membrane, thereby initiating lipoprotein sorting to the outer membrane of Escherichia coli. The LolCDE complex is composed of two copies of an ATPase subunit, LolD, and one copy each of integral membrane subunits LolC and LolE. LolD hydrolyzes ATP on the cytoplasmic side of the inner membrane, while LolC and/or LolE recognize and release lipoproteins anchored to the periplasmic leaflet of the i...

  18. Managing brain extracellular K+ during neuronal activity: The physiological role of the Na+/K+-ATPase subunit isoforms

    Directory of Open Access Journals (Sweden)

    Brian Roland eLarsen

    2016-04-01

    Full Text Available AbstractDuring neuronal activity in the brain, extracellular K+ rises and is subsequently removed to prevent a widespread depolarization. One of the key players in regulating extracellular K+ is the Na+/K+-ATPase, although the relative involvement and physiological impact of the different subunit isoform compositions of the Na+/K+-ATPase remain unresolved. The various cell types in the brain serve a certain temporal contribution in the face of network activity; astrocytes respond directly to the immediate release of K+ from neurons, whereas the neurons themselves become the primary K+ absorbers as activity ends. The kinetic characteristics of the catalytic α subunit isoforms of the Na+/K+-ATPase are, partly, determined by the accessory β subunit with which they combine. The isoform combinations expressed by astrocytes and neurons, respectively, appear to be in line with the kinetic characteristics required to fulfill their distinct physiological roles in clearance of K+ from the extracellular space in the face of neuronal activity.Understanding the nature, impact and effects of the various Na+/K+-ATPase isoform combinations in K+ management in the central nervous system might reveal insights into pathological conditions such as epilepsy, migraine, and spreading depolarization following cerebral ischemia. In addition, particular neurological diseases occur as a result of mutations in the α2- (familial hemiplegic migraine type 2 and α3 isoforms (rapid-onset dystonia parkinsonism/alternating hemiplegia of childhood. This review addresses aspects of the Na+/K+-ATPase in the regulation of extracellular K+ in the central nervous system as well as the related pathophysiology. Understanding the physiological setting in non-pathological tissue would provide a better understanding of the pathological events occurring during disease.

  19. RNAi-directed downregulation of vacuolar H(+ -ATPase subunit a results in enhanced stomatal aperture and density in rice.

    Directory of Open Access Journals (Sweden)

    Huiying Zhang

    Full Text Available Stomatal movement plays a key role in plant development and response to drought and salt stress by regulating gas exchange and water loss. A number of genes have been demonstrated to be involved in the regulation of this process. Using inverse genetics approach, we characterized the function of a rice (Oryza sativa L. vacuolar H(+-ATPase subunit A (OsVHA-A gene in stomatal conductance regulation and physiological response to salt and osmotic stress. OsVHA-A was constitutively expressed in different rice tissues, and the fusion protein of GFP-OsVHA-A was exclusively targeted to tonoplast when transiently expressed in the onion epidermal cells. Heterologous expression of OsVHA-A was able to rescue the yeast mutant vma1Δ (lacking subunit A activity phenotype, suggesting that it partially restores the activity of V-ATPase. Meanwhile, RNAi-directed knockdown of OsVHA-A led to a reduction of vacuolar H(+-ATPase activity and an enhancement of plasma membrane H(+-ATPase activity, thereby increasing the concentrations of extracellular H(+ and intracellular K(+ and Na(+ under stress conditions. Knockdown of OsVHA-A also resulted in the upregulation of PAM3 (plasma membrane H(+-ATPase 3 and downregulation of CAM1 (calmodulin 1, CAM3 (calmodulin 3 and YDA1 (YODA, a MAPKK gene. Altered level of the ion concentration and the gene expression by knockdown of OsVHA-A probably resulted in expanded aperture of stomatal pores and increased stomatal density. In addition, OsVHA-A RNAi plants displayed significant growth inhibition under salt and osmotic stress conditions. Taken together, our results suggest that OsVHA-A takes part in regulating stomatal density and opening via interfering with pH value and ionic equilibrium in guard cells and thereby affects the growth of rice plants.

  20. RNAi-directed downregulation of vacuolar H(+) -ATPase subunit a results in enhanced stomatal aperture and density in rice.

    Science.gov (United States)

    Zhang, Huiying; Niu, Xiangli; Liu, Jia; Xiao, Fangming; Cao, Shuqing; Liu, Yongsheng

    2013-01-01

    Stomatal movement plays a key role in plant development and response to drought and salt stress by regulating gas exchange and water loss. A number of genes have been demonstrated to be involved in the regulation of this process. Using inverse genetics approach, we characterized the function of a rice (Oryza sativa L.) vacuolar H(+)-ATPase subunit A (OsVHA-A) gene in stomatal conductance regulation and physiological response to salt and osmotic stress. OsVHA-A was constitutively expressed in different rice tissues, and the fusion protein of GFP-OsVHA-A was exclusively targeted to tonoplast when transiently expressed in the onion epidermal cells. Heterologous expression of OsVHA-A was able to rescue the yeast mutant vma1Δ (lacking subunit A activity) phenotype, suggesting that it partially restores the activity of V-ATPase. Meanwhile, RNAi-directed knockdown of OsVHA-A led to a reduction of vacuolar H(+)-ATPase activity and an enhancement of plasma membrane H(+)-ATPase activity, thereby increasing the concentrations of extracellular H(+) and intracellular K(+) and Na(+) under stress conditions. Knockdown of OsVHA-A also resulted in the upregulation of PAM3 (plasma membrane H(+)-ATPase 3) and downregulation of CAM1 (calmodulin 1), CAM3 (calmodulin 3) and YDA1 (YODA, a MAPKK gene). Altered level of the ion concentration and the gene expression by knockdown of OsVHA-A probably resulted in expanded aperture of stomatal pores and increased stomatal density. In addition, OsVHA-A RNAi plants displayed significant growth inhibition under salt and osmotic stress conditions. Taken together, our results suggest that OsVHA-A takes part in regulating stomatal density and opening via interfering with pH value and ionic equilibrium in guard cells and thereby affects the growth of rice plants.

  1. A model of 3D-structure of H+,K+-ATPase catalytic subunit derived by homology modeling

    Institute of Scientific and Technical Information of China (English)

    Dong YAN; Yuan-dong HU; Song LI; Mao-sheng CHENG

    2004-01-01

    AIM: To build a model of 3D-structure of H+, K+-ATPase catalytic subunit for theoretical study and anti-ulcer drug design. METHODS: The model was built on the basis of structural data from the Ca2+-ATPase. Structurally conserved regions were defined by amino acid sequence comparisons, optimum interconnecting loops were selected from the protein databank, and amino (N)- and carboxyl (C)-terminal ends were generated as random coil structures. Applying molecular mechanics method then minimized the model energy. Molecular dynamics technique was used to do further structural optimization. RESULTS: The model of 3D-structure of H+, K+-ATPase was derived. The model is reasonable according to several validation criteria. There were ten transmembrane helices (TM1-TM 10) in the model and inhibitor-binding site was identified on the TM5-8 riched negatively charged residues.CONCLUSION: The 3D-structure model from our study is informative to guide future molecular biology study about H+, K+-ATPase and drug design based on database searching.

  2. Structure of a catalytic dimer of the α- and β-subunits of the F-ATPase from Paracoccus denitrificans at 2.3 Å resolution

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Ríos, Edgar; Montgomery, Martin G. [The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY (United Kingdom); Leslie, Andrew G. W. [The Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH (United Kingdom); García-Trejo, José J. [Universidad Nacional Autónoma de México, Mexico City (Mexico); Walker, John E., E-mail: walker@mrc-mbu.cam.ac.uk [The Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY (United Kingdom)

    2015-09-23

    The structure of the αβ heterodimer of the F-ATPase from the α-proteobacterium P. denitrificans has been determined at 2.3 Å resolution. It corresponds to the ‘open’ or ‘empty’ catalytic interface found in other F-ATPases. The structures of F-ATPases have predominantly been determined from mitochondrial enzymes, and those of the enzymes in eubacteria have been less studied. Paracoccus denitrificans is a member of the α-proteobacteria and is related to the extinct protomitochondrion that became engulfed by the ancestor of eukaryotic cells. The P. denitrificans F-ATPase is an example of a eubacterial F-ATPase that can carry out ATP synthesis only, whereas many others can catalyse both the synthesis and the hydrolysis of ATP. Inhibition of the ATP hydrolytic activity of the P. denitrificans F-ATPase involves the ζ inhibitor protein, an α-helical protein that binds to the catalytic F{sub 1} domain of the enzyme. This domain is a complex of three α-subunits and three β-subunits, and one copy of each of the γ-, δ- and ∊-subunits. Attempts to crystallize the F{sub 1}–ζ inhibitor complex yielded crystals of a subcomplex of the catalytic domain containing the α- and β-subunits only. Its structure was determined to 2.3 Å resolution and consists of a heterodimer of one α-subunit and one β-subunit. It has no bound nucleotides, and it corresponds to the ‘open’ or ‘empty’ catalytic interface found in other F-ATPases. The main significance of this structure is that it aids in the determination of the structure of the intact membrane-bound F-ATPase, which has been crystallized.

  3. The Vacuolar ATPase from Entamoeba histolytica: Molecular cloning of the gene encoding for the B subunit and subcellular localization of the protein

    Directory of Open Access Journals (Sweden)

    Luna-Arias Juan

    2008-12-01

    Full Text Available Abstract Background Entamoeba histolytica is a professional phagocytic cell where the vacuolar ATPase plays a key role. This enzyme is a multisubunit complex that regulates pH in many subcellular compartments, even in those that are not measurably acidic. It participates in a wide variety of cellular processes such as endocytosis, intracellular transport and membrane fusion. The presence of a vacuolar type H+-ATPase in E. histolytica trophozoites has been inferred previously from inhibition assays of its activity, the isolation of the Ehvma1 and Ehvma3 genes, and by proteomic analysis of purified phagosomes. Results We report the isolation and characterization of the Ehvma2 gene, which encodes for the subunit B of the vacuolar ATPase. This polypeptide is a 55.3 kDa highly conserved protein with 34 to 80% identity to orthologous proteins from other species. Particularly, in silico studies showed that EhV-ATPase subunit B displays 78% identity and 90% similarity to its Dictyostelium ortholog. A 462 bp DNA fragment of the Ehvma2 gene was expressed in bacteria and recombinant polypeptide was used to raise mouse polyclonal antibodies. EhV-ATPase subunit B antibodies detected a 55 kDa band in whole cell extracts and in an enriched fraction of DNA-containing organelles named EhkOs. The V-ATPase subunit B was located by immunofluorescence and confocal microscopy in many vesicles, in phagosomes, plasma membrane and in EhkOs. We also identified the genes encoding for the majority of the V-ATPase subunits in the E. histolytica genome, and proposed a putative model for this proton pump. Conclusion We have isolated the Ehvma2 gene which encodes for the V-ATPase subunit B from the E. histolytica clone A. This gene has a 154 bp intron and encodes for a highly conserved polypeptide. Specific antibodies localized EhV-ATPase subunit B in many vesicles, phagosomes, plasma membrane and in EhkOs. Most of the orthologous genes encoding for the EhV-ATPase subunits

  4. Positive regulation of the enzymatic activity of gastric H(+),K(+)-ATPase by sialylation of its β-subunit.

    Science.gov (United States)

    Fujii, Takuto; Watanabe, Midori; Shimizu, Takahiro; Takeshima, Hiroshi; Kushiro, Keiichiro; Takai, Madoka; Sakai, Hideki

    2016-06-01

    The gastric proton pump (H(+),K(+)-ATPase) consists of a catalytic α-subunit (αHK) and a glycosylated β-subunit (βHK). βHK glycosylation is essential for the apical trafficking and stability of αHK in gastric parietal cells. Here, we report the properties of sialic acids at the termini of the oligosaccharide chains of βHK. Sialylation of βHK was found in LLC-PK1 cells stably expressing αHK and βHK by staining of the cells with lectin-tagged fluorescent polymeric nanoparticles. This sialylation was also confirmed by biochemical studies using sialic acid-binding lectin beads and an anti-βHK antibody. The sialic acids of βHK are cleaved enzymatically by neuraminidase (sialidase) and nonenzymatically by an acidic solution (pH5). Interestingly, the enzymatic activity of H(+),K(+)-ATPase was significantly decreased by cleavage of the sialic acids of βHK. In contrast, βHK was not sialylated in the gastric tubulovesicles prepared from the stomach of fed hogs. The H(+),K(+)-ATPase activity in these tubulovesicles was not significantly altered by neuraminidase. Importantly, the sialylation of βHK was observed in the gastric samples prepared from the stomach of famotidine (a histamine H2 receptor antagonist)-treated rats, but not histamine (an acid secretagogue)-treated rats. The enzymatic activity of H(+),K(+)-ATPase in the samples of the famotidine-treated rats was significantly higher than in the histamine-treated rats. The effects of famotidine were weakened by neuraminidase. These results indicate that βHK is sialylated at neutral or weakly acidic pH, but not at acidic pH, suggesting that the sialic acids of βHK positively regulate the enzymatic activity of αHK.

  5. The subunit delta-subunit b domain of the Escherichia coli F1F0 ATPase. The B subunits interact with F1 as a dimer and through the delta subunit.

    Science.gov (United States)

    Rodgers, A J; Wilkens, S; Aggeler, R; Morris, M B; Howitt, S M; Capaldi, R A

    1997-12-05

    The delta and b subunits are both involved in binding the F1 to the F0 part in the Escherichia coli ATP synthase (ECF1F0). The interaction of the purified delta subunit and the isolated hydrophilic domain of the b subunit (bsol) has been studied here. Purified delta binds to bsol weakly in solution, as indicated by NMR studies and protease protection experiments. On F1, i.e. in the presence of ECF1-delta, delta, and bsol interact strongly, and a complex of ECF1.bsol can be isolated by native gel electrophoresis. Both delta subunit and bsol are protected from trypsin cleavage in this complex. In contrast, the delta subunit is rapidly degraded by the protease when bound to ECF1 when bsol is absent. The interaction of bsol with ECF1 involves the C-terminal domain of delta as delta(1-134) cannot replace intact delta in the binding experiments. As purified, bsol is a stable dimer with 80% alpha helix. A monomeric form of bsol can be obtained by introducing the mutation A128D (Howitt, S. M., Rodgers, A. J.,W., Jeffrey, P. D., and Cox, G. B. (1996) J. Biol. Chem. 271, 7038-7042). Monomeric bsol has less alpha helix, i.e. only 58%, is much more sensitive to trypsin cleavage than dimer, and unfolds at much lower temperatures than the dimer in circular dichroism melting studies, indicating a less stable structure. The bsol dimer, but not monomer, binds to delta in ECF1. To examine whether subunit b is a monomor or dimer in intact ECF1F0, CuCl2 was used to induce cross-link formation in the mutants bS60C, bQ104C, bA128C, bG131C, and bS146C. With the exception of bS60C, CuCl2 treatment resulted in formation of b subunit dimers in all mutants. Cross-linking yield was independent of nucleotide conditions and did not affect ATPase activity. These results show the b subunit to be dimeric for a large portion of the C terminus, with residues 124-131 likely forming a pair of parallel alpha helices.

  6. RNAi-Directed Downregulation of Vacuolar H+ -ATPase Subunit A Results in Enhanced Stomatal Aperture and Density in Rice

    OpenAIRE

    2013-01-01

    Stomatal movement plays a key role in plant development and response to drought and salt stress by regulating gas exchange and water loss. A number of genes have been demonstrated to be involved in the regulation of this process. Using inverse genetics approach, we characterized the function of a rice (Oryza sativa L.) vacuolar H(+)-ATPase subunit A (OsVHA-A) gene in stomatal conductance regulation and physiological response to salt and osmotic stress. OsVHA-A was constitutively expressed in ...

  7. Effect of the delta subunit on assembly and proton permeability of the F0 proton channel of Escherichia coli F1F0 ATPase.

    OpenAIRE

    1991-01-01

    During the assembly of the Escherichia coli proton-translocating ATPase, the subunits of F1 interact with F0 to increase the proton permeability of the transmembrane proton channel. We tested the involvement of the delta subunit in this process by partially and completely deleting uncH (delta subunit) from a plasmid carrying the genes for the F0 subunits and delta and testing the effects of those F0 plasmids on the growth of unc+ and unc mutant E. coli strains. We found that the delta subunit...

  8. The Contribution of Candida albicans Vacuolar ATPase Subunit V1B, Encoded by VMA2, to Stress Response, Autophagy, and Virulence Is Independent of Environmental pH

    Science.gov (United States)

    Rane, Hallie S.; Bernardo, Stella M.; Hayek, Summer R.; Binder, Jessica L.; Parra, Karlett J.

    2014-01-01

    Candida albicans vacuoles are central to many critical biological processes, including filamentation and in vivo virulence. The V-ATPase proton pump is a multisubunit complex responsible for organellar acidification and is essential for vacuolar biogenesis and function. To study the function of the V1B subunit of C. albicans V-ATPase, we constructed a tetracycline-regulatable VMA2 mutant, tetR-VMA2. Inhibition of VMA2 expression resulted in the inability to grow at alkaline pH and altered resistance to calcium, cold temperature, antifungal drugs, and growth on nonfermentable carbon sources. Furthermore, V-ATPase was unable to fully assemble at the vacuolar membrane and was impaired in proton transport and ATPase-specific activity. VMA2 repression led to vacuolar alkalinization in addition to abnormal vacuolar morphology and biogenesis. Key virulence-related traits, including filamentation and secretion of degradative enzymes, were markedly inhibited. These results are consistent with previous studies of C. albicans V-ATPase; however, differential contributions of the V-ATPase Vo and V1 subunits to filamentation and secretion are observed. We also make the novel observation that inhibition of C. albicans V-ATPase results in increased susceptibility to osmotic stress. Notably, V-ATPase inhibition under conditions of nitrogen starvation results in defects in autophagy. Lastly, we show the first evidence that V-ATPase contributes to virulence in an acidic in vivo system by demonstrating that the tetR-VMA2 mutant is avirulent in a Caenorhabditis elegans infection model. This study illustrates the fundamental requirement of V-ATPase for numerous key virulence-related traits in C. albicans and demonstrates that the contribution of V-ATPase to virulence is independent of host pH. PMID:25038082

  9. The O-glycosylated ectodomain of FXYD5 impairs adhesion by disrupting cell-cell trans-dimerization of Na,K-ATPase β1 subunits.

    Science.gov (United States)

    Tokhtaeva, Elmira; Sun, Haying; Deiss-Yehiely, Nimrod; Wen, Yi; Soni, Pritin N; Gabrielli, Nieves M; Marcus, Elizabeth A; Ridge, Karen M; Sachs, George; Vazquez-Levin, Mónica; Sznajder, Jacob I; Vagin, Olga; Dada, Laura A

    2016-06-15

    FXYD5 (also known as dysadherin), a regulatory subunit of the Na,K-ATPase, impairs intercellular adhesion by a poorly understood mechanism. Here, we determined whether FXYD5 disrupts the trans-dimerization of Na,K-ATPase molecules located in neighboring cells. Mutagenesis of the Na,K-ATPase β1 subunit identified four conserved residues, including Y199, that are crucial for the intercellular Na,K-ATPase trans-dimerization and adhesion. Modulation of expression of FXYD5 or of the β1 subunit with intact or mutated β1-β1 binding sites demonstrated that the anti-adhesive effect of FXYD5 depends on the presence of Y199 in the β1 subunit. Immunodetection of the plasma membrane FXYD5 was prevented by the presence of O-glycans. Partial FXYD5 deglycosylation enabled antibody binding and showed that the protein level and the degree of O-glycosylation were greater in cancer than in normal cells. FXYD5-induced impairment of adhesion was abolished by both genetic and pharmacological inhibition of FXYD5 O-glycosylation. Therefore, the extracellular O-glycosylated domain of FXYD5 impairs adhesion by interfering with intercellular β1-β1 interactions, suggesting that the ratio between FXYD5 and α1-β1 heterodimer determines whether the Na,K-ATPase acts as a positive or negative regulator of intercellular adhesion.

  10. Rotation of subunits during catalysis by Escherichia coli F1-ATPase.

    Science.gov (United States)

    Duncan, T M; Bulygin, V V; Zhou, Y; Hutcheon, M L; Cross, R L

    1995-11-21

    During oxidative and photo-phosphorylation, F0F1-ATP synthases couple the movement of protons down an electrochemical gradient to the synthesis of ATP. One proposed mechanistic feature that has remained speculative is that this coupling process requires the rotation of subunits within F0F1. Guided by a recent, high-resolution structure for bovine F1 [Abrahams, J. P., Leslie, A. G., Lutter, R. & Walker, J. E. (1994) Nature (London) 370, 621-628], we have developed a critical test for rotation of the central gamma subunit relative to the three catalytic beta subunits in soluble F1 from Escherichia coli. In the bovine F1 structure, a specific point of contact between the gamma subunit and one of the three catalytic beta subunits includes positioning of the homolog of E. coli gamma-subunit C87 (gamma C87) close to the beta-subunit 380DELSEED386 sequence. A beta D380C mutation allowed us to induce formation of a specific disulfide bond between beta and gamma C87 in soluble E. coli F1. Formation of the crosslink inactivated beta D380C-F1, and reduction restored full activity. Using a dissociation/reassembly approach with crosslinked beta D380C-F1, we incorporated radiolabeled beta subunits into the two noncrosslinked beta-subunit positions of F1. After reduction of the initial nonradioactive beta-gamma crosslink, only exposure to conditions for catalytic turnover results in similar reactivities of unlabeled and radiolabeled beta subunits with gamma C87 upon reoxidation. The results demonstrate that gamma subunit rotates relative to the beta subunits during catalysis.

  11. The Inhibitory Mechanism of the ζ Subunit of the F1FO-ATPase Nanomotor of Paracoccus denitrificans and Related α-Proteobacteria*

    OpenAIRE

    García-Trejo, José J.; Zarco-Zavala, Mariel; Mendoza-Hoffmann, Francisco; Hernández-Luna, Eduardo; Ortega, Raquel; Mendoza-Hernández, Guillermo

    2015-01-01

    The ζ subunit is a novel inhibitor of the F1FO-ATPase of Paracoccus denitrificans and related α-proteobacteria. It is different from the bacterial (ϵ) and mitochondrial (IF1) inhibitors. The N terminus of ζ blocks rotation of the γ subunit of the F1-ATPase of P. denitrificans (Zarco-Zavala, M., Morales-Ríos, E., Mendoza-Hernández, G., Ramírez-Silva, L., Pérez-Hernández, G., and García-Trejo, J. J. (2014) FASEB J. 24, 599–608) by a hitherto unknown quaternary structure that was first modeled h...

  12. Distribution of Na,K-ATPase α subunits in rat vestibular sensory epithelia

    NARCIS (Netherlands)

    Schuth, Olga; McLean, Will J; Eatock, Ruth Anne; Pyott, Sonja J

    2014-01-01

    The afferent encoding of vestibular stimuli depends on molecular mechanisms that regulate membrane potential, concentration gradients, and ion and neurotransmitter clearance at both afferent and efferent relays. In many cell types, the Na,K-ATPase (NKA) is essential for establishing hyperpolarized m

  13. A triple mutation in the a subunit of the Escherichia coli/Propionigenium modestum F1Fo ATPase hybrid causes a switch from Na+ stimulation to Na+ inhibition.

    Science.gov (United States)

    Kaim, G; Dimroth, P

    1998-03-31

    Previously we have shown that the Na+-translocating Escherichia coli (F1-delta)/Propionigenium modestum (Fo+delta) hybrid ATPase acquires a Na+-independent phenotype by the c subunit double mutation F84L, L87V that is reflected by Na+-independent growth of the mutant strain MPC8487 on succinate [Kaim, G., and Dimroth, P. (1995) J. Mol. Biol. 253, 726-738]. Here we describe a new class of mutants that were obtained by random mutagenesis and screening for Na+-independent growth on succinate. All six mutants of the new class contained four mutations in the a subunit (S89P, K220R, V264E, I278N). Results from site-specific mutagenesis revealed that the substitutions K220R, V264E, and I278N were sufficient to create the new phenotype. The resulting E. coli mutant strain MPA762 could only grow in the absence but not in the presence of Na+ ions on succinate minimal medium. This effect of Na+ ions on growth correlated with a Na+-specific inhibition of the mutant ATPase. The Ki for NaCl was 1. 5 mM at pH 6.5, similar to the Km for NaCl in activating the parent hybrid ATPase at this pH. On the other hand, activation by Li+ ions was retained in the new mutant ATPase. In the absence of Na+ or Li+, the mutant enzyme had the same pH optimum at pH 6.5 and twice the specific activity as the parent hybrid ATPase. In accordance with the kinetic data, the reconstituted mutant ATPase catalyzed H+ or Li+ transport but no Na+ transport. These results show for the first time that the coupling ion selectivity of F1Fo ATPases is determined by structural elements not only of the c subunit but also of the a subunit.

  14. Overexpression of vacuolar proton pump ATPase (V-H+-ATPase) subunits B, C and H confers tolerance to salt and saline-alkali stresses in transgenic alfalfa (Medicago sativaL.)

    Institute of Scientific and Technical Information of China (English)

    WANG Fa-wei; CHEN Xi-feng; WANG Zhen-min; LI Hai-yan; WANG Chao; SUN Yao; WANG Nan; LI Xiao-wei; DONG Yuan-yuan; YAO Na; LIU Xiu-ming; CHEN Huan

    2016-01-01

    The vacuolar proton pump ATPase (V-H+-ATPase), which is a multi-subunit membrane protein complex, plays a major role in the activation of ion and nutrient transport and has been suggested to be involved in several physiological processes, such as cel expansion and salt tolerance. In this study, three genes encoding V-H+-ATPase subunits B (ScVHA-B, GenBank: JF826506), C (ScVHA-C, GenBank: JF826507) and H (ScVHA-H, GenBank: JF826508) were isolated from the halophyte Suaeda corniculata. The transcript levels ofScVHA-B,ScVHA-C andScVHA-H were increased by salt, drought and sa-line-alkali treatments. V-H+-ATPase activity was also examined under salt, drought and saline-alkali stresses. The results showed that V-H+-ATPase activity was correlated with salt, drought and saline-alkali stress. Furthermore, V-H+-ATPase subunits B, C and H (ScVHA-B,ScVHA-C andScVHA-H) fromS. corniculata were introduced separately into the alfalfa genome. The transgenic alfalfa was veriifed by Southern and Northern blot analysis. During salt and saline-alkali stresses, transgenic lines carrying the B, C and H subunits had higher germination rates than the wild type (WT). More free proline, higher superoxide dismutase (SOD) activity and lower malondialdehyde (MDA) levels were detected in the transgenic plants under salt and saline-alkali treatments. Moreover, theScVHA-B transgenic lines showed greater tolerance to salt and saline-alkali stresses than the WT. These results suggest that overexpression ofScVHA-B,ScVHA-C andScVHA-H improves tolerance to salt and saline-alkali stresses in transgenic alfalfa.

  15. The a3 isoform of subunit a of the vacuolar ATPase localizes to the plasma membrane of invasive breast tumor cells and is overexpressed in human breast cancer.

    Science.gov (United States)

    Cotter, Kristina; Liberman, Rachel; Sun-Wada, GeHong; Wada, Yoh; Sgroi, Dennis; Naber, Stephen; Brown, Dennis; Breton, Sylvie; Forgac, Michael

    2016-07-19

    The vacuolar (H+)-ATPases (V-ATPases) are a family of ATP-driven proton pumps that acidify intracellular compartments and transport protons across the plasma membrane. Previous work has demonstrated that plasma membrane V-ATPases are important for breast cancer invasion in vitro and that the V-ATPase subunit a isoform a3 is upregulated in and critical for MDA-MB231 and MCF10CA1a breast cancer cell invasion. It has been proposed that subunit a3 is present on the plasma membrane of invasive breast cancer cells and is overexpressed in human breast cancer. To test this, we used an a3-specific antibody to assess localization in breast cancer cells. Subunit a3 localizes to the leading edge of migrating breast cancer cells, but not the plasma membrane of normal breast epithelial cells. Furthermore, invasive breast cancer cells express a3 throughout all intracellular compartments tested, including endosomes, the Golgi, and lysosomes. Moreover, subunit a3 knockdown in MB231 breast cancer cells reduces in vitro migration. This reduction is not enhanced upon addition of a V-ATPase inhibitor, suggesting that a3-containing V-ATPases are critical for breast cancer migration. Finally, we have tested a3 expression in human breast cancer tissue and mRNA prepared from normal and cancerous breast tissue. a3 mRNA was upregulated 2.5-47 fold in all breast tumor cDNA samples tested relative to normal tissue, with expression generally correlated to cancer stage. Furthermore, a3 protein expression was increased in invasive breast cancer tissue relative to noninvasive cancer and normal breast tissue. These studies suggest that subunit a3 plays an important role in invasive human breast cancer.

  16. The stimulating role of subunit F in ATPase activity inside the A1-complex of the Methanosarcina mazei Gö1 A1AO ATP synthase.

    Science.gov (United States)

    Singh, Dhirendra; Sielaff, Hendrik; Sundararaman, Lavanya; Bhushan, Shashi; Grüber, Gerhard

    2016-02-01

    A1AO ATP synthases couple ion-transport of the AO sector and ATP synthesis/hydrolysis of the A3B3-headpiece via their stalk subunits D and F. Here, we produced and purified stable A3B3D- and A3B3DF-complexes of the Methanosarcina mazei Gö1 A-ATP synthase as confirmed by electron microscopy. Enzymatic studies with these complexes showed that the M. mazei Gö1 A-ATP synthase subunit F is an ATPase activating subunit. The maximum ATP hydrolysis rates (Vmax) of A3B3D and A3B3DF were determined by substrate-dependent ATP hydrolysis experiments resulting in a Vmax of 7.9 s(-1) and 30.4 s(-1), respectively, while the KM is the same for both. Deletions of the N- or C-termini of subunit F abolished the effect of ATP hydrolysis activation. We generated subunit F mutant proteins with single amino acid substitutions and demonstrated that the subunit F residues S84 and R88 are important in stimulating ATP hydrolysis. Hybrid formation of the A3B3D-complex with subunit F of the related eukaryotic V-ATPase of Saccharomyces cerevisiae or subunit ε of the F-ATP synthase from Mycobacterium tuberculosis showed that subunit F of the archaea and eukaryotic enzymes are important in ATP hydrolysis.

  17. Na+/K+-ATPase α-subunit in swimming crab Portunus trituberculatus: molecular cloning, characterization, and expression under low salinity stress

    Science.gov (United States)

    Han, Xiaolin; Liu, Ping; Gao, Baoquan; Wang, Haofeng; Duan, Yafei; Xu, Wenfei; Chen, Ping

    2015-07-01

    Na+/K+-ATPases are membrane-associated enzymes responsible for the active transport of Na+ and K+ ions across cell membranes, generating chemical and electrical gradients. These enzymes' α-subunit provides catalytic function, binding and hydrolyzing ATP, and itself becoming phosphorylated during the transport cycle. In this study, Na+/K+-ATPase α-subunit cDNA was cloned from gill tissue of the swimming crab Portunus trituberculatus by reverse-transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA end methods. Analysis of the nucleotide sequence revealed that the cDNA had a full-length of 3 833 base pairs (bp), with an open reading frame of 3 120 bp, 5' untranslated region (UTR) of 317 bp, and 3' UTR of 396 bp. The sequence encoded a 1 039 amino acid protein with a predicted molecular weight of 115.57 kDa and with estimated pI of 5.21. It was predicted here to possess all expected features of Na+/K+-ATPase members, including eight transmembrane domains, putative ATP-binding site, and phosphorylation site. Comparison of amino acid sequences showed that the P. trituberculatus α-subunit possessed an overall identity of 75%-99% to that of other organisms. Phylogenetic analysis revealed that this α-subunit was in the same category as those of crustaceans. Quantitative real-time RT-PCR analysis indicated that this α-subunit's transcript were most highly expressed in gill and lowest in muscle. RT-PCR analysis also revealed that α-subunit expression in crab gill decreased after 2 and 6 h, but increased after 12, 24, 48, and 72 h. In addition, α-subunit expression in hepatopancreas of crab decreased after 2-72 h. These facts indicated that the crab's Na+/K+-ATPase α-subunit was potentially involved in the observed acute response to low salinity stress.

  18. Regulation of Na,K-ATPase β1-subunit in TGF-β2-mediated epithelial-to-mesenchymal transition in human retinal pigmented epithelial cells.

    Science.gov (United States)

    Mony, Sridevi; Lee, Seung Joon; Harper, Jeffrey F; Barwe, Sonali P; Langhans, Sigrid A

    2013-10-01

    Proliferative vitreo retinopathy (PVR) is associated with extracellular matrix membrane (ECM) formation on the neural retina and disruption of the multilayered retinal architecture leading to distorted vision and blindness. During disease progression in PVR, retinal pigmented epithelial cells (RPE) lose cell-cell adhesion, undergo epithelial-to-mesenchymal transition (EMT), and deposit ECM leading to tissue fibrosis. The EMT process is mediated via exposure to vitreous cytokines and growth factors such as TGF-β2. Previous studies have shown that Na,K-ATPase is required for maintaining a normal polarized epithelial phenotype and that decreased Na,K-ATPase function and subunit levels are associated with TGF-β1-mediated EMT in kidney cells. In contrast to the basolateral localization of Na,K-ATPase in most epithelia, including kidney, Na,K-ATPase is found on the apical membrane in RPE cells. We now show that EMT is also associated with altered Na,K-ATPase expression in RPE cells. TGF-β2 treatment of ARPE-19 cells resulted in a time-dependent decrease in Na,K-ATPase β1 mRNA and protein levels while Na,K-ATPase α1 levels, Na,K-ATPase activity, and intracellular sodium levels remained largely unchanged. In TGF-β2-treated cells reduced Na,K-ATPase β1 mRNA inversely correlated with HIF-1α levels and analysis of the Na,K-ATPase β1 promoter revealed a putative hypoxia response element (HRE). HIF-1α bound to the Na,K-ATPase β1 promoter and inhibiting the activity of HIF-1α blocked the TGF-β2 mediated Na,K-ATPase β1 decrease suggesting that HIF-1α plays a potential role in Na,K-ATPase β1 regulation during EMT in RPE cells. Furthermore, knockdown of Na,K-ATPase β1 in ARPE-19 cells was associated with a change in cell morphology from epithelial to mesenchymal and induction of EMT markers such as α-smooth muscle actin and fibronectin, suggesting that loss of Na,K-ATPase β1 is a potential contributor to TGF-β2-mediated EMT in RPE cells.

  19. The medaka mutation tintachina sheds light on the evolution of V-ATPase B subunits in vertebrates

    Science.gov (United States)

    Müller, Claudia; Maeso, Ignacio; Wittbrodt, Joachim; Martínez-Morales, Juan R.

    2013-11-01

    Vacuolar-type H+ ATPases (V-ATPases) are multimeric protein complexes that play a universal role in the acidification of intracellular compartments in eukaryotic cells. We have isolated the recessive medaka mutation tintachina (tch), which carries an inactivating modification of the conserved glycine residue (G75R) of the proton pump subunit atp6v1Ba/vatB1. Mutant embryos show penetrant pigmentation defects, massive brain apoptosis and lethality before hatching. Strikingly, an equivalent mutation in atp6v1B1 (G78R) has been reported in a family of patients suffering from distal renal tubular acidosis (dRTA), a hereditary disease that causes metabolic acidosis due to impaired kidney function. This poses the question as to how molecularly identical mutations result in markedly different phenotypes in two vertebrate species. Our work offers an explanation for this phenomenon. We propose that, after successive rounds of whole-genome duplication, the emergence of paralogous copies allowed the divergence of the atp6v1B cis-regulatory control in different vertebrate groups.

  20. Conformational alterations resulting from mutations in cytoplasmic domains of the alpha subunit of the Na,K-ATPase

    DEFF Research Database (Denmark)

    Blostein, R; Daly, S E; MacAulay, Nanna;

    1998-01-01

    , and decreased sensitivity to inhibition by vanadate. The striking changes observed with alpha 1M32E233K suggests interactions between the N-terminus, the beta-strand in the M2-M3 loop and the catalytic phosphorylation site. The behavior of these mutants contrasts with that of least one mutant involving......This paper summarizes experiments concerned with the functional consequences of mutations in cytoplasmic regions of the alpha 1 subunit of the Na,K-ATPase, in particular the amino terminus, the first cytoplasmic loop between transmembrane segments M2 and M3, and the major cytoplasmic loop between M......4 and M5. In the first mutation (alpha 1M32), 32 residues were removed from the N-terminus. The second mutation (E233K) was in the putative beta strand of M2-M3 loop and the third, comprised the replacement of the amino terminal half of loop M4-M5 of the Na,K-ATPase with the homologous segment...

  1. A putative plant aminophospholipid flippase, the Arabidopsis P4 ATPase ALA1, localizes to the plasma membrane following association with a β-subunit.

    Directory of Open Access Journals (Sweden)

    Rosa L López-Marqués

    Full Text Available Plasma membranes in eukaryotic cells display asymmetric lipid distributions with aminophospholipids concentrated in the inner leaflet and sphingolipids in the outer leaflet. This unequal distribution of lipids between leaflets is, amongst several proposed functions, hypothesized to be a prerequisite for endocytosis. P4 ATPases, belonging to the P-type ATPase superfamily of pumps, are involved in establishing lipid asymmetry across plasma membranes, but P4 ATPases have not been identified in plant plasma membranes. Here we report that the plant P4 ATPase ALA1, which previously has been connected with cold tolerance of Arabidopsis thaliana, is targeted to the plasma membrane and does so following association in the endoplasmic reticulum with an ALIS protein β-subunit.

  2. Determination of the 1-ethyl-3-[(3-dimethylamino)propyl]-carbodiimide- induced cross-link between the beta and epsilon subunits of Escherichia coli F1-ATPase.

    Science.gov (United States)

    Dallmann, H G; Flynn, T G; Dunn, S D

    1992-09-15

    The zero-length cross-link between the inhibitory epsilon subunit and one of three catalytic beta subunits of Escherichia coli F1-ATPase (alpha 3 beta 3 gamma delta epsilon), induced by a water-soluble carbodiimide, 1-ethyl-3-[(3-dimethylamino) propyl]-carbodiimide (EDC), has been determined at the amino acid level. Lability of cross-linked beta-epsilon to base suggested an ester cross-link rather than the expected amide. A 10-kDa cross-linked CNBr fragment derived from beta-epsilon was identified by electrophoresis on high percentage polyacrylamide gels. Sequence analysis of this peptide revealed the constituent peptides to be Asp-380 to Met-431 of beta and Glu-96 to Met-138 of epsilon. Glu-381 of beta was absent from cycle 2 indicating that it was one of the cross-linked residues, but no potential cross-linked residue in epsilon was identified in this analysis. A form of epsilon containing a methionine residue in place of Val-112 (epsilon V112M) was produced by site-directed mutagenesis. epsilon V112M was incorporated into F1-ATPase which was then cross-linked with EDC. An 8-kDa cross-linked CNBr fragment of beta-epsilon V112M was shown to contain the peptide of epsilon between residues Glu-96 and Met-112 and the peptide of beta between residues Asp-380 and Met-431. Again residue Glu-381 of beta was notably reduced and no missing residue from the epsilon peptide could be identified, but the peptide sequence limited the possible choices to Ser-106, Ser-107, or Ser-108. Furthermore, an epsilon mutant in which Ser-108 was replaced by cysteine could no longer be cross-linked to a beta subunit in F1-ATPase by EDC. Both mutant forms of epsilon supported growth of an uncC-deficient E. coli strain and inhibited F1-ATPase. These results indicate that the EDC-induced cross-link between the beta and epsilon subunits of F1-ATPase is an ester linkage between beta-Glu-381 and, likely, epsilon-Ser-108. As these residues must be located immediately adjacent to one another in F1

  3. The Apical Localization of Na+, K+-ATPase in Cultured Human Retinal Pigment Epithelial Cells Depends on Expression of the β2 Subunit

    Science.gov (United States)

    Lobato-Álvarez, Jorge A.; Roldán, María L.; López-Murillo, Teresa del Carmen; González-Ramírez, Ricardo; Bonilla-Delgado, José; Shoshani, Liora

    2016-01-01

    Na+, K+-ATPase, or the Na+ pump, is a key component in the maintenance of the epithelial phenotype. In most epithelia, the pump is located in the basolateral domain. Studies from our laboratory have shown that the β1 subunit of Na+, K+-ATPase plays an important role in this mechanism because homotypic β1-β1 interactions between neighboring cells stabilize the pump in the lateral membrane. However, in the retinal pigment epithelium (RPE), the Na+ pump is located in the apical domain. The mechanism of polarization in this epithelium is unclear. We hypothesized that the apical polarization of the pump in RPE cells depends on the expression of its β2 subunit. ARPE-19 cells cultured for up to 8 weeks on inserts did not polarize, and Na+, K+-ATPase was expressed in the basolateral membrane. In the presence of insulin, transferrin and selenic acid (ITS), ARPE-19 cells cultured for 4 weeks acquired an RPE phenotype, and the Na+ pump was visible in the apical domain. Under these conditions, Western blot analysis was employed to detect the β2 isoform and immunofluorescence analysis revealed an apparent apical distribution of the β2 subunit. qPCR results showed a time-dependent increase in the level of β2 isoform mRNA, suggesting regulation at the transcriptional level. Moreover, silencing the expression of the β2 isoform in ARPE-19 cells resulted in a decrease in the apical localization of the pump, as assessed by the mislocalization of the α2 subunit in that domain. Our results demonstrate that the apical polarization of Na+, K+-ATPase in RPE cells depends on the expression of the β2 subunit. PMID:27774068

  4. The Apical Localization of Na+, K+-ATPase in Cultured Human Retinal Pigment Epithelial Cells Depends on Expression of the β2 Subunit

    Directory of Open Access Journals (Sweden)

    Jorge Lobato Álvarez

    2016-10-01

    Full Text Available Na+, K+-ATPase, or the Na+ pump, is a key component in the maintenance of the epithelial phenotype. In most epithelia, the pump is located in the basolateral domain. Studies from our laboratory have shown that the β1 subunit of Na+, K+-ATPase plays an important role in this mechanism because homotypic β1-β1 interactions between neighboring cells stabilize the pump in the lateral membrane. However, in the retinal pigment epithelium (RPE, the Na+ pump is located in the apical domain. The mechanism of polarization in this epithelium is unclear. We hypothesized that the apical polarization of the pump in RPE cells depends on the expression of its β2 subunit. ARPE-19 cells cultured for up to 8 weeks on inserts did not polarize, and Na+, K+-ATPase was expressed in the basolateral membrane. In the presence of insulin, transferrin and selenic acid (ITS, ARPE-19 cells cultured for 4 weeks acquired an RPE phenotype, and the Na+ pump was visible in the apical domain. Under these conditions, Western blot analysis was employed to detect the β2 isoform and immunofluorescence analysis revealed an apparent apical distribution of the β2 subunit. qPCR results showed a time-dependent increase in the level of β2 isoform mRNA, suggesting regulation at the transcriptional level. Moreover, silencing the expression of the β2 isoform in ARPE-19 cells resulted in a decrease in the apical localization of the pump, as assessed by the mislocalization of the α2 subunit in that domain. Our results demonstrate that the apical polarization of Na+, K+-ATPase in RPE cells depends on the expression of the β2 subunit.

  5. Mapping subunit contacts in the regulatory complex of the 26 S proteasome. S2 and S5b form a tetramer with ATPase subunits S4 and S7.

    Science.gov (United States)

    Gorbea, C; Taillandier, D; Rechsteiner, M

    2000-01-14

    The 19 S regulatory complex (RC) of the 26 S proteasome is composed of at least 18 different subunits, including six ATPases that form specific pairs S4-S7, S6-S8, and S6'-S10b in vitro. One of the largest regulatory complex subunits, S2, was translated in reticulocyte lysate containing [(35)S]methionine and used to probe membranes containing SDS-polyacrylamide gel electrophoresis separated RC subunits. S2 bound to two ATPases, S4 and S7. Association of S2 with regulatory complex subunits was also assayed by co-translation and sedimentation. S2 formed an immunoprecipitable heterotrimer upon co-translation with S4 and S7. The non-ATPase S5b also formed a ternary complex with S4 and S7 and the three proteins assembled into a tetramer with S2. Neither S2 nor S5b formed complexes with S6'-S10b dimers or with S6-S8 oligomers. The use of chimeric ATPases demonstrated that S2 binds the NH(2)-terminal region of S4 and the COOH-terminal two-thirds of S7. Conversely, S5b binds the COOH-terminal two-thirds of S4 and to S7's NH(2)-terminal region. The demonstrated association of S2 with ATPases in the mammalian 19 S regulatory complex is consistent with and extends the recent finding that the yeast RC is composed of two subcomplexes, the lid and the base (Glickman, M. H., Rubin, D. M., Coux, O., Wefes, I., Pfeifer, G., Cejka, Z., Baumeister, W., Fried, V. A., and Finley, D. (1998) Cell 94, 615-623).

  6. Rotation of subunits during catalysis by Escherichia coli F1-ATPase.

    OpenAIRE

    1995-01-01

    During oxidative and photo-phosphorylation, F0F1-ATP synthases couple the movement of protons down an electrochemical gradient to the synthesis of ATP. One proposed mechanistic feature that has remained speculative is that this coupling process requires the rotation of subunits within F0F1. Guided by a recent, high-resolution structure for bovine F1 [Abrahams, J. P., Leslie, A. G., Lutter, R. & Walker, J. E. (1994) Nature (London) 370, 621-628], we have developed a critical test for rotation ...

  7. Cloning and expression analysis of GhDET3, a vacuolar H+-ATPase subunit C gene, from cotton

    Institute of Scientific and Technical Information of China (English)

    Zhongyi Xiao; Kunling Tan; Mingyu Hu; Peng Liao; Kuijun Chen; Ming Luo

    2008-01-01

    Vacuolar H+-ATPase was regarded as a key enzyme promoting the fiber cell elongation in cotton (Gossypium hirsuturm L.) through regulating turgot-driven pressure involved in polarity expansion of single cell fiber. The DET3, a V-ATPase subunit C, plays an impor-tant role in assembling subunits and regulating the enzyme activity, and is involved in Brassinosteroid-induced cell elongation. To ana-lyze the function of GhDET3 on the elongation of cotton fibers, seven candidates of ESTs were screened and contigged for a 5'-upstream sequence, and the 3'-RACE technique was used to clone the 3'-downstream sequence for the full length of GhDET3 gene. The full length of the target clone was 1,340 bp, including a 10 bp 5'-UTR, an ORF of 1,134 bp, and a 196 bp 3'-UTR. This cDNA sequence encoded a polypepide of 377 amino acid residues with a predicted molecular mass of 43 kDa and a basic isoelectric point of 5.58. Furthermore, a length of 3,410 bp sequence from genomic DNA of GhDET3 was also cloned by PCR. The deduced amino acid sequence had a high ho-mology with DET3 from Arabidopsis, rice, and maize. Quantitative real-time PCR (qRT-PCR) analysis showed that the GhDET3 expres-sion pattern was ubiquitous in all the tissues and organs detected. The result also revealed that the accumulation of GhDET3 mRNA reached the highest profile at the fiber elongation stage in 12 DPA (days post anthesis) fibers, compared with the lowest level at the fiber initiation stage in 0 DPA ovules (with fibers). The transcript accumulation in fibers and ovules shared the similar variation tendency. In addition, in vitro ovule culture experiment demonstrated that exogenous 24-EBL treatment to 4 DPA ovules (with fibers) was capable of increasing the expression level of GhDET3, and the mRNA accumulation of GhDET3 increased in transgenic FBP7::GhDET2 cotton fibers in vivo. These results indicate that GhDET3 gene plays a crucial role in cotton fiber elongation.

  8. Molecular and functional characterization of seven Na+/K+-ATPase β subunit paralogs in Senegalese sole (Solea senegalensis Kaup, 1858).

    Science.gov (United States)

    Armesto, Paula; Infante, Carlos; Cousin, Xavier; Ponce, Marian; Manchado, Manuel

    2015-04-01

    In the present work, seven genes encoding Na(+),K(+)-ATPase (NKA) β-subunits in the teleost Solea senegalensis are described for the first time. Sequence analysis of the predicted polypeptides revealed a high degree of conservation with those of other vertebrate species and maintenance of important motifs involved in structure and function. Phylogenetic analysis clustered the seven genes into four main clades: β1 (atp1b1a and atp1b1b), β2 (atp1b2a and atp1b2b), β3 (atp1b3a and atp1b3b) and β4 (atp1b4). In juveniles, all paralogous transcripts were detected in the nine tissues examined albeit with different expression patterns. The most ubiquitous expressed gene was atp1b1a whereas atp1b1b was mainly detected in osmoregulatory organs (gill, kidney and intestine), and atp1b2a, atp1b2b, atp1b3a, atp1b3b and atp1b4 in brain. An expression analysis in three brain regions and pituitary revealed that β1-type transcripts were more abundant in pituitary than the other β paralogs with slight differences between brain regions. Quantification of mRNA abundance in gills after a salinity challenge showed an activation of atp1b1a and atp1b1b at high salinity water (60 ppt) and atp1b3a and atp1b3b in response to low salinity (5 ppt). Transcriptional analysis during larval development showed specific expression patterns for each paralog. Moreover, no differences in the expression profiles between larvae cultivated at 10 and 35 ppt were observed except for atp1b4 with higher mRNA levels at 10 than 35 ppt at 18 days post hatch. Whole-mount in situ hybridization analysis revealed that atp1b1b was mainly localized in gut, pronephric tubule, gill, otic vesicle, and chordacentrum of newly hatched larvae. All these data suggest distinct roles of NKA β subunits in tissues, during development and osmoregulation with β1 subunits involved in the adaptation to hyperosmotic conditions and β3 subunits to hypoosmotic environments.

  9. Evolution of the α-Subunit of Na/K-ATPase from Paramecium to Homo sapiens: Invariance of Transmembrane Helix Topology.

    Science.gov (United States)

    Morrill, Gene A; Kostellow, Adele B; Liu, Lijun; Gupta, Raj K; Askari, Amir

    2016-05-01

    Na/K-ATPase is a key plasma membrane enzyme involved in cell signaling, volume regulation, and maintenance of electrochemical gradients. The α-subunit, central to these functions, belongs to a large family of P-type ATPases. Differences in transmembrane (TM) helix topology, sequence homology, helix-helix contacts, cell signaling, and protein domains of Na/K-ATPase α-subunit were compared in fungi (Beauveria), unicellular organisms (Paramecia), primitive multicellular organisms (Hydra), and vertebrates (Xenopus, Homo sapiens), and correlated with evolution of physiological functions in the α-subunit. All α-subunits are of similar length, with groupings of four and six helices in the N- and C-terminal regions, respectively. Minimal homology was seen for protein domain patterns in Paramecium and Hydra, with high correlation between Hydra and vertebrates. Paramecium α-subunits display extensive disorder, with minimal helix contacts. Increases in helix contacts in Hydra approached vertebrates. Protein motifs known to be associated with membrane lipid rafts and cell signaling reveal significant positional shifts between Paramecium and Hydra vulgaris, indicating that regional membrane fluidity changes occur during evolution. Putative steroid binding sites overlapping TM-3 occurred in all species. Sites associated with G-protein-receptor stimulation occur both in vertebrates and amphibia but not in Hydra or Paramecia. The C-terminus moiety "KETYY," necessary for the Na(+) activation of pump phosphorylation, is not present in unicellular species indicating the absence of classical Na(+)/K(+)-pumps. The basic protein topology evolved earliest, followed by increases in protein domains and ordered helical arrays, correlated with appearance of α-subunit regions known to involve cell signaling, membrane recycling, and ion channel formation.

  10. Cloning and Characterization of an mRNA Encoding F1-ATPase Beta-Subunit Abundant in Epithelial Cells of Mantle and Gill of Pearl Oyster, Pinctadafucata

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In oyster biomineralization, large amounts of calcium are absorbed from external media, transported to the mineralization site, and finally deposited via a matrix-mediated process. All these activities are very energy intensive; therefore, investigations of the energy metabolism pathways of different oyster tissues will facilitate understanding of oyster biomineralization physiology. A full-length cDNA encoding the F1-ATPase beta-subunit (the F1-β-subunit, a major calalytic subunit of F-ATPase) from the pearl oyster (Pinctads fucata) was cloned using the homology strategy with a pair of degenerated primers based on the conserved regions of other animals' F1-β-subunit genes. Sequencing and structural analyses showed that the obtained sequence shared high identity with other animals' F1-β-subunits, and had a unique phosphorylation site of PKC and CK Ⅱ on the external surface of the putative protein. Results from semi-quantitative reverse transcription-polymerase chain reaction and in situ hybridization demonstrated this oyster F1-β-subunit mRNA is abundant in the gill and mantle, and distributed widely in the periostracal groove, the outer folder,and the dorsal region of the mantle and in the gill epithelial cells. These tissues were the main regions that participate in biomineralization processes such as calcium uptake, transport, and matrix secretion. The results indicate that tissues involved in biomineralization have stronger energy metabolic processes and that F1-ATPase might play an important role in oyster biomineralization by providing energy transport.

  11. A Deficit of ATP-ase Subunit 8: with Contribution for Two New Cases

    Directory of Open Access Journals (Sweden)

    Naumova E.

    2007-12-01

    Full Text Available In two consanguineous children brother and sister were reported rare mitochondrial disorder caused by mutation of the gene of MT-ATP8: base change T8412C, with aminoacid change: methionin - threonine which wasthe cause for decreased activity of the synthesized protein (enzyme and to dysfunction of central nervous system and muscle of the affected children. These cases give us the base to recommend children with muscle hypotonia, mental retardation with unknown cause to be hospitalized in Clinical genetics for confirmation of the diagnosis and careful genetic consultation. The foundation of new rare mitochondrial disease of ATP synthase subunit 8 deficiency is useful in Pediatrics and permit treatment and prenatal diagnosis of the family.

  12. Characterization of lysosomal membrane proteins of Dictyostelium discoideum. A complex population of acidic integral membrane glycoproteins, Rab GTP-binding proteins and vacuolar ATPase subunits.

    Science.gov (United States)

    Temesvari, L; Rodriguez-Paris, J; Bush, J; Steck, T L; Cardelli, J

    1994-10-14

    Highly purified lysosomes, prepared by magnetic fractionation of homogenates from Dictyostelium discoideum cells fed colloidal iron, were lysed under hypoosmotic conditions, and the membrane-associated proteins were subjected to gel electrophoresis. Thirteen major membrane polypeptides, ranging in molecular weight from 25,000 to 100,000 were identified. The isoelectric points of these proteins ranged from below 3.8 to greater than 7.0. Most of these proteins were stripped from membranes exposed to a chaotropic agent, 3,5-diodo-2-hydroxybenzoic acid lithium salt, and were therefore classified as peripheral membrane proteins. Twenty five glycoprotein species were detected by lectin blot analysis; 19 were classified as integral membrane proteins, and were, in general, larger than 45 kDa and negatively charged due in part to the presence of mannose 6-sulfate. Western blot analysis also demonstrated that a Rab 4-like GTPase, a Rab 7-like GTPase, and at least three subunits of the vacuolar ATPase were associated with the lysosomal membrane; the ATPase subunits appeared to be major proteins in lysosomal membranes. Finally, based on N-terminal sequence analysis of a major 41-kDa lysosome-associated membrane protein, we cloned a cDNA that encodes a protein (DVA41) highly homologous to a yeast and a bovine vacuolar ATPase subunit of approximately 41 kDa. The D. discoideum DVA41 gene was apparently a single copy gene, expressed at constant levels during growth and development.

  13. Structure of a thermophilic F1-ATPase inhibited by an ε-subunit: deeper insight into the ε-inhibition mechanism.

    Science.gov (United States)

    Shirakihara, Yasuo; Shiratori, Aya; Tanikawa, Hiromi; Nakasako, Masayoshi; Yoshida, Masasuke; Suzuki, Toshiharu

    2015-08-01

    F1-ATPase (F1) is the catalytic sector in F(o)F1-ATP synthase that is responsible for ATP production in living cells. In catalysis, its three catalytic β-subunits undergo nucleotide occupancy-dependent and concerted open-close conformational changes that are accompanied by rotation of the γ-subunit. Bacterial and chloroplast F1 are inhibited by their own ε-subunit. In the ε-inhibited Escherichia coli F1 structure, the ε-subunit stabilizes the overall conformation (half-closed, closed, open) of the β-subunits by inserting its C-terminal helix into the α3β3 cavity. The structure of ε-inhibited thermophilic F1 is similar to that of E. coli F1, showing a similar conformation of the ε-subunit, but the thermophilic ε-subunit stabilizes another unique overall conformation (open, closed, open) of the β-subunits. The ε-C-terminal helix 2 and hook are conserved between the two structures in interactions with target residues and in their positions. Rest of the ε-C-terminal domains are in quite different conformations and positions, and have different modes of interaction with targets. This region is thought to serve ε-inhibition differently. For inhibition, the ε-subunit contacts the second catches of some of the β- and α-subunits, the N- and C-terminal helices, and some of the Rossmann fold segments. Those contacts, as a whole, lead to positioning of those β- and α- second catches in ε-inhibition-specific positions, and prevent rotation of the γ-subunit. Some of the structural features are observed even in IF1 inhibition in mitochondrial F1.

  14. The polar domain of the b subunit of Escherichia coli F1F0-ATPase forms an elongated dimer that interacts with the F1 sector.

    Science.gov (United States)

    Dunn, S D

    1992-04-15

    A soluble form of the b subunit of the F0 sector of the F1F0-ATPase of Escherichia coli has been produced, purified, and characterized. In this form of the protein, designated bsol, residues 25-146 (the carboxyl terminus) of b have been fused to an amino-terminal octapeptide extension derived from the vector pUC8. The inferred subunit molecular weight of bsol is 15,459. bsol protein was expressed in E. coli as a soluble cytoplasmic protein and was readily purified to homogeneity by conventional methods. The molecular weight of bsol, determined by sedimentation equilibrium, was 31,200, indicating that the protein is dimeric. Chemical cross-linking studies supported this conclusion. However, bsol sedimented with a coefficient of just 1.8 S and behaved on size exclusion chromatography with an apparent molecular weight of 80,000-85,000. These results indicate that the protein exists in solution as a highly elongated dimer. The circular dichroism spectrum indicated that bsol is highly alpha-helical. Binding of bsol to F1-ATPase was directly demonstrated by size exclusion chromatography. bsol also inhibited the binding of F1-ATPase to F1-depleted membrane vesicles, as measured by reconstitution of energy-dependent quinacrine fluorescence quenching. This result implies that bsol and F0 compete for binding to the same site on F1. The apparently normal interaction of bsol with F1-ATPase strongly suggests that the recombinant protein assumes the correct structure. No substantial effects of bsol on the ATPase activity of purified F1 were observed.

  15. The Arabidopsis P4-ATPase ALA3 localizes to the golgi and requires a beta-subunit to function in lipid translocation and secretory vesicle formation.

    Science.gov (United States)

    Poulsen, Lisbeth Rosager; López-Marqués, Rosa Laura; McDowell, Stephen C; Okkeri, Juha; Licht, Dirk; Schulz, Alexander; Pomorski, Thomas; Harper, Jeffrey F; Palmgren, Michael Gjedde

    2008-03-01

    Vesicle budding in eukaryotes depends on the activity of lipid translocases (P(4)-ATPases) that have been implicated in generating lipid asymmetry between the two leaflets of the membrane and in inducing membrane curvature. We show that Aminophospholipid ATPase3 (ALA3), a member of the P(4)-ATPase subfamily in Arabidopsis thaliana, localizes to the Golgi apparatus and that mutations of ALA3 result in impaired growth of roots and shoots. The growth defect is accompanied by failure of the root cap to release border cells involved in the secretion of molecules required for efficient root interaction with the environment, and ala3 mutants are devoid of the characteristic trans-Golgi proliferation of slime vesicles containing polysaccharides and enzymes for secretion. In yeast complementation experiments, ALA3 function requires interaction with members of a novel family of plant membrane-bound proteins, ALIS1 to ALIS5 (for ALA-Interacting Subunit), and in this host ALA3 and ALIS1 show strong affinity for each other. In planta, ALIS1, like ALA3, localizes to Golgi-like structures and is expressed in root peripheral columella cells. We propose that the ALIS1 protein is a beta-subunit of ALA3 and that this protein complex forms an important part of the Golgi machinery required for secretory processes during plant development.

  16. Effect of vacuolar ATPase subunit H (VmaH) on cellular pH, asexual cycle, stress tolerance and virulence in Beauveria bassiana.

    Science.gov (United States)

    Zhu, Jing; Zhu, Xiao-Guan; Ying, Sheng-Hua; Feng, Ming-Guang

    2017-01-01

    Vacuolar ATPase (V-ATPase) is a conserved multi-subunit protein complex that mediates intracellular acidification in fungi. Here we show functional diversity of V-ATPase subunit H (BbVmaH) in Beauveria bassiana, a filamentous fungal insect pathogen. Deletion of BbvmaH resulted in elevated vacuolar pH, increased Ca(2+) level in cytosol but not in vacuoles, accelerated culture acidification and reduced accumulation of extracellular ammonia. Aerial conidiation and submerged blastospore production were largely delayed and reduced in the deletion mutant, respectively, accompanied with a significant delay in conidial germination, alterations of conidia and blastospores in morphology, size and/or density, and severe growth defects in minimal media with different carbon and nitrogen sources. Despite null responses to osmotic, oxidative and cell wall perturbing stresses, the deletion mutant showed increased sensitivity to Ca(2+), Zn(2+) and Cu(2+) during growth while its conidia were less tolerant to a wet-heat stress at 45°C and UV-B irradiation. Intracellular glycerol and mannitol contents also decreased significantly. Its virulence to Galleria mellonella larvae was significantly attenuated when conidia were topically applied for normal cuticle infection or injected into haemocoel for cuticle-bypassing infection. All phenotypic changes were restored by targeted gene complementation. Our results indicate that BbVmaH plays an important role in sustaining not only vacuolar acidification but also cytosolic calcium accumulation, ambient pH homeostasis, in vitro asexual cycle and virulence in B. bassiana.

  17. Disulfide bond formation between the COOH-terminal domain of the beta subunits and the gamma and epsilon subunits of the Escherichia coli F1-ATPase. Structural implications and functional consequences.

    Science.gov (United States)

    Aggeler, R; Haughton, M A; Capaldi, R A

    1995-04-21

    A set of mutants of the Escherichia coli F1F0-type ATPase has been generated by site-directed mutagenesis as follows: beta E381C, beta S383C, beta E381C/epsilon S108C, and beta S383C/epsilon S108C. Treatment of ECF1 isolated from any of these mutants with CuCl2 induces disulfide bond formation. For the single mutants, beta E381C and beta S383C, a disulfide bond is formed in essentially 100% yield between a beta subunit and the gamma subunit, probably at Cys87 based on the recent structure determination of F1 (Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628). In the double mutants, two disulfide bonds are formed, again in essentially full yield, one between beta and gamma, the other between a beta and the epsilon subunit via Cys108. The same two cross-links are produced with CuCl2 treatment of ECF1F0 isolated from either of the double mutants. These results show that the parts of gamma around residue 87 (a short alpha-helix) and the epsilon subunit interact with different beta subunits. The yield of covalent linkage of beta to gamma is nucleotide dependent and highest in ATP and much lower with ADP in catalytic sites. The yield of covalent linkage of beta to epsilon is also nucleotide dependent but in this case is highest in ADP and much lower in ATP. Disulfide bond formation between either beta and gamma, or beta and epsilon inhibits the ATPase activity of the enzyme in proportion to the yield of the cross-linked product. Chemical modification of the Cys at either position 381 or 383 of the beta subunit inhibits ATPase activity in a manner that appears to be dependent on the size of the modifying reagent. These results are as expected if movements of the catalytic site-containing beta subunits relative to the gamma and epsilon subunits are an essential part of the cooperativity of the enzyme.

  18. Cloning, Characterization, and Distribution of an mRNA Encoding a H+-ATPase α Subunit in the Mantle of Pearl Oyster, Pinctada fucata

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Mitochondrial ATP synthase is responsible for the production of the majority of the cellular ATP,which is composed of two major units: F0 and F1. Although much is known about the active complex (5 subunits (αβγδε)), the role of the α subunit in the catalytic mechanism remains unclear, particularly in bivalve animals. This study first cloned and identified the full-length sequence of the mitochondrial H+-ATP synthase α subunit cDNA gene in Pinctada fucata using the reverse transcriptase polymerase chain reaction (RT-PCR)technique. The Pinctada fucata mitochondrial H+-ATP synthase α subunit contains 1991 nucleotides, with the translation start site at nt 48 (ATG) and the stop codon at nt 1660 (TAA), encoding a polypeptide 553 amino acids in length, which shares high similarity to that of other animals (81% identity to fruit fly, 82% to carp, and 83% to humans). Alignment analysis of the well-conserved amino acid domains in the ATPase α subunit, the α/β signal transduction domain, showed that two residues (Asp358 and Asn359) differ from any other ATP synthase α subunit. In situ hybridization analysis was used to reveal the wide-spread distribution of mitochondrial H+-ATP synthase in various tissues in Pinctada fucata. This work will help further research on pearl energy metabolism to increase the output and quality of pearls to more efficiently utilize our rich pearl oyster resources.

  19. The Arabidopsis P4-ATPase ALA3 requires a ß-subunit to function in phospholipid translocation and secretory vesicle formation

    DEFF Research Database (Denmark)

    Lopez Marques, Rosa Laura

    and in inducing membrane curvature, which is a requirement for vesicle formation. We show that Aminophospholipid ATPase3 (ALA3), a member of the P4-ATPase subfamily in the plant Arabidopsis thaliana, localizes to the Golgi apparatus and that genetic lesions of ALA3 result in impaired growth of roots and shoots....... The root growth defect is accompanied by the failure of the root to release border cells of the root cap. Electron micrograph data suggest that functioning and shedding of border cells are dependent on ALA3, as ala3 mutants are devoid of the characteristic proliferation of slime vesicles at the trans-Golgi...... and transport studies in yeast, at least one member of this family, ALIS1, is likely to serve as an essential ß-subunit of ALA3. We propose that the ALA3/ALIS1 protein complex forms an important part of the Golgi machinery required for secretory processes during plant development. We are currently aiming...

  20. Neurotransmitter release: vacuolar ATPase V0 sector c-subunits in possible gene or cell therapies for Parkinson's, Alzheimer's, and psychiatric diseases.

    Science.gov (United States)

    Higashida, Haruhiro; Yokoyama, Shigeru; Tsuji, Chiharu; Muramatsu, Shin-Ichi

    2017-01-01

    We overview the 16-kDa proteolipid mediatophore, the transmembrane c-subunit of the V0 sector of the vacuolar proton ATPase (ATP6V0C) that was shown to mediate the secretion of acetylcholine. Acetylcholine, serotonin, and dopamine (DA) are released from cell soma and/or dendrites if ATP6V0C is expressed in cultured cells. Adeno-associated viral vector-mediated gene transfer of ATP6V0C into the caudate putamen enhanced the depolarization-induced overflow of endogenous DA in Parkinson-model mice. Motor impairment was ameliorated in hemiparkinsonian model mice when ATP6V0C was expressed with DA-synthesizing enzymes. The review discusses application in the future as a potential tool for gene therapy, cell transplantation therapy, and inducible pluripotent stem cell therapy in neurological diseases, from the view point of recent findings regarding vacuolar ATPase.

  1. Isolation and characterization of BetaM protein encoded by ATP1B4 - a unique member of the Na,K-ATPase {beta}-subunit gene family

    Energy Technology Data Exchange (ETDEWEB)

    Pestov, Nikolay B. [Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Ave., Toledo, OH 43614 (United States); Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997 (Russian Federation); Zhao, Hao [Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Ave., Toledo, OH 43614 (United States); Basrur, Venkatesha [Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109 (United States); Modyanov, Nikolai N., E-mail: nikolai.modyanov@utoledo.edu [Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Ave., Toledo, OH 43614 (United States)

    2011-09-09

    Highlights: {yields} Structural properties of BetaM and Na,K-ATPase {beta}-subunits are sharply different. {yields} BetaM protein is concentrated in nuclear membrane of skeletal myocytes. {yields} BetaM does not associate with a Na,K-ATPase {alpha}-subunit in skeletal muscle. {yields} Polypeptide chain of the native BetaM is highly sensitive to endogenous proteases. {yields} BetaM in neonatal muscle is a product of alternative splice mRNA variant B. -- Abstract: ATP1B4 genes represent a rare instance of the orthologous gene co-option that radically changed functions of encoded BetaM proteins during vertebrate evolution. In lower vertebrates, this protein is a {beta}-subunit of Na,K-ATPase located in the cell membrane. In placental mammals, BetaM completely lost its ancestral role and through acquisition of two extended Glu-rich clusters into the N-terminal domain gained entirely new properties as a muscle-specific protein of the inner nuclear membrane possessing the ability to regulate gene expression. Strict temporal regulation of BetaM expression, which is the highest in late fetal and early postnatal myocytes, indicates that it plays an essential role in perinatal development. Here we report the first structural characterization of the native eutherian BetaM protein. It should be noted that, in contrast to structurally related Na,K-ATPase {beta}-subunits, the polypeptide chain of BetaM is highly sensitive to endogenous proteases that greatly complicated its isolation. Nevertheless, using a complex of protease inhibitors, a sample of authentic BetaM was isolated from pig neonatal skeletal muscle by a combination of ion-exchange and lectin-affinity chromatography followed by SDS-PAGE. Results of the analysis of the BetaM tryptic digest using MALDI-TOF and ESI-MS/MS mass spectrometry have demonstrated that native BetaM in neonatal skeletal muscle is a product of alternative splice mRNA variant B and comprised of 351 amino acid residues. Isolated BetaM protein was

  2. Specific Mutations in Mammalian P4-ATPase ATP8A2 Catalytic Subunit Entail Differential Glycosylation of the Accessory CDC50A Subunit

    DEFF Research Database (Denmark)

    Vestergaard, Anna L.; Mikkelsen, Stine A.; Coleman, Jonathan A.;

    2015-01-01

    P4-ATPases, or flippases, translocate phospholipids between the two leaflets of eukaryotic biological membranes. They are essential to the physiologically crucial phospholipid asymmetry and involved in severe diseases, but their molecular structure and mechanism are still unresolved. Here, we sho...

  3. The subunit b dimer of the FOF1-ATP synthase: interaction with F1-ATPase as deduced by site-specific spin-labeling.

    Science.gov (United States)

    Motz, Christian; Hornung, Tassilo; Kersten, Michael; McLachlin, Derek T; Dunn, Stanley D; Wise, John G; Vogel, Pia D

    2004-11-19

    We have used site-specific spin-labeling of single cysteine mutations within a water-soluble mutant of subunit b of the ATP synthase and employed electron spin resonance (ESR) spectroscopy to obtain information about the binding interactions of the b dimer with F1-ATPase. Interaction of b2 with a delta-depleted F1 (F1-delta) was also studied. The cysteine mutations used for spin-labeling were distributed throughout the cytosolic domain of the b subunit. In addition, each position between residues 101 and 114 of b was individually mutated to cysteine. All mutants were modified with a cysteine-reactive spin label. The room temperature ESR spectra of spin-labeled b2 in the presence of F1 or F1-delta when compared with the spectra of free b2 indicate a tight binding interaction between b2 and F1. The data suggest that b2 packs tightly to F1 between residues 80 and the C terminus but that there are segments of b2 within that region where packing interactions are quite loose. Two-dimensional gel electrophoresis confirmed binding of the modified b mutants to F1-ATPase as well as to F1-delta. Subsequent addition of delta to F1-delta.b2 complex resulted in changes in the ESR spectra, indicating different binding interactions of b to F1 in the presence or absence of delta. The data also suggest that the reconstitution of the ATP synthase is not ordered with respect to these subunits. Additional spectral components observed in b preparations that were spin-labeled between amino acid position 101 and 114 are indicative of either two populations of b subunits with different packing interactions or to helical bending within this region.

  4. Properties and expression of Na+/K+-ATPase α-subunit isoforms in the brain of the swamp eel, Monopterus albus, which has unusually high brain ammonia tolerance.

    Directory of Open Access Journals (Sweden)

    Xiu L Chen

    Full Text Available The swamp eel, Monopterus albus, can survive in high concentrations of ammonia (>75 mmol l(-1 and accumulate ammonia to high concentrations in its brain (4.5 µmol g(-1. Na(+/K(+-ATPase (Nka is an essential transporter in brain cells, and since NH4(+ can substitute for K(+ to activate Nka, we hypothesized that the brain of M. albus expressed multiple forms of Nka α-subunits, some of which might have high K(+ specificity. Thus, this study aimed to clone and sequence the nka α-subunits from the brain of M. albus, and to determine the effects of ammonia exposure on their mRNA expression and overall protein abundance. The effectiveness of NH4(+ to activate brain Nka from M. albus and Mus musculus was also examined by comparing their Na(+/K(+-ATPase and Na(+/NH4(+-ATPase activities over a range of K(+/NH4(+ concentrations. The full length cDNA coding sequences of three nkaα (nkaα1, nkaα3a and nkaα3b were identified in the brain of M. albus, but nkaα2 expression was undetectable. Exposure to 50 mmol l(-1 NH4Cl for 1 day or 6 days resulted in significant decreases in the mRNA expression of nkaα1, nkaα3a and nkaα3b. The overall Nka protein abundance also decreased significantly after 6 days of ammonia exposure. For M. albus, brain Na(+/NH4(+-ATPase activities were significantly lower than the Na(+/K(+-ATPase activities assayed at various NH4(+/K(+ concentrations. Furthermore, the effectiveness of NH4(+ to activate Nka from the brain of M. albus was significantly lower than that from the brain of M. musculus, which is ammonia-sensitive. Hence, the (1 lack of nkaα2 expression, (2 high K(+ specificity of K(+ binding sites of Nkaα1, Nkaα3a and Nkaα3b, and (3 down-regulation of mRNA expression of all three nkaα isoforms and the overall Nka protein abundance in response to ammonia exposure might be some of the contributing factors to the high brain ammonia tolerance in M. albus.

  5. In vivo affinity label of a protein expressed in Escherichia coli. Coenzyme A occupied the AT(D)P binding site of the mutant F1-ATPase beta subunit (Y307C) through a disulfide bond.

    Science.gov (United States)

    Odaka, M; Kiribuchi, K; Allison, W S; Yoshida, M

    1993-12-27

    When Tyr-307 of the beta subunit of F1-ATPase from a thermophilic Bacillus strain PS3 is replaced by cysteine and expressed in Escherichia coli cells, about a half population of the mutant beta subunit are labeled by Coenzyme A at Cys-307 through a disulfide bond which is cleavable by reducing treatment. The mutant beta subunit can be reconstituted into the alpha 3 beta 3 complex of which ATPase activity is stimulated two-fold by reducing treatment either prior or after reconstitution. Since Tyr-307 has been supposed to be located at one of subdomains which form the ATP binding site of the beta subunit, Coenzyme A binds to the mutant beta subunit as an AT(D)P analogue in E. coli cells and then covalently attaches to Cys-307.

  6. Mutations affecting the high affinity ATPase center of gpA, the large subunit of bacteriophage lambda terminase, inactivate the endonuclease activity of terminase.

    Science.gov (United States)

    Hwang, Y; Feiss, M

    1996-08-30

    Phage lambda terminase carries out the cos cleavage reaction that generates mature chromosomes from immature concatemeric DNA. The ATP-stimulated endonuclease activity of terminase is located in gpA, the large terminase subunit. There is a high affinity ATPase center in gpA, and a match to the conserved P-loop of known ATPases is found starting near residue 490. Changing the conserved P-loop lysine at residue 497 of gpA affects the high affinity ATPase activity of terminase. In the present work, mutations causing the gpA changes K497A and K497D were found to be lethal, and phages carrying these mutations were defective in cos cleavage, in vivo. Purified K497A and K497D enzymes cleaved cos in vitro at rates reduced from the wild-type rate by factors of 1000 and 2000, respectively. The strong defects in cos cleavage are sufficient to explain the lethality of the K497A and K497D defects. In in vitro packaging studies using mature (cleaved) phage DNA, the K497A enzyme was indistinguishable from the wild-type enzyme, and the K497D enzyme showed a mild packaging defect under limiting terminase conditions. In a purified DNA packaging system, the wild-type and K497D enzymes showed similar packaging activities that were stimulated to half-maximal levels at about 3 microM ATP, indicating that the K497D change does not affect DNA translocation. In sum, the work indicates that the high affinity ATPase center of gpA is involved in stimulation of the endonuclease activity of terminase.

  7. Integration of F1 and the membrane sector of the proton-ATPase of Escherichia coli. Role of subunit "b" (uncF protein).

    Science.gov (United States)

    Perlin, D S; Cox, D N; Senior, A E

    1983-08-25

    Membranes derived from the Escherichia coli strain AN1460 which carries the multicopy plasmid pAN45 (unc+) (Downie, J. A., Langman, L., Cox, G. B., Yanofsky, C., and Gibson, (1980) J. Bacteriol. 143, 8-17) were enriched 5- to 10-fold in proton-ATPase activity. Incubation of F1-depleted AN1460 membranes with trypsin abolished F1-binding ability but did not inhibit proton transport through the membrane sector (F0). Sodium dodecyl sulfate-gel electrophoresis indicated that subunit "b" (uncF protein) of F0 was cleaved by trypsin and prebound F1 protected against the trypsin effect. Subunits "a" (uncB protein) and "c" (uncE protein) were unaffected by the trypsin treatment. A water-soluble fragment (Mr = 14,800) was liberated after trypsin treatment and appeared to arise from subunit b. Studies of enzyme hybridization and of F1 binding to membranes derived from strains containing mutations in uncB, F, and E genes supported the suggestion that subunit b is involved in F1 binding to the F0. Also, extraction of membranes with KSCN increased the relative proportion of subunit b in the membrane and this coincided with a parallel increase in trypsin-sensitive F1-binding ability. It is proposed that subunit b is involved in binding of F1 to the F0; this agrees with the presumed role of the protein as deduced from predictions of its secondary and tertiary structure (Walker, J. E., Saraste, M., and Gay, N. J. (1982) Nature (Lond.) 298, 867-869; Senior, A. E. (1983) Biochim. Biophys. Acta, in press).

  8. Reactions of a fluorescent ATP analog, 2'-(5-dimethyl-aminonaphthalene-1-sulfonyl) amino-2'-deoxyATP, with E. coli F1-ATPase and its subunits: the roles of the high affinity binding site in the alpha subunit and the low affinity binding site in the beta subunit.

    Science.gov (United States)

    Matsuoka, I; Takeda, K; Futai, M; Tonomura, Y

    1982-11-01

    We performed kinetic studies on the reactions of a fluorescent ATP analog, 2'-(5-dimethyl-aminonaphthalene-1-sulfonyl) amino-2'-deoxyATP (DNS-ATP), with E. coli F1-ATPase (EF1) and its subunits, to clarify the role of each subunit in the ATPase reaction. The following results were obtained. 1. One mol of EF1, which contains nonexchangeable 2 mol ATP and 0.5 mol ADP, binds 3 mol of DNS-ATP. The apparent dissociation constant, in the presence of Mg2+, was 0.23 microM. Upon binding, the fluorescence intensity of DNS-ATP at 520 nm increased exponentially with t1/2 of 35 s, and reached 3.5 times the original fluorescence level. Following the fluorescence increase, DNS-ATP was hydrolyzed, and the fluorescence intensity maintained its enhanced level. 2. The addition of an excess of ATP over the EF1-DNS-nucleotide complex, in the presence of Mg2+, decreased the fluorescence intensity rapidly, indicating the acceleration of DNS-nucleotide release from EF1. ADP and GTP also decreased the fluorescence intensity. 3. DCCD markedly inhibited the accelerating effect of ATP on DNS-nucleotide release from EF1 and the EF1-DNS-ATPase or -ATPase activity in a steady state. On the other hand, DCCD only slightly inhibited the fluorescence increase of DNS-ATP, due to its binding to EF1, and the rate of single cleavage of 1 mol of DNS-ATP per mol of alpha subunit of EF1. 4. In the presence of Mg2+, 0.65-0.82 mol of DNS-ATP binds to 1 mol of the isolated alpha subunit of EF1 with an apparent dissociation constant of 0.06-0.07 microM. Upon binding, the fluorescence intensity of DNS-ATP at 520 nm increased 1.55 fold very rapidly (t1/2 less than 1 s). No hydrolysis of DNS-ATP was observed upon the addition of the isolated alpha subunit. The fluorescence intensity of DNS-ATP was unaffected by the addition of the isolated beta subunit. DNS-ATP was also unhydrolyzed by the isolated beta subunit. 5. EF1-ATPase was reconstituted from alpha, beta, and gamma subunits in the presence of Mg2+ and ATP

  9. The helical domain of the EcoR124I motor subunit participates in ATPase activity and dsDNA translocation

    Directory of Open Access Journals (Sweden)

    Vitali Bialevich

    2017-01-01

    Full Text Available Type I restriction-modification enzymes are multisubunit, multifunctional molecular machines that recognize specific DNA target sequences, and their multisubunit organization underlies their multifunctionality. EcoR124I is the archetype of Type I restriction-modification family IC and is composed of three subunit types: HsdS, HsdM, and HsdR. DNA cleavage and ATP-dependent DNA translocation activities are housed in the distinct domains of the endonuclease/motor subunit HsdR. Because the multiple functions are integrated in this large subunit of 1,038 residues, a large number of interdomain contacts might be expected. The crystal structure of EcoR124I HsdR reveals a surprisingly sparse number of contacts between helicase domain 2 and the C-terminal helical domain that is thought to be involved in assembly with HsdM. Only two potential hydrogen-bonding contacts are found in a very small contact region. In the present work, the relevance of these two potential hydrogen-bonding interactions for the multiple activities of EcoR124I is evaluated by analysing mutant enzymes using in vivo and in vitro experiments. Molecular dynamics simulations are employed to provide structural interpretation of the functional data. The results indicate that the helical C-terminal domain is involved in the DNA translocation, cleavage, and ATPase activities of HsdR, and a role in controlling those activities is suggested.

  10. The helical domain of the EcoR124I motor subunit participates in ATPase activity and dsDNA translocation

    Science.gov (United States)

    Shamayeva, Katsiaryna; Guzanova, Alena; Řeha, David; Csefalvay, Eva; Carey, Jannette; Weiserova, Marie

    2017-01-01

    Type I restriction-modification enzymes are multisubunit, multifunctional molecular machines that recognize specific DNA target sequences, and their multisubunit organization underlies their multifunctionality. EcoR124I is the archetype of Type I restriction-modification family IC and is composed of three subunit types: HsdS, HsdM, and HsdR. DNA cleavage and ATP-dependent DNA translocation activities are housed in the distinct domains of the endonuclease/motor subunit HsdR. Because the multiple functions are integrated in this large subunit of 1,038 residues, a large number of interdomain contacts might be expected. The crystal structure of EcoR124I HsdR reveals a surprisingly sparse number of contacts between helicase domain 2 and the C-terminal helical domain that is thought to be involved in assembly with HsdM. Only two potential hydrogen-bonding contacts are found in a very small contact region. In the present work, the relevance of these two potential hydrogen-bonding interactions for the multiple activities of EcoR124I is evaluated by analysing mutant enzymes using in vivo and in vitro experiments. Molecular dynamics simulations are employed to provide structural interpretation of the functional data. The results indicate that the helical C-terminal domain is involved in the DNA translocation, cleavage, and ATPase activities of HsdR, and a role in controlling those activities is suggested. PMID:28133570

  11. SNP detection in Na/K ATP-ase gene α1 subunit of bisexual and parthenogenetic Artemia strains by RFLP screening.

    Science.gov (United States)

    Manaffar, R; Zare, S; Agh, N; Abdolahzadeh, N; Soltanian, S; Sorgeloos, P; Bossier, P; Van Stappen, G

    2011-01-01

    In order to find a marker for differentiating between a bisexual and a parthenogenetic Artemia strain, Exon-7 of the Na/K ATPase α(1) subunit gene was screened by RFLP technique. The results revealed a constant synonymous SNP (single nucleotide polymorphism) in digestion by the Tru1I enzyme that was consistent with these two types of Artemia. This SNP was identified as an accurate molecular marker for discrimination between bisexual and parthenogenetic Artemia. According to the Nei's genetic distance (1973), the lowest genetic distance was found between individuals from Artemia urmiana Günther 1890 and parthenogenetic populations, making the described marker the first marker to easily distinguish between these two cooccurring species.

  12. Rotary ATPases

    Science.gov (United States)

    Stewart, Alastair G.; Sobti, Meghna; Harvey, Richard P.; Stock, Daniela

    2013-01-01

    Rotary ATPases are molecular rotary motors involved in biological energy conversion. They either synthesize or hydrolyze the universal biological energy carrier adenosine triphosphate. Recent work has elucidated the general architecture and subunit compositions of all three sub-types of rotary ATPases. Composite models of the intact F-, V- and A-type ATPases have been constructed by fitting high-resolution X-ray structures of individual subunits or sub-complexes into low-resolution electron densities of the intact enzymes derived from electron cryo-microscopy. Electron cryo-tomography has provided new insights into the supra-molecular arrangement of eukaryotic ATP synthases within mitochondria and mass-spectrometry has started to identify specifically bound lipids presumed to be essential for function. Taken together these molecular snapshots show that nano-scale rotary engines have much in common with basic design principles of man made machines from the function of individual “machine elements” to the requirement of the right “fuel” and “oil” for different types of motors. PMID:23369889

  13. Na~+/K~+-ATPase β1 subunit interacts with M2 proteins of influenza A and B viruses and affects the virus replication

    Institute of Scientific and Technical Information of China (English)

    GAO; George; Fu

    2010-01-01

    Interplay between the host and influenza virus has a pivotal role for the outcome of infection.The matrix proteins M2/BM2 from influenza (A and B) viruses are small type III integral membrane proteins with a single transmembrane domain,a short amino-terminal ectodomain and a long carboxy-terminal cytoplasmic domain.They function as proton channels,mainly forming a membrane-spanning pore through the transmembrane domain tetramer,and are essential for virus assembly and release of the viral genetic materials in the endosomal fusion process.However,little is known about the host factors which interact with M2/BM2 proteins and the functions of the long cytoplasmic domain are currently unknown.Starting with yeast two-hybrid screening and applying a series of experiments we identified that the β1 subunit of the host Na+/K+-ATPase β1 subunit (ATP1B1) interacts with the cytoplasmic domain of both the M2 and BM2 proteins.A stable ATP1B1 knockdown MDCK cell line was established and we showed that the ATP1B1 knockdown suppressed influenza virus A/WSN/33 replication,implying that the interaction is crucial for influenza virus replication in the host cell.We propose that influenza virus M2/BM2 cytoplasmic domain has an important role in the virus-host interplay and facilitates virus replication.

  14. Wfs1-deficient animals have brain-region-specific changes of Na+, K+-ATPase activity and mRNA expression of α1 and β1 subunits.

    Science.gov (United States)

    Sütt, S; Altpere, A; Reimets, R; Visnapuu, T; Loomets, M; Raud, S; Salum, T; Mahlapuu, R; Kairane, C; Zilmer, M; Vasar, E

    2015-03-01

    Mutations in the WFS1 gene, which encodes the endoplasmic reticulum (ER) glycoprotein, cause Wolfram syndrome, a disease characterized by juvenile-onset diabetes mellitus, optic atrophy, deafness, and different psychiatric abnormalities. Loss of neuronal cells and pancreatic β-cells in Wolfram syndrome patients is probably related to the dysfunction of ER stress regulation, which leads to cell apoptosis. The present study shows that Wfs1-deficient mice have brain-region-specific changes in Na(+),K(+)-ATPase activity and in the expression of the α1 and β1 subunits. We found a significant (1.6-fold) increase of Na-pump activity and β1 subunit mRNA expression in mice lacking the Wfs1 gene in the temporal lobe compared with their wild-type littermates. By contrast, exposure of mice to the elevated plus maze (EPM) model of anxiety decreased Na-pump activity 1.3-fold in the midbrain and dorsal striatum and 2.0-fold in the ventral striatum of homozygous animals compared with the nonexposed group. Na-pump α1 -subunit mRNA was significantly decreased in the dorsal striatum and midbrain of Wfs1-deficient homozygous animals compared with wild-type littermates. In the temporal lobe, an increase in the activity of the Na-pump is probably related to increased anxiety established in Wfs1-deficient mice, whereas the blunted dopamine function in the forebrain of Wfs1-deficient mice may be associated with a decrease of Na-pump activity in the dorsal and ventral striatum and in the midbrain after exposure to the EPM.

  15. Roles of three branchial Na(+)-K(+)-ATPase α-subunit isoforms in freshwater adaptation, seawater acclimation, and active ammonia excretion in Anabas testudineus.

    Science.gov (United States)

    Ip, Yuen K; Loong, Ai M; Kuah, Jie S; Sim, Eugene W L; Chen, Xiu L; Wong, Wai P; Lam, Siew H; Delgado, Inês L S; Wilson, Jonathan M; Chew, Shit F

    2012-07-01

    Three Na(+)-K(+)-ATPase (nka) α-subunit isoforms, nka α1a, nka α1b, and nka α1c, were identified from gills of the freshwater climbing perch Anabas testudineus. The cDNA sequences of nka α1a and nka α1b consisted of 3,069 bp, coding for 1,023 amino acids, whereas nka α1c was shorter by 22 nucleotides at the 5' end. In freshwater, the quantity of nka α1c mRNA transcripts present in the gills was the highest followed by nka α1a and nka α1b that was almost undetectable. The mRNA expression of nka α1a was downregulated in the gills of fish acclimated to seawater, indicating that it could be involved in branchial Na(+) absorption in a hypoosmotic environment. By contrast, seawater acclimation led to an upregulation of the mRNA expression of nka α1b and to a lesser extent nka α1c, indicating that they could be essential for ion secretion in a hyperosmotic environment. More importantly, ammonia exposure led to a significant upregulation of the mRNA expression of nka α1c, which might be involved in active ammonia excretion. Both seawater acclimation and ammonia exposure led to significant increases in the protein abundance and changes in the kinetic properties of branchial Na(+)-K(+)-ATPase (Nka), but they involved two different types of Nka-immunoreactive cells. Since there was a decrease in the effectiveness of NH(4)(+) to substitute for K(+) to activate branchial Nka from fish exposed to ammonia, Nka probably functioned to remove excess Na(+) and to transport K(+) instead of NH(4)(+) into the cell to maintain intracellular Na(+) and K(+) homeostasis during active ammonia excretion.

  16. The roles of Na⁺/K⁺-ATPase α-subunit gene from the ridgetail white prawn Exopalaemon carinicauda in response to salinity stresses.

    Science.gov (United States)

    Li, Jitao; Ma, Peng; Liu, Ping; Chen, Ping; Li, Jian

    2015-02-01

    Na(+)/K(+)-ATPase (NAK) is one important transporter protein and plays a key role in maintaining osmotic homeostasis in low and high salinity acclimation in variety of crustacean species. The ridgetail white prawn Exopalaemon carinicauda is an euryhaline and economic shrimp species in China, but it remains unclear about its mechanism of salinity adaption. In this study, a full-length of Na(+)/K(+)-ATPase α-subunit (α-NAK) cDNA was cloned from E. carinicauda by using rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of α-NAK was of 3680 bp, containing an open reading frame (ORF) of 3030 bp encoding a polypeptide of 1009 amino acids with the predicted molecular weight of 112.27 kDa. Eight transmembrane domains and two sites of phosphorylation and ATP binding were identified in E. carinicauda α-NAK. BLAST analysis revealed that the sequence of α-NAK amino acids of E. carinicauda shared more than 75% homologies with those of other crustacean. Real time quantitative RT-PCR analysis indicated that E. carinicauda α-NAK gene could be detected in all the tested tissues with highest expression level in gill. The expression profiles of E. carinicauda α-NAK transcripts were analyzed in gill and hepatopancreas tissues after salinity stresses. The results showed that the expression level of E. carinicauda α-NAK gene in both gill and hepatopancreas reached peak at different time after low and high salinity stresses, and showed different expression profiles. The expression profiles of proPO transcripts in gills after salinity stresses also indicated α-NAK and proPO played synergistic actions for salinity responses in E. carinicauda. These results indicated that E. carinicauda α-NAK involved in stress responses against salinity.

  17. Gene fusions with human carbonic anhydrase II for efficient expression and rapid single-step recovery of recombinant proteins: expression of the Escherichia coli F1-ATPase epsilon subunit.

    Science.gov (United States)

    Van Heeke, G; Shaw, R; Schnizer, R; Couton, J M; Schuster, S M; Wagner, F W

    1993-08-01

    A new expression vector was constructed which allows the overproduction in Escherichia coli of tripartite proteins consisting of human carbonic anhydrase isozyme II (hCAII), a peptide linker containing an enterokinase cleavage site, and a target protein of interest. Carbonic anhydrase is soluble and stable in E. coli and serves as a highly specific purification tag in the recovery of the fusion protein by a single affinity chromatography step. The enterokinase cleavage site was engineered into the construct to allow accurate and efficient release of the target protein. To demonstrate the practical value of this vector, the E. coli F1-ATPase epsilon subunit was expressed as a fusion with hCAII. After a single purification step, biologically active recombinant E. coli F1-ATPase epsilon subunit was recovered following proteolytic removal of the hCAII moiety.

  18. Cloning and characterization of a V-ATPase subunit C from the American visceral leishmaniasis vector Lutzomyia longipalpis modulated during development and blood ingestion

    Directory of Open Access Journals (Sweden)

    JM Ramalho-Ortigão

    2007-06-01

    Full Text Available Visceral leishmaniasis (VL is a serious tropical disease that affects approximately 500 thousand people worldwide every year. In the Americas, VL is caused by the parasite Leishmania (Leishmania infantum chagasi mainly transmitted by the bite of the sand fly vector Lutzomyia longipalpis. Despite recent advances in the study of interaction between Leishmania and sand flies, very little is known about sand fly protein expression profiles. Understanding how the expression of proteins may be affected by blood feeding and/or presence of parasite in the vector's midgut might allow us to devise new strategies for controlling the spread of leishmaniasis. In this work, we report the characterization of a vacuolar ATPase subunit C from L. longipalpis by screening of a midgut cDNA library with a 220 bp fragment identified by means of differential display reverse transcriptase-polymerase chain reaction analysis. The expression of the gene varies along insect development and is upregulated in males and bloodfed L. longipalpis, compared to unfed flies.

  19. Regulation of the Na,K-ATPase gamma-subunit FXYD2 by Runx1 and Ret signaling in normal and injured non-peptidergic nociceptive sensory neurons.

    Directory of Open Access Journals (Sweden)

    Stéphanie Ventéo

    Full Text Available Dorsal root ganglia (DRGs contain the cell bodies of sensory neurons which relay nociceptive, thermoceptive, mechanoceptive and proprioceptive information from peripheral tissues toward the central nervous system. These neurons establish constant communication with their targets which insures correct maturation and functioning of the somato-sensory nervous system. Interfering with this two-way communication leads to cellular, electrophysiological and molecular modifications that can eventually cause neuropathic conditions. In this study we reveal that FXYD2, which encodes the gamma-subunit of the Na,K-ATPase reported so far to be mainly expressed in the kidney, is induced in the mouse DRGs at postnatal stages where it is restricted specifically to the TrkB-expressing mechanoceptive and Ret-positive/IB4-binding non-peptidergic nociceptive neurons. In non-peptidergic nociceptors, we show that the transcription factor Runx1 controls FXYD2 expression during the maturation of the somato-sensory system, partly through regulation of the tyrosine kinase receptor Ret. Moreover, Ret signaling maintains FXYD2 expression in adults as demonstrated by the axotomy-induced down-regulation of the gene that can be reverted by in vivo delivery of GDNF family ligands. Altogether, these results establish FXYD2 as a specific marker of defined sensory neuron subtypes and a new target of the Ret signaling pathway during normal maturation of the non-peptidergic nociceptive neurons and after sciatic nerve injury.

  20. An intact F1ATPase alpha-subunit gene and a pseudogene with differing genomic organization are detected in both male-fertile and CMS petunia mitochondria.

    Science.gov (United States)

    Yesodi, V; Hauschner, H; Tabib, Y; Firon, N

    1997-11-01

    The gene copies for the alpha-subunit of the mitochondrial F1ATPase (atpA) were isolated and characterized in both male-fertile and cytoplasmic male sterile (CMS) petunia. Two copies, an intact gene and a truncated gene, were detected in both cytoplasms. The accumulated data, based upon a comparison of the sequences (the open reading frames as well as the 5' and 3' flanking regions) of the two atpA copies, both in male-fertile and CMS Petunia, indicate that: (1) they differ in their genomic organization and (2) a common progenitor cytoplasm, containing two copies of an intact atpA sequence, served as the origin for the atpA copies of the fertility and CMS-inducing cytoplasms. Homologous recombination through the progenitor intact atpA sequences is assumed to have caused the rearrangement in the 3' portion of the atpA open reading frame and the generation of the truncated atpA gene. It is thus suggested that the atpA pseudogenes, in both male-fertile and CMS cytoplasms, originated from a common progenitor atpA pseudogene sequence.

  1. Structure-function relationships in the Na,K-ATPase. cap alpha. subunit: site-directed mutagenesis of glutamine-111 to arginine and asparagine-122 to aspartic acid generates a ouabain-resistant enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Price, E.M.; Lingrel, J.B.

    1988-11-01

    Na,K-ATPases from various species differ greatly in their sensitivity to cardiac glycosides such as ouabain. The sheep and human enzymes are a thousand times more sensitive than the corresponding ones from rat and mouse. To define the region of the ..cap alpha..1 subunit responsible for this differential sensitivity, chimeric cDNAs of sheep and rat were constructed and expressed in ouabain-sensitive HeLa cells. The construct containing the amino-terminal half of the rat ..cap alpha..1 subunit coding region and carboxyl-terminal half of the sheep conferred the ouabain-resistant phenotype to HeLa cells while the reverse construct did not. This indicates that the determinants involved in ouabain sensitivity are located in the amino-terminal half of the Na,K-ATPase ..cap alpha.. subunit. By use of site-directed mutagenesis, the amino acid sequence of the first extracellular domain (H1-H2) of the sheep ..cap alpha..1 subunit was changed to that of the rat. When expressed in HeLa cells, this mutated sheep ..cap alpha..1 construct, like the rat/sheep chimera, was able to confer ouabain resistance to these cells. Furthermore, similar results were observed when HeLa cells were transfected with a sheep ..cap alpha..1 cDNA containing only two amino acid substitutions. The resistant cells, whether transfected with the rat ..cap alpha..1 cDNA, the rat/sheep chimera, or the mutant sheep ..cap alpha..1 cDNAs, exhibited identical biochemical characteristics including ouabain-inhibitable cell growth, /sup 86/Rb/sup +/ uptake, and Na,K-ATPase activity. These results demonstrate that the presence of arginine and aspartic acid on the amino end and carboxyl end, respectively, of the H1-H2 extracellular domain of the Na,K-ATPase ..cap alpha.. subunit together is responsible for the ouabain-resistant character of the rat enzyme and the corresponding residues in the sheep ..cap alpha..1 subunit (glutamine and asparagine) are somehow involved in ouabain binding.

  2. Na+, K+-ATPase Subunit Composition in a Human Chondrocyte Cell Line; Evidence for the Presence of α1, α3, β1, β2 and β3 Isoforms

    Directory of Open Access Journals (Sweden)

    Ali Mobasheri

    2012-04-01

    Full Text Available Membrane transport systems participate in fundamental activities such as cell cycle control, proliferation, survival, volume regulation, pH maintenance and regulation of extracellular matrix synthesis. Multiple isoforms of Na+, K+-ATPase are expressed in primary chondrocytes. Some of these isoforms have previously been reported to be expressed exclusively in electrically excitable cells (i.e., cardiomyocytes and neurons. Studying the distribution of Na+, K+-ATPase isoforms in chondrocytes makes it possible to document the diversity of isozyme pairing and to clarify issues concerning Na+, K+-ATPase isoform abundance and the physiological relevance of their expression. In this study, we investigated the expression of Na+, K+-ATPase in a human chondrocyte cell line (C-20/A4 using a combination of immunological and biochemical techniques. A panel of well-characterized antibodies revealed abundant expression of the α1, β1 and β2 isoforms. Western blot analysis of plasma membranes confirmed the above findings. Na+, K+-ATPase consists of multiple isozyme variants that endow chondrocytes with additional homeostatic control capabilities. In terms of Na+, K+-ATPase expression, the C-20/A4 cell line is phenotypically similar to primary and in situ chondrocytes. However, unlike freshly isolated chondrocytes, C-20/A4 cells are an easily accessible and convenient in vitro model for the study of Na+, K+-ATPase expression and regulation in chondrocytes.

  3. Dopamine release via the vacuolar ATPase V0 sector c-subunit, confirmed in N18 neuroblastoma cells, results in behavioral recovery in hemiparkinsonian mice.

    Science.gov (United States)

    Jin, Duo; Muramatsu, Shin-Ichi; Shimizu, Nobuaki; Yokoyama, Shigeru; Hirai, Hirokazu; Yamada, Kiyofumi; Liu, Hong-Xiang; Higashida, Chiharu; Hashii, Minako; Higashida, Akihiko; Asano, Masahide; Ohkuma, Shoji; Higashida, Haruhiro

    2012-11-01

    A 16-kDa proteolipid, mediatophore, in Torpedo electric organs mediates Ca(2+)-dependent acetylcholine release. Mediatophore is identical to the pore-forming stalk c-subunit of the V0 sector of vacuolar proton ATPase (ATP6V0C). The function of ATP6V0C in the mammalian central nervous system is not clear. Here, we report transfection of adeno-associated viral vectors harboring rat ATP6V0C into the mouse substantia nigra, in which high potassium stimulation increased overflow of endogenous dopamine (DA) measured in the striatum by in vivo microdialysis. Next, in the striatum of 6-hydroxydopamine-lesioned mice, a model of Parkinson's disease (PD), human tyrosine hydroxylase, aromatic l-amino-acid decarboxylase and guanosine triphosphate cyclohydrolase 1, together with or without ATP6V0C, were expressed in the caudoputamen for rescue. Motor performance on the accelerating rotarod test and amphetamine-induced ipsilateral rotation were improved in the rescued mice coexpressing ATP6V0C. [(3)H]DA, taken up into cultured N18 neuronal tumor cells transformed to express ATP6V0C, was released by potassium stimulation. These results indicated that ATP6V0C mediates DA release from nerve terminals in the striatum of DA neurons of normal mice and from gene-transferred striatal cells of parkinsonian mice. The results suggested that ATP6V0C may be useful as a rescue molecule in addition to DA-synthetic enzymes in the gene therapy of PD.

  4. Complete inhibition of the tentoxin-resistant F1-ATPase from Escherichia coli by the phytopathogenic inhibitor tentoxin after substitution of critical residues in the alpha - and beta -subunit.

    Science.gov (United States)

    Schnick, Claudia; Körtgen, Nicole; Groth, Georg

    2002-12-27

    Substitution of critical residues in the alpha- and beta-subunit can turn the typically resistant ATP synthase from the bacterium Escherichia coli into an enzyme showing high sensitivity to the phytopathogenic inhibitor tentoxin, which usually affects only certain sensitive plant species. In contrast to recent results obtained with the thermophilic F(1) (Groth, G., Hisabori, T., Lill, H., and Bald, D. (2002) J. Biol. Chem. 277, 20117-20119), substitution of a critical serine in the beta-subunit (betaSer(59)), which is supposed to provide an important intermolecular hydrogen bond in the binding site, was not sufficient on its own for conferring tentoxin sensitivity to the E. coli F(1) complex. Superimposition of the chloroplast F(1)-tentoxin inhibitor complex on a homology model of the E. coli F(1) complex provided detailed information on the critical residues in the alpha-subunit of the binding cleft and allowed us to model the binding site according to the steric requirements of the inhibitor. Substitution of the highly conserved residue alphaLeu(64) seems to be most important for allowing access of the inhibitor to the binding site. Combining this substitution with either additional replacements in the alpha-subunit (Q49A, L95A, E96Q, I273M) or the replacement of Ser(59) in the beta-subunit enhanced the sensitivity to the inhibitor and resulted in a complete inhibition of the E. coli F(1)-ATPase by the plant-specific inhibitor tentoxin.

  5. Luminescent Immunoprecipitation System (LIPS) for Detection of Autoantibodies Against ATP4A and ATP4B Subunits of Gastric Proton Pump H+,K+-ATPase in Atrophic Body Gastritis Patients

    Science.gov (United States)

    Lahner, Edith; Brigatti, Cristina; Marzinotto, Ilaria; Carabotti, Marilia; Scalese, Giulia; Davidson, Howard W; Wenzlau, Janet M; Bosi, Emanuele; Piemonti, Lorenzo; Annibale, Bruno; Lampasona, Vito

    2017-01-01

    Objectives: Circulating autoantibodies targeting the H+/K+-ATPase proton pump of gastric parietal cells are considered markers of autoimmune gastritis, whose diagnostic accuracy in atrophic body gastritis, the pathological lesion of autoimmune gastritis, remains unknown. This study aimed to assess autoantibodies against ATP4A and ATP4B subunits of parietal cells H+, K+-ATPase in atrophic body gastritis patients and controls. Methods: One-hundred and four cases with atrophic body gastritis and 205 controls were assessed for serological autoantibodies specific for ATP4A or ATP4B subunits using luminescent immunoprecipitation system (LIPS). Recombinant luciferase-reporter-fused-antigens were expressed by in vitro transcription-translation (ATP4A) or after transfection in Expi293F cells (ATP4B), incubated with test sera, and immune complexes recovered using protein-A-sepharose. LIPS assays were compared with a commercial enzyme immunoassay (EIA) for parietal cell autoantibodies. Results: ATP4A and ATP4B autoantibody titers were higher in cases compared to controls (Pgastritis. Both assays had the highest sensitivity, at the cost of diagnostic accuracy (89 and 90% specificity), outperforming traditional EIA. Once validated, these LIPS assays should be valuable screening tools for detecting biomarkers of damaged atrophic oxyntic mucosa. PMID:28102858

  6. Effects of nitrogen and phosphorus availability on the expression of the coccolith-vesicle V-ATPase (subunit c) of Pleurochrysis (Haptophyta)

    OpenAIRE

    2004-01-01

    The coccolithophores Emiliania and Pleurochrysis demonstrate increased coccolith production when growth is reduced by nitrate or phosphate limitation. The function of enhanced coccolith production under these conditions and its regulation have not been resolved. Studies at the molecular level are ideally suited to determine the exact relationship between calcification and other cellular functions. In a previous study we provided evidence for the presence of a vacuolar H+-ATPase on coccolith v...

  7. Two-stage AMPA receptor trafficking in classical conditioning and selective role for glutamate receptor subunit 4 (tGluA4) flop splice variant.

    Science.gov (United States)

    Zheng, Zhaoqing; Sabirzhanov, Boris; Keifer, Joyce

    2012-07-01

    Previously, we proposed a two-stage model for an in vitro neural correlate of eyeblink classical conditioning involving the initial synaptic incorporation of glutamate receptor A1 (GluA1)-containing α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid type receptors (AMPARs) followed by delivery of GluA4-containing AMPARs that support acquisition of conditioned responses. To test specific elements of our model for conditioning, selective knockdown of GluA4 AMPAR subunits was used using small-interfering RNAs (siRNAs). Recently, we sequenced and characterized the GluA4 subunit and its splice variants from pond turtles, Trachemys scripta elegans (tGluA4). Analysis of the relative abundance of mRNA expression by real-time RT-PCR showed that the flip/flop variants of tGluA4, tGluA4c, and a novel truncated variant tGluA4trc1 are major isoforms in the turtle brain. Here, transfection of in vitro brain stem preparations with anti-tGluA4 siRNA suppressed conditioning, tGluA4 mRNA and protein expression, and synaptic delivery of tGluA4-containing AMPARs but not tGluA1 subunits. Significantly, transfection of abducens motor neurons by nerve injections of tGluA4 flop rescue plasmid prior to anti-tGluA4 siRNA application restored conditioning and synaptic incorporation of tGluA4-containing AMPARs. In contrast, treatment with rescue plasmids for tGluA4 flip or tGluA4trc1 failed to rescue conditioning. Finally, treatment with a siRNA directed against GluA1 subunits inhibited conditioning and synaptic delivery of tGluA1-containing AMPARs and importantly, those containing tGluA4. These data strongly support our two-stage model of conditioning and our hypothesis that synaptic incorporation of tGluA4-containing AMPARs underlies the acquisition of in vitro classical conditioning. Furthermore, they suggest that tGluA4 flop may have a critical role in conditioning mechanisms compared with the other tGluA4 splice variants.

  8. Understanding the mechanisms of ATPase beta family genes for cellular thermotolerance in crossbred bulls

    Science.gov (United States)

    Deb, Rajib; Sajjanar, Basavaraj; Singh, Umesh; Alex, Rani; Raja, T. V.; Alyethodi, Rafeeque R.; Kumar, Sushil; Sengar, Gyanendra; Sharma, Sheetal; Singh, Rani; Prakash, B.

    2015-12-01

    Na+/K+-ATPase is an integral membrane protein composed of a large catalytic subunit (alpha), a smaller glycoprotein subunit (beta), and gamma subunit. The beta subunit is essential for ion recognition as well as maintenance of the membrane integrity. Present study was aimed to analyze the expression pattern of ATPase beta subunit genes (ATPase B1, ATPase B2, and ATPase B3) among the crossbred bulls under different ambient temperatures (20-44 °C). The present study was also aimed to look into the relationship of HSP70 with the ATPase beta family genes. Our results demonstrated that among beta family genes, transcript abundance of ATPase B1 and ATPase B2 is significantly ( P P < 0.01) with HSP70, representing that the change in the expression pattern of these genes is positive and synergistic. These may provide a foundation for understanding the mechanisms of ATPase beta family genes for cellular thermotolerance in cattle.

  9. Conserved polar loop region of Escherichia coli subunit c of the F1F0 H+-ATPase. Glutamine 42 is not absolutely essential, but substitutions alter binding and coupling of F1 to F0.

    Science.gov (United States)

    Fraga, D; Fillingame, R H

    1989-04-25

    The uncE114 mutation (Gln42----Glu) in subunit c of the Escherichia coli H+ ATP synthetase causes uncoupling of proton translocation from ATP hydrolysis (Mosher, M. E., White, L. K., Hermolin, J., and Fillingame, R. H. (1985) J. Biol. Chem. 260, 4807-4814). In the background of strain ER, the mutation led to dissociation of F1 from the membrane. Ten revertants to the uncE114 mutation were isolated, and the uncE gene was cloned and sequenced. Six of the revertants were intragenic and had substitutions of glycine, alanine, or valine for the mutant glutamate residue at position 42. The intragenic, revertant uncE genes were incorporated into an otherwise wild type chromosome of strain ER. Membrane vesicles prepared from each of the revertants showed a restoration of F1 binding to F0. The Val42 revertant differed from the other two revertants in that the ATPase activity of F1 was inhibited when membrane bound. This was shown by the stimulation of ATPase activity when F1 was released from the membrane. The Gly42 and Ala42 revertants demonstrated membrane ATPase activity that was resistant to dicyclohexylcarbodiimide treatment. Resistance was shown to be due to the increased dissociation of F1 from the membrane under ATPase assay conditions. The Ala42 revertant showed a significant reduction in ATP-dependent quenching of quinacrine fluorescence that was attributed to less efficient coupling of ATP hydrolysis to H+ translocation, whereas the other revertants showed responses very near to that of wild type. Minor changes in the F1-F0 interaction in all three revertants were indicated by an increase in H+ leakiness, as judged by reduced NADH-dependent quenching of quinacrine fluorescence. The minor defects in the revertants support the idea that residue 42 is involved in the binding and coupling of F1 to F0 but also show that the conserved glutamine (or asparagine) is not absolutely necessary in this function.

  10. Structures of the thermophilic F1-ATPase epsilon subunit suggesting ATP-regulated arm motion of its C-terminal domain in F1.

    Science.gov (United States)

    Yagi, Hiromasa; Kajiwara, Nobumoto; Tanaka, Hideaki; Tsukihara, Tomitake; Kato-Yamada, Yasuyuki; Yoshida, Masasuke; Akutsu, Hideo

    2007-07-03

    The epsilon subunit of bacterial and chloroplast F(o)F(1)-ATP synthases modulates their ATP hydrolysis activity. Here, we report the crystal structure of the ATP-bound epsilon subunit from a thermophilic Bacillus PS3 at 1.9-A resolution. The C-terminal two alpha-helices were folded into a hairpin, sitting on the beta sandwich structure, as reported for Escherichia coli. A previously undescribed ATP binding motif, I(L)DXXRA, recognizes ATP together with three arginine and one glutamate residues. The E. coli epsilon subunit binds ATP in a similar manner, as judged on NMR. We also determined solution structures of the C-terminal domain of the PS3 epsilon subunit and relaxation parameters of the whole molecule by NMR. The two helices fold into a hairpin in the presence of ATP but extend in the absence of ATP. The latter structure has more helical regions and is much more flexible than the former. These results suggest that the epsilon C-terminal domain can undergo an arm-like motion in response to an ATP concentration change and thereby contribute to regulation of F(o)F(1)-ATP synthase.

  11. Overexpression of Vacuole H+-ATPase E Subunit Gene SiVHA-Efrom Foxtail Millet Enhances Salt Resistance in Transgenic Arabidopsis thaliana%过表达谷子液泡H+-ATPase E亚基基因在拟南芥中的耐盐性

    Institute of Scientific and Technical Information of China (English)

    冯露; 钟理; 陈丹丹; 马有志; 徐兆师; 李连城; 周永斌; 陈明; 张小红

    2015-01-01

    V-H+-ATPase在植物生长、发育和胁迫响应等生物学过程中发挥重要作用。本研究通过序列比对,从谷子中克隆到V-H+-ATPase E亚基基因SiVHA-E。进化树分析显示,SiVHA-E基因在进化上属于E1/E3亚族,与玉米V-H+-ATPase E亚基基因ZmVHA-EL亲缘关系较近。表达谱分析结果显示,SiVHA-E在高盐、茉莉酸甲酯(MeJA)、水杨酸(SA)和脱落酸(ABA)处理下表达上调,在低温和低氮处理下表达下调。亚细胞定位分析表明 SiVHA-E 定位于液泡膜上。遗传转化拟南芥的耐盐性鉴定表明,在盐处理条件下,转基因株系的种子萌发率、幼苗主根长、植株鲜重及存活率显著高于野生型的。与野生型拟南芥植株相比, SiVHA-E过表达植株体内Na+含量减少,体内相对含水量提高。此外, ABA萌发试验结果显示,在种子萌发后期,SiVHA-E过表达植株对ABA更加敏感。研究表明,谷子SiVHA-E可以显著提高拟南芥耐盐性,这可能与其正向调控ABA信号途径以及减少植株体内Na+积累和水分散失有关。%The V-H+-ATPase plays an important role in processes of plant growth, development and response to stresses. In this research,SiVHA-E,a V-H+-ATPase E subunit gene, was cloned from millet by the Blast analysis against GenBank database. Phy-logenetic tree showed that the gene belongs to E1/E3 subgroup and is close withZmVHA-EL, a V-H+-ATPase E subunit from maize. The quantitative Real-time PCR (qRT-PCR) analysis revealed that the expression levels ofSiVHA-Ewere up-regulated under treatments of high-salt, exogenous MeJA, SA, and ABA hormones, while down-regulated under stresses of cold and low nitrogen. Protein subcellular localization analysis using protoplast showed that SiVHA-E is located on tonoplast. The results of salt tolerance assay showed that the germination rate ofSiVHA-E transgenic lines was significantly higher than that of wild type plant under salt stress. During seedlings period, the root lengths

  12. Absence of the A4 peptide in the G4 glycinin subunit of soybean cultivar Enrei is caused by a point mutation in the Gy4 gene

    Directory of Open Access Journals (Sweden)

    Yu Kangfu

    2005-01-01

    Full Text Available Functional properties of soy proteins for food are closely related to the composition of their storage protein subunits. Using base excision sequence scanning (BESS, we show that the absence of the A4 peptide in the G4 glycinin subunit of the soybean (Glycine max L. cultivar Enrei was caused by the same point mutation in the Gy4 gene as previously reported in the soybean cultivar Raiden. Although the genetic relationship between Raiden and Enrei is not known, the same point mutation in their Gy4 genes may indicate that they probably share a related origin. The application of BESS to identify single nucleotide polymorphisms (SNPs as co-dominant markers for marker-assisted selection (MAS of a recessive null allele is also discussed.

  13. Molecular characterization and transcriptional regulation of the Na +/K+ ATPase α subunit isoforms during development and salinity challenge in a teleost fish, the Senegalese sole (Solea senegalensis).

    Science.gov (United States)

    Armesto, Paula; Campinho, Marco A; Rodríguez-Rúa, Ana; Cousin, Xavier; Power, Deborah M; Manchado, Manuel; Infante, Carlos

    2014-09-01

    In the present work, five genes encoding different Na(+),K(+) ATPase (NKA) α-isoforms in the teleost Solea senegalensis are described for the first time. Sequence analysis of predicted polypeptides revealed a high degree of conservation across teleosts and mammals. Phylogenetic analysis clustered the five genes into three main clades: α1 (designated atp1a1a and atp1a1b), α2 (designated atp1a2) and α3 (designated atp1a3a and atp1a3b) isoforms. Transcriptional analysis in larvae showed distinct expression profiles during development. In juvenile tissues, the atp1a1a gene was highly expressed in osmoregulatory organs, atp1a2 in skeletal muscle, atp1a1b in brain and heart and atp1a3a and atp1a3b mainly in brain. Quantification of mRNA abundance after a salinity challenge showed that atp1a1a transcript levels increased significantly in the gill of soles transferred to high salinity water (60 ppt). In contrast, atp1a3a transcripts increased at low salinity (5 ppt). In situ hybridization (ISH) analysis revealed that the number of ionocytes expressing atp1a1a transcripts in the primary gill filaments was higher at 35 and 60 ppt than at 5 ppt and remained undetectable or at very low levels in the lamellae at 5 and 35 ppt but increased at 60 ppt. Immunohistochemistry showed a higher number of positive cells in the lamellae. Whole-mount analysis of atp1a1a mRNA in young sole larvae revealed that it was localized in gut, pronephric tubule, gill, otic vesicle, yolk sac ionocytes and chordacentrum. Moreover, atp1a1a mRNAs increased at mouth opening (3 DPH) in larvae incubated at 36 ppt with a greater signal in gills.

  14. The coupling ATPase complex: an evolutionary view.

    Science.gov (United States)

    Harris, D A

    1981-01-01

    Phospholipid micelles and vesicles, present in the primordial soup, formed both primitive (surface) catalyst and primitive replicative life forms. With the adoption of a common energy source, ATP, integrated biochemical systems within these vesicles became possible - cells. Fermentation within these primitive cells was favoured by the evolution, first of ion channels allowing protons to leak out, and then of an active ATP-driven pump. In the prokaryotic/mitochondria/chloroplast line, the proton channel was such as to be blocked by dicyclohexylcarbodiimide and the adenosine 5' triphosphate phosphohydrolase (ATPase) by 4-chloro 7-nitrobenzofurazan (Nbf-C1). The ATPase was initially simple (4 subunits) but later, possibly concomitant with its evolution to an ATP synthetase, became more complex (8 subunits). One of the steps in evolution probably involved gene duplication and divergence of 2 subunits (alpha and beta) from the largest of the ATPase subunits. From this stage, the general form of the ATPase was fixed, although sensitivity to, for example, oligomycin involved later, after divergence of the mitochondrial and chloroplast lines. A regulatory protein, the ATPase inhibitor, is found associated with a wide spectrum of coupling ATPases.

  15. Acoustic trauma slows AMPA receptor‐mediated EPSCs in the auditory brainstem, reducing GluA4 subunit expression as a mechanism to rescue binaural function

    Science.gov (United States)

    Pilati, Nadia; Linley, Deborah M.; Selvaskandan, Haresh; Uchitel, Osvaldo; Hennig, Matthias H.; Kopp‐Scheinpflug, Cornelia

    2016-01-01

    Key points Lateral superior olive (LSO) principal neurons receive AMPA receptor (AMPAR) ‐ and NMDA receptor (NMDAR)‐mediated EPSCs and glycinergic IPSCs.Both EPSCs and IPSCs have slow kinetics in prehearing animals, which during developmental maturation accelerate to sub‐millisecond decay time‐constants. This correlates with a change in glutamate and glycine receptor subunit composition quantified via mRNA levels.The NMDAR‐EPSCs accelerate over development to achieve decay time‐constants of 2.5 ms. This is the fastest NMDAR‐mediated EPSC reported.Acoustic trauma (AT, loud sounds) slow AMPAR‐EPSC decay times, increasing GluA1 and decreasing GluA4 mRNA.Modelling of interaural intensity difference suggests that the increased EPSC duration after AT shifts interaural level difference to the right and compensates for hearing loss.Two months after AT the EPSC decay times recovered to control values.Synaptic transmission in the LSO matures by postnatal day 20, with EPSCs and IPSCs having fast kinetics. AT changes the AMPAR subunits expressed and slows the EPSC time‐course at synapses in the central auditory system. Abstract Damaging levels of sound (acoustic trauma, AT) diminish peripheral synapses, but what is the impact on the central auditory pathway? Developmental maturation of synaptic function and hearing were characterized in the mouse lateral superior olive (LSO) from postnatal day 7 (P7) to P96 using voltage‐clamp and auditory brainstem responses. IPSCs and EPSCs show rapid acceleration during development, so that decay kinetics converge to similar sub‐millisecond time‐constants (τ, 0.87 ± 0.11 and 0.77 ± 0.08 ms, respectively) in adult mice. This correlated with LSO mRNA levels for glycinergic and glutamatergic ionotropic receptor subunits, confirming a switch from Glyα2 to Glyα1 for IPSCs and increased expression of GluA3 and GluA4 subunits for EPSCs. The NMDA receptor (NMDAR)‐EPSC decay τ accelerated from >40 ms in

  16. [Nature of membrane ATPase inactivation in an Escherichia coli mutant with genetically impaired ATPase].

    Science.gov (United States)

    Chetkauskaĭte, A V; Planutis, D L; Zimkus, A Z; Akimenko, V K; Grinius, L L

    1980-07-01

    Homogeneous preparations of F1 possessing identical subunit composition have been isolated from the mutant strain of E. coli AN 120 with genetically impaired membrane ATPase and from the wild strain of AN 180. Using ion-exchange chromatography, the subunits alpha and beta of F1 were isolated. It was shown that the alpha- and beta-subunits of both active and genetically impaired F1 have similar molecular weights and total electrical charges.

  17. Differential expression of gill Na+,K+-ATPaseα - and β-subunits, Na+,K+,2Cl- cotransporter and CFTR anion channel in juvenile anadromous and landlocked Atlantic salmon Salmo salar

    Science.gov (United States)

    Nilsen, Tom O.; Ebbesson, Lars O.E.; Madsen, Steffen S.; McCormick, Stephen D.; Andersson, Eva; Bjornsson, Bjorn Thrandur; Prunet, Patrick; Stefansson, Sigurd O.

    2007-01-01

    This study examines changes in gill Na+,K+-ATPase (NKA) α- and β-subunit isoforms, Na+,K+,2Cl- cotransporter (NKCC) and cystic fibrosis transmembrane conductance regulator (CFTR I and II) in anadromous and landlocked strains of Atlantic salmon during parr-smolt transformation, and after seawater (SW) transfer in May/June. Gill NKA activity increased from February through April, May and June among both strains in freshwater (FW), with peak enzyme activity in the landlocked salmon being 50% below that of the anadromous fish in May and June. Gill NKA-α1b, -α3, -β1 and NKCC mRNA levels in anadromous salmon increased transiently, reaching peak levels in smolts in April/May, whereas no similar smolt-related upregulation of these transcripts occurred in juvenile landlocked salmon. Gill NKA-α1a mRNA decreased significantly in anadromous salmon from February through June, whereas α1a levels in landlocked salmon, after an initial decrease in April, remained significantly higher than those of the anadromous smolts in May and June. Following SW transfer, gill NKA-α1b and NKCC mRNA increased in both strains, whereas NKA-α1a decreased. Both strains exhibited a transient increase in gill NKA α-protein abundance, with peak levels in May. Gill α-protein abundance was lower in SW than corresponding FW values in June. Gill NKCC protein abundance increased transiently in anadromous fish, with peak levels in May, whereas a slight increase was observed in landlocked salmon in May, increasing to peak levels in June. Gill CFTR I mRNA levels increased significantly from February to April in both strains, followed by a slight, though not significant increase in May and June. CFTR I mRNA levels were significantly lower in landlocked than anadromous salmon in April/June. Gill CFTR II mRNA levels did not change significantly in either strain. Our findings demonstrates that differential expression of gill NKA-α1a, -α1b and -α3 isoforms may be important for potential functional

  18. Analysis of F1F0-ATPase from Helicobacter pylori.

    OpenAIRE

    1997-01-01

    The adaptive mechanisms that permit Helicobacter species to survive within the gastric mucosa are not well understood. The proton-translocating F1F0-ATPase is an important enzyme for regulating intracellular pH or synthesizing ATP in many other enteric bacteria; therefore, we used degenerate primers derived from conserved bacterial F1F0-ATPase sequences to PCR amplify and clone the gene (atpD) encoding the H. pylori F1F0-ATPase beta subunit. The deduced amino acid sequences of the F1F0-ATPase...

  19. 利用RNAi技术沉默东方粘虫V-ATP酶H亚基研究%Silencing of V-ATPase Subunit H of Mythimna separata through RNA Interference

    Institute of Scientific and Technical Information of China (English)

    张淑静; 王高振; 刘爽; 吴文君; 祁志军

    2015-01-01

    昆虫V ATP酶(vacular-type ATPase)是以ATP为能量跨膜转运H+的质子泵,对其亚基进行干扰都会影响ATPase的活性,进而影响昆虫的生理生化指标.本研究利用特异性引物通过RT-PCR法扩增东方粘虫(Mythimna sepa rata)V-ATPase H亚基的2个片段,合成相应dsRNA,通过显微注射导入3龄粘虫体内,观察试虫表型及存活情况,RT PCR检测试虫体内H亚基的表达.结果表明,注射粘虫V-ATPase H亚基的dsRNA能够显著降低粘虫中肠V-ATPase H亚基的表达水平,直至导致目的基因沉默和粘虫死亡.本项研究成功实现东方粘虫体内V-ATPase H亚基基因沉默.

  20. Purification and Properties of an ATPase from Sulfolobus solfataricus

    Science.gov (United States)

    Hochstein, Lawrence I.; Stan-Lotter, Helga

    1992-01-01

    A sulfite-activated ATPase isolated from Sulfolobus solfataricus had a relative molecular mass of 370,000. It was composed of three subunits whose relative molecular masses were 63,000, 48,000, and 24,000. The enzyme was inhibited by the vacuolar ATPase inhibitors nitrate and N-ethylmaleimide; 4-chloro-7-nitrobenzo-furazan (NBD-Cl) was also inhibitory. N-Ethylmaleimide was predominately bound to the largest subunit while NBD-CL was bound to both subunits. ATPase activity was inhibited by low concentrations of p-chloromercuri-phenyl sulfonate and the inhibition was reversed by cysteine which suggested that thiol groups were essential for activity. While the ATPase from S. solfataricus shared several properties with the ATPase from S. acidocaldarius there were significant differences. The latter enzyme was activated by sulfate and chloride and was unaffected by N-ethylmaleimide, whereas the S. solfataricus ATPase was inhibited by these anions as well as N-ethyimaleimide. These differences as well as differences that occur in other vacuolar-like ATPases isolated from the methanogenic and the extremely halophilic bacteria suggest the existence of several types of archaeal ATPases, none of which have been demonstrated to synthesize ATP.

  1. Regulation of vacuolar H(+)-ATPase in microglia by RANKL.

    Science.gov (United States)

    Serrano, Eric M; Ricofort, Ryan D; Zuo, Jian; Ochotny, Noelle; Manolson, Morris F; Holliday, L Shannon

    2009-11-01

    Vacuolar H(+)-ATPases (V-ATPases) are large electrogenic proton pumps composed of numerous subunits that play vital housekeeping roles in the acidification of compartments of the endocytic pathway. Additionally, V-ATPases play specialized roles in certain cell types, a capacity that is linked to cell type selective expression of isoforms of some of the subunits. We detected low levels of the a3 isoform of the a-subunit in mouse brain extracts. Examination of various brain-derived cell types by immunoblotting showed a3 was expressed in the N9 microglia cell line and in primary microglia, but not in other cell types. The expression of a3 in osteoclasts requires stimulation by Receptor Activator of Nuclear Factor kappaB-ligand (RANKL). We found that Receptor Activator of Nuclear Factor kappaB (RANK) was expressed by microglia. Stimulation of microglia with RANKL triggered increased expression of a3. V-ATPases in microglia were shown to bind microfilaments, and stimulation with RANKL increased the proportion of V-ATPase associated with the detergent-insoluble cytoskeletal fraction and with actin. In summary, microglia express the a3-subunit of V-ATPase. The expression of a3 and the interaction between V-ATPases and microfilaments was modulated by RANKL. These data suggest a novel molecular pathway for regulating microglia.

  2. Regulation of Vacuolar H+-ATPase in Microglia by RANKL

    Science.gov (United States)

    Serrano, Eric M.; Ricofort, Ryan D.; Zuo, Jian; Ochotny, Noelle; Manolson, Morris F.; Holliday, L. Shannon

    2009-01-01

    Vacuolar H+-ATPases (V-ATPases) are large electrogenic proton pumps composed of numerous subunits that play vital housekeeping roles in the acidification of compartments of the endocytic pathway. Additionally, V-ATPase play specialized roles in certain cell types, a capacity that is linked to cell type selective expression of isoforms of some of the subunits. We detected low levels of the a3 isoform of the a-subunit in mouse brain extracts. Examination of various brain-derived cell types by immunoblotting showed a3 was expressed in the N9 microglia cell line and in primary microglia, but not in other cell types. The expression of a3 in osteoclasts requires stimulation by Receptor Activator of Nuclear Factor κ B -ligand (RANKL). We found that Receptor Activator of Nuclear Factor κ B (RANK) was expressed by microglia. Stimulation of microglia with RANKL triggered increased expression of a3. V-ATPases in microglia were shown to bind microfilaments, and stimulation with RANKL increased the proportion of V-ATPase associated with the detergent-insoluble cytoskeletal fraction and with actin. In summary, microglia express the a3-subunit of V-ATPase. The expression of a3 and the interaction between V-ATPases and microfilaments was modulated by RANKL. These data suggest a novel molecular pathway for regulating microglia. PMID:19715671

  3. Evolution of the vacuolar H sup + -ATPase: Implications for the origin of eukaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Gogarten, J.P.; Kibak, H.; Dittrich, P.; Taiz, L.; Bowman, E.J.; Bowman, B.J. (Univ. of California, Santa Cruz (USA)); Manolson, M.F.; Poole, R.J. (McGill Univ., Montreal, Quebec (Canada)); Date, Takayasu (Kanazawa Medical School, Ishikawa (Japan)); Oshima, Tairo; Konishi, Jin; Denda, Kimitoshi; Yoshida, Masasuke (Tokyo Institute of Technology, Yokohama (Japan))

    1989-09-01

    Active transport across the vaculoar components of the eukaryotic endomembrane system is energized by a specific vacuolar H{sup +}-ATPase. The amino acid sequences of the 70- and 60-kDa subunits of the vacuolar H{sup +}-ATPase are {approx}25% identical to the {beta} and {alpha} subunits, respectively, of the eubacterial-type F{sub 0}F{sub 1}-ATPases. The authors now report that the same vacuolar H{sup +}-ATPase subunits are {approx}50% identical to the {alpha} and {beta} subunits, respectively, of the sulfur-metabolizing Sulfolobus acidocaldarius, an archaebacterium (Archaeobacterium). Moreover, the homologue of an 88-amino acid stretch near the amino-terminal end of the 70-kDa subunit is absent from the F{sub 0}F{sub 1}-ATPase {beta} subunit but is present in the {alpha} subunit of Sulfolobus. Since the two types of subunits are homologous to each other, they must have arisen by a gene duplication that occurred prior to the last common ancestor of the eubacteria, eukaryotes, and Sulfolobus. Thus, the phylogenetic tree of the subunits can be rooted at the site where the gene duplication occurred. The inferred evolutionary tree contains two main branches: a eubacterial branch and an eocyte branch that gave rise to Sulfolobus and the eukaryotic host cell. The implication is that the vacuolar H{sup +}-ATPase of eukaryotes arose by the internalization of the plasma membrane H{sup +}-ATPase of an archaebacterial-like ancestral cell.

  4. Interaction between V-ATPase B2 and (Pro) renin Receptors in Promoting the progression of Renal Tubulointerstitial Fibrosis.

    Science.gov (United States)

    Liu, Yun; Zuo, Sujun; Li, Xiaoyan; Fan, Jinjin; Cao, Xueqin; Yu, Xueqing; Yang, Qiongqiong

    2016-04-28

    To investigate the levels of (Pro) renin receptor [(P) RR], α-smooth muscle actin (α-SMA), fibronectin (FN), and vacuolar H(+)-ATPase (V-ATPase) subunits (B2, E, and c) in rat unilateral ureteral obstruction (UUO) models and rat proximal tubular epithelial cells (NRK-52E) treated with prorenin to elucidate the role of V-ATPase in these processes by activating the (P) RR. UUO significantly upregulated (P) RR, V-ATPase subunits, α-SMA and FN expression in tubulointerstitium or tubular epithelial cells. A marked colocalization of (P) RR and the B2 subunit was also observed. Prorenin treatment upregulated α-SMA, FN, (P) RR, and V-ATPase subunits and activity in NRK52E cell in a dose- and time-dependent manner. The V-ATPase inhibitor bafilomycin A1 partially blocked prorenin-induced (P) RR, FN, and α-SMA expression. Co-immunoprecipitate and immunofluorescence results demonstrated that the V-ATPase B2 subunit bound to the (P) RR, which was upregulated after prorenin stimulation. Either siRNA-mediated (P) RR or B2 subunit knockdown partially reduced V-ATPase activity and attenuated prorenin-induced FN and α-SMA expression. From the data we can assume that activation of (P) RR and V-ATPase may play an important role in tubulointerstitial fibrosis with possible involvement of interaction of V-ATPase B2 subunit and (P)RR.

  5. Selective Interaction Between Chloroplast β-ATPase and TGB1L88 Retards Severe Symptoms Caused by Alternanthera mosaic virus Infection

    Directory of Open Access Journals (Sweden)

    Eun-Young Seo

    2014-03-01

    Full Text Available The multifunctional triple gene block protein 1 (TGB1 of the Potexvirus Alternanthera mosaic virus (AltMV has been reported to have silencing suppressor, cell-to-cell movement, and helicase functions. Yeast two hybrid screening using an Arabidopsis thaliana cDNA library with TGB1 as bait, and co-purification with TGB1 inclusion bodies identified several host proteins which interact with AltMV TGB1. Host protein interactions with TGB1 were confirmed by biomolecular fluorescence complementation, which showed positive TGB1 interaction with mitochondrial ATP synthase delta′ chain subunit (ATP synthase delta′, light harvesting chlorophyll-protein complex I subunit A4 (LHCA4, chlorophyll a/b binding protein 1 (LHB1B2, chloroplast-localized IscA-like protein (ATCPISCA, and chloroplast β-ATPase. However, chloroplast β-ATPase interacts only with TGB1L88, and not with weak silencing suppressor TGB1P88. This selective interaction indicates that chloroplast β-ATPase is not required for AltMV movement and replication; however, TRV silencing of chloroplast β-ATPase in Nicotiana benthamiana induced severe tissue necrosis when plants were infected by AltMV TGB1L88 but not AltMV TGB1P88, suggesting that β-ATPase selectively responded to TGB1L88 to induce defense responses.

  6. Regulation of the synthesis and assembly of the plant vacuolar H sup + -ATPase

    Energy Technology Data Exchange (ETDEWEB)

    Taiz, L.

    1992-01-01

    During the past three years we have focused on four main areas: the characterization of the 5{prime}-upstream sequence of the gene for the V-ATPase 70 kDa (A) subunit gene, the generation of V-ATPase-deficient mutants using antisense constructs of the A subunit cDNA, analysis of V-ATPase ultrastructure by negative staining and the characterization of organelle-specific isoforms of the A subunit of carrot. In addition we have extended our studies on the cellular distribution of the V-ATPase and we have continued our investigation of the evolution of the V-ATPases by characterizing the A and B subunits of two species of the archaebacterium, Methanococcus.

  7. Vacuolar H+-ATPase: An Essential Multitasking Enzyme in Physiology and Pathophysiology

    Directory of Open Access Journals (Sweden)

    L. Shannon Holliday

    2014-01-01

    Full Text Available Vacuolar H+-ATPases (V-ATPases are large multisubunit proton pumps that are required for housekeeping acidification of membrane-bound compartments in eukaryotic cells. Mammalian V-ATPases are composed of 13 different subunits. Their housekeeping functions include acidifying endosomes, lysosomes, phagosomes, compartments for uncoupling receptors and ligands, autophagosomes, and elements of the Golgi apparatus. Specialized cells, including osteoclasts, intercalated cells in the kidney and pancreatic beta cells, contain both the housekeeping V-ATPases and an additional subset of V-ATPases, which plays a cell type specific role. The specialized V-ATPases are typically marked by the inclusion of cell type specific isoforms of one or more of the subunits. Three human diseases caused by mutations of isoforms of subunits have been identified. Cancer cells utilize V-ATPases in unusual ways; characterization of V-ATPases may lead to new therapeutic modalities for the treatment of cancer. Two accessory proteins to the V-ATPase have been identified that regulate the proton pump. One is the (prorenin receptor and data is emerging that indicates that V-ATPase may be intimately linked to renin/angiotensin signaling both systemically and locally. In summary, V-ATPases play vital housekeeping roles in eukaryotic cells. Specialized versions of the pump are required by specific organ systems and are involved in diseases.

  8. Regulation of V-ATPase assembly and function of V-ATPases in tumor cell invasiveness.

    Science.gov (United States)

    McGuire, Christina; Cotter, Kristina; Stransky, Laura; Forgac, Michael

    2016-08-01

    V-ATPases are ATP-driven proton pumps that function within both intracellular compartments and the plasma membrane in a wide array of normal physiological and pathophysiological processes. V-ATPases are composed of a peripheral V(1) domain that hydrolyzes ATP and an integral V(0) domain that transports protons. Regulated assembly of the V-ATPase represents an important mechanism of regulating V-ATPase activity in response to a number of environmental cues. Our laboratory has demonstrated that glucose-dependent assembly of the V-ATPase complex in yeast is controlled by the Ras/cAMP/PKA pathway. By contrast, increased assembly of the V-ATPase during dendritic cell maturation involves the PI-3 kinase and mTORC1 pathways. Recently, we have shown that amino acids regulate V-ATPase assembly in mammalian cells, possibly as a means to maintain adequate levels of amino acids upon nutrient starvation. V-ATPases have also been implicated in cancer cell survival and invasion. V-ATPases are targeted to different cellular membranes by isoforms of subunit a, with a3 targeting V-ATPases to the plasma membrane of osteoclasts. We have shown that highly invasive human breast cancer cell lines express higher levels of the a3 isoform than poorly invasive lines and that knockdown of a3 reduces both expression of V-ATPases at the plasma membrane and in vitro invasion of breast tumor cells. Moreover, overexpression of a3 in a non-invasive breast epithelial line increases both plasma membrane V-ATPases and in vitro invasion. Finally, specific ablation of plasma membrane V-ATPases in highly invasive human breast cancer cells using either an antibody or small molecule approach inhibits both in vitro invasion and migration. These results suggest that plasma membrane and a3-containing V-ATPases represent a novel and important target in the development of therapeutics to limit breast cancer metastasis. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics

  9. In vivo synthesis of ATPase complexes of Propionigenium modestum and Escherichia coli and analysis of their function.

    Science.gov (United States)

    Gerike, U; Kaim, G; Dimroth, P

    1995-09-01

    Expression studies of Propionigenium modestum ATPase genes in various combinations with Escherichia coli ATPase genes were performed in the unc deletion mutant strain E. coli DK8. Plasmids containing the whole unc operon from P. modestum were unable to complement the E. coli unc deletion mutant. Although all ATPase subunits were expressed from the plasmids, there was no detectable ATP hydrolysing activity, indicating that the F1 part was not functional. Transformants expressing an E. coli F1-P. modestum F0 hybrid exhibited considerable ATPase activities. Binding of the F1 part to the membrane was very weak, however, and the coupling between ATP hydrolysis and Na+ transport was impaired. After combining the genes for E. coli ATPase subunits alpha, beta, gamma, delta and epsilon and the hydrophilic part of subunit b with P. modestum ATPase subunits a and c and the hydrophobic part of subunit b on a plasmid, a non-functional hybrid ATPase was expressed in E. coli. The ATPase was only loosely bound to the membrane, from which it was solubilized with Triton X-100 and purified. Subunit b and a proteolytic degradation product were the only F0 subunits detectable in the purified enzyme. A stable F0 complex is thus not formed with the hybrid b subunit. The absence of a functional F0 complex was in accord with proton-conduction measurements with bacterial vesicles. The only functional Na(+)-translocating ATPase expressed in E. coli thus far consists of E. coli subunits alpha, beta, gamma and epsilon, and P. modestum subunits delta, a, b and c [Kaim, G. & Dimroth, P. (1993) Eur. J. Biochem. 218, 937-944]. During the cloning conducted in our present study, errors in the sequence entry into the EMBL data bank (accession no. X58461) for the P. modestum ATPase alpha and beta subunits became evident, which are corrected in this paper.

  10. Gene cloning and expression characteristics of vacuolar-type ATPase subunit B in Bombyx mori%家蚕V型ATP酶B亚基的克隆及表达特征

    Institute of Scientific and Technical Information of China (English)

    陈慧芳; 王鑫; 谢康; 李懿; 赵萍

    2016-01-01

    V型ATP酶(Vacuolar-type ATPase)是一种定位于细胞膜和细胞器膜上的氢离子转运酶.它利用ATP水解的能量将氢离子转运到液泡、囊泡或者胞外,从而维持细胞内正常的酸碱环境.V型ATP酶B亚基(V-ATPase B)作为ATP的催化位点,也有着非常重要的作用.为了探讨家蚕V-ATPase B(BmV-ATPase B)的功能,首先从家蚕五龄幼虫的中肠cDNA中克隆了Bm V-A TPase B基因并构建原核表达载体进行原核表达,获得了重组蛋白,经质谱鉴定正确后,通过镍柱亲和层析的方法纯化了该蛋白并制备了多克隆抗体;最后分析了该蛋白在家蚕丝腺中的表达特征并利用免疫荧光对其在丝腺中的表达位置进行了定位.结果显示Bm V-A TPase B基因序列全长1 473 bp,预测蛋白分子量55 kDa,预测等电点5.3.通过Western blotting对家蚕5龄第3天和上蔟第1天幼虫丝腺的不同区段进行BmV-ATPase B蛋白的表达特征分析,发现在两个时期该蛋白均在前部丝腺高量表达,而在中部丝腺和后部丝腺表达量相对较低.进一步对两个时期丝腺的不同区段进行免疫荧光定位,发现该蛋白在两个时期的前部丝腺、中部丝腺和后部丝腺均定位于细胞层.利用激光共聚焦显微镜对该蛋白进行进一步的定位,发现该蛋白主要在丝腺的细胞膜表达.研究结果明确了该蛋白在丝腺中的表达模式,为深入研究该蛋白在蚕丝纤维形成中的作用奠定了基础.

  11. Regulation of the thermoalkaliphilic F1-ATPase from Caldalkalibacillus thermarum

    Science.gov (United States)

    Ferguson, Scott A.; Cook, Gregory M.; Montgomery, Martin G.; Leslie, Andrew G. W.

    2016-01-01

    The crystal structure has been determined of the F1-catalytic domain of the F-ATPase from Caldalkalibacillus thermarum, which hydrolyzes adenosine triphosphate (ATP) poorly. It is very similar to those of active mitochondrial and bacterial F1-ATPases. In the F-ATPase from Geobacillus stearothermophilus, conformational changes in the ε-subunit are influenced by intracellular ATP concentration and membrane potential. When ATP is plentiful, the ε-subunit assumes a “down” state, with an ATP molecule bound to its two C-terminal α-helices; when ATP is scarce, the α-helices are proposed to inhibit ATP hydrolysis by assuming an “up” state, where the α-helices, devoid of ATP, enter the α3β3-catalytic region. However, in the Escherichia coli enzyme, there is no evidence that such ATP binding to the ε-subunit is mechanistically important for modulating the enzyme’s hydrolytic activity. In the structure of the F1-ATPase from C. thermarum, ATP and a magnesium ion are bound to the α-helices in the down state. In a form with a mutated ε-subunit unable to bind ATP, the enzyme remains inactive and the ε-subunit is down. Therefore, neither the γ-subunit nor the regulatory ATP bound to the ε-subunit is involved in the inhibitory mechanism of this particular enzyme. The structure of the α3β3-catalytic domain is likewise closely similar to those of active F1-ATPases. However, although the βE-catalytic site is in the usual “open” conformation, it is occupied by the unique combination of an ADP molecule with no magnesium ion and a phosphate ion. These bound hydrolytic products are likely to be the basis of inhibition of ATP hydrolysis. PMID:27621435

  12. Mechanistic Basis for Differential Inhibition of the F1Fo-ATPase by Aurovertin

    OpenAIRE

    2009-01-01

    The mitochondrial F1Fo-ATPase performs the terminal step of oxidative phosphorylation. Small molecules that modulate this enzyme have been invaluable in helping decipher F1Fo-ATPase structure, function, and mechanism. Aurovertin is an antibiotic that binds to the β subunits in the F1 domain and inhibits F1Fo-ATPase-catalyzed ATP synthesis in preference to ATP hydrolysis. Despite extensive study and the existence of crystallographic data, the molecular basis of the differential inhibition and ...

  13. V-type ATPase proton pump expression during enamel formation.

    Science.gov (United States)

    Sarkar, Juni; Wen, Xin; Simanian, Emil J; Paine, Michael L

    2016-01-01

    Several diseases such as proximal and distal renal tubular acidosis and osteoporosis are related to intracellular pH dysregulation resulting from mutations in genes coding for ion channels, including proteins comprising the proton-pumping V-type ATPase. V-type ATPase is a multi-subunit protein complex expressed in enamel forming cells. V-type ATPase plays a key role in enamel development, specifically lysosomal acidification, yet our understanding of the relationship between the endocytotic activities and dental health and disease is limited. The objective of this study is to better understand the ameloblast-associated pH regulatory networks essential for amelogenesis. Quantitative RT-PCR was performed on tissues from secretory-stage and maturation-stage enamel organs to determine which of the V-type ATPase subunits are most highly upregulated during maturation-stage amelogenesis: a time when ameloblast endocytotic activity is highest. Western blot analyses, using specific antibodies to four of the V-type ATPase subunits (Atp6v0d2, Atp6v1b2, Atp6v1c1 and Atp6v1e1), were then applied to validate much of the qPCR data. Immunohistochemistry using these same four antibodies was also performed to identify the spatiotemporal expression profiles of individual V-type ATPase subunits. Our data show that cytoplasmic V-type ATPase is significantly upregulated in enamel organ cells during maturation-stage when compared to secretory-stage. These data likely relate to the higher endocytotic activities, and the greater need for lysosomal acidification, during maturation-stage amelogenesis. It is also apparent from our immunolocalization data, using antibodies against two of the V-type ATPase subunits (Atp6v1c1 and Atp6v1e1), that significant expression is seen at the apical membrane of maturation-stage ameloblasts. Others have also identified this V-type ATPase expression profile at the apical membrane of maturation ameloblasts. Collectively, these data better define the

  14. Advances in targeting the vacuolar proton-translocating ATPase (V-ATPase) for anti-fungal therapy

    Science.gov (United States)

    Hayek, Summer R.; Lee, Samuel A.; Parra, Karlett J.

    2014-01-01

    Vacuolar proton-translocating ATPase (V-ATPase) is a membrane-bound, multi-subunit enzyme that uses the energy of ATP hydrolysis to pump protons across membranes. V-ATPase activity is critical for pH homeostasis and organelle acidification as well as for generation of the membrane potential that drives secondary transporters and cellular metabolism. V-ATPase is highly conserved across species and is best characterized in the model fungus Saccharomyces cerevisiae. However, recent studies in mammals have identified significant alterations from fungi, particularly in the isoform composition of the 14 subunits and in the regulation of complex disassembly. These differences could be exploited for selectivity between fungi and humans and highlight the potential for V-ATPase as an anti-fungal drug target. Candida albicans is a major human fungal pathogen and causes fatality in 35% of systemic infections, even with anti-fungal treatment. The pathogenicity of C. albicans correlates with environmental, vacuolar, and cytoplasmic pH regulation, and V-ATPase appears to play a fundamental role in each of these processes. Genetic loss of V-ATPase in pathogenic fungi leads to defective virulence, and a comprehensive picture of the mechanisms involved is emerging. Recent studies have explored the practical utility of V-ATPase as an anti-fungal drug target in C. albicans, including pharmacological inhibition, azole therapy, and targeting of downstream pathways. This overview will discuss these studies as well as hypothetical ways to target V-ATPase and novel high-throughput methods for use in future drug discovery screens. PMID:24478704

  15. Advances in targeting the vacuolar proton-translocating ATPase (V-ATPase for anti-fungal therapy

    Directory of Open Access Journals (Sweden)

    Summer R. Hayek

    2014-01-01

    Full Text Available Vacuolar proton-translocating ATPase (V-ATPase is a membrane-bound, multi-subunit enzyme that uses the energy of ATP hydrolysis to pump protons across membranes. V-ATPase activity is critical for pH homeostasis and organelle acidification as well as for generation of the membrane potential that drives secondary transporters and cellular metabolism. V-ATPase is highly conserved across species and is best characterized in the model fungus Saccharomyces cerevisiae (S. cerevisiae. However, recent studies in mammals have identified significant alterations from fungi, particularly in the isoform composition of the 14 subunits and in the regulation of complex disassembly. These differences could be exploited for selectivity between fungi and humans and highlight the potential for V-ATPase as an anti-fungal drug target. Candida albicans (C. albicans is a major human fungal pathogen and causes fatality in 35% of systemic infections, even with anti-fungal treatment. The pathogenicity of C. albicans correlates with environmental, vacuolar, and cytoplasmic pH regulation, and V-ATPase appears to play a fundamental role in each of these processes. Genetic loss of V-ATPase in pathogenic fungi leads to defective virulence, and a comprehensive picture of the mechanisms involved is emerging. Recent studies have explored the practical utility of V-ATPase as an anti-fungal drug target in C. albicans, including pharmacological inhibition, azole therapy, and targeting of downstream pathways. This overview will discuss these studies as well as hypothetical ways to target V-ATPase and novel high-throughput methods for use in future drug discovery screens.

  16. Amino acid sequence of the oligomycin sensitivity-conferring protein (OSCP) of beef-heart mitochondria and its homology with the delta-subunit of the F1-ATPase of Escherichia coli.

    Science.gov (United States)

    Ovchinnikov, Y A; Modyanov, N N; Grinkevich, V A; Aldanova, N A; Trubetskaya, O E; Nazimov, I V; Hundal, T; Ernster, L

    1984-01-23

    The complete amino acid sequence of the oligomycin sensitivity-conferring protein (OSCP) of beef-heart mitochondria is reported. The protein contains 190 amino acids and has a molecular mass of 20 967. Its structure is characterized by a concentration of charged amino acids in the two terminal segments (N 1-77 and C 128-190) of the protein, whereas its central region is more hydrophobic. The earlier reported homology of the protein with the delta-subunit of E. coli F1, based on the terminal amino acid sequences of OSCP, is further substantiated.

  17. Construction, expression and characterization of a plasmid-encoded Na(+)-specific ATPase hybrid consisting of Propionigenium modestum F0-ATPase and Escherichia coli F1-ATPase.

    Science.gov (United States)

    Kaim, G; Dimroth, P

    1994-06-01

    The Escherichia coli strain DK8, a deletion mutant lacking the complete unc operon, was transformed with a plasmid containing the genes encoding the a, b, c, delta and part of the alpha subunit of the Na(+)-dependent ATPase of Propionigenium modestum and the genes encoding the alpha, gamma, beta and epsilon subunits of the H(+)-dependent E. coli ATPase. The transformants showed Na(+)-dependent growth on succinate as non-fermentable carbon source. The functionally expressed hybrid ATPase was activated 13-fold at pH 7.5 by the addition of Na+ and inhibited by 1,3-dicyclohexylcarbodiimide, azide and tributyltin chloride. At pH 7.5 and pH 9.0, the hybrid enzyme was protected from inhibition by 1,3-dicyclohexylcarbodiimide in the presence of 50 mM NaCl and 5 mM NaCl, respectively. The hybrid ATPase was reconstituted into proteoliposomes and catalyzed the transport of Na+ upon ATP addition. ATP-dependent fluorescence quenching of 9-amino-6-chloro-2-methoxyacridine proved that the ATPase hybrid was able to pump protons in the absence of Na+. Furthermore, ATP synthesis could be measured under conditions where a valinomycin-mediated K+ diffusion potential (delta psi) and a Na+ concentration gradient (delta p Na+) were imposed.

  18. Branchial Na(+):K(+):2Cl(-) cotransporter 1 and Na(+)/K(+)-ATPase α-subunit in a brackish water-type ionocyte of the euryhaline freshwater white-rimmed stingray, Himantura signifer.

    Science.gov (United States)

    Ip, Yuen K; Hiong, Kum C; Wong, Samuel Z H; Ching, Biyun; Chen, Xiu L; Soh, Melody M L; Chng, You R; Ong, Jasmine L Y; Wilson, Jonathan M; Chew, Shit F

    2013-01-01

    Himantura signifer is a freshwater stingray which inhabits rivers in Southeast Asia. It can survive in brackish water but not seawater. In brackish water, it becomes partially ureosmotic, but how it maintains its plasma hypoionic to the external medium is enigmatic because of the lack of a rectal gland. Here, we report for the first time the expression of Na(+):K(+):2Cl(-) cotransporter 1 (nkcc1) in the gills of freshwaterH. signifer, and its moderate up-regulation (~2-fold) in response to brackish water (salinity 20) acclimation. The absence of the Ste20-related proline-alanine-rich kinase and oxidation stress response kinase 1 interaction site from the N-terminus of H. signifer Nkcc1 suggested that it might not be effectively activated by stress kinases in response to salinity changes as in more euryhaline teleosts. The increased activity of Nkcc1 during salt excretion in brackish water would lead to an influx of Na(+) into ionocytes, and the maintenance of intracellular Na(+) homeostasis would need the cooperation of Na(+)/K(+)-ATPase (Nka). We demonstrated for the first time the expression of nkaα1, nkaα2 and nkaα3 in the gills of H. signifer, and the up-regulation of the mRNA expression of nkaα3 and the overall protein abundance of Nkaα in response to acclimation to brackish water. Immunofluorescence microscopy revealed the presence of a sub-type of ionocyte, co-expressing Nkcc1 and Nkaα, near the base of the secondary lamellae in the gills of H. signifer acclimated to brackish water, but this type of ionocyte was absent from the gills of fish kept in fresh water. Hence, there could be a change in the function of the gills of H. signifer from salt absorption to salt excretion during brackish water acclimation in the absence of a functioning rectal gland.

  19. Branchial Na+:K+:2Cl- cotransporter 1 and Na+/K+-ATPase α-subunit in a brackish water-type ionocyte of the euryhaline freshwater white-rimmed stingray, Himantura signifer

    Directory of Open Access Journals (Sweden)

    Yuen K Ip

    2013-12-01

    Full Text Available Himantura signifer is a freshwater stingray which inhabits rivers in Southeast Asia. It can survive in brackish water but not seawater. In brackish water, it becomes partially ureosmotic, but how it maintains its plasma hypoionic to the external medium is enigmatic because of the lack of a rectal gland. Here, we report for the first time the expression of Na+:K+:2Cl− cotransporter 1 (nkcc1 in the gills of freshwater H. signifer, and its moderate up-regulation (~2-fold in response to brackish water (salinity 20 acclimation. The absence of the Ste20-related proline-alanine-rich kinase and oxidation stress response kinase 1 interaction site from the N-terminus of H. signifer Nkcc1 suggested that it might not be effectively activated by stress kinases in response to salinity changes as in more euryhaline teleosts. The increased activity of Nkcc1 during salt excretion in brackish water would lead to an influx of Na+ into ionocytes, and the maintenance of intracellular Na+ homeostasis would need the cooperation of Na+/K+-ATPase (Nka. We demonstrated for the first time the expression of nkaα1, nkaα2 and nkaα3 in the gills of H. signifer, and the up-regulation of the mRNA expression of nkaα3 and the overall protein abundance of Nkaα in response to acclimation to brackish water. Immunofluorescence microscopy revealed the presence of a sub-type of ionocyte, co-expressing Nkcc1 and Nkaα, near the base of the secondary lamellae in the gills of H. signifer acclimated to brackish water, but this type of ionocyte was absent from the gills of fish kept in fresh water. Hence, there could be a change in the function of the gills of H. signifer from salt absorption to salt excretion during brackish water acclimation in the absence of a functioning rectal gland.

  20. P4-ATPases

    DEFF Research Database (Denmark)

    Lopez Marques, Rosa Laura; Theorin, Lisa; Palmgren, Michael Broberg;

    2014-01-01

    Cellular membranes, notably eukaryotic plasma membranes, are equipped with special proteins that actively translocate lipids from one leaflet to the other and thereby help generate membrane lipid asymmetry. Among these ATP-driven transporters, the P4 subfamily of P-type ATPases (P4-ATPases......) comprises lipid flippases that catalyze the translocation of phospholipids from the exoplasmic to the cytosolic leaflet of cell membranes. While initially characterized as aminophospholipid translocases, recent studies of individual P4-ATPase family members from fungi, plants, and animals show that P4...... to include the regulation of membrane traffic, cytoskeletal dynamics, cell division, lipid metabolism, and lipid signaling. In this review, we will summarize the basic features of P4-ATPases and the physiological implications of their lipid transport activity in the cell. © 2013 The Author(s)....

  1. Regulation of vacuolar H{sup +}-ATPase in microglia by RANKL

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, Eric M.; Ricofort, Ryan D.; Zuo, Jian [Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610 (United States); Ochotny, Noelle [Department of Pharmacology, University of Toronto, Toronto, Ont., Canada M5G 1G6 (Canada); Manolson, Morris F. [Faculty of Dentistry, University of Toronto, Toronto, Ont., Canada M5G 1G6 (Canada); Holliday, L. Shannon, E-mail: sholliday@dental.ufl.edu [Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610 (United States); Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610 (United States)

    2009-11-06

    Vacuolar H{sup +}-ATPases (V-ATPases) are large electrogenic proton pumps composed of numerous subunits that play vital housekeeping roles in the acidification of compartments of the endocytic pathway. Additionally, V-ATPases play specialized roles in certain cell types, a capacity that is linked to cell type selective expression of isoforms of some of the subunits. We detected low levels of the a3 isoform of the a-subunit in mouse brain extracts. Examination of various brain-derived cell types by immunoblotting showed a3 was expressed in the N9 microglia cell line and in primary microglia, but not in other cell types. The expression of a3 in osteoclasts requires stimulation by Receptor Activator of Nuclear Factor {kappa}B-ligand (RANKL). We found that Receptor Activator of Nuclear Factor {kappa}B (RANK) was expressed by microglia. Stimulation of microglia with RANKL triggered increased expression of a3. V-ATPases in microglia were shown to bind microfilaments, and stimulation with RANKL increased the proportion of V-ATPase associated with the detergent-insoluble cytoskeletal fraction and with actin. In summary, microglia express the a3-subunit of V-ATPase. The expression of a3 and the interaction between V-ATPases and microfilaments was modulated by RANKL. These data suggest a novel molecular pathway for regulating microglia.

  2. Specific labelling of the (Ca2+ + Mg2+)-ATPase of Escherichia coli with 8-azido-ATP and 4-chloro-7-nitrobenzofurazan.

    Science.gov (United States)

    Verheijen, J H; Postma, P W; van Dam, K

    1978-05-10

    1. 8-Azido-ATP is a substrate for Escherichia coli (Ca2+ + Mg2+)-ATPase (E. coli F1). 2. Illumination of E. coli F1 in the presence of 8-azido-ATP causes inhibition of ATPase activity. The presence of ATP during illumination prevents inhibition. 3. 8-Azido-ATP and 4-chloro-7-nitrobenzofurazan (NbfCl) bind predominantly to the alpha subunit of the enzyme, but also significantly to the beta subunit. 4. The alpha subunit of E. coli F1 seems to have some properties that in other F1-ATPases are associated with the beta subunit.

  3. Vacuolar ATPase regulates surfactant secretion in rat alveolar type II cells by modulating lamellar body calcium.

    Directory of Open Access Journals (Sweden)

    Narendranath Reddy Chintagari

    Full Text Available Lung surfactant reduces surface tension and maintains the stability of alveoli. How surfactant is released from alveolar epithelial type II cells is not fully understood. Vacuolar ATPase (V-ATPase is the enzyme responsible for pumping H(+ into lamellar bodies and is required for the processing of surfactant proteins and the packaging of surfactant lipids. However, its role in lung surfactant secretion is unknown. Proteomic analysis revealed that vacuolar ATPase (V-ATPase dominated the alveolar type II cell lipid raft proteome. Western blotting confirmed the association of V-ATPase a1 and B1/2 subunits with lipid rafts and their enrichment in lamellar bodies. The dissipation of lamellar body pH gradient by Bafilomycin A1 (Baf A1, an inhibitor of V-ATPase, increased surfactant secretion. Baf A1-stimulated secretion was blocked by the intracellular Ca(2+ chelator, BAPTA-AM, the protein kinase C (PKC inhibitor, staurosporine, and the Ca(2+/calmodulin-dependent protein kinase II (CaMKII, KN-62. Baf A1 induced Ca(2+ release from isolated lamellar bodies. Thapsigargin reduced the Baf A1-induced secretion, indicating cross-talk between lamellar body and endoplasmic reticulum Ca(2+ pools. Stimulation of type II cells with surfactant secretagogues dissipated the pH gradient across lamellar bodies and disassembled the V-ATPase complex, indicating the physiological relevance of the V-ATPase-mediated surfactant secretion. Finally, silencing of V-ATPase a1 and B2 subunits decreased stimulated surfactant secretion, indicating that these subunits were crucial for surfactant secretion. We conclude that V-ATPase regulates surfactant secretion via an increased Ca(2+ mobilization from lamellar bodies and endoplasmic reticulum, and the activation of PKC and CaMKII. Our finding revealed a previously unrealized role of V-ATPase in surfactant secretion.

  4. The ntp operon encoding the Na+V-ATPase of the thermophile Caloramator fervidus

    NARCIS (Netherlands)

    Ubbink-Kok, Trees; Nijland, Jeroen; Slotboom, Dirk-Jan; Lolkema, Juke S.

    2006-01-01

    The V-type ATPase of the thermophile Caloramator fervidus is an ATP-driven Na+ pump. The nucleotide sequence of the ntpFIKECGABD operon containing the structural genes coding for the nine subunits of the enzyme complex was determined. The identity of the proteins in two pairs of subunits (D, E and F

  5. Aspects of gene structure and functional regulation of the isozymes of Na,K-ATPase

    DEFF Research Database (Denmark)

    Jorgensen, P.L.

    2001-01-01

    genomes, the genes of four alpha-subunit and at least three beta-subunit isoforms of Na,K-ATPase are identified and two gamma-subunits are expressed in kidney. The isoforms combine in a number of Na,K-ATPase isozymes that are expressed in a tissue and cell specific manner. Models of the molecular...... mechanism of regulation of these isozymes have become more reliable due to progress in understanding the three-dimensional protein structure and conformational transitions mediating transfer of energy from the P-domain to intramembrane Na+ and K+ binding sites....

  6. ATPase-dependent auto-phosphorylation of the open condensin hinge diminishes DNA binding.

    Science.gov (United States)

    Akai, Yuko; Kanai, Ryuta; Nakazawa, Norihiko; Ebe, Masahiro; Toyoshima, Chikashi; Yanagida, Mitsuhiro

    2014-12-01

    Condensin, which contains two structural maintenance of chromosome (SMC) subunits and three regulatory non-SMC subunits, is essential for many chromosomal functions, including mitotic chromosome condensation and segregation. The ATPase domain of the SMC subunit comprises two termini connected by a long helical domain that is interrupted by a central hinge. The role of the ATPase domain has remained elusive. Here we report that the condensin SMC subunit of the fission yeast Schizosaccharomyces pombe is phosphorylated in a manner that requires the presence of the intact SMC ATPase Walker motif. Principal phosphorylation sites reside in the conserved, glycine-rich stretch at the hinge interface surrounded by the highly basic DNA-binding patch. Phosphorylation reduces affinity for DNA. Consistently, phosphomimetic mutants produce severe mitotic phenotypes. Structural evidence suggests that prior opening (though slight) of the hinge is necessary for phosphorylation, which is implicated in condensin's dissociation from and its progression along DNA.

  7. Phospholamban Modulates the Functional Coupling between Nucleotide Domains in Ca-ATPase Oligomeric Complexes in Cardiac Sarcoplasmic Reticulum

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L.; Yao, Qing; Soares, Thereza A.; Squier, Thomas C.; Bigelow, Diana J.

    2009-03-24

    Oligomeric interactions between Ca-ATPase polypeptide chains and their modulation by phospholamban (PLB) were measured in native cardiac sarcoplasmic reticulum (SR) microsomes. Progressive modification of Lys514 with fluorescein-5-isothiocyanate (FITC), which physically blocks access to the nucleotide binding site by ATP, demonstrates that Ca-ATPase active sites function independently of one another prior to the phosphorylation of PLB. However, upon PKA-dependent phosphorylation of PLB, a second-order dependence between enzyme activity and the fraction of active sites is observed, consistent with a dimeric functional complex. Complementary distance measurements were made using FITC or 5-iodoacetamido-fluorescein (IAF) bound to Cys674 within the N- or P-domains respectively, to detect structural coupling within oligomeric complexes. Accompanying the phosphorylation of PLB, neighboring Ca-ATPase polypeptide chains exhibit a 4 ± 2 Å decrease in the proximity between FITC sites within the N-domain and a 9 ± 3 Å increase in the proximity between IAF sites within P-domains. Thus, the phosphorylation of PLB induces spatial rearrangements between the N- and P-domain elements of proximal Ca-ATPase polypeptide chains which restore functional interactions between neighboring polypeptide chains and, in turn, result in increased rates of catalytic turnover. These results are interpreted in terms of a structural model, calculated through optimization of shape complementarity, desolvation, and electrostatic energies, which suggests a dimeric arrangement of Ca-ATPase polypeptide chains through the proximal association of N-domains. We suggest that the phosphorylation of PLB acts to release constraints involving interdomain subunit interactions that enhance catalytically important N-domain motions.

  8. Archazolid and apicularen: Novel specific V-ATPase inhibitors

    Directory of Open Access Journals (Sweden)

    Zeeck Axel

    2005-08-01

    Full Text Available Abstract Background V-ATPases constitute a ubiquitous family of heteromultimeric, proton translocating proteins. According to their localization in a multitude of eukaryotic membranes, they energize many different transport processes. Since their malfunction is correlated with various diseases in humans, the elucidation of the properties of this enzyme for the development of selective inhibitors and drugs is one of the challenges in V-ATPase research. Results Archazolid A and B, two recently discovered cytotoxic macrolactones produced by the myxobacterium Archangium gephyra, and apicularen A and B, two novel benzolactone enamides produced by different species of the myxobacterium Chondromyces, exerted a similar inhibitory efficacy on a wide range of mammalian cell lines as the well established plecomacrolidic type V-ATPase inhibitors concanamycin and bafilomycin. Like the plecomacrolides both new macrolides also prevented the lysosomal acidification in cells and inhibited the V-ATPase purified from the midgut of the tobacco hornworm, Manduca sexta, with IC50 values of 20–60 nM. However, they did not influence the activity of mitochondrial F-ATPase or that of the Na+/K+-ATPase. To define the binding sites of these new inhibitors we used a semi-synthetic radioactively labelled derivative of concanamycin which exclusively binds to the membrane Vo subunit c. Whereas archazolid A prevented, like the plecomacrolides concanamycin A, bafilomycin A1 and B1, labelling of subunit c by the radioactive I-concanolide A, the benzolactone enamide apicularen A did not compete with the plecomacrolide derivative. Conclusion The myxobacterial antibiotics archazolid and apicularen are highly efficient and specific novel inhibitors of V-ATPases. While archazolid at least partly shares a common binding site with the plecomacrolides bafilomycin and concanamycin, apicularen adheres to an independent binding site.

  9. Regulation of the synthesis and assembly of the plant vacuolar H{sup +}-ATPase. Progress report, [April 1, 1991--March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Taiz, L.

    1992-04-01

    During the past three years we have focused on four main areas: the characterization of the 5{prime}-upstream sequence of the gene for the V-ATPase 70 kDa (A) subunit gene, the generation of V-ATPase-deficient mutants using antisense constructs of the A subunit cDNA, analysis of V-ATPase ultrastructure by negative staining and the characterization of organelle-specific isoforms of the A subunit of carrot. In addition we have extended our studies on the cellular distribution of the V-ATPase and we have continued our investigation of the evolution of the V-ATPases by characterizing the A and B subunits of two species of the archaebacterium, Methanococcus.

  10. Atomic model for the membrane-embedded VO motor of a eukaryotic V-ATPase.

    Science.gov (United States)

    Mazhab-Jafari, Mohammad T; Rohou, Alexis; Schmidt, Carla; Bueler, Stephanie A; Benlekbir, Samir; Robinson, Carol V; Rubinstein, John L

    2016-11-03

    Vacuolar-type ATPases (V-ATPases) are ATP-powered proton pumps involved in processes such as endocytosis, lysosomal degradation, secondary transport, TOR signalling, and osteoclast and kidney function. ATP hydrolysis in the soluble catalytic V1 region drives proton translocation through the membrane-embedded VO region via rotation of a rotor subcomplex. Variability in the structure of the intact enzyme has prevented construction of an atomic model for the membrane-embedded motor of any rotary ATPase. We induced dissociation and auto-inhibition of the V1 and VO regions of the V-ATPase by starving the yeast Saccharomyces cerevisiae, allowing us to obtain a ~3.9-Å resolution electron cryomicroscopy map of the VO complex and build atomic models for the majority of its subunits. The analysis reveals the structures of subunits ac8c'c″de and a protein that we identify and propose to be a new subunit (subunit f). A large cavity between subunit a and the c-ring creates a cytoplasmic half-channel for protons. The c-ring has an asymmetric distribution of proton-carrying Glu residues, with the Glu residue of subunit c″ interacting with Arg735 of subunit a. The structure suggests sequential protonation and deprotonation of the c-ring, with ATP-hydrolysis-driven rotation causing protonation of a Glu residue at the cytoplasmic half-channel and subsequent deprotonation of a Glu residue at a luminal half-channel.

  11. Na,K-ATPase activity in mouse muscle is regulated by AMPK and PGC-1α.

    Science.gov (United States)

    Ingwersen, Maria S; Kristensen, Michael; Pilegaard, Henriette; Wojtaszewski, Jørgen F P; Richter, Erik A; Juel, Carsten

    2011-07-01

    Na,K-ATPase activity, which is crucial for skeletal muscle function, undergoes acute and long-term regulation in response to muscle activity. The aim of the present study was to test the hypothesis that AMP kinase (AMPK) and the transcriptional coactivator PGC-1α are underlying factors in long-term regulation of Na,K-ATPase isoform (α,β and PLM) abundance and Na(+) affinity. Repeated treatment of mice with the AMPK activator AICAR decreased total PLM protein content but increased PLM phosphorylation, whereas the number of α- and β-subunits remained unchanged. The K(m) for Na(+) stimulation of Na,K-ATPase was reduced (higher affinity) after AICAR treatment. PLM abundance was increased in AMPK kinase-dead mice compared with control mice, but PLM phosphorylation and Na,K-ATPase Na(+) affinity remained unchanged. Na,K-ATPase activity and subunit distribution were also measured in mice with different degrees of PGC-1α expression. Protein abundances of α1 and α2 were reduced in PGC-1α +/- and -/- mice, and the β(1)/β(2) ratio was increased with PGC-1α overexpression (TG mice). PLM protein abundance was decreased in TG mice, but phosphorylation status was unchanged. Na,K-ATPase V (max) was decreased in PCG-1α TG and KO mice. Experimentally in vitro induced phosphorylation of PLM increased Na,K-ATPase Na(+) affinity, confirming that PLM phosphorylation is important for Na,K-ATPase function. In conclusion, both AMPK and PGC-1α regulate PLM abundance, AMPK regulates PLM phosphorylation and PGC-1α expression influences Na,K-ATPase α(1) and α(2) content and β(1)/β(2) isoform ratio. Phosphorylation of the Na,K-ATPase subunit PLM is an important regulatory mechanism.

  12. An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome

    Energy Technology Data Exchange (ETDEWEB)

    Foerster, Friedrich [Department of Structural Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried (Germany); Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California at San Francisco, San Francisco (United States); Lasker, Keren [Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California at San Francisco, San Francisco (United States); Blavatnik School of Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv (Israel); Beck, Florian; Nickell, Stephan [Department of Structural Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried (Germany); Sali, Andrej [Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California at San Francisco, San Francisco (United States); Baumeister, Wolfgang, E-mail: baumeist@biochem.mpg.de [Department of Structural Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried (Germany)

    2009-10-16

    The 26S proteasome is the most downstream element of the ubiquitin-proteasome pathway of protein degradation. It is composed of the 20S core particle (CP) and the 19S regulatory particle (RP). The RP consists of 6 AAA-ATPases and at least 13 non-ATPase subunits. Based on a cryo-EM map of the 26S proteasome, structures of homologs, and physical protein-protein interactions we derive an atomic model of the AAA-ATPase-CP sub-complex. The ATPase order in our model (Rpt1/Rpt2/Rpt6/Rpt3/Rpt4/Rpt5) is in excellent agreement with the recently identified base-precursor complexes formed during the assembly of the RP. Furthermore, the atomic CP-AAA-ATPase model suggests that the assembly chaperone Nas6 facilitates CP-RP association by enhancing the shape complementarity between Rpt3 and its binding CP alpha subunits partners.

  13. Lack of ability of trypsin-treated mitochondrial F1-ATPase to bind the oligomycin-sensitivity conferring protein (OSCP).

    Science.gov (United States)

    Hundal, T; Norling, B; Ernster, L

    1983-10-03

    Soluble beef-heart mitochondrial F1-ATPase modified in its alpha-subunit by mild trypsin treatment (alpha'-F1) can no longer bind oligomycin-sensitivity conferring protein (OSCP) but is still capable of binding to F1-depleted submitochondrial particles, giving rise to a maximally oligomycin-sensitive ATPase, provided the particles contain their native complement of OSCP. When OSCP is removed from the particles, alpha'-F1 can still bind to the particles, but added OSCP induces only a low degree of oligomycin sensitivity. The possible role of OSCP in the functional coupling of the catalytic (F1) and H+-translocating (Fo) moieties of mitochondrial ATPase is discussed. The results suggest a functional similarity between the OSCP component of mitochondrial ATPase and the delta-subunit of E. coli ATPase, which is in accordance with the structural homology recently found to exist between the two polypeptides.

  14. An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome.

    Science.gov (United States)

    Förster, Friedrich; Lasker, Keren; Beck, Florian; Nickell, Stephan; Sali, Andrej; Baumeister, Wolfgang

    2009-10-16

    The 26S proteasome is the most downstream element of the ubiquitin-proteasome pathway of protein degradation. It is composed of the 20S core particle (CP) and the 19S regulatory particle (RP). The RP consists of 6 AAA-ATPases and at least 13 non-ATPase subunits. Based on a cryo-EM map of the 26S proteasome, structures of homologs, and physical protein-protein interactions we derive an atomic model of the AAA-ATPase-CP sub-complex. The ATPase order in our model (Rpt1/Rpt2/Rpt6/Rpt3/Rpt4/Rpt5) is in excellent agreement with the recently identified base-precursor complexes formed during the assembly of the RP. Furthermore, the atomic CP-AAA-ATPase model suggests that the assembly chaperone Nas6 facilitates CP-RP association by enhancing the shape complementarity between Rpt3 and its binding CP alpha subunits partners.

  15. Altered expression and insulin-induced trafficking of Na+-K+-ATPase in rat skeletal muscle

    DEFF Research Database (Denmark)

    Galuska, Dana; Kotova, Olga; Barres, Romain

    2009-01-01

    Skeletal muscle Na(+)-K(+)-ATPase plays a central role in the clearance of K(+) from the extracellular fluid, therefore maintaining blood [K(+)]. Na(+)-K(+)-ATPase activity in peripheral tissue is impaired in insulin resistant states. We determined effects of high-fat diet (HFD) and exercise...... function precede the development of skeletal muscle insulin resistance. Disturbances in skeletal muscle Na(+)-K(+)-ATPase regulation, particularly the alpha(2)-subunit, may contribute to impaired ion homeostasis in insulin-resistant states such as obesity and type 2 diabetes....

  16. Retrieval of the vacuolar H-ATPase from phagosomes revealed by live cell imaging.

    Directory of Open Access Journals (Sweden)

    Margaret Clarke

    Full Text Available BACKGROUND: The vacuolar H+-ATPase, or V-ATPase, is a highly-conserved multi-subunit enzyme that transports protons across membranes at the expense of ATP. The resulting proton gradient serves many essential functions, among them energizing transport of small molecules such as neurotransmitters, and acidifying organelles such as endosomes. The enzyme is not present in the plasma membrane from which a phagosome is formed, but is rapidly delivered by fusion with endosomes that already bear the V-ATPase in their membranes. Similarly, the enzyme is thought to be retrieved from phagosome membranes prior to exocytosis of indigestible material, although that process has not been directly visualized. METHODOLOGY: To monitor trafficking of the V-ATPase in the phagocytic pathway of Dictyostelium discoideum, we fed the cells yeast, large particles that maintain their shape during trafficking. To track pH changes, we conjugated the yeast with fluorescein isothiocyanate. Cells were labeled with VatM-GFP, a fluorescently-tagged transmembrane subunit of the V-ATPase, in parallel with stage-specific endosomal markers or in combination with mRFP-tagged cytoskeletal proteins. PRINCIPAL FINDINGS: We find that the V-ATPase is commonly retrieved from the phagosome membrane by vesiculation shortly before exocytosis. However, if the cells are kept in confined spaces, a bulky phagosome may be exocytosed prematurely. In this event, a large V-ATPase-rich vacuole coated with actin typically separates from the acidic phagosome shortly before exocytosis. This vacuole is propelled by an actin tail and soon acquires the properties of an early endosome, revealing an unexpected mechanism for rapid recycling of the V-ATPase. Any V-ATPase that reaches the plasma membrane is also promptly retrieved. CONCLUSIONS/SIGNIFICANCE: Thus, live cell microscopy has revealed both a usual route and alternative means of recycling the V-ATPase in the endocytic pathway.

  17. Subunit topology in the V type ATPase and related enzymes

    NARCIS (Netherlands)

    Chaban, Yuriy

    2005-01-01

    During the last decades impressive progress has been made in understanding of the catalytic mechanism of F-type ATP synthase, which is the key enzyme in the energy metabolism of eukaryotes and most bacteria. This enzyme catalyzes the final step in the process of oxidative phosphorylation in bacteria

  18. Molecular Cloning and Characterization of Porcine Na+/K+-ATPase Isoforms α1, α2, α3 and the ATP1A3 Promoter

    DEFF Research Database (Denmark)

    Henriksen, Carina; Kjaer-Sorensen, Kasper; Einholm, Anja Pernille

    2013-01-01

    Na+/K+-ATPase maintains electrochemical gradients of Na+ and K+ essential for a variety of cellular functions including neuronal activity. The α-subunit of the Na+/K+-ATPase exists in four different isoforms (α1–α4) encoded by different genes. With a view to future use of pig as an animal model...

  19. Regulation of Vacuolar H+-ATPase (V-ATPase) Reassembly by Glycolysis Flow in 6-Phosphofructo-1-kinase (PFK-1)-deficient Yeast Cells.

    Science.gov (United States)

    Chan, Chun-Yuan; Dominguez, Dennis; Parra, Karlett J

    2016-07-22

    Yeast 6-phosphofructo-1-kinase (PFK-1) has two subunits, Pfk1p and Pfk2p. Deletion of Pfk2p alters glucose-dependent V-ATPase reassembly and vacuolar acidification (Chan, C. Y., and Parra, K. J. (2014) Yeast phosphofructokinase-1 subunit Pfk2p is necessary for pH homeostasis and glucose-dependent vacuolar ATPase reassembly. J. Biol. Chem. 289, 19448-19457). This study capitalized on the mechanisms suppressing vacuolar H(+)-ATPase (V-ATPase) in pfk2Δ to gain new knowledge of the mechanisms underlying glucose-dependent V-ATPase regulation. Because V-ATPase is fully assembled in pfk2Δ, and glycolysis partially suppressed at steady state, we manipulated glycolysis and assessed its direct involvement on V-ATPase function. At steady state, the ratio of proton transport to ATP hydrolysis increased 24% after increasing the glucose concentration from 2% to 4% to enhance the glycolysis flow in pfk2Δ. Tighter coupling restored vacuolar pH when glucose was abundant and glycolysis operated below capacity. After readdition of glucose to glucose-deprived cells, glucose-dependent V1Vo reassembly was proportional to the glycolysis flow. Readdition of 2% glucose to pfk2Δ cells, which restored 62% of ethanol concentration, led to equivalent 60% V1Vo reassembly levels. Steady-state level of assembly (100% reassembly) was reached at 4% glucose when glycolysis reached a threshold in pfk2Δ (≥40% the wild-type flow). At 4% glucose, the level of Pfk1p co-immunoprecipitated with V-ATPase decreased 58% in pfk2Δ, suggesting that Pfk1p binding to V-ATPase may be inhibitory in the mutant. We concluded that V-ATPase activity at steady state and V-ATPase reassembly after readdition of glucose to glucose-deprived cells are controlled by the glycolysis flow. We propose a new mechanism by which glucose regulates V-ATPase catalytic activity that occurs at steady state without changing V1Vo assembly.

  20. The cellular energization state affects peripheral stalk stability of plant vacuolar H+-ATPase and impairs vacuolar acidification.

    Science.gov (United States)

    Schnitzer, Daniel; Seidel, Thorsten; Sander, Tim; Golldack, Dortje; Dietz, Karl-Josef

    2011-05-01

    The plant vacuolar H(+)-ATPase takes part in acidifying compartments of the endomembrane system including the secretory pathway and the vacuoles. The structural variability of the V-ATPase complex as well as its presence in different compartments and tissues involves multiple isoforms of V-ATPase subunits. Furthermore, a versatile regulation is essential to allow for organelle- and tissue-specific fine tuning. In this study, results from V-ATPase complex disassembly with a chaotropic reagent, immunodetection and in vivo fluorescence resonance energy transfer (FRET) analyses point to a regulatory mechanism in plants, which depends on energization and involves the stability of the peripheral stalks as well. Lowering of cellular ATP by feeding 2-deoxyglucose resulted in structural alterations within the V-ATPase, as monitored by changes in FRET efficiency between subunits VHA-E and VHA-C. Potassium iodide-mediated disassembly revealed a reduced stability of V-ATPase after 2-deoxyglucose treatment of the cells, but neither the complete V(1)-sector nor VHA-C was released from the membrane in response to 2-deoxyglucose treatment, precluding a reversible dissociation mechanism like in yeast. These data suggest the existence of a regulatory mechanism of plant V-ATPase by modification of the peripheral stator structure that is linked to the cellular energization state. This mechanism is distinct from reversible dissociation as reported for the yeast V-ATPase, but might represent an evolutionary precursor of reversible dissociation.

  1. Quaternary structure of V1 and F1 ATPase: significance of structural homologies and diversities.

    Science.gov (United States)

    Svergun, D I; Konrad, S; Huss, M; Koch, M H; Wieczorek, H; Altendorf, K; Volkov, V V; Grüber, G

    1998-12-22

    The V1 ATPase from the tobacco hornworm Manduca sexta and the Escherichia coli F1 ATPase were characterized by small-angle X-ray scattering (SAXS). The radii of gyration (Rg) of the complexes were 6.2 +/- 0.1 and 4.7 +/- 0.02 nm, respectively. The shape of the M. sexta V1 ATPase was determined ab initio from the scattering data showing six masses, presumed to be the A and B subunits, arranged in an alternating manner about a 3-fold axis. A seventh mass with a length of about 11.0 nm extends perpendicularly to the center of the hexameric unit. This central mass is presumed to be the stalk that connects V1 with the membrane domain (V(O)) in the intact V1V(O)-ATPase. In comparison, the shape of the F1 ATPase from E. coli possesses a quasi-3-fold symmetry over the major part of the enzyme. The overall asymmetry of the structure is given by a stem, assumed to include the central stalk subunits. The features of the V1 and F1 ATPase reveal structural homologies and diversities of the key components of the complexes.

  2. Bovine parathyroid hormone enhances osteoclast bone resorption by modulating V-ATPase through PTH1R.

    Science.gov (United States)

    Liu, Shuangxin; Zhu, Weiping; Li, Sijia; Ma, Jianchao; Zhang, Huitao; Li, Zhonghe; Zhang, Li; Zhang, Bin; Li, Zhuo; Liang, Xinling; Shi, Wei

    2016-02-01

    The vacuolar-type H+ adenosine triphosphatase (V-ATPase) plays an important role in cellular acidification and bone resorption by osteoclasts. However, the direct effect of bovine parathyroid hormone (bPTH) on V-ATPase has not yet been elucidated. The aim of the present study was to assess the effects of bPTH on V-ATPase and osteoclasts. Osteoclasts from bone marrow (BM)-derived monocytes of C57BL/6 mice were cultured with or without bPTH. The mRNA and protein expression levels of the V-ATPase a3-subunit and d2-subunit (by RT-qPCR and western blot analysis), V-ATPase activity (using the V type ATPase Activity Assay kit) and the bone resorption function of osteoclasts (by bone resorption assay) were examined following treatment with various concentrations of bPTH (0.1, 1.0, 10 and 100 ng/ml) alone or with bPTH and its inhibitor, bafilomycin A1. Furthermore, the expression of parathyroid hormone (PTH) receptors in osteoclasts was also detected. The results revealed that the mRNA and protein expression levels of V-ATPase a3-subunit and d2-subunit increased in a dose‑dependent manner, paralleling the level of bPTH present. In addition, an increase in the concentration of bPTH was accompanied by the increased resorption capability of osteoclasts, whereas bone resorption was inhibited in the presence of bafilomycin A1. In addition, we confirmed the existence of parathyroid hormone 1 receptor (PTH1R) in osteoclasts using three different methods (RT-qPCR, western blot analysis and immunofluorescence staining). We found that bPTH enhanced the bone resorption capability of osteoclasts by modulating the expression of V-ATPase subunits, intracellular acidification and V-ATPase activity. Thus, we propose that PTH has a direct effect on osteoblasts and osteoclasts, and that this effect is mediated through PTH1R, thus contributing to bone remodeling.

  3. The oligomeric state of the active Vps4 AAA ATPase

    Science.gov (United States)

    Monroe, Nicole; Han, Han; Gonciarz, Malgorzata D.; Eckert, Debra M.; Karren, Mary Anne; Whitby, Frank G.; Sundquist, Wesley I.; Hill, Christopher P.

    2013-01-01

    The cellular ESCRT pathway drives membrane constriction toward the cytosol and effects membrane fission during cytokinesis, endosomal sorting, and the release of many enveloped viruses, including HIV. A component of this pathway, the AAA ATPase Vps4, provides energy for pathway progression. Although it is established that Vps4 functions as an oligomer, subunit stoichiometry and other fundamental features of the functional enzyme are unclear. Higher-order oligomers have thus far only been characterized for a Walker B mutant of Vps4 in the presence of ATP. Here, we report that although some mutant Vps4 proteins form dodecameric assemblies, active wild-type S. cerevisiae and S. solfataricus Vps4 enzymes can form hexamers in the presence of ATP and ADP, as assayed by size exclusion chromatography and equilibrium analytical ultracentifugation. The Vta1p activator binds hexameric yeast Vps4p without changing the oligomeric state of Vps4p, implying that the active Vta1p:Vps4p complex also contains a single hexameric ring. Additionally, we report crystal structures of two different archaeal Vps4 homologs, whose structures and lattice interactions suggest a conserved mode of oligomerization. Disruption of the proposed hexamerization interface by mutagenesis abolished the ATPase activity of archaeal Vps4 proteins and blocked Vps4p function in S. cerevisiae. These data challenge the prevailing model that active Vps4 is a double ring dodecamer, and argue that, like other type I AAA ATPases, Vps4 functions as a single ring with six subunits. PMID:24161953

  4. Rotary ATPases: models, machine elements and technical specifications.

    Science.gov (United States)

    Stewart, Alastair G; Sobti, Meghna; Harvey, Richard P; Stock, Daniela

    2013-01-01

    Rotary ATPases are molecular rotary motors involved in biological energy conversion. They either synthesize or hydrolyze the universal biological energy carrier adenosine triphosphate. Recent work has elucidated the general architecture and subunit compositions of all three sub-types of rotary ATPases. Composite models of the intact F-, V- and A-type ATPases have been constructed by fitting high-resolution X-ray structures of individual subunits or sub-complexes into low-resolution electron densities of the intact enzymes derived from electron cryo-microscopy. Electron cryo-tomography has provided new insights into the supra-molecular arrangement of eukaryotic ATP synthases within mitochondria and mass-spectrometry has started to identify specifically bound lipids presumed to be essential for function. Taken together these molecular snapshots show that nano-scale rotary engines have much in common with basic design principles of man made machines from the function of individual "machine elements" to the requirement of the right "fuel" and "oil" for different types of motors.

  5. Cloning and preliminary functional analysis of ATPase alpha subunit gene promoter from Dunaliella salina%杜氏盐藻叶绿体ATP合酶α亚单位基因启动子的克隆及初步功能分析

    Institute of Scientific and Technical Information of China (English)

    谷辉辉; 冯书营; 潘卫东; 李杰; 薛乐勋

    2011-01-01

    采用DraⅠ,EcoRⅤ,PvuⅡ,ScaⅠ,SmaⅠ和StuⅠ六种内切酶消化杜氏盐藻(Dunaliella salina)叶绿体基因组DNA,与相应DNA接头连接,构建成无载体连接的盐藻叶绿体Genome Walker DNA文库。利用长距离PCR(long distance-polymerase chain reaction,LD-PCR)技术从该文库中克隆得到ATP合酶α亚单位(atpA)基因上游序列1347bp。启动子特征分析显示该序列具有一般启动子的保守序列特征,根据这些特征设计引物,扩增4个5’端系列缺失的启动子片段,并用绿色荧光蛋白基因作为报告基因,构建启动子5’端系列缺失重组质粒,以期鉴定不同启动子片段的驱动报告基因转录的活性。基因枪转化结果显示,启动子长度约1000bp的重组载体转化盐藻后,其转化株中有黄绿色的盐藻细胞出现。说明克隆的序列具有启动子活性,能驱动绿色荧光蛋白基因在杜氏盐藻中有效表达,为建立盐藻叶绿体转化系统奠定了工作基础。%To clone and identify the function of the promoter of the ATPase alpha subunit (atpA) gene from Dunaliella salina, a chloroplast GenomeWalker DNA Library from D. salina was constructed, from which the 1 347 bp upstream fragment of atpA gene was cloned by long distance-polymerase chain reaction (LD-PCR). According to the positions of the different promoter elements predicted by bioinformatics tools, 5'-deleted series primers were designed to amplify different promoter fragments. Series 5'-deleted expression vector containing the GFP gene was constructed and then transformed to cells of D. salina by particle bombardment. The transformed cells with p 1000 recombinant vector produced green fluorescence, but not in other transformation groups, suggesting that the cloned region had the activity of the promoter and may drive the effective expression of the GFP gene in D.salina. Our results have layed a foundation for the chloroplast

  6. Characterization of the P4-ATPase ATP8A2: Identification of Key Residues Involved in Catalysis and Lipid Transport

    DEFF Research Database (Denmark)

    Coleman, Jonathan Allan; Vestergaard, Anna Lindeløv; Molday, Robert S.;

    ATP8A2 is a P4-ATPase ("lipid flippase") highly expressed in the retina, brain, and testes. Previous studies in our laboratory have shown that ATP8A2 exists as a complex with its β-subunit CDC50A in retinal rod and cone photoreceptor cells and this complex preferentially transports phosphatidylse......ATP8A2 is a P4-ATPase ("lipid flippase") highly expressed in the retina, brain, and testes. Previous studies in our laboratory have shown that ATP8A2 exists as a complex with its β-subunit CDC50A in retinal rod and cone photoreceptor cells and this complex preferentially transports...... are likely the only species which are transported by P4-ATPases. These studies form a basis for further understanding lipid transport by this critical yet poorly understood class of P-type ATPases....

  7. Regulation of vacuolar proton pumping ATPase-dependent luminal acidification in the epididymis

    Institute of Scientific and Technical Information of China (English)

    Nicolas Da Silva; Winnie W. C. Shum; Sylvie Breton

    2007-01-01

    Luminal acidification in the epididymis is an important process for the regulation of male fertility. Low pH and low bicarbonate concentration are among key factors that keep spermatozoa in a dormant state while they mature and are stored in this organ. Although significant bicarbonate reabsorption is achieved by principal cells in the proximal regions of the epididymis, clear and narrow cells are specialized for net proton secretion. Clear cells express very high levels of the vacuolar proton pumping ATPase (V-ATPase) in their apical membrane and are responsible for the bulk of proton secretion. In the present paper, selected aspects of V-ATPase regulation in clear cells are described and potential pathologies associated with mutations of some of the V-ATPase subunits are discussed.

  8. Na(+)-K(+)-ATPase expression in alveolar epithelial cells: upregulation of active ion transport by KGF.

    Science.gov (United States)

    Borok, Z; Danto, S I; Dimen, L L; Zhang, X L; Lubman, R L

    1998-01-01

    We evaluated the effects of keratinocyte growth factor (KGF) on alveolar epithelial cell (AEC) active ion transport and on rat epithelial Na channel (rENaC) subunit and Na(+)-K(+)-adenosinetriphosphatase (ATPase) subunit isoform expression using monolayers of AEC grown in primary culture. Rat alveolar type II cells were plated on polycarbonate filters in serum-free medium, and KGF (10 ng/ml) was added to confluent AEC monolayers on day 4 in culture. Exposure of AEC monolayers to KGF on day 4 resulted in dose-dependent increases in short-circuit current (Isc) compared with controls by day 5, with further increases occurring through day 8. Relative Na(+)-K(+)-ATPase alpha 1-subunit mRNA abundance was increased by 41% on days 6 and 8 after exposure to KGF, whereas alpha 2-subunit mRNA remained only marginally detectable in both the absence and presence of KGF. Levels of mRNA for the beta 1-subunit of Na(+)-K(+)-ATPase did not increase, whereas cellular alpha 1- and beta 1-subunit protein increased 70 and 31%, respectively, on day 6. mRNA for alpha-, beta-, and gamma-rENaC all decreased in abundance after treatment with KGF. These results indicate that KGF upregulates active ion transport across AEC monolayers via a KGF-induced increase in Na pumps, primarily due to increased Na(+)-K(+)-ATPase alpha 1-subunit mRNA expression. We conclude that KGF may enhance alveolar fluid clearance after acute lung injury by upregulating Na pump expression and transepithelial Na transport across the alveolar epithelium.

  9. Quaternary structure of the ATPase complex of human 26S proteasomes determined by chemical cross-linking

    DEFF Research Database (Denmark)

    Hartmann-Petersen, R; Tanaka, K; Hendil, K B

    2001-01-01

    -linking, immunoprecipitation, and blotting, we have determined that the ATPases are organized in the order S6-S6'-S10b-S8-S4-S7. Additionally, we found cross-links between the ATPase S10b and the 20S proteasome subunit alpha6. Together with the previously known interaction between S8 and alpha1 and between S4 and alpha7...

  10. Chronic nicotine modifies skeletal muscle Na,K-ATPase activity through its interaction with the nicotinic acetylcholine receptor and phospholemman.

    Directory of Open Access Journals (Sweden)

    Alexander V Chibalin

    Full Text Available Our previous finding that the muscle nicotinic acetylcholine receptor (nAChR and the Na,K-ATPase interact as a regulatory complex to modulate Na,K-ATPase activity suggested that chronic, circulating nicotine may alter this interaction, with long-term changes in the membrane potential. To test this hypothesis, we chronically exposed rats to nicotine delivered orally for 21-31 days. Chronic nicotine produced a steady membrane depolarization of ∼3 mV in the diaphragm muscle, which resulted from a net change in electrogenic transport by the Na,K-ATPase α2 and α1 isoforms. Electrogenic transport by the α2 isoform increased (+1.8 mV while the activity of the α1 isoform decreased (-4.4 mV. Protein expression of Na,K-ATPase α1 or α2 isoforms and the nAChR did not change; however, the content of α2 subunit in the plasma membrane decreased by 25%, indicating that its stimulated electrogenic transport is due to an increase in specific activity. The physical association between the nAChR, the Na,K-ATPase α1 or α2 subunits, and the regulatory subunit of the Na,K-ATPase, phospholemman (PLM, measured by co-immuno precipitation, was stable and unchanged. Chronic nicotine treatment activated PKCα/β2 and PKCδ and was accompanied by parallel increases in PLM phosphorylation at Ser(63 and Ser(68. Collectively, these results demonstrate that nicotine at chronic doses, acting through the nAChR-Na,K-ATPase complex, is able to modulate Na,K-ATPase activity in an isoform-specific manner and that the regulatory range includes both stimulation and inhibition of enzyme activity. Cholinergic modulation of Na,K-ATPase activity is achieved, in part, through activation of PKC and phosphorylation of PLM.

  11. MsmK, an ATPase, Contributes to Utilization of Multiple Carbohydrates and Host Colonization of Streptococcus suis.

    Science.gov (United States)

    Tan, Mei-Fang; Gao, Ting; Liu, Wan-Quan; Zhang, Chun-Yan; Yang, Xi; Zhu, Jia-Wen; Teng, Mu-Ye; Li, Lu; Zhou, Rui

    2015-01-01

    Acquisition and metabolism of carbohydrates are essential for host colonization and pathogenesis of bacterial pathogens. Different bacteria can uptake different lines of carbohydrates via ABC transporters, in which ATPase subunits energize the transport though ATP hydrolysis. Some ABC transporters possess their own ATPases, while some share a common ATPase. Here we identified MsmK, an ATPase from Streptococcus suis, an emerging zoonotic bacterium causing dead infections in pigs and humans. Genetic and biochemistry studies revealed that the MsmK was responsible for the utilization of raffinose, melibiose, maltotetraose, glycogen and maltotriose. In infected mice, the msmK-deletion mutant showed significant defects of survival and colonization when compared with its parental and complementary strains. Taken together, MsmK is an ATPase that contributes to multiple carbohydrates utilization and host colonization of S. suis. This study gives new insight into our understanding of the carbohydrates utilization and its relationship to the pathogenesis of this zoonotic pathogen.

  12. A comparison of an ATPase from the archaebacterium Halobacterium saccharovorum with the F1 moiety from the Escherichia coli ATP Synthase

    Science.gov (United States)

    Stan-Lotter, Helga; Hochstein, Lawrence I.

    1989-01-01

    A purified ATPase associated with membranes from Halobacterium saccharovorum was compared with the F sub 1 moiety from the Escherichia coli ATP Synthase. The halobacterial enzyme was composed of two major (I and II) and two minor subunits (III and IV), whose molecular masses were 87 kDa, 60 kDa, 29 kDa, and 20 kDa, respectively. The isoelectric points of these subunits ranged from 4.1 to 4.8, which in the case of the subunits I and II was consistent with the presence of an excess of acidic amino acids (20 to 22 Mol percent). Peptide mapping of sodium dodecylsulfate-denatured subunits I and II showed no relationship between the primary structures of the individual halobacterial subunits or similarities to the subunits of the F sub 1 ATPase (EC 3.6.1.34) from E. coli. Trypsin inactivation of the halobacterial ATPase was accompanied by the partial degradation of the major subunits. This observation, taken in conjunction with molecular masses of the subunits and the native enzyme, was consistent with the previously proposed stoichiometry of 2:2:1:1. These results suggest that H. saccharovorum, and possibly, Halobacteria in general, possess an ATPase which is unlike the ubiquitous F sub o F sub 1 - ATP Synthase.

  13. Alteration of aluminium inhibition of synaptosomal (Na(+)/K(+))ATPase by colestipol administration.

    Science.gov (United States)

    Silva, V S; Oliveira, L; Gonçalves, P P

    2013-11-01

    The ability of aluminium to inhibit the (Na(+)/K(+))ATPase activity has been observed by several authors. During chronic dietary exposure to AlCl3, brain (Na(+)/K(+))ATPase activity drops, even if no alterations of catalytic subunit protein expression and of energy charge potential are observed. The aluminium effect on (Na(+)/K(+))ATPase activity seems to implicate the reduction of interacting protomers within the oligomeric ensemble of the membrane-bound (Na(+)/K(+))ATPase. The activity of (Na(+)/K(+))ATPase is altered by the microviscosity of lipid environment. We studied if aluminium inhibitory effect on (Na(+)/K(+))ATPase is modified by alterations in synaptosomal membrane cholesterol content. Adult male Wistar rats were submitted to chronic dietary AlCl3 exposure (0.03 g/day of AlCl3) and/or to colestipol, a hypolidaemic drug (0.31 g/day) during 4 months. The activity of (Na(+)/K(+))ATPase was studied in brain cortex synaptosomes with different cholesterol contents. Additionally, we incubate synaptosomes with methyl-β-cyclodextrin for both enrichment and depletion of membrane cholesterol content, with or without 300 μM AlCl3. This enzyme activity was significantly reduced by micromolar AlCl3 added in vitro and when aluminium was orally administered to rats. The oral administration of colestipol reduced the cholesterol content and concomitantly inhibited the (Na(+)/K(+))ATPase. The aluminium inhibitory effect on synaptosomal (Na(+)/K(+))ATPase was reduced by cholesterol depletion both in vitro and in vivo.

  14. Presenilin 1 maintains lysosomal Ca2+ homeostasis by regulating vATPase-mediated lysosome acidification

    Science.gov (United States)

    Lee, Ju-Hyun; McBrayer, Mary Kate; Wolfe, Devin M.; Haslett, Luke J.; Kumar, Asok; Sato, Yutaka; Lie, Pearl P. Y.; Mohan, Panaiyur; Coffey, Erin E.; Kompella, Uday; Mitchell, Claire H.; Lloyd-Evans, Emyr; Nixon, Ralph A.

    2015-01-01

    Summary Presenilin-1 (PS1) deletion or Alzheimer’s Disease (AD)-linked mutations disrupt lysosomal acidification and proteolysis, which inhibits autophagy. Here, we establish that this phenotype stems from impaired glycosylation and instability of vATPase V0a1 subunit causing deficient lysosomal vATPase assembly and function. We further demonstrate that elevated lysosomal pH in PS1KO cells induces abnormal Ca2+ efflux from lysosomes mediated by TRPML1 and elevates cytosolic Ca2+. In WT cells, blocking vATPase activity or knockdown of either PS1 or the V0a1 subunit of vATPase reproduces all of these abnormalities. Normalizing lysosomal pH in PS1KO cells using acidic nanoparticles restores normal lysosomal proteolysis, autophagy, and Ca2+ homeostasis, but correcting lysosomal Ca2+ deficits alone neither re-acidifies lysosomes nor reverses proteolytic and autophagic deficits. Our results indicate that vATPase deficiency in PS1 loss of function states causes lysosomal/autophagy deficits and contributes to abnormal cellular Ca2+ homeostasis, thus linking two AD-related pathogenic processes through a common molecular mechanism. PMID:26299959

  15. Na,K-ATPase activity in mouse muscle is regulated by AMPK and PGC-1a

    DEFF Research Database (Denmark)

    Ingwersen, Maria S; Kristensen, Michael; Pilegaard, Henriette

    2011-01-01

    -term regulation of Na,K-ATPase isoform (a,ß and PLM) abundance and Na(+) affinity. Repeated treatment of mice with the AMPK activator AICAR decreased total PLM protein content but increased PLM phosphorylation, whereas the number of a- and ß-subunits remained unchanged. The K (m) for Na(+) stimulation of Na......,K-ATPase was reduced (higher affinity) after AICAR treatment. PLM abundance was increased in AMPK kinase-dead mice compared with control mice, but PLM phosphorylation and Na,K-ATPase Na(+) affinity remained unchanged. Na,K-ATPase activity and subunit distribution were also measured in mice with different degrees...... of PGC-1a expression. Protein abundances of a1 and a2 were reduced in PGC-1a +/- and -/- mice, and the ß(1)/ß(2) ratio was increased with PGC-1a overexpression (TG mice). PLM protein abundance was decreased in TG mice, but phosphorylation status was unchanged. Na,K-ATPase V (max) was decreased in PCG-1a...

  16. Activity of plasma membrane V-ATPases is critical for the invasion of MDA-MB231 breast cancer cells.

    Science.gov (United States)

    Cotter, Kristina; Capecci, Joseph; Sennoune, Souad; Huss, Markus; Maier, Martin; Martinez-Zaguilan, Raul; Forgac, Michael

    2015-02-06

    The vacuolar (H(+))-ATPases (V-ATPases) are a family of ATP-driven proton pumps that couple ATP hydrolysis with translocation of protons across membranes. Previous studies have implicated V-ATPases in cancer cell invasion. It has been proposed that V-ATPases participate in invasion by localizing to the plasma membrane and causing acidification of the extracellular space. To test this hypothesis, we utilized two separate approaches to specifically inhibit plasma membrane V-ATPases. First, we stably transfected highly invasive MDA-MB231 cells with a V5-tagged construct of the membrane-embedded c subunit of the V-ATPase, allowing for extracellular expression of the V5 epitope. We evaluated the effect of addition of a monoclonal antibody directed against the V5 epitope on both V-ATPase-mediated proton translocation across the plasma membrane and invasion using an in vitro Matrigel assay. The addition of anti-V5 antibody resulted in acidification of the cytosol and a decrease in V-ATPase-dependent proton flux across the plasma membrane in transfected but not control (untransfected) cells. These results demonstrate that the anti-V5 antibody inhibits activity of plasma membrane V-ATPases in transfected cells. Addition of the anti-V5 antibody also inhibited in vitro invasion of transfected (but not untransfected) cells. Second, we utilized a biotin-conjugated form of the specific V-ATPase inhibitor bafilomycin. When bound to streptavidin, this compound cannot cross the plasma membrane. Addition of this compound to MDA-MB231 cells also inhibited in vitro invasion. These studies suggest that plasma membrane V-ATPases play an important role in invasion of breast cancer cells.

  17. Contraction-induced increases in Na+-K+-ATPase mRNA levels in human skeletal muscle are not amplified by activation of additional muscle mass

    DEFF Research Database (Denmark)

    Nordsborg, Nikolai; Thomassen, Martin; Lundby, Carsten

    2005-01-01

    The present study tested the hypothesis that exercise with a large compared with a small active muscle mass results in a higher contraction-induced increase in Na+-K+-ATPase mRNA expression due to greater hormonal responses. Furthermore, the relative abundance of Na+-K+-ATPase subunit a1, a2, a3,...

  18. Glutamate transporter activity promotes enhanced Na+/K+-ATPase-mediated extracellular K+ management during neuronal activity

    DEFF Research Database (Denmark)

    Larsen, Brian Roland; Holm, Rikke; Vilsen, Bente;

    2016-01-01

    , in addition, Na+/K+-ATPase-mediated K+ clearance could be governed by astrocytic [Na+]i. During most neuronal activity, glutamate is released in the synaptic cleft and is re-absorbed by astrocytic Na+-coupled glutamate transporters, thereby elevating [Na+]i. It thus remains unresolved whether the different Na...... constellations in Xenopus oocytes and determined their apparent Na+ affinity in intact oocytes and isolated membranes. The Na+/K+-ATPase was not fully saturated at basal astrocytic [Na+]i, irrespective of isoform constellation, although the β1 subunit conferred lower apparent Na+ affinity to the α1 and α2...

  19. Transient expression of P-type ATPases in tobacco epidermal cells

    DEFF Research Database (Denmark)

    Poulsen, Lisbeth Rosager; Palmgren, Michael Broberg; Lopez Marques, Rosa Laura

    2016-01-01

    Transient expression in tobacco cells is a convenient method for several purposes such as analysis of protein-protein interactions and the subcellular localization of plant proteins. A suspension of Agrobacterium tumefaciens cells carrying the plasmid of interest is injected into the intracellular...... for example protein-protein interaction studies. In this chapter, we describe the procedure to transiently express P-type ATPases in tobacco epidermal cells, with focus on subcellular localization of the protein complexes formed by P4-ATPases and their β-subunits....

  20. Solubilization and purification of the ATPase from the tonoplast of Hevea.

    Science.gov (United States)

    Marin, B; Preisser, J; Komor, E

    1985-08-15

    The tonoplast-bound ATPase of Hevea brasiliensis (caoutchouc tree) was solubilized with dichloromethan and purified 100-fold with two ammonium sulfate precipitation steps and a G-200 gel filtration step. The resulting ATPase activity eluted according to a molecular mass of approximately 200 kDa and chromatographed at an isoelectric pH of 5.3. Subunits of molecular mass 110 kDa, 68 kDa, 24 kDa and 12 kDa appeared after treatment with 1% sodium dodecyl sulfate or spontaneously during storage of the solubilized ATPase. Dodecyl sulfate/polyacrylamide gel electrophoresis yielded four polypeptides of molecular mass 54 kDa, 66 kDa, 23 kDa and 13 kDa. From protein determination by ultraviolet absorption and Coomassie stain it appears that the 54-kDa and the 66-kDa polypeptides exist in multiple copies. No close resemblance to the membrane-bound ATPase of mitochondria, plastids, plasmalemma, chromaffin granules and synaptic vesicles is seen. No antibody cross-reaction to F1 of bacteria is observed. Therefore it is concluded that the vacuolar ATPase represents a novel type of ATPase. Many properties of the tonoplast-bound ATPase such as pH-dependence, substrate specificity, ion-dependence and inhibitor sensitivity did not change when the enzyme had been solubilized and purified. The phosphatase activity was lost during the purification procedure. The stimulation of ATP-hydrolysis in tonoplast vesicles by uncouplers and ionophores was absent in the solubilized ATPase, and also the stimulation by chloride was significantly reduced. Anion channel blockers, such as triphenyltin and 4,4'-diisothiocyano-2,2'-disulfonic acid stilbene, which are strong inhibitors of membrane-bound ATPase, fully or partly lost their inhibiting effect after solubilization of the ATPase. These results are interpreted to indicate that ionophores do not directly affect the ATPase molecule, whereas chloride might have a small direct effect on the ATPase besides its effect as a permeating anion.

  1. Physiological implications of the regulation of vacuolar H+-ATPase by chloride ions

    Directory of Open Access Journals (Sweden)

    L.R. Carraro-Lacroix

    2009-02-01

    Full Text Available Vacuolar H+-ATPase is a large multi-subunit protein that mediates ATP-driven vectorial H+ transport across the membranes. It is widely distributed and present in virtually all eukaryotic cells in intracellular membranes or in the plasma membrane of specialized cells. In subcellular organelles, ATPase is responsible for the acidification of the vesicular interior, which requires an intraorganellar acidic pH to maintain optimal enzyme activity. Control of vacuolar H+-ATPase depends on the potential difference across the membrane in which the proton ATPase is inserted. Since the transport performed by H+-ATPase is electrogenic, translocation of H+-ions across the membranes by the pump creates a lumen-positive voltage in the absence of a neutralizing current, generating an electrochemical potential gradient that limits the activity of H+-ATPase. In many intracellular organelles and cell plasma membranes, this potential difference established by the ATPase gradient is normally dissipated by a parallel and passive Cl- movement, which provides an electric shunt compensating for the positive charge transferred by the pump. The underlying mechanisms for the differences in the requirement for chloride by different tissues have not yet been adequately identified, and there is still some controversy as to the molecular identity of the associated Cl--conducting proteins. Several candidates have been identified: the ClC family members, which may or may not mediate nCl-/H+ exchange, and the cystic fibrosis transmembrane conductance regulator. In this review, we discuss some tissues where the association between H+-ATPase and chloride channels has been demonstrated and plays a relevant physiologic role.

  2. The role of individual domains and the significance of shedding of ATP6AP2/(pro)renin receptor in vacuolar H(+)-ATPase biogenesis.

    Science.gov (United States)

    Kinouchi, Kenichiro; Ichihara, Atsuhiro; Sano, Motoaki; Sun-Wada, Ge-Hong; Wada, Yoh; Ochi, Hiroki; Fukuda, Toru; Bokuda, Kanako; Kurosawa, Hideaki; Yoshida, Naohiro; Takeda, Shu; Fukuda, Keiichi; Itoh, Hiroshi

    2013-01-01

    The ATPase 6 accessory protein 2 (ATP6AP2)/(pro)renin receptor (PRR) is essential for the biogenesis of active vacuolar H(+)-ATPase (V-ATPase). Genetic deletion of ATP6AP2/PRR causes V-ATPase dysfunction and compromises vesicular acidification. Here, we characterized the domains of ATP6AP2/PRR involved in active V-ATPase biogenesis. Three forms of ATP6AP2/PRR were found intracellularly: full-length protein and the N- and C-terminal fragments of furin cleavage products, with the N-terminal fragment secreted extracellularly. Genetic deletion of ATP6AP2/PRR did not affect the protein stability of V-ATPase subunits. The extracellular domain (ECD) and transmembrane domain (TM) of ATP6AP2/PRR were indispensable for the biogenesis of active V-ATPase. A deletion mutant of ATP6AP2/PRR, which lacks exon 4-encoded amino acids inside the ECD (Δ4M) and causes X-linked mental retardation Hedera type (MRXSH) and X-linked parkinsonism with spasticity (XPDS) in humans, was defective as a V-ATPase-associated protein. Prorenin had no effect on the biogenesis of active V-ATPase. The cleavage of ATP6AP2/PRR by furin seemed also dispensable for the biogenesis of active V-ATPase. We conclude that the N-terminal ECD of ATP6AP2/PRR, which is also involved in binding to prorenin or renin, is required for the biogenesis of active V-ATPase. The V-ATPase assembly occurs prior to its delivery to the trans-Golgi network and hence shedding of ATP6AP2/PRR would not affect the biogenesis of active V-ATPase.

  3. Evolution of plant P-type ATPases

    Directory of Open Access Journals (Sweden)

    Christian N.S. Pedersen

    2012-02-01

    Full Text Available Five organisms having completely sequenced genomes and belonging to all major branches of green plants (Viridiplantae were analyzed with respect to their content of P-type ATPases encoding genes. These were the chlorophytes Ostreococcus tauria and Chlamydomonas reinhardtii, and the streptophytes Physcomitrella patens (a moss, Selaginella moellendorffii (a primitive vascular plant, and Arabidopsis thaliana (a model flowering plant. Each organism contained sequences for all five subfamilies of P-type ATPases. Our analysis demonstrates when specific subgroups of P-type ATPases disappeared in the evolution of Angiosperms. Na/K-pump related P2C ATPases were lost with the evolution of streptophytes whereas Na+ or K+ pumping P2D ATPases and secretory pathway Ca2+-ATPases remained until mosses. An N-terminally located calmodulin binding domain in P2B ATPases can only be detected in pumps from Streptophytae, whereas, like in animals, a C-terminally localized calmodulin binding domain might be present in chlorophyte P2B Ca2+-ATPases. Chlorophyte genomes encode P3A ATPases resembling protist plasma membrane H+-ATPases and a C-terminal regulatory domain is missing. The complete inventory of P-type ATPases in the major branches of Viridiplantae is an important starting point for elucidating the evolution in plants of these important pumps.

  4. Monoclonal antibodies to Escherichia coli F1-ATPase. Correlation of binding site location with interspecies cross-reactivity and effects on enzyme activity.

    Science.gov (United States)

    Dunn, S D; Tozer, R G; Antczak, D F; Heppel, L A

    1985-09-05

    Twenty-one hybridoma cell lines which secret antibodies to the subunits of the Escherichia coli F1-ATPase were produced. Included within the set are four antibodies which are specific for alpha, six for beta, three for gamma, four for delta and four for epsilon. The antibodies were divided into binding competition subgroups. Two such competition subgroups are represented for the alpha, beta, and epsilon subunits, one for delta and three for gamma. The ability to bind intact F1-ATPase was demonstrated for some of the antibodies to alpha and beta, and for all of those to delta, while the antibodies to gamma and epsilon gave unclear results. All of the antibodies to alpha and beta which bound ATPase were found to have effects on the ATPase activity of purified E. coli F1-ATPase. One of those to alpha inhibited activity by about 30%. Another anti-alpha was mildly stimulatory. The four antibodies to beta which bound ATPase inhibited activity by 90%. In contrast, membrane-bound ATPase was hardly affected by the antibodies to alpha, but was inhibited by 40-60% by the antibodies to beta. The other antibodies to alpha and beta bound only free subunits, or partially dissociated ATPase, suggesting that their epitopes are buried between subunits in ATPase. These antibodies had no effects on activity. The ability of the antibodies to recognize ATPase subunits present in crude extracts from mitochondria, chloroplasts, and a variety of bacteria was tested using nitrocellulose blots of sodium dodecyl sulfate-polyacrylamide gels. One anti-beta specifically recognized proteins in the range of 50,000-60,000 daltons in each of the extracts, although the reaction with mitochondrial beta was weak. Some of the other antibodies had limited cross-reaction, but most were specific for the E. coli protein. In some species, those proteins which were recognized by the anti-beta ran with a higher apparent molecular weight than proteins which were recognized by an anti-alpha. All antibodies which

  5. ATPase site architecture is required for self-assembly and remodeling activity of a hexameric AAA+ transcriptional activator.

    Science.gov (United States)

    Joly, Nicolas; Zhang, Nan; Buck, Martin

    2012-08-10

    AAA+ proteins (ATPases associated with various cellular activities) are oligomeric ATPases that use ATP hydrolysis to remodel their substrates. By similarity with GTPases, a dynamic organization of the nucleotide-binding pockets between ATPase protomers is proposed to regulate functionality. Using the transcription activator PspF as an AAA+ model, we investigated contributions of conserved residues for roles in ATP hydrolysis and intersubunit communication. We determined the R-finger residue and revealed that it resides in a conserved "R-hand" motif (R(x)D(xxx)R) needed for its "trans-acting" activity. Further, a divergent Walker A glutamic acid residue acts synergistically with a tyrosine residue to function in ADP-dependent subunit-subunit coordination, forming the "ADP-switch" motif. Another glutamic acid controls hexamer formation in the presence of nucleotides. Together, these results lead to a "residue-nucleotide" interaction map upon which to base AAA+ core regulation.

  6. Contributions of the Na⁺/K⁺-ATPase, NKCC1, and Kir4.1 to hippocampal K⁺ clearance and volume responses

    DEFF Research Database (Denmark)

    Larsen, Brian Roland; Assentoft, Mette; Cotrina, Maria L;

    2014-01-01

    (+)/K(+)-ATPase activity. Their individual contribution to [K(+)]o management has been of extended controversy. This study aimed, by several complementary approaches, to delineate the transport characteristics of Kir4.1, NKCC1, and Na(+)/K(+)-ATPase and to resolve their involvement in clearance of extracellular K......(+) transients. Primary cultures of rat astrocytes displayed robust NKCC1 activity with [K(+)]o increases above basal levels. Increased [K(+)]o produced NKCC1-mediated swelling of cultured astrocytes and NKCC1 could thereby potentially act as a mechanism of K(+) clearance while concomitantly mediate......(+)/K(+)-ATPase reduced post-stimulus clearance of K(+) transients. The astrocyte-characteristic α2β2 subunit composition of Na(+)/K(+)-ATPase, when expressed in Xenopus oocytes, displayed a K(+) affinity and voltage-sensitivity that would render this subunit composition specifically geared for controlling [K(+)]o during...

  7. Using antibodies against ATPase and microarray immunoassays for the search for potential extraterrestrial life in saline environments on Mars.

    Science.gov (United States)

    Weigl, Andreas; Gruber, Claudia; Blanco-López, Yolanda; Rivas, Luis A.; Parro, Victor; Stan-Lotter, Helga

    2010-05-01

    For the search for extraterrestrial life it is proposed to use receptors such as labelled antibodies for the detection of organic biomarkers. One of these organic molecules to be tested is the universal enzyme ATP synthase which is present in highly conserved forms in all organisms on earth. Therefore it is necessary to evaluate antibodies against ATPase respectively ATP synthase and their subunits. As it is known, that there are halite deposits on Mars the experiments in this study have been carried out with regard to halophile microorganisms and saline environments. Standard F1F0 ATPase from Escherichia coli LE 392 and Bacillus megaterium as well as haloarchaeal A-ATPase from Halorubrum saccharovorum and Halobacterium salinarum NRC-1 were used. The cultivated cells, except Bacillus, were broken by passage through a French Pressure Cell. Separation of enzyme subunits was performed by polyacrylamide gel electrophoresis. Western Blotting with antisera produced in rabbit against A-ATPase subunits A (85 kD) and subunits B (60 kD) from Halorubrrum saccharovorum (1) showed positive reactions with the membrane fraction, which should be enriched with ATPase from Halorubrum saccharovorum, Halobacterium salinarum NRC-1 and Escherichia coli LE 392. Particular attention was given to the question if ATPase subunits can be detected in whole cells. Therefore whole cell preparations of all cells and spore suspensions from Geobacillus stearothermophilus were tested against the antiserum as well as against protein-A-purified antibody against A-ATPase subunit A from Halorubrum saccharovorum. A positive immuno reaction of all cell preparations with the antiserum as well as with the purified antibody was detected. The spores of Geobacillus stearothermophilus reacted positively with the antiserum against subunit A of the A-ATPase from Hrr. saccharovorum. A commercial antibody Rabbit Anti-V-ATPase subunit A polyclonal antibody from the GenScript Corporation reacted positively with

  8. Properties of F1-ATPase from the uncD412 mutant of Escherichia coli.

    Science.gov (United States)

    Wise, J G; Duncan, T M; Latchney, L R; Cox, D N; Senior, A E

    1983-11-01

    Properties of purified F1-ATPase from Escherichia coli mutant strain AN484 (uncD412) have been studied in an attempt to understand why the amino acid substitution in the beta-subunit of this enzyme causes a tenfold reduction from normal MgATP hydrolysis rate. In most properties that were studied, uncD412 F1-ATPase resembled normal E. coli F1-ATPase. Both enzymes were found to contain a total of six adenine-nucleotide-binding sites, of which three were found to be non-exchangeable and three were exchangeable (catalytic) sites. Binding of the non-hydrolysable substrate analogue adenosine 5'-[beta gamma-imido]triphosphate (p[NH]ppA) to the three exchangeable sites showed apparent negative co-operativity. The binding affinities for p[NH]ppA, and also ADP, at the exchangeable sites were similar in the two enzymes. Both enzymes were inhibited by efrapeptin, aurovertin and p[NH]ppA, and were inactivated by dicyclohexylcarbodi-imide, 4-chloro-7-nitrobenzofurazan and p-fluorosulphonyl-benzoyl-5'-adenosine. Km values for CaATP and MgATP were similar in the two enzymes. uncD412 F1-ATPase was abnormally unstable at high pH, and dissociated into subunits readily with consequent loss of activity. The reason for the impairment of catalysis in uncD412 F1-ATPase cannot be stated with certainty from these studies. However we discuss the possibility that the mutation interrupts subunit interaction, thereby causing a partial impairment in the site-site co-operativity which is required for 'promotion' of catalysis in this enzyme.

  9. Alternating Hemiplegia of Childhood mutations have a differential effect on Na(+),K(+)-ATPase activity and ouabain binding.

    Science.gov (United States)

    Weigand, Karl M; Messchaert, Muriël; Swarts, Herman G P; Russel, Frans G M; Koenderink, Jan B

    2014-07-01

    De novo mutations in ATP1A3, the gene encoding the α3-subunit of Na(+),K(+)-ATPase, are associated with the neurodevelopmental disorder Alternating Hemiplegia of Childhood (AHC). The aim of this study was to determine the functional consequences of six ATP1A3 mutations (S137Y, D220N, I274N, D801N, E815K, and G947R) associated with AHC. Wild type and mutant Na(+),K(+)-ATPases were expressed in Sf9 insect cells using the baculovirus expression system. Ouabain binding, ATPase activity, and phosphorylation were absent in mutants I274N, E815K and G947R. Mutants S137Y and D801N were able to bind ouabain, although these mutants lacked ATPase activity, phosphorylation, and the K(+)/ouabain antagonism indicative of modifications in the cation binding site. Mutant D220N showed similar ouabain binding, ATPase activity, and phosphorylation to wild type Na(+),K(+)-ATPase. Functional impairment of Na(+),K(+)-ATPase in mutants S137Y, I274N, D801N, E815K, and G947R might explain why patients having these mutations suffer from AHC. Moreover, mutant D801N is able to bind ouabain, whereas mutant E815K shows a complete loss of function, possibly explaining the different phenotypes for these mutations.

  10. The F-ATPase operon from the oral streptococci S. mutans and S. sanguis: How structure relates to function

    Science.gov (United States)

    Kuhnert, Wendi Lee

    1999-10-01

    The oral microbe, Streptococcus mutans is known to be a primary contributor to the most common infection in humans, dental caries. In the plaque environment, resident bacteria metabolize dietary sucrose which results in the production of organic acids and a decrease in plaque pH. The proton-translocating ATPase (F-ATPase) protects the bacteria from acidification by extruding protons, at the expense of ATP, to maintain an internal pH which is more neutral than the external environment. Examination of this enzyme will help us to gain insight regarding its contribution to the aciduricity characteristics of oral bacteria. In this work, our goal was to begin the molecular dissection of the mechanism by which streptococcal ATPases are regulated and function enzymatically. Sequence analysis of the F-ATPase from the non-pathogenic S. sanguis revealed that the structural genes are homologous to S. mutans as well as other sequenced F-ATPases. Cloned subunits were functionally similar as shown by complementing E. coli ATPase mutants. S. sanguis/E. coli hybrid enzymes hydrolyzed ATP, but proton conduction was uncoupled as demonstrated with inhibition studies. Transcriptional regulation of the F-ATPase operon from S. mutans was examined using chloramphenicol acetyltransferase gene fusions. Fusions containing 136 bp of DNA upstream of the promoter showed higher levels of expression as compared to those with only 16 bp. Similar to ATPase enzymatic activity, CAT expression also increased during growth at low pH. Analysis of RNA demonstrated that ATPase mRNA levels were higher at low pH, which supported the CAT activity data. Therefore, the F-ATPase from S. mutans was regulated, at least partially, by both the DNA located upstream of the promoter as well as by pH. Examination of structural models of the F-ATPase from the pathogenic oral organisms S. mutans and Lactobacillus casei and the non- pathogenic S. sanguis showed that the differences noted in the sequence of the catalytic

  11. H,K-ATPase Protein Localization and Kir4.1 Function Reveal Concordance of 3 Axes During Early Determination of Left-Right Asymmetry

    OpenAIRE

    Aw, Sherry; Adams, Dany S.; Qiu, Dayong; Levin, Michael

    2007-01-01

    Consistent laterality is a fascinating problem, and study of the Xenopus embryo has led to molecular characterization of extremely early steps in left-right patterning: bioelectrical signals produced by ion pumps functioning upstream of asymmetric gene expression. Here, we reveal a number of novel aspects of the H+/K+-ATPase module in chick and frog embryos. Maternal H+/K+-ATPase subunits are asymmetrically localized along the left-right, dorso-ventral, and animal-vegetal axes during the firs...

  12. Silencing overexpression of FXYD3 protein in breast cancer cells amplifies effects of doxorubicin and γ-radiation on Na(+)/K(+)-ATPase and cell survival.

    Science.gov (United States)

    Liu, Chia-Chi; Teh, Rachel; Mozar, Christine A; Baxter, Robert C; Rasmussen, Helge H

    2016-01-01

    FXYD3, also known as mammary tumor protein 8, is overexpressed in several common cancers, including in many breast cancers. We examined if such overexpression might protect Na(+)/K(+)-ATPase and cancer cells against the high levels of oxidative stress characteristic of many tumors and often induced by cancer treatments. We measured FXYD3 expression, Na(+)/K(+)-ATPase activity and glutathionylation of the β1 subunit of Na(+)/K(+)-ATPase, a reversible oxidative modification that inhibits the ATPase, in MCF-7 and MDA-MB-468 cells. Expression of FXYD3 was suppressed by transfection with FXYD3 siRNA. A colorimetric end-point assay was used to estimate cell viability. Apoptosis was estimated by caspase 3/7 (DEVDase) activation using a Caspase fluorogenic substrate kit. Expression of FXYD3 in MCF-7 breast cancer cells was ~eightfold and ~twofold higher than in non-cancer MCF-10A cells and MDA-MB-468 cancer cells, respectively. A ~50 % reduction in FXYD3 expression increased glutathionylation of the β1 Na(+)/K(+)-ATPase subunit and reduced Na(+)/K(+)-ATPase activity by ~50 %, consistent with the role of FXYD3 to facilitate reversal of glutathionylation of the β1 subunit of Na(+)/K(+)-ATPase and glutathionylation-induced inhibition of Na(+)/K(+)-ATPase. Treatment of MCF-7 and MDA-MB- 468 cells with doxorubicin or γ-radiation decreased cell viability and induced apoptosis. The treatments upregulated FXYD3 expression in MCF-7 but not in MDA-MB-468 cells and suppression of FXYD3 in MCF-7 but not in MDA-MB-468 cells amplified effects of treatments on Na(+)/K(+)-ATPase activity and treatment-induced cell death and apoptosis. Overexpression of FXYD3 may be a marker of resistance to cancer treatments and a potentially important therapeutic target.

  13. Two-Dimensional Crystallization of the Ca(2+)-ATPase for Electron Crystallography.

    Science.gov (United States)

    Glaves, John Paul; Primeau, Joseph O; Young, Howard S

    2016-01-01

    Electron crystallography of two-dimensional crystalline arrays is a powerful alternative for the structure determination of membrane proteins. The advantages offered by this technique include a native membrane environment and the ability to closely correlate function and dynamics with crystalline preparations and structural data. Herein, we provide a detailed protocol for the reconstitution and two-dimensional crystallization of the sarcoplasmic reticulum calcium pump (also known as Ca(2+)-ATPase or SERCA) and its regulatory subunits phospholamban and sarcolipin.

  14. Dysregulation of gastric H,K-ATPase by cigarette smoke extract

    Institute of Scientific and Technical Information of China (English)

    Muna Hammadi; Mohamed Adi; Rony John; Ghalia AK Khoder; Sherif M Karam

    2009-01-01

    AIM:To test whether the expression and activity of H,K-ATPase in parietal cells would be affected by cigarette smoke extract.METHODS:Ext racts of cigarette smoke were administered into mice by gastric gavage (5 mg/kg body weight/day) for 3 d or in drinking water for 7 or 14 d.For the latter,each day a mouse consumed 5 mL water containing extracts of two cigarettes,on average.Control littermate mice received only vehicle.To compare the amount of H,K-ATPase in control and smoke-treated mice,the stomach was processed for Western blotting and immunohistochemical analysis using monoclonal antibodies specific for α- or β-subunits of H,K-ATPase.The p-nitrophenylphospatase activity assay was used as a measurement for K-dependent H,K-ATPase activity.RESULTS:Probed transblots showed an increase in the amount of H,K-ATPase in smoke-treated mice which was confirmed by immunohistochemistry and was found to be due to increased amounts of protein per parietal cell rather than an increased parietal cell number.The increase in the amount of H,K-ATPase was associated with an enhancement of its enzymatic activity.K-dependent activity in control and smoketreated mice was significantly different (respectively,0.12 μmol/mg vs 0.27 μmol/mg per minute,P<0.05).CONCLUSION:Administration of cigarette smoke extract is associated with an increase in the amount and activity of H,K-ATPase and hence,smokers are susceptible to development of peptic ulcer.

  15. Inhibition of the ATPase activity of the catalytic portion of ATP synthases by cationic amphiphiles.

    Science.gov (United States)

    Datiles, Manuel J; Johnson, Eric A; McCarty, Richard E

    2008-04-01

    Melittin, a cationic, amphiphilic polypeptide, has been reported to inhibit the ATPase activity of the catalytic portions of the mitochondrial (MF1) and chloroplast (CF1) ATP synthases. Gledhill and Walker [J.R. Gledhill, J.E. Walker. Inhibition sites in F1-ATPase from bovine heart mitochondria, Biochem. J. 386 (2005) 591-598.] suggested that melittin bound to the same site on MF1 as IF1, the endogenous inhibitor polypeptide. We have studied the inhibition of the ATPase activity of CF1 and of F1 from Escherichia coli (ECF1) by melittin and the cationic detergent, cetyltrimethylammonium bromide (CTAB). The Ca2+- and Mg2+-ATPase activities of CF1 deficient in its inhibitory epsilon subunit (CF1-epsilon) are sensitive to inhibition by melittin and by CTAB. The inhibition of Ca2+-ATPase activity by CTAB is irreversible. The Ca2+-ATPase activity of F1 from E. coli (ECF1) is inhibited by melittin and the detergent, but Mg2+-ATPase activity is much less sensitive to both reagents. The addition of CTAB or melittin to a solution of CF1-epsilon or ECF1 caused a large increase in the fluorescence of the hydrophobic probe, N-phenyl-1-naphthylamine, indicating that the detergent and melittin cause at least partial dissociation of the enzymes. ATP partially protects CF1-epsilon from inhibition by CTAB. We also show that ATP can cause the aggregation of melittin. This result complicates the interpretation of experiments in which ATP is shown to protect enzyme activity from inhibition by melittin. It is concluded that melittin and CTAB cause at least partial dissociation of the alpha/beta heterohexamer.

  16. Gyrase activity and number of copies of the gyrase B subunit gene in Haemophilus influenzae

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera-Juarez, E.; Setlow, J.K.

    1985-11-01

    Gyrase activities in extracts of various strains of Haemophilus influenzae can differ by more than an order of magnitude. Measurements of in vitro activity and copy number indicated that most of these differences arose from variations in the number of copies of the gene for the gyrase B subunit, with some strains containing multicopy plasmids coding for that subunit. The quantitative relationship between gyrase and copy number depended on the mutations in the plasmids and in the host. The possibility that the in vivo gyrase activity did not reflect the in vitro data was explored by measurement of alkaline phosphatase and ATPase activity in the extracts. Alkaline phosphatase activity increased with increasing gyrase activity measured in vitro, but ATPase activity did not. The authors conclude that extra supercoiling enhanced transcription of the alkaline phosphatase gene but not the ATPase gene and that it is unlikely that there is much discrepancy between gyrase activity assayed in vitro and the activity in the cell.

  17. Brain Na+, K+-ATPase Activity In Aging and Disease

    Science.gov (United States)

    de Lores Arnaiz, Georgina Rodríguez; Ordieres, María Graciela López

    2014-01-01

    Na+/K+ pump or sodium- and potassium-activated adenosine 5’-triphosphatase (Na+, K+-ATPase), its enzymatic version, is a crucial protein responsible for the electrochemical gradient across the cell membranes. It is an ion transporter, which in addition to exchange cations, is the ligand for cardenolides. This enzyme regulates the entry of K+ with the exit of Na+ from cells, being the responsible for Na+/K+ equilibrium maintenance through neuronal membranes. This transport system couples the hydrolysis of one molecule of ATP to exchange three sodium ions for two potassium ions, thus maintaining the normal gradient of these cations in animal cells. Oxidative metabolism is very active in brain, where large amounts of chemical energy as ATP molecules are consumed, mostly required for the maintenance of the ionic gradients that underlie resting and action potentials which are involved in nerve impulse propagation, neurotransmitter release and cation homeostasis. Protein phosphorylation is a key process in biological regulation. At nervous system level, protein phosphorylation is the major molecular mechanism through which the function of neural proteins is modulted in response to extracellular signals, including the response to neurotransmitter stimuli. It is the major mechanism of neural plasticity, including memory processing. The phosphorylation of Na+, K+-ATPase catalytic subunit inhibits enzyme activity whereas the inhibition of protein kinase C restores the enzyme activity. The dephosphorylation of neuronal Na+, K+-ATPase is mediated by calcineurin, a serine / threonine phosphatase. The latter enzyme is involved in a wide range of cellular responses to Ca2+ mobilizing signals, in the regulation of neuronal excitability by controlling the activity of ion channels, in the release of neurotransmitters and hormones, as well as in synaptic plasticity and gene transcription. In the present article evidence showing Na+, K+-ATPase involvement in signaling pathways

  18. Distinct α2 Na,K-ATPase membrane pools are differently involved in early skeletal muscle remodeling during disuse.

    Science.gov (United States)

    Kravtsova, Violetta V; Petrov, Alexey M; Matchkov, Vladimir V; Bouzinova, Elena V; Vasiliev, Alexander N; Benziane, Boubacar; Zefirov, Andrey L; Chibalin, Alexander V; Heiny, Judith A; Krivoi, Igor I

    2016-02-01

    The Na,K-ATPase is essential for the contractile function of skeletal muscle, which expresses the α1 and α2 subunit isoforms of Na,K-ATPase. The α2 isozyme is predominant in adult skeletal muscles and makes a greater contribution in working compared with noncontracting muscles. Hindlimb suspension (HS) is a widely used model of muscle disuse that leads to progressive atrophy of postural skeletal muscles. This study examines the consequences of acute (6-12 h) HS on the functioning of the Na,K-ATPase α1 and α2 isozymes in rat soleus (disused) and diaphragm (contracting) muscles. Acute disuse dynamically and isoform-specifically regulates the electrogenic activity, protein, and mRNA content of Na,K-ATPase α2 isozyme in rat soleus muscle. Earlier disuse-induced remodeling events also include phospholemman phosphorylation as well as its increased abundance and association with α2 Na,K-ATPase. The loss of α2 Na,K-ATPase activity results in reduced electrogenic pump transport and depolarized resting membrane potential. The decreased α2 Na,K-ATPase activity is caused by a decrease in enzyme activity rather than by altered protein and mRNA content, localization in the sarcolemma, or functional interaction with the nicotinic acetylcholine receptors. The loss of extrajunctional α2 Na,K-ATPase activity depends strongly on muscle use, and even the increased protein and mRNA content as well as enhanced α2 Na,K-ATPase abundance at this membrane region after 12 h of HS cannot counteract this sustained inhibition. In contrast, additional factors may regulate the subset of junctional α2 Na,K-ATPase pool that is able to recover during HS. Notably, acute, low-intensity muscle workload restores functioning of both α2 Na,K-ATPase pools. These results demonstrate that the α2 Na,K-ATPase in rat skeletal muscle is dynamically and acutely regulated by muscle use and provide the first evidence that the junctional and extrajunctional pools of the α2 Na,K-ATPase are regulated

  19. Distinct α2 Na,K-ATPase membrane pools are differently involved in early skeletal muscle remodeling during disuse

    Science.gov (United States)

    Kravtsova, Violetta V.; Petrov, Alexey M.; Matchkov, Vladimir V.; Bouzinova, Elena V.; Vasiliev, Alexander N.; Benziane, Boubacar; Zefirov, Andrey L.; Chibalin, Alexander V.; Heiny, Judith A.

    2016-01-01

    The Na,K-ATPase is essential for the contractile function of skeletal muscle, which expresses the α1 and α2 subunit isoforms of Na,K-ATPase. The α2 isozyme is predominant in adult skeletal muscles and makes a greater contribution in working compared with noncontracting muscles. Hindlimb suspension (HS) is a widely used model of muscle disuse that leads to progressive atrophy of postural skeletal muscles. This study examines the consequences of acute (6–12 h) HS on the functioning of the Na,K-ATPase α1 and α2 isozymes in rat soleus (disused) and diaphragm (contracting) muscles. Acute disuse dynamically and isoform-specifically regulates the electrogenic activity, protein, and mRNA content of Na,K-ATPase α2 isozyme in rat soleus muscle. Earlier disuse-induced remodeling events also include phospholemman phosphorylation as well as its increased abundance and association with α2 Na,K-ATPase. The loss of α2 Na,K-ATPase activity results in reduced electrogenic pump transport and depolarized resting membrane potential. The decreased α2 Na,K-ATPase activity is caused by a decrease in enzyme activity rather than by altered protein and mRNA content, localization in the sarcolemma, or functional interaction with the nicotinic acetylcholine receptors. The loss of extrajunctional α2 Na,K-ATPase activity depends strongly on muscle use, and even the increased protein and mRNA content as well as enhanced α2 Na,K-ATPase abundance at this membrane region after 12 h of HS cannot counteract this sustained inhibition. In contrast, additional factors may regulate the subset of junctional α2 Na,K-ATPase pool that is able to recover during HS. Notably, acute, low-intensity muscle workload restores functioning of both α2 Na,K-ATPase pools. These results demonstrate that the α2 Na,K-ATPase in rat skeletal muscle is dynamically and acutely regulated by muscle use and provide the first evidence that the junctional and extrajunctional pools of the α2 Na,K-ATPase are regulated

  20. Glu-857 moderates K+-dependent stimulation and SCH 28080-dependent inhibition of the gastric H,K-ATPase.

    Science.gov (United States)

    Rulli, S J; Horiba, M N; Skripnikova, E; Rabon, E C

    1999-05-21

    The rabbit H,K-ATPase alpha- and beta-subunits were transiently expressed in HEK293 T cells. The co-expression of the H,K-ATPase alpha- and beta-subunits was essential for the functional H,K-ATPase. The K+-stimulated H,K-ATPase activity of 0.82 +/- 0.2 micromol/mg/h saturated with a K0.5 (KCl) of 0.6 +/- 0.1 mM, whereas the 2-methyl-8-(phenylmethoxy)imidazo[1,2a]pyridine-3-acetonitrile (SCH 28080)-inhibited ATPase of 0.62 +/- 0.07 micromol/mg/h saturated with a Ki (SCH 28080) of 1.0 +/- 0.3 microM. Site mutations were introduced at the N,N-dicyclohexylcarbodiimide-reactive residue, Glu-857, to evaluate the role of this residue in ATPase function. Variations in the side chain size and charge of this residue did not inhibit the specific activity of the H,K-ATPase, but reversal of the side chain charge by substitution of Lys or Arg for Glu produced a reciprocal change in the sensitivity of the H,K-ATPase to K+ and SCH 28080. The K0.5 for K+stimulated ATPase was decreased to 0.2 +/-.05 and 0.2 +/-.03 mM, respectively, in Lys-857 and Arg-857 site mutants, whereas the Ki for SCH 28080-dependent inhibition was increased to 6.5 +/- 1.4 and 5.9 +/- 1.5 microM, respectively. The H,K-ATPase kinetics were unaffected by the introduction of Ala at this site, but Leu produced a modest reciprocal effect. These data indicate that Glu-857 is not an essential residue for cation-dependent activity but that the residue influences the kinetics of both K+ and SCH 28080-mediated functions. This finding suggests a possible role of this residue in the conformational equilibrium of the H,K-ATPase.

  1. Presenilin 1 Maintains Lysosomal Ca(2+) Homeostasis via TRPML1 by Regulating vATPase-Mediated Lysosome Acidification.

    Science.gov (United States)

    Lee, Ju-Hyun; McBrayer, Mary Kate; Wolfe, Devin M; Haslett, Luke J; Kumar, Asok; Sato, Yutaka; Lie, Pearl P Y; Mohan, Panaiyur; Coffey, Erin E; Kompella, Uday; Mitchell, Claire H; Lloyd-Evans, Emyr; Nixon, Ralph A

    2015-09-01

    Presenilin 1 (PS1) deletion or Alzheimer's disease (AD)-linked mutations disrupt lysosomal acidification and proteolysis, which inhibits autophagy. Here, we establish that this phenotype stems from impaired glycosylation and instability of vATPase V0a1 subunit, causing deficient lysosomal vATPase assembly and function. We further demonstrate that elevated lysosomal pH in Presenilin 1 knockout (PS1KO) cells induces abnormal Ca(2+) efflux from lysosomes mediated by TRPML1 and elevates cytosolic Ca(2+). In WT cells, blocking vATPase activity or knockdown of either PS1 or the V0a1 subunit of vATPase reproduces all of these abnormalities. Normalizing lysosomal pH in PS1KO cells using acidic nanoparticles restores normal lysosomal proteolysis, autophagy, and Ca(2+) homeostasis, but correcting lysosomal Ca(2+) deficits alone neither re-acidifies lysosomes nor reverses proteolytic and autophagic deficits. Our results indicate that vATPase deficiency in PS1 loss-of-function states causes lysosomal/autophagy deficits and contributes to abnormal cellular Ca(2+) homeostasis, thus linking two AD-related pathogenic processes through a common molecular mechanism.

  2. Presenilin 1 Maintains Lysosomal Ca2+ Homeostasis via TRPML1 by Regulating vATPase-Mediated Lysosome Acidification

    Directory of Open Access Journals (Sweden)

    Ju-Hyun Lee

    2015-09-01

    Full Text Available Presenilin 1 (PS1 deletion or Alzheimer’s disease (AD-linked mutations disrupt lysosomal acidification and proteolysis, which inhibits autophagy. Here, we establish that this phenotype stems from impaired glycosylation and instability of vATPase V0a1 subunit, causing deficient lysosomal vATPase assembly and function. We further demonstrate that elevated lysosomal pH in Presenilin 1 knockout (PS1KO cells induces abnormal Ca2+ efflux from lysosomes mediated by TRPML1 and elevates cytosolic Ca2+. In WT cells, blocking vATPase activity or knockdown of either PS1 or the V0a1 subunit of vATPase reproduces all of these abnormalities. Normalizing lysosomal pH in PS1KO cells using acidic nanoparticles restores normal lysosomal proteolysis, autophagy, and Ca2+ homeostasis, but correcting lysosomal Ca2+ deficits alone neither re-acidifies lysosomes nor reverses proteolytic and autophagic deficits. Our results indicate that vATPase deficiency in PS1 loss-of-function states causes lysosomal/autophagy deficits and contributes to abnormal cellular Ca2+ homeostasis, thus linking two AD-related pathogenic processes through a common molecular mechanism.

  3. Functional Analysis of P4-ATPases

    DEFF Research Database (Denmark)

    Theorin, Lisa

    and mammalian P4-ATPases have been studied extensively and the physiological function is mostly known, while the exact biochemistry and specific activity is mostly unknown. Even though the plant Arabidopsis thaliana has 12 P4-ATPases, not much is known about their function. In this study, the biochemical...

  4. Bacteriophage lambda terminase: alterations of the high-affinity ATPase affect viral DNA packaging.

    Science.gov (United States)

    Dhar, Alok; Feiss, Michael

    2005-03-18

    DNA packaging by large DNA viruses such as the tailed bacteriophages and the herpesviruses involves DNA translocation into a preformed protein shell, called the prohead. Translocation is driven by an ATP hydrolysis-powered DNA packaging motor. The bacteriophages encode a heterodimeric viral DNA packaging protein, called terminase. The terminases have an ATPase center located in the N terminus of the large subunit implicated in DNA translocation. In previous work with phage lambda, lethal mutations that changed ATP-reactive residues 46 and 84 of gpA, the large terminase subunit, were studied. These mutant enzymes retained the terminase endonuclease and helicase activities, but had severe defects in virion assembly, and lacked the terminase high-affinity ATPase activity. Surprisingly, in the work described here, we found that enzymes with the conservative gpA changes Y46F and Y46A had only mild packaging defects. These mild defects contrast with their profound virion assembly defects. Thus, these mutant enzymes have, in addition to the mild DNA packaging defects, a severe post-DNA packaging defect. In contrast, the gpA K84A enzyme had similar virion assembly and DNA packaging defects. The DNA packaging energy budget, i.e. DNA packaged/ATP hydrolyzed, was unchanged for the mutant enzymes, indicating that DNA translocation is tightly coupled to ATP hydrolysis. A model is proposed in which gpA residues 46 and 84 are important for terminase's high-affinity ATPase activity. Assembly of the translocation complex remodels this ATPase so that residues 46 and 84 are not crucial for the activated translocation ATPase. Changing gpA residues 46 and 84 primarily affects assembly, rather than the activity, of the translocation complex.

  5. Mechanisms of metalloregulation of an anion-translocating ATPase.

    Science.gov (United States)

    Rosen, B P; Bhattacharjee, H; Shi, W

    1995-02-01

    The ars (arsenical resistance) operon cloned from R-factor R773 has five genes that encode two repressor proteins, ArsR and ArsD, and three structural proteins, ArsA, ArsB, and ArsC. The ArsA and ArsB proteins form a membrane-bound pump that functions as an oxyanion-translocating ATPase. The substrates of the pump are the oxyanions arsenite or antimonite. The ArsC protein is an arsenate reductase that reduces arsenate to arsenite, which is subsequently pumped out of the cell. This review deals with the mechanism of transcriptional regulation by the ArsR repressor and allosteric regulation of the ArsA protein, the catalytic subunit of the pump. The chemical nature of the inducer plays an important role in regulation. In solution arsenite or antimonite exist as oxyanions and reacts with the cysteines in proteins. In both transcriptional regulation by the ArsR repressor and allosteric regulation of the ArsA ATPase, the ability of As(III) and Sb(III) to interact with the cysteines of the proteins, involves their action as effector.

  6. Expression and role of a2 vacuolar-ATPase (a2V) in trafficking of human neutrophil granules and exocytosis.

    Science.gov (United States)

    Gilman-Sachs, Alice; Tikoo, Anjali; Akman-Anderson, Leyla; Jaiswal, Mukesh; Ntrivalas, Evangelos; Beaman, Kenneth

    2015-06-01

    Neutrophils kill microorganisms by inducing exocytosis of granules with antibacterial properties. Four isoforms of the "a" subunit of V-ATPase-a1V, a2V, a3V, and a4V-have been identified. a2V is expressed in white blood cells, that is, on the surface of monocytes or activated lymphocytes. Neutrophil associated-a2V was found on membranes of primary (azurophilic) granules and less often on secondary (specific) granules, tertiary (gelatinase granules), and secretory vesicles. However, it was not found on the surface of resting neutrophils. Following stimulation of neutrophils, primary granules containing a2V as well as CD63 translocated to the surface of the cell because of exocytosis. a2V was also found on the cell surface when the neutrophils were incubated in ammonium chloride buffer (pH 7.4) a weak base. The intracellular pH (cytosol) became alkaline within 5 min after stimulation, and the pH increased from 7.2 to 7.8; this pH change correlated with intragranular acidification of the neutrophil granules. Upon translocation and exocytosis, a2V on the membrane of primary granules remained on the cell surface, but myeloperoxidase was secreted. V-ATPase may have a role in the fusion of the granule membrane with the cell surface membrane before exocytosis. These findings suggest that the granule-associated a2V isoform has a role in maintaining a pH gradient within the cell between the cytosol and granules in neutrophils and also in fusion between the surface and the granules before exocytosis. Because a2V is not found on the surface of resting neutrophils, surface a2V may be useful as a biomarker for activated neutrophils.

  7. V-ATPase: a master effector of E2F1-mediated lysosomal trafficking, mTORC1 activation and autophagy.

    Science.gov (United States)

    Meo-Evoli, Nathalie; Almacellas, Eugènia; Massucci, Francesco Alessandro; Gentilella, Antonio; Ambrosio, Santiago; Kozma, Sara C; Thomas, George; Tauler, Albert

    2015-09-29

    In addition to being a master regulator of cell cycle progression, E2F1 regulates other associated biological processes, including growth and malignancy. Here, we uncover a regulatory network linking E2F1 to lysosomal trafficking and mTORC1 signaling that involves v-ATPase regulation. By immunofluorescence and time-lapse microscopy we found that E2F1 induces the movement of lysosomes to the cell periphery, and that this process is essential for E2F1-induced mTORC1 activation and repression of autophagy. Gain- and loss-of-function experiments reveal that E2F1 regulates v-ATPase activity and inhibition of v-ATPase activity repressed E2F1-induced lysosomal trafficking and mTORC1 activation. Immunoprecipitation experiments demonstrate that E2F1 induces the recruitment of v-ATPase to lysosomal RagB GTPase, suggesting that E2F1 regulates v-ATPase activity by enhancing the association of V0 and V1 v-ATPase complex. Analysis of v-ATPase subunit expression identified B subunit of V0 complex, ATP6V0B, as a transcriptional target of E2F1. Importantly, ATP6V0B ectopic-expression increased v-ATPase and mTORC1 activity, consistent with ATP6V0B being responsible for mediating the effects of E2F1 on both responses. Our findings on lysosomal trafficking, mTORC1 activation and autophagy suppression suggest that pharmacological intervention at the level of v-ATPase may be an efficacious avenue for the treatment of metastatic processes in tumors overexpressing E2F1.

  8. Enhanced whitefly resistance in transgenic tobacco plants expressing double stranded RNA of v-ATPase A gene.

    Directory of Open Access Journals (Sweden)

    Nidhi Thakur

    Full Text Available BACKGROUND: Expression of double strand RNA (dsRNA designed against important insect genes in transgenic plants have been shown to give protection against pests through RNA interference (RNAi, thus opening the way for a new generation of insect-resistant crops. We have earlier compared the efficacy of dsRNAs/siRNAs, against a number of target genes, for interference in growth of whitefly (Bemisia tabaci upon oral feeding. The v-ATPase subunit A (v-ATPaseA coding gene was identified as a crucial target. We now report the effectiveness of transgenic tobacco plants expressing siRNA to silence v-ATPaseA gene expression for the control of whitefly infestation. METHODOLOGY/PRINCIPAL FINDINGS: Transgenic tobacco lines were developed for the expression of long dsRNA precursor to make siRNA and knock down the v-ATPaseA mRNA in whitefly. Molecular analysis and insecticidal properties of the transgenic plants established the formation of siRNA targeting the whitefly v-ATPaseA, in the leaves. The transcript level of v-ATPaseA in whiteflies was reduced up to 62% after feeding on the transgenic plants. Heavy infestation of whiteflies on the control plants caused significant loss of sugar content which led to the drooping of leaves. The transgenic plants did not show drooping effect. CONCLUSIONS/SIGNIFICANCE: Host plant derived pest resistance was achieved against whiteflies by genetic transformation of tobacco which generated siRNA against the whitefly v-ATPaseA gene. Transgenic tobacco lines expressing dsRNA of v-ATPaseA, delivered sufficient siRNA to whiteflies feeding on them, mounting a significant silencing response, leading to their mortality. The transcript level of the target gene was reduced in whiteflies feeding on transgenic plants. The strategy can be taken up for genetic engineering of plants to control whiteflies in field crops.

  9. Diversity of proton pumps in osteoclasts: V-ATPase with a3 and d2 isoforms is a major form in osteoclasts.

    Science.gov (United States)

    Matsumoto, Naomi; Daido, Shun; Sun-Wada, Ge-Hong; Wada, Yoh; Futai, Masamitsu; Nakanishi-Matsui, Mayumi

    2014-06-01

    Osteoclasts acidify bone resorption lacunae through proton translocation by plasma membrane V-ATPase (vacuolar-type ATPase) which has an a3 isoform, one of the four isoforms of the trans-membrane a subunit (Toyomura et al., J. Biol. Chem., 278, 22023-22030, 2003). d2, a kidney- and epididymis-specific isoform of the d subunit, was also induced in osteoclast-like cells derived from the RAW264.7 line, and formed V-ATPase with a3. The amount of d2 in osteoclasts was 4-fold higher than that of d1, a ubiquitous isoform. These results indicate that V-ATPase with d2/a3 is a major osteoclast proton pump. Essentially the same results were obtained with osteoclasts derived from mouse spleen macrophages. Macrophages from a3-knock-out mice could differentiate into multi-nuclear cells with osteoclast-specific enzymes. In these cells, the d2 isoform was also induced and assembled in V-ATPase with the a1 or a2 isoform. However, they did not absorb calcium phosphate, indicating that V-ATPase with d2/a1 or d2/a2 could not perform the function of that with d2/a3.

  10. Association of condensin with chromosomes depends on DNA binding by its HEAT-repeat subunits.

    Science.gov (United States)

    Piazza, Ilaria; Rutkowska, Anna; Ori, Alessandro; Walczak, Marta; Metz, Jutta; Pelechano, Vicent; Beck, Martin; Haering, Christian H

    2014-06-01

    Condensin complexes have central roles in the three-dimensional organization of chromosomes during cell divisions, but how they interact with chromatin to promote chromosome segregation is largely unknown. Previous work has suggested that condensin, in addition to encircling chromatin fibers topologically within the ring-shaped structure formed by its SMC and kleisin subunits, contacts DNA directly. Here we describe the discovery of a binding domain for double-stranded DNA formed by the two HEAT-repeat subunits of the Saccharomyces cerevisiae condensin complex. From detailed mapping data of the interfaces between the HEAT-repeat and kleisin subunits, we generated condensin complexes that lack one of the HEAT-repeat subunits and consequently fail to associate with chromosomes in yeast and human cells. The finding that DNA binding by condensin's HEAT-repeat subunits stimulates the SMC ATPase activity suggests a multistep mechanism for the loading of condensin onto chromosomes.

  11. Sodium, potassium-atpases in algae and oomycetes.

    Science.gov (United States)

    Barrero-Gil, Javier; Garciadeblás, Blanca; Benito, Begoña

    2005-08-01

    We have investigated the presence of K(+)-transporting ATPases that belong to the phylogenetic group of animal Na(+),K(+)-ATPases in the Pythium aphanidermatum Stramenopile oomycete, the Porphyra yezoensis red alga, and the Udotea petiolata green alga, by molecular cloning and expression in heterologous systems. PCR amplification and search in EST databases allowed one gene to be identified in each species that could encode ATPases of this type. Phylogenetic analysis of the sequences of these ATPases revealed that they cluster with ATPases of animal origin, and that the algal ATPases are closer to animal ATPases than the oomycete ATPase is. The P. yezoensis and P. aphanidermatum ATPases were functionally expressed in Saccharomyces cerevisiae and Escherichia coli alkali cation transport mutants. The aforementioned cloning and complementary searches in silicio for H(+)- and Na(+),K(+)-ATPases revealed a great diversity of strategies for plasma membrane energization in eukaryotic cells different from typical animal, plant, and fungal cells.

  12. Na+-K+-ATPase in rat skeletal muscle: muscle fiber-specific differences in exercise-induced changes in ion affinity and maximal activity

    DEFF Research Database (Denmark)

    Juel, Carsten

    2008-01-01

    other muscles tested. In conclusion, muscle activity induces fiber type-specific changes both in Na(+) affinity and maximal in vitro activity of the Na(+)-K(+)-ATPase. The underlying mechanisms may involve translocation of subunits and increased association between PLM units and the alphabeta complex...

  13. V-ATPase-dependent luminal acidification is required for endocytic recycling of a yeast cell wall stress sensor, Wsc1p

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Kazuma; Saito, Mayu; Nagashima, Makiko; Kojima, Ai; Nishinoaki, Show [Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika-ku, Tokyo 125-8585 (Japan); Toshima, Junko Y., E-mail: yama_jun@aoni.waseda.jp [Faculty of Science and Engineering, Waseda University, Wakamatsu-cho 2-2, Shinjuku-ku, Tokyo 162-8480 (Japan); Research Center for RNA Science, RIST, Tokyo University of Science, Niijuku 6-3-1, Katsushika-ku, Tokyo 125-8585 (Japan); Toshima, Jiro, E-mail: jtosiscb@rs.noda.tus.ac.jp [Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika-ku, Tokyo 125-8585 (Japan); Research Center for RNA Science, RIST, Tokyo University of Science, Niijuku 6-3-1, Katsushika-ku, Tokyo 125-8585 (Japan)

    2014-01-10

    Highlights: •A targeted genome screen identified 5 gene groups affecting Wsc1p recycling. •V-ATPase-dependent luminal acidification is required for Wsc1p recycling. •Activity of V-ATPase might be required for cargo recognition by the retromer complex. -- Abstract: Wsc1p is a major cell wall sensor protein localized at the polarized cell surface. The localization of Wsc1p is maintained by endocytosis and recycling from endosomes back to the cell surface, but changes to the vacuole when cells are subjected to heat stress. Exploiting this unique property of Wsc1p, we screened for yeast single-gene deletion mutants exhibiting defects in Wsc1p trafficking. By expressing 3GFP-tagged Wsc1p in mutants with deleted genes whose function is related to intracellular trafficking, we identified 5 gene groups affecting Wsc1p trafficking, impaired respectively in endocytic internalization, multivesicular body sorting, the GARP complex, endosomal maturation/vacuolar fusion, and V-ATPase. Interestingly, deletion of the VPH1 gene, encoding the V{sub o} subunit of vacuolar-type H{sup +}-ATPase (V-ATPase), led to mis-localization of Wsc1p from the plasma membrane to the vacuole. In addition, disruption of other V-ATPase subunits (vma mutants) also caused defects of Wsc1p trafficking and vacuolar acidification similar to those seen in the vph1Δ mutant. Moreover, we found that deletion of the VPS26 gene, encoding a subunit of the retromer complex, also caused a defect in Wsc1p recycling and mis-localization of Wsc1p to the vacuole. These findings clarified the previously unidentified Wsc1p recycling pathway and requirement of V-ATPase-dependent luminal acidification for Wsc1p recycling.

  14. [ATPase and phosphatase activity of drone brood].

    Science.gov (United States)

    Bodnarchuk, L I; Stakhman, O S

    2004-01-01

    Most researches on insect enzymes concern carbohydrate and nitrogenous exchange. Data on ATPase activity for larval material of drone brood are absent in the available literature. The drone brood is one of the least investigated apiproducts. Allowing for the important role of ATPase in the vital functions of the insect cells our work was aimed at the study of ATPase of the drone blood activity and that of alkaline and acid phosphatases. When studying liophylised preparations of the drone brood homogenate we have found out high activity of Mg2+, Na+, K+-, Ca2+- and Mg2+-ATPase and of alkaline and acid phosphatase, that is the possible explanation of the high-intensity power and plastic processes proceeding during growth and development of larvae.

  15. Proteasome Inhibition Contributed to the Cytotoxicity of Arenobufagin after Its Binding with Na, K-ATPase in Human Cervical Carcinoma HeLa Cells.

    Directory of Open Access Journals (Sweden)

    Qingxi Yue

    Full Text Available Although the possibility of developing cardiac steroids/cardiac glycosides as novel cancer therapeutic agents has been recognized, the mechanism of their anticancer activity is still not clear enough. Toad venom extract containing bufadienolides, which belong to cardiac steroids, has actually long been used as traditional Chinese medicine in clinic for cancer therapy in China. The cytotoxicity of arenobufagin, a bufadienolide isolated from toad venom, on human cervical carcinoma HeLa cells was checked. And, the protein expression profile of control HeLa cells and HeLa cells treated with arenobufagin for 48 h was analyzed using two-dimensional electrophoresis, respectively. Differently expressed proteins in HeLa cells treated with arenobufagin were identified and the pathways related to these proteins were mapped from KEGG database. Computational molecular docking was performed to verify the binding of arenobufagin and Na, K-ATPase. The effects of arenobufagin on Na, K-ATPase activity and proteasome activity of HeLa cells were checked. The protein-protein interaction network between Na, K-ATPase and proteasome was constructed and the expression of possible intermediate proteins ataxin-1 and translationally-controlled tumor protein in HeLa cells treated with arenobufagin was then checked. Arenobufagin induced apoptosis and G2/M cell cycle arrest in HeLa cells. The cytotoxic effect of arenobufagin was associated with 25 differently expressed proteins including proteasome-related proteins, calcium ion binding-related proteins, oxidative stress-related proteins, metabolism-related enzymes and others. The results of computational molecular docking revealed that arenobufagin was bound in the cavity formed by the transmembrane alpha subunits of Na, K-ATPase, which blocked the pathway of extracellular Na+/K+ cation exchange and inhibited the function of ion exchange. Arenobufagin inhibited the activity of Na, K-ATPase and proteasome, decreased the

  16. Proteasome Inhibition Contributed to the Cytotoxicity of Arenobufagin after Its Binding with Na, K-ATPase in Human Cervical Carcinoma HeLa Cells.

    Science.gov (United States)

    Yue, Qingxi; Zhen, Hong; Huang, Ming; Zheng, Xi; Feng, Lixing; Jiang, Baohong; Yang, Min; Wu, Wanying; Liu, Xuan; Guo, Dean

    2016-01-01

    Although the possibility of developing cardiac steroids/cardiac glycosides as novel cancer therapeutic agents has been recognized, the mechanism of their anticancer activity is still not clear enough. Toad venom extract containing bufadienolides, which belong to cardiac steroids, has actually long been used as traditional Chinese medicine in clinic for cancer therapy in China. The cytotoxicity of arenobufagin, a bufadienolide isolated from toad venom, on human cervical carcinoma HeLa cells was checked. And, the protein expression profile of control HeLa cells and HeLa cells treated with arenobufagin for 48 h was analyzed using two-dimensional electrophoresis, respectively. Differently expressed proteins in HeLa cells treated with arenobufagin were identified and the pathways related to these proteins were mapped from KEGG database. Computational molecular docking was performed to verify the binding of arenobufagin and Na, K-ATPase. The effects of arenobufagin on Na, K-ATPase activity and proteasome activity of HeLa cells were checked. The protein-protein interaction network between Na, K-ATPase and proteasome was constructed and the expression of possible intermediate proteins ataxin-1 and translationally-controlled tumor protein in HeLa cells treated with arenobufagin was then checked. Arenobufagin induced apoptosis and G2/M cell cycle arrest in HeLa cells. The cytotoxic effect of arenobufagin was associated with 25 differently expressed proteins including proteasome-related proteins, calcium ion binding-related proteins, oxidative stress-related proteins, metabolism-related enzymes and others. The results of computational molecular docking revealed that arenobufagin was bound in the cavity formed by the transmembrane alpha subunits of Na, K-ATPase, which blocked the pathway of extracellular Na+/K+ cation exchange and inhibited the function of ion exchange. Arenobufagin inhibited the activity of Na, K-ATPase and proteasome, decreased the expression of Na, K-ATPase

  17. V-ATPase Is Involved in Silkworm Defense Response against Bombyx mori Nucleopolyhedrovirus.

    Directory of Open Access Journals (Sweden)

    Peng Lü

    Full Text Available Silkworms are usually susceptible to the infection of Bombyx mori (B. mori nucleopolyhedrovirus (BmNPV, which can cause significant economic loss. However, some silkworm strains are identified to be highly resistant to BmNPV. To explore the silkworm genes involved in this resistance in the present study, we performed comparative real-time PCR, ATPase assay, over-expression and sub-cellular localization experiments. We found that when inoculated with BmNPV both the expression and activity of V-ATPase were significantly up-regulated in the midgut column cells (not the goblet cells of BmNPV-resistant strains (NB and BC8, the main sites for the first step of BmNPV invasion, but not in those of a BmNPV-susceptible strain 306. Furthermore, this up-regulation mainly took place during the first 24 hours post inoculation (hpi, the essential period required for establishment of virus infection, and then was down-regulated to normal levels. Amazingly, transient over-expression of V-ATPase c subunit in BmNPV-infected silkworm cells could significantly inhibit BmNPV proliferation. To our knowledge this is the first report demonstrating clearly that V-ATPase is indeed involved in the defense response against BmNPV. Our data further suggests that prompt and potent regulation of V-ATPase may be essential for execution of this response, which may enable fast acidification of endosomes and/or lysosomes to render them competent for degradation of invading viruses.

  18. Interaction of inhibitors of the vacuolar H(+)-ATPase with the transmembrane Vo-sector.

    Science.gov (United States)

    Páli, Tibor; Whyteside, Graham; Dixon, Neil; Kee, Terence P; Ball, Stephen; Harrison, Michael A; Findlay, John B C; Finbow, Malcolm E; Marsh, Derek

    2004-09-28

    The macrolide antibiotic concanamycin A and a designed derivative of 5-(2-indolyl)-2,4-pentadienamide (INDOL0) are potent inhibitors of vacuolar H(+)-ATPases, with IC(50) values in the low and medium nanomolar range, respectively. Interaction of these V-ATPase inhibitors with spin-labeled subunit c in the transmembrane V(o)-sector of the ATPase was studied by using the transport-active 16-kDa proteolipid analogue of subunit c from the hepatopancreas of Nephrops norvegicus. Analogous experiments were also performed with vacuolar membranes from Saccharomyces cerevisiae. Membranous preparations of the Nephrops 16-kDa proteolipid were spin-labeled either on the unique cysteine C54, with a nitroxyl maleimide, or on the functionally essential glutamate E140, with a nitroxyl analogue of dicyclohexylcarbodiimide (DCCD). These residues were previously demonstrated to be accessible to lipid. Interaction of the inhibitors with these lipid-exposed residues was studied by using both conventional and saturation transfer EPR spectroscopy. Immobilization of the spin-labeled residues by the inhibitors was observed on both the nanosecond and microsecond time scales. The perturbation by INDOL0 was mostly greater than that by concanamycin A. Qualitatively similar but quantitatively greater effects were obtained with the same spin-label reagents and vacuolar membranes in which the Nephrops 16-kDa proteolipid was expressed in place of the native vma3p proteolipid of yeast. The spin-label immobilization corresponds to a direct interaction of the inhibitors with these intramembranous sites on the protein. A mutational analysis on transmembrane segment 4 known to give resistance to concanamycin A also gave partial resistance to INDOL0. The results are consistent with transmembrane segments 2 and 4 of the 16-kDa putative four-helix bundle, and particularly the functionally essential protonation locus, being involved in the inhibitor binding sites. Inhibition of proton transport may also

  19. The plant plasma membrane H+-ATPase

    DEFF Research Database (Denmark)

    Ekberg, Kira

      The very high mobility of protons in aqueous solutions demands special features of membrane proton transporters to sustain efficient yet regulated proton transport across biological membranes. By the use of the chemical energy of ATP, plasma-membrane-embedded H+-ATPases extrude protons from cells...... of plants and fungi to generate electrochemical proton gradients. A recently published crystal structure of a plasma membrane H(+)-ATPase contributes to our knowledge about the mechanism of these essential enzymes. Together with biochemical and structural data presented in this thesis we are now able...... to describe the basic molecular components that allow the plasma membrane proton H+-ATPase to carry out proton transport against large membrane potentials. Moreover, a completely new paradigm for post-translational activation of these proteins is presented. The talk will focus on the following themes...

  20. Subcellular localization and kinetic characterization of a gill (Na+, K+)-ATPase from the giant freshwater prawn Macrobrachium rosenbergii.

    Science.gov (United States)

    França, Juliana L; Pinto, Marcelo R; Lucena, Malson N; Garçon, Daniela P; Valenti, Wagner C; McNamara, John C; Leone, Francisco A

    2013-07-01

    The stimulation by Mg(2+), Na(+), K(+), NH4 (+), and ATP of (Na(+), K(+))-ATPase activity in a gill microsomal fraction from the freshwater prawn Macrobrachium rosenbergii was examined. Immunofluorescence labeling revealed that the (Na(+), K(+))-ATPase α-subunit is distributed predominantly within the intralamellar septum, while Western blotting revealed a single α-subunit isoform of about 108 kDa M r. Under saturating Mg(2+), Na(+), and K(+) concentrations, the enzyme hydrolyzed ATP, obeying cooperative kinetics with V(M) = 115.0 ± 2.3 U mg(-1), K(0.5) = 0.10 ± 0.01 mmol L(-1). Stimulation by Na(+) (V(M) = 110.0 ± 3.3 U mg(-1), K(0.5) = 1.30 ± 0.03 mmol L(-1)), Mg(2+) (V(M) = 115.0 ± 4.6 U mg(-1), K(0.5) = 0.96 ± 0.03 mmol L(-1)), NH4 (+) (V(M) = 141.0 ± 5.6 U mg(-1), K(0.5) = 1.90 ± 0.04 mmol L(-1)), and K(+) (V(M) = 120.0 ± 2.4 U mg(-1), K(M) = 2.74 ± 0.08 mmol L(-1)) followed single saturation curves and, except for K(+), exhibited site-site interaction kinetics. Ouabain inhibited ATPase activity by around 73% with K(I) = 12.4 ± 1.3 mol L(-1). Complementary inhibition studies suggest the presence of F0F1-, Na(+)-, or K(+)-ATPases, but not V(H(+))- or Ca(2+)-ATPases, in the gill microsomal preparation. K(+) and NH4(+) synergistically stimulated enzyme activity (≈25%), suggesting that these ions bind to different sites on the molecule. We propose a mechanism for the stimulation by both NH4(+), and K(+) of the gill enzyme.

  1. Glutamate transporter activity promotes enhanced Na+/K+-ATPase -mediated extracellular K+ management during neuronal activity

    DEFF Research Database (Denmark)

    Larsen, Brian R; Holm, Rikke; Vilsen, Bente;

    2016-01-01

    , in addition, Na+ /K+ -ATPase-mediated K+ clearance could be governed by astrocytic [Na+ ]i . During most neuronal activity, glutamate is released in the synaptic cleft and is re-absorbed by astrocytic Na+ -coupled glutamate transporters, thereby elevating [Na+ ]i . It thus remains unresolved whether...... astrocytic isoform constellations in Xenopus oocytes and determined their apparent Na+ affinity in intact oocytes and isolated membranes. The Na+ /K+ -ATPase was not fully saturated at basal astrocytic [Na+ ]i , irrespective of isoform constellation, although the β1 subunit conferred lower apparent Na...

  2. Escherichia coli Type III Secretion System 2 ATPase EivC Is Involved in the Motility and Virulence of Avian Pathogenic Escherichia coli

    Science.gov (United States)

    Wang, Shaohui; Liu, Xin; Xu, Xuan; Yang, Denghui; Wang, Dong; Han, Xiangan; Shi, Yonghong; Tian, Mingxing; Ding, Chan; Peng, Daxin; Yu, Shengqing

    2016-01-01

    Type III secretion systems (T3SSs) are crucial for bacterial infections because they deliver effector proteins into host cells. The Escherichia coli type III secretion system 2 (ETT2) is present in the majority of E. coli strains, and although it is degenerate, ETT2 regulates bacterial virulence. An ATPase is essential for T3SS secretion, but the function of the ETT2 ATPase has not been demonstrated. Here, we show that EivC is homologous to the β subunit of F0F1 ATPases and it possesses ATPase activity. To investigate the effects of ETT2 ATPase EivC on the phenotype and virulence of avian pathogenic Escherichia coli (APEC), eivC mutant and complemented strains were constructed and characterized. Inactivation of eivC led to impaired flagella production and augmented fimbriae on the bacterial surface, and, consequently, reduced bacterial motility. In addition, the eivC mutant strain exhibited attenuated virulence in ducks, diminished serum resistance, reduced survival in macrophage cells and in ducks, upregulated fimbrial gene expression, and downregulated flagellar and virulence gene expression. The expression of the inflammatory cytokines interleukin (IL)-1β and IL-8 were increased in HD-11 macrophages infected with the eivC mutant strain, compared with the wild-type strain. These virulence-related phenotypes were restored by genetic complementation. These findings demonstrate that ETT2 ATPase EivC is involved in the motility and pathogenicity of APEC. PMID:27630634

  3. The vacuolar-ATPase complex and assembly factors, TMEM199 and CCDC115, control HIF1α prolyl hydroxylation by regulating cellular iron levels.

    Science.gov (United States)

    Miles, Anna L; Burr, Stephen P; Grice, Guinevere L; Nathan, James A

    2017-03-15

    Hypoxia Inducible transcription Factors (HIFs) are principally regulated by the 2-oxoglutarate and Iron(II) prolyl hydroxylase (PHD) enzymes, which hydroxylate the HIFα subunit, facilitating its proteasome-mediated degradation. Observations that HIFα hydroxylation can be impaired even when oxygen is sufficient emphasise the importance of understanding the complex nature of PHD regulation. Here, we use an unbiased genome-wide genetic screen in near-haploid human cells to uncover cellular processes that regulate HIF1α. We identify that genetic disruption of the Vacuolar H+ ATPase (V-ATPase), the key proton pump for endo-lysosomal acidification, and two previously uncharacterised V-ATPase assembly factors, TMEM199 and CCDC115, stabilise HIF1α in aerobic conditions. Rather than preventing the lysosomal degradation of HIF1α, disrupting the V-ATPase results in intracellular iron depletion, thereby impairing PHD activity and leading to HIF activation. Iron supplementation directly restores PHD catalytic activity following V-ATPase inhibition, revealing important links between the V-ATPase, iron metabolism and HIFs.

  4. Roles of transmembrane segment M1 of Na(+),K (+)-ATPase and Ca (2+)-ATPase, the gatekeeper and the pivot

    DEFF Research Database (Denmark)

    Einholm, Anja P.; Andersen, Jens Peter; Vilsen, Bente

    2007-01-01

    In this review we summarize mutagenesis work on the structure-function relationship of transmembrane segment M1 in the Na(+),K(+)-ATPase and the sarco(endo)plasmic reticulum Ca(2+)-ATPase. The original hypothesis that charged residues in the N-terminal part of M1 interact with the transported...... cations can be rejected. On the other hand hydrophobic residues in the middle part of M1 turned out to play crucial roles in Ca(2+) interaction/occlusion in Ca(2+)-ATPase and K(+) interaction/occlusion in Na(+),K(+)-ATPase. Leu(65) of the Ca(2+)-ATPase and Leu(99) of the Na(+),K(+)-ATPase, located...... of the extracytoplasmic gate in both the Ca(2+)-ATPase and the Na(+),K(+)-ATPase. Udgivelsesdato: 2007-Dec...

  5. Obstacle Effects on One-Dimensional Translocation of ATPase

    Institute of Scientific and Technical Information of China (English)

    WANG Xian-Ju; AI Bao-Quan; LIU Liang-Gang

    2002-01-01

    We apply a general random walk model to the study of the ATPase's one-dimensional translocation along obstacle biological environment, and show the effects of random obstacles on the ATPase translocation along single stranded DNA. We find that the obstacle environment can reduce the lifetime of ATPase lattice-bound state which results in the inhibition of ATPase activity. We also carry out the ranges of rate constant of ATPase unidirectonal translocation and bidirectional translocation. Our results are consistent with the experiments and relevant theoretical consideration, and can be used to explain some physiological phenomena.

  6. “Oxygen sensing” by Na,K-ATPase: these miraculous thiols

    Directory of Open Access Journals (Sweden)

    Anna Bogdanova

    2016-08-01

    Full Text Available Control over the Na,K-ATPase function plays a central role in adaptation of the organisms to hypoxic and anoxic conditions. As the enzyme itself does not possess O2 binding sites its oxygen-sensitivity is mediated by a variety of redox-sensitive modifications including S-glutathionylation, S-nitrosylation and redox-sensitive phosphorylation. This is an overview of the current knowledge on the plethora of molecular mechanisms tuning the activity of the ATP-consuming Na,K-ATPase to the cellular metabolic activity. Recent findings suggest that oxygen-derived free radicals and H2O2, NO, and oxidised glutathione are the signalling messengers that make the Na,K-ATPase oxygen-sensitive. This very ancient signalling pathway targeting thiols of all three subunits of the Na,K-ATPase as well as redox-sensitive kinases sustains the enzyme activity at the optimal level avoiding terminal ATP depletion and maintaining the transmembrane ion gradients in cells of anoxia-tolerant species. We acknowledge the complexity of the underlying processes as we characterise the sources of reactive oxygen and nitrogen species production in hypoxic cells, and identify their targets, the reactive thiol groups which, upon modification, impact the enzyme activity. Structured accordingly, this review presents a summery on (i the sources of free radical production in hypoxic cells, (ii localisation of regulatory thiols within the Na,K-ATPase and the role reversible thiol modifications play in responses of the enzymes to a variety of stimuli (hypoxia, receptors’ activation control of the enzyme activity (iii redox-sensitive regulatory phosphorylation, and (iv the role of fine modulation of the Na,K-ATPase function in survival success under hypoxic conditions. The co-authors attempted to cover all the contradictions and standing hypotheses in the field and propose the possible future developments in this dynamic area of research, the importance of which is hard to overestimate

  7. Regulation of cardiac myocyte contractility by phospholemman: Na+/Ca2+ exchange versus Na+ -K+ -ATPase.

    Science.gov (United States)

    Song, Jianliang; Zhang, Xue-Qian; Wang, JuFang; Cheskis, Ellina; Chan, Tung O; Feldman, Arthur M; Tucker, Amy L; Cheung, Joseph Y

    2008-10-01

    Phospholemman (PLM) regulates cardiac Na(+)/Ca(2+) exchanger (NCX1) and Na(+)-K(+)-ATPase in cardiac myocytes. PLM, when phosphorylated at Ser(68), disinhibits Na(+)-K(+)-ATPase but inhibits NCX1. PLM regulates cardiac contractility by modulating Na(+)-K(+)-ATPase and/or NCX1. In this study, we first demonstrated that adult mouse cardiac myocytes cultured for 48 h had normal surface membrane areas, t-tubules, and NCX1 and sarco(endo)plasmic reticulum Ca(2+)-ATPase levels, and retained near normal contractility, but alpha(1)-subunit of Na(+)-K(+)-ATPase was slightly decreased. Differences in contractility between myocytes isolated from wild-type (WT) and PLM knockout (KO) hearts were preserved after 48 h of culture. Infection with adenovirus expressing green fluorescent protein (GFP) did not affect contractility at 48 h. When WT PLM was overexpressed in PLM KO myocytes, contractility and cytosolic Ca(2+) concentration ([Ca(2+)](i)) transients reverted back to those observed in cultured WT myocytes. Both Na(+)-K(+)-ATPase current (I(pump)) and Na(+)/Ca(2+) exchange current (I(NaCa)) in PLM KO myocytes rescued with WT PLM were depressed compared with PLM KO myocytes. Overexpressing the PLMS68E mutant (phosphomimetic) in PLM KO myocytes resulted in the suppression of I(NaCa) but had no effect on I(pump). Contractility, [Ca(2+)](i) transient amplitudes, and sarcoplasmic reticulum Ca(2+) contents in PLM KO myocytes overexpressing the PLMS68E mutant were depressed compared with PLM KO myocytes overexpressing GFP. Overexpressing the PLMS68A mutant (mimicking unphosphorylated PLM) in PLM KO myocytes had no effect on I(NaCa) but decreased I(pump). Contractility, [Ca(2+)](i) transient amplitudes, and sarcoplasmic reticulum Ca(2+) contents in PLM KO myocytes overexpressing the S68A mutant were similar to PLM KO myocytes overexpressing GFP. We conclude that at the single-myocyte level, PLM affects cardiac contractility and [Ca(2+)](i) homeostasis primarily by its direct

  8. Energy-transducing H+-ATPase of Escherichia coli. Reconstitution of proton translocation activity of the intrinsic membrane sector.

    Science.gov (United States)

    Negrin, R S; Foster, D L; Fillingame, R H

    1980-06-25

    The intrinsic membrane sector (Fo) of the H+-ATPase complex of Escherichia coli has been purified, incorporated into liposomes, and its proton-translocating activity reconstituted. The Fo sector was prepared by treating a purified, particulate, F1FO-ATPase preparation with EDTA to solubilize the F1-ATPase. The resulting particulate Fo fraction was incorporated into liposomes of E. coli phospholipids by sonication. Proton efflux from these liposomes was measured with a pH electrode after imposition of a membrane potential. The kinetics of proton efflux fits that predicted by the Goldman-flux equation. The rate of proton efflux was increased maximally more than 100-fold on incorporation of the Fo sector into the liposomes. The rate of H+ efflux varied directly with the amount of Fo material added during reconstitution. Dicyclohexylcarbodiimide blocked Fo-mediated H+ efflux. Inhibition was shown to be due to reaction of dicyclohexylcarbodiimide with a specific proteolipid subunit of Fo. The preparation of Fo used in these studies contained the three proteins that had previously been identified as likely subunits of Fo (Foster, D. L., and Fillingame, R. H. (1979) J. Biol. Chem. 254, 8230-8236). It remains to be determined whether all three components are required for reconstitution of proton translocation activity.

  9. Bacterial rotary export ATPases are allosterically regulated by the nucleotide second messenger cyclic-di-GMP.

    Science.gov (United States)

    Trampari, Eleftheria; Stevenson, Clare E M; Little, Richard H; Wilhelm, Thomas; Lawson, David M; Malone, Jacob G

    2015-10-01

    The widespread second messenger molecule cyclic di-GMP (cdG) regulates the transition from motile and virulent lifestyles to sessile, biofilm-forming ones in a wide range of bacteria. Many pathogenic and commensal bacterial-host interactions are known to be controlled by cdG signaling. Although the biochemistry of cyclic dinucleotide metabolism is well understood, much remains to be discovered about the downstream signaling pathways that induce bacterial responses upon cdG binding. As part of our ongoing research into the role of cdG signaling in plant-associated Pseudomonas species, we carried out an affinity capture screen for cdG binding proteins in the model organism Pseudomonas fluorescens SBW25. The flagella export AAA+ ATPase FliI was identified as a result of this screen and subsequently shown to bind specifically to the cdG molecule, with a KD in the low micromolar range. The interaction between FliI and cdG appears to be very widespread. In addition to FliI homologs from diverse bacterial species, high affinity binding was also observed for the type III secretion system homolog HrcN and the type VI ATPase ClpB2. The addition of cdG was shown to inhibit FliI and HrcN ATPase activity in vitro. Finally, a combination of site-specific mutagenesis, mass spectrometry, and in silico analysis was used to predict that cdG binds to FliI in a pocket of highly conserved residues at the interface between two FliI subunits. Our results suggest a novel, fundamental role for cdG in controlling the function of multiple important bacterial export pathways, through direct allosteric control of export ATPase proteins.

  10. Breast cancer associated a2 isoform vacuolar ATPase immunomodulates neutrophils: potential role in tumor progression.

    Science.gov (United States)

    Ibrahim, Safaa A; Katara, Gajendra K; Kulshrestha, Arpita; Jaiswal, Mukesh K; Amin, Magdy A; Beaman, Kenneth D

    2015-10-20

    In invasive breast cancer, tumor associated neutrophils (TAN) represent a significant portion of the tumor mass and are associated with increased angiogenesis and metastasis. Identifying the regulatory factors that control TAN behavior will help in developing ideal immunotherapies. Vacuolar ATPases (V-ATPases), multi-subunit proton pumps, are highly expressed in metastatic breast cancer cells. A cleaved peptide from a2 isoform V-ATPase (a2NTD) has immunomodulatory role in tumor microenvironment. Here, we report for the first time the role of V-ATPase in neutrophils modulation. In invasive breast cancer cells, a2NTD was detected and a2V was highly expressed on the surface. Immunohistochemical analysis of invasive breast cancer tissues revealed that increased neutrophil recruitment and blood vessel density correlated with increased a2NTD levels. In order to determine the direct regulatory role of a2NTD on neutrophils, recombinant a2NTD was used for the treatment of neutrophils isolated from the peripheral blood of healthy volunteers. Neutrophils treated with a2NTD (a2Neuɸ) showed increased secretion of IL-1RA, IL-10, CCL-2 and IL-6 that are important mediators in cancer related inflammation. Moreover, a2Neuɸ exhibited an increased production of protumorigenic factors including IL-8, matrix metaloprotinase-9 and vascular endothelial growth factor. Further, functional characterization of a2Neuɸ revealed that a2Neuɸ derived products induce in vitro angiogenesis as well as increase the invasiveness of breast cancer cells. This study establishes the modulatory effect of breast cancer associated a2V on neutrophils, by the action of a2NTD, which has a positive impact on tumor progression, supporting that a2V can be a potential selective target for breast cancer therapy.

  11. Coordinated regulation of cardiac Na(+)/Ca (2+) exchanger and Na (+)-K (+)-ATPase by phospholemman (FXYD1).

    Science.gov (United States)

    Cheung, Joseph Y; Zhang, Xue-Qian; Song, Jianliang; Gao, Erhe; Chan, Tung O; Rabinowitz, Joseph E; Koch, Walter J; Feldman, Arthur M; Wang, JuFang

    2013-01-01

    Phospholemman (PLM) is the founding member of the FXYD family of regulators of ion transport. PLM is a 72-amino acid protein consisting of the signature PFXYD motif in the extracellular N terminus, a single transmembrane (TM) domain, and a C-terminal cytoplasmic tail containing three phosphorylation sites. In the heart, PLM co-localizes and co-immunoprecipitates with Na(+)-K(+)-ATPase, Na(+)/Ca(2+) exchanger, and L-type Ca(2+) channel. The TM domain of PLM interacts with TM9 of the α-subunit of Na(+)-K(+)-ATPase, while its cytoplasmic tail interacts with two small regions (spanning residues 248-252 and 300-304) of the proximal intracellular loop of Na(+)/Ca(2+) exchanger. Under stress, catecholamine stimulation phosphorylates PLM at serine(68), resulting in relief of inhibition of Na(+)-K(+)-ATPase by decreasing K(m) for Na(+) and increasing V(max), and simultaneous inhibition of Na(+)/Ca(2+) exchanger. Enhanced Na(+)-K(+)-ATPase activity lowers intracellular Na(+), thereby minimizing Ca(2+) overload and risks of arrhythmias. Inhibition of Na(+)/Ca(2+) exchanger reduces Ca(2+) efflux, thereby preserving contractility. Thus, the coordinated actions of PLM during stress serve to minimize arrhythmogenesis and maintain inotropy. In acute cardiac ischemia and chronic heart failure, either expression or phosphorylation of PLM or both are altered. PLM regulates important ion transporters in the heart and offers a tempting target for development of drugs to treat heart failure.

  12. Transmembrane carboxyl residues are essential for cation-dependent function in the gastric H,K-ATPase.

    Science.gov (United States)

    Rabon, E C; Hoggatt, M; Smillie, K

    1996-12-13

    The K+-dependent ATPase activity of the H,K-ATPase was irreversibly inhibited by the carboxyl activating reagent, dicyclohexylcarbodiimide (DCCD). The inhibition was first order and displayed a concentration dependence with the K0.5 (DCCD) = 0.65 +/- 0.04 mM. KCl protected 70% of the ATPase activity from DCCD-dependent inhibition in a concentration-dependent manner with a K0.5 (K+) = 0.58 +/- 0.1 mM KCl. DCCD modification selectively inhibited the K+-dependent rather than ATP-dependent partial reactions including eosin fluorescence responses and ligand-stabilized initial tryptic cleavage patterns of the membrane-associated enzyme. DCCD modification also inhibited the binding of 86Rb+ and the fluorescent responses of the K+-competitive, fluorescent inhibitor 1-(2-methylphenyl)-4-methylamino-6-methyl-2, 3-dihydropyrrolo[3,2-c]quinoline. [14C]DCCD was incorporated into the H,K-ATPase in a time course identical to that describing the inactivation of the K+-dependent ATPase activity of the H,K-ATPase. A component of the [14C]DCCD incorporated into the H,K-ATPase was K+-sensitive where K+ reduced the [14C]DCCD incorporated into the enzyme by 1.6 nmol of [14C]DCCD/mg of protein. Membrane-associated tryptic peptides resolved from the [14C]DCCD-modified H,K-ATPase exhibited various K+ sensitivities with peptides at 23, 9.6, 8.2, 7.1, and 6.1 kDa containing 10-78%, 23-52%, 24-36%, 2%, and 3-4% K+-sensitivity, respectively. The N-terminal sequence of the K+-sensitive, approximately 23- and 9.6-kDa peptides was LVNE857, a C-terminal fragment of the ATPase alpha-subunit. The mass of the smaller peptide limited the residue assignment to the transmembrane M7/M8 domains and an intervening extracytoplasmic loop. An N-terminal sequence, SD840IM, was obtained from a 3.3-kDa, [14C]DCCD-labeled peptide resolved from a V8 digest of the partially purified alpha-subunit. This mass was sufficient to include LVNE but would exclude M8 and the intervening loop between M7 and M8. Glu857 is a

  13. Differential regulation of cystic fibrosis transmembrane conductance regulator and Na+,K+ -ATPase in gills of striped bass, Morone saxatilis: effect of salinity and hormones

    DEFF Research Database (Denmark)

    Madsen, Steffen; Jensen, Lars Nørholm; Tipsmark, Christian Kølbaek

    2007-01-01

    Effects of salinity and hormones on cystic fibrosis transmembrane conductance regulator (CFTR) and alpha-subunit Na(+),K(+) -ATPase (alpha-NKA) mRNA (analysed by semi-quantitative PCR) and protein expression (analysed by western blotting and immunocytochemistry) were investigated in gills...... of striped bass. Freshwater (FW) to seawater (SW) transfer induced a disturbance in serum [Na(+)]. Gill CFTR protein, mRNA level and Na(+),K(+) -ATPase activity were unaffected by SW transfer, whereas alpha-NKA mRNA increased after transfer. CFTR immunoreactivity was observed in large cells in FW and SW gill...... filaments at equal intensity. Cortisol decreased serum [Na(+)] in FW fish, but had no effect on gill Na(+),K(+) -ATPase activity, alpha-NKA and CFTR mRNA levels. Incubation of gill tissue with cortisol (24 h, >0.01 micro g/ml) and epidermal growth factor (EGF 10 micro g/ml) decreased CFTR mRNA levels...

  14. Purification and functional reconstitution of a seven-subunit mrp-type na+/h+ antiporter.

    Science.gov (United States)

    Morino, Masato; Suzuki, Toshiharu; Ito, Masahiro; Krulwich, Terry Ann

    2014-01-01

    Mrp antiporters and their homologues in the cation/proton antiporter 3 family of the Membrane Transporter Database are widely distributed in bacteria. They have major roles in supporting cation and cytoplasmic pH homeostasis in many environmental, extremophilic, and pathogenic bacteria. These antiporters require six or seven hydrophobic proteins that form hetero-oligomeric complexes, while most other cation/proton antiporters require only one membrane protein for their activity. The resemblance of three Mrp subunits to membrane-embedded subunits of the NADH:quinone oxidoreductase of respiratory chains and to subunits of several hydrogenases has raised interest in the evolutionary path and commonalities of their proton-translocating domains. In order to move toward a greater mechanistic understanding of these unusual antiporters and to rigorously demonstrate that they function as secondary antiporters, powered by an imposed proton motive force, we established a method for purification and functional reconstitution of the seven-subunit Mrp antiporter from alkaliphilic Bacillus pseudofirmus OF4. Na(+)/H(+) antiporter activity was demonstrated by a fluorescence-based assay with proteoliposomes in which the Mrp complex was coreconstituted with a bacterial FoF1-ATPase. Proton pumping by the ATPase upon addition of ATP generated a proton motive force across the membranes that powered antiporter activity upon subsequent addition of Na(+).

  15. Co-distribution of glycoconjugates and H(+), K(+)-ATPase in the parietal cells of the greater horseshoe bat, Rhinolophus ferrumequinum (Schreber, 1774).

    Science.gov (United States)

    Scillitani, Giovanni; Mastrodonato, Maria; Liquori, Giuseppa Esterina; Ferri, Domenico

    2010-05-01

    Histochemical, lectin-histochemical, and immunohistochemical analyses were performed on parietal cells of the greater horseshoe bat, Rhinolophus ferrumequinum, to clarify the composition and distribution of oligosaccharide chains in the beta-subunit of the protonic pump H(+),K(+)-ATPase. PAS, Alcian Blue (pH 2.5) and Alcian Blue (pH 1.0) stainings detected only neutral glycoconjugates. Lectin-binding analyses included LTA, UEA-I, ConA, SBA, BSI-B4, AAA, DBA, PNA, and WGA. WGA-and PNA-bindings were also tested after beta-elimination to detect O-linked glycans. Parietal cells were negative for binding to LTA and UEA-I, and to PNA and WGA after beta-elimination, indicating the lack of (1,2) fucosylated residues and of N-linked glycans, respectively. Immunohistochemical tests with anti-alpha- and anti-beta-H(+),K(+)-ATPase were positive. Two alternative patterns of glycoconjugate distribution were found, i.e. a perinuclear and a diffuse one, indicating localization in the intracellular canaliculus and in the tubulovesicular system of the parietal cells, respectively. Both the subunits of the H(+),K(+)-ATPase and the galactosyl/galactosaminyl residues were co-distributed in both the perinuclear and the diffuse patterns, suggesting that the residues are part of the protonic pump. Glycosyl/glycosaminyl and mannosyl groups were concentrated in the tubulovesicular system, and fucosylated residues were found almost exclusively in the intracellular canaliculi; thus they are probably not included in the oligosaccharide chains of beta-H(+),K(+)-ATPase. These findings indicate that the oligosaccharide chains linked to the beta-H(+),K(+)-ATPase subunit in R. ferrumequinum have distinct features compared to the other mammals studied and confirms the taxon specificity of the chains in the proton pump.

  16. Trafficking of Na,K-ATPase fused to enhanced green fluorescent protein is mediated by protein kinase A or C

    DEFF Research Database (Denmark)

    Kristensen, B; Birkelund, Svend; Jørgensen, PL

    2003-01-01

    . Responses of similar magnitude were seen after inhibition of protein phosphatase by okadaic acid. Reduction of the amount of Na,K-ATPase in surface plasma membranes through internalization in recycling endosomes may thus in part explain a decrease in Na,K-pump activity following protein kinase activation......Fusion of enhanced green fluorescent protein (EGFP) to the C-terminal of rat Na,K-ATPase a1-subunit is introduced as a novel procedure for visualizing trafficking of Na,K-pumps in living COS-1 renal cells in response to PKA or PKC stimulation. Stable, functional expression of the fluorescent...... along the plasma membrane of COS cells. In unstimulated COS cells, Na,K-EGFP was also present in lysosomes and in vesicles en route from the endoplasmic reticulum to the plasma membrane, but it was almost absent from recycling endosomes labelled with fluorescent transferrin. After activation of protein...

  17. Abundance of Escherichia coli F1-ATPase molecules observed to rotate via single-molecule microscopy with gold nanorod probes.

    Science.gov (United States)

    York, Justin; Spetzler, David; Hornung, Tassilo; Ishmukhametov, Robert; Martin, James; Frasch, Wayne D

    2007-12-01

    The abundance of E. coli F1-ATPase molecules observed to rotate using gold nanorods attached to the gamma-subunit was quantitated. Individual F1 molecules were determined to be rotating based upon time dependent fluctuations of red and green light scattered from the nanorods when viewed through a polarizing filter. The average number of F1 molecules observed to rotate in the presence of GTP, ATP, and without nucleotide was approximately 50, approximately 25, and approximately 4% respectively. In some experiments, the fraction of molecules observed to rotate in the presence of GTP was as high as 65%. These data indicate that rotational measurements made using gold nanorods provide information of the F1-ATPase mechanism that is representative of the characteristics of the enzyme population as a whole.

  18. Regulation of lipid droplet dynamics in Saccharomyces cerevisiae depends on the Rab7-like Ypt7p, HOPS complex and V1-ATPase

    Directory of Open Access Journals (Sweden)

    Isabelle Bouchez

    2015-07-01

    Full Text Available It has now been clearly shown that lipid droplets (LDs play a dynamic role in the cell. This was reinforced by LD proteomics which suggest that a significant number of trafficking proteins are associated with this organelle. Using microscopy, we showed that LDs partly co-localize with the vacuole in S. cerevisiae. Immunoblot experiments confirmed the association of the vacuolar Rab GTPase Rab7-like Ypt7p with LDs. We observed an increase in fatty acid content and LD number in ypt7Δ mutant and also changes in LD morphology and intra LD fusions, revealing a direct role for Ypt7p in LD dynamics. Using co-immunoprecipitation, we isolated potential Ypt7p partners including, Vma13p, the H subunit of the V1 part of the vacuolar (H+ ATPase (V-ATPase. Deletion of the VMA13 gene, as well as deletion of three other subunits of the V1 part of the V-ATPase, also increased the cell fatty acid content and LD number. Mutants of the Homotypic fusion and vacuole protein sorting (HOPS complex showed similar phenotypes. Here, we demonstrated that LD dynamics and membrane trafficking between the vacuole and LDs are regulated by the Rab7-like Ypt7p and are impaired when the HOPS complex and the V1 domain of the V-ATPase are defective.

  19. Overproduction of PIB-Type ATPases.

    Science.gov (United States)

    Liu, Xiangyu; Sitsel, Oleg; Wang, Kaituo; Gourdon, Pontus

    2016-01-01

    Understanding of the functions and mechanisms of fundamental processes in the cell requires structural information. Structural studies of membrane proteins typically necessitate large amounts of purified and preferably homogenous target protein. Here, we describe a rapid overproduction and purification strategy of a bacterial PIB-type ATPase for isolation of milligrams of target protein per liter Escherichia coli cell culture, with a final quality of the sample which is sufficient for generating high-resolution crystals.

  20. Overproduction of PIB-Type ATPases

    DEFF Research Database (Denmark)

    Liu, Xiangyu; Sitsel, Oleg; Wang, Kaituo

    2016-01-01

    Understanding of the functions and mechanisms of fundamental processes in the cell requires structural information. Structural studies of membrane proteins typically necessitate large amounts of purified and preferably homogenous target protein. Here, we describe a rapid overproduction and purifi...... and purification strategy of a bacterial PIB-type ATPase for isolation of milligrams of target protein per liter Escherichia coli cell culture, with a final quality of the sample which is sufficient for generating high-resolution crystals....

  1. The TF1-ATPase and ATPase activities of assembled alpha 3 beta 3 gamma, alpha 3 beta 3 gamma delta, and alpha 3 beta 3 gamma epsilon complexes are stimulated by low and inhibited by high concentrations of rhodamine 6G whereas the dye only inhibits the alpha 3 beta 3, and alpha 3 beta 3 delta complexes.

    Science.gov (United States)

    Paik, S R; Yokoyama, K; Yoshida, M; Ohta, T; Kagawa, Y; Allison, W S

    1993-12-01

    The ATPase activity of the F1-ATPase from the thermophilic bacterium PS3 is stimulated at concentrations of rhodamine 6G up to about 10 microM where 70% stimulation is observed at 36 degrees C. Half maximal stimulation is observed at about 3 microM dye. At rhodamine 6G concentrations greater than 10 microM, ATPase activity declines with 50% inhibition observed at about 75 microM dye. The ATPase activities of the alpha 3 beta 3 gamma and alpha 3 beta 3 gamma delta complexes assembled from isolated subunits of TF1 expressed in E. coli deleted of the unc operon respond to increasing concentrations of rhodamine 6G nearly identically to the response of TF1. In contrast, the ATPase activities of the alpha 3 beta 3 and alpha 3 beta 3 delta complexes are only inhibited by rhodamine 6G with 50% inhibition observed, respectively, at 35 and 75 microM dye at 36 degrees C. The ATPase activity of TF1 is stimulated up to 4-fold by the neutral detergent, LDAO. In the presence of stimulating concentrations of LDAO, the ATPase activity of TF1 is no longer stimulated by rhodamine 6G, but rather, it is inhibited with 50% inhibition observed at about 30 microM dye at 30 degrees C. One interpretation of these results is that binding of rhodamine 6G to a high-affinity site on TF1 stimulates ATPase activity and unmasks a low-affinity, inhibitory site for the dye which is also exposed by LDAO.

  2. Complementation of the Fo c Subunit of Escherichia coli with That of Streptococcus mutans and Properties of the Hybrid FoF1 ATP Synthase

    OpenAIRE

    2013-01-01

    The c subunit of Streptococcus mutans ATP synthase (FoF1) is functionally exchangeable with that of Escherichia coli, since E. coli with a hybrid FoF1 is able to grow on minimum succinate medium through oxidative phosphorylation. E. coli F1 bound to the hybrid Fo with the S. mutans c subunit showed N,N′-dicyclohexylcarbodiimide-sensitive ATPase activity similar to that of E. coli FoF1. Thus, the S. mutans c subunit assembled into a functional Fo together with the E. coli a and b subu...

  3. Vacuolar-ATPase (V-ATPase) Mediates Progesterone-Induced Uterine Fluid Acidification in Rats.

    Science.gov (United States)

    Karim, Kamarulzaman; Giribabu, Nelli; Muniandy, Sekaran; Salleh, Naguib

    2016-04-01

    We hypothesized that progesterone-induced decrease in uterine fluid pH involves V-ATPase. In this study, expression and functional activity of V-ATPase in uterus were investigated under progesterone influence. Ovariectomized adult female rats received subcutaneous injection of estradiol-17β (1 µg/kg/day) or progesterone (20 mg/kg/day) for 3 days or 3 days estradiol-17β followed by 3 days vehicle, progesterone, or estradiol-17β plus progesterone. Mifepristone, a progesterone receptor blocker, was concomitantly given to the rats which received progesterone. A day after last injection, rate of uterine fluid secretion, its HCO3 (-) concentration, and pH were determined via in vivo uterine perfusion in rats under anesthesia. V-ATPase inhibitor, bafilomycin, was introduced into the perfusion buffer, and changes in these parameters were observed. Expression of V-ATPase A1 and B1/2 proteins and mRNAs in uterus were quantified by Western blotting and real-time PCR, respectively. Distribution of these proteins was observed by immunohistochemistry. Our findings showed that under progesterone influence, uterine fluid secretion rate, HCO3 (-) concentration, and pH were significantly reduced. Administration of bafilomycin did not cause significant changes in fluid secretion rate; however, HCO3 (-) concentration and pH were significantly elevated. In parallel with these changes, expression of V-ATPase A1 and B1/2 proteins and mRNAs were significantly increased with these proteins highly distributed in uterine luminal and glandular epithelia. In conclusion, increased expression and functional activity of V-ATPase were most likely responsible for the decreased in uterine fluid pH observed under progesterone influence.

  4. Modulation by K+ Plus NH4+ of microsomal (Na+, K+-ATPase activity in selected ontogenetic stages of the diadromous river shrimp Macrobrachium amazonicum (Decapoda, Palaemonidae.

    Directory of Open Access Journals (Sweden)

    Francisco A Leone

    Full Text Available We investigate the synergistic stimulation by K(+ plus NH4 (+ of (Na(+, K(+-ATPase activity in microsomal preparations of whole zoea I and decapodid III, and in juvenile and adult river shrimp gills. Modulation of (Na(+, K(+-ATPase activity is ontogenetic stage-specific, and particularly distinct between juveniles and adults. Although both gill enzymes exhibit two different sites for K(+ and NH4 (+ binding, in the juvenile enzyme, these two sites are equivalent: binding by both ions results in slightly stimulated activity compared to that of a single ionic species. In the adult enzyme, the sites are not equivalent: when one ion occupies its specific binding site, (Na(+, K(+-ATPase activity is stimulated synergistically by ≈ 50% on binding of the complementary ion. Immunolocalization reveals the enzyme to be distributed predominantly throughout the intralamellar septum in the gill lamellae of juveniles and adults. Western blot analyses demonstrate a single immunoreactive band, suggesting a single (Na(+, K(+-ATPase α-subunit isoform that is distributed into different density membrane fractions, independently of ontogenetic stage. We propose a model for the modulation by K(+ and NH4 (+ of gill (Na(+, K(+-ATPase activity. These findings suggest that the gill enzyme may be regulated by NH4 (+ during ontogenetic development in M. amazonicum.

  5. Dominant Rio1 kinase/ATPase catalytic mutant induces trapping of late pre-40S biogenesis factors in 80S-like ribosomes.

    Science.gov (United States)

    Ferreira-Cerca, Sébastien; Kiburu, Irene; Thomson, Emma; LaRonde, Nicole; Hurt, Ed

    2014-07-01

    During eukaryotic ribosome biogenesis, members of the conserved atypical serine/threonine protein kinase family, the RIO kinases (Rio1, Rio2 and Rio3) function in small ribosomal subunit biogenesis. Structural analysis of Rio2 indicated a role as a conformation-sensing ATPase rather than a kinase to regulate its dynamic association with the pre-40S subunit. However, it remained elusive at which step and by which mechanism the other RIO kinase members act. Here, we have determined the crystal structure of the human Rio1-ATP-Mg(2+) complex carrying a phosphoaspartate in the active site indicative of ATPase activity. Structure-based mutations in yeast showed that Rio1's catalytic activity regulates its pre-40S association. Furthermore, we provide evidence that Rio1 associates with a very late pre-40S via its conserved C-terminal domain. Moreover, a rio1 dominant-negative mutant defective in ATP hydrolysis induced trapping of late biogenesis factors in pre-ribosomal particles, which turned out not to be pre-40S but 80S-like ribosomes. Thus, the RIO kinase fold generates a versatile ATPase enzyme, which in the case of Rio1 is activated following the Rio2 step to regulate one of the final 40S maturation events, at which time the 60S subunit is recruited for final quality control check.

  6. VMA11, a novel gene that encodes a putative proteolipid, is indispensable for expression of yeast vacuolar membrane H(+)-ATPase activity.

    Science.gov (United States)

    Umemoto, N; Ohya, Y; Anraku, Y

    1991-12-25

    A gene, VMA11, is indispensable for expression of the vacuolar membrane H(+)-ATPase activity in the yeast Saccharomyces cerevisiae (Ohya, Y., Umemoto, N., Tanida, I., Ohta, A., Iida, H., and Anraku, Y. (1991) J. Biol. Chem. 266, 13971-13977). The VMA11 gene was isolated from a yeast genomic DNA library by complementation of the vma11 mutation. The nucleotide sequence of the gene predicts a hydrophobic proteolipid of 164 amino acids with a calculated molecular mass of 17,037 daltons. The deduced amino acid sequence shows 56.7% identity, and significant coincidence in amino acid composition with the 16-kDa subunit c (a VMA3 gene product) of the yeast vacuolar membrane H(+)-ATPase. VMA11 and VMA3 on a multicopy plasmid did not suppress the vma3 and vma11 mutation, respectively, suggesting functional independence of the two gene products. Biochemical detection of the VMA11 gene product was unsuccessful, but vacuoles in the VMA11-disrupted cells were not assembled with either subunit c or subunits a and b of the H(+)-ATPase, resulting in defects of the activity and in vivo vacuolar acidification.

  7. Organelle-specific isoenzymes of plant V-ATPase as revealed by in vivo-FRET analysis

    Directory of Open Access Journals (Sweden)

    Sauer Markus

    2008-05-01

    Full Text Available Abstract Background The V-ATPase (VHA is a protein complex of 13 different VHA-subunits. It functions as an ATP driven rotary-motor that electrogenically translocates H+ into endomembrane compartments. In Arabidopsis thaliana V-ATPase is encoded by 23 genes posing the question of specific versus redundant function of multigene encoded isoforms. Results The transmembrane topology and stoichiometry of the proteolipid VHA-c" as well as the stoichiometry of the membrane integral subunit VHA-e within the V-ATPase complex were investigated by in vivo fluorescence resonance energy transfer (FRET. VHA-c", VHA-e1 and VHA-e2, VHA-a, VHA-c3, truncated variants of VHA-c3 and a chimeric VHA-c/VHA-c" hybrid were fused to cyan (CFP and yellow fluorescent protein (YFP, respectively. The constructs were employed for transfection experiments with Arabidopsis thaliana mesophyll protoplasts. Subcellular localization and FRET analysis by confocal laser scanning microscopy (CLSM demonstrated that (i. the N- and C-termini of VHA-c" are localised in the vacuolar lumen, (ii. one copy of VHA-c" is present within the VHA-complex, and (iii. VHA-c" is localised at the ER and associated Golgi bodies. (iv. A similar localisation was observed for VHA-e2, whereas (v. the subcellular localisation of VHA-e1 indicated the trans Golgi network (TGN-specifity of this subunit. Conclusion The plant proteolipid ring is a highly flexible protein subcomplex, tolerating the incorporation of truncated and hybrid proteolipid subunits, respectively. Whereas the membrane integral subunit VHA-e is present in two copies within the complex, the proteolipid subunit VHA-c" takes part in complex formation with only one copy. However, neither VHA-c" isoform 1 nor any of the two VHA-e isoforms were identified at the tonoplast. This suggest a function in endomembrane specific VHA-assembly or targeting rather than proton transport.

  8. Intrinsic Membrane Targeting of the Flagellar Export ATPase FliI: Interaction with Acidic Phospholipids and FliH

    OpenAIRE

    Auvray, Frédéric; Ozin, Amanda J.; Claret, Laurent; Hughes, Colin

    2002-01-01

    The specialised ATPase FliI is central to export of flagellar axial protein subunits during flagellum assembly. We establish the normal cellular location of FliI and its regulatory accessory protein FliH in motile Salmonella typhimurium, and ascertain the regions involved in FliH2/FliI heterotrimerisation. Both FliI and FliH localised to the cytoplasmic membrane in the presence and in the absence of proteins making up the flagellar export machinery and basal body. Membrane association was tig...

  9. Structure and nucleosome interaction of the yeast NuA4 and Piccolo-NuA4 histone acetyltransferase complexes.

    Science.gov (United States)

    Chittuluru, Johnathan R; Chaban, Yuriy; Monnet-Saksouk, Julie; Carrozza, Michael J; Sapountzi, Vasileia; Selleck, William; Huang, Jiehuan; Utley, Rhea T; Cramet, Myriam; Allard, Stephane; Cai, Gang; Workman, Jerry L; Fried, Michael G; Tan, Song; Côté, Jacques; Asturias, Francisco J

    2011-10-09

    We have used EM and biochemistry to characterize the structure of NuA4, an essential yeast histone acetyltransferase (HAT) complex conserved throughout eukaryotes, and we have determined the interaction of NuA4 with the nucleosome core particle (NCP). The ATM-related Tra1 subunit, which is shared with the SAGA coactivator complex, forms a large domain joined to a second region that accommodates the catalytic subcomplex Piccolo and other NuA4 subunits. EM analysis of a NuA4-NCP complex shows the NCP bound at the periphery of NuA4. EM characterization of Piccolo and Piccolo-NCP provided further information about subunit organization and confirmed that histone acetylation requires minimal contact with the NCP. A small conserved region at the N terminus of Piccolo subunit enhancer of Polycomb-like 1 (Epl1) is essential for NCP interaction, whereas the subunit yeast homolog of mammalian Ing1 2 (Yng2) apparently positions Piccolo for efficient acetylation of histone H4 or histone H2A tails. Taken together, these results provide an understanding of the NuA4 subunit organization and the NuA4-NCP interactions.

  10. Structural studies of the vacuolar membrane ATPase from Neurospora crassa and comparison with the tonoplast membrane ATPase and Zea mays

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, E.J.; Mandala, S.; Taiz, L.; Bowman, B.J.

    1986-01-01

    The H translocating ATPase located on vacuolar membranes of Neurospora crassa was partially purified by solubilization in two detergents, Triton X-100 and N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate, followed by centrifugation on sucrose density gradients. Two polypeptides of M/sub r/ approx. = 70,000 and approx. = 62,000 consistently migrated with activity, along with several minor bands of lower molecular weight. Radioactively labeled inhibitors of ATPase activity, N-( UC)ethylmaleimide and 7-chloro-4-nitro( UC)benzo-2-oxa-1,3-diazole, labeled the M/sub r/ approx. = 70,000 polypeptide; this labeling was reduced in the presence of ATP. N,N'-( UC)dicyclohexylcarbodiimide labeled a polypeptide of M/sub r/ approx. = 15,000. Estimation of the functional size of the vacuolar membrane ATPase by radiation inactivation gave a value of M/sub r/ 5.2 x 10V, 10-15% larger than the mitochondrial ATPase. The Neurospora vacuolar ATPase showed no crossreactivity with antiserum to plasma membrane or mitochrondrial ATPase but stongly crossreacted with antiserum against a polypeptide of M/sub r/ approx. = 70,000 associated with the tonoplast ATPase of corn coleoptiles. These results suggest that fungal and plant vacuolar ATPases may be large multisubunit complexes, somewhat similar to, but immunologically distinct from, known F0F1 ATPases.

  11. ATP-dependent inactivation of the beta-Ser339Cys mutant F1-ATPase from Escherichia coli by N-ethylmaleimide.

    Science.gov (United States)

    Schmidt, G; Senior, A E

    1995-08-01

    We introduced mutations at the highly-conserved residue Ser-339 in subunit beta of Escherichia coli F1-ATPase. The mutations beta S339Y and beta S339F abolished ATPase activity and impaired enzyme assembly. In contrast beta S339C F1 retained function to a substantial degree. N-Ethylmaleimide (NEM) at 0.2-0.3 mM inactivated beta S339C F1-ATPase by 80-95% in the presence of MgATP or MgADP but did not inactivate appreciably in absence of nucleotide or presence of EDTA. In absence of nucleotide, 0.7 mol of [14C-NEM] was incorporated into beta-subunits of 1.0 mol F1: in presence of MgATP the amount was 1.7 mol/mol, i.e. the introduced Cys residue became more accessible to reaction in the presence of MgATP. In the X-ray structure of F1 (Abrahams et al. (1994) Nature 370, 621-628) one of the catalytic nucleotide-binding domains is empty (on the "beta E subunit") and contains a cleft. Residue beta-339 lies within this cleft; the cleft does not occur in the other two beta-subunits. Our data are consistent with the conclusion that in wild-type enzyme under physiological conditions, MgATP or MgADP induce an enzyme conformation in which residue beta-Ser-339 becomes more exposed, possibly similar to the situation seen in the "beta E-subunit" in the X-ray structure.

  12. Phosphorylation of the Na+,K+-ATPase and the H+,K+-ATPase

    DEFF Research Database (Denmark)

    Poulsen, Hanne; Morth, Jens Preben; Jensen, Jan Egebjerg;

    2010-01-01

    Phosphorylation is a widely used, reversible means of regulating enzymatic activity. Among the important phosphorylation targets are the Na(+),K(+)- and H(+),K(+)-ATPases that pump ions against their chemical gradients to uphold ionic concentration differences over the plasma membrane. The two...... as supported by electrophysiological results presented here. We further review the other proposed pump phosphorylations....

  13. Modulation of vH+-ATPase is part of the functional adaptation of sheep rumen epithelium to high-energy diet.

    Science.gov (United States)

    Kuzinski, Judith; Zitnan, Rudolf; Albrecht, Elke; Viergutz, Torsten; Schweigel-Röntgen, Monika

    2012-11-01

    Ruminal vacuolar H(+)-ATPase (vH(+)-ATPase) activity is regulated by metabolic signals. Thus, we tested whether its localization, expression, and activity were changed by different feeding. Young male sheep (n = 12) were either fed hay ad libitum (h) or hay ad libitum plus additional concentrate (h/c) for 2 wk. The vH(+)-ATPase B subunit signal was predominantly found in the cell membrane and cytosol of rumen epithelial cells (REC) with basal/parabasal phenotype. The elevated number (threefold) of these cells in rumen mucosa of h/c-fed sheep reflects a high proliferative capacity and, explains the 2.3-fold increase of the total number of vH(+)-ATPase-expressing REC. However, in accordance with a 58% reduction of the vH(+)-ATPase B subunit mRNA expression in h/c-fed sheep, its protein amount per single REC was decreased. Using the fluorescent probe BCECF and selective inhibitors (foliomycin, amiloride), the contribution of vH(+)-ATPase and Na(+)/H(+) exchanger to intracellular pH (pH(i)) regulation was investigated. REC isolated from h/c-fed sheep keep their pH(i) at a significantly higher level (6.91 ± 0.03 vs. 6.74 ± 0.05 in h-fed sheep). Foliomycin or amiloride decreased pH(i) by 0.16 ± 0.02 and 0.57 ± 0.04 pH units when applied to REC from h-fed sheep, but the effects were markedly reduced (-88 and -33%) after concentrate feeding. Nevertheless, we found that REC proliferation rate and [cAMP](i) were reduced after foliomycin-induced vH(+)-ATPase inhibition. Our results provide the first evidence for a role of vH(+)-ATPase in regulation of REC proliferation, most probably by linking metabolically induced pH(i) changes to signaling pathways regulating this process.

  14. Regulation of the Plasma Membrane H+-ATPase

    DEFF Research Database (Denmark)

    Falhof, Janus

    The plasma membrane (PM) H+-ATPase is responsible for generating the electrochemical gradientthat drives the secondary transport of nutrients across the cellular membrane. It belongs to a familyof cation and lipid transporters that are vital to many organisms. PM H+-ATPases are Type P3AATPases...

  15. Crystal Structure of the Vanadate-Inhibited Ca2+-ATPase

    DEFF Research Database (Denmark)

    Clausen, Johannes D.; Bublitz, Maike; Arnou, Bertrand Jean-Paul;

    2016-01-01

    Vanadate is the hallmark inhibitor of the P-type ATPase family; however, structural details of its inhibitory mechanism have remained unresolved. We have determined the crystal structure of sarcoplasmic reticulum Ca2+-ATPase with bound vanadate in the absence of Ca2+. Vanadate is bound...

  16. Structural and functional studies of heavy metal ATPases

    DEFF Research Database (Denmark)

    Sitsel, Oleg

    2015-01-01

    + and Zn2+ homeostasis that belong to the superfamily of P-type ATPases, transmembrane proteins which are present in virtually all lifeforms, with functions ranging from membrane potential generation to muscle relaxation. The goal of this thesis is to improve our understanding of P1B-ATPases by focusing...

  17. Assembly of the adenosine triphosphatase complex in Escherichia coli: assembly of F0 is dependent on the formation of specific F1 subunits.

    Science.gov (United States)

    Cox, G B; Downie, J A; Langman, L; Senior, A E; Ash, G; Fayle, D R; Gibson, F

    1981-10-01

    A strain of Escherichia coli (AN1007) carrying the polar uncD436 allele which affects the operon coding for the F1-F0 adenosine triphosphatase (ATPase) complex was isolated and characterized. The uncD436 allele affected the two genes most distal to the operon promoter, i.e., uncD and uncC. Although the genes coding for the F0 portion of the ATPase complex were not affected in strains carrying this mutant allele, the lack of reconstitution of washed membranes by normal F1 ATPase suggested that a functional F0 might not be formed. This conclusion was supported by the observation that the 18,000-molecular-weight F0 subunit, coded for by the uncF gene, was absent from the membranes. Plasmid pAN36 (uncD+C+), when inserted into a strain carrying the uncD436 allele, resulted in the incorporation of the 18,000-molecular-weight F0 subunit into the membrane. A further series of experiments with Mu-induced polarity mutants, with and without plasmid pAN36, showed that the formation of both the alpha- and beta-subunits of F1 ATPase was an essential prerequisite to the incorporation into the membrane of the 18,000-molecular-weight F0 subunit and to the formation of a functional F0. Examination of the polypeptide composition of membranes from various unc mutants allowed a sequence for the normal assembly of the F1-F0 ATPase complex to be proposed.

  18. Novel and potential physiological roles of vacuolar-type H+-ATPase in marine organisms.

    Science.gov (United States)

    Tresguerres, Martin

    2016-07-15

    The vacuolar-type H(+)-ATPase (VHA) is a multi-subunit enzyme that uses the energy from ATP hydrolysis to transport H(+) across biological membranes. VHA plays a universal role in essential cellular functions, such as the acidification of lysosomes and endosomes. In addition, the VHA-generated H(+)-motive force can drive the transport of diverse molecules across cell membranes and epithelia for specialized physiological functions. Here, I discuss diverse physiological functions of VHA in marine animals, focusing on recent discoveries about base secretion in shark gills, potential bone dissolution by Osedax bone-eating worms and its participation in a carbon-concentrating mechanism that promotes coral photosynthesis. Because VHA is evolutionarily conserved among eukaryotes, it is likely to play many other essential physiological roles in diverse marine organisms. Elucidating and characterizing basic VHA-dependent mechanisms could help to determine species responses to environmental stress, including (but not limited to) that resulting from climate change.

  19. Assembly of a functional F0 of the proton-translocating ATPase of Escherichia coli.

    Science.gov (United States)

    Klionsky, D J; Brusilow, W S; Simoni, R D

    1983-08-25

    We have investigated both structural and functional assembly of the F0 portion of the Escherichia coli proton-translocating ATPase in vivo. Fractionation of E. coli minicells containing plasmids which code for parts of the unc operon shows that each of the F0 peptides a, b, and c insert into the cytoplasmic membrane independent of each other and without the polypeptides which form the F1 portion of the complex alpha, beta, gamma, delta, and epsilon. Assays of membrane energization indicate that, while formation of a functional proton channel requires the presence of all three F0 polypeptides a, b and c, they are not sufficient. Synthesis of both the alpha and beta subunits of the F1 are required for formation of a functional proton channel.

  20. Small terminase couples viral DNA binding to genome-packaging ATPase activity.

    Science.gov (United States)

    Roy, Ankoor; Bhardwaj, Anshul; Datta, Pinaki; Lander, Gabriel C; Cingolani, Gino

    2012-08-08

    Packaging of viral genomes into empty procapsids is powered by a large DNA-packaging motor. In most viruses, this machine is composed of a large (L) and a small (S) terminase subunit complexed with a dodecamer of portal protein. Here we describe the 1.75 Å crystal structure of the bacteriophage P22 S-terminase in a nonameric conformation. The structure presents a central channel ∼23 Å in diameter, sufficiently large to accommodate hydrated B-DNA. The last 23 residues of S-terminase are essential for binding to DNA and assembly to L-terminase. Upon binding to its own DNA, S-terminase functions as a specific activator of L-terminase ATPase activity. The DNA-dependent stimulation of ATPase activity thus rationalizes the exclusive specificity of genome-packaging motors for viral DNA in the crowd of host DNA, ensuring fidelity of packaging and avoiding wasteful ATP hydrolysis. This posits a model for DNA-dependent activation of genome-packaging motors of general interest in virology.

  1. Engineering a light-controlled F1 ATPase using structure-based protein design

    Directory of Open Access Journals (Sweden)

    Daniel Hoersch

    2016-07-01

    Full Text Available The F1 sub-complex of ATP synthase is a biological nanomotor that converts the free energy of ATP hydrolysis into mechanical work with an astonishing efficiency of up to 100% (Kinosita et al., 2000. To probe the principal mechanics of the machine, I re-engineered the active site of E.coli F1 ATPase with a structure-based protein design approach: by incorporation of a site-specific, photoswitchable crosslinker, whose end-to-end distance can be modulated by illumination with light of two different wavelengths, a dynamic constraint was imposed on the inter-atomic distances of the α and β subunits. Crosslinking reduced the ATP hydrolysis activity of four designs tested in vitro and in one case created a synthetic ATPase whose activity can be reversibly modulated by subsequent illumination with near UV and blue light. The work is a first step into the direction of the long-term goal to design nanoscaled machines based on biological parts that can be precisely controlled by light.

  2. Engineering a light-controlled F1 ATPase using structure-based protein design.

    Science.gov (United States)

    Hoersch, Daniel

    2016-01-01

    The F1 sub-complex of ATP synthase is a biological nanomotor that converts the free energy of ATP hydrolysis into mechanical work with an astonishing efficiency of up to 100% (Kinosita et al., 2000). To probe the principal mechanics of the machine, I re-engineered the active site of E.coli F1 ATPase with a structure-based protein design approach: by incorporation of a site-specific, photoswitchable crosslinker, whose end-to-end distance can be modulated by illumination with light of two different wavelengths, a dynamic constraint was imposed on the inter-atomic distances of the α and β subunits. Crosslinking reduced the ATP hydrolysis activity of four designs tested in vitro and in one case created a synthetic ATPase whose activity can be reversibly modulated by subsequent illumination with near UV and blue light. The work is a first step into the direction of the long-term goal to design nanoscaled machines based on biological parts that can be precisely controlled by light.

  3. Structural studies of Ca2+-ATPase ligand and regulatory complexes

    DEFF Research Database (Denmark)

    Drachmann, Nikolaj Düring

    2015-01-01

    against their concentration gradient upon ATP hydrolysis. The ion gradients are used to drive several key cellular processes, like the action potential in nerve tissue, acidification of the gastric juice, cell signalling and muscle contraction. The Ca2+-ATPase is an important part of mammalian cells......The Ca2+-ATPase (sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA is a part of the vital P-type ATPase family, which was first discovered in 1957 by Professor Jens Christian Skou. He was the first to describe the Na+,K+-ATPase and its role in generating the membrane potential across the axonal......, and is expressed in different isoforms with different cellular locations. SERCA1a is mainly expressed in fast twitch muscle tissue, SERCA2a in cardiac tissue, SERCA2b is ubiquitously expressed, while SERCA3 isoforms are co-expressed with SERCA2b in nonmuscular cells. In general, SERCA is responsible for the re...

  4. Heterotrimeric G protein subunits are located on rat liver endosomes

    Directory of Open Access Journals (Sweden)

    Van Dyke Rebecca W

    2004-01-01

    Full Text Available Abstract Background Rat liver endosomes contain activated insulin receptors and downstream signal transduction molecules. We undertook these studies to determine whether endosomes also contain heterotrimeric G proteins that may be involved in signal transduction from G protein-coupled receptors. Results By Western blotting Gsα, Giα1,2, Giα3 and Gβ were enriched in both canalicular (CM and basolateral (BLM membranes but also readily detectable on three types of purified rat liver endosomes in the order recycling receptor compartment (RRC > compartment for uncoupling of receptor and ligand (CURL > multivesicular bodies (MVB >> purified secondary lysosomes. Western blotting with antibodies to Na, K-ATPase and to other proteins associated with plasma membranes and intracellular organelles indicated this was not due to contamination of endosome preparations by CM or BLM. Adenylate cyclase (AC was also identified on purified CM, BLM, RRC, CURL and MVB. Percoll gradient fractionation of liver postnuclear supernatants demonstrated co-occurrence of endosomes and heterotrimeric G protein subunits in fractions with little plasma membrane markers. By confocal microscopy, punctate staining for Gsα, Giα3 and Gβ corresponded to punctate areas of endocytosed Texas red-dextran in hepatocytes from control and cholera toxin-treated livers. Conclusion We conclude that heterotrimeric G protein subunits as well as AC likely traffic into hepatocytes on endosome membranes, possibly generating downstream signals spatially separate from signalling generated at the plasma membrane, analogous to the role(s of internalized insulin receptors.

  5. The influence of Na+,K+-ATPase on glutamate signaling in neurodegenerative diseases and senescence

    Directory of Open Access Journals (Sweden)

    Paula Fernanda Kinoshita

    2016-06-01

    Full Text Available Decreased Na+,K+-ATPase (NKA activity causes energy deficiency, which is commonly observed in neurodegenerative diseases. The NKA is constituted of three subunits: α, β and γ, with four distinct isoforms of the catalytic α subunit (α1-4. Genetic mutations in the ATP1A2 gene and ATP1A3 gene, encoding the α2 and α3 subunit isoforms, respectively can cause distinct neurological disorders, concurrent to impaired NKA activity. Within the central nervous system (CNS, the α2 isoform is expressed mostly in glial cells and the α3 isoform is neuron-specific. Mutations in ATP1A2 gene can result in familial hemiplegic migraine (FHM2, while mutations in the ATP1A3 gene can cause Rapid-onset dystonia-Parkinsonism (RDP and alternating hemiplegia of childhood (AHC, as well as the cerebellar ataxia, areflexia, pescavus, optic atrophy and sensorineural hearing loss (CAPOS syndrome. Data indicates that the central glutamatergic system is affected by mutations in the α2 isoform, however further investigations are required to establish a connection to mutations in the α3 isoform, especially given the diagnostic confusion and overlap with glutamate transporter disease. The age-related decline in brain α2/3 activity may arise from changes in the cyclic guanosine monophosphate (cGMP and cGMP‐dependent protein kinase (PKG pathway. Glutamate, through nitric oxide synthase (NOS, cGMP and PKG, stimulates brain α2/3 activity, with the glutamatergic N-methyl-D-aspartate (NMDA receptor cascade able to drive an adaptive, neuroprotective response to inflammatory and challenging stimuli, including amyloid‐β. Here we review the NKA, both as an ion pump as well as a receptor that interacts with NMDA, including the role of NKA subunits mutations. Failure of the NKA-associated adaptive response mechanisms may render neurons more susceptible to degeneration over the course of aging.

  6. Tributyltin (TBT) and dibutyltin (DBT) differently inhibit the mitochondrial Mg-ATPase activity in mussel digestive gland.

    Science.gov (United States)

    Nesci, Salvatore; Ventrella, Vittoria; Trombetti, Fabiana; Pirini, Maurizio; Borgatti, Anna Rosa; Pagliarani, Alessandra

    2011-02-01

    Tri-n-butyltin (TBT) has long been considered as the most toxic among organotins, especially to membrane systems. The partially dealkylated derivative di-n-butyltin (DBT) has up to now received poor attention and, whenever considered, shown to be less toxic than TBT except on the immune system. The present kinetic approach evidences that both TBT and DBT in vitro inhibit the Mg-ATPase in mussel digestive gland mitochondria by a different mechanism. DBT even displays a higher efficiency than TBT (IC(50)=0.32 μM for TBT vs. 0.19 μM for DBT) in inhibiting the enzyme hydrolytic activity. Differently from TBT which at high concentrations (>1 μM) apparently decreases the oligomycin-sensitivity of the Mg-ATPase, DBT at any concentration tested does not affect the oligomycin sensitivity. TBT probably binds to F(0), either in the form of free enzyme or of enzyme-substrate complex (Ki=K'i), acting as non-competitive inhibitor with respect to the ATP substrate. Conversely DBT, which acts as uncompetitive inhibitor of ATP and as competitive inhibitor of Mg(2+) cofactor, may bind strongly to F(1) subunit, thus preventing ATP hydrolysis. The Mg-ATPase inhibition by both organotins warns against a potential threat to crucial cell energy metabolism processes even after years from contamination and partial TBT debutylation.

  7. Na+-K+-ATPase trafficking induced by heat shock pretreatment correlates with increased resistance to anoxia in locusts

    Science.gov (United States)

    Hou, Nicholas; Armstrong, Gary A. B.; Chakraborty-Chatterjee, Munmun; Sokolowski, Marla B.

    2014-01-01

    The sensitivity of insect nervous systems to anoxia can be modulated genetically and pharmacologically, but the cellular mechanisms responsible are poorly understood. We examined the effect of a heat shock pretreatment (HS) on the sensitivity of the locust (Locusta migratoria) nervous system to anoxia induced by water immersion. Prior HS made locusts more resistant to anoxia by increasing the time taken to enter a coma and by reducing the time taken to recover the ability to stand. Anoxic comas were accompanied by surges of extracellular potassium ions in the neuropile of the metathoracic ganglion, and HS reduced the time taken for clearance of excess extracellular potassium ions. This could not be attributed to a decrease in the activity of protein kinase G, which was increased by HS. In homogenates of the metathoracic ganglion, HS had only a mild effect on the activity of Na+-K+-ATPase. However, we demonstrated that HS caused a threefold increase in the immunofluorescent localization of the α-subunit of Na+-K+-ATPase in metathoracic neuronal plasma membranes relative to background labeling of the nucleus. We conclude that HS induced trafficking of Na+-K+-ATPase into neuronal plasma membranes and suggest that this was at least partially responsible for the increased resistance to anoxia and the increased rate of recovery of neural function after a disturbance of K+ homeostasis. PMID:24848469

  8. The transcriptional coactivator SAYP is a trithorax group signature subunit of the PBAP chromatin remodeling complex.

    Science.gov (United States)

    Chalkley, Gillian E; Moshkin, Yuri M; Langenberg, Karin; Bezstarosti, Karel; Blastyak, Andras; Gyurkovics, Henrik; Demmers, Jeroen A A; Verrijzer, C Peter

    2008-05-01

    SWI/SNF ATP-dependent chromatin remodeling complexes (remodelers) perform critical functions in eukaryotic gene expression control. BAP and PBAP are the fly representatives of the two evolutionarily conserved major subclasses of SWI/SNF remodelers. Both complexes share seven core subunits, including the Brahma ATPase, but differ in a few signature subunits; POLYBROMO and BAP170 specify PBAP, whereas OSA defines BAP. Here, we show that the transcriptional coactivator and PHD finger protein SAYP is a novel PBAP subunit. Biochemical analysis established that SAYP is tightly associated with PBAP but absent from BAP. SAYP, POLYBROMO, and BAP170 display an intimately overlapping distribution on larval salivary gland polytene chromosomes. Genome-wide expression analysis revealed that SAYP is critical for PBAP-dependent transcription. SAYP is required for normal development and interacts genetically with core- and PBAP-selective subunits. Genetic analysis suggested that, like BAP, PBAP also counteracts Polycomb silencing. SAYP appears to be a key architectural component required for the integrity and association of the PBAP-specific module. We conclude that SAYP is a signature subunit that plays a major role in the functional specificity of the PBAP holoenzyme.

  9. 3D structure prediction of replication factor C subunits (RFC and their interactome in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Mohamed Ragab Abdel Gawwad

    2013-06-01

    Full Text Available DNA stress can causes potentially spontaneous genome damage during DNA replication process. Proteins involved in this process are DNA-dependent ATPases, required for replication and repair. In this study the 3-D structure of RFC protein subunits in Arabidopsis thaliana: RFC1, RFC2, RFC3, RFC4 and RFC5 are predicted and confirmed by Ramachadran plot. The amino acid sequences are highly similar to the sequences of the homologous human RFC 140-, 37-, 36-, 40-, and 38 kDa subunits, respectively, and also show amino acid sequence similarity to functionally homologous proteins from E. coli. All five subunits show conserved regions characteristic of ATP/GTP-binding proteins and have significant degree of similarity among each other. The segments of conserved amino acid sequences that define a family of related proteins have been identified. RFC1 is identical to CDC44, a gene identified as a cell division cycle gene encoding a protein involved in DNA metabolism. Subcellular localization and interactions of each protein RFC protein subunit is determined. It subsequently became clear that RFC proteins and their interactome have functions in cell cycle regulation and/or DNA replication and repair processes. In addition, AtRFC subunits are controlling the biosynthesis of salicylic and salicylic acid-mediated defense responses in Arabidopsis.

  10. Kinetic and mutational dissection of the two ATPase activities of terminase, the DNA packaging enzyme of bacteriophage Chi.

    Science.gov (United States)

    Hwang, Y; Catalano, C E; Feiss, M

    1996-02-27

    Terminase the DNA packaging enzyme of bacteriophage chi, is a heteromultimer of gpNul (21 kDa) and gpA (74 kDa) subunits, encoded by the chi Nul and A genes, respectively. Sequence comparisons indicate that both gpNu1 and gpA have a match to the P-loop motif of ATPase centers, which is a glycine-rich segment followed by a lysine. By site-specific mutagenesis, we changed the lysines of the putative P-loops of gpNul (k35) and gpA (K497) to arginine, alanine, or aspartic acid, and studied the mutant enzymes by kinetic analysis and photochemical cross-linking with 8-azido-ATP. Both the gpNul and gpA subunits of wild-type terminase were covalently modified with 8-N3[32P] ATP in the presence of UV light. Saturation occurred with apparent dissociation constants of 508 and 3.5 microM for gpNul and gpA, resepctively. ATPase assays showed two activities: a low-affinity activity (Km=469 microM), and a high-affinity activity (Km=4.6 microM). The gpNul K35A and gpNul K35D mutant terminases showed decreased activity in the low-affinity ATPase activity. The reduced activities of these enzymes were recovered when 10 times more DNA was added, suggesting that the primary defect of the enzymes is alteration of the nonspecific, double-stranded DNA binding activity of terminase. ATPase assays and photolabeling of the gpA K497A and gpA K497D mutant terminases showed reduced affinity for ATP at the high-affinity site which was not restored by increased DNA. In summary, the results indicate the presence of a low-affinity, DNA-stimulated ATPase center in gpNul, and a high-affinity site in gpA.

  11. Condensin HEAT subunits required for DNA repair, kinetochore/centromere function and ploidy maintenance in fission yeast.

    Directory of Open Access Journals (Sweden)

    Xingya Xu

    Full Text Available Condensin, a central player in eukaryotic chromosomal dynamics, contains five evolutionarily-conserved subunits. Two SMC (structural maintenance of chromosomes subunits contain ATPase, hinge, and coiled-coil domains. One non-SMC subunit is similar to bacterial kleisin, and two other non-SMC subunits contain HEAT (similar to armadillo repeats. Here we report isolation and characterization of 21 fission yeast (Schizosaccharomyces pombe mutants for three non-SMC subunits, created using error-prone mutagenesis that resulted in single-amino acid substitutions. Beside condensation, segregation, and DNA repair defects, similar to those observed in previously isolated SMC and cnd2 mutants, novel phenotypes were observed for mutants of HEAT-repeats containing Cnd1 and Cnd3 subunits. cnd3-L269P is hypersensitive to the microtubule poison, thiabendazole, revealing defects in kinetochore/centromere and spindle assembly checkpoints. Three cnd1 and three cnd3 mutants increased cell size and doubled DNA content, thereby eliminating the haploid state. Five of these mutations reside in helix B of HEAT repeats. Two non-SMC condensin subunits, Cnd1 and Cnd3, are thus implicated in ploidy maintenance.

  12. Analysis of time-dependent change of Escherichia coli F1-ATPase activity and its relationship with apparent negative cooperativity.

    Science.gov (United States)

    Kato, Y; Sasayama, T; Muneyuki, E; Yoshida, M

    1995-10-10

    Except for the case of gradual activation of EF1 (F1-ATPase from Escherichia coli) caused by the dissociation of the epsilon subunit [Laget, P. P. and Smith, J. B. (1979) Arch. Biochem. Biophys. 197, 83-89], EF1 has long been thought not to show a time-dependent change in activity [Senior, A.E. et al. (1992) Arch. Biochem. Biophys. 297, 340-344]. Here, we report the time-dependent inactivation and activation of EF1, which are apparently similar to those of mitochondrial F1-ATPases [Vasilyeva, E.A. et al. (1982) Biochem. J. 202, 15-23]. Analysis of these changes as a function of ATP concentrations in relation to negative cooperativity revealed that the initial inactivation phase was attributable to the decrease in the Vmax associated with the low Km (around 10 microM), and the following activation, probably due to the dissociation of the epsilon subunit, corresponded to the increase in the Vmax associated with the high Km (in the order of 100 microM). Thus, the time-dependent change in EF1 activity is closely related to the apparent negative cooperativity (multiple Km values) of ATP hydrolysis.

  13. 3'-O-(5-fluoro-2,4-dinitrophenyl)ADP ether and ATP ether. Affinity reagents for labeling ATPases.

    Science.gov (United States)

    Chuan, H; Wang, J H

    1988-09-15

    The affinity reagents 3'-O-(5-fluoro-2,4-dinitrophenyl)ADP ether (FDNP-ADP) and 3'-O-(5-fluoro-2,4-dinitrophenyl)ATP ether (FDNP-ATP) were synthesized and characterized. FDNP[14C]ADP was found to label the active site of mitochondrial F1-ATPase slowly at room temperature but with high specificity. F1 was effectively protected from the labeling reagent by ATP or ADP. An average number of 1.3 covalent label per F1 is sufficient for 100% inhibition of the ATPase. About 73% of the radioactive label was found covalently attached to beta subunits, 9% on alpha, practically none on gamma, delta, and epsilon. Cleavage of the labeled enzyme by pepsin and sequencing of the major radioactive peptide showed that the labeled amino acid residue in beta subunit was Lys beta 162. These results show that Lys beta 162 is indeed at the active site of F1 as assumed in the recently proposed models (Fry, D. C., Kuby, S. A., and Mildvan, A. S. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 907-911; Duncan, I. M., Parsonage, D., and Senior, A. E. (1986) FEBS Lett. 208, 1-6).

  14. ATP synthase from Escherichia coli: Mechanism of rotational catalysis, and inhibition with the ε subunit and phytopolyphenols.

    Science.gov (United States)

    Nakanishi-Matsui, Mayumi; Sekiya, Mizuki; Futai, Masamitsu

    2016-02-01

    ATP synthases (FoF1) are found ubiquitously in energy-transducing membranes of bacteria, mitochondria, and chloroplasts. These enzymes couple proton transport and ATP synthesis or hydrolysis through subunit rotation, which has been studied mainly by observing single molecules. In this review, we discuss the mechanism of rotational catalysis of ATP synthases, mainly that from Escherichia coli, emphasizing the high-speed and stochastic rotation including variable rates and an inhibited state. Single molecule studies combined with structural information of the bovine mitochondrial enzyme and mutational analysis have been informative as to an understanding of the catalytic site and the interaction between rotor and stator subunits. We discuss the similarity and difference in structure and inhibitory regulation of F1 from bovine and E. coli. Unlike the crystal structure of bovine F1 (α3β3γ), that of E. coli contains a ε subunit, which is a known inhibitor of bacterial and chloroplast F1 ATPases. The carboxyl terminal domain of E. coli ε (εCTD) interacts with the catalytic and rotor subunits (β and γ, respectively), and then inhibits rotation. The effects of phytopolyphenols on F1-ATPase are also discussed: one of them, piceatannol, lowered the rotational speed by affecting rotor/stator interactions.

  15. Kinetic characterization of the ATPase and actin-activated ATPase activities of Acanthamoeba castellanii myosin-2.

    Science.gov (United States)

    Heissler, Sarah M; Liu, Xiong; Korn, Edward D; Sellers, James R

    2013-09-13

    Phosphorylation of Ser-639 in loop-2 of the catalytic motor domain of the heavy chain of Acanthamoeba castellanii myosin-2 and the phosphomimetic mutation S639D have been shown previously to down-regulate the actin-activated ATPase activity of both the full-length myosin and single-headed subfragment-1 (Liu, X., Lee, D. Y., Cai, S., Yu, S., Shu, S., Levine, R. L., and Korn, E. D. (2013) Proc. Natl. Acad. Sci. U.S.A. 110, E23-E32). In the present study we determined the kinetic constants for each step in the myosin and actomyosin ATPase cycles of recombinant wild-type S1 and S1-S639D. The kinetic parameter predominantly affected by the S639D mutation is the actin-activated release of inorganic phosphate from the acto myosin·ADP·Pi complex, which is the rate-limiting step in the steady-state actomyosin ATPase cycle. As consequence of this change, the duty ratio of this conventional myosin decreases. We speculate on the effect of Ser-639 phosphorylation on the processive behavior of myosin-2 filaments.

  16. Structural divergence between the two subgroups of P5 ATPases

    DEFF Research Database (Denmark)

    Sørensen, Danny Mollerup; Buch-Pedersen, Morten Jeppe; Palmgren, Michael Broberg

    2010-01-01

    differences in the primary sequences between the two subgroups. P5A and P5B ATPases appear have a very different membrane topology from other P-type ATPases with two and one, respectively, additional transmembrane segments inserted in the N-terminal end. Based on conservation of residues in the transmembrane...... region, the two P5 subgroups most likely have different substrate specificities although these cannot be predicted from their sequences. Furthermore, sequence differences between P5A and P5B ATPases are identified in the catalytic domains that could influence key kinetic properties differentially...

  17. The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together.

    Science.gov (United States)

    Pathare, Ganesh Ramnath; Nagy, István; Bohn, Stefan; Unverdorben, Pia; Hubert, Agnes; Körner, Roman; Nickell, Stephan; Lasker, Keren; Sali, Andrej; Tamura, Tomohiro; Nishioka, Taiki; Förster, Friedrich; Baumeister, Wolfgang; Bracher, Andreas

    2012-01-01

    Proteasomes execute the degradation of most cellular proteins. Although the 20S core particle (CP) has been studied in great detail, the structure of the 19S regulatory particle (RP), which prepares ubiquitylated substrates for degradation, has remained elusive. Here, we report the crystal structure of one of the RP subunits, Rpn6, and we describe its integration into the cryo-EM density map of the 26S holocomplex at 9.1 Å resolution. Rpn6 consists of an α-solenoid-like fold and a proteasome COP9/signalosome eIF3 (PCI) module in a right-handed suprahelical configuration. Highly conserved surface areas of Rpn6 interact with the conserved surfaces of the Pre8 (alpha2) and Rpt6 subunits from the alpha and ATPase rings, respectively. The structure suggests that Rpn6 has a pivotal role in stabilizing the otherwise weak interaction between the CP and the RP.

  18. Mutagenesis of residue betaArg-246 in the phosphate-binding subdomain of catalytic sites of Escherichia coli F1-ATPase.

    Science.gov (United States)

    Ahmad, Zulfiqar; Senior, Alan E

    2004-07-23

    Residues responsible for phosphate binding in F(1)F(0)-ATP synthase catalytic sites are of significant interest because phosphate binding is believed linked to proton gradient-driven subunit rotation. From x-ray structures, a phosphate-binding subdomain is evident in catalytic sites, with conserved betaArg-246 in a suitable position to bind phosphate. Mutations betaR246Q, betaR246K, and betaR246A in Escherichia coli were found to impair oxidative phosphorylation and to reduce ATPase activity of purified F(1) by 100-fold. In contrast to wild type, ATPase of mutants was not inhibited by MgADP-fluoroaluminate or MgADP-fluoroscandium, showing the Arg side chain is required for wild-type transition state formation. Whereas 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) inhibited wild-type ATPase essentially completely, ATPase in mutants was inhibited maximally by approximately 50%, although reaction still occurred at residue betaTyr-297, proximal to betaArg-246 in the phosphate-binding pocket. Inhibition characteristics supported the conclusion that NBD-Cl reacts in betaE (empty) catalytic sites, as shown previously by x-ray structure analysis. Phosphate protected against NBD-Cl inhibition in wild type but not in mutants. The results show that phosphate can bind in the betaE catalytic site of E. coli F(1) and that betaArg-246 is an important phosphate-binding residue.

  19. A c subunit with four transmembrane helices and one ion (Na+)-binding site in an archaeal ATP synthase: implications for c ring function and structure.

    Science.gov (United States)

    Mayer, Florian; Leone, Vanessa; Langer, Julian D; Faraldo-Gómez, José D; Müller, Volker

    2012-11-16

    The ion-driven membrane rotors of ATP synthases consist of multiple copies of subunit c, forming a closed ring. Subunit c typically comprises two transmembrane helices, and the c ring features an ion-binding site in between each pair of adjacent subunits. Here, we use experimental and computational methods to study the structure and specificity of an archaeal c subunit more akin to those of V-type ATPases, namely that from Pyrococcus furiosus. The c subunit was purified by chloroform/methanol extraction and determined to be 15.8 kDa with four predicted transmembrane helices. However, labeling with DCCD as well as Na(+)-DCCD competition experiments revealed only one binding site for DCCD and Na(+), indicating that the mature c subunit of this A(1)A(O) ATP synthase is indeed of the V-type. A structural model generated computationally revealed one Na(+)-binding site within each of the c subunits, mediated by a conserved glutamate side chain alongside other coordinating groups. An intriguing second glutamate located in-between adjacent c subunits was ruled out as a functional Na(+)-binding site. Molecular dynamics simulations indicate that the c ring of P. furiosus is highly Na(+)-specific under in vivo conditions, comparable with the Na(+)-dependent V(1)V(O) ATPase from Enterococcus hirae. Interestingly, the same holds true for the c ring from the methanogenic archaeon Methanobrevibacter ruminantium, whose c subunits also feature a V-type architecture but carry two Na(+)-binding sites instead. These findings are discussed in light of their physiological relevance and with respect to the mode of ion coupling in A(1)A(O) ATP synthases.

  20. Mechanism of homotropic control to coordinate hydrolysis in a hexameric AAA+ ring ATPase.

    Science.gov (United States)

    Schumacher, Jörg; Joly, Nicolas; Claeys-Bouuaert, Inaki Leoz; Aziz, Shaniza Abdul; Rappas, Mathieu; Zhang, Xiaodong; Buck, Martin

    2008-08-01

    AAA(+) proteins are ubiquitous mechanochemical ATPases that use energy from ATP hydrolysis to remodel their versatile substrates. The AAA(+) characteristic hexameric ring assemblies raise important questions about if and how six often identical subunits coordinate hydrolysis and associated motions. The PspF AAA(+) domain, PspF(1-275), remodels the bacterial sigma(54)-RNA polymerase to activate transcription. Analysis of ATP substrate inhibition kinetics on ATP hydrolysis in hexameric PspF(1-275) indicates negative homotropic effects between subunits. Functional determinants required for allosteric control identify: (i) an important link between the ATP bound ribose moiety and the SensorII motif that would allow nucleotide-dependent *-helical */beta subdomain dynamics; and (ii) establishes a novel regulatory role for the SensorII helix in PspF, which may apply to other AAA(+) proteins. Consistent with functional data, homotropic control appears to depend on nucleotide state-dependent subdomain angles imposing dynamic symmetry constraints in the AAA(+) ring. Homotropic coordination is functionally important to remodel the sigma(54) promoter. We propose a structural symmetry-based model for homotropic control in the AAA(+) characteristic ring architecture.

  1. Migraine- and dystonia-related disease-mutations of Na+/K+-ATPases: Relevance of behavioral studies in mice to disease symptoms and neurological manifestations in humans

    DEFF Research Database (Denmark)

    Bøttger, Pernille; Doganli, Canan; Lykke-Hartmann, Karin

    2012-01-01

    The two autosomal dominantly inherited neurological diseases: familial hemiplegic migraine type 2 (FHM2) and familial rapid-onset of dystonia-parkinsonism (Familial RDP) are caused by in vivo mutations of specific alpha subunits of the sodium–potassium pump (Na+/K+-ATPase). Intriguingly, patients...... with classical FHM2 and RDP symptoms additionally suffer from other manifestations, such as epilepsy/seizures and developmental disabilities. Recent studies of FHM2 and RDP mouse models provide valuable tools for dissecting the vital roles of the Na+/K+-ATPases, and we discuss their relevance to the complex...... patient symptoms and manifestations. Thus, it is interesting that mouse models targeting a specific -isoform cause different, although still comparable, phenotypes consistent with classical symptoms and other manifestations observed in FHM2 and RDP patients. This review highlights that use of mouse models...

  2. In situ structure of trypanosomal ATP synthase dimer reveals a unique arrangement of catalytic subunits

    Science.gov (United States)

    Mühleip, Alexander W.; Dewar, Caroline E.; Schnaufer, Achim; Kühlbrandt, Werner; Davies, Karen M.

    2017-01-01

    We used electron cryotomography and subtomogram averaging to determine the in situ structures of mitochondrial ATP synthase dimers from two organisms belonging to the phylum euglenozoa: Trypanosoma brucei, a lethal human parasite, and Euglena gracilis, a photosynthetic protist. At a resolution of 32.5 Å and 27.5 Å, respectively, the two structures clearly exhibit a noncanonical F1 head, in which the catalytic (αβ)3 assembly forms a triangular pyramid rather than the pseudo-sixfold ring arrangement typical of all other ATP synthases investigated so far. Fitting of known X-ray structures reveals that this unusual geometry results from a phylum-specific cleavage of the α subunit, in which the C-terminal αC fragments are displaced by ∼20 Å and rotated by ∼30° from their expected positions. In this location, the αC fragment is unable to form the conserved catalytic interface that was thought to be essential for ATP synthesis, and cannot convert γ-subunit rotation into the conformational changes implicit in rotary catalysis. The new arrangement of catalytic subunits suggests that the mechanism of ATP generation by rotary ATPases is less strictly conserved than has been generally assumed. The ATP synthases of these organisms present a unique model system for discerning the individual contributions of the α and β subunits to the fundamental process of ATP synthesis. PMID:28096380

  3. Expression of the wild-type and the Cys-/Trp-less alpha 3 beta 3 gamma complex of thermophilic F1-ATPase in Escherichia coli.

    Science.gov (United States)

    Matsui, T; Yoshida, M

    1995-09-12

    The alpha, beta and gamma subunits of F1-ATPase from thermophilic Bacillus PS3 were expressed in Escherichia coli cells simultaneously in large amounts. Most of the expressed subunits assembled into a form of alpha 3 beta 3 gamma complex in E. coli cells and this complex was easily purified to homogeneity. The recombinant alpha 3 beta 3 gamma complex thus obtained showed similar enzymatic properties to the alpha 3 beta 3 gamma complex obtained by in vitro reconstitution from individual subunits (Yokoyama, K. et al. (1989) J. Biol. Chem. 264, 21837-21841) except that the former had several-fold higher ATPase activity than the latter. Using this expression system, a mutant alpha 3 beta 3 gamma complex with no Trp and Cys was generated by replacing alpha Cys193 and alpha Trp463 with Ser and Phe, respectively. This mutant complex was functionally intact, indicating both residues are not essential for catalysis. The Cys-/Trp-less complex is a convenient 'second wild type' enzyme from which one can generate mutants with Trp (as a fluorescent probe) or Cys (as an acceptor of a variety of probes) at desired positions without concern for 'background' Trp and Cys residues.

  4. A structural overview of the plasma membrane Na+,K+-ATPase and H+-ATPase ion pumps

    DEFF Research Database (Denmark)

    Morth, Jens Preben; Pedersen, Bjørn Panella; Buch-Pedersen, Morten Jeppe

    2011-01-01

    Plasma membrane ATPases are primary active transporters of cations that maintain steep concentration gradients. The ion gradients and membrane potentials derived from them form the basis for a range of essential cellular processes, in particular Na(+)-dependent and proton-dependent secondary tran......(+),K(+)-ATPase maintains a Na(+) and K(+) gradient in animal cells. Structural information provides insight into the function of these two distinct but related P-type pumps....

  5. TM9SF4 is a novel V-ATPase-interacting protein that modulates tumor pH alterations associated with drug resistance and invasiveness of colon cancer cells.

    Science.gov (United States)

    Lozupone, F; Borghi, M; Marzoli, F; Azzarito, T; Matarrese, P; Iessi, E; Venturi, G; Meschini, S; Canitano, A; Bona, R; Cara, A; Fais, S

    2015-10-01

    An inverted pH gradient across the cell membranes is a typical feature of malignant cancer cells that are characterized by extracellular acidosis and cytosol alkalization. These dysregulations are able to create a unique milieu that favors tumor progression, metastasis and chemo/immune-resistance traits of solid tumors. A key event mediating tumor cell pH alterations is an aberrant activation of ion channels and proton pumps such as (H+)-vacuolar-ATPase (V-ATPase). TM9SF4 is a poorly characterized transmembrane protein that we have recently shown to be related to cannibal behavior of metastatic melanoma cells. Here, we demonstrate that TM9SF4 represents a novel V-ATPase-associated protein involved in V-ATPase activation. We have observed in HCT116 and SW480 colon cancer cell lines that TM9SF4 interacts with the ATP6V1H subunit of the V-ATPase V1 sector. Suppression of TM9SF4 with small interfering RNAs strongly reduces assembly of V-ATPase V0/V1 sectors, thus reversing tumor pH gradient with a decrease of cytosolic pH, alkalization of intracellular vesicles and a reduction of extracellular acidity. Such effects are associated with a significant inhibition of the invasive behavior of colon cancer cells and with an increased sensitivity to the cytotoxic effects of 5-fluorouracil. Our study shows for the first time the important role of TM9SF4 in the aberrant constitutive activation of the V-ATPase, and the development of a malignant phenotype, supporting the potential use of TM9SF4 as a target for future anticancer therapies.

  6. Computer modelling reveals new conformers of the ATP binding loop of Na+/K+-ATPase involved in the transphosphorylation process of the sodium pump

    Directory of Open Access Journals (Sweden)

    Gracian Tejral

    2017-03-01

    Full Text Available Hydrolysis of ATP by Na+/K+-ATPase, a P-Type ATPase, catalyzing active Na+ and K+ transport through cellular membranes leads transiently to a phosphorylation of its catalytical α-subunit. Surprisingly, three-dimensional molecular structure analysis of P-type ATPases reveals that binding of ATP to the N-domain connected by a hinge to the P-domain is much too far away from the Asp369 to allow the transfer of ATP’s terminal phosphate to its aspartyl-phosphorylation site. In order to get information for how the transfer of the γ-phosphate group of ATP to the Asp369 is achieved, analogous molecular modeling of the M4–M5 loop of ATPase was performed using the crystal data of Na+/K+-ATPase of different species. Analogous molecular modeling of the cytoplasmic loop between Thr338 and Ile760 of the α2-subunit of Na+/K+-ATPase and the analysis of distances between the ATP binding site and phosphorylation site revealed the existence of two ATP binding sites in the open conformation; the first one close to Phe475 in the N-domain, the other one close to Asp369 in the P-domain. However, binding of Mg2+•ATP to any of these sites in the “open conformation” may not lead to phosphorylation of Asp369. Additional conformations of the cytoplasmic loop were found wobbling between “open conformation”  “semi-open conformation  “closed conformation” in the absence of 2Mg2+•ATP. The cytoplasmic loop’s conformational change to the “semi-open conformation”—characterized by a hydrogen bond between Arg543 and Asp611—triggers by binding of 2Mg2+•ATP to a single ATP site and conversion to the “closed conformation” the phosphorylation of Asp369 in the P-domain, and hence the start of Na+/K+-activated ATP hydrolysis.

  7. Computer modelling reveals new conformers of the ATP binding loop of Na+/K+-ATPase involved in the transphosphorylation process of the sodium pump

    Science.gov (United States)

    Tejral, Gracian; Sopko, Bruno; Necas, Alois; Schoner, Wilhelm

    2017-01-01

    Hydrolysis of ATP by Na+/K+-ATPase, a P-Type ATPase, catalyzing active Na+ and K+ transport through cellular membranes leads transiently to a phosphorylation of its catalytical α-subunit. Surprisingly, three-dimensional molecular structure analysis of P-type ATPases reveals that binding of ATP to the N-domain connected by a hinge to the P-domain is much too far away from the Asp369 to allow the transfer of ATP’s terminal phosphate to its aspartyl-phosphorylation site. In order to get information for how the transfer of the γ-phosphate group of ATP to the Asp369 is achieved, analogous molecular modeling of the M4–M5 loop of ATPase was performed using the crystal data of Na+/K+-ATPase of different species. Analogous molecular modeling of the cytoplasmic loop between Thr338 and Ile760 of the α2-subunit of Na+/K+-ATPase and the analysis of distances between the ATP binding site and phosphorylation site revealed the existence of two ATP binding sites in the open conformation; the first one close to Phe475 in the N-domain, the other one close to Asp369 in the P-domain. However, binding of Mg2+•ATP to any of these sites in the “open conformation” may not lead to phosphorylation of Asp369. Additional conformations of the cytoplasmic loop were found wobbling between “open conformation”  “semi-open conformation  “closed conformation” in the absence of 2Mg2+•ATP. The cytoplasmic loop’s conformational change to the “semi-open conformation”—characterized by a hydrogen bond between Arg543 and Asp611—triggers by binding of 2Mg2+•ATP to a single ATP site and conversion to the “closed conformation” the phosphorylation of Asp369 in the P-domain, and hence the start of Na+/K+-activated ATP hydrolysis. PMID:28316890

  8. A simplified model for V-ATPase H+ extrusion.

    Science.gov (United States)

    Luo, Chuan; Clark, John W; Heming, Thomas A; Bidani, Akhil

    2004-12-01

    An analytical model of V-type H+-translocating ATPase (V-ATPase) was developed based on an approximation to the mechanochemical model of Grabe et al. (Biophys. J., pp. 2798-2813, vol. 78, 2000). Grabe's work utilizes structural information and physiological assumptions to construct a detailed mechanochemical model of the V-ATPase. Due to the complexity of their model, it does not give a readily usable mathematical expression for the V-ATPase current. Based on their analysis of the structure of the proton pump, we develop a two-compartment model of the V-ATPase, which contains a membrane "half-channel" for proton translocation separated by a hydrophilic strip and a hydrophobic wall from the cytoplasm. Using the Langevin equation to describe proton transport across the membrane, we simplify the model based on their assumptions on the molecular structure of the pump and arrive at a general form of solution to the proton pump flux driven by ATP hydrolysis based on assumptions on the physiological properties of the strip and the wall, as well as the two fluid compartments. In this process of simplification, we explicitly relate V-ATPase structure, stoichiometry, pump efficiency, and ATP hydrolysis energy to the active pump current. The simplified model is used to provide model-generated approximations to measured data from a variety of laboratories. In addition, it provides a very compact characterization of V-ATPase, which can be used as a proton extruder in a variety of different cell membranes, as well as in the membranes of intracellular organelles. Index Terms-Electrophysiology, mechanochemstry, molecular motors, proton extrusion

  9. Ammonia excretion in rainbow trout (Oncorhynchus mykiss): evidence for Rh glycoprotein and H+-ATPase involvement.

    Science.gov (United States)

    Nawata, C Michele; Hung, Carrie C Y; Tsui, Tommy K N; Wilson, Jonathan M; Wright, Patricia A; Wood, Chris M

    2007-11-14

    Branchial ammonia transport in freshwater teleosts is not well understood. Most studies conclude that NH(3) diffuses out of the gill and becomes protonated to NH(4)(+) in an acidified gill boundary layer. Rhesus (Rh) proteins are new members of the ammonia transporter superfamily and rainbow trout possess genes encoding for Rh30-like1 and Rhcg2. We identified seven additional full-length trout Rh cDNA sequences: one Rhag and two each of Rhbg, Rhcg1, and Rh30-like. The mRNA expression of Rhbg, Rhcg1, and Rhcg2 was examined in trout tissues (blood, brain, eye, gill, heart, intestine, kidney, liver, muscle, skin, spleen) exposed to high external ammonia (HEA; 1.5 mmol/l NH(4)HCO(3), pH 7.95, 15 degrees C). Rhbg was expressed in all tissues, Rhcg1 was expressed in brain, gill, liver, and skin, and Rhcg2 was expressed in gill and skin. Brain Rhbg and Rhcg1 were downregulated, blood Rh30-like and Rhag were downregulated, and skin Rhbg and Rhcg2 were upregulated with HEA. After an initial uptake of ammonia into the fish during HEA, excretion was reestablished, coinciding with upregulations of gill Rh mRNA in the pavement cell fraction: Rhcg2 at 12 and 48 h, and Rhbg at 48 h. NHE2 expression remained unchanged, but upregulated H(+)-ATPase (V-type, B-subunit) and downregulated carbonic anhydrase (CA2) expression and activity were noted in the gill and again expression changes occurred in pavement cells, and not in mitochondria-rich cells. Together, these results indicate Rh glycoprotein involvement in ammonia transport and excretion in the rainbow trout while underscoring the significance of gill boundary layer acidification by H(+)-ATPase.

  10. Inhibition of host vacuolar H+-ATPase activity by a Legionella pneumophila effector.

    Directory of Open Access Journals (Sweden)

    Li Xu

    2010-03-01

    Full Text Available Legionella pneumophila is an intracellular pathogen responsible for Legionnaires' disease. This bacterium uses the Dot/Icm type IV secretion system to inject a large number of bacterial proteins into host cells to facilitate the biogenesis of a phagosome permissive for its intracellular growth. Like many highly adapted intravacuolar pathogens, L. pneumophila is able to maintain a neutral pH in the lumen of its phagosome, particularly in the early phase of infection. However, in all cases, the molecular mechanisms underlying this observation remain unknown. In this report, we describe the identification and characterization of a Legionella protein termed SidK that specifically targets host v-ATPase, the multi-subunit machinery primarily responsible for organelle acidification in eukaryotic cells. Our results indicate that after being injected into infected cells by the Dot/Icm secretion system, SidK interacts with VatA, a key component of the proton pump. Such binding leads to the inhibition of ATP hydrolysis and proton translocation. When delivered into macrophages, SidK inhibits vacuole acidification and impairs the ability of the cells to digest non-pathogenic E. coli. We also show that a domain located in the N-terminal portion of SidK is responsible for its interactions with VatA. Furthermore, expression of sidK is highly induced when bacteria begin to enter new growth cycle, correlating well with the potential temporal requirement of its activity during infection. Our results indicate that direct targeting of v-ATPase by secreted proteins constitutes a virulence strategy for L. pneumophila, a vacuolar pathogen of macrophages and amoebae.

  11. A method to measure hydrolytic activity of adenosinetriphosphatases (ATPases.

    Directory of Open Access Journals (Sweden)

    Gianluca Bartolommei

    Full Text Available The detection of small amounts (nanomoles of inorganic phosphate has a great interest in biochemistry. In particular, phosphate detection is useful to evaluate the rate of hydrolysis of phosphatases, that are enzymes able to remove phosphate from their substrate by hydrolytic cleavage. The hydrolysis rate is correlated to enzyme activity, an extremely important functional parameter. Among phosphatases there are the cation transporting adenosinetriphosphatases (ATPases, that produce inorganic phosphate by cleavage of the γ-phosphate of ATP. These membrane transporters have many fundamental physiological roles and are emerging as potential drug targets. ATPase hydrolytic activity is measured to test enzyme functionality, but it also provides useful information on possible inhibitory effects of molecules that interfere with the hydrolytic process. We have optimized a molybdenum-based protocol that makes use of potassium antimony (III oxide tartrate (originally employed for phosphate detection in environmental analysis to allow its use with phosphatase enzymes. In particular, the method was successfully applied to native and recombinant ATPases to demonstrate its reliability, validity, sensitivity and versatility. Our method introduces significant improvements to well-established experimental assays, which are currently employed for ATPase activity measurements. Therefore, it may be valuable in biochemical and biomedical investigations of ATPase enzymes, in combination with more specific tests, as well as in high throughput drug screening.

  12. Characterization of ATPase Activity of Recombinant Human Pif1

    Institute of Scientific and Technical Information of China (English)

    Yu HUANG; Deng-Hong ZHANG; Jin-Qiu ZHOU

    2006-01-01

    Saccharomyces cerevisiae Pif1p helicase is the founding member of the Pif1 subfamily that is conserved from yeast to human. The potential human homolog of the yeast PIF1 gene has been cloned from the cDNA library of the Hek293 cell line. Here, we described a purification procedure of glutathione Stransferase (GST)-fused N terminal truncated human Pif1 protein (hPif1△N) from yeast and characterized the enzymatic kinetics of its ATP hydrolysis activity. The ATPase activity of human Pif1 is dependent on divalent cation, such as Mg2+, Ca2+ and single-stranded DNA. Km for ATP for the ATPase activity is approximately 200 μM. As the ATPase activity is essential for hPif1's helicase activity, these results will facilitate the further investigation on hPif1.

  13. Altered expression of renal NHE3, TSC, BSC-1, and ENaC subunits in potassium-depleted rats.

    Science.gov (United States)

    Elkjaer, Marie-Louise; Kwon, Tae-Hwan; Wang, Weidong; Nielsen, Jakob; Knepper, Mark A; Frøkiaer, Jørgen; Nielsen, Søren

    2002-12-01

    The purpose of this study was to examine whether hypokalemia is associated with altered abundance of major renal Na+ transporters that may contribute to the development of urinary concentrating defects. We examined the changes in the abundance of the type 3 Na+/H+ exchanger (NHE3), Na+ - K+-ATPase, the bumetanide-sensitive Na+ - K+ - 2Cl- cotransporter (BSC-1), the thiazide-sensitive Na+ - Cl- cotransporter (TSC), and epithelial sodium channel (ENaC) subunits in kidneys of hypokalemic rats. Semiquantitative immunoblotting revealed that the abundance of BSC-1 (57%) and TSC (46%) were profoundly decreased in the inner stripe of the outer medulla (ISOM) and cortex/outer stripe of the outer medulla (OSOM), respectively. These findings were confirmed by immunohistochemistry. Moreover, total kidney abundance of all ENaC subunits was significantly reduced in response to the hypokalemia: alpha-subunit (61%), beta-subunit (41%), and gamma-subunit (60%), and this was confirmed by immunohistochemistry. In contrast, the renal abundance of NHE3 in hypokalemic rats was dramatically increased in cortex/OSOM (736%) and ISOM (210%). Downregulation of BSC-1, TSC, and ENaC may contribute to the urinary concentrating defect, whereas upregulation of NHE3 may be compensatory to prevent urinary Na+ loss and/or to maintain intracellular pH levels.

  14. The conserved Bud20 zinc finger protein is a new component of the ribosomal 60S subunit export machinery.

    Science.gov (United States)

    Bassler, Jochen; Klein, Isabella; Schmidt, Claudia; Kallas, Martina; Thomson, Emma; Wagner, Maria Anna; Bradatsch, Bettina; Rechberger, Gerald; Strohmaier, Heimo; Hurt, Ed; Bergler, Helmut

    2012-12-01

    The nuclear export of the preribosomal 60S (pre-60S) subunit is coordinated with late steps in ribosome assembly. Here, we show that Bud20, a conserved C(2)H(2)-type zinc finger protein, is an unrecognized shuttling factor required for the efficient export of pre-60S subunits. Bud20 associates with late pre-60S particles in the nucleoplasm and accompanies them into the cytoplasm, where it is released through the action of the Drg1 AAA-ATPase. Cytoplasmic Bud20 is then reimported via a Kap123-dependent pathway. The deletion of Bud20 induces a strong pre-60S export defect and causes synthetic lethality when combined with mutant alleles of known pre-60S subunit export factors. The function of Bud20 in ribosome export depends on a short conserved N-terminal sequence, as we observed that mutations or the deletion of this motif impaired 60S subunit export and generated the genetic link to other pre-60S export factors. We suggest that the shuttling Bud20 is recruited to the nascent 60S subunit via its central zinc finger rRNA binding domain to facilitate the subsequent nuclear export of the preribosome employing its N-terminal extension.

  15. Ultracytochemical Localization and Functional Analysis of ATPase During the Endosperm Development in Oryza sativa L.

    Institute of Scientific and Technical Information of China (English)

    WEI Cun-xu; LAN Sheng-yin; XU Zhen-xiu

    2003-01-01

    Ultracytochemical localization of ATPase during development of rice endosperm was performed using a lead phosphate precipitation technique. The results indicated that, at the coenocyte and ceilularization stages, active ATPase was mainly distributed in an embryo sac wall, nucleus, and plasma membrane. At the early stage of development and differentiation, active ATPase was observed in the plasma membrane. At the grain filling stage, ATPase was highly active in the plasma membrane, intercellular space, and plasmodesmata in aleurone, moderately active on the plasma membrane in subaleurone. In starchy endosperm, ATPase was localized in the plasma membrane and degenerated nucleus. ATPase activity also appeared around vacuole and protein body in endosperm cell. The relationships between the ultracytochemical localization of ATPase and its function during the development of rice endosperm were discussed. Overall, ATPase was involved in the process of nutrition absorption and protein synthesis.

  16. Lack of conventional ATPase properties in CFTR chloride channel gating.

    Science.gov (United States)

    Schultz, B D; Bridges, R J; Frizzell, R A

    1996-05-01

    CFTR shares structural homology with the ABC transporter superfamily of proteins which hydrolyze ATP to effect the transport of compounds across cell membranes. Some superfamily members are characterized as P-type ATPases because ATP-dependent transport is sensitive to the presence of vanadate. It has been widely postulated that CFTR hydrolyzes ATP to gate its chloride channel. However, direct evidence of CFTR hydrolytic activity in channel gating is lacking and existing circumstantial evidence is contradictory. Therefore, we evaluated CFTR chloride channel activity under conditions known to inhibit the activity of ATPases; i.e., in the absence of divalent cations and in the presence of a variety of ATPase inhibitors. Removal of the cytosolic cofactor, Mg2+, reduced both the opening and closing rates of CFTR suggesting that Mg2+ plays a modulatory role in channel gating. However, channels continued to both open and close showing that Mg2+ is not an absolute requirement for channel activity. The nonselective P-type ATPase inhibitor, vanadate, did not alter the gating of CFTR when used at concentrations which completely inhibit the activity of other ABC transporters (1 mM). Higher concentrations of vanadate (10 mM) blocked the closing of CFTR, but did not affect the opening of the channel. As expected, more selective P-type (Sch28080, ouabain), V-type (bafilomycin A1, SCN-) and F-type (oligomycin) ATPase inhibitors did not affect either the opening or closing of CFTR. Thus, CFTR does not share a pharmacological inhibition profile with other ATPases and channel gating occurs in the apparent absence of hydrolysis, although with altered kinetics. Vanadate inhibition of channel closure might suggest that a hydrolytic step is involved although the requirement for a high concentration raises the possibility of previously uncharacterized effects of this compound. Most conservatively, the requirement for high concentrations of vanadate demonstrates that the binding site for

  17. Characterization of the phospholemman knockout mouse heart: depressed left ventricular function with increased Na-K-ATPase activity.

    Science.gov (United States)

    Bell, James R; Kennington, Erika; Fuller, William; Dighe, Kushal; Donoghue, Pamela; Clark, James E; Jia, Li-Guo; Tucker, Amy L; Moorman, J Randall; Marber, Michael S; Eaton, Philip; Dunn, Michael J; Shattock, Michael J

    2008-02-01

    Phospholemman (PLM, FXYD1), abundantly expressed in the heart, is the primary cardiac sarcolemmal substrate for PKA and PKC. Evidence supports the hypothesis that PLM is part of the cardiac Na-K pump complex and provides the link between kinase activity and pump modulation. PLM has also been proposed to modulate Na/Ca exchanger activity and may be involved in cell volume regulation. This study characterized the phenotype of the PLM knockout (KO) mouse heart to further our understanding of PLM function in the heart. PLM KO mice were bred on a congenic C57/BL6 background. In vivo conductance catheter measurements exhibited a mildly depressed cardiac contractile function in PLM KO mice, which was exacerbated when hearts were isolated and Langendorff perfused. There were no significant differences in action potential morphology in paced Langendorff-perfused hearts. Depressed contractile function was associated with a mild cardiac hypertrophy in PLM KO mice. Biochemical analysis of crude ventricular homogenates showed a significant increase in Na-K-ATPase activity in PLM KO hearts compared with wild-type controls. SDS-PAGE and Western blot analysis of ventricular homogenates revealed small, nonsignificant changes in Na- K-ATPase subunit expression, with two-dimensional gel (isoelectric focusing, SDS-PAGE) analysis revealing minimal changes in ventricular protein expression, indicating that deletion of PLM was the primary reason for the observed PLM KO phenotype. These studies demonstrate that PLM plays an important role in the contractile function of the normoxic mouse heart. Data are consistent with the hypothesis that PLM modulates Na-K-ATPase activity, indirectly affecting intracellular Ca and hence contractile function.

  18. The paradox of dopamine and angiotensin II-mediated Na(+), K(+)-ATPase regulation in renal proximal tubules.

    Science.gov (United States)

    Zhang, Linan; Guo, Fang; Guo, Huicai; Wang, Haiyan; Zhang, Zhe; Liu, Xu; Shi, Xiaolu; Gou, Xiangbo; Su, Qian; Yin, Jian; Wang, Yongli

    2010-01-01

    Accumulated studies reported that the natruretic dopamine (DA) and the anti-natruretic angiotensin II (Ang II) represent an important mechanism to regulate renal Na(+) and water excretion through intracellular secondary messengers to inhibit or activate renal proximal tubule (PT) Na(+), K(+)-ATPase (NKA). The antagonistic actions were mediated by the phosphorylation of different position of NKA α₁-subunit and different Pals-associated tight junction protein (PATJ) PDZ domains, the different protein kinase C (PKC) isoforms (PKC-β, PKC-ζ), the common adenylyl cyclase (AC) pathway, and the crosstalk and balance between DA and Ang II to NKA regulation. Besides, Ang II-mediated NKA modulation has bi-phasic effects.

  19. Exercise-induced regulation of phospholemman (FXYD1) in rat skeletal muscle: implications for Na+/K+-ATPase activity

    DEFF Research Database (Denmark)

    Rasmussen, M K; Kristensen, M; Juel, C

    2008-01-01

    of phospholemman (PLM, FXYD1) protein in rat skeletal muscle and exercise-induced changes in V(max) and K(m) for Na(+) of the Na(+)/K(+)-ATPase. METHODS: Two membrane fractionation methods and immunoprecipitation were used. Results: Both fractionation methods revealed a 200-350% increase in PLM in the sarcolemma...... after 30 min of treadmill running, while the phosphorylation of Ser-68 of PLM appeared to be unchanged. Exercise did not change V(max) or K(m) for Na(+) of the Na(+)/K(+)-ATPase in muscle homogenate, but induced a 67% increase in V(max) in the sarcolemmal giant vesicle preparation; K(m) for Na......(+) remained constant. The main part of the increase in V(max) is related to a 36-53% increase in the level of alpha-subunits; the remainder may be related to increased PLM content. Similar results were obtained with another membrane purification method. In resting muscle, 29% and 32% of alpha(1)- and alpha(2...

  20. Structure determination using poorly diffracting membrane-protein crystals: the H+-ATPase and Na+,K+-ATPase case history.

    Science.gov (United States)

    Pedersen, Bjørn P; Morth, J Preben; Nissen, Poul

    2010-03-01

    An approach is presented for the structure determination of membrane proteins on the basis of poorly diffracting crystals which exploits molecular replacement for heavy-atom site identification at 6-9 A maximum resolution and improvement of the heavy-atom-derived phases by multi-crystal averaging using quasi-isomorphous data sets. The multi-crystal averaging procedure allows real-space density averaging followed by phase combination between non-isomorphous native data sets to exploit crystal-to-crystal nonisomorphism despite the crystals belonging to the same space group. This approach has been used in the structure determination of H(+)-ATPase and Na(+),K(+)-ATPase using Ca(2+)-ATPase models and its successful application to the Mhp1 symporter using LeuT as a search model is demonstrated.

  1. Thapsigargin affinity purification of intracellular P(2A)-type Ca(2+) ATPases

    DEFF Research Database (Denmark)

    Vandecaetsbeek, Ilse; Christensen, Søren Brøgger; Liu, Huizhen

    2011-01-01

    The ubiquitous sarco(endo)plasmic reticulum (SR/ER) Ca(2+) ATPase (SERCA2b) and secretory-pathway Ca(2+) ATPase (SPCA1a) belong both to the P(2A)-type ATPase subgroup of Ca(2+) transporters and play a crucial role in the Ca(2+) homeostasis of respectively the ER and Golgi apparatus...

  2. Structural and functional studies of a Cu+-ATPase from Legionella pneumophila

    DEFF Research Database (Denmark)

    Mattle, Daniel

    During his studies, Daniel Mattle explored the copper(I) export mechanism of a P-type Cu+ ATPase from Legionella pneumophila – a homologue to the human Cu+ ATPases. Cu+ ATPases are responsible for the homeostatic control of the physiological relevant – but toxic – copper(I) cations. To assess...

  3. Na+,K+-ATPase Na+ affinity in rat skeletal muscle fiber types

    DEFF Research Database (Denmark)

    Kristensen, Michael; Juel, Carsten

    2010-01-01

    Previous studies in expression systems have found different ion activation of the Na(+)/K(+)-ATPase isozymes, which suggest that different muscles have different ion affinities. The rate of ATP hydrolysis was used to quantify Na(+),K(+)-ATPase activity, and the Na(+) affinity of Na(+),K(+)-ATPase...

  4. A structural overview of the plasma membrane Na+,K+-ATPase and H+-ATPase ion pumps

    DEFF Research Database (Denmark)

    Morth, Jens Preben; Pedersen, Bjørn Panella; Buch-Pedersen, Morten Jeppe

    2011-01-01

    Plasma membrane ATPases are primary active transporters of cations that maintain steep concentration gradients. The ion gradients and membrane potentials derived from them form the basis for a range of essential cellular processes, in particular Na(+)-dependent and proton-dependent secondary...... transport systems that are responsible for uptake and extrusion of metabolites and other ions. The ion gradients are also both directly and indirectly used to control pH homeostasis and to regulate cell volume. The plasma membrane H(+)-ATPase maintains a proton gradient in plants and fungi and the Na...

  5. Divergent Evolution of Nuclear Localization Signal Sequences in Herpesvirus Terminase Subunits.

    Science.gov (United States)

    Sankhala, Rajeshwer S; Lokareddy, Ravi K; Cingolani, Gino

    2016-05-20

    The tripartite terminase complex of herpesviruses assembles in the cytoplasm of infected cells and exploits the host nuclear import machinery to gain access to the nucleus, where capsid assembly and genome-packaging occur. Here we analyzed the structure and conservation of nuclear localization signal (NLS) sequences previously identified in herpes simplex virus 1 (HSV-1) large terminase and human cytomegalovirus (HCMV) small terminase. We found a monopartite NLS at the N terminus of large terminase, flanking the ATPase domain, that is conserved only in α-herpesviruses. In contrast, small terminase exposes a classical NLS at the far C terminus of its helical structure that is conserved only in two genera of the β-subfamily and absent in α- and γ-herpesviruses. In addition, we predicted a classical NLS in the third terminase subunit that is partially conserved among herpesviruses. Bioinformatic analysis revealed that both location and potency of NLSs in terminase subunits evolved more rapidly than the rest of the amino acid sequence despite the selective pressure to keep terminase gene products active and localized in the nucleus. We propose that swapping NLSs among terminase subunits is a regulatory mechanism that allows different herpesviruses to regulate the kinetics of terminase nuclear import, reflecting a mechanism of virus:host adaptation.

  6. Proteasomal degradation of the metabotropic glutamate receptor 1α is mediated by Homer-3 via the proteasomal S8 ATPase: Signal transduction and synaptic transmission.

    Science.gov (United States)

    Rezvani, Khosrow; Baalman, Kelli; Teng, Yanfen; Mee, Maureen P; Dawson, Simon P; Wang, Hongmin; De Biasi, Mariella; Mayer, R John

    2012-07-01

    The metabotropic glutamate receptors (mGluRs) fine-tune the efficacy of synaptic transmission. This unique feature makes mGluRs potential targets for the treatment of various CNS disorders. There is ample evidence to show that the ubiquitin proteasome system mediates changes in synaptic strength leading to multiple forms of synaptic plasticity. The present study describes a novel interaction between post-synaptic adaptors, long Homer-3 proteins, and one of the 26S proteasome regulatory subunits, the S8 ATPase, that influences the degradation of the metabotropic glutamate receptor 1α (mGluR1α). We have shown that the two human long Homer-3 proteins specifically interact with human proteasomal S8 ATPase. We identified that mGluR1α and long Homer-3s immunoprecipitate with the 26S proteasome both in vitro and in vivo. We further found that the mGluR1α receptor can be ubiquitinated and degraded by the 26S proteasome and that Homer-3A facilitates this process. Furthermore, the siRNA mediated silencing of Homer-3 led to increased levels of total and plasma membrane-associated mGluR1α receptors. These results suggest that long Homer-3 proteins control the degradation of mGluR1α receptors by shuttling ubiquitinated mGluR-1α receptors to the 26S proteasome via the S8 ATPase which may modulate synaptic transmission.

  7. Immunocytochemical localization of Na+,K(+)-ATPase in the calcium-transporting sternal epithelium of the terrestrial isopod Porcellio scaber L. (Crustacea).

    Science.gov (United States)

    Ziegler, A

    1997-03-01

    Terrestrial isopods store large amounts of calcium carbonate between the epithelium and the old cuticle of the first four anterior sternites before molt. During the formation of these sternal CaCO3 deposits, large amounts of calcium are transported across the anterior sternal epithelium from the base to the apical side of the integument, and in the reverse direction during resorption of the deposit. A monoclonal antibody against the avian alpha-subunit of Na+,K(+)-ATPase was used to localize Na+,K(+)-ATPase in the anterior and the posterior sternal epithelium of Porcellio scaber. Semithin cryosections 0.5 micron thick were used for immunofluorescence microscopy and ultrathin cryosections for immunogold electron microscopy. The Na+,K(+)-ATPase was localized in the basolateral plasma membrane of the posterior and anterior sternal epithelium. The apical plasma membrane, including cytoplasmic extensions into the newly secreted cuticle, was virtually devoid of the enzyme. This pattern of immunolocalization was not affected by the direction of transepithelial calcium transport associated with the deposition and resorption phases of the molt cycle.

  8. Monomeric yeast PCNA mutants are defective in interacting with and stimulating the ATPase activity of RFC.

    Science.gov (United States)

    Ionescu, Costin N; Shea, Kathleen A; Mehra, Rajendra; Prundeanu, Lucia; McAlear, Michael A

    2002-10-29

    Yeast PCNA is a homo-trimeric, ring-shaped DNA polymerase accessory protein that can encircle duplex DNA. The integrity of this multimeric sliding DNA clamp is maintained through the protein-protein interactions at the interfaces of adjacent subunits. To investigate the importance of trimer stability for PCNA function, we introduced single amino acid substitutions at residues (A112T, S135F) that map to opposite ends of the monomeric protein. Recombinant wild-type and mutant PCNAs were purified from E. coli, and they were tested for their properties in vitro. Unlike the stable wild-type PCNA trimers, the mutant PCNA proteins behaved as monomers when diluted to low nanomolar concentrations. In contrast to what has been reported for a monomeric form of the beta clamp in E. coli, the monomeric PCNAs were compromised in their ability to interact with their associated clamp loader, replication factor C (RFC). Similarly, monomeric PCNAs were not effective in stimulating the ATPase activity of RFC. The mutant PCNAs were able to form mixed trimers with wild-type subunits, although these mixed trimers were unstable when loaded onto DNA. They were able to function as weak DNA polymerase delta processivity factors in vitro, and when the monomeric PCNA-41 (A112T, S135F double mutant) allele was introduced as the sole source of PCNA in vivo, the cells were viable and healthy. These pol30-41 mutants were, however, sensitive to UV irradiation and to the DNA damaging agent methylmethane sulfonate, implying that DNA repair pathways have a distinct requirement for stable DNA clamps.

  9. Surface Plasmon Resonance Analysis of Histidine-Tagged F1-ATPase Surface Adsorption

    Science.gov (United States)

    Tucker, Jenifer K.; Richter, Mark L.; Berrie, Cindy L.

    2015-11-01

    Studies of the rotational activity of the enzymatic core (α3β3γ) of the F1-ATPase motor protein have relied on binding the enzyme to NTA-coated glass surfaces via polyhistidine tags engineered into the C-termini of each of the three α or β subunits. Those studies revealed the rotational motion of the central γ subunit by monitoring the motion of attached micron-long actin filaments or spherical nanoparticles. However, only a small percentage of the attached filaments or particles were observed to rotate, likely due, at least in part, to non-uniform surface attachment of the motor proteins. In this study, we have applied surface plasmon resonance to monitor the kinetics and affinity of binding of the His-tagged motor protein to NTA-coated gold sensor surfaces. The binding data, when fit to a heterogeneous binding model, exhibit two sets of adsorption-desorption rate constants with two dissociation constants of 4.0 × 10-9 M and 8.6 × 10-11 M for 6His-α3β3γ binding to the nickel ion-activated NTA surface. The data are consistent with mixed attachment of the protein via two (bimodal) and three (trimodal) NTA/Ni2+-His-tag interactions, respectively, with the less stable bimodal interaction dominating. The results provide a partial explanation for the low number of surface-attached F1 motors previously observed in rotation studies and suggest alternative approaches to uniform F1 motor surface attachment for future fabrication of motor-based nanobiodevices and materials.

  10. Autoinhibitory Regulation of Plasma Membrane H+-ATPases

    DEFF Research Database (Denmark)

    Pedersen, Jesper Torbøl

    Electrochemical gradients across cell membranes are essential for nutrient uptake. In plant and fungal cells the electrochemical gradient across the plasma membrane (PM) can build much higher than in mammalian cells. The protein responsible for this gradient is the essential PM H+-ATPase that uses...

  11. Crystal Structure of the Vanadate-Inhibited Ca(2+)-ATPase.

    Science.gov (United States)

    Clausen, Johannes D; Bublitz, Maike; Arnou, Bertrand; Olesen, Claus; Andersen, Jens Peter; Møller, Jesper Vuust; Nissen, Poul

    2016-04-05

    Vanadate is the hallmark inhibitor of the P-type ATPase family; however, structural details of its inhibitory mechanism have remained unresolved. We have determined the crystal structure of sarcoplasmic reticulum Ca(2+)-ATPase with bound vanadate in the absence of Ca(2+). Vanadate is bound at the catalytic site as a planar VO3(-) in complex with water and Mg(2+) in a dephosphorylation transition-state-like conformation. Validating bound VO3(-) by anomalous difference Fourier maps using long-wavelength data we also identify a hitherto undescribed Cl(-) site near the dephosphorylation site. Crystallization was facilitated by trinitrophenyl (TNP)-derivatized nucleotides that bind with the TNP moiety occupying the binding pocket that normally accommodates the adenine of ATP, rationalizing their remarkably high affinity for E2P-like conformations of the Ca(2+)-ATPase. A comparison of the configurations of bound nucleotide analogs in the E2·VO3(-) structure with that in E2·BeF3(-) (E2P ground state analog) reveals multiple binding modes to the Ca(2+)-ATPase.

  12. On the Thermodynamic Efficiency of Ca2+-ATPase Molecular Machines

    NARCIS (Netherlands)

    Lervik, A.; Bresme, F.; Kjelstrup, S.H.; Rubi, J.M.

    2012-01-01

    Experimental studies have shown that the activity of the reconstituted molecular pump Ca2+-ATPase strongly depends on the thickness of the supporting bilayer. It is thus expected that the bilayer structure will have an impact on the thermodynamic efficiency of this nanomachine. Here, we introduce a

  13. Roles and mechanisms of copper transporting ATPases in cancer pathogenesis.

    Science.gov (United States)

    Zhang, Yuqing; Li, Min; Yao, Qizhi; Chen, Changyi

    2009-01-01

    Copper (Cu) is an essential trace element for cell metabolism as a cofactor to many key metabolic enzymes. Numerous physiological processes rely on the adequate and timely transport of copper ions mediated by copper-transporting ATPases (Cu-ATPases), which are essential for human cell growth and development. Inherited gene mutations of ATP7A and ATP7B result in clinical diseases related to damage in the multiple organ systems. Increased expression of these genes has been recently observed in some human cancer specimens, and may be associated with tumorigenesis and chemotherapy resistance. However, underlying mechanisms of Cu-ATPases in human cancer progression and treatment are largely unknown. In this review, we summarize current progress on the copper transport system, the structural and functional properties of the Cu-ATPases, ATP7A and ATP7B, in copper homeostasis, and their roles in anti-tumor drug resistance and cancer metastasis. This review provides valuable information for clinicians and researchers who want to recognize the newest advances in this new field and identify possible lines of investigation in copper transport as important mediators in human physiology and cancer.

  14. V-ATPase, ScNhxlp and Yeast Vacuole Fusion

    Institute of Scientific and Technical Information of China (English)

    Quan-Sheng Qiu

    2012-01-01

    Membrane fusion is the last step in trafficking pathways during which membrane vesicles fuse with target organelles to deliver cargos.It is a central cellular reaction that plays important roles in signal transduction,protein sorting and subcellular compartmentation.Recent progress in understanding the roles of ion transporters in vacuole fusion in yeast is summanzed in this article.It is becoming increasingly evident that the vacuolar proton pump V-ATPase and vacuolar Na+/H+ antiporter ScNhxlp are key components of the vacuole fusion machinery in yeast.Yeast ScNhxlp regulates vacuole fusion by controlling the luminal pH.V-ATPases serve a dual role in vacuolar integrity in which they regulate both vacuole fusion and fission reactions in yeast.Fission defects are epistatic to fusion defects.Vacuole fission depends on the proton translocation activity of the V-ATPase; by contrast,the fusion reaction does not need the transport activity but requires the physical presence of the proton pump.Vo,the membrane-integral sector of the V-ATPase,forms trans-complexes between the opposing vacuoles in the terminal phase of vacuole fusion where the Vo trans-complexes build a continuous proteolipid channel at the fusion site to mediate the bilayer fusion.

  15. Characterization and ATPase activity of human platelet actomyosin

    NARCIS (Netherlands)

    Lindemans, J.; Bouma, B.N.; Sixma, J.J.

    1974-01-01

    Platelet actomyosin, partially purified by successive precipitation had a specific viscosity of 0,15 and a sensitivity to ATP of 60 %. The enzyme preparation was separated into the actin and myosin components and some myosin fragments by SDS-polyacrylamide gel electrophoresis. The ATPase activity of

  16. Functional interactions of phospholemman (PLM) (FXYD1) with Na+,K+-ATPase. Purification of alpha1/beta1/PLM complexes expressed in Pichia pastoris.

    Science.gov (United States)

    Lifshitz, Yael; Lindzen, Moshit; Garty, Haim; Karlish, Steven J D

    2006-06-09

    Human FXYD1 (phospholemman, PLM) has been expressed in Pichia pastoris with porcine alpha1/His10-beta1 subunits of Na+,K+-ATPase or alone. Dodecyl-beta-maltoside-soluble complexes of alpha1/beta1/PLM have been purified by metal chelate chromatography, either from membranes co-expressing alpha1,His10-beta1, and PLM or by in vitro reconstitution of PLM with alpha1/His10-beta1 subunits. Comparison of functional properties of purified alpha1/His10-beta1 and alpha1/His10-beta1/PLM complexes show that PLM lowered K0.5 for Na+ ions moderately (approximately 30%) but did not affect the turnover rate or Km of ATP for activating Na+,K+-ATPase activity. PLM also stabilized the alpha1/His10-beta1 complex. In addition, PLM markedly (>3-fold) reduced the K0.5 of Na+ ions for activating Na+-ATPase activity. In membranes co-expressing alpha1/His10-beta1 with PLM the K0.5 of Na+ ions was also reduced, compared with the control, excluding the possibility that detergent or lipid in purified complexes compromise functional interactions. When expressed in HeLa cells with rat alpha1, rat PLM significantly raised the K0.5 of Na+ ions, whereas for a chimeric molecule consisting of transmembranes segments of PLM and extramembrane segments of FXYD4, the K0.5 of Na+ ions was significantly reduced, compared with the control. The opposite functional effects in P. pastoris and HeLa cells are correlated with endogenous phosphorylation of PLM at Ser68 or unphosphorylated PLM, respectively, as detected with antibodies, which recognize PLM phosphorylated at Ser68 (protein kinase A site) or unphosphorylated PLM. We hypothesize that PLM interacts with alpha1/His10-beta1 subunits at multiple locations, the different functional effects depending on the degree of phosphorylation at Ser68. We discuss the role of PLM in regulation of Na+,K+-ATPase in cardiac or skeletal muscle cells.

  17. Role of the Rubisco Small Subunit

    Energy Technology Data Exchange (ETDEWEB)

    Spreitzer, Robert Joseph [Univ. of Nebraska, Lincoln, NE (United States)

    2016-11-05

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of CO2 fixation in photosynthesis. However, it is a slow enzyme, and O2 competes with CO2 at the active site. Oxygenation initiates the photorespiratory pathway, which also results in the loss of CO2. If carboxylation could be increased or oxygenation decreased, an increase in net CO2 fixation would be realized. Because Rubisco provides the primary means by which carbon enters all life on earth, there is much interest in engineering Rubisco to increase the production of food and renewable energy. Rubisco is located in the chloroplasts of plants, and it is comprised of two subunits. Much is known about the chloroplast-gene-encoded large subunit (rbcL gene), which contains the active site, but much less is known about the role of the nuclear-gene-encoded small subunit in Rubisco function (rbcS gene). Both subunits are coded by multiple genes in plants, which makes genetic engineering difficult. In the eukaryotic, green alga Chlamydomonas reinhardtii, it has been possible to eliminate all the Rubisco genes. These Rubisco-less mutants can be maintained by providing acetate as an alternative carbon source. In this project, focus has been placed on determining whether the small subunit might be a better genetic-engineering target for improving Rubisco. Analysis of a variable-loop structure (βA-βB loop) of the small subunit by genetic selection, directed mutagenesis, and construction of chimeras has shown that the small subunit can influence CO2/O2 specificity. X-ray crystal structures of engineered chimeric-loop enzymes have indicated that additional residues and regions of the small subunit may also contribute to Rubisco function. Structural dynamics of the small-subunit carboxyl terminus was also investigated. Alanine-scanning mutagenesis of the most-conserved small-subunit residues has identified a

  18. Progesterone-induced changes in the phosphoryl potential during the meiotic divisions in amphibian oocytes: Role of Na/K-ATPase

    Directory of Open Access Journals (Sweden)

    Morrill Gene A

    2011-11-01

    Full Text Available Abstract Background Progesterone triggers resumption of the first meiotic division in the Rana pipiens oocyte by binding to the N-terminal external loop of the catalytic subunit of Na/K-ATPase, releasing a cascade of lipid second messengers. This is followed by internalization of specific membrane proteins, plasma membrane depolarization and nuclear membrane breakdown, culminating in arrest at second metaphase. Results Progesterone initiates an increase in phosphoryl potential during the first meiotic division, resulting in the accumulation of high energy protein phosphate by second metaphase arrest. 31P-NMR, with saturation transfer, demonstrates that the phosphocreatine level rises ~2 fold and that the "pseudo" first order rate constant for the creatine kinase reaction falls to ~20% of the control by the onset of nuclear membrane breakdown. 32PO4 pulse-labeling reveals a net increase in phosphorylation of yolk protein phosvitin during this period. The increased yolk protein phosphorylation coincides with internalization of membrane Na/K-ATPase and membrane depolarizatio Conclusions These results indicate that progesterone binding to the catalytic subunit of the Na-pump diverts ATP from cation regulation at the plasma membrane to storage of high energy phosphate in yolk protein. Phosvitin serves as a major energy source during fertilization and early cleavage stages and is also a storage site for cations (e.g. Na+, K+, Ca2+, Fe2+/3+ essential for embryonic development.

  19. PSMC5, a 19S Proteasomal ATPase, Regulates Cocaine Action in the Nucleus Accumbens.

    Directory of Open Access Journals (Sweden)

    Yoko H Ohnishi

    Full Text Available ΔFosB is a stable transcription factor which accumulates in the nucleus accumbens (NAc, a key part of the brain's reward circuitry, in response to chronic exposure to cocaine or other drugs of abuse. While ΔFosB is known to heterodimerize with a Jun family member to form an active transcription factor complex, there has not to date been an open-ended exploration of other possible binding partners for ΔFosB in the brain. Here, by use of yeast two-hybrid assays, we identify PSMC5-also known as SUG1, an ATPase-containing subunit of the 19S proteasomal complex-as a novel interacting protein with ΔFosB. We verify such interactions between endogenous ΔFosB and PSMC5 in the NAc and demonstrate that both proteins also form complexes with other chromatin regulatory proteins associated with gene activation. We go on to show that chronic cocaine increases nuclear, but not cytoplasmic, levels of PSMC5 in the NAc and that overexpression of PSMC5 in this brain region promotes the locomotor responses to cocaine. Together, these findings describe a novel mechanism that contributes to the actions of ΔFosB and, for the first time, implicates PSMC5 in cocaine-induced molecular and behavioral plasticity.

  20. Structure of the active form of human origin recognition complex and its ATPase motor module

    Energy Technology Data Exchange (ETDEWEB)

    Tocilj, Ante; On, Kin Fan; Yuan, Zuanning; Sun, Jingchuan; Elkayam, Elad; Li, Huilin; Stillman, Bruce; Joshua-Tor, Leemor

    2017-01-23

    Binding of the Origin Recognition Complex (ORC) to origins of replication marks the first step in the initiation of replication of the genome in all eukaryotic cells. Here, we report the structure of the active form of human ORC determined by X-ray crystallography and cryo-electron microscopy. The complex is composed of an ORC1/4/5 motor module lobe in an organization reminiscent of the DNA polymerase clamp loader complexes. A second lobe contains the ORC2/3 subunits. The complex is organized as a double-layered shallow corkscrew, with the AAA+ and AAA+-like domains forming one layer, and the winged-helix domains (WHDs) forming a top layer. CDC6 fits easily between ORC1 and ORC2, completing the ring and the DNA-binding channel, forming an additional ATP hydrolysis site. Analysis of the ATPase activity of the complex provides a basis for understanding ORC activity as well as molecular defects observed in Meier-Gorlin Syndrome mutations.

  1. Structure of the active form of human origin recognition complex and its ATPase motor module

    Science.gov (United States)

    Tocilj, Ante; On, Kin Fan; Yuan, Zuanning; Sun, Jingchuan; Elkayam, Elad; Li, Huilin; Stillman, Bruce; Joshua-Tor, Leemor

    2017-01-01

    Binding of the Origin Recognition Complex (ORC) to origins of replication marks the first step in the initiation of replication of the genome in all eukaryotic cells. Here, we report the structure of the active form of human ORC determined by X-ray crystallography and cryo-electron microscopy. The complex is composed of an ORC1/4/5 motor module lobe in an organization reminiscent of the DNA polymerase clamp loader complexes. A second lobe contains the ORC2/3 subunits. The complex is organized as a double-layered shallow corkscrew, with the AAA+ and AAA+-like domains forming one layer, and the winged-helix domains (WHDs) forming a top layer. CDC6 fits easily between ORC1 and ORC2, completing the ring and the DNA-binding channel, forming an additional ATP hydrolysis site. Analysis of the ATPase activity of the complex provides a basis for understanding ORC activity as well as molecular defects observed in Meier-Gorlin Syndrome mutations. DOI: http://dx.doi.org/10.7554/eLife.20818.001 PMID:28112645

  2. P4-ATPases as Phospholipid Flippases-Structure, Function, and Enigmas

    DEFF Research Database (Denmark)

    Andersen, Jens P; Vestergaard, Anna L; Mikkelsen, Stine A;

    2016-01-01

    P4-ATPases comprise a family of P-type ATPases that actively transport or flip phospholipids across cell membranes. This generates and maintains membrane lipid asymmetry, a property essential for a wide variety of cellular processes such as vesicle budding and trafficking, cell signaling, blood c...... focuses on properties of mammalian and yeast P4-ATPases for which most mechanistic insight is available. However, the structure, function and enigmas associated with mammalian and yeast P4-ATPases most likely extend to P4-ATPases of plants and other organisms....

  3. Functional coupling of V-ATPase and CLC-5

    Science.gov (United States)

    Satoh, Nobuhiko; Suzuki, Masashi; Nakamura, Motonobu; Suzuki, Atsushi; Horita, Shoko; Seki, George; Moriya, Kyoji

    2017-01-01

    Dent’s disease is an X-linked renal tubulopathy characterized by low molecular weight proteinuria, hypercalciuria and progressive renal failure. Disease aetiology is associated with mutations in the CLCN5 gene coding for the electrogenic 2Cl-/H+ antiporter chloride channel 5 (CLC-5), which is expressed in the apical endosomes of renal proximal tubules with the vacuolar type H+-ATPase (V-ATPase). Initially identified as a member of the CLC family of Cl- channels, CLC-5 was presumed to provide Cl- shunt into the endosomal lumen to dissipate H+ accumulation by V-ATPase, thereby facilitating efficient endosomal acidification. However, recent findings showing that CLC-5 is in fact not a Cl- channel but a 2Cl-/H+ antiporter challenged this classical shunt model, leading to a renewed and intense debate on its physiological roles. Cl- accumulation via CLC-5 is predicted to play a critical role in endocytosis, as illustrated in mice carrying an artificial Cl- channel mutation E211A that developed defective endocytosis but normal endosomal acidification. Conversely, a recent functional analysis of a newly identified disease-causing Cl- channel mutation E211Q in a patient with typical Dent’s disease confirmed the functional coupling between V-ATPase and CLC-5 in endosomal acidification, lending support to the classical shunt model. In this editorial, we will address the current recognition of the physiological role of CLC-5 with a specific focus on the functional coupling of V-ATPase and CLC-5. PMID:28101447

  4. Regulation of Na(+)/K(+)-ATPase by neuron-specific transcription factor Sp4: implication in the tight coupling of energy production, neuronal activity and energy consumption in neurons.

    Science.gov (United States)

    Johar, Kaid; Priya, Anusha; Wong-Riley, Margaret T T

    2014-02-01

    A major source of energy demand in neurons is the Na(+)/K(+)-ATPase pump that restores the ionic gradient across the plasma membrane subsequent to depolarizing neuronal activity. The energy comes primarily from mitochondrial oxidative metabolism, of which cytochrome c oxidase (COX) is a key enzyme. Recently, we found that all 13 subunits of COX are regulated by specificity (Sp) factors, and that the neuron-specific Sp4, but not Sp1 or Sp3, regulates the expression of key glutamatergic receptor subunits as well. The present study sought to test our hypothesis that Sp4 also regulates Na(+)/K(+)-ATPase subunit genes in neurons. By means of multiple approaches, including in silico analysis, electrophoretic mobility shift and supershift assays, chromatin immunoprecipitation, promoter mutational analysis, over-expression, and RNA interference studies, we found that Sp4, with minor contributions from Sp1 and Sp3, functionally regulate the Atp1a1, Atp1a3, and Atp1b1 subunit genes of Na(+)/K(+)-ATPase in neurons. Transcripts of all three genes were up-regulated by depolarizing KCl stimulation and down-regulated by the impulse blocker tetrodotoxin (TTX), indicating that their expression was activity-dependent. Silencing of Sp4 blocked the up-regulation of these genes induced by KCl, whereas over-expression of Sp4 rescued them from TTX-induced suppression. The effect of silencing or over-expressing Sp4 on primary neurons was much greater than those of Sp1 or Sp3. The binding sites of Sp factors on these genes are conserved among mice, rats and humans. Thus, Sp4 plays an important role in the transcriptional coupling of energy generation and energy consumption in neurons.

  5. NVL2, a nucleolar AAA-ATPase, is associated with the nuclear exosome and is involved in pre-rRNA processing

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikatsu, Yuki [Department of Life Systems, Institute of Technology and Science, The University of Tokushima Graduate School, Tokushima 770-8506 (Japan); Ishida, Yo-ichi; Sudo, Haruka [Department of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588 (Japan); Yuasa, Keizo; Tsuji, Akihiko [Department of Life Systems, Institute of Technology and Science, The University of Tokushima Graduate School, Tokushima 770-8506 (Japan); Nagahama, Masami, E-mail: nagahama@my-pharm.ac.jp [Department of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588 (Japan)

    2015-08-28

    Nuclear VCP-like 2 (NVL2) is a member of the chaperone-like AAA-ATPase family and is involved in the biosynthesis of 60S ribosomal subunits in mammalian cells. We previously showed the interaction of NVL2 with a DExD/H-box RNA helicase MTR4/DOB1, which is a known cofactor for an exoribonuclease complex, the exosome. This finding implicated NVL2 in RNA metabolic processes during ribosome biogenesis. In the present study, we found that a series of mutations within the ATPase domain of NVL2 causes a defect in pre-rRNA processing into mature 28S and 5.8S rRNAs. Co-immunoprecipitation analysis showed that NVL2 was associated with the nuclear exosome complex, which includes RRP6 as a nucleus-specific catalytic subunit. This interaction was prevented by depleting either MTR4 or RRP6, indicating their essential role in mediating this interaction with NVL2. Additionally, knockdown of MPP6, another cofactor for the nuclear exosome, also prevented the interaction by causing MTR4 to dissociate from the nuclear exosome. These results suggest that NVL2 is involved in pre-rRNA processing by associating with the nuclear exosome complex and that MPP6 is required for maintaining the integrity of this rRNA processing complex. - Highlights: • ATPase-deficient mutants of NVL2 have decreased pre-rRNA processing. • NVL2 associates with the nuclear exosome through interactions with MTR4 and RRP6. • MPP6 stabilizes MTR4-RRP6 interaction and allows NVL2 to interact with the complex.

  6. Improved crystallization of Escherichia coli ATP synthase catalytic complex (F1) by introducing a phosphomimetic mutation in subunit ε.

    Science.gov (United States)

    Roy, Ankoor; Hutcheon, Marcus L; Duncan, Thomas M; Cingolani, Gino

    2012-10-01

    The bacterial ATP synthase (F(O)F(1)) of Escherichia coli has been the prominent model system for genetics, biochemical and more recently single-molecule studies on F-type ATP synthases. With 22 total polypeptide chains (total mass of ∼529 kDa), E. coli F(O)F(1) represents nature's smallest rotary motor, composed of a membrane-embedded proton transporter (F(O)) and a peripheral catalytic complex (F(1)). The ATPase activity of isolated F(1) is fully expressed by the α(3)β(3)γ 'core', whereas single δ and ε subunits are required for structural and functional coupling of E. coli F(1) to F(O). In contrast to mitochondrial F(1)-ATPases that have been determined to atomic resolution, the bacterial homologues have proven very difficult to crystallize. In this paper, we describe a biochemical strategy that led us to improve the crystallogenesis of the E. coli F(1)-ATPase catalytic core. Destabilizing the compact conformation of ε's C-terminal domain with a phosphomimetic mutation (εS65D) dramatically increased crystallization success and reproducibility, yielding crystals of E. coli F(1) that diffract to ∼3.15 Å resolution.

  7. Risk capital allocation with autonomous subunits

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Smilgins, Aleksandrs

    2016-01-01

    Risk capital allocation problems have been widely discussed in the academic literature. We consider a set of independent subunits collaborating in order to reduce risk: that is, when subunit portfolios are merged a diversification benefit arises and the risk of the group as a whole is smaller than...

  8. The beta subunit of casein kinase II

    DEFF Research Database (Denmark)

    Boldyreff, B; Piontek, K; Schmidt-Spaniol, I;

    1991-01-01

    cDNAs encoding the beta subunit of pig and mouse CKII were isolated. The porcine cDNA was expressed as a fusion protein in Escherichia coli and used for the production of anti-CKII-beta subunit specific antibodies....

  9. Interactions between beta D372 and gamma subunit N-terminus residues gamma K9 and gamma S12 are important to catalytic activity catalyzed by Escherichia coli F1F0-ATP synthase.

    Science.gov (United States)

    Lowry, David S; Frasch, Wayne D

    2005-05-17

    Substitution of Escherichia coli F(1)F(0) ATP synthase residues betaD372 or gammaS12 with groups that are unable to form a hydrogen bond at this location decreased ATP synthase-dependent cell growth by 2 orders of magnitude, eliminated the ability of F(1)F(0) to catalyze ATPase-dependent proton pumping in inverted E. coli membranes, caused a 15-20% decrease in the coupling efficiency of the membranes as measured by the extent of succinate-dependent acridine orange fluorescence quenching, but increased soluble F(1)-ATPase activity by about 10%. Substitution of gammaK9 to eliminate the ability to form a salt bridge with betaD372 decreased soluble F(1)-ATPase activity and ATPase-driven proton pumping by 2-fold but had no effect on the proton gradient induced by addition of succinate. Mutations to eliminate the potential to form intersubunit hydrogen bonds and salt bridges between other less highly conserved residues on the gamma subunit N-terminus and the beta subunits had little effect on ATPase or ATP synthase activities. These results suggest that the betaD372-gammaK9 salt bridge contributes significantly to the rate-limiting step in ATP hydrolysis of soluble F(1) while the betaD372-gammaS12 hydrogen bond may serve as a component of an escapement mechanism for ATP synthesis in which alphabetagamma intersubunit interactions provide a means to make substrate binding a prerequisite of proton gradient-driven gamma subunit rotation.

  10. Structure of the vacuolar H+-ATPase rotary motor reveals new mechanistic insights.

    Science.gov (United States)

    Rawson, Shaun; Phillips, Clair; Huss, Markus; Tiburcy, Felix; Wieczorek, Helmut; Trinick, John; Harrison, Michael A; Muench, Stephen P

    2015-03-03

    Vacuolar H(+)-ATPases are multisubunit complexes that operate with rotary mechanics and are essential for membrane proton transport throughout eukaryotes. Here we report a ∼ 1 nm resolution reconstruction of a V-ATPase in a different conformational state from that previously reported for a lower-resolution yeast model. The stator network of the V-ATPase (and by implication that of other rotary ATPases) does not change conformation in different catalytic states, and hence must be relatively rigid. We also demonstrate that a conserved bearing in the catalytic domain is electrostatic, contributing to the extraordinarily high efficiency of rotary ATPases. Analysis of the rotor axle/membrane pump interface suggests how rotary ATPases accommodate different c ring stoichiometries while maintaining high efficiency. The model provides evidence for a half channel in the proton pump, supporting theoretical models of ion translocation. Our refined model therefore provides new insights into the structure and mechanics of the V-ATPases.

  11. Demethoxycurcumin is a potent inhibitor of P-type ATPases from diverse kingdoms of life

    DEFF Research Database (Denmark)

    Dao, Trong Tuan; Sehgal, Pankaj; Thanh Tung, Truong;

    2016-01-01

    the curcuminoids, demethoxycurcumin was the most potent inhibitor of all tested P-type ATPases from fungal (Pma1p; H+-ATPase), plant (AHA2; H+-ATPase) and animal (SERCA; Ca2+-ATPase) cells. All three curcuminoids acted as non-competitive antagonist to ATP and hence may bind to a highly conserved allosteric site......P-type ATPases catalyze the active transport of cations and phospholipids across biological membranes. Members of this large family are involved in a range of fundamental cellular processes. To date, a substantial number of P-type ATPase inhibitors have been characterized, some of which are used...... as drugs. In this work a library of natural compounds was screened and we first identified curcuminoids as plasma membrane H+-ATPases inhibitors in plant and fungal cells. We also found that some of the commercial curcumins contain several curcuminoids. Three of these were purified and, among...

  12. Renal proximal tubule Na,K-ATPase is controlled by CREB-regulated transcriptional coactivators as well as salt-inducible kinase 1.

    Science.gov (United States)

    Taub, Mary; Garimella, Sudha; Kim, Dongwook; Rajkhowa, Trivikram; Cutuli, Facundo

    2015-12-01

    Sodium reabsorption by the kidney is regulated by locally produced natriuretic and anti-natriuretic factors, including dopamine and norepinephrine, respectively. Previous studies indicated that signaling events initiated by these natriuretic and anti-natriuretic factors achieve their effects by altering the phosphorylation of Na,K-ATPase in the renal proximal tubule, and that protein kinase A (PKA) and calcium-mediated signaling pathways are involved. The same signaling pathways also control the transcription of the Na,K-ATPase β subunit gene atp1b1 in renal proximal tubule cells. In this report, evidence is presented that (1) both the recently discovered cAMP-regulated transcriptional coactivators (CRTCs) and salt-inducible kinase 1 (SIK1) contribute to the transcriptional regulation of atp1b1 in renal proximal tubule (RPT) cells and (2) renal effectors, including norepinephrine, dopamine, prostaglandins, and sodium, play a role. Exogenously expressed CRTCs stimulate atp1b1 transcription. Evidence for a role of endogenous CRTCs includes the loss of transcriptional regulation of atp1b1 by a dominant-negative CRTC, as well as by a CREB mutant, with an altered CRTC binding site. In a number of experimental systems, SIK phosphorylates CRTCs, which are then sequestered in the cytoplasm, preventing their nuclear effects. Consistent with such a role of SIK in primary RPT cells, atp1b1 transcription increased in the presence of a dominant-negative SIK1, and in addition, regulation by dopamine, norepinephrine, and monensin was disrupted by a dominant-negative SIK1. These latter observations can be explained if SIK1 is phosphorylated and inactivated in the presence of these renal effectors. Our results support the hypothesis that Na,K-ATPase in the renal proximal tubule is regulated at the transcriptional level via SIK1 and CRTCs by renal effectors, in addition to the previously reported control of the phosphorylation of Na,K-ATPase.

  13. Expression and polarity reversal of V-type H+-ATPase during the mineralization-demineralization cycle in Porcellio scaber sternal epithelial cells.

    Science.gov (United States)

    Ziegler, Andreas; Weihrauch, Dirk; Hagedorn, Monica; Towle, David W; Bleher, Reiner

    2004-04-01

    The formation and resorption of CaCO(3) by epithelial cell layers require epithelial transport of protons. We used the anterior sternal epithelium of the terrestrial isopod Porcellio scaber as a model to study the expression pattern and immunolocalization of a V-type H(+)-ATPase during the mineralization and demineralization of intermittent CaCO(3) deposits. Semiquantitative RT-PCR revealed that the expression of the V-type H(+)-ATPase increases from non Ca(2+)-transporting control stages to the stages of CaCO(3) deposit formation and resorption. In the Ca(2+)-transporting stages the expression was larger in the anterior than in the posterior sternal epithelium, which is not involved in deposit formation and transports just moderate amounts of CaCO(3). Immunocytochemistry of the B-subunit of the V-type H(+)-ATPase in the anterior sternal epithelium reveals an increase in the abundance of the protein within the basolateral membrane, from undetectable to strong signals in the control stage to the stages of CaCO(3) deposit formation, respectively. From the stage of CaCO(3) deposit formation to that of CaCO(3) resorption the signal decreased within the basolateral plasma membrane and increased within the apical plasma membrane. For the first time the results indicate a contribution of a V-type H(+)-ATPase to CaCO(3) deposition and a reversal of its polarity from the basolateral to the apical plasma membrane compartment within the same cells.

  14. ATPase center of bacteriophage lambda terminase involved in post-cleavage stages of DNA packaging: identification of ATP-interactive amino acids.

    Science.gov (United States)

    Hang, J Q; Tack, B F; Feiss, M

    2000-09-29

    Terminase is the enzyme that mediates lambda DNA packaging into the viral prohead. The large subunit of terminase, gpA (641 amino acid residues), has a high-affinity ATPase activity (K(m)=5 microM). To directly identify gpA's ATP-interacting amino acids, holoterminase bearing a His(6)-tag at the C terminus of gpA was UV-crosslinked with 8-N(3)-[alpha-(32)P]ATP. Tryptic peptides from the photolabeled terminase were purified by affinity chromatography and reverse-phase HPLC. Two labeled peptides of gpA were identified. Amino acid sequencing failed to show the tyrosine residue of the first peptide, E(43)SAY(46)QEGR(50), or the lysine of the second peptide, V(80)GYSK(84)MLL(87), indicating that Y(46) and K(84) were the 8-N(3)-ATP-modified amino acids. To investigate their roles in lambda DNA packaging, Y(46) was changed to E, A, and F, and K(84) was changed to E and A. Purified His(6)-tagged terminases with changes at residues 46 and 84 lacked the gpA high-affinity ATPase activity, though the cos cleavage and cohesive end separation activities were near to those of the wild-type enzyme. In virion assembly reactions using virion DNA as a packaging substrate, the mutant terminases showed severe defects. In summary, the results indicate that Y(46) and K(84) are part of the high-affinity ATPase center of gpA, and show that this ATPase activity is involved in the post-cos cleavage stages of lambda DNA packaging.

  15. Do Src Kinase and Caveolin Interact Directly with Na,K-ATPase?

    Science.gov (United States)

    Yosef, Eliyahu; Katz, Adriana; Peleg, Yoav; Mehlman, Tevie; Karlish, Steven J D

    2016-05-27

    Much evidence points to a role of Na,K-ATPase in ouabain-dependent signal transduction. Based on experiments with different cell lines and native tissue membranes, a current hypothesis postulates direct interactions between the Na,K-ATPase and Src kinase (non-receptor tyrosine kinase). Na,K-ATPase is proposed to bind Src kinase and inhibit its activity, whereas ouabain, the specific Na,K-ATPase inhibitor, binds and stabilizes the E2 conformation, thus exposing the Src kinase domain and its active site Tyr-418 for activation. Ouabain-dependent signaling is thought to be mediated within caveolae by a complex consisting of Na,K-ATPase, caveolin, and Src kinase. In the current work, we have looked for direct interactions utilizing purified recombinant Na,K-ATPase (human α1β1FXYD1 or porcine α1D369Nβ1FXYD1) and purified human Src kinase and human caveolin 1 or interactions between these proteins in native membrane vesicles isolated from rabbit kidney. By several independent criteria and techniques, no stable interactions were detected between Na,K-ATPase and purified Src kinase. Na,K-ATPase was found to be a substrate for Src kinase phosphorylation at Tyr-144. Clear evidence for a direct interaction between purified human Na,K-ATPase and human caveolin was obtained, albeit with a low molar stoichiometry (1:15-30 caveolin 1/Na,K-ATPase). In native renal membranes, a specific caveolin 14-5 oligomer (95 kDa) was found to be in direct interaction with Na,K-ATPase. We inferred that a small fraction of the renal Na,K-ATPase molecules is in a ∼1:1 complex with a caveolin 14-5 oligomer. Thus, overall, whereas a direct caveolin 1/Na,K-ATPase interaction is confirmed, the lack of direct Src kinase/Na,K-ATPase binding requires reassessment of the mechanism of ouabain-dependent signaling.

  16. Complementation of the Fo c subunit of Escherichia coli with that of Streptococcus mutans and properties of the hybrid FoF1 ATP synthase.

    Science.gov (United States)

    Araki, Makoto; Hoshi, Kazuya; Fujiwara, Masasuke; Sasaki, Yuka; Yonezawa, Hideo; Senpuku, Hidenobu; Iwamoto-Kihara, Atsuko; Maeda, Masatomo

    2013-11-01

    The c subunit of Streptococcus mutans ATP synthase (FoF1) is functionally exchangeable with that of Escherichia coli, since E. coli with a hybrid FoF1 is able to grow on minimum succinate medium through oxidative phosphorylation. E. coli F1 bound to the hybrid Fo with the S. mutans c subunit showed N,N'-dicyclohexylcarbodiimide-sensitive ATPase activity similar to that of E. coli FoF1. Thus, the S. mutans c subunit assembled into a functional Fo together with the E. coli a and b subunits, forming a normal F1 binding site. Although the H(+) pathway should be functional, as was suggested by the growth on minimum succinate medium, ATP-driven H(+) transport could not be detected with inverted membrane vesicles in vitro. This observation is partly explained by the presence of an acidic residue (Glu-20) in the first transmembrane helix of the S. mutans c subunit, since the site-directed mutant carrying Gln-20 partly recovered the ATP-driven H(+) transport. Since S. mutans is recognized to be a primary etiological agent of human dental caries and is one cause of bacterial endocarditis, our system that expresses hybrid Fo with the S. mutans c subunit would be helpful to find antibiotics and chemicals specifically directed to S. mutans.

  17. Complete kinetic and thermodynamic characterization of the unisite catalytic pathway of Escherichia coli F1-ATPase. Comparison with mitochondrial F1-ATPase and application to the study of mutant enzymes.

    Science.gov (United States)

    Al-Shawi, M K; Senior, A E

    1988-12-25

    A complete analysis is presented of the component rate constants of the "unisite" reaction pathway in normal Escherichia coli F1-ATPase. Gibbs free energy profiles of the unisite reaction pathway were constructed for both normal E. coli F1 and bovine-heart mitochondrial F1, and comparison indicated that E. coli F1 is an ancestral form of the mitochondrial enzyme. Similar kinetic and thermodynamic analyses of the unisite reaction pathway were done for mutant beta-Asn-242 and beta-Val-242 E. coli F1-ATPases. Both mutations affected unisite binding and hydrolysis of MgATP but had little effect on release of products or binding of MgADP. It was apparent that a primary effect of the mutations was on the interaction between the catalytic nucleotide-binding domain and the substrate MgATP. The catalytic transition state [F1-ATP]++ was the most destabilized step in the reaction sequence. Measurements of delta delta G[F1.ATP]++ and linear free energy plots for the catalytic step were consistent with the view that, in normal enzyme, residue beta-Asp-242 accepts an H-bond from the transition-state substrate in order to facilitate catalysis. Both mutations impaired positive catalytic cooperativity. This was caused by energetic destabilization of the catalytic transition state and was an indirect effect, not a direct effect on signal transmission per se between catalytic nucleotide-binding domains on beta-subunits. Therefore, impairment of unisite catalysis and of positive catalytic cooperativity appeared to be linked. This may provide a unifying explanation as to why a series of other, widely separated mis-sense mutations within the catalytic nucleotide-binding domain on F1-beta-subunit, which have been reported to affect unisite catalysis, also impair positive catalytic cooperativity. Linear free energy plots for the ATP-binding step of unisite catalysis demonstrated that beta-Asn-242 and beta-Val-242 mutant enzymes did not suffer any gross disruptive change in structure of

  18. AN INTEGRATED, ANIMATED MODEL OF THE (NA, K-ATPase HYDROLYTIC CYCLE

    Directory of Open Access Journals (Sweden)

    F.A. Leone

    2006-07-01

    Full Text Available The  (Na,  K-ATPase,  or  sodium  pump,  is  the  principal,  active  transport  system  that  establishes  sodium  and potassium  gradients  across  the  plasma  membranes  of  all  animal  cells.  Such  gradients  are  critical  to  sustaining important cellular functions like osmotic equilibrium, cell volume and pH homeostasis, among many others (Ann Rev Physiol 65: 817, 2003; Physiol 19: 377, 2004. This transport protein is a heterodimer that consists of a 110-kDa  -subunit  and  a  55-kDa,  glycosylated  -subunit.  A  group  of  seven  small  proteins,  known  as  FXYD  proteins  from  the sequence  of  a  conserved  motif  has  been  identified  recently,  and  one  of  these,  FXYD2,  constitutes  the  (Na,  K-ATPase  -subunit.  Our  model  is  based  on  conformational  changes  occurring  between  the  E1  and  E2  forms  of  the enzyme, which initiates its hydrolytic cycle at a high ATP/ADP ratio. While all steps are reversible, the model does not include  the reverse  reactions that can  take  place under appropriate conditions. The  E1 state  corresponds to that of the SERCA, recently crystallized (Science 304; 1672, 2004; Nature 430: 529, 2004. The animation was developed in Macromedia  Flash  8.0® and  illustrates  the  principle  of  an  alternating-access  model  of  an  ion  pump.  The  protein  is embedded  in  the  membrane  with  the  extracellular  face  uppermost  and  the  cytoplasmic  face  at  the  bottom.  Access from  the  cytoplasmic  or  extracellular  faces  to  the  cation-binding  sites,  located  in  the  transmembrane  moiety,  are controlled  by  two  gates  (moving  horizontal  bars,  and  conformations  showing  the  two  gates  closed  correspond  to states with occluded Na+ and K+ sites. Changes in cation-binding site structure entail

  19. Inhibition of skeletal muscle S1-myosin ATPase by peroxynitrite.

    Science.gov (United States)

    Tiago, Teresa; Simão, Sónia; Aureliano, Manuel; Martín-Romero, Francisco Javier; Gutiérrez-Merino, Carlos

    2006-03-21

    Exposure of myosin subfragment 1 (S1) to 3-morpholinosydnonimine (SIN-1) produced a time-dependent inhibition of the F-actin-stimulated S1 Mg(2+)-ATPase activity, reaching 50% inhibition with 46.7 +/- 8.3 microM SIN-1 for 8.7 microM S1, that is, at a SIN-1/S1 molar ratio of approximately 5.5. The inhibition was due to the peroxynitrite produced by SIN-1 decomposition because (1) decomposed SIN-1 was found to have no effect on S1 ATPase activity, (2) addition of SIN-1 in the presence of superoxide dismutase and catalase fully prevented inhibition by SIN-1, and (3) micromolar pulses of chemically synthesized peroxynitrite produced inhibition of F-actin-stimulated S1 Mg(2+)-ATPase activity. In parallel, SIN-1 produced the inhibition of the nonphysiological Ca(2+)-dependent and K(+)/EDTA-dependent S1 ATPase activity of S1 and, therefore, suggested that the inhibition of F-actin-stimulated S1 Mg(2+)-ATPase activity is produced by the oxidation of highly reactive cysteines of S1 (Cys(707) and Cys(697)), located close to the catalytic center. This point was further confirmed by the titration of S1 cysteines with 5,5'-dithiobis(2-nitrobenzoic acid) and by the parallel decrease of Cys(707) labeling by 5-(iodoacetamido)fluorescein, and it was reinforced by the fact that other common protein modifications produced by peroxynitrite, for example, protein carbonyl and nitrotyrosine formation, were barely detected at the concentrations of SIN-1 that produced more than 50% inhibition of the F-actin-stimulated S1 Mg(2+)-ATPase activity. Differential scanning calorimetry of S1 (untreated and treated with different SIN-1 concentrations) pointed out that SIN-1, at concentrations that generate micromolar peroxynitrite fluxes, impaired the ability of ADP.V(1) to induce the intermediate catalytic transition state and also produced the partial unfolding of S1 that leads to an enhanced susceptibility of S1 to trypsin digestion, which can be fully protected by 2 mM GSH.

  20. Time course of large ribosomal subunit assembly in E. coli cells overexpressing a helicase inactive DbpA protein.

    Science.gov (United States)

    Gentry, Riley C; Childs, Jared J; Gevorkyan, Jirair; Gerasimova, Yulia V; Koculi, Eda

    2016-07-01

    DbpA is a DEAD-box RNA helicase implicated in Escherichia coli large ribosomal subunit assembly. Previous studies have shown that when the ATPase and helicase inactive DbpA construct, R331A, is expressed in E. coli cells, a large ribosomal subunit intermediate accumulates. The large subunit intermediate migrates as a 45S particle in a sucrose gradient. Here, using a number of structural and fluorescent assays, we investigate the ribosome profiles of cells lacking wild-type DbpA and overexpressing the R331A DbpA construct. Our data show that in addition to the 45S particle previously described, 27S and 35S particles are also present in the ribosome profiles of cells overexpressing R331A DbpA. The 27S, 35S, and 45S independently convert to the 50S subunit, suggesting that ribosome assembly in the presence of R331A and the absence of wild-type DbpA occurs via multiple pathways.

  1. Inhibition of partially purified K+/H+-ATPase from guinea-pig isolated and enriched parietal cells by substituted benzimidazoles.

    OpenAIRE

    Beil, W.; Sewing, K F

    1984-01-01

    The cellular and subcellular distributions of adenosinetriphosphatases (ATPases) were examined in guinea-pig gastric mucosal cells. All cell types displayed Mg2+-ATPase and bicarbonate (HCO3-)-stimulated ATPase activity. K+-ATPase was located only in fractions derived from parietal cells. Differential and density-gradient centrifugation of material prepared from parietal cells revealed that K+-ATPase activity was located in a tubulo-vesicular membrane fraction. Enzyme activity was ten fold gr...

  2. Cross-linking of the delta subunit to one of the three alpha subunits has no effect on functioning, as expected if delta is a part of the stator that links the F1 and F0 parts of the Escherichia coli ATP synthase.

    Science.gov (United States)

    Ogilvie, I; Aggeler, R; Capaldi, R A

    1997-06-27

    A mutant of the Escherichia coli F1F0-ATPase has been generated (alphaQ2C) in which the glutamine at position 2 of the alpha subunit has been replaced with a cysteine residue. Cu2+ treatment of ECF1 from this mutant cross-linked an alpha subunit to the delta subunit in high yield. Two different sites of disulfide bond formation were involved, i.e. between Cys90 (or the closely spaced Cys47) of alpha with Cys140 of delta, and between Cys2 of alpha and Cys140 of delta. Small amounts of other cross-linked products, including alpha-alpha, delta internal, and alpha-alpha-delta were obtained. In ECF1F0, there was no cross-linking between the intrinsic Cys of alpha and Cys140. Instead, the product generated between Cys2 of alpha and Cys140 of delta was obtained at near 90% yield. Small amounts of alpha-alpha and delta internal were present, and under high Cu2+ concentrations, alpha-alpha-delta was also formed. The ATPase activity of ECF1 and ECF1F0 was not significantly affected by the presence of these cross-links. When Cys140 of delta was first modified with N-ethylmaleimide in ECF1F0, an alpha-delta cross-link was still produced, although in lower yield, between Cys64 of delta and Cys2 of alpha. ATP hydrolysis-linked proton pumping of inner membranes from the mutant alpha2QC was only marginally affected by cross-linking of the alpha to the delta subunit. These results indicate that Cys140 and Cys64 of the delta subunit and Cys2 of the alpha subunit are in close proximity. This places the delta subunit near the top of the alpha-beta hexagon and not in the stalk region. As fixing the delta to the alpha by cross-linking does not greatly impair either the ATPase function of the enzyme, or coupled proton translocation, we argue that the delta subunit forms a portion of the stator linking F1 to F0.

  3. Mitf is a master regulator of the v-ATPase, forming a control module for cellular homeostasis with v-ATPase and TORC1

    Science.gov (United States)

    Zhang, Tianyi; Zhou, Qingxiang; Ogmundsdottir, Margret Helga; Möller, Katrin; Siddaway, Robert; Larue, Lionel; Hsing, Michael; Kong, Sek Won; Goding, Colin Ronald; Palsson, Arnar; Steingrimsson, Eirikur; Pignoni, Francesca

    2015-01-01

    ABSTRACT The v-ATPase is a fundamental eukaryotic enzyme that is central to cellular homeostasis. Although its impact on key metabolic regulators such as TORC1 is well documented, our knowledge of mechanisms that regulate v-ATPase activity is limited. Here, we report that the Drosophila transcription factor Mitf is a master regulator of this holoenzyme. Mitf directly controls transcription of all 15 v-ATPase components through M-box cis-sites and this coordinated regulation affects holoenzyme activity in vivo. In addition, through the v-ATPase, Mitf promotes the activity of TORC1, which in turn negatively regulates Mitf. We provide evidence that Mitf, v-ATPase and TORC1 form a negative regulatory loop that maintains each of these important metabolic regulators in relative balance. Interestingly, direct regulation of v-ATPase genes by human MITF also occurs in cells of the melanocytic lineage, showing mechanistic conservation in the regulation of the v-ATPase by MITF family proteins in fly and mammals. Collectively, this evidence points to an ancient module comprising Mitf, v-ATPase and TORC1 that serves as a dynamic modulator of metabolism for cellular homeostasis. PMID:26092939

  4. Cleft Lip Repair: The Hybrid Subunit Method.

    Science.gov (United States)

    Tollefson, Travis T

    2016-04-01

    The unilateral cleft lip repair is one of the most rewarding and challenging of plastic surgery procedures. Surgeons have introduced a variety of straight line, geometric, and rotation-advancement designs, while in practice the majority of North American surgeons have been using hybrids of the rotation-advancement techniques. The anatomic subunit approach was introduced in 2005 by Fisher and has gained popularity, with early adopters of the design touting its simplicity and effectiveness. The objectives of this article are to summarize the basic tenets of respecting the philtral subunit, accurate measurement and planning, and tips for transitioning to this subunit approach.

  5. Oscillations in glycolysis in Saccharomyces cerevisiae: the role of autocatalysis and intracellular ATPase activity.

    Science.gov (United States)

    Kloster, Antonina; Olsen, Lars Folke

    2012-05-01

    We have investigated the glycolytic oscillations, measured as NADH autofluorescence, in the yeast Saccharomyces cerevisiae in a batch reactor. Specifically, we have tested the effect of cell density and a number of inhibitors or activators of ATPase activity on the amplitude of the oscillations. The amplitude dependence on cell density shows the same behavior as that observed in cells in a CSTR. Furthermore, the amplitude decreases with increasing inhibition of the three ATPases (i) F(0)F(1) ATPase, (ii) plasma membrane ATPase (Pma1p) and (iii) vacuolar ATPase (V-ATPase). The amplitude of the oscillations also decreases by stimulating the ATPase activity, e.g. by FCCP or Amphotericin B. Thus, ATPase activity strongly affects the glycolytic oscillations. We discuss these data in relation to a simple autocatalytic model of glycolysis which can reproduce the experimental data and explain the role of membrane-bound ATPases . In addition we also studied a recent detailed model of glycolysis and found that, although this model faithfully reproduces the oscillations of glycolytic intermediates observed experimentally, it is not able to explain the role of ATPase activity on the oscillations.

  6. Elucidating Functional Aspects of P-type ATPases

    DEFF Research Database (Denmark)

    Autzen, Henriette Elisabeth

    2015-01-01

    similar to that of the wild type (WT) protein. The discrepancy between the newly determined crystal structure of LpCopA and the functional manifestations of the missense mutation in human CopA, could indicate that LpCopA is insufficient in structurally elucidating the effect of disease-causing mutations...... cancer and pathogenic microbes. The goal of this Ph.D. dissertation was to functionally characterize SERCA1a and CopA from Legionella pneumophila (LpCopA) through a range of different methods within structural biology. Crystallographic studies of SERCA1a led to a newly determined crystal structure......P-type ATPases are proteins that act to maintain ion homeostasis and electrochemical gradients through the translocation of cations across cell membranes. Underscoring their significance in humans, dysfunction of the ATPases can lead to crucial diseases. Dysfunction of the sarco...

  7. Coupled ATPase-adenylate kinase activity in ABC transporters

    Science.gov (United States)

    Kaur, Hundeep; Lakatos-Karoly, Andrea; Vogel, Ramona; Nöll, Anne; Tampé, Robert; Glaubitz, Clemens

    2016-01-01

    ATP-binding cassette (ABC) transporters, a superfamily of integral membrane proteins, catalyse the translocation of substrates across the cellular membrane by ATP hydrolysis. Here we demonstrate by nucleotide turnover and binding studies based on 31P solid-state NMR spectroscopy that the ABC exporter and lipid A flippase MsbA can couple ATP hydrolysis to an adenylate kinase activity, where ADP is converted into AMP and ATP. Single-point mutations reveal that both ATPase and adenylate kinase mechanisms are associated with the same conserved motifs of the nucleotide-binding domain. Based on these results, we propose a model for the coupled ATPase-adenylate kinase mechanism, involving the canonical and an additional nucleotide-binding site. We extend these findings to other prokaryotic ABC exporters, namely LmrA and TmrAB, suggesting that the coupled activities are a general feature of ABC exporters. PMID:28004795

  8. Interactions of vanadate oligomers with sarcoplasmic reticulum Ca(2+)-ATPase.

    Science.gov (United States)

    Aureliano, M; Mdeira, V M

    1994-04-28

    Upon addition of sarcoplasmic reticulum (SR), the line width of tetrameric vanadate signal of 51V-NMR spectra narrowed in the presence of ATP and Ca2+, whereas monomeric vanadate line widths were broadened. Thus, ATP decreases the affinity of the enzyme for tetravanadate whereas it induces the interaction with monomeric vanadate. In the presence of Ca2+ it was observed that tetrameric and decameric vanadate bind to SR ATPase whereas monomeric vanadate only binds to SR when ATP is present. However, decameric vanadate clearly differs from vanadate oligomers present in monovanadate solutions in preventing the accumulation of Ca2+ by sarcoplasmic reticulum (SR) vesicles coupled to ATP hydrolysis. Mg2+ increased the inhibitory effect promoted by decavanadate whereas a slight enhancement of Ca2+ uptake was observed in the presence of monovanadate. For 5 mM Mg2+, a nominal 2 mM vanadium 'decavanadate' solution containing about 190 to 200 microM decameric and less than 100 microM monomeric species depressed the rate of Ca2+ uptake by 50% whereas a nominal 2 mM monovanadate solution containing about 662 microM monomeric, 143 microM dimeric and 252 microM tetrameric species had no effect on the rate of Ca2+ accumulation. However, 2 mM 'decavanadate' inhibits by 75% the SR Ca(2+)-ATPase activity whereas the presence of 2 mM 'monovanadate' produces an inhibitory effect below 50%. Therefore, the Ca:ATP stoichiometry of Ca2+ transport is enhanced by monovanadate. In the presence of oxalate, inhibition of SR Ca(2+)-ATPase activity by these solutions is enhanced to 97% and 86% whereas in the presence of the ionophore lasalocid, the inhibitory values were 87% and 19% for 2 mM decavanadate and 2 mM monovanadate solutions, respectively. Apparently, the increase of vesicular Ca2+ concentration counteracts monovanadate inhibition of SR Ca(2+)-ATPase activity but it does not significantly affect decavanadate inhibition.

  9. New ATPase regulators-p97 goes to the PUB

    DEFF Research Database (Denmark)

    Madsen, Louise; Seeger, Michael; Semple, Colin A;

    2009-01-01

    The conserved eukaryotic AAA-type ATPase complex, known as p97 or VCP in mammals and Cdc48 in yeast, is involved in a number of cellular pathways, including fusion of homotypic membranes, protein degradation, and activation of membrane-bound transcription factors. Most likely, p97 is directed to ...... of the currently known PUB-domain proteins and other p97-interacting proteins....

  10. Ion pathways in the sarcoplasmic reticulum Ca2+-ATPase.

    Science.gov (United States)

    Bublitz, Maike; Musgaard, Maria; Poulsen, Hanne; Thøgersen, Lea; Olesen, Claus; Schiøtt, Birgit; Morth, J Preben; Møller, Jesper Vuust; Nissen, Poul

    2013-04-12

    The sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) is a transmembrane ion transporter belonging to the P(II)-type ATPase family. It performs the vital task of re-sequestering cytoplasmic Ca(2+) to the sarco/endoplasmic reticulum store, thereby also terminating Ca(2+)-induced signaling such as in muscle contraction. This minireview focuses on the transport pathways of Ca(2+) and H(+) ions across the lipid bilayer through SERCA. The ion-binding sites of SERCA are accessible from either the cytoplasm or the sarco/endoplasmic reticulum lumen, and the Ca(2+) entry and exit channels are both formed mainly by rearrangements of four N-terminal transmembrane α-helices. Recent improvements in the resolution of the crystal structures of rabbit SERCA1a have revealed a hydrated pathway in the C-terminal transmembrane region leading from the ion-binding sites to the cytosol. A comparison of different SERCA conformations reveals that this C-terminal pathway is exclusive to Ca(2+)-free E2 states, suggesting that it may play a functional role in proton release from the ion-binding sites. This is in agreement with molecular dynamics simulations and mutational studies and is in striking analogy to a similar pathway recently described for the related sodium pump. We therefore suggest a model for the ion exchange mechanism in P(II)-ATPases including not one, but two cytoplasmic pathways working in concert.

  11. V-ATPase as an effective therapeutic target for sarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Perut, Francesca, E-mail: francesca.perut@ior.it [Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna (Italy); Avnet, Sofia; Fotia, Caterina; Baglìo, Serena Rubina; Salerno, Manuela [Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna (Italy); Hosogi, Shigekuni [Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna (Italy); Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto (Japan); Kusuzaki, Katsuyuki [Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto (Japan); Baldini, Nicola [Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna (Italy); Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna (Italy)

    2014-01-01

    Malignant tumors show intense glycolysis and, as a consequence, high lactate production and proton efflux activity. We investigated proton dynamics in osteosarcoma, rhabdomyosarcoma, and chondrosarcoma, and evaluated the effects of esomeprazole as a therapeutic agent interfering with tumor acidic microenvironment. All sarcomas were able to survive in an acidic microenvironment (up to 5.9–6.0 pH) and abundant acidic lysosomes were found in all sarcoma subtypes. V-ATPase, a proton pump that acidifies intracellular compartments and transports protons across the plasma membrane, was detected in all cell types with a histotype-specific expression pattern. Esomeprazole administration interfered with proton compartmentalization in acidic organelles and induced a significant dose-dependent toxicity. Among the different histotypes, rhabdomyosarcoma, expressing the highest levels of V-ATPase and whose lysosomes are most acidic, was mostly susceptible to ESOM treatment. - Highlights: • Osteosarcoma, rhabdomyosarcoma, and chondrosarcoma survive in acidic microenvironment. • At acidic extracellular pH, sarcoma survival is dependent on V-ATPase expression. • Esomeprazole administration induce a significant dose-dependent toxicity.

  12. Gene targeting of CK2 catalytic subunits

    Science.gov (United States)

    Lou, David Y.; Toselli, Paul; Landesman-Bollag, Esther; Dominguez, Isabel

    2013-01-01

    Protein kinase CK2 is a highly conserved and ubiquitous serine–threonine kinase. It is a tetrameric enzyme that is made up of two regulatory CK2β subunits and two catalytic subunits, either CK2α/CK2α, CK2α/ CK2α′, or CK2α′/CK2α′. Although the two catalytic subunits diverge in their C termini, their enzymatic activities are similar. To identify the specific function of the two catalytic subunits in development, we have deleted them individually from the mouse genome by homologous recombination. We have previously reported that CK2α′is essential for male germ cell development, and we now demonstrate that CK2α has an essential role in embryogenesis, as mice lacking CK2α die in mid-embryogenesis, with cardiac and neural tube defects. PMID:18594950

  13. Gene targeting of CK2 catalytic subunits.

    Science.gov (United States)

    Seldin, David C; Lou, David Y; Toselli, Paul; Landesman-Bollag, Esther; Dominguez, Isabel

    2008-09-01

    Protein kinase CK2 is a highly conserved and ubiquitous serine-threonine kinase. It is a tetrameric enzyme that is made up of two regulatory CK2beta subunits and two catalytic subunits, either CK2alpha/CK2alpha, CK2alpha/CK2alpha', or CK2alpha'/CK2alpha'. Although the two catalytic subunits diverge in their C termini, their enzymatic activities are similar. To identify the specific function of the two catalytic subunits in development, we have deleted them individually from the mouse genome by homologous recombination. We have previously reported that CK2alpha' is essential for male germ cell development, and we now demonstrate that CK2alpha has an essential role in embryogenesis, as mice lacking CK2alpha die in mid-embryogenesis, with cardiac and neural tube defects.

  14. The Role of the Plasma Membrane H+-ATPase in Plant-Microbe Interactions

    Institute of Scientific and Technical Information of China (English)

    James Mitch Elmore; Gitta Coaker

    2011-01-01

    T Plasma membrane (PM) H+-ATPases are the primary pumps responsible for the establishment of cellular membrane potential in plants. In addition to regulating basic aspects of plant cell function, these enzymes contribute to signaling events in response to diverse environmental stimuli. Here, we focus on the roles of the PM H+-ATPase during plantpathogen interactions. PM H+-ATPases are dynamically regulated during plant immune responses and recent quantitative proteomics studies suggest complex spatial and temporal modulation of PM H+-ATPase activity during early pathogen recognition events. Additional data indicate that PM H+-ATPases cooperate with the plant immune signaling protein RIN4 to regulate stomatal apertures during bacterial invasion of leaf tissue. Furthermore, pathogens have evolved mechanisms to manipulate PM H+-ATPase activity during infection. Thus, these ubiquitous plant enzymes contribute to plant immune responses and are targeted by pathogens to increase plant susceptibility.

  15. [Structure and function of heavy metal transporter P(1B)-ATPase in plant: a review].

    Science.gov (United States)

    Zhang, Yuxiu; Zhang, Yuanya; Sun, Tao; Chai, Tuanyao

    2010-06-01

    The regulation of the heavy-metal accumulation in vivo for plant survival is very complex. The metal cation transporter plays key roles in the metabolic process. P(1B)-ATPases are the only subgroup of P-ATPases that contribute to heavy metal homeostasis presented in most organisms. Arabidopsis thaliana contains eight genes encoding P(1B)-ATPases. The current reports show that the functions of P(1B)-ATPases are involved in maintaining metal homeostasis, transporting and detoxification in plants. P(1B)-ATPases not only mediated metal ion mobilization and uptake in roots, but also contribute to the metal transport, storage and tolerance in shoots, especially in heavy metal hyperaccumulators. In this paper, we reviewed and discussed the evolution, classification, structure and function of P(1B)-ATPases in plants. HMAs-transgenic manipulation could be a feasible approach for phytoremediation and mineral nutrition fortification.

  16. The localization of vanadium- and nitrate-sensitive ATPases in Cucumis sativus L. root cells

    Directory of Open Access Journals (Sweden)

    Grażyna Kłobus

    2014-02-01

    Full Text Available Distinct separation of plasma membrane and tonoplast membranes was attained by centrifugation of cucumber root microsomes in a sucrose density gradient. The fractions enriched in plasma membranes, identified on the basis of the sensitivity of ATPases to VO43- sedimented at a specific density of 1. 1463-1. 1513 g x cm-3. They did not exhibit cytochrome oxidase activity and there was only trace activity of the azide-sensitive ATPase in these fractions. The fractions enriched in tonoplast membranes, having peak activity of nitrate-sensitive ATPase, were found in the region of specific densities of 1. 1082-1.1175. The presence of vanadium-sensitive and azide-sensitive ATPases was not found in these fractions. The ATPase inhibitors, DCCD, DES and EDAC, inhibited the activity of both vanadium-sensitive and nitrate-sensitive ATPases.

  17. Investigation of the Mitochondrial ATPase 6/8 and tRNALys Genes Mutations in Autism

    OpenAIRE

    Sepideh Dadgar; Zahra-Soheila Soheili; Omid Aryani; Massoud Houshmand; Fahimeh Piryaei

    2012-01-01

    Objective: Autism results from developmental factors that affect many or all functional brain systems. Brain is one of tissues which are crucially in need of adenosine triphosphate (ATP). Autism is noticeably affected by mitochondrial dysfunction which impairs energy metabolism. Considering mutations within ATPase 6, ATPase 8 and tRNALys genes, associated with different neural diseases, and the main role of ATPase 6/8 in energy generation, we decided to investigate mutations on these mtDNA-en...

  18. Origin and evolution of metal P-type ATPases in Plantae (Archaeplastida)

    OpenAIRE

    2014-01-01

    Metal ATPases are a subfamily of P-type ATPases involved in the transport of metal cations across biological membranes. They all share an architecture featuring eight transmembrane domains in pairs of two and are found in prokaryotes as well as in a variety of Eukaryotes. In Arabidopsis thaliana, eight metal P-type ATPases have been described, four being specific to copper transport and four displaying a broader metal specificity, including zinc, cadmium and possibly copper and calcium. So fa...

  19. SU(5) & A4

    CERN Document Server

    Urbano, Alfredo

    2009-01-01

    The introduction of a Flavour Symmetry can represent an interesting way in which one can try to find an answer to some intriguing problems in Flavour Physics, like the hierarchy between the fermion masses or the particular values of mixing angles. In the meantime the necessity to set this symmetry in a realistic context grows up; this context should be able to enlarge our incomplete knowledge of fundamental interactions as described in the framework of the Standard Model. Following this direction a merging between A(4) and SU(5) can be possible.

  20. The E646D-ATP13A4 mutation associated with autism reveals a defect in calcium regulation.

    Science.gov (United States)

    Vallipuram, Janaki; Grenville, Jeffrey; Crawford, Dorota A

    2010-03-01

    ATP13A4 is a member of the subfamily of P5-type ATPases. P5-type ATPases are the least studied of the P-type ATPase subfamilies with no ion specificities assigned to them. In order to elucidate ATP13A4 function, we studied the protein's subcellular localization and tested whether it is involved in calcium regulation. The intracellular calcium concentration was measured in COS-7 cells over-expressing mouse ATP13A4 using ratiometric calcium imaging with fura-2 AM as a calcium indicator. The results of this study show that ATP13A4 is localized to the endoplasmic reticulum (ER). Furthermore, we demonstrate that over-expression of ATP13A4 in COS-7 cells caused a significant increase in the intracellular calcium level. Interestingly, over-expression of the sequence variant containing a substitution of aspartic acid for a glutamic acid (E646D), previously found in patients with autism spectrum disorder (ASD), did not increase the free cellular calcium likely due to the mutation. In this study, we also describe the expression of ATP13A4 during mouse embryonic development. Quantitative real-time PCR revealed that ATP13A4 was highly expressed at embryonic days 15-17, when neurogenesis takes place. The present study is the first to provide further insights into the biological role of a P5-type ATPase. Our results demonstrate that ATP13A4 may be involved in calcium regulation and that its expression is developmentally regulated. Overall, this study provides support for the hypothesis that ATP13A4 may play a vital role in the developing nervous system and its impairment can contribute to the symptoms seen in ASD.

  1. Towards defining the substrate of orphan P5A-ATPases

    DEFF Research Database (Denmark)

    Sørensen, Danny Mollerup; Holen, Henrik Waldal; Holemans, Tine;

    2015-01-01

    Background P-type ATPases are ubiquitous ion and lipid pumps found in cellular membranes. P5A-ATPases constitute a poorly characterized subfamily of P-type ATPases present in all eukaryotic organisms but for which a transported substrate remains to be identified. Scope of review This review aims ...... significance Identification of the substrate of P5A-ATPases would throw light on an important general process in the ER that is still not fully understood. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins....

  2. Structure and mechanism of Zn2+-transporting P-type ATPases

    DEFF Research Database (Denmark)

    Wang, Kaituo; Sitsel, Oleg; Meloni, Gabriele

    2014-01-01

    Zinc is an essential micronutrient for all living organisms. It is required for signalling and proper functioning of a range of proteins involved in, for example, DNA binding and enzymatic catalysis1. In prokaryotes and photosynthetic eukaryotes, Zn2+-transporting P-type ATPases of class IB (ZntA...... been proposed for H+-ATPases. Indeed, transport studies in liposomes provide experimental support for ZntA activity without counter transport. These findings suggest a mechanistic link between PIB-type Zn2+-ATPases and PIII-type H+-ATPases and at the same time show structural features...

  3. Regulation of Copper Transport Crossing Brain Barrier Systems by Cu-ATPases: Effect of Manganese Exposure

    OpenAIRE

    Fu, Xue; Zhang, Yanshu; Jiang, Wendy; Monnot, Andrew Donald; Bates, Christopher Alexander; Zheng, Wei

    2014-01-01

    Regulation of cellular copper (Cu) homeostasis involves Cu-transporting ATPases (Cu-ATPases), i.e., ATP7A and ATP7B. The question as to how these Cu-ATPases in brain barrier systems transport Cu, i.e., toward brain parenchyma, cerebrospinal fluid (CSF), or blood, remained unanswered. This study was designed to characterize roles of Cu-ATPases in regulating Cu transport at the blood-brain barrier (BBB) and blood-CSF barrier (BCB) and to investigate how exposure to toxic manganese (Mn) altered ...

  4. RIN4 functions with plasma membrane H+-ATPases to regulate stomatal apertures during pathogen attack

    DEFF Research Database (Denmark)

    Liu, Jun; Elmore, James M.; Fuglsang, Anja Thoe;

    2009-01-01

    exhibit differential PM H+-ATPase activity. PM H+-ATPase activation induces stomatal opening, enabling bacteria to gain entry into the plant leaf; inactivation induces stomatal closure thus restricting bacterial invasion. The rin4 knockout line exhibited reduced PM H+-ATPase activity and, importantly, its...... stomata could not be re-opened by virulent Pseudomonas syringae. We also demonstrate that RIN4 is expressed in guard cells, highlighting the importance of this cell type in innate immunity. These results indicate that the Arabidopsis protein RIN4 functions with the PM H+-ATPase to regulate stomatal...

  5. Experimental determination of control by the H+-ATPase in Escherichia coli

    DEFF Research Database (Denmark)

    Jensen, Peter Ruhdal; Michelsen, Ole; Westerhoff, H. V.

    1995-01-01

    Strains carrying deletions in the atp genes, encoding the H+-ATPase, were unable to grow on nonfermentable substrates such as succinate, whereas with glucose as the substrate the growth rate of an atp deletion mutant was surprisingly high (some 75-80% of wild-type growth rate). The rate of glucose...... coefficient by the H+-ATPase with respect to growth rate and catabolic fluxes was measured. Control on growth rate was absent at the wildtype concentration of H+-ATPase, independent of whether the substrate for growth was glucose or succinate. Control by the H+-ATPase on the catabolic fluxes, including...

  6. Regulation of branchial V-H(+)-ATPase, Na(+)/K(+)-ATPase and NHE2 in response to acid and base infusions in the Pacific spiny dogfish (Squalus acanthias).

    Science.gov (United States)

    Tresguerres, Martin; Katoh, Fumi; Fenton, Heather; Jasinska, Edyta; Goss, Greg G

    2005-01-01

    To study the mechanisms of branchial acid-base regulation, Pacific spiny dogfish were infused intravenously for 24 h with either HCl (495+/- 79 micromol kg(-1) h(-1)) or NaHCO(3) (981+/-235 micromol kg(-1) h(-1)). Infusion of HCl produced a transient reduction in blood pH. Despite continued infusion of acid, pH returned to normal by 12 h. Infusion of NaHCO(3) resulted in a new steady-state acid-base status at approximately 0.3 pH units higher than the controls. Immunostained serial sections of gill revealed the presence of separate vacuolar proton ATPase (V-H(+)-ATPase)-rich or sodium-potassium ATPase (Na(+)/K(+)-ATPase)-rich cells in all fish examined. A minority of the cells also labeled positive for both transporters. Gill cell membranes prepared from NaHCO(3)-infused fish showed significant increases in both V-H(+)-ATPase abundance (300+/-81%) and activity. In addition, we found that V-H(+)-ATPase subcellular localization was mainly cytoplasmic in control and HCl-infused fish, while NaHCO(3)-infused fish demonstrated a distinctly basolateral staining pattern. Western analysis in gill membranes from HCl-infused fish also revealed increased abundance of Na(+)/H(+) exchanger 2 (213+/-5%) and Na(+)/K(+)-ATPase (315+/-88%) compared to the control.

  7. Differential roles of the COOH termini of AAA subunits of PA700 (19 S regulator) in asymmetric assembly and activation of the 26 S proteasome.

    Science.gov (United States)

    Gillette, Thomas G; Kumar, Brajesh; Thompson, David; Slaughter, Clive A; DeMartino, George N

    2008-11-14

    The 26 S proteasome is an energy-dependent protease that degrades proteins modified with polyubiquitin chains. It is assembled from two multi-protein subcomplexes: a protease (20 S proteasome) and an ATPase regulatory complex (PA700 or 19 S regulatory particle) that contains six different AAA family subunits (Rpt1 to -6). Here we show that binding of PA700 to the 20 S proteasome is mediated by the COOH termini of two (Rpt2 and Rpt5) of the six Rpt subunits that constitute the interaction surface between the subcomplexes. COOH-terminal peptides of either Rpt2 or Rpt5 bind to the 20 S proteasome and activate hydrolysis of short peptide substrates. Simultaneous binding of both COOH-terminal peptides had additive effects on peptide substrate hydrolysis, suggesting that they bind to distinct sites on the proteasome. In contrast, only the Rpt5 peptide activated hydrolysis of protein substrates. Nevertheless, the COOH-terminal peptide of Rpt2 greatly enhanced this effect, suggesting that proteasome activation is a multistate process. Rpt2 and Rpt5 COOH-terminal peptides cross-linked to different but specific subunits of the 20 S proteasome. These results reveal critical roles of COOH termini of Rpt subunits of PA700 in the assembly and activation of eukaryotic 26 S proteasome. Moreover, they support a model in which Rpt subunits bind to dedicated sites on the proteasome and play specific, nonequivalent roles in the asymmetric assembly and activation of the 26 S proteasome.

  8. Recovery from blood alkalosis in the Pacific hagfish (Eptatretus stoutii): involvement of gill V-H+-ATPase and Na+/K+-ATPase.

    Science.gov (United States)

    Tresguerres, Martin; Parks, Scott K; Goss, Greg G

    2007-09-01

    To investigate the base secretory mechanisms in the Pacific hagfish (Eptatretus stoutii), we injected animals with NaHCO3 into the subcutaneous sinus. In the first series of experiments, hagfish were injected with 6000 micromol kg(-1) NaHCO3 (base-infused hagfish, BIH) or NaCl (controls). Blood pH increased significantly 1 h after injection in BIH (8.05+/-0.05 vs. 7.82+/-0.03 pH units), but returned to control values by t=6 h. Plasma total CO2 (TCO2) followed the same pattern. Immunolabeled sections revealed that Na+/K+-ATPase and V-H+-ATPase were usually located in the same cells. Western blotting revealed that the abundance of both proteins remained unchanged in whole gill homogenates and in a fraction enriched in cell membranes 6 h after the injections. The second experimental series was to induce long-term alkalosis by serially injecting 6000 micromol kg(-1) NaHCO3 every 6 h for 24 h. Blood pH completely recovered from the base loads within 6 h after each injection. Moreover, plasma TCO2 was not elevated 3 h after the second infusion, suggesting that HCO3(-) secreting mechanisms had been upregulated by that time. Na+/K+-ATPase and V-H+-ATPase cellular localizations did not change in the 24 h base infusion protocol. Na+/K+-ATPase abundance was similar in gill homogenates from fish from both treatments. However, Na+/K+-ATPase abundance in the membrane fraction was significantly lower in BIH, while V-H+-ATPase was greater both in whole gill and membrane fractions. Our results suggest that differential insertion of V-H+-ATPase and Na+/K+-ATPase into the basolateral membrane is involved in recovering from alkalotic stress in hagfish.

  9. GABA B receptor subunit expression in glia.

    Science.gov (United States)

    Charles, K J; Deuchars, J; Davies, C H; Pangalos, M N

    2003-09-01

    GABA(B) receptor subunits are widely expressed on neurons throughout the CNS, at both pre- and postsynaptic sites, where they mediate the late, slow component of the inhibitory response to the major inhibitory neurotransmitter GABA. The existence of functional GABA(B) receptors on nonneuronal cells has been reported previously, although the molecular composition of these receptors has not yet been described. Here we demonstrate for the first time, using immunohistochemistry the expression of GABA(B1a), GABA(B1b), and GABA(B2) on nonneuronal cells of the rat CNS. All three principle GABA(B) receptor subunits were expressed on these cells irrespective of whether they had been cultured or found within brain tissue sections. At the ultrastructural level GABA(B) receptor subunits were expressed on astrocytic processes surrounding both symmetrical and assymetrical synapses in the CA1 subregion of the hippocampus. In addition, GABA(B1a), GABA(B1b), and GABA(B2) receptor subunits were expressed on activated microglia in culture but were not found on myelin forming oligodendrocytes in the white matter of rat spinal cord. Together these data demonstrate that the obligate subunits of functional GABA(B) receptors are expressed in astrocytes and microglia in the rat CNS.

  10. Suramin inhibits Hsp104 ATPase and disaggregase activity.

    Directory of Open Access Journals (Sweden)

    Mariana P Torrente

    Full Text Available Hsp104 is a hexameric AAA+ protein that utilizes energy from ATP hydrolysis to dissolve disordered protein aggregates as well as amyloid fibers. Interestingly, Hsp104 orthologues are found in all kingdoms of life except animals. Thus, Hsp104 could represent an interesting drug target. Specific inhibition of Hsp104 activity might antagonize non-metazoan parasites that depend on a potent heat shock response, while producing little or no side effects to the host. However, no small molecule inhibitors of Hsp104 are known except guanidinium chloride. Here, we screen over 16,000 small molecules and identify 16 novel inhibitors of Hsp104 ATPase activity. Excluding compounds that inhibited Hsp104 activity by non-specific colloidal effects, we defined Suramin as an inhibitor of Hsp104 ATPase activity. Suramin is a polysulphonated naphthylurea and is used as an antiprotozoal drug for African Trypanosomiasis. Suramin also interfered with Hsp104 disaggregase, unfoldase, and translocase activities, and the inhibitory effect of Suramin was not rescued by Hsp70 and Hsp40. Suramin does not disrupt Hsp104 hexamers and does not effectively inhibit ClpB, the E. coli homolog of Hsp104, establishing yet another key difference between Hsp104 and ClpB behavior. Intriguingly, a potentiated Hsp104 variant, Hsp104A503V, is more sensitive to Suramin than wild-type Hsp104. By contrast, Hsp104 variants bearing inactivating sensor-1 mutations in nucleotide-binding domain (NBD 1 or 2 are more resistant to Suramin. Thus, Suramin depends upon ATPase events at both NBDs to exert its maximal effect. Suramin could develop into an important mechanistic probe to study Hsp104 structure and function.

  11. Monomers of the Neurospora plasma membrane H+-ATPase catalyze efficient proton translocation.

    Science.gov (United States)

    Goormaghtigh, E; Chadwick, C; Scarborough, G A

    1986-06-05

    Liposomes prepared by sonication of asolectin were fractionated by glycerol density gradient centrifugation, and the small liposomes contained in the upper region of the gradients were used for reconstitution of purified, radiolabeled Neurospora plasma membrane H+-ATPase molecules by our previously published procedures. The reconstituted liposomes were then subjected to two additional rounds of glycerol density gradient centrifugation, which separate the H+-ATPase-bearing proteoliposomes from ATPase-free liposomes by virtue of their greater density. The isolated H+-ATPase-bearing proteoliposomes in two such preparations exhibited a specific H+-ATPase activity of about 11 mumol of Pi liberated/mg of protein/min, which was approximately doubled in the presence of nigericin plus K+, indicating that a large percentage of the H+-ATPase molecules in both preparations were capable of generating a transmembrane protonic potential difference sufficient to impede further proton translocation. Importantly, quantitation of the number of 105,000-dalton ATPase monomers and liposomes in the same preparations by radioactivity determination and counting of negatively stained images in the electron microscope indicated ATPase monomer to liposome ratios of 0.97 and 1.06. Because every liposome in the preparations must have had at least one ATPase monomer, these ratios indicate that very few of the liposomes had more than one, and simple calculations show that the great majority of active ATPase molecules in the preparations must have been present as proton-translocating monomers. The results thus clearly demonstrate that 105,000-dalton monomers of the Neurospora plasma membrane H+-ATPase can catalyze efficient ATP hydrolysis-driven proton translocation.

  12. Effects of phenol on ATPase activities in crude gill homogenates of rainbow trout (Salmo gairdneri Richardson)

    Energy Technology Data Exchange (ETDEWEB)

    Poston, T.M.

    1979-01-01

    The ATPase specific activities from crude gill homogenates of rainbow trout were lower than those from microsomal preparations reported in the literature. Sodium pump activity (ouabain sensitive NaK-ATPase) was demonstrable at 37/sup 0/C. An ouabain insensitive NaK-ATPase was demonstrable at temperatures below 30/sup 0/C and may represent a Na-ATPase activity reported by others. Energy of activation at 25/sup 0/C for total NaK-ATPase ws 10,500 cal.mole/sup -1/. Mg-baseline activity had an energy of activation at 25/sup 0/C of 15,600 cal.mole/sup -1/. Mg-baseline activity was thermally labile at temperatures in excess of 30/sup 0/C. Concentrations of Mg/sup +2/ in excess of 5 mM appeared to inhibit total NaK-ATPase activity. At 37/sup 0/C, Na/sup +/ and K/sup +/ exerted little, if any, stimulatory effect on ATPase activities, in spite of the fact that 37/sup 0/C was the only temperature at which sodium pump activity was demonstrable. MS-222 failed to produce any discernible changes in any of the demonstrable ATPase activities in crude gill homogenates. Total NaK-ATPase activities were more sensitive than Mg-baseline activities to in vitro inhibition by phenol. Concentrations of phenol which produce 50% inhibition in total NaK-ATPase produced only 35% inhibition in Mg-baseline activity. The nature of in vitro inhibition was uncompetitive. Sodium pump activity was unaffected by phenol at concentrations as high as 25 mM. An effort was made to demonstrate an in vivo effects of phenol on rainbow trout gill ATPase activites. An infestation of a parasite (Gyrodactilus) on the experimental fish precludes any definative assessment of in vivo effects.

  13. Arabidopsis thaliana GYRB3 does not encode a DNA gyrase subunit.

    Directory of Open Access Journals (Sweden)

    Katherine M Evans-Roberts

    Full Text Available DNA topoisomerases are enzymes that control the topology of DNA in all cells. DNA gyrase is unique among the topoisomerases in that it is the only enzyme that can actively supercoil DNA using the free energy of ATP hydrolysis. Until recently gyrase was thought to be unique to bacteria, but has now been discovered in plants. The genome of the model plant, Arabidopsis thaliana, is predicted to encode four gyrase subunits: AtGyrA, AtGyrB1, AtGyrB2 and AtGyrB3.We found, contrary to previous data, that AtGyrB3 is not essential to the survival of A. thaliana. Bioinformatic analysis suggests AtGyrB3 is considerably shorter than other gyrase B subunits, lacking part of the ATPase domain and other key motifs found in all type II topoisomerases; but it does contain a putative DNA-binding domain. Partially purified AtGyrB3 cannot bind E. coli GyrA or support supercoiling. AtGyrB3 cannot complement an E. coli gyrB temperature-sensitive strain, whereas AtGyrB2 can. Yeast two-hybrid analysis suggests that AtGyrB3 cannot bind to AtGyrA or form a dimer.These data strongly suggest that AtGyrB3 is not a gyrase subunit but has another unknown function. One possibility is that it is a nuclear protein with a role in meiosis in pollen.

  14. Regulatory Mechanisms in the P4-ATPase Complex

    DEFF Research Database (Denmark)

    Costa, Sara

    as these transporters are trapped in an environment formed by their own substrate (lipids). Most lipid uptake assays use fluorescent lipid analogues in combination with flow cytometry analysis. However, flow cytometry systems are rather expensive and require extensive maintenance. Thus, we present a simple and more...... affordable alternative using a microscope-based cytometer. This system can simultaneously provide information on flippase activity and expression levels. Taken together, the findings described in this thesis provide new tools for P4-ATPase characterization and valuable insights into the regulation...

  15. Expression of a prokaryotic P-type ATPase in E. coli Plasma Membranes and Purification by Ni2+-affinity chromatography

    Directory of Open Access Journals (Sweden)

    Geisler Markus

    1998-01-01

    Full Text Available In order to characterize the P-type ATPase from Synechocystis 6803 [Geisler (1993 et al. J. Mol. Biol. 234, 1284] and to facilitate its purification, we expressed an N-terminal 6xHis-tagged version of the ATPase in an ATPase deficient E. coli strain. The expressed ATPase was immunodetected as a dominant band of about 97 kDa localized to the E. coli plasma membranes representing about 20-25% of the membrane protein. The purification of the Synecho-cystis 6xHis-ATPase by single-step Ni-affinity chromatography under native and denaturating conditions is described. ATPase activity and the formation of phosphointermediates verify the full function of the enzyme: the ATPase is inhibited by vanadate (IC50= 119 &mgr;M and the formation of phosphorylated enzyme intermediates shown by acidic PAGE depends on calcium, indicating that the Synechocystis P-ATPase functions as a calcium pump.

  16. Activity of the Na,K-ATPase alpha4 isoform is important for membrane potential, intracellular Ca2+, and pH to maintain motility in rat spermatozoa.

    Science.gov (United States)

    Jimenez, Tamara; Sánchez, Gladis; Wertheimer, Eva; Blanco, Gustavo

    2010-05-01

    While the function of the ubiquitous Na,K-ATPase alpha1 subunit has been well documented, the role of the sperm-specific alpha4 isoform of this ion transporter is less known. We have explored the importance of alpha4 in rat sperm physiology by taking advantage of the high sensitivity of this isoform for the inhibitor ouabain. Using concentrations that selectively block alpha4 activity, we found ouabain to reduce not only sperm total motility, but also multiple parameters of sperm movement, including progressive motility, straight line, curvilinear, and average path velocities, lateral head displacement, beat cross frequency, and linearity. According to a direct role of alpha4 in Na(+) transport, ouabain inhibition of alpha4 increased [Na(+)](i) in the male gametes. In addition, interference of alpha4 activity with ouabain produced cell membrane depolarization, diminished pH, and increased [Ca(2)(+)](i) in spermatozoa. Inhibition of alpha4 was sufficient to cause all these effects and additional blockage of alpha1, the other Na,K-ATPase alpha isoform expressed in sperm, and higher doses of ouabain did not result in further changes in the cell parameters studied. These results show that alpha4 is the Na,K-ATPase isoform primarily involved in controlling the transmembrane Na(+) gradient in sperm, and that alpha4 activity is necessary for maintaining membrane potential, [Ca(2)(+)](i), and [H(+)](i) in the cells. The high dependence of sperm motility on membrane excitability, [Ca(2)(+)](i), and acid-base balance suggests that their regulation is the mechanism by which alpha4 maintains motility of the male gametes.

  17. Demethoxycurcumin is a potent inhibitor of P-type ATPases from diverse kingdoms of life

    DEFF Research Database (Denmark)

    Dao, Trong Tuan; Sehgal, Pankaj; Thanh Tung, Truong;

    2016-01-01

    P-type ATPases catalyze the active transport of cations and phospholipids across biological membranes. Members of this large family are involved in a range of fundamental cellular processes. To date, a substantial number of P-type ATPase inhibitors have been characterized, some of which are used ...

  18. Plant P4-ATPases: lipid translocators with a role in membrane traficking

    DEFF Research Database (Denmark)

    Lopez Marques, Rosa Laura

    The secretory pathway is involved in several vital cellular processes, including host-pathogen interactions, nutrient and gravity sensing, and protein sorting [1-3]. In the past years, a subfamily of P-type ATPases has been suggested to be involved in vesicle formation. P-type ATPases comprise a ...

  19. On Allosteric Modulation of P-Type Cu+-ATPases

    DEFF Research Database (Denmark)

    Mattle, Daniel; Sitsel, Oleg; Autzen, Henriette Elisabeth

    2013-01-01

    -specific sequence motifs and structural elements that are linked to transport specificity and mechanistic modulation. Here we provide an overview of the Cu+-transporting ATPases (of subclass PIB) and compare them to the well-studied sarco(endo)plasmic reticulum Ca2 +-ATPase (of subclass PIIA). Cu+ ions in the cell...

  20. Copper-transporting P-type ATPases use a unique ion-release pathway

    DEFF Research Database (Denmark)

    Andersson, Magnus; Mattle, Daniel; Sitsel, Oleg

    2014-01-01

    Heavy metals in cells are typically regulated by PIB-type ATPases. The first structure of the class, a Cu(+)-ATPase from Legionella pneumophila (LpCopA), outlined a copper transport pathway across the membrane, which was inferred to be occluded. Here we show by molecular dynamics simulations...

  1. Properties of the V-type ATPase from the excretory system of the usherhopper, Poekilocerus bufonius.

    Science.gov (United States)

    Al-Fifi, Z I A; Al-Robai, A; Khoja, S M

    2002-09-01

    The bafilomycin A(1) and N-ethylmaleimide (NEM)-sensitive (V-type) ATPase was partially purified from the apical membrane-rich fractions of excretory system (Malpighian tubules and hind gut) of P. bufonius. Enzymatic activity was inhibited by bafilomycin A(1) (IC(50) = 1.3 nM) and NEM (IC(50) = 10.1 microM). The V-type ATPase activity is confined to the apical membrane fraction, while the activity of Na(+)/K(+) -ATPase forms the major part of the basal membrane fraction. The optimal pH required for maximal activity of V-type ATPase was pH 7.5. The effect of 30 mM of various salts on ATPase activity was investigated. NaCl and KCl caused increases of 175% and 184%, respectively. Other chloride salts also caused an increase in activity in the following ascending order: RbCl, LiCI, choline Cl, NaCI, KCl and tris-HCl. The activity of V-type ATPase was stimulated by a variety of different anions and cations, and HCO(3)(-) was found to be the most potent cationic activator of ATPase activity. The present results show that the properties of V-type ATPase of P. bufonius are similar to those reported for other insect tissues.

  2. Inhibition of acetylcholinesterase and different ATPases by a novel phosphorothionate (RPR-II) in rat brain.

    Science.gov (United States)

    Rahman, M F; Siddiqui, M K; Jamil, K

    2000-10-01

    A novel phosphorothionate (2-butenoic acid-3-(diethoxy phosphinothioyl)-methyl ester (RPR-II), synthesized at the Indian Institute of Chemical Technology, Hyderabad, targets its effect on rat brain acetylcholinesterase (AChE) and Na(+)-K(+), Mg(2+), and Ca(2+) ATPases, as evident in this investigation. Three subchronic doses 0.014 (low), 0.028 (medium), and 0.042 (high) mg kg(-1) were administered to rats daily for a period of 90 days RPR-II caused statistically significant dose- and time-dependent inhibition in brain AChE and also in Na(+)-K(+), Mg(2+), and Ca(2+) ATPases in both male and female rats after 45 and 90 days of treatment. The low dose was generally insignificant while the medium and high doses were significantly effective. Females were more susceptible than males with regard to brain AChE, Na(+)-K(+), and Mg(2+) ATPases, which indicates sexual dimorphism in the treated rats. Interestingly, after 28 days post-treatment, recovery of these enzymes was observed. The relative sensitivities of these enzymes indicated that brain AChE was more sensitive than any of the ATPases, but among the ATPases Na(+)-K(+) ATPase was more susceptible than Ca(2+) or Mg(2+) ATPases. This compound, besides inhibiting the target of organophosphates, AChE, also inhibited different ATPases, suggesting both synaptic transmission and nerve conduction were affected.

  3. A novel mechanism of P-type ATPase autoinhibition involving both termini of the protein

    DEFF Research Database (Denmark)

    Ekberg, Kira; Palmgren, Michael; Veierskov, Bjarke;

    2010-01-01

    The activity of many P-type ATPases is found to be regulated by interacting proteins or autoinhibitory elements located in N- or C-terminal extensions. An extended C terminus of fungal and plant P-type plasma membrane H+-ATPases has long been recognized to be part of a regulatory apparatus...

  4. Excess capacity of H+ ATPase and inverse respiratory control in Escherichia coli

    DEFF Research Database (Denmark)

    Jensen, Peter Ruhdal; Westerhoff, Hans V.; Michelsen, Ole

    1993-01-01

    With succinate as free-energy source, Escherichia coli generating virtually all ATP by oxidative phosphorylation might be expected heavily to tax its ATP generating capacity. To examine this the H+-ATPase (ATP synthase) was modulated over a 30-fold range. Decreasing the amount of H+-ATPase reduced...

  5. The Na/K-ATPase-mediated signal transduction as a target for new drug development.

    Science.gov (United States)

    Xie, Zijian; Xie, Joe

    2005-09-01

    The Na/K-ATPase, or Na+ pump, is a member of the P-type ATPase superfamily. In addition to pumping ions, the Na/K-ATPase is a receptor that not only regulates the function of protein kinases, but also acts as a scaffold, capable of tethering different proteins into a signalplex. The signaling Na/K-ATPase resides in caveolae and forms a "binary receptor" with the tyrosine kinase Src. Endogenous cardiotonic steroids and digitalis drugs such as ouabain act as agonists and provoke this binary receptor, resulting in tyrosine phosphorylation of the proteins that are either associated with, or in close proximity to, the signaling Na/K-ATPase. Subsequently, this initiates protein kinase cascades including ERKs and PKC isozymes. It also increases mitochondrial production of reactive oxygen species (ROS) and regulates intracellular calcium concentration. Like other receptors, activation of the Na/K-ATPase/Src by ouabain induces the endocytosis of the plasma membrane Na/K-ATPase. Significantly, this newly appreciated signaling function of the Na/K-ATPase appears to play an important role in the pathogenesis of many cardiovascular diseases, therefore serving as an important target for development of novel therapeutic agents.

  6. The molecular structure of the Na(+)-translocating F1F0-ATPase of Acetobacterium woodii, as revealed by electron microscopy, resembles that of H(+)-translocating ATPases.

    Science.gov (United States)

    Reidlinger, J; Mayer, F; Müller, V

    1994-12-12

    The Na(+)-translocating F1F0-ATPase of Acetobacterium woodii was examined by electron microscopy. After reconstitution into proteoliposomes, knobs typical for the F1 domain were visible on the outside of the membrane. The F1-part of the isolated enzyme showed a hexagonal symmetry suggesting an alpha 3 beta 3 structure, and the F1F0 complex had molecular dimensions very similar to those of H(+)-translocating ATPases of E. coli, chloroplasts, and mitochondria.

  7. 家鸽mtDNA ATPase8和ATPase6基因的分子克隆及序列分析%Molecular cloning and sequence analyzing of mtDNA ATPase8 and ATPase6 gene in pigeon

    Institute of Scientific and Technical Information of China (English)

    张慧霞; 吴建平; 张利平; 宗卉

    2007-01-01

    利用特异引物,通过聚合酶链式反应(polymerase chain reaction,PCR)技术,从家鸽(Columba livia)肝脏组织的总DNA中扩增到目的片段,并将扩增产物克隆到pMD18-T载体中,经菌落PCR与酶切鉴定、序列测定及序列分析.结果表明:克隆得到了家鸽ATPase8-ATPase6基因842 bp及COⅡ的部分序列共861 bp.用DNA分析软件对家鸽ATPase8和ATPase6基因与Genbank中的5种鸟类的ATPase8和ATPase6基因序列进行比较分析,表明家鸽与其他5种鸟类的ATPase8和ATPase6基因具有较高的同源性(88.1 %~75.0 %),其中与山斑鸠(Streptopelia orientalis)的同源性最高,分别为88.1%和86.5%.家鸽ATPase8和ATPase6基因核苷酸序列的组成中,(A+T)含量分别为55.95%和54.68%,与其它5种鸟类的(A+T)含量(53.5%~60.12%)和(51.9%~54.24%)相近,说明鸟类ATPase8和ATPase6基因序列组成对A+T核苷酸的偏倚程度比较低;而且家鸽该片段的基因组织结构与其他鸟类的基本一致,显示鸟类线粒体基因排列的保守性.家鸽与其他5种鸟类的ATPase8和ATPase6基因序列同源性的分子进化树聚类结果表明家鸽与山斑鸠亲缘关系最近.

  8. Spin-labelled vacuolar-ATPase inhibitors in lipid membranes.

    Science.gov (United States)

    Dixon, Neil; Páli, Tibor; Kee, Terence P; Marsh, Derek

    2004-10-11

    Two spin-labelled derivatives of the 5-(2-indolyl)-2,4-pentadienoyl class of inhibitors of the vacuolar ATPase have been synthesised and their EPR properties characterised in phospholipid membranes. One spin-labelled inhibitor is the amide derivative of pentadienic acid and 4-amino-TEMPO (INDOL6), and the other is the 3-hydroxymethyl-PROXYL ester (INDOL5). The response of the EPR spectra to the chain-melting transition of dimyristoyl phosphatidylcholine (DMPC) bilayers demonstrates that both derivatives incorporate in phospholipid membranes. The axially anisotropic EPR spectra of INDOL6 in fluid DMPC membranes indicate that the indolyl-pentadienoyl inhibitors intercalate between the lipid chains, in the membrane. INDOL5, designed to possess additional internal segmental mobility, exhibits more nearly isotropic motion of the spin-label moiety in fluid membranes than does INDOL6. The EPR characteristics of INDOL5 are therefore well suited to detecting specific ligand-protein interactions. Progressive saturation EPR experiments with polar and hydrophobic relaxation agents (aqueous Ni2+ and oxygen) show that the nitroxide group is buried in the membrane, with the indole moiety providing the anchor at the membrane polar-apolar interface. Rates of spin-label reduction by externally added ascorbate confirm this assignment. These two spin-labelled derivatives provide complementary EPR probes of the lipid environment (INDOL6), and of ligand-protein interactions (INDOL5), for this class of V-ATPase inhibitor.

  9. Nitric oxide and Na,K-ATPase activity in rat skeletal muscle

    DEFF Research Database (Denmark)

    Juel, Carsten

    2016-01-01

    Aim: It has been suggested that nitric oxide (NO) stimulates the Na,K-ATPase in cardiac myocytes. Therefore, the aims of this study were to investigate whether NO increases Na,K-ATPase activity in skeletal muscle and, if that is the case, to identify the underlying mechanism. Method: The study used...... activity was depressed by oxidized glutathione. Conclusion: NO and cGMP stimulate the Na,K-ATPase in glycolytic skeletal muscle. Direct S-nitrosylation and interference with S-glutathionylation seem to be excluded. In addition, phosphorylation of phospholemman at serine 68 is not involved. Most likely...... isolated rat muscle, muscle homogenates and purified membranes as model systems. Na,K-ATPase activity was quantified from phosphate release due to ATP hydrolysis. Results: Exposure to the NO donor spermine NONOate (10 μm) increased the maximal Na,K-ATPase activity by 27% in isolated glycolytic muscles...

  10. The ATPases of cohesin interface with regulators to modulate cohesin-mediated DNA tethering.

    Science.gov (United States)

    Çamdere, Gamze; Guacci, Vincent; Stricklin, Jeremiah; Koshland, Douglas

    2015-11-19

    Cohesin tethers together regions of DNA, thereby mediating higher order chromatin organization that is critical for sister chromatid cohesion, DNA repair and transcriptional regulation. Cohesin contains a heterodimeric ATP-binding Cassette (ABC) ATPase comprised of Smc1 and Smc3 ATPase active sites. These ATPases are required for cohesin to bind DNA. Cohesin's DNA binding activity is also promoted by the Eco1 acetyltransferase and inhibited by Wpl1. Recently we showed that after cohesin stably binds DNA, a second step is required for DNA tethering. This second step is also controlled by Eco1 acetylation. Here, we use genetic and biochemical analyses to show that this second DNA tethering step is regulated by cohesin ATPase. Furthermore, our results also suggest that Eco1 promotes cohesion by modulating the ATPase cycle of DNA-bound cohesin in a state that is permissive for DNA tethering and refractory to Wpl1 inhibition.

  11. Identification of calcium-transporting ATPases of Entamoeba histolytica and cellular localization of the putative SERCA.

    Science.gov (United States)

    Martinez-Higuera, Aarón; Salas-Casas, Andrés; Calixto-Gálvez, Mercedes; Chávez-Munguía, Bibiana; Pérez-Ishiwara, D Guillermo; Ximénez, Cecilia; Rodríguez, Mario A

    2013-09-01

    Calcium has an important role on signaling of different cellular processes in the protozoa parasite Entamoeba histolytica, including development and pathogenesis. However, the systems that control calcium responses in this parasite are incompletely understood. Calcium-ATPases (Ca(2+)-ATPases) are proteins that play an important role in calcium homeostasis by catalyzing the active efflux of this ion from cytoplasm and are essential to the correct functioning of the cell machinery. Here, we reported the identification of five E. histolytica genes encoding putative Ca(2+)-ATPases, three related to PMCA, and two related to organellar ATPases. RT-PCR assays showed that all those genes are expressed in trophozoites and specific antibodies against the SERCA-like member located this protein in a continuous cytoplasmic network, supporting the hypothesis that it corresponds to the Ca(2+)-ATPase responsible to sequester calcium in the endoplasmic reticulum of this parasite.

  12. Phosphorylation of plant plasma membrane H+-ATPase by the heterologous host S.cerevisiae

    DEFF Research Database (Denmark)

    L. Rudashevskaya, Elena; Ye, Juanying; Jensen, Ole Nørregaard;

    of heterologous system of yeast cells, expressing plant proton pump. Therefore identification of possible regulatory effects by phosphorylation events in plant H+-ATPase in the system is significant. A number of putative phosphorylation sites at regulatory C-domain of H+-ATPase (AHA2) have been point...... It is known, that phosphorylation of both plant and yeast plasma membrane H+-ATPase results in enzyme activation or inhibition. Several sites at the regulatory C-terminus of the enzyme have been found to undergo phosphorylation in vivo in both plant and yeast. The C-termini of plant H......+-ATPases are app. 60 amino acid residues longer than their yeast homologous. Yeast is found to phosphorylate at least one residue within the plant C-terminus. At the same time a wide range of investigations on structure, function, regulation and interaction of H+-ATPase is carried out with implication...

  13. V-H(+)-ATPase, Na(+)/K(+)-ATPase and NHE2 immunoreactivity in the gill epithelium of the Pacific hagfish (Epatretus stoutii).

    Science.gov (United States)

    Tresguerres, Martin; Parks, Scott K; Goss, Greg G

    2006-11-01

    We report the presence of the ion transporting proteins V-H(+)-ATPase, Na(+)/K(+)-ATPase and NHE2 in the gill epithelium of the Pacific hagfish Epatretus stoutii. Heterologous antibodies recognized single bands of the appropriate sizes for the three transporters in western blots. Immunohistochemical staining revealed that the distribution of labeled cells in the gill epithelium was identical for the three proteins. Immunopositive cells were most abundant in the primary filament from the afferent side of the gill pouch, and their number diminished towards the lamella. Na(+)/K(+)-ATPase-like immunoreactivity (L-IR) occurred throughout the cell cytoplasm, probably associated to the basolateral tubular system. V-H(+)-ATPase L-IR was similar to Na(+)/K(+)-ATPase, although some cells had slightly heavier staining in either the supra- or infra-nuclear region. NHE2 L-IR was also generally cytoplasmic, but a minority of the cells had stronger immunoreactivity in the apical region. In general, all three ion transporting proteins were localized in the same cells, as estimated from 4-microm immunostained consecutive sections. We hypothesize that these putative ion-transporting cells are involved in systemic acid/base regulation and discuss other possible roles. This is the first report of V-H(+)-ATPase in myxinoids, and the first NHE2 report in the Pacific hagfish.

  14. Preparation of Na+,K+-ATPase with near maximal specific activity and phosphorylation capacity: evidence that the reaction mechanism involves all of the sites.

    Science.gov (United States)

    Martin, D W; Sachs, J R

    1999-06-01

    The phosphorylation capacity of Na+,K+-ATPase preparations in common use is much less than expected on the basis of the molecular weight of the enzyme deduced from cDNA sequences. This has led to the popularity of half-of-the-sites or flip-flop models for the enzyme reaction mechanism. We have prepared Na+,K+-ATPase from nasal salt glands of salt-adapted ducks which has a phosphorylation capacity and specific activity near the theoretical maxima. Preparations with specific activities of >60 micromol (mg of protein)-1 min-1 at 37 degrees C had phosphorylation capacities of >60 nmol/mg of protein, and the rate of turnover of the enzyme was 9690 min-1, within the range reported for the enzyme from other sources. The fraction of the maximal specific activity of the enzyme compared well with the fraction of the protein on SDS-PAGE which was alpha and beta chains, especially at the highest specific activity which indicates that all of the alphabeta protomers are active. The gels of the most reactive preparations contained only alpha and beta chains, but less active preparations contained a number of extraneous proteins. The major contaminant was actin. The preparation did not contain any protein which migrated in the molecular weight range of the gamma subunit. The subunit composition of the enzyme was alpha1 and beta1 only. This is the first report of a pure, homogeneous, fully active preparation of the protein. Reaction models which incorporate a half-of-the-sites or flip-flop mechanism do not apply to this enzyme.

  15. Combined effects of EGFR tyrosine kinase inhibitors and vATPase inhibitors in NSCLC cells

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyeon-Ok [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Hong, Sung-Eun [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Kim, Chang Soon [Department of Microbiological Engineering, Kon-Kuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143–701 (Korea, Republic of); Park, Jin-Ah; Kim, Jin-Hee; Kim, Ji-Young; Kim, Bora [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Chang, Yoon Hwan; Hong, Seok-Il; Hong, Young Jun [Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Park, In-Chul, E-mail: parkic@kirams.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Lee, Jin Kyung, E-mail: jklee@kirams.re.kr [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of)

    2015-08-15

    Despite excellent initial clinical responses of non-small cell lung cancer (NSCLC) patients to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), many patients eventually develop resistance. According to a recent report, vacuolar H + ATPase (vATPase) is overexpressed and is associated with chemotherapy drug resistance in NSCLC. We investigated the combined effects of EGFR TKIs and vATPase inhibitors and their underlying mechanisms in the regulation of NSCLC cell death. We found that combined treatment with EGFR TKIs (erlotinib, gefitinib, or lapatinib) and vATPase inhibitors (bafilomycin A1 or concanamycin A) enhanced synergistic cell death compared to treatments with each drug alone. Treatment with bafilomycin A1 or concanamycin A led to the induction of Bnip3 expression in an Hif-1α dependent manner. Knock-down of Hif-1α or Bnip3 by siRNA further enhanced cell death induced by bafilomycin A1, suggesting that Hif-1α/Bnip3 induction promoted resistance to cell death induced by the vATPase inhibitors. EGFR TKIs suppressed Hif-1α and Bnip3 expression induced by the vATPase inhibitors, suggesting that they enhanced the sensitivity of the cells to these inhibitors by decreasing Hif-1α/Bnip3 expression. Taken together, we conclude that EGFR TKIs enhance the sensitivity of NSCLC cells to vATPase inhibitors by decreasing Hif-1α/Bnip3 expression. We suggest that combined treatment with EGFR TKIs and vATPase inhibitors is potentially effective for the treatment of NSCLC. - Highlights: • Co-treatment with EGFR TKIs and vATPase inhibitors induces synergistic cell death • EGFR TKIs enhance cell sensitivity to vATPase inhibitors via Hif-1α downregulation • Co-treatment of these inhibitors is potentially effective for the treatment of NSCLC.

  16. Ivermectin is a nonselective inhibitor of mammalian P-type ATPases.

    Science.gov (United States)

    Pimenta, Paulo Henrique Cotrim; Silva, Claudia Lucia Martins; Noël, François

    2010-02-01

    Ivermectin is a large spectrum antiparasitic drug that is very safe at the doses actually used. However, as it is being studied for new applications that would require higher doses, we should pay attention to its effects at high concentrations. As micromolar concentrations of ivermectin have been reported to inhibit the sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA), we decided to investigate its putative inhibitory effect on other two important P-type ATPases, namely the Na(+) , K(+)-ATPase and H(+)/K(+)-ATPase. We first extended the data on SERCA, using preparations from rat enriched in SERCA1a (extensor digitorum longus) and 1b (heart) isoforms. Secondly, we tested the effect of ivermectin in two preparations of rat Na(+), K(+)-ATPase in order to appreciate its putative selectivity towards the alpha(1) isoform (kidney) and the alpha(2)/alpha(3) isoforms (brain), and in an H(+)/K(+)-ATPase preparation from rat stomach. Ivermectin inhibited all these ATPases with similar IC(50) values (6-17 microM). With respect to the inhibition of the Na(+), K(+)-ATPase, ivermectin acts by a mechanism different from the classical cardiac glycosides, based on selectivity towards the isoforms, sensibility to the antagonistic effect of K(+) and to ionic conditions favoring different conformations of the enzyme. We conclude that ivermectin is a nonselective inhibitor of three important mammalian P-type ATPases, which is indicative of putative important adverse effects if this drug were used at high doses. As a consequence, we propose that novel analogs of ivermectin should be developed and tested both for their parasitic activity and in vitro effects on P-type ATPases.

  17. Antioxidation and ATPase activity in the gill of mud crab Scylla serrata under cold stress

    Institute of Scientific and Technical Information of China (English)

    KONG Xianghui; WANG Guizhong; LI Shaojing

    2007-01-01

    Mud crab (Scylla serrata) is an important commercial crustacean in China. An experiment was designed to study the effect of cold stress on S. serrata. After a one-week adaptation at 28 ℃, the temperature is suddenly reduced to 4 ℃. The crabs were sampled every 2 h for 10 h and dissected immediately to measure the enzyme activity. The crabs at room temperature (28 ℃) were used as the control group. The activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX), the content of malondialdehyde (MDA) and the activity of 4 ATPases (Na+, K+-ATPase;Mg2+-ATPase; Ca2+-ATPase; Ca2+, Mg2+-ATPase) were measured biochemically. In contrast to the control group, the SOD activity increased significantly from 2 to 6 h after the cold stress, and then decreased. The CAT and GPX activities increased in 2 h, and then decreased gradually. The content of MDA increased gradually in 4 h. The activity ofNa+, K+-ATPase decreased in 2 h, increased up to the top value at Hour 6,then decreased again. The activities of Mg2+-ATPase, Ca2+-ATPase and Ca2+, Mg2+-ATPase increased significantly in 6 h, insignificantly in any other hours. Under cold stress, the activity of antioxidative enzymes in S. serrata was reduced at first then stabilized, ROS-scavenging weakened, and MDA accumulated gradually in the gill after 6 h. The activity of the 4 ATPases in the crab decreased after 6 h,suggesting that the ability to regulate ion concentration has been paralyzed. Therefore, the maximum period to sustain healthy meat in the crab under cold stress is 6 hours.

  18. Auxin activates the plasma membrane H+-ATPase by phosphorylation during hypocotyl elongation in Arabidopsis.

    Science.gov (United States)

    Takahashi, Koji; Hayashi, Ken-ichiro; Kinoshita, Toshinori

    2012-06-01

    The phytohormone auxin is a major regulator of diverse aspects of plant growth and development. The ubiquitin-ligase complex SCF(TIR1/AFB) (for Skp1-Cul1-F-box protein), which includes the TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX (TIR1/AFB) auxin receptor family, has recently been demonstrated to be critical for auxin-mediated transcriptional regulation. Early-phase auxin-induced hypocotyl elongation, on the other hand, has long been explained by the acid-growth theory, for which proton extrusion by the plasma membrane H(+)-ATPase is a functional prerequisite. However, the mechanism by which auxin mediates H(+)-ATPase activation has yet to be elucidated. Here, we present direct evidence for H(+)-ATPase activation in etiolated hypocotyls of Arabidopsis (Arabidopsis thaliana) by auxin through phosphorylation of the penultimate threonine during early-phase hypocotyl elongation. Application of the natural auxin indole-3-acetic acid (IAA) to endogenous auxin-depleted hypocotyl sections induced phosphorylation of the penultimate threonine of the H(+)-ATPase and increased H(+)-ATPase activity without altering the amount of the enzyme. Changes in both the phosphorylation level of H(+)-ATPase and IAA-induced elongation were similarly concentration dependent. Furthermore, IAA-induced H(+)-ATPase phosphorylation occurred in a tir1-1 afb2-3 double mutant, which is severely defective in auxin-mediated transcriptional regulation. In addition, α-(phenylethyl-2-one)-IAA, the auxin antagonist specific for the nuclear auxin receptor TIR1/AFBs, had no effect on IAA-induced H(+)-ATPase phosphorylation. These results suggest that the TIR1/AFB auxin receptor family is not involved in auxin-induced H(+)-ATPase phosphorylation. Our results define the activation mechanism of H(+)-ATPase by auxin during early-phase hypocotyl elongation; this is the long-sought-after mechanism that is central to the acid-growth theory.

  19. Alanine-scanning mutagenesis of the epsilon subunit of the F1-F0 ATP synthase from Escherichia coli reveals two classes of mutants.

    Science.gov (United States)

    Xiong, H; Vik, S B

    1995-10-06

    Alanine-scanning mutagenesis was applied to the epsilon subunit of the F1-F0 ATP synthase from E. coli. Nineteen amino acid residues were changed to alanine, either singly or in pairs, between residues 10 and 93. All mutants, when expressed in the epsilon deletion strain XH1, were able to grow on succinate minimal medium. Membranes were prepared from all mutants and assayed for ATP-driven proton translocation, ATP hydrolysis +/- lauryldiethylamine oxide, and sensitivity of ATPase activity to N,N'-dicyclohexylcarbodiimide (DCCD). Most of the mutants fell into 2 distinct classes. The first group had inhibited ATPase activity, with near normal levels of membrane-bound F1, but decreased sensitivity to DCCD. The second group had stimulated ATPase activity, with a reduced level of membrane-bound F1, but normal sensitivity to DCCD. Membranes from all mutants were further characterized by immunoblotting using 2 monoclonal antibodies. A model for the secondary structure of epsilon and its role in the function of the ATP synthase has been developed. Some residues are important for the binding of epsilon to F1 and therefore for inhibition. Other residues, from Glu-59 through Glu-70, are important for the release of inhibition by epsilon that is part of the normal enzyme cycle.

  20. Purification, crystallization, and properties of F1-ATPase complexes from the thermoalkaliphilic Bacillus sp. strain TA2.A1.

    Science.gov (United States)

    Stocker, Achim; Keis, Stefanie; Cook, Gregory M; Dimroth, Peter

    2005-11-01

    Recently, we reported the cloning of the atp operon encoding for the F(1)F(0)-ATP synthase from the extremely thermoalkaliphilic bacterium Bacillus sp. strain TA2.A1. In this study, the genes encoding the F(1) moiety of the enzyme complex were cloned from the atp operon into the vector pTrc99A and expressed in Escherichia coli in two variant complexes, F(1)-wt consisting of subunits alpha(3)beta(3)gammadeltaepsilon and F(1)Deltadelta lacking the entire delta-subunit as a prerequisite for overproduction and crystallization trials. Both F(1)-wt and F(1)Deltadelta were successfully overproduced in E. coli and purified in high yield and purity. F(1)Deltadelta was crystallized by micro-batch screening yielding three-dimensional crystals that diffracted to a resolution of 3.1A using a synchrotron radiation source. After establishing cryo and dehydrating conditions, a complete set of diffraction data was collected from a single crystal. No crystals were obtained with F(1)-wt. Data processing of diffraction patterns showed that F(1)Deltadelta crystals belong to the orthorhombic space group P2(1)2(1)2(1) with unit cell parameters of a=121.70, b=174.80, and c=223.50A, alpha, beta, gamma=90.000. The asymmetric unit contained one molecule of bacterial F(1)Deltadelta with a corresponding volume per protein weight (V(M)) of 3.25A(3) Da(-1) and a solvent content of 62.1%. Silver staining of single crystals of F(1)Deltadelta analyzed by SDS-PAGE revealed four bands alpha, beta, gamma, and epsilon with identical M(r)-values as those found in the native F(1)F(0)-ATP synthase isolated from strain TA2.A1 membranes. ATPase assays of F(1)Deltadelta crystals exhibited latent ATP hydrolytic activity that was highly stimulated by lauryldimethylamine oxide, a hallmark of the native enzyme.

  1. A role for Na+,K+-ATPase α1 in regulating Rab27a localisation on melanosomes.

    Directory of Open Access Journals (Sweden)

    Antonia E G Booth

    Full Text Available The mechanism(s by which Rab GTPases are specifically recruited to distinct intracellular membranes remains elusive. Here we used Rab27a localisation onto melanosomes as a model to investigate Rab targeting. We identified the α1 subunit of Na+,K+-ATPase (ATP1a1 as a novel Rab27a interacting protein in melanocytes and showed that this interaction is direct with the intracellular M4M5 loop of ATP1a1 and independent of nucleotide bound status of the Rab. Knockdown studies in melanocytes revealed that ATP1a1 plays an essential role in Rab27a-dependent melanosome transport. Specifically, expression of ATP1a1, like the Rab27a GDP/GTP exchange factor (Rab3GEP, is essential for targeting and activation of Rab27a to melanosomes. Finally, we showed that the ability of Rab27a mutants to target to melanosomes correlates with the efficiency of their interaction with ATP1a1. Altogether these studies point to a new role for ATP1a1 as a regulator of Rab27a targeting and activation.

  2. A Role for Na+,K+-ATPase α1 in Regulating Rab27a Localisation on Melanosomes

    Science.gov (United States)

    Booth, Antonia E. G.; Tarafder, Abul K.; Hume, Alistair N.; Recchi, Chiara; Seabra, Miguel C.

    2014-01-01

    The mechanism(s) by which Rab GTPases are specifically recruited to distinct intracellular membranes remains elusive. Here we used Rab27a localisation onto melanosomes as a model to investigate Rab targeting. We identified the α1 subunit of Na+,K+-ATPase (ATP1a1) as a novel Rab27a interacting protein in melanocytes and showed that this interaction is direct with the intracellular M4M5 loop of ATP1a1 and independent of nucleotide bound status of the Rab. Knockdown studies in melanocytes revealed that ATP1a1 plays an essential role in Rab27a-dependent melanosome transport. Specifically, expression of ATP1a1, like the Rab27a GDP/GTP exchange factor (Rab3GEP), is essential for targeting and activation of Rab27a to melanosomes. Finally, we showed that the ability of Rab27a mutants to target to melanosomes correlates with the efficiency of their interaction with ATP1a1. Altogether these studies point to a new role for ATP1a1 as a regulator of Rab27a targeting and activation. PMID:25051489

  3. Phylogenetic incongruence and the evolutionary origins of cardenolide-resistant forms of Na(+) ,K(+) -ATPase in Danaus butterflies.

    Science.gov (United States)

    Aardema, Matthew L; Andolfatto, Peter

    2016-08-01

    Many distantly related insect species are specialized feeders of cardenolide-containing host plants such as milkweed (Asclepias spp.). Previous studies have revealed frequent, parallel substitution of a functionally important amino acid substitution (N122H) in the alpha subunit of Na(+) ,K(+) -ATPase in a number of these species. This substitution facilitates the ability of these insects to feed on their toxic hosts and sequester cardenolides for their own use in defense. Among milkweed butterflies of the genus Danaus, the previously established phylogeny for this group suggests that N122H arose independently and fixed in two distinct lineages. We reevaluate this conclusion by examining Danaus phylogenetic relationships using >400 orthologous gene sequences assembled from transcriptome data. Our results indicate that the three Danaus species known to harbor the N122H substitution are more closely related than previously thought, consistent with a single, common origin for N122H. However, we also find evidence of both incomplete lineage sorting and post-speciation genetic exchange among these butterfly species, raising the possibility of collateral evolution of cardenolide-insensitivity in this species group.

  4. Specialized functional diversity and interactions of the Na,K-ATPase

    Directory of Open Access Journals (Sweden)

    Igor I. Krivoi

    2016-05-01

    Full Text Available Na,K-ATPase is a protein ubiquitously expressed in the plasma membrane of all animal cells and vitally essential for their functions. A specialized functional diversity of the Na,K-ATPase isozymes is provided by molecular heterogeneity, distinct subcellular localizations and functional interactions with molecular environment. Studies over the last decades clearly demonstrated complex and isoform-specific reciprocal functional interactions between the Na,K-ATPase and neighboring proteins and lipids. These interactions are enabled by a spatially restricted ion homeostasis, direct protein-protein/lipid interactions and protein kinase signaling pathways. In addition to its ‘classical’ function in ion translocation, the Na,K-ATPase is now considered as one of the most important signaling molecules in neuronal, epithelial, skeletal, cardiac and vascular tissues. Accordingly, the Na,K-ATPase forms specialized sub-cellular multimolecular microdomains which act as receptors to circulating endogenous cardiotonic steroids triggering a number of signaling pathways. Changes in these endogenous cardiotonic steroid levels and initiated signaling responses have significant adaptive values for tissues and whole organisms under numerous physiological and pathophysiological conditions. This review discusses recent progress in the studies of functional interactions between the Na,K-ATPase and molecular microenvironment, the Na,K-ATPase-dependent signaling pathways and their significance for diversity of cell function.

  5. Demethoxycurcumin Is A Potent Inhibitor of P-Type ATPases from Diverse Kingdoms of Life.

    Science.gov (United States)

    Dao, Trong Tuan; Sehgal, Pankaj; Tung, Truong Thanh; Møller, Jesper Vuust; Nielsen, John; Palmgren, Michael; Christensen, Søren Brøgger; Fuglsang, Anja Thoe

    2016-01-01

    P-type ATPases catalyze the active transport of cations and phospholipids across biological membranes. Members of this large family are involved in a range of fundamental cellular processes. To date, a substantial number of P-type ATPase inhibitors have been characterized, some of which are used as drugs. In this work a library of natural compounds was screened and we first identified curcuminoids as plasma membrane H+-ATPases inhibitors in plant and fungal cells. We also found that some of the commercial curcumins contain several curcuminoids. Three of these were purified and, among the curcuminoids, demethoxycurcumin was the most potent inhibitor of all tested P-type ATPases from fungal (Pma1p; H+-ATPase), plant (AHA2; H+-ATPase) and animal (SERCA; Ca2+-ATPase) cells. All three curcuminoids acted as non-competitive antagonist to ATP and hence may bind to a highly conserved allosteric site of these pumps. Future research on biological effects of commercial preparations of curcumin should consider the heterogeneity of the material.

  6. Ecto-ATPases of clinical and non-clinical isolates of Acanthamoeba.

    Science.gov (United States)

    Sissons, James; Alsam, Selwa; Jayasekera, Samantha; Khan, Naveed Ahmed

    2004-11-01

    Acanthamoeba are opportunistic protozoan parasites that can cause fatal granulomatous amoebic encephalitis and eye keratitis, however the pathogenic mechanisms of Acanthamoeba remain unclear. In this study, we described the ability of live Acanthamoeba to hydrolyse extracellular ATP. Both clinical and non-clinical isolates belonging to genotypes, T1, T2, T3, T4 and T7 exhibited ecto-ATPase activities in vitro. Using non-denaturing polyacrylamide gel electrophoresis, ecto-ATPases were further characterized. All Acanthamoeba isolates tested, exhibited a single ecto-ATPase band (approximate molecular weight of 272 kDa). However, clinical isolates exhibited additional bands suggesting that ecto-ATPases may play a role in the pathogenesis of Acanthamoeba. This was supported using suramin (ecto-ATPase inhibitor), which inhibited Acanthamoeba-induced host cell cytotoxicity. Previously, we and others have shown that Acanthamoeba binds to host cells using their mannose-binding protein and binding can be blocked using exogenous alpha-mannose. In this study, we observed that alpha-mannose significantly increased ecto-ATPase activities of pathogenic Acanthamoeba belonging to T1, T2, T3 and T4 genotypes but had no effect on non-pathogenic Acanthamoeba (belonging to T7 genotype). Overall, we have shown, for the first time, that Acanthamoeba exhibit ecto-ATPase activities, which may play a role in the pathogenesis of Acanthamoeba as well as their potential role in the differentiation of pathogenic Acanthamoeba.

  7. Response of plasma membrane H+-ATPase in rice (Oryza sativa) seedlings to simulated acid rain.

    Science.gov (United States)

    Liang, Chanjuan; Ge, Yuqing; Su, Lei; Bu, Jinjin

    2015-01-01

    Understanding the adaptation of plants to acid rain is important to find feasible approaches to alleviate such damage to plants. We studied effects of acid rain on plasma membrane H(+)-ATPase activity and transcription, intracellular H(+), membrane permeability, photosynthetic efficiency, and relative growth rate during stress and recovery periods. Simulated acid rain at pH 5.5 did not affect plasma membrane H(+)-ATPase activity, intracellular H(+), membrane permeability, photosynthetic efficiency, and relative growth rate. Plasma membrane H(+)-ATPase activity and transcription in leaves treated with acid rain at pH 3.5 was increased to maintain ion homeostasis by transporting excessive H(+) out of cells. Then intracellular H(+) was close to the control after a 5-day recovery, alleviating damage on membrane and sustaining photosynthetic efficiency and growth. Simulated acid rain at pH 2.5 inhibited plasma membrane H(+)-ATPase activity by decreasing the expression of H(+)-ATPase at transcription level, resulting in membrane damage and abnormal intracellular H(+), and reduction in photosynthetic efficiency and relative growth rate. After a 5-day recovery, all parameters in leaves treated with pH 2.5 acid rain show alleviated damage, implying that the increased plasma membrane H(+)-ATPase activity and its high expression were involved in repairing process in acid rain-stressed plants. Our study suggests that plasma membrane H(+)-ATPase can play a role in adaptation to acid rain for rice seedlings.

  8. ATPase activity of the cystic fibrosis transmembrane conductance regulator.

    Science.gov (United States)

    Li, C; Ramjeesingh, M; Wang, W; Garami, E; Hewryk, M; Lee, D; Rommens, J M; Galley, K; Bear, C E

    1996-11-08

    The gene mutated in cystic fibrosis codes for the cystic fibrosis transmembrane conductance regulator (CFTR), a cyclic AMP-activated chloride channel thought to be critical for salt and water transport by epithelial cells. Plausible models exist to describe a role for ATP hydrolysis in CFTR channel activity; however, biochemical evidence that CFTR possesses intrinsic ATPase activity is lacking. In this study, we report the first measurements of the rate of ATP hydrolysis by purified, reconstituted CFTR. The mutation CFTRG551D resides within a motif conserved in many nucleotidases and is known to cause severe human disease. Following reconstitution the mutant protein exhibited both defective ATP hydrolysis and channel gating, providing direct evidence that CFTR utilizes ATP to gate its channel activity.

  9. Structure of the novel membrane-coating material in proton-secreting epithelial cells and identification as an H+ATPase.

    Science.gov (United States)

    Brown, D; Gluck, S; Hartwig, J

    1987-10-01

    Specialized proton-secreting cells known collectively as mitochondria-rich cells are found in a variety of transporting epithelia, including the kidney collecting duct (intercalated cells) and toad and turtle urinary bladders. These cells contain a population of characteristic tubulovesicles that are believed to be involved in the shuttling of proton pumps (H+ATPase) to and from the plasma membrane. These transporting vesicles have a dense, studlike material coating the cytoplasmic face of their limiting membranes and similar studs are also found beneath parts of the plasma membrane. We have recently shown that this membrane coat does not contain clathrin. The present study was performed to determine the structure of this coat in rapidly frozen and freeze-dried tissue, and to determine whether the coat contains a major membrane protein transported by these vesicles, a proton pumping H+ATPase. The structure of the coat was examined in proton-secreting, mitochondria-rich cells from toad urinary bladder epithelium by rapidly freezing portions of apical membrane and associated cytoplasm that were sheared away from the remainder of the cell using polylysine-coated coverslips. Regions of the underside of these apical membranes as large as 0.2 micron2 were decorated by studlike projections that were arranged into regular hexagonal arrays. Individual studs had a diameter of 9.5 nm and appeared to be composed of multiple subunits arranged around a central depression, possibly representing a channel. The studs had a density of approximately 16,800 per micron2 of membrane. Similar arrays of studs were also found on vesicles trapped in the residual band of cytoplasm that remained attached to the underside of the plasma membrane, but none were seen in adjacent granular cells. To determine whether these arrays of studs contained H+ATPase molecules, we examined a preparation of affinity-purified bovine medullary H+ATPase, using the same technique, after incorporation of the

  10. Alteration of complex sphingolipid composition and its physiological significance in yeast Saccharomyces cerevisiae lacking vacuolar ATPase.

    Science.gov (United States)

    Tani, Motohiro; Toume, Moeko

    2015-12-01

    In the yeast Saccharomyces cerevisiae, complex sphingolipids have three types of polar head group and five types of ceramide; however, the physiological significance of the structural diversity is not fully understood. Here, we report that deletion of vacuolar H+-ATPase (V-ATPase) in yeast causes dramatic alteration of the complex sphingolipid composition, which includes decreases in hydroxylation at the C-4 position of long-chain bases and the C-2 position of fatty acids in the ceramide moiety, decreases in inositol phosphorylceramide (IPC) levels, and increases in mannosylinositol phosphorylceramide (MIPC) and mannosyldiinositol phosphorylceramide [M(IP)2C] levels. V-ATPase-deleted cells exhibited slow growth at pH 7.2, whereas the increase in MIPC levels was significantly enhanced when V-ATPase-deleted cells were incubated at pH 7.2. The protein expression levels of MIPC and M(IP)2C synthases were significantly increased in V-ATPase-deleted cells incubated at pH 7.2. Loss of MIPC synthesis or an increase in the hydroxylation level of the ceramide moiety of sphingolipids on overexpression of Scs7 and Sur2 sphingolipid hydroxylases enhanced the growth defect of V-ATPase-deleted cells at pH 7.2. On the contrary, the growth rate of V-ATPase-deleted cells was moderately increased on the deletion of SCS7 and SUR2. In addition, supersensitivities to Ca2+, Zn2+ and H2O2, which are typical phenotypes of V-ATPase-deleted cells, were enhanced by the loss of MIPC synthesis. These results indicate the possibility that alteration of the complex sphingolipid composition is an adaptation mechanism for a defect of V-ATPase.

  11. Crystal structure of a copper-transporting PIB-type ATPase

    DEFF Research Database (Denmark)

    Gourdon, Pontus; Liu, Xiang-Yu; Skjørringe, Tina

    2011-01-01

    Heavy-metal homeostasis and detoxification is crucial for cell viability. P-type ATPases of the class IB (PIB) are essential in these processes, actively extruding heavy metals from the cytoplasm of cells. Here we present the structure of a PIB-ATPase, a Legionella pneumophila CopA Cu......(+)-ATPase, in a copper-free form, as determined by X-ray crystallography at 3.2 Å resolution. The structure indicates a three-stage copper transport pathway involving several conserved residues. A PIB-specific transmembrane helix kinks at a double-glycine motif displaying an amphipathic helix that lines a putative...

  12. Isolation of H(+),K(+)-ATPase-enriched Membrane Fraction from Pig Stomachs.

    Science.gov (United States)

    Abe, Kazuhiro; Olesen, Claus

    2016-01-01

    Gastric H(+),K(+)-ATPase is an ATP-driven proton pump responsible for the acid secretion. Here, we describe the procedure for the isolation of H(+),K(+)-ATPase-enriched membrane vesicle fractions by Ficoll/sucrose density gradient centrifugation. Further purification by SDS treatment of membrane fractions is also introduced. These procedures allow us to obtain purified protein preparations in a quantity of several tens of milligrams, with the specific activity of ~480 μmol/mg/h. High purity and stability of H(+),K(+)-ATPase in the membrane preparation enable us to evaluate its detailed biochemical properties, and also to obtain 2D crystals for structural analysis.

  13. The role of Na,K-ATPase/Src-kinase signaling pathway in the vascular wall contaction

    DEFF Research Database (Denmark)

    Bouzinova, Elena

    ,K-ATPase by ouabain elevates blood pressure. Consequently, ouabain was shown to potentiate arterial contraction in vitro. In contrast, we have demonstrated that siRNA-induced down-regulation of the α-2 isoform Na,K-ATPase expression reduced arterial sensitivity to agonist stimulation and prevented the effect...... of ouabain. Here we demonstrate results of our research on the mechanisms involved in the modulation of vascular wall contractility by ouabain-sensitive Na,K-ATPase. Methods: The experiments were performed using rat mesenteric arteries in isometric myograph conditions. To inhibit kinase activity a Src-family...

  14. Subunit organization in cytoplasmic dynein subcomplexes

    Science.gov (United States)

    King, Stephen J.; Bonilla, Myriam; Rodgers, Michael E.; Schroer, Trina A.

    2002-01-01

    Because cytoplasmic dynein plays numerous critical roles in eukaryotic cells, determining the subunit composition and the organization and functions of the subunits within dynein are important goals. This has been difficult partly because of accessory polypeptide heterogeneity of dynein populations. The motor domain containing heavy chains of cytoplasmic dynein are associated with multiple intermediate, light intermediate, and light chain accessory polypeptides. We examined the organization of these subunits within cytoplasmic dynein by separating the molecule into two distinct subcomplexes. These subcomplexes were competent to reassemble into a molecule with dynein-like properties. One subcomplex was composed of the dynein heavy and light intermediate chains whereas the other subcomplex was composed of the intermediate and light chains. The intermediate and light chain subcomplex could be further separated into two pools, only one of which contained dynein light chains. The two pools had distinct intermediate chain compositions, suggesting that intermediate chain isoforms have different light chain–binding properties. When the two intermediate chain pools were characterized by analytical velocity sedimentation, at least four molecular components were seen: intermediate chain monomers, intermediate chain dimers, intermediate chain monomers with bound light chains, and a mixture of intermediate chain dimers with assorted bound light chains. These data provide new insights into the compositional heterogeneity and assembly of the cytoplasmic dynein complex and suggest that individual dynein molecules have distinct molecular compositions in vivo. PMID:11967380

  15. Relation of Na+, K(+)-ATPase to delayed motor nerve conduction velocity: effect of aldose reductase inhibitor, ADN-138, on Na+, K(+)-ATPase activity.

    Science.gov (United States)

    Hirata, Y; Okada, K

    1990-06-01

    The role of sorbitol, myo-inositol, and Na+, K(+)-adenosine triphosphatase (ATPase) activity on motor nerve conduction velocity (MNCV) in streptozotocin (STZ)-diabetic rats was studied. Reduction of MNCV and Na+, K(+)-ATPase in caudal nerves appeared after 3 weeks of diabetes, and at this time treatment with aldose reductase inhibitor (ARI), ADN-138 and 1% myo-inositol supplement was begun. One percent myo-inositol supplement for 3 weeks resulted in a significant increase in myo-inositol levels in diabetic nerves, but left MNCV and sorbitol levels unchanged. In contrast, treatment with ADN-138 for 3 weeks reduced sorbitol levels in diabetic nerves and resulted in significant increases in MNCV and Na+, K(+)-ATPase in the nerves. Since ADN-138 did not restore myo-inositol levels, the increase in Na+, K(+)-ATPase levels by ADN-138 treatment was independent of myo-inositol levels. Also, nerve Na+ levels in ADN-138-treated rats were reduced and the ratio of K+ to Na+ was raised, while 1% myo-inositol supplement did not affect them. These results suggest that treatment with ADN-138 elevates MNCV through a series of processes: ARI----reduction of sorbitol level----increase in Na+, K(+)-ATPase activity----correction of K+, Na+ imbalance----increase in MNCV.

  16. Lipoxin A4 Preconditioning and Postconditioning Protect Myocardial Ischemia/Reperfusion Injury in Rats

    Directory of Open Access Journals (Sweden)

    Qifeng Zhao

    2013-01-01

    Full Text Available This study aims to investigate the pre- and postconditioning effects of lipoxin A4 (LXA4 on myocardial damage caused by ischemia/reperfusion (I/R injury. Seventy-two rats were divided into 6 groups: sham groups (C1 and C2, I/R groups (I/R1 and I/R2, and I/R plus LXA4 preconditioning and postconditioning groups (LX1 and LX2. The serum levels of IL-1β, IL-6, IL-8, IL-10, TNF-α, and cardiac troponin I (cTnI were measured. The content and the activity of Na+-K+-ATPase as well as the superoxide dismutase (SOD, and malondialdehyde (MDA levels were determined. Along with the examination of myocardium ultrastructure and ventricular arrhythmia scores (VAS, connexin 43 (Cx43 expression were also detected. Lower levels of IL-1β, IL-6, IL-8, TNF-α, cTnI, MDA content, and VAS and higher levels of IL-10, SOD activity, Na+-K+-ATPase content and activity, and Cx43 expression appeared in LX groups than I/R groups. Besides, H&E staining, TEM examination as well as analysis of gene, and protein confirmed that LXA4 preconditioning was more effective than postconditioning in preventing arrhythmogenesis via the upregulation of Cx43. That is, LXA4 postconditioning had better protective effect on Na+-K+-ATPase and myocardial ultrastructure.

  17. Na+ channel β subunits: Overachievers of the ion channel family

    Directory of Open Access Journals (Sweden)

    William J Brackenbury

    2011-09-01

    Full Text Available Voltage gated Na+ channels (VGSCs in mammals contain a pore-forming α subunit and one or more β subunits. There are five mammalian β subunits in total: β1, β1B, β2, β3, and β4, encoded by four genes: SCN1B-SCN4B. With the exception of the SCN1B splice variant, β1B, the β subunits are type I topology transmembrane proteins. In contrast, β1B lacks a transmembrane domain and is a secreted protein. A growing body of work shows that VGSC β subunits are multifunctional. While they do not form the ion channel pore, β subunits alter gating, voltage-dependence, and kinetics of VGSC α subunits and thus regulate cellular excitability in vivo. In addition to their roles in channel modulation, β subunits are members of the immunoglobulin (Ig superfamily of cell adhesion molecules (CAMs and regulate cell adhesion and migration. β subunits are also substrates for sequential proteolytic cleavage by secretases. An example of the multifunctional nature of β subunits is β1, encoded by SCN1B, that plays a critical role in neuronal migration and pathfinding during brain development, and whose function is dependent on Na+ current and γ-secretase activity. Functional deletion of SCN1B results in Dravet Syndrome, a severe and intractable pediatric epileptic encephalopathy. β subunits are emerging as key players in a wide variety of pathophysiologies, including epilepsy, cardiac arrhythmia, multiple sclerosis, Huntington’s disease, neuropsychiatric disorders, neuropathic and inflammatory pain, and cancer. β subunits mediate multiple signaling pathways on different timescales, regulating electrical excitability, adhesion, migration, pathfinding, and transcription. Importantly, some β subunit functions may operate independent of α subunits. Thus, β subunits perform critical roles during development and disease. As such, they may prove useful in disease diagnosis and therapy.

  18. Binomial distribution for quantification of protein subunits in biological nanoassemblies and functional nanomachines.

    Science.gov (United States)

    Fang, Huaming; Zhang, Peng; Huang, Lisa P; Zhao, Zhengyi; Pi, Fengmei; Montemagno, Carlo; Guo, Peixuan

    2014-10-01

    Living systems produce ordered structures and nanomachines that inspire the development of biomimetic nanodevices such as chips, MEMS, actuators, sensors, sorters, and apparatuses for single-pore DNA sequencing, disease diagnosis, drug or therapeutic RNA delivery. Determination of the copy numbers of subunits that build these machines is challenging due to small size. Here we report a simple mathematical method to determine the stoichiometry, using phi29 DNA-packaging nanomotor as a model to elucidate the application of a formula ∑M=0(Z)((Z)M)p(Z-M)q(M), where p and q are the percentage of wild-type and inactive mutant in the empirical assay; M is the copy numbers of mutant and Z is the stoichiometry in question. Variable ratios of mutants and wild-type were mixed to inhibit motor function. Empirical data were plotted over the theoretical curves to determine the stoichiometry and the value of K, which is the number of mutant needed in each machine to block the function, all based on the condition that wild-type and mutant are equal in binding affinity. Both Z and K from 1-12 were investigated. The data precisely confirmed that phi29 motor contains six copies (Z) of the motor ATPase gp16, and K=1. From the clinical editor: To determine copy numbers of subunits that form nanomachines in living organisms is a daunting task due to the complexities and the inherently small sizes associated with such systems. In this paper, a simple mathematical method is described how to determine the stoichiometry of copies in biomimetic nanodevices, using phi29 DNA-packaging nanomotor as a model.

  19. Structures of KaiC Circadian Clock Mutant Proteins: A New Phosphorylation Site at T426 and Mechanisms of Kinase, ATPase and Phosphatase

    Energy Technology Data Exchange (ETDEWEB)

    Pattanayek, Rekha; Mori, Tetsuya; Xu, Yao; Pattanayek, Sabuj; Johnson, Carl H.; Egli, Martin; (Vanderbilt)

    2010-09-02

    The circadian clock of the cyanobacterium Synechococcus elongatus can be reconstituted in vitro by three proteins, KaiA, KaiB and KaiC. Homo-hexameric KaiC displays kinase, phosphatase and ATPase activities; KaiA enhances KaiC phosphorylation and KaiB antagonizes KaiA. Phosphorylation and dephosphorylation of the two known sites in the C-terminal half of KaiC subunits, T432 and S431, follow a strict order (TS {yields} pTS {yields} pTpS {yields} TpS {yields} TS) over the daily cycle, the origin of which is not understood. To address this void and to analyze the roles of KaiC active site residues, in particular T426, we determined structures of single and double P-site mutants of S. elongatus KaiC. The conformations of the loop region harboring P-site residues T432 and S431 in the crystal structures of six KaiC mutant proteins exhibit subtle differences that result in various distances between Thr (or Ala/Asn/Glu) and Ser (or Ala/Asp) residues and the ATP {gamma}-phosphate. T432 is phosphorylated first because it lies consistently closer to P{gamma}. The structures of the S431A and T432E/S431A mutants reveal phosphorylation at T426. The environments of the latter residue in the structures and functional data for T426 mutants in vitro and in vivo imply a role in dephosphorylation. We provide evidence for a third phosphorylation site in KaiC at T426. T426 and S431 are closely spaced and a KaiC subunit cannot carry phosphates at both sites simultaneously. Fewer subunits are phosphorylated at T426 in the two KaiC mutants compared to phosphorylated T432 and/or S431 residues in the structures of wt and other mutant KaiCs, suggesting that T426 phosphorylation may be labile. The structures combined with functional data for a host of KaiC mutant proteins help rationalize why S431 trails T432 in the loss of its phosphate and shed light on the mechanisms of the KaiC kinase, ATPase and phosphatase activities.

  20. Modulation of FXYD interaction with Na,K-ATPase by anionic phospholipids and protein kinase phosphorylation

    DEFF Research Database (Denmark)

    Cornelius, Flemming; Mahmmoud, Yasser Ahmed

    2007-01-01

    with anionic phospholipids. Specifically, the effects of the cytoplasmic domain of FXYD10, which contains the phosphorylation sites for protein kinases, on the kinetics of the Na,K-ATPase reaction were investigated by a comparison of the reconstituted native enzyme and the enzyme where 23 C-terminal amino...... acids of FXYD10 had been cleaved by mild, controlled trypsin treatment. Several kinetic properties of the Na,K-ATPase reaction cycle as well as the FXYD-regulation of Na,K-ATPase activity were found to be affected by acidic phospholipids like PI, PS, and PG. This takes into consideration the Na+ and K......+ activation, the K+-deocclusion reaction, and the poise of the E1/E2 conformational equilibrium, whereas the ATP activation was unchanged. Anionic phospholipids increased the intermolecular cross-linking between the FXYD10 C-terminus (Cys74) and the Cys254 in the Na,K-ATPase A-domain. However, neither...

  1. Na+,K+-ATPase concentration in rodent and human heart and skeletal muscle

    DEFF Research Database (Denmark)

    Kjeldsen, K; Bjerregaard, P; Richter, Erik

    1988-01-01

    rats, cardiomyopathic hamsters, and human subjects. These methods have earlier been shown to quantify the Na+,K+-ATPase concentration in muscle tissue with high accuracy. When rats were swim trained for six weeks the heart ventricular muscle Na+,K+-ATPase concentration was increased by 20% (p less than......To investigate whether the sodium-potassium pump or Na+,K+-ATPase concentration in muscles is related to the capacity for muscle performance, the 3H-ouabain binding site concentration or 3-O-methylflourescein phosphatase activity was determined in samples of heart ventricular muscles from trained...... was increased by up to 46% (p less than 0.001) and decreased by up to 30% (p less than 0.005) after training and immobilisation respectively. Cardiomyopathic hamsters showed a reduction of 33% (p less than 0.005) in the heart ventricular Na+,K+-ATPase concentration compared with normal hamsters. This decrease...

  2. Specific volume and compressibility of bilayer lipid membranes with incorporated Na,K-ATPase.

    Science.gov (United States)

    Hianik, Tibor; Rybár, Peter; Krivánek, Roland; Petríková, Mária; Roudna, Milena; Apell, Hans Jürgen

    2011-06-01

    Ultrasound velocimetry and densitometry methods were used to study the interactions of the Na,K-ATPase with the lipid bilayer in large unilamellar liposomes composed of dioleoyl phosphatidylcholine (DOPC). The ultrasound velocity increased and the specific volume of the phospholipids decreased with increasing concentrations of protein. These experiments allowed us to determine the reduced specific apparent compressibility of the lipid bilayer, which decreased by approx. 11% with increasing concentrations of the Na,K-ATPase up to an ATPase/DOPC molar ratio = 2 × 10⁻⁴. Assuming that ATPase induces rigidization of the surrounding lipid molecules one can obtain from the compressibility data that 3.7 to 100 times more lipid molecules are affected by the protein in comparison with annular lipids. However, this is in contradiction with the current theories of the phase transitions in lipid bilayers. It is suggested that another physical mechanisms should be involved for explanation of observed effect.

  3. New aspects of the glucose activation of the H(+)-ATPase in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Souza, M A; Trópia, M J; Brandão, R L

    2001-10-01

    The glucose-induced activation of plasma membrane ATPase from Saccharomyces cerevisiae was first described by Serrano in 1983. Many aspects of this signal transduction pathway are still obscure. In this paper, evidence is presented for the involvement of Snf3p as the glucose sensor related to this activation process. It is shown that, in addition to glucose detection by Snf3p, sugar transport is also necessary for activation of the ATPase. The participation of the G protein, Gpa2p, in transducing the internal signal (phosphorylated sugars) is also demonstrated. Moreover, the involvement of protein kinase C in the regulation of ATPase activity is confirmed. Finally, a model pathway is presented for sensing and transmission of the glucose activation signal of the yeast H(+)-ATPase.

  4. Interaction of phosphatidic acid and phosphatidylserine with the Ca2+-ATPase of sarcoplasmic reticulum and the mechanism of inhibition.

    Science.gov (United States)

    Dalton, K A; East, J M; Mall, S; Oliver, S; Starling, A P; Lee, A G

    1998-02-01

    The sarcoplasmic reticulum of skeletal muscle contains anionic phospholipids as well as the zwitterionic phosphatidylcholine and phosphatidylethanolamine. Here we study the effects of anionic phospholipids on the activity of the Ca2+-ATPase purified from the membrane. Reconstitution of the Ca2+-ATPase into dioleoylphosphatidylserine [di(C18:1)PS] or dioleoylphosphatidic acid [di(C18:1)PA] leads to a decrease in ATPase activity. Measurements of the quenching of the tryptophan fluorescence of the ATPase by brominated phospholipids give a relative binding constant for the anionic lipids compared with dioleoylphosphatidylcholine close to 1 and suggest that phosphatidic acid only binds to the ATPase at the bulk lipid sites around the ATPase. Addition of di(C18:1)PS or di(C18:1)PA to the ATPase in the short-chain dimyristoleoylphosphatidylcholine [di(C14:1)PC] reverse the effects of the short-chain lipid on ATPase activity and on Ca2+ binding, as revealed by the response of tryptophan fluorescence intensity to Ca2+ binding. It is concluded that the lipid headgroup and lipid fatty acyl chains have separate effects on the function of the ATPase. The anionic phospholipids have no significant effect on Ca2+ binding to the ATPase; the level of Ca2+ binding to the ATPase, the affinity of binding and the rate of dissociation of Ca2+ are unchanged by reconstitution into di(C18:1)PA. The major effect of the anionic lipids is a reduction in the maximal level of binding of MgATP. This is attributed to the formation of oligomers of the Ca2+-ATPase, in which only one molecule of the ATPase can bind MgATP dimers in di(C18:1)PS and trimers or tetramers in di(C18:1)PA. The rates of phosphorylation and dephosphorylation for the proportion of the ATPase still able to bind ATP are unaffected by reconstitution. Larger changes were observed in the level of phosphorylation of the ATPase by Pi, which became very low in the anionic phospholipids. The fluorescence response to Mg2+ for the ATPase

  5. Prefoldin Subunits Are Protected from Ubiquitin-Proteasome System-mediated Degradation by Forming Complex with Other Constituent Subunits*

    Science.gov (United States)

    Miyazawa, Makoto; Tashiro, Erika; Kitaura, Hirotake; Maita, Hiroshi; Suto, Hiroo; Iguchi-Ariga, Sanae M. M.; Ariga, Hiroyoshi

    2011-01-01

    The molecular chaperone prefoldin (PFD) is a complex comprised of six different subunits, PFD1-PFD6, and delivers newly synthesized unfolded proteins to cytosolic chaperonin TRiC/CCT to facilitate the folding of proteins. PFD subunits also have functions different from the function of the PFD complex. We previously identified MM-1α/PFD5 as a novel c-Myc-binding protein and found that MM-1α suppresses transformation activity of c-Myc. However, it remains unclear how cells regulate protein levels of individual subunits and what mechanisms alter the ratio of their activities between subunits and their complex. In this study, we found that knockdown of one subunit decreased protein levels of other subunits and that transfection of five subunits other than MM-1α into cells increased the level of endogenous MM-1α. We also found that treatment of cells with MG132, a proteasome inhibitor, increased the level of transfected/overexpressed MM-1α but not that of endogenous MM-1α, indicating that overexpressed MM-1α, but not endogenous MM-1α, was degraded by the ubiquitin proteasome system (UPS). Experiments using other PFD subunits showed that the UPS degraded a monomer of PFD subunits, though extents of degradation varied among subunits. Furthermore, the level of one subunit was increased after co-transfection with the respective subunit, indicating that there are specific combinations between subunits to be stabilized. These results suggest mutual regulation of protein levels among PFD subunits and show how individual subunits form the PFD complex without degradation. PMID:21478150

  6. Neutral phospholipids stimulate Na,K-ATPase activity: a specific lipid-protein interaction.

    Science.gov (United States)

    Haviv, Haim; Habeck, Michael; Kanai, Ryuta; Toyoshima, Chikashi; Karlish, Steven J D

    2013-04-05

    Membrane proteins interact with phospholipids either via an annular layer surrounding the transmembrane segments or by specific lipid-protein interactions. Although specifically bound phospholipids are observed in many crystal structures of membrane proteins, their roles are not well understood. Na,K-ATPase is highly dependent on acid phospholipids, especially phosphatidylserine, and previous work on purified detergent-soluble recombinant Na,K-ATPase showed that phosphatidylserine stabilizes and specifically interacts with the protein. Most recently the phosphatidylserine binding site has been located between transmembrane segments of αTM8-10 and the FXYD protein. This paper describes stimulation of Na,K-ATPase activity of the purified human α1β1 or α1β1FXYD1 complexes by neutral phospholipids, phosphatidylcholine, or phosphatidylethanolamine. In the presence of phosphatidylserine, soy phosphatidylcholine increases the Na,K-ATPase turnover rate from 5483 ± 144 to 7552 ± 105 (p phospholipids shows that the stimulatory effect is structurally selective for neutral phospholipids with polyunsaturated fatty acyl chains, especially dilinoleoyl phosphatidylcholine or phosphatidylethanolamine. By contrast to phosphatidylserine, phosphatidylcholine or phosphatidylethanolamine destabilizes the Na,K-ATPase. Structural selectivity for stimulation of Na,K-ATPase activity and destabilization by neutral phospholipids distinguish these effects from the stabilizing effects of phosphatidylserine and imply that the phospholipids bind at distinct sites. A re-examination of electron densities of shark Na,K-ATPase is consistent with two bound phospholipids located between transmembrane segments αTM8-10 and TMFXYD (site A) and between TM2, -4, -6, -and 9 (site B). Comparison of the phospholipid binding pockets in E2 and E1 conformations suggests a possible mechanism of stimulation of Na,K-ATPase activity by the neutral phospholipid.

  7. The role of Na(+), K(+)-ATPase in the hypoxic vasoconstriction in isolated rat basilar artery.

    Science.gov (United States)

    Shen, Haitao; Liang, Peng; Qiu, Suhua; Zhang, Bo; Wang, Yongli; Lv, Ping

    2016-06-01

    Hypoxia-induced cerebrovascular dysfunction is a key factor in the occurrence and the development of cerebral ischemia. Na(+), K(+)-ATPase affects the regulation of intracellular Ca(2+) concentration and plays an important role in vascular smooth muscle function. However, the potential role of Na(+), K(+)-ATPase in hypoxia-induced cerebrovascular dysfunction is unknown. In this study, we found that the KCl-induced contraction under hypoxia in rat endothelium-intact basilar arteries is similar to that of denuded arteries, suggesting that hypoxia may cause smooth muscle cell (SMC)-dependent vasoconstriction in the basilar artery. The Na(+), K(+)-ATPase activity of the isolated basilar artery with or without endothelium significantly reduced with prolonged hypoxia. Blocking the Na(+)-Ca(2+) exchanger with Ni(2+) (10(-3)M) or the L-type Ca(2+) channel with nimodipine (10(-8)M) dramatically attenuated KCl-induced contraction under hypoxia. Furthermore, prolonged hypoxia significantly reduced Na(+), K(+)-ATPase activity and increased [Ca(2+)]i in cultured rat basilar artery SMCs. Hypoxia reduced the protein and mRNA expression of the α2 isoform of Na(+), K(+)-ATPase in SMCs in vitro. We used a low concentration of the Na(+), K(+)-ATPase inhibitor ouabain, which possesses a high affinity for the α2 isoform. The contractile response in the rat basilar artery under hypoxia was partly inhibited by ouabain pretreatment. The decreased Na(+), K(+)-ATPase activity in isolated basilar artery and the increased [Ca(2+)]i in SMCs induced by hypoxia were partly inhibited by pretreatment with a low concentration of ouabain. These results suggest that hypoxia may educe Na(+), K(+)-ATPase activity in SMCs through the α2 isoform contributing to vasoconstriction in the rat basilar artery.

  8. Effects of C-terminal truncations on trafficking of the yeast plasma membrane H+-ATPase.

    Science.gov (United States)

    Mason, A Brett; Allen, Kenneth E; Slayman, Carolyn W

    2006-08-18

    Within the large family of P-type cation-transporting ATPases, members differ in the number of C-terminal transmembrane helices, ranging from two in Cu2+-ATPases to six in H+-, Na+,K+-, Mg2+-, and Ca2+-ATPases. In this study, yeast Pma1 H+-ATPase has served as a model to examine the role of the C-terminal membrane domain in ATPase stability and targeting to the plasma membrane. Successive truncations were constructed from the middle of the major cytoplasmic loop to the middle of the extended cytoplasmic tail, adding back the C-terminal membrane-spanning helices one at a time. When the resulting constructs were expressed transiently in yeast, there was a steady increase in half-life from 70 min in Pma1 delta452 to 348 min in Pma1 delta901, but even the longest construct was considerably less stable than wild-type ATPase (t(1/2) = 11 h). Confocal immunofluorescence microscopy showed that 11 of 12 constructs were arrested in the endoplasmic reticulum and degraded in the proteasome. The only truncated ATPase that escaped the ER, Pma1 delta901, traveled slowly to the plasma membrane, where it hydrolyzed ATP and supported growth. Limited trypsinolysis showed Pma1 delta901 to be misfolded, however, resulting in premature delivery to the vacuole for degradation. As model substrates, this series of truncations affirms the importance of the entire C-terminal domain to yeast H+-ATPase biogenesis and defines a sequence element of 20 amino acids in the carboxyl tail that is critical to ER escape and trafficking to the plasma membrane.

  9. Vacuolar H+-ATPase in the nuclear membranes regulates nucleo-cytosolic proton gradients.

    Science.gov (United States)

    Santos, Julianna Maria; Martínez-Zaguilán, Raul; Facanha, Arnoldo Rocha; Hussain, Fazle; Sennoune, Souad R

    2016-10-01

    The regulation of the luminal pH of each organelle is crucial for its function and must be controlled tightly. Nevertheless, it has been assumed that the nuclear pH is regulated by the cytoplasmic proton transporters via the diffusion of H(+) across the nuclear pores because of their large diameter. However, it has been demonstrated that ion gradients exist between cytosol and nucleus, suggesting that the permeability of ions across the nuclear pores is restricted. Vacuolar H(+)-ATPase (V-H(+)-ATPase) is responsible for the creation and maintenance of trans-membrane electrochemical gradient. We hypothesize that V-H(+)-ATPase located in the nuclear membranes functions as the primary mechanism to regulate nuclear pH and generate H(+) gradients across the nuclear envelope. We studied the subcellular heterogeneity of H(+) concentration in the nucleus and cytosol using ratio imaging microscopy and SNARF-1, a pH indicator, in prostate cells. Our results indicate that there are proton gradients across the nuclear membranes that are generated by V-H(+)-ATPase located in the outer and inner nuclear membranes. We demonstrated that these gradients are mostly dissipated by inhibiting V-H(+)-ATPase. Immunoblots and V-H(+)-ATPase activity corroborated the existence of V-H(+)-ATPase in the nuclear membranes. This study demonstrates that V-H(+)-ATPase is functionally expressed in nuclear membranes and is responsible for nuclear H(+) gradients that may promote not only the coupled transport of substrates, but also most electrochemically driven events across the nuclear membranes. This study represents a paradigm shift that the nucleus can regulate its own pH microenvironment, providing new insights into nuclear ion homeostasis and signaling.

  10. High-throughput measurement of the Ca2+-dependent ATPase activity in COS microsomes.

    Science.gov (United States)

    Vandecaetsbeek, Ilse; Holemans, Tine; Wuytack, Frank; Vangheluwe, Peter

    2014-08-01

    We provide a detailed procedure to determine the Ca(2+)-dependent ATPase activity in COS or HEK293 cells overexpressing a Ca(2+) pump. The ATPase activity is determined by the Baginsky method, which allows measurement of the steady-state production of inorganic phosphate (Pi). We have adapted this widely applied method into a sensitive, fast, and semi-high-throughput protocol suitable for use in a 96-well plate format.

  11. Local translational diffusion rates of membranous Na+,K(+)-ATPase measured by saturation transfer ESR spectroscopy.

    OpenAIRE

    Esmann, M.; Marsh, D.

    1992-01-01

    Diffusion-controlled Heisenberg spin exchange between spin-labeled Na+,K(+)-ATPase [ATP phosphohydrolase (Na+/K(+)-transporting), EC 3.6.1.37] proteins has been studied by saturation transfer ESR spectroscopy in reconstituted membranes. Na+,K(+)-ATPase from the salt gland of Squalus acanthias was solubilized in a polyoxyethylene ether detergent, octa(ethylene glycol) dodecyl monoether. Part of the solubilized enzyme was covalently spin-labeled with a nitroxide derivative of indanedione and re...

  12. Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators

    DEFF Research Database (Denmark)

    Schmidt, Signe Tandrup; Foged, Camilla; Korsholm, Karen Smith;

    2016-01-01

    for which no effective vaccines exist. The subunit vaccine technology exploits pathogen subunits as antigens, e.g., recombinant proteins or synthetic peptides, allowing for highly specific immune responses against the pathogens. However, such antigens are usually not sufficiently immunogenic to induce......The development of subunit vaccines has become very attractive in recent years due to their superior safety profiles as compared to traditional vaccines based on live attenuated or whole inactivated pathogens, and there is an unmet medical need for improved vaccines and vaccines against pathogens...... been licensed for use in human vaccines, and they mainly stimulate humoral immunity. Thus, there is an unmet demand for the development of safe and efficient adjuvant systems that can also stimulate cell-mediated immunity (CMI). Adjuvants constitute a heterogeneous group of compounds, which can broadly...

  13. Influence of inorganic phosphate and pH on sarcoplasmic reticular ATPase in skinned muscle fibres of Xenopus laevis.

    Science.gov (United States)

    Stienen, G J; Papp, Z; Zaremba, R

    1999-08-01

    1. The influence of 30 mM inorganic phosphate (Pi) and pH (6.2-7.4) on the rate of ATP utilization was determined in mechanically skinned bundles of myofibrils from the iliofibularis muscle of Xenopus laevis at approximately 5 C. 2. BDM (2,3-butanedione monoxime; 10 mM) depressed isometric force production and actomyosin (AM) ATPase activity equally. Therefore sarcoplasmic reticular (SR) ATPase activity could be determined by extrapolation of the total ATPase activity to zero force. 3. The SR ATPase activity without added Pi at pH 7.1 was 42 +/- 2 % of the total ATPase activity. Addition of 30 mM Pi reduced SR ATPase activity slightly, by 9 +/- 5 %, and depressed force by 62 +/- 2 % and AM ATPase activity by 21 +/- 6 %. 4. At pH 6.2, force, SR ATPase activity and AM ATPase activity were reduced by 21 +/- 5, 61 +/- 5 and 10 +/- 4 % of their respective values at pH 7.1. 5. The SR ATPase activity at 30 mM Pi and pH 6.2 was reduced markedly to 20 +/- 6 % of the value under control conditions, suggesting that the maximum rate of Ca2+ uptake during muscle fatigue was strongly depressed. This reduction was larger than expected on the basis of the effects of Pi and pH alone.

  14. Origin and evolution of metal p-Type ATPases in Plantae (Archaeplastida

    Directory of Open Access Journals (Sweden)

    Marc eHanikenne

    2014-01-01

    Full Text Available Metal ATPases are a subfamily of P-type ATPases involved in the transport of metal cations across biological membranes. They all share an architecture featuring eight transmembrane domains in pairs of two and are found in prokaryotes as well as in a variety of Eukaryotes. In Arabidopsis thaliana, eight metal P-type ATPases have been described, four being specific to copper transport and four displaying a broader metal specificity, including zinc, cadmium and possibly copper and calcium. So far, few efforts have been devoted to elucidating the origin and evolution of these proteins in Eukaryotes. In this work, we use large-scale phylogenetics to show that metal P-type ATPases form a homogenous group among P-type ATPases and that their specialisation into either monovalent (Cu or divalent (Zn, Cd… metal transport stems from a gene duplication that took place early in the evolution of Life. Then, we demonstrate that the four subgroups of plant metal ATPases all have a different evolutionary origin and a specific taxonomic distribution, only one tracing back to the cyanobacterial progenitor of the chloroplast. Finally, we examine the subsequent evolution of these proteins in green plants and conclude that the genes thoroughly characterised in model organisms are often the result of lineage-specific gene duplications, which calls for caution when attempting to infer function from sequence similarity alone in non-model organisms.

  15. Functional interaction of nicotinic acetylcholine receptors and Na+/K+ ATPase from Locusta migratoria manilensis (Meyen).

    Science.gov (United States)

    Bao, Haibo; Sun, Huahua; Xiao, Youxin; Zhang, Yixi; Wang, Xin; Xu, Xiaoyong; Liu, Zewen; Fang, Jichao; Li, Zhong

    2015-03-06

    Associated proteins are important for the correct functioning of nicotinic acetylcholine receptors (nAChRs). In the present study, a neonicotinoid-agarose affinity column was used to isolate related proteins from a solubilized membrane preparation from the nervous system of Locusta migratoria manilensis (Meyen). 1530 peptides were identified and most of them were involved in the membranous structure, molecular interaction and cellular communication. Among these peptides, Na(+)/K(+) ATPase had the highest MASCOT score and were involved in the molecular interaction, which suggested that Na(+)/K(+) ATPase and nAChRs might have strong and stable interactions in insect central nervous system. In the present study, functional interactions between nAChRs and Na(+)/K(+) ATPase were examined by heterologous expression in Xenopus oocytes. The results showed that the activated nAChRs increased pump currents of Na(+)/K(+) ATPase, which did not require current flow through open nAChRs. In turn, Na(+)/K(+) ATPase significantly increased agonist sensitivities of nAChRs in a pump activity-independent manner and reduced the maximum current (Imax) of nAChRs. These findings provide novel insights concerning the functional interactions between insect nAChRs and Na(+)/K(+) ATPase.

  16. Site-directed mutagenesis of cation coordinating residues in the gastric H,K-ATPase.

    Science.gov (United States)

    Rulli, S J; Louneva, N M; Skripnikova, E V; Rabon, E C

    2001-03-01

    Site-mutations were introduced into putative cation binding site 1 of the H,K-ATPase at glu-797, thr-825, and glu-938. The side chain oxygen of each was not essential but the mutations produced different activation and inhibition kinetics. Site mutations thr-825 (ala, leu) and glu-938 (ala, gln) modestly decreased the apparent affinity to K+, while glu-797 (gln) was equivalent to wild type. As expected of competitive inhibition, mutations of thr-825 and glu-938 that decreased the apparent affinity for K+ also increased the apparent affinity for SCH28080. This is consistent with the participation of thr-825 and glu-938 in a cation binding domain. The sidechain geometry, but not the sidechain charge of glu-797, is essential to ATPase function as the site mutant glu-797 (gly) inactivated the H,K-ATPase, while glu-797 (gln) was active but the apparent affinity to SCH 28080 was decreased by four-fold. Lys-793, a unique residue of the H,K-ATPase, was essential for ATPase function. Since this residue is adjacent to site 1, the result suggests that charge pairing between lys-793 and residues at or near this site may be essential to ATPase function.

  17. Changes of Plasma Membrane H+-ATPase Activities of Glycine max Seeds by PEG Treatment

    Institute of Scientific and Technical Information of China (English)

    Yang Yong-qing; Wang Xiao-feng

    2005-01-01

    The soybean (Glycine max) Heihe No. 23 is sensitive to imbibitional chilling injury. Polyethylene glycol (PEG)treatment can improve chilling tolerance of soybean seeds to a certain extent. The changes of hydrolytic ATPase in plasma membranes and H+-pumping responses in soybean seeds were investigated during PEG treatments. Effects of exogenous calcium and exogenous ABA on the hydrolytic ATPase were also examined in order to understand the mechanism of chilling resistance. Highly purified plasma membranes were isolated by 6.0% aqueous two-phase partitioning from soybean seeds, as judged by the sensitivity of hydrolytic ATPase to sodium vanadate. PEG treatment resulted in a slight increase of the hydrolytic ATPase activity in 12 h. Then the activity decreased gradually, but still higher than the control. The H+-pumping activity increased steadily during PEG treatment.Exogenous calcium had both activating and inhibiting effects on the hydrolytic ATPase, but the activity was inhibited in soybean seeds treated with exogenous ABA. Results suggested that PEG treatment, not the exogenous calcium and ABA, up-regulated H+-ATPase activities in soybean seeds.

  18. A propagating ATPase gradient drives transport of surface-confined cellular cargo.

    Science.gov (United States)

    Vecchiarelli, Anthony G; Neuman, Keir C; Mizuuchi, Kiyoshi

    2014-04-01

    The faithful segregation of duplicated genetic material into daughter cells is critical to all organisms. In many bacteria, the segregation of chromosomes involves transport of "centromere-like" loci over the main body of the chromosome, the nucleoid, mediated by a two-protein partition system: a nonspecific DNA-binding ATPase, ParA, and an ATPase stimulator, ParB, which binds to the centromere-like loci. These systems have previously been proposed to function through a filament-based mechanism, analogous to actin- or microtubule-based movement. Here, we reconstituted the F-plasmid partition system using a DNA-carpeted flow cell as an artificial nucleoid surface and magnetic beads coated with plasmid partition complexes as surface-confined cargo. This minimal system recapitulated directed cargo motion driven by a surface ATPase gradient that propagated with the cargo. The dynamics are consistent with a diffusion-ratchet model, whereby the cargo dynamically establishes, and interacts with, a concentration gradient of the ATPase. A chemophoresis force ensues as the cargo perpetually chases the ATPase gradient, allowing the cargo to essentially "surf" the nucleoid on a continuously traveling wave of the ATPase. Demonstration of this non-filament-based motility mechanism in a biological context establishes a distinct class of motor system used for the transport and positioning of large cellular cargo.

  19. Stabilisation of Na,K-ATPase structure by the cardiotonic steroid ouabain

    Energy Technology Data Exchange (ETDEWEB)

    Miles, Andrew J. [Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX (United Kingdom); Fedosova, Natalya U. [Department of Biomedicine, Aarhus University, DK-8000 Aarhus (Denmark); Hoffmann, Søren V. [ISA, Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus (Denmark); Wallace, B.A. [Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX (United Kingdom); Esmann, Mikael, E-mail: me@biophys.au.dk [Department of Biomedicine, Aarhus University, DK-8000 Aarhus (Denmark)

    2013-05-31

    Highlights: •Ouabain binding to pig and shark Na,K-ATPase enhances thermal stability. •Ouabain stabilises both membrane-bound and solubilised Na,K-ATPase. •Synchrotron radiation circular dichroism is used for structure determination. •Secondary structure in general is not affected by ouabain binding. •Stabilisation is due to re-arrangement of tertiary structure. -- Abstract: Cardiotonic steroids such as ouabain bind with high affinity to the membrane-bound cation-transporting P-type Na,K-ATPase, leading to complete inhibition of the enzyme. Using synchrotron radiation circular dichroism spectroscopy we show that the enzyme-ouabain complex is less susceptible to thermal denaturation (unfolding) than the ouabain-free enzyme, and this protection is observed with Na,K-ATPase purified from pig kidney as well as from shark rectal glands. It is also shown that detergent-solubilised preparations of Na,K-ATPase are stabilised by ouabain, which could account for the successful crystallisation of Na,K-ATPase in the ouabain-bound form. The secondary structure is not significantly affected by the binding of ouabain. Ouabain appears however, to induce a reorganization of the tertiary structure towards a more compact protein structure which is less prone to unfolding; recent crystal structures of the two enzymes are consistent with this interpretation. These circular dichroism spectroscopic studies in solution therefore provide complementary information to that provided by crystallography.

  20. Different expression patterns of renal Na(+)/K(+)-ATPase α-isoform-like proteins between tilapia and milkfish following salinity challenges.

    Science.gov (United States)

    Yang, Wen-Kai; Chung, Chang-Hung; Cheng, Hui Chen; Tang, Cheng-Hao; Lee, Tsung-Han

    2016-12-01

    Euryhaline teleosts can survive in a broad range of salinity via alteration of the molecular mechanisms in certain osmoregulatory organs, including in the gill and kidney. Among these mechanisms, Na(+)/K(+)-ATPase (NKA) plays a crucial role in triggering ion-transporting systems. The switch of NKA isoforms in euryhaline fish gills substantially contributes to salinity adaptation. However, there is little information about switches in the kidneys of euryhaline teleosts. Therefore, the responses of the renal NKA α-isoform protein switch to salinity challenge in euryhaline tilapia (Oreochromis mossambicus) and milkfish (Chanos chanos) with different salinity preferences were examined and compared in this study. Immunohistochemical staining in tilapia kidneys revealed the localization of NKA in renal tubules rather than in the glomeruli, similar to our previous findings in milkfish kidneys. Protein abundance in the renal NKA pan α-subunit-like, α1-, and α3-isoform-like proteins in seawater-acclimated tilapia was significantly higher than in the freshwater group, whereas the α2-isoform-like protein exhibited the opposite pattern of expression. In the milkfish, higher protein abundance in the renal NKA pan α-subunit-like and α1-isoform-like proteins was found in freshwater-acclimated fish, whereas no difference was found in the protein abundance of α2- and α3-isoform-like proteins between groups. These findings suggested that switches for renal NKA α-isoforms, especially the α1-isoform, were involved in renal osmoregulatory mechanisms of euryhaline teleosts. Moreover, differences in regulatory responses of the renal NKA α-subunit to salinity acclimation between tilapia and milkfish revealed that divergent mechanisms for maintaining osmotic balance might be employed by euryhaline teleosts with different salinity preferences.

  1. STEADY-STATE TRANSCRIPT LEVELS OF CYTOCHROME-C-OXIDASE GENES DURING HUMAN MYOGENESIS INDICATE SUBUNIT SWITCHING OF SUBUNIT VIA AND COEXPRESSION OF SUBUNIT VIIA ISOFORMS

    NARCIS (Netherlands)

    TAANMAN, JW; HERZBERG, NH; DEVRIES, H; BOLHUIS, PA; VANDENBOGERT, C

    1992-01-01

    Steady-state levels of the mitochondrial rRNAs, of mRNAs for mitochondrially and nuclear-encoded subunits of cytochrome c oxidase and for the beta-subunit of ATP synthase were assessed by Northern blot hybridizations during the in vitro differentiation of human myoblasts. Transcript levels of the so

  2. An SMC ATPase mutant disrupts chromosome segregation in Caulobacter.

    Science.gov (United States)

    Schwartz, Monica A; Shapiro, Lucy

    2011-12-01

    Accurate replication and segregation of the bacterial genome are essential for cell cycle progression. We have identified a single amino acid substitution in the Caulobacter structural maintenance of chromosomes (SMC) protein that disrupts chromosome segregation and cell division. The E1076Q point mutation in the SMC ATPase domain caused a dominant-negative phenotype in which DNA replication was able to proceed, but duplicated parS centromeres, normally found at opposite cell poles, remained at one pole. The cellular positions of other chromosomal loci were in the wild-type order relative to the parS centromere, but chromosomes remained unsegregated and appeared to be stacked upon one another. Purified SMC-E1076Q was deficient in ATP hydrolysis and exhibited abnormally stable binding to DNA. We propose that SMC spuriously links the duplicated chromosome immediately after passage of the replication fork. In wild-type cells, ATP hydrolysis opens the SMC dimer, freeing one chromosome to segregate to the opposite pole. The loss of ATP hydrolysis causes the SMC-E1076Q dimer to remain bound to both chromosomes, inhibiting segregation.

  3. Mg2+ coordination in catalytic sites of F1-ATPase.

    Science.gov (United States)

    Weber, J; Hammond, S T; Wilke-Mounts, S; Senior, A E

    1998-01-13

    Coordination of the Mg2+ ion in Mg-nucleotide substrates by amino acid residue side chains in the catalytic site of Escherichia coli F1-ATPase was investigated. From the X-ray structure of the mitochondrial enzyme [Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628], it may be inferred that the hydroxyl of betaThr-156 is a direct ligand of Mg2+, whereas the carboxyls of betaGlu-181, betaGlu-185, and betaAsp-242 might contribute via intervening water molecules. Elimination of each respective functional group by site-directed mutagenesis, followed by determination of Mg-nucleotide and uncomplexed nucleotide binding affinities using a tryptophan probe, showed that betaThr-156, betaGlu-185, and betaAsp-242 are all involved in Mg2+ coordination, whereas betaGlu-181 is not. A derived structural model for the octahedral coordination around the Mg2+ ion is presented. The results indicate that the ADP-containing site in the X-ray structure is the catalytic site of highest affinity. Correct Mg2+ coordination is required for catalytic activity at physiological rates. Elimination of any one of the Mg2+-coordinating residues led to complete loss of Mg2+-dependent nucleotide binding cooperativity of the catalytic sites.

  4. Robustness of the rotary catalysis mechanism of F1-ATPase.

    Science.gov (United States)

    Watanabe, Rikiya; Matsukage, Yuki; Yukawa, Ayako; Tabata, Kazuhito V; Noji, Hiroyuki

    2014-07-11

    F1-ATPase (F1) is the rotary motor protein fueled by ATP hydrolysis. Previous studies have suggested that three charged residues are indispensable for catalysis of F1 as follows: the P-loop lysine in the phosphate-binding loop, GXXXXGK(T/S); a glutamic acid that activates water molecules for nucleophilic attack on the γ-phosphate of ATP (general base); and an arginine directly contacting the γ-phosphate (arginine finger). These residues are well conserved among P-loop NTPases. In this study, we investigated the role of these charged residues in catalysis and torque generation by analyzing alanine-substituted mutants in the single-molecule rotation assay. Surprisingly, all mutants continuously drove rotary motion, even though the rotational velocity was at least 100,000 times slower than that of wild type. Thus, although these charged residues contribute to highly efficient catalysis, they are not indispensable to chemo-mechanical energy coupling, and the rotary catalysis mechanism of F1 is far more robust than previously thought.

  5. H,K-ATPase and carbonic anhydrase response to chronic systemic rat gastric hypoxia

    Directory of Open Access Journals (Sweden)

    Ulfah Lutfiah

    2015-11-01

    Full Text Available Background: Hypoxia may induce gastric ulcer associated with excessive hidrogen chloride (HCl secretion. Synthesis of HCl involves 2 enzymes, H,K-ATPase and carbonic anhydrase (CA. This study aimed to clarify the underlying cause of gastric ulcer in chronic hypoxic condition, by investigating the H,K-ATPase and CA9 response in rats.Methods: This study was an in vivo experiment, to know the relationship between hypoxia to expression of H,K-ATPase and CA9 mRNA, and H,K-ATPase and total CA specific activity of chronic systemic rat gastric hypoxia. The result was compared to control. Data was analyzed by SPSS. If the data distribution was normal and homogeneous, ANOVA and LSD post-hoc test were used. However, if the distribution was not normal and not homogeneous, and still as such after transformation, data was treated in non-parametric using Kruskal-Wallis and Mann Whitney test. Twenty five male Sprague-Dawley rats were divided into 5 groups: rats undergoing hypoxia for 1, 3, 5, and 7 days placed in hypoxia chamber (10% O2, 90% N2, and one control group. Following this treatment, stomach of the rats was extracted and homogenized. Expression of H,K-ATPase and CA9 mRNA was measured using real time RT-PCR. Specific activity of H,K-ATPase was measured using phosphate standard solution, and specific activity of total CA was measured using p-nitrophenol solution.Results: The expression of H,K-ATPase mRNA was higher in the first day (2.159, and drastically lowered from the third to seventh day (0.289; 0.108; 0.062. Specific activities of H,K-ATPase was slightly higher in the first day (0.765, then was lowered in the third (0.685 and fifth day (0.655, and was higher in the seventh day (0.884. The expression of CA9 mRNA was lowered progressively from the first to seventh day (0.84; 0.766; 0.736; 0.343. Specific activities of total CA was low in the first day (0.083, and was higher from the third to seventh day (0.111; 0.136; 0.144.Conclusion: In hypoxia

  6. Comparative Analysis of Eubacterial DNA Polymerase Ⅲ Alpha Subunits

    Institute of Scientific and Technical Information of China (English)

    Xiao-Qian Zhao; Jian-Fei Hu; Jun Yu

    2006-01-01

    DNA polymerase Ⅲ is one of the five eubacterial DNA polymerases that is responsible for the replication of DNA duplex. Among the ten subunits of the DNA polymerase Ⅲ core enzyme, the alpha subunit catalyzes the reaction for polymerizing both DNA strands. In this study, we extracted genomic sequences of the alpha subunit from 159 sequenced eubacterial genomes, and carried out sequencebased phylogenetic and structural analyses. We found that all eubacterial genomes have one or more alpha subunits, which form either homodimers or heterodimers.Phylogenetic and domain structural analyses as well as copy number variations of the alpha subunit in each bacterium indicate the classification of alpha subunit into four basic groups: polC, dnaE1, dnaE2, and dnaE3. This classification is of essence in genome composition analysis. We also consolidated the naming convention to avoid further confusion in gene annotations.

  7. Solution structure and function in trifluoroethanol of PP-50, an ATP-binding peptide from F1ATPase.

    Science.gov (United States)

    Chuang, W J; Abeygunawardana, C; Gittis, A G; Pedersen, P L; Mildvan, A S

    1995-05-10

    PP-50, a synthetic peptide, based on residues 141-190 of the beta-subunit of mitochondrial F1ATPase, containing the GX4GKT consensus sequence for nucleoside triphosphate binding, binds ATP tightly (Kd = 17.5 microM) as found by fluorescence titration at pH 4.0. CD and 2D proton NMR studies at pH 4.0 revealed two beta-turns, regions of extended secondary structure, transient tertiary structure, and flexibility in the GX4GKT region (W.J. Chuang, C. Abeygunawardana, P. L. Pedersen, and A. S. Mildvan, 1992, Biochemistry 31, 7915-7921). CD titration of PP-50 with trifluoroethanol (TFE) reveals a decrease in ellipticity at 208 and 222 nm, saturating at 25% TFE. Computer analysis indicates that 25% TFE increases the helix content from 5.8 to 28.6%, decreases the beta-structure from 30.2 to 20.2% and decreases the coil content from 64 to 51.2%. Fluorescence titrations of H2ATP2- with PP-50 in 25% TFE yields a Kd of 7.3 microM, 2.4-fold tighter than in H2O, probably due to TFE increasing the activity of H2ATP2- . PP-50 completely quenches the fluorescence of H2ATP2- in 25% TFE, while in H2O the fluorescence quenching is only 62%. In H2O the binding of H2ATP2- increases the structure of PP-50 as detected by CD, but in 25% TFE no significant change in CD is found on binding either H2ATP2- or Mg2+ HATP (Kd = 14 microM). The complete proton NMR spectrum of PP-50 in 25% TFE has been assigned. The solution structure, determined by distance geometry, molecular dynamics with simulated annealing, and energy minimization, consists of a coil (residues 1-8), a strand (residues 9-12), a loop (residues 13-22) containing the GX4GKT consensus sequence (residues 16-23), an alpha-helix (residues 23-36), a turn (residues 38-41), and a coil (residues 42-50), similar to that of the corresponding region of the X-ray structure of F1ATPase (J.P. Abrahams, A.G.W. Leslie, R. Lutter, and J. E. Walker, 1994 Nature 370, 621-628) and to the structure of a homologous peptide from the ATP-binding site of

  8. Regulation of Copper Transport Crossing Brain Barrier Systems by Cu-ATPases: Effect of Manganese Exposure

    Science.gov (United States)

    Fu, Xue; Zhang, Yanshu; Jiang, Wendy; Monnot, Andrew Donald; Bates, Christopher Alexander; Zheng, Wei

    2014-01-01

    Regulation of cellular copper (Cu) homeostasis involves Cu-transporting ATPases (Cu-ATPases), i.e., ATP7A and ATP7B. The question as to how these Cu-ATPases in brain barrier systems transport Cu, i.e., toward brain parenchyma, cerebrospinal fluid (CSF), or blood, remained unanswered. This study was designed to characterize roles of Cu-ATPases in regulating Cu transport at the blood-brain barrier (BBB) and blood-CSF barrier (BCB) and to investigate how exposure to toxic manganese (Mn) altered the function of Cu-ATPases, thereby contributing to the etiology of Mn-induced parkinsonian disorder. Studies by quantitative real-time RT-PCR (qPCR), Western blot, and immunocytochemistry revealed that both Cu-ATPases expressed abundantly in BBB and BCB. Transport kinetic studies by in situ brain infusion and ventriculo-cisternal (VC) perfusion in Sprague Dawley rat suggested that the BBB was a major site for Cu entry into brain, whereas the BCB was a predominant route for Cu efflux from the CSF to blood. Confocal evidence showed that the presence of excess Cu or Mn in the choroid plexus cells led to ATP7A relocating toward the apical microvilli facing the CSF, but ATP7B toward the basolateral membrane facing blood. Mn exposure inhibited the production of both Cu-ATPases. Collectively, these data suggest that Cu is transported by the BBB from the blood to brain, which is mediated by ATP7A in brain capillary. By diffusion, Cu ions move from the interstitial fluid into the CSF, where they are taken up by the BCB. Within the choroidal epithelial cells, Cu ions are transported by ATP7B back to the blood. Mn exposure alters these processes, leading to Cu dyshomeostasis-associated neuronal injury. PMID:24614235

  9. Activity determination of Na+ K+ - ATPase and Mg++ - ATPase enzymes in the gill of Poecilia vivipara (Osteichthyes, Cyprinodontiformes in different salinities

    Directory of Open Access Journals (Sweden)

    Marcelo da Cunha Amaral

    2001-03-01

    Full Text Available This work aimed to know the tolerance mechanisms through the salinity variation by Na+ K+ - ATPase and Mg++ - ATPase and enzymes encountered in the gills of Poecilia vivipara. In field, the presence of this species was observed in salinities of 0 and 28‰. In laboratory, these fish were maintained in aquarium with mean salinity of 30‰ and positive responses were obtained. Some adult specimens, collected in a lagoon of the Coqueiros Beach, were utilized as matrixes. In the experiments the specimens used were those born in the test aquarium. For each salinity studied three replicates were made with three specimens for each one. The alevins were maintained in salinities of 5, 10, 15, 20, 25, 30 and 35‰ during a month for adaptation. Gills were extracted in appropriate buffer for isolation of plasma membrane and used for specific dosage of the total enzymatic activity of Na+ K+ - ATPase and Mg++ - ATPase. The relation of alevins to their adaptation towards the salinity variation was also studied. The activity of the two enzymes showed a different result. The major expression of Na+ K+ - ATPase was observed in 20‰ (35 µmoles Pi.mg protein.h-1, the best salinity to cultivate P. vivipara.Este trabalho teve como objetivo conhecer os mecanismos de tolerância às variações de salinidade, pelas enzimas Mg++ - ATPase e Na+ K+ - ATPase, encontrada nas brânquias de Poecilia vivipara. No campo, foi observada a presença desta espécie em salinidades entre 0 e 28‰. No laboratório, os indivíduos foram mantidos em salinidade de 30‰ e responderam positivamente. Os indivíduos adultos, coletados em uma lagoa na praia dos Coqueiros, foram utilizados como matrizes. Nos experimentos foram usados alevinos que nasceram nos aquários testes. Para cada salinidade estudada foram feitas três réplicas com três espécimens em cada uma. Os alevinos foram mantidos em salinidades de 5, 10, 15, 20, 25, 30 e 35‰, durante um mês para total adaptação. As br

  10. Stabilization of membrane bound ATPases and lipid peroxidation by carotenoids from Chlorococcum humicola in Benzo(a)pyrene induced toxicity

    Institute of Scientific and Technical Information of China (English)

    Bhagavathy S; Sumathi P

    2012-01-01

    Objective: To identify the alteration of the membrane potential and the effect of carotenoid extracts from Chlorococcum humicola (C. humicola) on membrane bound ATPases and lipid peroxidation. Methods: The total carotenoids were extracted from C. humicola. Four groups of Swiss albino mice were treated as control, Benzo(a)pyrene [B(a)P], total carotenoids, B(a)P +total carotenoids respectively for a period of 60 days. Membrane lipid peroxidation and ATPases (Total ATPases, Ca2+- ATPases, Mg2+ - ATPases, Na+K+ - ATPase) were determined in lung, liver and erythrocyte samples. Results: The activity of total ATPase was found to be significantly increased in the B(a)P treated liver and lung tissue. Erythrocyte membrane also showed higher ATPase activity which was significantly reverted on total carotenoid treatment. Conclusions:It can be concluded that the changes in membrane potential favour the functional deterioration of physiological system. The overall findings demonstrates that the animals post treated with carotenoid extract from C. humicola may maintains the alterations in membrane bound ATPase and lipid peroxidation in tissues against the carcinogenic chemical and hence aid in establishing the membrane potential action. Therefore C. humicola can be further extended to exploits its possible application for various health benefits as neutraceuticals and food additives.

  11. A tomato ER-type Ca2+-ATPase, LCA1, has a low thapsigargin-sensitivity and can transport manganese

    DEFF Research Database (Denmark)

    Johnson, Neil A.; Liu, F; Weeks, P. D.;

    2008-01-01

    Recombinant Ca(2+)-ATPase from tomato (i.e. LCA1 for Lycopersicon esculentum [Since the identification and naming of LCA1, the scientific name for the tomato has been changed to Solanum lycopersicum.] Ca-ATPase) was heterologously expressed in yeast for structure-function characterization. We...... investigate the differences between plant and animal Ca pumps utilizing comparisons between chicken and rabbit SERCA-type pumps with Arabidopsis (ECA1) and tomato plant (LCA1) Ca(2+)-ATPases. Enzyme function was confirmed by the ability of each Ca(2+)-ATPase to rescue K616 growth on EGTA-containing agar...

  12. Subunit structure of the phycobiliproteins of blue-green algae.

    Science.gov (United States)

    Glazer, A N; Cohen-Bazire, G

    1971-07-01

    The phycobiliproteins of the blue-green algae Synechococcus sp. and Aphanocapsu sp. were characterized with respect to homogeneity, isoelectric point, and subunit composition. Each of the biliproteins consisted of two different noncovalently associated subunits, with molecular weights of about 20,000 and 16,000 for phycocyanin, 17,500 and 15,500 for allophycocyanin, and 22,000 and 20,000 for phycoerythrin. Covalently bound chromophore was associated with each subunit.

  13. Work environments of different types of nursing subunits.

    Science.gov (United States)

    Leatt, P; Schneck, R

    1982-11-01

    Based upon organizational theory, the purpose of this research was to identify and describe similarities and differences in the work environments of nine different types of nursing subunits (intensive care, medical, surgical, psychiatric, auxiliary, rehabilitation, rural, paediatric and obstetrical) in hospitals. Six measures of nursing subunit environment were developed: these included measures of nursing subunit autonomy, and the complexity and pervasiveness of other medical and hospital groups interacting with the nursing subunit. Data were collected by questionnaire from headnurses in 157 nursing subunits located in 24 hospitals in Alberta, Canada. The results indicated that the types of nursing subunits were similar in their degree of autonomy from both physicians and administration in the larger context in which they were located but were significantly different in terms of number and heterogeneity of groups outside nurses with which they interacted and the extent to which such groups pervaded the subunits. For example, intensive care units appeared as the type of nursing subunit with the greatest need for interaction with physicians, paramedics, hotel services and so on, whereas, psychiatric subunits appeared to be the least dependent on groups outside nursing in the hospital. These findings have implications for the management practices and educational programme for nursing.

  14. The Kdp-ATPase system and its regulation

    Indian Academy of Sciences (India)

    Anand Ballal; Bhakti Basu; Shree Kumar Apte

    2007-04-01

    K+, the dominant intracellular cation, is required for various physiological processes like turgor homeostasis, pH regulation etc. Bacterial cells have evolved many diverse K+ transporters to maintain the desired concentration of internal K+. In E. coli, the KdpATPase (comprising of the KdpFABC complex), encoded by the kdpFABC operon, is an inducible high-affinity K+ transporter that is synthesised under conditions of severe K+ limitation or osmotic upshift. The E. coli kdp expression is transcriptionally regulated by the KdpD and KdpE proteins, which together constitute a typical bacterial two-component signal transduction system. The Kdp system is widely dispersed among the different classes of bacteria including the cyanobacteria. The ordering of the kdpA, kdpB and kdpC is relatively fixed but the kdpD/E genes show different arrangements in distantly related bacteria. Our studies have shown that the cyanobacterium Anabaena sp. strain L-31 possesses two kdp operons, kdp1 and kdp2, of which, the later is expressed under K+ deficiency and desiccation. Among the regulatory genes, the kdpD ORF of Anabaena L-31 is truncated when compared to the kdpD of other bacteria, while a kdpE-like gene is absent. The extremely radio-resistant bacterium, Deinococcus radiodurans strain R1, also shows the presence of a naturally short kdpD ORF similar to Anabaena in its kdp operon. The review elaborates the expression of bacterial kdp operons in response to various environmental stress conditions, with special emphasis on Anabaena. The possible mechanism(s) of regulation of the unique kdp operons from Anabaena and Deinococcus are also discussed.

  15. Thermostable Subunit Vaccines for Pulmonary Delivery

    DEFF Research Database (Denmark)

    Foged, Camilla

    2016-01-01

    -administrable, can be distributed independently of functioning freezers and refrigerators, and can be designed to induce mucosal and/or cell-mediated immunity, which is attractive for a number of diseases requiring stimulation of local mucosal immunity for protection. However, the design and delivery of thermostable...... dry powder-based vaccines represents a technological challenge: It calls for careful formulation and dosage form design, combined with cheap and efficient delivery devices, which must be engineered via a thorough understanding of the physiological barrier and the requirements for induction of mucosal...... immunity. Here, I review state of the art and perspectives in formulation design and processing methods for powder-based subunit vaccines intended for pulmonary administration, and present dry powder inhaler technologies suitable for translating these vaccines into clinical trials....

  16. Functional analysis of human Na~+/K~+-ATPase familial or sporadic hemiplegic migraine mutations expressed in Xenopus oocytes

    Institute of Scientific and Technical Information of China (English)

    Susan; Spiller; Thomas; Friedrich

    2014-01-01

    AIM: Functional characterization of ATP1A2 mutations that are related to familial or sporadic hemiplegic migraine(FHM2, SHM). METHODS: cRNA of human Na+/K+-ATPase α2- and β1-subunits were injected in Xenopus laevis oocytes. FHM2 or SHM mutations of residues located in putative α/β interaction sites or in the α2-subunit’s C-terminal region were investigated. Mutants were analyzed by the twoelectrode voltage-clamp(TEVC) technique on Xenopus oocytes. Stationary K+-induced Na+/K+ pump currents were measured, and the voltage dependence of apparent K+ affinity was investigated. Transient currents were recorded as ouabain-sensitive currents in Na+ buffers to analyze kinetics and voltage-dependent presteady state charge translocations. The expression of constructs was verified by preparation of plasma membrane and total membrane fractions of cRNA-injected oocytes. RESULTS: Compared to the wild-type enzyme, the mutants G900R and E902K showed no significant dif-ferences in the voltage dependence of K+-induced currents, and analysis of the transient currents indicated that the extracellular Na+ affinity was not affected. Mutant G855R showed no pump activity detectable by TEVC. Also for L994del and Y1009X, pump currents could not be recorded. Analysis of the plasma and total membrane fractions showed that the expressed proteins were not or only minimally targeted to the plasma membrane. Whereas the mutation K1003E had no impact on K+ interaction, D999H affected the voltage dependence of K+-induced currents. Furthermore, kinetics of the transient currents was altered compared to the wild-type enzyme, and the apparent affinity for extracellular Na+ was reduced. CONCLUSION: The investigated FHM2/SHM mutations influence protein function differently depending on the structural impact of the mutated residue.

  17. Tributyltin (TBT) inhibition of oligomycin-sensitive Mg-ATPase activity in mussel mitochondria.

    Science.gov (United States)

    Pagliarani, Alessandra; Bandiera, Patrizia; Ventrella, Vittoria; Trombetti, Fabiana; Pirini, Maurizio; Nesci, Salvatore; Borgatti, Anna Rosa

    2008-06-01

    Tributyltin (TBT), one of the most toxic lipophilic aquatic pollutants, can be efficiently incorporated from sea water and sediments by filter-feeding molluscs. As far as we are aware TBT effects on the mitochondrial oligomycin-sensitive Mg-ATPase, the enzymatic core of energy production and a known target of TBT toxicity in mammals, have not been yet investigated in molluscs; thus the hydrolytic capability of the mitochondrial complex in the presence of micromolar concentrations of TBT was assayed in the mussel Mytilus galloprovincialis. Gill and mantle ATPase activities were progressively depressed by increasing TBT doses up to a maximal inhibition (82% in the gills and 74% in the mantle) at 0.62 microM TBT. Non-cooperative inhibition kinetics (n(H) approximately -1) and a non-competitive mechanism with respect to ATP substrate were pointed out. The mitochondrial Mg-ATPase susceptivity to TBT in the marine mussel was consistent with the formation of a TBT-Mg-ATPase complex, apparently more stable in the gills than in the mantle. The complex shape of the dose-response curve and the partial release of Mg-ATPase inhibition within the 0.6-34.4 microM TBT range suggest multiple interactions of TBT with the enzyme complex putatively related to its molecular mechanism of toxicity.

  18. Investigation of the Mitochondrial ATPase 6/8 and tRNALys Genes Mutations in Autism

    Directory of Open Access Journals (Sweden)

    Sepideh Dadgar

    2012-01-01

    Full Text Available Objective: Autism results from developmental factors that affect many or all functional brain systems. Brain is one of tissues which are crucially in need of adenosine triphosphate (ATP. Autism is noticeably affected by mitochondrial dysfunction which impairs energy metabolism. Considering mutations within ATPase 6, ATPase 8 and tRNALys genes, associated with different neural diseases, and the main role of ATPase 6/8 in energy generation, we decided to investigate mutations on these mtDNA-encoded genes to reveal their roles in autism pathogenesis.Materials and Methods: In this experimental study, mutation analysis for the mentioned genes were performed in a cohort of 24 unrelated patients with idiopathic autism by employing amplicon sequencing of mtDNA fragments.Results: In this study, 12 patients (50% showed point mutations that represent a significant correlation between autism and mtDNA variations. Most of the identified substitutions (55.55% were observed on MT-ATP6, altering some conserved amino acids to other ones which could potentially affect ATPase 6 function. Mutations causing amino acid replacement denote involvement of mtDNA genes, especially ATPase 6 in autism pathogenesis.Conclusion: MtDNA mutations in relation with autism could be remarkable to realize an understandable mechanism of pathogenesis in order to achieve therapeutic solutions.

  19. Functional diversity of five homologous Cu+-ATPases present in Sinorhizobium meliloti.

    Science.gov (United States)

    Patel, Sarju J; Padilla-Benavides, Teresita; Collins, Jessica M; Argüello, José M

    2014-06-01

    Copper is an important element in host-microbe interactions, acting both as a catalyst in enzymes and as a potential toxin. Cu(+)-ATPases drive cytoplasmic Cu(+) efflux and protect bacteria against metal overload. Many pathogenic and symbiotic bacteria contain multiple Cu(+)-ATPase genes within particular genetic environments, suggesting alternative roles for each resulting protein. This hypothesis was tested by characterizing five homologous Cu(+)-ATPases present in the symbiotic organism Sinorhizobium meliloti. Mutation of each gene led to different phenotypes and abnormal nodule development in the alfalfa host. Distinct responses were detected in free-living S. meliloti mutant strains exposed to metal and redox stresses. Differential gene expression was detected under Cu(+), oxygen or nitrosative stress. These observations suggest that CopA1a maintains the cytoplasmic Cu(+) quota and its expression is controlled by Cu(+) levels. CopA1b is also regulated by Cu(+) concentrations and is required during symbiosis for bacteroid maturation. CopA2-like proteins, FixI1 and FixI2, are necessary for the assembly of two different cytochrome c oxidases at different stages of bacterial life. CopA3 is a phylogenetically distinct Cu(+)-ATPase that does not contribute to Cu(+) tolerance. It is regulated by redox stress and required during symbiosis. We postulated a model where non-redundant homologous Cu(+)-ATPases, operating under distinct regulation, transport Cu(+) to different target proteins.

  20. The intact CFTR protein mediates ATPase rather than adenylate kinase activity.

    Science.gov (United States)

    Ramjeesingh, Mohabir; Ugwu, Francisca; Stratford, Fiona L L; Huan, Ling-Jun; Li, Canhui; Bear, Christine E

    2008-06-01

    The two NBDs (nucleotide-binding domains) of ABC (ATP-binding-cassette) proteins function in a complex to mediate ATPase activity and this activity has been linked to their regulated transport activity. A similar model has been proposed for CFTR (cystic fibrosis transmembrane conductance regulator), the chloride channel defective in cystic fibrosis, wherein ATP binding and hydrolysis regulate the channel gate. Recently, it was shown that the individual NBDs isolated from CFTR primarily mediate adenylate kinase activity, raising the possibility that this activity may also contribute to gating of the CFTR channel. However, this present study shows that whereas the isolated NBDs exhibit adenylate kinase activity, the full-length purified and reconstituted CFTR protein functions as an ATPase, arguing that the enzymatic activity of the NBDs is dependent on their molecular context and appropriate domain-domain assembly. As expected, the disease-causing mutant bearing a mutation in the ABC signature motif, CFTR-G551D, exhibited a markedly reduced ATPase activity. Furthermore, mutation of the putative catalytic base in CFTR caused a reduction in ATPase activity, with the CFTR-E1371Q mutant supporting a low level of residual activity. Neither of these mutants exhibited detectable adenylate kinase activity. Together, these findings support the concept that the molecular mechanism of action of CFTR is dependent on ATP binding and hydrolysis, and that the structure of prokaryotic ABC ATPases provide a useful template for understanding their mechanism of action.

  1. Relationship between plasma membrane Ca2+-ATPase activity and acrosome reaction in guinea pig sperm

    Institute of Scientific and Technical Information of China (English)

    李明文; 陈大元

    1996-01-01

    The results obtained by biochemical measurement demonstrated for the first time that significant decrease of the plasma membrane Ca2+-ATPase activity occurred during capacitation and acrosome reaction of guinea pig sperm. Ethaorynic acid, one kind of Ca2+-ATPase antagonists, inhibited the plasma membrane Ca2+-ATPase activity, but calmodulin (50μg/mL) and trifluoperazine (200- 500μmol/L) did not, suggesting that calmodulin is not involved in ATP-driven Ca2+ efflux from sperm. However, calmodulin is involved in the control of Ca2+ influx. TFP, one kind of calmodulin antagonists, accelerated the acrosome reaction and Ca2+ uptake into sperm cells significantly. Ca2+-ATPase antagonists, quercetin, sodium orthovandate, furosemide and ethacrynic acid promoted the acrosome reaction, but inhibited Ca2+ uptake, which cannot be explained by their inhibitory effects on the plasma membrane Ca2+-ATPase activity. It is speculated that this phenomenon might be caused by simultaneous inhibitions of the activities of C

  2. A Systematic Study on Structure and Function of ATPase of Wuchereria bancrofti

    Science.gov (United States)

    Islam, Md. Saiful; Patwary, Noman Ibna Amin; Muzahid, Nazmul Hasan; Shahik, Shah Md.; Sohel, Md.; Hasan, Md. Anayet

    2014-01-01

    Background: Analyzing the structures and functions of different proteins of Wuchereria bancrofti is very important because till date no effective drug or vaccine has been discovered to treat lymphatic filariasis (LF). ATPase is one of the most important proteins of Wuchereria bancrofti. Adenosine triphosphate (ATP) converts into adenosine diphosphate (ADP) and a free phosphate ion by the action of these ATPase enzymes. Energy releases from these dephosphorylation reactions drive the other chemical reactions in the cell. Materials and Methods: In this study we worked on the protein ATPase of Wuchereria bancrofti which has been annotated from National Center for Biotechnology Information (NCBI). Various computational tools and databases have been used to determine the various characteristics of that enzyme such as physiochemical properties, secondary structure, three-dimensional (3D) structure, conserved domain, epitope, and their molecular evolutionary relationship. Result: Subcellular localization of ATPase was identified and we have found that 55.5% are localized in the cytoplasm. Secondary and 3D structure of this protein was also predicted. Both structure and function analysis of ATPase of Wuchereria bancrofti showed unique nonhomologous epitope sites and nonhomologous antigenicity sites. Moreover, it resulted in 15 ligand drug-binding sites in its tertiary structure. Conclusion: Structure prediction of these proteins and detection of binding sites and antigenicity sites from this study would indicate a potential target aiding docking studies for therapeutic designing against filariasis. PMID:25948965

  3. Inhibition of ecto-ATPase activities impairs HIV-1 infection of macrophages.

    Science.gov (United States)

    Schachter, Julieta; Delgado, Kelly Valcárcel; Barreto-de-Souza, Victor; Bou-Habib, Dumith Chequer; Persechini, Pedro Muanis; Meyer-Fernandes, José Roberto

    2015-05-01

    Nucleotides and nucleosides are secreted into extracellular media at different concentrations as a consequence of different physiologic and pathological conditions. Ecto-nucleotidases, enzymes present on the surface of most cells, hydrolyze these extracellular nucleotides and reduce the concentration of them, thus affecting the activation of different nucleotide and nucleoside receptors. Also, ecto-nucleotidases are present in a number of microorganisms and play important roles in host-pathogen interactions. Here, we characterized the ecto-ATPase activities present on the surface of HIV-1 particle and human macrophages as well. We found that the kinetic properties of HIV-1 and macrophage ecto-ATPases are similar, suggesting that the enzyme is the same. This ecto-ATPase activity was increased in macrophages infected in vitro with HIV-1. Using three different non-related ecto-ATPase inhibitors-POM-1, ARL67156 and BG0-we showed that the inhibition of these macrophage and viral ecto-ATPase activities impairs HIV-1 infection. In addition, we also found that elevated extracellular concentrations of ATP inhibit HIV-1 production by infected macrophages.

  4. Peroxynitrite induced decrease in Na+, K+-ATPase activity is restored by taurine

    Institute of Scientific and Technical Information of China (English)

    Necla Kocak-Toker; Murat Giris; Feti Tülübas; Müjdat Uysal; Gülcin Aykac-Toker

    2005-01-01

    AIM: Peroxynitrite (ONOO-) is a powerful oxidant shown to damage membranes. In the present study, the effect of taurine on changes of liver plasma membrane Na+, K+-ATPase induced by ONOO- was investigated. METHODS: Liver plasma membrane was exposed toONOO-with or without taurine. Na+, K+-ATPase activity and lipid peroxidation as thiobarbituric acid reactive substances (TBARS) levels were measured.RESULTS: Different concentrations of ONOO- (100, 200,500, and 1 000 μmol/L) were found to decrease liver plasma membrane Na+, K+-ATPase activity significantly. The depletion of enzyme activity was not concentration dependent. Effects of different concentrations of taurine on liver plasma membrane Na+, K+-ATPase activity were also measured. Taurine did not cause any increase in enzyme activity. When plasma membranes were treated with 200 μmol/L ONOO- with different concentrations of taurine, a restoring effect of taurine on enzyme activity was observed. TBARS levels were also measured and taurine was found to decrease the elevated values. CONCLUSION: Taurine is observed to act as an antioxidant of ONOO-to decrease lipid peroxidation and thus affect liver plasma membrane Na+, K+-ATPase by restoring its activity.

  5. Crystal structure of a copper-transporting PIB-type ATPase.

    Science.gov (United States)

    Gourdon, Pontus; Liu, Xiang-Yu; Skjørringe, Tina; Morth, J Preben; Møller, Lisbeth Birk; Pedersen, Bjørn Panyella; Nissen, Poul

    2011-07-01

    Heavy-metal homeostasis and detoxification is crucial for cell viability. P-type ATPases of the class IB (PIB) are essential in these processes, actively extruding heavy metals from the cytoplasm of cells. Here we present the structure of a PIB-ATPase, a Legionella pneumophila CopA Cu(+)-ATPase, in a copper-free form, as determined by X-ray crystallography at 3.2 Å resolution. The structure indicates a three-stage copper transport pathway involving several conserved residues. A PIB-specific transmembrane helix kinks at a double-glycine motif displaying an amphipathic helix that lines a putative copper entry point at the intracellular interface. Comparisons to Ca(2+)-ATPase suggest an ATPase-coupled copper release mechanism from the binding sites in the membrane via an extracellular exit site. The structure also provides a framework to analyse missense mutations in the human ATP7A and ATP7B proteins associated with Menkes' and Wilson's diseases.

  6. Molecular cloning and characterization of porcine Na⁺/K⁺-ATPase isoforms α1, α2, α3 and the ATP1A3 promoter.

    Directory of Open Access Journals (Sweden)

    Carina Henriksen

    Full Text Available Na⁺/K⁺-ATPase maintains electrochemical gradients of Na⁺ and K⁺ essential for a variety of cellular functions including neuronal activity. The α-subunit of the Na⁺/K⁺-ATPase exists in four different isoforms (α1-α4 encoded by different genes. With a view to future use of pig as an animal model in studies of human diseases caused by Na⁺/K⁺-ATPase mutations, we have determined the porcine coding sequences of the α1-α3 genes, ATP1A1, ATP1A2, and ATP1A3, their chromosomal localization, and expression patterns. Our ATP1A1 sequence accords with the sequences from several species at five positions where the amino acid residue of the previously published porcine ATP1A1 sequence differs. These corrections include replacement of glutamine 841 with arginine. Analysis of the functional consequences of substitution of the arginine revealed its importance for Na⁺ binding, which can be explained by interaction of the arginine with the C-terminus, stabilizing one of the Na⁺ sites. Quantitative real-time PCR expression analyses of porcine ATP1A1, ATP1A2, and ATP1A3 mRNA showed that all three transcripts are expressed in the embryonic brain as early as 60 days of gestation. Expression of α3 is confined to neuronal tissue. Generally, the expression patterns of ATP1A1, ATP1A2, and ATP1A3 transcripts were found similar to their human counterparts, except for lack of α3 expression in porcine heart. These expression patterns were confirmed at the protein level. We also report the sequence of the porcine ATP1A3 promoter, which was found to be closely homologous to its human counterpart. The function and specificity of the porcine ATP1A3 promoter was analyzed in transgenic zebrafish, demonstrating that it is active and drives expression in embryonic brain and spinal cord. The results of the present study provide a sound basis for employing the ATP1A3 promoter in attempts to generate transgenic porcine models of neurological diseases caused by

  7. Dynamic regulation of β1 subunit trafficking controls vascular contractility.

    Science.gov (United States)

    Leo, M Dennis; Bannister, John P; Narayanan, Damodaran; Nair, Anitha; Grubbs, Jordan E; Gabrick, Kyle S; Boop, Frederick A; Jaggar, Jonathan H

    2014-02-11

    Ion channels composed of pore-forming and auxiliary subunits control physiological functions in virtually all cell types. A conventional view is that channels assemble with their auxiliary subunits before anterograde plasma membrane trafficking of the protein complex. Whether the multisubunit composition of surface channels is fixed following protein synthesis or flexible and open to acute and, potentially, rapid modulation to control activity and cellular excitability is unclear. Arterial smooth muscle cells (myocytes) express large-conductance Ca(2+)-activated potassium (BK) channel α and auxiliary β1 subunits that are functionally significant modulators of arterial contractility. Here, we show that native BKα subunits are primarily (∼95%) plasma membrane-localized in human and rat arterial myocytes. In contrast, only a small fraction (∼10%) of total β1 subunits are located at the cell surface. Immunofluorescence resonance energy transfer microscopy demonstrated that intracellular β1 subunits are stored within Rab11A-postive recycling endosomes. Nitric oxide (NO), acting via cGMP-dependent protein kinase, and cAMP-dependent pathways stimulated rapid (≤1 min) anterograde trafficking of β1 subunit-containing recycling endosomes, which increased surface β1 almost threefold. These β1 subunits associated with surface-resident BKα proteins, elevating channel Ca(2+) sensitivity and activity. Our data also show that rapid β1 subunit anterograde trafficking is the primary mechanism by which NO activates myocyte BK channels and induces vasodilation. In summary, we show that rapid β1 subunit surface trafficking controls functional BK channel activity in arterial myocytes and vascular contractility. Conceivably, regulated auxiliary subunit trafficking may control ion channel activity in a wide variety of cell types.

  8. Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators

    DEFF Research Database (Denmark)

    Schmidt, Signe Tandrup; Foged, Camilla; Korsholm, Karen Smith

    2016-01-01

    be classified into delivery systems or immunostimulators. Liposomes are versatile delivery systems for antigens, and they can carefully be cu